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Abstract

The counting of fuzzy subsets of a finite set is of great interest in both
practical and theoretical contexts in Mathematics. We have used some count-
ing techniques such as the principle of Inclusion-Exclusion and the Möbius
Inversion to enumerate the fuzzy subsets of a finite set satisfying different con-
ditions. These two techniques are interdependent with the Möbius inversion
generalizing the principle of Inclusion-Exclusion. The enumeration is carried
out each time we redefine new conditions on the set. In this study one of our
aims is the recognition and identification of fuzzy subsets with same features,
characteristics or conditions. To facilitate such a study, we use some ideas
such as the Hamming distance, mid-point between two fuzzy subsets and car-
dinality of fuzzy subsets. Finally we introduce the fuzzy scanner of elements
of a finite set. This is used to identify elements and fuzzy subsets of a set.
The scanning process of identification and recognition facilitates the choice of
entities with specified properties. We develop a procedure of selection under
the fuzzy environment. This allows us a framework to resolve conflicting issues
in the market place.

AMS Subject codes : Primary : 03E72; 05A15. Secondary : O5A10; 11B73.

Keywords: Finite Fuzzy Set; Möbius function; Zeta function; Zeta matrix; Set
Partition; Dominance order.
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3.2 Möbius function, Möbius inversion in the lattice of fuzzy subsets
of finite sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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PREFACE

The primary purpose of our study is the enumeration of different entities of
fuzzy subsets of a finite set through the principle of inclusion-exclusion and the
Möbius inversion. In the process we identify some pattern among the elements
of the set or even among the fuzzy subsets of the finite set and count those
entities having the same features. While we are enumerating and identifying
these objects, we use the ideas such as cardinality, support and core of fuzzy
subsets; distance and mid-point between two fuzzy subsets. We impose various
conditions and count accordingly entities satisfying these conditions. Among
the various types of distance, we have chosen to use the Hamming distance
and the generalized relative Hamming distance between two fuzzy subsets as
suggested by A. Kaufmann, [20]. With this in mind we have defined the ordi-
nary subset nearest to a fuzzy subset and the index of fuzziness.
It is again around the notion of Hamming distance that we have built our
first, second and third criteria for identification and recognition of fuzzy sub-
sets.The identification of an element or a fuzzy subset of a set can be achieved
using procedures of selection under fuzzy environment. We limit ourselves in
finding the majority, plurality and Borda winners. This selection under fuzzy
environment can also be obtained by using the idea of a fuzzy scanner.

In Chapter 1, we recall the well established Principle of Inclusion-Exclusion
(PIE) in crisp set context. This principle expresses the function of a union of
finitely many sets as an alternating sum of functions of their intersections and
dually we express the function of an intersection of finitely many sets as an
alternating sum of functions of their unions. We will use this principle in crisp
context in two cases, namely, the counting of surjections from an m-element
set M to a n-element set K and also the enumeration of ordinary functions
from an m-element set M to a n-element set K. The dual of the principle of
Inclusion-Exclusion was first proved in [45]. We use some of these techniques
in subsequent chapters of this thesis.

In Chapter 2, we review some basic definitions pertaining to fuzzy subsets.
This includes definition of fuzzy subsets; cardinality of a fuzzy subset, Ham-
ming distance between fuzzy subsets and the notion of α-cut. After these
general terms, we later apply the PIE in counting objects in the lattice of
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fuzzy subsets of a finite set. We count either elements of a finite set or ele-
ments in the α-cuts of fuzzy subsets and the intersections or unions of fuzzy
subsets. With regards to the α-cut, some of these elements may have absolute
desirability or worth. On the other hand some may have no worth at all since
their membership value is zero. Considering an α ∈ [0, 1], we count as well
the fuzzy subsets with regards to the size of their α-cut. Here we will count
the fuzzy subsets of the same, larger or smaller α-cut. We will consider the
cardinality of fuzzy subsets of an n-element set X and enumerate the fuzzy
subsets with either the same cardinality, cardinality zero or cardinality n.
The counting of elements of F(X ), the lattice of fuzzy subsets, is done with
regards to some imposed conditions that elements must satisfy. Each time we
change the conditions, new identification and therefore new counting of ele-
ments satisfying the condition is done.
Towards the end of Chapter 2, we will discuss some other applications of the
PIE. In one case we consider αi ∈ [0, 1] and check using the PIE that the

intersections and unions of the pull-back of membership functions
n⋂

i=1

µ−1(αi)

and
n⋃

i=1

µ−1(αi) is actually a partition of the set X.

In Chapter 3 we first review some facts related to the Möbius functions and
Möbius inversion and then establish in the process the Möbius function and
inversion in the lattice F(X ) of fuzzy subsets of a finite set X.
The Möbius inversion (MI) is actually a generalization of the principle of
Inclusion-exclusion (PIE). So we find it relevant here to extend our discus-
sion of PIE in F(X ) by studying the Möbius Inversion in F(X ).

In Chapter 4 we talk about the identification process or the pattern recogni-
tion. Here we try to identify some common patterns among the elements and
also among the fuzzy subsets of a finite set. Using the Hamming distance and
the notion of cardinality of fuzzy subsets, we define the idea of fuzzy subset
nearest to a fuzzy subset. We also look at the number of fuzzy subsets between
two fuzzy subsets and the number of fuzzy subsets mid-point between two fuzzy
subsets. Considering a fuzzy subset as a vector (µ1, µ2, · · · , µn) ∈ [0, 1]n, we
are able to define the fuzzy mid-point between two fuzzy subsets. This fuzzy
mid-point between two fuzzy subsets is not always unique, but is a collection
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of possibilities to choose from. Because fuzzy subsets allow many mid-points
or alternatives to choose from between two chosen ones, then we can use them
to model a solution for some day to day situations. We have in mind some
conflicting situations such as water and electricity distribution in a commu-
nity. Distribution and usage of water and electricity are issues of conflict in
one community. Different stakeholders do not agree on how these commodi-
ties should equitably be distributed. Business, industry and farms think they
bring food and livelihood to the community and therefore should be given
sufficient attention by the municipal council. They also believe that they are
being over-taxed while the same amount of energy and water is supplied to
hospitals, streets and schools for free. Other people on the other hand might
think that they do not have money to pay for services and they might say that
industries and farms are responsible for water pollution and therefore should
not be supplied with much needed water. How do we solve such kind issues?
We are going to use finite fuzzy subsets to model and find solutions to these
types of problems.
In this chapter we suggest a new way of representing an element of a set taking
into account its membership values to the fuzzy subsets of the set. It will be
shown that this unique way of representing the characteristics of an element,
which we will call fuzzy bar − code, is important. A tool which is able to
read the element’s details, as well as identify an element of a set by using its
fuzzy bar − code will be introduced and would be used in the process of fuzzy
recognition.

In Chapter 5 we introduce a procedure of election activity under fuzzy en-
vironment. The election in this context is actually a selection of a desired
outcome among many alternatives. While the selection by itself is not vague,
we use vague or fuzzy descriptors to achieve our goal of selection. Here
we will talk about fuzzy plurality winner, fuzzy Borda winner and fuzzy
majority winner.
We are not concerned about the election as the one in political arena. We
are interested in the selection of the best possible choice among a myriad of
possibilities. This election is envisaged as a solution in case of conflict where
the best option possible is chosen among many in an environment where terms
are defined in a vague way.

11



Chapter 6 gives a summary of the work done in the thesis and recommenda-
tions for future research and as such can be regarded as a conclusion chapter
of the thesis.
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Chapter 1

The Principle of
inclusion-exclusion

1.1 Introduction

We will start our study by introducing the famous principle of inclusion-
exclusion. This is a counting technique which consists of over-counting and
under-counting elements of a set, including some extra elements but later on
excluding the ones which have been taken twice, three times... and so on.
Another appropriate name to this principle is the sieve technique.
The Principle of Inclusion and Exclusion (PIE) as a counting technique has
been used for enumerating crisp subsets of a set. In the following Chapter we
extend this counting tool to the set of fuzzy subsets of a finite set X. Much
work was done in [45] Here we define some new facts, state and improve the
most interesting results in this regard.
We want naturally to define the principle of Inclusion and Exclusion. We will
show with some examples how this principle is used practically.

1.2 The idea of PIE.

Initially the Principle of Inclusion and Exclusion ( PIE) was expressed as in
the theorem below:

Theorem 1.2.1 Let A1, A2, · · ·An be subsets of a finite set X, Then the num-
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ber of elements of X in the union of n subsets Ai 1 ≤ i ≤ n is given as in the
expression below

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =

n∑

i=1

| Ai | −
∑

1≤i<j

| Ai ∩ Aj | +
∑

1≤i<j<k

| Ai ∩ Aj ∩ Ak |

+ · · · + (−1)n−1 | A1 ∩ A2 ∩ · · · ∩ An |
Alternatively, taking complements in X, the theorem can also be expressed

as follows:
∣∣∣∣∣X \

n⋃

i=1

Ai

∣∣∣∣∣ =| X | −Σn
i=1 | Ai | +Σ | Ai∩Aj | + · · ·+(−1)n | A1∩A2∩· · ·An | .

Using the duality principle, we can express the above theorem as in the fol-
lowing statement: If A1, A2, · · ·An are subsets of a finite set X, Then

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ =

n∑

i=1

| Ai | −
∑

1≤i<j

| Ai ∪ Aj | +
∑

1≤i<j<k

| Ai ∪ Aj ∪ Ak |

+ · · · + (−1)n−1 | A1 ∪ A2 ∪ · · · ∪ An | .

P roof : We prove the theorem by induction on n.
From | A ∪ B |= | A | + | B | − | A ∩ B |, we draw that

| A ∩ B | =| A | + | B | − | A ∪ B | .

Thus for n = 2 the formula is valid. Now suppose the formula is true for the
intersection of n subsets A1, A2, · · ·An of S. That is:

| A1 ∩ A2 · · · ∩ An |=
n∑

i=1

| Ai | −
∑

1≤i<j

| Ai ∪ Aj | +
∑

1≤i<j<k

| Ai ∪ Aj ∪ Ak | +

· · · + (−1)n−1| A1 ∪ A2 ∪ · · · ∪ An |.
Then we prove that the theorem is true for n + 1. We wish to show that

| A1∩A2∩· · ·∩An∩An+1 |=
n+1∑

i=1

| Ai |−
∑

1≤i≤j≤n+1

| Ai∪Aj | + · · ·+· · ·+(−1)n |

A1 ∪ A2 ∪ · · · ∪ An+1 | is true.
Let A = A1 ∩A2 ∩ · · · ∩An, then the left side of the above expression becomes

14



| A ∩ An+1 | which gives rise to the following equality
| A ∩ An+1 |=| A | + | An+1 | − | A ∪ An+1 | as seen above in the case of two
(2) subsets.
From the above equality, we can express | A | + | An+1 | as :

| A | + | An+1 |=
n+1∑

i=1

| Ai | −
∑

1≤i<j≤n

| Ai ∪ Aj | +
∑

1≤i<j<k≤n

| Ai ∪ Aj ∪ Ak |+

· · · + (−1)n−1 | A1 ∪ A2 ∪ · · · ∪ An | (1.2.1)

Again | A ∪ An+1 | can be expressed as
| A ∪ An+1 |=| (A1 ∪ An+1) ∩ · · · ∩ (An ∪ An+1) | by using the distributive law
of union.

Now if we set that A∪An+1 = A′ and Ai ∪An+1 = A′
i for each i, we further

obtain, again by inductive hypothesis,
| A′ |= | A′

1 ∩ · · · ∩ A′
n |=

∑n
i=1 | A′

i | −
∑

1≤i<j≤n | A′
i ∪ A′

j

| +
∑

1≤i<j<k≤n | A′
i ∪ A′

j ∪ A′
k | + · · · + (−1)n−1 | A′

1 ∪ A′
2 ∪ · · · ∪ A′

n |.
The rule of set union allows us to write A′

i1
∪ A′

i2
∪ · · · ∪ A′

ik
as

Ai1 ∪Ai2 ∪ · · · ∪Aik ∪An+1 for any subset of indices 1 ≤ i1 < i2 < · · · < ik ≤ n
where 1 ≤ k ≤ n. Therefore:

| A ∪ An+1 |=
n∑

i=1

| Ai ∪ An+1 | −
∑

1≤i<j≤n

| Ai ∪ Aj ∪ An+1 | +

∑

1≤i<j<k≤n

| Ai ∪Aj ∪Ak ∪An+1 | + · · ·+ (−1)n−1 | A1 ∪A2 ∪ · · · ∪An ∪An+1 |

(1.2.2)
Now subtracting each side of the equation 1.2.2 from the corresponding side

of the equation 1.2.1, we see that the inductive process on n is valid. This
completes the proof. 2 [45].

We consider below in the following subsections some applications of the PIE.
We see how the principle is used in concrete cases. We will apply this in two
incidents: the counting of surjections from a set M to a set K and the general
counting of functions from any set M to an ordered set K.
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1.3 The enumeration of surjections

Let M and K be an m-element set and a k-element set respectively. A func-
tion f : M → K is a surjection if each element of K is image of some element
x of M. The number of functions from M to K is km. This number is easily
used to compute the number of surjections from M to K when K has only few
elements. For example let us consider K to be ∅, {a}, {a1, a2} respectively. If
K = ∅ , there is only one function, namely the empty function from M to K.
If K = {a}, again there is only one function from M to K, but this function is
a surjection. If K = {a1, a2}: There are 2m functions from M to K. Of these,
one only skips a1 and one only skips a2. This means two of the 2m functions
are not surjections. Therefore 2m − 2 are surjections.
Generally consider that K = {a1, a2, · · · ak}. Let p1, p2, · · · , pk be the proper-
ties that a1, a2, · · · ak are not in the range of the function respectively. Also let
p
′
1, p

′
2, · · · , p

′

k be the properties that a1, a2, · · · ak are in the range of the function
respectively.
We denote by N(pi) and N(p

′
i) the number of functions that do not have ai

in their range and the number of functions that do have ai in their range re-
spectively for i = 1, 2. Also we denote by N(pipj) and N(p

′
ip

′
j) the number of

functions that do not have both ai and aj in their range and the number of
functions that do have both ai and aj in their range respectively.
Using the PIE to enumerate functions that do have every element of K in their
range we can write :N(p

′
1p

′
2 · · · p

′
m) = N − [N(p1) + N(p2) + · · · + N(pk)] +

[N(p1p2)+ · · ·+N(pipj + · · ·+N(pk−1pk)]− [N(p1p2p3)+ · · ·+N(pipjpk)+ · · ·+
[N(p1p2 · · · pk)], where N is kn. For each ai not in the range there are k − 1
choices for the value of the function at each element of the domain. Therefore

there are (k − 1)m functions. That is to mean that there are

(
k
1

)
(k − 1)m

functions skipping one element of K. If two elements ai and aj are not in
the range, then there are k − 2 choices for the value of the function at each
element of the domain. That means there are (k − 2)m functions that skip

any two elements of K. There are

(
k
2

)
(k − 2)m functions skipping any two

elements of K. Since any function skipping two elements of K, skips at least
one element of K, these functions are counted among the N(p

′
1p

′
2 · · · p

′
m). We

continue this way until none of the ai∀i is in the range of the functions. That
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is to mean that N(p
′
1p

′
2 · · · p

′
m) = 0, in which case there are no such functions.

Thus the number of surjections for an m-elements set M to a k-elements-set is

km −
(

k
1

)
.(k − 1)m +

(
k
2

)
.(k − 2)m +

(
k
3

)
.(k − 3)m + · · · ±

(
k

k − 1

)
.1m

When the above number is multiplied by 1
k
!, that is 1

k!
.(km −

(
k
1

)
.(k− 1)m +

· · · ±
(

k
k − 1

)
.1m), the resulting number is called Stirling Number of the sec-

ond kind and is denoted S(m,k).

Now we wish to tackle the more general case of counting the number of func-
tions from a set M to K. This time we consider an order in the set K.

1.4 Counting of ordinary functions

In the above example the range set K was not ordered in any fashion. But
it is useful in our further work to have an ordering and more particularly
a total ordering on K. So we impose that K is a totally ordered set with
a1 ≤ a2 ≤ · · · ≤ ak. We could count, using PIE, the number f of functions
from X to K, each satisfying a property that all the elements of the range of the
function exceed a certain specified element of K. With that specification, we
associate a number p which is the number of elements exceeding the specified
element. We consider functions of a finite set X with values in a finite set
K ⊂ [0, 1]. Assume |X| = n and |K| = k. As seen earlier, there are kn

possible functions of X in F(X ,K). Consider α ∈ K.
In this section we count, among the kn functions, those which are such that
no element of X has a value in M that exceeds α. Let us use the notation
(Nµ ≥ α) for the number of functions which are such that at least one element
of X has a value that is equal to or exceeds α. Now the number of functions
sought is given by the expression in the following lemma.

Proposition 1.4.1 (Nµ ≥ α) = kn −
n∑

i=0

C(n, i)(−1)n−ikipn−i
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Proof : Let α ∈ K and | K |= k, while | X |= n.
Since K is finite and ordered with the usual ordering in Z, and M has the
minimum element denoted by l; and the maximum elements denoted here as
h; we observe that l ≤ α ≤ h.
Let us now find the number of functions (fuzzy subsets) such that no element
of X has a membership value (image) equal to or exceeding α.
This problem is the same as that of finding the number of functions (fuzzy
subsets) from X with (membership) values in M skipping | [α, h] | values in
K.
Call | [α, h] |= p. Since | K |= k, there are k − p values in K not exceeding α.
Therefore there are (k − p)n functions (fuzzy subsets)from X with (member-
ship) values in M with no image (membership) exceeding α out of a total of
kn functions.
This means there are kn − (k − p)n functions (fuzzy subsets) with an image
(membership value) greater or equal to α.
This also means (Nµ ≥ α) = kn − (k − p)n = pn.
Expanding kn − (k − p)n we get:

kn − (k − p)n = kn − [
n∑

i=0

C(n, i).ki.(−p)n−i ]

and so (Nµ ≥ α) = kn −
n∑

i=0

C(n, i)(−1)n−ikipn−i.2 The two examples men-

tioned above are typical to show how the PIE is used. In day to day life many
other situations require this counting technique. In the literature, there are
many other examples that are mentioned.

In the next chapter we deal with the lattice of fuzzy subsets of a finite set,
denoted by F(X ). We will recall the definition of the concept of fuzzy subset,
recall also the properties and operations on fuzzy subsets. Later we will explore
and devise some ways of counting fuzzy subsets of a set or counting of elements
of the set using the counting technique of PIE. Our discussions will center
mostly around the notions of cardinality, α-cuts, Hamming distance, etc...
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Chapter 2

Applications of PIE in
enumerating elements and fuzzy
subsets of the finite set

.

2.1 Fuzzy subsets of a finite set.

In this section we recall the basic definitions, notations and operations for fuzzy
subsets of a finite non-empty set with regards to the principle of Inclusion-
Exclusion. Research on fuzzy subsets has been underway for over 40 years
now. It is therefore impossible to cover all aspects in this field nor is necessary
to look into all aspects since we are only interested in the applications of PIE
to a collection of fuzzy subsets of a finite set. We merely aim to provide a
summary of the basic concepts central to the study of fuzzy subsets and refer
to various excellent textbooks available in the literature. See [20].

2.1.1 Definition of a fuzzy subset

Let X be a nonempty set. A fuzzy subset A of X is characterized by a mem-
bership function: µA : X −→ [ 0, 1 ] = I such that the number µA(x) in the
unit interval I is interpreted as the degree of membership of element x to
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the fuzzy subset A, for each x ∈ X. This number µA(x) is also called the
membership value of element x to the fuzzy subset µA. The set X is referred
to as the universe of discourse.
Every {0, 1} -valued fuzzy subset with membership function taking only either
0 or 1 is called a crisp subset, that is just a subset of X in the usual sense
of the term. This means each object x of X either belongs to A when the
degree of membership is 1 or does not belong to the subset A ( membership-0)
of X. Therefore we can identify a subset A with its characteristic function
χA : X → I such that

χ
A
(x) =

{
1, if x ∈ A
0, otherwise, that is, x /∈ A

for all x ∈ X.
Unlike the crisp subset, a fuzzy subset expresses the degree to which an ele-
ment belongs to the fuzzy subset. Hence the extended characteristic function
of A, χA : X → I, of a genuine fuzzy subset A that is not crisp is allowed to
have values strictly between 0 and 1, which denotes the degree of membership,
that is partial membership of an element in a given set.
Let X be a non-empty set and µA a fuzzy subset of X. We call µA weakly
empty fuzzy set of X if
µA(x) < 0.5,∀x ∈ X.
The fuzzy subset A is completely determined by the set of tuples: A =
{(x, µ(x))}, x ∈ X} provided either X is finite or countably infinite. For
example,

Example 2.1.1 .
Let X = {x1, x2, x3, x4, } such that µ(x1) = 0.2, µ(x2) = 0, µ(x3) = 0.3,
µ(x4) = 0.8. Therefore µA = {(x1; 0.2), (x2; 0), (x3; 0.3), (x4; 0.8)} is a fuzzy
subset of X with a four-tuple representation.
The set such as M = {0.2; 0; 0.3; 0.8} in the above case is called the member-
ship set of the fuzzy subset µA.
Consider all the fuzzy subsets of set X with memberships in the set M ⊆ I.
These are elements of F(X ). We are imposing some conditions on the set
of membership values M restricting the fuzzy subsets to a certain order for
convenience.
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2.1.2 Family of fuzzy subsets of a set.

Throughout the remainder of this thesis, X = {x1, x2, · · · , xn} is a finite set
with 1 ≤ n elements and all fuzzy subsets µ of X take n membership values
not all necessarily distinct and hence take m values with 1 ≤ m ≤ n. The
membership values in the interval I = [0, 1] are taken to be uniformly spaced,
with the usual ordering given by Mm = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
= 1}.

This uniform choice of values in Mm does not affect the counting of fuzzy
subsets with special property and also is in line with preferential equality
discussed elsewhere, [28].
The family of all fuzzy subsets in X is denoted by F(X ) or IX

Here it is useful to have the notation | X | to stand for the cardinality of a set
X. In general if | X |= n and | M |= m , then there are mn possible fuzzy
subsets in total which is | F(X ) |= mn.
F(X ) is finite if both X and M are finite.
Note that the set P(X ) of crisp subsets of X has 2n elements.

Example 2.1.2 .
Refer to the diagram attached to the thesis.

X = {x1, x2, x3} and M = {0, 1
2
, 1}. There are 27 = 33 distinct fuzzy subsets

as members in F(X ) among which 23 = 8 are crisp subsets of X.
The fuzzy subsets of a set have more properties than their counterparts, the
crisp subsets. It is therefore interesting to study how the usual operations such
as inclusion, intersection, union of crisp subsets extend to fuzzy subsets.

2.1.3 Operations on Fuzzy Subsets.

In this section we extend some of the operations of crisp set theory such as
inclusion, intersection, union and complement. These extensions are done in
such as way that the extended operations restricted to two-valued subsets,
namely crisp subsets, coincide with the usual operations.

1◦. Inclusion.

Let µ , λ ∈ F(X ) be two fuzzy subsets of X. µ is said to be included in
λ (or, equivalently, µ is contained in λ, or µ is smaller than or equal to λ) if
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and only if ∀x ∈ X, µ(x) ≤ λ(x). We express the containment or inclusion
also as domination or dominance in the sense that λ dominates µ if and only
if ∀x ∈ X, λ(x) ≥ µ(x).

Thus, clearly the set (F(X ),≤) is a partially ordered set. This means that
the relation ≤ defined on F(X ) is reflexive, anti-symmetric and transitive since
the ordering is the point-wise usual ordering of real numbers. Thus we may
view the partial orders containment and dominance as dual to each other on
the set of all fuzzy subsets.

Let µ and λ be two fuzzy subsets of a set X. Then µ is said to be equal
to λ ( µ = λ ) if and only if µ ≤ λ and λ ≤ µ.
We say that λ is strictly contained in µ written as λ < µ in the sense that
there is at least one x ∈ X for which λ(x) < µ(x).

2◦. Intersection.

Let µ and λ be two fuzzy subsets of a set X. The intersection of µ and λ
is a fuzzy subset γ defined as:
γ(x) = (µ∩λ)(x) = min(µ(x), λ(x)) = µ(x)∧λ(x) ∀ x in X. The fuzzy subset
γ is sometimes denoted by µ ∧ λ.
Two fuzzy subsets µ and λ are said to be disjoint if and only if (µ∧ λ)(x) = 0
for all x ∈ X. That means wherever λ(x) 6= 0, then µ(x) = 0 and whenever
µ(x) 6= 0, then λ(x) = 0 . The intersection of µ and λ is the ” largest” fuzzy
subset which is contained in both µ and λ.

3◦. Union.

The union of µ and λ is a fuzzy subset γ defined as: γ(x) = (µ ∪ λ)(x)
= max (µ(x), λ(x)) = µ(x) ∨ λ(x) ∀ x in X. The fuzzy subset union γ can
be denoted as µ ∨ λ. The union of µ and λ is the smallest fuzzy subset that
contains both µ and λ.

4◦. Complementation.

Let µ and λ be two fuzzy subsets of a set X. The two fuzzy subsets are said
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to be complementary if ∀x ∈ X;λ(x) = 1 − µ(x) or µ(x) = 1 − λ(x). In case
λ is complement of µ, we write λ = µ.

Remark 2.1.3
1. A fuzzy subset µ has a unique complement µ by definition of the complement
of a fuzzy subset. In fact if we assume that λ and η were two complements of
µ, then by definition of complement, λ(x) = 1 − µ(x) and η(x) = 1 − µ(x).
This says λ(x) = η(x) and means that µ has only one complement.
2. In general the intersection of a fuzzy subset and its complement is not
the empty fuzzy subset. Suppose µ is a fuzzy subset which is not a crisp
subset. Let µ be its complement. Now assume ∀x ∈ X,min(µ(x), µ(x)) =
min(µ(x), (1 − µ(x)) = 0. Then for every x either µ(x) = 0 or 1 − µ(x) = 0.
But since µ is not a crisp subset, there is at least one x ∈ X such that
0 < µ(x) < 1. This implies 1− µ(x) is also strictly between 1 and 0. This is a
contradiction.
So we can conclude the intersection of a fuzzy subset and its complement is
the empty fuzzy set if and only if the fuzzy subset is a crisp subset.

The following is an example of a fuzzy set whose intersection with its comple-
ment is not empty fuzzy set.

Example 2.1.4 .
Consider a fuzzy subset µ of a finite set X = {x1;x2, x3, x4, x5, x6} such that:
µ = {(x1/0.13); (x2/0.61); (x3/0); (x4/0); (x5/1); (x6/0.03)} and µ = {x1/0.87); (x2/0, 39); (x3/1); (x4/
Then µ ∩ µ = {(x1/0.13); (x2/0.39); (x3/0); (x4/0); (x5/0); (x6/0.03)} which is
not empty.

Note 2.1.5
1. The complementation used for fuzzy subsets is not the same as the com-
plementation of Boolean lattice. The only time these two coincide is when the
membership set M = {0, 1}.
2.The lattice (F(X ),≤) is distributive but not complementary,that is, a vector
lattice and not a Boolean lattice.
3. We observe that the union of a fuzzy subset and its complement is not the
universal set X.

Example 2.1.6 .
Consider again the µ = {(x1/0.13); (x2/0.61); (x3/0); (x4/0); (x5/1); (x6/0.03)}
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and µ = {(x1/0.87); (x2/0, 39); (x3/1); (x4/1); (x5/0); (x6/0.97)} as in the ex-
ample above.
µ ∪ µ = {(x1/.87); (x2/0.61); (x3/1); (x4/1); (x5/1); (x6/0.97)} which does not
represent X. In addition ∀µ, λ ∈ (F(X ),≤) , µ ∧ λ ; µ ∨ λ exist in (F (X),≤)
as we have defined above. Therefore (F(X ),≤) is a lattice.
Furthermore this lattice is bounded because ∀µ ∈ (F(X ),≤), ∃λ such that
λ ≤ µ. This λ is defined as the empty fuzzy subset of X such that χ∅(x) =
0 ∀x ∈ X and ∀µ ∈ (F(X ),≤) , ∃λ′ such that µ ≤ λ′. This λ′ is the fuzzy
subset χX.

5◦. Difference.

Let µ and λ be two fuzzy subsets of a set X, with µ the complement of µ.
The fuzzy subset difference of λ and µ, noted (λ − µ) is defined as λ ∩ µ.

Note 2.1.7

Throughout the remaining part of this thesis we will represent a fuzzy subset
µ = {(x1, µ(x1), (x2, µ(x2)), · · · (xn, µ(xn)} of X simply by writing their respec-
tive membership values with a particular ordering of the elements of the set
X as µ(x1)µ(x2) · · · µ(xn). This is done in order to simplify the identification
of fuzzy subsets. For instance 1

2
01 means the fuzzy subset

µ(xi) =





1
2
, if i = 1

0, if i = 2
1, 1 if i = 3

for all xi ∈ X. [20]
The above is a simplification of Kaufmann’s notation {(x1|12); (x2|0); (x3|1)}.

2.1.4 Cardinality of a fuzzy subset

Let X be a set. The cardinality of a subset A ⊆ X is the number of elements
of X contained in A. The cardinality of a crisp set is a natural number except
when the set is empty in which case we assign zero. That is the cardinality of
the empty set is zero.
Let X be a n-elements set and let M be a subset of [0, 1] to be defined suitably
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in the context of discussions, for instance see chapter 4 or 5 or in this chapter
section 2. We define below the cardinality of a fuzzy set. It was first defined
by Kaufmann in [20].
Many other definitions of cardinality have emerged. In this thesis we will use
this one suggested by Kaufmann.

Definition 2.1.8 Suppose µ is a fuzzy subset of X. Then the cardinality of

the fuzzy subset µ of X, denoted | µ | is defined as
n∑

1

µ(xi) ∀ xi ∈ X.

We normally restrict the membership values of µ to the subset M of I.

This number is not necessarily a natural number. It is a sum of some real
numbers in the interval [0, 1]. In practice we only allow membership values to
be rational numbers or more useful numbers such as 1

n
or m

n
for 1 ≤ m ≤ n.

Therefore the cardinality for all practical purposes is a manageable rational
number being the sum of a finite number of rational numbers.
The cardinality of a finite fuzzy subset is finite. Generally the cardinality
of a fuzzy set of an infinite set is infinite according to our definition above.
But by assigning suitable membership values to certain elements of an infinite
fuzzy subset, we can make the cardinality of an infinite fuzzy subset to be
finite. The cardinality of a crisp subset A of X coincides with the concept
of the cardinality of a fuzzy subset when we assign to each element of A the
membership value 1 and assign 0 to others elements of X not in A.

Example 2.1.9 .
µ : {(x1; 0.8), (x2; 0.7), (x3; 0.5), x4; 1)}

| µ |=
4∑

1

µ(xi) = 0.8 + 0.7 + 0.5 + 1 = 3

Example 2.1.10 .
Consider the set N = {1, 2, 3, · · ·} of natural numbers. If we assign to the first
2000 members of the set the membership 1

2
and assign 0 as membership value

to the remaining elements of the set, then the fuzzy subset obtained in this
fashion has cardinality of 1000, which is finite.
On the other hand the cardinality of the fuzzy set µ : N −→ [0, 1] with the

25



assignment µ(n) = 1
n

for all n ∈ N is infinite since it is equal to

∞∑

1

1

n
.

Proposition 2.1.11 Let µ1 and µ2 be two fuzzy subsets of a set X = {x1, x2, · · · , xn}
with cardinalities |µ1| and |µ2| respectively. The cardinality of the fuzzy subset
union of µ1 and µ2 is obtained as follows:

|µ1 ∨ µ2| = |µ1| + |µ2| − |µ1 ∧ µ2|

Proof : It is clear that for any two real numbers a and b such that 0 ≤ a ≤ 1
and 0 ≤ b ≤ 1 we have a + b = min(a, b) + max(a, b). Based on this equality
for each i = 1, 2, · · · , n, we have

|µ1(xi)| + |µ2(xi)| = min(|µ1(xi)|, |µ2(xi)|) + max(|µ1(xi)|, |µ2(xi)|)

Summing up the value of each term on either side of the above equality from
i = 1 through to i = n, we get

|µ1| + |µ2| = min(|µ1|, |µ2|) + max(|µ1|, |µ2|)

from which we get the required equality of the proposition. 2.

2.1.5 The Hamming distance

The notion of distance is quite an interesting one. We wish to define it with
regards to the notion of fuzzy subsets. Later on we will attempt to explore
the idea of the counting of fuzzy subsets of a finite set X, at a distance from
a fixed one.
The distance ”d” between two fuzzy subsets µ and λ of a set X can be expressed
in two different ways: A linear distance, also called Generalized Hamming dis-
tance expressed as:

d1(µ, λ) =

n∑

i=1

| µ(xi) − λ(xi) |

and a quadratic distance or Euclidean distance expressed as

d2(µ, λ) =

√
n∑

i=1

(µ(xi) − λ(xi))
2 [20].
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The expression

n∑

i=1

(µ(xi) − λ(xi))
2 is called the euclidean norm.

One can verify that these two definitions of distance satisfy the necessary
conditions of distance. That is to say that for any three fuzzy subsets µ, λ and
α of X:
1.d(µ, λ) ≥ 0
2.d(µ, λ) = d(λ, µ)
3.d(µ, α) ≤ d(µ, λ) + d(λ, α)
In addition to these three conditions, 0 ≤ d1(µ, λ) ≤ n for any two fuzzy
subsets of a n-element set X.
In fact 0 ≤ d(µ, λ) by definition of distance. The second inequality is justified
by definition of Cardµ dealt with later in Chap 2.

Example 2.1.12 . Consider µ = {(x1/0.87); (x2/0.39); (x3/1); (x4/1); (x5/0); (x6/0.97)}
and λ = {(x1/0.2); (x2/0); (x3/0); (x4/0.6); (x5/0.8); (x

′
61)}. Then d(µ, λ) =|

0.87 − 0.2 | + | 0.39 − 0 | + | 1 − 0 | + | 1 − 0.6 | + | 0 − 0.8 | + | 0.97 − 1 | =
0.67 + 0.39 + 1 + 0.4 + 0.8 + 0.03 = 3.29
To end this section we wish to ask a question which a search in google revealed
that few people are interested in the counting of fuzzy subsets of a finite set
at a distance from fixed one.
Let µ be a fuzzy subset a finite set X. How many fuzzy subsets are at a dis-
tance d from a fixed fuzzy subset µ ?
We attempt answering the question by first considering the case of two fuzzy
subsets λ and γ, both at the distance d from µ. How are λ and γ related ?
Using linear distance formula we can write that:
d1(µ, λ) =d= d1(µ, γ) and that d1(λ, γ) ≤ d1(λ, µ) + d1(µ, γ) or d1(λ, γ) ≤
2d1(µ, γ). This means that γ is such that d1(λ, γ) ≤ 2d1(µ, λ).

2.1.6 The α- cut

The α - cut or also called α- level set of a fuzzy subset µ of a set X, is a crisp
subset of X denoted by µα where µα = {x ∈ X/ µ(x) ≥ α} ∀α ∈ [0, 1].
µα can also be defined as µ−1([α, 1]) [49]. It is the weak α-cut.
The complementary of µα denoted here as µα can be defined as {x ∈ X/ µ(x) <
α} ∀α ∈ [0, 1].
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After definition and discussion on operations concerning fuzzy subsets, we
wish to find out how the PIE can be applied in the set of fuzzy subsets of a
finite set. As it is the case for crisp sets, we need to set properties in the set
of fuzzy subsets. Later we count the subsets of X which satisfy or not satisfy
these properties. In this process we will be able to count elements of the set
X whose membership values satisfy certain conditions.

Let F(X ) be the set of all possible fuzzy subsets of a finite set X with mem-
bership in a finite set M . These fuzzy subsets have many interesting properties
or characteristics. In this study we capture some of these properties or patterns
which are common to many of these fuzzy subsets as well as those properties
common to the elements of the set X. Later we count the fuzzy subsets and
elements of X with common properties. We sometimes come across elements
of F(X ) or elements of X falling neither in this category nor in the other.
These are outliers; they seem not have common properties. Most of these can
be found in [45]. We have improved some in this project.
In this chapter we do some 19 different enumerations. These enumerations
include fuzzy subsets with regard to elements of set X or we count elements
of X in relation to their membership values to the fuzzy subsets of set X.
Because these properties describe either elements or fuzzy subsets, we will use
them in the future chapter when we draw a list of attributes in our fuzzy
pattern recognition. In the next paragraph we count elements of X having
a membership degree α to n fuzzy subsets of X. This, in fact, expresses the
number of elements in a subset of the α-cut of the intersection of n fuzzy sub-
sets of the finite set X.

2.2 Enumeration of elements of the set X with

regard to their membership values.

2.2.1 Elements of a set belonging to n fuzzy subsets to

a degree at least α.

Let X be a finite set and we consider n fuzzy subsets µ1, µ2, · · · , µn of X. Let
us also consider one specific membership value α ∈ [0, 1].
We wish to enumerate the elements of X with regards to their membership
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value α ∈ [0, 1] to the n fuzzy subsets. The number of elements of X belonging
to each one of the n fuzzy subsets of X at a degree of membership at least
α ∈ [0, 1] is given by the following propositions.
We first study the case of two fuzzy subsets µ1 and µ2. Later on we will
generalize the concept to n distinct fuzzy subsets.

Theorem 2.2.1 If µ1 and µ2 are two fuzzy subsets of a set X, then
(1): (µ1 ∧ µ2)

α = µα
1 ∩ µα

2 and
(2): (µ1 ∨ µ2)

α = µα
1 ∪ µα

2

Proof : Let A = (µ1 ∧ µ2)
α

and B = µα
1 ∩ µα

2 be two subsets of X. We show
that A = B by showing A ⊆ B and B ⊆ A.
Let a ∈ A, that is a ∈ (µ1 ∧ µ2)

α, then (µ1 ∧ µ2)(a) ≥ α. That means
µ1(a) ∧ µ2(a) ≥ α. It follows that both µ1(a) ≥ α and µ2(a) ≥ α. In other
words it means a ∈ µα

1 and a ∈ µα
2 . That is to say a ∈ µα

1 ∩ µα
2 = B,

therefore A ⊆ B.
Conversely let x ∈ B = µα

1 ∩ µα
2 ; then x ∈ µα

1 and x ∈ µα
2 . That is to say

that µα
1 (x) ≥ α and µα

2 (x) ≥ α or that µ1(x) ∧ µ2(x) ≥ α which also means
(µ1 ∧ µ2)(x) ≥ α. This expresses the fact that x ∈ (µ1 ∧ µ2)

α = A and that
B ⊆ A. We conclude therefore that A = B. That is (µ1 ∧ µ2)

α = µα
1 ∩ µα

2

Similarly it is clear to prove that (µ1 ∨ µ2)
α = µα

1 ∪ µα
2 .2.

Generally we have the following statements:

Proposition 2.2.2 Suppose µi for i equals to 1, 2, · · · , n are fuzzy subsets of
X and α is a value in [0, 1]. Then

| (µ1∧µ2∧· · ·∧µn)α |=| µα
1 ∩µα

2 ∩· · ·∩µα
n | =

n∑

i=1

| µα
i |−

∑

1≤i≤j≤n

| µα
i ∪ µα

j |+
∑

1≤i≤j≤k≤n

| µα
i ∪ µα

j ∪ µα
k | + · · · + (−1)n−1 | µα

1 ∪ µα
2 ∪ · · · ∪ µα

n |

Proof : The α-cut of the fuzzy intersection of fuzzy subsets is the crisp in-
tersection of their α-cuts. Again the α-cut of the fuzzy union of fuzzy subsets
is the crisp union of their α-cuts. These are subsets of X. Then using the
result of theorem 1.2 in the context of the set X and its subsets, the α-cuts
help us complete the proof of the proposition.2
The above proposition and its dual express the way of counting elements of X
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in the α-cut of the intersection and the α-cut of the union of n fuzzy subsets
of X. These elements x ∈ X are such that [µ1 ∧ µ2 ∧ · · · ∧ µn](x) ≥ α and
[µ1 ∨ µ2 ∨ · · · ∨ µn](x) ≥ α for an α ∈ [0, 1].

2.2.2 Elements of a set in the α-cut of union of fuzzy

subsets [45]

In this subsection we are talking about elements of X in the α-cut of the
union

⋃n
i=1 µi. We express the number of such elements of the set X as in the

following proposition which is the dual of the above proposition 2.2.1.

Proposition 2.2.3 The number of elements of X that belong to at least one
of the fuzzy subsets µ1, µ2, · · · , µn of X to a degree at least α is

| (µ1∨µ2∨· · ·∨µα
n) |=

n∑

i=1

| µα
i |−

∑

1≤i≤j≤n

| µα
i ∩ µα

j |+
∑

1≤i≤j≤k≤n

| µα
i ∩ µα

j ∩ µα
k |+

· · · + (−1)n−1 | µα
1 ∩ µα

2 ∩ · · · ∩ µα
n | [26]

Now if x ∈ µα, then x ∈ µ0 and therefore x ∈
⋃n

i=1 µ0
i .

We note that the above formula can be rewritten in terms of α-cuts of union
of fuzzy subsets as

| (µ1∧µ2∧· · ·∧µn)α |=| µα
1 ∩µα

2 ∩· · ·∩µα
n |=

n∑

i=1

| µα
i |−

∑

1≤i≤j≤n

| (µi ∨ µj)
α |+

∑

1≤i≤j≤k≤n

| (µi ∨ µj ∨ µk)
α | + · · · + (−1)n−1 | (µ1 ∨ µ2 ∨ · · · ∨ µn)α | (2.2.1)

and

| (µ1∨µ2∨· · ·∨µn)α |=| µα
1 ∪µα

2 ∪· · ·∪µα
n |=

n∑

i=1

| µα
i |−

∑

1≤i≤j≤n

| (µi ∧ µj)
α |+

∑

1≤i≤j≤k≤n

| (µi ∧ µj ∧ µk)
α | + · · · + (−1)n−1 | (µ1 ∧ µ2 ∧ · · · ∧ µn)

α | . (2.2.2)
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2.2.3 Elements of a set in the intersection of the α-cuts

of fuzzy subsets.

Now we consider n fuzzy subsets of X and an equal number n of real numbers
in [0, 1].
Here we enumerate elements of X using n fuzzy subsets and n membership
values in [0, 1]. Consider n fuzzy subsets µ1 µ2, · · · µn of X and α1, α2, · · ·αn ∈
I. We intend to count the elements of X which are simultaneously such that
µ1(x) ≥ α1, µ2(x) ≥ α2, · · · , µn(x) ≥ αn. In other words we count the
elements of X such that x ∈ µα1

1 , x ∈ µα2
2 , · · ·x ∈ µαn

n . Then the subset of
such elements of X is given by µα1

1 ∩µα2
2 ∩· · ·∩µαn

n . Their number is denoted by
| ∩n

i=1µ
αi
i | and can be expressed using the PIE as in the following proposition.

Proposition 2.2.4 | ∩n
i=1µ

αi
i |=

n∑

i=1

| µαi
i | −

∑

1≤i≤j≤n

| µαi
i ∪ µ

αj

j | + · · · +

(−1)n | µα1
1 ∪ · · · ∪ µαn

n |.
And dually we write:

| ∪n
i=1µ

αi
i |=

n∑

i=1

| µαi
i | −

∑

1≤i≤j≤n

| µαi
i ∩ µ

αj

j | + · · · + (−1)n | µα1
1 ∩ · · · ∩ µαn

n |.

This proposition follows proposition 2.2.1. The proof is similar.
Assume now that α1 ≤ α2 ≤ · · · ≤ αn. Then we get | ∩n

i=1µ
αi
i |= µαn

n and on
the other hand if α1 ≤ α2 ≤ · · · ≤ αn, we obtain that | ∪n

i=1µ
αi
i |= µα1

1 .

2.2.4 Elements of a set at minimum and maximum mem-
bership value.

We consider in the following subsections two types of enumerations. In the
first case we take n fuzzy subsets of a set X and enumerate elements of X
having a specified minimum degree of membership say α and with a specified
maximum degree of membership say β. Later we consider n fuzzy subsets and
two special fixed membership values, namely 0 and 1. Here we count elements
of the finite set X having membership value 1 as well as elements of X having
membership values greater than 0.
Consider n fuzzy subsets and two specified membership values.
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We enumerate elements of X that belong to fuzzy subsets of X with minimum
degree of membership α and a maximum degree membership β. Obviously α
has to be smaller than or equal to β, that is α ≤ β. Suppose µ ∈ F(X ) is
a given fuzzy subset of X. We want to enumerate the elements of X which
satisfy the conditions µ(x) ≥ α and µ(x) < β simultaneously. That means
the elements x ∈ X must satisfy α ≤ µ(x) < β . We introduce the following
simple and natural notation which is very useful later.

µαβ = {x ∈ X : α ≤ µ(x) < β}.

Therefore there are two properties that these elements of X must have.
The two properties are:
1. Having µ(x) ≥ α,
2. Having µ(x) < β.
Consider a fuzzy subset µ of X. The number of elements of X belonging to
µ at a minimum degree α and at a maximum degree β is | µα \ µβ |. It is
clear that these elements are in µα since µ(x) ≥ α. They do not belong to
µβ since µ(x) < β. In brief, they are in µα \ µβ. Therefore their number is
| µαβ |=| µα \ µβ |.
It is necessary to mention that α is not equal to β. Otherwise if α = β, then
the number of elements sought would simply be | µ−1(α) |.
Let us introduce another useful notation | µα | and | µα

′
| as the number of

element in µα and the number of elements not in µα, respectively. | µα
′
∩ µβ

′
|

is the number of elements neither in µα nor in µβ.

We recall that µα and µα
′
are crisp complementary subsets of X. We can use

the PIE on the set X to enumerate the elements of minimum and maximum
membership values as in the following statement.

Lemma 2.2.5 . Let µ be a fuzzy subset of X with | µα | and | µα
′
| as

defined above. The number of elements of X such that α ≤ µ(x) < β can be
obtained by solving

|µαβ| =| X | −( | µα
′
| + | µβ | ) + | µα

′
∩ µβ | (2.2.3)

where µαβ denotes the set of elements such that α ≤ µ(x) < β.

Proof : By using PIE in X to enumerate elements enjoying two properties,
we subtract from | X | the number of those elements x without one property
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at the time, then add those without both properties simultaneously. We have
this result:

|µαβ| =| X | −( | µα
′
| + | µβ | ) + | µα

′
∩ µβ |

Now since α ≤ β, µβ ⊆ µα and µα ∩ µα
′

= ∅ are all true, then µβ ∩ µα
′
= ∅.

Therefore | µα
′
∩µβ |= 0. This says that the number | X | −( | µα

′
| + | µβ | )

is equal to | µα \ µβ |= |µαβ|. This completes the proof.2.
By using the PIE we are also able to determine the elements of X in the
complement of µαβ.

Example 2.2.6 .
Refer to the diagram attached to the thesis.
For X = {x1, x2, x3}; n = 3 and M = {0, 1

2
, 1}, µi = 11

2
1
2

Consider α = 1
2

and
β = 1.

We have | µα
i |= 3 ; therefore | µα

′

i |= 0; while | µβ |= 1
Therefore 3 − [0 + 1] + 0 = 2.
Now assume that µ1 , µ2 , · · · , µn are n given fuzzy subsets of X such that ∀i,
α ≤ µi(x) < β. We are now interested in enumerating elements of X which
are such that α ≤ ∩n

i=1µi(x) < β. Similarly it is interesting to enumerate
the elements of X such that α ≤ ∪n

i=1µi(x) < β. First we take up the case
of intersection. Before we state the proposition, it is useful to observe that
{x ∈ X : α ≤ ∩n

i=1µi(x) ≤ β} = (∧n
i=1µi)

αβ.

Proposition 2.2.7 Let µ1 , µ2 , · · · , µn be fuzzy subsets of X and ∀i, α ≤
µi(x) < β. Then the number of elements of X such that α ≤ ∩n

i=1µi(x) < β is

(∧n
i=1µi)

αβ =| X | −(| ∩n
i=1µ

α
′

| + | ∩n
i=1µ

β |), (2.2.4)

which can be expressed using PIE as

|(∧n
i=1µi)

αβ| = |X| −
n∑

i=1

(|µα
′

i | + |µβ
i |) +

∑

1≤i≤j≤n

(|(µα
′

i ∪ µα
′

j | + |µβ
i ∪ µβ

j |) + · · ·

Proof : Set γ = ∩n
i=1µi. Then this takes us back to the case of a given µ = γ

dealt with earlier in Lemma 2.2.5. Generally we can use Proposition 2.2.1 to

expand | ∩n
i=1µ

α
′

| and | ∩n
i=1µ

β | as follows:

| ∩n
i=1µ

α
′

|=
n∑

i=1

| µα
′

i | −
∑

1≤i≤j≤n

| µα
′

i ∪ µα
′

j | +
∑

1≤i≤j≤k≤n

| µα
′

i ∪ µα
′

j ∪ µα
′

k | +
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· · · + (−1)n−1 | µα
′

1 ∪ µα
′

2 ∪ · · · ∪ µα
′

n |

and | ∩n
i=1µ

β |=
n∑

i=1

| µβ
i | −

∑

1≤i≤j≤n

| µβ
i ∪ µβ

j | +
∑

1≤i≤j≤k≤n

| µβ
i ∪ µβ

j ∪ µβ
k | +

· · · + (−1)n−1 | µα
1 ∪ µα

2 ∪ · · · ∪ µβ
n |

Now collecting and regrouping the terms carefully of the α-cuts and β-cuts of
each of n fuzzy subsets corresponding to indices, we can rewrite the sum in
2.2.4 as:
| X | −(| ∩n

i=1µ
α
′

| + | ∩n
i=1µ

β) | =

|X| −
n∑

i=1

(| µα
′

i | + | µβ
i |) +

∑

1≤i≤j≤n

(| µα
′

i ∪ µα
′

j | + | µβ
i ∪ µβ

j |) + · · · This com-

pletes the proof.

Similarly we can express η = ∪n
i=1µi in terms of α-cuts of individual fuzzy

subsets and their intersections using PIE.

If we consider the set of all mn fuzzy subsets of X then γ = ∩n
i=1µi would

be the fuzzy subset ∅ which takes the membership value zero for all x ∈ X.
Hence if α = 0 and β > 1 then every x ∈ X satisfies the property x ∈ (γ)αβ.
Hence | (γ)αβ |=| X |. With the same consideration η = ∪n

i=1µi would be the
fuzzy subset X and | X | would be the number of elements sought provided
β = 1 and α < 1.
Suppose we have k subsets [α1, β1] , [α2, β2] , · · · [αk, βk] of [0, 1]. Suppose also
that these intervals do not intersect. We can generalize 4.2.3 to enumerate
elements of X that are such that ∀j, αj ≤ ∩n

i=1µi(x) ≤ βj as follows:

|X| −
n∑

i=1

(

k∑

j=1

(| µ
α
′
j

i | + | µ
βj

i |)) + · · ·

Illustration
Refer to the diagram attached to the thesis.
Consider X = {x1, x2, x3} α = 1

2
, µ1 = 11

2
1
2
, µ2 = 1

2
01, µ3 = 01

2
1
2

| µα
1 ∪ µα

2 ∪ µα
3 |= {| µα

1 | + | µα
2 | + | µα

3 |} − {| µα
1 ∩ µα

2 | + | µα
1 ∩ µα

3 | + |
µα

2 ∩ µα
3 |}+ | µα

1 ∩ µα
2 ∩ µα

3 |.
= {3 + 2 + 2} − {2 + 2 + 1} + 1
7 − 5 + 1 = 3
The three elements of X are either in µα

1 , in µα
2 or even in µα

3 .
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Again concerning union we can write

Proposition 2.2.8 Let µ1 , µ2 , · · · , µn be fuzzy subsets of X and ∀i, α ≤
µi(x) < β. Then the number of elements of X such that α ≤ ∪n

i=1µi(x) < β is

(∨n
i=1µi(x))β

α =| X | −(| ∪n
i=1µ

α
′

| + | ∪n
i=1µ

β |), (2.2.5)

which can be expressed using PIE as

|(∨n
i=1µi)

β
α| = |X| −

n∑

i=1

(|µα
′

i | + |µβ
i |) +

∑

1≤i≤j≤n

(|(µα
′

i ∩ µα
′

j | + |µβ
i ∩ µβ

j |) + · · ·.

Definition. The interval-cut of a fuzzy subset.
Concerning the two values a and b in the unit interval I such that a ≤ b, we

can obtain different intervals such as [a, b], [a, b), (a, b], (a, b) and from there
determine elements of set X whose membership values fall in each of these
intervals in I.
Let us consider for argument sake the interval [a, b] ⊆ I, the elements of X
whose membership values for a fuzzy subset µ of X are in [a, b] are described
by {x ∈ X, a ≤ µ(x) ≤ b}. This interval can be considered as an α-cut of µ,
which we will call here as the interval-cut of µ.
Using this interval we can define another fuzzy subset of X in the following
way:

µ[a,b](x) =

{
1, if a ≤ µ(x) ≤ b
0, if otherwise.

The fuzzy subset obtained in this manner would be called the fuzzy subset
induced by both µ and the interval [a, b].
For each fuzzy subset µ ∈ F(X ) and for the interval [a, b], we have a fuzzy
induced fuzzy subset.
In this manner we now know how many elements of X have their membership
values to µ between a and b. This number is | µ[a,b] |, the cardinality of the
induced fuzzy subset. The fuzzy subset induced and its cardinality give a par-
tition of X for each chosen interval. We are now able to enumerate members
of each family of the partition obtained.
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Proposition 2.2.9 Consider the interval [a, b] ⊆ I. Let µ1 and µ2 be two

fuzzy subsets of X. If µ1 = µ2, then µ
[a,b]
1 = µ

[a,b]
2 . The converse is not valid.

Example 2.2.10 . Consider µ=1111
2

and 1
2
111. Consider also [a, b] = [1

4
, 1].

Then µ
[a,b]
1 = 1111 = µ

[a,b]
2 = 1111 but µ1 6= µ2.

Proposition 2.2.11 If µ1 ≤ µ2, then µ
[a,b]
1 ≤ µ

[a,b]
2 .

In fact if µ
[a,b]
1 (x) = 1, then a ≤ µ1(x) ≤ b. But µ1 ≤ µ2; so we have

a ≤ µ1(x) ≤ µ2(x) ≤ b which means µ
[a,b]
2 (x) = 1. If on the other hand

µ
[a,b]
1 (x) = 0, we have also µ

[a,b]
2 (x) = 0. To prove this we assume µ

[a,b]
1 (x) = 0.

That is µ1(x) ≤ a and µ1(x) ≥ b. But because µ1 ≤ µ2, we have µ2(x) ≥ b
and µ2(x) ≤ a. If µ2(x) ≥ a, then the interval [a, b] would become [b, 1].
Now we consider the union and intersection of the induced fuzzy sets. Consider
µ

[a,b]
1 and µ

[a,b]
2 . If a ≤ µ1(x) ≤ b, (µ1 ∪ µ2)

[a,b](x) = 1 and (µ1 ∩ µ2)
[a,b](x) = 0

if µ2(x) 6∈ [a, b].

(µ1∪µ2)
[a,b](x) =

{
1, if either a ≤ µ1(x) ≤ b or a ≤ µ2(x) ≤ b
0, if otherwise that is, neither a ≤ µ1(x) ≤ b nor a ≤ µ2(x) ≤ b.

and

(µ1 ∩ µ2)
[a,b](x) =

{
1, if a ≤ µ1(x) ≤ b and a ≤ µ2(x) ≤ b
0, if otherwise.

2.2.5 Elements with no worth to a fuzzy subset and El-

ement with absolute worth.

Consider n fuzzy subsets of X and two special numbers α = 0 and β = 1 in
[0, 1]. We recall the definition of the support, as well as that of the core, of a
fuzzy subset written as suppµ and coreµ respectively.
suppµ = {x ∈ X : µ(x) > 0} and coreµ = {x ∈ X : µ(x) = 1}. Beside these
definitions, we will use |µi|s to represent the cardinality of the support of µi
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and |µi|c to represent the cardinality of the core of µi.
Clearly coreµ ⊆ support µ.
Consider a set X as before and n fuzzy subsets of X. Each element of X in
suppµ has a membership value which is a degree of desirability to the fuzzy
subset. We also note that any element of X not in suppµ has membership
value zero.
Now the number of elements of X with no worth to µi, that is elements with
membership value zero to a fuzzy subset µi, denoted here by |µi|s is |X|−|µi|s.
Each element of X in coreµ has absolute membership value which we call
absolute desirability or absolute worth to the fuzzy subset.
If we consider the n fuzzy subsets, then the number of elements with noworth
at all to any of the n fuzzy subsets is obtained as stated in this following
proposition.

Proposition 2.2.12 | ∩n
i=1 µi|s = |X| −

n∑

i=1

|µi|s +
∑

1≤i≤j≤n

|µi ∪ µj |s + · · · +

(−1)n|µ1 ∪ µ2 ∪ · · · ∪ |µn|s
Consider a set X, and elements x, y ∈ X and two fuzzy subsets µ1 and µ2 of
X. We state without proof the following proposition.

Proposition 2.2.13 If x ∈ coreµ1 and y ∈ coreµ2,
1. {x, y} ⊆ support(µ1 ∪ µ2).
2. {x, y} ⊆ coreµ1 ∪ coreµ2.

The usefulness of counting the number of elements with no worth is that if
a great number of elements of X are worthless with regards to one or many
fuzzy subset, then we need to set up the fuzzy subsets differently.
As for the coreµ, we may denote by |µi|c the set of elements of X with
no absolute desirability to the fuzzy subset µ.
Therefore the number of elements with no absolute desirability to the n fuzzy
subsets is given by the proposition,

Proposition 2.2.14 | ∩n
i=1 µi|c = |X| −

n∑

i=1

|µi|c +
∑

1≤i≤j≤n

|µi ∪ µj|c + · · · +

(−1)n|µ1 ∪ µ2 ∪ · · · ∪ |µn|c
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In this case knowing the number of elements with absolute desirability to the
n fuzzy subsets is necessary because if their number is |X|, then no good se-
lection was done and thus new setting up of fuzzy conditions is required .

Consider the set F(X ) of the possible fuzzy subsets of X. Given a number
in Cardµ; we want to find a way of counting the fuzzy subsets of X with a
common pattern that is: Their cardinality is same.

2.2.6 Similar elements and Similar fuzzy subsets of X.

Consider a fuzzy subset µ of X and two elements x and y of the set X such
that µ(x) = µ(y).
The elements x and y in this case are said to be similar with respect to µ.
Let x and y be two similar elements of X. Then there exists a fuzzy subset µ
of X such that µ(x) = µ(y).
Again, if there exists µ such that µ(x) = µ(y), then x and y are similar. We
establish the following proposition to illustrate the above statement.

The similarity of elements of X with respect to fuzzy subsets of X is an
equivalence in X. When two elements x and y are similar, we can say in other
words that there exists α ∈ [0, 1] such that {x, y} ⊆ µα. This means that µα

has a minimum of two members which are the two similar elements of X.

Now suppose there are two or more fuzzy subsets µ1, · · · , µk such that
µ1(x) = µ1(y) · · · , µk(x) = µk(y). This means on the one hand that x and
y are similar with respect to these k fuzzy subsets. Therefore

⋂k
i=1 µi(α) has

at least two elements. It also means on the other hand that the fuzzy subsets
µ1, · · · , µk are also similar to one another with respect to the two elements x
and y.

We can show that the similarity of elements is an equivalence in X, while
the similarity of fuzzy subsets is an equivalence in F(X ).
It is clear in this context that similar elements of set X or similar fuzzy subsets
of X are important.
If two elements are similar with respect to a fuzzy subset, then they are inter-
changeable. It is like taking a generic when the prescribed medication is not
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available in pharmacy. It is also the case when substituting an injured player
in a soccer field by another player among many available in the team, who has
the same style and approach of the game.

Example 2.2.15 . Let |X| = n and |M | = m as usual. Given two similar
elements x1 and x2 of X. With respect to these two elements, there are at
least three fuzzy subsets similar to one another, namely the fuzzy subsets
µ1 = 0, 0 · · · 0, µ2 = 1

,
m − 1, 1

m−1
, · · · , 1

m−1
and µ3 = 1, 1, · · · , 1. How many

other can we enumerate in F(X )?
If we extend the similarity of two fuzzy subsets to all elements of set X, then
the fuzzy subsets are therefore equal.

A more comprehensive definition of similarity of fuzzy subsets is this one
found in [29]. Two fuzzy subsets µ and λ are similar if they maintain the same
relative degrees of membership values with respect to any two elements x and
y. As said earlier, the similarity of fuzzy subsets is an equivalence in F(X )
and can also be defined as follows:

µ ≡ λ if and only if ∀x, y ∈ X
1.µ(x) > µ(y) if and only if λ(x) > λ(y)
2.µ(x) = 1 if and only if λ(x) = 1
3.µ(x) = 0 if and only λ(y) = 0
Assume µ ≡ λ. For each α ∈ [0, 1] and for each x ∈ µα, that is µ(x) ≥ α,
there must be an β ∈ [0, 1] such that λ(x) ≥ β, that is x ∈ λβ. In short
µα ⊆ λβ . Because λ ≡ µ , we can state that λβ ⊆ µα, and we write µα = λβ.
In summary we say that if µ ≡ λ,therefore there exists an α and a β in I such
that µα = λβ. As a result of this equivalence the following propositions are
justified.

Proposition 2.2.16 If µ ≡ λ, then Core(µ) = Core(λ) and Supp(µ) =
Supp(λ).

Proof : Let x ∈ Core(µ), then µ(x) = 1. Then for any y ∈ X, µ(x) ≥ µ(y).
That means λ(x) ≥ λ(y) ∀x, y ∈ X since µ ≡ λ . Should x 6∈ Core(λ), that
also mean that λ(x) < 1. But because λ ≡ µ, that leads to µ(x) < 1. That is
contrary to our first assumption. That means that Core(µ) ⊆ Core(λ).
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In the same manner we prove that Core(λ) ⊆ Core(µ). This prove for all x
that Core(µ) = Core(λ).
In fact the condition µ(x) = 1 if and only if λ(x) = 1 means clearly that
x ∈ Core(µ) if and only if x ∈ Core(λ) and conversely.
Now we let x ∈ Supp(µ),and let µ(x) > 0. Since µ ≡ λ, we have λ(x) > 0,
which means x ∈ Supp(λ), concluding that Supp(µ) ⊆ Supp(λ). Indeed we
also conclude that Supp(λ) ⊆ Supp(µ) so that Supp(µ) = Supp(λ).
Generally the condition µ(x) = 0 if and only if λ(x) = 0 also means that if
y ∈ X such that µ(y) ≥ µ(x) = 0 then λ(y) ≥ λ(x) = 0. This clearly says
that Supp(µ) = Supp(λ).

Proposition 2.2.17 If µ ≡ λ, then | Im(µ) |=| Im(λ) |.

Proof : Let x ∈ X. Define a function f such that f(µ(x)) = λ(x). Indeed each
elemen x has one membership value µ(x) which is mapped through f to the
only membership value λ(x). This means f(µ(x)) = λ(x) is unique for each
element x. Now let us consider f(µ(x)) = f(µ(y)). That is λ(x) = λ(y) by
definition of f . But λ ≡ µ and µ ≡ λ. Therefore µ(x) = µ(y). The function
f is one-to-one. Let z ∈ Im(λ). This means ∃x z = λ(x) such that µ(x) as
well as f(µ(x)) exist and are unique in each case. f is now onto and therefore
a bijection so that | Im(µ) |=| Im(λ) |.

Proposition 2.2.18 1. If µ1 ≡ µ2, then any fuzzy subset dominating both
µ1 and µ2 is equivalent to them.
2. If µ1 ≡ µ2, then any fuzzy subset dominated by both µ1 and µ2 is equivalent
to them.

Proof 1. Let µ be such that µ ≥ µ1 and µ ≥ µ2. For x and y in X, µ ≥ µ1

means there exists k, 0 ≤ k ≤ m − 1 such that µ1(x) + k = µ(x) and if
µ1(x) ≥ µ1(y) then µ1(x) + k ≥ µ1(y) + k which also means that µ(x) ≥ µ(y)
since µ1(x) + k = µ(x). Thenµ is equivalent to µ1 and µ2. 2. Let µ1 ≡ µ2

and µ ≤ µ1. We have µ(x) + k = µ1(x). If again µ1(x) ≤ µ1(y), then
µ1(x) + k ≤ µ(y) + k. Therefore µ(x) ≤ µ(y) and µ is equivalent to µ1. Simi-
larly we show that µ is also equivalent to µ2.

In summary µ1 ≡ µ ≡ µ2.
In a special case the above proposition will be valid if we use µ1∨µ2 and µ1∧µ2
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as the following statement:

Proposition 2.2.19 µ1 ∨ µ2 and µ1 ∧ µ2 are equivalent to µ1 and µ2.

Example 2.2.20 .
Consider two fuzzy subsets µ = 11

2
1 and λ = 1

2
11

2
. Clearly Im(µ) = Im(λ) =

{1
2
, 1} but µ 6≡ λ.

Proposition 2.2.21 Im(µ) = Im(λ) does not necessarily mean µ ≡ λ.

2.3 Enumeration of fuzzy subsets of X

2.3.1 Fuzzy subsets of a given cardinality.

We know that each fuzzy subset of the set X has a cardinality. If we take one
given cardinality, how many fuzzy subsets of the set have this cardinality?
In the next paragraph we wish to enumerate the fuzzy subsets of X having a
specified cardinality. We will first consider the number of elements in Cardµ,
which is the set of all possible distinct cardinalities of fuzzy subsets of X with
membership values in M .
Let X = {x1, x2, · · · , xn} be a finite set with n elements. All fuzzy subsets µ
of X take n membership values not necessarily distinct in M whose sum is the
cardinality of the fuzzy subset.
We set the membership values in the unit interval I to be uniformly spaced,
with the usual ordering given by Mm = {0, 1

m−1
, 2

m−1
· · · , m−1

m−1
= 1}. This

uniform choice of values in Mm does not affect the counting of fuzzy subsets
with specified property and also is in line with preferential equality discussed
in [28].
We restrict ourselves to fuzzy subsets of X taking values in Mm and denote
the set of all such fuzzy subsets by MX

m . If we denote by Cardµ the set of all
possible distinct cardinalities of fuzzy subsets of X with membership values in
M , then Cardµ is in fact made up of elements which are sums of elements of
Mm. So we have:
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Cardµ = {0, 1

m − 1
,

2

m − 1
, · · · , m − 1

m − 1
,

m

m− 1
, · · · , 2, · · · , 3, · · · , n}.

The top element of Cardµ is n while the bottom element is 0. The set
(Cardµ,≤) is totally ordered with the usual order in R.
We observe that for a fixed M ⊂ I, the cardinalities of fuzzy subsets depend
on the number of elements of the set X. The number of elements in X influ-
ences the cardinality of the fuzzy subsets of X since it is actually the sum of
membership values of all elements of X to a given fuzzy subset.
We can also say that the quality of elements (that is),
(no desirability, absolute desirability, etc.·) has an impact on the cardinality
of the fuzzy subset.
The more no worth elements to a fuzzy subset, the smaller its cardinality. On
the other hand the more absolute desirable elements to a fuzzy subset, the
greater the cardinality. This is also true for elements in Cardµ.
Let us denote by CardµXn

the set of all possible distinct cardinalities of fuzzy
subsets of Xn = {x1, x2, · · · , xn} with membership values in M . Subsequent to
the above notation we will denote by CardµXn+1

the set of all possible distinct

cardinalities of fuzzy subsets of Xn+1 = {x1, x2, · · · , xn, xn+1} with member-
ship values in M and Cardµ∅ will denote the set of cardinalities of fuzzy subset
of the empty set ∅.
We first determine the number of elements in Cardµ ,the set of possible car-
dinalities of fuzzy subsets of X.
In the following proposition we determine the number of elements in Cardµ,
the set of cardinalities of fuzzy subsets of a n-element set X with membership
values in a m-element set M ⊂ I.

Proposition 2.3.1 Let the sets X and M be such that | X | = n and
| M | = m, then | Cardµ | = (m − 1)n + 1.

Proof : Let m be any number. This implies as per our definition of M that
M = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
= 1}. Now if X = ∅, n = 0 then Cardµ = 1 as

seen before. Suppose n = 1. Then Cardµ = m = (m−1)1+1. This is evident
since the only one element of X would have m possible distinct membership
values in M .
Suppose n = k, and Cardµ = (m − 1)k + 1. We observe that for n = k + 1,
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CardµXn+1
is obtained by including into CardµXn

= {0, 1
m−1

, 2
m−1

, · · · , m−1
m−1

, · · ·n},
(m − 1) additional members. These numbers are n + 1

m−1
, n + 2

m−1
, · · · , n +

m−1
m−1

= n + 1. Therefore |CardµXn+1
| = |CardµXn

| + (m − 1). That is

(m − 1)n + 1 + (m − 1) = m(n + 1) − (n + 1) + 1. This confirms that for
n = k + 1, |CardµXn+1

| = m(n + 1) − (n + 1) + 1. 2.
We are now able to determine the number of fuzzy subsets of a finite set X,
each having cardinality α ∈ Cardµ.

2.3.2 Number of fuzzy subsets of X with cardinalities
equal to α.

The cardinality of a fuzzy subset is a number α such that 0 ≤ α ≤ n. We
consider therefore two cases.
1. α ∈ M and
2. α 6∈ M .
If α ∈ M , then 0 ≤ α ≤ 1 by definition of M . The number of fuzzy subsets
of X with cardinality α is the number of fuzzy subsets with cardinality in the
set Mm = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
= 1} ⊆ Cardµ. Now there is 1 fuzzy subset

of cardinality 0∀n, |X| = n. There are m fuzzy subsets of cardinality 1
m−1

.

This is obtained when only one membership value is 1
m−1

while the remaining
(n − 1) are 0.

There are

(
m
1

)
= m!

1!(m−1)!
crisp subsets of cardinality 1 [45], [8]. This case

enumerates only the fuzzy subsets where one membership value is 1, while the
(n − 1) all are 0. There are m fuzzy subsets with cardinality 2

m−1
where one

membership value is 2
m−1

while the (n−1) are each 0.There are

(
m
2

)
= m!

2!(m−2)!

fuzzy subsets of cardinality 2
m−1

among those of cardinality 2
m−1

in M . In this

case any 2 membership values out of the n are each 1
m−1

while the remaining

(n − 2) are all 0. We carry on the count until we get cardinality m−2
m−1

.

We consider this time the case where α 6∈ M . That is m
m−1

≤ α ≤ n.
It is obvious in this case that n ≥ 1. The cardinality m

m−1
can be obtained

if either each membership characterizing the fuzzy subset is 1
m−1

[ Note here
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that there is only one such case] , or any fashion that makes a partition of the
natural n with a denominator being (m − 1).

Example 2.3.2 . Consider n = 4 and m = 4. The different ways of obtaining
the cardinality 4

3
are:

1. Each membership is 1
3

and we have the fuzzy subset µ = 1
3

1
3

1
3

1
3
. As previ-

ously said , there is only one such fuzzy subset.
2. Two membership values are each 2

3
while the remaining two are 0 each.

There are 6 such fuzzy subsets.
3. Any combination which sums to 4

3
of the numbers 0

3
, 1

3
, 2

3
, 3

3
. There are 23

such fuzzy subsets with cardinality 4
3
.

Proposition 2.3.3 Let the set X be of cardinality n, M be a m-elements set
and α a number in the unit interval I. Then the number of fuzzy subsets of
X of cardinality equal to α, denoted here as: (Nµ(| . |= α))n is given by the

expression: (Nµ(| . |= α))n =
∑

i∈M

(Nµ(| . |= α − i))n−1.

Proof : The left of the above equation is an expression counting the num-
ber of fuzzy subsets of the set X, that is X = {x1, x2, x3, · · · , xn}, but the
expression on the right of the equation counts the fuzzy subsets of the set
X ′ = {x1, x2, x3, · · · , xn−1} = X \ {xn} .
Any fuzzy subset µ of set X is obtained from a fuzzy subset µ′ of set X ′ by
associating with the missing element xn the difference between | µ | and | µ′ |,
if indeed this difference belongs to M . That ends the proof of the proposition.
2.
The above proposition focuses on the number of fuzzy subsets with cardinality
α ∈ I , the unit interval. Now we can extend the proposition to enumerate the
fuzzy subsets with cardinality any number p ≥ 1 in α ∈ Cardµ. We express
the new result in the following proposition.

Proposition 2.3.4 Let the cardinalities of X and M be n and m respectively.
The number of fuzzy subsets of X with cardinality p ∈ Cardµ is equal to the
sum of the number of fuzzy subsets of X \ {xi}∀xi ∈ X with cardinality p and
the number of fuzzy subsets of X \ {xi}∀xi ∈ X with cardinality p − 1

m−1
.
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The above proposition can be illustrated by the following table of Nµ(| . |= p).
We call this table the Pascal Rectangle since it is rectangular and also its
entries are obtained in a way similar to the process in the Pascal triangle.

n/p 0 1
2

1 11
2

2 21
2

3 31
2

4
1 1 1 1 0 0 0 0 0 0
2 1 2 3 2 1 0 0 0 0
3 1 3 6 7 6 3 1 0 0
4 1 4 10 16 19 16 10 4 1

The entries in each line n represent the number of fuzzy subsets of a set with
n elements and with cardinality the number on the column p. In short, the
entry on line n and column p is the number of fuzzy subsets of a n-element set
having cardinality p. This number is obtained when we sum the three entries
on line n − 1 and on columns p − 0

2
, p − 1

2
, p − 2

2
.

It is clear in this context that the number of fuzzy subsets of a n-element set
with cardinality p = n is 1. This is so because the membership of each of the
n elements of the set would be 1 which sums to n.
The number of fuzzy subsets of a n-element set with cardinality p > n is 0.
Here even if each of the n elements would have maximum membership value
1, their sum would not exceed n. Therefore there is no such fuzzy subset.

Example 2.3.5 .
Refer to the diagram attached to the thesis.
Check that when n = 3 and M = {0, 1

2
, 1}, the number of fuzzy subsets of

cardinality , say p = 11
2

is 7.
This number is the sum of the number of fuzzy subsets when n = 2 and with
cardinalities p = 11

2
− 0 = 11

2
; p = 11

2
− 1

2
= 1; p = 11

2
− 1 = 1

2
as stated in

the above proposition.
We write: 7 = 2 + 3 + 2.
Consider an element x ∈ X. We are interested to count all fuzzy subsets of X
with the following common pattern: The membership value for a given x ∈ X
is the same for all fuzzy subsets considered.
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2.3.3 The counting of fuzzy subsets of X when member-

ship values for a given element x of X are equal.

Let x1 ∈ X. We wish to consider all fuzzy subsets µi of X which are such
that the membership values µi(x1) ∀i of element x1 to each fuzzy subset is the
same value α ∈ M . Assume that there are m elements in M and n elements
in X. Then there mn fuzzy subsets of X with values in M .
In the following proposition we enumerate the fuzzy subsets of X that have
the same membership value for a given x1 ∈ X.

Proposition 2.3.6 1. There are (mn/m) = m(n−1) fuzzy subsets µ satisfying
µ(x1) = α in M . 2. There are m(n−1) fuzzy subsets for each of the n elements
of X.

Proof : Let fix us xi ∈ X for which the image µ(xi) is also fixed in M. Then
there are (n−1) elements in X free to take any value in the m-element set M .
The challenge we have is to find the number of functions from X \ {xi} to M .
This number is m(n−1).

Let us consider α ∈ M . We define the relation R in F(X ) such that µ1Rµ∈
if µ1(xi) = µ2(xi)∀x∈X. We realize that R defined above is an equivalence
relation in F(X ).
For any xi ∈ X, the family Πi of elements of F(X ) is an equivalence class.
Therefore {Πi, ∀xi ∈ X} is a partition of F(X ) which we will call the α-
partition. From its definition we can tell that there are n such α-partitions of
F(X ).
If we consider another β ∈ M , we also obtain a partition.
We may be interested in counting the fuzzy subsets of X where any two ele-
ments xi and xj of X have the same membership value. We can also extend our
counting to find the fuzzy subsets of X where two or more selected elements
of X have same membership value.
When an element x ∈ X is such that µ1(x) = µ2(x), we say that x is stable or
invariant with regards to these fuzzy subsets. Now restating the proposition
above, we say that for every α ∈ M , there are m(n−1) fuzzy subsets for which
any element x of X is stable.
An element xi that has the same membership value to the fuzzy subsets
µ1, · · · , µj is said to be stable/invariant to these fuzzy subsets.
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Now we fix two distinct elements of X, that is two elements x1 and x2 such
that their membership values to each fuzzy subset µi(x1) ∀i remain unchanged.
Here two cases can be envisaged. The first case is for the two chosen elements
of X to have the same image, that is µi(x1) = µi(x2) ∀i. The second case is
that each of the elements has a fixed image in M , with µi(x1) 6= µi(x2) ∀i.

Proposition 2.3.7 Consider α ∈ M and let x1 and x2 be two given elements
of X. The number of fuzzy subsets for which the two elements are simultane-
ously stable is: mn−2.

Proposition 2.3.8 If x is invariant to µ1, · · · µj, then
1. x is invariant to µi ∪ µj ∀i, j and
2. x is invariant to µi ∩ µj∀i, j.

Knowing which element of X is invariant to some fuzzy subsets of X is im-
portant. Imagine x to be a fruit or any other commodity a shop has ordered.
Wouldn’t it not be useful to know which fruit would keep its status should
some properties of fuzzy nature change.
In other words identifying elements of a set which keep the same membership
value to a number of fuzzy subsets is important. In this way for instance
banks customers are partitioned according to some given fuzzy properties such
as monthly incomeabove R20, 000; age about 30 to 40 years old; with some
higher learning education; with a totalmonthly expenditure in excess of ...
etc...

A person who falls under all of these categories might be the most sought
customer a bank would like to engage with.

2.3.4 Fuzzy subsets of many similar elements of X.

Consider the set X = {x1, x2, · · · , xn} and the set F(X ) of all possible fuzzy
subsets of set X. Our interest is to find out how many fuzzy subsets of X have
the highest number of similar elements of X. This counting does not include
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the obvious fuzzy subsets µ1 = 11 · · · 1 , µ2 = 00 · · · 0 and µ3 = 1
m−1

1
m−1

· · · 1
m−1

each with n similar elements. That is the set X is the set of similar elements
for these three fuzzy subsets. How many fuzzy subsets have n− 1 , n− 2 and
so on similar elements?
For n = 3 and m = 3, there are 18 fuzzy subsets with 2 similar elements such
as 111

2
, 110, 100, 1

2
.

Let |X| = n and |M | = m. In the following proposition we enumerate the
fuzzy subsets of X with (n − 1) similar elements.

Proposition 2.3.9 The number of fuzzy subsets of X with membership values
in M with (n − 1) similar elements is n.m(m− 1).

Proof . If (n − 1) elements of X are similar of membership value say α in
M , then the only element left in X has (m − 1) values to choose in M . Since
there are |X| = n, we have therefore n(m − 1) for α. Since |M | = m, there
are finally n.m(m− 1) different fuzzy subsets where (n− 1) elements of X are
similar.2

We consider fuzzy subsets of X and their α-cuts. We want to enumerate
fuzzy subsets with the smallest α-cut and the fuzzy subsets with the larger
α-cut. For these α-cuts,which are subsets of X, we consider the inclusion of
subsets as a tool to determine their size. Indeed we exclude in our search the
obvious cases of ∅ and X.

2.3.5 Fuzzy subsets of X of smaller or larger α-cut.

Consider α ∈ M ⊆ I. If α = 0, then µ0 ⊇ suppµ. For each α, 0 ≤ α; so
that µα ⊆ µ0. If α = 1 then µ1 = coreµ and there is one fuzzy subset, namely
µ = 11 · · · 1 whose α-cut is X. Any other fuzzy subset where only one element
of X has membership value 1 has a small α-cut which is {xi},∀1 ≤ i ≤ n.
What value of α other than 0 makes the larger α- cut in X? Which value of
α generates the smaller α- cut in X?
Let α ∈ [0, 1]; If α = 0, there is one subset of X equal to 0-cut. It is the
greatest α-cut.
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2.3.6 Fuzzy subsets of X of same α- cut.

Consider α ∈ I. We want to consider the fuzzy subsets of X that have the
same α-cut for a given α. For clarity we may realize for instance that µ1 =
1
2
11, µ2 = 111

2
, µ3 = 11

2
1 have the same 1

2
-cut.

Let x be an element in the common α-cut of these fuzzy subsets µi. Then
µi(x) ≥ α∀i and ∩n

i=1µi(x) ≥ α. It is also clear that ∪n
i=1µi(x) ≥ α.

We state the following proposition without proof.

Proposition 2.3.10 Let µ be a fuzzy subset of X and Xi as its αµ-cut. For
any other fuzzy subset λ ≥ µ the αµ-cut is a subset of αλ-cut.

Concerning the α-cuts, we can enumerate different other types of fuzzy sub-
sets. We have in mind :
-the fuzzy subsets of empty α-cut for a chosen α ∈ M .
-the fuzzy subsets of α-cut equal to X,
-the fuzzy subsets of α-cut a single element xi ∈ X.

2.3.7 Fuzzy subsets of constant membership value.

Let X = {x1, x2, · · ·xn}. We want to count the fuzzy subsets µ of X where
µ(x1) = µ(x2) = · · · µ(xn). The membership value of all elements is a single
value say α ∈ I. Consider that single value α, then the α-cut for each of these
fuzzy subsets is X. If α = 0, the support of µ is ∅, the core is also ∅. Now if
α = 1, the support is X, the core is also X.
For any other value γ ∈ I such that γ > α, then the γ-cut is empty set; that
is µγ = ∅.

Example 2.3.11 . Two of such fuzzy subsets are µ1 = 00 · · · 0, µ2 = 11 · · · 1.

How many fuzzy subsets of this nature are there in F(X )?.
Consider F(X ) and the set M of all membership values. The size of M deter-
mines the number of fuzzy subsets of constant membership value. This number
is | M |.
These kinds of fuzzy subsets are special. We refer to our example of fuzzy
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subset of marks awarded to students in their mathematics test. A case of a
fuzzy subset of constant value informs us that all students got the same mark.
Something may have happened during the test. Either the test was so difficult
and everyone got say 0; very easy and all got say 1. This requires an new
setting of conditions to be able to partition X in a way that we can describe
the behavior of its elements.

2.3.8 Fuzzy subsets with supp µ equal X.

The fuzzy subsets considered in this case are such that every element xi ∈ X
has a membership value greater than 0. In other words this means no element
of X has membership µ(xi) = 0. We introduce the notation Nµµ(xi) = 0 for
the number of fuzzy subsets of X for which µ(xi) = 0 for i = 1, 2, · · · n and
xi ∈ X.
Now using PIE we have the following proposition :

Proposition 2.3.12 The number of fuzzy subsets µj with suppµj equals X,

denoted here as Nµ(suppµ = X) = mn−[
n∑

i=1

(Nµµ(xi) = 0]+[
∑

µ

µ(xi) = 0, µ(xj) = 0]−

[Nµµ(xi) = 0, µ(xj) = 0, µ(xk) = 0] + · · · + (−1)n+1Nµµ(xi) = 0, µ(x2) =
0 · · · µ(xn) = 0

Example 2.3.13 . Any fuzzy subset of constant value 1 is of suppµ = X.

2.3.9 Fuzzy subsets with core µ equal X.

The number of fuzzy subsets with core µ equals X can only be one. This is
the only fuzzy subset such that each element xi ∈ X has membership value 1
to the fuzzy subset.

Example 2.3.14 . The fuzzy subset of constant value 1 is the only fuzzy
subset of core µ = X.
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2.3.10 Fuzzy subsets with supp µ equal ∅.
In this case there is only one fuzzy subset of X with suppµ equal to ∅. This is
the fuzzy subset of X where each element xi ∈ X has membership value zero
to the fuzzy subset.

2.3.11 Fuzzy subsets with core µ equal ∅.
Let us first introduce some useful notations. We denote by Nµ[core µ = ∅] the
number of fuzzy subsets of X with core µ = ∅ and by Nµµ(xi) = 1 the number
of fuzzy subset of X for which the element xi ∈ X has membership value 1.
By [Nµµ(xi) = 1, µ(xj) = 1] we denote the number of fuzzy subsets of X for
which the elements xi and xj simultaneously have membership value 1. The
expression giving the number of fuzzy subsets of X with core µ = ∅ is given
by the following proposition:

Proposition 2.3.15 Nµ[core µ = ∅] =

mn − [
n∑

i=1

Nµµ(xi) = 1] + [
n∑

i=1,j=1

Nµµ(xi) = 1, µ(xj) = 1] +

· · · + (−1)n+1[
n∑

i=1

Nµµ(xi) = 1, µ(x2) = 1 · · · µ(xn) = 1].

2.3.12 Subsets of distinct membership values.

We consider now the fuzzy subsets µ = µ(x1)µ(x2) · · · µ(xn) of an n-set X with
membership values in an m-set M where the values µ(x1), µ(x2), · · · , µ(xn) are
distinct from one another. If we set n ≥ m, then all fuzzy subsets have at least
one membership value repeating itself. We therefore consider the cases n = m
and n ≤ m. The element x1 has m choices of values in M ; the next element
x2 of X has m − 1 choices in M ; x3 has m − 2 choices etc...
The number of fuzzy subsets with all membership values distinct from one
another is therefore m! = m(m − 1)(m − 2) · · · (m− m + 1).
When n = m, all these fuzzy subsets have the same cardinality.
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2.4 Some Other Applications of PIE in F(X ).

2.4.1 Union of the sets µ−1(α)

Consider a fuzzy subset µ of set X with distinct membership values α1, α2, · · · , αn

in M ⊂ [0, 1]. It is clear that {µ−1(αi)}n
i=1 is a partition of X and that

(

n∑

i=1

| µ−1(αi) | = | X | while |
n⋂

i=1

µ−1(αi) |= ∅.

We define in X a relation R such that two elements xi and xj are in relation
R and we write xiRxj if and only if µ(xi) = µ(xj). In other words we may
say that ∀α ∈ [0, 1] xiRxj if and only if xi ∈ µ−1(α) and xj ∈ µ−1(α)
This relation R is an equivalence on X. The equivalence classes are the
µ−1(αi) ∀i. The cardinality of M ⊂ [0, 1] is the number of equivalence classes
in X.

We express | (
n⋃

i=1

µ−1(αi) | as in the proposition below:

Proposition 2.4.1 Let µ be a fuzzy subset of set X with membership values
α1, α2, · · · , αn in M ⊂ [0, 1], then:

| (
n⋃

i=1

µ−1(αi) | = (
n∑

i=1

| µ−1(αi) |) −
∑

1≤i<j

| µ−1(αi) ∩ µ−1(αj | +
∑

1≤i<j<k

|

µ−1(αi)∩µ−1(αj)∩µ−1(αk) | + · · ·+(−1)n−1 | µ−1(α1)∩µ−1(α2)∩· · ·∩µ−1(αn) |
and dually

| (
n⋂

i=1

µ−1(αi)) | = (
n∑

i=1

| µ−1(αi) |) −
∑

1≤i<j

| µ−1(αi)∪ µ−1(αj) | +
∑

1≤i<j<k

|

µ−1(αi)∪µ−1(αj)∪µ−1(αk) | + · · ·+(−1)n−1 | µ−1(α1)∪µ−1(α2)∪· · ·∪µ−1(αn) |.

Proof : For the fact that {µ−1(αi)}n
i=1 is a partition of X; each intersection

µ−1(αi) ∩ µ−1(αj) = ∅ for any two i, j, and furthermore it is clear that

| (
n⋃

i=1

µ−1(αi) | = (
n∑

i=1

| µ−1(αi) |) = | X |.

Similarly if we express each union of the kind | µ−1(αi) ∪ µ−1(αj) | or even

of the type | µ−1(αi) ∪ µ−1(αj) ∪ µ−1(αk) | found in | (
n⋂

i=1

µ−1(αi)) | as
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| µ−1(αi) | + | µ−1(αj) | − | µ−1(αi) ∩ µ−1(αj) |, then each term on the
right side will cancel each other. As a result we will be able to write that

|
n⋂

i=1

µ−1(αi) | = 0. This confirms the fact that

n⋂

i=1

µ−1(αi) = ∅ since the

µ−1(αi) ∀i make a partition of X.2.

Now if we assume that the membership values α1, α2, · · · , αn are such that
α1 ≤ α2 ≤ · · · ,≤ αn. Then µαn ⊆ µαn−1 ⊆ · · · ⊆ µα2 ⊆ µα1 . These
µαi ∀ i, 1 ≤ i ≤ n are subsets of X. We can therefore apply the PIE on
these finite subsets in this manner:

|
n⋂

i=1

µαi | =

n∑

i=1

| µαi | −
∑

1≤i<j

| µαi ∪ µαj | +
∑

i<j<k

| µαi ∪ µαj ∪ µαk |

· · · (−1)n | µα1 ∪ µα2 ∪ · · · ∪ µαn |

Now, if α1 ≤ αj ≤ αk then µα1 ∪ µαj = µα1 and µα1 ∪ µαj ∪ µαk = µα1.

Therefore µα1 appears (n − 1) =

(
n − 1

1

)
times in expressions of the type

µα1 ∪ µαj ,

(
n − 1

2

)
in expressions of the form µα1 ∪ µαj ∪ µαk and so on.

Finally because of the alternating signs, the sum(
n − 1

0

)
−

(
n − 1

1

)
+

(
n − 1

2

)
· · · (−1)n−1

(
n − 1
n − 1

)
= 0.

See [21]. Therefore the term | µα1 | will actually vanish in the right hand side
of 2.4.1.

Similarly µα2 appears

(
n − 2

1

)
= (n − 2) times in expression of the form

µα2 ∪ µαj ; it appears

(
n − 2

2

)
in expressions of the type µα2 ∪ µαj ∪ µαk . As

before we conclude that the term |µα2| vanishes in the right hand side of 2.4.1.
We use this reasoning for each term of the type µαi for 1 ≤ i ≤ n repeatedly
until the term µαn which is contained in each union µαi ∪ µαn ∀i as per our
assumption α1 ≤ α2 ≤ · · · ,≤ αn remains. Therefore it appears only once in
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the sum |
n⋂

i=1

µαi | =

n∑

i=1

| µαi | −
∑

1≤i≤j

| µαi ∪ µαj | +
∑

i≤j≤k

| µαi ∪ µαj ∪ µαk |

· · · (−1)n | µα1 ∪ µα2 ∪ · · · ∪ µαn | . In conclusion the right hand side of the

expression 2.4.1 which solves |
n⋂

i=1

µαi | is made up of only one term | µαn |.

This confirms the already known fact that |
n⋂

i=1

µαi | = | µαn |.

2.4.2 Union of subsets of µ(X)

Let µ be a fuzzy subset of X with membership values in set M such that
µ(X) = {α1, α2, · · · , αn} ⊂ I. Now we take finitely many subsets J1, J2, · · · , Jk

of µ(X) with k ≤ n which are not necessary disjointed subsets of µ(X).
We denote by JC

i the complement of Ji in µ(X). We consider the set (J1 ∩
J2 ∩ · · · ∩ Jk)

C which is the same as the set (JC
1 ∪ JC

2 ∪ · · · ∪ JC
k ). In addition

we also consider

(J1 ∪ J2 ∪ · · · ∪ Jk)
C = (JC

1 ∩ JC
2 ∩ · · · ∩ JC

k )

.
Now applying the PIE on these sets to find the number of elements of M in
the union and intersection of these subsets of µ(X) respectively, we get:

| (JC
1 ∪ JC

2 ∪ · · · ∪ JC
k ) |= | µ(X) | −

k∑

i=1

| Ji | +
∑

1≤i≤j≤k

| Ji ∩ Jj | + . . .

and

| (JC
1 ∩ JC

2 ∩ · · · ∩ JC
k ) |= | µ(X) | −

k∑

i=1

| Ji | +
∑

1≤i≤j≤k

| Ji ∪ Jj | + . . .

We are interested to enumerate in the set X the number |
k⋃

α∈Ji
C

µ−1(α) |. This

number is obtained as follows [| (
⋃k

α∈Ji
C µ−1(α) |=| X | −

∑k
α∈∪i=1

Ji | µ−1(α) |
]
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Let F(X ) be the lattice of fuzzy subsets of an n-element set X. We recall
that M = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
= 1}. Now the set of cardinalities of the

fuzzy subsets of the set X with membership values in M which is denoted here
by Cardµ is defined as Cardµ = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
, m

m−1
, · · · , n} [45].

Let the fuzzy subsets λ1 and λ2 of X be represented as λ1 = λ1(x1)λ1(x2) · · ·λ1(xn)
and λ2 = λ2(x1)λ2(x2) · · · λ2(xn) [20]. Assume that λ1 ≤ λ2. This implies the
following two statements:
1. λ1(x1) ≤ λ2(x1), λ1(x2) ≤ λ2(x2), · · · , λ1(xn) ≤ λ2(xn) and

2. |λ1| ≤ |λ2|; Which means that
n∑

i=1

λ1(xi) ≤
n∑

i=1

λ2(xi). This also implies

that there exists a natural number t such that 0 ≤ t ≤ |X|(m − 1) and
|λ2| = |λ1| + t

m−1
[45]. We justify the existence of the natural number t from

the nature of members of the set Cardµ as defined above.

2.5 The α-cut

Theorem 2.5.1 Dominance and α-cut
1. A fuzzy subset µ1 of X is greater than another fuzzy subset µ2 of X if each
α-cut of µ1 contains the α-cut of µ2.
2. A fuzzy subset µ1 of X is equal to another fuzzy subset µ2 of X if each
α-cut of µ1 is equal to the α-cut of µ2.
3. A fuzzy subset µ1 of X is smaller than another fuzzy subset µ2 of X if each
α-cut of µ1 is contained by the α-cut of µ2. [10]

Proof: Let µ1 ≥ µ2. Then ∀x ∈ X, µ1(x) ≥ µ2(x). Show that any α-cut of µ1

contains the α-cut of µ2 that is µα
2 ⊆ µα

1 .
Now consider α ∈ I = [0, 1], such that x ∈ µα

2 , that is µ2(x) ≥ α which also
means by transitivity of ≤, for the same α, α ≤ µ2(x) ≤ µ1(x), as per
our hypothesis µ1(x) ≥ µ2(x). Therefore µ1(x) ≥ α or that x ∈ µα

1 . Which
concludes that µα

2 ⊆ µα
1 .

Again, let µ1 = µ2. That is to say ∀x ∈ X, µ1(x) = µ2(x). We show that
any α-cut of µ1 is an α-cut of µ2. Consider x ∈ µα

1 . That is µ1(x) ≥ α. By the
equality µ1(x) = µ2(x) we write that µ2(x) ≥ α or x ∈ µα

2 and conclude that
µα

1 ⊂ µα
2 . In the same way we show that µα

2 ⊂ µα
1 and prove that µα

2 = µα
1 .
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Finally Let µ1 < µ2. Then ∀x ∈ X, µ1(x) < µ2(x). Now if x ∈ µα
1 , then

α ≤ µ1(x). By transitivity α ≤ µ2(x) and therefore x ∈ µα
2 . The α-cut of µ1

is contained in the α-cut of µ2.

Example 2.5.2 . Let us consider the marks of a group of 10 students in a
mathematics test to be a fuzzy subset µ. Let also µ(xi) = k

100
be the actual

mark of a student xi for the test. These marks lie indeed in the interval [0, 1].
If we consider an α ∈ [0, 1], say α = .5, then µ.5 would be the students among
the 10 who had a minimum of 50

100
pass while µ.75 is the subset of students who

got at least a distinction to the test. We realize that the higher the value of α,
the higher the quality of result. Thus the α-cut helps stream elements of the
set in order to increase confidence in the choice of elements of the universe of
discourse.
Let µ and γ be two fuzzy subsets. We know that µα = {x ∈ X : µ(x) ≥ α}, we
define µα = {x ∈ X : µ(x) < α}. µα is a crisp set and is called the complement
of µα in X. Other authors called µα the inverse α-cut. [39] [48] [22]
The properties of fuzzy inclusion and equality are complement α-cut worthy.
Again, the complement α-cuts preserve some kind of monotonicity and every
fuzzy subset can be represented by the family of all its complement α- cuts.
The next proposition clarifies this idea.

Proposition 2.5.3 Let µα and γα be the α-cuts of two fuzzy subsets µ and
γ of a finite set X; with µα and γα their respective complements in X.
1. µα=1 = X
2. If µ ≤ γ then γα ⊆ µα.
3. If µ = γ then µα = γα.
4. For µ ∈ F(X ) and α, β ∈ [0, 1], if α ≤ β, then µα ⊆ µβ.
5. Any fuzzy subset µ can be represented by: µ =

⋃
α∈[0,1] α.µα where α.µα is

such that (α.µα)(x) = α.µα(x), x ∈ X.

Proof : 1. It is clear that ∀x ∈ X,∀µ ∈ F(X ), µ(x) ≤ 1.
2. Let µ ≤ γ, then for any x ∈ X, µ(x) ≤ γ(x). Now if γ(x) ≤ α, then
µ(x) ≤ α as well.
3. Let µ = γ; clearly µ(x) = γ(x) and if µ(x) ≤ α, then γ(x) ≤ α.
4. Let x ∈ µα, then µ(x) < α. Since α ≤ β, we have also µ(x) < β which
means x ∈ µβ.
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2.5.1 The complement α-cut decomposition.

For any α ∈ [0, 1] and from the definitions of µα and µα we can now partition
a set X into two subsets. We can state that X = µα ∪ µα and µα ∩ µα = ∅.
This is a mere decomposition of set X.

2.5.2 The α-induced fuzzy subset and its complement.

Let α ∈ [0, 1] and µ ∈ F(X ). We note by (µα)i the fuzzy subset obtained by :

(µα)i(x) =

{
µ(x), if µ(x) ≥ α
0, if otherwise.

This fuzzy subset (µα)i = {(x, (µα)i(x))| x ∈ X} is called the α- induced
fuzzy subset. As we can see, the α-cut only tell us the elements of X with
membership value greater or equal to α. The α- induced fuzzy subset informs
us of both the members of X with membership value below α and especially
those with membership values above α coupled with their actual membership
values.
We are now able to define the complement of the α- induced fuzzy subset
denoted here by (µα)i, as

(µα)i(x) =

{
µ(x), if µ(x) < α
0, if otherwise.

With regards to the α-induced fuzzy subset and its complement we can show
that for any fuzzy subset µ:
µ = (µα)i ∪ (µα)i and (µα)i ∩ (µα)i = ∅
In fact ∀x ∈ X, if µ(x) ≥ α, then (µα)i(x) = µ(x), and (µα)i(x) = 0 such that
(µα)i(x) ∨ (µα)i(x) = µ(x) ∨ 0 = µ(x) while (µα)i(x) ∧ (µα)i(x) = 0 . On the
other hand, if µ(x) < α, then (µα)i(x) = 0, and (µα)i(x) = µ(x). Therefore:
(µα)i(x) ∨ (µα)i(x) = µ(x) ∨ 0 = µ(x) while (µα)i(x) ∧ (µα)i(x) = 0.

2.6 Equivalences in F(X ).

There are many instances in which we would like to consider certain elements
of a set to be the same. When we consider for instance all multiples of 2 (two)
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in R to be the same, this is a generalization of the notion of equality. This
generalization is well expressed in equivalence relations.
In the following paragraphs, we establish some equivalence relations in the set
of fuzzy subsets of a finite set X.

2.6.1 Equivalence R1

Let us define in F(X ) the relation R1 such that λ1R1λ2 if and only if there
exists an integer t such that 0 ≤ |t| ≤ (m − 1) and |λ2| = |λ1| + t

m−1
.

Theorem 2.6.1 The relation R1 defined on F(X ) as above is an equivalence
on F(X ).

1. It is clear that ∀λ ∈ F(X ), λR1λ. In fact There exist t = 0 such that
|λ| = |λ| + 0

m−1
. That is R1 is reflective.

2. Suppose λi and λj be two fuzzy subsets of X such that λiR1λj . Then there
exists t ∈ Z such that |λj | = |λi| + t

m−1
. This means also for the same t that

there is r = −t such that |λi| = |λj | + r
m−1

. Thus λjR1λi and therefore R is
symmetric.
3. Let us assume now that λiR1λj and λjR1λp. This means respectively
that there is t ∈ Z such that |λj | = |λi| + t

m−1
and r in Z such that |λp| =

|λj | + r
m−1

. There exists s = (t + r) ∈ Z such that |λp| = |λi| + s
m−1

. Thus
λiR1λp. The relation R1 is therefore transitive. Hence the relation R1 is an
equivalence in F(X ).

By definition, R1 implies dominance. Therefore each equivalence class has
a top element from which can be deduced naturally each member of the
class. Let µj = µj(x1)µj(x2) · · · µj(xn) be the top element. The members
of the class just below it are of the form: µj(x1) − 1

m−1
µj(x2) · · · µj(xn) ;

µj(x1)µj(x2) − 1
m−1

µj(x3) · · · µj(xn); · · · µj(x1)µj(x2) · · ·µj(xn) − 1
m−1

Below
these ones are the fuzzy subsets which are such that the membership values of
two elements only at a time are each 1

m−1
less than the respective membership

values of the two elements in µj while the remaining elements’ membership
values are unchanged. The hunt of these fuzzy subsets will continue until the
membership values of all elements are 1

m−1
less than those of each element in
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µj .
Now we wish to enumerate the elements in an equivalence class of R1. In how
many ways the fuzzy subset µj = µj(x1)µj(x2) · · · µj(xn) top of an equivalence
class can be transformed in such a way that we get fuzzy subsets below it where
the membership value of one element of X at a time, that of two elements at a
time, · · ·, and finally the membership values of all elements of X are 1

m−1
less

than those in the equivalent positions in µj respectively.

Example 2.6.2 .
Refer to the diagram attached to the thesis.
Consider F(X ) the set of all possible fuzzy subsets of X = {x1, x2, x3} with
membership values in M = {0, 1

2
, 1}. One typical equivalence class is

{111
2
, [110, 11

2
1
2
, 1

2
11

2
], [11

2
0, 1

2
10, 1

2
1
2

1
2
], 1

2
1
2
0}

It is clear that 111
2

is the top of the class from which 110 and 11
2

1
2

are ob-
tained each with one membership at a time 1

3−1
less than that of 111

2
. Again

each of the fuzzy subsets 11
2
0, 1

2
10, 1

2
1
2

1
2
] is such that two membership values

are 1
3−1

less than those in the top, that is 111
2

while 1
2

1
2
0 being below every

member of the class has three membership values each 1
3−1

less than those in

111
2
.

2.6.2 Equivalence R2

Let µ be a fuzzy subset of X. Consider two other fuzzy subsets λ1 and λ2 of
a finite set X. Let us define in F(X ) the relation R2 such that λ1R2λ2 if and
only if d(µ, λ1) = d(µ, λ2), where d(µ, λ) is the Hamming distance between a
given fuzzy subset µ and any fuzzy subset λ in F(X ).
1. Clearly λR2λ ∀λ ∈ F(X ).
2. Now if λ1R2λ2, it is evident that λ2R2λ1.
3. It is obvious that if λ1R2λ2 and λ2R2λ3, then λ1R2λ3.

Theorem 2.6.3 The relation R2 defined on F(X ) such that λ1R2λ2 if and
only if d(µ, λ1) = d(µ, λ2), where d(µ, λ) is the Hamming distance between a
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given fuzzy subset µ and any fuzzy subset λ is an equivalence on F(X ) and
the set of fuzzy subsets at a distance d from the given fuzzy subset µ is an
equivalence class.

This theorem says that the fuzzy subsets of X can be classified in term of their
distance from a given fuzzy subset µ of X.

Example 2.6.4 .
If we consider F(X ) the set of all possible fuzzy subsets of X = {x1, x2, x3}
with membership values in M = {0, 1

2
, 1} and take µ = 111, then the fuzzy

subsets 110, 11
2

1
2
, 101, 1

2
11

2
, 1

2
1
2
1, 011 are in one class characterized by the dis-

tance of each of them from µ = 111 being 1. Another interesting classification
of fuzzy subsets is that of considering the cardinality of fuzzy subsets. It is
shown in the following paragraph that fuzzy subsets of same cardinality form
a class.

2.6.3 Equivalence R3

Let us define in F(X ) the relation R3 such that two fuzzy subsets µ1 and µ2

are in relation R3 and we write µ1R3µ2 if and only if | µ1 |=| µ2 |.
Properties of the relation R3.
1. Reflexivity: ∀µ ∈ F(X ), µ1 R3 µ1 since | µ1 |=| µ1 |.
2. Symmetry: ∀µ1, µ2 ∈ F(X ), If µ1 R3 µ2 , then µ2 R3 µ1. In fact if
| µ1 |=| µ2 | then | µ2 |=| µ1 |, i.e. µ2 R3 µ1.
3. Transitivity: ∀µ1, µ2, µ3 ∈ F(X ), If µ1 R3 µ2 and µ2 R3 µ3, then µ1 R3 µ3.
In fact if | µ1 |=| µ2 | and | µ2 |=| µ3 |, then | µ1 |=| µ3 | which means µ1 R3

µ3.
From the above, we can establish the following theorem which says:

Theorem 2.6.5 The relation R3 defined above by µ1R3µ2 if and only if
| µ1 |=| µ2 | is an equivalence relation in the set F(X ).

In the following theorem, we show that fuzzy subsets of same cardinality are
all located at the same distance from a given fuzzy subset µ of set X.

Theorem 2.6.6 Theorem 2.6.3 and Theorem 2.6.5 imply that for any two
fuzzy subsets µ1 and µ2 of a finite set X, |µ1| = |µ2| if and only if:
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d(µ, µ1) = d(µ, µ2).

Proof . Let µ1 and µ2 be any two fuzzy subsets of a finite set X such that
|µ1| = |µ2|. That is µ1(x1)+µ1(x2)+· · ·+µ1(xn) = µ2(x1)+µ2(x2+· · ·+µ2(xn)
and therefore |µ(x1)−µ1(x1)|+|µ(x2)−µ1(x2)|+· · ·+|µ(xn)−µ1(xn)| = |µ(x1)−
µ2(x1)|+|µ(x2)−µ2(x2)|+· · ·+|µ(xn)−µ2(xn)|. This means d(µ, µ1) = d(µ, µ2).
Now assume d(µ, µ1) = d(µ, µ2). Then |µ(x1)−µ1(x1)|+|µ(x2)−µ1(x2)|+· · ·+
|µ(xn)− µ1(xn)| = |µ(x1)− µ2(x1)|+ |µ(x2)− µ2(x2)|+ · · ·+ |µ(xn)− µ2(xn)|.
Or (|µ1(x1)−µ(x1)|+ |µ(x1)−µ2(x1)|)+(|µ1(x2)−µ(x2)|+ |µ(x2)−µ2(x2)|)+
· · · + (|µ1(xn) − µ(xn)| + |µ(xn) − µ2(xn)|) ≥ |µ1(x1) − µ2(x1)| + |µ1(x2) −
µ2(x2)|+ · · · + |µ1(xn) − µ2(xn)|

Now if we consider the theorem 2.6.6, we can write the number of equiva-
lence class as well as the number of members in an equivalence class.
We will state and improve some results found in [45] in this regard.
Let |X| = n , |M | = m and | Cardµ | be the set of cardinalities of fuzzy
subsets, while (Nµ(| . |= α)) is the number of fuzzy subsets of cardinality α;
then

Proposition 2.6.7 | Cardµ | = (m − 1)n + 1. and

(Nµ(| . |= α))n =
∑

i∈M

(Nµ(| . |= α − i))n−1.

Proof : On the left of the above equation we are counting the number of fuzzy
subsets of set X = {x1, x2, x3, · · · , xn}, while on the right of the equation we
count the fuzzy subsets of the set X ′ = {x1, x2, x3, · · · , xn−1} = X \ {xn} .
Any fuzzy subset µ of set X is obtained from a fuzzy subset µ′ of set X ′ by
associating with element xn the difference between | µ | and | µ′ |, if this dif-
ference belongs to M , which proves the proposition. 2.

The above proposition can be extended to include every α ∈ Cardµ. We
express the new result in the following proposition.

Proposition 2.6.8 Let the cardinalities of X and M be n and m respectively.
The number of fuzzy subsets of X with cardinality p ∈ Cardµ is equal to the
sum of the number of fuzzy subsets of X \ {xi}∀xi ∈ X with cardinality p and
the number of fuzzy subsets of X \ {xi}∀xi ∈ X with cardinality p − 1

m−1
.
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The above proposition can be illustrated by the following table of Nµ(| . |= p).
We call this table Pascal Rectangle since it is rectangular and the entries are
obtained in a fashion similar to the process in the Pascal triangle.

n/p 0 1
m−1

2
m−1

3
m−1

· · · m−1
m−1

· · · n
1 1 1 1 1 · · · 1 · · · 0
2 1 2 3 3 · · · 3 · · · 0
3 1 3 6 8 · · · 9 · · · 0
... · · · ... 10 17 · · ·

From this table we can deduce some interesting results which are recorded
under the following two propositions.

Proposition 2.6.9 Let Cardµ be the set of cardinalities of fuzzy subsets of
a set X with membership values in M and Nµ(| . |= p) be defined as above.
Consider p ∈ Cardµ. If |X| = 1 then
1. (Nµ(| . |= p)) = 1 if p ≤ 1 and
2. (Nµ(| . |= p)) = 0 if p > 1.

Proof : For part (1) we refer to p. 61 of [45]. Now for part (2): Suppose p > 1
and |X| = 1. The only element of X can only have a membership p ≤ 1, but
not p > 1. Therefore (Nµ(| . |= p) = 0 in such case.

Proposition 2.6.10 The number of fuzzy subsets of X with cardinality p ∈
Cardµ is equal to the sum of the number of fuzzy subsets of X−{xi}, ∀xi ∈ X
with cardinality p and the number of fuzzy subsets of X − {xi}∀xi ∈ X with
cardinality p − 1

m−1
.

(Nµ(| . |= p))inX = (Nµ(| . |= p))inX−{xi} + (Nµ(| . |= p − 1
m−1

))inX−{xi}

Our focus now is to enumerate the fuzzy subsets of X of cardinality p for which
some k ≤ n given elements of X have non-zero membership values. This means
X = X1 ∪ X2 with X1 = {x1, x2, · · ·xk} and X2 = {xk+1, · · ·xn}. It is clear
that |X1| = k, while |X2| = n − k. Let us consider a fuzzy subset µ of X1,
|µ| = α > 0.
By our previous paragraph we count:

r1 = (Nµ(| . |= α))k =
∑

i∈M\{0}

(Nµ(| . |= α − i))k−1 fuzzy subsets of X1 of car-
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dinality α.

Consider also the set X2 = X \X1 with (n− k) elements. Any fuzzy subset
of X2 has cardinality (p − α). Therefore there are as per the same reason

r2 =(Nµ(| . |= α))n−k =
∑

i∈M

(Nµ(| . |= p − α − i))n−1 fuzzy subsets of X2 of

cardinality (p − α). Now each fuzzy subset of X is actually made of one from
X1 and one from X2. For each fuzzy subset of X1 there are r2 choices of fuzzy
subsets of X2 to combine with. This in short means that for every subset of

X we have
∑

0<α<p

r1.r2.

Example 2.6.11 .
Refer to the diagram attached to the thesis.
Let X = {x1, x2, x3} M = {0, 1

2
, 1} so that Cardµ = {0, 1, 2, 3, · · · n}. We

consider X1 = {x1, x2} and X2 = {x3}. Take p = 3 so that 0 < α < 3. That
means α = 1

2
; 1; 11

2
; 2; 21

2
.

If α = 1
2
; (Nµ(|.| = 1

2
))X1 = 2, (Nµ(|.| = (3 − 1

2
))X2 = 0

If α = 1; (Nµ(|.| = 1))X1 = 3, (Nµ(|.| = (3 − 1)))X2 = 0
If α = 11

2
; (Nµ(|.| = 11

2
)X1 = 2, Nµ(|.| = (3 − 11

2
))X2 = 0

If α = 2; (Nµ(|.| = 2)X1 = 1, Nµ(|.| = (3 − 2))X2 = 1.
If α = 21

2
; (Nµ(|.| = 21

2
)X1 = 2, Nµ(|.| = (3 − 21

2
))X2 = 1.

Therefore the number of fuzzy subset of cardinality p = 3 when two elements
of X have non-zero membership value is 2.0 + 3.0 + 2.0 + 1.1 = 1.
When p = 21

2
; k = 2; 0 < α < 21

2
, the number of fuzzy subsets of cardinality 21

2

with k = 2 elements of X have non-zero membership is 3. Those of cardinality
p = when only one (1) element of X has a non-zero membership are 5.

2.7 Partition of set X

The importance of partitioning or clustering of data is well documented in the
literature. Various areas such as taxonomy, medecine, geology, business, image
processing use this process extensively.
In databank marketing, the bank tries to subdivide its customers into segments
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or clusters which are homogeneous with respect to the needs of the customer
in a segment. Now they can offer special products only to segments which have
a high demand for the product. This is called customer segmentation. Using
fuzzy clustering allows us to classify marginal customers, dynamic changes
of the customers can be identified via changes of degree of membership of
customers to cluster.
We refer to [12] [11] [4] [18] [38] [50]
Consider a non-empty set X, a fuzzy subset µ1 and a real number α ∈ [0, 1].
We can partition the set X into the two following subsets in the following
manner:
Xα

µ1
= {x ∈ X;µ1(x) > α}.

Xαµ1
= {x ∈ X;µ1(x) ≤ α} such that X = Xα

µ1
∪ Xαµ1

.
If µ1 ≤ µ2 we have the following proposition concerning their α-cuts.

Proposition 2.7.1 1. Xα
µ1

⊆ Xαµ2
, and

2. Xαµ1
⊆ Xαµ2

∪ Xα
µ2

.

Proof : 1. Let µ1 ≤ µ2, if µ1(x) > α or better x ∈ Xα
µ1

then µ2(x) > µ(x) > α
which means that x ∈ Xα

µ2
.

2. Now if x ∈ Xαµ1
, then µ1(x) ≤ α. We may have either x ∈ Xαµ2

, that
is µ2(x) ≤ α or µ2(x) ≥ α, which means x ∈ Xα

µ2
. In both cases we have

Xαµ2
∪ Xα

µ2
.

Proposition 2.7.2 1. Xα
µ1∨µ2

= Xα
µ1

∪ Xα
µ2

2. Xαµ1∧µ2 ⊆ Xαµ1
∪ Xαµ2

.

Proof : The proof is similar to the above proposition.

2.7.1 Fuzzy Partition

. Definition of Fuzzy Partition
Several concepts for defining fuzzy partitions of the universe X have been

proposed in the literature.
One definition uses the idea of covering of X and the pair-wise disjointed-
ness property suggested by E. H. Ruspini in [38]. He was among the first
to propose the generalization of fuzzy partition. The other way of defining
fuzzy partition is to use the set operations of T -norm and T -conorm S, which
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replace the usual axioms for a partition by appropriate formulas. Note that
S(a, b) = 1 − T (1 − a, 1 − b). [13]
We will use the Ruspini definition.

The following definition is more or less established throughout the literature.
A system P of fuzzy subsets of X is called a partition of X if the following
properties are satisfied.
1. ∀µ ∈ P , there is some x ∈ X ,µ(x) = 1.
2. ∀x ∈ X there exists exactly one µ ∈ P, µ(x) = 1.
3. If µ, λ ∈ P such that µ(x) = λ(y) = 1, then µ(y) = λ(x).[19]
There have been various extension of properties defining the fuzzy equivalence
in the literature and therefore there are various extension of the concept of
fuzzy partition.

Suppose that every object xj from a set X = {x1, x2, · · · , xn} should be
placed into k classes {C1, C2, · · · , Ck} with 2 ≤ k < n. This is possible since
each element of X can partially belong to each fuzzy class.
Let us set a k × n- matrix U = {uij} ·, 1 ≤ i ≤ k , 1 ≤ j ≤ n, where uij rep-
resents the degree of membership of element xj in µi. If uij = {0, 1}, then the
matrix U = {uij} represents a hard or crisp partition of X. But in contrary if
uij ∈ [0, 1] we get this time a fuzzy partition of X . Let P = {µ1, µ2, · · · , µk}
be a family of fuzzy subsets of X. For P to be a partition of X, each element
of X must have a different membership value in each of these fuzzy subsets of
the family.
Let x ∈ X, and P a hard partition of X. Then this partition P is possible if

k∑

i

µi(x) = 1 and

n∑

j

µi(xj) >0 [7][9]. These two conditions are valid for fuzzy

partitions as well because every hard partition is also a fuzzy partition.[33]
The first condition is justified by the fact that x belongs to X, The union of
members of P must be X. That is

⋃
µi∈P µi(x) = X the maximum membership

value of an element x to a fuzzy subset of P is 1. The second condition also is

justified since each µ(x) > 0 and if
n∑

j

µi(xj) = 0, then this would mean each

µi is empty therefore not part of any partition.
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A hard, resp. fuzzy, partition is called non-degenerate if and only if
k∑

i

uij ≥ 1

for row-wise sums and
n∑

j

uij ≥ 1 for column-wise sums hold.

We will therefore simply use the term partition if no confusion is expected.

The condition
k∑

i

µi(x) = 1 actually means that the sum of the membership

values of any element x ∈ X equals 1. This however has an outlier in the data.
If one element of X has membership value zero in all the fuzzy subsets; how
would the sum of its membership values be equal to 1? In which fuzzy subset
this element is assigned?

In their paper [13], the authors introduce the concept of redundancy for
families of fuzzy subsets. It may happen that one block of a fuzzy partition
is fully or partly a subset of the union of the other blocks. That means that
the information contained in this block is somewhat redundant as it is fully
or partly available from the other blocks. Hence the need for introducing the
redundancy of a family of fuzzy subsets of the universe of discourse to measure
the degree to which some blocks of the family form a subset of the union of the
others. It is therefore useful to look for partition with minimal redundancy, in
order to simplify fuzzy systems for classification and control.

From the definition of a partition set above, we can draw some conclusions
which constitute the following propositions.

Proposition 2.7.3 Two members of a partition P of X are either non-overlapping
or identical.

Proof . Let’s assume that µ ≡ λ as in [29]. That is µ(x) ≥ µ(y) ⇔ λ(x) ≥
λ(y). With condition µ(x) = λ(y) = 1 for x, y ∈ X, then µ(y) = λ(x). We
have 1 ≥ µ(y) ⇔ λ(x) ≥ 1. This is possible only if µ(y) = λ(x) = 1. Therefore
µ = λ.
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Proposition 2.7.4 Let P be a partition of X. If there exists a fuzzy subset
µi ∈ P such that µi(x) = 1, then µi is unique.

Proof :In fact, imagine there were µ1 , µ2 ∈ P such that µ1(x) = µ2(x) = 1.

This means that for only these two fuzzy subsets of P ,
k∑

i

µi(x) = 2. This is

contrary to the condition

k∑

i

µi(x) = 1 stated above.

Proposition 2.7.5 For µ, λ ∈ P ; µ(x) ∩ λ(x) ≤ 0, 5 and
⋃

µ∈P µ = X.

Proof : If x ∈ X assume µ(x)∩λ(x) 6≤ 0, 5 for µ, λ ∈ P . Then µ(x)∩λ(x) > 0, 5
and therefore µ(x) = λ(x) = 1. This contradicts the uniqueness of µ such that
µ(x) = 1. In short µ(x) ∩ λ(x) ≤ 0, 5. The last part of the proposition stands
by the definition of partition. Two fuzzy subsets µ and λ satisfying the above
proposition are said to be weak − separated fuzzy subsets.
Let P be a partition of X. The condition µ(x) ∩ λ(x) ≤ 0, 5 can be made
strict, that is: µ(x) ∩ λ(x) < 0, 5.

Proposition 2.7.6 If x ∈ X and µ ∈ P such that µ(x) ≥ 0.5, then µ(x) = 1’

Proof : Assume that µ(x) ≥ 0.5 and µ(x) 6= 1. By definition of partition there
exists λ ∈ P with µ 6= λ such that λ(x) = 1. This means (µ ∩ λ)(x) ≥ 0.5
which contradicts the proposition above. Therefore µ(x) = 1.
Let P(X ) be the set of all partitions of the set X; for any pair of partitions
Pi = {µi, i ∈ I} and Pj = {λj , j ∈ J} of X; P1 ≤ P2 if and only if for every
i ∈ I, µi ≤ λj for some j ∈ J .
Therefore P(X ) is a poset. The partition consisting of X alone is the greatest
element while the partition P = ({x}, x ∈ X) is the least element of the poset.

A family P of fuzzy subsets is called S-H fuzzy family if and only if ∀µ, λ ∈ P
µ∩λ ≥ λ(a) with µ(a) = 1. For a family of fuzzy subsets to be a S-H partition,
not a single fuzzy subset of the family must be weakly empty fuzzy subset. By
definition of fuzzy partition there must be at least an x of X for which the
membership µ(x) = 1. [43]
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2.7.2 The α- cut of a Partition

For a given α ∈ [0, 1], any fuzzy subset can be approximated by its α-cut by
writing that:

µ(x) =

{
1, if x ∈ µα

0, if x 6∈ µα.

[7] [9] [6]
This indeed will give rise to a matrix that represents a partition of X when

all the fuzzy subsets of a partition as well as their respective α-cuts are con-
sidered. This matrix will be called the α-cut of the partition.
This α-cut of a partition is characterized by a k ×m matrix where entries µij

are either 1 if ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ m, µi(x) ≥ α or 0 otherwise.

One naturally defined unique set partition of X associated with each fuzzy
subset of X is obtained if we consider ∀αi ∈ [0, 1] the subset of X described
by {x ∈ X : µ−1(αi) = x}. The family {µ−1(αi) = x} 1 ≤ i ≤ m if
Imµ(X) = {α1, α2, · · ·αm} is a partition of X. This partition is called the
kernel of µ.

If µ−1(0) = X, then the support of µ, denoted Suppµ is ∅. This means that
∀x ∈ X µ(x) 6> 0. With regards to α = 0; the 0-cut of any partition of X will
have all entries equal to 1. On the other hand, if µ−1(0) = ∅, then the support
of µ is X.
Let us illustrate this with an example.

Example 2.7.7 .
Consider the partition P1 = {{x1}, {x2, x3} } of X = {x1, x2, x3}. This may
be obtained if we use alternatively the fuzzy subsets µ1 = 11

2
1
2
, µ2 = 1

2
11, µ3 =

01
2

1
2
, µ4 = 100. The partition P2 = {{x1, x2, x3}} is generated by {111, 1

2
1
2

1
2
, 000}.

The partition P3 = {{x1, x2}, {x3}} is generated by the fuzzy subsets
111

2
110 1

2
1
2
0, 1

2
1
2
1, 001, 001

2
.

P4 = {{x1, x3}, {x2}} is generated by 11
2
1, 101, 01

2
0, 1

2
01

2
.

P5 = {{x1}. {x2}, {x3}} is generated by 01
2
1, 011

2
, 1

2
01, 1

2
10, 101

2
, 11

2
0.
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It is clear from this context that two fuzzy subsets of a set may generate the
same kernel- partition of the set. We may ask the following question. How
may fuzzy subsets of the set generate the same partition. Subsequent to this
question we may even find out the number of Kernel-partition we get in a
n-element set X with membership values in a m-element set.
The equivalence of fuzzy subsets has been extensively studied. We want to
look in the next section into the equivalence of fuzzy partitions.

2.7.3 Equivalent Fuzzy Partitions.

Let A and B be two fuzzy partitions, each of which is represented by its α-cut
matrix.

1◦ Definition. A and B are said to be α-equivalent and we write A =α B
if their α-cut matrices Aα and Bα are equal.

2◦ The =α-equivalence.
The relation =α is indeed an equivalence relation in the set of all partitions of
set X.
Consider two matrices Aα and Bα with associated fuzzy subsets µi, i ∈ I
and λj, j ∈ J . We can write that Aα ⊆ Bα if and only if ∀α ∈ [0, 1],∀x ∈
X,µij(x) ≤ λij(x).
Aα = Bα ∀α ∈ [0, 1] if and only if A = B.
Let A be a fuzzy partition. We consider the r × n-matrix, 1 ≤ i ≤ r and
1 ≤ j ≤ n characterized by:

µi(x) =

{
1, if xj ∈ Suppµi

0, if otherwise. That is xj 6∈ Suppµi .
.

This matrix is called the Support matrix of the partition A denoted SuppA.
Now if two k-partitions A and B are such that SuppA = SuppB, then for each
fuzzy subset µi ∈ A and γ ∈ B, if x ∈ Suppµi then x ∈ Suppγj . Similarly if
x 6∈ Suppµi then x 6∈ Suppγj . We note here that x ∈ Suppµi and x ∈ Suppγj

does necessarily mean that µi = γj . Otherwise equality of the µi and γj would
mean that A = B.
In the next section we extend the notion of Hamming Distance between two
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fuzzy subsets to two fuzzy partitions. The distance between partition is an
indication of their being equivalent or not.

2.7.4 Distance between two Fuzzy Partitions of X.

The idea of distance between two fuzzy partitions of X is to measure the ex-
tend to which two fuzzy partitions of X are close or far from one another for
them to be α-equivalent. Therefore this distance will involve naturally their
α-cuts.
We will use the Hamming distance between the fuzzy matrices Aα and Bα,

for a given α ∈ [0, 1] as follows: H(Aα, Bα) =

m∑

i=1

n∑

j=1

|µij − γij |. [2] [7]

By definition of distance, we have 0 ≤ H(Aα, Bα) ≤ 1 ;
H(Aα, Bα) = H(Bα, Aα) and H(Aα, Bα) = 0 if and only if Aα = Bα ∀ α ∈
[0, 1]. Now
H(Aα, Bα) = 0 if and only if A =α B. This means they are equivalent.
H(Aα, Bα) = 1

2
then A and B are said to be nearly equivalent.

H(Aα, Bα) = 1 then A and B are said to be totally not equivalent.

2.7.5 The Complement of a Partition

Let A be a fuzzy partition of X. The fuzzy subsets of this family each of
which has a complement. Let A be represented by its α-cut matrix Aα. The
following discussion illustrates the way in which the family of fuzzy subsets
constituting a fuzzy partition relates to the family of their fuzzy complements
constituting the complement of the fuzzy partition.

Consider an α ∈ [0, 1] with α ≥ 0.5 ,and a fuzzy subset µ ∈ A. If µ(x) ≥ α,
then 1 − µ(x) 6≥ α. On the other hand if µ(x) < α, then 1 − µ(x) ≥ α. We
consider now α < 0.5. If µ(x) ≥ α and µ(x) ≤ 0.5, that is α ≤ µ(x) ≤ 0.5,
then 1 − µ(x) ≥ 0.5. And if µ(x) < α then 1 − µ(x) 6≥ α. This clearly means
that the α-cut representing the family Ac is deduced from the one representing
A when 1 is replaced by 0 and 0 by 1. We write the α-cut representing the
complement as A1−α.
We conclude that the fuzzy partition A and its fuzzy complement Ac are to-
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tally not equivalent since H(Aα, A1−α) = 1.

2.7.6 The Union of two Partitions.

Let A and B be two partitions of k fuzzy subsets of X represented by their
respective α-cut matrices. We are interested to find out whether or not the
family obtained by taking the union µ ∪ γ such that ∀µi γi, 1 ≤ i ≤ k, 1 ≤
j ≤ n µi(xj) ∨ γi(xj) is also a partition of X.

Consider α ∈ [0, 1] , x ∈ X. We have these three situations:
1. If x ∈ µα

i and x ∈ γα
i , then x ∈ (µi ∪ γi)

α.
2. If x belongs either to µα

i or to γα
i , then still x ∈ (µi ∪ γi)

α.
3. If x belongs neither to µα

i nor to γα
i , then indeed x 6∈ (µi ∪ γi)

α

From the above we can also write that:
If µ−1(0) = X, then the support of µ denoted Suppµ is ∅. This means that
∀x ∈ Xµ(x) 6> 0. With regards to α = 0 and ∀µi we realize that the 0-cut
of any partition of X will have all entries equal to 1. On the other hand if
µ−1(0) = ∅, then the support of µ is X.
Now we choose α = 1. If no element x of X has µi(x) = 1∀i, the Coreµi = ∅;
therefore the α-cut partition has all entries equal 0.
If an entry in the α-cut partition matrix of A or B is 1,then it is 1 in the α-cut
of the union A ∪ B since 1 ∨ 1 = 1 ∨ 0 = 1. With this consideration we can
say that the union of two partitions is also a partition. It is represented by
the C = Aα ∨ Bα.

2.7.7 Intersection of two Fuzzy Partitions.

Let A = {µ1, µ2, · · · , µn} and B = {λ1, λ2, · · · λn} be two partitions of X with
Aα and Bα their respective α-cut matrices. We define A∩B = {µi∩λi∀i ∈ I}.
We also consider C = Aα ∩ Bα such that each entry of C is µij ∧ λij .
If an entry is 0 in one of the α-cut matrices, then it is 0 in the α-cut of the
intersection A ∩ B since 0 ∧ 0 = 0 ∧ 1 = 0.
The intersection of two partitions is also a partition represented by the Cα =
Aα ∧ Bα

We can state therefore that the partially ordered set of all partitions of a set
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is a lattice. In this lattice, the greatest lower bound of A and B is easy to
describe. Each x ∈ X belongs to one of the Ai and one of the Bj, Therefore
it belongs to Ai ∩ Bj . Either an Ai ∩ Bj is empty or else it has no element in
common with any of the Ai ∩Bj in the fuzzy sense. Thus the nonempty fuzzy
subsets Ar ∩ Bs form the classes of a partition of X. In any partition below
both A and B, each block is a subset of one of the Ai and subset of one of the
Bj. Thus each block is a subset of Ai ∩ Bj .
Therefore the partition whose blocks are the nonempty intersections of A

′s
i and

B
′s
j is the greatest lower bound for A and B.

It turns out that for finite lattices we can use the meets to describe the joins.
If we consider this time two partitions A and B represented by Aα1 and Bα2

such that α1 < α2; we know that µα2 ⊂ µα1 and if x ∈ µα2, then x ∈ µα1. This
means that

µ(x) =

{
1, if x ∈ µα2

0, if x 6∈ µα2.

This actually means that the entries in the α-cut matrix of the intersection
are those of the Bα

2 .
In crisp set there is a correspondence between the set of equivalence classes
and the set of partitions of the same set. In the next section we want to check
the existence of a match between fuzzy binary equivalence relation and fuzzy
partition.

2.8 Fuzzy Equivalence Relation and fuzzy par-

tition

In any crisp set X, there is a one-to-one relation between an equivalence re-
lation R and partition of the set. Every equivalence relation in a set has the
result of partitioning the set into classes of elements xRy and conversely. So
enumerating partitions X is possible if we can enumerate equivalence relations
in the set X.
The number of partitions of an n-element set X into k parts is S(n, k), well
known as Stirling numbers of the second kind. Concerning these numbers the
following are true:
1. S(n, 1) = 1,
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2. S(n, n) = 1,
3. S(n, k) = 0 unless 1 ≤ k ≤ n
4. S(n, k) = S(n − 1, k − 1) + k.S(n− 1, k)
5. The number of functions from an n-element set onto a k-element set is
k!.S(n, k).

As it is in crisp case there have been attempts to match the binary equiva-
lence and fuzzy partition.[5][42][44]
R. Mesiar in [19] has established a bijection between the set E(X ) of all equiv-
alence relations on set X and P(X ) of all partitions on set X in this fashion:

Let PX ∈ P(X ), and let R ∈ E(X ), ∀x ∈ X, [x] = {y ∈ X; (x, y) ∈ R}. If
we write PX = {[x]; /x ∈ X}, it is clear that PX ∈ P(X ). Again if PX ∈ P(X ),
then the set Ep = {(x, y) ∈ X2/{x, y} ∈ U for some U ∈ PX} ∈ E(X ).
This is a one-to-one relation such that xRy ⇔ x, y ∈ U for some U ∈ P .
Let R be a fuzzy equivalence relation on an non-empty set X and x ∈ X, the
set of elements B(x) = {y ∈ X;µR(y, x) ≥ 0.5} is called the set of elements of
X with strong bond with x.
The fuzzy equivalence class determined by x ∈ X, denoted [x], is defined as:
[x] = {y ∈ X, (y, µR(y))} where

µR(y) =

{
1, if y ∈ B(x)
µR(x, y), otherwise

[X] = {[x], x ∈ X} is the set all equivalence classes.
Every fuzzy equivalence relation induces a crisp partition in each of its α-cuts.
The fuzzy clustering problem can be viewed as the problem of identifying an
appropriate fuzzy equivalence relation on a given data.

Example 2.8.1 . Consider the set X = {x1, x2, x3, x4} and the fuzzy relation
R defined in X2 and represented by the table below:

R x1 x2 x3 x4

x1 1 0.8 0.3 0.2
x2 0.7 1 0.4 0.3
x3 0.3 0.2 1 0.1
x4 0.3 0.3 0.2 1
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We are now able to determine the equivalence classes of each element of X
as follows:
[x1] = {(x1, 1), (x2, 1), (x3, 0.3), (x4, o.2)}
[x2] = {(x1, 1), (x2, 1), (x3, 0.4), (x4, 0.3)}
[x3] = {(x1, 0.3), (x2, 0.2), (x3, 1), (x4, 0.1)}
[x4] = {(x1, 0.3), (x2, 0.3), (x3, 0.2), (x4, 1)}

We can write the partition P = {µ1, µ2, µ3, µ4} such that
µ1 = {(x1, 1), (x2, 0.8), (x3, 0.3), (x4, 0.2)}
µ2 = {(x1, 0.7), (x2, 1), (x3, 0.4), (x4, 0.3)}
µ3 = {(x1, 0.3), (x2, 0.2), (x3, 1), (x4, 0.1)}
µ4 = {(x1, 0.3), (x2, 0.3), (x3, 0.2), (x4, 1)}

One of the important enumeration principles was developed in Chapter 1:
That is the principle of inclusion and exclusion.
A similar basic principle called the Möbius inversion will be the object of our
discussion in the next Chapter. This principle was thoroughly developed in the
1960’s by G. C. Rota. His formulation of the general method of the Möbius
inversion in number theory was all-inclusive and unified most of the results
and has had far-reaching applications to partially ordered sets.
In our case we want to apply this Möbius inversion in the poset of fuzzy subsets
of a finite set.
We will first recall the Möbius inversion in general and later define the princi-
ple in a specific context of fuzzy subsets of a finite set.
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Chapter 3

Möbius function and Möbius
inversion formula

3.1 Introduction

An important topic in Combinatorics is the study of Möbius functions and their
application to inversion formulae for counting functions. The earlier form of
Möbius function dealt with number theoretic considerations. Möbius inversion
is an over counting-under counting, or sieve procedure. We keep track of the
over and undercount by indexing with the elements of a partially ordered set
which classically was the subsets of a finite set. The Möbius inversion formula
of number theory as given in Hardy and Wright (1960) indexes functions with
the set of positive integers under the divisibility order.
The classical PIE is a special case (Feller (1968), Ryser (1963) of inversion
problem.
The statement of the general Möbius inversion formula was first given indepen-
dently by Weisner (1935) and Philip Hall (1936). In a fundamental paper on
Möbius functions, Rota (1964) showed the importance of the theory in Combi-
natorics. He noted the relationship between Möbius inversion and the principle
of Inclusion-Exclusion. Both principles are based on over counting and under
counting entities which are functions for Möbius inversion and elements of a
set for the principle of Inclusion-Exclusion .
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3.1.1 The Incidence function, Incidence algebra.

Let X be a locally finite partially ordered set. A function θ: X×X → Z is an
incidence function provided that for x, y ∈ X if θ(x, y) 6= 0 then x ≤ y ∈ X.
In others words θ(x, y) = 0 if x 6≤ y in X. [17] [37]
The set of all such functions is denoted by I(X )
Scalar multiples and sums of incidence functions are also incidence functions.
The product of incidence functions θ, ε ∈ I(X ) is defined by

(θε)(x, y) =
∑

z∈X

θ(x, z)ε(z, y). (3.1.1)

By our assumption of X being locally finite, the above sum has finitely many
nonzero terms.
This gives I(X ) the structure of an associative algebra over Z, called the
incidence algebra of of X. The identity elements in I(X ) is the Kronecker
delta function:

δ(x, y) =

{
1, if x = y
0, otherwise

3.1.2 The Zeta function and the Zeta matrix.

The Zeta function of a poset is an incidence function on X × X defined by:

ζ(x, y) =

{
1, if x ≤ y
0, otherwise

The matrix associated with the Zeta function is called the Zeta matrix and
is denoted by Zij . It is a square matrix whose row and whose columns are
labeled by the members of the poset.
The entries of the Zeta matrix are either 0 or 1 as follows:

ζ(x, y) =

{
1, if x ≤ y
0, otherwise.

When we read across row (i) of a Zeta matrix, the presence of a 1 means that
the column label is greater or equal to i. Similarly, reading down column
j, each occurrence of a 1 means that the row label is less or equal to j.
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The property of reflexivity is satisfied since the Zeta matrix has 1 along its di-
agonal. The antisymmetry is satisfied since Z(a, b) and Z(b, a) cannot be both
1. The transitivity is satisfied if Z(a, b) = 1 when ∃x such that Z(a, x) = 1
and Z(x, b) = 1.
The elements of the poset are arranged in a way consistent to the poset ”or-
dering” so that the Zeta matrix will be an upper triangular matrix.
From this the Zeta matrix is invertible since its determinant is 1 and its diag-
onal element is 1.
Its inverse, called the Möbius matrix Mij is therefore an upper triangular ma-
trix.
The inverse of the Zeta function is the Möbius function µ of the poset. In
other words, µ satisfies

∑

x≤z≤y

µ(x, z) =

{
1, if x = y
0, otherwise.

In particular µ(x, x) = 1 for all x. Moreover, if we know µ(x, z) for x ≤ z ≤ y,
then we can calculate

µ(x, y) = −
∑

x≤z≤y

µ(x, z). (3.1.2)

In particular the values of the Möbius function are all integers.

Example 3.1.1 . Find the Zeta matrix of the poset(P(X ),⊆) if X = {1, 2, 3}
Find the Möbius matrix of the poset.
We refer to table 1 , page 132 .

3.1.3 Definition of the Möbius function.

Let (X,≤) be a locally finite poset. Then there exists a unique function
µ: X × X → Z, called Möbius function, such that µ(x, y) 6= 0 if x ≤ y and

such that whenever f, g ∈ I(X ) the following conditions are equivalent:

(a) g(x, y) =
∑

x≤z≤y

f(x, y);
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(b) f(x, y) =
∑

x≤z≤y

g(x, z)µ(z, y)

Example 3.1.2 . Consider the power-set of X ordered by ”inclusion”.
Letf and g be two functions from P(X ) to the real ( or complex) numbers,
and
f(X) =

∑

S⊆X

g(S).

Clearly f(φ) = g(φ) so that g(φ) = f(φ).
If S = {a}, then f(S) = g(S) + g(φ) so that g({a}) = f({a}) − f(φ)
If S = {a, b}, then f(S) = g(S) + g({a}) + g({b}) + g(φ) so that
g({a, b}) = f({a, b})− f({a}) − f({b}) + f(φ).
if S = {a, b, c}, then f(S) = g(S) + g({a}) + g({b}) + g({c}) + g({a, b}) +
g({a, c}) + g({b, c}) + g(φ) so that
g({a, b, c}) = f(S)+f({a, b})+f({a, c})+f({b, c})−f({a})−f({b})−f({c})+
f(φ).
Further experimenting leads to the following result [27]

g(X) =
∑

S⊆X

(−1)|S|f(S)

This implies:

µ(S,A) =

{
(−1)|A|−|S|forS ⊆ A
0, otherwise.

Example 3.1.3 . Number Dn of derangements of n elements. Let P(X ) be
the lattice of subsets of an n-element set X. Consider X = {1, · · ·n}. Consider
also the number Dn(S) of permutations of X which fix every element in S and
no element of X\S. At this point we realize that Dn(∅) = Dn. We denote by
Fn(S) the number of permutations which fix each element in S. The Fn(S)
and Dn(S) are counting functions in P(X ). We have:

Fn(S) =
∑

S⊆T

Dn(T ) such that:

Dn(S) =
∑

T

µP(X )(S, T )Fn(T ) =
∑

S⊆T

(−1)|T |−|S|Fn(T ).
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If we consider that |S| = k, therefore there are n − k elements not in S. The

above sum can be rewritten as
n∑

l=k

(n − l)!

(
n − k
l − k

)
(−1)l−k. If k = 0, which

means S = ∅, or better if S = X the above sum gives the expression for Dn,
that is:

Dn =
n∑

l=0

(n − l)!

(
n
l

)
(−1l)

= n!(1 − 1
1!

+ 1
2!
− · · · + (−1)n 1

n!
)

= n!
e
.

Example 3.1.4 .
Consider f(n) and g(n) two functions from the set of positive integers to

the set of real (complex) numbers. Suppose for all n ≥ 0 , f(n) =
∑

i|n

g(i).

g(1) = f(1)
f(2) = g(2) + g(1) so that g(2) = f(2) − f(1)
f(3) = g(3) + g(1) so that g(3) = f(3) − f(1)
f(4) = g(4) + g(2) + g(1) so that g(4) = f(4) − f(2)
g(5) = f(5) − f(1)
g(6) = f(6) − f(3) + f(1)
g(12) = f(12) − f(4) + f(1)

If we use this process to find g(n) in terms of f(i) for the i divisors of n,
we will see that µ(x, y) is expressed by:

µ(x, y) =

{
(−1)s, if y/x is the product of s distinct primes
0, if x does not divide y or if y/x is not squarefree.

3.1.4 Möbius inversion.

Let (X;≤) be a locally finite partially ordered set. Let there be a given function

f in X. We define a summation function g in X such that g(m) =
∑

n≤m

f(n).
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This summation function is with respect to the given ”ordering” in X and is
therefore over all elements n of X such that n ≤ m.
We are intending to solve the given function f in terms of the summation
function g. Therefore we are to invert a system of linear equations. In other
words solving f in terms of g is an inversion problem in the poset (X,≤).

Example 3.1.5 . Let the ordered set (X,≤) be the positive integers ordered
by divisibility: a ≤ b means a|b (a divises b).
Note that this poset is locally finite. Let f(m) be a function defined ∀m in the

poset (X,≤). Now we define in (X,≤) a function h such that h(m) =
∑

n|m

f(n).

The summation is over all divisors n of m. We wish to invert the sum by solv-
ing for f(m) in terms of h.

Example 3.1.6 . Let the set P(X ) of subsets of a set X be ordered by
inclusion. It is locally finite. Consider a given function f(S) on P(X ) ∀S ∈
P(X ). Define a summation g(S) =

∑

T⊆S

f(T ) ∀S, T ∈ P(X ).

3.1.5 The Classical Möbius inversion Formula (MIF) vs

PIE.

The Möbius inversion and the PIE have something in common:
1. In each case we had a partially ordered set which is the set of positive
integers with ordering x ≤ y if x|y for the MI and the poset of power set of
some given set X with the ordering A ≤ B if A ⊆ B.
2. In each case the ordering has the property that given any two elements in
the set, there are finitely many other elements between them, (locally finite
poset).
3. Each of the posets contains the smallest element.
4. In Möbius inversion, there is no mention of properties that some of elements
would or would not satisfy; but instead we are interested in how the two func-
tions f and g are related.
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3.2 Möbius function, Möbius inversion in the

lattice of fuzzy subsets of finite sets.

From now on we will denote the Möbius function of the poset exclusively by
µ and will use the letter λ for fuzzy subset.
The Möbius function in the poset of positive integers ordered by divisibility
and the Möbius function in the poset of subspaces of a finite vector space are
a few cases where this function has been dealt with. We wish to study for an
n-element set X, the Möbius function in the poset (F(X ),≤) of fuzzy subsets
of X, naturally ordered by: λ1 ≤ λ2 ⇔ λ1(x, y) ≤ λ2(x, y)., where λi are fuzzy
subsets of X ∀i 0 ≤ i ≤ n.
The point-wise ordering in F(X ) is also called dominance order.
Under the point-wise order, λ1 ≤ λ2 means that for all x ∈ X λ1(x) ≤ λ2(x)
We will denote fuzzy subsets, as elements of F(X ), by λ1, λ2 etc. using the
subscripted λ’s.
We also recall that (F(X ),≤) is a distributive but not complementary lattice.
Thus a vectorial lattice.
We note that ∀λ ∈ F(X ) the set {λi ∈ F(X )λ〉 ≤ λ} is finite. Therefore F(X )
is locally finite.
Now let us define in F(X )2 two functions f and g such that.

f(λi, λj) =
∑

λi≤λ≤λj

g(λi, λj) for λi, λ, λj in F(X ).

The above guarantees the existence of the Möbius function function µ of the
poset F(X ) such that by inversion we have:

g(λi, λj) =
∑

λi≤λ≤λj

µ(λ, λj )f(λi, λj)

3.3 Equations that describe the Möbius func-

tion in F(X )

Proposition 3.3.1 The function µ is the unique function such that: (a)
µ(λ, λ) = 1∀λ ∈ F(X )

(b)
∑

λ:λi≤λ≤λj

µ(λi, λ) = 0∀λi < λj
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(c) µ(λi, λj) = 0 if λi 6≤ λj .

We envisage to study the Möbius function and Möbius inversion in the Par-
tition lattice of fuzzy subsets.

We recall that M = {0, 1
m−1

, 2
m−1

, · · · , m−1
m−1

= 1}
Let λi = λi(x1)λi(x2) · · ·λi(xn) and λj = λj(x1)λj(x2) · · · λj(xn) be two fuzzy
subsets of X.
With these notations the point-wise order λ1 ≤ λ2 would mean that
λi(x1) ≤ λj(x1), λi(x2) ≤ λj(x2), · · · , λi(xn) ≤ λj(xn).

Lemma 3.3.2 Let λi = λi(x1)λi(x2) · · · λi(xn) and λj = λj(x1)λj(x2) · · · λj(xn)
be two fuzzy subsets of X, then:
1.λi ≤ λj results in | λi | ≤ | λj |
2.| λi | ≤ | λj | does not necessary mean that λi ≤ λj

Proof : 1. Let λi = λi(x1)λi(x2) · · · λi(xn) and λj = λj(x1)λj(x2) · · · λj(xn)
be two fuzzy subsets such that λi ≤ λj . Then for each xk, 1 ≤ k ≤ n, λi(xk) ≤
λj(xk). Therefore | λi |=

∑
λi(xk) ≤

∑
λj(xk) =| λj |.

2. It is clear that the sum of membership values of two fuzzy subsets λi and
λj being equal does not imply that each corresponding values for xk is such
that λi(xk) ≤ λj(xk). 2

Let λj be an element of F(X ) , by abusing the notation, we can write, using
the function f above that:

f(λj) =
∑

λi≤λj

g(λj)

Now solving for g in the above definition of f we can write that:

g(λj) =
∑

λi≤λj

f(λi)µ(λj).

That is g(λj) is defined in terms of f(λi) where λi ≤ λj and | λi |≤| λj |
Recall also that X = {x1, x2, x3, · · · , xn}

Now if λi ≤ λj , then λi(x1) ≤ λj(x1), λi(x2) ≤ λj(x2), · · · , λi(xn) ≤ λj(xn)
In other words if λi ≤ λj , then there exists t, with 0 ≤ t ≤| X |, such that
| λj |= ( | λi | + t

m−1
).

To summarize, we express g(λj) as the sum of the f(λi) which are such that
there exists t with | λj |= ( | λi | + t

m−1
). This statement is true in re-

lation with the definition of M = {0, 1
m−1

, 2
m−1

, · · · , m−1
m−1

= 1} and that of
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Cardµ = {0, 1
m−1

, 2
m−1

, · · · , m−1
m−1

, m
m−1

, · · · ,m} as per our discussion in 4.6.1.

That is to say t
m−1

= | λj | − | λi |,
If t = 0, then t

m−1
= 0 and λj = λi.

If t = 1, then t
m−1

= 1
m−1

and the λi satisfying the order λi ≤ λj for a fixed
λj are those λi in F(X ) with the membership value of elements xk of X to
λi one at a time, 1

m−1
less than the membership value of the corresponding

elements xk, one at a time to λj .
When t = 2, we consider the λi in F(X ) with membership values of elements
of X two at a time, 1

m−1
less than the membership of corresponding elements

to λj . We can vary t until we reach the value of t which makes each λi(xk) be
1

m−1
less than λj(xk) i.e. all xk in X are such that their membership values to

λi are 1
m−1

than their corresponding values to λj .

Proposition 3.3.3 Let M be defined as M = {0, 1
m−1

, 2
m−1

, · · · , m−1
m−1

= 1}.
For a natural number t; 0 ≤ t ≤| X | and a fixed λj in F(X ) we have:

g(λj) =
∑

λi≤λj

f(λi)µ(λj) =
∑

λi≤λj 0≤t≤|X |

(−1)tf(λi)

such that t
m−1

=| λj | − | λi | and µ(λj) = (−1)t being the expression of the
Möbius function in F(X ).

Consider λj = λj(x1)λj(x2) · · · λj(xn) = a1a2a3 · · · an then:
g(λj) = f(a1a2a3 · · · an)−( f(a1− 1

m−1
; a2, · · · , an)+f(a1; a2− 1

m−1
; a3; · · · , an)+

· · ·+f(a1; a2; ·; an− 1
m−1

) )+( f(a1− 1
m−1

; a2− 1
m−1

; a3; · · · ; an)+· · · ,+f(a1; a2, · · · , an−1−
1

m−1
; an − 1

m−1
) + · · · + f(a1 − 1

m−1
; a2 − 1

m−1
, a3 − 1

m−1
, · · · , an − 1

m−1
)

The above can be written using the value of t; 0 ≤ t ≤ n = | X | as :
g(λj) = (−1)0f(a1; a2, a3, · · · , an)− (−1)1( f(a1 − 1

m−1
; a2, · · · , an) + f(a1; a2 −

1
m−1

; a3; · · · , an)+· · ·+f(a1; a2; ·; an− 1
m−1

) )+(−1)2( f(a1− 1
m−1

; a2− 1
m−1

; a3; · · · ; an)+

· · · ,+f(a1; a2, · · · , an−1− 1
m−1

; an− 1
m−1

)+· · ·+(−1)nf(a1− 1
m−1

; a2− 1
m−1

, a3−
1

m−1
, · · · , an − 1

m−1
)

The above statement is in line with P. Hall Lemma [14] which says :
If a and b are elements of the poset X, then

µX(a, b) =
∑

(−1)L(C), (3.3.3)

where the sum is over all chains C in X with minimal element a and maximal
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element b.
The above can also be expressed as in [17]
Let X be a finite bounded poset. For each j ≥ 1 l, let cj denote the number
of j-elements chains C ⊆ X such that Cmin = {0} and Cmax = {1}. Then

µ(X) = c1 − c2 + c3 − c4 + · · · (3.3.4)

Let F(X ) be the poset with elements λi, · · ·λn and let the n× n matrix YF(X )

be such that the ij-entry is equal to 1 if and only if λi < λj . Thus if we arrange
the Zeta matrix as triangular, YF(X ) = ZF(X ) − I. Therefore for m ∈ N, the
ij-entry in the matrix Y m

F(X ) is the number of chains of length m in F(X ) with
least element λi and maximal element λj .
We are left only to show that L(C) and t appearing in equation 3.3.3 and propo-
sition 3.3.3 respectively are the same. Note that the Möbius function does not
just alternate signs from + to -. Rather signs change in relation with t or L(C).

Let’s illustrate this with an example.

Example 3.3.4 . Consider X = {x1, x2, x3} , M = {0, 1
2
, 1}

Define in F(X ) two functions f and g such that

f(λj) =
∑

λi≤λj

g(λj)

Then:
f(000) = g(000) so that g(000) = f(000) or g(000) = (−1)0f(000)
f(1

2
00) = g(000) + g(1

2
00) so that

g(1
2
00) = f(1

2
00) − f(000) or g(1

2
00) = (−1)0f(1

2
00) + (−1)1f(000)

f(01
2
0) = g(01

2
0) + g(000) so that

g(01
2
0) = f(01

2
0) − f(000) or

g(01
2
0) = (−1)0f(01

2
0) + (−1)1f(000)

f(001
2
) = g(001

2
) + g(000) so that

g(001
2
) = f(001

2
) − f(000)or

g(001
2
) = (−1)0f(001

2
) + (−1)1f(000)

...
f(1

2
1
2
0) = g(1

2
1
2
0) + g(1

2
00) + g(01

2
0) + g(000) so that

g(1
2

1
2
0) = f((1

2
1
2
0) − [ f(1

2
00) + f(01

2
0) ] + f(000) or
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g(1
2

1
2
0) = (−1)0f((1

2
1
2
0) + (−1)1[ f(1

2
00) + f(01

2
0) ] + (−1)2f(000)

...
g(11

2
1) = (−1)0f(11

2
1) + (−1)1[ f(1

2
1
2
1) + f(101) + f(11

2
1
2
)] + (−1)2[f(1

2
01) +

f(101
2
) + f(1

2
1
2

1
2
) ] + (−1)3f(1

2
01

2
)

...
g(111

2
) = (−1)0f(111

2
) + (−1)1[ f(110) + f(11

2
1
2
) + f(1

2
11

2
) ] + (−1)2[f(11

2
0) +

f(1
2

1
2

1
2
) + f(1

2
10) ] + (−1)3f(1

2
1
2
0)

...
g(111) = (−1)0f(111) + (−1)1[f(1

2
11) + f(11

2
1) + f(111

2
)] + (−1)2[f(1

2
1
2
1) +

f(1
2
11

2
) + f(11

2
1
2
)] + (−1)3f(1

2
1
2

1
2
).

3.3.1 REMARKS

1. Now solving in this fashion each g(λj) of F(X ) in terms of f(λi) , we are
able to establish a table of µ matrix of the lattice F(X ) with X = {x1, x2, x3}
and M = {0, 1

2
, 1}. This table could have been obtained by inverting the ζ

matrix of the lattice F(X ).
2. The function µ does not depend on the order in which we list the elements
of F(X ) even though the µ matrix of the lattice F(X ) depends on that order.
3. For any λj , if t = 0, then t

m−1
= 0 and λj = λi. This means that

µ(λj , λj) = (−1)0 = 1. In Table 2, at the end of the thesis, this fact is con-
firmed since the entries on the first diagonal are 1 throughout.

4. For any λj and λi ≤ λj ,
∑

λ;λi≤λ≤λj

µ(λi, λ) = 0. In Table 2 provided, the sum

of entries in each row is 0.
5. It is clear that if if λi 6≤ λj , then there is no t with 0 ≤ t ≤| X | such that
| λj |= ( | λi | + t

m−1
). In which case µ(λi, λj) = 0.

To establish the tables of µ matrix and ζ matrix for the lattice F(X ) with
X = {x1, x2, x3} and M = {0, 1

2
, 1}, we let A = 000;B = 1

2
00;C = 01

2
0;D =

001
2
;E = 100;F = 1

2
1
2
0;G = 1

2
01

2
; H = 010; I = 01

2
1
2
;J = 001;K = 11

2
0;L =

101
2
;M = 1

2
10;N = 1

2
1
2

1
2
;O = 1

2
01;

P = 011
2
;Q = 01

2
1;R = 110;S = 11

2
1
2
;T = 101;U = 1

2
11

2
;V = 1

2
1
2
1;

W = 011;X = 111
2
;Y = 11

2
1;Z = 1

2
11;Z1 = 111
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The fuzzy subsets of X are arranged in such a way that the ζ matrix and its
inverse the µ matrix are triangular with the diagonal constituted by the 1’s.
The sum of the entries in each line of the µ matrix satisfies the relation

∑

z∈[x,y]

µ(x, z) =

{
1, if x ≤ y
0, otherwise.

which allows the Möbius function of a poset to be calculated recursively.
In other words, we start with µ(x, x) = 1∀x ∈ X.
Now, if x ≤ y and we know the values of µ(x, z) for all z ∈ [x, y] \ {y}, then

we have µ(x, y) = −
∑

z∈[x,y]\{y}

µ(x, z).

In particular µ(x, y) = −1 if y covers x and µ(x, y) = −
∑

z≤x≤y

µ(x, z).
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TABLE 1

ζ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Z1
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1
C 0 0 1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
D 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1
E 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1
F 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1
G 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1
H 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1
I 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1
J 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 1
K 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
L 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1
M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1
N 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Z1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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TABLE 2

µ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Z1
A 1 −1 −1 −1 0 1 1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 1 0 0 −1 −1 −1 0 0 0 1 1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0
C 0 0 1 0 0 −1 0 −1 −1 0 0 0 1 1 0 1 0 0 0 0 −1 0 0 0 0 0 0
D 0 0 0 1 0 0 −1 0 −1 −1 0 0 0 1 1 0 1 0 0 0 0 −1 0 0 0 0 0
E 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
F 0 0 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 0 0 1 1 0 1 0 0 −1 0 0 0
G 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 0 0 1 1 0 1 0 0 −1 0 0
H 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 0 0 1 1 1 0 0 −1 0
J 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 −1 0 0 1 0 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 −1 0 1 1 1 −1
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 1 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 1 0
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 1 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 1
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 −1 1
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 −1 1
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
Z1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Chapter 4

Identification Process or
Pattern Recognition

The identification process emerges when it is impossible or even not practical
to measure simultaneously all variables (members) of the system (set), while
we wish to select one of them as a basis for making decisions or take actions.
We need therefore to break a given system(set) into subsystems (subsets) that
still preserve enough information about the overall system. This will help
reduce the complexity of the system involved and therefore increase clarity
concerning the system. It is easier to monitor several sets of variables than
one large set of variables in a situation when decision concerning the set has
to be made quickly.
Pattern recognition aims to discover structures that are within data in order
to recognize pattern and classify objects. This also help to discover the exis-
tence of clusters in a large set of data, whose members display similarity to
one another along some relevant dimensions. A pattern recognition system
(PRS) [3] is an automatic system that aims at classifying the input pattern
into a specific class. It proceeds into two successive tasks. The analysis (or
description) that extracts the characteristics from the pattern being studied
and the classification (or recognition) that enables us to recognize an object
(or a pattern) by using some characteristics derived from the first task. There
are four major methodologies in PRS, which are the statistical approach, the
syntactical approach, the template matching approach and neural networks.
In our study we have chosen to use none of these approaches. The most used
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of the four methods is the statistical approach which use some element of prob-
ability. The entities we want to observe are fuzzy subsets or elements having
some fuzzy properties, whose behaviors are the kinds not to be projected. We
will use rather attributes which are related to the nature of fuzzy subsets.

This will enable a machine to identify an object (element or even fuzzy
subset) automatically without human interaction. It is natural to use fuzzy
subsets since many of these patterns or attributes have vague boundaries or
definitions.
In the next subsection, we establish among fuzzy subsets of a set X, criteria
for identifying fuzzy subsets, based on the distance from a given fuzzy subset
in relation to the cardinality of fuzzy subsets involved.

4.1 Distance and Cardinality: First Pattern

Recognition

The relations R2 and R3 defined earlier in section 2.2, Theorem 2.6.3 and
Theorem 2.6.5 are equivalent. The above theorems imply that enumerating
fuzzy subsets having the same cardinality p is the same exercise as counting
all fuzzy subsets located at a fixed distance d from a given fuzzy subset µ of
the set. This means fuzzy subsets at a distance from a given one have the same
cardinality. Conversely we may say that all fuzzy subsets of a set X having
the same cardinality are all located at a distance d from a given fuzzy subset
of X. This constitutes our first pattern recognition of fuzzy subsets of a finite
set.

Theorem 4.1.1 Let µ1 be a fuzzy subset of an n-element set X such that
|µ1| = p. Let µ be the top fuzzy subset of X. Then d(µ, µ1) = n − p.

Proof: It is clear that |µ|−|µ1| = n−p. But (µ(x1)−µ1(x1))+(µ(x2)−µ1(x2))+
· · · + (µ(xn) − µ1(xn)) = |µ| − |µ1| = d(µ, µ1). Therefore d(µ, µ1) = n − p

3◦. Number of fuzzy subsets of X at a distance d from a given
fuzzy subset µ of F(X ), Second Pattern Recognition.

Let d be the Hamming distance between a given fuzzy subset µ and any
other fuzzy subset µ1. As seen above, the fuzzy subsets of X at a distance d
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from µ have same cardinality as µ1 does.

Elements in F(X ) can be classified in terms of their distance (Hamming)
from a given fuzzy subset µ of F(X ).
In the next section we wish to answer the following questions:
1. How many fuzzy subsets are there at a distance d from a given fuzzy subset
µ of F(X )?
2. How many fuzzy subsets are there in F(X ) with cardinality α?
3. Knowing the distance d from the given (chosen) fuzzy subset µ to another
fuzzy subset µ1 of X, what is the cardinality of the fuzzy subset µ1 therefore?

Proposition 4.1.2 Let X be an n-element set and M be the set of mem-
bership values of fuzzy subsets of X. Let R be the equivalence relation
defined on F(X ) in Theorem 2.6.5 and Theorem 2.6.6. Consider α ∈ R .
Then the number of elements in each equivalence class of R is the number

(Nµ(| . |= α))n =
∑

i∈M

(Nµ(| . |= α − i))n−1.

Proof : We know that an equivalence class in F(X ) is made of elements with
the same cardinality, by definition of R. Now we know from 2.6.7 previous
result the number of fuzzy subsets of X of cardinality α. This number de-

noted by (Nµ(| . |= α))n =
∑

i∈M

(Nµ(| . |= α − i))n−1 is exactly the number of

elements in a class of cardinality α, which is also the number of fuzzy subsets
at a distance d from a given fuzzy subset µ of F(X ) .2
Since all members of an equivalence class have the same cardinality by defini-
tion of R, we can determine for special classes, for instance equivalence classes
containing crisp subsets, the number of elements in that equivalence class.
Let µ and µ1 be the top fuzzy subset and any fuzzy subset of F(X ). | µ |≥| µ1 |.
Because of the nature of members of Cardµ, we are able to say that there ex-
ists t ∈ Z such that | µ | − | µ1 |= t

m−1
. The number t

m−1
is therefore the

distance between µ and µ1 if t exists. So if t exists, then knowing the distance
d between the given (chosen) fuzzy subset µ to another fuzzy subset µ1 of X,
allows us to know the cardinality (| µ | − t

m−1
) of fuzzy subsets of the class of

µ1.
Given the distance from the top fuzzy subset of the lattice F(X ) to any fuzzy
subset of X informs us of the cardinality of the fuzzy subset concerned.
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This constitutes our second criteria of fuzzy recognition.
In the next subsection, we tackle the issue of the relationship between the
Hamming distance between fuzzy subsets and their cardinality.

4.2 Hamming distance and cardinality

.
The counting of fuzzy subsets of a finite set is of great interest. We have

used the well known counting techniques of Inclusion-Exclusion and that of
Möbius Inversion to enumerate the fuzzy subsets of a finite set under some
given conditions. In this study we develop, given a set X, a way of recognizing
fuzzy subsets of X by using the tool of Hamming distance in relation to the
cardinalities of the fuzzy subsets involved.
The Hamming distance ”d” between two fuzzy subsets µ and λ of a set X is

d(µ, λ) =
n∑

i=1

| µ(xi) − λ(xi) |. See [20]. Let µ be a fuzzy subset of X.

Now let us define in F(X ) the relation R1 such that λ1R1λ2 if and only if
d(µ, λ1) = d(µ, λ2), where d(µ, λ) is the Hamming distance between a given
fuzzy subset µ of X and any other fuzzy subset λ in F(X ).
1. Clearly λR1λ ∀λ ∈ F(X ).
2. Now if λ1R1λ2, it is evident that λ2R1λ1.
3. It is obvious that if λ1R1λ2 and λ2R1λ3, then λ1R1λ3.

Theorem 4.2.1 The relation R1 defined on F(X ) such that λ1R1λ2 if and
only if d(µ, λ1) = d(µ, λ2), where d(µ, λ) is the Hamming distance between a
given fuzzy subset µ and any other fuzzy subset λ is an equivalence on F(X )
and the set of fuzzy subsets at a distance d from a given fuzzy subset µ, is an
equivalence class.

Elements in F(X ) can be classified in term of their distance (Hamming) from
a given fuzzy subset µ of F(X ).
In the next section we wish to answer the following questions:
1. How many fuzzy subsets are there in F(X ) with cardinality α?
2. How many fuzzy subsets are there at a distance d from a given fuzzy subset
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µ of F(X )?
3. Do fuzzy subsets at a distance d from a given fuzzy subset have the same
cardinality?
4. Knowing the distance d from the given (chosen) fuzzy subset µ, what is the
cardinality of the fuzzy subset therefore?
Let us also discuss three important ideas:

4.2.1 Ordinary subset nearest to a fuzzy subset

An ordinary subset of X is a crisp subset of X. Now given a fuzzy subset µA of
X, we wish to characterize the crisp subset µAo of set X, near µA with respect
to the Hamming Distance.
The ordinary subset µAo near µA is such that:
µAo(xi) = 0 if µA(xi) ≤ 0.5
µAO

(xi) = 1 if µA(xi) > 0.5 [20]

4.2.2 Properties

1.(µA ∩ µB)o = µAo ∩ µBo

2.(µA ∪ µB)o = µAo ∪ µBo

3.∀ ∈ X; |µA(xi) − µAo(xi)| = µA∩A(xi).

Proof : 1. Let x ∈ X such that (µA ∩ µB)o(x) = 1. This means that
µA ∩ µB(x) > 0.5 and µA(x) ∧ µB(x) > 0.5. As a result both µA(x) > 0.5
and µB(x) > 0.5 so that µAo (x) = 1 and µBo(x) = 1. We conclude that
(µAo ∩ µBo)(x) = 1. If instead (µA ∩ µB)o(x) = 0, then µA ∩ µB(x) ≤ 0.5.
Either µA(x) ≤ 0.5, µB(x) ≤ 0.5 or both µA ≤ 0.5 and µB ≤ 0.5 which results
in either µAo(x) = 0 or µBo(x) = 0 which in turn means that µAo ∩µBo(x) = 0.
The proof of part 2 is similar to this one. 3. If µA(x) > 0.5, then µAo (x) = 1,
and therefore |µA(x)−µAo(x)| = |µAo(x)−µA(x)| ≤ 0.5. But since µA(x) > 0.5,
then µA(x) < 0.5 such that µA∩A(x) < 0.5.
If on the other hand ∀x ∈ X, µA(x) ≤ 0.5, then µAo(x) = 0, therefore
|µA(x) − µAo (x)| < 0.5 and since µA(x) < 0.5, we have µA(x) ≥ 0.5 so that
µA∩A(x) < 0.5. It shows that for both cases µA(x) > 0.5 or µA(x) ≤ 0.5, we
have µA∩A(x) < 0.5.
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Consider the generalized relative Hamming distance between two fuzzy subsets
µA and µB, given by the expression δ(µA, µB) = d(µA,µB)

n
. Since d(µA, µB) ≤ n,

we can write that 0 ≤ δ(µA, µB) ≤ 1.
If we consider the ordinary subset µAo near µA, the number γ(µA) = 2

n
d(µAo , µA)

is called the index of fuzziness with respect to the generalized relative Ham-
ming distance.
We have 0 ≤ γ(µA) ≤ 1. In fact since n.δ(µA, µB) = d(µA, µB), we can now
show that d(µA, µAo) ≤ n

2
so that 0 ≤ δ(µA, µAo) ≤ 1

2
.

4.3 Fuzzy subset nearest a Fuzzy subset

Throughout the remainder of this thesis X = {x1, x2, · · · , xn} is a finite set
with 1 ≤ n elements and all fuzzy subsets µ of X take n membership values
not all necessarily distinct and hence take m values with 1 ≤ m ≤ n. The
membership values in the interval I = [0, 1] are taken to be uniformly spaced,
with the usual ordering, given by Mm = {0, 1

m−1
, 2

m−1
, · · · , m−1

m−1
= 1}. This

uniform choice of values in Mm does not affect the counting of fuzzy subsets
with special property and also is in line with preferential equality discussed
elsewhere, [28]. With the above consideration, we can now define the set D of
Hamming distances between any two fuzzy subsets of X.
D= {0, 1

m−1
, 2

m−1
, · · · , n}.

With this definition in mind, we can see that the shortest Hamming distance
between any two fuzzy subsets is therefore 1

m−1
. In the same manner we say

that farthest distance between any two fuzzy subsets is n. This is justified by
4.2
. For a fuzzy subset µ(x1)µ(x2)µ(x3) · · ·µ(xn−1)µ(xn), any fuzzy subset such
that:
(µ(x1) − 1

m−1
)µ(x2)µ(x3) · · · µ(xn), µ(x1)(µ(x2) − 1

m−1
)µ(x3) · · · µ(xn), · · ·

µ(x1)µ(x2) · · ·µ(xn−1)(µ(xn)− 1
m−1

) are each fuzzy subset nearest to µ(x1)µ(x2)µ(x3) · · ·µ(xn)

because they are at the distance 1
m−1

from µ(x1)µ(x2)µ(x3) · · · µ(xn−1)µ(xn).

4.4 Fuzzy chain

Let µ1 and µ2 be two fuzzy subsets of set X. We define [µ1, µ2] as {µ ∈ F(X ),
µ1 ≤ µ ≤ µ2}.
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This is indeed an interval, not in the sense of crisp sets. Let µ be a fuzzy
subset of X, we also define a r-neighborhood of µ to be the set Br of fuzzy
subsets at the Hamming distance less than or equal to r from µ. We write
that Br = {µi ∈ F(X ) d(µ, µi) ≤ r}.
If we consider any fuzzy subset µ, the shortest (Hamming) distance any other
different fuzzy subset would be away from µ is therefore 1

m−1
. Surely the

farthest any fuzzy subset would be from µ is n. This is justified since 0 ≤
d(µ1, µ2) ≤ n.

4.5 Distance between a fuzzy subset and its

complement.

Let µ be a fuzzy subset and µ its complement. Then
d(µ, µ)

=
n∑

i=1

| µ(xi) − µ(xi) |

= |(1 − µ(x1)) − µ(x1)| + |(1 − µ(x2)) − µ(x2)| + · · · + |µ(xn) − (1 − µ(xn))|
= |2µ(x1) − 1| + |2µ(x2) − 1| + · · · + |2µ(xn) − 1|.

= |1 − 2µ(x1)| + |1 − 2µ(x2)| + · · · |1 − 2µ(xn)|.
In summary we may state that:

d(µ, µ) =
n∑

i=1

|2µ(xi) − 1|

=

n∑

i=1

|1 − 2µ(xi)|.

We note that if µ = ( 1
m−1

1
m−1

· · · 1
m−1

), then d(µ, µ) = n.3−m
m−1

. In fact if

µ(x) = 1
m−1

, then µ(x) = m−2
m−1

∀x ∈ X and each |µ(x) − µ(x)| = m−2
m−1

−
1

m−1
= m−3

m−1
∀x ∈ X; such that the sum of n terms equal each to m−3

m−1
is

n.(1 − 2m−2
m−1

) = n.(m−1−2m+4
m−1

) = n.3−m
m−1

.

In particular : if n = m and µ = 1
2

1
2
· · · 1

2
, then d(µ, µ) = 0. Again if

µ = 111 · · · 1, then d(µ, µ) = n.
Now we consider two fuzzy subsets µ1, µ2 such that µ2 dominates µ1. We have
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µ1 ≤ µ2 and that |µ1| ≤ |µ2|. That is to mean according to 2.6.1 ∃t ∈ N such
that |µ1| + t

m−1
= |µ2|

d(µ1, µ2) = ||µ2| − |µ1||.
If t = 0 then µ1 = µ2. that is |µ1| = |µ2| and µ1 and µ2 are in same equivalence
class.
If t = 1 then |µ2| − |µ1| = 1

m−1

If t = 2 then |µ2| − |µ1| = 2
m−1

.

We consider here only the case µ1 ≤ µ2 where µ1(xi)+
1

m−1
= µ2(xi)∀1 ≤ i ≤ n.

µ2 = (µ1(x1) + 1
m−1

)(µ1(x2) + 1
m−1

) · · · µ1(xn) + 1
m−1

such that

2µ2 = (2µ1(x1) + 2 1
m−1

)(2µ1(x2) + 2 1
m−1

) · · · (2µ1(xn) + 2 1
m−1

).
We express d(µ2, µ2) in terms of µ1 in line with 4.5 as :
|(2µ1(x1) + 2−m+1

m−1
)| + |(2µ1(x2) + 2−m+1

m−1
)| · · · + |(2µ1(xn) + 2−m+1

m−1
)| or

|2µ1(x1) + 3−m
m−1

| + |2µ1(x2) + 3−m
m−1

| + · · · |2µ1(xn) + 3−m
m−1

| or

2(µ1(x1) + µ1(x2) + · · · + µ1(xn)) + n.3−m
m−1

.

Example 4.5.1 . For µ1 = 1
2

1
2
· · · 1

2
, µ2 = 11 · · · 1 and µ2 = 00 · · · 0, d(µ2, µ2) =

n. When expressed in terms of µ1 the distance d(µ2, µ2) = 2(1
2

+ 1
2

+ · · · 1
2
) +

n.3−m
m−1

= n(1 + 3−m
m−1

) = 2n
m−1

.

Proposition 4.5.2 . The Hamming distance between fuzzy subsets
of the same equivalence class: Third Fuzzy Pattern Recognition.

Let the relation R1 be defined on F(X ) such that λ1R1λ2 if and only if
d(µ, λ1) = d(µ, λ2)., where d(µ, λ) is the Hamming distance between a given
fuzzy subset µ and any other fuzzy subset λ. R is an equivalence on F(X )
and the set of fuzzy subsets at a distance d from a given fuzzy subset µ is an

equivalence class. The sum
n∑

i=1

µ(xi) − λ(xi) = 0 if the fuzzy subsets µ and λ

are in the same equivalence class.

The above proposition gives us the third way of recognizing fuzzy subsets
of a set X. This means that the sum of the differences between membership
values of elements to the fuzzy subsets of the same R-equivalence class is zero.
This principle is used in character recognition . The Hamming distance be-
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tween two matrices characterizing two characters is zero if the two characters
are the same.

4.6 Number of fuzzy subsets between two fuzzy

subsets.

Consider two fuzzy subsets µ1 = µ1(x)µ1(x2) · · ·µ1(xn) and
µ2 = µ2(x1)µ2(x2) · · ·µ2(xn) of X such that µ1 ≤ µ2. How many fuzzy subsets
are there between µ1 and µ2?
To achieve this counting we use the PIE by taking |F(X )| subtract the number
of those such that µi(x1) ≤ µ1(x1), µi(x2) ≤ µ1(x2). To the number obtained
so far, add those whose the memberships for any two elements of X are less
than their respective memberships to µ1 since these might have been subtracted
twice. We will subtract or add accordingly until we reach the point where the
membership values of all the elements to the fuzzy subsets are less than those
of µ1.

4.7 Number of fuzzy subsets at half-way be-

tween two fuzzy subsets.

B. Kosko introduced a fuzzy subset µ as a vector (µ1, µ2, · · · , µn) ∈ [0, 1]n

where the µi = µ(xi).
This is possible because of the bijection between the set F(X ) and [0, 1]n.
Using Kosko’s hypercube, we can identify a fuzzy subset with a point in a unit
hypercube. A crisp set is a vertex of the hypercube. With this in mind we can
therefore define terms such as segment joining two given fuzzy subsets; the
set of mid-points between those two fuzzy subsets and the set of equidistant
points from given points. There are more details in [34].
It is not always possible to find the fuzzy subset mid-point (half-way) between
two fuzzy subsets. The fuzzy subset half-way between two fuzzy subsets, if it
exist is not unique. There is an infinity of possibilities to choose from. This
situation is totally different from Euclidean geometry, where for two given
points, there is a unique mid-point.
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Example 4.7.1 .
Let X = {x1, x2, x3} and M = {0, 1

2
, 1} be the set of membership values of

fuzzy subsets of X. There are two fuzzy subsets of X namely 11
2
1 and 111

2

half-way between the fuzzy subsets 111 and 11
2

1
2
. On the other hand there are

no fuzzy subset half-way between 111 and 11
2
0.

Let us first take the case where X = {x1, x2}. Consider two fuzzy subsets µ
and λ. The fuzzy segment between µ and λ can be described as:
segment(µ, λ) = {ξ, d(µ, ξ) + d(ξ, λ) = d(µ, λ)}.
The set of fuzzy subsets equidistant from µ and λ denoted here as Equid(µ, λ),
is therefore
Equid(µ, λ) = {ξ, d(µ, ξ) = d(ξ, λ}. With this consideration ξ is a mid-point
fuzzy subset between µ and λ. We can also write that d(µ, ξ) = 1

2
d(µ, λ). In

other words ξ(xi) = 1
2
[µ(xi) + λ(xi)] and

d(µ, ξ) =
n∑

i=1

| µ(xi) − ξ(xi) | =
n∑

i=1

1

2
| µ(xi) − λ(xi) | =

1

2
d(µ, λ). The mid-

point fuzzy subset described in this fashion is termed canonical mid−pointfuzzy subset
between µ and λ and is denoted by ξ = µ+λ

2
. However, this mid-point fuzzy

subset might not be unique. Let ξ = (1
2
, 1

2
) be a mid-point fuzzy subset be-

tween µ = (0, 0) and λ = (1, 1). Any other fuzzy subset γ = (a1, a2) such that
a1 + a2 = 1 , (1− a1) + (1− a2) = 1 is also a mid-point fuzzy subset between
µ = (0, 0) and λ = (1, 1).
The set of mid-point fuzzy subsets between µ and λ, denoted here as Mid(µ, λ),
is a subset of that of Equid(µ, λ). This inclusion is not always strict.
Let d be a metric on the set F(X ), a mid-point between two fuzzy subsets µ and
λ of F(X ) is any fuzzy subset ζ ∈ F(X ) such that d(ζ, µ) = d(ζ, λ) = 1

2
d(µ, λ).

These mid-points depend on the distance d chosen. There are pairs of points
without mid-point. There are cases where the mid-points between two fuzzy
subsets are finitely many.
We consider these mid-points as middle ways or compromises between two
situations described by the fuzzy subsets µ and λ.

Proposition 4.7.2 Let ζ be the mid-point between µ and λ.
Then µi ∧ λi ≤ ζi ≤ µi ∨ λi ∀i.
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Proof : Consider ζ ∈ Mid(µ, λ). Using the Hamming distance we may write:
n∑

i=1

|µ(xi) − ζ(xi)| + |λ(xi) − ζ(xi)| − |µ(xi) − ζ(xi)| = 0. We know that each

term in the above sum is positive. But since their sum is 0, then each of them
is equal to 0. Therefore µi ∧ λi ≤ ζi ≤ µi ∨ λi ∀i.

Example 4.7.3 . Take X = {x1, x2, x3}, µ = 4
10

3
10

5
10

, λ = 8
10

3
10

3
10

.
Any fuzzy subset ζ mid-point between µ and λ is such that 4

10
≤ ζ1 ≤ 8

10
;

ζ2 = 3
10

; 3
10

≤ ζ3 ≤ 5
10

.

4.8 Mid-point Illustration

Let us try to illustrate this in the actual life situation. Consider the affiliated
members of the South African COSATU different Labour Unions meeting at
the bargaining chamber to resolve issues pertaining to employment. It is clear
that the working conditions of members forming this Union are not the same.
It is therefore also clear that they do not have the same benefits and conditions
of employment.
Consider the set of fuzzy subsets to be COSATU representatives one side and
the representatives of employers one side. Each individual fuzzy subset as the
member component of COSATU . When they come in such meetings they
have grievances as workers, but each category of workers has his actual target
to satisfy the members of the profession they represent in the meeting. After
meeting with the government or employers representatives concerning salary
or any other type of negotiation they may or may not reach agreement. We
can use the fuzzy logic to understand this situation.

When the discussions end without agreement we compare this case to the
situation of no unique mid-point between two fuzzy subsets was found. This
case often leads to a strike action. But fortunately these negotiations will al-
ways come up with a certain kind of consensus, a range of possibilities which
are solutions halfway between the government or employers’ proposal and the
unions expectations to choose from. This consensus or compromises may be
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multivariate, that is favourable to this union on this point, favourable to that
union on another point. Each union may find that the agreement makes sense
in their particular predicament. This situation represents the fact that the
middle between two fuzzy subsets if it exists is not always unique. In many
others instances fuzzy logic is used to tackle conflicts.

One of the most current problem is the water issue. In one community the
needs of stake holders in terms of water usage might not be the same. A farmer
may argue he produces food. He would say he therefore needs more water for
his crops and animals. Meanwhile a school or hospital next door believe the
farmer is spoiling this scarce commodity. Electricity is also one of the hot
contention in our communities. Businesses have the feeling that amount of
electrical energy sold to them is insignificant while its rate is exorbitant. They
bring employment to the community and should be given preference. A lobby
group on the other hand might want free electricity for street lights in order to
lower the crime rate, arguing that this will protect the business as well as mem-
bers of the community. In all these instances, what is the right amount either
of water or electricity should the municipality allocate to farmers or business;
how much to the general public, bearing in mind that these commodities are
being produced at a very high cost.

In many of these instances fuzzy logic is used to tackle conflicts when we
consider grievances as fuzzy subsets and suggested solutions in this case as
multivariate mid-points of parties’ expectations. We refer to this as fuzzy
model of conflict resolution.

4.9 Alpha-cuts and size of a fuzzy subset: Fourth

Fuzzy Pattern Recognition

.
Let α be such that 0 ≤ α ≤ 1. We know that a fuzzy subset µ1 of X is

greater than another fuzzy subset µ2 of X if all the α-cut of µ1 contains the
α-cut of µ2. Now, given the set F(X ) of all fuzzy subsets of set X and given
α in the unit interval I. Any fuzzy subset greater than a given fuzzy subset µ1
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has its α-cut greater (containing) than that of µ1.
That means that the size of the α-cut determines the size of the fuzzy subset.
The greater the α − cut, the greater the fuzzy subset.
This will constitute another way of recognizing fuzzy subsets of a set. We will
remember this as our fourth pattern recognition process.

4.10 Fuzzy subsets and their supports: Fifth

Fuzzy Pattern Recognition

Proposition 4.10.1 Let µ1 and µ2 be two fuzzy subsets of a finite set X,
and their respective supports denoted Suppµ1 and Suppµ2. If µ1 ≤ µ2 then
Suppµ1 ⊆ Suppµ2.

In fact let xi ∈ X such that 0 < µ1(xi). This means xi ∈ Suppµ1 and because
µ1 ≤ µ2, we have 0 < µ2(xi) and xi ∈ Suppµ2 too.
Now it is clear that Suppµ1 = Suppµ2 does not imply that µ1 = µ2. We will
remember that the size of the Support of a fuzzy subset informs us of the size
of fuzzy subset. We call this our fifth pattern recognition criteria.

4.11 Fuzzy subsets and their Cores: Sixth Fuzzy

Pattern Recognition

We recall here that the core of a fuzzy subset denoted here as Coreµ is defined
as {x ∈ X,µ(x) = 1}.

Proposition 4.11.1 Let µ1 and µ2 be two fuzzy subsets of a finite set X,
and their respective cores denoted Coreµ1 and Coreµ2. If µ1 ≤ µ2 then
Coreµ1 ⊆ Coreµ2.

Let xi ∈ X such that µ1(xi) = 1. Therefore xi ∈ Coreµ1. But µ1 < µ2 and
since µ(xi) = 1, it is evident that µ2(xi) = 1 also and therefore xi ∈ Coreµ2.
This means that Coreµ1 ⊆ Coreµ2.
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4.12 Similarity between fuzzy subsets

Two fuzzy subsets µ and ν are similar if they maintain the same relative degree
of membership values with respect to any two elements. That is to mean that
µ and ν are similar if and only if the three conditions below are satisfied [31]
1)µ(x) > µ(y) if and only if ν(x) > ν(y).
2) µ(x) = 1 if and only if ν(x) = 1.
3) µ(x) = 0 if and only if ν(x) = 0.
This relation defines an equivalence on set F(X ) also noted as IX. We use the
notation µ ∼ ν to express that µ is similar to ν.

Characterization of equivalent fuzzy subsets:

Proposition 4.12.1 1. µ ∼ ν if Im(µ) = Im(ν). The converse of this
statement is not valid.
2. µ ∼ ν if and only if ∀α > 0∃ β > 0 such that µα = νβ

4.13 Fuzzy scanner

Let X be an n-element set and µ1, µ2, · · · , µm be m fuzzy subsets of set
X. Each element of X belongs to each of the fuzzy subsets to a certain
extent. That degree of extent is called membership value. In fact if X =
{x1, x2, · · · , xn}, a fuzzy subset µ of X is an entity (µ(x1)µ(x2), · · · , µ(xn))
where each µ(xi) describes the membership value of element xi to the fuzzy
subset µ. We wish to rewrite this situation by collecting for each element x of
X, its membership values with regards to all fuzzy subsets of X. This is how
it will look like: (µ1(x)µ2(x) · · ·µr(x)).
This will be called the fuzzy bar − code of element x ∈ X. This is a new
approach all together.
We can justify this way of writing by the fact that it makes it easier to pick
up one element of X and determine its behaviour or attributes with regards
or towards the properties enjoyed by members of set X.
With this bar-code, a fruit is described not in terms of its mass alone, as it
is the case up to now, but in terms of its characteristics with regards to the
fuzzy subsets. A mention concerning the time left before it expires can also
be added. This can be a fraction of the time left out of the total time from
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production date to expiry date.

One customer pays for the quality of the fruit he has picked from the shelf.
Unlike the conflictive situation in operation up to now whereby one pays the
same amount of money for a kilogram of either bruised, green or even yellow
bananas because only the mass of the fruit counts.
For this purpose a gadget, kind of the scanner used extensively in the grocery
shop may be handy. This new machine will extend the performance of the
currently used machine because of the inclusion of fuzzy characteristics. Cal-
ibrated membership values of elements will be used to describe and identify
objects (elements).

Each element of X therefore would have a tag, called fuzzy bar−code which
this scanner would have to read in order to identify the element. With this
code a fruit or any other object is described not in terms of its mass alone but
also in terms of its fuzzy characteristics, its membership values to the different
fuzzy subsets of the set X.

One would pay for the quality of the fruits he has picked on the shelves. This
kind of identification of the element will be called fuzzy recognition identity
(FRI). In this fashion we can determine at ease the elementwith absolute desirability
; no absolute desirability, elements of X that are worthless to the fuzzy sub-
sets of X respectively. Our aim is selecting elements of X, and also setting
up fuzzy conditions which give us the desired output. This new approach will
lead us not only to determine which element of X satisfies the properties we
have chosen to monitor but also to determine which fuzzy subset of X is the
most satisfactory with regards to the chosen properties.
With this fuzzy scanner we have a solution to a conflict in the market place.
We term this as resolution of conflict under fuzzy environment.

Consider X as set of fruits of same kind and imagine that some fuzzy prop-
erties are defined in X, which the fruits x1, x2, · · · xn in X may enjoy partially
or totally. In this case it is possible to determine for instance the intensity of
colour, the softness of the fruit’s skin, to mention just a few characters, as a
means for grading these fruits.
One other way of identifying these fruits would be to determine the sum of
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their membership values appearing as bar-code on the tag attached to each
fruit.

The number obtained in the process, which we call worthness ofthe element,
might not be the best criteria of identification but it has more chance to reduce
conflict in this matter.
It is possible that two elements (fruits in this instance) may have the same
worthness; that is the sum of the numbers making the bar − code is same.
Two bar−codes µ1(x)µ2(x) · · ·µr(x) and µ1(y)µ2(y) · · ·µr(y) are equal if ∀i, 1 ≤
i ≤ r, µi(x) = µi(y). Therefore x = y.
This means the bar − code is unique for each element.

If the bar − code of a certain element is given, how sure are we that this
code represents a unique element of X. In other words are we able to detect a
mistake on a given bar− code? What tool in our disposal would help discover
an error and also tell at what level such error has occured.

Let us consider the elements of X together with their membership values to
the respective fuzzy subsets of X. We can establish a matrix of elements of X
versus their respective membership values to the fuzzy subsets of X. Let the
following matrix represent the membership values of the n elements to the r
fuzzy subsets.




xi/µj µ1 µ2 · · · µr

x1 µ1(x1) µ2(x1) · · · µr(x1)

x2 µ1(x2) µ2(x2) · · · µr(x2)
...

...
... · · · ...

xn µ1(xn) µ2(xn) · · · µr(xn)




which is a n.r matrix.

This matrix is called the bar− code matrix. Every row of this matrix shows
us the bar-codes of all elements of X. Every column of this matrix show us the
fuzzy subsets of X. Reading the entries in one column gives us the information
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concerning a fuzzy subset and the membership values to the this fuzzy subset
of the respective elements of X. Similarly reading from one row informs us of
one element of X and the respective membership values of this element to the
fuzzy subsets of X.

The matrix describes each individual element (commodity) xi in term of the
r fuzzy characteristics.
This matrix makes it easy to check for each fuzzy subset, elements in its α−cut.
From this table we can quickly determine fuzzy subsets which are preferentially
equal.

As it can easily be seen, the sum (
r∑

i=1

µi(x)) of the entries on a row cap-

tures the sum of all membership values of element x. We call such sum the
fuzzy worthness of x or the Borda count of x.
This number denoted here as Wx is such that 0 ≤ Wx ≤ r.

If Wx = r, the element x is of absolute desirability. That means µi(x) = 1,∀i.
If on the other hand Wx = 0, then x is of absolute worthless. This means that
the membership value of x to each fuzzy subset of X is 0.

Now if we take the sum of worthness of all elements of set X,that is
n∑

j=1

r∑

i=1

µi(xj),

we then find the total worthness of the elements X. This number is of great
importance if we are to compare two different sets of elements X and Y both
subjected to the same type of fuzzy properties. We might be able to deter-
mine for instance, in the same period of the year, which farm between X and
Y supplies our grocery shop with the acceptable set of fruits. That is which
farm has the highest total worthness, if some fuzzy properties were already
fixed.

When we consider the sum of the entries on one column, that is
n∑

i=1

µ(xi).

This time we obtain the well-known cardinality of the fuzzy subset considered
or the worthness of the fuzzy subset denoted here as Wµ. We also call this the
Borda count of the fuzzy subset . If Wµ = 0, then µ is the null fuzzy subset.
If Wµ = n, then every element of X has absolute membership value to the
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fuzzy subset.
Now comparing the sum of entries of the columns inform us of the fuzzy subset
of highest cardinality. Now when we sum the cardinalities of all fuzzy subsets
we obtain what we term as the worthness of F(X ). We will realize that the
worthness of X is actually the worthness of F(X ). We write WX = WF(X ).

In fact this equality is justified since the quality of elements of X is discov-
ered with regards to their belonging to the fuzzy subsets. In the same fashion,
fuzzy subsets are related to the kind of elements of X.
The similarity of elements seen earlier can be extended to their worthness.
We can say that if x is similar to y then Wx = Wy.
Let us assume that x and y are similar with regard to some fuzzy subsets
µ1, µ2, · · · , µr. That means that for any fuzzy subset µi , we have µi(x) = µi(y).

Therefore (
r∑

i=1

µi(x)) = (
r∑

i=1

µi(y)).

Now assume that µ1, µ2, · · · , µr are similar to one another with respect to the
element x. As seen earlier µ1(x) = µ2(x) = · · · = µr(x) = α ,α ∈ I. Then
Wx = α.r.

Let xi and xj be two fruits with fuzzy bar − codes (a1, a2, · · · , an) and
(b1, b2, · · · , bn) respectively. We may establish ai ∨ bi and ai ∧ bi. There-
fore (a1 ∨ b1, a2 ∨ b2, · · · , an ∨ bn) is the fuzzy bar − code which we call the
Major Ideal fruit between xi and xj. It is ideal because it may not repre-
sent an actual fruit, rather it is a fruit the characteristics of which we admire.
In the same manner (a1 ∧ b1, a2 ∧ b2, · · · an ∧ bn) is the fuzzy bar-code of
theMinor Ideal fruit between xi and xj.
These ideal major and ideal minor may or may not be members of the set of
fruits. It is rather a technical terminology.
If we are given n fruits and m fuzzy subsets of a set; we can in the same
manner find the ideal major or ideal minor of the n fruits which will have
the following fuzzy bar − codes:
(a11 ∨ a21 ∨ · · · ∨ an1, a12 ∨ a22 ∨ · · · an2, · · · a1m ∨ a2m · · · anm) and (a11 ∧ a21 ∧
· · · ∧ an1, a12 ∧ a22 ∧ an2 · · · , a1m ∧ a2m ∧ · · · anm respectively.
We know that each fruit has a membership value to each fuzzy subset. With
this in mind and considering the fuzzy bar−code (a1, a2, · · · , an) of fruit xi; we
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can compute (1−a1, 1−a2, · · · 1−an). We call this the Fuzzy complement bar−
code of fruit xi.
Consider two fuzzy bar−codes (µ1(x)µ2(x) · · · µr(x)) and (µ1(y)µ2(y) · · ·µr(y))
of two elements x and y of X. Clearly these two entities are not always equal.
Their being equal would mean that for each 1 ≤ i ≤ r, µi(x) = µi(y). This
also means that for any two elements x and y and any two fuzzy subsets µi

and µj , µi(x) = µi(y) and µj(x) = µj(y). There is only one such fuzzy subset
where membership values of elements are equal to a single value α ∈ I.
The fuzzy bar − code of an element is therefore unique and each element has
only one fuzzy bar−code. This confirms that the fuzzy recognition approach
is the best way of characterizing each individual element of the set X. This
could be used for forensic analysis.

In the following example we want to apply fuzzy subsets to determine the
best house among many. Some fuzzy characteristics are used to descibe the
houses in the market place. But only one should satisfy the expectations of the
buyer. If we set the number of houses to be large, then it becomes confusing
to any buyer to determine the best house. Therefore we set a manageable
number of properties for the houses. Each house has a membership value to
the fuzzy subset representing the property.

Example 4.13.1 . Let U = {h1, h2, h3, h4, h5, h6} be a set of houses to be
sold and
E = {expensive, wooden, beautiful, cheap, in green surroundings, concrete,
moderately, beautiful, by the road side} be a set of parameters related to
these houses.
Let µ1and µ2 be the fuzzy subsets describing the cost of the houses given by :
µ1(Cheap) = {h1/1, h2/0, h3/1, h4/.2, h5/1, h6/.2}.
µ2(expensive) = {h1/0, h2/1, h3/.1, h4/.9, h5/.3, h6/1}
Let µ3 and µ4 be the fuzzy subsets describing the attractiveness of the houses
given by:
µ3(beautiful) = {h1/1, h2/.4h3/1, h4/.4, h5/.6, h6/.8}
µ4(moderately beautiful) = {h1/.3, h2/.7, h3/.5, h4.6, h5/.2, h6/.3}
Let µ5 and µ6 be the fuzzy subsets describing the physical traits of the houses
given by:
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µ5(wooden) = {h1/.2, h2/.3, h3/1, h4/1, h5/1, h6/0}
µ6(concrete) = {h1/.7, h2/.9, h3/0, h4/.1, h5/.3, h6/.8}.
Let µ7 and µ8 describe the characteristics of the place where the houses are
located by: µ7(in green surrounding) = {h1/1, h2/.1, h3/.5, h4/.3, h5.2, h6/.3}
µ8(near the road side) = {h1/.2, h2/.7, h3/.8, h4/1, h5/.5, h6.9}.
Mr X is interested in buying a house on the basis of his choice of parameters
beautiful, wooden, cheap, in green surroundings. This means he has to select
a house available in U that qualifies all the parameters of his choice.
We draw the following bar − code matrix to represent the situation:




hi/µj µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

h1 µ1(h1) µ2(h1) µ3(h1) µ4(h1) µ5(h1) µ6(h1) µ7(h1) µ8(h1)

h2 µ1(h2) µ2(h2) µ3(h2) µ4(h2) µ5(h2) µ6(h2) µ7(h2) µ8(h2)

h3 µ1(h3) µ2(h3) µ3(h3) µ4(h3) µ5(h3) µ6(h3) µ7(h3) µ8(h3)

h4 µ1(h4) µ2(h4) µ3(h4) µ4(h4) µ5(h4) µ6(h4) µ7(h4) µ8(h4)

h5 µ1(h5) µ2(h5) µ3(h5) µ4(h5) µ5(h4) µ6(h5) µ7(h5) µ8(h5)

h6 µ1(h6) µ2(h6) µ3(h6) µ4(h6) µ5(h6) µ6(h6) µ7(h6) µ8(h6)




Using Mr X’s choice, we have the following reduced bar − code matrix:




hi/µj µ1 µ3 µ5 µ7

h1 1 1 .2 1

h2 0 .4 .3 .1

h3 1 1 1 .5

h4 .2 .4 1 .3

h5 1 .6 1 .2

h6 .2 .8 0 .3




We take the (µ1(hi) ∧ µ3(hi) ∧ µ5(hi) ∧ µ7(hi))∀i, 1 ≤ i ≤ 6. We get:
{h1/.2, h2/0, h3/.5, h4/.2, h5/.2, h6/0}.
This shows that h3 is the best choice.
We realize that with regards to the choice of Mr X, the worthiness of the
houses are as follow: Wh1 = 3.2, Wh2 = .8, Wh3 = 3.5, Wh4 = 1.9, Wh5 = 2.8,
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Wh6 = 1.3. We can see that h3 has the highest worthiness. It is the best
choice.
With regards to the table above, the ideal major house would have the wor-
thiness of 4 and the ideal minor house would have the worthiness of 0.5.

The solution of the above problem was obtained by Miya in [23]. We have
suggested a different approach to the way to go about it and have come to the
same conclusion as Miya. We call our method the min/max method. It is
because we first search for the min of all the minµj(hi) and later the max of
the these results.
We will get the same result as that of Miya if we were to use yet another
alternative method. This consists of comparing the worthiness of each element
( house in this case) to the fuzzy subsets. The house with highest worthiness
is indeed the best choice.

4.14 Operations in the set of Fuzzy Matrices

Matrices play an important role in different branches of science and technology.
But due to the presence of various types of uncertainties, the traditional clas-
sical matrix and operations on matrices may not be sufficient for the precise
description of the characteristics of any system, pattern, etc. Thus the fol-
lowing definition and operations are suitable only for fuzzy matrices. A fuzzy
matrix (FM) A of order m × n is defined as A = [< aij, µ(aij) >]m×n where
µ(aij) is the membership value of the element ai to the fuzzy subset µj in A.
This means that a fuzzy matrix is a matrix of membership values of elements
of a set to the fuzzy subsets of the set.

For simplicity, we write A as A = [µ(aij)]m×n. In a Boolean Fuzzy Matrix
A = [aij]m×n, all elements are either 1 or 0.

Let A = [aij] and B = [bij] be any two fuzzy matrices of order m × n. We
define the following operations in the set of all fuzzy matrices of order m× n.
For any two elements aij and bij of a fuzzy matrix:
1. aij ∨ bij = max(aij, bij)
2. aij ∧ bij = min(aij, bij)
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3. aij ⊕ bij = aij + bij − aij.bij

4. aij � bij = aij.bij

5. aij 	 bij = aij if aij > bij and aij 	 bij = 0 if aij ≤ bij.
Now for any two fuzzy matrices A = [aij] and B = [bij] of order m.n, we have
the following operations. [2]
1. A ∧ B = [aij ∧ bij]
2. A ∨ B = [aij ∨ bij].
3. A

′
= [aji], with A

′
the transpose of Aij.

4. A ≤ B if and only if aij ≤ bij for all i, j.
5. For any two fuzzy matrices A and B, min(A,B) = A if A ≤ B and
min(A,B) = B if B ≤ A.
6. Ac = [1 − aij] where Ac is the Matrix complement of A
7. A ≤ B if µ(aij) ≤ µ(bij).
8. A.B = [aij.bij]
9. A + B = [aij + bij − aij.bij]
The properties 8 and 9 above are based on the algebraic product and sum of
fuzzy subsets.(See [20]).
It is clear from this context that the following properties concerning fuzzy ma-
trices are valid.

Properties
1. A.B = B.A and A + B = B + A.
2. (A.B).C = A.(B.C) and (A + B) + C = A + (B + C)
3. A.[∅] = [∅] and A + [∅] = A where [∅] is the fuzzy matrix where entries are
all 0.
The properties of idempotence and distributivity are not satisfied by the prod-
uct and sum of matrices. That is:
4. A.A 6= A and A + A 6= A
5. A.(B + C) 6= (A.B) + (A.C) and A + (B.C) 6= (A + B).(A + B)
6. A.Ac 6= [∅] and A+Ac 6= [1], where [1] is the fuzzy matrix where each entry
is 1.
Proof . 1. Let A , B and C be fuzzy matrices: A.B = [aij.bij] = [bij.aij] = B.A.
Likewise A+B = [aij + bij − aij.bij] = [bij + aij − bij.aij] = B +A. The matrix
(A.B).C = ([aij].[bij]).[cij] = [aij.([bij.[Cij) = A.(B.C). In the same manner
(A+B)+C = [(aij + bij −aij.bij)]+ [cij] = (aij + bij −aij.bij + cij)− [aij + bij −
aij.bij].cij = aij + (bij + cij − bijcij)− aij(bij + cij − bij.cij) = A + (B + C). For
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any fuzzy matrix A, A.A = [a2
ij] with 0 ≤ a2

ij ≤ aij. The only way A.A = A
is for the aij to be either 0 or 1, which means A is a boolean matrix. In the
same manner A+ A 6= A because A+A = A would mean that 2aij − a2

ij = aij

and 2 − aij = 1 so that aij = 1. Once again the matrix A would be boolean
matrix. Now consider the fuzzy matrix A. If A.Ac = [∅], then aij.(1− aij) = 0
and either aij = 0 or aij = 1. Again if aij + (1 − aij) − aij.(1 − aij) = 1, aij

would be equal to 0 or to 1. In both cases the matrix A would be boolean.
Based on our discussion regarding the fuzzy matrix, and considering two dif-
ferent sets X1 and X2 in which the same type of fuzzy properties are defined.
Then the matrix A ∧B = [aij ∧ bij] describes the matrix of lower membership
values the elements of X1 and X2 have with regards to the fuzzy subsets. It is
like the lowest benchmark we would accept for these two sets of elements. On
the other hand the matrix A ∨ B = [aij ∨ bij] is the highest benchmark of the
sets X1 and X2. We can write A ∧ B = [aij ∧ bij] ≤ A ≤ A ∨ B = [aij ∨ bij],
∀A.

4.15 Hamming Distance between two fuzzy ma-

trices.

The Hamming distance between two fuzzy matrices A and B, denoted H(A,B)
is a mapping from the set of fuzzy matrices M to R defined as H(A,B) =
m∑

i=1

n∑

j=1

|aij − bij|. The Hamming Distance between matrices is a metric on M.

That is to say that it satisfies the necessary conditions of distance. For any
three fuzzy matrices A, B and C of M:
1.H(A,B) ≥ 0
2.H(A,B) = H(B,A)
3.H(A,B) ≤ H(A,C) + H(C,B)

111



4.15.1 Properties of Distance between two fuzzy matri-

ces

For any two matrices A = [aij] and B = [bij] of the same order m.n,
1. H(A,A) = [0]
2. H(A,A ∧ B) = H(B,A ∨ B).
3. H(A,A ∨ B) = H(B,A ∧ B.
4. H(A,B) = H(A ∨ B,A ∧ B).
Proof: 1. It is clear that H(A,A) = [0] for any matrix A.
2. If A∧B = A, then A∨B = B and H(A,A∧B) = H(A,A) = [0] = H(B,B).
If in the contrary A∧B = B, then A∨B = A and property 2 will be justified.
[0] in this case is the nil matrix of same order as A and B. The proofs for
properties 3 and 4 follow the same procedure 2.
Let A = [aij] be a fuzzy matrix. We define by Ak the fuzzy matrix [(aij)

k]
made of powers (aij)

k of (aij).
We know that each 0 ≤ aij ≤ 1 such that (aij)

2 ≤ (aij). In fact we can still
write that Ak+1 ≤ Ak k = 1, 2, · · ·. Therefore we can establish the following
property:
H(A,Ak) ≤ H(A,Ak+1) k = 1, 2, · · ·.
Consider two boolean fuzzy matrices A = [aij] and B = [bij] of same order
m.n. If we impose the condition that if aij = 1 then bij = 0 or if aij = 0 then
bij = 1, we will be able to say that the maximum Hamming distance between
these two fuzzy matrices is m.n. The minimum Hamming distance between
the fuzzy matrices is 0.

Let us denote by In the identity fuzzy matrix of order n2. For any fuzzy
matrix A of order n2:
1. A ∧ In is the diagonal matrix [aii].
2. A ∨ In, and H(A, In) = H(A,Ak

n)
3. H(In, I

c
n) = n2.

Proposition 4.15.1 Hamming distance between fuzzy matrices of same equiv-
alence class.
The Hamming distance between two fuzzy matrices whose entries are fuzzy
subsets of the same equivalence class is zero.

This proposition is our seventh fuzzy recognition procedure.
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In character recognition, this proposition says that the Hamming distance be-
tween the matrices representing one single character is zero.
One character can still be written in two different fonts, yet it is still the same
character. [1] [47]
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Chapter 5

An Election Activity under
Fuzzy Environment

A fuzzy subset has a kind of preference built into it. The fact that one element
of X say x has higher membership value than y to the fuzzy subset µ can be
interpreted here as x is preferred more than y. This preference leads naturally
to an election, when putting elements of X on a list ranging them from the
most preferred to least preferred. X = {x1, x2, · · · , xn} would be in this case
the set of alternatives that m different persons called agents (also membership
values) have to grade. That is to show for each person his preference regard-
ing the alternatives by indicating which alternative comes first, second and so
on until the last. Now instead of anyone grading the alternatives’ we could
consider the fuzzy subsets and take into account the m distinct membership
values each individual element of X has with respect to the m fuzzy subsets.
The set of membership values being ordered with the same order as R, grading
of alternatives is done naturally by associating each alternative with its mem-
bership value to the respective fuzzy subsets.
An election activity would determine in this case which element of X has the
highest membership value thus the best possible qualities with regards to the
given fuzzy properties. That is the element of X with the highest membership
value, to the fuzzy properties, many times more than any other element of X.
The election would also determine the most popular fuzzy property. It is like
looking among a number of fruits or any other commodities, the most wanted
one or searching the quality the most sought among many by customers in a

114



particular grocery shop.

5.1 Fuzzy preference schedule

We can display the membership values of elements of X for each fuzzy subset
µj on a column, arranging them in order of size from highest to lowest value.
Such ranking or representation will be called fuzzy preference schedule.

Example 5.1.1 .

µj

µj(x2)
µj(x4)

...
µj(xk)

...
µj(xn)

is a preference schedule telling us that for the fuzzy subset µj , µj(x2) >
µj(x4) > · · · > µj(xp) > · · · > muj(xn). In other words, x2 is the most
preferred alternative, while xn is the least preferred in relation to the fuzzy
property µj .
Since we may have this situation expressed by several fuzzy subsets among the
m given as in the above example, we count the number of times each element
xi is listed first.
Consider a fixed xi ∈ X and the fuzzy subsets µ1, µ2, · · · , µm. We can also
arrange the µj(xi), 1 ≤ j ≤ m, in a preference schedule of fuzzy subsets as in
the table below.
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xi

µp(xi)
µr(xi)

...
µs(xi)

...
µj(xi)

which means that for element xi ∈ X, µp(xi) > µr(xi) > · · ·µs(xi) > µj(xi).
That is to say that µp is the most appropriate property enjoyed by xi or that
xi has the highest membership value in µp.
Now if we draw for each fuzzy subset µj and for each element xi their preference
schedules with respect to the xi ∈ X and with regards to the µj respectively,
we are able to establish the number of times each fuzzy subset or each element
is ranked first.

5.2 Plurality Winner and Borda Winner

We say that xi is the fuzzy plurality winner (fpw) of our election if ∀j, 1 ≤
j ≤ m, µj(xi) is ranked first more than any other membership value of the
elements of X to the m fuzzy subsets. In the same manner a fuzzy subset µj

is the plurality winner if ∀x ∈ X; µj(x) is ranked first more than any of the m
fuzzy subsets of X.
Now if an element of X or a fuzzy subset of X is ranked first on over half of the
preference schedules respectively, then it is declared the fuzzy majority winner
(fmw) of the elements of X or the fuzzy majority winner of the fuzzy subsets
of X respectively.

Suppose we find for each xi ∈ X the sum
m∑

j=1

µj(xi). Then the ranking of

these results in establishing a winner among the n elements of X, is what we
will call the Borda Fuzzy Winner (BFW) of elements of X.

Similarly, if we find

n∑

i=1

µj(xi) for 1 ≤ j ≤ m we obtain the Borda Fuzzy
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Winner of the fuzzy subsets of X. We observe in this case that the fuzzy
subset with the highest cardinality is the BFW . We will illustrate this in the
following example.

Example 5.2.1 .




xi/µj µ1 µ2 µ3 µ4

x1 µ1(x1) µ2(x1) µ3(x1) µ4(x1)

x2 µ1(x2) µ2(x2) µ3(x2) µ4(x2)

x3 µ1(x3) µ2(x3) µ3(x3) µ4(x3)




=




xi/µj µ1 µ2 µ3 µ4

x1 .7 .2 .9 .8

x2 .3 .8 .6 .7

x3 .5 .6 .7 .4




Such that

µ1

µ1(x1)
µ1(x3)
µ1(x2)

µ2

µ2(x2)
µ2(x3)
µ2(x1)

µ3

µ3(x1)
µ3(x3)
µ3(x2)
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µ4

µ4(x2)
µ4(x1)
µ4(x3)

and

x1

µ3(xi)
µ4(xi)
µ1(xi)
µ2(xi)

x2

µ4(x2)
µ2(x2)
µ3(x2)
µ1(x2)

x3

µ3(x3)
µ2(x3)
µ1(x3)
µ4(x3)

Such that

x1

↑
3

x2

↑
1
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x3

↑
0

µ1

↑
0

µ2

↑
1

µ3

↑
2

µ4

↑
0

It is clear that x1 and µ3 are Fuzzy plurality winners of the elements of X
and of the fuzzy subsets of X respectively.

4∑

j=1

µj(x1)=̇ 2.6,
4∑

j=1

µj(x2) = 2.4,
4∑

j=1

µj(x3) = 2.2 while
3∑

i=1

µ1(xi)

= 1.5,
3∑

i=1

µ2(xi) = 1.6,
4∑

i=1

µ3(xi) = 2.2,
3∑

i=1

µ4(xi) = 1.9. In this

case x1 and µ3 are the Fuzzy Borda Winners of the elements of X and the
fuzzy subsets of X respectively.

Example 5.2.2 .
Let us consider again the matrix




xi/µj µ1 µ2 µ3 µ4

x1 .7 .2 .9 .8

x2 .3 .8 .6 .7

x3 .5 .6 .7 .4



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where x1 is 3 times first, 0 times second, 1 times third. x2 is first 1 once, 1
time second, 2 time third, x3 is 0 times first, 3 times second, 1 times third.
The product of matrices

(
3 2 1

)

and




No/xi x1 x2 x3

1st 3 1 0

2nd 0 1 3

3rd 1 2 1




gives

(
10 7 7

)

showing that x1 is the Fuzzy Borda Winner.
By assigning 3 to first place, 2 to second place and finally 1 to third place;
we could have obtained the same result if we would compute in this fashion:
x1 : 3(3) + 0(2) + (1) = 10
x2 : 1(3) + 1(2) + 2(1) = 7
x3 : 0(3) + 3(2) + 1(1) = 7 showing as above that x1 is the winner. Similarly
we note that µ1 is first 0 time, second 0 time, third 1 time, fourth 1 time.
µ2 is first 1 time, second 1 time, third 0 time, fourth 1 time. µ3 is first 2
times, 0 time second, 1 time third and 0 time fourth. µ4 is first 1 time, 1
time second, 0 time third and 1 time fourth.
The product of the matrices

(
4 3 2 1

)

and




No/µi µ1 2 3 µ4

1st 0 1 2 1

2nd 0 1 0 1

3rd 1 0 1 0

4th 1 1 0 1



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gives

(
3 8 10 8

)

which shows that µ3 is the Fuzzy Borda Winner. The same result is obtained
if we work out in the following fashion:
µ1 : 0(4) + 0(3) + 1(2) + 1(1) = 3
µ2 : 1(4) + 1(3) + 0(2) + 0(1) = 7
µ3 : 2(4) + 0(3) + 1(2) + 0(1) = 10
µ4 : 1(4) + 1(3) + 0(2) + 1(1) = 8
which also shows that µ3 is actually the Borda winner of the family of the
given fuzzy subsets.

5.3 Mean Borda Count

Consider a set X = {x1, x2, · · · , xn} and fuzzy subsets µ1, µ2, · · · , µr as above.

We are able to find for each element xi of X the sum
r∑

j=1

µj(xi) of its member-

ship values to the r fuzzy subsets of X. Now the number 1
r
[

r∑

j=1

µj(x1)] gives

us an average, which we wish to call the MeanBordaCount of xi.
This Mean Borda Count can be considered when selecting elements of X.
It is clear that the average gives an indication of the actual Borda count of the
element. The larger the Borda count, the larger is the Mean Borda Count.

In the same manner the number 1
n
[

n∑

i=1

µj(xi)] will be called the MeanBorda Count

of the fuzzy subset µj . Even in this case the mean reflects the actual cardinal-
ity or Borda count of the fuzzy subset.

Alternative to our approach is this one suggested by Garcia in [15]. We
will give a summary of their work and compare these two approaches by an
example.
Consider a set X = {x1, x2, · · ·xn}, n ≥ 2, of alternatives and assume m ≥ 2
agents express their preferences over the pairs in X in a linguistic manner.
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Let L = {lo, l1, · · · ls} , s ≥ 2, be a set of linguistic labels ranked as lo < l1 <
· · · < ls. There is a label such that the rest of labels are defined around it
symmetrically. This label represents the indifference.
This means that s + 1 is odd and that l s

2
is a central figure in L.

This also tells us there is a relation Rk : X × X → L where Rk(xi, xj) = rk
i,j

represents the level of preference of xi over xj.
If Rk(xi, xj) = ls then xi is totally preferred over xj. But if Rk(xi, xj) = lo then
xj is totally preferred over xi. If Rk(xi, xj) = l s

2
, then there is indifference.

These li must be added and the results compared.
This indeed introduces the properties such as commutativity, associativity, ex-
istence of neutral element (lo) in a set L with L ⊂ L. There is also an order
in L so that the results can be compared.
The total Borda count is obtained by the function rk : X → L; rk(xi) =

n∑

j=1

rijk .

For a given xi ∈ X, xi is a Borda winner if rk(xi) ≥ rk(xj)∀xj ∈ X.
In our case we consider the membership function as a ranking operation. We
define in X a relation Rk such that
Rk(xi, xj) = µ(xi) − µ(xj). This number may be positive or negative. We
obtain a i × i matrix where the entries are the µ(xi) − µ(xj) for each fuzzy
subset µ of X. The sum of entries in one row say Xi gives the Borda count for
xi with regards to µj . We do the same for each element with regards to each
fuzzy subset. The total Borda count is the sum of the step Borda counts.
The Borda winner is the element with the highest count. We can get more
details in [25] and [16].

Example 5.3.1 .
Let us consider once more the matrix




xi/µj µ1 µ2 µ3 µ4

x1 .7 .2 .9 .8

x2 .3 .8 .6 .7

x3 .5 .6 .7 .4



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With regards to µ1, we have:




xi/µ1 x1 x2 x3

x1 0 .4 .2

x2 −.4 0 −.2

x3 −.2 .2 0




such that rk(x1) = .6, rk(x2) = −, 6, rk(x3) = 0

With regards to µ2, we have :




xi/µ2 x1 x2 x3

x1 0 −.6 −.4

x2 .6 0 .2

x3 .4 −.2 0




Here rk(x2) = −.1 , rk(x2) = .8, rk(x3) = .2

Concerning µ3, we have




xi/µ3 x1 x2 x3

x1 0 .1 .4

x2 −.1 0 .3

x3 −.4 −.3 0




and rk(x1) = 1.4, rk(x2) = .2, rk(x3) = −.7.
The total Borda count will therefore be: [x1 : .6−1+1.4 = 1] [x2 : −.6+.8+.2 =
.4] [x3 : 0 + .2 − .7 = .5].
This confirms again that x1 whose count is the highest is the Borda winner.
In the same manner we would obtain the Borda winner of the fuzzy subsets of
X with regards to the elements of X.
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For x1 we have:




xi/µj µ1 µ2 µ3 µ4

µ1 0 .5 −.2 −.1

µ2 −.5 0 −.7 −.6

µ3 .2 .7 0 .1

µ4 .1 .6 −.1 0




For x2 we have:




xi/µj µ1 µ2 µ3 µ4

µ1 0 −.5 −.3 −.4

µ2 .5 0 .2 .1

µ3 .3 −.2 0 −.1

µ4 .1 .6 −.1 0




For x3 we have:




xi/µj µ1 µ2 µ3 µ4

µ1 0 −.1 −.2 .1

µ2 .1 0 −.1 .2

µ3 .2 .1 0 .3

µ4 −.1 −.2 −.3 0




The respective Borda counts for the fuzzy subsets are [µ1 : −1.2] [µ2 :
−.8] [µ3 : .6].
Therefore µ3 is the Borda winner as seen before.
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Chapter 6

Concluding Remarks

The study of fuzzy subsets of a finite set is a broad one and leads to various
ramifications. We have chosen in our case the identification and enumeration
of fuzzy subsets that have some common patterns.

The usage of the fuzzy scanner, as we have hinted in this study, can be ex-
tended from mere data recognition of goods in a grocery shop context to that
of useful detection and forensic analysis. The identification obtained in this
fashion seems to be not equivocal. This therefore solves a situation of conflict
in the market place. We also think, in this regard, of the volume of water that
would be saved if this kind of scanner could be successfully used in regulating
the amount of water in public toilets. The scanner would read for example
the quantity or proportion of urea, in the urine and other waste and tell how
much water is needed to flush a toilet that has been used.

In public toilets seen in airports for example, water is flushed in all urinals
irrespective of the number of people who stood there to use the facility. Our
scanner would only allow flushing in the urinal being used at the time. The
process of election in a fuzzy environment led us to determine the winner in a
context in which characteristics are defined in fuzzy terms. This is also helpful
in determining the best candidate for a job; the best house to buy; the best
fruit or farm per specific season of the year etc...

A method consisting of comparing the membership values of elements has
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led us to determine the Borda count of elements of set X. This procedure
is quite different from the one we found in the literature. In this method, a
relation is defined in the set X to rank the preferences of elements over others.
We have modified the usual ranking function and used the function consisting
of adding the differences between the membership values of elements to each
fuzzy subset.

We have identified the α-cut matrix of the complement of a partition as well
as that of the union and intersection of a partition. We will have in the future
to find out if the complement of a partition, the union and intersection of two
partitions is also a partition of the set.

It will be interesting also to study the features of the partition generated by
the composition of two binary relations in a set X.
In chapter 1 we discussed the principle of inclusion and exclusion. A similar
principle called the Möbius inversion was discussed later in chapter 3 especially
concerning the lattice of fuzzy subsets. We wish to extend this study looking
into the Möbius inversion in the lattice of partitions of a finite set.
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