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Abstract 

 

In the past few decades the theory of cointegration has been widely used in 

the empirical analysis of economic data.  The reason is that, it captures the 

economic notion of a long-run economic relation.  One of the problems 

experienced when applying cointegrated techniques to econometric modelling 

is the determination of lag lengths for the modelled variables.  Applied studies 

have resulted in contradictory choices for lag length selection.  This study 

reviews and compares some of the well-known information criteria using 

simulation techniques for bivariate models. 
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Chapter 1 

 

Introduction 

 

In the past few decades there has been a significant increase in development 

of econometric models.  One of the more recent approaches is based on the 

theory of cointegrated variables.  The theory of cointegration provides 

econometricians with a practical procedure to analyze non-stationary time 

series data.  The methodology of cointegration has generated substantial 

interest amongst both econometricians and statisticians and examples of the 

applications of cointegrated modelling have been published in international 

journals, see for example Diamandis and Kouretas (1995) and Dwyer and 

Wallace (1992), and in local South African journals, see for example Ferret 

and Page (1998) and Wilson, Okunev, du Plessis and Ta (1998). 

 

 

Soren Johansen (1988) developed a maximum likelihood estimation 

procedure for multivariate cointegrated time series models.  The phenomenal 

growth in software development has seen the algorithms developed by 

Johansen being incorporated into econometric software packages such as 

Shazam, EViews and Cats for Rats.  The availability of these packages has 

resulted in widespread application of cointegrated modelling.  

 

 

The determination of model lag length is a problem analysts experience when 

using cointegrated techniques.  Criteria such as Akaike’s information criterion 

(AIC), Schwarz’s information criterion (SIC), Final Prediction Error (FPE) and 

Hannan-Quinn’s information criterion (HQ) have been used in cointegrated 

modelling to assist in selecting the lag length of a model from a dataset.   

 

 

Although the theory of model selection using information criteria was 

developed some thirty years ago, the benefits from a practical point of view 

were largely ignored.  This changed when the practical benefits of information 
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criteria were acknowledged by Anderson, Burnham and White (1994) in their 

capture-recapture studies. 

 

 

Traditionally, likelihood ratio hypothesis tests were used to compare models of 

different lag lengths.  Despite the usefulness of likelihood ratio tests for model 

comparisons, Sclove (1994) illustrates several examples where an information 

criterion approach is preferable for model selection.  One of Sclove’s 

illustrative examples considers the scenario of comparing two treatment 

means with unequal population variances.  This two treatment means 

comparison realizes four possible models and using an information criteria 

approach yields better results than a sequence of likelihood ratio hypothesis 

tests.  

 

 

The four information criteria mentioned previously have been used in several 

research disciplines.  In economics, Akinboade and Niedermeier (2002) use 

AIC in determining the relationship between labour costs and inflation in South 

Africa.  Mainardi (2000) uses AIC in estimating the consumption rate of 

interest for Trinidad and Tobago.  In a biological study Bozdogan, Sclove and 

Gupta (1994) use AIC to identify the best fitting parametric multivariate model 

of male Egyptian skulls from Thebes.  In psychological research, Takane 

(1994) reviews the application of AIC and reveals some of the difficulties in 

modelling psychological phenomena.  

 

 

AIC is arguably the most well-known of the information criteria used in model 

selection.  The AIC algorithms have been integrated into econometric and 

statistical software packages such as EViews, Stata, Statistica, Shazam and 

Cats for Rats.  The value of AIC is calculated for the purpose of model 

comparison and the minimum AIC indicates the most appropriate model to 

select. 
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In spite of the popularity of AIC, Lütkepohl (1985) and Gonzalo and Pitarakis 

(2002) have illustrated that the information criterion has a tendency to 

over-parameterize when sample size is unrealistically small.  Bozdogan 

(1987) extended the methodology of AIC to be asymptotically consistent to 

neutralize the problem of over-parameterization and developed a criterion 

called the Consistent Akaike’s information criterion (CAIC).  In the Gonzalo 

and Pitarakis’s (2002) study, they show that a criterion such as the Bayesian 

information criterion (BIC) and Hannan-Quinn’s information criterion (HQ) lead 

to consistent estimates in both stationary and non-stationary systems.   

 

 

In research published during 2004, Khim and Liew conduct a simulation study 

to determine the optimal lag length for an autoregressive process.  In their 

study, they used several information criteria to analyze models with different 

lag lengths.  In addition, they used various sample sizes ranging from 30 to 

960 observations for their models.  

 

 

Initially, Khim and Liew used different criteria to calculate the probability of 

correctly estimating the true lag length of an autoregressive process for their 

different sample sizes.  Thereafter, they utilised the information criteria to 

determine the probability of under-estimating the true lag length of an 

autoregressive process as well as the probability of over-estimating the true 

lag length of an autoregressive process for the various sample sizes.  This 

research follows the methodology of Khim and Liew but unlike Khim and Liew 

this study conditions the autoregressive process to be non-stationary and 

cointegrated. 

 

 

Anderson, Burnham and White (1994) provide an illustration of lag length 

selection criteria used for making inferences from ringing data 

(capture-recapture data).  They explain, in their paper, that the theory of 

information criteria was developed along two ideas.  The first theory assumes  

that a true model exists and that the information criteria will determine the best  
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fitting true model for the data.  This theory consists of criteria that are 

“dimension consistent” and requires sufficiently large sample sizes.  The 

second theory assumes that a true model does not exist but by using the 

information criteria the best fitting model for the data will be determined.  This 

theory tries to minimize the loss of information and Kullback-Leibler (1951) 

addressed this issue when developing the measure, Kullback-Leibler 

information coefficients, which represent the information lost when 

approximating reality. 

 

 

The information criteria based on Kullback-Leibler information coefficients 

include Akaike’s information criterion, corrected Akaike’s information criterion, 

Final Prediction Error and Takeuchi’s information criterion.  The information 

criteria that are “dimension consistent” include Bayesian information criterion, 

Minimum Description Length and Hannan-Quinn’s information criterion.  

 

 

The determination of the lag length for a model with the information criterion 

methodology has played an important role in many studies.  Several studies 

found that certain criteria are better than others (see Lütkepohl (1985) and 

Khim and Liew (2004)) in determining the order of autoregressive processes.  

It is the objective of this study to review four of the well-known criteria and 

compare these criteria using simulation analysis for cointegrated time series 

bivariate data. 
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Chapter 2 

 

Literature Review 

 

Over the last two decades several studies have been conducted to determine 

the order of an autoregressive (AR) process.  The studies of both Lütkepohl 

(1985) and Ng and Perron (2005) use information criteria as aids for choosing 

the order of the AR process.  The use of AIC, the better known information 

criteria, for determining the order of the AR process, has shown how easy the 

information criteria are to apply whilst emphasizing the benefits of the 

techniques.  To date, a review of the available literature has yielded little 

research on information criteria decision making for determining the number of 

lag terms in a cointegrated time series1.  The application of the cointegration 

theory to econometric studies has provided a platform for numerous research 

publications, both locally and internationally.  A brief review of some of the 

studies that have applied the methodology successfully is provided in the 

forthcoming sections.  The one noticeable inconsistency in the published 

studies is the lack of a clear approach for determining the lag lengths of the 

analyzed cointegrated models.   

 

 

2.1 Review of selected publications using Akaike’s 

information criterion 

 

In the equity market study by Botha and Apostolellis (2003) an analysis is 

performed of the financial integration between equity markets using 

cointegration techniques.  Their analysis seeks to provide a better 

understanding of the long-term relationships and short-term dynamics that 

exist between emerging and developed markets.  They opt to use Akaike’s 

information criterion for the determination of the number of lag terms in their 

multi-equation model.  A lag of one was selected, given that the stock prices 
                                                  
1 A recent publication by Ivanov and Kilian (2005) attempts to address lag length selection in 
cointegrated models.  This paper was only recently discovered and not reviewed in this 
study. 
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tend upward over time and a linear deterministic trend is included in the 

equation model. 

 

 

The role of future markets in the South African financial markets was 

examined by Fedderke and Joao (2001) during a period of considerable 

volatility on world financial markets.  The motivation for their study was that 

this issue has implications for the fundamental concepts in financial theory, 

particularly in market efficiency and arbitrage.  In their empirical analysis, two 

cointegration techniques were used to determine the linear relationships 

between the variables and these techniques are the ARDL cointegration 

approach and Johansen’s method of testing for cointegration.  The ARDL 

cointegration technique was developed by Pesaran and Shin (1995a, 1995b) 

and Pesaran, Shin and Smith (1996) and was used to determine the nature of 

the patterns of association between the variables.  Both methods provide a 

cointegrating relationship between the variables and the coefficients of the 

cointegrating equation are similar.  Akaike’s information criterion was used to 

determine the number of lag terms in the estimated multi-equation model.  As 

a result, a lag of eight was used for each of the equations in the Johansen’s 

test and for the ARDL cointegration approach a different lag term was used for 

different variables in each equation.  

 

 

In research published during 2001, Fedderke, de Kadt and Luiz used several 

new measures (such as political and property rights) to explore the link 

between institutions and economic activities for South Africa.  They used 

Johansen’s test of cointegration to establish the importance of property rights 

and political instability as determinants of the level of desired per capita 

output, capital-labour ratio and investment expenditure.  Akaike’s information 

criterion was used to determine the number of lag terms in the VAR models.  

Akaike’s information criterion was also used to select the number of lag terms 

in the ARDL models for ARDL cointegration technique.   
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2.2 Review of selected publications using General-to-specific 

model selection procedure 
 

The general-to-specific (Gets) model selection procedure is a commonly used 

approach for the selection of the number of lag terms in an autoregressive 

model.  This procedure uses a likelihood ratio test statistic to test the lag 

terms in the model.  An example illustrating the likelihood ratio test on the 

different lag terms was provided in Barr and Kantor (1990).  The Gets 

procedure requires that one start with a relatively large number of lag terms 

and pares down the model using a likelihood ratio test statistic.  As an 

example, one could estimate a regression equation using a lag of (p).  If the 

likelihood ratio test statistic is insignificant at some specific critical value, re- 

estimate the regression using a lag of (p - 1).  Repeat the process until the 

lag is significantly different from zero. It is worth noting that for the 

general-to-specific approach one can also perform this procedure by keeping 

the initial lag (m) the same in each test or setting p = m - i where i = 0, 1, …, m 

- 1. 

 

 

This method is the equivalent to the backwards stepwise regression procedure 

advocated in many undergraduate text books (see Mendenhall and Sincich 

(2003, pg. 327)) with the exception that this is specific to autoregressive 

models.  Once a tentative lag term has been determined, diagnostic checking 

is then used to test for the presence of heteroscedasticity in the lagged model.  

Krolzig and Hendry (2000) developed a software package called PcGets to 

analyze the Gets procedure of the Vector Autoregressive models.  PcGets is 

a computer-automated approach to econometric modelling focusing on 

general-to-specific reduction approaches for linear, dynamic and regression 

models.  Several studies used the Gets procedure to determine the number 

of lag terms for their time series models and some of these studies are 

reviewed below.   
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The use of an information criterion to determine the number of lag terms has 

been used extensively in distributed lag models such as autoregressive 

models, vector autoregressive models and moving average models.  Barr 

and Kantor (1990) used a Vector Autoregressive (VAR) process in their time 

series models.  This process was used to analyze the interrelationship 

between the GDP at constant 1985 prices, the rand value of notes in 

circulation, the private consumption expenditure deflator and the ratio of the 

trade balance to nominal GDP in the South African economy.  The 

general-to-specific model selection procedure was used to determine the 

number of lag terms in the models.  The highest lag selected in the model 

was eight.  This model was tested against the alternative ones with a 

progressively smaller number of lags.  The optimal lag chosen for each of the 

time series functions was four.   

 

 

Barr and Kahn (1995) tested the behaviour of the Purchasing Power Parity 

(PPP) relationship in a South African study using cointegration techniques.  

Their study was sub-divided into three periods to take into account various 

shocks to the economy and the changes in the policy regime.  In the 

empirical analysis of their study, they used the general-to-specific model 

selection procedure to select the number of lag terms in the multi-equation 

model.  The initial lag selected for the variables in all equations was eight.  

This lag was “tested down” to a lag that is statistically significant at the 5% 

significance level.  The result concluded that the explanatory variable lag 

terms were different, a finding which contradicted the results of other studies 

one could consider as similar.  In the studies by Diamandis and Kouretas 

(1995), Barr and Kantor (1990) and Gumede (2000), all explanatory variable 

equations selected had the same number of lag terms.  

 

 

It is widely acknowledged that the lack of foreign exchange is the main 

obstacle to economic growth in South Africa.  Many studies have focused on 

exports and export expansions as a means to eradicate this economic 

dilemma (Gumede (2000)).  The Gumede (2000) study provided a 

contribution to the understanding of South Africa’s foreign trade outlook by 
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examining the import demand elasticities for South Africa with respect to the 

real income and relative prices using econometric analysis.  The estimation 

of the long-run relationship between these variables was implemented using 

the Engle-Granger two-step procedure.  The general-to-specific model 

selection criterion was used to estimate the number of lag terms in the model.  

The result of the number of lag terms in the model was not provided.   

 

 

Madsen (1997) evaluates the macroeconomic implications of fiscal and 

monetary policies in South Africa using a four equation model which allows for 

demand and supply side interaction.  The model identifies several channels 

along which monetary and fiscal policies feed into prices, wages, 

employments and outputs, in the short and long-run.  Error correction models 

are estimated for that purpose.  Parameter estimates of the cointegration 

equations provide the information for long-run relationships, whereas the error 

correction term gives insight into short-run adjustment towards the long-run 

equilibrium.  Since the ordinary least square estimates of the price and the 

wage equation model give inefficient estimates and the distribution of the 

estimators are non-normal, the Engle and Yoo (1989) three step procedure, 

which gives efficient and normal distributed parameter estimates, was used to 

estimate the cointegrating model.  The lag structure for the estimated models 

were determined by the general-to-specific model selection procedure.  The 

initial lag selected was three and the insignificant lags sequentially deleted 

with a 5% significance level.  The result of the Gets procedure for lag 

selection was not indicated and therefore one is unable to identify the number 

of lag terms incorporated in the model.   

 

 

Kouassi (1997) examines the impact of terms of trade shocks on Ivorian 

macroeconomic variables, in the context of an open economy, using the 

theory of cointegration.  Johansen’s method of testing for cointegration was 

used to analyze possible linear relationship between the Ivorian 

macroeconomic variables.  The choice of the lag structure in the model was 

selected by the Sims (1980) likelihood ratio test.  As a result a lag of two for 

the macro-model was selected.  Diagnostic test statistics such as the 
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Box-Ljung Q statistic and the coefficient of determination was used to test for 

the presence of serial correlation in the model.  In the lag two model, no 

presence of serial correlation was detected, therefore supporting the choice of 

two lag terms in the model. 

 

 

To summarise, the Gets procedure has been used quite extensively as 

evidenced by the review of the papers in this section.  A distinct drawback to 

the procedure is the lack of explanation of significant levels used for lag 

selection and how the author(s) selected the maximum lag to start the 

procedure.   

 

 

2.3 Review of selected publications using Final Prediction 

Error 

 

In recent years, South Africa’s Rand to US dollar exchange rate has been 

volatile which has created some concern for the South African economy.  

Damoense (2003) used the cointegration method to investigate some of the 

key determinants of the South African exchange rate.  Variables of interest to 

the study were money supply, differential inflation rate, differential interest 

rate, and relative national income.  Johansen’s test of cointegration was used 

to test the linear relationships between the variables.  They opted to use 

Akaike’s Final Prediction Error to determine the number of lag terms in the 

multi-equation model.  The result indicates a two-year lag for inflation rate 

differential, a one-year lag for money supply and interest differential and no lag 

for relative national income. 
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2.4 Review of selected publications using Akaike’s 

information criterion and Schwarz’s information criterion 

 

The livestock sector has played a prominent role in South Africa in the past 

several decades and factors affecting livestock supply in South Africa were 

examined by Townsend (1999), using econometric techniques.  A test of 

cointegration was used to examine whether factors such as producer price 

index, technology shifts, weather and others provided a linear relationship to 

the livestock supply in South Africa.  Having established a cointegrating 

relationship and estimated the long-run elasticities, an error correction model 

was estimated to provide a valid representation of the data.  

 

 

In order to reduce the number of estimated variables and so increase the 

degrees of freedom, a constrained form of the error correction model was 

estimated.  A lag of three was estimated for the real livestock price index and 

a zero lag for the other variables.  The author failed to explain how the 

number of lag terms were determined using an inferential test.  It was 

assumed that a t-test was used to determine the significance of the lagged 

terms.  The estimation of the short and long run elasticities revealed little 

information on the structure of the lagged relationship between the two factors, 

price index and research and development expenditure.   

 

 

After due consideration it was decided to investigate the structure of the 

lagged relationship between these factors using an Almon polynomial lag 

approach.  This approach allowed the lagged effects to be captured on output 

and to avoid the collinearity problems of the unrestricted model (Evenson 

(1967), Knutson and Tweeten (1979)).  However, the Almon lag model 

required that the number of lag terms in the model be specified.  Akaike’s 

information criterion and Schwarz’s information criterion were used to 

determine the number of lag terms in this case.  The result of both criteria 
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indicated a lag of thirteen for the research and development expenditure factor 

and a lag of five for the real livestock price index factor.   

 

2.5 Review of selected publications using Schwarz’s 

information criterion and Hannan-Quinn’s information 

criterion 

 

In research published during 2002, Leng performed an investigation on the 

efficiency of the All Share Index (ALSI) 40 futures contract which was traded 

on the South African Futures Exchange (SAFEX).  This investigation was 

accomplished by studying the temporal causal dynamics between the futures 

price and its underlying spot index price before, during and after the Asian 

economic crisis.  Leng used Johansen’s method to test for cointegration 

between the ALSI futures contract and the spot market index over the period 

January 1996 to June 2001.   

 

 

The result of the study indicated that a long-run equilibrium relationship 

existed between these two markets. As a result of this relationship, the error 

correction model for these two markets was estimated. In the error-correction 

model fitted, Leng opted to use a combination of Schwarz’s information 

criterion and Hannan-Quinn’s information criterion to determine the number of 

lag terms for the model. The result of these two criteria indicated a lag of one 

was to be incorporated in the error-correction model. Surprisingly, rather than 

accepting this, Leng selected a lag of three. He motivated this decision by 

indicating that he wanted to minimize the presence of heteroscedasticity that 

was present in the model.   

 

 

It is these inconsistencies in deciding lag length of cointegrated models that 

provided the motivation for this research study. In Leng’s paper, he omits to 

discuss how he determined the presence of heteroscedasticity and how the 

three lag model corrected it. 
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2.6 Review of selected publications which omitted to disclose 

the method(s) used to determine the lag length in the model 

 

In recent years, several economists have asserted that asset prices 

determined in the efficient asset markets are not cointegrated and the first 

person who introduced this idea was Granger (1986, pg. 218).  The 

implication that asset prices cannot be cointegrated relies on the definition of 

‘efficient markets’ as markets in which changes in asset prices are 

unpredictable.  A more useful alternative definition of an efficient market is 

provided in Dwyer and Wallace (1992).  Their definition indicated that there 

are no risk-free returns above opportunity cost available to agents given that 

there are transaction costs and agents’ information.  In their study, they 

examined some of the implications of this definition of efficient markets for the 

cointegration of asset prices and demonstrated that market efficiency does not 

preclude cointegration.  The Engle-Granger two-step procedure was used to 

test for cointegration, however, no information was provided by the authors on 

how they determined the number of lag terms in the model.   

 

 

Mainardi (1995) investigated the possible links between short and medium 

term variations in gold price, the corresponding performance of the nominal 

exchange rate with US dollar and real effective exchange rate in South Africa.  

In order to analyze the linear relationship between these variables, the model 

was assessed using the Pesaran, Shin and Smith ARDL cointegrating 

technique.  The estimated equation for this method was a substantial 

improvement on the fitted model using the Engle-Granger procedure.  The 

number of lag terms incorporated in the model was four.  Unfortunately the 

method of lag length selection was omitted from the study, an omission which 

in this studies context is important.   

 

 

The Bureau for Economic Research (BER) at the University of Stellenbosch 

has been using macroeconomic models for the purpose of short and 
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medium-term economic forecasting of the South African economy.  A recent 

version of the macroeconomic models was presented by Smit and Pellissier 

(1997) and their model was estimated using cointegration analysis.  They 

followed the Engle-Granger two-step procedure whereby the long-run 

cointegrating equation was first estimated, followed by a short-run equation 

which included an error-correction term derived from the long-run equation.  

In their paper, Smit and Pellissier stipulate that standard statistical and 

economic criteria were used to determine the number of lag terms in the model 

but do not reveal which criteria were used.   

 

 

The theory of Purchasing Power Parity (PPP) equilibrium has been widely 

used in sectors such as the academic, public and business sectors, however, 

the use of PPP equilibrium to analyze the exchange rate between countries is 

less extensive.  De Wet (2000) used the theory of PPP to study the 

relationship between South Africa’s exchange rate and its major trading 

partners’ exchange rates.  In his study, the time series variables were 

subjected to tests for unit roots and cointegration.  The published findings 

make no reference to how the number of lag terms in the model were selected.   

 

 

The importance of manufacturing to the South African economy was 

discussed in the study by Gumede (2003).  The study informs us that about 

20% of the economically active in South Africa are employed in the 

manufacturing sector and more than half of the South African exports are 

manufactured.  In his study, where he estimated the export elasticities of the 

total economy and the manufacturing sector in South Africa, he used a time 

series model.  Although the models are subjected to tests for cointegration, 

no disclosure on how the number of lag terms were selected was provided.  

 

 

Neubrech and Pienaar (2001) examined the possible implications of the price, 

cross-price and income elasticities of the demand for public road transport in 

the Cape Metropole, using cointegration modelling.  The results showed that 

there was a linear relationship between the price, cross-price and income 
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elasticities of the demand for public road transport.  Although a lag of three 

was selected in the multi-equation model, no disclosure on lag length selection 

was provided.   

 

 

In research published during 1998, Sinha re-examines the export expansion 

hypothesis of Alfred Maizels using data from Asian countries.  Following the 

earlier studies, Sinha used the Engle-Granger two-step procedure to 

determine the cointegrating relationships between the variables for each of the 

Asian countries.  The method used to determine the number of lag terms in 

the multi-equation model was omitted from the paper.  

 

 

All these published findings have one glaring omission, they did not include 

information on lag length selection of their cointegrated study.  This omission 

provides an opportunity to question the validity of the studies’ statistical 

procedures.   

 

 

2.7 Econometric software package used 

 

New software and upgraded versions of existing software regularly become 

available, thus choosing a suitable software package is essential.  The choice 

of the optimal software package for this study is based on the cost of the 

software, the capability features that are incorporated in the software and the 

availability of the software package. 

 

 

Wesso (1999) reviews twenty commonly used econometric software packages 

for personal computers.  These software packages include SAS/ETS, 

Econometric Software Package (ESP), Shazam 8.0, SPSS 8.0 and EViews 

3.0.  The twenty software packages are compared based on the techniques 

the software is designed to perform.  
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Wesso’s 1999 study followed his 1997 survey which was previously based on 

the econometric forecasting methods taught and practiced in South Africa.  

Vendors were asked to complete and return a questionnaire.  Telephone and 

personal interviews were also used for follow-up in a few cases of incomplete 

or un-returned questionnaires. 

 

 

Wesso discussed some of the capability features that were incorporated into 

these computer software packages.  The capabilities include graph 

capabilities, read/write capabilities, hardware/software capabilities and 

miscellaneous procedures.  The capabilities associated with each of the 

twenty software packages assisted us in selecting the ideal software for this 

study.  Five out of the twenty software packages were suitable for this study 

based on the capabilities associated with them.  The five software packages 

are EViews, Microfit, RATS, SAS and SHAZAM.  

 

 

The SAS software package is most suitable for this study as it has all of the 

features required by this study.  Although SAS is an excellent software 

package to use for this study, it is expensive so SAS was not chosen for this 

study.   

 

 

The software package EViews would be the alternative package to use for this 

study.  EViews is a powerful and easy-to-use econometric software package 

with satisfactory time series routines.  Wesso (1999) provided information on 

the earlier version of EViews, EViews 3.0, and identified features incorporated 

into this software as well as the features that were lacking in this software 

package.  The latest version of EViews is EViews 5.1 and several 

improvements have been introduced since EViews 3.0.  The modifications 

include the improvement of the number of tests for unit roots, the increase of 

the number of model selection criteria tests and the ability to compute 

standard errors for impulse response functions and variance decomposition.   
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EViews has become an acceptable package for econometric analysis of 

windows-based software.  This software is well explained and referenced in 

undergraduate/post-graduate textbooks (see Gujarati (1995)) and used in 

several research publications (see Botha and Apostolellis (2003) and de Wet 

(2000)).  Given the features, cost and availability, it was decided to use 

EViews 5.1 in this study.   
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Chapter 3 

 

Econometric Theory 

 

3.1 Unit root tests 

 

When analyzing stationary and non-stationary time series, it is necessary to 

test for the presence of a unit root to avoid the problem of spurious regression 

(Harris (1995, Pg. 6)).  If a series contains a unit root then this series is 

non-stationary otherwise the series is stationary.  The inferential tests of the 

unit root hypothesis are of interest to economists because they help to 

evaluate the nature of the non-stationarity that many macroeconomic series 

exhibit.  Examples of macroeconomic variables whose data are possibly 

non-stationary include variables such as real exchange rate (Parikh and Kahn 

(1997)), spot market indices (Ferret and Page (1998)), business cycles 

(Moolman (2002)) and relative income (Gumede (2000)).   

 

 

Currently, several unit root tests are used for testing for the presence of unit 

roots in the data.  Examples of unit root tests, appropriately named after the 

researcher(s) who developed the underlying models, include the Augmented 

Dickey-Fuller (ADF) test, Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test 

and Phillips-Perrron (PP) test.  Arguably the most commonly used test for 

detecting the presence of unit roots in applied econometrics is the ADF test 

(see Barr and Kahn (1995), Madsen (1997), Parikh and Kahn (1997) and 

Mainardi (2000)).  This method allows for the analysis of slightly more 

complicated time series processes than the simple random walk models on 

which the original theory was developed and for which many believe is a 

sufficient representation of the underlining data generated process.  The null 

hypothesis of this test statistic states that the series is non-stationary, whilst 

the alternative hypothesis test claims that the series is stationary.  The 

popularity and ease of the ADF test for analyzing the stationarity of time series 

data has meant that the routine has been successfully integrated into several  
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software econometric packages (for example EViews 5.1, RATS 4.02 and 

SAS).  Given that this is the case, it was decided to use the ADF test as an 

appropriate method for analyzing the simulated data for this study.   

 

 

To utilise the ADF test, the selection of the correct lag order of the 

autoregressive model is necessary.  If one were to use a model which does 

not provide a reasonable representation of the data, the ADF test will not be 

well-estimated.  Including too many lags in the model reduces the power of 

the test to reject the null hypothesis as the increased number of lags 

necessitates the estimation of additional parameters and a subsequent loss of 

degrees of freedom.  As such, the presence of unnecessary lags will reduce 

the power of the ADF test to detect a unit root.  The loss of power may be so 

severe that the test may indicate a unit root for some lag terms but not for the 

others.  In practice, the true order of the autoregressive process is unknown, 

so the order of this process must be chosen by the researcher.   

 

 

Prior to the analysis, there are two strategies for making this choice.  The first 

strategy is to arbitrarily choose the order of the autoregressive process to be 

relatively large.  The reason for this approach is that if the order is chosen to 

be too small, then the ensuring inference about the unit root is biased.  This 

bias is discussed further in Schwert (1989) and readers who require more 

information are referred to his paper.  If the order of the autoregressive 

process is chosen to be too large, it may cause deterioration in the 

finite-sample properties of the ADF test.  This point was clearly illustrated by 

the simulation results reported in Phillips and Perron (1988).   

 

 

The second strategy addresses this problem by using the data to estimate the 

order of the autoregressive process.  This strategy uses either a 

general-to-specific approach or one or more of the information criterion 

methods proposed by Hannan and Quinn (1979), Schwarz (1978) and Akaike  
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(1969, 1973).  Typically, when this approach is followed, it is assumed that 

the ADF test has the distribution tabulated by Dickey and Fuller (1979, 1981).   

 

 

Dickey and Fuller (1979, 1981) developed several tests to determine whether 

a pth order autoregressive (AR) process was stationary.  Stationarity implies 

that the roots of the lag polynomial lies inside the unit circle and the series has 

a finite variance and constant mean.  The null hypotheses of these tests state 

that the AR process contains one unit root, so the sum of the autoregressive 

coefficients equals one.  In research published during 1989, Schwert 

describes the recent extensions of the Dickey-Fuller test procedure in an 

attempt to account for mixed ARIMA processes as well as pure AR processes 

in performing unit-root tests.  It has been shown in Schwert (1989) that the 

tests for unit roots developed by Dickey and Fuller (1979, 1981) are sensitive 

to the assumption that the data are generated by a pure AR process.  When 

the underlying process contains an MA component, the distribution of the 

unit-root test statistics can be different from the distributions reported by 

Dickey and Fuller.  Therefore, if economic time series models contain MA 

components, then tests for unit root that use the Dickey-Fuller (1979, 1981) 

test are inappropriate.   

 

 

Dickey and Fuller (1979) considered three different single-equation regression 

models that can be used to test for the presence of a unit root: 

 

ty∆  = 1ty −γ  + tε  

ty∆  = 0a  + 1ty −γ  + tε  

ty∆  = 0a  + 1ty −γ  + 2a t + tε  

 

 

The difference between the three single-equation models is the presence of 

the deterministic elements 0a  and 2a t .  The first equation is a pure random 

walk model, the second equation adds an intercept or a drift variable, and the  
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third equation includes both a drift term and a linear time trend variable.  This 

study only considers the pure random walk models such that no intercept or 

trend variables are included.  The parameter of interest in the equation isγ , if  

γ  = 0, then the equations are non-stationary and have a unit root.  This test 

involves estimating one (or more) of the equations above using ordinary least 

squares in order to obtain the estimated value of γ  and the associated 

standard error.  The t-test statistic value of the regression equation is 

calculated by dividing γ  by the corresponding standard error.  Comparing 

the resulting t-statistic with the appropriate values reported in the 

Dickey-Fuller’s tables allows one to determine whether or not to reject the null 

hypothesis,    γ  = 0 (non-stationary series).  The methodology is the same 

regardless of which of the three forms of the equations is estimated.  

However, the critical values of the t-statistics do depend on whether an 

intercept and/or time trend is included in the regression equation.  Dickey and 

Fuller (1979) found that the critical values for γ  = 0 were dependent on both 

the form of the regression equation and the sample size.  As the sample size 

increases, the critical value of the t-statistic becomes more negative.   

 

 

Dickey and Pantula (1987) proposed a sequential test procedure, one that 

allows testing for series containing more than one unit root.  As an illustration, 

consider a series that has two unit roots.  This series is analyzed by testing 

the null hypothesis of two unit roots against the alternative of one unit root.  If 

the null hypothesis is rejected, we may then test the hypothesis of exactly one 

unit root against the alternative of no unit root.  An example of this testing 

procedure is provided in Mills (1999, pg. 90). 

 

 

A procedure for testing for the presence of a unit root in a general time series 

setting has also been proposed by Phillips (1987).  This approach is a 

non-parametric technique with respect to nuisance parameters and therefore 

allows for a wide class of time series models in which there is a unit root.  

This procedure can be used for ARIMA models with heterogeneously as well  
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as identically distributed innovations.  The method seems to have significant 

advantages when there are moving average components in the time series 

and, offers an alternative to the Dickey-Fuller procedure.  Moreover, Phillips 

and Perron (1988) extend this method to the cases where a drift and/or a 

linear trend are included in the specification.  These extensions are important 

for practical applications, where the presence of a non-zero drift is common.  

In addition, in many cases and, particularly, with economic time series, the 

main competing alternative to the presence of a unit root is a deterministic 

linear time trend.  It is therefore important that regression tests for unit roots 

allow for these possibilities.   

 

 

In conclusion, the inclusion of unit root testing is provided as we use the ADF 

tests to determine the order of integration of the simulated data for our models.   

 

 

3.2 Test of cointegration 

 

In the last two decades the theory of cointegrated variables has provided an 

exciting and new approach to econometric modelling.  The theory of 

cointegration provides econometricians with a practical procedure to analyze 

non-stationary time series data.  These non-stationary time series are 

cointegrated if the linear combination of these series is stationary.  These 

stationary linear combinations are referred to as the cointegrating equations 

and may be interpreted as the long-run equilibrium relationships among the 

variables.  The purpose of the test of cointegration is to determine whether a 

group of non-stationary series are cointegrated.   

 

 

There are several methods to test for cointegration in a multi-equation model.  

The initial procedure, developed by Engle and Granger, was referred to as the 

Engle-Granger two-step procedure. This was followed up by Johansen who 

determined the maximum likelihood approach using the trace of the error  
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correction vector.  Engle and Granger (1987) were the first to propose the 

theory of cointegration.  Although the Engle-Granger two-step procedure is 

easy to implement, it have several important defects.  The estimation of the 

long-run equilibrium regression using the Engle-Granger two-step procedure 

requires that one place one variable on the left-hand-side of the equation and 

uses the other variables as regressors.  In practice, it is possible to find that 

one regression indicates that the variables are cointegrated, whereas 

reversing the order of the variables indicates no cointegration.  This is an 

undesirable feature of the procedure because the test for cointegration should 

not change when the order of the variables are reversed.  The problem is 

obviously compounded when using three or more variables since any of the 

variables can be selected as the dependent variable.  Moreover, in tests 

using three or more variables, we know that there may be more than one 

cointegrating vector.  The method has no systematic procedure for the 

separate estimation of the multiple cointegrating vectors.  Another drawback 

of the Engle-Granger two-step procedure is that it relies on a two-step 

estimator and any error introduced in the first step is carried into the second 

step.  Fortunately, several methods have been developed that avoid these 

problems.   

 

 

The Johansen (1988) maximum likelihood estimator can estimate and test for 

the presence of multiple cointegrating vectors as an alternative to using the 

problematic two-step estimators.  The Johansen’s maximum likelihood 

estimator allows one to test the restricted versions of the cointegrating 

vector(s) and the speed of adjustment parameters.  The limitations 

associated with the Engle and Granger two-step procedure and the fact that 

most econometric packages are now capable of running the matrix algorithms 

of the Johansen method means that this is the procedure we have followed in 

our analysis.   

 

 

Johansen’s method of testing for cointegration has become an essential tool 

for applied economists who model time series data (see Kouassi (1997),  
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Parikh and Kahn (1997), Sinha (1998) and Leng (2002)).  The phenomenal 

growth in software development has seen the method of Johansen being 

incorporated into econometric software packages such as Shazam, EViews 

and Cats for Rats.  The availability of these packages has resulted in 

widespread application of cointegrated modelling.  

 

 

The Johansen methodology uses the mathematics of the rank of a matrix to 

test for cointegration.  The theory shows that cointegration can be tested as 

the hypothesis of a reduced rank of a regression coefficient matrix in a vector 

error correction model.  There are two tests used by Johansen for testing the 

number of cointegrating relations.  They are the trace statistic ( traceλ ) and the 

maximal eigenvalue statistic ( maxλ ).   

 

The two statistical tests proposed by Soren Johansen are shown below. 

 

Trace statistic: 

 

traceλ  = 
= +

− − λ
�

1

ˆln(1 )
n

i

i r

T  

where  iλ̂ = estimated values of the characteristic roots 

T= the actual number of observations used 

        r = 0, 1, 2, …, n -2, n -1 

        n = number of characteristic roots 

 

 

Maximal eigenvalue statistic: 

 

maxλ  = 1ln(1 )+− − λ� rT  

where  iλ̂ = estimated values of the characteristic roots 

T= the actual number of observations used 

        r = 0, 1, 2, …, n -2, n -1 

        n = number of characteristic roots 
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The traceλ  tests the null hypothesis that the number of distinct cointegrating 

vectors is less than or equal to r against a general alternative.  In the traceλ , 

the further the estimated characteristic roots ( iλ̂ ) are from zero, the more 

negative the − λ�ln(1 )i  and the larger the traceλ .  If the traceλ  is large, then the 

chances of rejecting the null hypothesis, that the number of distinct 

cointegrating vectors is less than or equal to r, increases.  The maxλ  tests 

the null hypothesis that the number of cointegrating vectors is r against the 

alternative of r + 1 cointegrating vectors.  Again, if the estimated value of the 

characteristic roots ( iλ̂ ) is close to zero in the maxλ , then the maxλ  will be 

small.  If the maxλ  is small, then the chances of rejecting the null hypothesis 

of r cointegrating vectors will decrease.   

 

 

To implement Johansen’s test of cointegration, it is necessary to determine the 

number of lag terms in the vector autoregression model.  In practice the lag 

order is unknown and needs to be chosen prior to conducting any statistical 

tests since these tests may suffer from serious size distortions if the lag order 

is not chosen appropriately (see for example Cheung and Lai (1993)).  To this 

end, it has been proposed that information criteria such as Akaike’s (1973) 

AIC, the Bayesian information criterion proposed by Schwarz’s (1978) and the 

other information criteria be used to determine the number of lag terms in the 

cointegrated model.  However, the optimum information criterion used for 

determining the number of lag terms in the cointegrated model is still 

debatable and as such is the focus of this study. 

 

 

When performing Johansen’s method of testing for cointegration, one needs to 

decide on the type of deterministic components to incorporate into the model.  

A model with a linear deterministic trend includes terms such as an intercept 

and/or a linear time trend, while a model without a deterministic trend may 

include an intercept or no intercept term and a model with a quadratic 

deterministic trend includes both an intercept and a linear time trend term.   
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Therefore, it is important for one to be aware of the different types of 

deterministic components so that the correct components are included into the 

model. 

 

 

Johansen’s method of testing for cointegration is based on several 

assumptions. Arguably the most important assumption is that all series are 

non-stationary and each of the series is integrated of a same order. In this 

study we only consider series which are integrated of order one, denoted I (1).  

The pre-dominant applied cointegration literature considers the case where 

the series is I (1), examples of applications can be found in Barr and Kahn 

(1995), Akinboade and Niedermeier (2002) and Leng (2002).  The reason 

provided is that most economic variables are integrated of an order one.  

Several authors used the term cointegration to refer to the case in which 

variables are I (1).  To test whether the series satisfies the assumption of I 

(1), the Augmented Dickey-Fuller test is often used. 

 

 

Cheung and Lai (1993) were concerned with the performance of Johansen’s 

likelihood ratio tests for cointegration in finite sample sizes.  The likelihood 

ratio tests proposed by Johansen were derived from asymptotic results and 

statistical inferences in finite samples could be inappropriate.  In particular, 

the critical values based on asymptotic distributions could be misleading.  In 

the Cheung and Lai (1993) study, the finite sample critical values of the 

Johansen’s likelihood ratio tests were assessed and the sensitivity of the 

likelihood ratio tests for the different lag specifications were examined.  It was 

found that Johansen’s tests of cointegration were biased toward finding 

cointegration more often than asymptotic theory suggests.  Furthermore, the 

finite-sample bias increases as the dimension of the lag length increases.    

 

 

In summary, Johansen’s method of testing for cointegration was used to test 

the number of cointegrating relationships between the simulated time series  
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equations and those that satisfied pre-determined conditions were analyzed 

further. 
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Chapter 4 

 

Model Selection Criteria 

 

A standard problem in time series analysis is the choice of an appropriate 

model to represent the data.  This is a common problem when a statistical 

model contains many variables.  According to Parzen (1982), statistical data 

modelling is a field of statistical reasoning that seeks to fit models to data 

without knowing what the “true” model is or might be. 

 

 

Consequently, one seeks to learn the model and study the quality of the model 

by a process which is called statistical model identification or evaluation.  In 

recent years, in the literature, the necessity of introducing the concept of 

model selection or model evaluation has been recognized.  Sclove (1994) 

describes model selection as the choice of selecting the best model(s) from a 

set of models and the different type of models that one compares and selects 

can be characterized according to the number of lags, the different number of 

explanatory variables and other factors.  Also, there is presently a great deal 

of interest in simple criteria represented by parsimony of parameters for 

choosing one of a set of competing models to describe a given data set.  As 

discussed in Stone (1981), parsimony can take in to account a variety of 

attributes of the selected model.  One such attribute is the cost of measuring 

the models that required implementing the model and a second attribute is the 

complexity of the selected model.  The general principle is that for a given 

level of accuracy, a simpler or a more parsimonious model is preferable to a 

more complex one. 

 

 

This study focuses on four well-known model selection criteria to determine 

the order of the model and each of these criteria is discussed in the literature 

that follows.  The four criteria are Akaike’s information criterion, Schwarz’s 

information criterion, Hannan-Quinn’s information criterion and Final 

Prediction Error.  In this study, these criteria are used to analyze simulated 



29 

data from a theoretical cointegrated model.  The criterion which identifies the 

correct model most often is identified as the most appropriate criterion. 

 

 

The four well-known information criteria that are used in this research follow a 

similar format to the general information criterion (GIC) and the formula of the 

GIC is illustrated below.  The first term of the GIC measures the lack of fit of 

the model and the second term is a penalty function for the number of 

parameters in the model.  The lack of fit of the model involves a measure of 

the lack of parsimony or complexity of the model.  One of the issues that lead 

to model complexity is the number of parameters incorporated in the model.   

 

GIC = 2log( )− kL  + kP  

 

where kL is the likelihood value of the k-th model 

      kP  is the penalty for the k-th model 

 

 

4.1 Akaike’s information criterion 

 

During the last three decades, Akaike’s information criterion (AIC) has had an 

important impact in statistical model evaluation problems.  He developed the 

information-theoretic, or the entropic AIC criterion for the identification of an 

optimal and parsimonious model in data analysis from a class of competing 

models which take model complexity into account.  The literature review in 

Chapter 2 presented a few of the published references which use AIC for 

model selection.  There are many other publications but some of the more 

recent include Akinboade and Niedermeier (2002), Botha and Apostolellis 

(2003) and Nwokoma and Olofin (2003). 

 

 

The introduction of AIC furthered the recognition of the importance of good 

modelling statistics.  As a result, many important statistical modelling 

techniques have been developed in various field of statistics, control theory, 
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econometrics, engineering, psychometrics, and in many other fields 

(Bozdogan (1987)).  Despite the accumulation of many successful results 

using AIC, and despite its extreme popularity and growing school of 

adherents, AIC has been almost universally accepted in some areas of 

statistics, whilst in other areas it is still unknown or misunderstood (Bozdogan 

(1987)).  

 

 

The model selection strategy of AIC has the objective of selecting a model 

based on simply minimizing the Kullback-Leibler discrepancy between the 

unknown (true) and the approximating data based models.  Finding of the 

true model can be very complex and may require a great amount of time, since 

the model may incorporate an infinite number of parameters.  Therefore, 

obtaining a true model is not an ideal manner to represent the recorded data 

but rather allow for the best approximating model and that is what AIC does. 

 

 

In this study, we use the IC formula 

 

AIC ( p ) = � �ln | | + 
22k p

T
 

 

  

where =k the number of variables in the model 

 =p the number of lag terms in the model 

 =T the number of observations used 

 � �ln | | = the estimated covariance matrix of the fitted multivariate 

model 

 

 

taken from Lütkepohl (1985) and Gonzalo and Pitarakis (1998) and it consists 

of two measurement terms.  The first term (i.e. � �ln | | ) measures the 

inaccuracy or poorness of fit of the model.  The second term (i.e.
22k p

T
)  
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measures the complexity or the penalty due to the increase of unreliability in 

the first term which depends upon the number of parameters used to fit the 

data.   

 

 

Consequently, when there are several competing models the parameters 

within the models are estimated by the method of maximum likelihood and the 

values of the AIC are computed and compared to find a model with the 

minimum value of AIC.  This approach is called the minimum AIC procedure 

and the model with the minimum AIC value is called the minimum AIC 

estimator and is chosen to be the best model.  For us the best model is the 

one with least complexity, or equivalent, the highest information gain.  In 

applying AIC, the emphasis is on comparing the goodness of fit of various 

models with an allowance made for parsimony.   

 

 

4.2 Schwarz’s information criterion 

 

This model selection criterion is used when a true model exists and has a finite 

and small dimension that does not increase with sample size.  This criterion 

does not receive any benefit from the theory of Kullback-Leibler discrepancy, 

but is derived based on a Bayesian viewpoint.  The best fitting true model is 

chosen from the list of candidate models as the one that has the lowest 

Schwarz’s information criterion (SIC) value. 

 

 

Lütkepohl (1985) performed a comparison of several information criteria used 

for determining the order of a vector autoregressive process for different 

sample sizes.  The result indicated that the Schwarz’s information criterion 

estimated the order of an autoregressive process correctly most often and 

estimated correctly more often when the sample size increased.  Lütkepohl 

suggested that the Schwarz’s information criterion and the Hannan-Quinn’s 

criterion were the most parsimonious criteria as these two criteria produced 
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the smallest average squared forecasting error and estimated the order of an 

autoregressive process correctly most often.   

 

 

Several studies have applied the criterion introduced by Schwarz (1978).  

The criterion developed by Schwarz is often referred to as SIC, Bayesian 

information criterion (BIC) or even Schwarz Bayesian criterion (SBC).  A 

review of the literature illustrates that all three notations are in use. 

 

In this study, we use the IC formula  

 

SIC ( p ) = |ˆ|ln Σ  + 
2 ln( )k p T

T
 

 

where , ,k p T and |ˆ|ln Σ  are as previously defined  

 

taken from Lütkepohl (1985) and Gonzalo and Pitarakis (1998). 

 

 

4.3 Hannan-Quinn’s information criterion 

 

Hannan and Quinn (1979) provide a brief discussion on methods used for the 

determining the order of an autoregressive model.  They realized that a 

method such as Shibata’s information criterion was inconsistent in the 

estimation of the order of the autoregressive model. 

 

 

Hannan and Quinn (1979) claimed that the best-known rule for estimating the 

true order of an autoregression was to make use of the method developed by 

Akaike (1969).  They followed a similar estimation procedure where the 

method was strongly consistent for estimating the order of the autoregression.  

This method they called the Hannan-Quinn’s information criterion (HQ) and it 

has been used in analysis by Lütkepohl (1985), Quinn (1980) and Gonzalo 

and Pitarakis (1998).   
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Lütkepohl (1985) illustrated in his analysis that the method developed by 

Hannan and Quinn was consistent in the estimation of the true order of an 

autoregressive process.  This was established when performing comparison 

with other consistent criteria of various sample sizes.  Lütkepohl suggested 

that the Schwarz’s information criterion and Hannan-Quinn’s information 

criterion were the best criteria when one was interested in forecasting 

(minimizing the mean square forecasting error) or estimating the order of a 

finite order vector autoregressive model. 

 

 

Quinn (1980) extended the procedure developed by HQ to the larger 

dimension case.  This larger dimension case was referred to as the 

multivariate autoregressive process.  This procedure was developed in such 

a way that it was strongly consistent just as in the situation of a univariate 

autoregression.  During the same period, Hannan (1980) extended the 

original work of HQ by determining the order of an autoregressive moving 

average process.   

 

In this study, we use the IC formula  

 

HQ ( p ) = |ˆ|ln Σ  + 
22 lnlnk p T

T
 

 

where , ,k p T and |ˆ|ln Σ  are as previously defined  

 

taken from Lütkepohl (1985) and Gonzalo and Pitarakis (1998). 

 

 

4.4 Final Prediction Error 

 

Akaike (1969) provided a brief discussion on the practical use of the Final 

Prediction Error (FPE) in determining the order of an autoregressive model.  

The practical application of the FPE is to estimate the FPE of each 
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autoregressive model within a prescribed sufficiently wide range of possible 

orders and to select the one that gives the minimum of the estimates.  Akaike 

(1969) claimed that by seeking the minimum of FPE, we would be able to 

arrive at an autoregressive model of an order that did not have a significant 

bias and simultaneously did not have a large mean square prediction error.   

 

 

In research published during 1969, Akaike performed a comparison of three 

types of predictors that were used for model selection.  These predictors 

were the original minimum FPE, the modified version denoted by the 

minimizing (FPE) 1/4 and the FPE proposed by Anderson (1963) for the 

decision of the order of a Gaussian autoregressive process.  These three 

predictors were compared based on various simulated time series models, the 

predictor that indicated the true model most often was the one selected.  The 

results showed that for practical applications, the original procedure, minimum 

FPE, was the best procedure to use for model comparison. 

 

 

Lütkepohl (1985) also compared several types of information criteria and 

found that the predictor FPE had a tendency to over-estimate the order of an 

autoregressive process.  In addition, the criteria FPE, AIC and Shibata all had 

a tendency to obtain the same number of lag terms for large sample sizes. 

 

 

In this study, we use the IC formula  

 

FPE ( p ) = Σ̂| |

� �
+ +� �
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taken from Lütkepohl (1985) which has an equivalent minimum for 
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ln FPE ( p ) = 


 �
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where , ,k p T and |ˆ|ln Σ  are as previously defined. 
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Chapter 5  

 

Methodology 

 

In this study, we simulate several lag length models for our empirical analysis.   

We restricted our highest lag length term to four.  For each of the lag length 

models, a sample size of 30, 60, 120 and 240 observations was simulated.  

The sample size selection followed the study of Khim and Liew (2004) where 

they use the same number of observations for ARMA models.  To illustrate 

the methodology, we use a dataset of size 30 and a model with one lag term. 

 

 

In this study, we simulated 15300 series for each of the models.  These 

series were simulated using the random number generator in Excel and are 

recorded on the attached DVD.  The simulated series were then exported into 

EViews 5.1 for analysis purposes.   

 

 

An illustration of the procedure used to test whether the simulated bivariate 

time series equation is cointegrated is illustrated in Figure 5.1. 
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5.1 Unit root tests 

 

In this study, the ADF test is used to determine the order of integration of each 

series in the bivariate model.  The order of integration is established by 

determining whether the series is stationary or non-stationary.  If the series is 

non-stationary, the series is differenced and the differenced series is then 

tested to determine whether it is stationary or non-stationary.  This sequence 

is repeated until all series are stationary.  A series (for example 1,  tx ) that does 

not need to be differenced to achieve stationarity is called a series of 

integrated order zero, denoted I (0) and a series that is differenced once is 

called a series of integrated order one, denoted I (1).   

 

 

This study only considers series of order one i.e. I (1) such that they are 

non-stationary series but difference stationary.  Many of the methods used 

here can be extended to higher order cases, as an example a series that is I 

(2) or even higher.  In our analysis we only retain the simulated data that 

meets the criteria I (1).  If the criteria is not met, the dataset for both variables 

is discarded.   

 

 

5.2 Test of cointegration 

 

The Johansen method of testing for cointegration was used to analyze the 

linear relationship between these simulated series.  For ease of exposition, 

this study applies the Trace statistic for the testing of cointegration as the 

results are similar to those of the Maximum Eigenvalue statistic.  As an 

example, consider the series 1,tx and 2,tx analyzed in the next section.  Both 

series 1,tx and 2,tx  were I (1) and thus were tested for cointegration.  The 

Johansen test of cointegration for the series 1,tx and 2,tx  is shown in Table 

5.2. 
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Table 5.2: Test of cointegration for the series 1,tx and 2,tx   
 
        
Sample (adjusted): 2 30     
Included observations: 29 after adjustments     
Trend assumption: No deterministic trend     

Series: x1t x2t      
Lags interval (in first differences): No lags     
      
Unrestricted Cointegration Rank Test (Trace):     
      
Hypothesized Trace Critical   
Number of Cointegrating Equation (s) Statistic Value Prob.** 
      
None * 31.57393 12.3209 0 
At most 1 3.075338 4.129906 0.0941 
      
 Trace test indicates 1 cointegrating equation(s) at the 0.05 level     
 * denotes rejection of the hypothesis at the 0.05 level     
 **MacKinnon-Haug-Michelis (1999) p-values     
        
 

 

The result of the Trace statistic indicates that there is at most one 

cointegrating relationship (at the 5% significance level) between the series 1,tx  

and 2,tx  i.e. for a 5% significance level test we would reject the null 

hypothesis lending support to the claim that the bivariate series has at most 

one cointegrating relations.  In Table 5.2 the Johansen test of cointegration, 

the null hypothesis of this test indicates the series has no cointegrating 

relations against the alternative the series has one cointegrating relations 

between them.   

 

 

5.3 Model selection criteria 

 

In this study, we assessed the information criteria given in Chapter 4.  To 

assess these criteria we need to calculate the value of each of these 

information criteria for each of the lag length models.  Then evaluate the 

percentage that correctly estimated the true lag for the model.   
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For each of the information criteria, we estimate the determinant of the 

covariance matrix (| � � |) for the number of lag terms (p), the number of 

variables in the model (k) and the number of observations (T) used for 

estimating the fitted model.  The function of the Akaike’s information criterion 

is provided below: 

 

AIC ( p ) = � �ln | | + 
22k p

T
 

 

 

In summary, the simulated time series are tested to ensure they are I (1) using 

the ADF test.  The linear relationship between the bivariate time series 

equations are analyzed using the Johansen test of cointegration and only 

bivariate equations that have one cointegrated relationship between them 

were analyzed further in this study.  The information criteria such as AIC, 

SIC, HQ and FPE estimate the lag length for each of the cointegrated models.  
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Chapter 6  

 

The Theoretical and Simulation Models 

 

The theoretical bivariate cointegrated models are presented in the forthcoming 

sections of this study.  We restrict our study in the following way: we only use 

a two variable model, we exclude intercept and trend terms and limit the 

number of lag terms to four.  The lag restriction is based on the methodology 

of Khim and Liew (2004).  The variable restriction is by choice, the trivariate 

model is a study currently under investigation by another researcher.  The 

exclusion of the intercept and trend terms is to simplify the analysis and should 

have little impact on the outcome of the study. 

 

 

Initially, the cointegrated relationship for a lag one bivariate autoregressive 

model is illustrated.  This is then followed by models of lag two, three and 

four.  As discussed in Chapter 3, the theory of cointegration requires these 

lagged models to be non-stationary and integrated of order one, such that the 

first difference process −∆ = − 1t t t
x x x  must be stationary.  These 

non-stationary time series models are cointegrated if the linear combination of 

these series is stationary.  The linear combination of these series is called the 

cointegrating equation and is illustrated in the forthcoming section.   

 

 

6.1 Autoregressive model of lag length one 

 

The example of a two dimensional autoregressive model for a lag length of 

one is represented below.  These autoregressive models depend on the 

previous changes of both variables 1,tx  and 2,tx  and the white-noise 

disturbances.  Similar models can be found in the study of Cheung and Lai 

(1993) and are used illustratively in the text of Enders (2004).  We define the 

bivariate model with one lag term as 
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1,tx 11 1, 1 12 2, 1 1,t t t
a x a x− −= + + ε  

2,tx 21 1, 1 22 2, 1 2,t t t
a x a x− −= + + ε  

 

 

where 

 

ija denotes the coefficient of the ith equation for the jth variable (where i = 1, 2 

and j = 1, 2) 

 

j,tx  denotes the jth variable at time period t 

 

i,tε  denotes the error term of the ith equation at time period t. 

 

 

Assuming the bivariate model is cointegrated and that each single equation is 

first order stationary, the model can be re-written as a cointegrated model by 

subtracting j, 1tx −  from both sides of each equation i.e. 

 

1,tx 11 1, 1 12 2, 1 1,t t t
a x a x− −= + + ε   is re-written as 

 

1, 1, 1 11 1, 1 1, 1 12 2, 1 2, 1 1,( 1 ) ( 0 )
t t t t t t t

x x a x x a x x− − − − −− = − + − + ε  

 

and  

 

2,tx 21 1, 1 22 2, 1 2,t t t
a x a x− −= + + ε   is re-written as 

 

2, 2, 1 21 1, 1 1, 1 22 2, 1 2, 1 2,( 0 ) ( 1 )
t t t t t t t

x x a x x a x x− − − − −− = − + − + ε . 
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And thus for the cointegrated model we have 

 

∆ 1,tx 11 1, 1 1, 1 12 2, 1 2, 1 1,( 1 ) ( 0 )
t t t t t

a x x a x x− − − −= − + − + ε  

 

∆ 2,tx 21 1, 1 1, 1 22 2, 1 2, 1 2,( 0 ) ( 1 )
t t t t t

a x x a x x− − − −= − + − + ε  

 

 

Re-written in matrix form 

 

∆ 
 ∆ 

1,

2,

t

t

x

x

1, 1 1,11 12

2, 1 2,21 22

1 0

0 1

t t

t t

xa a

xa a

−

−

        
= − +       

       

ε
ε

. 

 

 

This can be represented in matrix notation and simplified to  

 

∆ tX 1 1( )
t t

A I X −= − + Ε . 

 

 

Simplifying, the notation further we have 

 

∆ tX 1 1( )
t t

A I X −= − + Ε  

       1 1( )
t t

I A X −= − − + Ε  

       
1t t

X −= +Π Ε  

 

where 1( )I A= − −Π  and 
11 12

1

21 22

a a
A

a a

 
=  
 

, 
1 0

0 1

 
=  
 

I . 

 

 

Our assumption that the bivariate model is cointegrated means that the 

coefficient matrix Π  has rank r, where 0 < r < k, with k denoting the number 

of variables in the multivariate model (Enders (2004) and Harris (1995)).  The 

rank r is the number of cointegrating relations (or the cointegrating rank) 

between the variables.   
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An example of the two simulated series of lag length one is illustrated below.  

The simulated series consists of an autoregressive irregular component, j,tσ .  

The idea for the inclusion of this component was taken from Enders (2004) 

with the objective of ensuring a “pure” irregular component.   

 

 

The series 1,tx and 2,tx is constructed as 

 

1,tx 1, 1 2, 1 1, 1,1 0
t t t t

x x− −= + + +σ ε  

2,tx 1, 1 2, 1 2, 2,0.5 0.7
t t t t

x x− −= + + +σ ε  

 

where 1, 1, 1 1,0.5
t t t−= +σ σ µ  

 2, 2, 1 2,0.5
t t t−= +σ σ µ  

 

where 1,0 2,00 and 0x x= =   

 1,0 2,00 and 0= =σ σ  

 1, 2,~ (0,1) and ~ (0,1)
t t
N Nε ε  

 1, 2,~ (0,1) and ~ (0,1)
t t
N Nµ µ . 

 

 

Using the coefficients given, the equations are restricted to provide a 

cointegrated series with one cointegrating equation.  This is seen by 

substituting the values into the error correction model and observing that the 

error correction parameter matrix,Π , has rank of one. 

 

 

1, 1, 1t t
x x −− 1, 1 1, 1 2, 1 1, 1,(1 ) 0

t t t t t
x x x− − −= − + + +σ ε  

 

1,tx∆ 1, 1 2, 1 1, 1,(1 1) 0
t t t t

x x− −= − + + +σ ε  

 

and  
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2, 2, 1t t
x x −− 1, 1 2, 1 2, 1 2, 2,0.5 (0.7 )

t t t t t
x x x− − −= + − + +σ ε  

 

2,tx∆ 1, 1 2, 1 2, 2,0.5 (0.7 1.0)
t t t t

x x− −= + − + +σ ε  

 

 

1,

2,

t

t

x

x

∆ 
 ∆ 

=
1, 1 1, 1,

2, 1 2, 2,

(1 1) 0

0.5 (0.7 1.0)

t t t

t t t

x

x

−

−

     − 
+ +      −       

σ ε
σ ε

. 

 

 

This can be written in matrix notation and simplified to 

 

t
X∆  

1, 1 1, 1,

2, 1 2, 2,

(1 1) 0

0.5 (0.7 1.0)

t t t

t t t

x

x

−

−

     − 
= + +      −       

σ ε
σ ε

 

 

 =
1, 1 1, 1,

2, 1 2, 2,

0 0

0.5 0.3

t t t

t t t

x

x

−

−

      
+ +      −       

σ ε
σ ε

 

 

where 
 

=  − 

0 0

0.5 0.3
Π . 

 

 

An example of the first 20 observations of the above bivariate model is shown 

in Table 6.1. 
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Table 6.1: Simulated data for the lag length one autoregressive time series 
equations 
 

     

     

 Observation  x1,t x2,t  

 1 -21.69270671 -35.97325524  

 2 -21.320594 -35.33114314  

 3 -21.35507191 -34.32587148  

 4 -21.36299082 -34.85752817  

 5 -21.52136315 -35.4419631  

 6 -21.22716764 -34.69287283  

 7 -21.38725171 -33.59283254  

 8 -19.08886052 -35.00819907  

 9 -20.24699954 -34.05227178  

 10 -21.84365777 -35.19364626  

 11 -22.60585607 -36.67884141  

 12 -23.7244929 -38.68570684  

 13 -23.44721829 -36.77601806  

 14 -24.10946042 -37.00822383  

 15 -22.92577941 -38.4908229  

 16 -22.19188038 -38.77070955  

 17 -20.36361162 -36.18285526  

 18 -21.99904782 -35.63420184  

 19 -24.39075223 -37.58770944  

 20 -25.57779484 -39.97814559  

     

     

 

 

 

6.2 Autoregressive model of lag length two 

 

The example of a two dimensional autoregressive model for a lag length of two 

is represented below.  This model is similar to the lag one model except that 

an additional lag term is added.  We define the bivariate model with two lag 

terms as  

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 1,t t t t t
a x a x b x b x− − − −= + + + + ε  

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 2,t t t t t
a x a x b x b x− − − −= + + + + ε  
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where ija , j,tx  and i,tε  are as defined for autoregressive model of lag length 

one and ijb denotes the coefficient of the ith equation for the jth variable (where 

i = 1, 2 and j = 1, 2 at time period t – 2). 

 

 

As for the lag one autoregressive model, assuming the bivariate model is 

cointegrated and that each single equation is first order stationary, the model 

can be re-written as a cointegrated model by subtracting j, 1tx −  from both sides 

of each equation i.e. 

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 1,t t t t t
a x a x b x b x− − − −= + + + + ε   is re-written as 

 

−−1, 1, 1t t
x x 11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 1,( 1 ) ( 0 )

t t t t t t t
a x x a x x b x b x− − − − − −= − + − + + + ε  

 

and  

 

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 2,t t t t t
a x a x b x b x− − − −= + + + + ε  is re-written as 

 

−−2, 2, 1t t
x x 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 2,( 0 ) ( 1 )

t t t t t t t
a x x a x x b x b x− − − − − −= − + − + + + ε . 

 

 

And thus for the cointegrated model we have 

 

∆ 1,tx 11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 1,( 1 ) ( 0 )
t t t t t t t

a x x a x x b x b x− − − − − −= − + − + + + ε  

 

∆ 2,tx 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 2,( 0 ) ( 1 )
t t t t t t t

a x x a x x b x b x− − − − − −= − + − + + + ε  
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Re-written in matrix form 

 

∆ 
 ∆ 

1,

2,

t

t

x

x

1, 1 1, 2 1,11 12 11 12

2, 1 2, 2 2,21 22 21 22

1 0

0 1

t t t

t t t

x xa a b b

x xa a b b

− −

− −

           
= − + +           

          

ε
ε

. 

 

 

This can be represented in matrix notation and simplified to 

 

∆
t
X 1 1 2 2( )

t t t
A I X A X− −= − + + Ε . 

 

 

Now, we add and subtract a term −2 1tA X  from the right-hand-side of the 

equation.  This is then simplified as illustrated below. 

 

∆
t
X  1 1 2 2 2 1 2 1( ) ( )

t t t t t
A I X A X A X A X− − − −= − + + − + Ε  

1 2 1 2 2 2 1( )
t t t t

A A I X A X A X− − −= + − + − + Ε  

 1 2 1 2 1 2( ) ( )
t t t t

I A A X A X X− − −= − − − − − + Ε  

 1 2 1 2 1( )
t t t

I A A X A X− −= − − − − ∆ + Ε  

 

where 
1,11 12 11 12

1 2

2,21 22 21 22

1 0
,    ,    and 

0 1

t

t

t

a a b b
A A I

a a b b

      
= = = =       

      

ε
  Ε

ε
. 

 

 

Simplifying, the notation further we have 

 

t
X∆  1 1t t

X X −= + ∆ +Π Π Εt- 1  

 

where 1 2( )I A A= − − −Π , 1 2A= −Π . 
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As for the lag one model, the assumption of a cointegrated model implies that 

the rank ofΠ , denoted r, must have rank, 0 < r < k, where k denotes the 

number of variables in the model. 

 

 

An example of the two simulated series of lag length two is illustrated below.  

The simulated series consists of no autoregressive irregular components and 

is constructed as 

 

1,tx 1, 1 2, 1 1, 2 2, 2 1,0.7 0.45 0.3 0.3
t t t t t

x x x x− − − −= − + + + + ε  

2,tx 1, 1 2, 1 1, 2 2, 2 2,0 0.8 0 0.2
t t t t t

x x x x− − − −= + + + + ε  

 

where 1,0 2,00 and 0x x= =   

 1, 2~ (0,1) and ~ (0,1)
t ,t
N Nε ε . 

 

 

Using the coefficients given, the equations are restricted to provide a 

cointegrated series with one cointegrating equation.  This is seen by 

substituting the values into the error correction model and observing that the 

error correction parameter matrix,Π , has rank of one. 

 

 

1, 1, 1t t
x x −− 1, 1 1, 1 2, 1 1, 2 2, 2 1,0.7 0.45 0.3 0.3

t t t t t t
x x x x x− − − − −= − − + + + + ε  

 

1,tx∆ 1, 1 2, 1 1, 2 2, 2 1,( 0.7 1.0) 0.45 0.3 0.3
t t t t t

x x x x− − − −= − − + + + + ε  

 

and 

 

2, 2, 1t t
x x −− 1, 1 2, 1 2, 1 1, 2 2, 2 2,0 0.8 0 0.2

t t t t t t
x x x x x− − − − −= + − + + + ε  

 

2,tx∆ 1, 1 2, 1 1, 2 2, 2 2,0 (0.8 1.0) 0 0.2
t t t t t

x x x x− − − −= + − + + + ε  
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1, 1, 1

2, 2, 1

1 0 0.7 0.45 0.3 0.3

0 1 0 0.8 0 0.2

t t

t t

x x

x x

−

−

∆     −     
= − − − +         ∆          

 

1, 1 1, 2 1,

2, 1 2, 2 2,

0.3 0.3

0 0.2

t t t

t t t

x x

x x

− −

− −

−    
+     −     

ε
ε

 

 

1, 1

2, 1

1 ( 0.7) (0.3) 0 (0.45) (0.3)

0 0 0 1 (0.8) (0.2)

t

t

x

x

−

−

   − − − − − 
= − +    − − − −    

 

1, 1 1, 2 1,

2, 1 2, 2 2,

0.3 0.3

0 0.2

t t t

t t t

x x

x x

− −

− −

−    
+     −     

ε
ε

 

 

1, 1 1, 1 1, 2 1,

2, 1 2, 1 2, 2 2,

1.4 0.75 0.3 0.3

0 0 0 0.2

t t t t

t t t t

x x x

x x x

− − −

− − −

−     −   
= − + +         −        

ε
ε

 

 

where 
− 

=  
 

1.4 0.75

0 0
Π . 

 

 

In the sections that follow, the two dimensional autoregressive models are 

extended to a lag three and a lag four model.  This extension alters the 

structure of the model.  However, the numbers of cointegrating relations is 

determined in the same manner as the lag one and lag two models.    

 

 

6.3 Autoregressive model of lag length three 

 

The example of a two dimensional autoregressive model for a lag length of 

three is represented below.  This model is similar to the lag two models 

except that an additional lag term is added.  We define the bivariate model 

with three lag terms as  

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 11 1, 3 12 2, 3 1,t t t t t t t
a x a x b x b x c x c x− − − − − −= + + + + + + ε  

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 21 1, 3 22 2, 3 2,t t t t t t t
a x a x b x b x c x c x− − − − − −= + + + + + + ε  
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where ija , ijb , j,tx  and i,tε  are as defined for autoregressive model of lag 

length two and ijc denotes the coefficient of the ith equation for the jth variable 

(where i = 1, 2 and j = 1, 2 at time period t – 3). 

 

 

As for the lag one autoregressive models, assuming the bivariate model is 

cointegrated and that each single equation is first order stationary, the model 

can be re-written as a cointegrated model by subtracting j, 1tx −  from both sides 

of each equation i.e. 

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 11 1, 3 12 2, 3 1,t t t t t t t
a x a x b x b x c x c x− − − − − −= + + + + + + ε   

 

is re-written as 

 

1, 1,t
x x− t- 1

11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 11 1, 3( 1 ) ( 0 )
t t t t t t t

a x x a x x b x b x c x− − − − − − −= − + − + + + +  

 12 2, 3 1,t t
c x − + ε  

 

and  

 

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 21 1, 3 22 2, 3 2,t t t t t t t
a x a x b x b x c x c x− − − − − −= + + + + + + ε  

 

is re-written as  

 

2, 2, 1t t
x x −− 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 21 1, 3( 0 ) ( 1 )

t t t t t t t
a x x a x x b x b x c x− − − − − − −= − + − + + + +  

 22 2, 3 2,t t
c x − + ε . 
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And thus for the cointegrated model we have 

 

1,tx∆ 11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 11 1, 3( 1 ) ( 0 )
t t t t t t t

a x x a x x b x b x c x− − − − − − −= − + − + + + +  

 12 2, 3 1,t t
c x − + ε  

 

2,tx∆ 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 21 1, 3( 0 ) ( 1 )
t t t t t t t

a x x a x x b x b x c x− − − − − − −= − + − + + + +  

 22 2, 3 2,t t
c x − + ε  

 

 

Re-written in matrix form 

 

1,

2,

t

t

x

x

∆ 
 ∆ 

1, 1 1, 2 1, 311 12 11 12 11 12

2, 1 2, 2 2, 321 22 21 22 21 22

1 0

0 1

t t t

t t t

x x xa a b b c c

x x xa a b b c c

− − −

− − −

             
= − + + +             

            
 

1,

2,

t

t

 
 
 

ε
ε

. 

 

 

This can be represented in matrix notation and simplified to 

 

t
X∆ 1 1 2 2 3 3( )

t t t t
A I X A X A X− − −= − + + + Ε . 

 

 

Now, we add and subtract the term −2 1tA X , 3 1tA X −  and 3 2tA X −  from the 

right-hand-side of the equation.  This is then simplified as illustrated below. 

 

 

t
X∆  1 1 2 2 3 3( )

t t t t
A I X A X A X− − −= − + + + Ε  

1 1 2 2 3 3 2 1 2 1 3 1 3 1( ) ( ) ( )
t t t t t t t t

A I X A X A X A X A X A X A X− − − − − − −= − + + + − + − + Ε
 1 2 3 1 2 2 3 3 2 1 3 1( )

t t t t t t
A A A I X A X A X A X A X− − − − −= + + − + + − − + Ε  

 1 2 3 1 2 2 2 1 3 3 3 1( ) ( ) ( )
t t t t t t

I A A A X A X A X A X A X− − − − −= − − − − + − + − + Ε  

 1 2 3 1 2 1 2 2 3 3 3 1( ) ( ) ( )
t t t t t t

I A A A X A X A X A X A X− − − − −= − − − − − − + − + Ε  

 1 2 3 1 2 1 3 3 3 1( ) ( ) ( )
t t t t t

I A A A X A X A X A X− − − −= − − − − − ∆ + − + Ε  
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1 2 3 1 2 1 3 1 3 3( ) ( ) ( ) ( )
t t t t

I A A A X A X A X A X− − − −= − − − − − ∆ − + +   

 3 2 3 2( )
t t t

A X A X− −− + Ε  

1 2 3 1 2 1 3 1 3 2( ) ( ) ( )
t t t t

I A A A X A X A X A X− − − −= − − − − − ∆ − − −     

  3 2 3 3( )
t t t

A X A X− −− + Ε  

1 2 3 1 2 1 3 1 3 2( ) ( ) ( ) ( )
t t t t t

I A A A X A X A X A X− − − −= − − − − − ∆ − ∆ − ∆ + Ε  

1 2 3 1 2 3 1 3 2( ) ( ) ( )
t t t t

I A A A X A A X A X− − −= − − − − − + ∆ − ∆ + Ε  

 

where 1 2 3,    ,    ,    
11 12 11 12 11 12

21 22 21 22 21 22

a a b b c c
A A A

a a b b c c

     
= = =     
     

 

1,

2,

1 0
   and  

0 1

t

t

t

I
  

= =   
   

ε
Ε

ε
. 

 

 

Simplifying, the notation further we have 

 

t
X∆  1 1 1 2 1 2 2( ) ( ) ( )

t t t t t
X X X X− − − −= − ∆ − ∆ − ∆ +Π Π Π Π Ε  

 1 1 2 1 2 2( ) ( )
t t t t
X X X− − −= − + ∆ − ∆ +Π Π Π Π Ε  

 

where 1 2 3( )I A A A= − − − −Π , 1 2 2 3,  A A= =Π Π . 

 

 

As for the lag one model, the assumption of a cointegrated model implies that 

the rank ofΠ , denoted r, must have rank, 0 < r < k, where k denotes the 

number of variables in the model. 

 

 

An example of the two simulated series of lag length three is illustrated below.  

The simulated series consists of no autoregressive irregular components and 

is constructed as 
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1,tx 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 1,0.7 0.4 0.2 0.2 0.1 0.15
t t t t t t t

x x x x x x− − − − − −= − + + + + + + ε  

2,tx 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 2,0 0.8 0 0.2 0 0
t t t t t t t

x x x x x x− − − − − −= + + + + + + ε  

 

where 1,0 2,00 and 0x x= =  

 1, 2,t~ (0,1) and ~ (0,1)
t
N Nε ε . 

 

 

Using the coefficients given, the equations are restricted to provide a 

cointegrated series with one cointegrating equation.  This is seen by 

substituting the values into the error correction model and observing that the 

error correction parameter matrix,Π , has rank of one. 

 

 

1, 1, 1t t
x x −− 1, 1 1, 1 2, 1 1, 2 2, 2 1, 3 2, 30.7 0.4 0.2 0.2 0.1 0.15

t t t t t t t
x x x x x x x− − − − − − −= − − + + + + +  

1,t+ε  

 

1,tx∆ 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 1,( 0.7 1.0) 0.4 0.2 0.2 0.1 0.15
t t t t t t t

x x x x x x− − − − − −= − − + + + + + + ε  

 

and 

 

2, 2, 1t t
x x −− 1, 1 2, 1 2, 1 1, 2 2, 2 1, 3 2, 3 2,0 0.8 0 0.2 0 0

t t t t t t t t
x x x x x x x− − − − − − −= + − + + + + + ε  

 

2,tx∆ 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 2,0 (0.8 1.0) 0 0.2 0 0
t t t t t t t

x x x x x x− − − − − −= + − + + + + + ε  

 

 

1, 1, 1

2, 2, 1

1 0 0.7 0.4 0.2 0.2 0.1 0.15

0 1 0 0.8 0 0.2 0 0

t t

t t

x x

x x

−

−

∆     −       
= − − − − −           ∆            

 

  
1, 1 1, 2

2, 1 2, 2

0.7 0.4 0.2 0.2

0 0.8 0 0.2

t t

t t

x x

x x

− −

− −

−   −   
+ −       −      

 

1, 2 1, 3

2, 2 2, 3

0.1 0.15

0 0

t t

t t

x x

x x

− −

− −

−  
+   −   

1,t

2,t

 
 
 

ε
ε
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1, 1

2, 1

1 ( 0.7) (0.2) (0.1) (0.4) (0.2) (0.15)

0 0 0 1 (0.8) (0.2) 0

t

t

x

x

−

−

 − − − − − − − 
= − −  − − − − − −   

   

  
1, 1 1, 2

2, 1 2, 2

( 0.7) (0.2) (0.4) (0.2)

0 0 (0.8) (0.2)

t t

t t

x x

x x

− −

− −

− − + + 
−   −+ +   
 

1, 2 1, 3

2, 2 2, 3

0.1 0.15

0 0

t t

t t

x x

x x

− −

− −

−  
+   −   

1,

2,

t

t

 
 
 

ε
ε

 

 

1, 1 1, 1 1, 2

2, 1 2, 1 2, 2

1.4 0.75 0.5 0.6

0 0 0 1

t t t

t t t

x x x

x x x

− − −

− − −

−   − −   
= − − −       −      

   

1, 2 1, 3

2, 2 2, 3

0.1 0.15

0 0

t t

t t

x x

x x

− −

− −

−  
+   −   

1,

2,

t

t

 
 
 

ε
ε

 

 

where 
− 

=  
 

1.4 0.75

0 0
Π . 

 

 

6.4 Autoregressive model of lag length four 

 

The example of a two dimensional autoregressive model for a lag length of 

four is represented below.  This model is similar to the lag three models 

except that an additional lag term is added.  We define the bivariate model 

with four lag terms as  

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 11 1, 3 12 2, 3 11 1, 4t t t t t t t
a x a x b x b x c x c x d x− − − − − − −= + + + + + + +  

 12 2, 4 1,t t
d x − + ε  

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 21 1, 3 22 2, 3 21 1, 4t t t t t t t
a x a x b x b x c x c x d x− − − − − − −= + + + + + + +  

 22 2, 4 2,t t
d x − + ε  

 

where ija , ijb , ijc , j,tx  and i,tε  are as defined for autoregressive model of 

lag length three and ijd denotes the coefficient of the ith equation for the jth 

variable (where i = 1, 2 and j = 1, 2 at time period t – 4). 
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As for the lag one autoregressive models, assuming the bivariate model is 

cointegrated and that each single equation is first order stationary, the model 

can be re-written as a cointegrated model by subtracting j, 1tx −  from both sides 

of each equation i.e. 

 

1,tx 11 1, 1 12 2, 1 11 1, 2 12 2, 2 11 1, 3 12 2, 3 11 1, 4t t t t t t t
a x a x b x b x c x c x d x− − − − − − −= + + + + + + +  

 12 2, 4 1,t t
d x − + ε     

 

is re-written as  

 

1, 1, 1t t
x x −− 11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 11 1, 3( 1 ) ( 0 )

t t t t t t t
a x x a x x b x b x c x− − − − − − −= − + − + + + +  

   12 2, 3 11 1, 4 12 2, 4 1,t t t t
c x d x d x− − −+ + + ε  

 

and  

 

2,tx 21 1, 1 22 2, 1 21 1, 2 22 2, 2 21 1, 3 22 2, 3 21 1, 4t t t t t t t
a x a x b x b x c x c x d x− − − − − − −= + + + + + + +  

 22 2, 4 2,t t
d x − + ε     

 

is re-written as 

 

2, 2, 1t t
x x −− 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 21 1, 3( 0 ) ( 1 )

t t t t t t t
a x x a x x b x b x c x− − − − − − −= − + − + + + +  

   22 2, 3 21 1, 4 22 2, 4 2,t t t t
c x d x d x− − −+ + + ε . 

 

 

And thus for the cointegrated model we have 

 

1,tx∆ 11 1, 1 1, 1 12 2, 1 2, 1 11 1, 2 12 2, 2 11 1, 3( 1 ) ( 0 )
t t t t t t t

a x x a x x b x b x c x− − − − − − −= − + − + + + +   

  12 2, 3 11 1, 4 12 2, 4 1,t t t t
c x d x d x− − −+ + + ε  
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2,tx∆ 21 1, 1 1, 1 22 2, 1 2, 1 21 1, 2 22 2, 2 21 1, 3( 0 ) ( 1 )
t t t t t t t

a x x a x x b x b x c x− − − − − − −= − + − + + + +   

  22 2, 3 21 1, 4 22 2, 4 2,t t t t
c x d x d x− − −+ + + ε  

 

Re-written in matrix form 

 

1,

2,

t

t

x

x

∆ 
 ∆ 

1, 1 1, 211 12 11 12

2, 1 2, 221 22 21 22

1 0

0 1

t t

t t

x xa a b b

x xa a b b

− −

− −

         
= − + +         

        

1, 311 12

2, 321 22

t

t

xc c

xc c

−

−

  
+  

   
 

   
1, 4 1,11 12

2, 4 2,21 22

t t

t t

xd d

xd d

−

−

    
+    

     

ε
ε

. 

 

 

This can be represented in matrix notation and simplified to 

 

t
X∆  1 1 2 2 3 3 4 4( )

t t t t t
A I X A X A X A X− − − −= − + + + + Ε . 

 

 

Now, we add and subtract the term −2 1tA X , 3 1tA X − , 4 1tA X − , 3 2tA X − , 

4 2tA X − and 4 3tA X − from the right-hand-side of the equation.  This is then 

simplified as illustrated below. 

 

t
X∆  1 1 2 2 3 3 4 4( )

t t t t t
A I X A X A X A X− − − −= − + + + + Ε  

 

1 1 2 2 3 3 4 4 2 1 2 1( ) ( )
t t t t t t

A I X A X A X A X A X A X− − − − − −= − + + + + − +     

  3 1 3 1 4 1 4 1( ) ( )
t t t t t

A X A X A X A X− − − −− + − + Ε  

 

1 2 3 4 1 2 2 2 1 3 3 3 1( ) ( ) ( )
t t t t t

A A A A I X A X A X A X A X− − − − −= + + + − + − + − +   

  4 4 4 1( )
t t t

A X A X− −− + Ε  

 

1 2 3 4 1 2 1 2 2 3 1 3 3( ) ( ) ( )
t t t t t

I A A A A X A X A X A X A X− − − − −= − − − − − − − − − −   

  4 1 4 4( )
t t t

A X A X− −− + Ε  
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1 2 3 4 1 2 1 3 1 3 3 4 1( ) ( )
t t t t t

I A A A A X A X A X A X A X− − − − −= − − − − − − ∆ − + − +  

   4 4 3 2 3 2 4 2 4 2( ) ( )
t t t t t

A X A X A X A X A X− − − − −+ − + − +  

4 3 4 3( )
t t t

A X A X− −− + Ε  

 

1 2 3 4 1 2 1 3 1 3 2( ) ( ) ( )
t t t t

I A A A A X A X A X A X− − − −= − − − − − − ∆ − − −    

   3 2 3 3 4 1 4 2 4 2 4 3( ) ( ) ( )
t t t t t t

A X A X A X A X A X A X− − − − − −− − − − − −  

4 3 4 4( )
t t t

A X A X− −− + Ε  

 

1 2 3 4 1 2 1 3 1 3 2( ) ( ) ( ) ( )
t t t t

I A A A A X A X A X A X− − − −= − − − − − − ∆ − ∆ − ∆ −   

   4 1 4 2 4 3( ) ( ) ( )
t t t t

A X A X A X− − −∆ − ∆ − ∆ + Ε  

 

1 2 3 4 1 2 3 4 1 3 4 2( ) ( ) ( )
t t t

I A A A A X A A A X A A X− − −= − − − − − − + + ∆ − + ∆ −   

   4 3( )
t t

A X −∆ + Ε  

 

where 
11 12 11 12 11 12

1 2 3

21 22 21 22 21 22

,    ,    ,    
a a b b c c

A A A
a a b b c c

     
= = =     
     

 

1,11 12

4

2,21 22

1 0
,       and 

0 1

t

t

t

d d
A I

d d

    
= = =     

    

ε
Ε

ε
. 

 

 

Simplifying, the notation further we have 

 

t
X∆  1 1 2 3 1 2 3 2 3 3( ) ( ) ( )

t t t t t
X X X X− − − −= − + + ∆ − + ∆ − ∆ +Π Π Π Π Π Π Π Ε  

 

where 1 2 3 4( )I A A A A= − − − − −Π , 1 2 2 3 3 4,  ,  A A A= = =Π Π Π . 

 

 

As for the lag one model, the assumption of a cointegrated model implies that 

the rank ofΠ , denoted r, must have rank, 0 < r < k, where k denotes the 

number of variables in the model. 
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An example of the two simulated series of lag length four is illustrated below.  

The simulated series consists of no autoregressive irregular components and 

we define the series 1,tx  and 2,tx as 

 

1,tx 1, 1 2, 1 1, 2 2, 2 1, 3 2, 30.5 0.35 0.25 0.2 0.15 0.15
t t t t t t

x x x x x x− − − − − −= − + + + + + +   

 1, 4 2, 4 1,0.1 0.1
t t t

x x− −+ + ε  

2,tx 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 1, 4 2, 4 2,0 0.8 0 0.2 0 0 0 0
t t t t t t t t t

x x x x x x x x− − − − − − − −= + + + + + + + + ε  

 

where 1,0 2,00 and 0x x= =   

 1, 2,~ (0,1) and ~ (0,1)
t t
N Nε ε . 

 

 

Using the coefficients given, the equations are restricted to provide a 

cointegrated series with one cointegrating equation.  This is seen by 

substituting the values into the error correction model and observing that the 

error correction parameter matrix,Π , has rank of one. 

 

 

1, 1, 1t t
x x −− 1, 1 1, 1 2, 1 1, 2 2, 2 1, 30.5 0.35 0.25 0.2 0.15

t t t t t t
x x x x x x− − − − − −= − − + + + + +   

   2, 3 1, 4 2, 4 1,0.15 0.1 0.1
t t t t

x x x− − −+ + + ε  

 

1,tx∆ 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3( 0.5 1.0) 0.35 0.25 0.2 0.15 0.15
t t t t t t

x x x x x x− − − − − −= − − + + + + + +

  1, 4 2, 4 1,0.1 0.1
t t t

x x− −+ + ε  

 

and  

 

2, 2, 1t t
x x −− 1, 1 2, 1 2, 1 1, 2 2, 2 1, 3 2, 30 0.8 0 0.2 0 0

t t t t t t t
x x x x x x x− − − − − − −= + − + + + + +  

1, 4 2, 4 2,0 0
t t t

x x− −+ + ε  

 

 

 

2,tx∆ 1, 1 2, 1 1, 2 2, 2 1, 3 2, 3 1, 40 (0.8 1.0) 0 0.2 0 0 0
t t t t t t t

x x x x x x x− − − − − − −= + − + + + + + +  
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2, 4 2,0
t t

x − + ε  

 

1, 1, 1

2, 2, 1

1 0 0.5 0.35 0.25 0.2 0.15 0.15 0.1 0.1

0 1 0 0.8 0 0.2 0 0 0 0

t t

t t

x x

x x

−

−

∆     −         
= − − − − − −             ∆              

   
1, 1 1, 2

2, 1 2, 2

0.25 0.2 0.15 0.15 0.1 0.1

0 0.2 0 0 0 0

t t

t t

x x

x x

− −

− −

−        
+ + −         −        

 

   
1, 2 1, 3

2, 2 2, 3

0.15 0.15 0.1 0.1

0 0 0 0

t t

t t

x x

x x

− −

− −

−      
+ −       −      

 

1, 3 1, 4 1,

2, 3 2, 4 2,

0.1 0.1

0 0

t t t

t t t

x x

x x

− −

− −

−    
+     −     

ε
ε

 

 

1, 1

2, 1

1 ( 0.5) (0.25) (0.15) (0.1) (0.35) (0.2) (0.15) (0.1)

0 0 0 0 1 (0.8) (0.2) 0 0

t

t

x

x

−

−

 − − − − − − − − − 
= − −  − − − − − − −   

  
1, 1 1, 2

2, 1 2, 2

(0.25) (0.15) (0.1) (0.2) (0.15) (0.1)

0 0 0 (0.2) 0 0

t t

t t

x x

x x

− −

− −

− + + + + 
−   −+ + + +   
 

  
1, 2 1, 3

2, 2 2, 3

(0.15) (0.1) (0.15) (0.1)

0 0 0 0

t t

t t

x x

x x

− −

− −

− + + 
−   −+ +   
 

   
1, 3 1, 4 1,

2, 3 2, 4 2,

0.1 0.1

0 0

t t t

t t t

x x

x x

− −

− −

−    
+     −     

ε
ε

 

 

1, 1 1, 1 1, 2 1, 2 1, 3

2, 1 2, 1 2, 2 2, 2 2, 3

1 0.8 0.5 0.45 0.25 0.25

0 0 0 0.2 0 0

t t t t t

t t t t t

x x x x x

x x x x x

− − − − −

− − − − −

− −     −     
= − − − −          − −          

  
1, 3 1, 4 1,

2, 3 2, 4 2,

0.1 0.1

0 0

t t t

t t t

x x

x x

− −

− −

−    
+     −     

ε
ε

 

 

where  
− 

=  
 

1 0.8

0 0
Π . 

 

 

In summary, the four models shown here are often referred to as Vector 

Autoregressive (VAR) processes with lags of one, two, three and four.  

Re-written as stationary time series models with an error correction term, 

which is denoted as 1tX −Π , they are referred to as error correction models 
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with zero, one, two and three lag terms, respectively.  It is worth noting that all 

models have a zero intercept term and zero trend term.   

 

 

In conclusion, the parameterization of the four models ensure that the error 

correction matrix, Π , has been restricted to ensure cointegration of the 

models with one cointegrating relationship.  
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Chapter 7 

 

Results 

 

The objective of this study was to determine which criterion most correctly 

estimated the true lag for the model.  This is determined by computing the 

percentage of selection for each lag length for each of these criteria and then 

observing which criteria is correct most often.  Originally, a sample size of 30, 

60, 120 and 240 was used to test for unit roots and cointegration.  For 

determining which criteria is correct most often, we reduced the number of 

observations by four in all sample sizes (i.e. 26, 56, 116 and 236) such that the 

same number of observations is used for each lag length model for each of 

these criteria.   

 

 

7.1 Cointegrated model with a lag length of zero 

 

The percentage of various criteria correctly estimating the true lag, lag zero, 

for the four sample sizes 26, 56, 116 and 236 are tabulated in Tables 7.1.1 to 

7.1.4.  The values that are highlighted in the tables are the highest selection 

percentage for each of the IC.   

 

Table 7.1.1: Simulated cointegrated model of lag length 0 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 63.38 90.99 74.85 99.94 

1 21.83 8.12 17.96 0.06 

2 7.46 0.67 4.14 0 

3 7.33 0.22 3.04 0 
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Table 7.1.2: Simulated cointegrated model of lag length 0 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 44.58 88.04 67.38 99.85 

1 43.35 11.77 30.16 0.15 

2 8.36 0.17 2.09 0 

3 3.7 0.02 0.37 0 

          

 

Table 7.1.3: Simulated cointegrated model of lag length 0 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 14.08 70.3 37.61 96.51 

1 70.85 29.63 60.16 3.49 

2 11.29 0.06 2.1 0 

3 3.78 0 0.13 0 

          

 

Table 7.1.4: Simulated cointegrated model of lag length 0 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.8 28.78 6.33 64.67 

1 78.39 71.05 90.57 35.32 

2 16.54 0.17 2.98 0.01 

3 4.26 0 0.12 0 

          

 

 

The results in Table 7.1.1 show that the IC’s perform well in estimating the true 

lag when a sample size is small (for T = 26).  In particular, FPE selects the 

correct lag almost perfectly, whilst SIC selects the correct lag just less than 

91% of the time.  The HQ and AIC selections for small samples perform 

indifferently, 75% and 63%, respectively.  As the sample size increases, an 

unusual phenomenon is observed.  The correct selection percentages  

 

 



 64 

decreases, a finding in contradiction to other studies (see Gonzalo and 

Pitarakis (1998)).  As an example, for a sample size of 56 (in Table 7.1.2), the 

correct selection percentages for AIC, SIC, HQ and FPE were 45%, 88%, 67% 

and 100% respectively, whilst for a sample size of 116 (in Table 7.1.3), the 

selection percentages for the four criteria are 14%, 70%, 38% and 97%.  The 

unusual phenomenon may be caused by the autoregressive irregular variable 

that was incorporated in the model.  Surprisingly, this phenomenon 

disappears for higher order lag models, a result that was originally expected. 

 
 

 

 

 

 

 

In Figure 7.1, the ability of the IC’s to correctly select the lag zero cointegrated 

model is illustrated as the sample size increases.  The graph illustrates that 

FPE performs best, followed by SIC.  Of the four IC, AIC performs poorly, in 

particular when the sample size is large.  The correct selection is a miserly 

1%, which is exceptionally poor by any standards.   

 

Figure 7.1: Performances of IC’s for correctly estimating the lag of the model 
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In summary, for the lag zero cointegrated model, i.e. the VAR (1) model, FPE 

outperforms AIC, SIC and HQ.  This is consistent across all sample sizes, 

despite the somewhat disappointing performance for simulation data with T = 

236.   

 

 

7.2 Cointegrated model with a lag length of one 

 

The percentage of various criteria correctly estimating the true lag, lag one, for 

the four sample sizes are tabulated in Tables 7.2.1 to 7.2.4.  The values that 

are highlighted in the table are the highest selection percentage for each of the 

IC.   

 

 

Table 7.2.1: Simulated cointegrated model of lag length 1 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 16.41 46.86 24.98 98.7 

1 60.75 49.89 61.49 1.3 

2 13.77 2.61 9.04 0 

3 9.07 0.64 4.5 0 

          

 

Table 7.2.2: Simulated cointegrated model of lag length 1 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.78 12.6 3.06 73.58 

1 82.39 86.83 92.08 26.42 

2 11.92 0.55 4.13 0 

3 4.91 0.03 0.72 0 
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Table 7.2.3: Simulated cointegrated model of lag length 1 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0.16 0 5.36 

1 87.12 99.72 97.96 94.64 

2 9.44 0.12 1.85 0 

3 3.44 0 0.18 0 

          

 

Table 7.2.4: Simulated cointegrated model of lag length 1 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0 

1 87.72 99.97 98.74 100 

2 9.18 0.03 1.18 0 

3 3.1 0 0.09 0 

          

 

 

The results in Tables 7.2.1 to 7.2.4 show that the IC’s perform well for large 

samples (T ≥ 116), with three of the four IC’s scoring above 90% and the 

fourth, AIC, scoring 87%.  When sample size is small (for T = 26), the IC’s 

performances are poor.  AIC and HQ score approximately 60% with the other 

two scoring less.   

 

 

The phenomenon observed, for the lag zero cointegrated model, where 

selection improves as sample size decreases is not evident for the lag one 

cointegrated model.  The results for this model follow prior studies and lend 

support to the concern that the lag zero cointegrated model’s results are 

unusual and bear further investigation.  This is well illustrated in Figure 7.2, 

where one sees that selection improves considerably as sample size 

increases.  Of the four IC’s compared, HQ is the preferred model selector for 

smaller samples and SIC is the preferred model selector for larger samples.   
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7.3 Cointegrated model with a lag length of two 

 

The percentage of various criteria correctly estimating the true lag, lag two, for 

the four sample sizes are tabulated in Tables 7.3.1 to 7.3.4.  The values that 

are highlighted in the table are the highest selection percentage for each of the 

IC.   

 

 

 

 

 

 

 

 

Figure 7.2: Performances of IC’s for correctly estimating the lag of the model 
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Table 7.3.1: Simulated cointegrated model of lag length 2 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 27.44 67.55 39.96 99.84 

1 37.94 27.21 38.42 0.16 

2 23.05 4.56 16.21 0 

3 11.57 0.68 5.41 0 

          

 

Table 7.3.2: Simulated cointegrated model of lag length 2 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 4.35 41.14 15.15 94.62 

1 57.01 55.22 67.2 5.38 

2 31.27 3.57 16.25 0 

3 7.37 0.07 1.39 0 

          

 

Table 7.3.3: Simulated cointegrated model of lag length 2 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.01 5 0.54 40.81 

1 40.45 87.81 70.62 59.06 

2 51.53 7.16 28.05 0.13 

3 8.01 0.04 0.79 0 

          

 

Table 7.3.4: Simulated cointegrated model of lag length 2 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0.01 0 0.25 

1 13.04 80.88 43.09 96.96 

2 77.86 19.11 56.21 2.8 

3 9.1 0.01 0.71 0 
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The results in Tables 7.3.1 to 7.3.4 show that the IC perform poorly in 

estimating the true lag when a sample size is small (T = 26).  AIC and HQ 

score 23% and 16%, respectively, while the other two criteria score less.  

When the sample size increases, the correct selection percentage of the 

various criteria increased.  With a sample size of 56 (in Table 7.3.2), the 

selection percentages for AIC, SIC, HQ and FPE are 31%, 4% 16% and 0%, 

respectively, whilst for a sample size of 236 (in Table 7.3.4), the percentages 

for the same criteria reach scores of 78%, 19%, 56% and 2.8%, respectively.  

This improvement in selection as T increases is illustrated in Figure 7.3. 

 

 

 

 

 

 

In Figure 7.3, it is observed that AIC and HQ selects the true lag more often 

than SIC and FPE when the sample size increases.  The reason that SIC and 

FPE select the lag two cointegrated model less often is because they 

under-estimate the true lag for the model, i.e. they select a lag of zero or a lag 

of one more often.  For example, for T = 236 (in Table 7.3.4), SIC and FPE  

Figure 7.3: Performances of IC’s for correctly estimating the lag of the model 
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selects the lag one cointegrated model to be the correct model for the data 

rather than the lag two cointegrated model.  This trend is noticeable for all 

sample sizes. 

 

 

In summary, for the lag two cointegrated model, i.e. the VAR (3) model, AIC 

outperforms SIC, HQ and FPE.  This trend is consistent across all sample 

sizes and is clearly illustrated in Figure 7.3.   

 

 

7.4 Cointegrated model with a lag length of three 

 

The percentage of various criteria correctly estimating the true lag, lag three, 

for the four sample sizes are tabulated in Tables 7.4.1 to 7.4.4.  The values 

that are highlighted in the table are the highest selection percentages for each 

of the IC.   

 

Table 7.4.1: Simulated cointegrated model of lag length 3 for a sample size of 
26 

 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 6.56 35.09 13.32 97.27 

1 41.27 51.97 49.1 2.73 

2 25.98 9.73 21.77 0 

3 26.19 3.21 15.8 0 

          

 

Table 7.4.2: Simulated cointegrated model of lag length 3 for a sample size of 
56 

 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.06 4.12 0.61 49.12 

1 37.76 84.57 63.52 50.83 

2 41.03 10.68 29.2 0.05 

3 21.15 0.62 6.67 0 
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Table 7.4.3: Simulated cointegrated model of lag length 3 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0.49 

1 11.76 77.07 39.06 98.34 

2 51.28 21.96 49.84 1.17 

3 36.96 0.97 11.09 0 

          

 

Table 7.4.4: Simulated cointegrated model of lag length 3 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0 

1 0.52 40.4 7.03 80.89 

2 37.95 56.07 67.13 19.06 

3 61.53 3.53 25.84 0.05 

          

 

 

The results in Tables 7.4.1 to 7.4.4 show that the IC’s perform poorly when the 

sample size is small but improve as the sample size increases.  In a medium 

sample (for T = 116), the AIC performance is better than the other criteria and 

as the sample size increases from 26 to 116, AIC improves in ability for 

selection of the correct lag model whilst little improvement in the other three 

criteria is observed.  In a large sample (for T = 236), AIC again outperforms 

the other criteria, scoring 62% whilst SIC, HQ and FPE score 4%, 26% and 

0%, respectively.  SIC, HQ and FPE selections indicate low order lag length 

models such as 56% and 67% for a lag length of two model and 81% for a lag 

length of one model.  This indicates that SIC, HQ and FPE under-estimate 

the true lag for the model and are less useful than AIC in selecting the correct 

lag length of higher order models.  This is illustrated in Figure 7.4. 
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Figure 7.4 illustrates that for the lag three cointegrated model, AIC 

outperforms SIC, HQ and FPE and this trend is consistent across all sample 

sizes.   

 

 

In summary, for the lag length one, two and three cointegrated model, AIC 

performs the best in selecting the true lag for the model, particularly when the 

sample size is large.  However, in the lag zero cointegrated model, AIC 

performs poorly in selecting the true lag even when the sample size is large.  

This may have resulted from the autoregressive irregular variable incorporated 

in the model.  The model selector FPE was recommended for selecting the 

lag length for the lag zero cointegrated model.  As previously discussed, this 

is an unusual result and requires further investigation.  Overall, when the 

sample size is large AIC performs the best. 

 

 

Figure 7.4: Performances of IC’s for correctly estimating the lag of the model 
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The next section attempts to address how well the IC’s perform when the lag 

length of the model is increased keeping the sample size constant.  The 

previous section considers the IC’s performances with the sample size 

increasing and keeping the lag length constant.   

 

 

7.5 Cointegrated models for a sample size of 26 

 

The percentage of various criteria correctly estimating the true lags, lag zero to 

lag three for the sample size 26 are tabulated in Tables 7.5.1 to 7.5.4.  The 

values that are highlighted in the table are the highest selection percentage for 

each of the IC.   

 

Table 7.5.1: Simulated cointegrated model of lag length 0 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 63.38 90.99 74.85 99.94 

1 21.83 8.12 17.96 0.06 

2 7.46 0.67 4.14 0 

3 7.33 0.22 3.04 0 

          

 

Table 7.5.2: Simulated cointegrated model of lag length 1 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 16.41 46.86 24.98 98.7 

1 60.75 49.89 61.49 1.3 

2 13.77 2.61 9.04 0 

3 9.07 0.64 4.5 0 
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Table 7.5.3: Simulated cointegrated model of lag length 2 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 27.44 67.55 39.96 99.84 

1 37.94 27.21 38.42 0.16 

2 23.05 4.56 16.21 0 

3 11.57 0.68 5.41 0 

          

 

Table 7.5.4: Simulated cointegrated model of lag length 3 for a sample size of 
26 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 6.56 35.09 13.32 97.27 

1 41.27 51.97 49.1 2.73 

2 25.98 9.73 21.77 0 

3 26.19 3.21 15.8 0 

          

 

 

The results in Table 7.5.1 show that for small sample sizes the IC perform well 

in selecting the lag zero cointegrated model, particularly, for the FPE and SIC 

where FPE selects the correct lag almost perfectly whilst SIC selects the 

correct lag just less than 91%.  The AIC and HQ selection for lag zero 

cointegrated model perform indifferently, 64% and 75%, respectively.  In the 

lag one (see Table 7.5.2), two (see Table 7.5.3) and three (see Table 7.5.4) 

cointegrated models, AIC and HQ perform better than the other two criteria.  

In the lag one cointegrated model, AIC and HQ score approximately 60% with 

the other criteria scoring less.   

 

 

As the number of lag terms increases in the model, the performances of the 

various criteria in selecting the correct lag diminishes, an observation which 

one would expect for the small sample sizes.  When a model consists of two 

or more lag terms, all the IC’s under-estimate the correct lag for the model.  In 

Table 7.5.3, the model selected by AIC was a lag one model whilst for SIC, HQ 
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and FPE the model selected was a lag zero model despite the fact that the 

correct model was a lag two model.   

 

 

In summary, for a small sample size (for T = 26), AIC outperforms SIC, HQ 

and FPE.  In addition the AIC selection percentage for the correct model 

decreases slightly as the number of lag terms increase.   

 

 

7.6 Cointegrated models for a sample size of 56 

 

The percentage of various criteria correctly estimating the true lags, lag zero to 

lag three for the sample size 56 are tabulated in Tables 7.6.1 to 7.6.4.  The 

values that are highlighted in the table are the highest selection percentage for 

each of the IC.   

 

Table 7.6.1: Simulated cointegrated model of lag length 0 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 44.58 88.04 67.38 99.85 

1 43.35 11.77 30.16 0.15 

2 8.36 0.17 2.09 0 

3 3.7 0.02 0.37 0 

          

 

Table 7.6.2: Simulated cointegrated model of lag length 1 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.78 12.6 3.06 73.58 

1 82.39 86.83 92.08 26.42 

2 11.92 0.55 4.13 0 

3 4.91 0.03 0.72 0 
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Table 7.6.3: Simulated cointegrated model of lag length 2 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 4.35 41.14 15.15 94.62 

1 57.01 55.22 67.2 5.38 

2 31.27 3.57 16.25 0 

3 7.37 0.07 1.39 0 

          

 

Table 7.6.4: Simulated cointegrated model of lag length 3 for a sample size of 
56 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.06 4.12 0.61 49.12 

1 37.76 84.57 63.52 50.83 

2 41.03 10.68 29.2 0.05 

3 21.15 0.62 6.67 0 

          

 

 

The results in Table 7.6.1 show that the IC’s perform fairly well in selecting the 

lag zero cointegrated model, with three of the four IC’s scoring above 68% and 

the fourth, AIC, scoring 45%.  When the correct number of lag terms is three, 

the IC performances are poor, AIC scores 21%, HQ scores 7% and the other 

two score almost zero.  For the higher order model (in Table 7.6.4), the SIC 

and FPE performances are exceptionally poor compared to the other IC’s.  In 

addition, SIC and FPE generally select a lower order model rather than the 

correct lag length model.   

 

 

In summary, for a sample size of T = 56, SIC is the preferred model selector 

for the lower order models and AIC is the preferred model selector for the 

higher order models i.e. the cointegrated model with a lag length of two or a 

cointegrated model with a lag length of three.   
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7.7 Cointegrated models for a sample size of 116 

 

The percentage of various criteria correctly estimating the true lags, lag zero to 

lag three for the sample size 116 are tabulated in Tables 7.7.1 to 7.7.4.  The 

values that are highlighted in the table are the highest selection percentage for 

each of the IC.   

 

Table 7.7.1: Simulated cointegrated model of lag length 0 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 14.08 70.3 37.61 96.51 

1 70.85 29.63 60.16 3.49 

2 11.29 0.06 2.1 0 

3 3.78 0 0.13 0 

          

 

Table 7.7.2: Simulated cointegrated model of lag length 1 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0.16 0 5.36 

1 87.12 99.72 97.96 94.64 

2 9.44 0.12 1.85 0 

3 3.44 0 0.18 0 

          

 

Table 7.7.3: Simulated cointegrated model of lag length 2 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.01 5 0.54 40.81 

1 40.45 87.81 70.62 59.06 

2 51.53 7.16 28.05 0.13 

3 8.01 0.04 0.79 0 
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Table 7.7.4: Simulated cointegrated model of lag length 3 for a sample size of 
116 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0.49 

1 11.76 77.07 39.06 98.34 

2 51.28 21.96 49.84 1.17 

3 36.96 0.97 11.09 0 

          

 

 

The results in Table 7.7.1 show that for medium sample sizes, SIC and FPE 

perform well in selecting the lag zero cointegrated model, scoring above 70%.  

The other two criteria, AIC and HQ, score less and often over-estimate the lag 

length of the model.  Both indicate lag one as the correct lag with 

percentages of 71% and 60%, respectively.   

 

 

In Table 7.7.2, all the IC perform well in estimating the true lag, lag one for the 

model.  In particular, SIC and HQ select the correct lag almost perfectly whilst 

FPE selects the correct lag just less than 95% of the time.  The fourth 

criterion, AIC, is slightly lower than the others and scores 87%.   

 

 

For the medium sample size with T = 116, as the number of lag terms 

increases, the performances of the various criteria decrease and 

under-estimate the true lag length of the model.  As observed for the T = 56 

case, AIC is the preferred model selector for higher order terms whilst for 

lower order models, FPE and SIC perform well. 

 

 

7.8 Cointegrated models for a sample size of 236 

 

The percentage of various criteria correctly estimating the true lags, lag zero to 

lag three for the sample size 236 are tabulated in Tables 7.8.1 to 7.8.4.  The 
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values that are highlighted in the table are the highest selection percentage for 

each of the IC.   

 

Table 7.8.1: Simulated cointegrated model of lag length 0 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0.8 28.78 6.33 64.67 

1 78.39 71.05 90.57 35.32 

2 16.54 0.17 2.98 0.01 

3 4.26 0 0.12 0 

          

 

Table 7.8.2: Simulated cointegrated model of lag length 1 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0 

1 87.72 99.97 98.74 100 

2 9.18 0.03 1.18 0 

3 3.1 0 0.09 0 

          

 

Table 7.8.3: Simulated cointegrated model of lag length 2 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0.01 0 0.25 

1 13.04 80.88 43.09 96.96 

2 77.86 19.11 56.21 2.8 

3 9.1 0.01 0.71 0 
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Table 7.8.4: Simulated cointegrated model of lag length 3 for a sample size of 
236 
 

  Model selection criteria 

Lag  AIC SIC HQ ln FPE 

0 0 0 0 0 

1 0.52 40.4 7.03 80.89 

2 37.95 56.07 67.13 19.06 

3 61.53 3.53 25.84 0.05 

          

 

 

The results in Table 7.8.1 shows that all four criteria perform poorly in the 

selecting the correct lag model with only FPE scoring above 50%. 

 

 

In Table 7.8.2, all the IC performances are good in particular SIC, HQ and FPE 

which score above 98% whilst AIC selects the correct lag model just less than 

88% of the time.  These are good results and not unexpected since the 

sample size is large and the lag length is small.  For the larger sample size 

(for T = 236), AIC outperforms SIC, HQ and FPE.  This trend is consistent for 

the lag one (see Table 7.8.2), two (see Table 7.8.3) and three (see Table 

7.8.4) cointegrated models, despite the disappointing performance for the lag 

zero cointegrated model.   

 

 

In summary, for all sample sizes, FPE, SIC and HQ select the lag zero and lag 

one models correctly more often and in particular are correct more often when 

the sample size is large.  For the higher order models, AIC performs the best 

in selecting the correct lag length for the model and this is consistent for all 

sample sizes.   
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Chapter 8 

 

Conclusion and Further Work 

 

8.1 Conclusion 

 

This study compares the selection capabilities of four information criteria used 

to determine the number of lag terms in a bivariate cointegrated model.  In 

general, Akaike’s information criterion dominates the other three criteria 

considered, in that AIC selects the correct model most often. 

 

 

In particular when the model is of higher order, AIC consistently outperforms 

the other IC’s.  For lower order models, with zero or one lag term, AIC is less 

successful than one of the other IC’s, subject to sample size and order number.  

As an illustration, comparing AIC and HQ as VEC (1) models for T = 116, we 

see that HQ performs marginally better then AIC. 

 

 

Despite the cases where AIC is less successful, for a practioner who has little 

idea of the order of the model, AIC is the most consistent performer, whilst the 

other criteria exhibit a tendency to under-fit the model.  These findings differ 

from the results of Gonzalo and Pitarakis (1998) in that this study favours HQ 

for VAR models with sample sizes T ≥ 100.  In addition, these simulation 

results concur with the findings of Lütkepohl (1985) in that as sample size 

increases, ability to select correctly improves for all IC.   
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8.2 Further work 

 

Model selection strategies for cointegrated models are an active research area 

and are expected to continue as long as there is a demand from applied 

researchers doing empirical studies.  The results of this study lend support to 

a strategy that favours the use of AIC rather than SIC, HQ and FPE.  

 

 

Within this study, we have restricted the model to the bivariate case.  

Extension to higher dimension models will be a natural route to follow.  A 

trivariate model is currently under investigation by another researcher.  In the 

cointegrated model, the number of lag terms incorporated in each of the time 

series equations can be extended (for example using a lag length of eight).  

The increase of lag terms will provide additional information as to how well the 

IC’s perform in selecting the true lag for the model.  The number of 

observations in each of the time series equations can also be extended, as in 

Khim and Liew (2004) where the highest observations used were 960. 

 

 

More importantly, further investigation is required for the lag zero cointegrated 

model, as the number of observation increases, the performances of the IC 

decreased an unexpected observation.  It would be interesting to know 

whether the irregular component in the lag zero cointegrated model did make 

such a difference in the performance of the IC’s.   

 

 

Changing the value of the coefficients in the simulated model is another 

consideration for further examination.  There are several opportunities to 

expand this study.  These opportunities should provide researcher(s) with the 

best criteria used for determining the lag length in cointegrated modelling.   
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Appendix A 

 

Glossary 

 

1. Cointegrated 

model: 

A model consists of two or more cointegrated 

variables. 

   

2. Cointegrated 

variables: 

The variables that have the same order of 

integration and the linear combination of these 

variables are stationary. 

   

3. Differenced series: It entails regression a variable on time and saving 

the residual. 

   

4. Error correction 

model: 

A model where the movement of the variables in 

any period is related to the previous period’s gap 

from long-run equilibrium. 

   

5. Lag: An event occurring at time t + k (k > 0) is said to 

lag behind an event occurring at time t, the extent 

of the lag being k. 

   

6. Lag length: The number of lag terms used. 

   

7. Long-run 

equilibrium 

relationship: 

This relationship exists when the existence of a 

combination of the non-stationary variables are 

stationary.   
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8. Non-stationary 

series: 

A series of equations that may have a pronounced 

trend or appear to meander without a constant 

long-run mean or variance. 

   

9. Stationary series: A series of equations that has a constant mean 

and variance. 

   

10. Time series: A sequence of data points, measured typically at 

successive times. 
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Appendix B 

 

Programmes 

 

B.1 Programme used to test for unit roots and cointegration 

 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
line 13 
line 14 
line 15 
line 16 
line 17 
line 18 
line 19 
line 20 
line 21 
line 22 
line 23 
line 24 
line 25 
line 26 
line 27 
line 28 
line 29 
line 30 
line 31 
line 32 
line 33 
line 34 
line 35 
line 36 
line 37 
line 38 
line 39 
line 40 
line 41 
line 42 
line 43 
line 44 
line 45 
line 46 
line 47 
line 48 
line 49 
line 50 
line 51 

wfopen c:\a\lag1\lag1_1\lag1_1 
dbcreate c:\a\lag1\lag1_1\doesnot_meetspec 
dbcreate c:\a\lag1\lag1_1\meetspec 
!count = 0 
!gmax =3825 
table(!gmax,4) result 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+ @str(!s)+@str(!j)+"t" 
  fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname 
  uroot(adf,none,lag=1,save=matprob) {%sname}  
  if matprob(4,1)>0.05 then  
  uroot(adf,none,lag=1,dif=1,save=matprob1) {%sname} 
   if matprob1(4,1)<0.05 then  
   !count = !count+1 
   endif 
  else 
  !count = !count 
  endif 
 next 
  if !count =2 then 
  for !s=1 to !smax 
   %sname = "x"+@str(!s)+ @str(!j)+"t" 
   fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname   
   store c:\a\lag1\lag1_1\meetspec::{%sname} 
  next 
   %sname1 = "x"+"1"+ @str(!j)+"t" 
   %sname2 = "x"+"2"+ @str(!j)+"t" 
   fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname1 
   fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname2 
    
  group xy.add {%sname1} {%sname2}  
  coint(a,0,save=matCoint) {%sname1} {%sname2}  
  coint(a,0,save=matLogLike) {%sname1} {%sname2}  
      if matcoint(1,3)>12.32090 and matcoint(2,3)< 4.129906 then 
   result(!j,1) = %sname1+"&"+%sname2 
    result(!j,2) = "1" 
   result(!j,3) = matLogLike(2,4) 
   var a1.ec(a) 0 0 {%sname1} {%sname2}  
      else     
      for !s=1 to !smax 
   %sname = "x"+@str(!s)+@str(!j)+"t" 
   fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname   
   store c:\a\lag1\lag1_1\doesnot_meetspec::{%sname} 
   delete c:\a\lag1\lag1_1\meetspec::{%sname} 
      next 
      endif 
   !count = 0 
  else 
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line 52 
line 53 
line 54 
line 55 
line 56 
line 57 
line 58 
line 59 
line 60 

  for !s=1 to !smax 
   %sname = "x"+@str(!s)+ @str(!j)+"t" 
   fetch(d=c:\a\lag1\lag1_1\lag1_1) %sname 
   store c:\a\lag1\lag1_1\doesnot_meetspec::{%sname} 
  next 
   !count = 0 
  endif 
next 
save c:\a\lag1\lag1_1\testResult 
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B.2 Programme used to obtain the likelihood value 

 

Likelihood value for a bivariate lag 1 autoregressive model 

 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
line 13 
line 14 
line 15 
line 16 
line 17 
line 18 
line 19 
line 20 
line 21 
line 22 
line 23 
line 24 
line 25 
line 26 
line 27 
line 28 
line 29 
line 30 
line 31 
line 32 
line 33 
line 34 
line 35 
line 36 
line 37 
line 38 
line 39 
line 40 
line 41 
line 42 
line 43 
line 44 
line 45 
line 46 
line 47 
line 48 
line 49 
line 50 
line 51 
line 52 
line 53 
line 54 

wfopen c:\a\lag1\lag1_1\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_1\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_1\doesnot_meetspec 
 
!obs=3 
!lag = 1 
%lag ="t_1" 
!gmax =3825 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_1\meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result1 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_1\meetspec) %sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_1\meetspec) %sname2 
    group xy.add {%sname1} {%sname2} 
    coint(a,0,save=matLogLike1) {%sname1} {%sname2}  
      result1(!j,1) = %sname1+"&"+%sname2 
    result1(!j,2) = "1" 
    result1(!j,3) = matLogLike1(2,4) 
    var a1.ec(a) 0 0 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_1\result1 
 
wfopen c:\a\lag1\lag1_1\doesnot_meetspec 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\doesnot_meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_1\doesnot_meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result2 
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line 55 
line 56 
line 57 
line 58 
line 59 
line 60 
line 61 
line 62 
line 63 
line 64 
line 65 
line 66 
line 67 
line 68 
line 69 
line 70 
line 71 
line 72 
line 73 
line 74 
line 75 
line 76 
line 77 

 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_1\doesnot_meetspec) 
%sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_1\doesnot_meetspec) 
%sname2 
    group xy.add {%sname1} {%sname2}  
    coint(a,0,save=matLogLike2) {%sname1} {%sname2}  
      result2(!j,1) = %sname1+"&"+%sname2 
    result2(!j,2) = "0" 
    result2(!j,3) = matLogLike2(2,4) 
    var a1.ec(a) 0 0 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_1\result2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 89 

Likelihood value for a bivariate lag 2 autoregressive model 

 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
line 13 
line 14 
line 15 
line 16 
line 17 
line 18 
line 19 
line 20 
line 21 
line 22 
line 23 
line 24 
line 25 
line 26 
line 27 
line 28 
line 29 
line 30 
line 31 
line 32 
line 33 
line 34 
line 35 
line 36 
line 37 
line 38 
line 39 
line 40 
line 41 
line 42 
line 43 
line 44 
line 45 
line 46 
line 47 
line 48 
line 49 
line 50 
line 51 
line 52 
line 53 
line 54 
line 55 
line 56 
line 57 
line 58 
line 59 

wfopen c:\a\lag1\lag1_1\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_2\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_2\doesnot_meetspec 
 
!obs=2 
!lag = 2 
%lag ="t_2" 
!gmax =3825 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_2\meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result1 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_2\meetspec) %sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_2\meetspec) %sname2 
    group xy.add {%sname1} {%sname2} 
    coint(a,1,save=matLogLike1) {%sname1} {%sname2}  
      result1(!j,1) = %sname1+"&"+%sname2 
    result1(!j,2) = "1" 
    result1(!j,3) = matLogLike1(2,4) 
    var a1.ec(a) 1 1 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_2\result1 
 
wfopen c:\a\lag1\lag1_1\doesnot_meetspec 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\doesnot_meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_2\doesnot_meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result2 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_2\doesnot_meetspec) 
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line 60 
line 61 
line 62 
line 63 
line 64 
line 65 
line 66 
line 67 
line 68 
line 69 
line 70 
line 71 
line 72 
line 73 
line 74 
line 75 
line 76 
line 77 

%sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_2\doesnot_meetspec) 
%sname2 
    group xy.add {%sname1} {%sname2}  
    coint(a,1,save=matLogLike2) {%sname1} {%sname2}  
      result2(!j,1) = %sname1+"&"+%sname2 
    result2(!j,2) = "0" 
    result2(!j,3) = matLogLike2(2,4) 
    var a1.ec(a) 1 1 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_2\result2 
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Likelihood value for a bivariate lag 3 autoregressive model 

 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
line 13 
line 14 
line 15 
line 16 
line 17 
line 18 
line 19 
line 20 
line 21 
line 22 
line 23 
line 24 
line 25 
line 26 
line 27 
line 28 
line 29 
line 30 
line 31 
line 32 
line 33 
line 34 
line 35 
line 36 
line 37 
line 38 
line 39 
line 40 
line 41 
line 42 
line 43 
line 44 
line 45 
line 46 
line 47 
line 48 
line 49 
line 50 
line 51 
line 52 
line 53 
line 54 
line 55 
line 56 
line 57 

wfopen c:\a\lag1\lag1_1\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_3\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_3\doesnot_meetspec 
 
!obs= 1 
!lag = 3 
%lag ="t_3" 
!gmax =3825 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_3\meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result1 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_3\meetspec) %sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_3\meetspec) %sname2 
    group xy.add {%sname1} {%sname2} 
    coint(a,2,save=matLogLike1) {%sname1} {%sname2}  
      result1(!j,1) = %sname1+"&"+%sname2 
    result1(!j,2) = "1" 
    result1(!j,3) = matLogLike1(2,4) 
    var a1.ec(a) 1 2 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_3\result1 
 
wfopen c:\a\lag1\lag1_1\doesnot_meetspec 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\doesnot_meetspec) %sname  
  series {%newsname} = {%sname}(!obs) 
  store c:\a\lag1\lag1_1\log_t_3\doesnot_meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result2 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
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line 58 
line 59 
line 60 
line 61 
line 62 
line 63 
line 64 
line 65 
line 66 
line 67 
line 68 
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line 70 
line 71 
line 72 
line 73 
line 74 
line 75 
line 76 
line 77 

   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_3\doesnot_meetspec) 
%sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_3\doesnot_meetspec) 
%sname2 
    group xy.add {%sname1} {%sname2}  
    coint(a,2,save=matLogLike2) {%sname1} {%sname2}  
      result2(!j,1) = %sname1+"&"+%sname2 
    result2(!j,2) = "0" 
    result2(!j,3) = matLogLike2(2,4) 
    var a1.ec(a) 1 2 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_3\result2 
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Likelihood value for a bivariate lag 4 autoregressive model 

 

line 1 
line 2 
line 3 
line 4 
line 5 
line 6 
line 7 
line 8 
line 9 
line 10 
line 11 
line 12 
line 13 
line 14 
line 15 
line 16 
line 17 
line 18 
line 19 
line 20 
line 21 
line 22 
line 23 
line 24 
line 25 
line 26 
line 27 
line 28 
line 29 
line 30 
line 31 
line 32 
line 33 
line 34 
line 35 
line 36 
line 37 
line 38 
line 39 
line 40 
line 41 
line 42 
line 43 
line 44 
line 45 
line 46 
line 47 
line 48 
line 49 
line 50 
line 51 
line 52 
line 53 
line 54 
line 55 
line 56 
line 57 

wfopen c:\a\lag1\lag1_1\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_4\meetspec 
dbcreate c:\a\lag1\lag1_1\log_t_4\doesnot_meetspec 
 
!lag = 4 
%lag ="t_4" 
!gmax =3825 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\meetspec) %sname  
  series {%newsname} = {%sname} 
  store c:\a\lag1\lag1_1\log_t_4\meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result1 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
    fetch(d=c:\a\lag1\lag1_1\log_t_4\meetspec) %sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_4\meetspec) %sname2 
    group xy.add {%sname1} {%sname2} 
    coint(a,3,save=matLogLike1) {%sname1} {%sname2}  
      result1(!j,1) = %sname1+"&"+%sname2 
    result1(!j,2) = "1" 
    result1(!j,3) = matLogLike1(2,4) 
    var a1.ec(a) 1 3 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_4\result1 
 
wfopen c:\a\lag1\lag1_1\doesnot_meetspec 
for !j=1 to !gmax 
 !smax =2 
 for !s=1 to !smax 
  %sname = "x"+@str(!s)+ @str(!j)+"t" 
   %newsname = "x"+@str(!s)+ @str(!j)+%lag 
  if @isobject(%sname) =1 then 
  fetch(d=c:\a\lag1\lag1_1\doesnot_meetspec) %sname  
  series {%newsname} = {%sname} 
  store c:\a\lag1\lag1_1\log_t_4\doesnot_meetspec::{%newsname}  
  endif 
 next 
next 
 
 table(!gmax,4) result2 
 for !j=1 to !gmax 
   %sname1 = "x"+"1"+ @str(!j)+%lag 
   %sname2 = "x"+"2"+ @str(!j)+%lag 
   if @isobject(%sname1) =1 and @isobject(%sname2) =1 then 
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    fetch(d=c:\a\lag1\lag1_1\log_t_4\doesnot_meetspec) 
%sname1 
    fetch(d=c:\a\lag1\lag1_1\log_t_4\doesnot_meetspec) 
%sname2 
    group xy.add {%sname1} {%sname2}  
    coint(a,3,save=matLogLike2) {%sname1} {%sname2}  
      result2(!j,1) = %sname1+"&"+%sname2 
    result2(!j,2) = "0" 
    result2(!j,3) = matLogLike2(2,4) 
    var a1.ec(a) 1 3 {%sname1} {%sname2}  
   endif 
 next 
save c:\a\lag1\lag1_1\log_t_4\result2 
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