
Development and Characterisation of a 

Membrane Gradostat Bioreactor for the 

Bioremediation of Aromatic Pollutants 

using White Rot Fungi 

Thesis 

Submitted in Fulfilment of the Requirements for the Degree of 

Doctor of Philosophy 

of 

Rhodes University 

by 

Winston Daniel Leukes 

January 1999 



He that will not apply new remedies must expect new evils; for time is the 

greatest innovator. 

-  Francis Bacon 

ii 



TABLE OF CONTENTS 

Title Page .........................................................................................................................................  

Table of Contents ........................................................................................................................  iii 

Abstract ......................................................................................................................................... vii 

List of Tables ................................................................................................................................  

List of Figures ...............................................................................................................................  

Acknowledgements ...................................................................................................................... xiii 

Chapter 1 ........................................................................................................................................ 1 

Bioremediation of Aromatic Pollutants using the White Rot Fungi 1 

1.1. Bioremediation ..............................................................................................  

1.2. Aromatic Pollutants .......................................................................................  2 

1.3. The White Rot Fungi ..................................................................................... 7 

1.4. Industrial Applications of the Ligninolytic System of the WRF ................ 15 

1.5. Biotechnology of WRF Enzyme Production .............................................. 18 

1.6. Nutrient Gradients ....................................................................................... 26 

1.7. Gradostat Systems ....................................................................................... 27 

1.8. Membrane Bioreactors ................................................................................ 28 

1.9. The Solution - Concept of the "Membrane Gradostat Reactor" ................ 30 

1.10. Research Hypothesis .................................................................................. 32 

Chapter 2 ...................................................................................................................................... 34 

The Membrane and Reactor Module 34 

iii 



2.1. Introduction .................................................................................................. 34 

2.2. Manufacture of a Novel Membrane for Attached Film Membrane 

Bioreactors ................................................................................................ 36 

2.3. The Single Fibre Bioreactor ........................................................................ 47 

2.4. Conclusion .................................................................................................... 53 

Chapter 3 ...................................................................................................................................... 54 

The Concept of Spatio-Temporal Domain Transformation 54 

3.1. Introduction .................................................................................................. 54 

3.2. Materials and Methods ................................................................................. 56 

3.3.Results and Discussion .................................................................................. 59 

3.4. Conclusion .................................................................................................... 76 

Chapter 4 .....................................................................................................................................  78 

Differentiation within the Biofilm 78 

4.1. Introduction .................................................................................................. 78 

4.2. Materials and Methods ...............................................................................  80 

4.3. Results and Discussion ................................................................................ 82 

4.4. Conclusion ................................................................................................... 98 

Chapter 5 ...................................................................................................................................  101 

Bioreactor Scale-Up and Ligninolytic Enzyme Production 101 

5.1. Introduction ................................................................................................ 101 

5.2. Materials and Methods .............................................................................. 109 

5.3. Results and Discussion ..............................................................................  116 

5.4. Conclusion .................................................................................................  127 

Chapter 6 ...................................................................................................................................  128 

Application of the Membrane Gradostat Reactor to Bioremediation 128 

iv 



6.1. Introduction ................................................................................ 

6.2. Materials and Methods ..............................................................  

6.3. Results and Discussion ..............................................................  

6.4. Conclusion .................................................................................  

128 

133 

136 

149 

Chapter 7 ...................................................................................................................  152 

Conclusion 152 

7.1. Membrane and Membrane Bioreactor Design .........................  152 

7.2. Proof of the MGR Concept .......................................................  154 

7.3. Characterisation of the Biofilm ................................................  155 

7.4. Performance of the MGR .......................................................... 155 

7.4. Future Research 157 

Publications arising from this work ..........................................................................  158 

Patents 158 

Report 158 

Refereed Journals ..............................................................................  158 

International Conferences .................................................................. 158 

Local Conferences ............................................................................. 159 

Associated Publications ....................................................................  160 

Appendices ................................................................................................................  164 

Appendix A: Culture Maintainenance and Spore Inoculum Development 164 

Appendix B: Growth Medium 165 

Materials: ..........................................................................................  165 

Appendix C: Scanning Electron Microscopy 167 

Appendix D: Transmission Electron Microscopy 167 

Appendix E: Intracellular Marker Assays for the Onset of Stationary Phase. 168 

Materials ...........................................................................................  168 

Procedure ..........................................................................................  169 



Appendix F: Cytochemical Staining Procedure for the Ultrastructural Localisation of 

LiP in a Biofilm 171 

Procedure ....................................................................................  171 

Appendix G: Ligninolytic Enzyme Assays 172 

Concentration of Samples ..........................................................  172 

Lignin Peroxidase Assay ............................................................ 172 

Manganese Peroxidase Assay .....................................................  173 

Appendix H: Determination of p-Cresol Concentration by HPLC 174 

References ...........................................................................................................  175 

vi 



ABSTRACT 
Bioremediation of aromatic pollutants using the ligninolytic enzymes of the white rot 

fungi has been thoroughly researched and has been shown to have considerable potential 

for industrial application. However, little success in scale-up and industrialisation of this 

technology has been attained due to problems associated with the continuous production 

of the pollutant-degrading enzymes using conventional bioreactor systems. The low 

productivities reported result from the incompatibility of conventional submerged culture 

reactor techniques with the physiological requirements of these fungi which have evolved 

on a solid-air interface, viz. wood. The enzymes are also produced only during the 

stationary phase of growth and can therefore be regarded as secondary metabolites. This 

study reports the conceptualisation, characterisation and evaluation of a novel bioreactor 

system as a solution to the continuous production of idiophasic pollutant degrading 

enzymes by the white rot fungus Phanerochaete chrysosporium. The reactor concept 

evolved from observation of these fungi in their native state, i.e. the metabolism of 

lignocelluiosic material and involves the immobilisation of the organism onto a capillary 

ultrafiltration membrane. Nutrient gradients established across the biofilm, an inherent 

characteristic of fixed bed perfusion reactors, are exploited to provide both nutrient rich 

and nutrient poor zones across the biofilm. This allows growth or primary metabolism in 

the nutrient rich zone, pushing older biomass into the nutrient poor zone where secondary 

metabolism is induced by nutrient starvation. In effect, this represents a transformation of 

the events of a batch culture from a temporal to a spatial domain, allowing continuous 

production of secondary metabolites over time. Direct contact of the outer part of the 

biofilm with an air stream simulated the solid-air interface of the native state of the 

fungus. 

In order to facilitate the practical application of the membrane gradostat reactor (MGR) 

concept, conventional capillary membranes and membrane bioreactor modules were first 

evaluated. These were found to be unsuitable for application of the MGR concept. 

However, critical analysis of the shortcomings of the conventional systems resulted in the 

formulation of a set of design criteria for the development of a suitable membrane and 
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module. These design criteria were satisfied by the development of a novel capillary 

membrane for membrane bioreactors, as well as a transverse flow membrane module, 

which is a novel approach in membrane bioreactor configuration. 

For the physiological characterisation of the MGR concept, a single fibre bioreactor unit 

was designed, which allowed destructive sampling of the biofilm for analysis. Using this 

system, it was shown that distinct morphological zones could be observed radially across 

the mature biofilm obtained through MGR operation. That these morphotypes do 

represent the temporal events of a typical batch culture in a spatial domain was confirmed 

by following the morphological changes occurring during batch culture of the 

immobilised fungus where the onset of primary and secondary metabolic conditions were 

manipulated through control of the nutrient supply. The different morphotypes were 

correlated to distinct growth phases by comparison of the morphology to the secretion of 

known enzymatic markers for secondary metabolism, viz. succinate dehydrogenase and 

cytochrome C oxidoreductase. Detailed structure-function analysis of the biofilm using 

transmission electron microscopy and adapted enzyme cytochemical staining techniques 

showed that the biofilm appeared to operate as a co-ordinated unit, with primary and 

secondary metabolism apparently linked in one thallus through nutrient translocation. 

This study provided new insights into the physiology of P. chrysosporium and a detailed 

descriptive model was formulated which con-elates well to existing models of wood 

degradation by the white rot fungi (WRF). 

Evaluation of the process on a laboratory scale using a novel transverse flow membrane 

bioreactor showed that a volumetric productivity of 1916 U. L.-'day' for manganese 

peroxidase, one of the pollutant degrading enzymes, could be attained, corresponding to a 

final concentration of 2 361 U. L.-1. This may be compared to the best reported system 

(Moreira et al. 1997), where a volumetric productivity of 202 U. L.-'day' was achieved 

with a final concentration of 250 U. L.-1, However, MGR productivity is yet to be 

subjected to rigorous optimisation studies. The process could be operated continuously 

for 60 days. However, peak productivity could not be maintained for long periods. This 

was found to be due to physical phenomena relating to the fluid dynamics of the system 
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which caused fluid flow maldistribution, which would have to be resolved through 

engineering analysis. In evaluation of the MGR concept for aromatic pollutant removal, 

in this case p- cresol, from growth medium, good performance was also achieved. The Vmax/Km 

 calculated by linear regression for the MGR was 0.S  (R2  = 0.93), which 

compared favourably to that reported by Lewandowski el aL (1990), who obtained a Vmax/Km 

 of 0.34 for a packed bed reactor treating chlorophenol. 

It was concluded that the MGR showed suitable potential to warrant further development, 

and that the descriptive characterisation of the biofilm physiology provided a sufficient 

basis for process analysis once engineering aspects of the system could be resolved. 
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CHAPTER 1 
BIOREMEDIATION OF AROMATIC POLLUTANTS USING THE 

WHITE ROT FUNGI 

1.1. BIOREMEDIATION 

After the industrial revolution, the sudden introduction, over the last 100 years of the 

earth's history, of xenobiotic chemicals and the massive relocation of materials between 

ecosystems has resulted in the accumulation of pollutants in certain sites. These have 

reached harmful levels which exceed the self-cleaning capacity of the environment (Day 

1993). 

Bioremediation, the use of biological treatment systems to destroy or reduce the 

concentrations of hazardous waste from contaminated sites, has found widespread appeal 

in recent years. Applications include clean-up of ground water, soils, lagoons, process 

streams and even large stretches of oil-contaminated shoreline, as in the case of the 

Exxon Valdez spill onto the coast of Prince William Sound, Alaska (Caplan 1993; Young 

and Suk 1995). 

Bioremediation currently comprises only a small fraction of the hazardous waste 

treatment market. With the increased public acceptance of "green technology" such as 

biotechnology, the potential for economic growth by replacing existing technologies is 

considerable. Hence, bioremediation has become one of the fastest-growing areas in the 

environmental management sector (Caplan 1993). In 1990, the U.S.A. bioremediation 

market was estimated at about $ 60 million (Caplan 1993) and is expected to expand at an 

annual rate of 16% (http://www.findsvp.com/tocs/ML0510.HTM).  This is expected to be 

a worldwide trend due to increased legislative pressure. 

Much industrial pollution can be traced to either waste-management practices that 

advocated disposal rather than treatment, or to both accidental or incidental spillages that 

were ignored in terms of non-existent, ineffective or un-enforced environmental 
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protection legislation (Hamer 1993). Present legislation, however, is increasingly 

designed both to ameliorate the adverse effects of past pollution, and to require 

immediate action to minimise the impact when industrial accidents producing new 

pollution do occur. A general consensus has emerged where the traditional "dilute, bury 

or burn" practise is no longer acceptable_ 

Industrial companies seek to operate within the requirement of the law, but to enable 

them to do so, the necessary technology for pollution control and pollutant elimination 

must be made available (Hamer 1993). The challenge to biotechnology is to generate 

efficient, cost-effective and environmentally safe bioremediation technologies to replace 

existing standard technologies, such as incineration, as well as to provide unique 

solutions for the remediation of contaminated sites (Liu and Suflita 1993). 

1.2. AROMATIC POLLUTANTS 

Aromatic compounds are generally released into the air, soil, and water bodies from coal 

gasification and liquefaction processes, waste incineration, coke, carbon black and resin 

manufacturers, foundries, paint-stripping operations and other petroleum-derived plants 

(Lanouette 1977; Klein and Lee 1978; Galli 1990; Boyd and Carlucci 1993). Plant-

derived polyphenolic substances are also produced by processes such as wine 

manufacture, the paper and pulp industry and olive mill processing. These compounds 

can be toxic or have other unwanted effects when released into the environment. Of the 

monomeric phenols, as little as 0.005 mg. of phenol will impart objectionable tastes 

and odours to drinking water when it combines with chlorine to form chlorophenols 

(Lanouette 1977). Phenols are toxic to fish at levels above 2 mg. L. and can cause a 

taste in fish flesh at concentrations below the toxic level. They also have a relatively high 

oxygen demand, which depletes the oxygen of a receiving body of water (Lanouette 

1977). The major aromatic pollutants persist in the environment because of their 

resistance to microbial attack. This is due partially to the chemical structure of some of 

these compounds, which may differ from those that occur naturally (Galli 1990), 
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Methods in current general use for the treatment of aromatic pollutants include recovery, 

incineration, adsorption, bioremediation and chemical oxidation (Lanouette 1977). Other 

technologies include solvent extraction and membrane processes such as reverse osmosis, 

ultrafiltration, and electrodialysis (Klein and Lee 1978). 

1.2.1. Bioremediation of Aromatic Pollutants 

The success of bioremediation in the treatment of hazardous, recalcitrant organics has 

received much attention since the 1980's after environmental catastrophes such as the 

Exxon Valdez and Mega Borg oil spills, and the Iraq-Kuwait war (Shannon and 

Unterman 1993). Promising and innovative research has been undertaken to address 

contamination by aromatic compounds using biotechnological solutions. 

The potential advantages of biotechnological, rather than physico-chemical treatments are 

operation under milder, less corrosive conditions (pH, temperature and pressure); 

operation in a catalytic manner; execution of many sequential reaction steps; operation on 

trace level organic compounds and on organics not removed by existing physico-

chemical processes; reduced consumption of oxidants; reduced amounts of adsorbent 

materials, such as charcoal, for disposal; greater efficiency of biocatalysts and 

biosorbents and hence greater yield and process efficiency; less expensive process 

equipment and consequently lower capital investment (Belfort 1989; Nicell et al. 1992). 

Although biological processes have long been in use for the treatment of non-refractory 

wastes like sewage, their use for treating hazardous and refractory chemical wastes is 

more recent. Increased knowledge of biodegradation pathways and isolation and 

utilisation of newly identified microbes has contributed to this trend (Shannon and 

Unterman 1993; Boyd and Carlucci 1993). 

Biological treatment systems may utilise enzyme-based- and/or whole cell (organism)-

based systems (Nicell et al_ 1992), 
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1.2.2. Enzyme-Based Systems 

While the concept of using enzymes in waste treatment applications dates back to the 

1930's, it was not until the 1970's that the selective removal of target chemicals in 

industrial waste waters using enzymes became a practical possibility (Klibanov et al. 

1983). The potential advantages of the use of enzyme-based treatment over whole 

organism-based treatment systems include: 

• Action on compounds toxic to microbes; 

• Operation over wide temperature ranges; 

• Operation over wide pH and salinity ranges; 

• Operation over high and low concentration ranges of contaminants; 

• Less disruptive effect of shock loading; 

• No delays associated with shutdown and start-up (acclimatisation of biomass); 

• Reduction in sludge volume (no biomass generation); 

• A better defined system with simpler process control; 

• Rapid reaction rates with well-characterised end products; 

(Klibanov et al. 1983; Nicell et al. 1992). 

The activity of the enzymes must, however, be well characterised, especially in terms of 

the fate of toxic organic compounds before application can be considered (Aitken et al. 

1989). Another drawback of the enzymatic treatment of aromatic pollutants is that the 

complete degradation of the aromatic pollutants normally involves multiple enzyme 

reactions and may require several enzymes, and also co-factors which are difficult to re-

generate. This is not a problem in the case of polyphenolase enzymes, which effect the 

polymerisation of small phenolic compounds into large water-insoluble complexes. 

However, these enzymes are limited to a narrow range of phenolic compounds. Another 

limitation of enzyme-based systems is the limited catalytic lifetime of enzymes. This 

affects the economic feasibility of such systems since production and purification of 

enzymes tend to be costly. 
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1.2.3. Whole Cell Treatments 

Bioremediation of toxic aromatic pollutants by whole cell culture systems may involve 

processes using plants, algae, fungi and bacteria. However, most attention has been 

focussed on the development of fungal and bacterial processes. Bacteria have usually 

been the organisms of choice because the metabolic fate of aromatic pollutants in bacteria 

has been better studied. This is because bacteria are easier to culture and grow more 

quickly than fungi and they are amenable to straightforward genetic manipulation 

techniques (Higson and Focht 1992; Bouwer and Zehnder 1993). 

Higher metabolic rates (Boyd and Carlucci 1993; Bouwer and Zehnder 1993) and the 

ability to metabolise chlorinated organics and certain other pollutants faster than fungi 

(Radehaus and Schmidt 1992; Bouwer and Zehnder 1993), as well as the ability of 

certain bacteria to degrade aromatic pollutants under anaerobic conditions, have 

contributed to the popularity of the use of bacteria as bioremediation agents. 

Fungal systems have, however, been the subject of recent interest due to the inherent 

nature of the metabolism of complex organic compounds by fungi. These mechanisms 

are generally based on the secretion, by mostly filamentous fungi, of extracellular 

enzymes into complex solid matrices, This metabolic strategy makes the development of 

bioremediation technology using filamentous fungi advantageous over the use of bacteria 

under certain circumstances. 

One of the problems pertaining to bacterial bioremediation is that of bioavailability. 

Bacteria are generally adapted to act upon soluble substrates in aqueous medium. 

However, many organo-pollutants (especially the aromatics) are poorly soluble in water 

and are likely to be adsorbed onto particulate matter, limiting their bioavailability. The 

pollutant-degrading systems of the fungi can still function under such conditions because 

the enzymes catalysing initial oxidation reactions are extracellular and their natural 

substrates tend to be insoluble polymers. 

5 



Many bacterial systems are not able to degrade low levels of organo-pollutants because 

the levels of the pollutant are too low to induce the biosynthesis of the enzymes required 

for their degradation. Fungal degradative enzymes tend to be induced by nutrient 

starvation, rather than the presence of the pollutant, which enables the degradation of 

pollutants to low concentration levels (Aust 1990). 

Most bacteria are not able to degrade a broad spectrum of structurally diverse organo-

pollutants due to the specific nature of their degradative mechanisms. This restricts their 

use to situations where only a limited number of pollutants are present or the use of hard-

to-maintain consortia of bacteria (Babu et at 1995). The fungal enzymes are relatively 

non-specific with regard to aromatic pollutant structure, so a monoculture of fungi 

(especially the white rot fungi (WRF)) can degrade a very wide range of aromatic 

pollutants (Aust 1990). The wide substrate range of these fungal enzymes also allows the 

possibility to degrade newly synthesised compounds that end up in the environment, for 

which bacteria have not yet evolved degradative mechanisms. A good example of this is 

the dioxins, which are not easily transported into, and degraded by, bacteria (Bouwer and 

Zehnder 1993). Recombinant DNA techniques might be of use to engineer organisms 

capable of degrading newly developed compounds, but these bacteria tend not to be 

successful competitors where consortia of species are required. Also, regulations and 

public pressure against the use and release of genetically engineered organisms makes 

their use prohibitive (Hamer 1993; Miller 1997). 

Thus, in general, the bacteria are simpler to use in bioremediation technology 

development than the fungi since a broad support base exists for the study of their 

metabolism and their utilisation in reactors. Nevertheless, certain characteristics of the 

fungi make them highly attractive bioremediation agents (as mentioned above). A group 

of fungi which have received much attention with regards to the development of 

bioremediation of aromatic compounds are the white rot fungi. 
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1.3. THE WHITE ROT FUNGI 

White rot fungi are members of the Eumycota, subdivision Basidiomycotina, the class of 

fungi that are well known for their distinctive fruiting bodies commonly recognised as 

mushrooms, toadstools and puffballs (Bumpus and Aust 1987). These fungi are unique in 

that they are the only known organisms capable of completely degrading lignin (Gold and 

Alic 1993). 

Lignin is a complex three-dimensional polymer that is responsible for providing 

structural support to woody plants. Biosynthesis of lignin in higher plants is mediated by 

a plant peroxidase system which catalyses the formation of phenoxy- free radicals from 

coniferyl, synapyl and p-coumaryl alcohols. These then polymerise in a seemingly 

random fashion to form the lignin polymer (Gold and Alic 1993; Bumpus and Aust 

1987). This free-radical addition process results in the formation of a polymer with an 

irregular, non-repeating structure, which is non-stereospecific. Most of the bonds are 13-

aryl ether linkages, but many other C-C and C-O bond types exist in lignin which are 

very stable. The structure of softwood lignin is represented in figure 1.1. 

Fig. 1.1: Structure of softwood lignin. 
(http://www.helsinki.fii—orgkin_ww/lignin_structure.html) 

The above properties combine to make lignin highly recalcitrant to biodegradation 

because most organisms do not possess enzyme systems capable of degrading such a 

stable, structurally- and stereo - irregular compound (Bumpus and Aust 1987). 
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Lignin is the second most abundant renewable natural polymer compound on earth 

(making up to 30% of woody cell walls of gymnosperms (softwood), and angiosperms 

(hardwood)). Because relatively few organisms degrade lignin, it is thought that its 

biodegradation is the rate limiting step in the global carbon cycle (Bumpus and Aust 

1987; Gold and Alic 1993). Although the subject of intense research for many years, 

details of the mechanisms of lignin biodegradation are only recently becoming clear 

(Higuchi 1990). These developments have had a major impact on the initiation of the 

development of technologies for the bioremediation of aromatic pollutants. This is 

because several aromatic pollutants (many of which are on the United States 

Environmental Protection Agency (USEPA) priority list) share structural similarity to 

lignin and its monomers. 

Thus it was suggested that the ligninolytic system of the WRF could be used in the 

bioremediation of these otherwise recalcitrant pollutants. This was first shown to be 

feasible by Bumpus et al. (1985). Since then it has been shown that a wide range of these 

pollutants can be transformed, some partially and others completely mineralised, by these 

fungi (see table 1.1.). 

The mechanism of lignin degradation by the WRF is complex and is briefly described 

here as it pertains to the biodegradation of aromatic pollutants. Basically, the ligninolytic 

system of the WRF is a non-specific, extracellular oxidative process initiated by nitrogen, 

carbohydrate or sulphur starvation (Bumpus and Aust 1987). It was initially shown that 

an active oxygen species was responsible for initial depolymerisation reactions, 

Subsequently, extracellular enzymes were discovered which were capable of the 

degradation of lignin model compounds in vitro (Tien and Kirk 1984). 
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Table 1.1: Partial listing of pollutants transformed by P. chrysosporium. (Aust 1990) 

Pollutant Category Examples 
Aromatic Compounds benzoic acid 

phenol 
o-cresol 
benzene 
toluene 
xylene 

Lignin model compounds veratrylglycerol-B-(0-methoxyphenyl) ether 
dehydrodiconiferyl alcohol 
dehydrovanillin 

Biopolymers lignin 
cellulose 
Kraft lignin 

Chlorinated Aromatic Compounds 2,4,6-trichlorophenol 

Polycyclic Aromatic Hydrocarbons benzota]pyrene 
anthracene 

Polycyclic chlorinated aromatic compounds DDT(1,1,1-trichloro-2,2-bis-(p-chlorophenypethane 
polychlorinated biphenyls (e.g. Arochlor 1254) 

Pesticides atrazine 

Explosives TNT (Trinitrotoluene) 

Non -aromatic xenobiotics Cyanide 

1.3.1. Lignin Peroxidase 

The first enzyme capable of oxidative cleavage of the C-C bond of the non-phenolic 

propyl side chains of certain aromatic lignin model compounds was discovered by Kirk 

and co-workers in 1982 in the extracellular culture broth of the white rot fungus 

Phanerochaete chrysosporium Burdsall (Linko 1992). They called the enzyme ligninase, 

and published their discovery the following year (Tien and Kirk 1983). At about the same 

time Gold and co-workers (Glenn et al. 1983) published their independent discovery of a 

P. chrysosporium enzyme called hydrogen peroxide requiring diaryl propane oxygenase 

(Linko 1992). This enzyme turned out to be identical to ligninase and is more generally 

referred to now as lignin peroxidase (LiP) (EC 1.11.1.7 peroxidase donor: hydrogen 

peroxide oxidoreductase). 
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LiP has been purified by a combination of anion-exchange chromatography, gel filtration, 

Fast Protein Liquid Chromatography (FPLC) and isoelectric focussing (Gold and Alic 

1993). The enzyme is present as a series of glycosylated isozymes with pI's ranging from 

3.2 to 4.0 and molecular masses ranging from 38 to 43 kDa. Each isozyme contains 1 

mol. of iron haeme per mol. of protein (Gold and Alic 1993). The mechanism of action of 

the LiP isozymes is similar to that of other peroxidases and is schematically depicted in 

figure 1.2. The ferric form of the enzyme, the resting form, is initially oxidised by two 

electrons from hydrogen peroxide to produce a form of peroxidase known as Compound 

I. Compound I can be reduced by one electron by chemicals having a suitable reduction 

potential, such as aromatic pollutants. The enzyme is reduced to a form called Compound 

II whereas the chemical (aromatic compound) is oxidised by one electron to form a 

radical. A second aromatic compound then donates a further electron to Compound II to 

return it to its resting state (Aust 1995). In the process, the aromatic reducing substrate is 

oxidised to an aryl cation radical (Gold and Alic 1993)_ The free radicals diffuse into 

solution where they can undergo spontaneous degradation reactions or polymerisation 

with other aromatic compounds (Nicell et al. 1993). LiP, therefore, exhibits Ping-Pong Bi 

Bi kinetics in that 1-1202  first oxidises the enzyme and the oxidised enzyme (Compound I) 

reacts with the substrate (Aust 1995). 

LiP+1-1,02—>LiN +H20 

LiP+ Ar—>LiPII+ Ar: 

LiP17+ Ar---> LiP + Ar:+11,0 

Fig.1.2: Catalytic cycle of LiP. Ar- Aromatic substrate. 

LiP II can also react with F1202 to form LiP III, an inactive form of LiP. It has been 

shown that veratryl alcohol, which is synthesised as a secondary metabolite by WRF 

(Shimada et al. 1981), plays a pivotal role in the activity of LiP. The veratryl alcohol 

produced is converted to a cation radical as depicted above. The VA-+  (veratryl alcohol 

cation radical) is considered an important intermediate in converting Compound III back 

to the ferric form of the enzyme and being a redox mediator for indirect oxidations of 

other compounds (Khindaria et al. 1995). 
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The lignin peroxidases are different from other peroxidases in that they have higher 

oxidation potentials (--1.35V) than do most other peroxidases such as horseradish 

peroxidase (-0.8V). In this way these enzymes have a somewhat greater range of 

chemicals that they can oxidise compared to other peroxidases. This does not, however, 

completely explain why so many chemicals are oxidised by these fungi. Aust (1995) 

assumes that other mechanisms or enzymes, yet to be discovered, are also involved. LiP 

has an extremely low pH optimum (-pH 2.5) for a peroxidase, and its pH dependence 

apparently is controlled by the pH reduction steps in the catalytic cycle (Gold and Alic 

1993). 

1.3.2. Manganese Peroxidase 

Another enzyme that has been shown to play a major role in lignin degradation is 

manganese peroxidase (MnP). MnP has also been purified to electrophoretic 

homogeneity (Glenn and Gold 1985). This enzyme exists as a series of glycosylated 

isozymes with pI's ranging from 4.2 to 4.9, and with molecular masses ranging from 45 

to 47 kDa. Each isozyme also contains I mol. of iron haeme per mol. of protein (Gold 

and Alic 1993). The oxidation of lignin and other phenols by MnP is dependent on free 

manganous ion. As shown in figure 1,3, the primary reducing substrate in the MnP 

catalytic cycle is the Mn (II), which efficiently reduces both Compound I (MnPI) and 

Compound II (MOH), generating Mn (III), which subsequently oxidises the organic 

substrate (Gold and Alic 1993). 

MnP+11,0i—>MnPI +H2O  

MnPI + Mn(II)--->MnPII +Mn(III) 

MnPII + Mn(II)-+MnP+ 

Fig. 1.3: Catalytic cycle of MnP 
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1.3.3. Reactions Catalysed by LIP and MnP 

LiP catalyses the 11202  dependent oxidation of a wide variety of non-phenolic lignin 

model compounds including synthetic lignin (Gold and Alic 1993). These reactions 

include benzylic alcohol oxidations, side chain cleavages, ring-opening reactions, 

demethoxylations and oxidative dechlorinations. All of these reactions are consistent with 

a mechanism involving the initial one-electron oxidation of susceptible aromatic nuclei 

by an oxidised enzyme intermediate to form a substrate aryl cation radical. This radical 

can then undergo a variety of non-enzymatic reactions to yield a wide range of final 

products (Hammel 1995). Redox potential, in part, determines whether an aromatic 

nucleus is a substrate for LiP. Strong electron withdrawing groups such as an a-carbonyl 

group tend to de-activate aromatic nuclei, whereas alkoxy groups, as are found in lignin, 

tend to activate them (Gold and Alic 1993; Hammel 1995). 

The ability of LiP to oxidise lignin non-specifically, generating cation radicals which 

undergo a wide variety of reactions, accounts for the number of different metabolic 

products observed (Gold and Alic 1993). 

MnP catalyses the H202-dependent oxidation of lignin and lignin derivatives and a 

variety of phenolic lignin model compounds. It has been shown that Mn(H) is the 

preferred substrate for MnP. Mn(1I) is oxidised to Mn(II) which diffuses from the 

enzyme surface and in turn oxidises the phenolic substrate. Organic acids, such as 

malonate and oxalate chelate Mn(III) to form stable complexes with high redox potentials 

(Zapanta and Tien 1997). Thus, Mn(III) ion participates in the reaction as a diffiisable 

redox couple rather than an enzyme binding activator. This is supported by the 

demonstration that chemically prepared Mn (III) complexed with organic acids, such as 

malonate, mimic the MnP reactions. The initial reaction of Mn(III) with a phenol is a 

one-electron oxidation to form a phenoxy radical intermediate. Subsequently, alkyl-

phenyl cleavage, Ca—Cp cleavage, or benzylic carbinol oxidation yields the variety of 

products observed (Gold and Alic 1993). MnP also supports Mn-dependent lipid 

peroxidation, which in turn catalyses certain reduction and depolymerisation reactions in 

aromatic pollutants (Hammel 1995). 
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1.3.4. Examples of Pollutant Degradation by Fungal Peroxidases 

Recent investigations show the direct involvement of P. chrysosporium LiP in the 

metabolism of anthracene, and of both LiP and MnP from P. chrysosporium in the 

metabolism of 2,4-diclorophenol (DCP) and 2,4-dinitrotoluene (DNT). Anthracene was 

oxidised to 9,10-anthraquinone (AQ) in vitro and mineralised in vivo by ligninolytic 

cultures of P. chrysosporium. Further evidence has shown that the pathway proceeds 

from anthracene to AQ to phthallic acid. Phthallic acid was shown to undergo ring 

cleavage before further metabolism to CO2  (Aust 1990). 

Both LiP and MnP from P. chrysosporium have been shown to catalyse the in vitro 

oxidation of DCP and several of its metabolites found in fungal cultures. A pathway was 

proposed for the degradation of DCP that includes several oxidations catalysed by LiP 

and MnP. Several DNT metabolites found in ligninolytic cultures of P. chrysosporium 

have also been shown to be oxidised in vitro by LIP and MnP. The pathway is similar to 

that proposed for the degradation of DCP in that it involves several oxidation, reduction 

and methylation reactions. A difference is that peroxidase activity in DNT metabolism 

must be preceded by reduction of one of the nitro groups to an amine (Lamar 1992). 

Involvement of extracellular LiP and MnP in the metabolism of aromatic compounds in 

extracellular peroxidase-catalysed oxidations and intracellular reductions and 

methylations that regenerate peroxidase substrates would require metabolites to shuttle 

across the plasmalemma. Not much is known about such processes, or about the 

absorption and intracellular metabolism of the different intermediates produced. It is 

considered possible that peroxidases similar to LiP and MnP, and other oxidases, are 

produced intracellularly for metabolism of intermediates (Lamar 1992). 

Substrate-specific differences have been observed between LiP and MnP. LiP has been 

shown to be capable of oxidising methoxybenzene congeners with high oxidation 

potentials, whereas MnP or chelated Mn3+  can only oxidise low potential congeners. LiP, 

but not MnP, was shown to catalyse the in vitro oxidation of nitrodimethoxybenzenes and 

chlorodimethoxybenzenes whereas MnP, but not LiP, catalysed the in vitro oxidation of 
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the DNT metabolites 2-amino-4-nitrotoluene and 4-nitrocatechol. These substrate-

specific differences seem to indicate that the peroxidases work in synergy in the 

oxidation of aromatic compounds (Lamar 1992 and references therein). 

1.3.5. Oxidases for the Production of H202 

It was shown quite early in the elucidation of the biodegradative mechanism of the WRF 

that H202 was produced under ligninolytic conditions (Forney et al. 1982). The enzymes 

responsible for the formation of H202, a group of oxidases, reduce oxygen to form H202 

using a variety of organic electron donors (Bumpus and Aust 1987). These oxidases 

include glyoxal oxidase, an extracellular, idiophasic copper containing enzyme (Kersten 

and Kirk 1987); glucose oxidase (Kelley and Reddy 1986); veratryl alcohol oxidase 

(Asada et al. 1995) and methanol oxidase (Eriksson and Nishida 1988). 

An oxidase shown to be of particular significance is pyranose oxidase (POD). It catalyses 

the C-2 oxidation of several aldopyranoses, with the preferred substrate being glucose. It 

is a large flavin adenine dinucleotide glycoprotein (MW — 300 000) and has been 

identified in both mycelia' extracts and culture filtrates of laboratory cultures of several 

fungi, suggesting both intracellular and extra-cellular distributions (Daniel et al. 1994). A 

possible role for POD other than production of H202  for peroxidase oxidation has been 

postulated. It acts with laccase to maintain a glucose: quinone oxidoreductase cycle in 

order to prevent spontaneous repolymerisation of quinones formed during ligninolysis, 

thereby increasing the efficiency of lignin degradation (Szklarz and Leonowicz 1986). 

Besides being a co-substrate for peroxidase enzymes, the H202 is an oxidant itself, and is 

also converted chemically to more powerful active oxygen species such as hydroxyl 

radicals and superoxide (Kremer and Wood 1992). These oxygen radicals are partially 

responsible for the non-specific cleavage of certain recalcitrant lignin and aromatic 

pollutant species. 
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1.3.6. Laccase 

Many WRF produce an extracellular laccase (D' Souza et al. 1996). It was previously 

believed that P. chtysosporium was an exception to the above, but it was recently 

reported that laccase activity could be detected in this fungus under certain culture 

conditions (Srinavasan et al. 1995). Laccase is a blue copper protein which catalyses the 

one-electron oxidation of phenols to phenoxy radicals, Like MnP, laccase can catalyse 

the alkyl-phenyl and C- cleavage of phenolic lignin dimers and has a broad substrate 

specificity towards aromatic compounds containing hydroxyl and amine groups (Higuchi 

1990; Youn et al. 1995). It also catalyses the demethoxylation of several lignin 

compounds, but it has generally been accepted that laccase cannot degrade non-phenolic 

lignin model compounds (Thurston 1994; Youn et al. 1995). Several fungi produce 

laccase and MnP but not LiP, indicating that some WRF degrade lignin by a different 

mechanism to P. chrysosporium (Gold and Alic 1993; Thurston 1994). 

Despite the amount of research expended on the elucidation of the different components 

of the ligninolytic system of the white rot fungi and their roles, it is believed that other 

uncharacterised substances and enzymes, not active or stable in crude culture supernatant, 

may also be of importance (Paice et aL 1993). The role of intracellular enzymes 

responsible for monomer degradation is also poorly understood, although several key 

enzymes have recently been isolated (Brock et al. 1995). 

1.4. INDUSTRIAL APPLICATIONS OF THE LIGNINOLYTIC SYSTEM OF THE 
WRF 

Since the discovery by Bumpus et al. (1985) that the ligninolytic system of the WRF was 

capable of the transformation of a range of aromatic compounds, and the subsequent 

elucidation of the enzymatic mechanism of ligninolysis by these fungi, much literature 

has appeared exploring the commercial application of these fungi and their enzymes. 

Most of the research activity was based on the bioremediation of aromatic pollutants, but 

other applications of the enzymes were also evaluated.  

15 



1.4.1. Bioaugmentation of Contaminated Soil and Groundwater 

Contamination of ground water resources with pollutants like aromatic- and alkyl-group 

substituted aromatic hydrocarbons is considered a serious threat to human health, A 

major source of this pollution is leakage from underground petroleum storage tanks and 

distribution systems. Pump-and-treat systems, or in situ bioremediation strategies can be 

utilised as solutions. 

Fungal enzymes have been applied to both such systems. In the case of pump-and-treat 

systems, the fungal peroxidases could be used to precipitate aromatic pollutants by 

polymerisation. They could also be used to de-toxify these pollutants prior to 

conventional biological treatment such as activated sludge systems. In situ fungal 

peroxidase-based treatment could be used to de-toxify the pollutants so that resident 

microbes can utilise the degradation products. It has been postulated that P. 

chlysosporium forms fairly close relationships with certain bacteria (Seigle-Murandi et 

al. 1996). Alternatively, fungal peroxidases could be used to link the pollutants to humic 

polymers, thereby rendering them inert. Various examples of this approach are listed by 

Sjoblad and Bollag (1981) and Shannon and Unterman (1993). 

1.4.2. Bioremediation of Industrial Effluents 

Besides the potential application of the WRF ligninolytic system for the bioremediation 

of soil, the same enzymatic systems can be applied to water contaminated with aromatic 

compounds. 

Residual lignin in Kraft pulp is highly modified by alkaline condensation reactions during 

pulping and gives the pulp a characteristic brown colour. This residual lignin is 

commercially removed by bleaching with chlorine-based chemicals. It has been reported 

that chlorinated products derived from lignin during these bleaching procedures are 

mutagenic. These compounds also cause a waste treatment problem because of their 

toxicity and dark colour. Therefore, alternative ways to eliminate, or at least reduce, the 

use of chlorine-based chemicals in bleaching require development (Katagiri et al. 1995). 
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Given the lignin degrading capability of the WRF, a considerable body of research has 

been reported for the delignification and brightening of unbleached Kraft pulp using the 

WRF. Much progress has been made in the study of delignification by the WRF and the 

development of an economically feasible process (Katagiri et al. 1995). It was shown by 

various researchers that Me is the most important enzyme involved in the biochemical 

brightening of pulp (Katagiri et al. 1995), although this effect is not observed when using 

the enzyme alone (Paice et al. 1993). Tien (1987) has proposed that this might be 

considered one of the major potential industrial applications of fungal enzymes. 

It has also been shown that the effluent from the first alkaline extraction stage of the 

Kraft process for wood pulping is a complex mixture of chlorinated lignin fragments, 

anisoles, phenols and some other low molecular weight chloro-organics. P. 

chiysosporium was shown to be capable of the removal of the above compounds 

(Hammel 1989). 

1.4.3. Improving the Digestibility of Lignocellulosic Animal Feeds 

Increasing the nutritional value of wood and agricultural by-products for ruminant 

animals has received much attention (Adaskaveg et al. 1995; Reid 1989a). The lignin in 

plant materials such as straw limits rumen digestibility of polysaccharides by blocking 

access by rumen bacteria and their enzymes to these polysaccharides. It has been shown 

that even partial de-lignification of animal feeds can give major increases in animal 

productivity. Fungal peroxidases could be used to selectively de-lignify these materials, 

leaving the polysaccharides exposed. These polysaccharides could, as an alternative, be 

further hydrolysed to sugars for fermentation to fuels, solvents, and other chemicals (Reid 

1989a). 
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1.4.4. Other Applications 

Fungal peroxidases are currently being evaluated for several other applications: 

• In laundry detergents for bleaching of dyes in solution, preventing surplus dyes from 

the garment to deposit on and decolourise others (Schneider and Pederson 1995); 

• For the enhancement of flavours in food (Schneider and Pederson 1995); 

• A replacement for horseradish peroxidase if the fungal enzymes could be produced at 

a lower cost (Schneider and Pederson 1995); 

• In the enhancement of polymerisation of lignin for the production of various 

composite materials, avoiding the use of artificial resins (Candeias 1995); 

• Administration of peroxidases has recently been shown to promote regression of 

tumours in animals (Candeias 1995); 

• Haloperoxidases are being formulated as antibacterial preparations given the 

bactericiodal action of hypohalous acids (Weyer 1995). 

1.5. BIOTECHNOLOGY OF WRF ENZYME PRODUCTION 

Large-scale industrial application of the fungal enzymes is constrained by the availability of 

effective production processes. Research in bioreactor design for ligninolytic enzyme 

production by WRF has basically followed two general directions. In early research, 

emphasis was placed on growth medium manipulation and isolation of novel strains in an 

attempt to manipulate the fungus to achieve good productivities in conventional tank reactor 

systems. These attempts are comprehensively covered in a review by Linko (1992), who 

sums up the developments towards industrial scale production of ligninolytic enzymes as an 

"exciting history of dreams and frustrations, failures and successes". More recent 

developments have focussed on novel reactor design to best suit the physiology of the 

fungus. 

1.5.1. Culture Conditions 

As already noted, ligninolysis and the production of ligninolytic enzymes occurs only 

during secondary (idiophasic) metabolism, the onset of which is triggered by the 

depletion in cultures of nutrient nitrogen, carbon or sulfur sources. This is believed to 
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occur because of nitrogen and/or carbon catabolite repression (Keyser et al. 1978) and 

regulation has been shown to take place at the level of LiP production (Faison and Kirk 

1985; Gold and Alic 1993). Tien and Tu (1987) established that nitrogen regulation 

functions at the transcriptional level of the LiP genes. 

1.5.2 Growth and Production Media 

Most LiP production experiments have been carried out with completely synthetic media 

which are various modifications of the original nitrogen limited medium developed by 

Kirk et al. (1978) for studies on lignin degradation by P. chtysosporium. The medium 

contained mineral salts and vitamins with 10 g. L.-1  of glucose as the C-source and 2.2 

mM. of ammonium tartrate as the nitrogen source (Tien and Kirk 1988). The effect of N-

limitation is not considered surprising given the low levels of nitrogen found in wood 

(Buswell and Odier 1987). In addition to lignin degradation, several other features of 

secondary metabolism in P. cluysosporium triggered by N-limitation have been studied. 

The formation of an extra-cellular glucan and synthesis of veratryl alcohol also occur as 

secondary metabolic events (Linko 1992). 

Various studies have focussed on the improvement of peroxidase production by 

supplementation of the basic growth medium with various additives or adaptation of the 

physical environment (Asther et al. 1988; Bonnarme and Jeffries 1990; Linko 1992). 

Additives which have been shown to improve ligninase production include: 

• Veratryl alcohol (Kirk et al. 1986; Linko 1992); 

• Surfactants such as Tween 20 and Tween 80 (Jager et al. 1985; Venkatadri and Irvine 

1990; Legtan et al. 1993); 

• Phospholipids and fatty acids (Asther and Corrieu 1987); 

• Trace elements (Tien and Kirk 1988); 

• Buffers and pH control (Kirk et al. 1978; Linko 1992; Haapala and Linko 1993). 

19 



1.5.3. Oxygen Requirement 

The importance of having a pure oxygen environment for good ligninase production is 

well documented. The ligninolytic system of the WRF has been shown to be particularly 

active in cultures grown in high oxygen tension (Dosoretz et aL 1990). Lignin 

degradation was shown to be about 3-fold higher under 100% oxygen than under air 

(Kirk et al. 1978). Faison and Kirk (1985) reported that both ligninolysis and ligninase 

activities ofP. chrysosporium were increased in cultures initially supplied with air during 

their growth phase and then shifted to an oxygen atmosphere. Because of this, most 

laboratory-scale studies as well as scale-up attempts have employed the use of a pure 

oxygen environment for high productivities (Dosoretz et al. 1993). Dosoretz et al. (1990) 

also reported that different oxygenation conditions had a profound effect on the onset and 

decay of the peroxidative system, and the production of extra-cellular proteases and 

polysaccharides. 

1.5.4. Production Strains 

P. chrysosporium, the most commonly studied of the white rot fungi is an asexual, 

thereto-tolerant, sporulating imperfect fungus. The reason for the popularity of this 

species in studies of lignin degradation is due to the following: 

• P. chrysosporium has an optimum growth temperature of 40°C and an optimum pH of 

4.5, which is not common, making contamination of production cultures less of a 

problem; 

• It has a relatively rapid growth rate compared to the other WRF; 

• A thoroughly defined chemical growth medium has been developed for culture of this 

species making studies on the effects of its chemical environment easy; 

• It is a potent lignin degrader; 

• It produces asexual spores that can be used for mutagenesis. Also, a growth medium 

has been developed which allows colonial growth of the fungus. These features make 

genetic studies more convenient ; 
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• It was thought not to produce polyphenol oxidases which cause re-polymerisation 

reactions which would make studies on the depolymerisation of lignin difficult. 

However, it has recently been found that P. chrysosporium in fact contains a laccase 

(Gold and Cheng 1978; Linko 1992; Gold and Alic 1993; Jeffries T. 1995, pers. comm; 

Srinavasan et al. 1995) 

Of the wild type strains of P. chrysosporium used, the strain ATCC 24725 (BKM-F-

1767) has been reported to produce the highest ligninase activity (Linko 1992). The other 

well-studied wild type strain is ATCC 34541 (ME 446). Another well studied mutant is 

1NA-12, which is nitrogen deregulated (Buswell et al. 1984) and produces LiP under high 

nitrogen and high carbon content. Several other P. chrysosporium mutants which produce 

LiP under nutrient sufficient conditions have also been reported (Linko 1992). One of the 

most noteworthy is PSBL-1, a mutant lysine auxotroph which produces high ligninase 

activities under high nitrogen conditions (Tien and Myer 1990 ). 

1.5.5. Culture Conditions 

Stationary Cultures 
Initial laboratory-scale experiments on LiP production were performed using static 

cultures of 10m1 of growth medium in 125m1 Erlenmeyer flasks using a spore suspension 

as inoculum (Tien and Kirk 1988). The fungus grows as a pellicle on the surface of the 

growth medium, and under typical conditions (N-limited medium, 39°C), and 

atmospheric oxygen, the ligninolytic activity appears after 3 to 4 days (Kirk and 

Nakatsubo 1983), Even before LiP was discovered, Keyser et al. (1978) reported a 

reproducible sequence of metabolic events of the culture following inoculation: From 0 to 

24 hours germination of spores takes place followed by a period of linear growth and 

concomitant depletion of nutrient nitrogen. They found that primary growth started 

between 0 and 12 hours (as measured by DNA synthesis) and ceased after 30 hours. From 

24 to 38 hours, cessation of linear growth and de-repression of ammonium permease 

activity (demonstrating nitrogen starvation) was observed. From 72 to 96 hours, 

ligninolytic activity was observed (determined by the appearance of '4CO2  from 14C 
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synthetic lignin). This activity appeared between 2 and 3 days after the depletion of NH4
+  

and 2 days after maximum growth rate was achieved. 

Agitated Cultures 
One of the greatest hindrances to scale-up of the LiP production systems had been the 

limitation to use stationary cultures (Leisola and Fiechter 1985). It was initially observed 

by Kirk et al. (1978) that agitation, which leads to pellet formation, suppresses the 

ligninolytic system of P. chrysosporturn (Kirk et aL 1988; Linko 1992). This was 

believed to be due to oxygen limitation (Leisola and Fiechter 1985), but was 

subsequently shown to be due to mechanical inactivation of the ligninolytic system by 

shear stress (Linko 1992). 

Jager et al (1985) reported that the addition of non-ionic detergents, such as Tween 80, 

to growth media of P. chiysosporium facilitated the production of ligninolytic enzymes in 

agitated flask cultures. Equal or higher LiP activities were obtained from cultures agitated 

at 200 rpm compared to stationary cultures, when the N-limited medium was 

supplemented with 0.02% Tween 80 and veratryl alcohol. A maximum enzyme activity 

of 179 U. L.-1  was obtained from a 6 day-old culture. In cultures grown under agitation 

without a detergent only traces of ligninase could be detected (Linko 1992). These 

findings suggested new prospects for scale-up of the production of ligninolytic enzymes 

in stirred tank fermenters. One of the most successful systems involving conventional tank 

reactors was achieved by Bonnarme et al. (1993). They used the wild type production strain 

BKM-F 1767 with a patented glycerol-based growth medium (Anther el al. 1989). 

Although techniques have been developed which will overcome the problem of sensitivity 

to agitation in stirred tank reactor systems, the scale-ability of freely suspended cultures in 

tank reactors is questionable since Janshekar and Fiechter (1988) failed to scale up a tank 

reactor from 42L to 300L using constant impeller tip speed, and constant gas flow rate as 

scale-up criteria. These authors suggested that adequate understanding of the relationships 

involved in the regulation of primary and secondary metabolic pathways is necessary for 

optimal design of enzyme production systems. 
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Immobilisation of P. cluysosporium 

Various bioreactor geometries using immobilised biomass on different support matrices 

such as nylon web (e.g. Linko 1988) and polyurethane foam (e.g. Kirkpatrick and Palmer 

1987) have been employed to produce LiP. Several recent reports of LiP production by 

immobilised P. chtysasporium have been summarised by Linko (1992), 

In general, it was found that immobilisation of P. chtysosporium provided good LiP 

yields and improved the predictability of laboratory-scale cultures. Immobilisation of the 

biomass allowed for biocatalyst re-use in multiple repeated batch cultures (Kirkpatrick 

and Palmer 1987). 

A good example of a reactor which showed potential for both semi-continuous LiP 

production (Venkatadri and Irvine 1993) and removal of PCP by immobilised P. 

chrysosprium is the silicone rubber membrane reactor. This reactor consisted of silicone 

rubber tubing wound into a stirred tank reactor which contained either a growth or 

production medium. The silicone rubber tubing was pressurised from its lumen side with 

pure oxygen. This arrangement provided excellent oxygen mass transfer because of 

solution-diffusion type transport of the oxygen through the silicone rubber. Alternative 3 

day growth/production medium cycles yielded good batch productivities which could be 

repeated over several cycles. The silicone rubber tubing appeared to be an excellent 

support for fungal growth. A hollow fibre reactor was also used in a similar mode, but 

yielded inferior results (Venkatadri and Irvine 1993). 

Good results were obtained with nylon web, polyurethane foam, sintered glass, silicone 

rubber tubing and poly (styrene-divinylbenzene) carriers (Ruckenstein and Wang 1994, 

and references therein), The most popular matrices for immobilisation of P. 

chrysosporium, probably due to availability, are polyurethane foam and nylon web 

materials (Moreira et al. 1997; Laugero et al. 1996). Thus, in summary, it can be stated 

that criteria now exist for good enzyme yields in batch- and semi-continuous enzyme 

production processes. The other major criterion for successful commercialisation is scale- 
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ability. Bosco et al. (1996), have identified some criteria for a scale-able reactor 

configuration for good ligninolytic enzyme production in P. chrysosporium : 

• Supported biofilm; 

• Low mechanical sheer stress on the biofilm due to gas and fluid dynamics; 

• Large support area available for biofilm growth; 

• Large liquid/gas/mycelial interfaces. 

Moser (1991) stated that a bioprocess must be regarded as a highly complex network of 

interactions between the metabolism of cells and the environmental conditions 

determined by the reactor and properties of the medium. Productivities of bioprocesses, 

no matter what the application, are linked with productivities of bioreactors. Selecting 

and designing an appropriate bioreactor for a specific organism depends on the 

characteristics of this organism and requires an understanding of how the complex fluid-

mechanical, nutritional and physico-chemical environment affects the cells (Papoutsakis 

1991). 

Continuous Culture 
Continuous production of ligninolytic enzymes has not been widely reported for WRF. It 

has been difficult to achieve since these enzymes are produced as secondary metabolites. 

In several secondary metabolite producing species, the stationary phase may be 

prolonged for days by continuously or intermittently providing non-repressive and non-

inhibitory levels of carbon source in a fed batch culture. In some organisms, the 

stationary phase is very short (approximately 4-20 hours) and in others such as P. 

chrysosporium, the stationary phase may extend to several days. Invariably, the rate of 

product formation declines and cessation of stationary phase occurs. This occurs for 

several reasons: 

• Irreversible decay of one or more enzymes of a production pathway. These losses 

occur at primary and secondary metabolic level; 

• Feedback effects of accumulated product lower productivity; 
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• Autolysis leading to loss of active biomass. This is particularly important in the case 

of P. chrysosporium since up to 40% of biomass can be lost due to lysis in the decline 

phase of typical batch cultures (Broda P. 1996, pers. comm.); 

• Committed differentiation to end the life cycle. 

(Demain et all 1983) 

Continuous culture has been accepted as a means for dramatic bioprocess intensification 

(Shuler and Kargi 1992). If P. chrysosporium is to be applied to bioremediation by direct 

contact with effluents, it would have to compete with bacterial systems. The 

bioremediation capability of bacteria, although generally inducible, is a trophophasic 

function and is thus suited for continuous culture, 

Continuous processes reported for ligninolytic enzyme production in P.chrysosporium 

have involved regeneration of mycelium in successive growth-production cycles (Feijoo 

et aL 1994). This type of system gave peaks of LiP activity lasting for 1 or 2 days during 

production phase before a regeneration of biomass phase of approximately 6 days was 

required. Activity was shown to decline after each successive cycle (Venkatadri and 

Irvine 1993; Feijoo et al 1994). This is clearly an inefficient approach. 

The inability to sustain continuous ligninolytic activity in laboratory bioreactors is 

discrepant with the native state of the WRF, which are responsible for ligninolysis in the 

natural environment. Lignin degradation in nature appears to be highly productive and is 

certainly sustained continuously. This discrepancy might occur because the homogeneous 

environment of typical laboratory fermentors is clearly different from the natural 

environment in which WRF have evolved to cope best with, the solid-air interface of 

woody tissue. Some corroborative evidence was provided by Datta et aL (1991), who 

showed by immunoblotting and amino acid sequencing that the prominent ligninolytic 

iso-enzymes produced when P. chrysosporium was grown on wood pulp was different 

from that produced in cultures grown on a defined medium in liquid culture. 
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The effect of the physical environment can be explained by the fact that the growth habits 

of the fungus relate to its survival in nature. An important aspect of the natural external 

environment of the WRF is its heterogeneity, comprising of nutrient gradients. 

1.6. NUTRIENT GRADIENTS 

It has been shown that nutrient gradients are established in biofilms of immobilised 

organisms. Substrate gradients result in heterogeneous distributions of viable cells owing 

to growth and death of cells (see fig 1.4.). In fact, only for very small particles can non-

uniform cell growth be prevented (Characklis 1990a). 

Fig. 1.4: Nutrient gradients in immobilised cell systems (Siebel 1992). C1  represents substrate 
concentration. 

The profile of substrate concentration versus distance from the surface of the biofilm is 

determined by the following: 

• Microbial substrate uptake rate, which is a function of microorganism concentration 

and their affinities for the substrate; 

• Substrate transport rate through the film which depends on substrate diffusivity 

through the biofilm; 
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• Substrate transport rate to the biofilm, which is a function of microbial substrate 

uptake rate, substrate diffusivity through the water and hydrodynamics near the 

biofilm surface. 

(Siebel 1992). 

Nutrient and physical gradients not only occur in immobilised cells but also in natural 

biofilms and other environments (Lovitt and Wimpenny 1981; Emerson et al 1994). 

Spatial heterogeneity and the general lack of nutrients in natural environments means that 

molecular diffusion is the dominant transport process for nutrients. For these reasons 

dynamic models have been developed describing simultaneous substrate diffusion, 

consumption and growth (Walsh and Malone 1995). 

Similar research has been undertaken to characterise the structural heterogeneity of 

biofilms resulting from spatial gradients (Onuma and Omura 1982; Murga et al. 1995; 

Walsh and Malone 1995). This has shown that the structure, activities and composition of 

biofilms change with biofilm depth (Zhang and Bishop 1994). 

In view of the above-mentioned phenomena, it was conceived that spatial concentration 

gradients could be exploited to continuously produce secondary metabolites as secondary 

metabolism is usually triggered by nutrient starvation. Thus, reactors were considered 

which operate on the basis of the maintenance of steady-state nutrient gradients. Such 

reactors are termed "gradostats" (Wimpenny 1990). 

1. 7. GRADOSTAT SYSTEMS 

The term "gradostat" was first used by Lovitt and Wimpenny (1981) to describe a 

chamber where steady-state nutrient and oxygen gradients can be established and 

maintained at steady-state in order to study various ecological implications of similar 

environments in nature. In a review on the topic, Wimpenny (1990) describes three types 

of laboratory models to study diffusion of nutrients in heterogeneous environments and 

the effects of these gradients on microbial growth. These include: 

• Open or steady-state gradient systems (Wimpenny 1990); 

27 



• Closed gel-stabilised diffusion models (Emerson et al.. 1994; and references therein; 

Wimpenny 1990); 

• Bacterial colonies (Wimpenny 1990). 

Gel-stabilised systems and bacterial colonies have been studied by microbiologists for 

several decades and warrant no further discussion here. 

1.7.1. Open Gradient Systems 

These are typically chemostat culture vessels linked together to form multistage 

continuous culture systems (Lovitt and Wimpenny 1981; Moser 1991). This provides uni-

directional transfer of material, which is useful in modelling a system like the soil, where 

the net flow of materials is in one direction only (Wimpenny 1990). 

Lovitt and Wimpenny (1981) describe a bi-directional open gradient system, which they 

called the "gradostat". This consisted of five laboratory fermentation units arranged on a 

series of steps. Culture was pumped up the array from vessel to vessel and was 

transferred in the opposite direction by gravity over weirs. An example of growth of a 

bacterium on two nutrients entering the system from different directions is described 

(Wimpenny 1990). 

Various other formats of gradostats are described (Wimpenny 1990, and references 

therein) but none conform to the requirements for good ligninolytic performance by P. 

chrysosporium Attached growth perfusion systems were thus evaluated. One of the most 

effective of these are membrane bioreactors. 

1.8. MEMBRANE B1OREACTORS 

Membrane bioreactors evolved out of the use of membranes for filtration. Typical 

ultrafiltration membranes were adapted for immobilisation of microorganisms and 

mammalian cell lines (Belfort 1989; Prenosil and Hediger 1988). 
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Rony (1972) first published the use of membrane bioreactors and the successful use of 

hollow fibre bioreactors for the cultivation of mammalian whole cells was first reported 

by Knazec et at (1972). Subsequently, a number of applications have been reported in 

the literature with various bacteria, fungi and plant cells all being successfully grown 

(Belfort 1989). In the standard design, several or individual hollow fibres are potted 

together at each end and sealed in a housing (usually tubular) to separate the extra-

capillary space (ECS) from the lumen space (Belfort 1989). Cells are normally confined 

to the shell side of a hollow fibre cartridge, although they have also been grown within 

and across the membrane fibres. Dissolved nutrients are normally supplied by transport 

from the lumen across the membrane to the cell mass by convection or diffusion (Belfort 

I989). 

Many advantages relate to the use of membrane reactors for immobilisation of whole 

cells. They have high surface area to volume ratios, separation of cells from flow and 

high cell concentrations (Heath and Belfort 1992). The membrane properties provide a 

normally hydrophobic matrix which encourages cell attachment. With the advantage of 

high cell densities and hence, high volummetric productivities and sustained output 

resulting from a stabilised in vitro environment, immobilised cell membrane bioreactors 

are particularly attractive for difficult-to-culture organisms such as mammalian and plant 

cell cultures for production of complex bio-products (Belfort 1989). The biomass is 

retained in a low shear environment with continuous supply of nutrients and removal of 

metabolic wastes. 

One of the major problems mentioned in literature concerning membrane bioreactors is 

that nutrient gradients have been shown to exist in hollow fibre bioreactors (Webster and 

Schuler 1979; Robertson and Kim 1985; Piret and Cooney 1990). When nutrients are 

supplied by diffusion, radial nutrient gradients are normally established as the cells 

closest to the membrane have first access to them while the cells furthest away from the 

membrane surface are normally starved of nutrients (Inloes et at 1983; Belfort 1989; 

Piret and Cooney 1990; Dall-Bauman et at 1990, Sardonini and DiBasio 1992). Further 

diffusional resistance is provided by extracellular product formation (Lawrence et al. 

1994). This is depicted schematically in figure 1.5. 
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Fig. 1.5: Nutrient gradients typically encountered in membrane biofilms (Webster and Shuler 
1979). 

1.9. THE SOLUTION - CONCEPT OF THE "MEMBRANE GRADOSTAT 
REACTOR" 

From a study of the requirements for bioreactor design for P. einysasparium, 

consideration of the native state of this organism and the characteristics of membrane 

bioreactors, a novel membrane gradostat reactor was conceptualised as a solution to 

continuous production of idiophasic enzymes and bioremediation using P. 

chlysosporium, It is based on the establishment of nutrient gradients in a perfusion 

biofilm reactor configuration. 

Thus, the "problem" of nutrient gradients in membrane bioreactors and biofilms in 

general was formulated into a solution to the problem of continuous secondary metabolite 

production in filamentous fungi. 

L9.I. The Membrane Gradostat 

The term "membrane gradostat" is used to describe a biofilm reactor with good potential 

for industrial application, which uses a synthetic capillary ultrafiltration membrane as a 

support matrix for the biofilm. The term gradostat applies since although gas and liquid 

nutrient flow is uni-directional, bi-directional contact occurs between the primary and 
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secondary growth phases of the biomass. The essence of this system is described below 

and is depicted schematically in figure 1.6. 

Fig. 1.6:Schematic representation of the membrane gradostat concept with superimposed batch 
culture growth curve. (I) Primary growth phase, (H) stationary phase, (M) decline phase. L is 

the lumen of the fibre from which the growth medium k supplied. X is radial distance from 
the lumen in the direction of nutrient flow. C is the concentration of growth-limiting 

substrate. 

In practice the concept would involve immobilising fungal biomass onto the spongy layer 

of a capillary membrane and developing a biofilm of sufficient thickness, density and 

activity to establish a radial nutrient gradient across the biofilm. New biomass would then 

be produced continuously near the surface of the biofilm where nutrient rich conditions 

prevail. This biomass would be pushed outward by newly-formed biomass to an area of 

low nutrient concentration. Here the biomass passes into secondary metabolism 

activating its enzyme production system at the hyphal tips. Inactive biomass and spores 

produced are sloughed off at the outermost reaches of the biofilm by the turbulent air 

supply passing through the extra-capillary space (ECS). There would, therefore, be no 

need to regenerate biomass and force it into secondary metabolism by alternate growth 

medium/production medium cycles. 
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It was hypothesised, therefore, that if the life-cycle events of the fungus were to be 

transformed from a temporal domain to a spatial domain in this way (figure 1.6), then one 

could achieve continuous enzyme production over time in the bioreactor. 

A logical research drive in the development of membrane biofilm systems was to 

increase the biofilm density and quantity in a reactor since the effectiveness of a 

biocatalytic system depends largely on the concentration of the biocatalyst. A major 

hindrance to the development of dense biofilms in membrane reactors was the 

establishment of radial nutrient gradients as explained above. Thus, many alternate 

reactor designs were directed at overcoming these nutrient gradients (Chresand et aL 

1988; Heath and Belfort 1992; Prazares and Cabral 1994). The membrane gradostat 

concept utilises this "problematic" phenomenon of inherent nutrient gradients as an 

advantage and, therefore, challenges the above technological prejudice toward 

developments designed to overcome the nutrient gradients. 

1.10. RESEARCH HYPOTHESIS 

The ligninolytic state of WRF such as P. chrysosporiurn has promising commercial 

potential for bioremediation and/or ligninolytic enzyme production. The major hindrance 

to development of cost-effective processes to achieve the above is the inability to sustain 

continuous enzyme production for extended periods, and the shortcomings of 

conventional reactor systems, which relate to their incongruence with the heterogeneous 

native state of the organism. 

It was postulated that sustained ligninolytic activity could be achieved by effecting 

spatio-temporal domain transformation in the development of the mycelium in a typical 

batch culture, ie. primary and secondary metabolism in the same thallus within the 

reactor. It was also postulated that this could accomplish high productivity due to the 

compliance of the system with the requirement of the fungi for a solid/air interface. 
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Testing this hypothesis required the development of the membrane gradostat reactor. The 

objective of this thesis was to test the following claims, to which the pragmatic 

considerations of the above hypothesis were reduced. These are: 

1) That P. chrysosporiurn can be grown on membranes in gradostat operation mode 

and produce secondary metabolites, i.e. that the theoretical membrane gradostat 

concept holds empirically; 

2) That the construction of laboratory-scale membrane bioreactors suitable for this 

application is technically feasible; 

3) That the enzymes so produced are active, recoverable and can be used in 

bioremediation applications. 
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CHAPTER 2 
THE MEMBRANE AND REACTOR MODULE 

2.1. INTRODUCTION 

The concept of the membrane gradostat bioreactor (MGR) was proposed as a possible 

system for the continuous production of fungal secondary metabolites. The 

transformation of this idea into a functional process required the selection of an 

appropriate membrane and reactor configuration for supporting differentiated fungal 

growth. The first component to be investigated was the membrane to be used as a support 

matrix for immobilisation of fungal growth. 

Commercial membranes are available in 3 basic formats: flat sheet, tubular and 

capillary/hollow fibre membranes. Since capillaries offered the most favourable surface 

area to volume ratio, these were chosen as a support matrix for the MGR concept on the 

basis of recognition that the superior surface area to volume ratio would provide the best 

volumetric productivity (Cabasso 1980; Prenosil and Hediger 1988; Liu et aL 1991). 

Capillaries are also self-supporting, simplifying the hardware required for fabrication and 

operation (Cabasso 1980). Several attempts were made to use commercially available 

ultrafiltration (UF) membranes to evaluate the MGR concept. This represents a year's 

work with little success achieved. While results are not shown in detail, figure 2.1. shows 

the typical features of P. chlysosporium on a conventional membrane. A rigorous 

evaluation of these results led to the identification of the shortcomings of commercial UF 

membranes as matrices for the support of differentiated fungal growth as described 

below. 
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Fig. 2.1; Biofilm of P. chrysosporium immobilised on a conventional polyethersulphone 
ultrafiltration membrane. It can be observed here that the biofilm did not penetrate into the 

spongy wall of the membrane and appears not to be firmly anchored to the support matrix. B- 
biofilm, ES- external skin, M-macrovoid (Mag. = 230X). 

Low Permeability 
Slow filtration rate made the inoculation procedure tedious. Since this is a critical stage 

of biofilm development, the inoculation procedure would ideally involve the filtration of 

a spore suspension onto the outside spongy layer of the capillary membrane. The 

inoculation step then became a 4-day process, which was considered unacceptable. Flux 

during spore inoculation could be improved by increasing the hydraulic pressure of the 

inoculum feed. The increased pressure, however, created leaks in the system, 

occasionally leading to membrane bursts (especially at the potting material intersection) 

and contamination of the nutrient feed compartment. 

Low Surface Area due to Blunt-Ended Macrovoids 
Reduced wall space available for attachment of the fungal biomass resulted in 

inconsistency in establishment of stable, dense biofilms. Even when a biofilm was 

established, small increases in fluid flux resulted in slough-off of large chunks of the 

biofilm as it was not sufficiently well anchored. 

It has been reported that biofilm removal results from shear forces acting parallel to the 

biofilm surface and also lift forces, resulting from fluid turbulence, acting normal to the 

substratum (Applegate and Bryers 1991). The problem of blunt-ended macrovoids 
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appears to be a general shortcoming of conventional anisotropic membranes as support 

matrices. Michaels (1980) has shown that these membranes are not optimally colonised 

by even small bacterial cells. 

The Presence of an External Skin 
The outer membrane layer made penetration of the fungal growth into the spongy wall of 

the membrane very difficult leading to poor anchorage of the biofilm. 

Based on the above experience it was proposed that if the biofilm could be firmly 

entrapped within the macrovoids, sloughing of the biofilm by the above mechanisms 

could be avoided. If the macrovoids were not blunt-ended, the biofilm would be more 

firmly attached to a greater available wall surface, which in turn, would be more likely to 

sustain a differentiated fungal thallus. 

The identification of above requirements for the system led to the development of a 

customised capillary membrane where the biofilm support matrix would be enhanced. 

The membrane development process has been reported by Jacobs and Leukes (1996). 

2.2. MANUFACTURE OF A NOVEL MEMBRANE FOR ATTACHED FILM 

MEMBRANE BIOREACTORS 

2.2.1. Introduction 

Once some insight was gained into the shortcomings of conventional OF membranes for 

use as a support matrix for immobilisation, a rational approach could be taken for the 

development of an appropriate membrane for application in the MGR. 

Most commercially available membranes are produced by the phase inversion technique, 

a versatile procedure for the fabrication of membranes (Mulder 1996). The technique is 

based on the transformation of a polymer from the liquid into the solid state under 

controlled conditions. The solidification process is initiated by the transition from one 

liquid state into two liquids (liquid-liquid de-mixing). At a certain stage during de- 
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mixing, the high polymer concentration liquid phase will solidify to form a solid matrix, 

which is the phase inversion (Mulder 1996). The role of polymer precipitation is 

determined by the progress of the concentration event, which is governed by phase 

interchange rates (Bottino et al. 1991). By controlling the initial stage of phase transition 

the membrane morphology can be controlled. In this way porous and non-porous 

membranes can be formed (Mulder 1996). 

Various techniques for achieving phase transition are available. These include solvent 

evaporation, thermal precipitation, precipitation from the vapour phase and immersion 

precipitation. Most commercially available membranes are produced by the immersion 

precipitation technique, which involves the immersion of a polymer solution (polymer 

plus solvent) into a coagulation bath containing non-solvent. Precipitation occurs as a 

result of the exchange of solvent and non-solvent. 

Hollow fibres and capillaries can be prepared via three methods, wet spinning (or dry-wet 

spinning), melt spinning, or dry spinning. The most common is dry-wet spinning, In this 

process the spinning dope, which is a viscous, degassed, filtered polymer solution 

containing a polymer, solvent and sometimes additives, is pumped through a spinneret. A 

non-solvent stream is passed through the inner tube of the spinneret, resulting in 

coagulation of polymer to give rise to the lumen of the membrane. After a short residence 

time in the air (dry stage), or a controlled atmosphere, the nascent hollow thread is 

immersed into a non-solvent bath (wet stage) where coagulation occurs. At this point the 

fibre has sufficient mechanical strength to pass over guides and rollers under moderate 

tension (Mulder 1996; Cabasso 1980). 

A number of factors have been shown to affect the final morphology of the membrane 

wall. These are described below. 

The Choice of Solvent/Non-Solvent System.  
This is one of the main parameters in immersion precipitation systems. In order to 

produce a membrane by the phase-inversion technique, the polymer must be soluble in 

some solvent. Several solvents will be available for a particular type of polymer, but the 

solvent and non-solvent must be completely miscible. Water is the most common non- 
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solvent. In general, solvent and non-solvents with a high mutual affinity should be 

chosen. In this case, instantaneous de-mixing occurs in the water bath, resulting in porous 

membranes (Mulder 1996; Bottino et al: 1991). If the solvent and non-solvent are not 

completely miscible, delayed de-mixing occurs, which results in dense membranes 

(Mulder 1996; Reuvers 1987). Tsay and McHugh (1990) also suggest the use of a strong 

non-solvent like H2O for the formation of a highly porous membrane, and it is reported 

by Cabasso (1980), that in employing a strong non-solvent, fibres displaying large 

macrovoids and cavities are obtained. 

Choice of Polymer.  
Polymer selection is important since it limits the solvents and non-solvents that can be 

used (Mulder 1996). Usually, however, the polymer is chosen first and then suitable 

solvents and non-solvents are found. 

Polymer Concentration.  
A high polymer concentration in the casting solution leads to high polymer concentration 

at the film inter-face, resulting in a less porous structure, even though instantaneous de-

mixing occurs (Mulder 1996; Tsay and McHugh 1990). Low polymer concentrations 

should thus be used for the formation of highly porous membranes. 

Composition of the Coagulation Bath 
Addition of solvent to the coagulation bath is an important factor to consider in the 

determination of membrane structure. Some theory exists about this concept, but it is 

complex, since various phenomena are involved which must be considered in the context 

of the other casting and spinning parameters, In summary, delayed de-mixing tends to 

produce non-porous membranes with thick and dense skin layers, whereas low interfacial 

polymer concentration tends to produce more open top layers. Tsay and McHugh (1990) 

suggest the addition of high solvent concentration to the external coagulation medium for 

formation of thin skin layers, with sponge-like sublayers. 

Presence of Additives 
Small additions of low and high molecular weight non-solvent additives to the casting 

solution also result in more porous membranes. The example of PVP {poly-vinyl 

pyrrolidone) is described by Cabasso (1980). PVP is added to polysulphone spinning 
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dope to increase the viscosity to maintain the falling lumen configuration during 

spinning. In the coagulation bath the PVP, a water-soluble polymer, dissolves in the non-

solvent leaving a residual porous, hydrophobic polysulphone matrix. 

Spinning_Parameters affecting Membrane Structure 
Beside the composition of the spinning dope, certain fabrication parameters also 

influence the fabrication protocol. Liu et al. (1992) have reported that the following 

parameters influence the dimensions (inner diameter (ID), outer diameter (OD), wall 

thickness), morphology and performance of capillary membranes. These are extrusion 

rate and pressure of the polymer solution (Aptel et al. 1985; Mulder 1996; Liu et al. 

1992; Miao et al 1996b), spinneret geometry (Mok et al. 1995), bore fluid flow rate 

(Cabasso 1980; Aptel et al. 1985; Mulder 1996), tearing rate (Mulder 1996) and viscosity 

of the spinning dope (Miao et al. 1996a), length of air gap (Aptel et al. 1985; Liu et al. 

1992; Wienk et al. 1995; Miao et at 1996a) and spinning temperature (Cabasso 1980). 

Changes in the above parameters are governed by the combined effects of desolvation, 

fibre swelling, and fibre stretching during fibre production (Miao et al. 1996a and b). 

Factors affecting Macrovoid Formation 
The formation of macrovoids is described fairly extensively in the literature. Their 

formation is normally considered unfavourable in OF membrane manufacture, because 

their presence could lead to weak spots or points of imperfection, causing fragility in the 

membrane, especially if high hydraulic pressures are to be used (Cabasso 1980; Mulder 

1996; Miao et al. 1996b). Also, penetration of pinholes could occur at moderate pressures 

due to the presence of macroVoids (Cabasso et al. 1977). 

The mechanisms which determine the type of membrane formed (porous or non-porous), 

tend to also determine whether or not macrovoids are formed. It has been shown, for 

many systems, that where instantaneous liquid-liquid de-mixing occurs, macrovoids are 

formed, and where there is delayed onset of de-mixing, they are absent (Cabasso et aL 

1977; Mulder 1996). Low spinning dope viscosity, and low polymer concentration have 

been shown to enhance macrovoid formation, which supports the above description 
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(Cabasso 1980). Two phases in macrovoid formation play a role. These are initiation and 

growth (or propagation) of the macrovoid (Mulder 1996). 

Macrovoid formation results from the liquid-liquid demixing, where nuclei of the 

polymer-poor phase are responsible for macrovoid formation. Growth takes place 

because of the diffusional flow of solvent from the surrounding polymer solution. A 

nucleus can only grow if a stable polymer/solvent/non-solvent composition is induced in 

front of it by diffusion. Growth will cease if a new stable nucleus is formed in front of it. 

Hence, the polymer solution in front of the nucleus must be kept stable and homogeneous 

if macrovoids are to be produced which extend from just outside the skin layer to the 

outer wall. If this is the case, solvent and non-solvent diffuse into the nuclei and the 

macrovoid grows until the polymer concentration at the macrovoid/solution interface 

becomes so high that solidification occurs. Clearly, a fine balance must be maintained, a 

difficult concept to engineer on a large scale. 

2.2.2 Experimental Approach to Membrane Development 

Casting Solution 
Since skin formation on the lumen side generally results from contact with a strong non-

solvent, pure water with no solvent or other additives was used as the internal coagulant 

to generate a thin-skinned membrane. For macrovoid formation, a casting solution and 

internal coagulant were chosen to sustain growth of the macrovoid from just below the 

skin layer all the way up to the membrane periphery.  

For the formation of an open-porous surface on the membrane, gelation on contact with 

the external precipitation bath had to be suppressed. Gelation (skin-formation) was 

known to be suppressed if the non-solvent solution in the precipitation bath contains low 

concentrations of non-solvent (Smolders et al. 1992). It was therefore hypothesised that 

if the composition of the external coagulation tank mirrored that of the advancing 

polymer-poor phase front as it neared the membrane exterior, there should be no driving 

force for diffusion or heat of mixing (no concentration gradient), and that the phase-

inversion process would cease. It was therefore decided, as a first approach, to use an 
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external coagulation bath with a solvent/non-solvent ratio near to the cloud-point of the 

casting solution. N-methyl-, 2-pyrrolidone (NMP) was used as solvent and a 20% 

aqueous solution of NMI' was chosen as an initial set of conditions. 

Membrane Fabrication Protocol 
A modified approach to membrane spinning was used. A conventional annular tube-

within-tube extrusion die (spinneret) was used, but this was positioned at the bottom of 

the non-solvent coagulation tank, and the membrane was drawn vertically from the 

spinerette at a linear production rate of 4 m. min.-1  As the external coagulant or contact 

bath was high in solvent content, the outside of the nascent membrane was still highly 

swollen, gel-like and soft when it was withdrawn from the external contact fluid, The 

membrane was therefore exposed to a non-solvent vapour atmosphere, humidified air in 

this case, to fix the structure once the membrane had been withdrawn from the bath, 

Phase separation by contacting the polymer solution with vapour of non-solvent is 

described in the literature (Wienk et al. 1995). 

Once the phase-inversion membrane-formation process was completed, the membrane 

could be transferred to guide rollers in the rinse tanks without damage. The experimental 

membrane-formation equipment is illustrated in figure 2.2. 

Fig 2.2: Schematic representation of the spinning line used (Jacobs and Leukes 1996). 

The casting solution had the following components: -polysulphone (polymer), NMP 

(solvent), methyl cellusolve (MC, non-solvent additive), polyethylene glycol (PEG600, 
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low molecular weight polymer additive) and polyvinyl pyrrolidone (PVP 40 000 Da., 

high molecular weight additive). The compositions of some of the initial casting 

solutions are given in table 2.1. 

Table 2.1: Casting solution formulations designed to produce membranes with finger-like voids 
(Jacobs and Leukes 1996). 

Component 

Membrane Code 

PSF-1 PSF-2 PSF-3 PSF-4 

Concentration (% m/v) 

Ultrason S (PSI) 26 24 24 24 

High-boiling point solvent (NMP) 51 46 56 36 

Low-boiling point non-solvent (MC) 2 10 10 10 

Low molecular mass polymer additive (PEG600) 11 10 30 

High molecular mass polymer additive (PVP) 10 10 10 

2.2.3 Results and Discussion of the development of the new membrane 

As a first approach the membranes were spun into an aqueous external contact bath with 

an NW solvent content of 80% (same solvent as that used in the spinning solution). 

Several membranes with different structures were produced, based on the various 

formulations used. These were shown in Jacobs and Leukes (1996). The most promising 

of these was PSf-4 (figure 2.3). 

Although some of the features of membrane PSf-4 were what was required, it still needed 

further modification. The cavity walls of this membrane were skinned and not 

microporous. Therefore, the casting solution had to be modified further to promote 

greater porosity. The formulation was adjusted by decreasing the polysulphone 

concentration and increasing the PEG600 concentration. This formulation (PSf-5), which 

was subsequently used in all further experiments, is given in table 2.2. 
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Fig. 2.3: Cross-section of PSf-4 membrane. The macrovoids are well developed to extend from 
outer to inner surface of the wall. An external skin can still be observed, however. 

Table 2.2: Modified casting solution formulations to enhance porosity. 

Component 
Membrane Code 

PSf-5 PES-1 
Concentration (% in/v) 

Ultrason S (PM) 22 
Ultrason E (PES) 22 
High-boiling point solvent (NMP) 36 36 

Low-boiling point non-solvent additive (MC) 10 10 

Low molecular mass polymer additive (PEG600) 32 32 

It proved difficult to prevent the formation of a skin layer on the outside of the 

membrane, and in figure 2.4. an external skin layer is clearly visible on the micrograph, 

even though the external coagulant was high in solvent content and therefore had little 

precipitation potential. However, not all membranes coagulated in the 20% aqueous 

NMP-solution had well-defined external skin layers, as regularly spaced cavities were 

prominent in most of the membranes (figure 2.5). 
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Fig. 2.4: Electron micrograph of the cross—section of PSf-1 membrane. This clearly shows the 
presence of an external skin. 
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Fig. 2.5: External skin surface of a polysulphone membrane coagulated in a 20% aqueous 
solvent coagulant. 

If the hypothesis regarding skin-formation was correct, the aqueous content of the 

external coagulant had to be reduced to below 20%, to prevent gelation, nucleation or 

phase-separation. The cloud point of the solution was empirically determined to be 9% 

and the coagulant and lower coagulant bath non-solvent concentrations were evaluated. 

The optimum was found to be 7.9%. The membrane produced in this way is shown in 

figure 2.6. 
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Fig. 2.6: Cross-section of PSf-5/3 showing the thin inner skin layer, porous macrovoid 
substructure and skinless exterior. 

This membrane had a well-defined internal skin layer and the open-ended narrow-bore 

macrovoids which radiated from the internal skin layer were regularly spaced as shown 

in figure 2.7. 

Fig. 2.7: Regular spacing of the finger-like macrovoids in membrane PSf-5/3. 

The average diameter of the macrovoids was 20pm (figure 2.7). From the micrographs 

the cross-sectional diameter of the membrane was calculated to be 1.8 mm. and the 

diameter of a macrovoid opening to be 25pm (i.e. including one wall thickness). On the 

basis of these figures, it was estimated that there were more than 9x106  macrovoids per 

metre-length of membrane (Jacobs and Leukes 1996). Figure 2.8 shows the skinless 
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external surface of the membrane wall. This membrane was coded IPS 763 and used in 

the evaluation of the MGR concept. 

Fig. 2.8: The exterior surface of the PSf 5/3 membrane. 

Mechanical Integrity of the Membrane 
It was reported that the presence of macrovoids in the substructure of membranes 

decreases the mechanical integrity of the membrane (McKelvey and Koros 1996; Mulder 

1996). It was also found to be necessary to reduce the thickness of the internal skin layer 

to stimulate macrovoid formation and maximise the void length. This resulted in a 

thinner skin-support layer, reducing the membrane resistance and hence the hydrostatic 

driving force requirements of the membrane. The membrane was still found to be quite 

robust with an instantaneous burst-pressure ranging from 2,3 MPa. for membrane PSf-1 

to 1.8 Mpa. for membrane PSf-5. A membrane with high mechanical strength is 

important to prevent fibre disruption due to uncontrolled, excessive cell growth and to 

prevent membrane leakage during operation (Tharakan and Chau 1986; Linton et al. 

1989). Given that the normal turgor pressure of cells is 200 —300 kPa. (Walsh and 

Malone 1995), the membrane should be strong enough to withstand pressure exerted by 

a biofilm. Reported burst pressure values for commercial membranes (Amicon) range 

from 20-200 kPa. These are clearly inadequate, being in the range of pressures that 

expanding cells can exert on their surroundings. 
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2.3. THE SINGLE FIBRE BIOREACTOR 

With the successful production of a capillary membrane with the required characteristics, 

it was necessary to develop reactor designs appropriate for its evaluation. In order to 

characterise the immobilised fungal biofilm, destructive sampling for electron 

microscopy and biochemical tests was necessary. Due to the cost and closed nature of 

membrane reactors, this required the development of an inexpensive laboratory-scale 

membrane bioreactor with a reusable housing which could easily be disassembled for 

sampling. Single fibre reactors are very well suited for this type of work because of their 

convenience, simplicity and small amounts of chemicals needed for testing (Reiken and 

Briedis 1990) What was called the disposable membrane mini-reactor, shown in figure 

2.9. was developed with the following dimensions and characteristics: 

Housing length 14 cm. 

Diameter 0.7 cm. 

Effective membrane length 12 cm. 

Membrane Diameter 0.2 cm. 

Gass T-piece 
ECM Rubber EPHYResin 

CaPillarYMembrane 

14cm. 

Fig. 2.9: Schematic diagram of a disposable mini-membrane reactor. 
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It was manufactured with glass T-pieces joined by silicone tubing. The potting material 

used was commercially available epoxy resin. Use of a single membrane fibre made 

characterisation, operation and assembly of the system less complicated. 

In order to perform experiments that involved study of biofilm development over time, a 

system was required which would provide the same conditions to a set of several 

disposable mini-reactors, so that they could be sacrificed and analysed when required. 

This proved difficult in practical terms since uneven nutrient supply to reactors in the 

array was encountered. This is typical of in-parallel multiple channel units and is 

experienced in scale-up of cylindrical units to incorporate large numbers of fibres 

(Prenosil and Hediger 1988). Such a system was designed and built at relatively low cost 

(—R1 500) which was effective and durable. It is depicted schematically in figure 2.10. 

and has the following features: 

• Pressure compensated flow regulators on the medium supply inlet of each bioreactor 

to ensure that each reactor was exposed to the same flow and pressure as the rest' 

These could be replaced with needle valves if different flow rates are required for 

each individual reactor. 

• Heat-sterilisable quick connect/disconnect fittings (Bosch) allow for easy aseptic 

transfer of growth medium supply. 

• Each reactor is connected to a non-return valve so that any reactor could be removed 

from the manifold without affecting the other reactors. 

1 
A chance encounter with an irrigation specialist resulted in an efficient, inexpensive solution in the form of 

"drippers", which are used in long irrigation sprinkler-type irrigation pipes where pressure drop is a major problem. 
These drippers behave as diaphragm-based pressure-compensating flow regulators. 
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Fig. 2.10: Multiple mini-reactor rig. P-pressure gauge. 1-inoculation line 
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2.3.1. Operation of the Mini-Reactor System 

Sterilisation 
The bioreactor design and operational mode must preclude the accidental entry of 

contaminating microrganisms at entries, exits and sampling ports for liquids and gases. 

Sterility design is also crucial for regulatory reasons. This is relevant in the cultivation of 

P. chrysosporium in South Africa and the Plant Protection Research Institute stipulates 

complete containment, especially in the case of the more potent strain, BKM-F 1767.  

This caution is in consideration of the use of wooden railway sleepers in South Africa 

and P. chrysosporium being a potent lignin degrader. It is for this reason that initial 

studies and evaluation of the bioreactors was performed using the weaker strain ME -

446. 

Thus, a suitable sterilisation procedure had to be developed. Formaldehyde was used as a 

sterilising agent due to its volatility so that it could sterilise the gas phase equally well. 

Since the reactor system lends itself to air bubble formation, this was necessary. 

After incorporation of the mini-reactors into the system, the fluid outlet line was 

connected to the air inlet line behind the pressure gauge, using the Quickstar connections. 

The air filter to the pressure gauge section of the air supply circuit was autoclaved. To 

sterilise the rest of the reactor, the culture medium was replaced with a 4% formaldehyde 

solution in tap water. The air/inoculation/permeate outlets of each mini-reactor were 

connected to the reservoir return. The formaldehyde solution was then re-circulated 

through the reactor system for at least 24 hours. The formaldehyde was then rinsed out by 

replacing the formaldehyde reservoir with a reservoir of 5L of autoclaved distilled or tap 

water. The reactor outlets were disconnected and the fluid present allowed to drain to 

rinse out the formaldehyde solution. The reactor was then connected in inoculation mode 

by aseptic re-connection techniques. Plastic ends were drenched in 70% alcohol and steel 

connections were heated using a Bunsen burner, before detachment or attachment. 
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Inoculation 

After sterilisation, an inoculum vessel was aseptically connected to the air supply line 

behind the pressure gauge. At the end of the rinsing procedure, water was forced to 

permeate the membrane walls under pressure and allowed to fill the ECS. This was to 

ensure minimal air bubble entrainment within the fibre macrovoids or at the membrane 

surface. It was found by Caldwell and Lawrence (1988) that it is necessary to pre-soak a 

system with the desired growth medium just before inoculation to define the chemistry of 

the surface. Thus, the ECS and lumenal space were soaked with growth medium for 

aproximately 30 minutes before inoculation. 

The inoculum was then pumped into the ECS of the reactors via a peristaltic pump. 

Initially, the reactor outlets were left open, so that the reactors could be primed to relieve 

them of air bubbles. The outlets were then closed to allow the ECS to be pressurised to 

150kPa. In this way, 10 mL. of inoculum. (mL. of reactor volume)" was presented to the 

external surface of the membrane by dead-end reverse filtration. 

Spore Inoculum 
Spore inocula of P. chrysosporium were prepared by inoculating a malt extract agar plate 

with the stock culture. This was allowed to grow to confluence. At this stage an —1 cm.2  

disc of agar plus growing fungus was transferred to a Roux bottle containing the 

sporulation medium of Tien and Kirk (1988) (Appendix A). After 10 days, the spores 

were suspended in 400mL. of water. This procedure yielded a spore suspension that was 

consistent from one experiment to the next. 

Vegetative Inoculum 
When vegetative inoculum was required, 2.8 L. Fernbach flasks containing 100 mL. of 

the growth medium described by Tien and Kirk (1988) (Appendix B), except that no 

veratryl alcohol was used, were inoculated with a spore suspension as described above 

After 3 days of growth the mycelia formed were homogenised using a Waring blender at 

high speed for thirty seconds. The homogenate was introduced to the ECS of the 

bioreactors via an inoculation port and recirculated by a peristaltic pump to allow 
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attachment of the vegetative mycelia to the membrane. The ECS was then pressurised by 

air to 150 kPa overnight to allow a biofilm to establish on the membrane surface 

Table 2.3: Operational parameters for the multi — mini-fibre rig. 

Reactor length 14 cm. 

Shell side diameter 6 — 8 mm. 

Active fibre length 12 cm. 

No. of reactors 8 

Fibre polymer material Polysulphone 

Fibre type IPS 763 

Tubing material-peristaltic pump Silicone rubber 

Tubing (rest of system) Silicone rubber 

Tubing diameter 4 rnm. 

Fibre internal diameter 1 mm. 

Fibre external diameter 2 mm. 

Volumetric air flow rate — 1 vol. vol.-I  min.-1  

Air pressure Atmospheric 

Air flow regime Longitudinal to fibre 

Nutrient flow rate I00 mL.11-1  

Nutrient flux 0.1 — 1 L. in-2.h.1  

Nutrient back pressure n. d. 

Nutrient flow regime Recirculation 

Flow Conditions  
Growth medium was recirculated through the capillary membrane lumen using a 

peristaltic pump. The pressure-compensated flow regulators were rated at 2 L. h."1, but a 

flow rate of 100mL, h.-I  was used in most cases since this gave approximately the desired 

flux for most experiments. The flow regulators served the purpose of ensuring that the 

flow was evenly split between the reactors attached. The mini-reactor rig was operated in 

recirculation mode only since no pump could be found which could supply sufficiently 

low rates to provide dead-end flow in the correct flux range. The air flow rate was chosen 

to be similar to that of a gassed CSTR vessel, so that easy comparisons could be made in 

terms of oxygen mass transfer. Thus, a volumetric air flow rate of 1 vol. (vol. ECS).-1  
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min. -1  (Shuler and Kargi 1992) was chosen. A summary of the operating conditions is 

given in table 2.3. 

Adequate temperature control was achieved by housing the entire unit in a constant 

environment (C.E.) room set to 37 °C. The lack of an outer skin and improved surface 

area of the new membrane allowed the formation of a dense biofilm several micrometers 

thick. It was found that sufficient spores could be filtered onto the membrane to make 

the inoculation time a total of 30 minutes long. This was a noticeable improvement over 

the 4—day procedure necessary for application of the conventional membrane.  

2.4. CONCLUSION 

The skinless membrane developed for the purpose of proving the utility of the membrane 

gradostat bioreactor concept can be considered as an important breakthrough in the field 

of membrane bioreactors in general and a crucial step in the development of the MGR 

concept. This membrane was the result of a very close collaboration with the Institute for 

Polymer Science (University of Stellenbosch), which shows the importance of 

collaboration in multi-disciplinary research. 

The design and fabrication of the mini-reactor rig, and the formulation of an operational 

protocol met the requirements for proof of the MGR concept (described in the next 

chapter). Thus, the requirements for the development of suitable hardware were met. 
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CHAPTER 3 

THE CONCEPT OF SPATIO-TEMPORAL DOMAIN 

TRANSFORMATION 

3.1. INTRODUCTION 

The principle hypothesis of this study proposes that true continuous production of 

secondary metabolites by the white rot fungus P. chrysosporium would require the 

simultaneous presence of different phases of growth within the same thallus. The MGR 

was designed to demonstrate that the temporally distinct phases of batch culture —

primary, secondary and decline phases — may be observed spatially across the 

immobilised biofilm of this organism. The arrangement whereby temporal growth events 

in the fungi may be observed in the spatial domain is fundamental to the successful 

operation of the gradostat reactor. This chapter reports studies undertaken to evaluate this 

concept. Several means of demonstrating the growth phase and activity of a biofilm have 

been reported in the literature. 

Direct Study of the Nutrient Gradients 
The growth phases of batch cultures may be associated with the nutrient status of a 

culture (Shuler and Kargi 1992), Thus, if the concentration of the limiting nutrient could 

be determined as a function of radial distance across the biofilm, a precise indication of 

the nutrient status, and thus the physiological state of the various zones of the biofilm, 

could be determined. In practical terms this can be accomplished in two ways: 

1) The use of published mathematical models to describe the nutrient gradient as a 

function of the growth and substrate utilisation kinetics of the organism and the 

operating conditions of the system (Siebel 1992). This is a very attractive option, 

since the only measurements required are growth medium substrate concentration, 

biofilm density, reactor outlet substrate concentration and dilution rate. Several 

models exist describing nutrient gradients in biofilms generally (Characklis 1990a), 

and in membrane bioreactor biofilms, specifically under diffusive transport as well as 

convective transport conditions (Salmon et al. 1988; Kelsey et al. 1990). 
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Unfortunately, the paucity of refined models for the growth of P. chrysosporiurn in 

solid and liquid culture conditions made this a venturesome approach. 

2) Direct measurements of nutrients using micro-electrodes (Bungay 1969; Brune et al. 

1995; Brune and Kuhl 1996). This would give the most precise empirical description 

of the nutrient gradients, but the unavailability of such equipment precluded its 

application. 

Sectioning of Biofilms and Biochemical Study of the Sections 
Techniques have been demonstrated for saggital sectioning of biofilms (Burrill et aL 

1983, Fry 1990; Murga et al. 1995). These sections could then be assayed for viability or 

the presence of certain markers by published biochemical means (Fletcher 1990; Herbert 

1990; Ladd and Costerton 1990). This would have been ideal for a rectangular biofilm, 

but when attempted in practise, the radial nature of the biofilm derived from the MGR 

system made its application difficult, since sharp, clearly defined zones were not 

obtainable. So-called "optical sectioning" of biofilms using scanning confocal laser 

microscopy or on-line epifluorescence microscopy (Suhr et aL 1995) seemed a useful 

alternative. Once again, equipment of this type was not available for use. 

Morphological Studies 
It has been shown that the morphology of fungal mycelia can be related to their 

physiological state (Rittmann et al. 1992). The rationale for testing biofilm differentiation 

as a function of nutrient concentration is based on the knowledge that although the 

differentiation and physiological states of fungi leading to secondary metabolite synthesis 

are still not well understood, growth (Rhigelato et al. 1968), metabolic activity, 

pathogenicity, pigmentation (Obert et al. 1990) and product formation (Megee et al. 

1970) have been related to structural differentiation of the hyphae. Paul et al. (1993) have 

shown that secondary metabolite formation in the form of penicillin synthesis is 

associated with increased vacuolation in Penicillium chtysogenurn, and that this can 

easily be determined microscopically and quantified by automated image analysis 

techniques. The morphology of a filamentous fungus can be described in terms of 

microscopic morphology, which determines the shape and size of individual hyphal 

elements; and macroscopic morphology, which determines the shape and size of fungal 
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pellets (Nielsen and Krabben 1995) or biofilms. These morphologies relate to each other 

and to the process environment (Viniegra-Gonzalez et al. 1993). 

The morphological approach was chosen for this study following the failure to acquire 

useful information from the bioreactor using the sectioning approach. 

3.1.1. Research Objectives 

To prove that changes in nutrient environment can be correlated to morphological 

changes in P. chrysosporium and that such morphological changes can be observed 

across a biofilm of P. chrysosporium as a function of distance from the fibre lumen, the 

following studies were undertaken: 

• Development of the biofilm in the MGR; 

• Characterisation of spatial differentiation in the mature biofilm; 

• Correlation of the differentiated states mentioned above to temporal growth events in 

a typical batch culture of immobilised P. chrysosporium. 

3.2. MATERIALS AND METHODS 

3.2.1 Study of Biofilm Development and Demonstration of Morphological 
Differentiation across a Mature Biofilrn of P. chrysosporium  ME446 in both 
Spatial and Temporal Contexts, 

A set of 8 disposable membrane mini-reactors was operated for 10 days in continuous 

MGR mode. The conditions and apparatus used are described in chapter 2. Spore 

inoculum was used since this overcomes the need to prepare vegetative inoculum that 

would need to attach passively. Spore inoculation would therefore improve productivity 

of the system and would be used if industrialisation of this system were realised. Spore 

inoculation was made possible using the custom-designed IPS 763 membrane described 

in chapter 2, Thus, the IPS 763 membrane was used in the mini-reactors and spore 

inoculation of the multi-mini-reactor rig was performed according to the method 

described in chapter 2 (section 2.5.3). 
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Individual reactors were sacrificed at appropriate intervals for the study of biofilm 

development and flow rates were re-adjusted to maintain initial conditions in each 

reactor. Sections were made (2-4 mm. lengths of membrane) and prepared for Scanning 

Electron Microscopy (SEM) according to Appendix C. The permeate from each 

sacrificed reactor was analysed for LiP according to Appendix G. 

3.2.2. Correlation of Morphological Characteristics with Growth Phases 

For batch cultures, 8 disposable mini-reactors were assembled in a multiple mini-reactor 

rig as described in chapter 2. The reactors were operated in batch mode to determine the 

morphological changes observable in the biomass in response to substrate supply. 

Conventional (with an outer skin) ultrafiltration capillary membranes were used so that 

growth only occurred around the outside skin of the capillaries in order to simplify the 

characterisation of the biofilm. Vegetative inoculum was used to achieve greater 

synchrony of growth phases since it is known that fungal spores do not germinate 

simultaneously (Bosch et al. 1995; Nielsen and Krabben 1995). 

After inoculation the reactors were supplied with a nutrient-sufficient medium as used for 

pre-inoculation preparation. This was fed at a rate sufficient to prevent the establishment 

of nutrient gradient formation and thus enable exponential growth. After 5 days the 

nutrient supply was stopped to starve the culture and force it into stationary growth 

phase; and then decline or sporulation phase. Observations were made to determine 

morphological changes in response to nutrient limitation. 

Intracellular marker assays were performed on other sections of the same membrane to 

correlate the morphological changes to growth phases (described below). 

Determination of the Onset of Secondary Metabolism 
This proved to be a challenge since the most obvious way of doing this would have been 

by direct measurement of LiP or MnP, but this approach was found to be problematic for 

the following reasons: 

57 



• The available enzyme assays were found to be insensitive based on personal 

experience and literature; 

• No permeate was expected when the culture was starved, since starvation was 

achieved by stopping nutrient flow, thus it would have been difficult to establish 

extra-cellular activity. 

Thus, some other marker of secondary metabolism was needed. A candidate for 

consideration was veratryl alcohol, a metabolite known to be produced in situ by P. 

cluysosporium under stationary growth phase conditions (Shimada et al. 1981). Due to 

problem number 2 (above), however, veratryl alcohol would have had to be separated 

from a cell lysate, requiring extensive sample preparation to enable reasonable analysis. 

A specific enzyme marker was, therefore, thought preferable. Succinate Dehydrogenase, 

a marker for mitochondrial activity and Cytochrome C Oxidoreductase, a marker for 

endoplasmic reticulum activity (Bonnarme et al. 1991) were chosen on the basis that the 

specific activity of these enzymes has been shown to increase sharply at the onset of 

stationary phase in P. chrysosporium (Capdevila et al. 1990; Bonnarme et al. 1991; 

Bonnarme et aL 1993). 

Intracellular Enzyme Marker Analysis 
Intracellular marker enzymes, Succinate Dehydrogenase (a marker for mitochondria) 

activity) and Cytochrome C Oxidoreductase (a marker for endoplasmic reticulum 

activity) were determined as described in Appendix E. In order to calculate specific 

activity, intracellular protein was determined according to the method of Bradford 

(1976). 

3.2.3. Strain and Medium 

P. clnysasporiurn strain ME446 was used in this experiment and was maintained and 

cultured as described in Appendix A and B. This strain was used for the sake of safety 

due to the lack of experience at that stage with the operation of the newly-developed 

equipment. The growth of this strain is less aggressive than the typical production strain 

(BKM- F- 1767) used for LiP production. 
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3.2.4. Reproducibility and Validity of Results 

The experimental protocol was tested and optimised through a series of 8 runs, by which 

time clear trends and suitable consistency resulting from sufficient experience with the 

new system were achieved. Lignin peroxidase (LiP) determinations, however, cannot be 

considered reproducible, since the module was not designed for product analysis. The 

permeate volume collected after 24 hours was too low to allow replicate analysis. 

The results shown were obtained from a typical experimental result. Values shown are 

calculated means of duplicate measurements, except for dry mass determinations, which 

are single readings taken after constant mass was achieved through drying. Electron 

micrographs are typical examples of observations of 2- 5 specimens. 

3.3. RESULTS AND DISCUSSION 

The MGR concept was shown to be a practical reality. Continuous, non-intermittent LiP 

production at high levels was achieved after 3 days of operation (figure 3.1). Thus, it 

appeared to take 3 days for the biofilm to reach a sufficient thickness so that nutrient 

gradients could be established. These results, although typical, must be considered 

preliminary, since insufficient permeate could be collected from each mini-reactor per 

day for replicate determinations of enzyme activity. It does, however, indicate 

qualitatively that the MGR provides continuous enzyme production. 

Fig. 3.1: Lignin peroxidase production in single fibre bioreactors over a 9 day period. 
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3.3.1. Biotilm Development 

Daily samples taken of the biofilm (figures 3.2a and b) before it reached steady-state 

allowed the following descriptive model for biofilm development to be formulated. 

Biofi ims in general are accepted to develop in three stages, attachment, accumulation and 

dynamic equilibrium (Wanner et al. 1995; Ascon-Cabrera et al. 1995). Development of 

the P. cinysosporiun2 biofilm in the MGR is, therefore, discussed in this context. 

Attachment  
Spores could be seen to attach to the surface of the membrane. This is probably due to 

hydrophobic interactions between the spore surface and the membrane polymer matrix. 

According to literature, colonisation of a surface consists of a number of processes, some 

occurring in parallel and some in series. When a process consists purely of a number of 

steps in parallel, the slowest steps represent the rate-limiting steps, which control the rate 

of the process. It is generally believed that the rate-limiting step in biofilm formation is 

colonisation of a surface (Ramsden et al 1994). This was thought not to be the case in 

the use of spores with the newly developed IPS 763 membrane since the spores were 

driven into the macrovoids by convection (figure 3.2.a.), which offered a better transport 

efficiency than adhesion of spores to the surface of the membrane. From figure 3.2.b it 

can be seen that large amounts of spores were also to be found at the surface of the 

capillaries. This could be due to too high a concentration of spores in the inoculum. 
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Fig. 3.2a: Colonisation of the membrane by spores upon inoculation (Mag. =190X). 

Fig. 3.2b: Biofilm of P. chrysosporium immediately after inoculation, showing the spores 
attached to the surface of the membrane (Mag. = 270X). 

Since spore attachment was found to be a rapid process, spore germination was expected 

to be the rate limiting step. This would require careful attention in the development of an 

optimised process (Escher and Characklis 1990). 

Germination and Biomass Accumulation 
It was observed that, predominantly, spores at the surface of the capillary wall 

germinated (figure 3.3). Literature states that spore germination follows 2 distinct phases: 

The spore first undergoes enlargement of its size, during which it increases in diameter 

and biomass (spherical growth). In this phase new wall layers are formed and laid down 
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over the whole inner surface. After a given time, polarity is established and a germ tube 

grows out from the swollen spore (Bosch et al. 1995). 

The spores on the membrane can be seen to have germinated and hyphae appeared to 

project downwards towards the lumen, possibly due to chemotropism. 

Fig. 3.3: Biofilm of P. chrysosporium after 1 day of operation, showing germ tube (GT) 
formation (Mag. = 700X). 

Dynamic Equilibrium 
As new biomass was laid down on the matrix closest to the nutrient source, the 

germinating (as well as ungerminated) spores were pushed upwards until a biofilm of 

sufficient thickness and density was established such that nutrient gradients were 

established across it. This required 3 days to occur. Under the operating conditions 

described in chapter 2, LiP production occurred after approximately 3 days (see figure 

3.1). The steady-state biofilm is defined as a special case in which the gains in biofilm 

mass (due to new cell growth) are just balanced by the losses in biofilm (mostly from 

decay and shearing), i.e. none of its components or phases change with time (Characklis 

1990a; Ascon-Cabrera et al. 1995). In practice, this condition is never expected to be 

fulfilled exactly, but is considered acceptable as long as deviations are small and occur 

locally and infrequently (Characklis 1990b, Characklis et al. 1990) 
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On day 6 the profile of the continuous biofilm around the outside of the capillary 

depicted in figure 3.4. was obtained. It was found that, as predicted, various distinct 

morphological zones could be distinguished. 

Fig. 3.4: Profile of the P. chrysosporium biofilm around the outer surface of the capillary in 
steady-state A-aerial mycelia, B-biofilm, M-membrane outer surface (Mag. = 190X). 

Fig, 3.5: Cross section of the biofilm in the macrovoids of the membrane. B-biofilm, M-
membrane (Mag. = 2 700X). 
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3.3.2. Morphological Differentiation in the Mature Biofilin 

The observed biofilm was found to display noticeably distinct zones of differentiation. 

These are described below. 

Zone 1: Biomass in the Macrovoids 
The biomass penetrating into the macrovoid is shown in figure 3.5. This is a different 

type of growth from that observed in the biofilm surrounding the capillary. It appears 

similar to the leading hyphae described by Steele and Trinci (1975). These hyphae are 

found at the margins of differentiated mycelia on plates and represent growth of hyphae 

in a high nutrient environment. This is as expected from the gradostat concept. These 

hyphae are similar to the undifferentiated hyphae found in exponentially growing mycelia 

on solid culture and submerged cultures. Steele and Trinci (1975) do, however, point out 

distinguishable differences between leading and undifferentiated hyphae. The most 

important of these is that the maximum extension rates of the leading hyphae of 

differentiated mycelia were about 2-fold to 7-fold (depending on the strain) faster than 

the mycelia of undifferentiated hyphae. This is distinguishable morphologically as 

differences in the hyphal extension zones between the two hyphal types. Unfortunately, 

in this study the density of the fungal biomass was too high to objectively determine 

differences with statistical validity. If this could be achieved, some important information 

could be obtained about the specific growth rate of the hyphae, since the two parameters 

were shown to be related (Trinci 1974; Steele and Trinci 1975). 

Zone 2: Biofilm Around the Capillary Wall 
This biofilm had a thickness of approximately 300 pm. Significant mycelia] 

differentiation could also be observed in this film (figure 3.4.). This is more easily seen in 

the composite thin section of high magnification (figure 3.6.).The zones distinguishable 

at this level are numbered A-D. 

Zone A: 

This is the zone directly above, and attached to, the capillary wall. A large number of 

large round structures are observable, These are likely to be swollen, ungerminated 

spores (Gerin et aL 1995), since only a certain fraction of spores were expected to 

eventually germinate (Nielsen and Krabben 1995). Both the fraction of viable spores and 

the time interval for spore germination (time for initiation of spore germination and time 

64 



for termination of spore germination) have been shown to depend on the spore quality 

and medium composition (Nielsen and Krabben 1995 and references therein; Bosch et al 

1995), i.e., the percentage viability is higher on a complex medium than a defined 

medium, and germination time is faster with fresh spores than old spores. Thus, another 

process parameter can be identified, viz. spore preparation and germination for 

optimisation of the process. 

Alternatively, these could be the swollen, yeast-like cells, described by Pirt and Callow 

(1959) cited in Puszhtahelyi et al. (1997), found in Penicillium chrysogeman mycelia. 

They found that at the optimum pH for penicillin production, short, highly branched 

hyphae containing a large number of swollen cells could be observed before pellet 

formation in continuous chemostat cultures. Pusztahelyi et al. (1997), observed the 

dominance of this growth form in advanced stages of growth. They report the observation 

by other authors of similar growth forms under various growth conditions, e.g. at alkaline 

pH, in unusually acidic media, during oxygen limitation, and after exposure to high 

concentrations of CO2. Pusztahelyi et al. (1997) refer to this growth form as a specialised 

survival form of Penicillium chlysogenum. 
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Fig. 3.6: Composite picture of the biofilm profile. The arrow indicates direction of growth 
medium flow. The letters A-D show the perceived differentiated zones. Zone A would be 

closest to the nutrient supply (Mag. = 900X). 
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Zone B 

This is the zone of mostly highly branched and fragmented mycelia. These are likely to 

be the highly branched mycelia typical of stationary phase as described in the batch 

culture experiment (described later). As mentioned above, the high level of fragmentation 

is probably due to increased vacuolation. This agrees well with the demonstration by Paul 

et al. (1994), that fragmentation of hyphae was not due primarily to mechanical shear, as 

was previously thought, but rather due to physiological state as affected by vacuolation, 

since this region in the gradostat biofilm is not expected to experience much shear. 

Puszhtahelyi et at (1997), propose an intricate link between branching, vacuolation, 

fragmentation and I3-lactam antibiotic production in Penicillium chtysogenum and 

Acremonium chrysogenum. Based on this, and other data in this thesis, a similar 

prediction can be made for ligninolytic enzyme production of P. chrysosporium. 

Zone C 

This zone is a thin layer of profusely conidiating biomass, with large necrotic spaces 

indicating an advanced stage of growth and autolysis. This is possibly due to the limiting 

nutrient(s) concentration reaching a critically low level to initiate sporulation. 

Zone D 

Above the layer of nutrient limited biomass, an area of biofilm of much lower density 

was observed. The lower density could have been due to detachment and sloughing off of 

dead biomass and spores since this is expected to be an area of relatively high turbulence 

and shear. It has been shown from previous experiments that dead P. elyysosparium 

biomass detaches from biofilms very easily. Alternatively, the lower density could have 

been due to differentiation of the thallus to maximise oxygen mass-transfer. The fact that 

the mycelia in this zone appeared to be viable, with narrowed hyphae, with distinct 

alignment parallel to the radial axis of the fibre (perpendicular to the flow of air) supports 

the differentiation hypothesis. These are typical examples of aerial hyphae commonly 

observed on solid surface cultures of filamentous organisms. Physiologically, they are a 

form of specialised hypha for oxygen uptake. Their formation is linked to secondary 

metabolism in various filamentous fungi and bacteria (Trinci 1974). Physically, they 

provide the biofilm with a macroscopic roughness, the impact of which is described 

below. 
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The above-mentioned zones agree well with the first approximation description of the 

membrane gradostat concept. Zone D, however, was not anticipated. 

A dynamic equilibrium, therefore, seems to have been established between the generation 

of new biomass at the lumen side of the biofilm and the sloughing off of biomass on the 

shell side of the biofilm, with secondary metabolism occurring continuously in between.  

3.3.3. Macroscopic Characteristics of the Biofilm 

Biofilm Thickness 
The thickness of a biofilm is an important control parameter for the performance of a 

fixed film reactor (Freitas dos Santos and Livingston 1995; Pavasant et al. 1996). A 

balance must be struck between maximum biomass concentration and penetration depth 

of oxygen. A biofilm of approximately 500 p.m was obtained using a flux of 1 L.m-2.h-1 . 

(figure 3.4). A subjective comparison with other systems for the cultivation of P. 

chrysosporium shows that no other reported system reaches this thickness. This is 

encouraging since, if it can be shown that adequate oxygen supply is attained, then this 

could be the basis of a competitive system. Future research will require the determination 

of oxygen penetration into the biofilm, however, such equipment was not available for 

such studies. 

The biofilm thickness correlates well with the maximum penetration depth of oxygen into 

fungal biofilms. Lejeune and Baron (1997, and references therein) show a penetration 

range of 70 to 350 gm., depending on the density, based on mathematical models and 

microprobe measurements of mycelia! pellets.  

Biofilm Uniformity 
Most mathematical models of biofilms assume or predict a homogeneous distribution of 

cells and extra-cellular polymeric substances (EPS). These are, however, based on simple 

populations of bacteria (Ascon-Cabrera et al. 1995), which are not expected to show 

complex differentiation behaviour, as is the case of the filamentous fungi. 
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The distinct differentiation, mentioned above, occurred on a microscopic level. On a 

macroscopic level, the biofilm appeared homogeneously distributed along the length of 

the single membrane fibre (see figure 3.7). However, it could be seen that the thickness of 

the biofilm tapered from the inlet to outlet side (left to right in the photograph). This was 

due to pressure drop along the length of the fibre, which led to diminishing wall permeate 

flux. This phenomenon is an important design criterion for consideration in the 

development of larger modules. 

It has been shown in bacterial films (Aston-Cabrera et al. 1995) that special channels 

form in stagnant biofilms which aid in mass transport. This has not been found to be the 

case in this system. Initially it was thought that this was due to the nature of the system, 

which entails perfusion of growth medium through the biofilm rather than flow of 

nutrients over the surface. Subsequent work with another fungus, Trametes versicolor, 

seemed to have shown the presence of such channels in a membrane gradostat system, 

implying that the formation of channels could be species-, rather than process-specific 

(results not shown). This notion was confirmed by Murga et al. (1995). The absence of 

such channels simplifies process models, but the impact on productivity cannot be 

predicted. 

Figure 3.7: Biofilm distribution along the length of a single capillary fibre (Top). The 
photograph below shows the biofilm obtained with a 5X higher flux, providing further proof 

that the biofilm size is nutrient limited, since a thicker biofilm is observed with increased 
nutrient supply. Photographs were taken by magnifying the biofilm with an overhead 

transparency projector. 
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Surface Roughness 
Biofilm accumulation and metabolic activity are controlled by momentum-, energy- and 

mass-transport processes. Biofilms, in turn, have significant influence on these transport 

processes. This is because biofilms increase hydrodynamic frictional resistance, and in so 

doing, increase advective heat and mass transfer. Biofilm roughness is related to its 

thickness (macro-roughness). It is therefore important to quantify hydrodynamic 

roughness before interfacial transfer phenomena can be described (Characklis et al. 1990, 

Ascon-Cabrera et al. 1995). 

Biofilm accumulation may constrict conduits for airflow in the reactor, so that more 

energy is required to transport the same quantity of fluid through the reactor at the same 

rate. This resistance to momentum transport is often referred to as pressure drop 

(Characklis I990b). Alternatively, the biofilm roughness may cause eddy currents, which 

dissipate some of the energy available for flow. The eddy currents increase the rate of 

heat and mass transport from the liquid to the biofilm by advective heat- and mass-

transport. The currents enhance the transport of mass to and from the biofilm surface. 

Thus, nutrients are transported to the biofilm surface faster. Mass transfer at a rough 

surface may be as much as three times as high as at a smooth surface. (Characklis et aL 

1990). At the same time, the biofilm is subjected to a greater shear force, resulting in 

more biofilm detachment. 

By visual inspection, it could be seen that the outer surface of the P. chtysosporium 

biofilm was noticeably roughened by the presence of aerial hyphae. The impact of this 

phenomenon can presently only be speculated about, but will be the subject of further 

study. 

Presence of Zones 
The presence of visually distinct zones makes the process of modeling biofilm physical 

characteristics convenient, since each zone, once its metabolic characteristics are known 

can be modeled as an individual plug-flow reactor (finite space elements approach), for 

which a considerable literature base exists. Alternatively, each zone can be treated as an 
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individual "species", each with unique characteristics. Multi-specific biofilm models with 

inter-specific interactions can then be applied (Ascon-Cabrera et aL 1995). 

3.3.4. Physiological Characterisation of Batch Culture Progression 

This experiment was performed to determine whether similar differentiation patterns to 

that observed in a cross section of the biofilm under the continuous culture conditions, 

described according to the MGR concept, could observed at different times during the 

batch culture described (section 3.2.2), 

Characterisation of Growth Phases during Batch Culture.  
The growth of P. chtysosporium on the membrane (figure 3.8.) seemed to follow a 

typical trend for this organism where initial exponential growth was followed by a very 

short stationary phase, followed by a decline phase. The extent of the decline phase is 

typical for P. chtysosporium, which can show up to 40% loss of dry weight due to 

autolysis upon nutrient starvation (Broda P., 1996, pers. comm.). 
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Fig 3.8: Change in biofilm dry mass over time. Dry mass shown is that of a 30mm length of 
membrane with immobilised fungus. The arrow indicates when nutrient supply was 

discontinued. Section 3.2.4 describes the reproducibility of the data. 
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Fig. 3.9: Succinate Dehydrogenase activity, a marker for mitochondrial function. The arrow 
indicates when nutrient supply was stopped to starve the culture. The increase in activity on 

days 7 indicates the onset of stationary phase. 
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Fig. 3.10: Cytochrome C Oxidoreductase activity, a marker for Endoplasmic Reticulum 
activity. A similar increase in activity to that in figure 3.9. shows the onset of stationary phase 

on day 7. 
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From figure 3.9. it can be seen that after the growth medium supply was stopped, 

noticeable changes in mitochondria! activity occurred as indicated by Succinate 

Dehydrogenase activity. An increase in activity was observed 12 hours after starvation, 

peaking the next day (day 7) and indicating a switch to the secondary metabolic phase. 

On day 8 Succinate Dehydrogenase activity was significantly reduced, indicating that the 

senescent or decline phase was reached. 

Endoplasmic reticulum activity as indicated by Cytochrome C Oxidoreductase activity 

peaked very suddenly on day 7 and disappeared just as suddenly on day 8 (figure 3.10). 

These phase changes correspond to those predicted by biofilm dry mass changes (figure 

3.8). Thus, based on 3 criteria, it could be stated with some confidence that stationary 

phase extended through day 7, and decline phase commenced on day 8. 

Morphological Characterisation 
Figure 3.11. shows the morphological changes corresponding to the physiological events 

marked by the intracellular organelle activity changes. The mycelia in primary growth 

phase are elongated filaments of regular shape (figure 3.11. A and B). This compared 

well with published accounts of undifferentiated hyphae found in submerged, and 

exponentially growing mycelia (Trinci 1974). Mycelia in secondary metabolic phase 

tended to be more branched, fragmented and of irregular shape (figure 3.11. C). 

Fragmentation of mycelia and increased frequency of hyphal branching have been shown 

to be indicative of filamentous fungi in stationary growth phase (Pusztahelyi et al. 1997, 

and references therein). The fragility of starved mycelia has been shown to be partially 

due to increased vacuolation in Penicillium chiysogenum (Nielsen and Krabben 1995), 

Increased vacuolation is also indicative of idiophasic mycelia. Figure 3.11. D shows the 

mycelia in the decline phase. These are mostly dead cells, cell debris and spores. 
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Fig.3.11: Morphological changes through the batch experiment. (A) day 1. (B) day 3. (C) day 6 
(12 hours after nutrient supply was stopped). (D) day 8 (mostly spores and dead cells). A and 
B show mycelia in primary growth phase, C shows mycelia in stationary phase and D shows 

mycelia in decline phase. Magnifications are shown on the micrographs. 

Figure 3.12. shows biofilm development over the same time course. The initial growth 

appeared to be the production of exploratory mycelia (figure 3.12. A). The biofilm then 

underwent an accumulation phase during which biomass accumulated (figure 3.12. B). 

This would correspond to the exponential growth phase in submerged culture. Figure 

3.12. C shows the biofilm in late stationary phase at which time sporulation takes place. 

Figure 3.12. D shows the biofilm in the decline phase. From this electron micrograph and 

from observations of wall growth of this fungus in a laboratory CSTR, it is evident that 

dead biomass detaches readily from the support matrix. 
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Fig. 3.12: Biofilm development over the same period as described in figure 3.11. Initially sparse 
exploratory hyphae were produced (A). Thereafter, rapid biofilm accumulation was visisble 

(B), followed by autolysis (C) and sporulation (D). Magnifications are shown on the 
micrographs. 

3.3.5. Summary of Observations 

Correlation of morphological changes of the biofilm to physiologically determined 

growth phases indicated distinguishable differences. Thus, it could be concluded that 

hyphal differentiation could be used as a tool to distinguish the growth phase of a whole 

or part of a biofilm of P. chrysosporium. 

The primary growth phase was characterised by the presence of elongated, turgid, 

sparsely-branched hyphae. Similar structures were observable of the biofilm in the 

macrovoids of the membrane under MGR operational conditions. Entry of the culture 

into stationary phase, triggered by nutrient starvation through discontinuation of nutrient 

supply, was confirmed by the observation of increased specific activity of Succinate 
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Dehydrogenase and Cytochrome C Oxidoreductase, known intracellular markers for 

secondary metabolism in P. chrysasporium (Bonnarme et al. 1991). The morphological 

changes corresponding to the change from primary to secondary metabolism were 

marked. Hyphae became highly branched, short, vacuolated and fragmented. This was 

observed in Zone B of the biofilm surrounding the capillary (figure 3.6.) in the MGR 

biofilm. 

The decline phase, indicated by a decrease in culture biomass (figure 3.8.), was correlated 

to excessive cell lysis and sporulation. Cell debris, fragmented hyphae and asexual spores 

were the predominant components of the biofilm. The above morphological description 

corresponded well to that observed in Zone C of the MGR biofilm, which is expected, 

since Zone C resides in a nutrient poor environment. 

3.4. CONCLUSION 

In batch cultures it was shown that morphological differentiation occurred as a function 

of state of growth. The state of growth (primary, stationary or decline phase) was a 

function of the nutrient supply and was indicated by the changes in activity of the 

intracellular marker enzymes. It was also shown that mycelial differentiation occurred as 

a function of spatial nutrient gradients radially across the biofilm of immobilised fungus 

in the continuous MGR operational mode. 

This is a manifestation of the paradigm shift in which growth cycle events in artificial 

culture conditions are converted from the time domain to the space domain within the 

same thallus so that secondary metabolism occurs continuously over time. This proves 

that the membrane gradostat concept, in principle, appears to hold empirically. 

It was, however, observed that the morphological changes occurring across the P. 

chlysosporiurn biofilm, in the context of membrane gradostat operation, are more 

complex than the simple model of superimposition of a normal microbial growth curve 

across space instead of time. Two morphotypes relating to Zones A and D of the biofilm 

(figure 3.6.) could not be accounted for in batch culture. This is because in the biofilm of 
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the MGR the different morphotypes are linked together in one thallus. The key to the 

understanding of the nature of this link is the well-known phenomenon of differentiation 

in the filamentous fungi.  

Thus, further detail in terms of ligninolytic enzyme localisation in the biofilm and ultra-

structural differentiation was required for a more accurate description of the workings of 

this biofilm. This is explored in the next chapter. 
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CHAPTER 4 
DIFFERENTIATION WITHIN THE BIOFILM 

4.1. INTRODUCTION 

Based on the results in Chapter 3, it was concluded that a more detailed description of the 

physiology of differentiation in the biofilm of P. chrysosporium in the context of the 

MGR was required. The differentiation observed in response to nutrient gradients is not 

surprising since it is known that wood-decay fungi operate within a spatially and 

temporally dynamic environment (Barrasa et al. 1995). They, therefore, exhibit spatial 

and temporal differences in metabolic functioning, which are directly influenced by their 

developmental state. White and Boddy (1992) suggest a "developmental plasticity", the 

ability to adopt and switch between a variety of distinct "functional modes", i.e. 

programmed morphogenetic cycles which confer versatility on the fungus. This allows 

these fungi to adapt their functioning to a local environment which is in constant flux 

(White and Boddy 1992). Some of these mycelial polymorphs include yeast-mycelial 

transitions, slow-dense or fast-effuse morphs, and aerial vs. appressed or submerged 

growth. Evidence has been found for differences in extra-cellular enzyme production 

related to different modes of growth (see table 4.1), 

Different morphogenetic modes are also sometimes considered to be consistently 

exhibited in an exact spatio-temporal pattern within individual thalli (White and Boddy 

1992). In a comprehensive study on the ultra-structural localisation of the enzyme 

pyranose oxidase (POD) using immunocytochemical localisation techniques, Daniel et al 

(1992) described the temporal development of the hyphae grown in agitated liquid 

cultures and found significant differentiation over time as a function of the chemical 

environment. 
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Table 4.1: Some examples of differentiation of fungi as they degrade wood (White and Boddy 
1992, and references therein). n/d — not determined 

Species ' Colony Morph Function Enzymes 
produced 

Hymenoehaete 
corrugata 

1)Woolly white form with extensive 
aerial mycelium 
2)Appressed, pigmented form 

1) n/d 
2)Associated with more 
decayed regions 

1) n/d 
2)Laccase and 
tyrosinase 

Phellinus 
tremulae 

1)"Aerial" form 
2) Appressed pigmented form which 
extends slowly and grows at higher 
temperatures 

n/d 1)Peroxidase but 
not phenol-
oxidase 
2)Phenoloxidase 
only 

Rigidasparus 
microporus 

1)Form which produces mycelial 
cords. 
2)Mycelial form tolerant of poor 
aeration 

1)Responsible for 
ectotrophic spread 
2)May be responsible for 
development within wood 

1) No laccase 
2) Laccase 

Phlebia 
radiate and 
Phlebia rufa 

1)CoIonics have peripheral growing 
front composed of sparsely branched, 
rapidly extending coenocytic, 
appressed, noanastomosing mycelia 
2)The above are followed by a 
mycelial system of highly branched, 
septate, aerial and submerged hyphae, 
with clamps if mating has occurred 

1)Adapted to rapid 
extension which in nature 
may lead to early 
establishment on wood 
(primary resource 
capture). 
2)Adapted to replacing 
other fungi, exploitation 
of resource and defense of 
territory. 

Enzymology not 
studied but 
differences are 
expected due to 
differences in 
functionality. 

It has been proposed in this study that the MGR, by simulating the natural environment of 

the fungus, would provide valuable insights into the metabolism of the fungus. Due to 

establishment of steady-state nutrient and oxygen gradients, the organism resides in an 

environment similar to that occurring in wood. The hydrophobic nature of the synthetic 

polymer is similar to that of wood, and the finger-like macrovoids of the membrane are 

similar to the fibrous voids in the lignin substructure. Also, in this reactor, the fungus 

grows as a biofilm on a solid-air interface, as is the case in wood, but here, a defined 

chemical environment can be presented to the fungus in the form of liquid perfusate. It is 

also easier to harvest the resulting extracellular products than in wood. Hence, it is 

probable that descriptive models for wood degradation by WRF could be used to best 

describe the growth of P. chrysosporium in the membrane gradostat environment. Once a 

more thorough understanding of the physiology of the fungus could be obtained, this 

knowledge could then be used for a rational approach to strain improvement (Demain 

1991) and reactor design. 
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4.1.1. Objectives 

The objective of this chapter was to provide a detailed description of biofilm 

differentiation and the ultra-structural localisation of peroxidase enzyme production. The 

reasons for this were two-fold: 

• Based on the biofilm dynamics described in the previous chapter, further research 

seemed necessary to refine the first approximation of the functioning of the MGR 

concept; 

• It was considered useful to analyse the metabolic differentiation in the context of 

wood degradation models. These models, in conjunction with other models for 

secondary metabolite production and differentiation could be utilised to enhance the 

understanding of the biofilm. 

To facilitate the above study, it was necessary to first develop a method to visualise the 

presence and localisation of active ligninolytic peroxidases by transmission electron 

microscopy (TEM) within a biofilm of P. chlysosporium immobilised on the skinless 

membrane (IPS 763). 

4.2. MATERIALS AND METHODS 

4.2.1. Strain 

Strain DSM 1556 (ME 446) of P. chrysosporium was used for this experiment and 

prepared and maintained as described in Appendix A. 

4.2.2. Reactor System and Operation 

Eight disposable mini reactors were arranged in a manifold system and operated as 

described in chapter 2 (section 2.5.3). Reactors were operated in gradostat mode and 

sacrificed after 24 h., 42 h., 56 h., 6 days and 8 days. Once a reactor was removed, it was 

quickly dismantled and the membrane sectioned. Specimens were then immediately 

immersed in glutaraldehyde fixative so that the biofilm observed was representative of 

80 



the actual state of the fungus in the bioreactor. The mature, differentiated biofilm 

obtained after day 6 was used for the descriptions presented in this chapter. 

After day 8, the biofilm was starved by stopping nutrient supply to the remaining mini-

reactors and then again sampled. This was done to show the physiological differences 

between the biofilm obtained through MGR operation and that obtained when the whole 

culture was starved, the purpose being to determine the impact of nutrient gradients on 

culture differentiation. 

4.2.3. Cytological Staining of Peroxidases 

A procedure had to be developed to visualise the presence of the ligninolytic peroxidases 

in the biofilm, so that enzyme production could be linked to the responsible morpho-

types. 

Diaminobenzidine (DAB) is a substrate for general peroxidase activity. As a substrate it 

has the advantage that the oxidised product from the reaction of DAB with H202, which 

is catalysed by peroxidases, reacts with osmium tetroxide to form osmium black, a water-

insoluble deposit which can be visualised by TEM as darkly stained deposits. This gives 

an indication of the location of the peroxidase enzymes in whatever tissue is investigated 

(Sexton and Hall 1991). 

Previously, H202 produced by P. chrysosporium was localised by utilising the ubiquity of 

catalase (which has peroxidase activity at high pH (7-9)) as well as other intracellular 

peroxidases in fungal tissue to catalyse the DAB reaction (Forney et al. 1982). In the case 

of Forney et al. (1982), DAB without H202  was used for the staining. 

Controls 
The interfering action of catalase was determined by the addition of aminotriazole, a 

specific inhibitor of catalase, to the control reactions (Forney et al. 1982). The effect of 

peroxidases other than LiP was minimised by carrying out the staining reactions at a pH 

below that at which the intracellular peroxidases are active. Intracellular peroxidases 

normally have an activity range of pH 7-9 (Sexton and Hall 1991), while LiP has a range 
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of pH 2-5 (Tien and Kirk 1988). Hence, all reactions were carried out at pH 4. To 

ascertain whether the black deposits observed were due to peroxidase activity, control 

samples were pre-incubated with KCN, which is a known inhibitor of haeme-containing 

enzymes (Sexton and Hall 1991). The procedure is described in detail in Appendix F.  

The staining procedure was carried out on a starved biofilm to ensure that LiP production 

had occurred. 

4.2,4. Transmission Electron Microscopy (TEM) 

The protocol used for TEM is described in Appendix D. Some microtome sections were 

not stained with uranyl acetate and lead citrate as controls in order to determine whether 

the stains interfered with the cytochemical staining procedure.  

4.2.5_ Reproducibility of Results 

Since interpretation of trends observed by transmission electron microscopy are often 

subjective, this experiment was performed several times to ensure reproducibility.  

Numerous subsequent studies over the period of 1995 to 1998 have all shown identical 

trends. Results presented here are from one experiment to ensure consistency. 

4.3. RESULTS AND DISCUSSION 

4.3.1. Development and Evaluation of a Cytochemical Procedure for the 
Ultrastructural Localisation of Ligninolytic Enzymes in the P. chrysosporium 
Biofilm. 

On the micrographs depicting mycelia treated with DAB and H202, distinct black 

deposits could be observed around the cell wall of the fungal filament (figure 4.2). It is 

evident that these deposits resulted from DAB and H202  staining of samples in that these 

deposits were absent in untreated mycelia (figure 4.1). It can be inferred that the deposits 

were produced by a peroxidase-catalysed reaction because where KCN, a peroxidase 

inhibitor, was added to the reaction mixture, no dark deposits were observed (figure 4.3), 
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Fig. 4.1: TEM of a longitudinal section of mycelia without DAB staining. The outer wall does 
not contain any dark deposits. Neither does the polysaccharide sheath (P.S.) of an adjacent 

cell (Mag. = 12 000X). 

Fig.4.2: (A) Cross section of mycelia after treatment with H202  and DAB. The black deposits in 
the polysaccharide sheath around the cell wall represent the products of DAB + H202 

catalysed by LIP (Mag. = 4 800X). (B) Higher magnification of the same mycelia as (A). DAB 
located on EPS sheath and membrane, and on what appears to be rough ER. A multitude of 

mitochondria could also be observed (Mag. = 14 000X). 

I 
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Fig. 4.3: Cross section of a fungal cell wall showing much reduced stain deposition. This sample 
was treated with DAB + H202  + KCN (a peroxidase inhibitor) (Mag. = 7 200X). 
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In order to determine whether LiP was responsible for the staining, aminotriazole, a 

catalase inhibitor, was added to the DAB staining mixture in one experiment since 

catalase, an enzyme distributed throughout the fungal mycelia, has peroxidase activity 

and could have been responsible for formation of the black deposits and not LiP. The 

black deposits observed with sections pre-treated with aminotriazole were similar to 

those obtained when aminotriazole was excluded (figure 4.4), indicating that the effect of 

catalase was negligible. Figure 4.5. shows that the black deposits are not due to uranyl 

acetate and lead citrate post-staining. 

Fig. 4.4: Cross section of mycelia after treatment with DAB, H202  and aminotriazole, a catalase 
inhibitor. The similar black deposits obtained show that catalase is not responsible for this 

reaction. Loss of cell contents seemed to occur because of osmotic shock during the pre- 
incubation of the mycelia with aminotriazole (Mag. = 10 000X). 

Fig. 4.5: Longitudinal section of mycelium treated with DAB + H202  +aminotriazolc, but not 
post-stained with uranyl acetate and lead citrate. The black deposits show that the post-stains 

do not give false positive results (Mag. = 7 200X). 
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The localisation of the LiP on the cell wall and polysaccharide sheath corresponds well 

with previous reports using immunocytochemistry (Daniel et al 1989; Garcia et al. 

1987). These reports involved the use of immuno-gold labeling to provide information on 

the localisation of the enzyme, but not on activity. Kurek and Odier (1990) have used 

biochemical methods to prove the association of active enzyme with the fungal cell wall. 

The technique described here provides information on both localisation and activity of 

ligninolytic peroxidases. 

From the results obtained above it can be concluded that the method developed for the 

determination of active LiP within a biofilm of P. chrysosporium was successful. This 

technique, although less sensitive and specific than comparable immunocytochemical 

methods, (Forney et al. 1982) has the advantage that it obviates the need for the time-

consuming antibody production process and tedious controls (Evans et al. 1991). Also it 

only reflects the presence of active peroxidase. 

Using this technique, it was found that a noticeable amount of LiP excreted by the fungus 

was retained in the polysaccharide sheath surrounding the cell wall of the mycelia. This 

technique was then used to provide further characterisation of the biofilm. 

4.3.2. Study of Biofilm Differentiation of P. chrysosporium  and Ligninolytic 
Enzyme Localisation in a Membrane Gradostai Reactor. 

LiP activity was observed in the reactor permeate after 3 days. At this stage complete 

differentiation of the biofilm could be observed by TEM. This was maintained until day 

8, indicating "steady-state" conditions. Details given below are for the biofilm of the 

bioreactor membrane sacrificed on day 6. 

Biofilm in the Macrovoids — Close to the Lumen 
In the nutrient rich zone, represented by mycelia in macrovoids close to the membrane 

lumen, hyphae with a relatively large diameter were observed (figure 4.6 and figure 4,7.). 

These hyphae had the following features: 
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They appeared to have a large proportion of their total volume occupied, by what was 

identified as rough endoplasmic reticulum (ER) and smooth ER (Cross, R. 1995 pers. 

comm.). It is known that LiP and MnP are transported from the ER via Golgi apparatus to 

the cell surface, (Bonnarme et al. 1991; Bonnarme et al. 1993). These authors also 

suggested that the amount of ER present is a limiting factor for protein secretion by P. 

chrysosporium. Few mitochondria could be observed. These mycelia, therefore, probably 

have a fermentative mode of respiration. The mycelia had relatively thin walls with an 

extensive polysaccharide sheath. Lignin peroxidase activity was visible in the 

polysaccharide sheath and cell wall by the DAB reaction products. Hyphae were turgid, 

un-vacuolated, un-branched, densely packed and spirally wound around each other. 

 

I 

PS 

 

Fig. 4.6. Oblique section through a macrovoid containing P. chrysosporium showing biomass 
close to the fibre lumen. (RER-rough endoplasmic reticulum, LE- ligninolytic enzymes, PS- 

polysaccharide sheath) (Mag.= 6 000X). 
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Fig. 4.7: Higher magnfication of the hyphae depicted in Fig. 4.6., showing the presence of 
multiple electron lucent bodies (ELB), the extracellular matrix (EM) which is only found 

between the hyphae and the membrane and not in between hyphae (Mag. = 10 000X). 

A multitude of multi-vesicular bodies (MvB) similar to those described by Daniel et al. 

(1992) were also visible (figure 4.8.), but these were not always associated with cell 

membranes as reported by Daniel et al. (1992). These could be responsible for secretion 

of ligninolytic enzymes or materials for cell wall synthesis. 

Fig. 4.8: Cross section of a mycelium showing multi-vesicular bodies (MvB) as described by 
Daniel et al. (1992) (Mag. = 60 000X). 
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Micro-hyphae could be seen to penetrate into the wall of the capillary (figure 4.9.). It is 

not known whether P. chrysosporium is capable of degrading the polysulphone polymer 

from which these capillaries were fabricated, but it may have been possible that the 

hyphae exerted sufficient mechanical force to penetrate weak spots. Barrasa et al. (1995) 

report that the attack on lignin by P. chrysosporium is characterised by the formation of 

erosions and fissures, with minimal lignin removal, and that contact with cell walls 

seemed necessary. 

Fig. 4.9: Oblique section of a macrovoid showing a hyphal tip and microhypha (MH) 
penetrating the capillary wall (M - Membrane) (Mag. = 25 000X). 

Two types of mycelia appeared to be present (figure 4.10), the large hyphae containing 

large amounts of ER described above, which surround a highly convoluted type with 

which intra-hyphal growth was associated. The above features would correlate well with 

a penetrative function and the morphological structures associated with decayed wood 

described in table 4.1. 
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Fig. 4.10: (A) Two major mycelial morphotypes (M1 and M2). MI is a turgid, morphologically 
active form, while M2 is a membranous, convoluted matrix (Mag. = 3 000X). (B) Higher 

magnification of A (Mag. = 12 000X) 

As mentioned previously, a dense polysaccharide sheath could be seen around the hyphae 

(figure 4.6). It was reported by Ruel and Joseleau (1991) that in the context of lignin 

degradation, the glucan sheath forms a bridge between the fungus and the plant cell wall, 

providing a point of attachment. It also behaves as an immobilisation matrix for enzymes. 

This sheath was shown to have some affinity to ligninolytic enzymes and was also shown 

to be accumulated at the hyphal apex (Ruel and Joseleau 1991). 

In this work, polysaccharide deposits were found to be sparse or absent from hyphae 

radially distant from the lumen. Patches of the polysaccharide sheath were also shown to 

be separated from the hyphae. The absence of the polysaccharide sheath in this part of the 

biofilm could have been due to hydrolysis to provide sugars for H202 production and the 

separated patches could allow peroxidases and oxidases to be held in close contact and 

attached to their substrate (Ruel and Joseleau 1991). 

Biofilm in the Macrovoids Distant from the Lumen 
In the macrovoids more radially distant from the lumen and nutrient source, the mycelial 

structure was noticably different. Here the hyphae were sparsely packed and highly 

vacuolated (figure 4.11). These vacuoles contained several deposits, most of which were 

darkly stained. A noticeable amount of lysed mycelia and cell debris was also visible. 
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These hyphae tended not to have much rough ER, but most hyphae observed had several 

rounded mitochondria especially visible in highly vacuolated hyphae. Here one can 

distinguish between the electron lucent bodies described by Daniel et al. 1992, and the 

mitochondria observed here (figure 4.12). These two structures appeared similar initially. 

In figure 4.12, multi-vesicular bodies were associated with the cell membrane, as 

described by Daniel et al. (1992). However, this was found not to be typical. The hyphal 

membranes and surrounding polysaccharide sheath did not appear as heavily stained with 

the DAB reaction products. 

Fig. 4.11: Oblique section of a macrovoid showing the biomass found in macrovoids close to the 
ECS side, (ie. radially distant from the lumen). DSD- darkly stained deposits (Mag. = 3 000X). 
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Fig. 4.12: Cross section of a hypha (not particularly typical of this section of the biufilm, 
showing the differences between electron lucent bodies (ELB) and mitochondria (Mit.) Multi- 

vesicular bodies (MvB) can be seen to be associated with the cell membrane and electron 
dense bodies can be seen to be in a state of decay. These are all typical structures described by 

Daniel et al. (1992) in 6 -to 10 -day old flask cultures (Mag. = 20 000X). 

Biofilm Surrounding the Capillary 
The biomass surrounding the outside of the capillary formed a biofilm of several hundred 

micrometers thick (see figure 16). Here a mycelial morphotype was observed which was 

entirely different from that observed in the biomass entrapped in the macrovoids (figure 

4. 1 3). 
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Fig. 4.13: Cross section of the biofilm surrounding the capillary tube. Darkly stained deposits 
(dsd) can be observed in the vacuoles, indicating intracellular localisation of LiP. Extensive 
cell lysis is noticeable. The presence of faint dark deposits interspersed between the hyphae 
could indicate the presence of released polysaccharide (P) with entrapped LIP (Mag. = 3 000 

X). 

Firstly, the orientation of the hyphae was far more random, which complies well with the 

mycelia differentiated for cover of the substrate, linear spread and defence of territory 

described in table 4.1. Most of the hyphae were lysed or highly vacuolated. Little 

evidence of ER, mitochondria, multivesicular bodies or electron lucent bodies were 

observable. Several darkly stained deposits (dsd), were, however, clearly visible, 

associated with the internal membranes of the vacuoles. The absence of these structures 

in sections which were not DAB stained indicated that they could be intracellular stores 

of ligninases. Several reports of intracellular localisation of LiP have been made in the 

literature (Evans et al. 1991 and references therein). Evans et al. (1991) stated that there 

is little biochemical data to support the intra- or extra-cellular localisation of LiP in solid 

state culture, since most studies have concentrated on submerged cultures. 
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Although it appears that peroxidases could be stored in vacuoles, further confirmation 

will be required using immunocytochemical techniques. However, in support of the 

observation, Dornenberg and Knorr (1995) state that synthesis and storage of secondary 

compounds in plant cells often occurs in vacuoles. Also, 14202  production capability and 

catalase are said to be compartmentalised internally by vacuolation to protect the 

intracellular environment from OH radicals (Forney et al 1982). Vacuole-encased 

peroxidases are also said to protect organs from toxins. This was shown to be the case in 

plant cells (Wink 1997). It is in this zone where most of the conidiation was shown to 

take place (see figure 3.6.). It is not clear how much ligninolytic peroxidase was 

associated with the extra-cellular polysaccharide layer relative to the other forms, 

possibly because of release of the ligninolytic peroxidase enzymes. The space in-between 

the hyphae was speckled with dark spots and this could be released enzyme entangled in 

a polysaccharide matrix. 

Aerial Mycelia 
Another, highly distinctive form, the aerial mycelia, was noticeable in the biofilm most 

distant from the lumen and closest to the air supply (figs. 4.14 and 4.15). These hyphae 

were relatively narrow in diameter, un-vacuolated, un-lysed and had a high surface area 

to volume ratio. The hyphae were electron-dense, even when not stained with DAB, so 

no conclusions could be drawn about LiP localisation. Abundant, rounded mitochondria 

could be observed. These were not typical of mitochondria observed in other zones, but 

rounding of mitochondria has been reported in idiophasic yeast cells (Werner-Washburne 

et al 1993). Highly organised ER was visible, as well as electron dense bodies in various 

stages of decay. These hyphae may be specialised to provide oxygen and/or energy to the 

rest of the thallus and are normally involved in differentiation to form reproductive 

structures. 
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Fig. 4.14: Cross section of the biofilm surrounding the capillary showing aerial mycelia at the 
outermost edge of the biofilm (Mag. = 3 000X). 

Fig. 4.15: Higher magnification of the hyphae depicted in figure 4.14. Mil-mitochondria, EDB 
are electron dense bodies located inside electron lucent bodies (ELB) described by Daniel et al. 

(1992) (Mag. = 15 000X). 

Peroxidase Secretion 
Ligninolytic peroxidase production, indicated by DAB reaction products in the extra- 

cellular sheath and cell membrane seemed (by inspection) to be concentrated around the 

hyphal tips close to the capillary lumen (figure 4.6). This was not unexpected since it is 

known that the hyphal tips are the most metabolically active parts of the thallus and that 

this is where most of the protein secretion occurs (Carlile 1995). The paradox arose from 
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the fact that the hyphal tips resided in a zone of nutrient sufficiency in the MGR, and it is 

known that LiP is produced as a secondary metabolite triggered by conditions of carbon, 

nitrogen or sulphur limitation only. This paradox could have arisen because the initial 

work on ligninolytic enzyme production was performed under submerged liquid culture 

conditions, which is a significantly dissimilar environment from the MGR. This ties in 

well, though, with the work of Moukha et al (1993) who studied the localisation of LiP 

in colonies of P. chlysosporium sandwiched in-between two polycarbonate membranes. 

They found that, in a differentiated thallus (which occurred once confluent growth on 

Petri plates was attained), most of the secretion of the enzyme occured at the colony 

margin, although the whole colony released enzyme. They concluded that the peroxidases 

were secreted by the invasive hyphae, but that there is a time delay before release of the 

enzymes, giving the appearance of secretion by the whole colony, Thus, the results of this 

study in 3 dimensions, supports the findings of others in a 2-dimensional system. 

The above would indicate that the part of the thallus experiencing nutrient limiting 

conditions signals the metabolically active regions of the thallus to produce secondary 

metabolites. Translocation of nutrients is a well-known phenomenon in filamentous fungi 

(Gray et al 1995). It has been shown by Bonnarme et al. (1993) that mycelia] extracts of 

P. chrysosporium in stationary phase significantly enhance LiP production when added to 

cultures of the same strain. Further research should be undertaken to determine how this 

occurs. 

Starved Biofilm 
In order to simulate what occurs in conventional culture systems when the culture is 

starved of nutrients, and to determine whether nutrient gradients play a role in the 

differentiation described above, as opposed to the possibility that the whole biofilm was 

starved, the biofilm was purposefully starved after 8 days of continuous culture by 

stopping the nutrient supply to the capillaries. Figures 4.16 — 4.19 show the cytological 

observations made. 
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From these electron micrographs it could clearly be seen that when the thallus as a whole 

was starved, a completely new set of responses took place. The biomass closest to the 

capillary lumen then contained abundant, rounded mitochondria (figure 4.16). As 

mentioned previously, these are typical of stationary phase yeast cells in submerged 

culture (Werner-Washburne et al. 1993). The larger hyphae appeared to contain 

proportionately more ER (figure 4.17) and the electron lucent bodies containing electron 

dense bodies, precisely the same as those described by Daniel et al. (1992), became 

abundant. 

Fig. 4.16: Oblique section of a macrovoid showing starved mycelia close to the fibre lumen. (A) 
and (B) show the formation of abundant mitochondria and ER (Mag. = 3 000X). (C) shows the 
same section at a higher magnification (Mag. = 10 000X). Electron dense bodies (EDB) could 

be observed within electron lucent bodies. 
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Fig. 4.17: Oblique section showing mycelia at the outermost reaches of the macrovoids. These 
contained fewer mitochondria than the mycelia observed in fig. 4.16 (Mag. = 8 000X). 

Fig. 4.18: Cross section of the biofilm surrounding the capillaries. (A) biomass close to the 
capillary side. (B) biomass close to the outer edge of the biofilm The presence of asexual 

spores (S) can be observed here (Mag. = 2 000X). 
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Fig. 4.19: Cross section showing (A) aerial mycelia at the outermost reaches of the biofilm 
(Mag. = 2 000X) (B) higher magnification of A (Mag, = 18 000X) 
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These electron dense bodies were clearly different from those described earlier for the 

non-starved cultures residing in this zone. The increase in mitochondria] content could be 

said to be induced by nutrient starvation (see figure 3.9; Bonnarme et al. 1993). It could 

also be seen from figure 4.16 that the cytosol appeared to be far less turgid, indicating 

that hyphal extension would have ceased. Figure 4,17 shows hyphae in the macrovoids 

radially distant from the capillary lumen. These hyphae appeared not to have an increased 

amount of mitochondria, but did show proportionately more ER. Figure 4.18 shows the 

hyphae in the biofilm surrounding the capillary. These showed an increase in ER 

compared to the steady-state thallus obtained with MGR operation, but although 

mitochondria' content seemed to have increased, this was not as dramatic as is the case 

with the mycelia close to the fibre lumen (figure 4.16). Differences in mitochondria' 

content could be seen between the biomass nearest the fibre lumen (figure 4.18A) and 

that closer to the ECS (figure 4.18B). Also, more spores could be seen to have been 

produced near the ECS end of the biofilm. Extensive hyphal lysis could be observed and 

the vacuoles no longer contained what was presumed to be LiP-indicating deposits 

observed in the steady-state biofilm. These could presumably have been released. 

Unfortunately, LiP activity in the reactor outlet was not monitored so this could not be 

verified. 

Figure 4.19A shows the aerial mycelia of the starved thallus which appeared to have lost 

their mitochondria and ER. The hyphal membrane was highly involuted (figure 4.19B) 

and the whole mycelium appeared to be in a state of decay, which could signify autolysis. 

4.4. CONCLUSION 

A detailed physiological understanding of the biofilm was necessary for process 

development so that observed phenomena could be described within the correct context. 

This has been, in general, a serious flaw in the approach of some other reports in the field 

of reactor development for ligninolytic enzyme production by WRF. 

It was shown in Chapter 3 that the biofilm responds to a nutrient gradient. It appeared, 

however, that although the model of the superimposition of a microbial growth curve 
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over space was adequate as a first approximation to describe the MGR biofilm, it was not 

sufficiently accurate, since the various growth forms were co-ordinated in one thallus. 

The work presented in this chapter confirmed this notion. The detailed cytological and 

enzyme cytochemical study undertaken showed the following: 

• Ligninolytic enzymes and a polysaccharide sheath, considered in literature to be 

secondary metabolites, were shown to be associated with the biofilm component in 

the macrovoids close to the lumen. This is an area of high nutrient concentration, 

where secondary metabolites were not expected to be observed; 

• Biomass residing in the nutrient poor zone showed internal stores of peroxidase. This 

confirms the presence of intracellular stores of LiP, an enzyme considered to be 

extracellular; 

• Starvation of the entire biofilm showed distinct morphological changes when 

compared to the biofilm in the presence of nutrient gradients, verifying the difference 

between batch and MGR physiology. 

Based on the above observations and the detailed study of the intracellular structures of 

different components of the biofilm, a different approach was chosen for the description 

of this biofilm. This approach relates more to the behaviour of the organism in its native 

state than on microbial batch growth kinetics. 

Thus, instead of description of the observed biofilm zones in terms of primary, stationary 

and decline phase, this descriptive model involves the presence of: 

• Hyphae differentiated for penetrative growth. These hyphae are adapted for rapid 

assimilation of easily utilisable nutrients and for penetration of complex polymers; 

• Hyphae differentiated for ectotrophic spread and substrate cover. These hyphae show 

little indication of metabolic activity and appear to contain intracellular stores of 

peroxidase enzymes, which could be released upon cell lysis; 

• Aerial mycelia. These hyphae show indications of high metabolic activity, as would 

be expected of mycelia differentiated for oxygen uptake for maximum respiratory 

activity. 
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The above morphotypes are integrated into one thallus, and it is expected that 

intracellular translocation of metabolites, both trophophasic and idiophasic, occurs 

between them. The role of the nutrient gradient would, therefore, be to trigger and 

provide way-points for this differentiation. 

The results obtained in this chapter provide further evidence that the dogma of lignin 

degradation is perhaps simplistic. The dogma of ligninolysis in the WRF is being 

challenged as more information is being gathered about the metabolism, physiology and 

the effect of different culture conditions of the WRF. The original hypotheses about the 

role of primary and secondary metabolites in lignin degradation were also based on the 

general assumption is that the growth kinetics of the WRF follow that of bacteria in 

homogeneous environments. 

The results of this work suggest the operation of a co-ordinated biofilm with distribution 

of metabolic labour between differentiated mycelia' forms interconnected within one 

thallus, as if in the case of proto-tissue. Modern trends in biofilm research show that such 

complexity exists even in bacterial biofilms, with the discovery of quorum-sensing genes 

and their products, and the presence of nutrient transport channels. The body of literature 

on physiological models of filamentous fungal growth provides further backing to these 

observations. Detailed studies on the mechanisms of differentiation will subsequently 

commence 
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CHAPTER 5 
BIOREACTOR SCALE-UP AND LIGNINOLYTIC ENZYME 

PRODUCTION 

5.1. INTRODUCTION 

The single-fibre mini-reactor had served its purpose adequately in that detailed studies of 

the biofilm's response to nutrient gradients could be performed to show that the MGR 

concept holds empirically. Scale—up to a laboratory-scale multi-fibre module then had to 

be accomplished to ascertain the performance and scalability of the MGR concept. 

5.1.1. Reactor Scale-Up 

As a system is scaled up, a shift occurs from a stage where the micro-kinetics of cellular 

reaction control the system's response at a small-scale to transport limitations controlling 

the system's response at a large-scale (Shuler and Kargi 1992). When a change in the 

controlling regime takes place, the results of small-scale experiments become unreliable 

with respect to predicting large-scale performance. This difficulty arises from the 

complexity of bioprocesses. Moser (1991) described a bioprocess as a complex network 

of interactions between biology (kinetics, stoichiometry, thermodynamics) and physics 

(transport of mass, momentum and heat). 

Information is, therefore, required of some of the above-mentioned physical phenomena 

on a laboratory scale that will affect the process on industrial scale. Principal issues to be 

considered in the development of a suitable module for application of the MGR included 

membrane bioreactor geometry, the fluid regime and module design. 

5.1.2. Consideration of Membrane Bioreactor Geometry 

Membranes are usually assembled and associated in a module with a determined 

geometry offering distinct flow zones for the feed and permeate streams. A variety of 
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spatial arrangements of biomass and fibres in combination with a multiplicity of solute 

flows give rise to a wide range of reactor configurations and virtually every shape and 

membrane structure can be used, depending on the specific application (Robertson and 

Kim 1985; Belfort 1989; Heath and Belfort 1992). A complex dependence of fluid flow 

(and hence mass-transfer) on membrane properties, operating conditions and the module 

geometry has been shown (Kelsey et al. 1990). This must be taken into account in the 

design and analysis of membrane bioreactors. 

Various commercially manufactured units are available. These are all based on the shell-

and-tube heat-exchanger configuration. In this configuration a bundle of capillaries are 

potted (i.e. glued) into a cylindrical vessel as depicted in figure 5.1. This arrangement 

segregates a lumenal fluid compartment from an extracapillary compartment. 

Fig 5.1: Cylindrical axial flow fibre bundle membrane bioreactor. 

Despite the reported sub-optimal geometries of cylindrical systems, they are the most 

prevalent in industry, largely because of ease of construction and operation. Availability 

is also a major factor and commercially available dialysis and UF units can be used as 

bioreactors with very little modification (Selfort 1989). As a first approach, such a 

system was evaluated as a model bioreactor, since a reasonable amount of experience and 

literature on the utilisation of such systems exists. The scale-up criteria are also well 

established for such systems based on the experience gained with UF (Prenosil and 

Hediger 1988). 
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Other, more sophisticated module geometries (Robertson and Kim 1985; Chung and 

Chang 1988) were developed to overcome some of the shortcomings of the conventional 

units, though, and this is becoming an interesting area of membrane bioreactor research. 

5.1.3. Consideration of Fluid Flow Regime 

Various operational modes involving different fluid flow regimes have been reported and 

characterised. The two relevant modes are: 

• closed shell (recycle mode); 

• open shell (UF mode); 

These are depicted schematically in figure 5.2. 

open shell closed shell 

Fig. 5.2: Schematic representation of the open- and closed-shell configurations. Upper diagrams 
indicate fluid flow. Open arrows indicate inlet streams, while closed arrows indicate effluent 
streams. Lower diagrams indicate pressure distributions. Dashed lines represent shell side 

(ECS) pressure, while solid lines represent tube side (lumenal) pressures. A-open shell 
pressure difference. B1 and B2-closed shell pressure differences. Note that B2 is negative. 

Redrawn from Tharakan and Chau (1986). 

Each of the above configurations has its own flow patterns which have been modeled 

(Kelsey et al. 1990). Most work to date has focussed on the closed shell configuration, in 

which there is no net convective flow from lumen to shell. The axial pressure drop due to 

flow through the lumen causes lumen pressure to be greater than that in the shell in the 

upstream part of the fibres (B1 in figure 5.2.). Then, as the lumen hydraulic pressure 

declines axially, and the ECS pressure increases due to permeation from the fibre lumen, 

flow is reversed in the downstream part of the device due to a reverse in the pressure 

gradient (B2) (Patkar et al. 1993; Kelsey et al. 1990). This is called convective 

103 



recirculative flow or Starling flow since it is analogous to the flow in capillary-tissue 

systems in vivo (Starling 1896). This phenomenon was demonstrated empirically and 

quantified by direct pressure measurement (Tharakan and Chau 1986) and Nuclear 

Magnetic Resonance Imaging (Heath et al. 1990). 

In practical terms, this operational mode is obtained when the shell is closed. The growth 

medium circulates through the lumen of the fibres and substrate diffuses across the 

hollow fibre membranes and is then converted by the cell suspension into an extracelluiar 

product, which then diffuses back into the lumen (Webster and Shuler 1978; Prenosil and 

Hediger 1988, Shuler and Kargi 1992). This is clearly not suitable for the purposes of the 

MGR since uni-directional gradients were a priority which would be difficult to attain 

given the torroidal flow fields typically encountered in such systems (Kelsey et aL 1990). 

Also, air flow through the ECS is a pre-requisite of the system described in chapter 1 

(section 1.9.1). This would be impossible if the shell was closed. 

The OF mode was therefore decided upon for practical application of the gradostat 

concept. 

Oxygen Delivery 
An oxygen delivery system had to be developed so that good mass transfer would be 

attained at low cost and sufficient shear could be introduced to erode off dead biomass. 

However, the shear had to be low enough to avoid mechanical damage and destabilisation 

of the whole biofilm. Another function of the oxygen supply was to enable bulk flow of 

the reactor permeate through the module outlet. 

Based on the experience of other researchers, as reported in literature on membrane 

bioreactors and cultivation of P. chrysosporitun (Venkatadri and Irvine 1993), axial and 

radial oxygen depletion is believed to be the critical scale-limiting factor in the design of 

aerobic (particularly mammalian) cell culture hollow fibre bioreactors (Piret and Cooney 

1990). 
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It was reported by Ahmed et al. (1996) and Ahmed and Semmens (1996) that mass 

transfer of oxygen is largely influenced by construction geometry. They also proved that 

mass transfer of oxygen was much better when flow of oxygen occurred transverse to 

hollow fibres as compared to when flow occurred parallel to the fibres. This is most 

likely due to turbulence promotion by the fibres themselves (Futselaar et al. 1993). The 

term "transverse flow" indicates that the airflow is perpendicular to the fibre axis. This is 

to be distinguished from "cross flow" which has a different meaning in membrane 

technology (Futselaar et aL 1993). Yang and Cussler (1986), on the other hand, show that 

in the design of hollow fibre gas-liquid contactors, the key parameter to maximisation of 

performance is surface area to volume ratio, i.e. effective packing density. 

Wickramasinghe et aL (1992) reported on the impact of a combination of these effects 

and included the advantages of high flow velocities and the negative impact of 

polydispersed fibres vs. regular packing of fibres. 

Uniform distribution of air through the reactor is also important, and the ease of 

achieving this depends on the packing configuration of the reactor and the growth of the 

fungus (Reid 1989b). Optimising packing density is a problem often encountered in solid 

substrate fermentations (Reid 1989b). In the context of lignocellulose degradation by 

WRF, the optimum support matrix particle, wood chip volume, is determined by a 

balance between air diffusion into particles and circulation between them. Thus, in a 

membrane bioreactor, having a small inter-fibre space would facilitate aeration by 

shortening the distance of gas diffusion from bulk into biofllm, and also increase the 

packing density (and thereby volumetric productivity). However, a small inter-fibre 

distance restricts air circulation between these membranes and could result in blockage of 

the air flow path_ Blockage of support media is a well-documented shortcoming of fixed-

bed reactors. Lasarova et al. (1997) used air injection as a solution to blockage of their 

system, so the concept of using gas flow to erode unwanted dead biomass (as described in 

chapter 1, section 1.9.1) seemed reasonable. 
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Liquid Nutrient Delivery Rate 
The liquid nutrient feed needed to be sterile, quantifiable (in terms of supply rate and 

composition) and supplied in a manner that produces the most uniform permeate flow 

field possible; minimises axial gradients; has a high enough permeation rate to provide a 

thick biofilm, but low enough so that nutrient gradients could be established and biofilm 

washout would not occur. 

The biofilm produced was required to be axially homogeneous (for ease of 

characterisation) and thick enough so that significant nutrient gradients could be 

established by diffusion and reaction. A large amount of biomass needed to be produced 

so that good enzyme production could be attained and gas stripping of substrate and 

pollutants (in bioremediation studies) was minimised (Freitas dos Santos and Livingston 

1995). With dense biofilms the chemical dose (mg. of pollutant. (mg of biomass)-1) 

would be minimised for a given concentration of pollutant for bioremediation studies. 

However, the biofilm should not be too thick that oxygen limitation would occur. 

The permeate was required to exit the reactor as quickly as possible (after perfusion of 

the biofilm), minimising blockage, and making product (ligninolytic enzymes produced, 

or pollutants transformed) analysis simple. 

Two factors were expected to affect mass transfer rates from the bulk growth medium 

fluid to the biofilm: fluid velocity and liquid phase concentration of the material being 

transported. To keep the process of characterisation as simple as possible, the 

concentration was kept constant and equal to the standard growth medium described for 

P. chrysasporium by Tien and Kirk (1988). 

As mentioned earlier, the strategy chosen was to evaluate a modified conventional unit (a 

cylindrical shell-and tube configuration) for its ability to meet the necessary physical 

requirements (as discussed above). If this was satisfactory, then further development 

would not be necessary and scale-up could be accomplished according to guidelines in 
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the literature. If it was not good enough, then modifications would be made based on the 

experience gained and observations made. 

5.1.4. Conventional Cylindrical Membrane Module 

Modified conventional systems were the first choice for application of the MGR concept. 

The modifications that needed to be made to the geometry were to improve oxygen mass 

transfer to the biofilm; to minimise fibre contact and to minimise axial gradients. Several 

schemes and models have been developed to serve this purpose (Chresand et al. 1988). 

These generally involve optimisation of the length to diameter ratio of the fibres to 

minimise axial gradients and optimisation of fibre spacing to improve fibre-fibre 

interaction, but will not be discussed here due to the failure of these systems for 

application to the MGR concept. From several experiments with these units (results not 

shown), the following shortcomings of cylindrical membrane bioreactors were identified: 

• The reactor geometry needed to be changed in order to decrease the fibre length, 

improve oxygen mass transfer while maintaining a similar fibre packing density, and 

reduce fibre contact; 

• The liquid nutrient delivery mode needed to be changed to minimise torroidal flow, 

pressure drop and trans-compartmental contamination. 

5.1.5. Development of a Novel Transverse Flow Module 

Thus, as was the case with the development of a suitable membrane (Chapter 2), a 

multiple-fibre module had to be developed which would fit the design criteria established 

for the MGR concept. Due to the shortcomings of the cylindrical systems, it became clear 

that a completely different reactor configuration had to be applied. Based on the 

inherently good oxygen mass transfer, and regularity of fibre spacing of these modules, a 

transverse flow module was considered the option with the best potential. The dimensons 

chosen were to minimise the effect of axial lumenal pressure drop. 
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Thus, a novel reactor was developed in collaboration with the Institute for Polymer 

Science of the University of Stellenbosch and was used to test the system on a small scale 

(the mini-reactor can be considered as very small). This reactor, termed a Transverse 

Flow Bioreactor (TVFBR) is depicted in figure 5.3. and has the following features: 

• A large number of membranes, completely separate from each other, could be 

configured into a small volume reactor. This provides a membrane reactor with a 

large membrane surface area to volume ratio. The fact that the membranes are not in 

contact with each other is important for proper biofilm differentiation on each fibre; 

• The membranes are arranged perpendicularly with separate fluid supply channels for 

each direction allowing flexibility in terms of feed supply and product extraction; 

• Despite the large amount of membrane surface area made available, the length of the 

individual fibres is sufficiently short to prevent Starling flow conditions (Tharakan 

and Chau 1986) which would adversely affect the system; 

• Air can be supplied transversely to the membranes containing the biofilm, providing 

good mass transfer without having to resort to high pressures or high flow velocities 

as would be the case with axial flow systems (Ahmed et al. 1996). 

Fig. 5.3: (A) A transverse flow module with normal fibre spacing. (B) Fibres in alternate slots 
giving larger interfibrillar distance. 

5.1.6. Objectives 

Since the MGR concept was proven (Chapters 3 and 4), and a fundamental physiological 

description of the metabolic state of the biofilm obtained, the aim of this chapter, was to 

determine the feasibility of its practical application to secondary metabolite production, in 
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this case, the production of peroxidases with the view to eventually meeting the discussed 

requirements of scalability, productivity and extended use. The objectives are listed below: 

• To prove that enzyme production can be sustained for extended periods of time; 

• To evaluate the TVFBR geometry as a feasible production system from a biochemical 

engineering perspective, and to suggest refinements at an early stage, with the view to 

achieving the above mentioned criteria for a successful system; 

• To compare the efficiency of the MGR system to other reactor systems reported in 

literature. 

5.2. MATERIALS AND METHODS 

5.2.1. Experimental Approach 

An empirical approach was chosen to finding a set of operating conditions for enzyme 

production. This was not theoretically-based, nor by any means was it optimal. The 

conditions chosen were judgement-based and fell within the possibilities of the 

equipment available. Several attempts were to be made, in anticipation of unforeseen 

process upsets, to attain a goal of 60 days continuous production. A more detailed study 

was then performed to determine the productivity of the systems for purposes of 

comparison. 

The approach to use for comparison was a daunting choice to make due to the variety of 

strains, media and operating conditions applied to ligninolytic enzyme production by P. 

chiysosporium in the literature. Thus, in order to evaluate only the reactor geometry, 

immobilisation support and operational mode (MGR), a standard production strain was 

used, with a standard production medium. 

The reactor performance was determined according to: 

• Volumetric productivity, which is a true indication of the production capacity of a 

reactor system. This is reported as the amount of product produced (in Units of enzyme 

activity). (litre reactor volume (the entire volume of the TVFBR was used here)).-1  day"'. 
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• Concentration of product in the permeate. Although this measure gives no indication of 

the role of productivity it is the one most commonly used in literature and strongly 

influences the purification cost, which is a major consideration in process design. 

5.2.2. Strains 

The production strain P. chtysosporiurn BKM-F 1767 was used for this study for the sake of 

comparison with other reports, where this strain is most commonly used. The culture was 

stored and sub-cultured on malt extract agar plates. Spores for inoculation of the reactor 

were prepared according to Appendix A. 

5.2.3. Growth Medium 

The medium was the standard medium of Tien and Kirk (1988) except that sodium 

acetate buffer (20mM) was used instead of dimethyl succinate buffer and veratryl alcohol 

was excluded. This was due to the expense of dimethyl succinate and to evaluate the 

system without any expensive additives such as veratryl alcohol. 

5.2.4. Reactors 

TVFBRs were evaluated here due to their high surface area to volume ratio while 

maintaining good oxygen mass transfer. A total of 0.013 m2  of membrane surface area 

(based on the internal diameter of the membranes) was available in the unit used. 

The TVFBR module was produced at the Institute for Polymer Science, University of 

Stellenbosch. A template was designed and produced by injection molding. The material 

used was high-density polyethylene because of cost and ease of molding. Capillary 

membranes were cut to the required length (slightly longer than the length of the 

template) and clipped into place on grooves molded into the plastic template. The 

templates (containing the membranes in place) were then stacked with the membranes 

running perpendicular to those of the adjacent template until a reactor of sufficient size 

was built. Epoxy resin was then injected under pressure to pot the membranes and to seal 

the reactor. The extending ends of the membrane capillaries were then trimmed to size 

when the epoxy had set. Various packing configurations were possible. These are 

demonstrated in figure 5.4. The "crossed in-line" configuration (figure 5.4. (c)) was 
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chosen intuitively, since it was presumed that it would give good mass transfer with the 

least chance of blocking. 

Fig. 5.4: Various fibre packing configurations for TVFBRs. (a) parallel-in-line, (b) parallel 
staggered, (c) crossed in-line (d) crossed staggered. (Futselaar et aL 1993). 

To determine the effect of packing density of the reactors, two reactor formats were used: 

• A densely packed module was used with an inter-capillary distance of I nun. (figure 

5.30. This system gave a high surface area to volume ratio of 0.325 m2. m3. This 

reactor will be referred to hereafter as Reactor 1; 

• A more sparsely spaced configuration was produced using alternative fibres removed 

(figure 5.3b). Two of these reactors were stacked on top of each other, which provided a 

reactor with the same surface area, but double the volume of reactor 1, giving a surface 

area to volume ratio of 0.1625 m2. nia. This reactor will hereafter be referred to as 

Reactor 2. 

Design of the Reactor Manifold 
The design of the manifolding system proved very important for the proper functioning 

of the reactor. The material chosen was polypropylene since this was the least expensive 

material which satisfied the desired materials requirements. For long term operation, the 

manifold had to be designed to take into account the following: 
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• Air velocity profiles, because the air supplied was passed through a narrow channel. 

This caused the biomass in the centre of the membrane to experience high shear and 

was sloughed off while the biomass near the edges of the membranes might have 

been oxygen starved; 

• Good sealing characteristics were important to prevent leakage and contamination; 

• Biomass accumulation at the bottom of the reactor caused clogging of the reactor 

outlet and inconsistencies in results. 

Thus, a manifold was designed with long funnel-shaped air supply. This minimised radial 

air velocity profiles leading to more equal coverage of the membranes by the gas supply. 

The same air supply funnel shape was used for permeate and sloughed-off biomass 

collection which reduced biomass accumulation in the reactor outlet. The manifold was 

designed with sufficient physical strength and rigidity to be threaded to provide leak-free 

joints with the supply tubing. 

Reticulation and Operation of the Transverse Flow Reactor 
The reticulation system for the transverse flow reactor is shown in figure 5.5. Slight 

variations in some experiments were made and these are described in the relevant 

sections. This system is sterilised and inoculated in the same way as the mini-reactor 

system (Chapter 2, section 2.5.3). 

Convective flow was used since it minimises diffusive mass transport limitations (Kelsey 

et al. 1990). This is because the pressure drop within the lumen between the inlet and 

stagnant point is much lower than the pressure drop down the length of an axial flow 

open tube. Hence, a more uniform transmembrane flux along the length axis of the 

bioreactor could be expected (Brotherton and Chau 1995). 

Operation was similar to that of the mini-reactor with the exception that dead-end 

filtration mode of nutrient supply was used to give convective-dominant flow. This 

provided a constant flux regime as opposed to a constant re-circulation rate used in the 
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mini-reactor system. In the case of the constant flux regime, the capillary lumena were 

first primed with growth medium. 

Fig.S.5: Schematic depiction of theTVFBR. A- oxygen supply. Where air was used an aquarium 
pump was attached and if pure oxygen was used, an oxygen cylinder was attached. B- air 

filter. C- humidifier vessel —gas was bubbled through distilled water for humidification. D- 
Hoffmann clamp. E- Inoculation vessel. F- peristaltic pump. G— growth medium reservoir 
vessel. BI- permeate collection vessel. The inlet to this vessel was sealed with a cotton wool 

bung to allow spent air to escape while retaining spores within the vessel. 1- growth medium 
inlet channel within the TVFBR J- the actual TVFBR. This configuration shows 2 units with 

2mm. inter-capillary space (see fig. 5.3b) stacked on top of each other. K-represents the 
membranes. The perfusate of these ends up as the permeate in H. L-prime line. This was used 

to allow air to be flushed out of the membrane capillaries and to ensure that they were all 
filled with growth medium. This line exits to waste during priming and was closed off during 

dead-end operational mode. Arrows show directions of flow. 

The recirculation line was then closed using a Hoffman clamp. Medium was then 

supplied via a small liquid chromatography peristaltic pump threaded with 0.1 mm. i.d. 

tubing. The medium supply rate therefore defines the transmembrane flux (which is the 

same as biofilm perfusion rate or dilution rate), With this method, more precise control 

over the biofilm perfusion rate was expected to be established. The operational 

parameters of this reactor are described in table 5.1. 
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Table 5.1. Operational parameters for the TVFBR. 

Parameter Value 
Oxygen supply rate 1 vol. (vol. reactor space).-1  min."' 

Growth medium supply regime Constant flux (by dead-end filtration). 

Biofilm perfusion rate (flux) 0.1 L. m.'.11-1  

Fibre type IPS 763 

Air flow regime Transverse to fibres 

Temperature control Ambient (C.E. room set to 37°C) 

Active fibre length 3 cm. 

5.2.5. LIP Assay 

LiP activity was determined by the oxidation of veratryl alcohol to veratryl aldehyde as 

described in the Appendix G. 

5.2.6. MnP Assay 

MnP activity was determined spectrophotometrically by following the oxidation of ARTS at 

420 nm., as in Appendix G. 

Normalisation of Enzyme Activity 
All assays were performed at 18 °C. When direct comparisons with other systems were 

made, activities should be normalised to approximately that which would be attained at 

37°C, which is most commonly used. It has been reported that LiP activity doubles for every 

7°C increment up to 40°C (Venkatadri and Irvine 1993). Thus enzyme activities at 18°C 

should be multiplied by 4 to approximate that at 37°C. Also, MnP activities can be measured 

using various substrates, the most common being Phenol Red, ABTS, and di-methoxy 

phenol (DMP). Moreira el al. (1997), normalised the results of Bonnarme et al. (1993) by 

dividing the results of activity by Phenol Red oxidation (as used by Bonnarme et al. 1993) 

by a conversion factor based on the ratio of extinction coefficient between the oxidation 

products of the 2 substrates, Thus activity results from Bonnarme et al. (1993) were divided 

by a factor of 4.96. This appeared invalid since activity is not based on absolute values of 

absorbance, but rather rates of change therein. Also, reaction rates for different substrates 

should play a more important role (assuming they are in excess - if not, enzyme affinity for 

the substrate (Km) would also play a role) 
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In addition, factors such as presence of certain ions, inhibitors, pH and various other factors 

affect the sensitivity of different assays (del Pilar Castillo el al. 1997). Thus, the emprical 

comparison of del Pilar Castillo et al. (1997) using high concentrations of pure, 

recombinant MO was considered the preferred approach. This provided conversion factors 

of 2.82: 1 for Phenol Red : DMP activities and 1.71 1 for ABTS : DMP-based activities 

(del Pilar Castillo et al1997). 

5.2.7. Productivity 

Productivity is defined as the amount of product formed per unit time, per unit reactor 

volume, and methods for its calculation abound in textbooks on biotechnology and chemical 

engineering. For the purpose of this study, productivity was calculated as: 

P = D. C. 5.1. 

Where P = productivity (Units. (litre reactor volume).-'day-1) 

C = concentration of enzyme in the reactor permeate (Units.litre-1, where 1 unit is 

described as catalytic ability to transform luinol. of substrate in one minute.). 

D = Dilution rate = Flow rate . Volume-1. 

For the measurement of D, the definition of reactor volume required careful consideration. 

By definition, V is the working volume of the reactor. This is easy to define in tank-type 

reactors, but not so in the case of the MGR. Here, the volume of the biofilm constitutes the 

actual volume in which the desired reaction takes place. This is supported by Trilli (1990), 

who states that productivity in secondary metabolite formation can only be compared if it is 

defined as a function of biomass content. On the other hand, it can be argued that the air 

space around the biofllm influences productivity through mass transfer. Hence the entire 

ECS volume was used for calculations. 
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5.2.8, Analysis of Nutrients. 

The reactor permeate was analysed for the concentration of glucose and NH4
+. Glucose was 

determined according to the Somogyi Nelson method as described by Clark and Switzer 

(1976). Ammonium was determined using the Spectroquant® Ammonium kit (Merck). 

5.2.9. Validity and Reproducibility of Results 

Because this research involved initial development of a membrane, module and 

operating system, a multitude of parameters had to be empirically determined and then 

controlled. Due to this complexity and the requirement to perform experiments over 

extended periods, process upsets were frequent. Hence, considerable data was obtained to 

validate the findings presented. However, data from incomplete experiments will not be 

shown. Although changes in performance were observed between experiments, trends of 

the progression of the process were consistent and reproducible. For the sake of 

consistency, all the data presented in this chapter were derived from one experiment, 

except for figure 5.6, which was a different run. 

5.3. RESULTS AND DISCUSSION 

Traces of both LiP and MnP produced during MGR operation were detected after 2 days 

of operation following inoculation in all experiments with the TVFBR. It is presumed 

that this is the time required for the biofilm to reach a sufficient thickness for nutrient 

gradients to be established. 

5.3.1. The Effect of Fibre Packing Density 

Similar final product concentrations were obtained with both systems (reactors 1 and 2) in 

the early stage of operation, but it was clear that reactor 1 (with high packing density) could 

not sustain production for more than 10 days. Inspection of the reactor showed that fungal 

growth had occluded the inter-capillary spaces, This condition could not be remedied with 

strong bursts of the air supply although large chunks of biomass were seen exiting the 

reactor. This biomass appeared to emanate from the top layer of the membranes, where the 

air velocity was highest, resulting in sloughing off of active biomass, rather than the 

116 



clearance of occluding biofilm. Work with Reactor 1 was thus discontinued despite good 

performance. 

5.3.2. Extended Operation of Reactor 2 

Reactor systems with the configuration described as Reactor 2 performed adequately over 

extended periods. Continuous production was maintained for the target 60 days, at which 

time the process was stopped. This was the first report of true continuous production of 

ligninolytic enzymes using an attached growth reactor (Leukes et al. 1996). Results for the 

first month are shown in figure 5.6. Only very recently has another group reported true 

continuous production of MnP (M.oreira et al 1997), who operated their system for 140 

days. 
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Fig. 5.6: Long term enzyme production in the MGR. LiP levels in the spent broth were 
measured daily for the first 568 hours. MnP activity was determined from samples stored at — 

20° C for several weeks. Sample for the first 400 hours showed no activity, presumably 
through damage due to storage. These results were used, nevertheless, since this graph serves 

only to demonstrate extended operation. 

5.3.3. Uniformity of Operation 

During long term operation of the MGR using the Reactor 2 configuration, a serious 

design flaw of this configuration was encountered. Constant fluid supply throughout the 

reactor was found to be difficult to maintain. This was found to be due to the static 

pressure applied by the column of fluid in the liquid supply compartment and tubing 

above (figure 5.5. I and L). This pressure varied along the height of the reactor, which 

caused unequal flux through the capillaries. The impact of this flow maldistribution was 
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that the capillaries at the bottom of the reactor operated at a higher flux than the 

capillaries at the top of the reactor, with the capillaries at the top of the reactor eventually 

drying up. The level of fluid in the prime line could clearly be seen to be gradually 

dropping. 

This problem, in terms of continuation of operation, could be partially overcome by 

priming the lines at a high flow rate for approximately 30 minutes. The unit had to be 

primed at high flow rates so that air (sucked into the system through the drop in fluid level) 

could be flushed out. This, however, affected steady-state operation, since it caused 

periods of high flux, washing off of chunks of biomass, and disturbing the steady-state of 

the biofilm. This can best be seen by the changes in the reactor effluent concentration in 

glucose (figure 5.8.). The increases in glucose concentration due to priming were due to 

higher flux resulting from this activity. 

The observable outcome in terms of productivity was an oscillation of enzyme 

production, which is observable in figure 5.6. The effect of the flow maldistribution on the 

biofilm can be observed on photographs of biofilm thickness differences between the top 

and bottom of the reactor (figures 5.12 — 5.14, to be discussed subsequently). 

5.3.4. Productivity of the System 

In the previous section, the MnP production levels described were from samples stored at 

minus 20°C for up to several weeks. To determine the productivity more accurately, samples 

were collected from the reactor outlets over 3 hours, to give more accurate productivity 

results. Since more permeate was required, a slightly higher flux was used (0.188 L. m-2. h-

1.). All the results presented below are from one experiment (different from the experiment 

from which figure 5.6. was generated) using a TVFBR in Reactor 2 configuration. 

The enzyme production profiles are given for MnP in figure 5.9, and LiP in figure 5.11. 

These are discussed individually in subsequent sections. The outlet NI-14
+  and glucose 

concentrations were also measured to determine the extent of the nutrient gradients. 

Figure 5.7. shows NH4
+  concentrations and figure 5.8. shows glucose concentrations. 
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From figure 5.7. it can be seen that NH4
+  -limitation occurred , since the permeate NH4

+  

concentration ranged from 0.02 — 0.04 mg. I-1. This represents an 80 —90% depletion of 

the growth medium NH4
+  which was 0.2 mg. L.-1. It is not clear whether the NH4

+  

measured in the permeate was simply unassimilated NH4
+or released NH4

+  since it has 

been shown that NI-14
+  is released into the growth medium by lysed mycelia (Bonnarme et 

al. 1993). Glucose appeared not to be growth limiting, except when pure oxygen was 

supplied at a high flow rate. 
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Fig. 5.7: NH4
+ concentration in the reactor outlet. Inlet concentration was 0.2 mg.L.4  
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Fig. 5.8: Glucose concentration in the reactor outlet. Inlet concentration was 10 mg.L.-1  Au 

increase in glucose concentration can be seen after the lines were primed because of an increase 

in flux. "Pure Oxygen" indicates a switch to pure oxygen instead of air as the oxygen source. 
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5.3.5. MnP Production in Air 

Daily production of MnP for the first week of operation with air supplied as the 02  source is 

shown in figure 5.9. Despite the arbitrarily chosen flux and air flow rates, the amount of 

MnP produced was surprisingly high, especially considering that air was used and not pure 

02, which is used in virtually every other production reported. It was reported that the 

production of peroxidases in bioreactors using air is low or undetectable (Laugero el al 

1996, and references therein). 

0 24 48 72 96 120 144 168 192 216 

Time (hours) 

Figure 5.9: MnP production over the first 10 days of operation 

5.3.6. MnP Production with Pure 02 

To determine the response of the system to oxygen, pure 02 was used to replace air at the 

same approximate flow rate. After several days of continuous operation with air as the 02  

source, the aquarium pump, providing air to the system, was replaced with a pure Or 

containing gas cylinder. The improvement in enzyme yield can clearly be seen from figure 

5.10. The enzyme concentration rose to 900 U. L.-1, which is competitive with other 

systems, even those with improved expensive medium additives and optimised operational 

systems. A comparison with the most competitive systems thus far reported is shown in 

table 5.2. 
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Figure 5.10: Impact of oxygen supply on MnP production. 

The aim of the experiment using pure 02  supply was a characterisation exercise to 

determine whether the difference in productivity due to 02  in air supply was based on 

physiological criteria (as described in Dosoretz et al. 1990; Zitomer and Lowry 1992) or on 

an engineering component affecting 02 mass transfer rates. 

Based on the speed of the response, it was concluded that the effect was due to 02  mass-

transfer improvement. To extend this hypothesis, the 02 supply was again swapped with air 

supply, resulting in a sudden drop in productivity, providing further support for this 

conclusion. Since the drop in productivity was most probably also strongly influenced by 

the fluid level drop effect, the growth medium line was primed and pure 02  was again 

supplied, but this time at a much higher flow rate (approximately 4-fold). The MnP 

concentration then rose to a very high level of 4 000 U. L.-1, making this the highest 

transient productivity thus far reported (see table 5.2.). Although this is very encouraging, it 

needs to be seen whether productivity in this range can be maintained for extended periods, 

and it is anticipated that a considerable effort needs to be exerted to accomplish this due to 

fluid flow maldistribution problems. 

A comparison of MnP average productivity and peak productivity and other reported 

systems using the standard Tien and Kirk (1988) media is given in table 5.2. This system 

out-performs conventional flask cultures and several other systems. The consideration that 

this system is un-optimised, uses air as an 02  supply as opposed to the standard pure 02, 

excludes the use of VA or any other expensive additives and allows continuous operation 
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shows its potential. Moreira et al. (1997) claimed that their system showed the highest 

productivity for MnP yet reported. These authors used essentially the same growth medium, 

except that this was optimised in terms of Mn2  concentration (5000 µM), 02  supply, and 

operational characterisation (flow regime etc.). Hence, this is a fair comparison in terms of 

peak production (their system did maintain a steady-state, but showed inexplicable peak 

behaviour, probably also due to fluid flow irregularities). 

Table 5.2: Comparison of the performance peaks of the MGR with the best literature reported 
productivities 

Description MnP Concentration (LI/L.) Productivity (U.C.day-1) Reference 

Bubble column/ batch 726d  (1 277)2  181d  (318)2  Laugero et 

al. (1996) 

Packed bed /continuous 250 202 Moreira et al. 

(1997) 

Air (peak) 205b  (350 ± 23.3)2  166b  (283) 2  This work 

Pure 02  (peak) 526 b  (900 ± 141.4)b  427 (731) 2  This work 

Pure 02  . high flow (peak) 2 361 b  (4038 ± 35.4) 2  1916 (3278) 2  This work 

'values re-normalised to DMP assay from phenol red according to section 5.2.6.  ARTS assay values 

normalised to DMP assay values. `Original ABTS values (recorded at 18°C). dproductivities normalised 

according to Moreira et al. (1997) as described in section 5.2.6. 

5.3. 7. LIP Production 

Figure 5.11 shows LiP production to be disappointingly low, especially when compared to 

that obtained for the single fibre mini-reactors. 

When LiP production in pure 02  was compared, the difference between LiP and MnP 

productivity was clearly noticeable, and it can be said that the MGR system favours the 

production of MnP. Unfortunately, MnP was not measured on the single fibre reactor, but 

the difference in LiP productivity between the 2 systems was most probably due to 

differences in 02  mass transfer between the single fibre and multi-fibre units, and the 

exclusion of veratryl alcohol from the growth medium in the TVFBR. It is known that 

veratryl alcohol not only stimulates production of UP, but also stabilises it by controlling 
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oxidation of LiP to LiP 111, an inactive form, by }1202. Zhao et al. (1996) observed that no 

LiP production occurs on solid substrates without the addition of veratryl alcohol. 
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Figure 5.11: LiP production during over the same period as described above for MnP (same 
experiment). Values reported are rounded off to the nearest integer value. Hence, it can be 

seen again that LiP activity appeared on day 2. The cyclical nature of the production was due 
to the flow maldistribution problem. 

The role of oxygen supply in the determination of enzyme profiles could also be 

mediated through glucose metabolism. MnP is produced earlier than LiP in a typical batch 

culture. Thus, depending on the extent of the nutrient gradient, LiP production could be 

limited. This view is supported by the observation that at lower dilution rate or longer 

hydraulic retention times in the biofilm (when flux is lower as in the case of the experiment 

from which figure 5.6. was derived), LiP production was improved. This gave a peak LiP 

concentration of 42 U. L.4  (figure 5.6.) with air supply while the higher flux operation 

(figure 5.11) gave 16 U. L.-1  with air supply and 34 U. L.-' with pure oxygen supply. A 

reason for this is provided by Feijoo et aL (1995), who, in optimising the nutrient supply of 

their system, found that a residual glucose concentration in their reactor outlet of 1 g. L.-1  

shifted metabolism towards growth, inhibiting LiP activity. 0 g. L. of residual glucose led 

to LiP instability due to induced protease activity, thus a compromise of 0.5 g. L.-1  was used. 

The range of glucose concentrations in the reactor outlet (figure 5.8.) showed that the former 
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(high glucose concentration in the permeate) was the case in the TVFBR system. Since 

glucose metabolism is strongly influenced by oxygen availability, this might account for the 

profound differences between the single-fibre reactor and the TVFBR. 

The difference between MnP production and LiP production can be also explained by 

published observations. In initial flask studies it was shown that LiP is the dominant 

enzyme produced, later studies have shown that in its natural environment, i.e. in wood, P. 

chtysosporium produces more MnP than LiP. It is also becoming evident that MnP plays a 

more vital role in the initial events of wood degradation than was originally thought (Evans 

et al 1991). Thus, if the MGR truly resembles the natural environment of the fungus, then it 

is not surprising that the enzyme production profile would be similar. It has also been shown 

in studies of LiP localisation in wood that LiP was retained within the biofilm (Evans et al. 

1991). MnP is believed to be responsible for degradation of wood over a long range and LiP 

is proposed to deal with primary degradation fragments (Ruel and Joseleau 1991). It would 

be expected that MnP is secreted and LiP is retained by the biofilm, presumably by the 

polysaccharide matrix. This supports cytochemical observations of the MGR biofilm 

(chapter 4). 

5.3.8. Effect of Nutrient Sufficiency 

Dosoretz et al (1993) initially showed that dramatic improvements in LiP production could 

be obtained by using excess NH4
-  (45 to 60mM as opposed to 2.4mM in N-deficient 

cultures). This led to more rapid carbon depletion. They showed 6 to 8 times higher LiP 

production and 2 to 3 times lower MnP activity under excess nutrient conditions compared 

with limiting nutrient conditions. To determine whether this was the case in the MGR, the 

medium was changed to a concentration of 24 mM ammonium tartrate. When this was done, 

excess biomass was produced due to the increased nutrient load This led to rapid clogging 

of the system, as can be seen in figure 5.14, and 5.15. 
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Figure 5.12: Top of the uppermost TVF module showing a thin biofilm surrounding the 
membranes. Arrow indicates the biofilm. 

Figure 5.13: Bottom of the uppermost TVF module showing a thicker biofilm. 
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'II' III 
Figure 5.14: Top of the lower TVF module showing an even thicker biofilm due to the increased 

nutrient flux experienced. 

Figure 5.15: Bottom of the lower module showing accumulated dead biomass. 

This result shows that the biofilm thickness is controlled by nutrient supply and not shear, 

and proves that the biofilm was N-limited, since glucose concentration was not changed. It 

was also observed that the growth medium changed to a dark brown colour. This interfered 

with enzyme assays. It was expected, though, that little or no enzyme production would 

occur during the transition period (Dosoretz et al. 1993) until re-differentiation occured. 

Bacterial contamination in the biomass compartment was also observed at this stage for the 
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first time. This supports the model of a defensive growth form around the capillary wall, in 

nutrient-limited conditions (chapter 4). 

5.4. CONCLUSION 

The results in this chapter show that ligninolytic enzyme production could be obtained by 

the establishment of nutrient gradients across a biofilm of P. chrysosporium according to the 

MGR concept. 

The production of enzymes could be maintained for extended periods, and the productivity 

was surprisingly high, considering the arbitrarily chosen operational parameters. However, 

due to the problem of static pressure, flow maldistribution occurred, preventing true steady-

state operation, which is considered to be an important requirement of this system. Several 

attempts to improve this by experimenting with different operating conditions did not 

provide significant improvement, or any new insights about the process. 

At this stage, improvements in the fluid dynamics of the system were the paramount 

requirement for the full development of the potential of this system. Hence, an engineering 

approach to module re-design was considered the best strategy for further development of 

the process. The initial indication of the superior performance of this system presented in 

this chapter has justified this further development. The MnP productivity of this system 

already exceeds the enzyme production range of the best systems available at present. 

However, engineering practise normally dictates that costs and benefits of different reactor 

systems can only be compared from pilot scale studies. Laboratory-scale studies tend only to 

show the potentials of a system, which was the objective of this chapter. 
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CHAPTER 6 
APPLICATION OF THE MEMBRANE GRADOSTAT REACTOR TO 

BIOREMEDIATION 

6.1. INTRODUCTION 

Two approaches can be followed in bioremediation using the ligninolytic systems of P. 

chtysosporium: either whole organism treatments, or use of the enzymes produced. 

6.1.1. Use of Ligninolytic Enzymes for Bioremediation of Aromatic Pollutants 

There are two major advantages in the use of enzyme treatments: high concentrations of 

toxic pollutants (above the lethal dose for the fungus) can be dealt with, and the ability of 

the enzymes to function in organic solvents, with which several phenolic effluents are 

associated (Popp et al. 1991; Vasquez - Duhalt 1994; Yoshida et al. 1996). 

Extracts of lignin degrading enzymes have been proposed for commercial applications 

such as biomechanical pulping of wood and waste treatment. Advances have been made 

in the production of these enzymes, and since they are an extra-cellular product, 

purification is not expected to be difficult, if at all necessary (Hu et al. 1993). 

Ligninolytic enzymes have been shown to be applicable to de-toxification of phenolic 

effluents (Bollag et al. 1988). Such treatments were shown to be potentially economically 

feasible with the use of the similar plant peroxidase, BRP, in the case of certain industrial 

effluents (Nicell et al. 1992; Cooper and Nicell 1996). HRP has similar degradation 

properties to LiP and MnP, but is more stable. The technology for the use of this enzyme 

is well established (Buchanan and Nicell 1997) and could easily be applied to the fungal 

peroxidases. 

The use of fungal enzyme extracts for degradation, transformation, and/or detoxification 

of aromatic pollutants have been demonstrated on laboratory-scale only (Schmall et al. 
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1989; Tuisel et al. 1990; Valli et aL 1992; Koduri et al. 1996). These enzymes are best 

suited to applications where they either remove pollutants by polymerisation, or detoxify 

them by humification or transformation, since they are not capable of complete 

mineralisation (Popp et al. 1991; Valli et al. 1992;). The transformation of pollutant 

molecules to less toxic compounds (Stahl and Aust 1993a) as a pre-treatment to 

anaerobic digestion seems a very attractive approach (Carberry and Kovach 1992). 

Pump-and-treat systems for soil bioremediation also appears to have potential (Britto et 

al. 1996) since the use of P. chrysosporium in soil is hampered by various soil factors 

such as pH, temperature, high moisture content (Okeke et at. 1996), competition for 

resources with autochthonous organisms (Ali and Wainwright 1994; Tucker et al. 1995), 

lack of oxygen (Legtan et al. 1996; Pfender et al. 1997) and toxic levels of pollutants 

(Spiker et al. 1992; Sayadi and Ellouz 1992; Tucker et al. 1995; Bogan et al. 1996b). 

The de-toxified soil washout can then be returned to the soil for further mineralisation by 

autochthonous bacteria (Brodkorb and Legge 1993), or anaerobic digestion and activated 

sludge systems (Sayadi and Ellouz 1992; Carberry and Kovach 1992). 

There are, however, severe limitations in the use of enzymes, which makes the 

investigation of whole organism treatments feasible. These are: instability of the enzyme 

(Tuisel el al. 1990; Hu et al. 1993; Chung and Aust 1995); requirements for co-factors 

for activity, viz. H202, Mn2+  and chelating agents such as oxalate for MnP action 

(Zapanta and Tien 1997) and inactivation of the enzyme by certain substances (Koduri et 

al. 1996). 

6.1.2. Whole Organism Bioremediation Using the WRF 

Mineralisation of certain compounds occurs under ligninolytic and non-ligninolytic 

conditions. It was initially shown that the ligninolytic enzymes are responsible for the 

initial transformation of aromatic pollutants, and that these pollutants are then 

internalised by the biomass, where they are mineralised (Chang and Bumpus 1993; 

Sayadi and Odier 1995; Brock et al. 1995). Armenante et al. (1994), stated that both 
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ligninolytic enzymes and fungal biomass are required for the degradation of certain 

pollutants. Subsequent work has shown the non-involvement of enzymes in the 

degradation of certain pollutants (Bumpus and Brock 1988; Yadav and Reddy 1992; 

Yadav and Reddy 1993; Yadav et al. 1995). This was shown to be the case since 

degradation of these compounds occurred in nutrient sufficient cultures, where the 

ligninolytic enzymes were not induced (Dhawale et al. 1992; Yadav et al. 1995). Further 

evidence came from bioremediation studies with mutants which lacked LiP and MnP 

activity entirely (Yadav and Reddy 1992). 

The biomass-based degradation has been shown to be due to reduction of compounds by 

establishment of trans-membrane redox potentials due to proton export by the fungus. 

This has been shown to be the case in the reduction of highly oxidised compounds such 

as TNT and its impact is directly proportional to the amount of active biomass present 

(Stahl and Aust 1993a, b; Stahl and Aust 1995), This shows that other mechanisms for 

detoxification of aromatic pollutants by the biomass of P. elvysosporiurn exist. Other 

possibilities include the presence of as yet unknown enzymes (Thomas et al. 1992; Brock 

et at 1995; Badkoubi et al. 1996) or the use of intra-cellular membrane-bound enzymes 

(Forney et aL 1982; Thomas et aL 1992; Barclay et at 1995; Brock et at 1995). 

Initial degradation of certain compounds has also been shown to be catalysed by lipid 

peroxides in the membrane wall (Bogan and Lamar 1995). This peroxidation is initiated 

by MnP action (Bogan et aL 1996a), It has been shown that adsorption of the aromatic 

compounds to biomass accounts for the initial rapid removal of these pollutants from 

solution and plays an important role in removal efficiency (Dietrich et aL 1995; Badkoubi 

et al. 1996; Jaspers and Pennickx 1996). This results from an increase in concentration of 

the pollutant in the vicinity of the biomass-associated MnP and LiP as well as other 

degradative mechanisms (Wolfaardt et aL 1995; Barclay et al. 1995). In fact, adsorption 

to the support matrix would further enhance this phenomenon. Lin et al. (1991) showed 

the superiority of a system on which the degradative biofilm and enzymes were co-

immobilised onto an adsorbent support matrix (in their case, activated charcoal). 

130 



6.1.3. Reactor Systems for Continuous Treatment of Aromatic Pollutants by WRF 

Few studies have reported the use of P. chrysosporium-based reactor systems for waste 

treatment (Venkatadri and Irvine 1993). A typical example is the rotating biological 

contactor (RBC) described by Joyce (1984, cited in Venkatadri and Irvine 1993) for the 

treatment of bleach plant effluents. The process involved a growth period followed by a 

decolourisation period, which lasted only a limited time (5-7 days). After treatment, the 

whole process needed to be restarted. 

Since then several more sophisticated systems have been developed, involving mostly 

RBCs or packed bed reactors with various support materials. As is the case for enzyme 

production, polyurethane foam provides a good support for pollutant degradation 

(Ruckenstein and Wang 1994 and references therein). Lewandowski et aL (1990) tested 

various nutrient media and reactor configurations and subjected these to engineering 

analysis to provide reactor design criteria for bioremediation. Pal et al. (1995) have 

provided an excellent process model to optimise the amount of enzyme and biomass 

required in a system, and what the co-substrate requirements would be for a required 

performance. In summary, reactor systems for bioremediation using the WRF have been 

found to lack : 

• Consistent production of high levels of ligninolytic enzymes; 

• Steady-state continuous enzyme production and fungal activity over extended periods 

of time (Pal et aL 1995). Sufficient nutrients must be supplied to sustain viability; 

• Controlled growth of the fungus. A high biomass density with good viability needs to 

be maintained if good throughputs are to be expected. This requirement arises out of 

the adsorption surface, and lower chemical dose (g pollutant. g. mycelium-) since 

pollutant toxicity and degradation capacity are more tightly correlated to chemical 

dose than to solution concentration of the pollutant (Alleman et al. 1995); 

• Criteria for convenient scale-up to large-scale waste water treatment; 

• A low shear stress environment. 
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The membrane gradostat reactor system has the potential to satisfy all of the above 

criteria (see chapters land 5). The biofilm reactor of Venkatadri et al. (1992) appeared to 

fulfil these requirements as well, strengthening the case for the MGR. 

6.1.4. Biorernediation Using the Membrane Gradostat 

It was considered worthwhile to investigate the potential of the membrane gradostat 

reactor as a bioremediation system for potential use either in effluent treatment or in 

pump-and-treat systems for soil remediation, based on the advantages of using biomass 

and useful features inherent to the membrane gradostat system. 

The membrane support matrix used in the MGR can be considered a good adsorbent for 

the aromatic compounds. The utility of membranes for extraction of such pollutants is 

well researched (Pakhania et al. 1994; Brindle and Stephenson 1996). The spatial 

differentiation could also play a role, since it has been shown by Jaspers and Penninckx 

(1996) that bleach plant effluent is most effectively treated when P. ehlysosporium was 

present in the form of a "fluffy, pelleted material". 

The presence of both "primary" and "secondary" growth phase biomass could be an 

advantage. Different metabolic pathways are utilised for the degradation of phenanthrene 

under ligninolytic and non-ligninolytic conditions (Tatarko and Bumpus 1993; and 

references therein). LiP was shown to transform intermediates from the one pathway to 

intermediates utilisable by the other, thereby linking the two pathways (Tatarko and 

Bumpus 1993). The MGR, therefore, provides interesting possibilities since it was shown 

(chapter 4) that the biofilm consists of biomass which is in both primary and stationary 

phase, and that the thallus behaves as a co-ordinated unit, with linkage between primary 

and secondary metabolic pathways. 

Thus, it was considered worthwhile to obtain a preliminary evaluation of the MGR 

applied to the treatment of aromatic pollutants. Its possible unique advantages over 

conventional systems could be summarised as a high density biofilm consisting of 

actively growing, idiophasic and otherwise differentiated biomass associated with a 

conglomerate of degradative enzymes and a support matrix with good adsorbent 

properties. Other attributes are high oxygen mass-transfer due to direct contact with air 
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streams and relatively low moisture content in comparison to submerged cultures. Both 

of these parameters have been shown to be an advantage to the bioremediation capacity 

of P. chrysosporium (Okeke et al. 1996). 

6.1,5. Objectives 

The MGR concept needed to be evaluated for its potential application to bioremediation 

of aromatic pollutants at an early stage of its development, since this is the anticipated 

primary application of the technology. Experiments with single fibre mini-reactors 

(results not shown) indicated that transmembrane flux was the main factor affecting 

performance of the system. 

The aim of this experiment was to operate the reactor in recirculation mode (the 

anticipated mode of operation in an industrial situation, for this application) using growth 

medium spiked with 100 mg. L.-1  of p-cresol. The effect of the changes in flux which 

normally occur with this type of operational mode were correlated to reactor 

performance. This transient state experimental approach was chosen above the steady-

state approach since this would avoid long term biofilm changes (such as changes in 

biofilm density and thickness) in response to changes in flux. 

6.2. MATERIALS AND METHODS 

6.2.1. Culture and Growth Medium. 

P. chrysosporium DSM 1556 (equivalent to ATCC 34541) was used for this study and 

prepared as in Appendix A. 

6.2.2. Reactor Operation 

The membranes used were externally unskinned polysulphone capillaries (IPS 763) as 

described in chapter 2. Using these membranes an internal surface area (for 

ultrafiltration) of 0.0113 m2  was available in a reactor volume of 36cm3. This is the 

module with the densely packed membranes (figure 5.3.a). The reticulation system is 

depicted in figure 6.1. 
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Before use the reactors were sterilised and inoculated as described in section 5.2.4. 

Growth medium was recirculated through the reactor for four days until LiP production 

was observed. Thereafter p-cresol was added to fresh growth medium and recirculated 

through two different reactors used. The two reactors were operated as follows: 

• Reactor 1: High flux. Growth medium was recirculated to provide a flux range of 

0.007 to —2 L.m-2.11-1  

• Reactor 2: Low Flux. Here the flux ranged from —0,01 to —0.1 L.m-2.h-1  

Samples were collected from the emerging effluent as well as from the recirculating 

medium as a control sample from an in-line sample port (see figure 6.1.). The difference 

in concentration between the two samples indicated the removal of p-cresol in a single 

pass through the biofilm, The samples were assayed for p-cresol concentration as well as 

pH. In order to determine the residual effect of the enzymes produced in the reactor, 

samples were also taken from stored effluent of the reactor 24 hours after emergence 

from the reactor and assayed for p-cresol concentration. Enzyme production was not 

measured since it has been shown that phenols inhibit the oxidation of veratryl alcohol to 

veratraldehyde (Aitken et aL 1989). 

• 

  

   

Fig. 6.1: Reticulation system of the TVFBR used for the study of the degradation of p-cresol. 
The reactor was operated in recirculative mode. p-Cresol concentration was measured in the 

permeate and from the in-line sample port. 
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6.2.3. Analyses 

To challenge the system p-cresol was chosen because it is degraded only under 

ligninolytic conditions by P. chlysosporium (Kennes and Lema 1994). Phenols do not 

stabilise LiP against inactivation by H202  (Chung and Aust 1995). This is due to the 

inability of phenols to revert compound HI back to the ferric enzyme. This ensures the 

requirement for biomass which is actively producing ligninolytic enzymes in the system 

since the turnover of enzymes would be expected to be rapid. p-Cresol concentrations in 

the re-circulating medium and the treated effluent were determined by HPLC as in 

Appendix H. 

Removal rates were calculated as follows: 

°A removal = S.-  S., 6,1. 
x 1"  

Where Sin  = cresol concentration in the medium entering the reactor (as measured from an 

in-line sampling port). 

Soot  = cresol concentration in the reactor permeate. 

% Removal indicates the efficiency of the removal of the pollutant from the perfusate in a 

single pass through the reactor. Reactor performance was also expressed in terms of 

productivity, which is defined as the amount. (in mg of cresol removed) time:' 

membrane surface area."1  and was calculated as follows: 

Q.(Sout-Sin) = P 6.2. 

Where P = the productivity of cresol removed [mg. cresol removed. (m2  of membrane 

surface areal'. hour-1]. 

Q = volumetric trans-membrane flux rate [L.m-2.h-1]. 

6.2.4. Statistical Validity of Results. 

p- Cresol measurements were performed in duplicate and reported values are averages. In 

each case standard error was not more than 1% and so is not reported. In terms of the 
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validity of the trends reported, a third reactor was subsequently run to show that the 

ranges and trends were typical. 

The reactors were operated for a total of 160 hours. p-Cresol degradation trials 

commenced after 96 hours of operation by which time a suitably differentiated biofilm 

would have established. The expected flux changes would cause transient state 

behaviour, so the experiment was executed over a relatively short time so that large 

changes in biofilm thickness could be avoided. 

6.3. RESULTS AND DISCUSSION 

6.3.1. Reactor Performance 

The efficiency of the two reactors is shown in figure 6.2A and B.  
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Fig. 6.2 A: History of Reactor I (high flux) in terms of efficiency, which is the % of pollutant 
removed in a single pass through the reactor. The arrow indicates when the growth medium 

reservoir was changed. 
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Fig. 6.2 B:History of Reactor 2 (Low flux) in terms of efficiency for the duration of the 
experiment. Arrows indicate when the growth medium reservoir was changed. 

The maximum efficiency ofp-cresol degradation achieved in Reactor 1 (figure 6.2A) was 

52 % removal in a single pass through the reactor. This efficiency was maintained for 

approximately 6 hours before a sharp decrease in efficiency was observed. It was also 

observed that the maximum efficiency was achieved shortly after fresh growth medium 

was supplied. Similar trends could be observed in Reactor 2 (figure 6.2B). Maximum 

cresol removal efficiency of 100% was maintained for approximately 20 hours in this 

case, was achieved shortly after a medium change. Reactor productivities over the 

duration of the experiment are depicted in figures 6.3. and 6.4. 
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Fig. 6.3: The productivity history of Reactor 1. Productivity relates to the rate of pollutant 
removal and was calculated according to equation 6.2. 
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Fig. 6.4:Reactor 2 productivity history. The productivity of this reactor, operated at lower flux, 
was found to be generally poorer than that of Reactor 1. 

An initial lag period in productivity could be observed in figure 6.3. This was followed 

by a period of rapid increase in productivity over time which contrasts with the bioreactor 

efficiency results. A similar trend was observable in Reactor 2 (figure 6.4). In this case 

the bioreactor productivity showed a similar trend to bioreactor efficiency in that the 

supply of fresh medium had an enhancing effect on reactor performance. Since these 

responses were transient one can conclude that the biofilm was not in steady-state, but 

was constantly changing as a result of changes in the feed medium. The changes in the 

feed medium most likely occurred through back diffusion of waste products into the 

recirculating medium. 

6.3.2. Removal of p-Cresol by Residual Enzyme Activity in the Reactor Effluent 

Samples of the effluent from Reactor 2 which were allowed to stand for 24 h. showed no 

trace of p-cresol indicating that the ligninolytic enzymes and/or the biomass washed out 

of the reactor were still active in the removal of p-cresol. This suggests the possibility of 

use of the reactor permeate for contact with an effluent, rather than direct contact 

between harsh effluents and the biomass. 

Further reductions in cresol concentrations of 20-30% were observed in the effluent of 

Reactor 1 after 24hrs. Although this still leaves a significant amount of cresol remaining, 

this is a high throughput reactor, so the reactor effluent could easily be recycled until 

complete removal was achieved. Since p-cresol has been shown to be completely 

138 



removed by, and only in the presence of, the ligninolytic enzymes of P. chrysosporium 

(Kennes and Lema 1994), it could be postulated that a greater ligninolytic enzyme 

concentration could have been present in the low flux reactor, 

6.3.3. Factors Affecting Bioreactor Performance. 

Effect of Flux 
The medium re-circulation rates and pressures of both reactors were not changed but the 

flux was allowed to change on its own throughout the experiment so that the effects of 

different trans-membrane flux rates could be determined. This constantly changing flux 

was an inherent fault in the operating procedure of these reactors and is amplified in 

changes in biofilm density resulting from changes in flux. This, in turn, affects the flux, 

providing a complex system. Figure 6.5. shows the flux changes observed over time 

during the experiment 
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Fig. 6.5:Flux history of Reactor 1 (6.5A) and Reactor 2 (6.5B). The flux was allowed to change 
during the experiment so that the effects of the flux changes could be quantified. 

From figure 6.5, noticeable flux increases were observed in both reactors. The reason for 

these flux changes are not known. The effect of different flux rates on bioreactor 

performance is shown in figure 6.6. for Reactorsl and 2. 

Figure 6.6.(A) shows a trend in reactor efficiency for Reactor 1 which increased with 

increasing flux up to ± 0.21 L.rri-2.hr-1. Thereafter a non-linear drop in p-cresol removal 

was observed with increasing flux. This trend was not observable in Reactor 2 (figure. 

6.6.B). This implies that some operating parameter other than flux had an influence on 

degradation efficiency. 
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Fig. 6.6. A: Effect of flux on Reactor I efficiency. A trend can be seen here in that efficiency 
increases with flux up to 0.21 L tn.-2.h.-1. Thereafter a decrease in efficiency was observed. B-

effect of flux on Reactor 2 efficiency. No clear trends could he distinguished here. 
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Figure 6.7. shows the effect of flux on bioreactor productivity. 
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Fig. 6.7: Relationship between flux and reactor productivity. A = Reactor 1. B = Reactor 2. 
Clear but different trends can be observed indicating that the dominant factors affected by 
flux which influence reactor productivity change under different operating conditions. No 

attempt was made to fit the data to mathematical trends. 

Fig. 6.8: Combined data from Reactors 1 and 2 approximates an S-shaped curve. This provides 
some information on the mechanism of degradation (described in text). 

Combining the results from Reactors 1 and 2 (figure 6.8.) provides a clearer 

demonstration of the relationship between flux and reactor productivity. In Reactor 2, 

there appears to be an exponential increase in reactor productivity with flux, while at 

higher fluxes (reactor 1), this becomes a saturation curve. 
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The saturation-type kinetics could arise from the degradation mechanism. Several 

researchers have shown that in P. chtysosporium, for certain pollutants, the reaction 

mechanism is a two-stage process. The first stage was shown to be a rapid removal of the 

pollutant from solution by adsorption to the fungal mycelia and EPS (Cripps et al. 1990; 

Barclay et al. 1995; Badkoubi et aL 1996) and the second stage, a subsequent degradation 

of the adsorbed pollutants by the hyphal-associated ligninolytic systems (including 

peroxidase enzymes and other systems) as is the case for bacterial biofilms (Wolfaardt et 

al. 1995). 

Due to the above, the importance of surface area to volume ratio of the biofilm becomes 

an important parameter in removal rate. Several models have been suggested for the 

nature of this adsorption (Barclay et al. 1995). 

Very low productivities are attained at extremely low fluxes (< 0.05 L.m h,-1). Peak 

productivity seems to be in the range of 8 000 mg.ti 2.h.-1  attained at flux rates of above 

1.5 L.m 2.h."1.  The relationship between flux and productivity provides valuable 

information on operating conditions in terms of flux and membrane surface area required 

to achieve a given productivity ofp-cresol removal. 

Influence of Nutrient Status 
It can be seen for both reactors that productivity and efficiency improve with a change to 

fresh growth medium. This is not suprising since it has been shown that WRF require a 

co-substrate for lignin and pollutant degradation (Kirk et al. 1976; Fernando et al. 1989). 

Kirby et al. (1995) report that certain aromatic compounds can be used as a sole carbon 

source by P. elnysasporium although degradation is limited in these cases. However, 

excessive nutrient supply would (as in the case with high flux) be expected to suppress 

ligninolytic activity. The impact of this can only be speculated about in the case of 

pollutant degradation, since such a wide array of physical and metabolic processes 

influence degradation concurrently. Empirical studies showed that for the batch treatment 

of 250 mg. L. -1  chlorophenol over 15 days, 10 g. L.-1  glucose and 0.2 g. L-1  of ammonium 

tartrate were required for its complete removal, with nutrient starvation leading to inferior 
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performance (Perez et al. 1997). Beside providing energy and metabolic intermediates for 

the biomass, glucose is also required for the production of H202, which is vital for the 

transformation of the pollutant. 

The above is based on the assumption that the re-circulating medium changes in 

composition over time, which can be expected in re-circulative flow, where the 

membrane could perform an extractive function. It is also probable that metabolic wastes 

and inhibitory degradation products could be expected to diffuse into the lumen due to 

Starling flow phenomena resulting from the re-circulative nutrient supply regime (Patkar 

et al. 1993; Kelsey et al. 1990). 

It was also realised that operating the reactor in constant nutrient supply mode (constant 

recirculation rate) would not be the ideal way to study the reactor under steady-state 

conditions since very little control over nutrient supply to the biofilm is possible. This is 

because hydraulic transport of the growth medium is mostly diffusional and, therefore, 

trans-membrane flux is more dependent on resistance of the membrane wall and the 

biofilm. Hence membrane flux under diffusional transport conditions would be more 

dependent on biofilm density which is affected by a number of factors. 

Table 6.1. shows a comparison of the constant nutrient supply rate vs. constant flux (as 

used in chapter 5) operational modes. 
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Table 6.1: Differences between constant flux and constant flow conditions as MGR operational 
modes. 

Criterion Constant flow Constant flux 

Hydraulic transport mode Mostly diffusional Mostly convectional 

Filtration mode Cross-flow Dead-end 

Application to simultaneous 
ultrafiltration and transformation 

Good potential (because of 
cross-flow) 

Poor potential (vulnerable to 
fouling) 

Biofflm dynamics Transient state (due to changes 
in flux) 

Mostly steady-state (because of 
constant flux-depends on 
nutrient consistency) 

Application to continuous secondary 
metabolite production 

Poor- not as predictable Good- steady-state operation 
should be more easily 
attainable. 

Application to bioremediation Good because simultaneous 
ultrafiltration is possible. 
Effluents are inconsistent so 
transient state required, 

Good because it allows for good 
control of one of the most 
important operational 
parameters viz. flux, but subject 
to clogging if effluent contains 
colloidal particles. 

Effect of pH 
Changes in efficiency and productivity due to changes in the environment caused by 

fungal metabolism was also investigated. The fungus has been shown to decrease the 

medium pH and raise the redox potential of the medium in the MGR (results not shown). 

This contrasts with several reports in literature which show that culture pH tends to 

increase to about pH 6 or 7 after 7 days of cultivation (Linko 1992 and references 

therein). In typical batch culture, the pH of the culture medium initially drops due to 

fungal growth and metabolism. The effect of changing medium pH was found to be 

complex (see figures 6.9 and 6.10). 
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Fig. 6.9: Relationship between the pH of the re-circulating growth medium and reactor 
efficiency. A = Reactor 1 and B = Reactor 2. In Reactor 1 increase in pH can be correlated to 

an increase in efficiency. In Reactor 2, if the data from the last growth medium batch is 
ignored, an inverse relationship between pH and efficiency of removal can be seen (see 

trend line). 

Fig. 6.10: Relationship between growth medium pH and reactor productivity. A = reactor 1. B 
= reactor 2. An inverse relationship between pH and productivity can be clearly seen for 
Reactor 1. Careful consideration of the data presented for Reactor 2 indicates an inverse 
relationship between pH and productivity if the data from different nutrient batches are 

considered separately. 

It can be seen from the productivity studies for Reactors 1 and 2 that the productivity was 

inversely related to pH of the reactors over the range measured. If the change in 

productivity is a result of the change in pH, the results can be described in terms of the 

pH optima of the ligninolytic enzymes and the biomass. The pH optimum for LiP activity 

is 2.5 and MnP is 3.5, while that of the biomass is 4.5 (Tapia and Vicuna 1995). Hence, at 

lower pH, the enzymes would be active and the biomass less active, while the inverse 

would apply at higher pH. The system would be expected to be more complex, though, 

since it has been shown that higher phenol degradation rates occur at pH 4.75 than at pH 
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3, while 2-chlorophenol showed greater removal at pH 3 than at 4.75. This occurs 

because although initial rates of target compound removal might be higher at pH 3, 

overall removal depends on the useful life of the enzyme (Aitken et al. 1989), these being 

more stable at higher pH. Also, adsorption to biomass by aromatic pollutants is more 

rapid at low pH due to the lower solubility and greater affinity for biomass (Badkoubi et 

al. 1996), 

6.3.4. Mathematical Description of Process Performance 

Few models for the description of biodegradative processes using P. chiy.sosporium have 

been reported with the objective of process description for improved performance and 

economics (Lin et al. 1990). 

A structured model with few lumped parameters is provided by Lin et al. (1990) for the 

degradation of PCP. This model takes into account 2 pathways for degradation: a 

pathway which includes the initial degradation of pollutants by extra-cellular enzymes to 

certain intermediates, followed by mineralisation of these intermediates by the biofilm. 

The second pathway involves direct mineralisation of the PCP by hyphal-associated 

processes. The model includes the parameters and conditions influencing each pathway, 

including co-factor requirements, oxygen demand and enzyme concentrations. Such a 

model is unachievable for the MGR process at this stage. 

A "black box" approach using unstructured models according to Pal et al (1995), 

Alleman et at (1995) and Lewandowski et al. (1990) is more appropriate at this stage, 

since the MGR system is highly complex, unknown and approximates steady-state. 

Two criteria were used to evaluate the performance of this reactor as a function of certain 

operational parameters. These are efficiency and productivity. These criteria are, 

however, not suitable for comparison of different reactor configurations. Lewandowski et 

al (1990) provided a convenient steady-state performance model which they claimed was 

the first reported Michaelis-Menten kinetics-based design parameters available in 
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literature for treating hazardous waste. The model is based on a plug-flow packed bed 

reactor, operated at steady-state with a 2-phase production/regeneration cycle. They claim 

steady-state conditions since no growth was expected during the enzyme induction phase. 

A standard mass balance was written for the plug-flow reactor as : 

Q.S. Q.(S+dS) + rAV — 0 6.3. 

Michaelis-Menten kinetics were reported as: 

re  = V max  • S 

K1+s 

On integration: 

Kra  S1  1  

max  

 

o,,t H,.„ L3  

Where r, = reaction rate. 

Q = volumetric flow rate. 

S = pollutant concentration. 

V = reactor volume. 

Vnia„ and lc, = Michaelis-Menten parameters. 

This approach was adapted for use in the MGR, since plug-flow conditions prevail and 

steady-state biofilm thickness and enzyme concentration are assumed. In addition re-

differentiation of the biomass was assumed to be minimal over the time period of 

operation and the flux range for each reactor was small enough to prevent major changes. 

The regression was, however, performed differently for the MGR data. Lewandowski et 

al. (1990), assumed a constant Si„, plotted flow rate vs. Sout  and regressed the data to 

include the limiting point of Sow  = Sin  at an infinite Q. In regressing their data, Si. was 

allowed to float, allowing them to determine the accuracy of their results by the regressed 

value for Sin. In the case at hand, Sin  could not be held constant since re-circulative flow 

caused changes to the growth medium. It could, however, be determined accurately via 

an inline sampling port. Thus, the procedure by Lewandowski et al. (1990) would yield 

meaningless results. Instead, In Sin/Soot  was plotted against V/Q. Since Sir, could not be 

held constant, the numerical value of the intercepts would have been doubtful. However, 

6.4. 

6.5. 
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the slope, Krn/Vmax could be used as a valuable parameter in estimating reactor 

performance (the accuracy of the trend was determined by the linear correlation co-

efficient, R2). This parameter can be related to the catalytic efficiency of an enzyme, 

since it also has the dimensions [concentration-1. time"']. A high value for this parameter 

would indicate a high Vmax  or low Km, both of which are advantageous in a process. 

Data from one nutrient batch was used for the sake of consistency. Furthermore, only the 

data of Reactor 1 could be treated since insufficient data points were obtained for one 

nutrient batch for Reactor 2. Also, more consistent trends were observed with Reactor 1. 

The resultant plot and linear regression data are depicted in figure 6.11. The R2  value 

shows a good linear fit (0.99). The value of V,,,m1K,, for Reactor I was found to be 0.8. 

This compared very well with the values of 0.34 obtained for a 400cm3  packed bed 

reactor and 0.195 for a 1800cm3  packed bed reactor treating chiorophenol (Lewandowski 

et al. 1990). However, differences in Kn, for p-cresol and 2-chlorophenol need to be taken 

into account to compare reactors. 

0_6 

04 0.6 0.6 0.7 

In Sin/Sout 

Fig. 6.11: Determination of V./K. for Reactor 1. The performance parameter Vm/Km  for the 
reactor was determined from the slope of this graph and relates to the catalytic efficiency of 

the reactor. 
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6.4. CONCLUSION 

In an attempt to assess the factors which play a role in the performance of the MGR for 

the degradation ofp-cresol, the problem of inability to sustain steady-state behaviour was 

overcome, to a certain extent, by setting up two reactors with different initial flux ranges. 

This gave a high flux reactor with a thick, active biofilm and a low flux reactor with a 

thinner biofilm, with the greater concentration of ligninolytic enzymes due to nutrient 

limitation of more of the biofilm. The effect of flux on biofilm thickness can be observed 

in figure 3.7. These reactors were operated for a limited time only, to minimise changes 

in biofilm composition caused by changes in operating conditions. 

For each reactor, two performance parameters were chosen viz. efficiency and 

productivity. The following factors were shown to influence performance. 

Flux appeared to be the dominating factor. This is not surprising since the following 

characteristics are strongly influenced by flux:  

• Biofilm thickness; 

• Amount of enzyme produced; 

• Oxygen mass transfer (related to biofilm thickness); 

• Shear stress; 

• Residence time of compounds in biofilm; 

• Adsorption of pollutants to mycelia (related to residence time and biofilm thickness) 

It was shown that with a thick biofilm and high flux ranges, efficiency increased as flux 

increased up to approximately 0.1 L.n12.h.-1. Presumably adequate supply of nutrients 

and a residence time within the adsorptive capacity of the system was the reason for this 

effect. When flux reached levels above 0.1 L.m-2.11.-1  loss of efficiency was observed, 

probably due to saturation of the biofilm with pollutant, and too slow a degradation rate 

to clear adsorptive sites. No clear trends could be observed in the low flux reactor. 

In terms of productivity, an apparently exponential improvement in productivity with flux 

is observed in the low flux reactor, while a saturation curve was observed in a plot of flux 
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vs. productivity with the high flux reactor. Combining the results of Reactor 1 and 2 

provided a more complete picture of the relationship between flux and productivity. This 

showed that: 

• The data are reliable since the combination of data from two very different reactors fit 

a common trend indicating reasonable reproducibility; 

• This curve could form the basis of a simple design curve for a rational approach to 

scale-up, costing or application; 

• Productivity is a more robust measure of reactor performance than efficiency, since 

such clear trends were not shown for efficiency. This saturation curve is typical of 

continuous reactors without cell washout. Results imply that adsorption to the 

membrane and mycelia might be the rapid, initial step in removal due to the high 

dilution rates (short residence times) at the high fluxes tested. 

Superimposed on the effect of flux, other parameters could be shown to play a role: 

• Nutrient status of the biofilm. Addition of fresh nutrients caused a noticeable 

improvement in performance (efficiency and productivity) in both reactors. The 

improvement could also be due to removal of metabolic wastes, which are expected 

to back-diffuse into the lumen due to re-circulative flow operation; 

• Growth medium pH was shown to either effect - or be correlated with - changes in 

reactor performance. In terms of efficiency, an inverse relationship was shown 

between the efficiency of the low flux reactor and flux, while a direct relationship 

was shown between efficiency and pH in the high flux reactor. In the case of 

productivity, an inverse relationship was found between reactor productivity and 

medium pH in both high and low flux reactors. This difference in trends between 

efficiency and productivity in the high flux reactor is an interesting result and alludes 

to the complexity of the system. 

An interesting result was the discovery that p-cresol removal continued in the reactor 

effluent due to residual enzyme and biomass reaction. This implied that the reactor could 

be used to indirectly contact toxic effluents as a pre-treatment for detoxification purposes. 
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The reaction products need to be analysed before further assumptions about its usefulness 

can be made. 

In terms of quantitative analyses, the adapted method of Lewandowski et al. 1990, 

proved useful, Their reactor performance features can be lumped into a useful Michaelis 

— Menten-based kinetic parameter, here called catalytic efficiency for convenience. This 

parameter is robust enough for treatment of the data obtained for these experiments. It 

accounts for reactor efficiency as well as productivity. This parameter can be used to 

directly compare continuous flow reactor configurations and operational parameters and 

will be a vital optimisation parameter and means of comparison with competing 

technologies. 

It will be endeavoured to develop a more structured model for the description of this 

highly complex, but potentially competitive system. This requires the ability to operate 

the system under steady-state conditions so that the effects of the individual factors can 

be fully explained. 

Thus, it can be concluded that the use of the MGR concept, scaled up to a multi-fibre 

device in the TVFBR format, has sufficient potential to warrant further development. 

Despite the complexity of interactions of physical operational parameters, the system is 

competitive in terms of performance despite being un-optimised. 

Further research needs now to be directed towards characterisation of the physical 

parameters to facilitate optimisation and scale-up of this system. 
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CHAPTER 7 

CONCLUSION 

A novel bio-process approach, the MGR, was conceptualised for the continuous 

production of idiophasic enzymes by the WRF which involved the use of membrane 

bioreactor technology and the exploitation of the inherent characteristic of nutrient 

gradient establishment in biofilms (Leukes et a/.1996). Development of a new bio-

process typically follows distinct phases: proof of concept, characterisation, optimisation 

and then scale-up. The objective of this work was to formulate the solution to a process 

problem from a biological perspective, prove the concept and derive a descriptive 

characterisation of the process. 

Z 1. MEMBRANE AND MEMBRANE BIOREACTOR DESIGN 

The field of membrane bioreactor technology is an active area of research, with a variety 

of developments by way of membrane types and assembled systems. These have thusfar 

mainly been applied to mammalian cell culture. It was thus considered probable that such 

systems could be conveniently applied to the development of the MGR concept. 

However, after several attempts, conventional OF membranes and cylindrical axial flow 

systems were abandoned due to the inability to establish a uniform biofilm with the use 

of these systems. Following a critical analysis of the reasons for the failure of these, 

appropriate design criteria for a membrane with suitable characteristics to suit the MGR 

requirements were identified. These criteria included the absence of an external skin; an 

anisotropic wall structure with macrovoids which penetrate from the skin to the external 

boundary of the membrane; good permeability for rapid immobilisation and good 

mechanical strength to avoid rupture by the growing biofilm. 

Several possibilities for achieving the above were explored. These included abrasion of 

conventional membranes by sand blasting to erode away the external skin, nuclear track-

etching for extended macrovoid formation, or the use of an open-structured microporous 

membrane. It was eventually decided to attempt the development of an entirely new 

152 



membrane by manipulation of wet-phase inversion spinning technique parameters. This 

culminated in the development of the IPS 763 membrane (Jacobs and Leukes 1996) 

which fulfilled all of the theoretical requirements. The membrane market, at present, 

shows a distinct paucity of membranes designed specifically for membrane bioreactors. 

Thus, the development of this specialised membrane can be considered to be of 

considerable significance in the field of membrane bioreactor research. 

Practical demonstration of the performance of this membrane then followed. Other than 

providing a crucial solution in the development of the MGR, this novel membrane 

development has already found application in the immobilisation of enzymes for 

biotransformations and bioremediation (Edwards et al 1999), the production of enzymes 

and bioremediation by another WRF, Trametes versicolor (Ryan et al. 1998) and the 

continuous production of spores from Neurospora crassa (Ryan et al. 1998). 

A suitable bioreactor module was then required for sequential destructive sampling of the 

membrane-associated biofilm. This requirement was met by the development of a 

disposable single-fibre mini reactor. Also, a multi-fibre module, fitting pre-determined 

performance criteria had to be developed, which could be used to test the sensitivity to 

scale-up of the MGR concept and which could provide sufficient amounts of enzyme 

product for process analysis. This was achieved through the development of a transverse 

flow module, as originally described by Futselaar et al. (1993). To the knowledge of the 

author, this is the first reported application of such a transverse flow membrane module 

as a fixed-film bioreactor. A set of empirically-based operational conditions were 

identified in order to undertake the evaluation of these systems. These proved adequate, 

but not ideal. This component of the research was perhaps the most difficult, since 

expertise in membrane manufacture, reactor engineering and module design had to be 

combined with understanding of the physiological requirements the fungus. The success 

of this venture was therefore entirely due to a close and highly interactive research 

collaboration with a polymer scientist and chemical engineer. 
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7.2. PROOF OF THE MGR CONCEPT 

The MGR concept was then demonstrated empirically with the use of the IPS 763 

membrane. Complete proof of the MGR hypothesis was based on several observations 

and criteria, listed below: 

• Morphology 
It was shown that morphological changes occurred radially across the mature biofilm, 

indicating that the temporal events occurring in typical batch cultures can be observed in 

a spatial domain. This is the cornerstone of the membrane gradostat concept. These 

morphological differences were related to typical growth phases experienced during 

batch culture on conventional OF membranes and verified using internal metabolic 

markers for different growth phases. 

• Enzyme Production 
It was shown that enzyme production could be attained without switching between 

growth and production cycles. This provided the functional proof that the MGR concept 

not only holds, but can be applied. 

• Nutrient Gradient Establishment 
In the originally formulated operational parameters, zero ammonium in the reactor 

permeate was sometimes observed. In the process which used double the flux for closer 

process observation (Chapter 5, section 5.3.4.), typically 75-90% of the NW originally 

present in the growth medium was removed by the biofilm even though NH4
+  re-release 

was known to occur. Thus, nutrient gradients must exist in the biofilm, providing further 

evidence that the differentiation and secondary metabolite production could result from 

these gradients. Further proof was obtained from the observation that the biofilm 

thickness increased when the concentration of NI-I4
+  was increased (Chapter 5, section 

5.3.8.). The same was observed when the flux was raised (Chapter 3, figure 3.7.). This 

showed that the biofilm was NI-I4
+  limited. That enzyme production ceased when the 

concentration of NH4
+  was increased indicated that secondary metabolite formation is 

related to the establishment of nutrient gradients. 
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7.3. CHARACTERISATION OF THE BIOFILM 

Based on observations of the biofilm at the level of ultra-structural localisation of 

ligninolytic enzymes and of details of cellular structure and organelle distribution, it 

could be concluded that the structural complexity observed in the biofilm of P. 

cluysosporium in the MGR more closely resembles the behaviour of the fungus in its 

natural environment, than flask cultures with liquid medium. 

The above observations and descriptions revolve around provisional evidence for co-

ordination and possible proto-tissue type organisational behaviour. Elucidation of the 

control and regulatory mechanisms of this organisation is also a prospect for future 

application of the MGR, since the structural observations can be put into the context of 

chemical and physical micro-environments. The nature of these micro-environments can 

be established theoretically by existing mathematical models and also empirically using 

micro-electrodes. Also, since the different morphological forms are segregated in space, 

molecular genetic mechanisms can be elucidated by the use of in situ hybridisation 

techniques. This will be the focus of future research. 

7.4. PERFORMANCE OF THE MGR 

Evaluation of the TVFBR showed it to be a good model reactor for process analysis, 

since good productivity was obtained for MnP production, comparable with the best 

reported systems available, even without optimisation (see table 5.2). This indicates that 

the concept of the MGR is worthy of further development for enzyme production. The 

performance of the MGR system, as described by its catalytic efficiency, also shows that 

it warrants further consideration as a useful technology for direct bioremediation of 

aromatic pollutants. This system has also been evaluated for application to 

bioremediation of cresylic effluents by T. versicolor, another basidiomycete and N. 

crassa, a zygomycete (Ryan et al. 1998). A new procedure, based on single fibre reactors 

has recently been tested to elucidate degradative mechanisms and kinetics without 

interference from pollutant adsorption to reactor components and gas stripping (Walsh. 

C.G. (1998)— BSc (Eons). thesis). 
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Compared to other reactors, the MGR compares well in terms of productivity and the 

ability to operate continuously, ie. no intermittent growth and production cycles are 

required. This is of particular relevance to the application of bioremediation, since a 

biomass regeneration stage would be costly, both in terms of time and growth medium 

requirements. 

However, since development of the MGR is in its infancy, it does not compare well with 

other reactor systems in certain aspects due to inexperience with the use of this system. 

The most obvious shortcoming is the inability to sustain steady-state operation. This has 

been found to be due to fluid flow maldistribution, a hydrodynamic problem inherent to 

the operating conditions used. The obvious next step in development is to re-design the 

hardware associated with the membrane gradostat so that true steady-state operation can 

be achieved. This will require re-development of the process on a rational basis, using the 

information presented here. It is typical of bio-process research that both engineering and 

scientific development occur simultaneously, In his treatise on the development of 

nanotechnology, Eric Drexler stated that " Science and technology intertwine. 

Technologists use knowledge produced by scientists, and scientists use tools designed by 

engineers..." (Drexler 1990). 

In order to facilitate progress in the engineering of the MGR concept, a collaborative 

research directive was established in 1997 between the Department of Biotechnology of 

Rhodes University, the Institute for Polymer Science, Stellenbosch University, and the 

Chemical Engineering Departments of the M.L. Sultan, Cape, and Peninsula Technikons, 

The priorities of this program are: 

• Re-design of the transverse flow module design or formulation of operating 

conditions so that the problem of fluid flow maldistribution can be overcome. 

• Design of a reticulation system, process inoculation and operation technique to 

prevent contamination over long-term operation, and to formulate CIP procedures for 

either in situ cleaning, or at least to allow re-use of the system if contaminated, which 

is not presently possible. 
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Several new modules have already been designed and are being evaluated. Once the 

above have been achieved, a process model can be tested, and regime analysis on the 

current concept can be performed. 

7.4. FUTURE RESEARCH 

The next phase of characterisation would be macro-scale process parameter identification 

to perform regime analysis. This requires systems where precise control of process 

parameters, particularly physical phenomena, can be maintained to accurately determine 

the effects of these phenomena. Thus, future development of this work has commenced in 

two directions, the consolidation of fundamental aspects of the biology and engineering 

of the MGR into a robust, effective process, and further exploration of the practical 

application of this technology. 

Recent work has also shown that continuous penicillin production can be achieved using 

the MGR (Purohit, N.(1998) BSc (ions). thesis). Presently, applications of secondary 

metabolites compose a major part of the pharmaceutical industry, especially in the case of 

antibiotics. With original patents on novel antibiotics beginning to expire, the need for 

competitive production technologies will soon have a major impact on the industry. 

Evidence already exists that the MGR could become a technology that might provide a 

competitive advantage in this area. 
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APPENDICES 
Chemicals were obtained from Saarchem, Merck, BDH or Sigma unless otherwise stated, 

APPENDIX A: CULTURE MAINTAINENANCE AND SPORE 
INOCULUM DEVELOPMENT 

Cultures were stored on malt extract agar (2%) plates and sub-cultured every six months. 

Spore inocula were prepared by transfer of stock cultures to Roux bottles containing the 

sporulation medium of Tien and Kirk (1988), described below: 

Glucose 10g. 

Malt Extract 10g, 

Peptone 2g. 

Yeast extract 2g. 

Asparagine lg. 

KH2PO4 2g. 

MgSO4.7H20 1g.  

Thiamin.HCL 1 mg.  

Agar 20g.  

The components above, with the exception of Thiamin.HCI, were autoclaved in 1 L. of 

distilled water. A stock solution of Thiamin. HC1. was thereafter filter sterilised and 

added to the growth medium. Roux bottles were autoclaved separately. Approximately 

250 mL. of the above medium was introduced per Roux bottle. 
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APPENDIX B: GROWTH MEDIUM 

The growth medium used for all experiments was essentially that of Tien and Kirk 

(1988). This medium was used since it is the one most often cited in the literature, 

allowing direct comparisons to be made with other systems where the same medium was 

used. This medium uses glucose as a carbon source and ammonium (in the form of 

ammonium tartrate) as a nitrogen source. This is an unbalanced medium which is N-

deficient in order to trigger secondary metabolism as soon as the available nitrogen is 

used up for biomass formation. This medium also contains excess mineral salts which 

have been shown to enhance ligninolytic enzyme production. 

MATERIALS: 

Trace Element solution (per litre): 

MgSO4.7H20 6g. 

MnSO4,H20 0.5g. 

NaCL lg. 

FeSO4.7H20 0.1g. 

CoC12.6H20 0.183g. 

ZnSO4.71120 0.1g. 

CuSO4.5H20 0,156g. 

AlK(SO4)2.12H20 10mg. 

H3B03 10mg. 

N a2Mo 04.21120 10mg. 

Nitrilotriacetate 1.5g. 

Basal Ill Medium (per litre) - 

KH2PO4 20g.  

MgSO4.7H20 10g. 

CaC12.2H20 1.32g. 

Trace Element Solution 100mL. 
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Other stock solutions: 

10% glucose solution (C-source) 

Thiamin-HCI stock solution 100mg. U1  

Ammonium Tartrate solution (8g. U1) (N-source) 

Buffer 20mM Dimethyl Succinate pH 4.2. 

Although this is the recommended buffer, sodium acetate buffer was sometimes used as 

an alternative where large amounts of medium was required due to the cost of the 

Dimethyl Succinate buffer. 

Preparation of Trace Element Solution: 

The Nitrilotriacetate (a chelating agent) was first dissolved in 800mL. of water. The pH 

was then adjusted to pH to —6.5 with 1N KOH. Each component was then added in order 

and make up to 1L. 

Preparation of Growth medium: 

The trace element solution, Basal III medium, ammonium tartrate solution and buffer 

with the required amount of dilution water were autoclaved together. The glucose 

solution was autoclaved separately to prevent caramelisation and added subsequently and 

the Thiamin. HCl solution was filter sterilised. 

Quantities of Reagents (per litre of growth medium): 

Glucose solution 100mL. 

Thiamin.HC1 solution 10mL. 

Ammonium tartrate solution 25mL. 

Basal I1T Medium 100mL. 

Buffer solution 100mL. 

Veratryl Alcohol (Aldrich) Solution 100mL. 

Water 565mL. 
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APPENDIX C: SCANNING ELECTRON MICROSCOPY 

Sections were fixed for at least 12 hours in 2.5% glutaraldehyde in potassium phosphate 

buffer (p1-1 7.0), washed with phosphate buffer (pH 7.0) and then dehydrated through a 

series of ethanol concentrations (30%, 50%, 70%, 80%, 90%, 100%), 

The standard procedure for sample preparation would then have involved gradual transfer 

to an amyl acetate concentration series (Cross, R. 1994, pers. comm.). The possibility that 

the amyl acetate solution might dissolve the membranes was considered, hence the 

procedure was stopped after two washes with 100% ethanol before Critical Point Drying 

from CO2. The samples were then gold coated and viewed in a JEOL JSM-840 SEM. 

APPENDIX D: TRANSMISSION ELECTRON MICROSCOPY 

Sections fixed and stained with DAB were washed in phosphate buffer (pH 7.4), stained 

and secondary fixed in 1% osmium tetroxide and dehydrated with alcohol as above. Then 

the samples were prepared for embedding by replacing the alcohol with propylene oxide 

using a gradual increase in propylene oxide: alcohol concentrations and then a series of 

embedding mixture: propylene oxide mixtures. The samples were embedded in pure resin 

which was allowed to polymerise for 36 hours at 60 °C. The resin used was a mixture of 

Taab 812 and Araldite CY212. 

1-2 gm sections were then made for light microscopy using an LKB Ultratome 

ultramicrotome. 80 -100 nm sections were cut for TEM, post-stained with uranyl acetate 

and lead citrate and viewed using a JEOL 1210 TEM. 
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APPENDIX E: INTRACELLULAR MARKER ASSAYS FOR THE 
ONSET OF STATIONARY PHASE. 

The assay for the onset of stationary phase was based on the observation of Bonnarme et 

al. (1991) that a significant increase in the specific activity of the intracellular enzymes 

Cytochrome C Oxidoreductase and Succinate Dehydrogenase upon entry of a culture of 

P. chrysosporium into stationary phase. Therefore, the activity of these enzymes was 

followed to determine the onset of stationary phase in membrane-immobilised cultures. 

MATERIALS 

Protein Extraction Mixture (soln A) (1L.) 

Sorbitol 182.2 g. 

HEPES 2.383g. 

EDTA 0.372g. 

Adjusted to pH 7.4 

Succinate Dehydrogenase assay (stock solutions in 100mL.) 

KCN stock (10X) 0.938g. 

MTT stock (10X) 20mg. 

Na-succinate stock (10X) 4.32g. 

K2HPO4.3 H2  0 1 8.26g (p11 7.5) 

Phenazine Methosulphate (10X) 80mg. 

Cytochrome C Oxidoreductase Assay (stock solutions in 10OrnL.) 

13-NADPH (Boehringer) stock (10X) 0.238g. 

KCN stock (10X) 0.466g. 

K2HPO4.3H20 9.13g. 

Cytochrome C (type II) (100X) 0,45g. 
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All stock solutions were prepared freshly before use, except for the extraction buffer 

(solution A), which was stored at 4°C. 

PROCEDURE 

Protein Extraction 

Membrane sections containing immobilised fungus were frozen in liquid nitrogen and 

and stored at — 70 °C. Samples were ground in a mortar and pestle in the presence of 

liquid nitrogen. Sufficient amounts of filter sterilised solution A was added to obtain a 

homogeneous suspension. The suspensions were centrifuged at 5 000 g for 10 min. 

(Bonnarme et al. 1991). The supernatant was collected and used for intracellular marker 

enzyme assays and total intracellular protein analysis by the method of Bradford (1976) 

using Bovine Serum Albumin as standard. 

Determination of Succinate Dehydrogenase Activity 

Succinate Dehydrogenase, a marker for mitochondria! activity was determined 

spectrophotometrically by measuring the rate of reduction of tetrazolium salt (MTT) 

resulting from the oxidation of succinate to finnarate as described by Bonnarme et aL 

(1991). 

For 100mL. of reaction mixture (solution B), the following were added: 

KCN stock 20mL. 

MTT stock 10mL. 

Sodium succinate stock 10mL. 

K2HP 04 solution 10mL. 

Distilled water balance 

The pH of this solution was adjusted to p1-17.5 and then incubated at 30 °C before use. 

The assay was performed in 3mL. cuvettes and contained, per reaction: 

Solution B 1.25 mL. 

Enzyme sample 0.1 mL. 
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Water 0.5 mL. 

This was allowed to incubate at 30°C before 0,25 mL, of phenazine methosulphate stock 

was added to start the reaction. The rate of change in absorbance at 570 nm. was 

determined as a measure of enzyme activity. 

Cytochrome C Oxidoreductase 

Cytochrome C oxidoreductase, a marker for Endoplasmic Reticulum activity, was 

determined spectrophotometrically by measuring the reduction of cytochrome C by the 

method of Bonnarme et al. (1991) except that type II cytochrome C was used instead of 

type IV and 220mM 13-NADPH was used instead of 286 mM. 

Solution C: 

KCN stock 

K2HPO4  stock 

The assay contained the following: 

Solution C 

Enzyme sample 

NADPH stock 

10 mL. 

10mL. 

0. 5m.L. 

0.1mL. 

1.9mL, 

This solution was allowed to incubate at 30°C. 

0.025mL. of the Cytochrome C stock solution was added to start the reaction, which was 

monitored at 550 nm. 

Activities for both enzymes were expressed as U.g-I  of intracellular protein, where I Unit 

— the conversion of 1p.M of substrate per minute. 

170 



APPENDIX F: CYTOCHEMICAL STAINING PROCEDURE FOR 
THE ULTRASTRUCTURAL LOCALISATION OF LIP IN A 

BIOFILM 

A procedure for the determination of the LiP in biofilm sections was adapted from 

methods described by Forney et al. (1982) and Sexton and Hall (1991). The basic 

principle was that the peroxidase substrate DAB formed electron-dense osmophilic end 

products after transformation by peroxidases, These deposits react with the secondary 

fixative, osmium tetroxide, to form black depostis, observable by TEM. Control 

experiments were performed to determine the interference of catalase, which is 

ubiquitous and has peroxidase activity at high pH. This can be accomplished by pre-

incubation of the sample with amino-triazole, a catalase inhibitor, to which peroxidases 

are insensitive. Controls for false positives were performed by pre-incubation of samples 

with KCN, a peroxidase inhibitor. 

PROCEDURE 

Sample Pre-Fixation 

Sections were fixed for 3.5 hours in 2% glutaraldehyde in 0.1 M sodium cacodylate 

buffer at pH 7.2. Glutaraldehyde cross-links the proteins to hold them in place as well as 

enhancing the activity of peroxidases (Forney et al. 1982; Sexton and Hall 1991). 

Enzyme Reaction 

The sections were washed with sodium acetate buffer (70 mM. pH 4) and then incubated 

in an aerated solution of 2mg. mL.-1  DAB tetrahydrochloride (Sigma) and 10mg. mL.-1  

glucose in the above buffer for twenty minutes for the DAB to penetrate the sample after 

which H202  was added to a final concentration of 5mM. After 15 min. this solution was 

replaced with the above solution containing 1-1202  and left to incubate for 35 minutes, The 

last step was repeated. All incubations were carried out at 39°C. 

In the control experiments, the samples were pre-incubated for 30 min. in sodium acetate 

buffer (pH 4) containing 50 nM. 3-amino-1,2,4,- triazole (Sigma) or 50 mM. KCN. The 
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DAB staining was then followed except that the solutions also contained KCN or 

aminotriazole. All reactions were performed in a dark environment. 

Samples were then incubated with the secondary fixative, osmium tetroxide, and 

prepared for TEM according to Appendix D. 

APPENDIX G: LIGNINOLYTIC ENZYME ASSAYS 

CONCENTRATION OF SAMPLES 

Extracellular fluid was typically used for enzyme determinations. Mycelia were first 

removed by filtration through glass wool. Then 5inL. of the extracellular fluid was 

concentrated to 750 [IL. using a 10 000 MWCO centrifuge ultrafiltration device (MSI 

Scientific). The retentate was used for enzyme assays. 

LIGNIN PEROXIDASE ASSAY 

Lignin peroxidase activity was determined spectrophotometrically at 18°C by the method 

of Tien and Kirk (1988) using veratryl alcohol as substrate. The rate of oxidation of 

veratryl alcohol to veratraldehyde was monitored at 310nm. The extinction coefficient 

used for veratraldehyde was 9 300 114-'cm'', Activity is expressed in U,L 1. (1U. — 

lumol.min-1). 

The assay solution contained the following: 

10 rnM. Veratryl alcohol (Aldrich) solution 200p.L. 

250 mM. Tartaric acid solution 2041. 

Distilled water 420RL. 

Enzyme solution 100µL. 

5 mM. 1-1202  solution 80µL. 

Veratryl alcohol stock solutions were stored in a dark container. All other solutions were 

prepared fresh. 
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MANGANESE PEROXIDASE ASSAY 

MnP activity was performed according to the method of Glenn and Gold (1988). The 

assay is based on the spectrophotometric determination of the oxidation of ABTS 

(Diammonium 2,2'-Azinobis(3-ethyl-6-benzothiazoline sulfonate)) by Mn? in the the 

presence of lactate, Mn2' and H202. The reaction was followed spectrophotometrically by 

the measurement of product formed. The extinction coefficient for the oxidation product 

at 415 nm. is 3 600 M.'icm-1. Activity was expressed as U. L.-1  

Reagents: 

Reagent A: 

Egg albumin 150mg. 

1 M. sodium lactate buffer (pH 4.5) 2.5mL. 

1 M. sodium succinate buffer (pH 4.5) 2.5mL. 

MnSO4  solution 95mg. 

ABTS solution (80 rig. rnL.-11) 

Reagent B: 

H202 100p.M. 

Assay 

Reagent A 450µL. 

Reagent B 450p.L. 

Enzyme sample 100pL 
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APPENDIX H: DETERMINATION OF P-CRESOL 
CONCENTRATION BY HPLC 

p-Cresol was determined using a Beckman System Gold HPLC unit with Beckman 

System Gold software for chromatographic analysis. A reverse-phase Machery-Nagel 

Nucleosil 5 11 column was used with water:acetonitrile (6:4) as the mobile phase at a flow 

rate of ImL.min."1  p-Cresol was detected on a Diode Array UV-Detector at 254nm. 

Assays were performed in duplicate and the averages were used. 
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