
Implementing the CoSAWoE model in a
commercial workflow product

by

Carmen Erwee

Implementing the CoSAWoE model in a
commercial workflow product

by

Carmen Erwee

Dissertation

submitted in fulfillment

of the requirements

for the degree

Magister Technologiae

in

Information Technology

in the

Faculty of Engineering

of the

Nelson Mandela Metropolitan University

Promoter: Prof. Reinhardt A. Botha

January 2005

Declaration

I, Carmen Erwee, hereby declare that:

• The work in this dissertation is my own work.

• All sources used or referred to have been documented and recognized.

• This dissertation has not previously been submitted in full or partial

fulfillment of the requirements for an equivalent or higher qualification

at any other recognized educational institute.

Carmen Erwee

i

ii DECLARATION

Abstract

Workflow systems have gained popularity not only as a research topic, but

also as a key component of Enterprize Resource Planning packages and e-

business. Comprehensive workflow products that automate intra- as well

inter-organizational information flow are now available for commercial use.

Standardization efforts have centered mostly around the interoperability of

these systems, however a standard access control model have yet to be

adopted. The research community has developed several models for access

control to be included as part of workflow functionality. Commercial systems,

however, are still implementing access control functionality in a proprietary

manner.

This dissertation investigates whether a comprehensive model for gain-

ing context-sensitive access control, namely CoSAWoE, can be purposefully

implemented in a commercial workflow product. Using methods such as an

exploratory prototype, various aspects of the model was implemented to gain

an understanding of the difficulties developers face when attempting to map

the model to existing proprietary software.

Oracle Workflow was chosen as an example of a commercial workflow

product. An investigation of the features of this product, together with the

prototype, revealed the ability to affect access control in a similar manner to

the model: by specifying access control constraints during administration and

design, and then enforcing those constraints dynamically during run-time.

However, only certain components within these two aspects of the model

directly effected the commercial workflow product. It was argued that the

first two requirements of context-sensitive access control, order of events and

strict least privilege, addressed by the object design, role engineering

and session control components of the model, can be simulated if such

capabilities are not pertinently available as part of the product. As such,

iii

iv ABSTRACT

guidelines were provided for how this can be achieved in Oracle Workflow.

However, most of the implementation effort focussed on the last requirement

of context-sensitive access control, namely separation of duties.

The CoSAWoE model proposes SoD administration steps that includes

expressing various business rules through a set of conflicting entities which

are maintained outside the scope of the workflow system. This component

was implemented easily enough through tables which were created with a

relational database. Evaluating these conflicts during run-time to control

worklist generation proved more difficult. First, a thorough understanding

of the way in which workflow history is maintained was necessary. A re-usable

function was developed to prune user lists according to user involvement in

previous tasks in the workflow and the conflicts specified for those users and

tasks. However, due to the lack of a central access control service, this re-

usable function must be included in the appropriate places in the workflow

process model.

Furthermore, the dissertation utilized a practical example to develop a

prototype. This prototype served a dual purpose: firstly, to aid the author’s

understanding of the features and principles involved, and secondly, to il-

lustrate and explore the implementation of the model as described in the

previous paragraphs.

In conclusion the dissertation summarized the CoSAWoE model’s compo-

nents which were found to be product agnostic, directly or indirectly imple-

mentable, or not implemented in the chosen workflow product. The lessons

learnt and issues surrounding the implementation effort were also discussed

before further research in terms of XML documents as data containers for

the workflow process were suggested.

Acknowledgements

I would like to dedicate this dissertation to my father who was in the process

of doing his own master’s degree when he died. I know this would have made

him immensely proud. He taught me that “when you do something, you do it

properly”; an attitude which will continue to inspire me in all my endeavors.

I would also like to thank the following people, without who this research

would have been an impossible undertaking:

• My promoter, Professor Reinhardt Botha, for his astonishing wealth of

knowledge which he made available to me so enthusiastically, patiently

and constructively.

• My family and friends for always being there; supporting and encourag-

ing me when I needed it, and reminding me of my own strength during

those long hours in front of the computer screen.

• My colleagues in the faculty of Computer Studies, for their advice and

encouragement. Special thanks goes to Breyten, Elderige and Stephen

for helping me out when I got stuck in the technical quicksand.

• The Port Elizabeth Technikon and the National Research Foundation

for administrative and financial support.

v

vi ACKNOWLEDGEMENTS

Trademarks

The following product names appear in the dissertation: Oracle 9i, Oracle

Workflow and PL/SQL. Oracle is a registered trademark, and any of these

product names, as well as any product features, are trademarks or registered

trademarks of Oracle Corporation. Other names may be trademarks of their

respective owners.

vii

viii TRADEMARKS

Contents

Declaration i

Abstract iii

Acknowledgements v

Trademarks vii

1 Introduction 1

1.1 Motivation for this study . 2

1.2 Problem Definition . 4

1.3 Objectives . 6

1.4 Methodology . 7

1.5 Layout of the Dissertation . 7

2 Workflow 9

2.1 Understanding Workflow . 10

2.2 Workflow Standards . 13

2.3 Functional Aspects of Workflow Systems 15

2.3.1 Process Design and Definition 16

2.3.2 Process Instantiation and Control 17

2.3.3 Interaction with Users and Applications 19

2.4 Trends in Workflow . 20

2.5 Conclusion . 23

3 Access Control Requirements 25

3.1 Secure Information in a Workflow 26

3.2 Access Control Service . 28

3.2.1 Access Control Service: Administration 28

ix

x CONTENTS

3.2.2 Access Control Service: Run-time Enforcement 32

3.3 Access Control in Workflow Systems 34

3.3.1 Order of Events . 35

3.3.2 Strict Least Privilege 35

3.3.3 Separation of Duty . 36

3.4 Conclusion . 37

4 The CoSAWoE Model 39

4.1 CoSAWoE Overview . 40

4.1.1 The Administration/Design Aspects 41

4.1.2 The Run-time Enforcement Aspects 43

4.2 Commercial Perspective . 44

4.2.1 Separation of Duty Administration 45

4.2.2 Worklist Generation 49

4.2.3 Integration with Commercial Systems 51

4.3 Conclusion . 53

5 Oracle Workflow 55

5.1 Workflow Terms Used in Oracle Workflow 56

5.2 Oracle Workflow Architecture 58

5.3 Process Design and Definition 61

5.4 Process Instantiation and Control 68

5.4.1 The Workflow Engine 68

5.4.2 The Notification System 71

5.4.3 The Business Event System 72

5.5 Interaction with Users and Applications 73

5.5.1 Viewing Notifications and Processing Responses 76

5.6 Conclusion . 79

6 CoSAWoE: Admin in Oracle Workflow 81

6.1 Access Control Features . 82

6.2 Specifying Access Control . 83

6.2.1 Role-based Access Control at Activity Level 84

6.2.2 Strict Least Privilege at Item Attribute Level 85

6.3 Specifying SoD . 86

6.4 Lessons Learnt . 89

CONTENTS xi

6.5 Conclusion . 90

7 CoSAWoE: Run-time in Oracle Workflow 93

7.1 Worklist Generation in Oracle Workflow 93

7.2 Pruning the User List for DSoD in Oracle Workflow 94

7.3 Session Control in Oracle Workflow 95

7.4 Lessons Learnt . 96

7.5 Conclusion . 97

8 Insurance Claim Example 99

8.1 Requirements of a Suitable Example 99

8.2 The Insurance Claim example 100

8.3 Administrative Access Control in the Example 103

8.4 Demonstration of the Example 108

8.5 Conclusion . 117

9 Conclusion 121

9.1 Revisiting the Problem Statement 122

9.2 Implementation Issues and Lessons Learnt 125

9.3 Future Research . 126

9.4 Final Word . 127

A The WFSOD PL/SQL Package 129

A.1 FilterUsers Procedure . 129

A.2 DeleteAdhocRole Procedure 132

B Accompanying Material 135

References 137

xii CONTENTS

List of Tables

4.1 Static SoD interpretations for the business rule “Auditors should

act independently” . 47

4.2 Dynamic SoD interpretations for the business rule “An order

should not be approved by its initiator” 48

xiii

xiv LIST OF TABLES

List of Figures

1.1 Subject areas under discussion 5

1.2 Specialization areas under discussion 5

1.3 Layout of the dissertation . 8

2.1 Processing a purchasing requisition 11

2.2 Typical components of a workflow 12

2.3 Workflow Management System 14

2.4 Partial process definition for a purchasing requisition process. 16

2.5 Process instantiation and control 18

2.6 Process interaction with users and applications 20

3.1 Role-based Access Control . 30

4.1 CoSAWoE: Conceptual view 40

4.2 Dynamically pruning the user list during run-time 50

4.3 Scope of implementing the CoSAWoE model in a commercial

workflow product . 52

5.1 Oracle Workflow Terms . 57

5.2 Oracle Workflow Architecture 59

5.3 Oracle Workflow Builder: Object Navigator and Process Dia-

gram windows . 62

5.4 Drilling-down into a process activity(“Notify Approver”) . . . 63

5.5 Workflow tables that store process definitions in the database 66

5.6 Workflow tables that store history information of process in-

stances . 69

5.7 How the Workflow Engine interacts with the Business Event

System . 73

xv

xvi LIST OF FIGURES

5.8 Workflow users can access workflow features via a Workflow

Homepage . 75

5.9 The “Notifications Web page” shows open notifications for the

current user . 78

5.10 The “Notification Detail” page. 79

6.1 Specifying conflicting entities via database tables in Oracle

Workflow . 88

6.2 Inserting a function activity in the process definition to enforce

DSoD . 89

8.1 The Insurance Claim process as shown in Oracle Workflow

Builder’s process window . 102

8.2 Examples of Insurance Claim process instances 103

8.3 Users for the Insurance Claim example 104

8.4 Roles for the Insurance Claim example 105

8.5 User to Role assignment for the example 105

8.6 Assigning a Performer Role to an activity 106

8.7 Attribute Type settings for messages 107

8.8 Conflicting Tasks for the Insurance Claim example 107

8.9 Conflicting Users for the Insurance Claim example 108

8.10 The Insurance Claim process with SoD function activities . . . 109

8.11 Starting a new Insurance Claim process 110

8.12 Monitoring the status of the Claim via the “Activities List”

webpage . 111

8.13 The “Prepare Claim” notification appears on Pauline’s worklist111

8.14 Pauline prepares a new claim by supplying values for the item

attributes presented by the notification message 112

8.15 The worklists of Pauline, Kenneth, Ben, Alan and Tom after

Task 1 has been completed . 113

8.16 The process diagram in the web monitor shows the execution

of “Filter Users” before the “Complete Customer Profile” task 114

8.17 A graphical illustration of how the “Filter Users” function

prunes the user list before Task 7 115

8.18 Tom prepares his assessor’s report in task 6 116

LIST OF FIGURES xvii

8.19 Kenneth prepares a customer profile before submitting it for

task 7 . 116

8.20 The worklists of Alan, Ben, Kenneth and Pauline after task 6

and 7 have been completed. 118

8.21 A summary of the activities that were completed in this example.119

xviii LIST OF FIGURES

Chapter 1

Introduction

The corporate landscape has undergone significant changes in the last few

decades. Increased globalization, supported by the Internet phenomenon, has

forever changed business philosophy and culture. The advent of the Internet

and the World Wide Web ushered in a new era, appropriately termed the

“Information age”. Modern-day consumers are more “informed” than ever

about the products and services that they buy.

They have also become accustomed to a high level of convenience and

customer service. Companies have expanded to become virtual corporations

who can conduct business on every continent, 24 hours a day, 7 days a week.

Therefore, the increased need for speed and distribution has become the

driving force for companies seeking to gain a competitive advantage in a

global arena (Sheth, van der Aalst, & Arpinar, 1999).

Not just big business, but organizations of all sectors are changing to

streamline their operations. Even governmental agencies are starting to re-

alize the potential of using the Internet to provide essential information and

services to the people they serve (Caldow, 1999). This transformation pro-

cess includes business process re-engineering (BPR) and the increased use of

automated workflows to facilitate business processes:

“Success in this dynamic business environment demands robust

end-to-end business process solutions that are flexible, scalable

and adaptive. The critical success factor is Workflow.” (IBM,

2000).

Although the use of technology to enable information-flow brings about sev-

eral advantages, it also introduces new and challenging problems. Automated

1

2 CHAPTER 1. INTRODUCTION

business processes often involve complex routing of tasks not only between

humans, but also between different information systems. Furthermore, these

workflows may be distributed and implemented on a variety of IT platforms

and may have life cycles ranging from minutes up to months.

Some of these problems also manifest themselves in the field of informa-

tion security. Information assets, like any other asset, must be protected from

exploitation by competitors and malicious forces. With the proliferation of

electronic information and computer networks, the focus shifted from the

physical protection of tangible assets to the logical protection of intangible

information assets.

This study was primarily motivated by the need for controlling access to

the increasingly important information assets, specifically those under the

control of workflow systems.

1.1 Motivation for this study

The research undertaken for this study was motivated by the following real-

izations.

The realization that workflow is a critical success factor

for e-business

With global competition becoming a real threat, organizations need to con-

sider how information technology can be used as an enabling business compo-

nent. Several trends can be observed when studying information technology

over the past decade. These include a widespread adoption of Enterprize Re-

source Planning (ERP) systems and a strong move to e-commerce (or lately

e-business) (Ash & Burn, 2003). The importance of workflow technology in

all of these activities is widely recognized. ERP vendors are starting to inte-

grate workflow into their systems and touting it as a key technology in their

e-business frameworks (Sheth et al., 1999). Advocates of workflow systems

are quick to point out that, if critical business processes are facilitated by

workflow systems, a return on investment can be realized in a short time.

The biggest contributing factor to this is the saving of time that results from

the streamlined information flow (Teng, Jeong, & Grover, 1998; Duchessi &

1.1. MOTIVATION FOR THIS STUDY 3

Chengalur-Smith, 1998; Amoroso, 1998).

However, workflow systems are vulnerable as far as information security

is concerned, and their advantages can just as easily be turned to vices if

they cannot perform “with the accuracy and assurance that the customer

expects” (IBM, 2000). This lead to the following realization.

The realization that an access control service is nec-

essary to protect the workflow and the information it

manages

In any automated process the need for control and security is paramount. The

physical checks that were so common in paper-based systems now need to be

replicated electronically. Users of the workflow should not be burdened with

the responsibility of ensuring that the business rules are enforced correctly

or that the data is kept secure. It is exactly this kind of “red tape” that

workflow systems try to avoid.

A security service is therefore necessary to protect the data from a logical

perspective, as opposed to physically securing the transmission and storage

of that data via methods such as encryption. Logical protection would entail

ensuring that information stay available, confidential and maintain its in-

tegrity (Botha & Eloff, 2002). Availability is gained by controlling access to

information in such a way that a user’s work is not interrupted. Confidential-

ity and integrity, which relates to allowing access to information according

to the context of the user’s current task in the workflow, is also indirectly

attained with the assistance of an access control service.

Information security, including access control in workflow systems, have

received much attention from the research community, yet companies have

been slow to recognize and adopt the necessary precautions (von Solms,

1999). The secure flow of information in a workflow is not gained with-

out effort. Workflows must be carefully planned to anticipate where and

when information in the workflow might become vulnerable. Often, the im-

plementation of much of the desired security requirements, is still left to each

individual developer.

Therefore, further investigation into the development of workflow systems

and the products available commercially, also revealed the next realization.

4 CHAPTER 1. INTRODUCTION

The realization that commercial workflow products em-

ployed by most e-businesses may not provide adequate

access control mechanisms

The main player in the standards arena regarding workflow systems is the

Workflow Management Coalition (WfMC). The main purpose of the WfMC

effort is to facilitate information interchange between heterogeneous workflow

systems. This produced a common reference model for workflow management

systems (Hollingsworth, 1995). Unfortunately, no specific reference to secu-

rity is made. A “Security Considerations White Paper” published 3 years

later (Workflow Management Coalition, 1998a) also does not identify access

control as a priority. Instead, access control is upheld as a facility that can

add value to products, thus serving a product differentiation role.

Therefore, most commercial products, such as IBM WebSphere MQ Work-

flow, Handysoft Bizflow, TIBCO InConcert, Staffware and Oracle Workflow

to mention but a few, include only limited, and at times no distinctly rec-

ognizable access control features. Most companies seeking to expand their

e-business capabilities via workflow, rely on one of these established workflow

products to implement their solution. If access control is considered as a re-

quirement when evaluating their options, they will need a standard model on

which to base their assessment. Even if such a model is available, a candidate

product which exactly matches this model will be hard to find. Most likely,

this functionality will need to be “added on”, or the product customized in

order to incorporate the customer’s specific access control requirements.

It is this realization that strengthened the author’s motivation to inves-

tigate the considerations, and ease with which an access control model can

be implemented in a commercial workflow product.

1.2 Problem Definition

The problem addressed in this dissertation stems from two areas of interest,

namely workflow and access control (see figure 1.1).

The initial question asked was, “What role does the access control service

play to create a secure workflow?”. This is shown as the overlap of the work-

flow and access control spheres on figure 1.1. This question has already been

1.2. PROBLEM DEFINITION 5

$&&(66�&21752/�������:25.)/2:

Figure 1.1: Subject areas under discussion

answered by researchers such as Botha (2001), Bertino, Ferrari, and Atluri

(1999), and Wei-Kuang Huang and Vijay Atluri (1999), who suggest that

the access control service is crucial to protect information from a logical per-

spective according to the organizational rules of the business. Various models

have also been proposed to implement access control requirements. The in-

terest, therefore, is not what should be done, but rather can it practically be

done.

Also, as discussed in the previous section, most companies have realized

the need for workflow systems to create effective e-business solutions. How-

ever, when choosing a technical solution, they will prefer to use one of the

many established products with proven track-records and readily available

support, as opposed to in-house development. Therefore the question be-

comes whether a particular access control model can be implemented, not as

part of some specially built prototype as developed with such models, but

in a commercially available workflow product. Figure 1.2 indicates that the

CoSAWoE model and the Oracle Workflow product, in particular, will be

investigated. The integration of CoSAWoE into Oracle Workflow is shown

as the shaded area.

This narrows the scope and poses the following question:

&R6$:R(
��25$&/(

:25.)/2:

Figure 1.2: Specialization areas under discussion

6 CHAPTER 1. INTRODUCTION

“Can the CoSAWoE model be purposefully applied to a commer-

cial workflow product such as Oracle Workflow?”

In order to answer the question stated above, and determine whether a

“purposeful” implementation is indeed possible, some additional questions

will also form part of the discussion:

• What are the functional requirements of an access control service for

workflow systems?

• Which aspects of the access control model is product agnostic?

• Which aspects of the model can directly be implemented and which

will require customization in order to achieve similar results?

• Which aspects are not implementable for the chosen workflow product?

The next section will discuss what objectives this dissertation will attempt

to achieve in order to answer the questions above.

1.3 Objectives

The principal objective of this study is to determine whether a particular

access control model, CoSAWoE, can be purposefully implemented in a com-

mercial workflow product.

In order to do this, this study will first aim to integrate existing knowledge

in the fields of workflow and access control. In this discussion, the protection

requirements of information in a workflow, from a logical perspective, will

be established. Subsequently, the suitability of the CoSAWoE model will

be investigated, and the components effecting commercial workflow products

will be identified. The chosen commercial product must also be dissected,

and the features relevant to an access control discussion will be highlighted.

A theoretical discussion of these features will ensue to determine whether

the objectives of the CoSAWoE model can be met within the chosen work-

flow product. The suggested implementation will then be demonstrated by

building an exploratory prototype. Finally, this demonstration will reveal

the difficulties and “lessons learnt” from implementing the CoSAWoE model

in a commercial workflow environment.

In order to reach these objectives the following methods will be used.

1.4. METHODOLOGY 7

1.4 Methodology

The primary methodology followed in undertaking this research was a thor-

ough literature study. The literature study examined the problem by inves-

tigating the topics of workflow and access control. Attention was especially

given to the specialization areas of Oracle Workflow, the CoSAWoE model,

and their integration as shown on the overlapping area in figure 1.2.

The aim of this literature study is to reveal the key components of the

model that will be applicable to commercial systems. These aspects are also

part of a general discussion as to how they can be implemented in one such

system, namely Oracle Workflow. In aid of this discussion, a prototype was

built to explore how the main services of the model are implemented within

a particular workflow scenario. The prototype, built with Oracle Workflow,

highlights how the chosen product can be used to enforce certain application-

level access control requirements, and what problems were encountered.

The following section will show how the results of the literature study

and the exploratory prototype is presented in this dissertation.

1.5 Layout of the Dissertation

The layout of the dissertation is depicted in figure 1.3. Following on this

introduction, Chapter 2 discusses the role of workflow within modern e-

businesses and the functionality included with typical workflow management

systems. Then Chapter 3 investigates the access control requirements of in-

formation within a workflow environment. The components of the CoSAWoE

model are investigated next in Chapter 4, with the features of Oracle Work-

flow discussed thereafter in Chapter 5. Both these chapters will concentrate

on features which will have a direct bearing on Chapters 6 and 7 in which

the implementation of the model in the chosen workflow product will be dis-

cussed. Chapter 6 will suggest administrative/design steps that must be

followed, while Chapter 7 discusses the run-time execution of the proposed

functionality. Thereafter, in Chapter 8, a practical example is used to illus-

trate how a prototype can systematically be built, incorporating the methods

discussed in chapter 6, and demonstrating their effects as discussed in chap-

ter 7. Finally, the dissertation is concluded in Chapter 9 where the lessons

8 CHAPTER 1. INTRODUCTION

&+$37(5��

,1752'8&7,21

&+$37(5��

:25.)/2:

&+$37(5��

$&&(66�&21752/

5(48,5(0(176�,1

:25.)/2:

&+$37(5��

7+(�&R6$:R(�02'(/

&+$37(5��

25$&/(�:25.)/2:

&+$37(5��

&21&/86,21

&+$37(5��

&R6$:R(��$'0,1�,1

25$&/(�:25.)/2:

&+$37(5��

&R6$:R(��581�7,0(�,1

25$&/(�:25.)/2:

&+$37(5��

352727<3(

Figure 1.3: Layout of the dissertation

learnt from this implementation effort are presented, and recommendations

for further research are proposed.

Chapter 2

Workflow

Workflow systems have proliferated during recent years. Workflow grew out

of the need to re-engineer business processes so that the flow of information

and tasks between various participants are optimized. The interest in such

systems was fuelled by the increasing competitiveness of businesses operating

in the global, networked economy facilitated by the Internet. The combina-

tion of the information communication capabilities of the World Wide Web,

used together with the strategic business process automation capabilities of

workflow systems, have spawned many new research avenues as far as e-

commerce is concerned.

According to Wei-Kuang Huang and Vijay Atluri (1999), “Web and work-

flow management systems together serve as an ideal combination to integrate

the distributed processes that are across or within enterprize boundaries”.

The Internet has indeed brought several advantages to traditional workflow

systems, but more importantly, companies who make strategic use of this

medium to integrate all areas of their business (and thereby becoming e-

businesses), are realizing the importance of workflow as a key technology.

Workflow management systems also support the definition, execution, con-

trolling and documentation of the business processes automated by such

workflows.

This chapter will conceptualize workflow and workflow management sys-

tems. Extensive research have already been done in this field and groups

such as the Workflow Management Coalition (WfMC) (Hollingsworth, 1995)

have attempted to standardize many aspects of such systems. The following

sections will explore some of these definitions and standards, culminating

9

10 CHAPTER 2. WORKFLOW

in a discussion of the functional aspects of workflow systems. Towards the

end of the chapter, the relationship between workflow and the Web will be

explored. First, however, it is necessary to understand the basics of a typical

workflow.

2.1 Understanding Workflow

In order to streamline their operations, many businesses have become more

and more process-focussed. BPR has fuelled the need to identify and under-

stand critical business processes. These processes are often routine in nature,

such as reordering stock, and will typically follow the same sequence of steps

every time the process is repeated. Decisions will be made by various people

along the way until the desired result is achieved. In many cases, the whole

process will be paper-based, with the completion of a form triggering the

next step in the process (Leyman & Roller, 2000). This system of “pushing

paper across desks” is still in use in many organizations today. However, in-

formation technology offers an alternative, where processes can be controlled

by a computer system and information can flow from point to point in an

instant.

The concept of workflow1 is best described by the Workflow Manage-

ment Coalition (1998b): “The automation of a business process, in whole or

part, during which documents, information or tasks are passed from one par-

ticipant to another for action, according to a set of procedural rules.” There

are various types of workflows, including image processing, groupware ap-

plications, transaction-based applications and project development systems

(Hollingsworth, 1995). However, most formal business tasks are based on, or

are driven by, document flows (Sprague, 1995).

Document-based workflows are concerned with completing elec-

tronic documents by routing it to the various people concerned so

that they can access and update their specific parts before sending

it along. These electronic documents often resemble paper-based

1The term “workflow” can apply to any business process, whether it is completely

computerized or not. However, for the purposes of this dissertation it will be used in the

context of an automated process.

2.1. UNDERSTANDING WORKFLOW 11

5HTXHVWRU

&DSWXUH

'DWD

5HTXHVW

$SSURYDO

1RWLI\

5HTXHVWRU

9HULI\

$XWKRULW\

5HTXHVWRU

$SSURYHU

5HMHFWHG

$SSURYHG
1R

<HV

3XUFKDVH�2UGHU

3URFHVV

7
�

7
�

7
�

7
�

Figure 2.1: Processing a purchasing requisition

forms, with various data fields organized into some structure (Bae

& Kim, 2002).

Consider a simplified purchasing request. A requestor will fill in all the

relevant details pertaining to the items requested on a paper form. This

information will have to be captured using some electronic document. The

request will then need to be evaluated and approved by a manager with the

right level of authority. If it is approved, the request will likely become a

purchase order which will in turn be processed by another workflow process.

Although there are many types of workflows, and just as many ways of

modelling them, most representations will include these three basic compo-

nents:

• tasks or activities that have to be done;

• human users or applications that are needed to complete them;

• and rules that will determine which tasks to do next.

These concepts can be illustrated in the context of the purchasing req-

uisition example discussed earlier. Figure 2.1 shows four tasks or activities

numbered T1 to T4. T1 is initiated by the requestor who completes and sub-

mits an electronic purchasing requisition form. The form is then forwarded

to the approver for approval, as shown by T2. The approver is selected ac-

cording to some management or role hierarchy. Details of this user selection

for each task will form part of the access control discussion later in chapter 3.

12 CHAPTER 2. WORKFLOW

3URFHVV�,QVWDQFH

3URFHVV�,QVWDQFH

3URFHVV�'HILQLWLRQ

$SSOLFDWLRQ

'DWD

LQYROYHV

KDV

7DVN�

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7DVN��

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7DVN���

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7UXH

)DOVH

%XVLQHVV

5XOH

D��6HTXHQFH E��,WHUDWLRQ

F��25�6SOLW G��$1'�6SOLW

H��25�-RLQ I��$1'�-RLQ

,QWHUWDVN

GHSHQGHQFLHV

8VHU

Figure 2.2: Typical components of a workflow

From T2 the workflow can follow different paths. If the claim is approved,

the next task (T3) is to verify that the approver has the authority to approve

the requisition amount. If the approver does not, the form is looped back

to another approver further up in the management hierarchy until a man-

ager with the correct level of authority approves or rejects the requisition.

Whether the purchase requisition is approved or rejected, a message is sent

to the requestor notifying him or her of the decision. This is shown as T4

on figure 2.1 on the page before. From here the workflow can join up with

another process to generate and fulfil the purchase order for the approved

requisition. Notice that a requisition can only continue to the purchase or-

der process if it was approved by an authorized approver. This represents a

business rule for the processing of a purchasing requisition.

The example just discussed is quite simple, but business processes that

are automated often involve complex routing of tasks not only between hu-

mans but also between different information systems. Furthermore, these

workflows may be distributed and implemented on a variety of IT platforms

and may have life cycles ranging from minutes up to months (Hollingsworth,

1995).

2.2. WORKFLOW STANDARDS 13

Figure 2.2 on the facing page gives an overview of the typical components

of a workflow including tasks, business rules, data in the form of documents,

users and applications. It also shows the different intertask dependencies that

will determine the flow of data from one task to another (Workflow Manage-

ment Coalition, 1996). These can broadly be categorized into sequence, iter-

ation, split and join dependencies. “OR” splits and joins mean that only one

of the defined paths can be followed by a process instance. “AND” splits and

joins facilitates what happens when two parallel paths are followed simulta-

neously by the same process instance. At any one time there can be several

instances of the same workflow process running, each with its own data and

path through the process (indicated by the dotted lines in figure 2.2 on the

preceding page).

Workflow management systems (WfMSs) provide tools to support the

definition, administration and monitoring of workflow processes. Using work-

flow systems to automate and monitor processes effectively in modern orga-

nizations increases productivity, improves quality and customer service, and

enhances operational control (Workflow Management Coalition, 1998b).

All workflow systems exhibit certain common characteristics, which will

be described in more detail in section 2.3. The WfMC has developed a work-

flow reference model with the aim to ensure integration and inter-operability

between workflows implemented on different systems. It also forms a con-

sistent starting point from which to discuss workflow management systems,

since most workflow systems will conform to this model.

2.2 Workflow Standards

The Workflow Management Coalition (WfMC) is an international standards

organization whose aim it is to establish standards for workflow manage-

ment systems. By defining the commonalities between these systems, an

architecture can be developed that will be independent of the different im-

plementation methods. This will allow greater flexibility and interoperability

between different workflow management products.

The efforts of the WfMC has already produced a Workflow Reference

Model (Hollingsworth, 1995) which defines the basics of workflow manage-

ment, a reference architecture and the interfaces between different compo-

14 CHAPTER 2. WORKFLOW

������� �	�
������ �����
����������� ����� ���
�����
��� � ���
 "!#��$%� �
� &%� ����'#����� �

()���+*+$�� �
,.-����
��&0/�����&
1���� 2�� ���

��3�3
� � ���
&�� ������
4 '5'��
��� �

6#�7���

8�9+:�;
<>=
=@?�<�=
A B#C
DE?�<
F A C#A G A :#C

8�9%:�;
<>=
=@H C�=
G I�C#G A I
G A :JC
DEK�:#CJG 9%:�L

��� �
���M���
!#��$%� ��� &�� ���

H C#G <�9%IM;�G A :#CN�A G O
P�=�<
9%=QDER�S#S#L A ;
I�G A :�CJ=

TU
VW
X
YVZ
[

\U
]
YVZ
[

(^��� *�� � ��&

Figure 2.3: Workflow Management System (based on Hollingsworth (1995))

nents of that architecture. It places a significant amount of emphasis on the

interfaces, since they will have the biggest impact on interoperability between

components. For the purposes of this dissertation, the detailed description of

each interface and component is unnecessary. The simplified diagram shown

in figure 2.3 will be used as a basis for section 2.3 (functional aspects of

workflow systems).

However, no one standard can be sufficient to standardize all aspects of

a typical e-business workflow process. Other standards have also been de-

veloped, most notably the OMG’s Workflow Management Facility standard

(or jointFlow as it is also known). This standard is based on the WfMC’s

standards, but presents them as a unified object model (Siemens Nixdorf In-

formationssysteme, 1998). This facilitates a modular approach when dealing

with distributed workflow applications. JointFlow allows interoperability not

only between workflow applications at a higher process level, but also at com-

ponent level, including process monitoring, execution and resource handling.

It also provides the opportunity to develop more specialized standards which

concentrate on certain functionalities. Two such standards are the Simple

Workflow Access Protocol (SWAP) and the Wf-XML message set.

The SWAP standard focusses on process execution, from the instantiation

2.3. FUNCTIONAL ASPECTS OF WORKFLOW SYSTEMS 15

of process instances, to the monitoring and control of each individual instance

(Swenson, 1998). Furthermore, it proposes the use of the HTTP protocol as

a vehicle for XML messages to travel between workflow components. This is

purposely done to ensure integration of distributed workflows on the Internet.

SWAP was first introduced in December of 1998, and has since been used

by in the U.S. Department of Defence and IBM’s MQseries workflow engine

prototypes.

Crucial to the SWAP standard is the use of XML encoding to send mes-

sages between components. This led to the development of the Wf-XML

specification, a subset of SWAP (Hayes et al., 2000). It provides a few ad-

vantages over its predecessor, like the independence from transport mecha-

nisms. Although the HTTP protocol has been accepted by the WfMC as the

core transport mechanism to send and receive Wf-XML messages, solution

providers are free to choose their own method for delivering these messages

(like e-mail or CORBA for example). The transport mechanism would be

specified in an interoperability contract. This contract between systems is

key to the interoperability of Wf-XML messages since it defines each sys-

tem’s expectations and requirements. It would typically include information

about connectivity, security, the different process definitions and their for-

mats. The Wf-XML specification was released as an official WfMC standard

in May 2000 (Workflow Management Coalition, 2000).

All the standards referred to above were developed with one aim: to create

interoperability between workflow products from different vendors running

on different platforms. As mentioned previously, a detailed explanation of

how this interoperability is achieved will have no bearing on this disserta-

tion. More importantly, it is necessary to understand the common functional

aspects of typical workflow systems.

2.3 Functional Aspects of Workflow Systems

The architectural model as described by the WFMC (Hollingsworth, 1995)

focusses on gaining compatibility between heterogeneous workflow environ-

ments via five different interfaces. However the simplified diagram, shown in

figure 2.3 on the preceding page, shows more clearly the three distinct func-

tions of a workflow management system. These functions also refer to the

16 CHAPTER 2. WORKFLOW

7DVN����&DSWXUH

'DWD

>3XUFKDVH�5HTXLVLWLRQ@

5HTXHVWRU

7DVN����5HTXHVW

$SSURYDO

$SSURYHU

7DVN����9HULI\�$XWKRULW\7DVN����1RWLI\�5HTXHVWRU

5HTXHVWRU

�$SSURYHG� �<HV�

�$SSURYHG� �1R�

�9HULILHG� �<HV�

>3XUFKDVH�5HTXLVLWLRQ@

>3XUFKDVH�5HTXLVLWLRQ@
>3XUFKDVH�5HTXLVLWLRQ@

�9HULILHG� �1R�

Figure 2.4: Partial process definition for a purchasing requisition process.

stages a typical business process would follow when facilitated by a workflow

management system.

Firstly, the process is defined and formatted so that the computer can

understand it. The output from this stage is a process definition document

which is then interpreted during run-time to instantiate different process

instances. During the execution of each instance, the workflow management

system will route tasks and data between various participants in the workflow

based on conditions encountered along the way. The workflow management

system will also maintain workflow related data as well as control data for

each instance.

The following discussions will reveal more detail about the various com-

ponents of a workflow management system that are needed to perform each

function.

2.3.1 Process Design and Definition

The WFMC refers to this stage as “build-time” (Hollingsworth, 1995, p. 7).

During this phase the workflow, as explained above in conceptual form, must

be designed using analysis and modelling tools. These designs are then im-

plemented in a format the computer can understand, called the Process Def-

inition. This process definition will typically include task definitions, refer-

ences to outside programs and/or participants, navigation rules and business

rules. A process definition tool can be used to capture these definitions using

a process definition language, object-orientated models or scripts.

Figure 2.4 shows a partial process definition for a purchasing requisition

2.3. FUNCTIONAL ASPECTS OF WORKFLOW SYSTEMS 17

process based on the notation used in Botha and Eloff (2001a). Each task

on the diagram is divided into three sections: 1) the task description in bold,

2) the document being used is placed in square brackets, and 3) the user or

application program involved in completing that particular task is shown in

italics.

Most tasks follow a straight sequence from one task to the next specified

task in the process definition (e.g. from capturing the requisition data in task

1 to performing the approval in task 2). However, as shown in the diagram,

there are cases where the flow can be split in two directions depending on

whether a condition is satisfied or not. Tasks can also be executed in a

loop until an exit condition is satisfied. These business rules/conditions

are shown in rounded brackets on the connecting lines between tasks. For

example, depending on whether the purchase requisition is approved or not,

the requestor will either be notified straight away of the rejection or it will

be routed to some internal function checking the approver’s authorization

to approve the amount. Here it enters a loop, where the purchase order is

repeatedly approved by managers in the hierarchy until a manager with the

suitable authority is found.

This example can obviously be expanded to include several more tasks,

documents and participants, but it is not required to illustrate the concepts

discussed later. As can be seen from this diagram, the process definition

serves as a template for all possible routes through a certain process. The

next section, process instantiation and control will describe how each individ-

ual process instance will be interpreted and directed according to the process

definition.

2.3.2 Process Instantiation and Control

During “run-time” several background processes must occur to create, control

and monitor the workflow. These are executed on the server-side and is not

seen by the user. Central to this phase is the workflow enactment service

(see figure 2.3 on page 14). This service creates a new process instance each

time a user starts a new workflow process. It then interprets the process

definition and uses it to execute and control tasks that form part of that

process instance. Each task will go through several states and as one finishes,

the enactment service will determine which task to trigger next. Figure 2.5

18 CHAPTER 2. WORKFLOW

� �

��

3URFHVV�'HI L Q L W L RQ

� �

� �

�

3URFHVV�,QVWDQFH��

3URFHVV�,QVWDQFH��

3URFHVV�,QVWDQFH��

3URFHVV�&RQWUR O

�

�

�

�

�

�

Figure 2.5: Process instantiation and control

shows how the process definition is interpreted differently for each process

instance, by creating task instances only as they are needed. Process instance

1, for example, does not complete task three, but rather goes directly to task

four. Both process instance 2 and 3 trigger all tasks to be executed, but in a

different sequence resulting in different end results. In process instance 2, the

requisition is approved the first time around by an approver with the correct

authorization level. Process instance 2 enters the loop back to task 2 when

the first approver’s authority is not sufficient for the successful completion of

the process. The process exits the loop when the requisition is subsequently

rejected by an approver with a higher level of authority.

Throughout the workflow data will be accessed and updated by users and

applications. The workflow enactment service must manage the relevant data

related to each process instance. It is also important to note that tasks do not

always occur in a neat uncomplicated sequence. They may occur in parallel,

be split between participants or share the same resource, as was suggested

in figure 2.2. The workflow enactment service must be able to navigate all

of these flow structures for each separate process instance. In addition, a

process can be distributed between several enactment services and can often

take several days, if not months, to run to completion. In view of these

complexities, control data, security logs and recovery information gain new

2.3. FUNCTIONAL ASPECTS OF WORKFLOW SYSTEMS 19

importance. The enactment service will keep its own internal control data

associated with each process instance. This enables the enactment service

to recover data and continue processing if the process is interrupted for any

reason.

2.3.3 Interaction with Users and Applications

As mentioned previously, the workflow will often require some involvement

from users or external applications to complete certain tasks. This happens

on the client-side, and it is the only time when the users are allowed to

interact with the workflow system, with the exception of the administrator

who has supervisory privileges to alter tasks and monitor activity. In order

to interface with users, the enactment service will place tasks on each user’s

individual worklist (as shown by the worklist for the approver in figure 2.6 on

the following page). A worklist handler will then place the tasks according

to priority or sequence onto the user’s desktop. Using the push method, the

worklist handler will schedule tasks in the order that a user must perform

them. However, sometimes the pull method is used, which presents the users

with all the tasks that they must perform and then lets them choose the

order in which they want to perform them. As the user completes a task it

is removed from the user’s worklist.

External applications are often invoked indirectly via the user interface,

for example when a user needs to complete a form using a spreadsheet or word

processor. However, sometimes it is also necessary for the enactment service

to directly access applications, for example when the rejection notification

is sent via an e-mailing system or when the approved purchase requisition

is uploaded to a persistent document store. The enactment service will also

need to integrate the workflow process with external business applications,

triggering a task instance based on the occurrence of some business event, or

allowing such applications to access process instance data.

Now that the functionality of a typical workflow has been described, the

following section will examine the recent move of workflow technologies to

the Web.

20 CHAPTER 2. WORKFLOW

ZRUNOLVW

3URFHVV

,QWHUDFW LRQ

$SSURYHU

(�PDLOLQJ�6\VWHP

BBBBB

BBBBB

BB7�

� �

��

3URFHVV

'HI LQ L W LRQ

� �

�

3URFHVV�,QVWDQFH��

3URFHVV�,QVWDQFH��

3URFHVV�,QVWDQFH��

3URFHVV

&RQWUR O

�

�

��

3HUVLVWHQW�GRFXPHQW

VWRUH

� �

� �

Figure 2.6: Process interaction with users and applications

2.4 Trends in Workflow

The introduction to this chapter identified the need for speed and flexibility as

the main reasons for the use of workflow systems to streamline a company’s

business processes. Many e-commerce applications rely on workflow man-

agement systems to effectively and reliably process consumer requests in the

background, while providing a virtual storefront to potential customers on

the World Wide Web. The business-to-business (B2B) model for e-commerce

is also seeing companies forming short-term casual trading relationships to

facilitate a particular process. Therefore, workflow systems must be able to

cross company boundaries to build virtual enterprizes (Workflow Manage-

ment Coalition, 1998b).

This trend towards inter-organizational, heterogenous workflow environ-

ments is driven by more than just the technical requirements for different

systems to communicate workflow data. According to van der Aalst (1999),

providing interoperability between the different “ways of doing business” is

just as important. The WfMC has been working on standards to provide

interoperability between workflow products from different vendors. To this

end they have just released a draft version of their updated Wf-XML stan-

dard based on ASAP (Asynchronous Services Access Protocol) to facilitate

2.4. TRENDS IN WORKFLOW 21

message sending of workflow control data between systems (Workflow Man-

agement Coalition, 2004). In addition, a new standard called XML Process

Definition Language (XPDL) (Workflow Management Coalition, 2002) was

released to address the problem of transporting the process design (the “way

of doing business”) across different workflow products, or from specialist

modelling tools.

Kim, Kang, Kim, Bae, and Ju (2000) proposed the “WW-Flow” system,

which takes a modular approach to support flexible workflow management

in a distributed heterogenous environment. Their system allows different

workflow engines to interoperate using nested process models and runtime

encapsulation: “Run-time encapsulation facilitates cooperation among differ-

ent departments and organizations, and it improves WfMS scalability by en-

abling distributed workflow engines to manage subprocesses independently.”

Manolescu (2001) also advocates a modularized architecture for workflow sys-

tems, although his solution was developed to aid object-orientated developers

in creating customized workflow solutions for integration with their existing

OO applications. Nevertheless, adopting an object-orientated or modular

architectural style has many other advantages. Separating workflow func-

tionality into a series of components is also in keeping with the recent trend

towards service-based development (i.e. providing workflow services as inter-

changeable software components) (Gottschalk, Graham, Kreger, & J.Snell,

2002). Such web-enabled workflow services utilize Web technologies such

as XML (eXtensible Markup Language) and Java to take full advantage of

the Internet’s platform independent, distributed architecture for a workflow

enactment service (Kim et al., 2000).

However, the Web has probably had the most significant impact on the

user interaction side of workflow. Client interfaces are utilizing traditional

Web features such as hypertexts and Internet protocols such as HTTP, which

means that workflow users have ready access to the workflow system from

anywhere in the world. The Web has become the ubiquitous user interface

for most computer systems, and workflow systems are quickly following suit

(Brambilla, Ceri, Comai, Fraternali, & Manolescu, 2002). Administrators

now also have a convenient and familiar interface to track and monitor in-

dividual process instances, review resource productivity and analyze work

volume and performance issues from any location. It has even made it pos-

22 CHAPTER 2. WORKFLOW

sible to provide an on-line, self-service functionality for a company’s clients

who want to query the status of their requests. The Internet has also pro-

vided various platform independent ways of exchanging process data. EDI is

a common business-to-business tool for exchanging transaction data. How-

ever, XML documents provides a more flexible method to exchange process

data which is more secure than using the more traditional HTML pages

(Workflow Management Coalition, 1998b).

The shift toward becoming more streamlined e-businesses have put cor-

porate executives under pressure to ensure they coordinate their resources,

disparate applications and business activities as well managed processes. As

such, another major trend has seen workflow vendors integrating their prod-

ucts into mainstream technology for enterprize application integration (EAI)

(Moore, 2000). EAI systems, such as inventory control, human resource

management, customer care, manufacturing and accounting systems, are in-

tegrated solutions that span multiple departments. Workflow is seen as an

integration tool for such systems and is used to drive data across functional

boundaries and manage a common information set. Increasingly, workflow

systems are being marketed as the core component of EAI suites featur-

ing these packaged solutions, rather than stand-alone products. Workflow

systems are also being used to gather statistical workflow data for decision

making purposes. Bonifati, Casati, Dayal, and Shan (2001) suggests that in-

formation can be extracted from the the process instance history and placed

in a data warehouse. This will allow managers to utilize the workflow data

through a decision support systems and to identify trends in the business

process.

This section discussed several trends relating to how workflow manage-

ment systems are being used, their architectures and related technologies.

The following bulleted list summarizes these trends:

• Workflow systems should be able to support distributed, heterogenous

workflows that span departments and allows for inter-organizational

processes. As such, a high level of technical and functional interop-

erability between different workflow products are required. XML is

increasingly being used by business partners to exchange information

about their business processes in an automated way (van der Aalst &

Kumar, 2003).

2.5. CONCLUSION 23

• Workflow management systems are increasingly being developed ac-

cording to a modularized approach. Components are developed using

OO techniques (Manolescu, 2001) and some are used as interchangeable

web-services (Nanda, Chandra, & Sarkar, 2004).

• Web-based user interfaces are becoming the norm. Clients, end-users,

administrators and managers can initiate, monitor, control, query and

respond to workflow data from any location via a standard web browser

(Lu & Chen, 2002).

• Workflow systems are being used less as stand-alone products and more

as background products that are seamlessly integrated into packaged

EAI systems that service multiple business units (Moore, 2000; Wu,

Deng, & Li, 2004).

• The potential for workflow systems to deliver strategic business infor-

mation has been recognized and workflow data is now also being utilized

within data warehouses (Bonifati et al., 2001).

2.5 Conclusion

Today’s business enterprizes must deal with global competition, reduce the

cost of doing business, and rapidly develop new services and products. This

chapter introduced workflow as a means to automate and support evolving

business processes. Processing information in the form of paper-based doc-

uments is often a major part of most business processes. Workflow aims to

reduce the time wasted while filling in these forms and waiting for them when

they are delayed at some point in the system.

As discussed, a typical workflow process is comprised of tasks that must

be completed by either human users or external applications according to a

set of business rules which determine the flow. Automated workflow systems

must be able to handle many of these processes that can be nested within

one another, that may involve hundreds of users and other information sys-

tems, and that may have a time-span ranging from minutes to months. This

complexity necessitates the use of a comprehensive workflow management

system and close adherence to several standards recommended by the Work-

flow Management Coalition.

24 CHAPTER 2. WORKFLOW

The functional aspects of workflow management systems formed the crux

of this chapter. Firstly, business processes must be captured using process

definitions modelled during build-time. These process definitions are im-

plemented by the workflow enactment service during run-time as different

process instances. Each of these process instances represent a unique flow

of information through the possible routes set out in the process definition.

The flow will be influenced by internal workflow control data and variables

as well as external users and applications. The interaction with users is an

important function of most workflows. It is typically facilitated by a worklist

handler, which is responsible for managing how users complete their assigned

tasks.

Workflow is no longer the sole domain of traditional ERP systems that

make use of EDI to exchange information between static, well-defined busi-

ness entities. The emergence of electronic commerce has called for workflows

that span dynamic, “virtual” enterprizes. Workflow management systems

are in existence, and are still emerging, that take advantage of the many

possibilities offered by the Internet and the WWW. Web-based workflow in-

herits all the advantages of the web such as the standard client, the ability to

run on heterogenous systems, and the use of all the supporting technologies,

such as XML for information exchange. However, web-based workflow also

inherits all the security threats that web-based application suffer from. More

over, workflow systems suffer the typical security threats that come from

insiders. The access control service, discussed in the following chapter, will

therefore prove crucial to ensuring that users’ access to workflow tasks and

information is regulated according to business rules.

Chapter 3

Access Control Requirements

in Workflow

The previous chapter discussed the use of workflow systems to facilitate the

flow of information throughout and beyond the organization. Information

is seen as a valuable asset by most companies operating in the current “In-

formation Age”. Increasingly the Internet is being used to facilitate com-

munications and the flow of information between distributed business func-

tions. Workflow systems have not been unaffected and both internal functions

such as asking for vacation leave or external functions such as requesting a

loan from a bank are being automated by these systems through Web inter-

faces. However, exchanging business-critical information over such an inse-

cure medium raises serious information security concerns. Workflow systems

often target the core business processes of the organization, and as such the

information it manages is sensitive to the organization and its clients.

Information security in workflow systems can be modelled on the five secu-

rity services suggested by ISO8498-2 (ISO, 1989) in much the same manner as

other systems making use of the Internet. The ISO8498-2 standard proposes

the following information security services: identification and authentication,

authorization (access control), confidentiality, integrity and non-repudiation.

For businesses to make effective and safe use of a workflow system, the sys-

tem must provide mechanisms for each of these services in the appropriate

position in the workflow environment.

Three of the services mentioned above, namely identification and authen-

tication, confidentiality and non-repudiation are implemented similarly in

25

26 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

workflow and non-workflow environments. As such these services, and their

associated mechanisms such as encryption and digital signatures, will not re-

ceive as much attention in this chapter. They provide a workflow environment

in which the data can be physically transported with relative confidentiality.

More important in a workflow is the need to protect the information from a

logical perspective. An access control service provides such logical protection.

It can also be argued that the access control service assists with integrity in

the sense that it prevents users from changing data for which they do not

possess modification privileges. Therefore, the access control service will be

the main focus of this chapter.

3.1 Secure Information in a Workflow

In order to secure information in a workflow, it is first necessary to under-

stand exactly what the potential threats are. Workflow systems typically

operate in a distributed manner, with participants accessing workflow tasks

and information over a company wide network. Many workflow systems

are also now making use of the Internet to allow its users access from any

location via a web-based interface. Information must therefore be secured

from threats outside as well as inside the organization. Some of the threats

suggested by Stallings (1995, p. 7) are:

• Modification: An unauthorized party gains access to valuable data and

modifies that data. An example of this could be the alteration of the

contents of messages that have been transmitted across the network.

• Fabrication: An unauthorized party adds fake objects to the system.

For example, when fabricated messages are sent across the network.

• Interception: An unauthorized party gains access to an asset of the

system. An example would be the monitoring of messages on the net-

work.

All three of these threats could come from inside as well as outside the

organization. Protecting information in the workflow from outside threats

are discussed by Valia and Al-Salqan (1997). They propose the use of the

Secure Sockets Layer (SSL) and a Public Key Infrastructure (PKI) to create a

3.1. SECURE INFORMATION IN A WORKFLOW 27

secure web-enabled workflow environment. What is more difficult to achieve

is the protection of information within this secure workflow environment from

a logical perspective. This would entail ensuring that information is accessed

according to the organizational requirements of the organization. Here we

could introduce the threat of fraud:

• Fraud : An authorized party executes actions on the system that vio-

lates business rules in order to benefit that party. An example of this

would be when person creates a request and by-passes the approval

hierarchy to sign his own request.

Although fraud is a major concern, other user actions (some quite acciden-

tal in nature) may also compromise the integrity of data within a physically

secure workflow environment. Whatever the threat, information in a work-

flow needs to stay available, confidential and maintain its integrity (Botha

& Eloff, 2002). Availability is gained by allowing access to information in

such a way that a user’s work is not interrupted. However, it should also be

kept from unauthorized users, i.e. it should be confidential. Confidentiality

thus implies that the information accessed by users are restricted according

to its context within the workflow. Lastly, integrity of information should be

ensured by controlling what changes are effected, when, and by whom.

Leyman and Roller (2000) name three kinds of integrity. Firstly, physical

integrity is concerned with ensuring that the information is not altered either

at the storage points or during transmission. Secondly, operational integrity

is concerned with issues such as concurrent updating. Thirdly, semantic

integrity1 states that the alteration of data during a specific task should

be consistent with business rules. For example, a business rule might state

that “a person may not approve his or her own leave application” or that

“purchase orders above a certain amount can only be approved by managers

with a certain level of authority”.

Availability, confidentiality and integrity is often indirectly attained with

the assistance of the access control service. Access control is by no means

a “cure-all” for the threats posed to information within workflows, but it

does form the basis of a secure workflow and it is also a fundamental concept

1From this point on in the dissertation the term integrity will refer to the semantic

integrity of the information as described.

28 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

of this dissertation. It has been investigated in depth through the work of

Botha and Eloff (2001b), Wei-Kuang Huang and Vijay Atluri (1999) as well

as Bertino et al. (1999). The following section highlights some of the salient

points of a general access control service. Thereafter, the use of such a service

in workflow management systems will be investigated further.

3.2 Access Control Service

Access control is a complex security mechanism with various permutations.

At its core, it controls access to tasks and data based on a user’s permissions

associated with a particular object. Users may be actual people or soft-

ware agents (sometimes called alter-egos) acting on their behalf (Gudes, van

de Riet, Burg, & Olivier, 1997). Objects represent anything of value that

requires protection and forms part of an information system. Documents,

directories and database records are examples of objects. The access per-

missions2 may be specified according to the semantics of the objects that it

relates to. For example, the access permissions associated with an account

object may be debit and credit, whilst a file may be read, write or delete.

Different methods can be used to map access permissions between users and

objects statically during administration as well as dynamically during exe-

cution.

3.2.1 Access Control Service: Administration

von Solms (1999) stated that “technical security controls alone cannot enforce

a secure IT-environment, it needs to be supported by proper operational

controls”. From an access control perspective this means that restricting

access to objects through technical measures at run-time can only be effective

if sufficient operational policies are in place. These policies will specify the

procedures to be followed and the requirements to be met when implementing

and deploying the technical measures of an access control service.

An administrator’s first step in implementing an access control service,

is to decide what users may and may not do while in the system, and what

2The terms “privileges” and “rights” are synonyms sometimes encountered in other

literature for “permissions” as used in this dissertation

3.2. ACCESS CONTROL SERVICE 29

strategy he or she is going to follow in order to restrict their actions. Re-

call that “permissions” govern what may be done with a particular object.

Permissions may then be allocated to users to allow them a certain “scope”

within which to operate on objects. The allocation of access permissions to

users during build-time is governed by three organizational policies. Organi-

zational policies describe the “normal operating procedures” of the company.

The first policy will determine how permissions are specified and adminis-

tered. Here a discretionary, mandatory, or role-based access control admin-

istration paradigm can be used. The other two policies, least privilege and

separation of duty, allow the administrator to evaluate and refine the com-

bination of permissions users may receive based on their job function and

access to other objects.

Administration Policy

Classically, administering access control to objects are specified as being

either discretionary or mandatory.

A discretionary administration policy is based on the premise that the

owner of the object controls the access to the object. Such an owner is

typically interpreted as the person who created the object (Lamson, 1971).

However, in most organizations the object actually “belongs” to the com-

pany and may be the responsibility of several employees. Therefore, even

though a specific employee created the object it does not necessarily mean

that he or she will have sole responsibility for granting access to that object

through-out its use. This results in the administrator granting “owners” the

right to pass on their access and granting rights to other users who can then

in turn propagate their rights to other users at their discretion. From an ad-

ministrative point of view, this type of owner-centered administration policy

makes it difficult to know and control exactly who has which permissions to

which objects and when they will be used.

Mandatory administration policies address the issue of who has access

to what by imposing strict information flow. This information flow is based

on the premise that all users and objects are classified and assigned an ap-

propriate security label by system administrators. Information flow is then

restricted according to a set of strict rules on the resultant lattice of security

labels. For example, a user with the security label of “Secret” may access

30 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

5HDG

:ULWH

([HFXWH

/HFWXUHU�5ROH

5HDG

:ULWH

([HFXWH

6WXGHQW�5ROH

5HDG

:ULWH

([HFXWH

/HFWXUHU�XVHUV

6WXGHQW�XVHUV
$VVLJQPHQWV

)ROGHU

3HUPLVVLRQV

Figure 3.1: Role-based Access Control

all objects with a similar “Secret” label or lower. No restriction is placed on

when or where a user my do so as part of his or her job description. Also,

the level at which these labels are specified and the terms in which they

are expressed can often be very generalized and vague. Therefore additional

policies may be needed to put more specific constraints on user access.

From the previous discussions it is clear that both these classical admin-

istration policies have functional as well as administrative deficiencies when

applied in a commercial environment. Both discretionary and mandatory ac-

cess control policies are expressed from an object-perspective. An alternative

is to administer the environment from a user-perspective.

Role-based Access Control (RBAC) provides the use of a role to

create a level of abstraction between the specific users of a system and the

permissions they have to access objects of that system. A role-based ad-

ministration policy acknowledges a user’s job function and responsibilities

by associating a user with a role, which is then in turn associated with a

set of permissions necessary to perform a specific set of tasks. Users can be

assigned to one or more roles as the need arises. Permissions can also be

attached to more than one role. In addition, permissions may either be spec-

ified as positive or negative for a particular role. If a role receives a positive

permission for an object, it means that that access will be granted accord-

ingly. If a negative permission is assigned, users belonging to that role will

be specifically barred from performing the action. Therefore, various orga-

nizational policies can be enforced by constraining the associations between

users and roles, and between roles and permissions.

In figure 3.1 the folder “Assignments” is an object in a system. This

3.2. ACCESS CONTROL SERVICE 31

folder has permissions to view, write or execute file objects contained in the

folder. Separate roles are defined for “Student” and “Lecturer” users. The

“Student” Role will receive permissions to write files to the folder thereby

enabling students to upload their assignments, but not view each other’s

assignments. The “Lecturer” role will receive all three permissions for the

folder.

To ease the administrative burden, roles are structured in a role-hierarchy

and permissions are inheritable upward in the hierarchy with parent roles

having the accumulative permissions of it’s subordinate roles. This role-

hierarchy often reflects the management structure of the organization (since

individual roles represent job functions). In the previous example, the “Lec-

turer” role can fall under another role “Head of Department”. This would

mean Heads of Department will have the same permissions to the folder

object as normal Lecturers in addition to any permissions of their own.

Least Privilege Policy

Least privilege is an access control policy whereby permissions are assigned

selectively to users in such a manner such that no user is given more permis-

sions than is necessary to perform his or her job (Ferraiolo, Barkley, & Kuhn,

1999). A manager, for example, may only view the salaries of staff reporting

to him or her. The least privilege policy avoids the problem of an individ-

ual having the ability to perform unnecessary and potentially harmful actions

merely as a side-effect of being granted certain general permissions. Ensuring

adherence to the least privilege policy is largely an administrative challenge

that requires identification of job functions, specification of the minimum set

of permissions required to perform each function, and restricting the user to

those permissions and nothing more. With role-based administration this is

typically done by associating permissions with a role that describes a specific

job function. Users can then be associated with the role that describes their

job function.

Separation of duty policy

Separation of Duty (SoD) policies are aimed at the prevention of fraud. In

principle SoD policies attempt to reduce the likelihood of collusion by dis-

tributing the responsibilities for tasks in a business process between multiple

32 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

participants. This distribution of responsibilities could be achieved in a num-

ber of ways. Literature makes a distinction between static and dynamic SoD

principles (see, for example, Ahn and Sandhu (1999); Nyanchama and Os-

born (1999) as well as Simon and Zurko (1997). Static SoD principles govern

the administration/design-time associations between users and permissions,

while dynamic separation of duty principles govern the way in which permis-

sions are granted at run-time.

An access control service restricts a user’s access during run-time de-

pendent on the administration/design-time specification. The next section,

therefore, considers the run-time enforcement aspect of access control.

3.2.2 Access Control Service: Run-time Enforcement

At run-time the access control service uses information from the underlying

environment and the administration/design-time specification of access con-

trol policies to govern a user’s access. As a minimum requirement the access

control service needs the user identity and the object identity. Depending on

the administration policy the access control service would use other informa-

tion. For example, when a mandatory administration paradigm is ascribed

to, the security labels will represent essential information.

Based on the required information, the access control service must be

able to answer a variety of access control related questions. For example,

when an access request is made, the access control service needs to answer a

question of the form “May user u perform permission p on object o?”. For

this question to be answered the user must be active in a session and the

relevant access control policies must be evaluated.

Determining permissions in sessions

An access control decision must be enforced by the access control service.

Before any access control requests can be made to the access control service

a user must first initiate a “session” to establish the user’s identity for the

duration in which request are made. A session is typically started when the

user authenticates him or herself through the use of a username and password

that are supplied by the user when he/she signs on to a system.

Users typically receive permissions for the entire duration that they are

3.2. ACCESS CONTROL SERVICE 33

signed on until such time that they end their session by signing off from the

system. Some systems, such as relational databases that support role-based

administration, may allow a user to activate/de-activate permissions based

on the activation/de-activation of a specific role.

The permissions that are active within a session should be determined by

evaluating the access control policies that are in place.

Evaluating Access Control Policies

Certain access control policies are mainly enforced by careful administra-

tion. Least privilege, for example, is enforced by ensuring that users are not

assigned permissions that are not required by their job function. The sepa-

ration of duty policy can also be enforced statically by assigning permissions

to users in such a fashion that they will not be able to undermine business

rules. If RBAC is used then much of the static enforcement of these policies

will depend on careful role administration to logically group the permissions

according to the job function.

However, constraining a users actions administratively is not always suf-

ficient. The nature of the role hierarchy in RBAC systems, make it possible

for users to adopt many possible roles and their associated permissions dur-

ing a particular session. This could lead to a particular user inadvertently

being allowed to activate a combination of roles that would allow him or

her to bypass access control rules. For example, a “manager” would be able

to approve his own application for leave that he was able to create using

permissions inherited from the “clerk” role lower down in the hierarchy.

Therefore, some of these policies, like separation of duty, may need to

be evaluated at run-time in order to constrain the permissions accordingly.

The separation of duty constraint that was violated in the previous example

may, for example, be enforced during run-time by ensuring that a user may

not activate the “manager” and “clerk” roles together in the same session.

Enforcement during either administration or run-time alone thus proves to be

insufficient and therefore a hybrid approach is recommended. First, during

administration, permissions must be assigned to appropriate roles and the

administrator must specify which roles may not be activated together. Then,

at run-time, the access control service must determine which roles are active,

or were activated, and restrict which roles may now not be activated as

34 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

well. It is important that the above decisions are made and enforced in an

unobtrusive manner.

Unobtrusive enforcement

In order for the run-time enforcement to be unobtrusive to the user, the

access control service must also be able to answer questions of the form:

“Which objects may user u access?” and “Which permissions do user u have

to object o?”. The answers to the questions can be used by the user interface

to facilitate the unobtrusive use of an access control model by only making

appropriate objects and methods available.

These general access control principles just discussed can now also be

applied to workflow systems.

3.3 Access Control in Workflow Systems

The functionality of workflow management systems (WfMS), as discussed

in section 2, can be separated in design-time and run-time functionality.

Design-time functionality includes the conceptual specification of the process

definition. The access control service must take cognisance of any static

access control requirements as described in section 3.2.1. End-users will have

access to the workflow during run-time. This phase requires the background

execution and monitoring of processes as well as enforcing access control

requirements as described in section 3.2.2).

Traditionally it is the responsibility of an administrator to capture these

business processes and operational security requirements during design-time.

Tasks can be considered to be the principle building-blocks of most workflow

systems, and tasks are executed by performing multiple actions which require

interdependent permissions. As such it makes sense that tasks are assigned

to roles during design-time and not individual users. However these roles

are usually designed with particular job functions in mind, and a task may

require a more restrictive set of permissions. Therefore, when making such

assignments the administrator must still consider the ”Least Privilege” and

“Separation of Duties” policies and enforce them if necessary by supplying

appropriate mechanisms during run-time.

Section 3.2.2 showed that the static interpretation of roles and permissions

3.3. ACCESS CONTROL IN WORKFLOW SYSTEMS 35

alone can lead to an abuse of the system if not monitored and enforced

at run-time as well. In a workflow sense, the particular object’s status or

context within the workflow must, therefore, also become a deciding factor

in whether a user is granted certain permissions to that object. This idea

of context-sensitive access control stipulates that three requirements must

be considered when designing secure workflow systems as apposed to non-

workflow systems. They are: “order of events”, “strict least privilege” and

“separation of duty”. Three comprehensive access control models exist that

incorporate these requirements to varying degrees. The models of Atluri and

Huang (1996) and Bertino et al. (1999) broke new ground with regards to

context sensitive requirements and will, therefore, be used as reference points

for the discussions below. The following chapter will also evaluate how the

CoSAWoE model developed by Botha (2001) supports these requirements.

3.3.1 Order of Events

Order of events must be enforced by only granting permissions if tasks fol-

low a set sequence. For example, an order cannot be approved until filled

out completely; similarly, once an order has been approved, it may not be

re-edited. Enforcing this requirement was the main focus of the “Work-

flow Authorization Model” (WAM) developed by Atluri and Huang (1996).

It recognizes that permissions change as tasks are finished throughout the

workflow. Permissions are, therefore, connected directly to a task through an

authorization profile. These profiles specify the minimum permissions neces-

sary to execute that task, and therefore it can be said that such profiles also

support the “least privilege” requirement.

3.3.2 Strict Least Privilege

Although the authorization profiles of WAM links tasks with particular per-

missions, it does not necessarily enforce the strict least privilege requirement.

This requirement specifies that a user is given the least amount of privileges

needed to perform the current task irrespective of the overall permissions

associated with his or her role. For example, a manager who initializes a

purchase order should not, at initialization stage, receive the permission to

approve the order, even though he or she has the permission according to

36 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

the role to do so later in the process. It also states that a user should only

receive such permissions when they are busy with the task. When work on a

task is suspended at arbitrary times those permissions should subsequently

be revoked from the user while the task is inactive. In the WAM model

permissions are granted and revoked only at the beginning and ending of a

task, with no regard to what a user may do with those permissions while

they are not working on that particular task. This is however better than

the BFA model (named after its authors) that does not even relate permis-

sions directly to tasks. This model’s aim was primarily to specify conflicts

that exist within roles and to relate those roles to tasks. What this means

is that a user will receive permissions purely based on his or her role in the

organization with no regard for the current task being executed. Therefore,

strict least privilege is not supported by the BFA model.

3.3.3 Separation of Duty

The separation of duty requirement enforces semantic integrity through ad-

herence to business rules designed to prevent participants from inadvertently

making mistakes or deliberately committing fraud. Separation of duty ulti-

mately comes down to restricting users from doing certain tasks in the work-

flow. Role-based access control has sought to alleviate the administrative

burden of allocating permissions to users by introducing the role abstrac-

tion. It also allows roles to inherit permissions from roles below it in the

role-hierarchy. The danger in a workflow is that this can lead to the situa-

tion where a user in a manager role can approve the same order he created

with permissions inherited from the clerk role. It is therefore necessary to

distinguish between SoD specifications enforced during design-time and those

enforced during workflow sessions.

Static Separation of Duties (SSoD) is mainly an administrative pol-

icy to make sure that roles are allocated to tasks in such a way as not to

violate organization rules (who is supposed to do what). Preferably this re-

sponsibility should not be left solely to an administrator’s ability to discern

possible conflicts, and a mechanism must be provided to assist the adminis-

trator and prevent wrong assignments from taking place. However this could

prove very restrictive to smaller organizations who may not have many users

to fill a specific role. Dynamic Separation of Duties (DSoD) will allow

3.4. CONCLUSION 37

certain conflicts between roles and tasks to exist statically. However, during

run-time, DSoD will resolve these conflicts by carefully selecting individual

users, from the list of potential users assigned to the role, to participate in

that instance of the workflow tasks.

Separation of duty is supported in the SecureFlow prototype developed as

part of the WAM model. The expression of separation of duty constraints is

limited, however, to tasks. No provision is made for static separation of duty

constraints or constraints based on the roles of users. All these separation of

duty contraints are however fully supported by the BFA model.

From this section it is clear that the access control service plays a crucial

role in securing data in a workflow. Still, access control must be tailored to

the language used to describe the data and the types of actions that can be

executed on such data. In this respect, investigating an access control model

and related mechanisms, in terms of the commercial environment in which

it is deployed will be crucial to it’s effectiveness.

3.4 Conclusion

This chapter narrowed the scope of the dissertation to focus on informa-

tion security, and access control requirements in particular, within a work-

flow environment. First, the traditional information security requirements of

workflow systems were discussed. A distinction was made between protect-

ing the information from a physical as opposed to a logical perspective. A

physically secure workflow environment can be created by applying the same

techniques (such as encryption and digital signatures) as one would use for

other applications where information must travel over a network. This would

help to counter the threats of modification, fabrication and interception from

unauthorized users to the system. However, fraud may still be committed

when authorized users’ access to information in the workflow is not strictly

controlled. This essentially motivates the need for logical access control.

The access control service plays an important role in securing informa-

tion. Some of the common administrative as well as run-time enforcement

issues relating to an access control service were discussed. In a workflow en-

vironment it is also necessary to cater for the dynamic requirements of users

based on the context of the tasks they are performing at a particular time.

38 CHAPTER 3. ACCESS CONTROL REQUIREMENTS

As such, the access control mechanism must ensure that permissions are not

only specified statically, but also constantly checked at run-time to ensure

that a user does not contravene “order of events”, “strict least privilege” and

“separation of duty” requirements.

The separation of duty function of the access control service ensures that

tasks are performed according to the organizational rules of a business. The

aim is to distribute the responsibilities to perform tasks between multiple

participants so that there is less chance for users to bypass the business rules

or commit fraudulent acts.

The CoSAWoE model developed by Botha (2001) can now be investigated

to show how these security concepts can be catered for by an access service

as part of a workflow environment. Since this dissertation focusses on the

implications of using this model in a commercial workflow product (such

as Oracle Workflow in chapter 5), only those components that will directly

affect such systems will be discussed in more detail.

Chapter 4

The CoSAWoE Model

Chapter 3 discussed the role of an access control service in workflow sys-

tems. It was argued that workflow systems require specialized access con-

trol functionality. Three policies were identified to ensure context-sensitive

access control for workflow systems, namely “order of events”, “strict least

privilege”, and “separation of duties”. Discussions of these policies also high-

lighted how they are supported (or not) in existing access control models.

The aim of this dissertation is to investigate the ease with which a par-

ticular access control model might be implemented in an actual commercial

workflow product. A model developed by a researcher at this institution was

the obvious choice to investigate, simply because of the access it afforded the

author of this dissertation to its creator. This chapter will therefore focus

on how the afore-mentioned three policies are supported by the “Context-

Sensitive Access control in Workflow Environments”, henceforth called the

“CoSAWoE” model (Botha, 2001).

The model also divides the functional aspects into two: administration

or design-time functionality and run-time enforcement functionality. This

echoes the manner in which in workflow management systems (chapter 2) and

access control requirements (chapter 3) were previously discussed. However,

some of the model’s features will not be relevant to commercial workflow

systems, and as such will not be discussed beyond the overview of the model

that follows next. The main focus will be on the separation of duties and

worklist generation aspects. Therefore, the chapter will conclude with a

scoping statement to outline the aspects which will be covered in our solution

chapters.

39

40 CHAPTER 4. THE CoSAWoE MODEL

Process definition tools

Worklist handler

Workflow enactment service

A
dm

in
is

tr
at

io
n

to
ol

s

CoSAWoE: The Model

Run-time enforcement
aspect

Administration/design-
time aspects

input
to

Object design

Role Engineering

SoD Administration

Worklist
generation

Session
control

BPR / Business analysis

information
(documents)

organizational
structure

Task business
processes

policies and
procedures

Workflow System

implemented in managed through

Figure 4.1: CoSAWoE: Conceptual view

4.1 An overview of the CoSAWoE model

An important property of the CoSAWoE model is that it not only ad-

dresses the technical enforcement of access control, but that it also provides

guidance for the design-time activities that pre-empt the technical enforce-

ment of access control. Figure 4.1 provides a conceptual overview of the

administration/design-time and run-time aspects included in the CoSAWoE

model. It also indicates that the administration/design-time aspect serves

as “input to” the run-time enforcement aspects which will be implemented

through the workflow system’s worklist handler. Administration tools, which

may or may not be supplied with the workflow system, will draw on informa-

tion gathered during business analysis that will include relevant documents,

organizational structures, policies and procedures, and business processes.

This information will guide the administrator in setting up the “secure envi-

4.1. CoSAWoE OVERVIEW 41

ronment” within which users may access workflow processes and data.

Since the workflow system is still responsible for the enactment of the

workflow and the access control service suggested by the model is responsi-

ble for the access control decisions, it can also be said to be an orthogonal

approach. This implies that changes made to the access control service will

not require changes to the workflow system and vice versa. This feature of

the model will make it particularly suitable for integration with a commer-

cial workflow system especially if such a system does not allow for much

customization.

4.1.1 The Administration/Design Aspects

In this dissertation a permission is defined as the capability to execute a

method of an object (see section 3.2 on page 28). Section 3.3 on page 34 also

stated that tasks are executed by performing multiple actions which require

interdependent permissions. Workflow systems allow administrators to assign

roles to tasks during design-time. These roles are usually designed with

particular job functions in mind, and a task may require a more restrictive set

of permissions. Therefore, the desired features of an access control service for

workflow systems cannot be supported unless the designers of the system have

a clear understanding of what represents “the absolute minimum permissions

required to perform the task” (Botha & Eloff, 2001b).

To this end, the components of the CoSAWoE model related to the admin-

istration and design-time aspect provides administration guidelines to assist

the security administrators in ensuring that permissions of an appropriate

granularity are available (object design), and that they are associated with

roles in an appropriate manner (role engineering). They also ensure that

the environment is of such a nature that the run-time enforcement mecha-

nism can control access in line with the context-sensitive requirements for

workflow identified in chapter 3 (including separation of duty).

Object design

Object design relates to how a permission profile, that indicates the exact

permissions required for a specific “stage” of the information object’s life,

can be constructed. This requires a hierarchical decomposition of the infor-

42 CHAPTER 4. THE CoSAWoE MODEL

mation object and an analysis of its lifecycle by constructing a state chart.

The lifecycle can only be expressed if the workflow in which it cooperates is

properly identified as part of the business analysis.

Designing information objects in the described fashion ensures that the

permissions are of a sufficiently fine granularity to meet the requirement

evident in the definition of strict least privilege which states that “a user

should receive the smallest possible set of permissions for the current task

within the business process”. The described object design technique has the

further advantage that the number of permissions are also kept under control

to ease the administration thereof.

The permissions need to be assigned to roles that can, in turn, be assigned

to the workflow tasks. Appropriate roles should thus exist. This represents

the main aim of role engineering.

Role Engineering

Role engineering uses information collected as part of the business analysis,

particularly information about the organizational structures and the work-

flow tasks.

This aspect of the model presents a methodology for the systematic con-

struction of a “typed” role hierarchy that uses the information collected dur-

ing business analysis. The resultant hierarchy has roles, called “task roles”

that can be associated with the appropriate permissions.

The way in which the hierarchy is constructed ensures that other control

principles, such as delegation of authority and reporting structures, are also

supported. The resultant role hierarchy directly supports the principle of

strict least privilege in that it ensures that there is a role that will have the

absolute minimum permissions required for the task at hand.

Since the “typed” nature of the role hierarchy is only relevant during con-

struction, the resultant role hierarchy supports current ideas on separation

of duty.

SoD Specification

The “Conflicting entities” Administration Paradigm (CoAP) is proposed by

the CoSAWoE model as a way of specifying separation of duty requirements.

When entities in CoAP conflict, it implies that the associations with those

4.1. CoSAWoE OVERVIEW 43

entities must be carefully controlled. Conflicts may be specified between

entities such as tasks, users, roles and permissions.

Two strategies for controlling the conflicting entities mentioned in CoAP

may be employed, namely static and dynamic. These strategies may be used

in isolation or together to complement each other’s weaknesses. Static con-

flicts indicate that certain associations must never be allowed, while dynamic

conflicts indicate that the associations may be made but that the use of these

entities must be carefully controlled within the context of a process instance.

Static conflicts, on the one hand, are evaluated by the administration envi-

ronment in a bid to ensure that associations that should not be allowed are

rejected. Dynamic conflicts, on the other hand, can only be interpreted by

the run-time components.

4.1.2 The Run-time Enforcement Aspects

The run-time enforcement of access control must happen according to the

specifications of the administration/design aspect of the CoSAWoE model. In

a bid to design the access control model in an orthogonal way to the workflow

system, as little as possible influence on the workflow systems should be

evident. With the CoSAWoE model the influence lies with two components,

namely how the worklist is constructed and how the concept of a session is

interpreted as a WSession. The text considers the purpose of each component

in turn.

Worklist Generation

The tasks that need to be done are communicated to the users through the

worklist. Since each task is associated with the minimum role that may

perform it, all users that may assume a role equal or superior to that role

may perform the task.

However, in order to incorporate separation of duty, the ability to assume

a role equal or superior to the role that the task requires becomes a necessary,

but not a sufficient condition for receiving the item on the worklist. The user

should, furthermore, also not be identified as a user that would cause any

separation of duty requirement to be violated. The users that should receive

a specific item on their worklist can, therefore, be computed with a series of

44 CHAPTER 4. THE CoSAWoE MODEL

set minus operations.

The task would appear on the worklists of those users who may assume

the required role and who do not cause a separation of duty requirement

to be violated. When a user acts on a task in the worklist, a WSession is

created.

WSessions

A WSession is a specialization of the session concept in RBAC models. It is

based on the assumption that when a user signs onto the system, that user

will be associated with roles based on his administration time associations,

but he would not receive any permissions at the time. In other words, the

roles won’t be activated. Only once a user acts on a task in the worklist, a

WSession is created. During the duration of a WSession, a user receives the

permissions of the role associated with the task and not of the roles that the

user may assume. The WSession is terminated and the permissions revoked

as soon as the user stops or suspends work on the task.

It is argued that the CoSAWoE components provide an environment that

supports the implementation of context-sensitive access control. However,

not all these components will necessarily have a bearing on commercial work-

flow systems.

4.2 Commercial Perspective on CoSAWoE

As section 2.4 on page 20 pointed out, commercial workflow systems are

increasingly being integrated into existing systems and will often be part of

packaged suites that deliver specific cross-functional solutions. Therefore,

object design and role engineering will be performed as part of the normal

security administration of company-wide information, and will not be the

particular domain of workflow systems as such. The methodologies suggested

by these two administration components does indeed provide access control

to objects at a fine level of granularity based on carefully constructed roles

that would ensure strict least privilege is maintained. However, where and

when this object and role engineering effort occurs is outside the scope of the

commercial workflow application and can just as easily be achieved through

an administration tool such as SoDA, the CoAP administration prototype

4.2. COMMERCIAL PERSPECTIVE 45

developed for the CoSAWoE model (Perelson, Botha, & Eloff, 2001).

Session control is concerned with creating workflow sessions (WSessions)

that would not allow a user to access a workflow object outside the needs of

the tasks he/she is currently working on. In many workflow systems, such as

the Oracle Workflow discussed in the following chapter, the system does not

allow users to directly update the workflow object, but instead the workflow

engine act as a proxy. Since users are not given permissions to the actual

object, the session control component to manage the granting and revoking

of said permissions is of no consequence. If the workflow object is however

represented as a hierarchical document to which users would require differ-

ent privileges according to each task, such WSessions could be implemented

through an access control service, as illustrated in the WACC prototype de-

veloped by Cholewka, Botha, and Eloff (2000).

The following paragraphs will describe separation of duty administration

and run-time worklist generation in more detail. These two model compo-

nents will have a significant impact on how an access control service will be

implemented within a commercial workflow product.

4.2.1 Separation of Duty Administration

In order to determine the separation of duty requirements, a careful analysis

of the policies and procedures of an organization will have to be made during

the business analysis. The CoSAWoE model attempts to make the admin-

istration of what is generally considered to be fairly complex constraints, as

simple as possible through its “Conflicting entities” Administration Paradigm

(CoAP). Within CoAP, a conflict between entities implies that the risk of

fraud increases if the associations with those entities are not carefully con-

trolled and monitored. Note that the term “conflict” does not indicate a

state of disharmony between the entities themselves, but that it rather refers

to the potential state of disharmony between the actual and desired state

of the workflow system that could result from not carefully controlling the

associations with those entities.

Fundamental to the interpretation of “risk of fraud” is the concept of

permissions. Permissions indicate the ability to execute a certain method on

an object. Permissions, therefore, are central to SoD definitions. Permissions

are considered as conflicting permissions if, together, they provide more

46 CHAPTER 4. THE CoSAWoE MODEL

ability than required by a single user.

Conflicting users state that there may be a relationship between users

(for example, husband and wife, or brother and sister) that may compromise

the integrity of the tasks they perform. However this is an unfortunate

naming convention, since this relationship between users is anything but

conflicting. In fact, their relationship implies that they can work together,

or collude, so that the outcome of their tasks will benefit each other.

Conflicting roles are roles that share conflicting permissions. From a

practical perspective, the conflicting permissions might not always be iden-

tified, since the identification of conflicting permissions for conflicting roles

may negate the administration advantages obtained through the role ab-

straction in RBAC. However, identifying conflicting roles would be senseless

if there are no conflicting permissions involved.

Conflicting tasks, similarly, are tasks that require some conflicting per-

missions to complete. To ease administration, conflicting tasks may also not

always enforce the identification of conflicting permissions.

The various conflicts could apply either at administration time (static

separation of duty) or at run-time (dynamic separation of duty). Static con-

flicts indicate that certain associations must never be allowed, while dynamic

conflicts indicate that the associations may be made but that the use of these

entities must be carefully controlled within the context of a process instance.

Static Separation of Duties (SSoD)

SSoD policies can be enforced in the administration environment and, as

such, has the potential to prevent making assignments that should not be

allowed. This will therefore impact on the user and permission assignments

made during the role engineering component discussed in previous sections.

The way in which these SSoD requirements are enforced is best explained

through an example. Consider the well-accepted business rule that “auditors

should act independently”. This implies that auditors should not be able

to audit their own doings. There are several interpretations of this business

rule. Table 4.1 on the facing page summarizes an interpretation in terms of

each of the conflicting entities.

It should be pointed out that SSoD can be very restrictive to business

operations, especially in smaller organizations with fewer users or fewer roles.

4.2. COMMERCIAL PERSPECTIVE 47

Table 4.1: Static SoD interpretations for the business rule “Auditors should
act independently”

Possible conflict Interpretation of business rule
Conflicting roles User assignments to the “Auditor” role and (for

example) “Accounts Payable Manager” role must
be mutually exclusive.

Conflicting
permissions

The same user may under no circumstances re-
ceive the “Approve Order” and “Approve Audit”
permission. This implies that the two permissions
may not be associated with roles that share com-
mon members.

Conflicting users Members of the same family must be considered as
the same user and may therefore not be assigned
to roles, permissions or tasks to which a single user
should not be assigned.

Conflicting tasks A user who can do the “Approve Order” task may
never do the “Approve Audit” task, and vice versa.
This implies that the two tasks may not be per-
formed by the same role.

The inflexibility of static separation of duty is evident with the conflicting

user interpretation of the business rule “two members of the same family may

not belong to the Auditor and Accounts Payable Manager roles respectively”.

According to this requirement a person would not be able to ever act in the

role of Auditor if a family member of his or hers is in a role of authority

such as the Accounts Payable Manager. This is, obviously, very restrictive.

Nevertheless, in certain cases it may prove necessary. For example, it might

be a realistic requirement that auditors may not do anything but audit and

that they should have no family ties that could make them even slightly

biased.

The extreme restrictions imposed by static separation of duty can be

alleviated, however, by using dynamic separation of duty.

Dynamic Separation of Duty (DSoD)

While static conflicts, on the one hand, are evaluated by the administration

environment in a bid to ensure that associations that should not be allowed

are rejected. Dynamic conflicts, on the other hand, will allow such conflicts

48 CHAPTER 4. THE CoSAWoE MODEL

to exist and will only specify the conflicts so that they can be enforced by

the run-time components. How they will be enforced will be explained later

during the discussion of the “worklist generation” component.

The dynamic interpretations of conflicting entities, differ somewhat to

their static counterparts. Consider the example of the different dynamic

interpretations of the business rule “An order may not be approved by its

initiator”, summarized in Table 4.2.

Notice that the emphasis is on determining whether conflicts exists based

on the activation of permissions in the same process instance. Therefore,

dynamic separation will allow users with vested interest in one another’s

work to adopt roles that would allow them access to two conflicting tasks,

provided of course that they do not perform those tasks as part of the same

process instance (or session). This also indicates the need to keep some form

of access history with regards to who had access to which tasks in a particular

process instance. The following section will elaborate on this when run-time

components are described. All that is required during administration as far as

DSoD is concerned, is the specification of the conflicting entities themselves

(e.g. UserA conflicts with UserB, or Task1 conflicts with Task2, etc.).

Table 4.2: Dynamic SoD interpretations for the business rule “An order
should not be approved by its initiator”

Possible conflict Interpretation of business rule
Conflicting roles The “Stock Controller” role and the “Account

Payable Manager” role may not both be activated
for the same user during one process instance.

Conflicting
permissions

The “Create Order” and “Approve Order” permis-
sions must not be exercised by the same user in a
single process instance.

Conflicting users Family members (Conflicting users) must not oper-
ate on conflicting tasks or exercise conflicting per-
missions in a single process instance.

Conflicting tasks The “Create Requisition Form” task and the “Ap-
prove order” task must be done by different people
in a single process instance.

4.2. COMMERCIAL PERSPECTIVE 49

4.2.2 Worklist Generation

The worklist forms the primary interface between the user and the workflow

system. As such, it is the primary means of controlling access to tasks in the

system. In typical RBAC systems each task is associated with the minimum

role that may perform it. All users that may assume a role equal or superior to

that role may perform the task, and as such it may appear on their worklists

as well. Although the roles assigned to tasks are checked during build-time,

the individual users who will assume those roles during run-time cannot be

determined or verified before execution.

As specified earlier, dynamic separation of duty can only be enforced

during run-time based on the conflicts specified during administration. It

therefore becomes necessary to identify users, belonging to the assigned role,

who may violate any of the separation of duty requirements and then prevent

them from receiving the task. This would require information regarding

users’ past involvement in the workflow process instance. Workflow history

is usually maintained by the workflow service in the form of task instances.

The model requires that such task instances include information that

• uniquely identifies the process instance,

• identifies the task definition on which the task instance is based,

• identifies the user that acted on the task instance and

• identifies the role that user assumed while he or she acted on the task

instance.

This information will be used by the access control service to determine

which users may perform a task without violating the separation of duty

policy. This is done in a two phased approach. In the first phase, a list is

generated of users who may assume the role allocated to the task in question,

without taking the effect of separation of duty constraints into consideration.

As a second phase, the list is pruned according to the constraints introduced

by the separation of duty policies. These constraints determine if the same

user (or his or her related users) executed any of the conflicting tasks, speci-

fied for the task in question, during the same process instance. Dynamically

conflicting users are considered as one user for the purpose of the process

50 CHAPTER 4. THE CoSAWoE MODEL

7DVN����&DSWXUH

'DWD
-DPHV

7DVN����$VVHVV

&ODLP

7DVN����0DNH

3D\PHQW

)LQDQFH

&OHUN

7DVN����5HYLHZ

&ODLP

&ODLPV�0DQDJHU

�$SSURYHG� �<HV��$SSURYHG� �1R�

�$SSURYHG� �<HV�

&ODLPV�([SHUW�6\VWHP

$ODQ

.HQHWK

-DPHV

3DWULFLD

6DOO\

6XH

&ODLPV�0DQDJHU�5ROH

&ODLPV�0DQDJHU

&RQIOLFWLQJ

7DVNV

7� 7�

7� 7�

7� 7�

7� 7�

&RQIOLFWLQJ

8VHUV

-DPHV 6XH

6XH -DPHV

$ODQ %HQ

%HQ $ODQ

Figure 4.2: Dynamically pruning the user list during run-time

instance and as such it has no influence when looked at on its own. How-

ever conflicting users must be specified during administration and interpreted

with the other dynamically conflicting entities.

Figure 4.2 shows an example of how separation of duty requirements can

be implemented during run-time to prune the potential user list. In the ex-

ample, task 1 (T1) has already been completed in this process instance. When

task 4 (T4) needs to be performed, a list of managers will have access to this

task. But first, the conflicting tasks specified during administration/design

are searched and task T1 is identified as conflicting for T4. From the task

instance (T1) it is clear that James has participated in the same workflow

session on this task, and therefore he is excluded from the list of possible

performers for T4. On the other hand Sue, who is also identified as a poten-

tial manager, have not taken part at all in this process instance. So at first

it would seem as though no conflict exist to exclude her from the list. How-

ever, the conflicting users are looked-up next to find out if there are any users

who could be in a position to collude with James. Sue, his wife, is identified

4.2. COMMERCIAL PERSPECTIVE 51

and therefore she is also excluded from the list of possible performers for T4.

Conflicting permissions and roles for the current task can be evaluated in a

similar fashion to determine if a particular user had performed other tasks

which activated those permissions or roles.

Pruning the user list for each task will prevent users from even being

notified of the work item in their worklists if they are not allowed to perform

it according to separation of duty requirements. A worklist is therefore also

essential to making the access control service as unobtrusive as possible to

the workflow users. When a valid user acts on a task in the worklist that,

task is immediately removed from the other user’s worklist denying them

concurrent access to the same task.

4.2.3 Notes on integration of CoSAWoE with Com-

mercial Systems

The previous sections described the two model components which will have

the most relevance on commercial workflow systems: SoD administration

and workflist generation. Should the vision of the Workflow Management

Coalition regarding a fully interoperable environment (Hollingsworth, 1995)

be realized, the CoSAWoE model will have an influence on two workflow

components: the administration tools and the worklist handler. Therefore

the scope of the model and workflow components that will be affected is

graphically depicted in figure 4.3 on the next page as the shaded areas.

However, currently the distinction between the different components in

commercial systems is not so clear. In this respect a commercial workflow

management system will have to exhibit the following properties to enable

the integration of CoSAWoE:

• The administration side should be exposed to customization. Alterna-

tively the administration side should be separated from the rest of the

system with a well-defined interface. This would allow the support of

tools based on CoAP in addition to the current administration tools.

• The creation of the worklist should be customizable. Should the work-

list be maintained as a physical entity, database-level programming in

the form of triggers might enable the appropriate removal of work items

52 CHAPTER 4. THE CoSAWoE MODEL

3URFHVV�GHILQLWLRQ�WRROV

:RUNOLVW�KDQGOHU

:RUNIORZ�HQDFWPHQW�VHUYLFH

&R6$:R(��7KH�0RGHO

5XQ�WLPH�HQIRUFHPHQW

DVSHFW

$GPLQLVWUDWLRQ�GHVLJQ�

WLPH�DVSHFWV

LQSXW

WR

2EMHFW�GHVLJQ

5ROH�(QJLQHHULQJ

6R'�$GPLQLVWUDWLRQ

:RUNOLVW

JHQHUDWLRQ

6HVVLRQ

FRQWURO

%35���%XVLQHVV�DQDO\VLV

LQIRUPDWLRQ

�GRFXPHQWV�

RUJDQL]DWLRQDO

VWUXFWXUH

� � � �

EXVLQHVV

SURFHVVHV

SROLFLHV�DQG

SURFHGXUHV

:RUNIORZ�6\VWHP

LPSOHPHQWHG�LQ PDQDJHG�WKURXJK

Figure 4.3: Scope of implementing the CoSAWoE model in a commercial

workflow product

4.3. CONCLUSION 53

from the individual worklists. If worklists are generated dynamically,

potential users will need to be filtered.

• The timing of the granting and revocation of access rights possibly

hold the biggest challenge in current systems. It would require the task

abstraction to be clearly separated from the rest of the system. Kang,

Park, and Froscher (2001), for example, in their SALSA prototype use

a decentralized approach with no central workflow engine. Each task

contains a small portion of the workflow specification in that it knows

which tasks to interact with. In such a distributed manner the task

object itself controls the access to it and the granting and revoking

of access largely becomes irrelevant. The task objects need to interact

with a monitor service to be able to enforce dynamic separation of duty

requirements.

• In systems that don’t support role-based access control principles, a

role server may also be required to provide that functionality (Ahn,

Sandhu, Kang, & Park, 2000). The role server will issue users with

role certificates, based on user-role assignments and the role hierarchy,

which then have to be evaluated by the workflow engine when the

worklists are assembled.

From the brief comments above, it is clear that the integration of Co-

SAWoE into a commercial workflow system is far from arbitrary. It presents

interesting challenges that will have to be addressed through a variety of

approaches.

4.3 Conclusion

This chapter showed how the CoSAWoE model, in effect, links an role-based

access control service with workflow functionality. The model is based on

associating users with roles and roles with tasks, in such a way that the

three policies for context-sensitive access control would be enforced. There-

fore, each section pertaining to a particular component referred to how it

affected the “order of events”, “strict least privilege” or “separation of duty”

policies. The components of the model was conceptually divided into two:

54 CHAPTER 4. THE CoSAWoE MODEL

those components that provide administrative guidelines to security admin-

istrators during design in order to set up access control requirements, and

those components which enforced those requirements during run-time.

The object design administrative environment required that object per-

missions are clearly specified according to a strict least privilege policy which

states that “a user should receive the smallest possible set of permissions for

the current task within the business process”. The role engineering com-

ponent also ensured that there would be a role in the role-hierarchy that will

have the absolute minimum permissions required for the task at hand. The

run-time enforcement of session control through workflow sessions (WSes-

sions) also showed how users are associated with that specific “typed” role

once they request access to the task, and how it is subsequently revoked on

completion of the task.

Although the model requires the three aforementioned components to

ensure context sensitive access control is achieved, their implementation in

commercial systems do not represent a significant integration effort. More

importantly, SoD administration addressed the need to specify the var-

ious conflicts of the CoAP paradigm so that they may be applied either

at administration time (static separation of duty) or at run-time (dynamic

separation of duty). The worklist generation component, that fall in the

run-time enforcement sphere, was aimed at controlling the allocation of tasks

in particular process instances to workflow users based on their previous par-

ticipation. Pruning the user list for each task prevents users from receiving

work items in their worklists if they are not allowed to perform it according

to separation of duty requirements.

Prototypes that enforced certain aspects of the model were developed

to demonstrate certain concepts, and were briefly mentioned in this chap-

ter. However, such prototypes were specifically developed with the model

in mind. Commercial, off-the-shelf workflow systems may not support the

model’s proposed functionality as effectively. Some workflow products may

include an access control service already, and others may not. Regardless, it

is argued that aligning the product’s built-in functionality with the context-

sensitive requirements of the CoSAWoE model may indeed prove difficult.

Therefore, the remainder of this dissertation will investigate those difficulties

with regards to a particular product, namely Oracle Workflow.

Chapter 5

Oracle Workflow

Workflow systems, the information security concerns for such systems, and

a context-sensitive access control model that addresses those concerns have

now been discussed. The previous chapter also highlighted the issues and

requirements surrounding the implementation of the CoSAWoE model in a

commercial product. However, there are many commercial systems to choose

from on the market with just as many different implementations of the func-

tional requirements presented in chapter 2 for workflow systems. The scope of

these systems are also too big to compare the alternative implementations of

the model in two or more products simultaneously. Therefore it was decided

to base the discussions on a single commercial workflow product that follow

the trends in workflow systems as discussed in section 2.4, and which adhere

to most of the requirements mentioned in section 4.2.3 for implementing the

model. The “Oracle Workflow” product was chosen, as it can be considered a

typical mainstream workflow product by a reputable company. The fact that

the Oracle environment was already familiar to the author, and the product

included a GUI development tool, also meant that development and learning

time could be significantly reduced. As an added advantage, PL/SQL could

be used to code the necessary additional program logic without involving

another development tool.

Unfortunately little documentation about the internal workings of this

product exist besides the “Oracle Workflow User Guide” (Chang & Jaeckel,

2002). It was also necessary at times to “reverse engineer” some of the

tables structures from the data dictionary since no database model is included

to show how the various workflow tables in the database are used to store

55

56 CHAPTER 5. ORACLE WORKFLOW

workflow definitions and process instances.

The chapter will begin by introducing the reader to the workflow terms

used by Oracle Workflow. Thereafter the architecture of its various compo-

nents, as far as it could be determined from the limited information, will be

discussed. The remainder of the chapter will summarize the salient infor-

mation from the user manual. These discussions will form the backdrop of

the administration/design-time and run-time steps of implementing the Co-

SAWoE model in Oracle Workflow, discussed in chapter 6 and 7 respectively.

5.1 Workflow Terms Used in Oracle Work-

flow

The workflow terms used by Oracle Workflow differ somewhat from those

used by the Workflow Management Coalition’s Reference Model (Hollings-

worth, 1995) and those defined in chapter 2. The reference model defines a

business process as “a procedure where documents, information or tasks are

passed between participants according to defined sets of rules to achieve, or

contribute to, an overall business goal”. As stated in chapter 2, a workflow

is seen as a representation of the business process in a machine readable

format. The Oracle Workflow product can be described as a fully fledged

workflow management system (WFMS) as it is “a system that completely

defines, manages and executes workflows through the execution of software

whose order of execution is driven by a computer representation of the work-

flow logic” (Hollingsworth, 1995). The Oracle Workflow terms for workflow

components are shown in figure 5.1 on the facing page:

• Item Types are used to group all the components needed for a spe-

cific process definition. This process definition groups together all the

activities that occur in the process and the relationship between those

activities.

• Activities, also referred to as tasks, in a process definition can be

automated functions, external functions, notifications to users or roles

that may optionally request a response, a business event, or process

subflows that are made up of a more granular set of activities.

5.1. WORKFLOW TERMS USED IN ORACLE WORKFLOW 57

3URFHVV�,QVWDQFH

3URFHVV�,QVWDQFH

3URFHVV�'HILQLWLRQ

$SSOLFDWLRQ

'DWD

LQYROYHV

KDV

7DVN�

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7DVN��

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7DVN���

6WDUW�FRQGLWLRQ

(QG�FRQGLWLRQ

7UXH

)DOVH

%XVLQHVV

5XOH

D��6HTXHQFH E��,WHUDWLRQ

F��25�6SOLW G��$1'�6SOLW

H��25�-RLQ I��$1'�-RLQ

,QWHUWDVN

GHSHQGHQFLHV

8VHU

,WHP�7\SH

$FWLYLWLHV

7UDQVLWLRQ

,WHP�7\SH

$WWULEXWHV

Figure 5.1: Oracle Workflow terms (in terms of figure 2.2)

• Transitions are used to connect activities. Business Rules or condi-

tions may be attached to these transitions in order to decide the route

that may be followed when transitioning from one activity to the next.

According to these intertask dependancies the process may follow a

straight sequence, loop back to repeat activities, and split into parallel

flows.

• Item Type Attributes are data values associated with a given item

type. An item type attribute acts as a global variable that can be

referenced or updated by any activity within a process. As such they

provide the data container necessary to propagate and provide infor-

mation throughout the workflow. These attributes can be of different

data types and may even hold an entire document.

Oracle Workflow also recognizes Users and Applications as components

in the workflow and caters for their inclusion via the “Workflow Directory

Service” and “Business Event System” features which will be discussed in

more detail later. These and other features are part of the architecture for

Oracle Workflow, discussed in the following section.

58 CHAPTER 5. ORACLE WORKFLOW

5.2 Oracle Workflow Architecture

According to the reference model of Hollingsworth (1995), a typical work-

flow management system provides support in three functional areas: build-

time functions that support Process Design and Definition, run-time func-

tions that are responsible for Process Instantiation and Control, and run-

time Interactions with Users and Applications. The client/server architec-

ture adopted by Oracle Workflow closely follows these three functional areas

as can be seen in figure 5.2 on the next page. Functionality is distributed as

follows:

• Workflow Development Client. The development client is a PC

running MS Windows that will be used as a platform to create and

modify process definitions, via Oracle Workflow Builder. The Workflow

Definitions Loader is a utility program that moves workflow definitions

between the database and corresponding flat file representations.

• Oracle Server. The heart of Oracle Workflow is the rules-based Work-

flow Engine residing in the Oracle database server. The engine uses

the process definitions created with Oracle Workflow Builder to coordi-

nate the routing of activities for the process. The Notification System

is responsible for delivering messages to and from workflow users. The

Business Event System uses Oracle Advanced Queuing technology to

communicate business event data between the engine and external ap-

plications or other workflows. The server will also host the business

application, integrated with Oracle Workflow.

• Application Server. The application server is the environment out-

side of the database server. This includes ancillary services such as

Oracle Web Application Server, WebDB, and the Notification Mailer.

• End-User Client. This represents any workstation or PC that the

end-user uses to perform their daily tasks. The Notification Mailer will

allow normal workflow users to view and respond to their notifications

using the Web Notification Worklist, as well as any MAPI complaint

Mail Application. The Web Process Monitor graphically depicts the

status of a workflow process instance, providing users and administra-

tors access to workflow related information from any computer with

5.2. ORACLE WORKFLOW ARCHITECTURE 59

 Figure 5.2: Oracle Workflow Architecture

60 CHAPTER 5. ORACLE WORKFLOW

an Internet connection. Administrators may also utilize other Web

Analysis Tools.

The architecture shown in figure 5.2 was adapted from the architecture

provided in Baldock and Seiden (2000) for Oracle Workflow version 2.5. The

version that is discussed in this dissertation is the current version shipped

with Oracle 9i, Oracle Workflow 2.6.2. This version included the Business

Event System as an optional component on the server. The functional dis-

cussions in the following section is based on the documentation provided with

this version (Chang & Jaeckel, 2002). A newer version, Oracle Workflow for

Java (OW4J), leveraging Oracle’s J2 Enterprise Edition (J2EE) platform is

currently in development. Since only developer previews of this product were

available at the time of writing, and as OW4J will only compliment – not

replace – the current Workflow Engine residing in the database, it will not

be explored further in this dissertation. It is interesting to note, however,

that Oracle is following the workflow product trends in section 2.4 by

• modularizing workflow functionality into components and services

• embedding Oracle Workflow into its e-business suite, in addition to

providing a stand-alone product, and thereby making it an integral

part of core business applications such as Enterprise Resource Plan-

ning (ERP), Customer Relationship Management (CRM), and Human

Resources Management Systems (HRMS)

• utilizing Internet technologies to interface with workflow users and ad-

ministrators

• ensuring interoperability with other workflow products through the

support of XML event messages

Figure 5.2 on the preceding page showed how Oracle Workflow compo-

nents can be divided into the three functional areas of workflow described

in chapter 2. Some of the architecture components will now be described in

more detail according to the particular functional area each one services. The

way features are implemented differs depending on whether Oracle Workflow

is used as a stand-alone product or embedded in the e-business suite. There-

fore, the following section will describe the functionality from a stand-alone

perspective.

5.3. PROCESS DESIGN AND DEFINITION 61

5.3 Process Design and Definition in Oracle

Workflow

Oracle workflow claims to be more than just a tool to simply route docu-

ments from one user to another with some approval steps. “Oracle Workflow

allows you to model and automate sophisticated business processes complete

with processes that loop, branch into parallel flows and rendezvous, decom-

pose into subflows, branch on task results, time out, and more. Express-

ing business rules in the process model enables model-driven integration”

(Oracle Technology Network, 2004). The central application to specify this

process model is Oracle Workflow Builder which allows a user to create and

modify all workflow components, including the item types, activities, and

transitions mentioned earlier with simple drag and drop operations. There

are two parts to this process definition tool: the Object Navigator and the

Process Diagram. Figure 5.3 depicts a simplified workflow process definition

that routes a requisition to a manager or set of managers for approval. The

Object Navigator window on the left allows a user to define the activities

and components of the business process (“Requisition” item type) using a

tree structure. These can then be assembled in the Process Diagram window

(right-hand frame) to create a process model. The central application to

specify this process model is Oracle Workflow Builder which allows a user to

create and modify all workflow components, including the item types, activi-

ties, and transitions mentioned earlier with simple drag and drop operations.

There are two parts to this process definition tool: the Object Navigator and

the Process Diagram. Figure 5.3 depicts a simplified workflow process defini-

tion that routes a requisition to a manager or set of managers for approval.

The Object Navigator window on the left allows a user to define the activities

and components of the business process (“Requisition” item type) using a

tree structure. These can then be assembled in the Process Diagram window

(right-hand frame) to create a process model.

The Object Navigator window displays a navigator tree hierarchy for each

data store that is opened or loaded into Oracle Workflow Builder. A data

store (primary branch) is a database connection or flat file that holds the

workflow process definition. The Workflow Definitions Loader is invoked

whenever a data store is opened or saved to. It loads process definitions into

62 CHAPTER 5. ORACLE WORKFLOW

F
igu

re
5.3:

O
racle

W
ork

fl
ow

B
u
ild

er:
O

b
ject

N
av

igator
an

d
P

ro
cess

D
iagram

w
in

d
ow

s

5.3. PROCESS DESIGN AND DEFINITION 63

Figure 5.4: Drilling-down into a process activity(“Notify Approver”)

and out of Workflow Builder. Within each data store there is at least one

item type heading (secondary branch) that represents the grouping of a

particular set of processes and its component objects. An item type will con-

tain process, notification, function or event activities. Notifications, such

as “Notify Requestor of Approval”, use Messages that contain data in the

form of attributes, and that can be sent to and acted upon by workflow users.

The same message template can be re-used by several notification activities.

Messages may prompt for a response or may simply provide information.

Item Type Attributes are visible to all activities in the process and might

include dates, numeric values, or roles (the equivalent of human participants

or users in workflow terms). Functions handle any automated unit of work

that do not require user interaction, and they are specified with PL/SQL

procedures. The process example shown in figure 5.3 contains several work-

flow activities implemented as PL/SQL stored procedures, including “Select

Approver” and “Verify Authority”. An Event activity represents a business

event that the process receives, raises, or sends. Such events are particu-

larly useful for integrating the current process with external workflows or

applications. Process activities are sub-processes that group together other

activities at a finer granularity that must be performed as a unit, and will

deliver a particular result to the main process. For example, when a user

opens the “Notify Approver” process activity, the process diagram shown in

figure 5.4 will be displayed.

Notice, however, that the activities do not solely belong to a particular

process, but can be part of multiple processes and may be re-used several

64 CHAPTER 5. ORACLE WORKFLOW

times in the same process. This grouping of activities and the different

routes between them is only specified when the process diagram is drawn in

the process window.

The Process Diagram window in Oracle Workflow Builder graphically

represents the activity nodes (icons) and transitions (arrows) for a par-

ticular process. Each activity is a node, a logical step that contributes to-

ward the completion of a process. Processes are typically initiated by one or

more start activity nodes, and concluded with one or more end activity

nodes. Although any activity can be set to be start or end nodes, standard

“Start/End” activities are provided in a “Standard” item type. This stan-

dard item type is installed automatically on the workflow server and provides

some generic activities that can be used to control processes. It also includes

standard activities such as “And/Or”, “Loop Counter”, “Wait”, “Compari-

son” and ”Vote Yes/No”, to name but a few. These activities can be used

in any process as many times as necessary.

A transition can be specified between any two nodes. The different

routes that a process may follow after completing a particular activity node

will depend on the Result Type specified for the source activity. When a

new transition is drawn from that activity node, one of the possible results

for that return type is chosen as the condition for following that particular

transition. Standard result types are specified with the “Standard” item type

and does not need to be defined, such as the result type “Approval” (see

figure 5.4 on the preceding page) which list two possible results, “Approved”

or “Rejected”. The most commonly used return types are specified in the

standard definition, however, application specific result types can be added

to an item type by defining it under Lookup Types through the Object

Navigator. A result type of <None> may also be specified, indicating that as

long as the originating activity completes, the process will transition to the

next activity. In addition, a transition may also be self-looping to re-execute

the activity node (e.g. the <Timeout> transition on figure 5.4 specifies that

“Reminder-Approval Required” messages will keep being sent if no response

is received in a particular time frame).

For each activity node specified in the process window, certain node prop-

erties need to be specified. A node represents an instance of a specific activity

and its property values are unique to that instance. Function and Notifica-

5.3. PROCESS DESIGN AND DEFINITION 65

tion activity nodes contain particular properties that will become significant

in later discussions.

If an activity is a notification, a Performer Role must be specified for

that activity node. A performer role is a role that can consist of one or

more workflow users. This role can be set to a static (Constant) role that is

already defined in the database. Alternatively you can specify a dynamic role

by selecting an item type attribute that returns a role name during run-time.

If this attribute value is not set via some function activity in the workflow

(e.g. the “Select Approver” function), the user launching the process is

allowed to select any role from all the possible roles in the database for that

item attribute. More will be said later about the Workflow Directory Service

and how it manages and resolves these roles to send notifications to specific

users.

A function activity is defined by the PL/SQL stored procedure or ex-

ternal program that it calls. As a PL/SQL stored procedure, a function

activity must be defined according to a standard API that accepts standard

arguments and can return a completion result. The Function property value

must be provided as follows: <package_name>.<procedure_name>. The cod-

ing and testing of this PL/SQL package and its procedures would be outside

the Workflow Builder environment using an application such as SQL Work-

sheet.

Once the process model has been diagrammed and the appropriate ac-

tivity and node properties completed, a user has the option of saving the

process definition to a flat file (.wft) on a local disk, or to save it directly

to the database. In both cases Oracle Workflow automatically validates the

process definition for any invalid or missing information and displays what

it finds in a Workflow Error verification window. Flat files of the process

definitions are useful as backups or to integrate definitions from an external

source, however the Workflow Engine will only be able to interpret definitions

stored to the database.

Figure 5.5 on the next page shows an Entity-Relationship Diagram (ERD)

of the tables used to store process definitions. There are of course many

other tables to specify application specific variables, but, for the purposes

here, they are not crucial to the process definition. Dotted lines indicate

that formal foreign key constraints were not found, and the relationship is

66 CHAPTER 5. ORACLE WORKFLOW

:)B,7(0B$775,%87(6

,7(0B7<3(��).�

1$0(

7<3(

���

:)B0(66$*(6

7<3(��).�

1$0(

���

:)B0(66$*(B$775,%87(6

0(66$*(B7<3(��).�

0(66$*(B1$0(��).�

1$0(

7<3(

���

:)B,7(0B7<3(6

1$0(

���

:)B$&7,9,7,(6

,7(0B7<3(��).�

1$0(

9(56,21

7<3(

(;3$1'B52/(

%(*,1B'$7(

(1'B'$7(

5811$%/(B)/$*

)81&7,21B7<3(

)81&7,21

5(68/7B7<3(

0(66$*(��).�

���

:)B$&7,9,7<B$775,%87(6

$&7,9,7<B,7(0B7<3(��).�

$&7,9,7<B1$0(��).�

$&7,9,7<B9(56,21��).�

1$0(

7<3(

���

:)B352&(66B$&7,9,7,(6

,167$1&(B,'

352&(66B,7(0B7<3(��).�

352&(66B1$0(��).�

352&(66B9(56,21��).�

$&7,9,7<B,7(0B7<3(��).�

$&7,9,7<B1$0(��).�

3(5)250B52/(

���

:)B$&7,9,7<B75$16,7,216

)520B352&(66B$&7,9,7<��).�

72B352&(66B$&7,9,7<��).�

5(68/7B&2'(

���

Figure 5.5: Workflow tables that store process definitions in the database

5.3. PROCESS DESIGN AND DEFINITION 67

therefore assumed based on the inclusion of reference fields.

Figure 5.5 shows that WF_ITEM_TYPES will have multiple WF_ACTIVITIES

(which includes process activities). Each time an activity is used in a partic-

ular process activity, a record is added to the WF_PROCESS_ACTIVITIES table

to represent node information. Since the same activity can be included many

times in the same process, an INSTANCE_ID is used to uniquely identify nodes

in the process. Note that this is also where the PERFORMER_ROLE for notifica-

tion activities are specified. Each transition between nodes is also captured

in the WF_ACTIVITY_TRANSITIONS table along with the RESULT necessary to

to invoke that transition. WF_ITEM_ATTRIBUTES represents the data con-

tainer since these attributes will specify the pertinent application data for

the item type. WF_ACTIVITY_ATTRIBUTES and WF_MESSAGE_ATTRIBUTES de-

fine application variables of various scope.

Note that the ACTIVITIES table also contains a VERSION attribute. This

allows an administrator to continuously modify and improve the business pro-

cess, and its definition, without interfering with executing workflows based

on older definitions. Oracle Workflow assigns a version number to each new

activity that is created. It also updates the version number whenever you

make changes to an existing activity. Therefore it saves the new version of

the activity to the database without overwriting older versions of the activ-

ity. In Oracle Workflow, activities also have dates of effectivity so that at

any point in time, only one version of the activity is “in effect”. If a process

is running, The workflow engine uses the version of the activity that was

in effect when the process was initiated. It does not switch versions of the

activity mid-way through the process. The process itself is also defined as

an activity with a version number, so the process definition always remains

constant until the process instance completes.

Instantiating the correct activity version is only one of the aspects of

process instantiation and control for which the workflow engine is responsible.

Process definitions provide the blueprints, it is now up to the workflow engine

and some ancillary services to successfully drive the process instances and

manage the business data associated with each.

68 CHAPTER 5. ORACLE WORKFLOW

5.4 Process Instantiation and Control in Or-

acle Workflow

Processes are instantiated from the process definitions stored in the workflow

tables. Three services, that are part of the Oracle database server, are in-

volved in what usually constitutes the Workflow Enactment Service referred

to in the WFMC’s Reference model (Hollingsworth, 1995). They are the

Workflow Engine, the Notification System, and the Business Event System.

These systems manage process instances via PL/SQL APIs and record work-

flow history data in the shaded tables shown in figure 5.6 on the facing page.

5.4.1 The Workflow Engine

The Workflow Engine manages all automated aspects of a workflow process

for each item. The engine is implemented in server-side PL/SQL and is

activated whenever a call to a workflow procedure or function is made. Since

the engine is embedded inside the Oracle database server, if the Workflow

server goes down for any reason, the Oracle database server is able to manage

the recovery and transactional integrity of any workflow transactions that

were running at the time of the failure. Additionally, Workflow Engines can

be set up as background tasks to perform activities that are too costly to

execute in real time. The Workflow Engine performs the following services

for a client application:

• It manages the state of all activities for an item, and in particular,

determines which new activity to transition to whenever a prerequisite

activity completes.

• It automatically executes function activities (execution is either imme-

diate or deferred to a background engine) and sends notifications (via

the Notification System)

• It maintains a history of an activity’s status.

• It detects error conditions and executes error processes.

The first API which is invoked to initiate a new workflow process instance

is CreateProcess. This API creates a new process instance from the process

5.4. PROCESS INSTANTIATION AND CONTROL 69

:)B,7(0B$775,%87(6

,7(0B7<3(��).�

1$0(

7<3(

���

:)B0(66$*(6

7<3(��).�

1$0(

���

:)B,7(0B7<3(6

1$0(

���

:)B$&7,9,7,(6

,7(0B7<3(��).�

1$0(

9(56,21

7<3(

(;3$1'B52/(

%(*,1B'$7(

(1'B'$7(

5811$%/(B)/$*

)81&7,21B7<3(

)81&7,21

5(68/7B7<3(

0(66$*(��).�

���

:)B352&(66B$&7,9,7,(6

,167$1&(B,'

352&(66B,7(0B7<3(��).�

352&(66B1$0(��).�

352&(66B9(56,21��).�

$&7,9,7<B,7(0B7<3(��).�

$&7,9,7<B1$0(��).�

3(5)250B52/(

���

:)B$&7,9,7<B75$16,7,216

)520B352&(66B$&7,9,7<��).�

72B352&(66B$&7,9,7<��).�

5(68/7B&2'(

���

:)B,7(06

,7(0B7<3(��).�

,7(0B.(<

2:1(5B52/(

���

:)B,7(0B$7755,%87(B

9$/8(6

,7(0B7<3(��).�

,7(0B.(<��).�

1$0(

7(;7B9$/8(

180%(5B9$/8(

'$7(B9$/8(

(9(17B9$/8(

:)B,7(0B$&7,9,7<B

67$786(6

,7(0B7<3(

,7(0B.(<

352&(66B$&7,9,7<

$&7,9,7<B67$786

$&7,9,7<B5(68/7B&

2'(

$66,*1('B86(5

127,),&$7,21B,'

���

:)B127,),&$7,216

127,),&$7,21B,'

0(66$*(B7<3(��).�

0(66$*(B1$0(��).�

5(&,3,(17B52/(

5(6321'(5

���

Figure 5.6: Workflow tables that store history information of process in-

stances

70 CHAPTER 5. ORACLE WORKFLOW

definition stored in the workflow tables mentioned in the previous section.

At this stage the item attributes must be initialized with start up values

(typically supplied by the user) before the next API (StartProcess) can be

called. Alternatively, the LaunchProcess API is a wrapper that combines

CreateProcess and StartProcess. Each new process instance is identified

by a unique Itemkey, which is either supplied by the user, or is set via a

function or procedure before calling the StartProcess API.

Upon starting the process, the Workflow Engine identifies and executes

the Start activity. After each activity completes, the Workflow Engine deter-

mines the next activity to transition to and continues to drive through the

process, automatically executing all function activities, until it comes to an

activity that interrupts the flow such as deferred activities, notifications with

responses, blocking activities, and wait activities. When the Workflow En-

gine encounters one of these activities it sets the audit tables appropriately

and returns control to the calling application. In the case of Notifications it

also calls on the Notification System to notify the recipients. The workflow

process is left in an unfinished state until it is started again. The process can

be restarted by the Notification System, such as when a user responds to a

notification; by the background engine, such as when a deferred activity is

executed; or by the Business Event System, such as when an event message

is dequeued from an inbound queue and sent to the workflow process. Once

the process is restarted the engine will continue driving through the process

in this manner until it encounters an End activity. In between the Start and

End activities, the state of a workflow item is defined by the various states of

all activities that are part of the process for that item. The engine changes

activity states in response to an API call to update the activity. The status

of the activities are updated by the engine as follows:

• Active - activity is running.

• Complete - activity completed normally.

• Waiting - activity is waiting to run.

• Notified - notification activity is delivered and open.

• Deferred - activity is deferred.

5.4. PROCESS INSTANTIATION AND CONTROL 71

• Error - activity completed with error.

• Suspended - activity is suspended.

In addition the API’s already mentioned, there are several other engine

API’s that manage the process, activity statuses and the item attributes

that contain the data passed between activities. The AssignActivity, in

particular, assigns or reassigns an activity to another performer before the

activity is transitioned to. For example, a function activity earlier in the

process may determine the performer of a later activity and use this API to

set it to its new value (see chapter 7). The Get/SetItemAttribute API’s

are also often used in functions to access process instance data.

5.4.2 The Notification System

When a notification activity is encountered, the engine makes a call to the

Notification System’s Send or SendGroup API to send the notification. These

APIs do the following:

• Confirms that the performer role of the notification activity is valid by

querying the Workflow Directory Service.

• Identify the notification preference of the performer role for the Notifi-

cation activity.

• Look up the message attributes for the message. The Subject and

Body of the message may include message attributes of source SEND,

which the API token replaces with each attribute’s current value when

creating the notification. If a message includes a message attribute

of source RESPOND, the API checks to see if it has a default value

assigned to it. The procedure then uses these RESPOND attributes to

create the default response section of the notification.

• “Construct” the notification content by inserting relevant information

into the Workflow Notification tables.

• Update the notification activity’s status to NOTIFIED if a response is

required or to COMPLETE if no response is required.

72 CHAPTER 5. ORACLE WORKFLOW

Once a user responds to a Notification, the Respond API is invoked in

either the RESPOND, FORWARD or TRANSFER mode depending on the action

taken by the user. It executes any post-response processing (associated with

a “Post Notification” function), updates the values of any attribute set to

RESPOND and sets the notification as Complete. If the notification message

prompts for a response as specified in the Result tab of the message’s prop-

erty page, that response value is also set as the result of the notification

activity. Finally, Respond calls the Workflow Engine’s CompleteActivity

API to inform the engine that the notification activity is complete so it can

transition to the next qualified activity.

5.4.3 The Business Event System

The Business Event System shown in figure 5.7 on the next page is an ap-

plication service delivered with Oracle Workflow that uses Oracle Advanced

Queuing technology to communicate business events between systems. The

Business Event System enables point-to-point messaging between systems,

messaging hubs, and distributed applications messaging. Workflow admin-

istrators can register subscriptions to business events that are significant

to their systems to trigger custom code, message propagation, or workflow

processes. These events are represented in the process definition by Event

activities that can be modelled using Workflow Builder. These activities are

often used to start a process, or to continue a process waiting for a specific

business event to occur.

When a business event occurs, the Event Manager executes subscriptions

on the event. For local events, the subscribing code can be executed syn-

chronously, in the same database transaction as the code that raised the

event, or asynchronously, deferring costly subscription processing to a later

time in order to return control more quickly to the calling application. Events

can also be received asynchronously from external systems. Subscription pro-

cessing can include executing custom code on the event information, sending

event information to a workflow process (using special XML function ac-

tivities included with Oracle Workflow), and sending event information to

other queues or systems. If the event was included as an event activity in

the workflow process definition, the subscription code for that event would

be executed. Once it has completed, the CompleteActivity API must be

5.5. INTERACTION WITH USERS AND APPLICATIONS 73

25$&/(��L

6

<

6

7

(

0

6

<

6

7

(

0

:RUNIORZ�(QJLQH

%XVLQHVV�(YHQW

6\VWHP

$GYDQFHG�4XHXLQJ%XVLQHVV�(YHQWV %XVLQHVV�(YHQWV

Figure 5.7: How the Workflow Engine interacts with the Business Event

System

called to restart the workflow engine.

5.5 Interaction with Users and Applications

in Oracle Workflow

There are several ways in which Oracle Workflow may interact with exter-

nal applications; however, the preferred method is via the Business Event

System. As discussed in the previous section, the Business Event System

consists of the Event Manager, which lets administrators register subscrip-

tions to significant events, and Event Activities, which model business events

within workflow processes. This allows the workflow engine to incorporate

information from other systems into the current workflow. However, the

workflow may also need to initiate external applications to perform some

function outside the scope of the Oracle database server. Once again this

can be accomplished by raising an event via the Business Event System and

allowing it to interface with the external program via an out-bound queue.

74 CHAPTER 5. ORACLE WORKFLOW

The same functionality could also be achieved using function activities to

place items directly into queues.

Oracle Workflow users includes end-users who initiate and execute activ-

ities in workflow processes as well as the administrators who define, monitor

and control those processes. Both types of users are given access to a variety

of information and functionality via Oracle Workflow’s web interface which

runs on the Oracle HTTP server.

The Workflow Directory Service will authenticate users before displaying

any secured workflow information such as a user’s personal worklist of no-

tifications. It will also only allow administrators access to restricted Event

Manager and Workflow Monitor functions. The Workflow Directory Service

uses views based on local users already registered on the database. Alter-

natively the OID (Oracle Internet Directory) service can be used to manage

both internal as well as external Internet users, although this service is not

available in the stand-alone version of Oracle Workflow.

The Oracle Workflow Homepage shown in figure 5.8 on the facing page

gives users and administrators central access to all the web-based features of

Oracle Workflow. The features can roughly be divided into those pertaining

to notifications, managing workflow user preferences, monitoring workflow

instances and setting up business events (all those in the right-hand column

of the page). Workflow processes are typically not launched from this in-

terface although it does allow administrators to test their definitions via the

Launch Processes page. Process instances are usually launched within one of

the workflow-enabled applications provided with Oracle’s E-business suite,

such as Enterprise Resource Planning (ERP), Customer Relationship Man-

agement (CRM), and Human Resources Management Systems (HRMS). If

Oracle workflow is used as a stand-alone product, administrators can set up

events using the Business Event Manager to invoke a workflow process in-

stance automatically, or they can design custom web pages1 that use HTML

controls to request process start-up info and call the CreateProcess and

StartProcess API’s, from where the Workflow Engine will take over.

Administrators and users can view the progress of a work item in a work-

flow process by connecting to the Workflow Monitor using a standard Web

1Oracle Workflow has provided sample workflow processes which are initiated by

PL/SQL procedures called from the hyperlinks on the “Demonstration Page”

5.5. INTERACTION WITH USERS AND APPLICATIONS 75

F
ig

u
re

5.
8:

W
or

k
fl
ow

u
se

rs
ca

n
ac

ce
ss

w
or

k
fl
ow

fe
at

u
re

s
v
ia

a
W

or
k
fl
ow

H
om

ep
ag

e

76 CHAPTER 5. ORACLE WORKFLOW

browser that supports Java. The Workflow Monitor displays an annotated

view of the process diagram for a particular instance of a workflow process,

so that users can get a graphical depiction of their work item status. The

Workflow Monitor also displays a separate status summary for the work item,

the process, and each activity in the process. Oracle Workflow Manager is

an additional tool available with Oracle9i Release 2, that administrators can

use to administer workflows.

5.5.1 Viewing Notifications and Processing Responses

Oracle Workflow lets an administrator include users in the workflow to han-

dle activities that cannot be automated, such as approvals for requisitions or

sales orders. This is done through electronic notifications which are routed

to a role, which can be an individual user or a group of users. Any user asso-

ciated with that role can act on the notification. Each notification includes

a message that contains all the information a user needs to make a decision.

The information may be embedded in the message body or attached as a

separate document. Oracle Workflow also allows the user to interact with

the workflow by responding to a notification. The Notification System will

process the response as described in section 5.4.2 and the Workflow Engine

then interprets the response to decide how to move on to the next workflow

activity. Other users to which the communal task notification was sent, will

also no longer have access to that notification.

This section discusses the different ways people involved in a workflow

process can view and respond to workflow notifications. A user can view

notifications using any one of three interfaces depending on the notification

preference setting for the role that user belongs to in the Oracle Workflow

Directory Service. Users can receive an e-mail for each individual notifica-

tion, receive a single e-mail summarizing all their notifications or query the

Workflow Notifications Web page for their notifications.

Electronic mail (e-mail) users can receive notifications as e-mail messages

if their notification preference is set to “Plain text mail”, “HTML mail”, or

“Plain text mail with attachments” in the User Preferences web page and

the workflow administrator sets up the Notification Mailer to run. The pref-

erence determines how the message will be displayed and also how response

options are presented to the user which will be chosen will depending on the

5.5. INTERACTION WITH USERS AND APPLICATIONS 77

target mail system’s capabilities. All three types of e-mail notifications will

allow the user to respond via some template which provides specific sections

in the body of the message for the user to enter values and indicate the

response action to be taken (e.g. “Approve” or “Reject”).

When user responds to a notification by e-mail, the reply message must

include the notification ID (NID) and access key from the original notifica-

tion message. The Notification Mailer can process the response properly only

if the correct NID and access key combination is included. The notification

access key is a distinct random key generated by the Notification System for

each NID. The access key, thus, serves to authenticate users who actually

received the notification, thereby allowing them to respond to the notifica-

tion. If users do not wish to receive and respond to individual notifications

via e-mail they can still receive periodic e-mails giving a summary overview

of the notifications awaiting their attention in the Notifications Web page.

Web and e-mail users can access the Notifications web page (directly by

typing in the URL, by clicking the Worklist link on the Oracle Workflow

HomePage or by calling this function from an Oracle Applications form) to

see their outstanding work items, then navigate to additional pages to see

more details or provide a response. When users view their notifications from

the Notifications Web page they are simply querying the workflow history

tables from this interface, and the Notification Mailer is not involved. The

query will generate a list of open notifications for the current user, as shown

in figure 5.9 on the next page.

The user may select any of the notifications to view more detail (fig-

ure 5.10 on page 79). In the Notification Detail page, the full details of the

notification appear in the upper frame, and the response section of the noti-

fication appears in the lower frame. The upper frame contains the message

specified for the notification activity with the instance variables supplied.

The response frame prompts for message attributes that were specified as

being of the “Respond” type using fields or poplists. The type of notification

and the response type specified for the activity will determine which option

buttons are presented to prompt the user for some action. The user can also

choose not to respond by simply closing the notification, or re-assign the ac-

tivity to another user. If the the user should not be allowed to reassign the

notification a special attribute, HIDE_REASSIGN, is included in the message

78 CHAPTER 5. ORACLE WORKFLOW

Figure 5.9: The “Notifications Web page” shows open notifications for the

current user

5.6. CONCLUSION 79

Figure 5.10: The “Notification Detail” page.

definition.

Once a response is submitted, the Notification Detail page returns to

the worklist of Notifications, where the notification just responded to now

displays a status of Closed and the user is allowed to delete it from his/her

worklist. Once closed, users can view the notification details again, but they

will not be able to alter their response.

5.6 Conclusion

Although this chapter seem to have presented quite a lengthy discussion on

Oracle Workflow’s features, it is in no way representative of all the features

supplied with our chosen product. The aim was to provide information on

how the product is involved in the lifecycle of a workflow process, from defi-

nition to execution.

Oracle Workflow Builder was investigated as the tool with which process

80 CHAPTER 5. ORACLE WORKFLOW

design and definition is achieved. This tool provides a GUI process model

which is easy to design and alter. Process definitions are subsequently up-

loaded into database tables from where they are maintained and instantiated

as process instances.

The Workflow Engine is primarily responsible for process instantiation

and control through the use of PL/SQL API calls that are automatically

triggered in order to drive the process forward. The Engine also sends and

receives API calls to and from the Notification and Business Event systems.

These systems halt the workflow process, allowing asymmetric execution

of external activities (performed by users and applications) until control is

transferred back to the workflow engine that feeds this information into the

relevant process instances.

The web interfaces provided by Oracle Workflow allows for the interaction

with users and applications in a convenient and centralized manner. Users

can access their worklists from any location and administrators can register

and manage event subscriptions which will actively listen for business events

that the workflow engine must respond to. In addition, a monitoring facility

is available so that users can track the progress of their requests and admin-

istrators can track the performance of workflows and monitor the activities

of their users.

As can be seen from the previous paragraph, Oracle Workflow closely

follows the three functional areas suggested by the WfMC for workflow man-

agement systems. However, the workflow terms used do differ somewhat

from those used in chapter 2. Section 5.1 showed the mapping of these

terms. Processes become item-types, tasks are activity nodes which could

represent a notification, event, or subprocess. These activity nodes are con-

nected to each other with transitions which represent business conditions or

rules. Even more significant is the integration of the data container not as

a separate electronic document but as attributes of the process itself. Apart

from this, Oracle Workflow environment does not have a clear access control

service on which to map the CoSAWoE model. These and other implemen-

tation issues form the crux of this dissertation and will be discussed in more

detail in the following two chapters.

Chapter 6

CoSAWoE: Administration in

Oracle Workflow

In the previous chapter, Oracle Workflow was introduced as a commercial

workflow product. The features provided with this product was investigated

according to the functionality described by the Workflow Management Coali-

tion. This chapter will now show how some of these features will be used

according to the administrative guidelines proposed by the CoSAWoE model.

As stated in chapter 4, the model components affected will relate mostly to

separation of duty administration. The role engineering and object design

components of the CoSAWoE model represents methodological issues rather

than implementation. Since Oracle Workflow support, albeit not fully, the

role-based and object principles on which these methodology aspects are

based, the role engineering and object design aspects will not be discussed

here.

However, the means whereby Oracle Workflow implements access control

policies, such as order of events and strict least privilege, are less obvious

and crucial to the essential functionality prescribed by the CoSAWoE model.

Access control can be specified at a task level as well as at a finer level of

granularity (data items). Separation of duties can be implemented separately

in Oracle Workflow, by specifying static conflicts and enforcing them either

during design-time or checking them later when the process is executed.

First, however, the access control features of Oracle Workflow that are

available apart from any model considerations must be explained.

81

82 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

6.1 Access Control Features provided with

Oracle Workflow

Oracle Workflow does provide an “Access Protection” feature, but this is

not to be confused with an “Access Control” service as it relates to informa-

tion security. Oracle Workflow’s access protection is a feature that prevents

workflow seed data created by a “seed data provider” from being modified

by a “seed data consumer”. For example, a development team at an orga-

nization’s headquarters may create a custom workflow process that it wants

to deploy to teams at other regional offices. The headquarters team, as seed

data providers, may want to protect certain data as “read-only”, while al-

lowing other data to be customized for the regional offices to alter to their

offices’ needs. This feature also allows a seed data provider to “upgrade”

any existing protected seed data with new versions of that seed data, while

preserving any customizations made to customizable seed data.

Oracle Workflow assigns a protection and customization level to every

workflow object definition stored in the database and requires every user of

Oracle Workflow to operate at a certain access level. The combination of

protection, customization, and access levels make up the access protection

feature and determines whether a user can modify a given workflow object.

The “Access protection” feature, therefore, only protects the workflow def-

initions and does not control user access to the workflow activity instances

or the application data.

No explicit mention is made about “Access Control” in any of the Oracle

Workflow documentation (Chang & Jaeckel, 2002). However, this does not

imply that there is no control over user interaction with workflow activity

instances. Oracle Workflow does provide shades of discretionary and role-

based access control (see chapter 3) in the specification and assignment of

tasks.

One of the setup steps for Oracle Workflow is to map Oracle Workflow’s

directory service to the users and roles currently defined in the organization’s

directory repository by constructing views based on those database tables.

The views in question are WF_USERS, WF_ROLES and WF_USER_ROLES. The

roles can be either individual users or a group of users. Role-hierarchies are

also supported. However, since the views are based on users and roles spec-

6.2. SPECIFYING ACCESS CONTROL 83

ified for the database system, those roles may not be sufficient to support

access to workflow objects. As such, administrators can specify ad-hoc users,

WF_LOCAL_USERS, and roles, WF_LOCAL_ROLES and WF_LOCAL_USER_ROLES,

which are more appropriate to the specific workflow environment. The No-

tification System uses these tables and views to send notifications to the

performer role specified for notification activities (see section 5.3).

The level of access control can indirectly be built into the workflow process

definition through the way in which the administrator uses some of the Oracle

Workflow Builder features (discussed in chapter 5).

6.2 Specifying Access Control with Workflow

Builder

Both human participants and other programs can be seen as “users” of the

workflow process and any data it propagates. From an access control per-

spective, administrators would have to ensure that these users can only access

the workflow in a predictable and appropriately restrictive way. For other

systems, the administrator would set up event activities to handle incoming

and outgoing data. Event activities will, in turn, be triggered and handled

by the Business Event System during run-time. Therefore, the way in which

these systems will access workflow data and tasks will be well-defined and

automated according to strict rules specified by the administrator. Any devi-

ations will automatically be rejected by the Workflow Engine. The behaviour

of human users are, however, much less predictable. The inheritance capa-

bilities of the RBAC role hierarchies, in particular, can have unexpected side

effects which may compromise the integrity of a workflow process. Therefore,

the remainder of this dissertation will view users as human users and address

problems that might arise from their involvement in workflow tasks.

At a task-level, users are given access to a certain notification activity

based on the Performer Role specified for that notification node. As men-

tioned in the previous chapter, if a role-type item attribute is used, the

administrator effectively allows the owner of the process to select the “role-

players” who will be involved in that process instance when the process is

initiated. For example, a “Requestor” and an “Approver” item type attribute

84 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

of the type Role can be defined for a “Vacation Request” process which will

only be populated during run-time. The process owner then needs to spec-

ify the specific roles or individual users who will act as “Requestor” and

“Approver” respectively when the process instance is created. This would

at least provide some form of discretionary access control, since the owner

of the process gives permission to certain users to access certain tasks. At

worst, an administrator might even design the process in such a way that

the “Requestor” can specify the “Approver” during the creation activity and

thereby hand-pick the person who will ultimately approve the request.

Some of the obvious access control pitfalls of this approach can be over-

come by providing specialized function activities. These functions can pro-

grammatically determine the item attribute values based on a pre-defined

role/user hierarchy, or at the very least, check the selected role/user against

access control policies before executing notification activities for which such

a dynamic assignment was made.

Affecting access control in this way, however, places an increased admin-

istrative burden on the workflow designer or administrator. Since the item

attributes in question is specific to a particular process definition, there would

also be issues as far as maintenance, integration and scalability is concerned.

Certainly when separation of duties is considered, using a hard-coded man-

ager hierarchy1 will ensure such separation is achieved, however much of the

flexibility will be lost in the process design, and maintenance of the hierarchy

itself will be an ongoing task. As such, we would recommend that adminis-

trators assign notification activity nodes to constant roles, managed by the

Workflow Directory Service, to alleviate the maintenance burden. This would

enable role-based access control to activities.

6.2.1 Role-based Access Control at Activity Level

The performer role can be set to any Constant role that exists in the

database. The term “role” is somewhat ambiguously used in Oracle Workflow

since individual users must also be specified as roles in order to be assigned to

notifications during design or to receive them in their worklists at run-time.

When a constant role is chosen for a notification activity, the role referred

1Such a hard-coded manager hierarchy is used as part of the “Requisition” demonstra-

tion item type included with Oracle Workflow

6.2. SPECIFYING ACCESS CONTROL 85

to here should thus represent a grouping of users according to some job

description in order to obtain the maintenance advantage described earlier.

The administrator now only needs to ensure that a specific enough role exists

and that the users assigned to it is restricted according to who should have

access to that notification activity. The CoSAWoE model provides guidelines

on how this can be achieved in its role engineering component (see chapter 4).

Note, however, that the role used here only serves to group users, and the

permissions to objects usually associated with such roles really holds no value

in the Oracle Workflow environment. This is mainly since the “document”,

which is the object on which permissions are specified, is non-existent!

In Oracle Workflow the application data propagated by the workflow is

resident in a set of item attributes, the instance values of which are stored

in WF_ITEM_ATTRIBUTE_VALUES. Also, the Directory Service is not involved

beyond granting users access to a specific notification. Therefore, once a

user responds to a notification, the Workflow Engine and not a specific user

is responsible for updating the history tables.

6.2.2 Strict Least Privilege at Item Attribute Level

In order to control access to a finer level of granularity for workflow data,

the inclusion and properties of item attributes used in notifications must

therefore be controlled. A notification activity presents information to the

user through a message template. Specific Message Attributes which maps

directly onto Item Attributes, are contained in messages. These attributes

can be specified as Send or Respond, and the setting will apply to any user

who has access to that activity.

The administrator will set message attributes to Send if it can only be

viewed during the notification activity. Whomever responds to the notifica-

tion first will be allowed to change an attribute if it is set to Respond. Once

someone has responded to the notification, the values of those attributes are

saved to the relevant table and the notification is removed from other user’s

worklists. The user who responded is also only allowed to view the changes

he/she has made. Values of such attributes can only be changed again by

another activity in the workflow to which users will once again be granted

access based on their role and the performer specified.

It is possible to control individual user’s access to an item attribute via

86 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

a “Post Notification” function specified as part of the node attributes. Such

a function is only triggered after an individual has responded to a message,

but before changes to the database is made. The function can then apply

particular access rules to specific item attribute values that were changed

and raise an error if the action is not allowed by the responder.

From the discussions above it is clear that it is possible to ensure strict

least privilege and order of events; two of the requirements for access

control in workflow specified in chapter 3. The CoSAWoE model caters for

these requirements during administration through the use of object design

and role engineering, but since document hierarchies and role-based access

control are not fully supported in Oracle Workflow, careful task design and

additional programmatical checks are used instead. Separation of Duties, the

third access control requirement and a critical component of CoSAWoE, is not

supported and will also require additional specification by the administrator.

6.3 Specifying SoD in Workflow Builder

Separation of Duties is not enforced in Oracle Workflow other than by the

administrator’s selection of abstract roles when assigning the notification

activities’ performer role. If sufficiently restrictive roles are available, the ad-

ministrator can at least make sure that two conflicting notification activities

are assigned to mutually exclusive roles. However, there is no guarantee that

role engineering was adequately applied, and much of the success of this ap-

proach will depend on the administrator’s knowledge of how database roles

were created and user assignments were made.

In order to check user assignments to tasks in Workflow Builder, and

therefore enforce Static Separation of Duties (SSoD), additional pro-

gramming will be necessary. First, the static conflicts will need to be spec-

ified using database tables. Then PL/SQL triggers will need to be created

on these tables, as well as on the process definition tables where task as-

signments are recorded. For example, a trigger will need to be specified on

the PROCESS_ACTIVITIES table to check the PERFORMER ROLE against infor-

mation in the conflict tables each time a new notification activity node is

inserted into the process definition. The SoD administration tool developed

by Perelson et al. (2001) also uses examples of such triggers to assign users,

6.3. SPECIFYING SoD 87

roles and tasks without violating business constraints.

In Oracle Workflow, however, these triggers will only be triggered once the

definition is saved to the database, and will only raise an error to indicate this

to the administrator at that time. Another limitation of this approach is that

users may assume multiple roles during run-time based on role-hierarchies.

This would place notifications in a user’s worklist that are assigned to ANY

of the roles he/she belongs to irrespective of his/her involvement earlier in

the workflow.

Therefore, dynamic separation of duties (DSoD) would be necessary

regardless of any static checks that may or may not have been performed.

This approach does not prevent user assignment during administration, but

rather checks such assignments once the workflow process is running. Still

certain steps still need to be followed during process definition to setup the

workflow environment for run-time enforcement.

First, the administrator must specify conflicting activities and conflicting

users in two database tables as shown in figure 6.1 on the next page. As

can be seen from this example, the WF_CONFLICTING_TASKS table refers to

the activity definitions in the WF_ACTIVITIES which are conflicting. Basing

the conflicts on this table will imply that once a conflict has been specified

between two activities, that conflict will exist regardless of which subprocess

they are specified in. If the conflict should be restricted to a particular

subprocess, this conflict table should be based on the WF_PROCESS_ACTIVITY

table instead, and the parent activities included as fields in addition to the

activity name fields. The WF_CONFLICTING_USERS table relates to the users

in the WF_USERS or WF_LOCAL_USERS tables. The relationship between those

users that causes the conflict is also specified for error messaging purposes.

The specification of conflicting roles in a separate table will unfortunately

have no real value. This is due to the fact that in Oracle Workflow, users do

not specify a particular role when logging on to perform workflow tasks. The

history of which role a user assumed when performing a particular activity

would, therefore, not be available for dynamic checking.

Within Oracle Workflow Builder the administrator must now provide a

function activity to eliminate conflicts before notifications can be sent to

users. We attempted to create a re-usable procedure that can be used to filter

users before any notification activity. This procedure does, however, require

88 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

:)B,7(0B$775,%87(6

,7(0B7<3(��).�

1$0(

7<3(

���

:)B0(66$*(6

7<3(��).�

1$0(

���

:)B,7(0B7<3(6

1$0(

���

:)B$&7,9,7,(6

,7(0B7<3(��).�

1$0(

9(56,21

7<3(

(;3$1'B52/(

%(*,1B'$7(

(1'B'$7(

5811$%/(B)/$*

)81&7,21B7<3(

)81&7,21

5(68/7B7<3(

0(66$*(��).�

���

:)B352&(66B$&7,9,7,(6

,167$1&(B,'

352&(66B,7(0B7<3(��).�

352&(66B1$0(��).�

352&(66B9(56,21��).�

$&7,9,7<B,7(0B7<3(��).�

$&7,9,7<B1$0(��).�

3(5)250B52/(

���

:)B$&7,9,7<B75$16,7,216

)520B352&(66B$&7,9,7<��).�

72B352&(66B$&7,9,7<��).�

5(68/7B&2'(

���

:)B&21)/,&7,1*B7$6.6

7B,7(0B7<3(��).��

7B$&7,9,7<B1$0(��).��

&B,7(0B7<3(��).��

&B$&7,9,7<B1$0(��).��

:)B&21)/,&7,1*B86(56

7B1$0(��).��

&B1$0(��).��

5(/$7,216+,3

:)B86(56

1$0(

',63/$<B1$0(

127,),&$7,21B35()(5(1&(

(0$,/B$''5(66

«�

:)B86(5B52/(6

86(5B1$0(��).��

52/(B1$0(��).��

«�

:)B52/(6

1$0(

',63/$<B1$0(

127,),&$7,21B35()(5(1&(

(0$,/B$''5(66

«�

Figure 6.1: Specifying conflicting entities via database tables in Oracle Work-

flow

6.4. LESSONS LEARNT 89

Figure 6.2: Inserting a function activity in the process definition to enforce

DSoD

that the administrator use role constants and not dynamic item attributes,

when assigning notification activity nodes’ performer role.

The actual checking of dynamic conflicts can also be done once a user

attempts to respond to a notification. If a conflict does occur an error would

be raised and the user will be prevented form completing the activity. How-

ever, such an approach would violate good user interface design guidelines by

presenting users with notifications to which they in fact will not have access.

Therefore, a more elegant solution can be implemented by inserting a

re-usable filter function activity before each notification activity node in the

process design, so that user lists can be pruned appropriately before the

Notification System sends out such notifications to potential users. Figure 6.2

shows how such a function (“Filter Users”) is inserted into a generic process

between two notification activities. The following chapter will discuss the

internal workings of the PL/SQL procedure attached to this function activity.

6.4 Lessons Learnt

The following lessons could be learnt from the discussions in the previous

sections. When using Oracle Workflow Builder to implement access control

features:

• Role-based access control can only be implemented at a task level. If

a finer level of granularity is needed, to restrict the access to a piece of

data so that it may only be viewed or changed during a particular task,

90 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

this can only be implemented through item attribute properties which

apply to all users. Additional programming would be required if the

user’s particular involvement in the workflow should also be evaluated

for individual pieces of data.

• Users would be able to over-ride such role-based assignments by re-

assigning a notification once they have claimed it to another workflow

user at their discretion, unless the Re-Assign option is explicitly spec-

ified as hidden during message design.

• The explicit specification of Separation of Duties is not supported at

all in Oracle Workflow Builder. Role engineering is assumed and the

administrator assigns notification activities at his/her discretion.

• Static Separation of Duties can be enforced but additional coding in

the form of PL/SQL triggers would be needed.

• Dynamic Separation of Duties can also be achieved, although addi-

tional conflict tables must be created and populated outside Workflow

Builder and function activities must be inserted into the process defi-

nition before each notification activity.

6.5 Conclusion

As a commercial workflow product, Oracle Workflow is quite powerful and

well suited to complex workflows. This chapter, however, highlighted some

deficiencies as far as access control is concerned. Although, a user directory

service is available which allows roles to be assigned to activities, the manner

in which these assignments are made greatly depends on the skill of the

administrator. Therefore, this chapter’s aim was to provide guidelines to

administrators and suggest some “best practices” for implementing an access

control model based on CoSAWoE.

The CoSAWoE model specifies three functional requirements for context-

sensitive access control in workflows, namely order of events, strict least priv-

ilege and separation of duties. This chapter showed how the first two policies

can be achieved through the design of notification messages and the assign-

ment of such activities to role constants. These role assignments can also be

6.5. CONCLUSION 91

statically checked against separation of duty conflicts (which are specified in

database tables) using database triggers and thereby preventing the assign-

ments from being made. However, it was argued that this approach would

be insufficient to enforce dynamic separation of duties. Therefore it also

showed how a filtering activity can be inserted before sensitive notification

activities to check separation of duty conflicts for the assigned role’s users

before granting them access to the activity. Only those users who belong to

the assigned role, and whose participation would not create a separation of

duty conflict, would thus receive a particular activity in their worklist.

The following chapter will discuss the run-time activities and checks that

would need to be done in order for this access control method to be success-

fully implemented in Oracle Workflow.

92 CHAPTER 6. CoSAWoE: ADMIN IN ORACLE WORKFLOW

Chapter 7

CoSAWoE: Run-time

Enforcement in Oracle

Workflow

The Oracle Workflow Builder administration tool, allows administrators to

setup the workflow process in such a way that access control policies can

be enforced by the Oracle Workflow Engine during run-time. The previous

chapter showed in particular how separation of duties can be catered for.

This chapter will focus on how the conflicts specified during administration

will now be used to prevent users from receiving such notifications when

generating users’ worklists. Although chapter 4 excluded the workflow session

concept from the CoSAWoE components relevant to this chapter, a short

discussion will illustrate the way in which Oracle Workflow achieves similar

results using different methods.

The code segments discussed in the following sections is, due to their

length, located in Appendix A, and should therefore be consulted while read-

ing this chapter.

7.1 Worklist Generation during Run-time in

Oracle Workflow

Chapter 5 discussed how the Notification System is responsible for sending

notification messages to individual users in the workflow. When an activity

93

94 CHAPTER 7. CoSAWoE: RUN-TIME IN ORACLE WORKFLOW

message is triggered by the Workflow Engine, the Notification System re-

solves the role specified for the Notification activity node and determines the

notification preference for each user attached to the role. E-mail users will

be sent notification messages via the Notification Mailer program which will

place such messages in the users’ e-mail account Inbox. Once a user replies

to such an e-mail, the Notification System will verify that only the intended

recipient sent the reply (by checking the access key included against the one

generated when the notification was sent). Users who access the Workflow

Home Page or navigate directly to the Notifications Page can view a list of

Notifications. Each user’s individual worklist of notifications is generated

dynamically by querying the NOTIFICATIONS table for any open notifications

allocated to one of the user’s roles. Once a notification has successfully been

responded to, the Notification System closes that notification, which would

exclude it from being returned in other user’s worklists.

Therefore, worklists do not exist as separate entities within Oracle Work-

flow’s history tables, but are generated dynamically based on the roles as-

signed to a particular user. Therefore the procedure that prunes the “work-

list” is in fact pruning the potential user list for a specified role attached

to a notification. This procedure would be attached to the filtering func-

tion activity which is inserted before each notification activity that requires

separation of duty checking (see chapter 6).

7.2 Pruning the User List for DSoD in Oracle

Workflow

A re-uable PL/SQL procedure, attached to the “Filter Users” function activ-

ities shown in figure 6.2 on page 89, is responsible for pruning the user list.

The FilterUsers procedure, included in appendix A, contains the relevant

code and will follow the program logic represented by the following steps:

• Step 1. Determine the intended users for the activity based on the

performer role specified (lines 25 to 27, and lines 75 to 80).

• Step 2. Use Set operators to filter out users who responded to con-

flicting tasks (lines 31, and lines 35 to 43). The NOTIFICATIONS table

7.3. SESSION CONTROL IN ORACLE WORKFLOW 95

can be queried or the Responder API invoked to determine the in-

dividual users who responded to notifications attached to conflicting

tasks. If the process owner should also be included, the Start activity

is specified as a conflicting task to indicate this (lines 46 to 52).

• Step 3. Conflicting users can be seen as the same user for conflicting

tasks and must therefore also be eliminated according to lines 56 to 66.

• Step 4. Once a set of valid users are ready, a new ad-hoc role must

be created based on the original role specified for the activity (lines

93 to 95, and line 100 . Note that the itemkey, and ativity ID must

be included in the new role-name since multiple activity instances can

exist which utilizes the same source role.

• Step 5. The new role must be loaded with the pruned user list, and

the notification activity node must be re-assigned to this temporary

role (lines 104 to 130).

These generic steps can be followed to prune the user list before assigning

them any notification activity.

7.3 Session Control in Oracle Workflow

Users are authenticated whenever they logon to the Oracle Workflow Home

page or when they navigate to a secured webpage such as the “Notifications

page”. E-mail users will also be authenticated by the e-mail application they

are using, and the Notification Mailer will verify responses coming from those

systems by using assess keys as described in section7.1. However the users

are not associated with a specific role at that time, and as such a user may

assume all the roles assigned to him/her during role administration. These

roles will also remain active until the user logs out of the workflow homepage

or e-mail application.

WSessions, the specialized form of workflow sessions described in chap-

ter 4, enforces the concept of strict least privilege. This concept defines a

workflow session as the time from which a user accepts a task until he or she

stops working on that task. This allowed the access control service to assign

and revoke user privileges to a particular task for a limited time period only.

96 CHAPTER 7. CoSAWoE: RUN-TIME IN ORACLE WORKFLOW

Workflow Sessions, are not directly supported in Oracle Workflow, how-

ever, the worklists of users are dynamically created according to the roles

associated with tasks. What this means is that users will be able to perform

tasks only once the Workflow Engine has created the task instance, and the

Notification System have created open Notifications for those tasks. A user

will, therefore, not be able to access a task outside of the environment pro-

vided and controlled through the worklist. As soon as someone responds to

a notification, it is closed, removing it form all users’ worklists so that it can-

not be updated any further. As explained in the previous chapter, users are

not allowed to “go back” to previously completed activities unless explicitly

modelled in the process design

Assigning ad-hoc roles to notification activities can also be seen as a form

of WSessions. This role is specifically created to give only certain users access

to a particular task. Then when someone belonging to that temporary role

does respond, the task closes and the temporary role is not used any longer.

It can also be explicitly removed via a Post-Notification function as soon as

someone replies (a procedure called “DeleteAdhocRole” was created for this

purpose and is shown in section A.2 of appendix A). Therefore users are

allowed access to a task based on a temporary role which is disabled as soon

as the task is complete.

These methods would therefore not allow a user to access a task outside

their own worklist. More importantly, history tables are also updated by

the Workflow Engine acting as a proxy, and therefore users are typically not

granted any privileges to these tables. This ensures that users will not be

able to affect changes to task data outside of the workflow environment (for

example through an SQL editor), since only the Workflow Engine may access

those tables.

7.4 Lessons Learnt

The biggest shortcoming of Oracle Workflow is that its architecture does not

contain a centralized access control service. Such a service would have aided

the workflow engine, and the notification service in the execution of notifi-

cation tasks. Instead of placing extra function tasks in the workflow process

definition (which implies additional error handling and processing overheads),

7.5. CONCLUSION 97

an access control service would provide a central component which could be

used to implement the separation of duty and other access control policies

for all notifications.

Since users do not log in with a particular role, it is also not possible to

check conflicting roles dynamically. This would allow groups of users to be

excluded from having access to a particular task based on the previous roles

they activated in the same process instance. This would also require the

role information based on the user’s log-on information to be stored in the

workflow history table WF_NOTIFICATIONS along with the user who performed

the activity.

7.5 Conclusion

This chapter concluded the proposed solution for implementing the Co-

SAWoE model in a commercial workflow product such as Oracle Workflow.

The key component for run-time enforcement of this model, is worklist gen-

eration. In the previous chapter the administration tasks of assigning tasks

to roles where discussed. According to these role assignments, the workflow

engine, aided by the directory service and the notification system, will place

open notification activities in a user’s worklist. As discussed, the worklist

does not exist as a separate entity, but is generated through a query to the

workflow tables when the user logs into the workflow homepage.

At times it may also be necessary to disallow certain users access to a task

based on separation of duty constraints. Since a worklist entity for each user

does not exist to be pruned, section 7.2 therefore discussed the pruning of the

user list for the assigned role. The discussion centered around the logical steps

of the code attached to the “FilterUsers” procedure, as shown in appendix

A. These steps of the procedure were implemented in such a way, that they

could be re-used to affect separation of duties for any notification activity as

long as function activities where supplied where appropriate as hooks into the

process definition. The next chapter will demonstrate the re-usability of this

function by inserting it into a specific example of a workflow process. The

example will guide the user through the entire process lifecycle in Oracle

Workflow, and will therefore also be used to illustrate the administration

guidelines presented in the previous chapter.

98 CHAPTER 7. CoSAWoE: RUN-TIME IN ORACLE WORKFLOW

Chapter 8

Implementation Example:

Insurance Claim

The previous two chapters discussed how functionality from the CoSAWoE

model can be implemented using the Oracle Workflow commercial workflow

product. This chapter will endeavor to show a practical example of the

implementation steps proposed. However, a real-world example of a process

definition that suited our requirements for illustrating these steps, were not

obtainable. As such, the insurance claim process described in the following

paragraphs is a simplified version based on the another example presented

in the article by Cholewka et al. (2000).

This process centers around the approval of an insurance claim, and is

driven by the decision-making efforts of multiple users. As such this ex-

ample affords us the opportunity to show how access control policies could

be built into the process by following the administration steps out-lined in

chapter 6. Thereafter, the effects of these steps as observed by normal and

administrative workflow users, are explained.

First, the requirements of a suitable example need to be established.

8.1 Requirements of a Suitable Example

In order to show the access control decisions described in chapter 3, an ade-

quate example with the following features was needed:

• The process had to represent an administrative workflow, that included

many user-executed decision steps in order to complete. Preferably one

99

100 CHAPTER 8. INSURANCE CLAIM EXAMPLE

or more of these steps would amount to some approval activity. Parallel

execution paths would also be preferable to show order of events.

• The process had to have two or more participating roles. Preferably

these roles had to be in a role hierarchy.

• In order to show separation of duties, there should be at least two

activities that are conflicting, and that should be performed by different

users. Also, users had to be assigned to roles in such a way, that

conflicting users existed that could possibly perform two conflicting

tasks.

• The process should not include external or distributed processes so

that all activities can be executed within a single workflow session on

the same workflow engine. Such inter-organizational workflows can of

course also be catered for, however, this would only add unnecessary

complexity.

Of the demonstration process definitions installed as part of Oracle Work-

flow, the Requisition process came closest to meeting these requirements.

However, it only involved two roles, a “requestor” and an “approver”. The

individual users who fulfill these roles during various activities in the work-

flow, is also decided by using a hard-coded management hierarchy. As such

it does not create much opportunities for violating access control, or for il-

lustrating the mechanisms with which to enforce such access control policies.

The example described next, however, does support all of the requirements

mentioned above for demonstration purposes.

8.2 The Insurance Claim example

The following sections will show the step-by-step implementation of the Co-

SAWoE model based on the handling of an insurance claim case study using

Oracle Workflow. The process definition is drawn up in Oracle Workflow

Builder, and is graphically shown in the process window, as can be seen in

figure 8.1 on page 102. For easier reference the activities are numbered from

1 to 8, in addition to their activity names. Unfortunately the viewing options

8.2. THE INSURANCE CLAIM EXAMPLE 101

M
N

O

P Q
R S

T

Claims Clerk

Claims Clerk Assessor

Claims Manager

Figure 8.1: The Insurance Claim process as shown in Oracle Workflow

Builder’s process window

102 CHAPTER 8. INSURANCE CLAIM EXAMPLE

do not show the performers of nodes and the activity names simultaneously.

For the sake of clarity the performers were thus also added to the diagram.

The arrows connecting the activities show the order of execution of the

process. When more than one arrow originates from the same activity, that

means that more than one execution path can be followed. If conditions

are attached to these paths, this represents a conditional split where only

one path is chosen based on result of the activity. If no conditions exists,

all paths are executed in parallel regardless of how the activity completed.

Such activities must merge into an “And” join activity to show that both

execution paths must be completed before continuing to the next activity.

Alternatively, “Or” join activities are used to converge conditional flows.

Icons are used to differentiate between the types of activities. Notification

nodes are represented as envelope icons. The rest of the activities, except

for the two sub-processes, in this example are function activities, with their

icons indicative of the work performed by these automated activities.

According to the diagram in figure 8.1 on the next page, once a new

claim is started, task 1 is completed by a Claims_Clerk. This task could

include filling out all the necessary claim related information and assembling

the necessary documents1. Once the claim has been prepared in task 1, a

parallel split occurs and task 6 and task 2 are triggered. Task 6 is assigned to

any user belonging to the Assessor role, who will view the claim information

and submit a assessor’s report. Task 2 is an automated decision that checks

the value of the claim which was entered in task 1, and based on that decision

performs a conditional split. If the claim value is less than 5,000 (the reference

constant for the comparison activity), the path to task 7 would be followed.

If the claim value is equal to or greater than 5,000 the path to task 3 is

followed.

For claims less than 5,000 rands in value, a Claims_Clerk only needs to

complete a customer profile which involves looking up the client’s previous

claim history and some additional information. Claims to the value of 5,000

rand or more requires some additional validation steps. Task 3 determines

which type of claim it is (household or vehicle) so that the process can be

1This information would be included using item attributes, that are typically initialized

before the process is started. We will assume that this information is left blank when the

process is started, and will only be supplied by the user performing task 1.

8.3. ADMINISTRATIVE ACCESS CONTROL IN THE EXAMPLE 103

�

�

�

�

�

(a) Completed household
insurance claim for 3500
Claim001

(b) Active vehicle insurance
claim for 15000
Claim002

}

~ �

�

�

�

�

�

� �

�

Figure 8.2: Examples of Insurance Claim process instances

continued by a senior clerk in the appropriate department. For brevity’s sake,

the activities performed by these senior clerks in each sub-process (shown as

the process activities 4 and 5) are not discussed here.

No task can be started before all its conditions are met and all prerequi-

site activities completed according to the order specified. Therefore, task 8

can only be started once the assessor report is completed (task 6), and either

the customer profile is completed (task 7) or one of the sub-processes (task

4 or 5) completed successfully. With this information, a Claims_Manager

can now decide to approve or reject the claim. Figure 8.2 shows two pos-

sible process instances, “Claim001” and “Claim002” representing claims for

household goods to the value of 3,500 and vehicle accident damage of 15,000

respectively. Claim001 is completed, whilst Claim002 is still in progress. The

numbers on the figure correspond with the numbers allocated to the activities

in figure 8.1 on the preceding page.

8.3 Building Access Control into the Insur-

ance Claim example

One of the requirements of access control, namely order of events, is already

indirectly obtained when the process diagram is drawn. Access is controlled

from a task perspective and not from a user perspective. What this means

is that the right to perform the “Approve Claim” activity is not attached to

the Claims Manager role, but instead the Claims Manager role is assigned to

the task. Therefore a Claims Manager will only receive task 8 on his worklist

104 CHAPTER 8. INSURANCE CLAIM EXAMPLE

WF_USERS

NAME

Ben

Alan

Pauline

Kenneth

Harry

Sally

Tom

Figure 8.3: Users for the Insurance Claim example

once that activity is triggered by the workflow engine. The permission “Ap-

prove Claim” does not exist, and therefore a user will never receive the task

based on his role profile alone. Such an implementation could have enabled

him to approve a claim before a customer profile has been completed. The

way the process was designed with Oracle Workflow Builder shows clear tran-

sitions between the activities and the pre-conditions that must exist before

the workflow engine can continue to the next activity.

In order to assign a role to an activity, that role must exist within the

database and must be loaded into Oracle Workflow Builder. Oracle’s Direc-

tory Service described in section 6.1 maps system users onto the WF_USERS

view to enable those users to access the workflow. Records must also be

inserted into the WF_LOCAL_ROLES and WF_LOCAL_USER_ROLES tables to as-

sign those users to workflow specific roles. For the purposes of the insurance

example the users shown in figure 8.3 were created. Figure 8.4 on the next

page shows the roles created and graphically depicts the role hierarchy that

they are arranged in. The assessor role is not included in the role hierarchy.

User assignments were made as shown in figure 8.5 on the facing page.

Performers can now be set for the activities as shown in figure 8.1 on

page 102. For each notification activity node, the node properties must be

accessed and a Constant role specified as performer (see figure 8.6). This

will ensure that only Claims Clerks (Pauline and Kenneth) receive task 1

and task 7, Assessors (Tom) task 6, and Claims Managers (Ben and Alan)

8.3. ADMINISTRATIVE ACCESS CONTROL IN THE EXAMPLE 105

WF_ ROLES

NAME

Claims Manager

Snr Clerk (vehicle)

Snr Clerk (household)

Clerk

System

Assessor

Role 1
Claims Manager

Role 2
Snr Clerk (vehicle)

Role 3
Snr Clerk (household)

Role 4
Clerk

Role 4
Clerk

Figure 8.4: Roles for the Insurance Claim example

WF_USER_ROLES

USER_NAME ROLE_NAME

Ben Claims Manager

Alan Claims Manager

Pauline Clerk

Kenneth Clerk

Harry Snr Clerk (household)

Sally Snr Clerk (vehicle)

Tom Assessor

Figure 8.5: User to Role assignment for the example

106 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Figure 8.6: Assigning a Performer Role to an activity

task 8 when the workflow process is executed. Because of the role-hierarchy,

the Claims Manager role would also be able to perform tasks assigned to

the Claims Clerk role. Therefore, Ben and Alan could potentially perform

task 1 and 7.

According to chapter 6, strict least privilege is again enforced at a task

level by including item attributes in the notification activity messages in such

a way that it will only be viewable during certain activities, and can be only

changed during others. Assuming that the item attributes Claim_Number,

Policy_Number and Claim_Value can only be updated during the first ac-

tivity (“Prepare Claim”), the item attributes will be included in the message

templates for each notification activity as shown in figure 8.7 on the facing

page. A setting of Send means that the attribute can only be viewed in

a message attached to that notification activity. A setting or Respond will

provide users the means to supply a new value for that attribute when they

receive such a message. These settings will apply to all users who receive the

message irrespective of the role they logged in with. Therefore, a Claim Man-

ager will not be able to update the Claim info during the “Approve Claim”

activity, even if he will be able to supply those attributes in the first activity

acting as a Claims Clerk.

For this example an administrator may also want to implement some sep-

8.3. ADMINISTRATIVE ACCESS CONTROL IN THE EXAMPLE 107

Figure 8.7: Attribute Type settings for messages

aration of duty constraints. Business rules might state that the same person

who prepared the claim may not be allowed to complete the Customer Profile

or approve the claim. In order to implement these business rules, the admin-

istrator must first specify these constraints in the WF_CONFLICTING_TASKS

and WF_CONFLICTING_USERS tables shown in figure 6.1 on page 88. As no

SoD administration tool is supplied by Oracle Workflow, the tables and their

records must be created outside the Builder environment. Using SQL state-

ments, conflicts between task 1 and 7 and and task 1 and 8 are inserted into

the WF_CONFLICTING_TASKS table as shown in figure 8.8. In addition, any

users who may have a vested interested in one another’s work, are specified

as conflicting. Effectively conflicting users can be seen as the same user,

and as such may not perform conflicting tasks. For the example, we will

assume that Ben and Pauline are married. After they are inserted into the

WF_CONFLICTING_USERS table it will contain the records as shown in fig-

WF_CONFLICTING_TASKS

T_ITEM_TYPE T_ACTIVITY_NAME C_ITEM_TYPE C_ACTIVITY_NAME

WFINS Prepare Claim WFINS Complete Customer Profile

WFINS Prepare Claim WFINS Approve Claim

Figure 8.8: Conflicting Tasks for the Insurance Claim example

108 CHAPTER 8. INSURANCE CLAIM EXAMPLE

WF_CONFLICTING_USERS

T_NAME C_NAME RELATIONSHIP

Pauline Ben Husband

Ben Pauline Wife

Figure 8.9: Conflicting Users for the Insurance Claim example

ure 8.9. Therefore Ben will not be able to perform any task that conflicts

with a task that Pauline already performed earlier in the process.

Next, the administrator must include a function activity to evaluate the

values in these tables, as well as the workflow history, and prune the user

list for certain activities. Typically the pruning function will be included

immediately before any notification activity that requires a response. How-

ever, this example only requires that separation of duties be enforced between

task 1 and 7 and task 1 and 8. Therefore the function activity “Filter Users”

is included only before task 7 and task 8. Figure 8.10 on the facing page

shows the process diagram after these function activity nodes are inserted

into the definition. There is no chance that task 1 will be performed before

task 7 or 8 (this is only a concern if tasks are performed in parallel), and so

the user list can remain unpruned for that task. The re-usable procedure,

described in chapter 7, to prune user lists can now be attached to the “Filter

Users” function activity.

8.4 Demonstration of the Insurance Claim Ex-

ample

In this section we step through the insurance example for completing a house-

hold claim to the value of R3,500 (the expected execution path of this pro-

cess instance is shown in figure 8.2 on page 103). We will be logging in with

all the users who belong to roles required to complete this claim example.

Screenshots of those users’ worklists at different times in the workflow will be

accompanied by screenshots of the administrator’s monitor facility to show

the execution and progression of the process instance.

The process definition, as shown in figure 8.10 on the preceding page, is

8.4. DEMONSTRATION OF THE EXAMPLE 109

M N
O

P Q R S

T

U

V

Figure 8.10: The Insurance Claim process with SoD function activities

110 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Figure 8.11: Starting a new Insurance Claim process

initiated when a user with sufficient rights launches that process via the

“Launch Processes” webpage (included on the “Workflow Homepage” as

shown in figure 5.8 on page 75), or when the LaunchProcessAPI is called

by a custom webpage or application. The new process instance, shown in

figure 8.11, was created via “Launch Processes”, and as such it allows the

administrator to specify startup values, although these item attributes are

not needed to start the process. Figure 8.12 on the next page also shows

the confirmation of the process instantiation, and the creation of the first

notification task, “Prepare Claim”, belonging to the Claims_Clerk role.

It is important to note that only one notification is created for the “Pre-

pare Claim” activity. Only once a user logs in and is authenticated, this

notification is listed in his/her worklist if he/she belongs to the specified

role. Therefore, Pauline and Kenneth, will both receive the first task in their

worklist since they belong to the Claims_Clerk role. Ben, Alan, Harry and

Sally will also receive this notification because of their roles which are above

the required role in the role hierarchy (see figure 8.4 on page 105). Figure 8.13

shows Pauline’s worklist after task 1 has been created. At this stage in the

workflow, everyone’s worklist, except for Tom’s, will look similar to the one

shown for Pauline.

8.4. DEMONSTRATION OF THE EXAMPLE 111

Figure 8.12: Monitoring the status of the Claim via the “Activities List”

webpage

Figure 8.13: The “Prepare Claim” notification appears on Pauline’s worklist

112 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Figure 8.14: Pauline prepares a new claim by supplying values for the item

attributes presented by the notification message

We will assume that Pauline, now decides to act on this notification,

thereby claiming it and disallowing any of the other users who received this

notification from responding to it. Pauline will be able to supply values for all

the item attributes which were specified as type Respond. These attributes

are included in the bottom frame of figure 8.14.

This figure also shows a “Reassign” button. This button would allow

Pauline to assign the current task to any user in the database using her own

discretion. This option could be removed by simply including the special

Hide_Reassign message attribute in all message templates.

Once she has pressed the “Submit” button the workflow engine will verify

the information she supplied and will update the WF_ITEM_ACTIVITY_STATUSES

and WF_NOTIFICATIONS history tables to indicate that the activity is now

closed. This will remove the “Prepare Claim” notification from her work-

list as well as the other users who received this task (see the next workflist

iteration in figure 8.20 on page 118).

Since the Claim_Value of R3,500 that Pauline supplied was less than

R5000, the workflow engine will create the “Complete Assessor Report”

(task 6) and the “Complete Customer Profile” (task 7) notifications next.

The worklists of Pauline (a claims clerk), Kenneth (another claims clerk),

8.4. DEMONSTRATION OF THE EXAMPLE 113

Ben (a claims manager and Pauline’s husband), Alan (another claims man-

ager), and Tom (an assessor), shown in figure 8.15 on the facing page, clearly

illustrates that the two notifications is not present in all the worklists. We

can assume that the senior clerks, Harry and Sally would have received no-

tifications based on the role-hierarchy also. However, since they will not be

involved further in this process instance, their worklists are of no interest

here.

Task 7 is only in Tom’s worklist since he is the only user belonging to the

Assessor role, and this role is also not part of the role hierarchy. Kenneth,

a claims clerk, as well as Alan, a manager, receives the “Complete Customer

Profile” notification. However, Pauline and Ben, who both belong to roles

which should have provided them with task 7, have no such notification in

their worklists. The process diagram shown in figure 8.16 reveals the reason

for this.

Before task 7 could be created, the “Filter Users” function (task 9) was

executed to evaluate the potential users and eliminate those users whose

involvement in the following task would have constituted a separation of

duty conflict. Figure 8.17 on the facing page graphically illustrates how the

function used the Conflicting Tasks and -Users tables to remove Pauline,

based on the fact that she performed conflicting task 1, as well as Ben, since

he is her husband, and conflicting users are seen as the same user for the

conflicting tasks.

Figure 8.16, shows a new ad-hoc role called wfins05-1739-CLAIMS_CLERK

which is specifically created to associate valid users with the task. This

temporary role only presents the “Complete Customer Profile” task to users

who have not participated in conflicting tasks (or are related to someone

who has) for the activity identified by “1739” during the process instance

“wfins05”.

Figure 8.18, and figure 8.19, shows how certain of the item attributes,

such as Claim_Number, Policy_Number and Claim_Value can only be viewed

in the message body, while allowing the assessor and clerk to submit their

reports for task 6 and 7.

Once both Tom and Kenneth, have completed tasks 6 and 7 respec-

tively, the workflow engine can continue from the “And” join. Figure 8.16 on

page 114 shows that another pruning function (task 10) was involved before

114 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Pauline

Kenneth

Ben

Alan

Tom

Figure 8.15: The worklists of Pauline, Kenneth, Ben, Alan and Tom after

Task 1 has been completed

8.5. CONCLUSION 115

Figure 8.16: The process diagram in the web monitor shows the execution of

“Filter Users” before the “Complete Customer Profile” task

the “Approve Claim” (task 8) notification was delivered to wfins05-1735-CLAIMS_MANAGER,

the ad-hoc role created for that task. Alan is the only user who receives this

notification, since only Claim_Managers may perform this task, and the other

claim manager, Ben, would again be excluded based on the fact that his wife

performed a conflicting task (“Prepare Claim”) for task 8. Figure 8.20 on the

next page therefore shows the “Approve Claim” in Alan’s worklist but not

in Kenneth and Paulines’s (since they do not belong to the Claims Manager

role) or Ben’s (who was excluded based on SoD conflicts).

Figure 8.21 on page 119 is an activity list that summarizes the execution

steps demonstrated in this example.

8.5 Conclusion

This chapter showed that a practical example could indeed be used to imple-

ment the steps and functions proposed in the previous two chapters through

an exploratory prototype. First, the requirements of a suitable example for

illustration purposes was discussed. This lead to the selection of an insurance

116 CHAPTER 8. INSURANCE CLAIM EXAMPLE

7DVN����3UHSDUH

&ODLP

3DXOLQH

7DVN����&RPSDUH

&ODLPV�9DOXH

7DVN����&RPSOHWH

&XVWRPHU�3URILOH

&ODLPV�&OHUN

6\VWHP

$ODQ

.HQQHWK

3DXOLQH

%HQ

+DUU\�6DOO\

&ODLPV�&OHUN�5ROH

&ODLPV�&OHUN

&RQIOLFWLQJ

7DVNV

7� 7�

7� 7�

&RQIOLFWLQJ

8VHUV

%HQ 3DXOLQH

3DXOLQH %HQ

9DOXH�������

2WKHU�YDOLGDWLRQ

WDVNV

9DOXH�! �����

Figure 8.17: A graphical illustration of how the “Filter Users” function

prunes the user list before Task 7

Figure 8.18: Tom prepares his assessor’s report in task 6

8.5. CONCLUSION 117

Figure 8.19: Kenneth prepares a customer profile before submitting it for

task 7

claim process as our chosen example.

The administration steps were completed mostly in Oracle Workflow

Builder. The first step was to create the basic process model for the insurance

example (see figure 8.1). This included assigning users to certain notifica-

tion tasks so that the workflow engine could maintain order of events. These

users first needed to be created in Oracle’s Directory Service and mapped to

the relevant workflow views. Secondly, we showed how the inclusion and use

of item attributes in message templates could be used to enforce strict least

privilege. Thirdly, to implement the separation of duty constraints for this

example, additional tables needed to be created and populated. The process

diagram then needed to be modified to include additional functions which

executed the code behind the re-usable “FilterUsers” procedure (shown in

Appendix A).

Once a satisfactory process definition existed, the process was instanti-

ated and executed through the web interface supplied with Oracle Workflow.

Screenshots of the users’ worklists, generated dynamically upon user authen-

tication, as well as administrative views of the process execution at various

stages, were used to explain the run-time enforcement aspects described in

chapter 7.

In the following chapter, we will conclude the dissertation by analyzing

the problem and the solution that was affected.

118 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Alan

Ben

Kenneth

Pauline

Figure 8.20: The worklists of Alan, Ben, Kenneth and Pauline after task 6

and 7 have been completed.

8.5. CONCLUSION 119

Status Who Parent
Activity

Activity Started* Duration Result

 Complete
Workflow Engine

Claim
Process

07-JAN-
2005
13:31:22

48
Minutes
13
Seconds

 Complete
Workflow Engine

Claim
Process

Start
07-JAN-
2005
13:31:22

0 Seconds

 Complete
Claims_Clerk

Claim
Process

Prepare
Claim

07-JAN-
2005
13:31:22

6 Minutes
29
Seconds

 Complete
Workflow Engine

Claim
Process

Compare
Number

07-JAN-
2005
13:37:51

0 Seconds
Less
Than

 Complete
Workflow Engine

Claim
Process

Filter
Users

07-JAN-
2005
13:37:51

17
Minutes
38
Seconds

Force

 Complete
Assessor

Claim
Process

Complete
Assessor
Report

07-JAN-
2005
13:37:51

33
Minutes 7
Seconds

 Complete
Workflow Engine

Claim
Process

Filter
Users

07-JAN-
2005
13:55:29

0 Seconds Yes

 Complete

wfins05-1739-
CLAIMS_CLERK

Claim
Process

Complete
Customer
Profile

07-JAN-
2005
13:55:29

12
Minutes
38
Seconds

 Complete
Workflow Engine

Claim
Process

Or
07-JAN-
2005
14:08:07

0 Seconds

 Complete
Workflow Engine

Claim
Process

And
07-JAN-
2005
14:10:58

0 Seconds

 Complete
Workflow Engine

Claim
Process

Filter
Users

07-JAN-
2005
14:10:58

0 Seconds Yes

 Complete

wfins05-1735-
CLAIMS_MANAGER

Claim
Process

Approve
Claim

07-JAN-
2005
14:10:58

8 Minutes
37
Seconds

Approve

 Complete
Workflow Engine

Claim
Process

End
07-JAN-
2005
14:19:35

0 Seconds

Figure 8.21: A summary of the activities that were completed in this example.

120 CHAPTER 8. INSURANCE CLAIM EXAMPLE

Chapter 9

Conclusion

This dissertation presented a series of steps to implement the CoSAWoE

model in a commercial workflow product. These steps evolved out of the dis-

cussion of the model and an extensive investigation into the features provided

with our chosen workflow product, namely Oracle Workflow. A prototype

further attempted to showcase how these steps can be followed to map the

model components to a practical example developed with Oracle Workflow.

This dissertation was based on the premise that workflow has become

a key enabling factor for conducting e-business. Information is seen by e-

businesses as an asset that requires protection from threats coming from

outside as well as inside the organization. This realization prompted in-

vestigation into the access control service, and the requirements of such as

service when part of a workflow system. The investigation revealed that al-

though several access control models have been developed, implementation

of these models in commercial workflow products have been haphazard and

unregulated. These realizations motivated the researcher to determine the

extent to which a particular model could be implemented successfully within

a commercial workflow product.

This chapter will summarize the lessons learnt throughout the disserta-

tion in the effort to integrate aspects of the CoSAWoE model with Oracle

Workflow’s existing functionality. Thereafter, future research will be pro-

posed.

First, a re-cap of the research questions posed as part of the problem

statement is given with a discussion of how each one was addressed.

121

122 CHAPTER 9. CONCLUSION

9.1 Revisiting the Problem Statement

This dissertation was concerned with implementing a access control model

within a commercial workflow environment. A decision was made to im-

plement a comprehensive access control model for workflows already in exis-

tence, namely CoSAWoE. This model was assumed to be effective in securing

the workflow tasks and data from a logical perspective. Therefore the ques-

tion was not so much “what” needed to be done, as much as “can” it be

done. It was also decided that a particular workflow product, Oracle Work-

flow, would be used to implement the model. This also raised the question of

“how efficiently” the chosen product could be used to implement the model.

This dissertation attempted to answer the research questions in the fol-

lowing way.

What are the functional requirements of an access con-

trol service for workflow systems?

The first question sought to discover what the functional objectives were that

had to be met by the implementation effort. As such the basic functions of

a typical workflow system were first discussed in chapter 2. This chapter

served as reference for the discussions that followed about the access control

requirements in a workflow.

Workflow systems are used firstly to define the process definition of which

tasks form the basic building blocks. Task definitions represent, therefore, a

unit of work with specific access control requirements as to who can access

that task and what information they may and may not view or alter within

that task. Workflow systems enact the process definitions by creating and

managing task instances for each occurrence of the corresponding business

process.

An access control service need to be aware of the context in which a

task instance is triggered and presented to users. This idea of the access

control service being “context-sensitive” presented three functional require-

ments that needed to be enforced by the CoSAWoE model: order of events,

strict least privilege and separation of duties. This was extensively discussed

in section 3.3 on page 34.

9.1. REVISITING THE PROBLEM STATEMENT 123

Which aspects of the access control model is agnostic

to the product?

Chapter 4 discussed the CoSAWoE model components. This chapter identi-

fied those components which presented no particular implementation concern

for commercial workflow products. Two components, namely object design

and role engineering, suggested methodologies for how roles could be con-

structed that would hold sufficiently few permissions as to be associated

with a particular task. As pointed out, the construction of roles are not

provided as part of the workflow functionality of commercial systems. Often

the roles adopted by the workflow are maintained as part of the ERP system

within which the workflow product is embedded. It was assumed that ad-

ministrators would be able to follow these methodologies outside the scope of

the workflow system if needed. As such it did not affect the implementation

effort one way or the other, and is considered agnostic to the commercial

product.

Which aspects of the model can be implemented di-

rectly and which will require customization of the prod-

uct in order to achieve similar results?

Chapter 4 also discussed two components in detail which were considered fun-

damental to achieving access control requirements within commercial prod-

ucts, namely SoD administration and worklist generation. Separation of duty

administration featured strongly in chapter 6, “CoSAWoE: Administration

in Oracle Workflow”. For this component the model suggested the specifi-

cation of constraints according to the “Conflicting entities” Administration

Paradigm. This required that additional conflict tables had be created and

populated outside the process definition tool of the product. As pointed

out in chapter 6 the static separation of duty policies could be enforced at

administration/design-time through the use of database triggers. However,

the implementation would also require the dynamic separation of duty ap-

proach which only checks the conflicts during run-time when the workflow

is actually executed. This approach affected the generation of worklists as

described in chapter 7.

124 CHAPTER 9. CONCLUSION

The worklist generation functionality described by the model was largely

supported with the chosen workflow product, except for the evaluation of

separation of duty policies. Considering the lack of a central access con-

trol service, a procedure needed to be explicitly invoked with an additional

function task before each sensitive task. A re-usable procedure was coded

that would generate an approved user list after pruning functions have been

applied to enforce separation of duty policies. This procedure’s hook into

the workflow is provided by the administrator who includes the additional

function as part of the process model wherever he/she feels it is necessary.

Session control is indirectly achieved as part of the worklist functionality,

since it acts as the primary interface between the user and the workflow.

In the case of Oracle Workflow, session control was attained without any

additional coding. The workflow engine, acting as proxy, controls access to

the task and task data in the workflow tables. Tasks requiring separation of

duty is based on temporary roles created by the pruning function described

earlier. However, once the sensitive task is reassigned to the temporary role,

the user session needed to access that task is controlled as for any other task.

Which aspects are not implementable for the chosen

workflow product?

There were no components of the CoSAWoE model which could not be imple-

mented in one form or another. Only one of the conflicting entities suggested

by CoAP, namely conflicting roles, could not be specified as part of separation

of duty administration. The identification and authentication service offered

by Oracle Workflow, does not require a user to log in with a particular role.

As such this information is also not part of the history tables which provide

information about user involvement in a particular process instance. Since

the role a user played while performing a particular task instance cannot

be identified, specifying conflicts between roles that cannot be evaluated is

pointless. Also, dynamically conflicting roles only aims to prevent the same

user from performing two conflicting tasks based on his/her role activation.

This is already catered for when specifying conflicting tasks (which bars the

same user from performing those task regardless of the roles involved). There-

fore the conflicts specified in the two conflict tables, for conflicting tasks and

9.2. IMPLEMENTATION ISSUES AND LESSONS LEARNT 125

conflicting users, are considered adequate for enforcing separation of duties.

The following section discusses the “how” of the implementation effort of

the CoSAWoE model within Oracle Workflow.

9.2 Implementation Issues and Lessons Learnt

As stated in chapter 4, section 4.2.3, the components that has the most

impact when implementing the model in a commercial product, are the “SoD

Administration” and “worklist generation” components. The components, in

turn, affected the process definition and the worklist functionality supplied

with the workflow product. The following list summarizes the lessons learnt

by exploring these two components in an Oracle Workflow environment:

• Although a dynamic separation of duties policy was adopted, SSoD

as well as DSoD required the specification of conflicting entity infor-

mation as a series of tuples in purposefully created database tables.

For the “Conflicting Tasks” table, the Item_type was included with

the task names to identify the process involved. However, it does not

mean conflicts could be evaluated between tasks belonging to different

process instances. The “Conflicting Users” table also included a rela-

tionship field for error messaging purposes, although no attempt was

made to incorporate this information anywhere in the Insurance Claim

prototype.

• Also, no attempt was made to enforce Static Separation of duties in

the prototype through the suggested method of using triggers. The

reasoning behind this was that a similar prototype implementation was

already achieved in the SoDA system, and as such no additional value

would be added.

• Dynamic separation of duties required the specification of an additional

function activity in the process model. This was necessitated by the

fact that no central access control model was available to implement

the necessary separation of duty functionality. Instead, a re-useable

procedure was developed that could be used by all of these function

activities, before any notification activity. One limitation, however,

was that it could not filter out groups of users based on role activation.

126 CHAPTER 9. CONCLUSION

• The development of the re-usable function depended greatly on the

understanding of how process instance data is created and where it

is stored in the workflow history tables. This information allowed us

to retrieve the users who responded to notifications of tasks on which

conflicting entities were specified.

• Worklist generation as far as the achievement of session control was

also discussed. No additional coding was required although the use of

a temporary role was argued to represent the intended workflow session

functionality suggested by the model.

9.3 Future Research

During the course of this research XML documents were investigated as the

means by which information can be exchanged and propagated by the work-

flow. The structure and semantic meaning that this markup language lends

to the data it describes, gives it the potential to achieve access control at

a much finer level of granularity. Message content could also be generated

dynamically based on the workflow context, rather than pre-defined and lim-

ited message templates, as used by Oracle Workflow. Object design and

strict least privilege could therefore also be affected in a more formalized

way than can be achieved by the implementation guidelines we suggested.

Oracle Workflow does allow for the creation of HTML documents based on

the XML data supplied through a PL/SQL document. This requires the use

of a stylesheet that is based on the object’s (XML document’s) permission

profile for a specific task in the workflow.

Firstly, therefore, further investigation into the use of XML documents in

Oracle Workflow is recommended. Oracle does provide some functionality to

evaluate XML tag data received from external systems and business events.

The proposed research would, however, aim to provide XML documents as

flexible alternatives to the use of item attributes to store and propagate

information through the workflow.

Secondly, the dynamic creation of stylesheets based on stored permission

profiles for the tasks is suggested as a research topic. These stylesheets could

be used to prune the information available XML documents based on the

9.4. FINAL WORD 127

context of the current task and the user’s involvement in previous task in the

workflow.

9.4 Final Word

In conclusion, this dissertation developed a method for implementing the

CoSAWoE model in a commercial product, such as Oracle Workflow. These

steps are aimed at administrators who would like to evaluate access control

policies in a consistent manner. To this effect, a re-usable procedure was also

developed to prune user lists according to SoD policies for sensitive tasks.

The lack of a central access control model necessitated, however, that extra

function activities be included in the process model so that this functionality

could be executed before users were allowed access to those sensitive tasks.

Nevertheless, the author believes that the implementation effort was a suc-

cessful one in that it achieved the required functionality of context-sensitive

access control. However, there is room still for the improvement of this par-

ticular product as far as the efficiency with which the said functionality could

be achieved. Therefore, the author hopes that this study will contribute to

the eventual integration of a standard access control service as a fundamental

component in most workflow products.

For those readers interested in pursuing this area of discourse, the author

offers the following warning by Jonathan Swift:

“Blot out, correct, insert, refine ...

Be mindful, when invention fails,

To scratch your head, and bite your nails.”

128 CHAPTER 9. CONCLUSION

Appendix A

The WFSOD PL/SQL Package

A.1 FilterUsers Procedure

1 PROCEDURE FilterUsers (itemtype in varchar2,

2 itemkey in varchar2,

3 actid in number,

4 funcmode in varchar2,

5 resultout out varchar2)

6 is

7

8 --local variables

9

10 l_next_actid number;

11 l_next_actname varchar2(30);

12 l_next_performer varchar(30);

13 v_user_name wf_user_roles.user_name%TYPE;

14 v_temp_role wf_local_roles%ROWTYPE;

15

16 --l_valid_users is a long string deliminated by commas of valid usernames

17 --used as a parameter for the CreateAdHocRole API

18

19 l_valid_users varchar2(100);

20

21 Cursor c_valid_users IS

22

23 --Find all users who are supposed to perform the NEXT task

24

25 Select user_name

26 From wf_user_roles

27 Where role_name = l_next_performer

28

29 --and subtract

30

31 Minus

32

33 --all the users who responded to conflicting tasks specified for the NEXT task

34

35 Select distinct responder

36 From wf_conflicting_tasks ct, wf_notifications n,

37 WF_ITEM_ACTIVITY_STATUSES st, wf_process_activities pa

129

130 APPENDIX A. THE WFSOD PL/SQL PACKAGE

38 Where n.notification_id = st.notification_id

39 and item_key = itemkey

40 And st.process_activity = pa.instance_id

41 and pa.activity_name = ct.c_activity_name

42 and t_activity_name = l_next_actname

43 and t_item_type = itemtype

44

45 --as well as all process_owners if "START" was specified as a conflicting task

46 Minus

47 Select distinct owner_role

48 From wf_items i, wf_conflicting_tasks ct

49 where item_key = itemkey

50 and ct.c_activity_name = ’START’

51 and t_activity_name = l_next_actname

52 and t_item_type = itemtype

53

54 --as well as all users who are related in some way to one of the responders

55 --to conflicting tasks

56 Minus

57 Select distinct cu.c_name

58 From wf_conflicting_tasks ct, wf_notifications n,

59 WF_ITEM_ACTIVITY_STATUSES st, wf_process_activities pa, wf_conflicting_users cu

60 Where n.responder = cu.t_name

61 and n.notification_id = st.notification_id

62 and item_key = itemkey

63 and st.process_activity = pa.instance_id

64 and pa.activity_name = ct.c_activity_name

65 and t_activity_name = l_next_actname

66 and t_item_type = itemtype;

67

68 begin

69

70 if (funcmode = ’RUN’) then

71

72 --retrieve the actid, name and performer of the next actitivy

73 --using the WF_ACTIVITY_TRANSITIONS table

74

75 Select TO_PROCESS_ACTIVITY, ACTIVITY_NAME, PERFORM_ROLE

76 into l_next_actid, l_next_actname, l_next_performer

77 from WF_ACTIVITY_TRANSITIONS wft, wf_process_activities pa

78 where FROM_PROCESS_ACTIVITY = actid

79 and result_code = ’Y’

80 and pa.instance_id = to_process_activity;

81

82 --test if cursor does contain at least one valid user

83

84 open c_valid_users;

85 Fetch c_valid_users into v_user_name;

86

87 if c_valid_users%NOTFOUND then

88 resultout:=’COMPLETE:N’;

89 Else

90

91 --copy values from role on which temp role will be based

92

93 Select * into v_temp_role

94 from wf_roles

95 where name = l_next_performer;

A.1. FILTERUSERS PROCEDURE 131

96

97 --change the name and make it unique by including the itemkey

98 --next activity name and next performer role

99

100 v_temp_role.name:=itemkey||’-’||l_next_actid||’-’||l_next_performer;

101

102 --iterate through the cursor and build string with usernames to assign to the temp role

103

104 loop

105 l_valid_users:=l_valid_users||v_user_name||’,’;

106 Fetch c_valid_users into v_user_name;

107 Exit when c_valid_users%NOTFOUND;

108 end loop;

109 close c_valid_users;

110 l_valid_users:=substr(l_valid_users,1,length(l_valid_users)-1);

111

112 -- execute API to create the temporary role in a local table

113 -- with users attached as per the cursor;

114

115 WF_DIRECTORY.CreateAdHocRole(v_temp_role.name,v_temp_role.name,

116 v_temp_role.language,

117 v_temp_role.territory,

118 v_temp_role.description,

119 ’QUERY’,

120 l_valid_users,

121 v_temp_role.email_address,

122 v_temp_role.fax,

123 v_temp_role.status,SYSDATE);

124

125 --reassign the activity to the temporary role

126

127 wf_engine.AssignActivity(itemtype => itemtype,

128 itemkey => itemkey,

129 activity => l_next_actname,

130 performer => v_temp_role.name);

131 resultout := ’COMPLETE:Y’;

132 end if;

133 return;

134 end if;

135 if (funcmode = ’CANCEL’) then

136

137 --<your CANCEL executable statements>

138 resultout := ’COMPLETE’;

139 return;

140 end if;

141 if (funcmode = ’RESPOND’) then

142 --<your RESPOND executable statements>

143 resultout := ’COMPLETE’;

144 return;

145 end if;

146 if (funcmode = ’FORWARD’) then

147 --<your FORWARD executable statements>

148 resultout := ’COMPLETE’;

149 return;

150 end if;

151 if (funcmode = ’TRANSFER’) then

152 --<your TRANSFER executable statements>

153 resultout := ’COMPLETE’;

132 APPENDIX A. THE WFSOD PL/SQL PACKAGE

154 return;

155 end if;

156 if (funcmode = ’TIMEOUT’) then

157 --<your TIMEOUT executable statements>

158 --if (<condition_ok_to_proceed>) then

159 -- resultout := ?COMPLETE?;

160 --else

161 resultout := wf_engine.eng_timedout;

162 --end if;

163 return;

164 end if;

165 exception

166 when others then

167 WF_CORE.CONTEXT (’WFSOD’, ’FilterUsers’, itemtype,

168 itemkey, to_char(actid), funcmode);

169 raise;

170 end FilterUsers;

171

A.2 DeleteAdhocRole Procedure

1 PROCEDURE DeleteAdhocRole (itemtype in varchar2,

2 itemkey in varchar2,

3 actid in number,

4 funcmode in varchar2,

5 resultout out varchar2)

6 is

7 l_adhoc_role varchar2(30);

8 l_itemkeyname varchar2(30);

9 Begin

10

11 if (funcmode = ’RUN’) then

12 --<your RUN executable statements>

13 resultout := resultout;

14 return;

15 end if;

16 if (funcmode = ’CANCEL’) then

17 --<your CANCEL executable statements>

18 resultout := ’COMPLETE’;

19 return;

20 end if; if (funcmode = ’RESPOND’) then

21

22 --find the adhoc role name which was crated by FilterUsers procedure

23 SELECT ASSIGNED_USER

24 INTO l_adhoc_role

25 FROM WF_ITEM_ACTIVITY_STATUSES

26 WHERE item_key = itemkey

27 AND process_activity = actid;

28

29 l_itemkeyname := itemkey||’%’;

30

31 --delete the user-role associations

32 Delete from wf_local_user_roles

33 where role_name = l_adhoc_role

34 and role_name like l_itemkeyname;

35

A.2. DELETEADHOCROLE PROCEDURE 133

36 --delete the adhoc role

37 Delete from wf_local_roles

38 where name = l_adhoc_role

39 and name like l_itemkeyname;

40

41 resultout := resultout;

42 return;

43 end if;

44 if (funcmode = ’FORWARD’) then

45 --<your FORWARD executable statements>

46 resultout := ’COMPLETE’;

47 return;

48 end if;

49 if (funcmode = ’TRANSFER’) then

50 --<your TRANSFER executable statements>

51 resultout := ’COMPLETE’;

52 return;

53 end if;

54 if (funcmode = ’TIMEOUT’) then

55 --<your TIMEOUT executable statements>

56 --if (<condition_ok_to_proceed>) then

57 -- resultout := ?COMPLETE?;

58 --else

59 resultout := wf_engine.eng_timedout;

60 return;

61 end if; exception

62 when others then

63 WF_CORE.CONTEXT (’WFSOD’, ’DeleteAdhocRole’, itemtype,

64 itemkey, to_char(actid), funcmode);

65 raise;

66 end DeleteAdhocRole;

134 APPENDIX A. THE WFSOD PL/SQL PACKAGE

Appendix B

Accompanying Material

The following additional material is supplied on a CD attached to the back

cover of this dissertation.

First, the author has produced an academic paper based on the research

undertaken by this dissertation. This paper is available in PDF format on

the accompanying CD and is entitled: “Patterns for Dynamic Separation of

Duties in Oracle Workflow”

Second, the electronic source to the Insurance Claim workflow example

is included on the CD. It is accompanied by a text file with full instructions

for setting up the Oracle Workflow client. Certain scripts will also need to

be executed to create the necessary users and roles for this example. These

scripts are included on the CD under the “Prototype/Scripts” folder, and

instructions for running them are included in the text file.

135

136 APPENDIX B. ACCOMPANYING MATERIAL

References

Ahn, G.-J., & Sandhu, R. (1999, 28–29 Oct). The RSL99 language for Role-

based Separation of Duty Constraints. In Proceedings of the 4th ACM

Workshop on Role-based Access Control (pp. 43–54).

Ahn, G.-J., Sandhu, R., Kang, M., & Park, J. (2000, 26–28 Jul). Injecting

RBAC to Secure a Web-based Workflow System. In Proceedings of

the 5th ACM workshop on Role-based Access Control. New York, NY:

ACM Press.

Amoroso, D. (1998, Jan). Developing a model to understand reengineering

project success. In Proceedings of the thirty-first Hawaii international

conference on system sciences: Volume 6 (pp. 500–509).

Ash, C. G., & Burn, J. M. (2003). Assessing the benefits from e-business

transformation through effective enterprise management. Eur. J. Inf.

Syst., 12 (4), 297–308.

Atluri, V., & Huang, W.-K. (1996, Sep). An Authorization Model for Work-

flows. In Proceedings of the 5th European Symposium on Research in

Computer Security (pp. 44–64). Springer-Verlag.

Bae, H., & Kim, Y. (2002). A document-process association model for

workflow management. Computers in Industry, 47, 139–154.

Baldock, P., & Seiden, R. (2000). R11i/2.5 Oracle Workflow – Student

Guide. Redwood Shores, CA, USA: Oracle Corporation.

Bertino, E., Ferrari, E., & Atluri, V. (1999, Feb). Specification and Enforce-

ment of Authorization Constraints in Workflow Management Systems.

ACM Transactions on Information and System Security, 2 (1), 65–104.

Bonifati, A., Casati, F., Dayal, U., & Shan, M.-C. (2001, 11–14th Septem-

ber). Warehousing Workflow Data: Challenges and Opportunities. In

P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao,

& R. T. Snodgrass (Eds.), Proceedings of the Twenty-seventh Interna-

137

138 References

tional Conference on Very Large Databases (pp. 649–652). Los Altos,

CA 94022, USA: Morgan Kaufmann Publishers.

Botha, R. A. (2001). CoSAWoE – A Model for Context-sensitive Access

Control in Workflow Environments. Unpublished doctoral dissertation,

Rand Afrikaans University.

Botha, R. A., & Eloff, J. H. P. (2001a). Separation of Duties for Access Con-

trol Enforcement in Workflow Environments. IBM Systems Journal,

40 (3), 666–682.

Botha, R. A., & Eloff, J. H. P. (2001b). A Framework for Access Control in

Workflow Systems. Information Management and Computer Security,

9 (3), 126–133.

Botha, R. A., & Eloff, J. H. P. (2002, June). An Access Control Architec-

ture for XML documents in Workflow Environments. South African

Computer Journal, 28, 3–10.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., & Manolescu, I. (2002).

Specification and Design of Workflow-driven hypertexts. Journal of

Web Engineering, 1 (1), 1–21.

Caldow, J. (1999). The Quest for Electronic Government: A Defining Vision.

http://www.ieg.ibm.com/egovvison.pdf.

Chang, S., & Jaeckel, C. (2002). Oracle Workflow Guide (Vol. 1; Tech. Rep.

No. Release 2.6.2). Redwood Shores, CA, USA: Oracle Corporation.

Cholewka, D. G., Botha, R. A., & Eloff, J. H. P. (2000, 22–24 Aug). A

Context-sensitive Access Control Model and Prototype Implementa-

tion. In S. Qing & J. H. P. Eloff (Eds.), Information Security for Global

Information Infrastructures: IFIP TC 11 Sixteenth Annual Working

Conference on Information Security (pp. 341–350). Beijing, China:

Kluwer Academic Publishers.

Duchessi, P., & Chengalur-Smith, I. (1998, May). Client/Server Benefits,

Problems, Best Practices. Communication of the ACM, 41 (5), 87–94.

Ferraiolo, D. F., Barkley, J. F., & Kuhn, D. R. (1999, Feb.). A Role-

based Access Control Model and Reference Implementation within a

Corporate Intranet. ACM Transaction on Information and System

Security, 2 (1), 34–64.

Gottschalk, K., Graham, S., Kreger, H., & J.Snell. (2002). Introduction to

Web services architecture. IBM Sytems Journal, 41 (2), 170–177.

References 139

Gudes, E., van de Riet, R., Burg, J., & Olivier, M. S. (1997, October).

Alter-egos and roles supporting workflow security in cyberspace. In

Proceedings of the IFIP WG 11.3 workshop on Database Security. Lake

Taho, USA.

Hayes, J. G., Peyrovian, E., Sarin, S., Schmidt, M.-T., Swenson, K. D., &

Weber, R. (2000, May). Workflow Interoperability Standards for the

Internet. Internet Computing, 37–45.

Hollingsworth, D. (1995, Jan). The Workflow Reference Model (Tech. Rep.

No. TC-00-1003). www.wfmc.org: Workflow Management Coalition.

IBM. (2000). e-Business Process Automation. United Kingdom: IBM.

ISO 7498-2: Information Processing Systems — Open System Interconnec-

tion — Basic Reference Model – Part 2: Security Architecture. (1989).

Kang, M., Park, J., & Froscher, J. (2001, May, 3 - 4). Access Control

Mechanisms for Inter-organizational Workflow. In Proceedings of sixth

ACM symposium on access control models and technologies (SACMAT

2001) (pp. 66–74). Chantilly, VA USA.

Kim, Y., Kang, S., Kim, D., Bae, J., & Ju, K. (2000, May). WW–Flow:

Web-based workflow management with run-time encapsulation. IEEE

Internet Computing, 4 (3), 55–64.

Lamson, B. (1971). Protection. In Proceedings of the 5th princeton sympo-

sium on information science and systems (pp. 437–443). (Reprinted

in ACM Operating System Review 8(1):18–24, 1974)

Leyman, F., & Roller, D. (2000). Production workflow: Concepts and tech-

niques. Upper Saddle River, New Jersey, USA: Prentice–Hall.

Lu, J., & Chen, L. (2002). An architecture for building user-driven web tasks

via web services. In Ec-web ’02: Proceedings of the third international

conference on e-commerce and web technologies (pp. 77–86). Springer-

Verlag.

Manolescu, D. A. (2001, June 15). An extensible workflow architecture with

objects and patterns.

Moore, C. (2000, April). Workflow Goes Mainstream. www.gigaweb.com:

Giga Information Group.

Nanda, M. G., Chandra, S., & Sarkar, V. (2004). Decentralizing Execution

of Composite Web services. In Proceedings of OOPSLA’04, Oct. 24-28,

2004, Vancouver, British Columbia, Canada (pp. 170–187). Vancouver,

140 References

British Columbia, Canada: ACM.

Nyanchama, M., & Osborn, S. (1999, Feb.). The role-graph model and

conflict of interest. ACM Transactions on Information and System

Security, 2 (1), 3–33.

Oracle Technology Network. (2004, November). Oracle workflow: Feature

overview. www.oracle.com/technology/products/ias/workflow/

release262/workflow fov.html.

Perelson, S., Botha, R. A., & Eloff, J. H. P. (2001). Separation of duty

administration. South African Computer Journal, 2001 (28), 66–69.

Sheth, A. P., van der Aalst, W., & Arpinar, I. B. (1999, Jul). Processes

driving the networked economy. IEEE Concurrency, 7 (3), 18–31.

Siemens Nixdorf Informationssysteme. (1998, July). Workflow Management

Facility (Tech. Rep.). http://citeseer.ist.psu.edu/356772.html:

Siemens Nixdorf Informationssysteme.

Simon, R., & Zurko, M. (1997, June). Separation of duty in role-based

environments. In 10th IEEE computer security foundations workshop

(CSFW ’97) (pp. 183–194). Washington - Brussels - Tokyo: IEEE.

Sprague, R. H. (1995). Electronic document management: Challenges and

opportunities for information systems managers. MIS Quaterly, 19 (1),

29–49.

Stallings, W. (1995). Network and Internetwork Security Principles and

Practice. Prentice Hall.

Swenson, K. (1998, Aug). Simple Worflow Access Protocol SWAP (Tech.

Rep.). http://www.ics.uci.edu/ ietfswap: Workflow Mangement Coali-

tion.

Teng, J. T., Jeong, S. R., & Grover, V. (1998, Jun). Profiling successful

reengineering projects. Communications of the ACM, 41 (6), 96–102.

Valia, R., & Al-Salqan, Y. Y. (1997). Secure workflow environment. In

Wetice (pp. 269–276).

van der Aalst, W. M. P. (1999, December). Process-Oriented Architectures

for Electronic Commerce and Interorganizational Workflow. Informa-

tion Systems, 24 (8), 639–671.

van der Aalst, W. M. P., & Kumar, A. (2003). XML-based Schema Defini-

tion for Support of Interorganizational Workflow. Info. Sys. Research,

14 (1), 23–46.

References 141

von Solms, R. (1999). Information security management: why standards are

important. Information Management & Computer Security, 07, 50-58.

Wei-Kuang Huang and Vijay Atluri. (1999, October). Secureflow: A se-

cure web-enabled workflow management system. In V. Atluri (Ed.),

Proceedings of the 4th ACM workshop on role-based access control (pp.

83–94). Fairfax, VA, USA.

Workflow Management Coalition. (1996, Jun). Terminology and glossary

(Tech. Rep. No. WFMC-TC1011 Issue 2.0). www.wfmc.org: WorkFlow

Management Coalition.

Workflow Management Coalition. (1998a). Workflow security consider-

ations – white paper (Tech. Rep. No. WFMC-TC-1019 Issue 1.1).

www.wfmc.org: Workflow Management Coalition.

Workflow Management Coalition. (1998b, Jun). Workflow and Internet:

Catalyst for Radical Change – a WfMC White Paper (Tech. Rep.).

www.wfmc.org: Workflow Management Coalition.

Workflow Management Coalition. (2000, May). Worflow standard–

interoperability Wf-XML binding (Tech. Rep. No. WfMC-TC-1023 Ver-

sion 1.0). http://www.aiim.org/wfmc/standards/docs/tc1023v10.pdf:

Workflow Management Coalition.

Workflow Management Coalition. (2002, October). Workflow Process Def-

inition Interface – XML Process Definition Language (Tech. Rep.

No. WFMC-TC-1025 Version 1). http://www.wfmc.org/standards/

docs/TC-1025 10 xpdl 102502.pdf: Workflow Management Coali-

tion.

Workflow Management Coalition. (2004, October). Wf-

XML 2.0 – XML Based Protocol for Run-Time Integra-

tion of Process Engines (Tech. Rep. No. Draft document).

http://www.wfmc.org/standards/docs/WfXML20-200410c.pdf:

Workflow Management Coalition.

Wu, Z., Deng, S., & Li, Y. (2004, September 15 – 18). Introducing EAI and

Service Components into Process Management. In Proceedings of the

2004 IEEE International Conference on Services Computing (SCC’04)

(pp. 271 – 276). IEEE.

