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Abstract

Personal Digital Assistants (PDAs) have recently become a popular compo-

nent in mobile robots. This compact processing device with its touch screen,

variety of built-in features, wireless technologies and affordability can per-

form various roles within a robotic system. Applications include low-cost

prototype development, rapid prototyping, low-cost humanoid robots, robot

control, robot vision systems, algorithm development, human-robot interac-

tion, mobile user interfaces as well as wireless robot communication schemes.

Limits on processing power, memory, battery life and screen size impact

the usefulness of a PDA in some applications. In addition various imple-

mentation strategies exist, each with its own strengths and weaknesses. No

comparison of the advantages and disadvantages of the different strategies

and resulting architectures exist. This makes it difficult for designers to

decide on the best use of a PDA within their mobile robot system.

This dissertation examines and compares the available mobile robot ar-

chitectures. A thorough literature study identifies robot projects using a

PDA and examines how the designs incorporate a PDA and what purpose

it fulfils within the system it forms part of. The dissertation categorises the

architectures according to the role of the PDA within the robot system.

The hypothesis is made that using a distributed control system architec-

ture makes optimal use of the rich feature set gained from including a PDA in

a robot system’s design and simultaneously overcomes the device’s inherent

shortcomings. This architecture is developed into a novel distributed intelli-

gence framework that is supported by a hybrid communications architecture,

using two wireless connection schemes.

A prototype implementation illustrates the framework and communica-

tions architecture in action. Various performance measurements are taken

in a test scenario for an office robot. The results indicate that the proposed

framework does deliver performance gains and is a viable alternative for fu-

ture projects in this area.
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Chapter 1

Introduction

Mobile robots are robots that have the ability to move around in their envi-

ronment, other than industrial robots which are usually attached to a fixed

surface. The first mobile robots, Elmer and Elsie, created by Mr G. Walter

between 1948 and 1949, could follow a light source using a light sensor and

were able to move and avoid obstacles in their way (Holland, 2011).

Today the field of mobile robotics is enjoying tremendous scientific, prac-

tical and popular success. Mobile robots give museum tours, play soccer

(RoboCup), map abandoned coal mines, defuse bombs, drive autonomously

through the desert (DARPA Grand Challenge), assist the elderly and even

gather data from the surface of Mars (Oates, 2005).

There are a number of methods by which to classify a mobile robot.

Mobile robots may be classified by the environment in which the robot moves

around in (indoor and outdoor on land, aerial, underwater), the type of

locomotion (legged, wheeled, tracked) or their application (entertainment,

education, service, exploration).

Mobile robots are described as complex systems due to the large num-

ber of competencies needed in order to function. The complexity of an au-

tonomous robot depends primarily on the number of tasks or functions it

can perform in response to various stimuli (Miller, 2004). A simple robot

may only perform one task, such as stopping when it encounters an object.

A more complex robot may be able to stop when it reaches an obstacle

and then use various sensors to correct its course and continue. While the

manoeuvrability of a robot depends on the mechanical design, the ability

to respond to different stimuli depends on the capabilities of the processing

system.

3
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Mobile robots are also processing intensive devices (Miller, 2004). The

more intelligent a robot is designed to be, the greater the amount of data

it will need to store and/or process. For this reason many mobile robot

systems incorporate multiple processing elements. Often the main control

device is not attached to the actual robot body, but connects wirelessly with

an on-board lower level driver unit, accessing the sensors and actuators.

From the release of the first Personal Digital Assistant (PDA), the Psion

Organiser by Psion in 1984 featuring an 8-bit Hitachi 6301-family proces-

sor, with 4 K of ROM and 2 K of battery-backed RAM and a single-row

monochrome LCD screen, PDAs have become much more versatile and pop-

ular over the years (Boerner, 2010). Today’s traditional PDAs are descen-

dants of the original PalmPilot (Pilot 1000 in March 1996 from Palm Inc.)

and Microsoft Handheld PC (by manufacturers like HP, Compaq and Casio

in November 1996) which originally used the Windows CE operating sys-

tem (Palm Inc., 2007a; Tilley, 2001). Palm devices run the Palm Operating

System and modern Microsoft Pocket PCs run Windows Mobile. These oper-

ating systems are less complex and have fewer instructions to those running

on desktop PCs.

The original and main purpose of a PDA is to act as an electronic or-

ganiser or day planner that is portable, easy to use and capable of sharing

information with your PC. As they developed, many other features and tech-

nologies have been integrated into these devices. These include integrated

cell phone, Internet and network connectivity through WLAN, short-range

wireless connectivity using Infra Red (IR) or Bluetooth technology, acting

as a Global Positioning System (GPS) device, running specialised software,

memory card expansion slot, FM radio and digital camera.

They can now be described as being miniature versions of typical desktop

PC systems. However, space and power consumption constraints have lim-

ited the processing power, storage space, and available memory. Even this

drawback is set to diminish in the near future, with low power processors

being developed for mobile devices such as the ATOM from Intel, set to be

comparable to their current Intel Core 2 Duo processor (Nicolo, 2008). Clock

speeds of up to 624MHz are possible in current leading models, but PDAs

also have some fundamental hardware differences when compared to stan-

dard desktop and laptop PCs e.g., they generally do not incorporate a hard

drive, but store all basic programs in ROM and any additional programs and

data in RAM or Flash memory (PDA Phone Blog, 2010).
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Jensen et al. (2005) describe the PDA as a powerful device compared

to other robot controllers, such as microcontrollers, thus allowing a control

mechanism to integrate high-level planners that implement computationally

expensive algorithms.

1.1 Motivation for this Study

Mobile robotics continue to grow in popularity within the research and hob-

byist communities. Mobile robotics is itself a hot research topic but they are

also valuable research tools for overlapping fields such as intelligent manu-

facturing, artificial intelligence and human-robot interaction to name but a

few (Jensen et al., 2005).

The task of roaming in a dynamically changing environment, safely and

accurately, while carrying out meaningful tasks requires a mobile robot to

have at least three basic components in its hardware architecture:

1. A hardware platform, or body, that houses all the other robot compo-

nents.

2. A drive system that allows the robot to move from point A to point B.

It usually consists of a combination of motors and either wheels, tracks

or legs.

3. Several actuators and sensors that enable the robot to act on its envi-

ronment as well as gain information from it.

Advances in technology inadvertently provide robot designers with an

ever-expanding range of choices to make their robots smaller, more capable

and cheaper to produce. One example is how the PDA evolved into what

is today a powerful palm-sized processing and user interface (UI) tool. Ever

resourceful, robotisists have used this device in unique ways to improve their

robot designs. Making them more capable (intelligent), remotely accessible,

smaller and lighter, easier to communicate with and more cost-effective.

Deciding to use a PDA within a mobile robot system is not a new idea.

Many researchers have incorporated PDAs within their robot designs. It is

enticing to think of the possibility of adding so much capability to a robot

system by simply adding a PDA. Instantly the robot has a powerful pro-

cessing device, more available memory, integrated colour screen and built-in
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wireless technologies such as IR, Bluetooth, WLAN and GPS. And all of this

does not take up much valuable platform real estate, as PDAs come in a

comparatively small form factor. This leads to the question of how this

addition of a PDA to a mobile robot has been done in the past and

how it can be done to the greatest advantage of the robot system.

In reviewing past projects that also decided to make use of a PDA, it soon

became clear that although the robots use the PDA for different purposes

within the respective projects, few utilise any of its processing power. Those

that do make use of the PDA’s processing capabilities, try to implement

memory and processing algorithms too expensive for the PDA’s available

resources. This left researches with incomplete implementations.

In order to design a framework for PDA-integrated robot control, the

following must be considered:

1. The physically distributed hardware components of PDA, PC and mo-

bile platform.

2. What control architecture would suite the distributed hardware and

how it could be implemented.

3. How these hardware components connect and share information while

still supporting the chosen control architecture.

Most robot systems require processing to be distributed to multiple pro-

cessing devices. This becomes of greater value as the capability of a mobile

robot is increased and the overall system complexity also increases, for ex-

ample the number of sensors, motors and processing components that must

be integrated and coordinated (Yasuda, 2003). Therefore, a distributed com-

puting architecture offers a number of advantages to aid in coping with the

significant design and implementation complexity inherent in sophisticated

mobile robot systems. Multiple processors provide the opportunity to take

advantage of parallelism for improved throughput (Hu & Brandy, 1996).

Distributed computing is a type of segmented or parallel computing, but

the latter term is most commonly used to refer to processing in which different

parts of a program run simultaneously on two or more processors that are

part of the same computer. While both types of processing require that a

program be segmented, distributed computing also requires that the division

of the program take into account the different environments on which the

different sections of the program will be running.
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Selvatici & Costa (2005) describe a control architecture as a framework

for determining the robot actuation and Mataric (1997) explains it as a set

of principles for organising control systems, supplying a structure as well as

constraints in the way control problems can be solved.

Stasse & Kuniyoshi (2000) state that in the case of an architecture that

is implemented as a distributed architecture, it will include the handling

of communications. The communication infrastructure establishes how ar-

chitectural levels interact, how architectural components communicate, how

they access distributed data and how behaviours are executed (Posadas et

al., 2007).

An improvement in performance cannot be achieved by solely increasing

the number of processing units because the time necessary for communication

or additional data administration may increase simultaneously (Heinrich &

Honiger, 1997).

1.2 Problem Statement

The problem addressed by this study is whether it is a viable option to

distribute intelligence in a mobile robot system using a PDA between the

PC and microcontroller-based control board, instead of using a PDA as the

only interface and processing device or only as a data relay device between

the control and PC interfaces.

In order to address this problem successfully a number of sub-problems

need to be addressed:

• Can intelligence be distributed in a wireless mobile robot system?

• What are the considerations for distributing software components onto

a PDA?

• Will distributing some intelligence from the PC to the PDA provide an

increase in system performance?

Effectively answering the above questions would ensure that the following

objectives are achieved.
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1.3 Research Objectives

The main aim of this study is to determine if distributing intelligence from

a PC to a wirelessly connected PDA (as used to wirelessly control a mo-

bile robot) is possible and whether such an implementation improves system

performance.

To successfully implement such a distributed system the following sub-

objectives need to be addressed:

• Identify the advantages and limiting factors associated with using a

PDA through a detailed literature review.

• Use the identified limiting factors of a PDA to identify which software

control components could possibly be implemented on the PDA.

• Determine whether implementing the identified tasks on the PDA im-

proves system performance, considering response time, battery life and

any other quantifiable measures.

These objectives will be achieved through the following methodology.

1.4 Research Methodology

A thorough literature study will form the basis of the project. First, an

extensive study of mobile robots will be done. This study will consider control

system components and architectures used in distributed robotics and will

review how other researchers have implemented distributed intelligence in

their projects. Second, a study on PDAs, their development, their past use

as wireless processing devices in mobile robotics, the different PDAs used in

past projects, current PDA technology and development software available

will be done. This includes identifying the advantages and limiting factors

of PDAs used as control devices.

Using the knowledge gathered through the literature study a framework

will be presented as a possible solution for using a PDA in a flexible and

optimum way within a distributed mobile robot system. The design will

show which control components can potentially be implemented on a PDA

as part of a distributed wireless mobile robot system.

The framework is demonstrated by implementing a prototype PDA-based

robot system. The system will comprise three distributed processing el-

ements: a PDA, PC and microcontroller-based mobile platform. System
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Figure 1.1: Experimental set-up with no Intelligence on the PDA

performance is judged according to response time, battery life and imple-

mentation flexibility. Measurement data will be obtained through the im-

plementation and experimental results from a test scenario in two different

processing configurations, shown in Figures 1.1 and 1.2.

The first (Figure 1.1) will use the PC, as done in many projects, as

the main/only processing device, using the PDA only to relay data between

the microcontroller board and the PC. The second (Figure 1.2) will use a

PDA with intelligent components implemented according to the proposed

framework.

The results of this study will be reported in the form of a dissertation.

In addition, relevant conferences will also be targeted (see Appendix A).

1.5 Hypothesis

This study hypothesises that it is feasible to distribute control intelligence

from a PC to a PDA and that this will result in an increase in system

PDA with control

components implemented

Terminal

Microcontroller

Board

Increased

communication

traffic between

PDA and Robot

Control Board

Communication
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PDA and PC
Sensor

Actuator

Figure 1.2: Experimental set-up using the PDA as an Intelligent Agent
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Sense Plan Act

Figure 1.3: Sense, Plan, Act Organisation in Hierarchical Paradigm (Murphy,
2000)

performance.

A well-known software architecture for wireless mobile robot control is

the Sense, Plan, Act paradigm as shown in Figure 1.3.

According to this control architecture the robot gathers sensory data,

followed by a planning stage that determines the next action and the robot

subsequently does the action. There is no direct link between sensing and

acting and because the planning stage can be a lengthy process, robots de-

signed using this architecture are often too slow to react in a dynamically

changing environment (Murphy, 2000).

A hybrid approach, combining low-level reactive behaviours with higher

level deliberation and reasoning, has since gained favour among researchers.

Hybrid systems are usually modeled as having three layers; one deliberative,

one reactive and one middle layer. Figure 1.4 shows the general layered

architecture representing a hybrid approach.

The lowest level, the world interface level, interfaces directly with the

robot’s sensors and actuators. All time-critical tasks are handled by the be-

haviour based layer such as keeping the robot moving in the desired direction

and avoiding static and dynamic obstacles. All subsequently higher layers

will also receive sensory information at increasing levels of abstraction and

can direct relevant robot responses through the inter-process communica-

tion and synchronisation mechanism. The local planning layer is concerned

with local navigation needs such as getting from one location to another.

The global planning involves strategic planning needs such as path planning,

re-planning and multi-robot coordination.

This project proposes an implementation of the hybrid architecture, with

the global layer implemented on a PC and local planning layer on a PDA, and

the behaviour based functions located on the mobile platform’s controller. It

hypothesises that this, together with a suitable communications architecture,
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Figure 1.4: General Hybrid Architecture

would improve performance.

1.6 Delimitation

The software control components may vary with the robot application area.

A mobile robot designed for space exploration may have different software

requirements, and therefore components, than a mobile robot used for auto-

matic vacuuming. The application focus for this project will be mobile robots

used for human assistance in office environments. The software components

described will be limited to this field only.

A number of control components will be identified that could potentially

benefit from implementation on a PDA. The focus of this study is not to

implement all possible components on the PDA and PC, or to develop a fully

functioning robot controller, but only as would prove or disprove whether

such a distribution in processing and intelligence will have an increase in

system performance. Performance is measured with respect to response time,

PDA battery life and other quantifiable measures.

This project will not include developing a fully functional navigation,

localising and mapping scheme for the robot.

The prototype will be based on an ad-hoc connection between the PC

and the PDA.

The software will be developed for a PDA running the Windows CE
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(Pocket PC) operating system, which is a variation of the Microsoft Windows

operating system and offers the familiar “MS Windows” look and feel.

1.7 Chapter Layout

The proposed layout of the dissertation is depicted in Figure 1.5 and is di-

vided into four parts.

Part I introduces the domain of discourse to the reader and is divided

into 3 chapters. Chapter 1 provides some background into the problem area

in order to describe the problem. In Chapter 2 PDAs, their development,

current PDA technology and the advantages and limiting factors of a PDA

used as a control device is discussed. Next, Chapter 3 provides an overview

of PDA mobile robotics, hardware architectures used and the implementation

of distributed intelligence in existing mobile robots.

Part II is dedicated to the formulation of the framework and its imple-

mentation in an experimental set-up. In Chapter 4 the conceptual foun-

dation for the proposed framework is provided. Chapter 5 develops the

mobile platform. In Chapter 6 the control software is described. Chapter

7 describes the communications software.

Part III describes the rationale and design of the proposed experimental

set-up. The viability of the developed framework is demonstrated through a

number of experimental tests done using the prototype and experimental set-

ups. Chapter 8 discusses the tests done to assess the system performance

and the results obtained.

Part IV with Chapter 9 concludes the dissertation and suggest areas

for further research.
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Chapter 2

Personal Digital Assistants

This chapter describe the origin of the PDA (Personal Digital Assistant),

what its original purpose was, its development and what features are common

to modern PDAs. The definition of a PDA as used in this study in given and

also how this device differs from other mobile computers.

The PDA’s history shows how this device has developed into a device

which today has many rich features built into them. Today PDAs enable

users to have electronic calenders, phone- and address books, connect to

other devices and networks, make a phone call and connect to the Internet.

This chapter elaborates on the most common PDA features and gives an

overview of the specification for the PDA used within this study – the HP

iPAQ 614c.

2.1 What is a PDA?

A PDA (also called handheld) is a mobile or portable PC, meaning that it

can be easily or conveniently transported. A device’s portability increases

inversely proportional to its relative size and weight. For example desktop

PCs, being the largest, is the least portable, laptop PCs are more portable

but less so than palmtops and PDAs.

PDAs are not the only form of mobile computers. Others include Laptops,

Subnetworks, Ultra-Mobile PCs, Portable and Mobile Data Terminals, Elec-

tronic Organisers, Pocket Computers, Handheld Gaming Consoles, Wearable

Computers, Handheld PCs, Portable Media Players and Digital Audio Play-

ers. Figure 2.1 shows a PDA as well as some other forms of mobile computers.

Many people use the name of one of the popular PDA products as a

15
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Figure 2.1: Mobile Computers

generic term. These include Hewlett-Packard’s Palmtop and 3Com’s PalmPi-

lot (Williams, 2003).

According to NCCW (2008) there are three defining points that makes

a PDA. First, the device should have a “one-handed design”. This limits

the size of the device roughly to palm-size. To consider a device as a PDA

it must therefore not require two hands to handle it properly. Secondly the

device must be able to “function independently”. This requires that the de-

vice does not rely on an external power source and that it must not require

the user to carry extra components. And lastly the device’s application set

is “non-appliance and non-mathematical” meaning that it does more than a

calculator and does not just allow playing of games or translate words. Such

a device would also not fall into the category of a PDA. Besides these three

criteria, this study identifies a fourth measure to distinguish a PDA from

other mobile devices such as ultra-portable PC’s. This study distinguishes a

handheld from others in its use of a specially designed and optimised operat-

ing system. This means that devices that use versions of standard operating

systems is not considered a PDA as this study groups these devices as ultra-

mobile pc’s.

A PDA or handheld device is intended to be a portable, self-contained

information management and communication device. It is a small hand-held

device that has computing power and can store and retrieve information

such as schedules, calendars and address book information (Williams, 2003).

A PDA does not only manage personal information such as contacts, ap-

pointments and to-do lists. They can also connect to the Internet, have a

GPS receiver built-in, run multimedia software and have a built-in mobile



2.2. RELATED DEVICES 17

phone (Carmack & Freudenrich, 2008b). Other functionality might include

an added interface such as a miniature QWERTY keyboard, a touch screen,

a built-in camera, an accelerometer, the ability to read business documents

in various formats, software for playing music, browsing photos and viewing

video clips.

The line between what classifies as a mobile phone or PDA is becom-

ing less clear. Phone-PDAs (also called Smartphones) are mobile phones

that incorporates accepted PDA features. This includes software like an

appointment calendar, a to-do list, an address book for contacts and a note-

taking program. Smartphones typically also include e-mail and Web support.

Some distinguish between PDAs and PDA-phones (a PDA with a built-in

mobile phone), but the classification between PDAs, phone-PDAs (Smart-

phones) and PDA-phones is debatable and they are all grouped under the

term “PDA” in this study.

2.2 Related Devices

All the devices shown in Figure 2.1 are mobile computers, but they each

preform a slightly different function or have a slightly different form factor.

The lines between the different types of mobile computers are becoming more

blurred as mobile devices incorporate ever larger sets of functions and built-

in hardware. For example manufacturers combine the features of different

mobile computers into single devices such as combining PDAs with mobile

phones, multimedia players and other electronics (Carmack & Freudenrich,

2008b). Also some multimedia players combine the functions of a PDA with

multimedia features, such as a digital camera, an MP3 player and a video

player (Carmack & Freudenrich, 2008a). The names representing types of

mobile computers other that “PDA” are often mistakenly used as synonyms

for PDAs. This section describes some of these related, yet different mobile

computing devices.

Subnotebook

A subnotebook (also called a netbook, ultraportable and minilaptop) is a

small and lightweight portable computer, which has most of the features of

a standard laptop computer but on a smaller scale. Subnetworks are smaller

than laptops but larger than handheld computers. They often have smaller-
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sized screens, usually measuring from about 17 cm to 34 cm, and weigh up

to about 2 kg. The term often applies to systems that run full versions of

desktop operating systems, rather than specialised software such as Windows

Mobile or Palm OS as used on PDAs. The essential configuration reduces

the standard notebook to having only a display, a keyboard, a hard drive,

and a few critical data ports resulting in a compact, lightweight and more

portable form of a standard laptop computer. Extra drives in the form of

external drive can connect to the subnotebook through a USB link (Page,

2005).

Handheld PC

A Handheld PC (also called a Palmtop) is a computer built around a form

factor which is smaller than any standard laptop computer. Handheld PC

differs from related devices (such as the Palm-Size PC, Pocket PC, or Smart-

Phone) in that the specification provides for larger screen sizes as well as a

keyboard.

Portable Media Player

A Portable Media Player is a mobile computer related to the PDA, but

focuses on integration with Microsoft’s Windows Media Centre and Windows

Media Player and can play digital audio, images, and video. Introduced in

2004 it runs an adapted version of the Windows Mobile operating system.

Some players include readers for memory cards, emulates PDA features and

gives support for games.

Pocket Computer

A Pocket Computer is a small calculator-sized handheld computer programmable

in BASIC. This specific category of computers existed mainly in the 1980s.

It differs from modern PDAs in that they are self-contained units with their

own outputs for example to print a document and did not link with a desktop

PC.

Ultra-mobile PC

A UMPC (Ultra-mobile PC) is the term used to describe the platform for

small form-factor tablet PCs. The UMPC normally has a touch sensitive
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display of 4 to 7 inches and weighs less than 2 pounds. A UMPC runs the

same versions of operating systems as a standard notebook or tablet PC

including Windows XP Tablet PC Edition, Windows Vista and Windows

XP. Others run on specially adapted versions of Linux (Microsoft, 2008).

Ultra Low-Cost PC

A ULPC (Ultra low-cost PC) is a laptop PC with limited hardware capa-

bilities. This automatically lowers their cost and manufacturers qualify for

discounts on operating system software. These PC’s have screens of no bigger

than 10.2 inches and hard drives up to 80 GB and do not come with touch

screens (Shah, 2008).

Palm-Size PC

The Palm-Size PC is the name Microsoft gave to their first PDAs after Palm

Inc contested the name “Palm PC”. Palm-Size PCs uses the Windows CE

2.01 and 2.11 operating system (Wikipedia, 2008a). The name “Palm-Size

PC” later became “Pocket PC” to refer to PDAs using the Windows Mobile

operating system.

Wearable PC

A wearable computer is a computer that one wears on the body and is es-

pecially useful for applications that require computational support while the

user attention cannot focus solely on the PC.

Some smart watches offer some PDA functions in a wristwatch form fac-

tor. These watches can receive weather and news, receive calendar informa-

tion and personal messages.

2.3 History

The earliest methods used to keep information such as appointments, ad-

dresses and telephone numbers were the notepad, diary organiser and Rolodex.

Though launched in 1921 by the Norman & Hill Ltd company, the ring-bound

organiser (commonly called a FiloFax) only became popular in the late 1970s

and early 1980s (Schrödinger & co, 1996). The FiloFax is the size of an A5
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page and contains sheets for diary entry, notes, addresses and telephone num-

bers and tasks. Users could also buy new sheets as well as new sections for

organising for example projects, meetings, minutes and travel information.

Electronic Organisers were the first electronic devices to replace the Filo-

Fax which had a built-in diary application, an address book and calendar.

They had the problem of compatibility and many devices were incapable of

communicating with other devices, and those able to connect to a PC would

do so using different formats. Upgrading to a newer device often meant loss

of data (H2G2, 2004).

A PIM (personal information manager) is considered a direct ancestor of

the modern PDA. Their features included the ability to link with a desktop

PC, standard functions in the form of programs to organise information such

as contacts, appointments, tasks, and notes. They were user-friendly and

some models included a stylus for input. PIMs also allowed users to upgrade

with new software via a PC link.

Today all PDAs come with some kind of PIM software (Carmack &

Freudenrich, 2008b).

The first PDA was arguably the Psion Organiser released in 1984 (Psion,

2008). But the fist device to carry the name “PDA” was Apple’s “Mes-

sagePad” also known as the “Newton” in 1993 (shown on right of Fig-

ure 2.2). The Newton was very ambitious for its time, featuring handwriting

recognition software, plug-in memory cards, fax, e-mail and IR communica-

tions (Zeldes, 2005).

PDAs have become much more versatile and popular over the years. To-

day’s traditional PDAs are descendants of the original PalmPilot (Pilot 1000

in March 1996 from Palm Inc) shown in Figure 2.2 (left) (Palm Inc., 2007b)

and Microsoft Handheld PC (by manufacturers like HP, Compaq and Ca-

sio), who use Windows CE (HPC, 2001). Rather than attempting to stand

alone as a computer, the Pilot was designed to easily and quickly exchange

information with a PC. It sat in a cradle that was plugged into the desktop

computer. The basic Pilot 1000 retailed for $299, half the price of a Newton.

It could hold 500 addresses and 600 appointments. The Pilot 5000 had four

to five times the memory and sold for $369 (Palm Inc., 2007b). The first

Windows CE PDA competed with the Pilot 1000 in November 1996. The

idea of a mobile office was introduced with the release of a BlackBerry PDA

with synchronised e-mail capabilities in 1999 (PC MAG.COM Encyclopedia,

2008).
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Figure 2.2: Apple’s MessagePad – ”The Newton” (left) and the first Palm
Pilot (right)

PDAs can now be described as being miniature versions of typical desktop

PC systems. However, space and power consumption constraints have lim-

ited the processing power, storage space, and available memory (Advanced

System Technologies Ltd., 1999).

Even this drawback is set to diminish in the near future with low power

processors being developed for mobile devices such as the ATOM from Intel

set to be comparable to their current Intel Core 2 Duo processor (GADGETS,

2008). Clock speeds of up to 624 MHz, are possible in current leading models,

but PDAs also have some fundamental hardware differences when compared

to standard desktop and laptop PCs. For example few currently incorporate a

hard drive, but store all basic programs in ROM and any additional programs

and data in RAM or Flash memory (Advanced System Technologies Ltd.,

1999).

PDAs have developed from their earliest counterparts, the electronic or-

ganiser and personal information manager (PIM) to a highly capable, inte-

grated device. Many features have become common in these devices and the

following section describes the basic components of a standard PDA system.

PDAs are becoming all-in-one devices and features such as wireless network-

ing, built-in sensors and mobile phones also come included with some PDAs.
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2.4 Modern PDA Features

Today’s PDAs have several features that are now common to many devices

in this class of mobile computer. Figure 2.3 shows the basic parts that form a

general PDA system (Carmack & Freudenrich, 2008b). Figure 2.3 shows the

Figure 2.3: Components of a PDA

PDA’s processor as central to the device. Other components include memory

(RAM, ROM and Flash), wireless connectivity through Wi-Fi, Bluetooth and

IR. The PDA also has several different input methods that include the touch

sensitive display, buttons and keyboard. Other key parts include the PDA’s

power supply and its ability to synchronise with a standard PC.

High-end PDAs may also offer multimedia, security and add-on features

not found on less expensive devices. These features include an SDIO card

slot to add peripherals to the PDA. Cards can extend a PDA’s capabilities by

for example adding Bluetooth, Wi-Fi or GPS functionality. A built-in digital

camera and GPS capabilities and even security features such as an incorpo-

rated fingerprint reader can also come included (Carmack & Freudenrich,

2008a). Many PDAs now incorporate mobile phone technologies combining

the features of a standard mobile phone with that of a PDA.

PDAs usually have a docking cradle. This is a device used to connect

a PDA to a PC for synchronisation and application downloads. The two

connect via the PDA’s communication port using a serial or USB cable. The

cradle often doubles as a battery charger.
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The following sections highlights some of the common features of a PDA

with a short description of each.

2.4.1 Processor

Microprocessors, just like in standard desktop and laptop computer, powers

a PDA. The microprocessor is the brain of the PDA and coordinates all the

functions according to programmed instructions. PDAs mostly use smaller,

cheaper microprocessors when compared with desktop and laptop PCs. Dif-

ferent processors work at different clocking speeds and this (for PDAs) today

range between 200 MHz and 624 MHz (Mobile Tech Review, 2008). Although

these microprocessors are often much slower than their PC counterparts, this

may not be the case for long as newer devices start to incorporate Intel’s new

Atom processor into their handhelds. The Atom works from 800 MHz to 1.87

GHz and based on the x86 and x86-64 instruction sets, use less power and

has a smaller footprint. Intel currently targets ultra-mobile PCs and MIDs

(Mobile Internet Devices) specifically with this processor. Gigabyte’s M528

(left of Figure 2.4) is one of the first MID’s based on Intel’s Atom. The M528

use an 800 MHz Atom processor, has 512 MB of RAM, and a 8 GB SSD.

Sharp’s D4 mobile phone (right of Figure 2.4) uses Intel’s Centrino Atom

platform to run Windows Vista Home Premium SP1. It has a 1.33 GHz

Atom Z520 onboard with 1 GB of 533 MHz DDR2 memory and a 40 GB

hard drive (Smith, 2008).

Figure 2.4: Atom-based Gigabyte M528 and Sharp D4

Undoubtedly the most popular embedded CPU architecture today is the

ARM architecture and most handheld processors today base their design on

it. ARM CPUs find themselves in most corners of consumer electronics,

from portable devices (such as PDAs, mobile phones, media players, hand-

held gaming units, and calculators) to computer peripherals (including hard
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drives and desktop routers). ARM processors featured in industry firsts such

as Apple Computer’s Newton. About processor development for today’s mar-

ket ARM says: “In a competitive and changing market place where digital

entertainment and communications devices are converging, the need for a

high performance processor that can meet both the demanding performance

requirements of leading-edge consumer entertainment devices and the tight

power requirements for advanced mobile products is clear” (ARM, 2008).

Unlike other functions of a PDA, processor specifications cannot always

simply be compared between different products. If devices run different op-

erating systems there could be a variation in speeds because of their different

designs (Conger, D., 2003).

2.4.2 Operating System

A mobile operating system (also known as a mobile platfrom or a handheld

operating system) contains the pre-programmed instructions that tell the

microprocessor what to do. The operating systems used by PDAs are not as

complex as those used by PCs. They have fewer instructions, which requires

less memory (Carmack & Freudenrich, 2008a). The operating system governs

what software can be used on the PDA, and (except for memory) what

expansions can be used with the included expansion slots. The operating

system also determines the UI and general feel, or user experience with a

specific PDA (Conger, D., 2005).

The Gartner report for the second quarter (2008) sales for smartphones

shows the Symbian platform to have 57.1% of the market share. Though

this is down from 65.6% of the market for the second quarter in 2007, it

still makes Symbian OS the market leader. Second is RIM (BlackBerry)

with 17.4% then Windows Mobile with 12%, Linux with 7.3%, Max OS X

(iPhone) with 2.8%, Palm OS with 2.8% and other platforms sharing 1.1%

of the market (phoneArena.com, 2008).

This following sections describes some of the most popular mobile oper-

ating systems. These include the Windows Mobile platform by Microsoft,

the Palm OS from PalmSource (now ACCESS), RIM Blackberry owned by

Research In Motion, Symbian OS, iPhone OS and Linux based operating

systems.
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Windows Mobile

Windows CE is based on the Microsoft Windows operating system but de-

signed for embedding in mobile and other space-constrained devices of dif-

ferent shapes, sizes and degrees of ruggedness. Being a compact operating

system combined with a suite of basic applications for mobile devices based

on the Microsoft Win32 API, it manages the interaction between applica-

tion software and the hardware on the physical units. Its design is similar

to desktop versions of Windows in its features and aesthetics. Windows

CE is used in several types of mobile computers (ranging from Pocket PCs,

Smartphones, Portable Media Centres, on-board computers for certain au-

tomobiles, TV set-top boxes and other rugged, custom devices) (Laberge &

Vujosevic, 2003).

Like the full-scale Windows systems, Windows CE is a 32-bit multitask-

ing, multithreading operating system (Franklin, 2006) but has been optimised

for devices that have limited storage. A Windows CE kernel may run in un-

der a megabyte of memory. Windows CE conforms to the definition of a

real-time operating system, with a deterministic interrupt latency. It sup-

ports 256 priority levels and uses priority inheritance for dealing with priority

inversion. The fundamental unit of execution is the thread.

Windows Mobile is a platform based on the Windows CE operating sys-

tem. Windows Mobile is similar to Windows, but is not Windows and does

not run Windows applications. Its design, performance and user experience

is all similar to that of a Windows PC (Conger, D., 2005).

Devices without an integrated phone is called “Windows Mobile Classic”

instead of “Pocket PC”. Devices with an integrated phone and a touch screen

is called “Windows Mobile Professional” and devices without a touch screen

are called “Windows Mobile Standard” (Hall, 2007). Currently, Pocket PC

(now called Windows Mobile Classic), SmartPhone (Windows Mobile Stan-

dard), and PocketPC Phone Edition (Windows Mobile Professional) are the

three main platforms under the Windows Mobile umbrella. Each platform

utilises different components of Windows CE, as well as supplemental fea-

tures and applications suited for the respective devices.

Palm OS

One of the major operating systems for mobile devices is the Palm OS by

PalmSource (now a subsidiary of ACCESS). Palm OS is an embedded op-
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erating system designed for mobile devices. It was originally designed for

the Pilot series of PDA’s launched in 1996 and has since been implemented

into an array of mobile devices including smartphones, wrist watches, game

consoles, barcode readers and GPS devices. Palm OS is designed for ease

of use with a touchscreen-based GUI and to provide PIM related applica-

tions (Wikipedia, 2008).

Palm OS is known for its speedy navigation when compared with Pocket

PCs. Palm’s VersaMail program has the ability to fetch e-mail over a vari-

ety of connections including Bluetooth, Wi-Fi, and desktop synchronisation,

which relies on your PC’s Internet connection (CNET Networks Inc., 2008b).

Devices running the Palm OS will be similar to that of personal organ-

isers, but will have additional features for more advanced uses (Conger, D.,

2005). Palm OS therefor has a personal information manager style. The

user interface is modeled more after personal organisers than standard PCs.

And the main focus of the Palm operating system is the management of your

personal information like contacts, calendar, and tasks (Conger, D., 2005).

A feature admired of the Palm OS is that a program does not need a

formal close or exit. Only one program can execute at a time and opening

a new one will close the other automatically. And unlike some operating

systems like Windows Mobile, Palm OS never gets slowed down by multi-

ple applications running simultaneously in the background (CNET Networks

Inc., 2008b).

RIM BlackBerry OS

BlackBerry OS is the proprietary software platform made by Research In

Motion for their BlackBerry line of handhelds. It provides multitasking, and

makes heavy use of the device’s specialised input devices, particularly the

thumbwheel. The lack of stylus and touch screen slows down some operations,

but the built-in keyboard that is a signature feature of BlackBerries accelerate

others such as composing e-mails (CNET Networks Inc., 2008a). Among

mobile devices the BlackBerry is considered the best at handling e-mail.

Symbian OS

Symbian OS (a descendant from Psion’s EPOC) is an open operating system,

designed for mobile devices (mainly on mobile phones and smartphones). Its

associated libraries, user interface frameworks and reference implementations
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of common tools are all produced by Symbian Ltd. The Symbian OS runs

only on ARM processors.

The Symbian operating system offers a broad array of PIM features, in-

cluding contact and calendar management and a robust library of third-party

applications. But the Symbian operating system is usually tailored to indi-

vidual hardware so that it will look and act differently depending on the

device that it’s running on. It incorporates full support for Word, Excel,

and PowerPoint documents, though the ability to create and edit these type

of documents or just view them depends on the hardware (CNET Networks

Inc., 2008c). 9,834 third-party Symbian applications have been released for

Symbian OS up to the second quarter of 2008 (Symbian, 2008).

Symbian OS technology has been designed with several key points in

mind including power, memory and I/O resource management, complies with

global telecommunications and Internet standards and to facilitate wireless

connectivity for various networks (Nokia, 2008). Mobile phone manufactur-

ers that shipped Symbian phones in the first half of 2008 are Fujitsu, LG,

Mitsubishi, Motorola, Nokia, Samsung, Sharp and Sony Ericsson (Symbian,

2008).

iPhone OS

The iPhone OS (also called OS x iPhone) is the operating system developed

by Apple Inc. for the iPhone and iPod touch. The four main applications

are Phone, Mail, Safari (for web browsing), and iPod (for listening to music).

Other applications included are: SMS (Text messaging), Calendar, Photos,

Camera, YouTube, Stocks, Maps (Google Maps), Weather, Clock, Calcula-

tor, Notes, Settings, iTunes , App Store and Contacts. The CPU used in the

iPhone and iPod Touch is an ARM-based processor (Apple Inc., 2008b).

Linux

Rather than being a platform in its own right, Linux is the basis for various

different platforms developed by several vendors which are mostly incompat-

ible.

A new player in the mobile OS market is Google (now the Open Handset

Alliance) with its Android OS based on the Linux kernel. Android allows

developers to write managed code in a Java-like language that uses Google-

developed Java libraries but does not support programs developed in native
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code (Wikipedia, 2008). The first handheld using the Android platform is

the T-Mobile G1 (previously HTC Dream) (T-Mobile, 2008).

2.4.3 Memory

Unlike PCs, most PDA’s do not have hard drives because they can be too

large, too slow and consume too much power. In recent years hard drive

technology has improved and iPods and other personal media players have

tiny MicroDrive hard drives (miniature hard drives designed for use in mobile

devices). Like any hard drive, data stored there is persistent, which means

that it requires no power to preserve its contents.

The first PDA to have a hard drive was Sharp’s Zaurus SL-C3000 in

November 2004 (Smith, 2004). The Zaurus SL-C3000 (figure 2.5) has a

4 GB hard drive. It uses a 416 MHz Intel XScale PXA270 processor with

64 MB of SDRAM and 16 MB of Flash ROM. The Palm LifeDrive Mobile

Manager also has a 4 GB hard drive.

Figure 2.5: Sharp Zaurus SL-C3000, the First PDA with a Hard Drive

Other than those with hard drives, PDAs instead have RAM and ROM

memory, a portion of which is used to store programs and data. The ROM

area is non-volatile, which means it isn’t erased even if you wipe out the PDA

via a hard reset. ROM is where the operating system and basic programs

that come with the unit is installed, which remains intact even when the

machine shuts down. If you install add-in commercial and shareware pro-
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grams, they will be stored in the device’s RAM. Information in RAM is only

available when the device is on. Some PDAs allow you to store programs

and data in ROM as well (Mobile Tech Review, 2008). Due to their design,

PDAs keep data in RAM safe because they continue to draw a small amount

of power from the batteries even when you turn the device off (Carmack &

Freudenrich, 2008a). Some newer PDAs use flash memory instead of RAM.

Flash memory is non-volatile, which means that no power is needed to pre-

serve the information stored in the chip. In addition, flash memory offers

fast read access times (although not as fast as volatile DRAM memory used

for main memory in PCs) and better shock resistance than hard disks.

To provide additional memory, many PDAs accept additional memory

through removable flash media cards into expansion slots. These typically

provide storage for large files with multimedia content, such as digital photos.

2.4.4 Expansion Slots

It is difficult to change or upgrade hardware (such as the processor, memory

and other parts) of a handheld when compared to a standard PC. Expansion

slots gives the user an easy and inexpensive way a to add memory to the

PDA. (SearchMobileComputing.com, 2007) Expansion slots can also accept

expansion units such as a modem, network card, software ROM or digital

camera. Popular slots include CF (Compact Flash), SD (Secure Digital),

MMC (Multi Media Card) and Palm Universal (a manufacturer-specific slot

for Palm devices).

CF and SD slots are also compatible with other devices such as different

PDA makes, digital cameras and MP3 players that also make use of these

slots. CF expansion slots can accept memory or expansion cards, SD slots

can only use memory while SDIO slots can use both memory and expan-

sions (SearchMobileComputing.com, 2007). SDIO is an SD card with in-

put/output functionality. Input/output functionality allows cards to feature

expansions like network adapters and cameras such as the FlyCAM camera

from LifeView in Figure 2.6.

To keep the device’s size down, many PDAs now have mini-SD or micro-

SD slots instead of full-sized slots.
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Figure 2.6: A FlyCAM Camera that Connects to the CF Slot

2.4.5 Power Supply

Most PDAs use battery power. Older models use alkaline batteries, while

other, newer PDAs use rechargeable batteries such as lithium, nickel-cadmium

or nickel-metal hydride batteries. The battery life depends on what PDA you

have and how you use it. There is several causes influencing power consump-

tion (or battery drain) of a PDA’s battery including the operating system

used. Reportedly Windows CE (Windows Mobile) devices use more power

than for example Palm devices (SearchMobileComputing.com, 2007). The

amount of memory also affect the power consumption as a PDA with more

memory also using more power. Using the wireless connections such as WiFi

and Bluetooth and using the display’s backlight will all drain extra power.

The battery life (the time between charges) vary from hours to months

depending on the model and make as well as the features included. PDAs

usually have a power management system to extend battery life. Exhausting

all power result in the loss of data stored within RAM. Even if the PDA

can no longer switch on the PDA there will usually still be enough power to

keep the RAM refreshed (Carmack & Freudenrich, 2008a). Most PDAs also

have an internal backup battery to provide short-term power for cases such

as when the battery is removed for replacement.

Besides battery power, many PDAs come with AC adaptors to run off

household electrical supplies. A car adaptor is often available as an acces-

sory (Carmack & Freudenrich, 2008a).

2.4.6 Display

PDAs use an LCD (liquid-crystal display) screen with a backlight for reading

in low light conditions. Unlike the LCD screens for desktop or laptop com-

puters, where it’s solely an output devices, PDAs use their screens for output
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and input. The LCD screens of PDAs are smaller than laptop screens, but

vary in size. Almost all modern PDAs now come with colour displays (Car-

mack & Freudenrich, 2008a).

2.4.7 Input Methods

PDAs vary in how you input data and commands. Many PDAs give users a

choice between several input methods. Some devices use a stylus and touch

screen exclusively in combination with a handwriting recognition program. A

stylus is a pen-like device for navigation and data input. Usually a handheld

will have a secure slot for storing its stylus. The user applies a plastic stylus to

the touch sensitive display to draw characters on it or on a dedicated writing

area (separate from the display area). Software inside the PDA converts the

characters to letters and numbers.

A miniature on screen keyboard (virtual keyboard) can be used for in-

putting text. The virtual keyboard has the same layout as a regular PC

keyboard but requires the user to tap on the letters with the stylus. Many

PDAs include a small QWERTY (as used in mobile phones) or full QWERTY

keyboard (often sliding out). These allow users to enter data using their fin-

gers. A lightweight, full-size keyboard can also connect to the PDA through

Bluetooth, USB or IR. Figure 2.7 shows a Snap N Type keyboard (Mo-

bileTechReview, 2002). Silicon keyboards that roll up and attach to the

PDA’s sync port are also available. They are lightweight and water- resis-

tant. Figure 2.7 shows a silicon keyboard made by Flexis (Zhang, 2002). An

example of a Bluetooth-based keyboard extension is the Stowaway Univer-

sal Bluetooth Keyboard (Gade, 2004) and the IR keyboard from PocketTop

Computer Corporation (Zhang, 2004) shown in Figure 2.7.

Figure 2.7: From left to right: Snap N Type, Silicon, Bluetooth and IR
keyboards
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2.4.8 Synchronisation

PDAs are designed to work with a standard PC. The information such as

contact lists, appointments and e-mail should be the same on both the PDA

and PC. Synchronisation software allows this sharing between a PDA and

PC and is one of the key features of a PDA and one that most PDAs have.

Having a backup of information prevents data loss due to a PDA being lost,

stolen or damaged.

Different operating systems make use of the different synchronising soft-

ware. Palm OS provides HotSync Manager and Windows Mobile has Ac-

tiveSync and its successor Windows Mobile Device Center. Palm’s Hotsync

can synchronise with Palm Desktop software as well as Microsoft Outlook

and Microsoft’s ActiveSync and Windows Mobile Device Center can only

synchronise with Microsoft Outlook or a Microsoft exchange server. There

are also third-party software available to synchronise a PDA with PIMs not

supported by the PDA’s manufacturer. An example is the program The

Missing Sync that allows synchronisation for Windows Mobile PDAs with

Macintosh systems (CNET Networks Inc., 2008d).

2.4.9 Wireless Connectivity

PDAs usually have a combination of IR (Infrared), Bluetooth and WiFi for

wireless connectivity to other devices. Short-range wireless connectivity can

be through IR or Bluetooth. IR requires clear line of sight between the two

devices and is commonly used to sync with a notebook computer that has

an IR port (Carmack & Freudenrich, 2008b).

Bluetooth is the wireless equivalent of USB (Universal Serial Bus). It is

defined as short-range because it only operates at less then 10 m from an-

other device. This means that Bluetooth enables compatible mobile devices,

peripherals and computers that are close to one another to communicate di-

rect with one another without wires. Bluetooth has the advantage (being

RF) that it does not require line of site between connected devices (Conger,

D., 2003).

WiFi is a midrange wireless solution and works at a maximum distance

between devices of between 33 and 50 metres. WiFi is the wireless equivalent

of Ethernet or a LAN (Local Area Network). WiFi networks are setup similar

to wired Ethernet networks and wireless networks can be accessed through

an access point or wireless router. WiFi allows for connection to the Internet
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if the network (or computer) the WiFi card is connected to has an Internet

connection (Conger, D., 2003). PDAs commonly implement WiFi version

802.11b and 802.11g. 802.11b operates in the 2.4 GHz band and has a top

transfer speed is 11 Mbps. 802.11g also operates at 2.4 GHz but supports

data transfer over improved and faster protocols at up to 54 Mbps.

2.4.10 Sensors

Modern PDA’s can include several sensors. Sensors give PDAs added func-

tionality, improve the user experience and save battery power. Examples

of built-in sensors include ambient light sensors that enables the PDA to

automatically adjust the display’s brightness level according to the current

environment.

Proximity sensors is incorporated into some PDAs as part of a power

conservation strategy. When the user lifts the handheld to his or her ear, the

proximity sensor will trigger the device to turn its display off.

An accelerometer is a sensor that measures movement through aspect and

velocity. Having this sensor built into a PDA allows the PDA to respond to

the user’s movement. The accelerometer can signal a change in the screen

layout of the display between portrait and landscape for example when view-

ing photos and websites. It can also be used as control of a game through

moving the handheld (Apple Inc., 2008a).

GPS (Global Positioning Sensor) technology is a satellite-based naviga-

tion system that uses information from earth-orbiting satellites to find loca-

tions (El-Rabbany, 2002). A receiver estimates the distance to GPS satellites

based on the time it takes for signals to reach it and then uses that informa-

tion to identify its location. A-GPS (Assisted GPS) finds the closest satellites

to more quickly identify (or fix) a location than regular GPS. Figure 2.8 shows

an example of a map used with GPS technology on a PDA.

A built-in digital compass can be used to provide an automatic North

reverence and is used to assist with the GPS and accelerometer features

(Wikipedia, 2008b).

2.5 HP iPAQ 614c

The Hewlett Packard iPAQ 614c shown in Figure 2.9 is the chosen PDA for

this study. This section describes the many features of this device.
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Figure 2.8: GPS Map on a PDA

Figure 2.9: The HP IPAQ 614c

The iPAQ 614c uses the Windows Mobile 6 Professional operating sys-

tem. It uses the Marvell PXA270 Processor which runs at 520 MHz. The

memory included consists of 128MB SDRAM main memory for running ap-

plications and 256 MB flash ROM. The PDA has a 64-bit micro-SD card slot

for memory expansion. An added 2 GB micro-SD memory card expands the

PDA’s memory.

The display is a TFT type display, 2.8” big and has a resolution of 240

x 320 pixels. The display is in the form of a touch panel, lit by an LED

backlight. The touch-sensitive display allow for finger or stylus operation.

The iPAQ 614 c measures 6.03 x 1.75 x 11.7 cm and weighs 145 g.

The PDA comes with an integrated 12-button numeric keypad. Other

integrated buttons include a smart touch wheel, a three-way thumb wheel,

two soft key buttons, send and end buttons, a reset button, a volume control

button, a voice command button, and a landscape/portrait key. The PDA
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also come with several messaging services including a Phone Dialer appli-

cation, SMS support, MMS composer, Microsoft Outlook Push e-Mail, Pull

e-Mail via ActiveSync, HP Voice Reply, Predictive Text tool, and Microsoft

Live Messenger

The IPAQ 614c has a built in mobile phone which is an integrated Quad-

band GSM/GPRS/EDGE phone and has Tri-band HSDPA 3.6/7.2 Mpbs.

It has a built in GPS receiver for assisted GPS navigation.

Software that came with the device include: HP iPAQ Mobile Broad-

band Connect, HP VoiceReply, Voice Commander, MMS Composer, Blue-

tooth Manager, Certificate Enroller, HP Photosmart Mobile, HP Help and

Support, HP QuickStart Tour, and HP Enterprise Mobility Agent. Outlook

Mobile, Office Mobile, Internet Explorer Mobile, Windows Media Player Mo-

bile, Microsoft ActiveSync, Phone Dialer, Voice Notes, Calculator, Solitaire,

Bubble Breaker, Microsoft Live Messenger and Microsoft Live Search all come

pre-installed on the device.

The 614c comes with a 3.0 Megapixel autofocus integrated digital camera

with 4X digital zoom, 640 x 480 VGA resolution, and 1280 x 1024 SXGA

resolution. The iPAQ also come with an integrated microphone, receiver,

speaker and stereo headphone jack.

Wireless technologies built into the device are WLAN 802.11b/g with

WPA2 security and Bluetooth 2.0 with EDR.

Besides the micro-SD card slot there is also one mini-USB connector

available for synchronisation and charging.

A removable and rechargeable Lithium-Polymer 1590mAh battery powers

this PDA. The included AC adapter takes an AC power input of between 100

and 240 Vac of 50/60 Hz and gives an output voltage of 5 Vdc (typical) and

an output current of 1 A (typical). According to the device’s specifications

the talk time can be up to four hours and the standby time up to 10 days or

250 hours.

2.6 Conclusions

PDAs have been around since the late 1980s and has since developed into

devices that provide users with a rich feature set that converges the different

technologies of PIMs, mobile phones and wireless connectivity into a single

portable unit.

This chapter looked at the term “Personal Digital Assistant” (or “PDA”
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for short) as used to describe small, mobile and hand-held computing devices.

Here a hand-held computer classifies as a PDA using the four key measures of:

design, independent functioning, application and type of operating system

used. Section 2.3 gives a brief description of the origin of the PDA. And

Section 2.4 described modern PDA features such as input methods, operating

systems, processors and memory in more detail followed by a description of

the PDA chosen for this study– the HP iPAQ 614c from Hewlett Packard.



Chapter 3

PDA Robots

This chapter describes robots that make use of a PDA in some way. Some

projects use a PDA as a means to add features easily to their design such

as wireless technologies. Other use the built-in touch sensitive screen as a

means to provide communications with their existing robot control system.

The PDA-robots described in this chapter clearly show the PDA can perform

various roles within a robotic system. The focused application or research

area also spans wide-ranging topics. These include low-cost prototype devel-

opment, low-cost humanoid robots, robot control, vision systems and algo-

rithm development, human-robot interaction (HRI), mobile user interfaces

as well as wireless robot communication schemes.

From the many existing PDA robots it is possible to identify five general

ways in which PDAs work across the different application areas. The five

sections are:

1. The PDA as the controlling device, doing all the needed processing.

2. The PDA as message forwarder, providing wireless connectivity to the

robot base.

3. The PDA as teleoperation device, allowing remote operation of the

robot.

4. The PDA as part of a multimodal interface, a user interface alternative.

5. The PDA as part of a distributed control system

This section groups descriptions of PDA robots and the different projects

according to the purpose the PDA fulfils within the system they form part

of.

37
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PDA Mobile Robot

Figure 3.1: The PDA as the Main Controlling Device

3.1 The PDA as the Controlling Device

This section describe robots using a PDA to do all the needed processing.

This can include image processing and calculating motor commands to send

to the onboard controller on the robot platform. Figure 3.1 shows a general

representation of the architecture used by robots in this section. The robot

platform has a controller which is either a microcontroller-based board, an

embedded PC or an LEGO RCX brick. The onboard controller interfaces

with the robot’s sensors (if there is any) and its motors. It also links with

the PDA – usually through a direct link such as RS232 or IR.

3.1.1 PDA Robot

The PDA Robot, in the book PDA Robotics: Using Your Personal Digital

Assistant to Control Your Robot (Williams, 2003) has a PDA brain which

connects to a PIC microcontroller-based control board through an IR link.

An infrared transceiver allows the microcontroller board to interface with

the IR port of the PDA, handling the IrDA handshaking and data exchange

between the Robot and the PDA. The microcontroller interfaces with the

motors and distance sensor. The PDA implements all control software. A

wireless camera, visible in Figure 3.2 on the mobile robot’s platform, allows

remote viewing of what the robot sees on a PC screen. The PC acts as a

remote control station for the robot.

3.1.2 Robota

Robota (Figure 3.3), a humanoid type robot, uses a PDA to do the needed

image and speech processing for the research in HRI with gesture and speech
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Figure 3.2: PDA Robot

as medium (Calinon & Billard, 2003). Robota is not mobile, but has 5 de-

grees of freedom with which the robot mimics and learns from the human

interacting with it. The authors created a PDA-based language learning pro-

gram. The microcontroller based sensor and motor control cards connects

to the PDA through an RS232 serial link. The PDA calculates motor com-

mands to send to the motor control card. The main constraint to their work

is the limited processing power of the iPAQ 3850 PDA they used, limiting

them to implement only simple vision and speech processing applications.

3.1.3 Toni

Toni, shown in Figure 3.3 (middle), as well as its successors Jupp, Sepp, and

Max are all soccer playing robots designed and built at the Albert-Ludwigs-

University of Freiburg (Behnke et al., 2005b). Toni, a fully autonomous hu-

manoid robot, uses an FSC Pocket Loox 720 PDA as its main controller. The

PDA sends target positions for the servos attached to three microcontroller-

based boards every 6 ms. The microcontroller boards sends processed sensory

data back to the PDA for behavioural control and controls the 18 servomo-

tors used. The PDA connects to the microcontrollers through an RS232 serial

link and communicates with a remote PC for debugging through WLAN. The

added camera gives the only information about the robot’s environment.
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3.1.4 NimbRo RS

The NimbRo RS project (Behnke et al., 2004) uses a modified RoboSapien (a

commercially available remote controlled humanoid robot) as its robot base

to create a low-cost platform for humanoid robot research, especially multi-

agent research using humanoid robots. The Toshiba e755 PDA replaces the

head of RoboSapien (right of Figure 3.3) and does all the image processing

and motion control needed to make this an autonomous robot as well as

communicating through WLAN with other robots. The PDA connects to

the on-board controller through an IR link. The RoboSapien has some sen-

sors built in, including: bumper switches on its feet, contact sensors on its

fingers and a sonic sensor for reacting to clapping hands. The current mod-

ification cannot use these sensors to provide information about the robot’s

environment because of the different and incompatible IR interfaces used by

the PDA and RoboSapien respectively. This led to setting up a unidirec-

tional IR link and adding a small colour camera to the PDA through its CF

slot. The low precision in walking and the limited DOF provided by the

RoboSapien platform makes reliable navigation unfeasible as well as limit-

ing the number of possible movements. A remote PC does visualisation and

debugging of the performed behaviours and coordinates team behaviours as

needed for soccer playing robots. The frame rate of the camera and the rate

at which the RoboSapien’s controller can accept commands limits the rate

of behaviour decisions. The rate is about 4 Hz (Behnke et al., 2005a).

Figure 3.3: Robota (left), Toni (middle) and NimbRo RS (right)
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Figure 3.4: Abarenbou

3.1.5 Abarenbou and DaoDan

Built using a modified Kondo KHR-1 humanoid fighting robots (Figure 3.4),

Abarenbou and DaoDan (Baltes et al., 2006) where developed to be low-

cost humanoid robot platforms. A Sony Clie NR70V PDA and Palm Zire

72 PDA does all the image processing and motion control needed to make

these robots autonomous soccer players. Two microcontroller boards control

the servomotors and connects to the PDA through an RS232 serial link. The

camera provides all the environmental information to the robot with no other

sensors implemented. A remote PC does the motion development using XML

based meta language. The result is converted to C before being loaded on to

the PDA. They found full image processing to be too slow.

3.1.6 PDA Robot Vision System

Jantz & Doty (2002) created a robot vision system with the use of a PDA

and a digital camera. The PDA links to the TJ Pro robot platform through

an RS232 serial link (Figure 3.5). The limited processing power of the Hand-

spring PDA forced the use of efficient algorithms and limited their choice

of implementation. The greatest limit imposed by using a PDA was the

constraint on memory. The PDA controls the motor speeds and reads the

sensor data. They concluded that using a PDA is an efficient choice for vi-

sion research and for small mobile robots that have limited processing power

onboard the platform itself.
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Figure 3.5: PDA-based Robot Vision System

PDA Mobile Robot

Remote PC

Figure 3.6: The PDA as a Message Forwarding Device

3.2 The PDA as Message Forwarder

This section describe robots that use a PDA to provide a wireless link between

the main processing device and the robot body. This can be a WLAN or

Bluetooth communications link. The remote device (a PC or another PDA)

runs the needed control and processing software. There is a direct, physical

link between the PDA and the robot base in the form of an RS232 serial or

IR link. The controller onboard the robot platform interfaces with the robot

hardware and links with the PDA. Figure 3.6 shows a general representation

of the architecture used by robots in this section. Usually no control software

runs on the PDA itself.
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3.2.1 Mini-Whegs Robot

This project (Joshi, 2003) wanted to answer the question of whether a PDA

could provide a small mobile robot such as the mini-Whegs with efficient

motor control over a wireless link. A PDA attaches to the mini-Whegs robot

as shown in Figure 3.7, which incorporates a microcontroller-based board

to interface with the motors as well as providing the necessary serial RS232

interface. The lack of sensors in the design means there is no feedback from

the robot’s environment. The PDA wirelessly links the robot base to the

remote PC. The PC provide a GUI with which the user can set the speed

and angle of a specific motor. The PDA is essentially a message forwarding

device within this robot system.

3.2.2 WiMo

The WiMo robot is the creation of Brian Cross, a Windows Mobile software

engineer (Cross, 2007). It has a Windows Mobile 5.0 Smartphone that con-

nects through Bluetooth to the microcontroller board on the robot base (Fig-

ure 3.8). A remote PC (or Pocket PC) connects to the Smartphone through

WLAN, giving basic commands to the robot base via the Smartphone. WiMo

has a camera function which sends streaming video to the remote PC. It can

respond to voice commands as well as SMS-based commands. Microsoft

Robotic Studio (MSRS) runs on the remote PC. WiMo essentially uses the

Smartphone as a message forwarding device and to capture video with its

Figure 3.7: PDA-Controlled Mini-Whegs Robot
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Figure 3.8: WiMO

built-in camera. It forwards standard movement commands such as forward,

back, left, and right to the microcontroller. A LEGO-based WiMo has been

built using the LEGO Mindstorms NXT set and is named WiMo NXT.

3.2.3 NiVek J.D.

The NiVek J.D. (Figure 3.9) by Kevin Wolf is a robot similar to the WiMo

robot (Wolf, 2007). The Nivek J.D. uses a PDA to connect wirelessly to

the robot base through Bluetooth and to a remote PC through WLAN. The

added GPS receiver module (right of Figure 3.9) allows showing the path

travelled by the robot. Just like the WiMo robot it also makes use of MSRS

on the remote PC, showing captured video as well as allowing the user to

send basic direction commands to the robot. The PDA acts as a “Repeater

that allows for communications from the NiVek embedded computer to a

PC” (Wolf, 2007).

3.2.4 PEWIR Robot

The PEWIR Robot in (Langeveld et al., 2005) use a PDA to provide a means

of wireless communication with their robot platform. The platform consists

of a Lynxmotion chassis (Figure 3.10). The PDA (or laptop) connects to the

microcontroller-based control board on the robot through an RS232 serial

link. The user teleoperates the robot through a web server running on a

remote PC via the Internet with the help of the feed from a wireless camera
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Figure 3.9: NiVek J.D. (left) and its Components (right)

found on the robot body.

3.2.5 Calligrapher Robot

The Calligrapher Robot described in (Kovan Research Lab, 2006) is a PDA

controlled mobile robot that navigates according to a path drawn on to the

screen of the PDA. The robot can be autonomous or teleoperated and uses

two HP Jornanda 548 PDAs in its hardware design as well as the Palm Pilot

Robotic Kit (PPRK) (The Robotics Institute at Carnegie Mellon University,

2001) as its base (right of Figure 3.10). One PDA is the remote user in-

Figure 3.10: PEWIR Robot (left) and Calligrapher Robot (right)
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terface, allowing the user to draw a path for the robot to follow using the

PDA’s stylus and screen. This PDA calculates the necessary motor veloc-

ities and communicates through Bluetooth with the second PDA found on

the robot base. This PDA is “significant only because of its Bluetooth capa-

bilities” (Kovan Research Lab, 2006). It receives the motor commands and

sends it to the microcontroller on the robot base through an RS232 serial

link.

3.2.6 A PDA LEGO robot

The robot shown in Figure 3.11 uses two light sensors, the RCX brick from

the LEGO Mindstorms Robotic Invention System, a grid pattern on the floor

and a PDA. This LEGO-based robot (Buschmann et al., 2003) navigates

from one grid position to the next. Goal positions are sent wirelessly from

a remote PC that connects to the PDA though WLAN. The PDA connects

to the RCX brick through an IR link and is “solely to provide a wireless

communications gateway to the remote PC” (Buschmann et al., 2003). The

RCX brick carries out the algorithm for path planning and navigation. The

RCX brick has limited resources (memory, processing power) available and

because of this the algorithm employed is not ideal. The inaccurate drive

system of the LEGO platform created another problem, resulting in the robot

occupying the wrong grid position.

Figure 3.11: The LEGO-based Navigation Robot



3.3. THE PDA AS TELEOPERATION DEVICE 47

3.3 The PDA as Teleoperation Device

This section describe robots that use a PDA to provide wireless teleoperation

for a mobile robot. There is no direct, physical link between the PDA and

the robot base. Usually a user interface is present on the PDA, allowing the

user to send control commands remotely to the robot. Sometimes sensor data

is also displayed on the screen. Figure 3.12 shows a general representation

of the architecture used by robots in this category. Usually no processing is

done on the teleoperation device (PDA). All the processing is done by the

robot platform’s onboard controller.

PDA Mobile Robot

Operator

Figure 3.12: PDA as a Teleoperation Device

3.3.1 PdaDriver

The PdaDriver as discussed in (Fong, Cabrol, et al., 2001; Fong, Conti, et al.,

2001; Fong et al., 2003) is a PDA teleoperation interface for a mobile robot.

The PDA connects wirelessly to a Pioneer2-AT robot through WLAN. It

shows camera and sensor data and allows directional control through several

interface screens. The UI on the PDA uses PersonalJava and includes screens

for video, map, command and sensors (Figure 3.13). In Fong, Cabrol, et al.

(2001) the PdaDriver also includes human-robot collaborative dialogue, sup-

porting various query-to-user messages and giving the robot the ability to ask

the human operator for help. The robot system is safeguard-teleoperated,

with all the needed autonomous features carried out by the mobile robot’s

onboard controller. The focus in the PdaDriver project is human-robot in-

teraction through a mobile user interface. The latency measured between

the capture of an image and the time the image displays on the PDA screen

is 800ms. The control latency (the time between the operator giving the
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Figure 3.13: PdaDriver User Interface Screens (video, map, command and
sensors)

command on the PDA and robot execution of it) is about 500ms. Operators

need training to be able to handle these delays properly.

3.3.2 Touch Screen Teleoperation Interface

The project described by Keskinpala et al. (2003) is a PDA teleoperation

interface for a ATRV-Jr Robot. Three screens are developed for the Toshiba

E740 PDA. They include a screen that is an image-only screen, a sonar

and laser range finder based screen and an image and sensor data overlay

screen. The input is designed to allow the user the freedom not to use the

stylus with the focus of their research being the development of human-robot

interaction through mobile devices. Their design incorporates large buttons

to accommodate human fingers, but due to the limited screen size the buttons

were made to be semi-transparent. This allows the user to give commands

and view environment information at the same time. The user is able to give

basic directional commands to the robot remotely. Figure 3.14 shows the

image only screen with the semi-transparent direction buttons.

3.3.3 EMG-based Modified Morse Code

Nilas (2005) describe EMG signals (electromyography or tiny electrical im-

pulses produced by muscle contraction) carry out an adapted Morse code

interface for a mobile robot. A PDA provides a portable user interface al-

lowing both teleoperation of the robot and has the ability to receive the

user’s commands from EMG signals via biosensors. These signals form Morse

code-based high-level task commands. The PC then decomposes the high-
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Figure 3.14: Image Only Screen Interface

level commands to low-level primitive tasks and creates a task plan for the

robot to carry out. Here the PDA provided a small and lightweight mobile

interaction device allowing disabled people to control a robotic aid. Their

focus is on providing disabled people with a mobile and physically practical

human-robot interaction device.

3.3.4 COMMBOTS

COMMBOTS by De Ipiña et al. (2005) describe the control of a fleet of

small mobile robots through a GPRS data network. Their focus is remote

monitoring and control. The PDA (PC or mobile phone) becomes the con-

trol station in the architecture employed. Each COMMBOT is equipped

with a GSM/GPRS communication module which connects to the onboard

microcontroller-based controller through an RS232 serial link. The communi-

cation module connects wirelessly with the COMMBOTS proxy. The proxy

is the intermediate device between the mobile robot and the control station.

3.4 The PDA as Part of a Multimodal Inter-

face

This section describe robots that use a PDA as part of a multimodal inter-

face. This means the PDA provides the user an optional interface, where

it is one of several interface choices. Often the PDA does not connect di-
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rectly to the robot’s onboard controller, but rather to a user interface module

which may be running on the robot’s onboard controller or on a remote PC.

This module first consolidates the user inputs through the multiple possible

sources such as touch, gesture and speech before giving the command to the

subsequent responsible module. Figure 3.15 shows a typical representation

of the architecture used by robots in this category.

PDA

Mobile Robot

Operator

PC

Joystick

User
Interface
Module

Other UI’s

Figure 3.15: PDA as Part of a Multimodal Interface

Many robots include as part of their multimodal interface architecture a

PDA or Smartphone as an optional or alternative means of providing user

input to the robot. The SCOUT robot described by Rybski et al. (2001)

offers the user a choice between a laptop, joystick or PDA as interfaces to

their wearable-PC robot control device. In their research on human-robot

interfaces, Sofge et al. (2004) include a PDA as a user interface tool in

their multimodal interface design, allowing communication through touch

on the PDA’s touch screen. The architecture used is described in more de-

tail in (Perzanowski et al., 2001). Here the PDA screen is used to show a

map produced by the mobile robot’s laser scanner, allowing the user to point

on the map to command the robot in that direction. Figure 3.16 shows the

PDA screen with a map representing the robot’s environment. The system

can use both the Nomad 200 and RWI ATRV-JR robot platforms. The user

is able to give a limited set of commands to the robots through this interface.
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Figure 3.16: PDA screen presenting a laser scanner-formed map of the envi-
ronment (left) and a scene sketched on the PDA (right)

3.4.1 PDA Sketch Interface

In (Skubic et al., 2002, 2003) the authors describe a sketch-based interface

for a mobile robot. The user draws a map on the PDA screen using the stylus

(left of figure 3.16). The captured sketch is a sequence of x-y coordinates.

The path information extracted from the sketch can help navigate a mobile

robot with the route represented as a sequence of steps including landmark’s

relative positions. Their research concentrates on capturing route data from

a sketched map that can help guide a mobile robot. The sketch client on

the PDA connects to an existing robot system and a sketch server through

WLAN. Here the x-y coordinates, object positions and paths are processed

further, ready for use in guiding the mobile robot.

3.4.2 PocketCERO

PocketCERO is another robot that makes use of a PDA as part of its semi-

autonomous and teleoperation control schemes (Hüttenrauch & Norman,

2001; Hüttenrauch & Eklundh, 2003). The PDA gives the user a means

to send teleoperation commands wirelessly to the robot (a Nomadic Su-

per Scout). Communication with the robot’s on-board controller is through

WLAN, but the PDA does not connect straight to the robot controller, but

through a separate GUI module. They found the PDA especially useful as an

interface device when both the user and the robot is on the move (roaming).
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They focused on providing PDA-based HRI because they felt that a mobile

robot should have a mobile UI. Their interface provides three screens; two

needs stylus-based interaction and a third allows touch-based interaction.

Figure 3.17 shows the prototype interface screen for the PDA that allows for

single hand usage (touch-based).

Figure 3.17: One-hand GUI for PocketCERO

3.5 The PDA as Part of a Distributed Con-

trol System

A distributed control system, divides the control software between all the

available processing elements within the system as shown in Figure 3.18.

PDA Mobile Robot

Remote PC

Figure 3.18: PDA as Part of a Distributed Control System
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3.5.1 FLIP

FLIP is a small, low-cost prototyping robot for use within intelligent man-

ufacturing system design (Jensen et al., 2005). FLIP is a step between the

simulation environment and a real-life and life-size (usually expensive) proto-

type. The robot platform uses the LEGO RCX brick (left of Figure 3.19) to

interface with the motors and sensors. A PDA is the brain of the robot and

connects to the RCX brick through an IR link. It performs all the necessary

processing for navigation and local planning. A remote PC, and an over-

head camera, provides navigation support and connects to the PDA through

WLAN. The PC is also responsible for multirobot coordination. Different

FLIP robots can communicate their whereabouts and missions to one an-

other through WLAN. Control intelligence distributes through the system

by implementing an adapted version of the InterRRaP architecture. The

incompatible IR interfaces of the PDA and RCX brick, forced development

of a platform specific IR library.

Figure 3.19: FLIP Prototyping Robot (left) and in the Caddie Paradigm
(right)

3.5.2 Caddie Paradigm

The “caddie” is a mobile robot that moves like a super market trolley (Lemoine

et al., 2004). A caddie is easy to drive and a user only needs to push and ori-

ent it with the hands while walking. This is implemented using a third person

view of a virtual robot as well as live video from a webcam on the robot.
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Figure 3.20: Palm Pilot Robotic Kit (left) and Spykee Cell (right)

Hand gestures (orientation) and walking on a treadmill (pushing) gives the

user control of the remote robot. The walking speed of the user is mapped

to the robot’s speed. The mobile robot uses the LEGO Mindstorms Robotic

Invention System kit as shown in Figure 3.19 (right). A PDA connects to the

LEGO RCX brick through a IR link. An IR library was needed to be able

to interface between the different IR protocols of the PDA and RCX brick.

This project best fits this category due to the PDA running basic collision

detection and response software. The PDA also accepts control messages to

be sent to the RCX brick from the master, remote PC through WLAN. The

remote PC does the needed image processing for the gesture commands as

well as mapping the speed of the treadmill to that of he mobile robot.

3.6 Commercial PDA Robots

Some robot platforms are commercially available that specifically cater for

the use of a PDA as its brain. The most famous example is the Palm Pilot

Robotic Kit (PPRK) shown in Figure 3.20 and designed by Carnegie Mellon

University (The Robotics Institute at Carnegie Mellon University, 2001). The

book, The Ultimate Palm Robot (Mukhar & Johnson, 2003) describes the

use of this platform. The PPRK currently retails at $325.00 from Acroname

Robotics. Another example is Spykee Cell (Figure 3.20) which is available

at £169.99 (The Robot Shop, 2008).
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Figure 3.21: Pocket PC-controlled educational robot (right) and its code
development screen (left)

3.7 PDA Robots in Education

Howell & Sersen (2004) describe a low-cost mobile robot for use as an ed-

ucational tool. They integrate a low-cost Bluetooth enabled robot with a

PDA and a web service on a PC as shown in Figure 3.21. The web service

compiles the software for the microcontroller on the robot platform, stores

programs within a database and allows searching through saved programs.

The NewCDBot (built around the OOPic II+ microcontroller board) is the

mobile platform and provides users with the choice to download a compiled

program to an onboard EEPROM from where it executes. The user writes

the robot program using the PDA (right of Figure 3.21). The web service

then compiles the program and sends the compiled hex code back to the

PDA. Once the hex is on the PDA it can be loaded onto the NewCDBot

through the Bluetooth interface. The PDA can also act as a remote control

device.

3.8 Mobile Phone Robots

This section describes a number of projects that uses a mobile phone in their

robot designs in stead of a PDA. Modern mobile phones are powerful devices

in their own right and has much the same technologies available to connect

to a mobile robot as PDAs.
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Figure 3.22: ShakerRacer

3.8.1 Robot control through a WAP enabled phone

A WAP enabled phone controls a hydraulic robot arm by d’Angelo & Corke

(2001). Here the robot arm and mobile phone (via a WAP gateway) connects

to the save server. The result was an even greater time delay between giving

the commands using the mobile device and robot execution than using the

internet with its already known latency problems. Other problems include

that mobile phones do not handle floating point inputs well and the overall

system was expensive due to the data and call costs associated with the

connections.

3.8.2 ShakerRacer

The ShakerRacer makes use of the acceleration sensor built into the Nokia

N95. The acceleration sensor together with the software on the mobile

phone controls the direction of movement as well as speed of the Shaker-

Racer (Selinger & Jakl, 2007). Tilting the phone, moves the robot (a mod-

ified remote control car) in the desired direction (figure 3.22). The RC car

is controlled by a microcontroller board equipped with a Bluetooth mod-

ule. The mobile phone sends the control commands to the robot through

Bluetooth.
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Figure 3.23: The Z-1 Robot (left) and the Ericsson Bluetooth Car (right)

3.8.3 Nokia 6020

In Patra & Ray (2007) two mobile phones provide remote and wireless con-

nectivity to a mobile robot platform. They present a mobile robot that gets

commands in the form of SMS’s. The user sends the instructions from his

mobile phone to a second mobile phone (a Nokia 6020) that’s connected to a

PC. The PC translates the sms message into a control message and forwards

it to the mobile robot using an RF module connected to PC’s serial port.

A microcontroller-based board, which also has an RF module, controls the

robot base. It sends and receives messages to and from the remote PC.

3.8.4 Z-1 Robot

The Z-1 Robot shown in Figure 3.23 is a mobile robot similar to the one

described in (Patra & Ray, 2007). A mobile phone with Java support attaches

to a microcontroller board on a modified RC car through an RS232 serial

link. The mobile phone provide a wireless link to a remote PDA through

Bluetooth. The PDA acts as a remote control device allowing the user to

send control commands and view sensor data received from the mobile robot.

3.8.5 Sony Ericsson Bluetooth Car

The Sony Ericsson Bluetooth Car is a small car (see Figure 3.23) charged

and controlled with a Sony Ericsson Bluetooth-enabled model phone. A Sony
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Ericsson standard slot connects the car to the phone and ensures that this car

can only be controlled with original handsets. The user controls the car with

the phone’s joystick or navigation keys. The phone then sends the commands

to the car via Bluetooth. This car accessory sells for about $100 (Murtazin,

2003).

3.9 PDA Advantages

The choice of using a PDA within their robot designs were seldom made

without consideration of the benefits the PDA could provide. Rather its

use in their designs is a considered decision. This section mentions some

of the benefits noted by the developers that they hoped to exploit in their

applications.

To make their robots autonomous, most researchers turn to industrial

computers, such as PC104 or other single-board computers. These com-

puters lack a display and possibilities for user I/O, need a power supply,

wireless communication, housing, and cooling. Except with a laptop, power

consumption is large and to provide AC-power on a mobile unit is bulky,

needing heavy batteries and an inverter.

The PDA gives users a small, lightweight interaction device (Keskinpala

et al., 2003; Nilas, 2005) that is also portable, robust and affordable. The

touch sensitive screen combined with a stylus allow users to interact using

touch (Perzanowski et al., 2001; Skubic et al., 2002). And the built-in user

interface allow novice users to control a robot (Skubic et al., 2002) through

a familiar environment, minimising the need for training (Fong et al., 2003).

The PDAs UI also give powerful debugging and development advantages over

embedded devices (Jantz & Doty, 2002). This allows for rapid development

of multimedia applications for robots (Calinon & Billard, 2003).

The built-in wireless technologies such as Bluetooth and WLAN (Buschmann

et al., 2003; Kovan Research Lab, 2006) allow for remote operation “anywhere

and any time” (Fong, Conti, et al., 2001; De Ipiña et al., 2005) and gives

“seamless network coverage” to mobile agents and operators (Hüttenrauch

& Norman, 2001).

It is an ideal device for use in cost and size limited platforms (Calinon

& Billard, 2003; Baltes et al., 2006). And is easy to attach to small robots

through one of the multiple interface options available (Behnke et al., 2005c).

This leads to powerful small robots that are safer and cheeper (Jantz & Doty,
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2002).

The PDA is a powerful device in processing power and memory, allowing

integration of high-level planners and implementation of computationally

expensive algorithms (Jensen et al., 2005). It can give simple robots that

usually only consist of one or more microcontroller based boards the pro-

cessing power and vision sensor capacity needed to be used as autonomous

robots (Behnke et al., 2004, 2005c,a).

3.10 PDA Disadvantages

Having decided to use a PDA, the PDA is incorporated into the robot design.

Many problems associated with using the PDA in its capacity within a project

only becomes evident after the fact. This section summarises the different

problems using a PDA as mentioned by researchers in past projects.

When sending control messages to the robot there is an inherent latency

between the time sensing the command via a PDA interface and the robot

carrying out the command. This means operators need special training to

cope with the delays (Fong et al., 2003). The PDA screen has a low contrast

when in power saving mode making it difficult to read the object on the

screen without first activating the screen again by tapping somewhere on the

screen (Hüttenrauch & Norman, 2001; Keskinpala et al., 2003).

Several projects make use of the LEGO RCX brick and its available con-

sumer IR port for communicating with the PDA. Using the LEGO RCX brick

forces developing a platform-dependent IR library to allow the IR ports of

the PDA and RCX brick to communicate. This entails creating a library

for every PDA used. The choice of PDA should preferably be open and

interchangeable (Jensen et al., 2005).

The limited resources (memory, processing power, processing speed) of

the PDA when compared with a PC forced the authors in (Calinon & Billard,

2003) to implement only simple vision and speech recognition algorithms and

those in (Jantz & Doty, 2002) to develop optimised algorithms for use on the

PDA.
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Table 3.1: Caparison of PDA-incorporated Robot Systems
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3.11 Comparison of PDA Robots

Table 3.1 describes the PDA robots mentioned in the text, their use of tech-

nology and the division of processing within their respective designs.

In this table, WiMo is the only robot that doesn’t use a PDA, but rather

a Windows Mobile Smartphone. And the SCOUT robot makes use of a

wearable PC.

Robota is the only robot listed that does not make use of a mobile plat-

form in its design, therefore it has no level of autonomy.

From the literature reviewed it is interesting to see that much of the

work in mobile robotics using a PDA fall into the human-robot interaction

category. In this area some use the PDA to provide a novel remote control

(teleoperation) device. Others use the PDA as a means of giving the user

feedback from the robot and allowing user response and direction. And some

use it as part of a multimodal set of I/O devices, where the PDA is an optional

input device. Using the PDA as a means of getting user input and showing

sensory information focus only on the available I/O built into the device.

These designs do not make full use of the powerful processing capability of

the PDA itself.

In humanoid robot research PDAs are becoming a lightweight and pow-

erful processing alternative for the control of these robots. The PDA links

directly to the base, becoming part of the robot platform. The link between

the PDA and the robot base is either serial or IR depending on the platform

controller used.

It is interesting to see how few projects make use of the PDA as part of a

distributed control system. The PDA’s processing capability is underutilized

when it forwards control messages from the main (often remote) control

station to the platform controller. Often these messages are motor specific

commands for the individual motors and servos on the robot base, increasing

the latency between sending a command and its execution.

The FLIP robot is one of only two examples of projects that use dis-

tributed processing in their designs. FLIP makes use of three processing

elements in a distributed fashion. FLIP has intelligent processing imple-

mented on all three (the RCX brick on the LEGO-based platform, the PDA

itself as well as on the remote PC). Their reason for imposing this distribu-

tion was not a conscious effort but forced for two reasons. First the LEGO

Mindstorms RCX brick is unsuitable to carry out multi-robot systems re-
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search, with severe limits on both memory and processing power and better

equipped for purely reactive robot development. Secondly, the infrared port

of the RCX brick only allows line of sight communication between robots

restraining the possibility of using cooperative planning. Adding the PDA

to their LEGO robot increased the memory and processing power of their

platform as well as providing WLAN for long-range, out of sight, communi-

cations. Though the Caddie Paradigm project does not concern multi-robot

systems, but rather teleoperation, it may be that they implemented some

collision detection software on the PDA due to the limitations of using the

LEGO RCX brick.

The WiMo and NiVek J.D robots have a wireless connection scheme be-

tween the robot base, the PDA (or Smartphone) and the remote PC. The

use of Bluetooth to connect the robot base to the PDA allows the PDA to be

portable or separate from the base. It does not have the need for line of sight

such as the FLIP robot. Bluetooth allows omnidirectional communications

up to about 30 m and is immune to objects such as walls. However, these

two robots do not use the PDA as anything more than “a repeater” (Wolf,

2007). It forwards the basic directional control commands it receives from

the remote PC to the microcontroller on the base of the respective robots.

On the other hand some projects suffer from trying to run computational

and memory intensive routines solely on the PDA. This lack of resources

leads to implementing incomplete systems, or settling for a less desirable

output that can successfully be implement on the PDA.

Incorporating a wirelessly connected, remote PC is common to many

projects, but with many only using the PC to give goal directives or motor

commands. Some make use of a remote PC to preform debugging and logging

of important parameters, while others implement a UI on the PC. Few use

the PC’s processing power, speed and memory, implementing all the control

software either on the onboard controller or sometimes only on the PDA.

3.12 Conclusions

This chapter showed the different uses PDAs fulfil within robot research.

That it is not limited to a specific robot application or research area. Robots

were grouped according to the PDA’s purpose within the different projects.

Table 3.1 shows a comparison of the mobile robots reviewed, showing the

different use and combination of technology and the use of secondary pro-
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cessing elements such as a remote PC. A discussion of the advantages and

disadvantages of using a PDA as experienced by developers is in Section 3.9

and 3.10.

No related work was found on whether using a PDA to distribute pro-

cessing and control is a viable proposition in terms of system performance.

Neither on how such distribution can or should be done.
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Chapter 4

Conceptual Framework

The phrase “power is nothing without control” applies to many areas in

life and mobile robotics is no exception. Mobile robot control is structured

according to control architectures. These govern the way in which a robot

will react to its environment and more specifically the processes it will follow

in order to react in a predefined way to its environment.

In Chapter 3 five different control strategies for robot control with the

inclusion of a PDA was identified. These practical examples of PDA robots

shows how the PDA can be used without harnessing any of its processing abil-

ity (as message forwarding device) and also cases where the PDA’s memory

and processing power could not match up with the demands of the system.

This chapter seeks to answer the question of how a PDA should be incor-

porated within the robot system to be of greatest use and improve, if possible,

system performance. In answering this question, a new distributed intelli-

gence control framework is proposed for a wireless mobile robot, consisting

of three processing elements – PC, PDA and mobile platform controller.

The new framework’s design is underpinned by four components as shown

in Figure 4.1. First each of these components are discussed. Thereafter they

are combined into the proposed framework. This framework aims to combine

a practical and optimum use case for a PDA within a mobile robot system

using a suitable control architecture.

4.1 Distributed Hardware

The three components chosen for the robot design is a PC, PDA and mobile

platform. These devices are physically distributed in that there is no direct

67
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Figure 4.1: Building a Distributed Intelligence Framework

link between them. It is an aim not to have any direct, physical link as to

provide the mobile robot the most flexibility to move in its environment and

allow not only the test scenario described in Chapter 8 to be implemented,

but scenarios in different fields using more or less capable mobile platforms.

Many projects described in Chapter 3 connected the PDA to the mobile

platform through a direct if not always physical link. This would make the

same architecture unusable for systems wanting to use the user interface

of the PDA. The idea of the proposed framework is to be as flexible in

application area as possible. Thus, the link between the PC and PDA as

well as the PDA and mobile platform should be wireless.

4.2 Distributed Control

Most complex or more capable mobile robots require their processing to be

distributed across multiple processing elements. This becomes of greater

value as the capability of a mobile robot is increased and the overall system

complexity increases, in other words the number of sensors, motors and pro-

cessing components that must be integrated and coordinated (Yasuda, 2003).

As an example, RHINO is an indoor mobile robot designed for entertainment



4.2. DISTRIBUTED CONTROL 69

and as a museum tour guide (Bugard et al., 1999). Its control tasks are dis-

tributed over three internal computers. It handles all safety and time-critical

software components on board, with higher level software implemented on

stationary computers connected to the mobile robot through a radio link.

The modular robot described by Firmansyah et al. (2007) implements

each logic component within the system (main control, data acquisition and

data processing) on a separate microcontroller based board, with the main

control board connected wirelessly to a desktop PC.

Distributed computing is a type of segmented or parallel computing, but

the latter term is most commonly used to refer to processing in which different

parts of a program run simultaneously on two or more processors that are

part of the same computer. While both types of processing require that a

program be segmented, distributed computing also requires that the division

of the program take into account the different environments on which the

different sections of the program will be running.

The processing requirements of a mobile robot increases as the intel-

ligence increases. Most robotic systems employ some form of processing,

though purely reactive robots may or may not include a central processor.

Distributed computing is the process of dividing the processing requirements

of a system over multiple processing devices and/or threads. This can be

done using multi-processors, multi-core or multi-computer systems.

Multiple processors provide the opportunity to take advantage of paral-

lelism for improved throughput (Hu & Brandy, 1996). Heinrich & Honiger

(1997) state that the solution methods from different applications can be

parallelised in various ways. Due to parallel processing being applied in sin-

gle areas in a robotic system, they distinguish between eight levels of parallel

processing in robot control architectures: multi-robot level, robot level, kine-

matics level, control level, functions level, behaviours level, abstraction level

and algorithm level.

Parallel processing along the abstraction level is closely related to how

the control architecture is implemented within the system hardware. The

functions level describes parallelism where planning and perception are dis-

tributed and carried out in parallel across multiple processing devices (Hein-

rich & Honiger, 1997).

Functional decomposition is the classical top-down approach to building

systems. In this approach, the entire control task of a mobile robot is di-

vided into subtasks which are then implemented by separate modules (Hu &
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Brandy, 1996). This is the most commonly encountered area of distributed

implementation.

4.3 Control Architecture

Selvatici & Costa (2005) describe a control architecture as a framework for

determining the robot actuation and Mataric (1997) explains it as a set of

principles for organising control systems, supplying a structure as well as

constraints in the way control problems can be solved.

There are three schools of thought behind the design of the control ar-

chitecture: hierarchical (or purely deliberative), purely reactive and a com-

bination of the two, or hybrid architecture.

The implementation of any of these control architectures depend on how

the system will be implemented and encompass control, software, communi-

cations, processing and hardware. Laengle & Lueth (1994) argue that the

control of complex systems, such as a mobile robot, that consist of several

executive subsystems/components can be divided into three different design

classes or planning systems: centralised, distributed and decentralised.

Centralised control is the traditional means of directing robots. Here a

single computer, robot or operator issues commands to a group of robots

to follow, and as the number increases these can be subdivided into smaller

groups, resembling a tree or pyramid in organisational structure. The ma-

jor instability in this type of control structure is apparent in the event of a

missing or damaged supervisor element. It is also difficult to handle abrupt

changes. According to Laengle & Lueth (1994), distributed control imple-

ments a negotiation process between the executive components and execution

by them. Decentralised control allows individuals to use local information to

complete goals. Organisation in this case results from each collective action

contributing to the overall goal. Here it is common for each executive com-

ponent to assume larger responsibility and have some sensing and processing

power, though not in all cases (Ranky, 2007).

4.3.1 Hierarchical

Figure 1.3 showed a typical representation of the hierarchical control archi-

tecture. According to this control architecture the robot gathers sensory

data, followed by a planning stage that determines the next action which
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the robot subsequently performs. There is no direct link between sensing

and acting and because the planning stage can be a lengthy process, robots

designed using this architecture are often too slow to react in a dynamically

changing environment (Murphy, 2000).

4.3.2 Reactive

An architecture introduced by Brooks (1986), the reactive control architec-

ture does not make use of any deliberative components. Instead actions are

coupled directly to sensor data. An arbitration scheme is employed, called

subsumption, so that simultaneous and often conflicting sensor data can be

governed in such a way as to achieve high-level goals. The reactive architec-

ture produces a highly responsive robot. However, disadvantages include:

1. Difficulty to define all possible sensor combinations and reactions. This

also makes the final design rigid against any change or addition to the

system.

2. It is mostly used for lower-level intelligent processes/robots.

3. There is no representation of the operating environment.

4.3.3 Hybrid

The hybrid control architecture consists of three basic layers: a control layer

(or reactive layer), a sequence layer and a deliberative layer. It facilitates the

design of efficient low-level control with a connection to high-level reasoning.

Figure 4.2 shows a traditional hybrid architecture.

A host of architectural designs based on the hybrid theory exists includ-

ing 3T (Bonasso et al., 1997), AuRA (Arkin & Balch, 1997), Saphira (Kono-

lige et al., 1997), DAMN (Rosenblatt, 1997), RHINO (Bugard et al., 1999),

TCA (Simmons, 1994) and ATLANTIS (Gat, 1992). Each design defines the

layered structure and interaction between layers slightly different.

Information flows up and down between the control layers. The delib-

erative layer sends plans to the sequence layer, which decomposes the tasks

into subtasks and dispatches them, based on timing constraints, to the be-

havioural layer. The behaviours act to control the robot, sending sensor and

status information back to the sequence layer. The sequencer informs the
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deliberative layer when tasks are completed, and possibly abstracts sensor

data for use by the deliberative layer.

4.4 Communications Architecture

Stasse & Kuniyoshi (2000) state that in the case of an architecture that

is implemented as a distributed architecture, it will include the handling

of communications. The communication infrastructure establishes how ar-

chitectural levels interact, how architectural components communicate, how

they access distributed data and how behaviours are executed (Posadas et

al., 2007).

An improvement in performance cannot be achieved by solely increasing

the number of processing units because the time necessary for communication

or additional data administration may increase simultaneously (Heinrich &

Honiger, 1997).

Distributing the hardware according to the proposed hardware architec-

ture will lead to processing being distributed, but will also influence the com-

munication architecture, which involves inter-layer communication as well as

communications between distributed system components.

A hybrid architecture defines a model for interaction between soft real-

time deliberation processes and hard real-time reactive control loops. Dis-

tributed implementation of hybrid systems have to cope with sensory in-

formation distribution among reactive and deliberative tasks. The different
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temporal requirements between reactive and deliberative tasks must be re-

flected in the communications system design (Coste-Maniere & Simmons,

2000). Reactive tasks have to cope with strict deadlines and have to lay over

a predictable communication infrastructure. Deliberative tasks are related

to soft deadlines and can deal with high performance and an unpredictable

communication infrastructure.

Hybrid communication structures often make use of more than one com-

munication medium and/or bus. Posadas et al. (2002) used a CAN bus for

the reactive tasks and radio Ethernet for external IP communications. In

such cases both communication infrastructures have to work together so as

to ensure predictability at the reactive level as well as offering the needed

information overlap between levels (Posadas et al., 2002).

4.5 Defining an Optimum Distributed Intel-

ligence Framework

Implementing all intelligence on a single processing unit, such as a PDA, lim-

its the functionality of the overall system. This puts restraints on navigation

and planning capabilities due to memory and processing limits. Distributing

the required processing of a mobile robot across multiple PEs would increase

overall throughput, and using multiple processors provides the robot the op-

portunity to take advantage of parallelism for improved throughput (Hu &

Brandy, 1996). Few projects have made use of a distributed control archi-

tecture.

Most projects that use this architecture for integrating a PDA will give

the resulting architectural structure as shown in Figure 4.3, similar to the

architecture modification needed for the FLIP project (Jensen et al., 2005).

Figure 4.3 shows the general architecture, shown in Figure 1.4, distributed

over a robot platform, a PDA and a PC. The PDA is used to provide the

wireless link between the behaviour based layer on the PC and the world

interface layer on the robot platform.

The framework developed is an implementation of the three-layered ap-

proach of the hybrid control architecture, which provides event handling

at different layers of abstraction through the use of behavioural, local and

global planning layers. The framework allows for flexibility to take advantage

of the resources available in a PDA robotic system. The distributed control
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allows the robot to respond quickly to changing dynamics within the envi-

ronment. The framework combines the four architectures: hardware, control,

distributed control and communications using a PC, PDA and mobile plat-

form with communication strategies suited to the three components.

4.5.1 Parallelism and the Hybrid Control Architecture

Parallelism is the process of doing multiple tasks simultaneously. Heinrich

& Honiger (1997) show that there is no robot architecture that is perfectly

parallel, with designers choosing single areas to implement in parallel. They

distinguish between eight ways in which parallel processing can be imple-

mented within robotics. One such way is parallelism on the abstraction

level. The control architecture of robots is often divided into levels accord-
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ing to the degree of abstraction of processed data and response time. The

layers, performing tasks which have different response times, are considered

to work simultaneously and semi-independent from each other, and can be

implemented on different PEs.

This hybrid control architecture promotes efficient low-level control to-

gether with high-level reasoning. Many architectures use the hybrid theory,

and although the definition of the layered structure and the inter-layer mech-

anisms differ, the basic role of each layer is similar.

Global Planning Layer

The global planning layer, sometimes referred to as the planning or deliber-

ative layer, decides how to achieve high-level goals by breaking them down

to task level. The layer is implemented on a laptop PC and is responsible

for tasks such as:

1. Synchronisation between tasks.

2. Monitoring task execution.

3. Interfacing with databases (local and distributed).

Local Planning Layer

The local planning layer, also called the sequencer or executive layer in some

designs, sequences and monitors task execution. This layer is implemented

on the PDA and is responsible for functions such as:

1. Decompose tasks from global planning layer into sub-tasks.

2. Construct control messages for the reactive layer.

3. Receive abstracted sensory data from the reactive layer.

4. Monitor and modify sub-tasks, according to data received, to achieve

the goal.

5. Abstracting sensor information received from the reactive layer further,

before passing it to the global planning layer.
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Reactive Layer

The reactive or behavioural layer is implemented on the mobile platform. It

forms direct links between what is sensed in the environment and relative

actions or reactions. For example, if the robot senses an object it avoids it

by acting immediately, without any authorisation from higher control layers.

Reactions may also be governed by tasks received from the local planning

layer. For example, the ‘drive forward, 5m’ command may cause the mobile

platform to come to a halt when the sensors have indicated that the distance

has been completed.

4.5.2 Communications

Wireless technologies such as WLAN and Bluetooth now come built-in in

many PDA devices and PCs, making these technologies convenient to imple-

ment within a wireless control architecture.

The combination of the two wireless connection technologies was chosen

for the proposed project due to their relative strengths. Bluetooth has the

advantage over WLAN of having less overhead, making it computationally

less expensive and using less power to transmit. WLAN on the other hand,

though using more power, provides a means of securely connecting to net-

worked devices through the TCP/IP protocol. It also has a much faster up

and download speed than Bluetooth which is advantageous when transmit-

ting video data.

This project will focus on an indoor mobile robot applied as an office

assistant. It is important to define the application area for a robot because

it influences the control tasks needed to be performed as well as the processing

and communication requirements of the robot.

4.6 Conclusions

This chapter considered four building blocks in defining a new framework

for distributing intelligence using the distributed hardware of PC, PDA and

mobile platform. First, the different control architecture methodologies were

examined with the hybrid control architecture ultimately chosen as the base

of the new framework’s design. Second, the theory of distributed control

as well as supporting communications architecture is applied to the hybrid

control architecture to enable it to support the chosen hardware components.
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This also assists the distributed hardware devices to employ the idea of par-

allelism through abstraction across the layers of the control architecture in a

wireless fashion.

The following chapters implement and test the proposed distributed in-

telligence framework. Chapters 5 and 6 develop a supporting mobile plat-

form. Chapter 7 implements the chosen hybrid communications architecture.

Chapter 8 describes a test scenario and describes how the distribution of in-

telligence is implemented and to what extent the new framework influenced

performance.



Chapter 5

Mobile Platform

Mobile robots are robots that have the ability to move around in their envi-

ronment, other than industrial robots which usually attach to a fixed surface.

The task of roaming in a dynamically changing environment safely and ac-

curately while carrying out meaningful tasks requires a mobile robot to have

at least four basic components in its hardware architecture:

1. A hardware platform, or body, that houses all the other robot compo-

nents.

2. A drive system that allows the robot to move from point A to point B.

It usually consists of a combination of motors and either wheels, tracks

or legs.

3. Several actuators and sensors that enable the robot to act on its envi-

ronment as well as gain information from it.

4. A brain that interprets sensory information, navigates the robot within

the working environment, controls actuator actions and monitors robot

health. The robot’s brain is often one or more PEs (processing el-

ements) and can combine both onboard and remote PEs. Popular

choices for robot PEs include desktop PCs, laptop PCs, embedded

PCs, microcontrollers, and LEGO RX bricks.

The following section will discuss the attributes required for the mobile

platform that is to form part of the PDA-based robot system as shown in Fig-

ure 3.18. Discussing each of the sub-systems in detail, the basic requirements

are elaborated into the hardware and software design of the mobile platform.

The chapter concludes with the completed mobile hardware platform.
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5.1 Design Requirements

The design of the mobile platform must support the project’s aim at inves-

tigating the use of a PDA within a mobile robot system. With this goal in

mind, this section defines the design requirements, considerations and design

for the mobile platform in terms of hardware and software. The software

requirements and implementation being discussed in greater detail in Chap-

ter 6.

The mobile platform is to be a student-built robot platform to meet the

test requirements as discussed in Chapter 8.

Attributes that are important to consider in the design of the mobile

platform include:

1. Simple construction

(a) Use a commercially available RC (remote control) car to provide

an instant hardware platform

(b) Also provides drive motor and rechargeable battery

2. Mobile

(a) The mobile platform should not need to be attached to a station-

ary power supply or to the PDA

3. Safe

(a) Keep the mobile platform as small and as light-weight as possible

to reduce chance of injury to people and/or property

(b) Make use of double sensing to ensure that if one sensory system

fails the secondary system can still ensure save operation

4. Low cost

(a) Only implement basic drive, steering and sensing systems

(b) Make use of available components and use as few parts as possible

5. Collect as many types of operational data as possible

(a) Robot speed

(b) Distance to objects

(c) If robot has bumped into an object
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(d) Battery level

6. Communicate wirelessly with a PDA

(a) Using Bluetooth as communications mechanism

(b) Convey operational data through a custom communication proto-

col to a PDA

5.1.1 Operational Specification

With the design attributes in mind, the following operational specification

can be defined for the mobile platform:

1. Measure the velocity in RPM.

2. Measure distance traveled in cm using an encoder.

3. Measure the battery voltages.

4. PWM drive for the drive motor.

5. Simulated PWM for the steering motor.

6. If the mobile platform bumps into an object, it should stop immediately.

7. Communicate through Bluetooth with a PDA.

8. Continuously gather operational data.

9. Package operational data into packets of information.

10. Interpret command messages from a PDA.

Figure 5.1 shows the basic block diagram of the mobile platform. Indi-

cating the various subsystem needed to fulfil the operational specifications

listed.

5.2 Implementation

Using a commercially available RC car, provides an instant robot platform.

It also forces the choice of drive system and requires several modifications to

transform it into a true mobile robot. This section describe these changes and

hardware additions and how the brain of the mobile robot (a PIC18F4620)
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Figure 5.1: Basic Block Diagram

interfaces with the various subsystems. The basic system diagram in Fig-

ure 5.1 is expanded so that the subsystems include:

1. Distance sensing through IR (Infra Red) sensors.

2. Touch sensing through contact switches.

3. Steering through the use of a servo motor.

4. PWM drive of DC drive motor.

5. IR shaft encoder with encoder wheel for determining speed and distance

traveled.

6. Power supply and battery monitoring.

7. Wireless Bluetooth communications.

5.2.1 Chosen Microcontroller

The PIC18F4620 microcontroller was chosen as the brain of the mobile plat-

form primarily for:

1. its availability,
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2. familiarity and,

3. availability of development tools.

The PIC18F4620 has the following features as taken from its datasheet (Mi-

crochip, 2007):

• High-current sink/source 25 mA/25 mA

• Three programmable external interrupts

• Four input on change interrupts

• Up to two Capture/Compare/PWM (CCP) modules

• Enhanced Capture/Compare/PWM module

• Master Synchronous Serial Port (MSSP) module that supports 3-wire

SPI and I2C in master and slave modes.

• Advanced addressable USART module

• 10-bit, up to 13-channel analogue-to-digital converter module (A/D)

• Dual analogue comparators with input multiplexing

• Programmable 16-level High/Low-voltage detection module

• Priority levels for interrupts

• In-Circuit serial programming via two pins

• In-Circuit debugging via two pins

• Wide operating voltage range of between 2.0 V and 5.5 V

5.2.2 Motor Drive Unit

The RC car is driven forwards and backwards through a DC motor connected

through a gearbox to the rear shaft. In its unmodified state, the RC car would

move forward and backward at top speed, as is desirable for RC cars. But

this feature is less desirable for mobile robots that must be able to execute

more precise manoeuvres. To enable this, it is important to be able to control

the speed of the robot. A PWM (Pulse Width Modulated) signal from the

microcontroller provides an average voltage supply to the drive motor, which
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in turn regulates the motor’s speed. But the microcontroller cannot interface

directly to the drive motor, necessitating the use of a drive circuit that can

handle the large currents drawn by the motor.

The old drive circuitry was removed from the RC car and replaced with

a L298 Dual Full-bridge driver circuit. The L298 (Figure 5.2) is a popular

motor driver IC that operates from 6 to 50 V, at up to 4 A total output

current.

Figure 5.2: L298 Motor Driver IC

The Compact L298 Motor Driver kit from Solarbotics (Figure 5.3) makes

this IC convenient to use and interface with (Solarbotics, 2008). It features:

• 6 to 26 V operation with 4 A total drive current

• Onboard user-accessible 5 V low-dropout regulated voltage

• Four motor direction indicator LEDs

• Schottky EMF protection diodes

• Small 4 cm square footprint

• Terminals for power and motor connections

• Socket pin connectors for logic interfacing

Table 5.1 shows a logic table for the three input signals (Enable, L1

(direction 1) and L2 (direction 2)).

Schematic Diagram

The schematic diagram in Figure 5.4 shows the use of one H-bridge of the

dual H-bridge L298N IC as well as the auxiliary 5 V supply that is included

in the kit.
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Figure 5.3: L298 Motor Driver Kit

Table 5.1: Logic Table for the L298 Motor Driver Kit

Figure 5.4: L298N Motor Driver Circuit and Auxiliary 5 V Supply

Software Requirements

The software for the drive system should control the three inputs of the

L298N drive circuit in such a way to:

1. Drive the motor in a forward and backward direction.

2. Stop/brake the motor.
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3. Control the speed of the motor.

Motor Power Control and Steering

PWM is a method used to convert a digital signal to an analogue signal. The

duty cycle (proportion that a signal is high) of a square wave as output from

the microcontroller is varied. This has the effect of producing a varying DC

output by filtering the actual output waveform to get the average DC signal.

The diagram in Figure 5.5 shows the different average levels of DC output

obtained from a 10%, 50% and 90% applied duty cycle.

Avg. DC

Avg. DC

Avg. DC

10% Duty Cycle

50% Duty Cycle

90% Duty Cycle

Figure 5.5: Pulse Width Modulation

The microcontroller produces PWM signals to control the drive motor

speed as well as the servo motor’s rotation.

5.2.3 Shaft Encoder

An optical shaft encoder is used to determine both the distance traveled as

well as the speed in RPM of the robot. The encoder is made up of three

parts as shown in the block diagram in Figure 5.6.

Photo-Reflector Comparator Microcontroller

Encoder Wheel

Analog Signal Digital Signal

Figure 5.6: Encoder Block Diagram
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The photo-reflector, the QRB1134 (Figure 5.7), is attached to the wheel

shaft. A printed encoder wheel with black and white segments is placed on

the inside of the wheel so that it turns with the wheel at the same speed.

As both back wheels are presumed to turn at the same rate, only one of the

wheels is fitted with an encoder.

Figure 5.7: QRB1134 Photo-reflective Sensor

Figure 5.8 shows the placement of the QRB1134 sensor on the robot

chassis as well as the encoder wheel.

Figure 5.8: QRB1134 and Encoder Wheel Placement

If the photo-reflector is placed in front of a reflective surface (such as

white paper), the output of the sensor is pulled low. When placed in front of

a non-reflective surface (such as black paper) the output is high. Ideally, the

microcontroller would react/trigger on the change between a high and low

signal. But the QRB1134 is an analogue sensor that provides sensor data

as indicated in Figure 5.9 with slow and irregular rising edges. The LM339

comparator is added to the design to produce the desired square wave signal.

As the wheel of the mobile platform turns, the encoder wheel turns with

the same speed as the wheel. The black and white segments pass closely in

front of the photo-reflector which is stationary on the wheel shaft. The square
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Figure 5.9: Sampled QRB1134 Sensor Data

wave signal produced can now be used by the microcontroller to determine

the period of the square wave signal and therefore also the speed (inverse

of period) of the mobile platform. The number of alternating black and

white segments on the encoder wheel determines the number of pulses per

revolution which is used in determining the rotational speed (RPM) of the

robot as shown in equation 5.1.

RPM =
60

T × pulses per revolution
(5.1)

Schematic Diagram

Figure 5.10 shows the schematic diagram for the encoder subsystem.

Figure 5.10: QRB1134 Encoder Circuit
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Software Requirements

The software for the encoder subsystem must fulfill the following:

1. React to each rising edge of the square wave signal.

2. Evaluate the speed in RPM.

3. Calculate the distance traveled in cm.

5.2.4 Steering Motor

The RC car came with a 5-wire servo. This is a simpler type of servo motor

in that the intelligence handled by standard servo’s internally is done here by

circuitry outside of the servo’s casing. With two wires for the motor control

and three for the potentiometer that determines its position. This servo was

removed and replaced by a standard servo. With this type of servo, the motor

will attempt to reach and hold a position as specified by the PWM control

signal. The PWM signal’s period is to be 20 ms. The neutral position has a

pulse length of 1500 us and varies with +/-500 us to produce the minimum

to maximum operation angle.

The chosen servo is a GSW S03T standard servo (Figure 5.11) and comes

with a motor geared for extra torque. At 6v it is specified to deliver 111 oz-in

torque at 0.27 sec/60 degrees.

Figure 5.11: GSW S03T Standard Servo

Schematic Diagram

Figure 5.12 shows how easy it is to connect the servo motor.
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Figure 5.12: Servo Motor Circuit

Software Requirements

The software for the steering subsystem must fulfill the following:

1. Provide a 20 ms period.

2. Provide a suitably accurate PWM signal.

3. Utilise the maximum turning radius of the mobile platform.

4. Accept degree angle values as input.

The PWM generator is designed to generate an accurate pulse between

0% and 100% duty cycle, but the servo motor requires a range of duty cycles

between 5% and 10% (1 ms/20 ms minimum and 2 ms/20 ms). With the

typical PWM generator 8 or 10 bits, only a fraction of the bits to calculate

the pulse width. This means that a lot of accuracy will be lost. The micro-

controller must produce a PWM signal that does not cause such a loss in

accuracy.

5.2.5 Power Supply

The mobile platform is powered by two battery packs each with eight 1.2 V

cells. One battery pack is used to power the drive motor and is connected

directly to the DC motor through the drive circuit as shown in 5.4. No

feedback has been implemented so that as the voltage of the battery pack

depletes, the motor will drive effectively slower at the same PWM output by
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the microcontroller. The auxiliary 5 V output provided by the L298 driver kit

is used to power the steering servo motor. The second battery pack supplies

the digital circuits.

Schematic Diagram

Figure 5.13 shows the digital power supply, reset and oscillator circuit as

used with the PIC18F4620.

Figure 5.13: Power Supply, Reset and Oscillator Circuit

5.2.6 Battery Level Monitoring

Having a means to check the voltage levels of the two battery packs employed

on the mobile platform is useful to:
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1. Eliminate the need to check the voltage levels with a multi-meter.

2. Add possibility to programmatically determine when the power level

is below safe operating levels which may cause erratic and unsafe be-

haviour by the software and thus the robot.

Battery levels are monitored by using voltage divider circuits as shown in

Figure 5.14. This effectively scales the input voltage from the battery down

to a range that the microcontroller can accept. Due to each cell with in the

battery pack capable of being overcharged by as much as 25%. With each cell

rather 1.2 V in the eight cell battery packs, this means that the maximum

total voltage of either battery pack is 12 V.

Vo = Vi ×

RL

RL + Ri

(5.2)

Vo = 12 ×
220

330 + 220
(5.3)

Vo = 4.8V (5.4)

The resistors are chosen to have a tolerance of 1%. The less tolerance in

resistor values, the more accurate the voltage readings would be. The diodes

prevent the circuit from shorting.

Schematic Diagram

The power levels of the two battery packs is monitored by using the circuits

shown in Figure 5.14. The resistors chosen has tolerances of +/-1%.

Software Requirements

The software for the battery level measurement subsystem should take the

analogue voltage readings from the two battery packs and convert the value

to a range of 0 V to 12 V.

5.2.7 Distance Sensors

For a mobile robot to be able to move within its environment, it must be

able to avoid colliding with stationary and moving obstacles in its path.

Detecting obstacles at a relative distance from the robot body, allows the
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Figure 5.14: Battery Level Monitoring Circuit

robot the time to calculate its current position according to its knowledge of

the environment it works in. Also whether a recalculation in path is needed

to avoid a collision in the near future. For small robots with limited sensing

ability, detecting obstacles is usually done by detecting distance to a reflective

plane rather than having an exact knowledge of what type of object it senses.

The mobile platform makes uses six Sharp GP2D12 IR distance mea-

suring sensors (Figure 5.15). From the GP2D12/GP2Y0A21YK datasheet,

Figure 5.16 shows the internal block diagram of the GP2D12. From this

diagram it is clear why no external components is required for operation.

These sensors also do not require an external clock, but rather provide con-

tinuous readings at a fixed interval for as long as power is supplied to the

sensor’s power lines. It is important to note that a new output reading is

only available every 40 ms, which is slow in microcontroller terms and that

the first available reading after power up is an unstable reading and should

be discarded by software.

Figure 5.15: Sharp GP2D12 Distance Sensor

Three sensors is placed on the front, one on each side of the robot, but

towards the front, and one on the back (Figure 5.17).
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Figure 5.16: Internal Block Diagram of the GP2D12/GP2Y0A21YK

GP2D12 IR Sensors

Figure 5.17: GP2D12 Sensor Placement

These sensors allow the robot to measure the non-electrical quantity, dis-

tance by transforming it into a relative voltage that the microcontroller can

measure. The relationship between the voltage measured from the sensor

and the measured distance is non-linear (a change in output voltage does

not indicate the same change in distance) which makes the conversion more

complicated.

The characteristic curve of five (the sixth sensor was found to be faulty

and replaced) of the IR sensors were evaluated as shown in Figure 5.18.

From Figure 5.18 the operating range of the sensors can be seen to be

between 10 cm and 80 cm.

The data used to create the curves in Figure 5.18 was obtained by ob-

taining the average of 1000 samples at distances ranging from 0 to 100 cm

with increments of 0.5 cm at a rate of 10 kHz. Figure 5.19 shows the test

setup used.
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Figure 5.18: Characteristic Curves of 5 GP2D12 Sensors

Figure 5.19: GP2D12 Experimental Setup

Two possible strategies can be followed to produce an adequate means of

relating the measured voltage to distance namely an approximation function

(described in Appendix C) and a lookup table. The latter was chosen for

this implementation due to it requiring minimal processing power from the

microcontroller, making it faster.
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Schematic Diagram

The six SHARP GP2D12 IR sensors, their connections and placement on the

mobile platform is shown in Figure 5.20.

Figure 5.20: GP2D12 Distance Sensors Circuit

Software Requirements

The software should:

1. Limit the effect of noise by taking the average of multiple samples.

2. Implement a suitable lookup table for readings between 10 cm and 80

cm.

5.2.8 Touch Sensors

One of the requirements is for the robot to move safely in its environment.

Contact switches with long “whiskers” is used to act as touch sensors for

the mobile platform. Figure 5.21 shows the two touch sensors on the mobile

platform’s “bumper”.
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Figure 5.21: Rear Touch Sensor Placement

Schematic Diagram

The 4 contact switches, their connections and placement on the mobile plat-

form is shown in Figure 5.22.

Figure 5.22: Touch Sensors Circuit

Software Requirements

The touch sensors form part of the safety system of the robot as well as the

reactive control component. If the touch sensors bump against an object,

the robot should stop immediately. This reactive control acts as a safeguard

for any malfunction in more sensitive components such as the IR distance

sensors as well as a communication loss with the PDA/PC.
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Table 5.2: KC111 Bluetooth Serial Adapter Specifications

Hardware Specification
Bluetooth Version 1.2
Frequency 2.4 GHz
Bandwidth 1 MHz, 79 Channels
Frequency Hopping 1600 hops/sec
Typical RF Power +18dB
Operating Temperature -20 to +85 C
Input Voltages 4 to 10 VDC
Dimensions 32 mm width, 86 mm length
Power Consumption typical 50 mA, max 200 mA
Chipset Zeevo ZV4002

To enable the reactive response, contact on one of the touch sensors should

trigger an interrupt routine. The software should make sure that the switches

are properly debounced. The software must also be able to distinguish which

touch sensor(s) is making contact.

5.2.9 Bluetooth Communication

The microcontroller on the mobile platform must be able to communicate in

a bi-directional manner with a remote device. The distributed intelligence

framework described in Chapter 4 requires the use of a Bluetooth commu-

nications link for this purpose. This link should enable the PDA to send

control messages to the mobile platform to which the required actions can

be preformed. The PDA must also be able to obtain sensory information

through data request messages to which the mobile platform can respond

with the requested data.

The PDA needs to communicate with the robot (or microcontroller-based

platform of the robot system) in a bi-directional manner. The KC111 Wire-

free Bluetooth module was chosen to Bluetooth-enable the PIC18F4620 mi-

crocontroller. It allows the microcontroller to use the SSP (Serial Port Pro-

file) which defines how to set up virtual serial ports and connect two Blue-

tooth enabled devices. Table 5.2 lists the KC111 features.

The KC111 application has two modes, a “command” mode and a “by-

pass” mode. In the command mode, the host (microcontroller in this case)

can issue specially formatted text strings called commands. These command

strings can be used to configure the Bluetooth module or to manage a con-
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nection with a remote device. The KC111 supports a vendor-specific AT

command set for this purpose. The KC111 can be the master or initiator

of the Bluetooth binding process between itself and a remote device. The

following has led to the KC111 together with the microcontroller-host to be

implemented as the Bluetooth slave with respect to the PDA:

1. A Bluetooth master node may have several salve nodes. The mobile

platform is not envisioned to communicate directly to any peer robots.

2. The PDA is more likely to interface with multiple or ”swarm” robots.

3. Being the slave in the binding process means that the microcontroller

only needs to handle a small set of the communication setup AT com-

mands.

4. The mobile platform acts as the slave during the ”bypass mode”, where

it can only respond to control or request messages, but never initiate a

communication session itself. This conforms to the aim of the frame-

work discussed in Chapter 4 with its hierarchial control strategy.

Once a connection is established, the application transitions to the bypass

mode. In the bypass mode, bytes sent from the host will be sent over the

Bluetooth link to the remote device (PDA). Any data received from the

remote device will also be delivered to the host (microcontroller).

Schematic Diagram

Figure 5.23 shows the MAX232 serial driver circuit. The female DB9 con-

nects to the male DB9 of the KC Bluetooth adapter module.

Software Requirements

The Bluetooth communications link between the PDA and microcontroller

is far less stable than wired RS-232. With the addition of possible ”junk”

characters as well as unexpected breaks in communication. The software

that interfaces with the KC111 Bluetooth Serial Adapter module should:

1. Be able to send and receive the needed AT command sequence for

communication link setup.

2. Handle connection down and up events.
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Figure 5.23: MAX232 Serial Driver Circuit

3. Distinguish and handle both KC111 AT commands and commands

from the PDA.

4. Handle incomplete AT and normal control commands. By not allowing

the software to hang waiting to receive complete message.

5. Handle ”junk” characters especially right after initial communication

link setup.

6. Fast response to allow for smallest possible robot response time.

5.3 Conclusions

The mobile platform consists of two parts namely the hardware as described

in this chapter and the software needed to interface with the hardware (dis-

cussed in Chapter 6). Several design requirements were identified and de-

veloped into a list of needed attributes for the mobile platform’s hardware.

Simple construction, mobility, safety and cost was set as requirements. In

order to be able to fulfill the needs of the reactive layer in the distributed in-

telligence framework designed in Chapter 4, the mobile platfrom also needed

to communicate through Bluetooth and collect as many types of operational

data as possible. Figures 5.24 and 5.25 shows a front and side view of the

completed mobile platform hardware. The microcontroller and interface cir-

cuitry is all located inside the chassis of the RC car.
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Figure 5.24: Front View of the Completed Mobile Platform

Figure 5.25: Side View of the Completed Mobile Platform
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Chapter 6

Control Software

Most intelligent robots will have a brain. The mobile platform designed

for this study in Chapter 5 uses the PIC18F4620 microcontroller as its pro-

cessing element. This chapter discusses the software implemented on the

PIC18F4620 microcontroller to integrate the hardware subsystems described

in Chapter 5 into a mobile robot capable of interpreting sensory information,

control actuator actions and monitor robot health.

Each subsystem in Chapter 5 described specific software requirements.

Here the requirements are matched with the capabilities of the PIC18F4620

(the chosen microcontroller). The full source is included as Appendix B.

6.1 Software Considerations

The following has to be taken into account when implementing the routines

needed to interface with the mobile platform hardware:

1. The PIC18F4620’s limitations in terms of ROM and RAM, stack space,

available IO, timers and interrupts.

2. The sensors and actuators have timing requirements

3. The microcontroller has necessary delays in sampling analogue inputs.

6.2 System Integration

Each of the hardware subsystems described in Chapter 5 interfaces with

the PIC18F4620 microcontroller, the robot’s brain. Thus each subsystem

requires sensing and interpreting or control signals of some sort from the

103
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microcontroller. The following sections describes the software implemented

to integrate each section with the microcontroller through hardware specific

software routines.

6.2.1 Motor Drive Unit

The L298 driver requires a PWM signal from the microcontroller. TIMER 2,

an 8-bit timer on the PIC18F4620 microcontroller, is used in CCP (Capture

and Compare) PWM Mode with PR2 set to 255 and prescaler of 1.

The microcontroller internally handles the interrupt to toggle the output

on pin RC2. TIMER 2 will count up to the value matching PR2 and then

reset again to the value of PR2.

The following shows how the time base, the period, for the PWM signal

is calculated and how the PR2 and prescaler values were chosen:

TIMER 2 Clock Period =
4 × prescaler

Fosc
(6.1)

therefore:

TIMER 2 Clock Period = 50ns (6.2)

The time taken to interrupt TIMER 2 and toggle the output is dependant

on the value of ‘PR2‘ as shown in the following equation:

period =
4 × prescaler × post scaler × PR2

Fosc
(6.3)

which gives:

PR2 =
period × Fosc

4 × prescaler × post scaler
(6.4)

The diagram in Figure 6.1 shows the flow of the “driveMotor(int1 direc-

tion, int pwm duty)” routine which sets the desired direction and duty cycle.

Due to the DC motor drawing in excess of 4 times as much current when

switching directly from forward to backwards direction, the motor is first

stopped before a change in direction is made.

Robot Speed

The robot speed is controlled through setting the duty cycle for the PWM

control. Slow, medium and fast speed correlates to 60%, 70% and 80% duty

cycles. At this time no feedback is implemented so that as the voltage of the

supply decreases or the robot encounters sloping terrain, the speed will vary
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void driveMotor(int1 direction, int pwm_duty)

Is current
direction same

as new
direction?

Stop drive
motor

Delay for
stopping time

Is direction =
FORWARD?

Go forward

Go Backward

Current direction =
direction

Is
pwm_duty = 0

?

Stop drive
motor

Calculate new
duty

Set PWM
duty

END

YES

YES

YES

NO

NO

NO

Figure 6.1: Drive Motor Control Flow Diagram

even though the duty cycle applied to the driving circuit stays constant.

Because the mobile platform cannot come instantaneously to a complete

stop, a stopping delay is used. The stopping delay will effectively be more

than the set delay value due to the other interrupts interrupting the delay

“Delay ms(delay)” routine. The value of STOP TIME has been modified to

incorporate these induced delays through a trial and error basis.
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6.2.2 Shaft Encoder

TIMER 1 together with the CCP2 module in CCP and “Capture on Rising

Edge Mode” is used to determine both the speed and distance traveled by

the robot. TIMER 1 is set to have a period of 1.6us per tick by setting the

prescaler to 8. TIMER 1 provides the time base for the speed and related

calculations of which distance is also implemented. TIMER 1 interrupt keeps

track of the number of TIMER 1 rollover conditions that have occurred. The

associated CCP2 interrupt will occur when the sensor on pin RC1/CCP2

of the microcontroller goes high (rising edge). On the interrupt the value

of TIMER 1 is ”captured” to the CCP2 variable. When the interrupt is

triggered, the routine saves the value of CCP2. On the next interrupt the two

values CCP2-old and CCP2-new is used to calculate the time in timer-ticks

that has passed between the first and second reading. The actual calculation

is not done within the interrupt to save time. The calculation also only needs

to be preformed when the microcontroller is asked to provide the distance

and/or speed reading. Thus the CCP2 interrupt routine only sets a flag

to indicate that a reading has been done and that the speed and distance

calculations can be preformed with the data in the global buffers.

Figure 6.2 shows the flow diagram of the CCP2 interrupt routine.

6.2.3 Steering Motor

The servo motor used for steering requires a PWM signal with a 20ms period

and a high time of between 1ms and 2ms. To obtain better accuracy TIMER

0 is used to produce the period signal and TIMER 3 is used to provide the

high time of the signal, thus creating a TIMER-based PWM with TIMER 3

determining the duty cycle of the signal. Figure 6.3 shows the flow between

the two timers. This gives the resulting wave form as shown in Figure 6.4.

The “SetServo(signed int angle)” routine is used to make sure that the angle

falls within the operating angle of the mobile platform as well as converting

the angle received into a time delay to use with TIMER 3. A lookup table

is used for this purpose.

6.2.4 Battery Level Monitoring

The battery levels are analogue measurements just like the distance sensor

measurements. The sensors are connected to PORT E pins 1 and 2. See
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CCP2 Interrupt
Routine

Initialise new end
time with CCP2

Save TIMER 1 roll
over count

Capture flag = set

Is TIMER 1
interrupt waiting to
be serviced?

Update TIMER 1 roll over
count locally and globally

Update end time with
TIMER 1 rollover count

start time = end time

Calculate different in start
and end times

Clear CCP2
interrupt flag

END

YES

NO

Figure 6.2: CCP2 Interrupt Routine Flow Diagram

Section 6.2.5 for more details on the analogue sampling procedure.

6.2.5 Distance Sensors

The Sharp GP2D12 IR sensor gives an analogue output. The analogue out-

put of the six distance sensors are sampled by the microcontroller on PORT

A pins 0 to 3 and 5 and PORT E pin 0. The A/D acquisition requirements

for the PIC18F4620 needs the charge holding capacitor to be allowed to fully

charge to the input channel voltage’s level. This means that two input read-

ings cannot immediately follow on one another and that some delay should
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TIMER-based
PWM

Set output
HIGH

Setup and enable
TIMER3

Setup TIMER3
interrupt delay

 

TIMER0
Interrupt

Time delay

Set output
Low

Disable TIMER3

 

TIMER3
Interrupt

END

Figure 6.3: Timer-based PWM using TIMER0 and TIMER3
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Figure 6.4: Timing diagram of Timer-based PWM
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be introduced. A common method for implementing analogue measurement

is shown in Figure 6.5.

Analog Measurement

Select analog
channel

Delay

Analog reading = 0

No of samples
= samples?

Read analog value

Sum analog readings

Increment samples

Analog reading =
∑analog reading/
number of samples

END

YES

NO

Figure 6.5: Typical Analogue Sampling Method

The nature of the GP2D12 sensors is such that a new reading is only

available every 40 ms, which is slow in microcontroller terms. TIMER 0 is

already used to provide a 20 ms time base for the timer-based PWM used

for the steering motor (see Section 6.2.3). This delay can be made up of a

number of smaller delays. The 20 ms delay is thus implemented to be a 20

times 1ms delay and can thus be used to also provide a time base for the

analogue sampling routine. The routine incorporates filtering and the needed

sampling delay without calling a delay function within the interrupt.
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The flow diagram in Figure 6.6 explains the operation of the A2D sam-

pling functionality as implemented as part of the TIMER 0 interrupt routine.

Each interrupt is a ”tick” on which part of the A2D process takes place. Once

a series of ”ticks” is completed, the process start again for the next analogue

channel in the list.

For each analogue channel specified, ten samples is taken. The highest

and lowest value (potential spikes) is eliminated from the data series and the

remaining eight readings is averaged. With the current implementation, each

distance sensor reading takes 13 ms. Thus new readings for all six sensors

is available after 78 ms. This time would decrease if TIMER 0 was set to

interrupt more frequently than 1 ms. As the distance sensors themselves are

only able to produce a new output every 40 ms, the current implementation

would pick up at least every second output with the averaging being done

well within the 40 ms time at 1 sample every 1 ms.

One way of calibrating this type of sensor is by measuring the voltage

output of the GP2D12/ GP2Y0A21YK at given fixed distances. Once this

information has been experimentally obtained it can be placed within a con-

stant lookup table. The resultant table of data is used by a routine in the

program to calculate the distances according to the measured voltage. This

is the method currently implemented.

The second way is to create a representative equation to describe the

relationship between the voltage read and distance measured. This method

is described in more detail in Appendix C.

6.2.6 Touch Sensors

The touch sensor code is implemented using the PORT B interrupt on change

feature of PORT B. This will cause the routine linked with the interrupt to

execute every time a sensor makes or unmakes contact that is connected to

the upper nibble of PORT B (bits 4 to 7). If any of the sensors is touching an

object, the drive motor is stopped immediately. Without properly debounc-

ing the sensors, each make and unmake will be detected multiple times. The

flowchart in Figure 6.7 shows the software design of this subsystem.

The above code, placing a delay within the interrupt routine, would not be

good practice and would interfere with the effective functioning of the other

interrupts used. The delay, which is used to debounce the touch sensors needs

to be implemented without delaying the exit out of the “ContactSensors”
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Figure 6.6: Analogue Sampling through TIMER0 Flow Diagram
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void ContactSensors(void)
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Current reading
same as last
reading taken?

END

Update global
contact information
for each touch

sensor

Is any sensor
making contact?

Stop drive
motor

Last reading =
current reading

Delay 20ms

END

YES

NO
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Figure 6.7: Touch Sensors Flow Diagram

interrupt routine. To accomplish this, the delay itself is also implemented

using an interrupt where a global variable is set. The “ContactSensors”

routine can then interrogate this variable for whether contact debouncing has

been completed or not. Thus, the “ContactSensors” routine will be called

more times than needed due to switch bouncing, but the reading will only

be updated if the debouncing time has elapsed. For this purpose TIMER 0

interrupt is used. TIMER 0 is already providing a 20 ms base for the steering

servo motor which is suitable for the switch debouncing timing as well.
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6.2.7 Bluetooth Communication

On top of the communications link, a custom communications protocol is

implemented as described in Chapter 7.

To ensure the fastest possible response, both transmit and receive func-

tionality is implemented on the microcontroller using interrupts. This means

that the program is never waiting to send or receive data.

The communications link preforms the following functions to transmit

and receive data:

1. Use circular buffers to store incoming and outgoing characters.

2. Transmit a single character at a time using the transmit interrupt, INT

TBE.

3. Buffer outgoing characters in a transmit buffer.

4. Send a message (also called packet) of a specified length.

5. Receive a single character at a time using the receive interrupt, INT

RDA.

6. Buffer incoming characters in a receive buffer.

7. Receive packet data until the specified terminating sequence is encoun-

tered.

8. Interpret and respond to AT commands from the Bluetooth module.

Transmit and Receive Buffers

Two independent buffers is implemented. One to hold incoming characters

and the other to store data ready to be sent to the remote device or KC111

Bluetooth adapter module. Circular buffers is used so that characters are

placed in increasing buffer positions and, if a character is placed in the final

buffer slot, the next character will be placed in the first position. When the

buffer wraps round to the start, any data that was previously stored in those

slots are overwritten. It is therefore critical for the buffer to be large enough

not to wrap around in a single message. Variables is used to keep track of

the next available position in the buffer into which or from which data is to

be stored/taken. The receive buffer is implemented as an array that can hold

up to 90 bytes. The circular buffer must be able to hold three consecutive
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incoming messages from the KC111 module. 90 bytes accommodates for this

worse case condition. The transmit buffer is implemented as an array of 64

bytes.

TX Interrupt (INT TBE)

The “SerialTransmitISR()” routine is executed on a transmit interrupt. The

routine will transmit a single character from the transmit buffer. If a charac-

ter has been transmitted, the interrupt flag is set so that the next character

can be transmitted when the interrupt routine is serviced. Once there is no

more characters in the transmit buffer, the transmit interrupt is disabled.

Transmit Buffering

The “BufferedPutc(char c)” function places a single character in the transmit

buffer and enables the transmit interrupt, INT TBE.

Sending Packets

The “SendPacket(int packet len, byte *packet ptr)” routine is used to send

a packet (a complete message that includes header, payload and termination

characters) to either the PDA (when in “bypass” mode) or to the KC111

Bluetooth adapter module (when in “command” mode). The function puts

a packet with length equal to packet len into the transmit buffer using the

“BufferedPutc(char c)” function which in turn makes use of the serial inter-

rupt service routine “SerialTransmitISR()”.

RX Interrupt (INT RDA)

The serial interrupt handler, “SerialReceiveISR()”, places incoming bytes

into the receive buffer. The serial interrupt, INT RDA, is triggered by a

character in the USART buffer. The routine reads a single character and

places it in the receive buffer.

Receive Buffer

The “BufferedGetc()” function returns a single character from the receive

buffer. It will wait for a certain time for an incoming character to become

available in the receive buffer, but implements a time out so that the micro-

controller program will not hang in waiting for a character to be received.
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This feature is important due to Bluetooth carrier loss possible at any time,

even in the middle of receiving a packet. The watch dog timer would also

be an option to use for this purpose, but as the implementation responds to

incomplete packets with a corresponding error codes, the CPU should not be

reset.

Receiving Packets

The “ReceivePacket(byte *packet ptr, int *length ptr)” routine is used to

receive a packet. A start character is used to distinguish between packets

from the Bluetooth module and those originating from the PDA. It is also

used to eliminate the “junk” characters received after the communication link

has been set up or any random ”noise” received at other times from being

processed as the start of a packet, causing an error packet to be returned.

A pre-amble could also be used for this purpose, but as the start character

is already useful in determining the origin of the packet, it is used instead.

The routine will wait for a valid start character of either a PDA command or

KC111 command. The routine attempt to receive a complete packet (ending

with a CR and a LF) by retrieving bytes from the receive buffer and copying

them to ‘packet ptr’.

AT Command Interpretation

The commands received from the Bluetooth adapter module is in the form

of AT command strings. Two start character options and terminates with

a CR followed by a LF. An example is ”AT-ZV -CommandMode-”. Two

methods for determining which command string was received from the KC111

Bluetooth adapter module was investigated namely string comparison and

using a hash function.

The first uses a number of constant string arrays for each of the possible

commands that can be received from the KC111. These values must then

be copied from ROM to RAM in order to be compared with the received

command string. This means that one would potentially do as many com-

parisons as there are command types possible before the actual command

can be identified.

A hash function transform a variable sized input and returns a fixed sized

value, called the hash value. This is why a hash function was implemented

rather than a string comparison or variant. The hash function takes the
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variable length command string as received from the KC111 adapter and

calculates a hash value that is unique for the input value, or at least unique

with the commands used. These hash values can then be used in a sim-

ple switch statement to determine which command was issued and to react

accordingly.

Hash Function

“DjbHash(char *str, unsigned int len)” implements the chosen hash algo-

rithm, the DJB hash:

unsigned long djb_hash(char* str, unsigned int len)1

{2

unsigned long hash = 5381;3

unsigned int i = 0;4

5

for(i = 0; i < len; str++, i++)6

{7

hash = ((hash << 5) + hash) + (*str);8

}9

return hash;10

}/* DJB Hash Function */11

6.2.8 Initialisation

A number of initialisation functions is implemented to initialise:

1. PIC18F4620 pins.

2. The analogue ports and associated clock.

3. The timers.

4. The interrupt sources.

PIN Initialisation

Each port on the PIC18F4620 microcontroller has an associated TRIS reg-

ister used to set a pin as either an output or input. All the pins on PORT

A is configures to be inputs as they are used as analogue inputs. PORT B is

configured to be all inputs, with the high nibble is used with the interrupt

on change for the touch sensors. Pins 0 to 6 of PORT C is outputs, with

pin 7 as the RX input. PORT D is all outputs. PORT E pins 0, 1 and 2 is

inputs as they are used for analogue inputs. The following code shows the

use of the “set tris x” routine to initialises the pins:
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void InitPins(void)1

{2

set_tris_a(0b11111111); /* Port A is all analogue inputs. */3

set_tris_b(0b11111111); /* Port B is all inputs */4

set_tris_c(0b10000000); /* Pins 0-6 are outputs. C7 (RX) is input. */5

set_tris_d(0b00000000); /* Port D is all outputs. */6

set_tris_e(0b00000111); /* Port E is analogue inputs. */7

} /* InitPins */8

Analogue Initialisation

Eight analogue inputs is used with reference voltage of +5V. A prescaler

is added to the clock used for the A/D conversions. The needed analogue

initialisation is done using the “setup adc ports” and “setup adc” routines

as demonstrated in the following routine:

void InitAnalog(void)1

{2

setup_adc_ports(AN0_TO_AN7|VSS_VDD);3

setup_adc(ADC_CLOCK_DIV_32);4

}/* InitAnalog */5

Timer Initialisation

Four timers is used. TIMER 0, used in conjunction with the TIMER 0

interrupt is initialised to interrupt every 1ms. The CCP1 module is set

to PWM mode and the associated timer, TIMER 2, is initialised with no

prescaler and PR2 value of 255. The CCP2 module is configured in the

Capture and Compare on Rising Edge mode. The associated timer, TIMER

1, is set to have a divide by eight prescaler. TIMER 3 is initialised within the

TIMER 0 interrupt routine as part of the timer-based PWM implemented

to control the steering servo motor. The following routine implements the

needed timer initialisation:

void InitTimers(void)1

{2

//set_timer0(40536); //set up timer 0 to interrupt every 10ms3

set_timer0(63036); //set up timer 0 to interrupt every 1ms4

setup_counters(RTCC_INTERNAL,RTCC_DIV_2);5

6

setup_ccp1(CCP_PWM);7

setup_timer_2(T2_DIV_BY_1, PR2_VALUE, 1);8

9

setup_ccp2(CCP_CAPTURE_RE);10

setup_timer_1(T1_INTERNAL|T1_DIV_BY_8); //period of timer 1 = 1.6us per tick11

set_timer1(0);12

}/* initTimers */13
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Interrupt Initialisation

The serial receive interrupt, TIMER 0 and TIMER 1 interrupts as well as

the CCP module interrupts is initialised and cleared on reset as follows:

void InitInts(void)1

{2

enable_interrupts(int_rda); //serial receive interrupt3

enable_interrupts(INT_RB); //contact sensor interrupt4

enable_interrupts(INT_TIMER0); //servo and contact sensor time base5

6

clear_interrupt(INT_TIMER1); //ensure interrupt flag bit is cleared7

clear_interrupt(INT_CCP2); //ensure interrupt flag bit is cleared8

enable_interrupts(INT_CCP2);9

enable_interrupts(INT_TIMER1); //used to provide time base for speed related calculations10

11

enable_interrupts(GLOBAL);12

}/* InitInts */13

6.3 Conclusions

This chapter looked at the software considerations in implementing the sen-

sory and actuator requirements laid out in Chapter 5. The different hardware

systems described is integrated into a complete functioning mobile robot plat-

form through the control software implemented for each system component.

The mobile platform being complete, Chapter 7 can build on top of the

basic communications implemented by specifying a custom communications

protocol to enable data transfer between the PDA and mobile platform.



Chapter 7

Communications Software

The communications platform, or architecture, is designed to compliment

the framework discussed in Chapter 4. To enable this the platform has

to support not only the distributed nature of the hardware involved in the

design, but also the distributed control components, as well as the hybrid

control architecture it is based upon.

The hybrid control architecture requires that information be passed in

various levels of abstraction between each of the three control layers. The

opposite must also be supported, where high level decisions made by the

highest, deliberative layer, must be communicated down the layers in more

detailed control instructions to the bottom, world interface layer. This means

that the communications platform must support communications in a bi-

directional manner. With each control layer implemented on a separate and

physically distributed hardware device, bi-directional as well as wireless com-

munication links must be established between the three devices: PC, PDA

and mobile platform. Figure 7.1 shows the three sections of the communica-

tions platform and how this relates to the three hardware devices.

This chapter describes the communications protocol used to transfer sys-

tem data to and from the mobile platform. First, the WLAN link between

the PC and PDA is described. After this the Bluetooth communications

link between the PDA and mobile platform is discussed. A custom protocol

is employed between the PDA and mobile platform. It is used to deliver

actuator commands to the mobile platform’s controller while also enabling

the request for specific sensory information to be returned to the PDA. The

chapter concludes by discussing the various types of packets defined in the

custom protocol.

119
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Figure 7.1: Communications Platform with Chosen Hardware

7.1 Communicating over WLAN

Communication between the PDA and PC is implemented using the TCP

protocol over a socket-based network connection. The network connection

uses WLAN to connect the two devices together. This allows the PDA to

move around freely while still being able to communicate with the PC. An

application on each device enables communication to take place – a TCP

server on the PC and a TCP client on the PDA.

The TCP server is a desktop application running on the .NET Framework.

It has a user interface to display messages from clients, while the underlying

code handles network connections using a TCP server. To increase the ap-

plication’s performance it uses three types of threads, as illustrated in Figure

7.2.

The main thread handles the update of the user interface. The TCP

server’s operations, including starting the server and listening for incoming

connection requests, are performed in another thread. Once a connection

request arrives a worker thread is created to handle data communications and
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Figure 7.2: TCP Server Threads (Yang et al., 2007, p. 183)

any user interface updates for this specific request. Many worker threads can

handle connection requests simultaneously, thus improving the performance

of the application.

To create a TCP server which listens for incoming connection requests

the following code is used:

private TcpListener tcpListener;1

private TcpClient tcpClient;2

private Thread listenThread;3

4

private void StartServer()5

{6

tcpListener = new TcpListener(IPAddress.Any, 4400);7

listenThread = new Thread(new ThreadStart(ListenForClients));8

listenThread.Start();9

}10

11

private void ListenForClients()12

{13

tcpListener.Start();14

while (true)15

{16

tcpClient = tcpListener.AcceptTcpClient();17

Thread tcpClientThread = new Thread(new ParameterizedThreadStart(ReceiveData));18

tcpClientThread.Start(tcpClient);19

}20

}21

The “TcpListener” class contains the functionality to listen for incoming

connections from remove devices. An instance of this class is created which

runs in its own thread and waits for incoming connections on port 4400 any

IP address on the PC (lines 5–10).
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The thread continuously waits for incoming connections (line 15). When

a connection is detected a worker thread is started to handle communications

between the PC and remote device (lines 17–19). To display the messages

being received the code below is used.

private void ReceiveData(object client)1

{2

TcpClient tcpLocalClient = (TcpClient)client;3

NetworkStream stream = tcpLocalClient.GetStream();4

byte[] message = new byte[1024];5

int bytesRead = 0;6

while (true)7

{8

try9

{10

bytesRead = stream.Read(message, 0, 1024);11

}12

catch13

{14

break; // connection lost15

}16

if (bytesRead > 0)17

{18

ASCIIEncoding encoder = new ASCIIEncoding();19

this.Invoke(new MethodInvoker(20

delegate() { lbHistory.Items.Add(21

encoder.GetString(message, 0, bytesRead)); }22

));23

}24

else25

{26

break; // no data27

}28

}29

tcpLocalClient.Close();30

}31

The worker thread initialises a network stream to read data from the

PDA (lines 3–6). Next it continuously reads from the stream until no more

data is received or the connection is lost (lines 7–29). Data is read in chunks

of 1024 bytes and displayed in a listbox control on the user interface. For the

worker thread to update the user interface a special “Invoke” method must

be used, which allows interaction with user interface controls from threads

other than the main thread (Wigley et al., 2007, pp. 412–421). Finally, the

connection is closed once no more data is received (line 30).

The above code demonstrates how the PC receives data from the PDA.

However, it is also necessary to send data from the PC back to the PDA.

The code below shows how to do this.



7.2. COMMUNICATING OVER BLUETOOTH 123

private void SendData()1

{2

NetworkStream stream = tcpClient.GetStream();3

ASCIIEncoding encoder = new ASCIIEncoding();4

byte[] message = encoder.GetBytes(txtMessage.Text);5

stream.Write(message, 0, message.Length);6

stream.Flush();7

}8

Once a remote connection is available another network stream is used to

write data back to the client (lines 3–4). The data to be returned can be

generated programmatically or read from a textbox (line 5). To send the

data it is written to the stream, which is then flushed to make sure all the

data is sent (lines 6–7).

The TCP client on the PDA functions in a familiar way to the examples

above. After connecting to the server a separate thread is used to send and

receive data. This again improves the performance of the application. To

connect to the server the following code is used.

private TcpClient tcpClient;1

2

private void ConnectToTCPServer()3

{4

tcpClient = new TcpClient();5

IPEndPoint serverEndPoint = new IPEndPoint(IPAddress.Parse("169.254.2.2"), 4400);6

tcpClient.Connect(serverEndPoint);7

Thread tcpServerThread = new Thread(new ThreadStart(ListenForServer));8

tcpServerThread.Start();9

}10

The “TcpClient” class used to connect to the server. It uses an IP address

and port to determine the endpoint to connect to. In this example the IP

address is fixed and has been hard-coded (line 6). A new worker thread is

created on which communication with the server takes place (lines 7–9).

The sending and receiving of data works in exactly the same on the PDA

as it does on the PC. A network stream is used to read data being received

as well as to send data in return.

7.2 Communicating over Bluetooth

This section describes the communications link between the PDA and mobile

platform. It shows the client implementation on the PDA and the master

using a Bluetooth serial adapter module, the KC111 Wirefree.
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7.2.1 KC111 Wirefree Bluetooth Serial Adapter

The PIC18F4620 microcontroller is the host of the KC111 Bluetooth mod-

ule. It is this module that allows the microcontroller to send packet data

to the PDA through a Bluetooth communication link. The KC111 starts of

in “command mode” and communications is between the module and mi-

crocontroller until the communication link with the remote Bluetooth device

(PDA) is established. The microcontroller is in charge of enabling the bond-

ing to take place between the KC111 module and the PDA as well as setting

the Baud rate and PIN requirements.

Once the KC111 is enabled to bond with a specific Bluetooth address,

the address is stored in the device’s bond table. There is no need to enable

a bond with a particular device after the procedure was done once. Also

the baud rate and security requirements will be set until cleared by the

microcontroller. The current implementation has the KC111 as the master

node, with the PDA having the client connecting to it. These roles could

easily be swapped if desired.

The following sections describe the command sequence of the device spe-

cific AT commands (each appended with carriage return and line feed char-

acters). Figure 7.3 shows the commands received by the microcontroller as

soon as power is applied to the KC111 module. The microcontroller can

enable the KC111 to bond with a number of known nodes by placing these

nodes in the device’s bonding table. The command flow between the micro-

controller and the KC111 module to enable bonding with the PDA is also

shown in Figure 7.3.

There is three instances when the KC111 Bluetooth module will either

move from the “bypass mode” to the “command mode” or indicate a loss in

communications with the remote host to the microcontroller. These cases are

shown in Figure 7.4. Here, sending an escape sequence when currently in the

“bypass mode” will place the KC111 module back into “command mode”.

When the Bluetooth connection is broken for whatever reason, the KC111

module indicates this through two command sequences. The one is given if

the KC111 is currently in the “command mode” and the other if the KC111

module was in the “bypass mode”.

During “command mode” a number of settings on the KC111 module may

be configured. Figure 7.5 shows two of the more commonly used command

sequences: changing the baud rate and setting the security level.
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AT-ZV BondOK 0009373051fe
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AT-ZV -BypassMode-

Bonding
Procedure

Figure 7.3: KC111 Module Power-up and Bonding Sequence
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^#^$^% (no carriage return)
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###NO CARRIER
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Figure 7.4: KC111 Connection Loss Sequences
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Figure 7.5: KC111 Baud Rate Change and Security Configuration Sequences
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7.2.2 PDA Bluetooth Communications

To communicate using Bluetooth is slightly more complicated in Windows

Mobile. There is no bundled developer support for Bluetooth and device

manufacturers may also choose from several Bluetooth networking stacks.

A stack implements a layered architecture to support the connectivity and

protocols used to communicate over Bluetooth (Wigley et al., 2007, p. 319).

Therefore, to develop this part of the communication architecture, the 32feet.NET

(2010) free shared-source library is used.

In the case of Bluetooth the PDA acts as a client which initiates a con-

nection to the mobile robot. The code to accomplish this is shown below.

private BluetoothClient bluetoothClient;1

2

private void StartBluetooth()3

{4

BluetoothRadio bluetoothRadio = BluetoothRadio.PrimaryRadio;5

if (bluetoothRadio == null)6

{7

MessageBox.Show("No supported Bluetooth radio/stack found!");8

}9

else if (bluetoothRadio.Mode != InTheHand.Net.Bluetooth.RadioMode.Connectable)10

{11

DialogResult result = MessageBox.Show(12

"Make Bluetooth radio connectable?",13

"Bluetooth",14

MessageBoxButtons.YesNo,15

MessageBoxIcon.Question,16

MessageBoxDefaultButton.Button1);17

if (result == DialogResult.Yes)18

{19

bluetoothRadio.Mode = RadioMode.Connectable;20

}21

}22

bluetoothClient = new BluetoothClient();23

}24

25

private void ConnectToBluetoothServer()26

{27

SelectBluetoothDeviceDialog dialog = new SelectBluetoothDeviceDialog();28

DialogResult result = dialog.ShowDialog();29

if (result == DialogResult.OK)30

{31

try32

{33

BluetoothDeviceInfo deviceInfo = dialog.SelectedDevice;34

BluetoothAddress address = deviceInfo.DeviceAddress;35

BluetoothEndPoint endpoint = new BluetoothEndPoint(36

address,37

BluetoothService.SerialPort);38

bluetoothClient.Connect(endpoint);39

Thread bluetoothServerThread = new Thread(new ThreadStart(ListenLoop));40
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bluetoothServerThread.Start();41

}42

catch43

{44

// connection error45

}46

}47

}48

The “StartBluetooth” function enables the PDA Bluetooth hardware

(lines 3-24). A check is done to see whether the PDA support Bluetooth,

which is necessary if the same code is ported to another device (line 6). A

second check is done to determine whether the Bluetooth is connectable and

if not the user is prompted to enable this mode (lines 10-22). If these steps

complete without any errors the Bluetooth client is ready to connect to the

mobile robot.

To choose the device to connect to a dialog window from the code library is

used. This window lists the nearby Bluetooth devices by name and allows the

user to choose a device to connect to (lines 28–30). The device’s Bluetooth

address is automatically retrieved by the code library and, together with the

service type, is used to connect to the mobile robot (lines 32–39). A separate

worker thread is created to handle communications between the devices (lines

40–41). Once a connection has been established data is transferred over a

network stream in the same way as the TCP example above.

7.3 Custom Communications Protocol

The custom communications protocol is implemented between the PDA and

mobile platform’s processing element, the PIC18F4620. The communications

mechanism between these two devices is Bluetooth.

The use of Bluetooth as communications mechanism influenced the design

of the communications protocol. Due to the KC111 Bluetooth Adapter mod-

ule used, messages received by the microcontroller are either control messages

from the KC111 unit itself or commands from the PDA. These messages are

passed using the different operation modes of the KC111.

When in bypass mode, a seamless bi-directional link is established be-

tween the PDA and microcontroller. Here any characters received is passed

unchanged and directly to the microcontroller. When in the control mode,

no messages from the PDA are received and all messages originate from the

KC111.
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The serial receive components described in Section 6.2.7 cater for the

event when the communications link between the PDA and microcontroller

is lost and the Bluetooth module automatically (possibly in the middle of a

command message from the PDA) reverts back to command mode. This is

done by the routine always considering three characters in the receive buffer

at a time: the byte currently pointed to, the previous byte fetched and the

next byte to be fetched. In this way the “###” sequence is easily picked up

as the start of a carrier loss message even when in the middle of an unfinished

packet.

7.3.1 Protocol Features

A start character is used to indicate the start of a command or request packet

from the PDA. As the KC111 originating messages all start with one of two

possible characters. The use of a start character simplifies the discarding

of “junk” characters that may be received during connection setup. It also

serves to distinguish between KC111 and PDA originating messages.

The protocol supports 15 unique node addresses, where a node can be

another robot or base station. The bluetooth module chosen only supports

one peer-to-peer connection at any time, but using a high-end model would

allow multiple robots to communicate with one another using the address

byte to specify who a specific message is intended for. Here broadcast mes-

sages would also be applicable and the address byte could be used to indicate

this type of message in the future. For the current implementation, the PDA

and robot were given arbitrary addresses. The address byte contains both

the sender and receiver’s address.

Having a single byte that indicates the meaning of the rest of the packet,

increases the speed at which a packet can be acted upon. The function type

byte is used together with the length byte to indicate the appropriate packet

handling. The length byte indicates the length of data to follow. Using a

single byte limits the length of data in a single packet to 255 bytes. The data

in the packet is indicated through the length byte together with the function

byte.

Due to the transport medium being air and susceptible to all kind of

electrostatic noise it is important to ensure the integrity of a received packet.

A 16-bit redundancy check is used to ensure that the data is valid. Stop bytes

are used to allow the reception of variable length packets without first having
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Start
Byte

Address To/
Address From

Function
Type

Length CRC
Stop
Bytes

Data

Figure 7.6: Custom Protocol Packet Structure

to find and check the length byte which is not even present in the packet

received from the Bluetooth module. The KC111 Bluetooth module employ

variable length packets and ends all incoming command messages with a CR

(carriage return) followed by a LF (line feed) character. Having a variable

length packet not only accommodates the already variable packets from the

bluetooth module, but also allows for packets to be optimally compact. This

in turn allows for greater responsiveness of the robot to act on a command

received.

7.3.2 Structure of Command and Response Packets

In order to be as flexible as possible, the packet is byte aligned, with 8

bit bytes. This makes implementation easy and efficient on a number of

platforms, including the 8bit PIC microcontroller used as the main processing

unit on the mobile platform. A packet is a communication element and may

be a response type or command type depending on the data contained within

the packet. Two types of command packets are defined: request packets

and command packets. A request packet will require the microcontroller to

respond to the PDA with the requested system data. A command packet

will instruct the microcontroller as to one or more actions to be preformed

and is coupled with actuator actions.

All packets sent between the PDA and mobile platform are variable length

and have a structure as shown in Figure 7.6. Table 7.1 describes the compo-

nents of the packet structure.

Command Packets

The Function Type byte will take on two formats depending on the type

of command packet received. When the packet contains no data (the data

length byte is zero), the packet is a request-type command. The Function

Type byte will then have the format as shown in Figure 7.7 with each bit

indicating a type of sensor data to request.
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Table 7.1: Byte Description of Packet Structure

Component Length Description
Start Byte 1 byte Indicates start of a packet
Address to/from 1 byte Upper nibble is address to, lower nibble

is address from
Function Type 1 byte Identify type of data sent
Length 1 byte Number of bytes in the Data field
Data 0 to N bytes Data being received/sent
CRC 2 bytes 16 bit CRC
Stop Bytes 2 bytes Indicates end of packet

The “CollectData” routine is used to gather the requested values accord-

ing to the function type bitmap in Figure 7.7 and populates the data field of

the packet to return to the PDA.

The second type of packet requests the change of certain control variables.

These variables are specified through the function parameter byte as shown

in Figure 7.8.

The “SetData” routine is responsible for setting the requested variables

to the value in the data field.

7.3.3 Packet Exchange

The microcontroller sends and receives bytes through serial receive and trans-

mit interrupts together with the use of receive and transmit buffers. These

buffers are cyclic in nature.

The serial interrupt receive routine places the incoming bytes into the

receive buffer. If the buffer reaches its maximum, it wraps around and starts

at position 0 within the buffer.

7 6 5 4 3 2 1 0

Battery voltages

Contact Sensors

Distance Sensors

Speed and Direction

Angle

Distance

Acknowledge (1 – acknowledge, 0 – not acknowledged)

RFU (always 0)

Figure 7.7: Function Type Byte Details (Data Request)
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7 6 5 4 3 2 1 0

Distance to travel

RFU (always 0)

RFU (always 0)

Speed

Angle

Distance travelled

Acknowledge (1 – acknowledge, 0 – not acknowledged)

RFU (always 0)

Figure 7.8: Function Type Byte Details (Command)

“BufferedGetc” is a similar implementation to the standard “getc” func-

tion with two significant differences. Firstly, the function has the added

feature of not trapping the program if a byte is not currently available. This

is done using a time out function. The other major difference is that the

“BufferedGetc” function fetches a byte from the receive buffer and not di-

rectly from the UART buffer as with “getc”.

The transmit interrupt together with a transmit buffer and a “Buffered-

Putc” implementation is used to transmit characters without influencing the

other interrupt sources in the PIC18F4620.

The microcontroller must be able to handle and provide appropriate re-

sponse messages to each of the command class packets shown in Table 7.2.

Class 1 Commands

Class 1 commands request sensor and/or actuator data according to the

bitmap in the function type byte in the packet header as shown in Figure 7.7.

For this type of command the data field length should be indicated to be zero.

Table 7.2: Command Class Descriptions

Command Class Short Description
Class 1 Valid, clean packet requesting specific sensor and/or

actuator data
Class 2 Valid, clean packet requesting the setting of specific

control variables
Class 3 Valid packets (correct start and stop bytes) that do

not pass all validity tests
Class 4 Invalid packets
Class 5 Bluetooth module originating packets
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The protocol does not currently support commands that both set and return

data.

In the response packet, the function type byte indicates that the packet

received was acknowledged (by setting the acknowledge bit) and which data is

included within the data field of the packet. The function byte should mirror

the received command’s function byte with the exception of the acknowledge

bit that may or may not be the same.

The microcontroller source builds the response packet using the “Build-

Pakcet” and “CollectData” routines. The “SendPacket” routine sends the

response packet to the PDA.

Class 2 Commands

Class 2 commands are related to the actuators on the mobile platform. The

current implementation supports setting the speed, angle and distance to

travel before stopping. The distance that has been covered can also be up-

dated to correct for odometric errors. This is done by setting global control

variables for each of the actuators involved as indicated through the bitmap

in the packet type byte. The data field contains each new setting, thus this

packet’s data length must match the data field’s length in bytes.

The response packet will set the acknowledge bit in the function type

byte, but sets all other bits in the function type byte to zero. The data

length is also zero, as no data is requested using the Class 2 command. This

forms a pure acknowledge packet. The response packet is constructed using

the “BuildPacket” and sent with the “SendPacket” routine.

Class 3 Commands

Here an error has been detected in the packet body. Three tests are imple-

mented and each has a corresponding error code. These validity tests test

the packet length, crc and address. In each case the mobile platform will

return a “not acknowledged” to the PDA through clearing the acknowledge

bit in the function type byte. All the other bits in the function parameter

byte is cleared as well as no sensor or actuator data will be returned in the

response packet.

The data length is however set to indicate one byte. The data field is

to contain a single length error core. The error code will correspond to

the first error picked up in the packet. The validity tests are done consecu-
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tively, stopping and returning an error condition on the first test failure. The

“ValidDataPacket(byte *packet ptr, int packet length)” firsts tests whether

the packet has been received by the correct mobile platform. Next, the length

byte is validated against the actual data length of the data field. Lastly the

CRC is verified. This means that if, for example, a packet is received that

has both an incorrect length byte as well as incorrect CRC, only the first er-

ror picked up of incorrect length will be indicated in the error code returned.

“BuiltPacket” constructs this “error packet” and “SendPacket” sends it to

the PDA.

Class 4 Commands

Class 4 commands describes invalid packets. An invalid packet is one that

could not be received at all. This could be the case where most, if not all,

of the received bytes had to be dropped by the receive routine due to the

start byte not being received correctly. Another packet that will also result

in an invalid packet is the case when an incomplete packet is received due to

a time out condition that occurred. These situations will result in a response

packet sent to the PDA in the same format as Class 3 commands, except

for the error code returned in the packet data. Invalid packets will return

an “invalid packet” error code, while packets that timed out will return a

“timed out” error code.

Class 5 Commands

Class 5 commands describe Bluetooth Module-originating command packets.

Bluetooth Module-originating packets are only sent to the microcontroller

when the communications link between the microcontroller and PDA has

not been set up or has been broken for whatever reason. The Bluetooth

Module is then in what’s called its ”Command Mode” and all packets sent

will only go to the module itself and not be passed to the PDA as in the case

of normal communications.

The Bluetooth Module-originating packets have a different structure to

command in Class 1 to 4. Here the packets consists of ascii string arrays that

end with two stop bytes (a CR followed by a LF). Packets can start with

either a ‘A’ or ‘#’ character.

Due to the tedious an time consuming task of copying constant character

strings from ROM to RAM in order to compare the two, a hashing function
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is used to simplify and streamline the process. This method is also faster

and easier to implement than a tree search algorithm. The hashing algorithm

accepts the Class 5 packet as input and produces a unique hash value from

it. This value will be unique for each different string passed to the hashing

function. The hash values is used in a “switch()” case statement to preform

the needed actions on the different Bluetooth packets from the Bluetooth

Module. Only the needed Bluetooth packets are implemented in the “In-

terpretHashValue” routine. The only difficulty in using the hash function is

that all the hash values must be calculated beforehand in order to create the

hash table in the source, or in this implementation, the state machine.

Most Bluetooth module originating packets indicates a loss in commu-

nication with the PDA (exceptions include “Bypass Mode“ packets). The

micro keeps track of the communications link state and will not attempt

sending any messages to the PDA before a link has been established and

indicated though the “Bypass Mode” Class 5 packet. Any PDA destined

packets sent during this mode would only cause the Bluetooth module to

return an error message to the microcontroller.

The microcontroller also keeps track of the number of packets that have

not been acknowledged by the PDA. If the maximum number of consecutive

messages have failed to reach the PDA, communications can be considered

to be broken down and the microcontroller can try to recover by sending an

escape sequence to the KC111 Bluetooth module.

7.4 Conclusions

This chapter implemented the communications architecture designed in Chap-

ter 4. The PC-PDA communications link was implemented using WLAN

communications and the TCP protocol, with the PC implemented as the

TCP server and the PDA as TCP client. The PDA also communicates with

the mobile platform. This is done through a Bluetooth connection, using the

KC111 Bluetooth serial adapter to allow the microcontroller, as the mobile

platform’s controller, to connect to the PDA through Bluetooth. A cus-

tom protocol is described for packet exchange. The framework and protocol

defined in this chapter supports the control architecture using distributed

hardware. Chapter 8 will test whether the design and communications ar-

chitecture can be successfully applied to a typical office robot scenario and

whether this would have a positive effect on system performance.
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Chapter 8

Experimental Results

Office robots need to be able to preform a number of tasks with varying

response-time limitations and processing requirements. An office robot may

typically want to learn from its environment, updating a map by particularly

noting stationary objects as “discovered” by the robot. To be useful an office

robot would need to be able to move in its environment – an office building.

A more specific example would be to task the robot with finding and entering

a specific office.

This chapter uses this basic office robot task as a starting point for the

PDA-incorporated robotic system. The task seems to suite the layered con-

trol architecture as the global problem of “finding an office” can be easily

and logically broken down into several local and reactive tasks.

The rest of this chapter proceeds as follows. First, the test scenario is

described. This is followed by how the task is broken down into subtasks

and how these are implemented using the conceptual framework discussed in

Chapter 4. The test scenario is implemented using the developed prototype

in two configurations. One where the PDA is used solely as message forward-

ing device and the other according to the developed framework. The data

exchange between the PDA and microcontroller, using the custom protocol

described in Chapter 7, is shown for one of the local planning tasks imple-

mented on the PDA. The chapter concludes by discussing the results of the

two experiments in terms of time variations and power consumption.

139



140 CHAPTER 8. EXPERIMENTAL RESULTS

8.1 Test Case Description

The scenario chosen has the robot in a passage within an office building. This

is a long passageway with several offices leading out from it. The robot is

tasked with finding a specific room or office number in this passage, moving

to it and entering into the room, ready for further instruction. It is assumed

that the robot is facing in the right direction and is already located within

the passage. All locatable offices have their doors open and it is assumed that

the robot has kept track of its current position within the passage. Figure 8.1

shows the mobile robot in the passage and the route it will need to follow in

order to get to the desired location.

Office #2
Office #1

Mobile Robot

Path

Passage

Figure 8.1: Office Test Scenario

8.1.1 Task Breakdown

The high-level task is to find and enter a specific office. In order to preform

this task, the robot must be able to:

1. Determine where the destination office is with respect to the robot’s

current location.

2. Determine how many doorways to pass in the hallway to reach the

destination.

3. Locate a doorway by:

(a) Monitoring the distance sensor data.

(b) Monitoring the contact sensor data.
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(c) Adjusting the steering motor’s angle if needed.

(d) Stopping the drive motor.

4. Handle “stuck” situations where the robot has become trapped behind

some object.

5. If the doorway should be traversed:

(a) Driving the robot forward as straight as possible.

(b) Monitoring the distance sensor data.

(c) Monitoring the contact sensor data.

(d) Stopping the drive motor.

6. Enter a doorway by:

(a) Driving a short distance forward.

(b) Turning at the maximum possible angle into the doorway.

(c) Stopping after entering a short distance into the office.

Categorising Global, Local and Reactive Tasks

These tasks can now be categorised as either global or deliberative, local

planning or reactive tasks. Global tasks associated with finding the office

and entering it can include:

1. Determine where the robot is with respect to the goal office.

2. If a door has been found to determine if it’s the one to enter.

3. If a door could not be found and the robot is stuck against an object,

to update the map of its environment.

4. Deciding how to recover from a stuck position.

The local planning tasks include:

1. Locating a doorway in the passage.

2. Passing a door opening.

3. Entering an office.

Last, reactive tasks will include:
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1. Reading sensor information.

2. Stopping the drive motor as soon as contact occurs.

3. Steering the robot.

4. Driving and stopping the robot.

8.1.2 Task Implementation

The subtasks defined and categorised in Section 8.1.1 is implemented using

three main functions – “GoToOffice”, “FindDoor” and “PassDoorOpening”.

GoToOffice

Figure 8.2 shows the “GoToOffice” routine’s flow diagram. The routine will

call the “FindDoor” routine to follow the passage wall until an opening can

be found. If a door has been found, but it is not the correct one, the “Pass-

DoorOpening” routine is used to move past the door opening and find the

wall on the other side of the doorway. If the door found is that of the office

in question, the “Enter” routine is used to move forward, turn into the office,

drive forward and stop just inside the office.

FindDoor

The “FindDoor” routine shown in Figure 8.3, requests data from the IR

distance sensors on the mobile platform as well as the contact sensors. The

distance value of the IR sensor on the side of the robot facing the wall is

checked against a pre-defined minimum wall following distance. Due to many

factors influencing the mobile robot it does not drive perfectly straight, even

when the steering is set to drive straight. Thus, if the distance to the wall is

sensed to be decreasing and crosses a minimum threshold value, the steering

angle of the robot is adjusted away from the wall. If the distance to the

wall is increasing and crosses a maximum threshold value, the steering angle

is adjusted toward the wall. This results in the mobile robot having an

oscillating type of action instead of taking a straight path down the passage,

as shown in Figure 8.4.

The angle adjustment is done through a command, “SetServo”, to set the

angle to the mobile platform. If the distance measured by the side sensor
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GoToOffice

Get Office
number to find

Office found = false

FindDoor

Door found? Robot Stuck?

Update World
Map

Recovery
Manouvre

Correct office
found?

Enter

END

YES

YES

NO

NO

YES

Office found = true

PassDoorOpening

Passed
Opening?

B

B

YES

NO

Figure 8.2: GoToOffice() Routine Flow Diagram
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gives no reading an opening, i.e. doorway, has been found. Stopping the

motor is also a command, “StopDriveMotor”, sent to the mobile platform.

PassDoorOpening

The “PassDoorOpening” routine shown in Figure 8.5 is almost an exact

opposite of the “FindDoor” routine. Here the measurements are evaluated

in order to find a wall instead of an opening. Once again the distance sensor

measurements are used to make this determination.

Enter

The “Enter” routine is shown in Figure 8.6. Here the robot would be just

passed the door opening. To ensure that the robot does not hit the doorway

as it turns into the office, the robot first moves a short distance forward. The

robot now turns towards to opening and enters the office a short distance

before coming to a stop.

8.1.3 Task Distribution

Each tasks can be seen as a piece of the control intelligence of the robot

system as a whole. This section describes how the tasks outlined for the

office robot is implemented in two different ways. The implemented test

cases are used to produce the test results in Section 8.2.

For the first test case, the PDA has no intelligent processing. It’s only pur-

pose is to forward a message received through WLAN from the PC, through

the Bluetooth link to the mobile platform and back again. The tests done

for this case implements both the global and local planning tasks on the PC,

with the reactive tasks and sensor/actuator interface on the mobile platform.

The mobile platform receives commands formatted according to the custom

protocol in Chapter 7. From the flow diagrams in Figures 8.2, 8.3, 8.5 and 8.6

these would include “GetIRandSensorData”, “SetServo”, “StopDriveMotor”,

“DriveMotor” and “SetDistanceToTravel” tasks. All other functionality is

implemented on the PC.

The second scenario implements the defined distributed framework. Here

the global tasks are implemented on the PC, local planning tasks on the PDA

and reactive tasks on the mobile platform’s controller. The local tasks trans-

late to the “FindDoor”, “PassDoorOpening” and “Enter” routines. These
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FindDoor

GetIRandSensorData

Contact?
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wall?

Too far from
wall?
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Figure 8.3: FindDoor() Routine Flow Diagram
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Mobile Robot

Passage

Figure 8.4: Path Followed By Robot Down Passage

PassDoorOpening

END
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GetIRandSensorData
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DriveMotor(forward,
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Found wall?

StopDriveMotor

YES
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Figure 8.5: PassDoorOpening() Routine Flow Diagram
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Enter

END

SetSetvo(centre)

DriveMotor(forward,
speed)

SetDistanceToTravel(
distance)

SetServo(turn)

DriveMotor(forward,
speed)

SetDistanceToTravel(
distance)

Figure 8.6: Enter() Routine Flow Diagram

are called by the global planning layer which is implemented using the “Go-

ToOffice” routine. The reactive components are the same as for the first

implementation and are used by the local planning layer.

With the second test setup, the global planning layer on the PC gives

information and receives information from the local planning layer on the

PDA. In the same way, information is shared between the local planning

layer on the PDA and the mobile platform. The global and local layers do

not pass actuator and sensor specific commands and responses to one another

– the data is abstracted away. Similarly, the local layer does not receive raw

data from the mobile platform but, for example, distances measured in cm.

Here too, the data is abstracted. This allows for a flexible implementation,

as the PC and global planning layer does not need to have any knowledge of

how the mobile platform needs to be controlled in order to reach the goal.

8.2 Results

The following sections describe the results of the test cases.
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Mobile Robot

Passage

IR
Distance
SensorsDistance

Measurements

Figure 8.7: Distance Measurements using the IR Distance Sensors

8.2.1 Command-Response Pairs

The find door routine produces a command-response pair sequence similar

to that shown in the sequence diagram in Figure 8.8. The distance measure-

ments shown in the responses from the mobile platform’s controller includes

data from six IR distance sensors placed as shown in Figure 8.7.

The placement of the sensors were chosen specifically for the wall following

routine implemented. The side IR sensors are placed off-center and towards

the front. This allows using only a single sensor for wall following. If the

sensor were placed exactly in the middle of the robot body the robot would

be able to turn off course further, before being picked up as a distance change

by the sensor. This would cause a path with a bigger oscillation curve than

that shown in Figure 8.4. The off-center placement also assists in the robot

knowing which section is getting close to an object with respect to the front-

or back-side of the robot. When the side of interest’s distance sensor reading

gives a zero result it means that the sensor is over an opening.

Figure 8.8 corresponds with the “FindDoor” flow diagram in Figure 8.3.

Commands sent by the PDA and responses sent back by the mobile platform

controller is shown for each action taken. These actions correspond to the

“GetIRandSensorData”, “SetServo”, “StopDriveMotor”, “DriveMotor” and

“SetDistanceToTravel” tasks shown in the “FindDoor” routine. When the

robot is considered next to a wall the side IR sensor, right in this case,

indicates a distance of 20cm. Too close is when this same sensor indicates

15cm and too far would be a reading of 25cm or greater. A zero reading

indicates a door opening.

The communications between the PC and PDA is shown in Figure 8.9.
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PDA Microcontroller

Steering angle = 0: “2A 42 50 01 00 A011 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”Steer straight

Drive at 70% of full speed: “2A 42 48 01 46 62D1 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”Drive forward

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 00234B143C00 00 C010 \r\n”
Get contact and

distance sensor data
Next to wall

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 001E500F4100 00 C010 \r\n” Too close to wall

Too far from
wall

Adjust
steering angle

Steering angle = +2: “2A 42 50 01 02 8053 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 00234B143C00 00 C010 \r\n” Next to wall

Steering angle = 0: “2A 42 50 01 00 A011 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 002846193700 00 C010 \r\n”

Steering angle = -2: “2A 42 50 01 FE AEC0 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”
Adjust

steering angle

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 00234B143C00 00 C010 \r\n” Next to wall

Steering angle = 0: “2A 42 50 01 00 A011 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”

Turn
towards wall

Go straight

Go straight

Turn away from
wall

Drive motor forward

Go straight

Return Contact and Distance data: “2A 42 46 00 8B42 \r\n”

Ack + Contact and Distance data: “2A 24 46 07 00004B003C00 00 C010\r\n”
Next to
opening

Set speed = 0: “2A 42 48 01 00 4AD3 \r\n”

Acknowledge: “2A 24 40 00 082F \r\n”
Stop drive
motor

Stop

Get contact and
distance sensor data

Get contact and
distance sensor data

Steer straight

Get contact and
distance sensor data

Get contact and
distance sensor data

Steer straight

Get contact and
distance sensor data

Figure 8.8: Command/Response Sequence between the PDA and Microcon-
troller
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The figure shows the user interface on both devices and the commands being

transmitted in each case.

8.2.2 Timing Results

The time taken, calculated as the average of 500 command/response pairs,

to send a command from the PC and receive a response back was calculated

to be 0.077 ms. When sending the same command from the PDA (communi-

cating over Bluetooth only) a response is received in 0.056 ms. This supports

the hypothesis for implementing more time critical tasks on the PDA with

respect to the PC.

8.2.3 Monitoring the Battery State

Windows Mobile exposes the current battery state through a system prop-

erty which can be queried whenever needed. However, the battery level

is rounded in blocks of 20% which makes exact measurements impossible

(MSDN Library, 2010). Fortunately it is possible to get the exact battery

level by invoking a native method of the operating system. The code below

shows how this is done.

[DllImport("coredll")]1

private static extern uint GetSystemPowerStatusEx2(2

SYSTEM_POWER_STATUS_EX2 lpSystemPowerStatus,3

uint dwLen,4

bool fUpdate);5

6

public class SYSTEM_POWER_STATUS_EX27

{8

public byte ACLineStatus;9

public byte BatteryFlag;10

public byte BatteryLifePercent;11

public byte Reserved1;12

public uint BatteryLifeTime;13

public uint BatteryFullLifeTime;14

public byte Reserved2;15

public byte BackupBatteryFlag;16

public byte BackupBatteryLifePercent;17

public byte Reserved3;18

public uint BackupBatteryLifeTime;19

public uint BackupBatteryFullLifeTime;20

public uint BatteryVoltage;21

public uint BatteryCurrent;22

public uint BatteryAverageCurrent;23

public uint BatteryAverageInterval;24

public uint BatterymAHourConsumed;25

public uint BatteryTemperature;26
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Figure 8.9: PC (top) and PDA (bottom) Applications
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public uint BackupBatteryVoltage;27

public byte BatteryChemistry;28

}29

30

SYSTEM_POWER_STATUS_EX2 status2 = new SYSTEM_POWER_STATUS_EX2();31

First a function inside a dynamic-link library is invoked, which contains

the functionality to retrieve battery status information (lines 1–4). This is

done using the “DLLImport” statement which provides a platform invoca-

tion subsystem to call into external code (Wigley et al., 2007, p. 495). The

specific function that is needed to retrieve battery status information is “Get-

SystemPowerStatusEx2”. This function takes three parameters: a pointer to

a buffer that receives power status information, the length of the buffer and

whether to get the latest or cached information. It returns the length of the

data in the buffer if called successfully (MSDN Library, 2011a).

The “SYSTEM POWER STATUS EX2” structure contains information

about the power status of the system (lines 7–29). Inside this structure

the “BatteryLifePercent” and “BatteryVoltage” returns the percentage of

full battery charge remaining and amount of battery voltage (in millivolts)

respectively (MSDN Library, 2011b). These two values are used to measure

the battery state. Finally, an instance of the structure is created which can

be used from managed code (line 31).

Values are measured in fixed time intervals and logged to a file. The code

below shows how this is done.

Timer timer = new Timer();1

2

void StartBatteryMonitor()3

{4

timer.Interval = 10000;5

timer.Tick += new EventHandler(timer_Tick);6

if (!timer.Enabled)7

{8

timer.Enabled = true;9

}10

}11

12

void timer_Tick(object sender, EventArgs e)13

{14

if (GetSystemPowerStatusEx2(15

status2,16

(uint)Marshal.SizeOf(status2),17

true) == (uint)Marshal.SizeOf(status2))18

{19

StreamWriter writer = new StreamWriter(20

@"\batteryState.txt", true);21

writer.WriteLine(22
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"{0},{1},{2}",23

DateTime.Now.ToString(),24

String.Format("{0}%",25

status2.BatteryLifePercent),26

status2.BatteryVoltage.ToString());27

writer.Close();28

}29

}30

A timer is used to trigger a call to the “GetSystemPowerStatusEx2” func-

tion at consistent intervals. A measurement is taken every 10 seconds (line

5). If a measurement is taken successfully (lines 15–18) the relevant infor-

mation together with a timestamp is written to a log file (lines 19–29). An

example of the logged data is given below.

1/16/11 12:12:53 PM,46%,3641

1/16/11 12:13:03 PM,46%,3636

The logged data shows a comma-separated list of readings. First, the

timestamps show that the readings were taken 10 seconds apart. Second,

the percentage of battery charge remaining shows no value change in this

interval. Third, the battery voltage shows a slight drop in power in this

interval.

8.2.4 Power Consumption Results

This section discusses the power consumption results obtained from using

the two tests cases within the described office robot scenario.

Idle State

For comparison, the power used by the PDA during idle state is shown in

Figure 8.10. Figure 8.10 shows the power drop over a time period of 11

minutes, 52 seconds from 3.767 V to 3.753 V at an average rate of 0.019

mV/s.

Message Forwarder

Using the first test case with the PDA as message forwarder and no intelligent

processing implemented, Figure 8.11 shows the resulting power consumption

with respect to time. Here, the power level started at 3.863 V and over the

experiment time of 10 minutes, 11 seconds the power dropped to 3.780 V.

The voltage dropped at an average rate of 0.136 mV/s.
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Figure 8.10: Idle Mode Power Drain

Distributed Control

With the second test case that uses the PDA to implement the local planning

layer, the results as shown in Figure 8.12 were obtained. From the figure it

can be seen that the power level dropped from 3.804 V to 3.780 V, at an

average rate of 0.044 mV/s.

Comparing the three results shown in Figures 8.10, 8.11 and 8.12, there

is a noticeable difference in power consumption between the PDA being used

as a forwarding device and the PDA being used within a distributed control

framework. The latter case uses less than a third of the power of forwarding

commands and would thus seem preferable in this regard. The discrete steps

of measured voltage as seen on the three graphs is due to the resolution of

the PDA’s power measurement system.

8.3 Conclusions

This chapter described a test scenario for an office robot. The typical task

of finding a specific office and entering it was divided into subtasks and dis-
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Figure 8.11: PDA as Message Forwarder Power Drain

tributed among the three processing elements (PC, PDA and mobile platform

controller) according to the conceptual framework detailed in Chapter 4. Two

test cases were implemented using the same tasks and the same amount of

processing, in order to form an objective opinion of the success of the pro-

posed framework. One test used the PDA as message forwarder, while the

other used the PDA as proposed by the conceptual framework.

Performance was measured against response-time as well as power con-

sumption of the PDA’s battery. The results show that the power drain on the

PDA battery is less when it is used as an intelligent agent in the robot con-

trol. The timing tests also indicated that the response between the PDA and

mobile platform is considerably faster than when using the PDA to forward

motor specific commands between the PC and mobile platform controller.
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Figure 8.12: PDA as Message Forwarder Power Drain
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Chapter 9

Conclusion

The PDA’s processing capability is underutilized when it is only used to

forward control messages from the main (often remote) control station to

the onboard platform controller. Often these messages are motor specific

commands for the individual motors and servos on the robot base, increasing

the latency between sending a command and its execution. In addition the

PDA is not the ideal device to fulfil heavy processing demands, such as image

processing. This leads to not implementing complete systems, due to the lack

of resources, or settling for a less desirable output that can successfully be

implemented on the PDA. Incorporating a wirelessly connected remote PC is

common to many projects, but most only use the PC to give goal directives or

motor commands. Some make use of a remote PC to perform debugging and

logging of important parameters, while others implement a user interface on

the PC. Few use the PC’s processing power, speed and memory, implementing

all the control software either on the onboard controller or PDA.

This research did not seek to argue whether using a PDA within a mobile

robot system is the optimum choice or not. The fact is that many research

projects have done so in the past and will undoubtedly do so in the future.

In this study a possible framework that facilitates the inclusion of a PDA

was presented.

The framework designed and described in this dissertation attempts to

maximise the use of all the PDA’s built-in abilities, including user interface

strengths and processing capacity. A way in which control tasks can logically

be distributed across three processing elements was shown using the typical

three layer hybrid control architecture and the theory of data abstraction.

This allowed for the most time critical tasks to be done by the onboard con-

159
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troller and the least time critical and most processing and memory intensive

tasks to be done by a remotely connected PC.

The following sections describe how the research problem and objectives

guided this work to the novel framework that was designed, implemented

and tested.

9.1 Revisiting the Problem Statement

This dissertation addressed the issue of how a PDA can be used within a

robot design to utilise its built in processing capability to assist with control.

To arrive at a suitable answer to this problem, a number of sub-problems

were posed concerning robot control using wirelessly distributed hardware.

This dissertation answered these questions in the following way.

9.1.1 Distributing Intelligence in a Wireless Mobile

Robot System

It was established that control intelligence can be distributed among differ-

ent processing elements by applying parallel processing. The control software

components that benefit from running in parallel on different systems depend

greatly on the chosen control architecture. With a chosen control architec-

ture, the various components thereof must be able to share information. With

the hardware components of the robot system in this dissertation consisting

of a PC, PDA and mobile platform, a wireless communications architecture

was used to share the needed information between the physically distributed

hardware components.

9.1.2 Considerations using a PDA in a Distributed

Control System

PDAs were thoroughly examined in Chapter 2 as well as Chapter 3. It was

found that many researchers in different areas of the robotic field have made

good use of PDAs within their systems. The small size of the device and

the many built-in features that can almost instantaneously be added to a

robot system were the most common reasons for choosing the device. PDAs

have been used in many different ways without much thought given to how

they fit within a formal control architecture. The dissertation grouped and
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categorised projects according to the hardware, software and communications

strategies employed.

9.1.3 Distributed Control vs. System Performance

In order to determine whether distributing control intelligence has a positive

influence on system performance a framework was designed and discussed in

Chapter 4. The framework implemented a hybrid robot control architecture,

but added to this by implementing each control layer on a physically dis-

tributed hardware component. The suggested framework was implemented

using the communications architecture detailed in Chapter 7, together with

a mobile platform developed in Chapters 5 and 6. The effects on system

performance was evaluated in Chapter 8.

9.2 Meeting the Desired Objectives?

Section 1.3 presented three objectives for the suggested framework and im-

plementation. The following sections evaluate to what extent the proposed

framework meets these requirements.

9.2.1 Considerations Using a PDA in a Robot System

Considering how best to make use of a PDA within a mobile robot system was

formed with the knowledge gained from past projects evaluated in Chapter 3

together with the features listed in Chapter 2. The PDA is a small, powerful

device that incorporates a rich and familiar user interface. At this point

in time, the PDA’s processing, memory and battery life cannot match a

desktop or laptop PC. It was determined that processing intensive tasks

such as image processing is currently best done on a PC for both speed and

memory considerations. Distributing the right type of tasks to the PDA is

therefore important to ensure the success of the control system as a whole.

9.2.2 Suitable Control to Distribute to a PDA

A hybrid three-layered control architecture was chosen for the framework

design. The three layers of the classic model run in parallel, with each higher

layer handling tasks with greater acceptable latency periods. Within these
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layers the middle, or local planning layer, seemed to have the largest scope

for implementation on the PDA. This decision was due to:

• The PDA not being directly attached to the sensors or actuators, thus

inducing a delay unsuitable for the reactive layer.

• The PDA lacking memory and processing power to do the relatively

slower and more deliberative planning tasks of the global planning layer.

9.2.3 System Performance

A mobile platform was designed and developed through Chapters 5 and 6

in order to interact with the world model through the sensors and actua-

tors implemented on the platform, but also to implement the reactive layer

of the three-layered control architecture. The PDA, performing local plan-

ning tasks, communicated with the mobile platform through a Bluetooth

communications link and with the global planning layer on the PC through

WLAN. System performance was measured using a single test scenario for

the office robot, implemented in two configurations. The first has the PDA,

as in many projects, as a relay for control commands from a remote PC to

the mobile platform. The second implements the proposed framework with

control intelligence distributed among the three hardware components.

The results obtained, both for power consumption and response time,

supports the hypothesis in favour of distributing intelligence to a PDA within

a PDA-incorporated robot system design. Distributing control intelligence

to the PDA is faster and saves power when compared to the popular use of

a PDA as message forwarding device.

9.3 Implementation Issues

Implementing the selected hardware components resulted in a number of

challenges. Some could be overcome while others could not.

Using a commercially available RC car as the mobile platform had many

advantages, as indicated in Chapter 5, but also brought a number of chal-

lenges:

• The use of parallel instead of Ackerman steering has a number of neg-

ative effects on the accuracy of the steering.
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• The RC car has a large turning radius as well as large tires that are not

fixed tightly to the body, causing more accuracy problems in steering

the robot.

• The RC car came with an unusable servo that had to be replaced.

Replacing parts on the plastic, rigid body of the RC car was a difficult

task.

• Due to the large turning radius only 38 degrees of the 60 degree oper-

ating angle of the servo motor could be utilised. The software needed

to compensate for these limits.

• Attaching the servo motor in a necessary off-centre position with re-

spect to the shaft, meant that a new centre position and resulting PWM

pulse adjustment had to be calculated. This resulted in the central po-

sition not being at 1.5 ms high pulse as is the industry standard, but

around 1.48 ms. The software needed to compensate for the zero-shift.

• Low-cost RC cars come with low-cost DC motors, meant for running

at full speed. Replacing the drive motor was not an option due to

mounting limitations and gear assembly. This resulted in the drive

motor struggling to move from a starting position at 50% duty cycle

due to inertia within the motor coils.

• Noise induced by the drive motor was reduced by:

1. Placing capacitors across the winding of the motor.

2. Twisting the power supply wires together.

3. Separating the analog and digital supplies by using two battery

packs.

4. Placing an inductor on the digital supply.

• The mobile platform cannot come to an immediate dead stop as there

is a stopping time involved. The software takes this into account, espe-

cially when switching between driving directions, by first stopping the

robot and after a delay obtained through trial and error starting the

motor in the opposite direction.

In addition, the GP2D12 IR distance sensors were found to be very noisy.

A 100 uF capacitor was placed across the supply, as close to the sensor as
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possible, to reduce the effect. This was effective in producing a variance over

1000 samples taken to be in the order of 0.0007. The sensors also come with

a smaller-than-normal connector which made interfacing difficult. In order

to connect with standard .1mil headers some modification was required. As

a solution, a three-pin male header was soldered to the back of each Sharp

IR sensor’s PCB.

The first KC-Wirefree Bluetooth module was faulty and the second came

incomplete. Only the third module purchased could do the job.

9.4 Research Contribution

This research contributed to the field of mobile robotics and specifically to

wireless mobile robot control. Through a thorough literature study, many

PDA-based robot systems were identified and classified in the way in which

each project made use of the subsystems as well as incorporated control

intelligence. This grouping and classification showed the breadth of projects

within different research topic areas that have chosen to use a PDA within

their designs. Bringing together a new area within mobile robotics – PDA-

incorporated robot control.

A novel framework was discussed in great detail, indicating how intelligent

control processes can be distributed among physically distributed hardware

components. The framework also included how these may interact using a

hybrid communications architecture.

These contributions have been communicated through the publication in

Appendix A. The research also identified several interesting areas worthy of

further investigation.

9.5 Further Research

The work contained in this dissertation could be extended by future research

initiatives in the following ways:

• The designed framework does not include how the tasks should be

structured within each layer. Task execution and arbitration across

the control layers, and thus processing elements, could be added to the

design laid out in this work.
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• The implementation and tests performed in this work was on a single

control task that can typically be expected of an office robot. Im-

plementation on a more capable mobile platform with the addition of

more tasks on all the control layers can be done. This will provide

scope for more tests to be performed, making a more definitive case for

(or against) the use of a PDA within a mobile robot system.

• The communications protocol was designed with the popular field of

swarm robotics in mind, having the capability to support a Bluetooth

master with several slave nodes. An interesting topic for future research

would be to investigate a case with one deliberative PC and one or more

PDAs each with a number of mobile platforms associated. This would

extend the framework developed in this work to a pyramid-like layout.

9.6 Epilogue

The author trusts that this work has raised the awareness of the issues within

the domain of this discourse. It is also hoped that the possibility of using

technologies outside their field of operation, as well as improving existing

ways, have been shown. The author would like to conclude this research by

expressing the hope that this work will stimulate further work in the subject

area.
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Appendix A

Academic Paper

An academic paper based on the research contained in this dissertation was

accepted at the COMA’10 International Conference on Competitive Manu-

facturing. Details of the paper:

Ophoff, M. and Van Niekerk, T. (2010).

PDA-Bots: How Best to Use a PDA in Mobile Robotics,

COMA’10 International Conference on Competitive Manufactur-

ing, Stellenbosch, South Africa, 3–5 February 2010,

http://www.coma.org.za

169



 
 

  

International Conference on Competitive Manufacturing 

PDA-Bots: How Best to Use a PDA in Mobile Robotics 

M. Ophoff, T. I. Van Niekerk 

Department of Electrical and Mechatronic Engineering,  

Nelson Mandela Metropolitan University, South Africa 

 

Abstract 
PDAs (personal digital assistants) has recently become a popular component in mobile robots. 
This compact processing device with its touch screen, variety of built-in features, wireless 
technologies and affordability means that a PDA can perform various roles within a robotic system. 
Applications include low-cost prototype development, rapid prototyping, low-cost humanoid robots, 
robot control, robot vision systems, algorithm development, HRI (human-robot interaction), mobile 
user interfaces as well as wireless robot communication schemes. Limits on processing power, 
memory, battery life and screen size impacts the usefulness of a PDA in some applications. No 
comparison of the advantages and disadvantages of the different strategies and resulting 
architectures exist. This makes it difficult for designers to decide on the best use of a PDA within 
their mobile robot. This paper examines and compares the available mobile robot architectures. A 
thorough literature study identified robot projects using a PDA and examined how the designs 
incorporate a PDA and what purpose it fulfils within the system it forms part of. The paper 
categorizes the architectures according to the role of the PDA within the robot system. It concludes 
that using a distributed control system architecture makes optimal use of the rich feature set 
gained from including a PDA in a robot’s design and simultaneously overcomes the device’s 
inherent shortcomings. This paper describes the use of the distributed control system architecture 
in a novel way through the choice of wireless connection scheme and strategy for the distribution 
of intelligence across processing elements in a mobile office robot.  

 

Keywords 
Mobile Robotics, Personal Digital Assistant, Robot Architectures, Robot Control, Distributed 
Intelligence 

 

1 INTRODUCTION 

Mobile robotics continue to grow in popularity within 
the research and hobbyist communities. Mobile 
robotics is itself a hot research topic but they are 
also valuable research tools for overlapping fields 
such as intelligent manufacturing [1], artificial 
intelligence and human-robot interaction to name 
but a few. Competitions such as RoboCup [2] have 
also encouraged further development within the 
field.  

Mobile robots are robots that have the ability to 
move around in their environment, other than 
industrial robots which usually attach to a fixed 
surface. The task of roaming in a dynamically 
changing environment safely and accurately while 
carrying out meaningful tasks requires a mobile 
robot to have at least four basic components in its 
hardware architecture: 

1. A hardware platform, or body, that houses all 
the other robot components.  

2. A drive system that allows the robot to move 
from point A to point B. It usually consists of a 
combination of motors and either wheels, tracks 
or legs.  

3. Several actuators and sensors that enable the 
robot to act on its environment as well as gain 
information from it.  

4. A brain that interprets sensory information, 
navigates the robot within the working 
environment, controls actuator actions and 
monitors robot health. The robot’s brain is often 
one or more PEs (processing elements) and 
can combine both onboard and remote PEs. 
Popular choices for robot PEs include desktop 
PCs, laptop PCs, embedded PCs, 
microcontrollers, and LEGO RX bricks. 

Advances in technology inadvertently provide robot 
designers with an ever-expanding range of choices 
to make their robots smaller, more capable and 
cheaper to produce. One example is how the PDA 
evolved into what is today a powerful palm-sized 
processing and UI (user interface) tool. Ever 
resourceful, robotisists have used this device in 
unique ways to improve their robot designs. Making 
them more capable (intelligent), remotely 
accessible, smaller and lighter, easier to 
communicate with and more cost-effective.  

This paper looks at the different ways in which 
PDAs have become part of mobile robot 
architectures. To understand why PDAs are such a 
popular choice for developers of small, low-cost 
mobile robots Section 2 gives some of the common 
features of modern PDAs. Section 3 describes the 
five categories of PDA-bots - robots that make use 
of a PDA within its design in some way.  



 
 

  
Our research focuses on using a PDA as a parallel 
processing device that also allows maximum 
flexibility in PDA-bot design. We discuss a 
distributed control architecture to accomplish this 
goal in Section 4. Finally, Section 5 concludes the 
paper. 

 

2 PERSONAL DIGITAL ASSISTANTS 

2.1 What is a PDA? 

PDAs, also called handhelds, have been around 
since the late 1980s and have since developed into 
devices that provide users with a rich feature set 
that converges the different technologies of personal 
information manager, portable PC, mobile phone 
and wireless connectivity into a single portable unit. 

PDAs have several features that are now common 
to most devices: 

 The microprocessor is the brain of the PDA and 
coordinates all the functions according to 
programmed instructions. PDAs mostly use 
smaller, cheaper microprocessors when 
compared with desktop and laptop PCs.  

 Memory (RAM, ROM and Flash) while some 
devices have tiny MicroDrive hard drives. 

 Wireless connectivity through WLAN, Bluetooth, 
IR and GPRS/3G.  

 Several input methods that include a touch 
sensitive display, buttons and optionally a 
QWERTY keyboard. 

 Power supply.  

 Able to synchronize with a standard PC.  

 SDIO card slot or slots to add peripherals to the 
device. 

Today’s PDAs does much more than managing 
personal information such as contacts, 
appointments and to-do lists. They can also connect 
to the Internet, have a GPS receiver built-in, run 
multimedia software and have a built-in mobile 
phone [3]. Other functionality might include a built-in 
camera, an accelerometer, the ability to read 
business documents in various formats, software for 
playing music, browsing photos and, recording and 
viewing video clips.  

2.2 Why use a PDA in a Mobile Robot 
System? 

Mobile robot developers have just as many reasons 
for choosing to use a PDA within their designs as 
features that come built into these devices.  

The authors in [4] found that using a PDA gives 
them a small, lightweight robot interaction device 
that is also portable, robust and affordable. In 
contrast, single board computers used in many 
robot systems lack a display and possibilities for 
user I/O, need a power supply, wireless 
communication, housing, and cooling.  

The touch sensitive screen combined with a stylus 
allow users to interact using touch [5,6]. It also 
allows novice users to control a robot through a 
familiar environment, minimizing the need for 
training [5,7]. The PDAs UI also equip the robot with 
debugging and development advantages over 
embedded devices [8]. All of this allows for rapid 
development of multimedia applications for robots 
[9].  

The built-in wireless technologies such as Bluetooth 
and WLAN allow for remote operation “anywhere 
and any time” [10,11,7,12] and gives “seamless 
network coverage” to mobile agents and operators 
[13]. 

The authors in [9] and [14] found it to be an ideal 
device for use in cost and size limited platforms. It is 
also easy to attach to small robots through one of 
the multiple interface options available [15]. This 
leads to powerful small robots that are safer and 
cheaper when compared to larger, heavier robots 
[8]. 

The PDA allows for integrating high-level planners 
and implementation of computationally expensive 
algorithms [1]. This means that it can give simple 
robots that usually only consist of one or more 
microcontroller-based control boards the processing 
power and vision sensor capacity for use as 
autonomous robots [15,16]. 

 

3 PDA ROBOTS 

From the many existing PDA-bots it is possible to 
identify five general ways in which PDAs are used 
across the different application areas: 

1. main controller; 

2. message forwarder; 

3. teleoperation device; 

4. part of a multimodal interface; 

5. part of a distributed control scheme. 

Sections 3.1 through to 3.5 define each of the above 
categories. Table 1 summarises the various PDA-
bots in terms of hardware architecture and control 
software application.  

3.1 Main Controller 

This architecture (shown in Figure 1) uses the PDA 
mainly for its processing abilities. The PDA connects 
through a direct if not physical link to the robot base 
either through an IR or serial link. The robot base 
houses all the robot’s actuators and sensory 
equipment and has an interfacing board and 
controller that can directly connect to these parts. 
An onboard controller is a necessary part of any 
PDA-based robot system. A PDA cannot connect 
directly to the robot’s sensors and actuators and 
therefore some form of interfacing hardware is 
required. The onboard PE performs basic control 
algorithms for the actuators, or basic data 
processing algorithms for the sensors. It also 



 
 

  
manages the needed communication tasks to 
communicate with the PDA.  

Processing done on the PDA may include 
interpreting sensory information, calculating motor 
commands, image processing and managing the 
communications link with the onboard embedded 
controller. The tasks performed will directly relate to 
the level of autonomy implemented, the robot’s 
working environment and its role. 

 

Figure 1 - PDA as the main controlling device. 

3.2 Message Forwarder 

Many PDA-bots include a PDA into their designs, 
with the sole purpose of adding a wireless link 
between a remote processing device and the 
physical robot. The PDA provides this link with little 
effort, hardware changes and minimal added cost to 
the developer. 

Here a remote PE connects wirelessly to the PDA. 
The PDA in turn connects to the robot base and the 
onboard controller. The PDA relays control 
messages (usually without any form of abstraction 
or modification) from the remote PE to the onboard 
processor of the robot. Likewise, sensory 
information is sent from the onboard unit to the 
PDA, which then sends the information to the 
remote PE.  

Control intelligence is implemented either solely on 
the remote PE (a PC or another PDA) or divided 
between the remote and local, onboard processor. 
Figure 2 gives a representative architecture of this 
type of implementation.  

The PDA is generally connected through a direct, 
physical link to the interfacing circuit and PE on the 
robot platform. Exceptions are the WiMo [17] and 
NiVEK JD [18] robots which make use of a 
Bluetooth link between the PDA and robot base.  

 

Figure 2 - PDA as a message forwarding device. 

3.3 Teleoperation Device 

Teleoperation is the remote control of a robot. PDAs 
have become a popular teleoperation device 
because of its built-in and user-recognisable UI that 
includes a touch screen that’s usually in colour. A 
few buttons and QWERTY keyboard also come with 
many PDA models. The built-in wireless 
technologies enable the UI to connect wirelessly to 
the robot platform. Figure 3 shows a general 

representation of the architecture used by PDA-
teleoperated robots.  

The PDA connects wirelessly to the robot base. An 
exception is the robot in [19] where the PDA 
connects wirelessly to an intermediary PC which 
connects to the robot base. A UI on the PDA allows 
the robot operator to send control commands 
remotely to the robot. Sometimes sensor data is 
also displayed on the screen. Usually no processing 
is done on the teleoperation device (PDA) itself. All 
control intelligence is implemented on the robot 
platform’s onboard controller. 

PDA Mobile Robot

Operator
 

Figure 3 - PDA as a teleoperation device. 

3.4 Part of a Multimodal Interface 

Some robots use a PDA as part of a multimodal 
interface. This means the PDA provides the 
operator with an optional or extra interface to the 
robot. Here a UI is always present on the PDA. 
Other user interfaces may include a UI on a remote 
PC or a joystick. The operator has the choice of 
which UI or combination of UIs to use. Often the 
PDA does not connect directly to the robot’s 
onboard controller, but rather to a user interface 
module which may be running on the robot’s 
onboard controller or on a remote PC. This module 
first consolidates the user inputs through the 
multiple possible sources such as touch, gesture 
and speech before giving the command to the 
subsequent responsible module. Figure 4 shows a 
typical representation of the architecture used by 
robots in this category. 
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Figure 4 - PDA as part of a multimodal interface. 

3.5 Part of a Distributed Control System 

A distributed control system, divides the control 
software between all the available PE within the 
system. Figure 5 shows three PEs each with 
intelligent control software implemented. The tasks 



 
 

  
implemented on each PE depend on the robot 
application and the capabilities of the various PEs. 

This architecture allows multiple tasks to be done in 
parallel and thus increasing responsiveness of the 
robot. There is however a limit to the number of PEs 
that can be used in this manner, as the addition of 
each extra PE adds to the complexity and time 
needed to manage the communications and data 
between the different PEs [20]. 

PDA Mobile Robot

Remote PC
 

Figure 5 - PDA as part of a distributed control 
system. 

3.6 PDA-bot Projects 

Table 1 shows a table summarising the reviewed 
PDA-bots. It shows their use of and combination of 
different processing devices. Use of wireless 
technology and implementation of control software 
and user interfaces are also shown. Robota is the 
only robot listed that does not make use of a mobile 
platform in its design, therefore it has no Level of 
Autonomy and instead has five degrees of freedom.  

It is interesting to note how many of the projects are 
in support of HRI research. In this area some use 
the PDA to provide a novel remote control 
(teleoperation) device. Others use the PDA as a 
means of giving the user feedback from the robot 
and allowing user response and direction. And some 
use it as part of a multimodal set of I/O devices, 
where the PDA is an optional input device. Here the 
PDA needs to be wirelessly connected to the robot 
base and was a critical consideration in the 
development of our architecture described in 
Section 4. 

It is interesting to see how few projects make use of 
the PDA as part of a distributed control system. The 
FLIP robot is one of only two examples of projects 
that use distributed processing in their designs. FLIP 
makes use of three processing elements in a 
distributed fashion implementing intelligent control 
functions on all three (the RCX brick on the LEGO-
based platform, the PDA itself as well as on the 
remote PC). The authors’ reason for imposing this 
distribution was not so much a conscious effort but 
forced for two reasons. First the LEGO Mindstorms 
RCX brick is unsuitable to carry out multi-robot 
systems research, with severe limits on both 
memory and processing power. Secondly, the 
infrared port of the RCX brick only allows line of 
sight communication between robots restraining the 
possibility of using cooperative planning. Adding the 
PDA to their LEGO robot increased the memory and 
processing power of their platform as well as 

providing WLAN for long-range, out of sight, 
communications. 

The Caddie Paradigm project does not concern 
multi-robot systems, but rather teleoperation. It may 
be that they too implemented some intelligent 
processing on the PDA due to the inherent 
limitations on the LEGO RCX brick that they also 
chose to use on their robot platform. 

Other factors limiting the usefulness of the PDA in 
its chosen capacity within projects include the 
inherent latency between the time sensing the 
command via a PDA interface and the robot carrying 
out the command. This means operators need 
special training to cope with the delays [7]. 

The PDA screen has a low contrast when in power 
saving mode making it difficult to read the object on 
the screen without first activating the screen again 
by tapping somewhere on the screen [4, 13]. 

Projects that have decided to use the IR port of the 
PDA were necessitated to write PDA-specific IrDA 
handlers [1]. 

The limited resources (memory, processing power, 
processing speed) of the PDA when compared with 
standard PCs forced the authors in [9] to implement 
only simple vision and speech recognition 
algorithms and those in [8] to develop optimized 
algorithms for use on the PDA. 

 

4 DEFINING AN OPTIMUM ARCHITECTURE 

4.1 Parallelism through Abstraction 

Implementing all intelligence on a single processing 
unit such as a PDA, limits the functionality of the 
overall system. This puts restraints on navigation 
and planning capabilities, due to memory and 
processing limits, as has also been noted by many 
of the developers in past projects. Distributing the 
required processing of a mobile robot across 
multiple PEs would increase overall throughput, and 
using multiple processors provides the robot the 
opportunity to take advantage of parallelism for 
improved throughput [21]. Few projects have made 
use of a distributed control architecture.  

Parallelism is the process of doing multiple tasks 
simultaneously. The authors in [20] shows that there 
is no robot architecture that is perfectly parallel with 
designers choosing single areas to implement in 
parallel. They distinguish between eight ways in 
which parallel processing can be implemented 
within robotics. One such way is parallelism on the 
abstraction level. The control architecture of robots 
is often divided into levels according to the degree 
of abstraction of processed data and response time. 
The layers, performing tasks which have different 
response times, are considered to work 
simultaneously and semi-independent from each 
other, and can be implemented on different PEs.   



 
 

  
Figure 6 show a typical representation of the hybrid 
architecture which usually has three layers – one 
reactive and two deliberative with data presented 
more abstractly to each following layer [22]. This 
architecture promotes performing efficient low-level 
control and connections with high-level reasoning. 
Many architectures use the hybrid theory and 
although defining the layered structure varies and 
the interlayer mechanisms differ, the basic role of 
each layer is similar. The reactive layer performs 
hard real-time tasks and interacts directly with the 
sensors and actuators of the robot. It is also 
responsible for the physical movement of the robot. 
The middle layer (often called the sequencer) does 
soft real-time tactical tasks such as local navigation. 
The deliberative layer does the most processing 
intensive and slowest tasks. Tasks done in this layer 
may include strategic and global planning or 
navigation. Here the robot can reflect about its 
interaction with its environment and make its own 
models and plans based on what it learnt from 
information received. 
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Figure 6 - Traditional hybrid control architecture. 

4.2 Hardware Implementation 

Considering the different uses robot projects have 
for the PDA we believe that the hardware layout 
shown in Figure 7 will be the most flexible and 
computationally efficient. Here the PDA connects to 
an onboard controller through a Bluetooth link and 
to a remote PC through WLAN. Except for the most 
basic models, both these wireless technologies are 
available on most modern PDAs. This also 
overcomes the disadvantages of using IR. The 
wireless connection with the onboard controller 
provides the needed flexibility to allow implementing 
a UI on the PDA. The Bluetooth provides several 
advantages over WLAN for this connection including 
1) less overhead and easier to implement on 
devices such as microcontrollers that commonly act 
as the onboard controllers on small mobile robots 
and 2) uses less power – an important consideration 
for a battery operated device such as a PDA.  

We consider the operating distance of Bluetooth 
sufficient for remote teleoperation and monitoring of 
the robot. The WLAN link between the PDA and 
remote PC provides a longer range of 
communication as well as faster up and download 
speed with respect to Bluetooth that is necessary 
when working with, for example, video data.  
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Figure 7 - Distributed control and hardware 
architecture. 

4.3 Software Implementation 

The control software is implemented according to 
the theory of abstraction as well as the layered 
architecture of the popular hybrid control system 
architecture. Figure 7 shows the three PEs (the 
mobile robot with its onboard controller, a PDA and 
a PC) and how the layered architecture in Figure 6 
is implemented in a wirelessly distributed fashion.  

The onboard controller is the direct interface 
between the various actuators and sensors on the 
mobile platform. It is also here that time critical tasks 
can best be implemented – communicating with 
higher level PEs necessitating additional time delays 
before action can be taken. The behaviour based 
layer and its related functions are implemented on 
the onboard controller. The local planning and 
navigation is done by the wirelessly connected PDA. 
Global planning, which can tolerate the greatest 
response delays, is done by a remote PC. The 
remote PC also does all tasks that require fast 
processing and large amounts of memory.   

  

5 CONCLUSIONS 

The PDA’s processing capability is underutilised 
when it is used to only forwards control messages 
from the main (often remote) control station to the 
onboard platform controller. Often these messages 
are motor specific commands for the individual 
motors and servos on the robot base, increasing the 
latency between sending a command and its 
execution. The PDA is also not the ideal device to 
fulfil heavy processing demands, such as image 
processing requires. This leads to not implementing 
complete systems because of the lack of resources, 
or settling for a less desirable output that can 
successfully be implemented on the PDA. 
Incorporating a wirelessly connected, remote PC is 
common to many projects, but with many only using 



 
 

  

 

Table 1 - Summary of PDA-bots. 

the PC to give goal directives or motor commands. 
Some make use of a remote PC to perform 
debugging and logging of important parameters, 
while others implement a UI on the PC. Few use the 
PC’s processing power, speed and memory, 
implementing all the control software either on the 
onboard controller or PDA. 

Our architecture attempts to maximise use of all the 
PDA’s built-in abilities, including user interface 
strengths and processing capacity. A way in which 
control tasks can logically be distributed across 
three PEs is shown using the typical three layer 
hybrid control architecture and the theory of data 
abstraction. This allows for the most time critical 
tasks to be done by the onboard controller and the 
least time critical and most processing and memory 
intensive tasks to be done by a remotely connected 
PC.  
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Appendix B

PIC18F4620 Microcontroller

Source Code

/*****************************************************************************1

* Code for PIC18F4620-based mobile robot platform.2

* Author: M Ophoff3

* Date: 20104

****************************************************************************/5

#include <18F4620.h>6

7

#device HIGH_INTS=true8

#device adc=89

#fuses HS,NOPROTECT,NOWDT,BROWNOUT,PUT,NOLVP10

#use delay(clock=20000000)11

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)12

13

#priority CCP2, TIMER1, TIMER014

15

#byte PIR1 = 0xF9E16

#byte T3CON = 0xFB117

#byte T0CON = 0xFD518

#bit TMR1IF = PIR1.019

20

#include <crc.c>21

22

/* Public interface */23

24

/* Initialisation and main*/25

void main(void);26

void Init(void);27

void InitPins(void);28

void InitTimers(void);29

void InitAnalog(void);30

void InitInts(void);31

32

/* Serial RX */33

void SerialReceiveISR(void);34

char BufferedGetc(void);35

int ReceivePacket(byte *packet_ptr, int *length_ptr);36
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int ValidDataPacket(byte *packet_ptr, int packet_length);37

void SetData(byte function_param, byte *packet_ptr);38

39

/* Serial TX */40

void SerialTransmitISR(void);41

void BufferedPutc(char c);42

void CollectData(byte function_param, byte *data_ptr, int *data_length_ptr);43

void BuildPacket(byte receiver, byte func_param, int1 ack, int data_length,44

byte *packet_data_ptr, byte *packet_length_ptr, byte *packet_ptr);45

void SendPacket(int packet_length, byte *packet_ptr);46

47

/* Hash */48

void InterpretHashCode(int16 hashing_value);49

unsigned long DJBHash(char* str, unsigned int len);50

51

/* Timers */52

void TIMER0Isr(void);53

void TIMER3Isr(void);54

void TIMER1Isr(void);55

56

/* Drive motor */57

void StopDriveMotor(void);58

void GoForward(void);59

void GoBackward(void);60

void BrakeDriveMotor(void);61

62

/* Encoder */63

void EncoderISR(void);64

void CCP2Isr(void);65

66

/* Robot */67

void RobotAct(void);68

void SetServo(signed int angle);69

void DriveMotor(int1 direction, int pwmDuty);70

71

/* Constants */72

/* Operating modes */73

#define AUTONOMOUS 174

#define TELEOPERATED 275

#define OPERATING_MODE AUTONOMOUS //set mode of operation here76

77

/* serial tx/rx */78

#define BUFFER_SIZE 90 //circular buffer to hold 3 consecutive incoming messages79

#define RX_PACKET_SIZE 32 //a single message can never be more than 32 bytes80

#define TX_DATA_SIZE 20 //no more than 20 bytes in the payload of outgoing message81

#define TX_BUFFER_SIZE 6482

#define CHAR_DELAY 500 //time in milliseconds allowed to receive a char83

#define MAX_UNACKNOWLEDGED_PACKETS 584

85

/* packet structure */86

#define START_BYTE 0x2a //’*’87

#define ROBOT_ADDRESS 0x04 //combining robot and send address gives 0x24 - ’$’88

#define SEND_ADDRESS 0x02 //remote (pc’s) address89

#define CR 0x0D //’\r’90

#define LF 0x0A //’\n’91

#define BT_START_BYTE1 0x41 //’A’92
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#define BT_START_BYTE2 0x54 //’T’93

#define BT_CARRIER_LOSS 0x23 //’#’94

#define NUM_HEADER_BYTES 4 //Start, Addresses, Function Parameters and Data Length bytes95

#define NUM_FOOTER_BYTES 4 //16 bit CRC, 2 stop bytes96

97

/* packet type and validity */98

#define INVALID_PACKET 099

#define CONTROL_PACKET 1100

#define BT_MODULE_PACKET 2101

#define PACKET_TIMED_OUT 5102

#define NO_IR_SENSORS 6103

#define CLEAN_PACKET 1104

#define INCORRECT_LENGTH 2105

#define CRC_ERROR 3106

#define WRONG_ADDRESS 4107

108

/* Function Parameters’ bit masks */109

#define BATTERY_MASK 0x01110

#define CONTACT_MASK 0x02111

#define IR_SENSOR_MASK 0x04112

#define SPEED_MASK 0x08113

#define ANGLE_MASK 0x10114

#define DISTANCE_TRAVELLED_MASK 0x20115

#define ACKNOWLEDGE_MASK 0x40116

#define DISTANCE_TO_TRAVEL_MASK 0x01117

#define ACKNOWLEDGE_BIT 6118

119

/* drive motor */120

#define FORWARD TRUE121

#define BACKWARD FALSE122

#define PR2_VALUE 255123

#define MOTOR_BW_ENABLE PIN_C3124

#define MOTOR_FW_ENABLE PIN_C4125

#define SLOW_SPEED 153 //60% duty cycle126

#define MED_SPEED 179 //70% duty cycle127

#define TOP_SPEED 204 //80% duty cycle128

#define STOP_TIME 1500 //time in ms robot takes to come to rest (complete stop)129

130

/* data available */131

#define bkbhit (rx_buffer_next_in != rx_buffer_next_out) //data available132

133

/* Contact Sensors */134

#define BACK_LEFT 4 //connections to port B of the four touch sensors135

#define BACK_RIGHT 5136

#define FRONT_LEFT 6137

#define FRONT_RIGHT 7138

139

/* Servo */140

#define SERVO PIN_C0141

#define CENTRE 7400142

#define MAX_LEFT 8570 //Centre +1070 calibrate here143

#define MAX_RIGHT 6330 //Centre -1070 calibrate here144

#define MAX_ANGLE_LEFT 19145

#define MAX_ANGLE_RIGHT 19146

147

/* Encoder */148
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#define WHEEL_CIRCUMFERENCE 2*(3.14*WHEEL_RADIUS)149

#define WHEEL_RADIUS 70150

#define ENCODER_RESOLUTION 1151

#define DISTANCE_PER_TICK WHEEL_CIRCUMFERENCE/ENCODER_RESOLUTION152

#define BytePtr(var, offset) (char *)((char *)&var + offset)153

154

/* look-up tables */155

const int16 servo_table [] = { 0, 57, 114, 171, 228, 285, 342, 399, 456, 513, 570,156

627, 684, 741, 798, 855, 912, 969, 1026, 1083, 1140}; //servoTable157

158

const int16 duty_table [] = { 0, 3, 6, 8, 11, 13, 16, 18,159

21, 23, 26, 29, 31, 34, 36, 39,160

41, 44, 46, 49, 51, 54, 57, 59,161

62, 64, 67, 69, 72, 74, 77, 80,162

82, 85, 87, 90, 92, 95, 97,100,163

102,105,108,110,113,115,118,120,164

123,125,128,131,133,136,138,141,165

143,146,148,151,153,156,159,161,166

164,166,169,171,174,176,179,182,167

184,187,189,192,194,197,199,202,168

204,207,210,212,215,217,220,222,169

225,227,230,233,235,238,240,243,170

245,248,250,253,255}; //dutyTable171

172

const byte ad_channels_table [] = {0,1,2,3,4,5,6,7,255}; //adChannelsTable173

174

const int8 ir_range_table [] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,175

0, 0, 0, 80, 76, 72, 68, 65, 62, 59, 57, 54, 52, 50, 48, 47,176

45, 44, 42, 41, 40, 38, 37, 36, 35, 34, 33, 33, 32, 31, 30, 30,177

29, 28, 28, 27, 26, 26, 25, 25, 24, 24, 23, 23, 23, 22, 22, 21,178

21, 21, 20, 20, 20, 19, 19, 19, 18, 18, 18, 18, 17, 17, 17, 17,179

16, 16, 16, 16, 16, 15, 15, 15, 15, 15, 14, 14, 14, 14, 14, 14,180

13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, 11,181

11, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10};182

//irRangeTable183

184

/* global variables */185

/* Serial RX */186

byte rx_buffer[BUFFER_SIZE]; //circular buffer to hold incoming data bytes187

int rx_buffer_next_in = 0; //where next to store byte of data188

int rx_buffer_next_out = 0; //where next to fetch byte of data189

int1 remote_comms_link = FALSE; //TRUE if communication is established with PDA190

int1 timed_out = FALSE; //ensure system does not get stuck waiting for next byte191

int1 acknowledge = TRUE;192

193

/* Serial TX */194

byte tx_buffer[TX_BUFFER_SIZE]; //circular buffer to hold outgoing data bytes195

byte tx_buffer_next_in = 0; //where next to store next byte of data in txBuffer196

byte tx_buffer_next_out = 0; //where next to fetch a data byte from txBuffer197

int tx_unacknowledge_count = 0; //keep track of how many consecutive packets198

//were not received correctly199

200

/* Contact Sensors */201

int timer0_count = 0; //debounce time counter202

byte contact_information = 0b00000000;203

int1 stuck = FALSE;204
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205

/* Servo */206

int16 servo_val;207

signed int current_angle = 0;208

signed int angle;209

210

/* Drive motor */211

int speed;212

int1 direction = FORWARD;213

int1 current_direction = FORWARD;214

int1 stopped = TRUE;215

216

/* IR sensors */217

int8 a2d_readings[8];218

219

/* Encoder */220

int8 timer1_rollover_count = 0;221

int32 isr_CCP_delta;222

int1 capture_flag = FALSE;223

int16 current_RPM;224

int16 distance_travelled = 0;225

int16 distance_to_travel = 0;226

227

/*****************************************************************************228

$ Function: InitPins229

$ Synopsis: Initializes the PIC18F4620’s port pins as inputs or outputs230

****************************************************************************/231

void InitPins(void)232

{233

set_tris_a(0b11111111); /* Port A is all analogue inputs. */234

set_tris_b(0b11111111); /* Port B is all inputs */235

set_tris_c(0b10000000); /* Pins 0-6 are outputs. C7 (RX) is input. */236

set_tris_d(0b00000000); /* Port D is all outputs. */237

set_tris_e(0b00000111); /* Port E is analogue inputs. */238

} /* init_pins */239

240

/*****************************************************************************241

$ Function: InitAnalog242

$ Synopsis: Initializes the PIC18F4620’s analogue port and sampling clock243

****************************************************************************/244

void InitAnalog(void)245

{246

setup_adc_ports (AN0_TO_AN7|VSS_VDD);247

setup_adc(ADC_CLOCK_DIV_32);248

}/* init_analogue */249

250

/*****************************************************************************251

$ Function: InitTimers252

$ Synopsis: Initialises TIMER 0 1 and 2, CCP1 and CCP2 modules253

****************************************************************************/254

void InitTimers(void)255

{256

set_timer0(63036); //set up timer 0 to interrupt every 1ms257

setup_counters(RTCC_INTERNAL,RTCC_DIV_2);258

259

setup_ccp1(CCP_PWM);260
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setup_timer_2(T2_DIV_BY_1, PR2_VALUE, 1);261

262

setup_ccp2(CCP_CAPTURE_RE);263

setup_timer_1(T1_INTERNAL|T1_DIV_BY_8); //period of timer 1 = 1.6us per tick264

set_timer1(0);265

}/* init_timers */266

267

/*****************************************************************************268

$ Function: InitInts269

$ Synopsis: Initialises the various interrupts used as well as the global270

interrupt enable271

****************************************************************************/272

void InitInts(void)273

{274

enable_interrupts(int_rda); //serial receive interrupt275

enable_interrupts(INT_RB); //contact sensor interrupt276

enable_interrupts(INT_TIMER0); //servo and contact sensor time base277

278

clear_interrupt(INT_TIMER1); //ensure interrupt flag bit is cleared279

clear_interrupt(INT_CCP2); //ensure interrupt flag bit is cleared280

enable_interrupts(INT_CCP2);281

enable_interrupts(INT_TIMER1); //provide time base for speed related calculations282

283

enable_interrupts(GLOBAL);284

}/* init_ints */285

286

/*****************************************************************************287

$ Function: Init288

$ Synopsis: Calls the initialisation functions amd initialises the steering289

motor position290

$ Interface291

return:292

params:293

global: servo_val294

****************************************************************************/295

void Init(void)296

{297

servo_val = CENTRE;298

InitPins();299

InitAnalog();300

InitTimers();301

InitInts();302

} /* init */303

304

/*****************************************************************************305

$ Function: DJBHash306

$ Synopsis: Calculates hash of the input using the DJB hashing algorithm307

$ Interface308

return: hash - the calculated hash value309

params: str - the input to calculate hash on310

len - the length of the input in bytes311

global:312

****************************************************************************/313

unsigned long DJBHash(char* str, unsigned int len)314

{315

unsigned long hash = 5381;316
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unsigned int i = 0;317

318

for(i = 0; i < len; str++, i++)319

{320

hash = ((hash << 5) + hash) + (*str);321

}322

return hash;323

}/* DJBHash */324

325

/*****************************************************************************326

$ Function: InterpretHashCode327

$ Synopsis: Determine the string value from the calculated hash. Use "hash table" to328

look up appropriate action. Will set whether the communications link is up or down.329

$ Interface330

return:331

params: hashing_value - the calculated hash value to compare332

global: remote_comms_link333

****************************************************************************/334

void InterpretHashCode(int16 hashing_value)335

{336

switch(hashing_value)337

{338

case 13162: //"###NO CARRIER"339

remote_comms_link = FALSE;340

break;341

case 53632: //"AT-ZV Baudrate Changed"342

break;343

case 32306: //"AT-ZV BDAddress 00043e240895"344

break;345

case 941: //"AT-ZV BondFail"346

break;347

case 45791: //"AT-ZV -BypassMode-"348

remote_comms_link = TRUE;349

break;350

case 55724: //"AT-ZV -CommandMode-"351

remote_comms_link = FALSE;352

break;353

case 13302: //"AT-ZV ConnectionDown"354

remote_comms_link = FALSE;355

break;356

case 57123: //"AT-ZV ConnectionUp"357

remote_comms_link = TRUE;358

break;359

case 32342: //"AT-ZV ResetPending"360

remote_comms_link = FALSE;361

break;362

case 17611: //"AT-ZV SPPConnectionClosed"363

remote_comms_link = FALSE;364

break;365

default: //"Unknown BT responce"366

break;367

}//end switch()368

}/* interpret_hash_code */369

370

/*****************************************************************************371

$ Function: SerialTransmitISR372
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$ Synopsis: Serial transmit interrupt routine. Transmits character from transmit373

buffer.374

****************************************************************************/375

#int_tbe376

void SerialTransmitISR(void)377

{378

if(tx_buffer_next_in != tx_buffer_next_out)379

{380

putc(tx_buffer[tx_buffer_next_out]);381

tx_buffer_next_out = (tx_buffer_next_out+1) % TX_BUFFER_SIZE;382

}383

else384

disable_interrupts(int_tbe);385

}/* serial_transmit_isr */386

387

/*****************************************************************************388

$ Function: BufferedPutc389

$ Synopsis: Places 1 character at a time into the transmit buffer.390

$ Interface391

return:392

params: c - character to place in buffer393

global:394

****************************************************************************/395

void BufferedPutc(char c)396

{397

int1 restart;398

int next_in;399

400

restart = tx_buffer_next_in == tx_buffer_next_out;401

tx_buffer[tx_buffer_next_in] = c;402

next_in=(tx_buffer_next_in+1) % TX_BUFFER_SIZE;403

404

while(next_in == tx_buffer_next_out);405

tx_buffer_next_in = next_in;406

407

if(restart)408

enable_interrupts(int_tbe);409

}/* BufferedPutc*/410

411

412

/*****************************************************************************413

$ Function: SetData414

$ Synopsis: Updates the global control variables with the data received in the415

control packet.416

$ Interface417

return:418

params: function_param - bitmap indicating data in payload419

packet_ptr - reference to control packet data420

global:421

422

Structure of function_param byte for setting data:423

+---+---+---+---+---+---+---+---+424

: 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 :425

+---+---+---+---+---+---+---+---+426

where:427

0 - DistanceToTravel428
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1 - RFU429

2 - RFU430

3 - Speed431

4 - Angle432

5 - DistanceTravelled433

6 - acknowledge (1-acknowledge previous 0-not acknowledged)434

7 - RFU (future use, 0 - possibly for a follow bit to indicate another435

function parameters byte to follow)436

and 1 - include, 0 - not included437

****************************************************************************/438

void SetData(byte function_param, byte *packet_ptr)439

{440

int i = 0;441

signed int temp;442

int data_start_pos = NUM_HEADER_BYTES; //position where first data byte is located443

444

i = data_start_pos;445

446

if((function_param & DISTANCE_TRAVELLED_MASK) != 0)447

{448

distance_travelled = (packet_ptr[i++]) << 8; //removed casting to (int16) here449

distance_travelled += packet_ptr[i++];450

}451

452

if((function_param & ANGLE_MASK) != 0)453

{454

angle = packet_ptr[i++];455

}456

457

if((function_param & SPEED_MASK) != 0)458

{459

temp = packet_ptr[i++];460

if (temp<0)461

{462

speed = (int)(-temp);463

direction = BACKWARD;464

}465

else466

{467

speed = temp;468

direction = FORWARD;469

}470

}471

472

if((function_param & DISTANCE_TO_TRAVEL_MASK) != 0)473

{474

distance_to_travel = (packet_ptr[i++]) << 8; //removed casting to (int16) here475

distance_to_travel += packet_ptr[i++];476

}477

}478

/*****************************************************************************479

$ Function: CollectData480

$ Synopsis: Constructs the needed payload in response to a "Request command".481

$ Interface482

return:483

params: function_param - indicates what data should be included in payload484
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data_ptr - refence to packet payload to which to add data485

data_length_ptr - reference to update with the resulting payload length486

global:487

488

Structure of function_param byte for getting data:489

+---+---+---+---+---+---+---+---+490

: 7 : 6 : 5 : 4 : 3 : 2 : 1 : 0 :491

+---+---+---+---+---+---+---+---+492

where:493

0 - battery voltages494

1 - contact sensors495

2 - IR sensors496

3 - Speed and direction497

4 - Angle498

5 - Distance499

6 - acknowledge (1-acknowledge previous 0-not acknowledged)500

7 - RFU (future use, 0 - possibly for a follow bit to indicate another function501

parameters byte to follow)502

and 1 - include, 0 - not included503

****************************************************************************/504

void CollectData(byte function_param, byte *data_ptr, int *data_length_ptr)505

{506

int i = 0;507

int ir_chan = 0;508

int16 extern_CCP_delta;509

int16 frequency;510

int16 RPM_plus_Direction;511

512

if((function_param & DISTANCE_TRAVELLED_MASK)!=0)513

{514

data_ptr[i++] = distance_travelled>>8;515

data_ptr[i++] = distance_travelled;516

}517

518

if((function_param & ANGLE_MASK)!=0)519

{520

data_ptr[i++] = current_angle;521

}522

523

if((function_param & SPEED_MASK)!=0)524

{525

if(stopped || stuck)526

{527

current_RPM = 0;528

RPM_plus_direction = 0;529

}530

else531

{532

disable_interrupts(GLOBAL);533

extern_CCP_delta = isr_CCP_delta;534

enable_interrupts(GLOBAL);535

frequency = ((625000L + (int32)(extern_CCP_delta >> 1))/ (float)extern_CCP_delta);536

current_RPM = (int16)(frequency * 60);537

538

if(direction==FORWARD)539

{540
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RPM_plus_direction = current_RPM;541

}542

else543

{544

RPM_plus_direction = -current_RPM;545

}546

}547

548

data_ptr[i++] = RPM_plus_direction >> 8;549

data_ptr[i++] = RPM_plus_direction;550

}551

552

if((function_Param & IR_SENSOR_MASK) != 0)553

{554

for (ir_chan = 0; ir_chan < (NO_IR_SENSORS); ir_chan++)555

{556

if(a2d_readings[ir_chan] > 127)557

data_ptr[i++] = 10; //the closest accurate value possible558

else559

data_ptr[i++] = ir_range_table[a2d_readings[ir_chan]];560

}561

}562

563

if((function_param & CONTACT_MASK)!=0)564

data_ptr[i++] = contact_information;565

566

if((function_param & BATTERY_MASK)!=0)567

{568

data_ptr[i++] = a2d_readings[NO_IR_SENSORS];569

data_ptr[i++] = a2d_readings[NO_IR_SENSORS + 1];570

}571

572

*data_length_ptr = i;573

}/* CollectData */574

575

/*****************************************************************************576

$ Function: BuildPacket577

$ Synopsis: Constructs a packet according to the communications protocol578

$ Interface579

return:580

params: receiver - address of destination node581

func_param - data contained in the payload of packet582

ack - whether previous command was understood583

data_length - length of the payload584

packet_data_ptr - refernce to payload start585

packet_length_ptr - refernce to total lenth of packet586

packet_ptr - refernce to start of packet587

global:588

****************************************************************************/589

void BuildPacket(byte receiver, byte func_param, int1 ack, int data_length,590

byte *packet_data_ptr, int*packet_length_ptr, byte *packet_ptr)591

{592

int i = 0;593

int16 CRC;594

int8 send_receive;595

int n = 0;596
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byte function_parameters;597

598

function_parameters = func_param;599

600

packet_ptr[i++] = START_BYTE;601

//build send/receive address into a single byte602

send_receive = (receiver << 4)| ROBOT_ADDRESS;603

packet_ptr[i++] = send_receive;604

605

if(ack == TRUE)606

bit_set(function_parameters, ACKNOWLEDGE_BIT);607

else608

bit_clear(function_parameters, ACKNOWLEDGE_BIT);609

610

packet_ptr[i++] = function_parameters;611

packet_ptr[i++] = data_length;612

613

for(n = 0; n < data_length; n++)614

packet_ptr[i++] = packet_data_ptr[n];615

//calculate CRC616

CRC = generate_16bit_crc(packet_ptr, (data_length + NUM_HEADER_BYTES), CRC_CCITT);617

618

packet_ptr[i++] = CRC >> 8;619

packet_ptr[i++] = CRC;620

621

packet_ptr[i++] = CR; //stop chars622

packet_ptr[i++] = LF;623

624

*packet_length_ptr = i;625

}/* BuildPacket */626

627

/*****************************************************************************628

$ Function: SendPacket629

$ Synopsis: Buffers outgoing data by placing each character in turn into the630

transmit buffer631

$ Interface632

return:633

params: packet_length - length of data that needs to be sent634

packet_ptr - reference to data to be sent635

global:636

****************************************************************************/637

void SendPacket(int packet_length, byte *packet_ptr)638

{639

int i;640

641

for(i = 0; i < packet_length; i++) //send packet data642

{643

BufferedPutc(packet_ptr[i]);644

}645

}/* SendPacket */646

647

/*****************************************************************************648

$ Function: SerialReceiveISR649

$ Synopsis: Serial interrupt routine. Places incoming characters into a receive650

buffer651

****************************************************************************/652
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#int_rda653

void SerialReceiveISR(void)654

{655

char char_in;656

657

char_in = getc();658

rx_buffer[rx_buffer_next_in] = char_in; //get a byte and put it in buffer659

660

if(++rx_buffer_next_in == BUFFER_SIZE) //increment counter661

rx_buffer_next_in = 0; //wrap buffer index662

}/* SerialReceiveISR */663

664

/*****************************************************************************665

$ Function: BufferedGetc666

$ Synopsis: Fetches a byte from the receive buffer.667

$ Interface668

return: char_out - a single byte from the receive buffer669

params:670

global:671

****************************************************************************/672

char BufferedGetc(void)673

{674

char char_out;675

unsigned int16 timeout = 0;676

677

// wait until data available or timeout occurs678

while(!bkbhit && (++timeout < (CHAR_DELAY * 100)))679

delay_us(10); //max time before time-out occurs = 10us*100 = 1ms680

681

if(bkbhit)682

{683

char_out = rx_buffer[rx_buffer_next_out]; // get the byte684

685

if(++rx_buffer_next_out == BUFFER_SIZE) // increment counter686

rx_buffer_next_out = 0;687

688

return char_out;689

}690

else691

{692

timed_out = TRUE;693

return 0;694

}695

}/* BufferedGetc */696

697

/*****************************************************************************698

$ Function: ReceivePacket699

$ Synopsis: Retrieves a packet from the receive buffer.700

$ Interface701

return: packet_type - indicates origin of packet, if its valid or if a timeout702

occurred while waiting for rest of packet703

params: packet_ptr - reference to buffer into which to place received data704

length_ptr - reference of calculated packet length705

global:706

707

Structure of Packet Protocol:708
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+-------+-------------------------+---------------+--------+------+-----+-----+709

: Start : Address To/Address From : Function Type : Length : Data : CRC : Stop:710

+-------+-------------------------+---------------+--------+------+-----+-----+711

Start: 1 byte Indicates start of packet712

Address To/Address From: 1 byte UN - Address To/ LN - Address From713

Function Type: 1 byte Used to identify type of data sent714

Length: 1 byte Number of bytes in Data field715

Data: 0 to N Data being sent716

CRC: 2 bytes 16 Bit CRC717

Stop: 2 bytes <CR><LF> Indicates end of packet718

****************************************************************************/719

720

int ReceivePacket(byte *packet_ptr, int *length_ptr)721

{722

int packet_type = 0;723

int i = 0;724

char char_rcved = 0x00;725

char previous_char_rcved = 0x00;726

char next_char_rcved = 0x00;727

int1 complete_packet = FALSE;728

729

char_rcved = BufferedGetc(); //get byte from buffer730

731

//test for a valid start char732

while ((char_rcved != START_BYTE) && (char_rcved != BT_START_BYTE1) &&733

(char_rcved != BT_CARRIER_LOSS))734

{735

char_rcved = BufferedGetc();736

737

if((char_rcved == LF) && (previous_char_rcved == CR))738

{739

packet_type = INVALID_PACKET; //No valid start of packet could be found740

return packet_type;741

}742

743

previous_char_rcved = char_rcved;744

}//end while(! a valid start char)745

746

//test if it’s a packet from the BT Module747

if((char_rcved == BT_START_BYTE1) || (char_rcved == BT_CARRIER_LOSS))748

{749

packet_type = BT_MODULE_PACKET; //Bluetooth packet - either AT command or carrier loss750

}751

752

if((char_rcved==START_BYTE))753

{754

packet_type = CONTROL_PACKET;755

}756

757

while(!complete_packet) //Search for end of packet or timeOut758

{759

packet_ptr[i++] = char_rcved;760

761

if((char_rcved == LF) && (previous_char_rcved == CR))762

{763

complete_packet = TRUE;764
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*length_ptr = i;765

break;766

}767

768

next_char_rcved = BufferedGetc(); //look ahead byte initialise769

770

if(!timed_out)771

{772

if((previous_char_rcved == BT_CARRIER_LOSS) && (char_rcved == BT_CARRIER_LOSS)773

&& (next_char_rcved == BT_CARRIER_LOSS))774

{775

//a valid but un-finished packet will be lost due to a comms break776

remote_comms_link = FALSE;777

//drop half-finished packet778

i=0;779

//2 chars should not be dropped - place back in buffer780

packet_ptr[i++] = BT_CARRIER_LOSS;781

packet_ptr[i++] = BT_CARRIER_LOSS;782

packet_type = BT_MODULE_PACKET; //type changes to BT packet type783

}784

785

previous_char_rcved = char_rcved;786

char_rcved = next_char_rcved;787

}788

else789

{790

packet_type = PACKET_TIMED_OUT;791

break;792

}793

}//end while(!completePacket)794

795

return packet_type;796

}/* ReceivePacket */797

798

/*****************************************************************************799

$ Function: ValidDataPacket800

$ Synopsis: Validates packet received by checking address, crc and payload length.801

$ Interface802

return: error code depending on validation check results803

NOTE: will only return first error condition encountered804

params: packet_ptr - reference to received packet805

packet_length - the received packet’s length806

global:807

****************************************************************************/808

int ValidDataPacket(byte *packet_ptr, int packet_length)809

{810

int data_length;811

int16 CRC;812

813

if(((packet_ptr[1] & 0xF0) >> 4) != ROBOT_ADDRESS) //packet meant for this robot?814

return WRONG_ADDRESS;815

816

data_length = packet_ptr[3];817

818

//check actual length vs length given in packet819

if(data_length != (packet_length - NUM_HEADER_BYTES - NUM_FOOTER_BYTES))820
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return INCORRECT_LENGTH;821

822

CRC = (int16)(packet_ptr[data_length + NUM_HEADER_BYTES]) << 8; //calculate CRC823

CRC += packet_ptr[data_length + NUM_HEADER_BYTES + 1];824

825

//compare with CRC given in packet826

if(CRC != generate_16bit_crc(packet_ptr, packet_length - NUM_FOOTER_BYTES, CRC_CCITT))827

return CRC_ERROR;828

829

return CLEAN_PACKET; //passed all checks - packet is ok!830

}/* valid_data_packet */831

832

/*****************************************************************************833

$ Function: TIMER0Isr834

$ Synopsis: TIMER 0 interrupt service routine. Provides period for steering motor.835

Times the A2D process. Provides debounce time for touch sensors836

****************************************************************************/837

#int_TIMER0838

void TIMER0Isr()839

{840

static int8 state = 0; //initialise state for analogue reading841

static int8 ad_channel = 0; //set to first analogue channel842

static int8 ms_count = 0; //keep track of when to update the servo843

static int8 min = 0; //keeps track of the smallest reading (possible low spike)844

static int8 max = 0; //keeps track of the highest reading (possible high spike)845

static int16 sum = 0; //running total of the samples taken (10 samples per channel)846

static int8 samples_taken = 0;847

byte a2d_value = 0;848

byte final_val = 0;849

850

set_timer0(63036); //create 1ms timebase851

ms_count++; //increment milli-second counter852

853

if (ms_count == 20) //only update servo every 20ms (20 * 1ms = 20ms)854

{855

setup_timer_3(T3_INTERNAL|T3_DIV_BY_1); //use timer-based pwm for servo control856

set_timer3(65536 - servo_val); //timer3 controls length of HIGH-time of servo pulse857

enable_interrupts(INT_TIMER3);858

output_high(SERVO);859

860

timer0_count++; //used as debounce time for the contact sensors861

ms_count=0; //re-init ms counter for next servo update862

}863

864

//used to get a2d values and apply filtering without waiting for a2d capture to finish865

switch(state)866

{867

case 0: //first time period (tick #1): select the a2d channel868

//available channels saved in a lookup table that also provide scanning order869

set_adc_channel(ad_channels_table[ad_channel]);870

state++;871

break;872

case 1: // tick #2: start the a2d conversion process873

read_adc(ADC_START_ONLY);874

state++;875

break;876



193

case 2: // tick #3: read the a2d channel and initialise the filtering variables877

a2d_value = read_ADC(ADC_READ_ONLY); //init878

sum = a2d_value; //initialise filtering variables with first reading879

min = a2d_value;880

max = a2d_value;881

samples_taken++; //keep track of samples accumulated882

state++;883

read_adc(ADC_START_ONLY); //start next conversion884

break;885

case 3:886

if(samples_taken<10) //filter and averaging over 10samples887

{888

a2d_value = read_ADC(ADC_READ_ONLY); //get next sample889

sum = sum + a2d_value; //keep running total of the samples890

samples_taken++;891

if(a2d_value < min) //is current value a new minimum reading?892

min = a2d_value; //if it is, update the minimum tracker893

else if(a2d_value > max) //is the value a new maximum reading?894

max = a2d_value; //if it is, update the maximum tracker895

896

read_adc(ADC_START_ONLY); //start next sampling but don’t wait in isr897

}898

else //all samples for filtering has been taken899

state++; //go to next state on the following tick900

break;901

case 4:902

//remove high and low spikes and average remaining 8 samples903

final_val = (sum - max - min) >> 3;904

a2d_readings[ad_channel] = final_val; //store filtered value in buffer905

sum = 0; //re-initialise all filtering variables906

min = 0;907

max = 0;908

samples_taken = 0; //restart sampling909

state = 0;910

911

if (ad_channels_table[++ad_channel] == 255) //done all channels?912

ad_channel = 0; //restart the channel scan913

break;914

default:915

state = 0;916

ad_channel = 0;917

break;918

}919

}/* TIMER0Isr */920

921

/*****************************************************************************922

$ Function: TIMER1Isr923

$ Synopsis: TIMER 1 interrupt service routine. Keeps track of number of roll924

over events. TIMER 1 is also the timer associated with the CAPTURE925

mode used here to determine the robots speed and distance traveled.926

****************************************************************************/927

#int_TIMER1928

void TIMER1Isr()929

{930

++timer1_rollover_count; //increment count when a timer rollover event occurs931

clear_interrupt(INT_TIMER1);932
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}/* TIMER1Isr */933

934

/*****************************************************************************935

$ Function: TIMER3Isr936

$ Synopsis: TIMER 3 interrupt service routine. Provides the 20ms period for937

the servo pulses together with TIMER 0 interrupt.938

****************************************************************************/939

#int_TIMER3 HIGH940

void TIMER3Isr()941

{942

output_low(SERVO); //set output low943

setup_timer_3(T3_DISABLED);//disable timer 3 interrupt944

disable_interrupts(INT_TIMER3);945

clear_interrupt(INT_TIMER3);946

}/* TIMER3Isr */947

948

/*****************************************************************************949

$ Function: ContactSensors950

$ Synopsis: Port B interrupt on change interrupt service routine. Used to951

determine the make and unmake of the contact sensors.952

$ Interface953

return:954

params:955

global: contact_information - the state of the touch sensors.956

****************************************************************************/957

#int_rb958

void ContactSensors(void)959

{960

byte current = 0x00;961

static byte last = 0x00; //keep track of the last value of the contact sensors962

static int16 last_timer0_count;963

964

if(last_timer0_count == timer0_count)965

break; //debounce time has not elapsed966

else967

{968

current = input_b();969

970

if(current == last)971

break; //no change972

else973

{974

if(bit_test(current,BACK_LEFT))975

bit_set(contact_information,4);976

else977

bit_clear(contact_information,4);978

979

if(bit_test(current,BACK_RIGHT))980

bit_set(contact_information,5);981

else982

bit_clear(contact_information,5);983

984

if(bit_test(current,FRONT_LEFT))985

bit_set(contact_information,6);986

else987

bit_clear(contact_information,6);988
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989

if(bit_test(current,FRONT_RIGHT))990

bit_set(contact_information,7);991

else992

bit_clear(contact_information,7);993

994

//check whether any of the touch sensors are made995

if(contact_information != 0x00)996

{997

//the robot is stuck against an object998

stuck = true;999

StopDriveMotor();1000

}1001

else1002

stuck = false;1003

1004

//restart debounce time1005

last_timer0_count = timer0_count;1006

last=current;1007

}//end else1008

}//end else1009

}/* ContactSensors */1010

1011

/*****************************************************************************1012

$ Function: CCP2Isr1013

$ Synopsis: Capture interrupt service routine. Occurs when encoder sensor goes1014

high. Calculates period used to calculate the distance and speed.1015

$ Interface1016

return:1017

params:1018

global: distance_travelled - the total distance covered by robot1019

****************************************************************************/1020

#INT_CCP21021

void CCP2Isr(void)1022

{1023

int32 end_time;1024

char timer1_local_copy;1025

static int32 start_time = 0;1026

1027

end_time = (int32)CCP_2;1028

timer1_local_copy = timer1_rollover_count;1029

1030

//do required calculations outside of interrupt1031

capture_flag = TRUE;1032

1033

//check if timer1 interrupt pending and handle it here1034

if(TMR1IF)1035

{1036

if(*BytePtr(end_time, 1) < 2)1037

timer1_local_copy++;1038

++timer1_rollover_count;1039

TMR1IF = 0; //clear interrupt1040

}1041

1042

*BytePtr(end_time, 2) = timer1_local_copy; //24-bit value1043

1044
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//ensure correct subtraction1045

isr_CCP_delta = (end_time > start_time)? end_time - start_time : end_time +1046

(0x1000000 - start_time);1047

1048

//end of one pulse is the start of the next;1049

start_time = end_time;1050

1051

//keep track of distance moved by the robot1052

distance_travelled = distance_travelled + DISTANCE_PER_TICK;1053

1054

clear_interrupt(INT_CCP2);1055

}/* CCP2Isr */1056

1057

/*****************************************************************************1058

$ Function: SetServo1059

$ Synopsis: Calculates the high time of the pulse going to the servo motor1060

given the angle and using a table look-up function. Also ensures safe operating1061

angles only is used.1062

$ Interface1063

return:1064

params: angle - angle to steer robot1065

global: current_angle - the angle of the steering motor1066

servo_val - value to control HIGH-time of servo control pulse train1067

****************************************************************************/1068

void SetServo(signed int angle)1069

{1070

int16 temp_Servo_val;1071

signed int temp_angle;1072

1073

if(angle < 0) //turn left1074

{1075

temp_angle = -angle;1076

temp_servo_val = CENTRE + servo_table[temp_angle];1077

}1078

else //turn right1079

{1080

temp_servo_val = CENTRE - servo_table[angle];1081

}1082

1083

//ensure save operating angle1084

if ((temp_servo_val <= MAX_LEFT) && (temp_servo_val >= MAX_RIGHT))1085

{1086

servo_val = temp_servo_val;1087

current_angle = angle; //update global angle variable1088

}1089

1090

//if requested angle is greater that the robot can physically accommodate1091

else if (angle < 0)1092

{1093

//turn maximum allowable in desired direction1094

servo_val = MAX_RIGHT;1095

current_angle = MAX_ANGLE_RIGHT;1096

}1097

else1098

{1099

//turn maximum allowable in desired direction1100



197

servo_val = MAX_LEFT;1101

current_angle = MAX_ANGLE_LEFT;1102

}1103

}/* SetServo */1104

1105

/*****************************************************************************1106

$ Function: DriveMotor1107

$ Synopsis: Controls the robot’s backward and forward movement through the1108

drive motor.1109

$ Interface1110

return:1111

params: direction - whether to go forward or backwards1112

pwm_duty - given as percentage of 100% duty cycle1113

global: current_direction - whether the robot is busy going forward or backwards1114

****************************************************************************/1115

void DriveMotor(int1 direction, int pwm_duty)1116

{1117

int duty;1118

1119

if (current_direction != direction)1120

{1121

//stop motor before changing direction1122

StopDriveMotor();1123

Delay_ms(STOP_TIME);1124

}1125

1126

if(direction == FORWARD)1127

GoForward();1128

1129

if(direction == BACKWARD)1130

GoBackward();1131

1132

current_direction = direction;1133

1134

if(pwm_duty == 0)1135

StopDriveMotor();1136

else1137

{1138

duty = duty_table[pwm_duty]; //calculate duty1139

set_pwm1_duty(duty); //set the PWM duty1140

}1141

}/* DriveMotor */1142

1143

/*****************************************************************************1144

$ Function: GoForward1145

$ Synopsis: Sets the required enable pin combination on the H-bridge for forward1146

movement1147

****************************************************************************/1148

void GoForward(void)1149

{1150

//Output low on L2 on Compact Motor Driver1151

output_low(MOTOR_BW_ENABLE);1152

//Output high on L1 on Compact Motor Driver1153

output_high(MOTOR_FW_ENABLE);1154

}/* GoForward */1155

1156
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/*****************************************************************************1157

$ Function: GoForward1158

$ Synopsis: Sets the required enable pin combination on the H-bridge for1159

backward(reverse) movement1160

****************************************************************************/1161

void GoBackward(void)1162

{1163

//Output low on L1 on Compact Motor Driver1164

output_low(MOTOR_FW_ENABLE);1165

//Output high on L2 on Compact Motor Driver1166

output_high(MOTOR_BW_ENABLE);1167

}/* GoBackward */1168

1169

/*****************************************************************************1170

$ Function: GoForward1171

$ Synopsis: Sets the required enable pin combination on the H-bridge to stop1172

the drive motor1173

****************************************************************************/1174

void StopDriveMotor(void)1175

{1176

//Output low on L1 on Compact Motor Driver1177

output_low(MOTOR_FW_ENABLE);1178

//Output low on L2 on Compact Motor Driver1179

output_low(MOTOR_BW_ENABLE);1180

set_pwm1_duty(0);1181

}/* StopDriveMotor */1182

1183

/*****************************************************************************1184

$ Function: GoForward1185

$ Synopsis: Sets the required enable pin combination on the H-bridge for pulsed1186

brake mode1187

****************************************************************************/1188

void BrakeDriveMotor(void)1189

{1190

//Output high on L1 on Compact Motor Driver1191

output_high(MOTOR_FW_ENABLE);1192

//Output high on L2 on Compact Motor Driver1193

output_high(MOTOR_BW_ENABLE);1194

set_pwm1_duty(TOP_SPEED);1195

}/* BrakeDriveMotor */1196

1197

/*****************************************************************************1198

$ Function: RobotAct1199

$ Synopsis: Control the robot’s movements through the global variables.1200

Describe robot reactions here.1201

$ Interface1202

return:1203

params:1204

global: stopped - whether robot is stationary or not1205

angle - current angle of the steering motor1206

direction - current direction of movement1207

speed - current speed setting1208

****************************************************************************/1209

void RobotAct(void)1210

{1211

SetServo(angle);1212
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DriveMotor(direction, speed);1213

stopped = FALSE;1214

//define how robo should react here...1215

}/* RobotAct */1216

1217

/*****************************************************************************1218

* Main routine.1219

****************************************************************************/1220

void main(void)1221

{1222

1223

int16 hash_code;1224

byte tx_packet[TX_BUFFER_SIZE],tx_data[TX_DATA_SIZE],rx_packet[RX_PACKET_SIZE];1225

byte function_param = 0x00;1226

int data_length = 0, length = 0, packet_length = 0,packet_type, packet_validity;1227

1228

Init();1229

1230

SetServo(CENTRE);1231

1232

while (TRUE)1233

{1234

if(OPERATING_MODE == AUTONOMOUS)1235

{1236

if((distance_travelled >= distance_to_travel) && !stopped)1237

{1238

StopDriveMotor();1239

stopped = TRUE;1240

distance_to_travel = 0;1241

//add any additional autonomous behaviours here1242

}1243

}1244

1245

if(bkbhit) //there is data to be processed1246

{1247

//retrieve a message from the buffer and analyse it1248

packet_type = ReceivePacket(rx_packet, &length);1249

timed_out = FALSE; //reset packet time-out variable1250

1251

switch(packet_type) //determine action according to status of received packet1252

{1253

case CONTROL_PACKET: //a packet from the PDA for the robot1254

//test packet integrity1255

packet_validity = ValidDataPacket(rx_packet, length);1256

1257

switch(packet_validity) //determine action according to packet integrity1258

{1259

case CLEAN_PACKET: //perfectly received packet1260

{1261

acknowledge = TRUE; //packet understood, therefore send acknowledge1262

function_param = rx_packet[2]; //data given or asked for in packet1263

//determine whether it is a "request for data" packet ie rxPacket[3] = 01264

//or "command" packet rxPacket[3] != 01265

if(rx_packet[3] == 0)1266

{1267

//gather requested data1268
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CollectData(function_param, tx_data, &data_length);1269

//build tx packet1270

BuildPacket(SEND_ADDRESS, function_param, acknowledge, data_length,1271

tx_data, &packet_length,tx_packet);1272

}1273

else1274

{1275

//set requested variables with given data1276

SetData(function_param, rx_packet);1277

RobotAct(); //put changes into action1278

function_param = 0x00; //no data to send1279

data_length = 0; //length of an acknowledge packet is 01280

//build tx packet1281

BuildPacket(SEND_ADDRESS, function_param, acknowledge, data_length,1282

tx_Data, &packet_length, tx_packet);1283

}1284

break;1285

}1286

//a number of error conditions can be reported back to PDA1287

case INCORRECT_LENGTH:1288

case CRC_ERROR:1289

case WRONG_ADDRESS:1290

{1291

//packet was not correctly received, therefore send not acknowledge1292

acknowledge = FALSE;1293

function_param = 0x00; //no data to send1294

tx_data[0] = packet_validity; //first error condition1295

data_length = 1; //error condition sent, so length is 11296

//build tx packet1297

BuildPacket(SEND_ADDRESS, function_param, acknowledge, data_length,1298

tx_data, &packet_length, tx_packet);1299

break;1300

}1301

default:1302

//unknown error1303

break;1304

}//switch(valid data in packet)1305

1306

//if packet received from PDA indicates that it did not receive a packet correctly1307

if((rx_packet[2] & 0x40) == 0)1308

{1309

//keep track of sequential incorrectly sent packets1310

tx_unacknowledge_count++;1311

//packets not being received correctly1312

if(tx_unacknowledge_count > MAX_UNACKNOWLEDGED_PACKETS)1313

{1314

//reset the BT module1315

//reset_cpu();1316

}1317

}1318

else1319

//reset counter keeping track of sequential unacknowledged packets1320

tx_unacknowledge_count = 0;1321

1322

//only send packets when a communications link has been established with the PDA1323

if(remote_comms_link == TRUE)1324
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SendPacket(packet_length, tx_packet); //transmit tx packet1325

1326

break;1327

1328

case BT_MODULE_PACKET:1329

//calculate hash code for the received BT packet1330

hash_code = DJBHash(rx_packet, length);1331

//determine which BT message was received and act accordingly1332

InterpretHashCode(hash_code);1333

break;1334

1335

case INVALID_PACKET:1336

case PACKET_TIMED_OUT:1337

acknowledge = FALSE;1338

function_param = 0x00;1339

tx_data[0] = packet_type;1340

data_length = 1;1341

//build tx packet1342

BuildPacket(SEND_ADDRESS, function_param, acknowledge, data_length,1343

tx_data, &packet_length, tx_packet);1344

1345

if(remote_comms_link == TRUE)1346

SendPacket(packet_length, tx_packet); //transmit tx packet1347

break;1348

}//end switch(packetStatus)1349

}//end if(bkbhit)1350

}//end while(true)1351

}/* main */1352

1353

/////////////////////// Driver to generate CRC //////////////////////////1354

//// ////1355

//// generate_8bit_crc(data, length, pattern) ////1356

//// Generates 8 bit crc from the data using the pattern. ////1357

//// ////1358

//// generate_16bit_crc(data, length, pattern) ////1359

//// Generates 16 bit crc from the data using the pattern. ////1360

//// ////1361

//// generate_32bit_crc(data, length, pattern) ////1362

//// Generates 32 bit crc from the data using the pattern. ////1363

//// ////1364

/////////////////////////////////////////////////////////////////////////1365

//// (C) Copyright 1996,2003 Custom Computer Services ////1366

//// This source code may only be used by licensed users of the CCS ////1367

//// C compiler. This source code may only be distributed to other ////1368

//// licensed users of the CCS C compiler. No other use, ////1369

//// reproduction or distribution is permitted without written ////1370

//// permission. Derivative programs created using this software ////1371

//// in object code form are not restricted in any way. ////1372

/////////////////////////////////////////////////////////////////////////1373

1374

#define CRC_16 0x8005 //bit pattern (1)1000 0000 0000 01011375

#define CRC_CCITT 0x1021 //bit pattern (1)0001 0000 0010 00011376

#define CRC_32 0x04C11DB7 //bit pattern (1)0000 0100 1100 0001 0001 1101 1011 01111377

1378

1379

int generate_8bit_crc(char* data, int16 length, int pattern)1380
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{1381

int *current_data;1382

int crc_byte;1383

int16 byte_counter;1384

int bit_counter;1385

1386

current_data = data;1387

crc_byte = *current_data++;1388

1389

for(byte_counter=0; byte_counter < (length-1); byte_counter++)1390

{1391

for(bit_counter=0; bit_counter < 8; bit_counter++)1392

{1393

if(!bit_test(crc_byte,7))1394

{1395

crc_byte <<= 1;1396

bit_test(*current_data, 7 - bit_counter) ?1397

bit_set(crc_byte,0) : bit_clear(crc_byte,0);1398

continue;1399

}1400

crc_byte <<= 1;1401

bit_test(*current_data, 7 - bit_counter) ?1402

bit_set(crc_byte,0) : bit_clear(crc_byte,0);1403

crc_byte ^= pattern;1404

}1405

current_data++;1406

}1407

for(bit_counter=0; bit_counter < 8; bit_counter++)1408

{1409

if(!bit_test(crc_byte,7))1410

{1411

crc_byte <<= 1;1412

continue;1413

}1414

crc_byte <<= 1;1415

crc_byte ^= pattern;1416

}1417

return crc_byte;1418

}1419

1420

1421

int16 generate_16bit_crc(char* data, int16 length, int16 pattern)1422

{1423

int *current_data;1424

int16 crc_Dbyte;1425

int16 byte_counter;1426

int bit_counter;1427

1428

current_data = data + 2;1429

crc_Dbyte = make16(data[0], data[1]);1430

1431

for(byte_counter=0; byte_counter < (length-2); byte_counter++)1432

{1433

for(bit_counter=0; bit_counter < 8; bit_counter++)1434

{1435

if(!bit_test(crc_Dbyte,15))1436
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{1437

crc_Dbyte <<= 1;1438

bit_test(*current_data, 7 - bit_counter) ?1439

bit_set(crc_Dbyte,0) : bit_clear(crc_Dbyte,0);1440

continue;1441

}1442

crc_Dbyte <<= 1;1443

bit_test(*current_data, 7 - bit_counter) ?1444

bit_set(crc_Dbyte,0) : bit_clear(crc_Dbyte,0);1445

crc_Dbyte ^= pattern;1446

}1447

current_data++;1448

}1449

1450

for(bit_counter=0; bit_counter < 16; bit_counter++)1451

{1452

if(!bit_test(crc_Dbyte,15))1453

{1454

crc_Dbyte <<= 1;1455

continue;1456

}1457

crc_Dbyte <<= 1;1458

crc_Dbyte ^= pattern;1459

}1460

1461

return crc_Dbyte;1462

}1463

1464

int32 generate_32bit_crc(char* data, int16 length, int32 pattern)1465

{1466

int *current_data;1467

int32 crc_Dbyte;1468

int16 byte_counter;1469

int bit_counter;1470

1471

current_data = data + 4;1472

crc_Dbyte = make32(data[0], data[1], data[2], data[3]);1473

1474

for(byte_counter=0; byte_counter < (length-4); byte_counter++)1475

{1476

for(bit_counter=0; bit_counter < 8; bit_counter++)1477

{1478

if(!bit_test(crc_Dbyte,31))1479

{1480

crc_Dbyte <<= 1;1481

bit_test(*current_data, 7 - bit_counter) ?1482

bit_set(crc_Dbyte,0) : bit_clear(crc_Dbyte,0);1483

continue;1484

}1485

crc_Dbyte <<= 1;1486

bit_test(*current_data, 7 - bit_counter) ?1487

bit_set(crc_Dbyte,0) : bit_clear(crc_Dbyte,0);1488

crc_Dbyte ^= pattern;1489

}1490

current_data++;1491

}1492
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1493

for(bit_counter=0; bit_counter < 32; bit_counter++)1494

{1495

if(!bit_test(crc_Dbyte,31))1496

{1497

crc_Dbyte <<= 1;1498

continue;1499

}1500

crc_Dbyte <<= 1;1501

crc_Dbyte ^= pattern;1502

}1503

1504

return crc_Dbyte;1505

}1506



Appendix C

Sharp IR Sensor

Approximation Function

To measure the non electric quantity distance, an IR-based distance measur-

ing sensor is used. It transforms the distance measured into the electrical

quantity, voltage. The relationship between the voltage measured and the

measured distance is non-linear. This makes the conversion between volt-

age and distance more complicated. A function is needed that adequately

represents the sensor’s response to change in distance.

Figure C.1 shows the experimental setup used to obtain the data and the

procedure used to determine the approximation function.

The approximation function is obtained and tested using a LabVIEW

prototype, a DAQ card as well as a custom LabVIEW program (called vi).

The following steps are preformed.

1. Voltage signals relating to the measured distance is returned from the

Sharp IR distance sensor to the prototype board on an NI ELVIS work-

station.

2. The prototype board is connected to a DAQ card.

3. This provides the sampled signals to the LabVIEW program.

4. The LabVIEW program gathers all the necessary statistical informa-

tion from the samples taken at distance x including maximum, mini-

mum, mean, standard deviation over the number of samples taken.

5. The samples are stored in CSV format to file, indicating distance vs

voltage.
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Figure C.1: Experimental Setup and Procedure to Obtain Approximation
Function
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6. Once all samples has been taken at every distance required, the program

reads back the data written to file and plots the characteristic curve of

the sensor (distance vs. voltage).

7. The curve is linearized.

8. The straight line approximation is calculated.

9. The approximation function is tested by reading voltage values and

validating the measured distance against the calculated distance.

Figure C.2 shows the characteristic curve obtained using two Sharp IR

sensors.

Figure C.2: Characteristic Curve of Two Sharp GP2D12 IR Sensors

From the data used in Figure C.2 the reciprocal of distance characteristic

can be plotted for the sensor as shown in Figure C.3.

The next step is to find a straight line approximation that relates the read

voltage to the inverse measured distance as shown in Figure C.3 (Acroname,

2006). This involves finding suitable m and b constants for the familiar

straight line equation:

y = mx + b (C.1)

In this case, y is equal to the linearised range. Substituting the linearising

function from above for y and substituting V for x yields:

1

R + k
= m × V + b (C.2)
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Figure C.3: Reciprocal of Distance Characteristic Curve for a Sharp GP2D12
IR Sensor

Rearranging the equation terms gives range as a function of voltage:

R =
1

m × V + b
− k (C.3)

This is a useful result for languages that support floating point math, but

it can be rearranged further to get:

R =
m′

V + b′
− k (C.4)

where m′ = 1

m
and b′ = b

m
. This extra step produces an equation that works

nicely with integer math though the use of floating point values will increase

accuracy.

The value of k was experimentally obtained. A value of 0.42 for this

linearising constant gives a fairly straight line. The values for m and b is

determined through applying linear regressing to the resulting straight line

from C.3. The value for m is determined to be 0.041 and using integer maths

results in a value for m′ of 24.149 The value for b is determined to be -0.0107

and using integer maths and the equation given in C.4 the value for b′ is

determined to be -0.259.

Therefore the resulting approximation function is:

R =
24.149

V − 0.259
− 0.420 (C.5)

Figure C.4 shows the LabVIEW application with the experimental results

obtained.
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Figure C.4: IR Distance Sensor Approximation Results
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