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ABSTRACT 

 

This thesis investigates the problem of model identification in a Vector Autoregressive 

framework. The study reviews the existing research, conducts an extensive simulation based 

analysis of thirteen information theoretic criterion (IC), one of which is a novel derivation. 

The simulation exercise considers the evaluation of seven alternative error restricted vector 

autoregressive models with four different lag lengths. Alternative sample sizes and 

parameterisations are also evaluated and compared to results in the existing literature.  

 

The results of the comparative analysis provide strong support for the efficiency based 

criterion of Akaike and in particular the selection capability of the novel criterion, referred to 

as a modified corrected Akaike information criterion, demonstrates useful finite sample 

properties. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

The econometric modelling of time series data has seen tremendous growth in recent years. 

The advancements made in the analysis of times series models over the last three decades 

are partly due to the developments of theoretical models and partly due to the 

improvements in computational ability. In earlier years the analysis of time series models 

was severely restricted by the time available to perform repetitive calculations, but with the 

advances made in software development most of the models developed in the early 1970s, 

1980s and 1990s have become standard in statistical software packages. 

 

Earlier texts such as Box and Jenkins (1976), Judge, Hill, Griffiths, Lütkepohl and Lee 

(1988), Kendall and Ord (1990) and Bowerman and O’Connell (1993) emphasised the 

autoregressive integrated moving average (ARIMA) models based on the Box-Jenkins 

methodology. The ARIMA theory was developed on the basis that the series under 

consideration were stationary or easily transformable into stationary series. More recent 

texts such as Hamilton (1994), Shumway and Stoffer (2000), Štulajter (2002), Fan and Yao 

(2003), Harris and Sollis (2003), Enders (2004), Brüggemann (2004) and Lütkepohl (2005) 

have expanded on those initial concepts and extended the theory and empirical research 

into multivariate time series analysis, non-linear time series analysis, model selection for 

time series analysis and applied modelling and forecasting. 

 

Over the last two decades, one of the time series modelling research directions has been the 

development of the theory of cointegrated time series modelling based primarily on the 

original work of Granger and Weiss (1983) and the seminal paper of Engle and Granger 

(1987). The theory was further developed by Johansen (1988, 1991), Stock and Watson 

(1991), Johansen and Juselius (1992) and Pesaran and Shin (1997) to mention just a few. 
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The purpose of this research study is to address a contradiction identified in the literature 

when applied researchers use the theory of cointegration to model nonstationary time series 

systems. 

 

1.2 Objectives and Contributions of the Present Study 

 

Cointegrated modelling requires that the series under investigation be nonstationary, and 

ever since Dickey and Fuller (1979) developed the initial theory and methodology for the 

stationarity testing of a time series, the analysis of nonstationary time series data has 

generated considerable research interest. One of the considerations in cointegrated 

modelling that has yet to be resolved is the determination of the appropriate lag length of 

the autoregressive representation of a cointegrated system. The lag structure of the model 

has a theoretical implication as estimation is influenced by the model’s dimension whilst 

the practical implication lies in the interpretations and significance of the parameters 

estimated.  

 

The motivation for this research began after reading several application based cointegrated 

studies. The studies were all very interesting from an application perspective but the 

determination of the model structure was in many cases poorly motivated. The problem 

with determining model structure became more apparent when approached by an 

economist to assist with the cointegrated modelling of their data. Both research articles and 

reference texts provided alternative methods for deciding on lag structure but in most cases 

none where committed to an individual or consistent preferential method. Further 

investigation confirmed that there was little uniformity in deciding model structure despite 

the extensive use of the modelling paradigm.  

 

In an attempt to address this lack of uniformity it was decided to undertake an extensive 

Monte Carlo simulation modelling exercise which it was hoped would provide more clarity 

as to a method for deciding on the model structure. The simulation exercise required an 

extensive literature review in two directions. The primary direction was to identify 
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previous attempts at model selection for vector autoregressive represented systems whilst 

the secondary direction was to identify suitable software for the simulation exercise.  

 

The objectives of this research are to  

• review lag length selection methods for cointegrated systems, 

• identify contradictions in the determination of lag length in the published literature, and 

• summarise information theoretic criteria used for lag length selection. 

 

This research contributes to the body of knowledge by  

• summarising the literature on model selection for autoregressive represented 

cointegrated systems, 

• identifying and unifying the notation of information theoretic criteria used for 

determination of model structure for vector autoregressive systems which are 

constrained by the cointegrated relationship of the nonstationary variables,  

• defining theoretical models appropriate for simulating cointegrated systems, 

• defining an alternative information theoretic criterion, a modified corrected Akaike 

information criterion, denoted MAICC, and 

• ultimately provide practitioners with a better method for determining the number of lag 

terms and hence dimension of their cointegrated models. 

 

1.3 Outline of the Research 

 

This research addresses a shortcoming identified in the empirical literature in the 

modelling of error restricted vector autoregressive (VAR) models. The flowchart in 

Figure1.1 provides a schematic of where these models fit in a multi-equation time series 

framework. These error restricted VAR models are usually referred to as vector error 

correction (VEC) models and are shown in the yellow oval. 
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Figure 1.1: Flowchart of lag length selection of multi-equation models 

 

 

 

 

 

The link between VAR and VEC models is two fold. VEC models are special cases of 

VAR models only applicable to systems classified as nonstationary and cointegrated. In 

addition, the lag length structure of a VEC model is directly related to the lag length 

structure of a VAR model. This link is highlighted by the red arrows which connect the lag 

length selection oval highlighted in dark blue.  

 

These models have been used extensively in empirical studies over the last decade and 

theoretical refinements are continuously being added to the literature. The emphasis of this 

study is the selection of the lag structure of a VEC model. 
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Chapter 2 introduces the theoretical concepts of VEC models defined in a VAR 

framework. Included are the definitions of stationary and nonstationary systems, 

cointegration and model selection. Graphical illustrations provide descriptive measures of 

stationary and nonstationary data for both correlated and uncorrelated systems.  

 

An introductory literature review emphasises the theoretical research into cointegrated 

modelling and the subsequent empirical applications. The literature review introduces the 

notion of model selection and discusses the current methods from an application and a 

definition perspective. The chapter concludes with the definitions of the thirteen 

information criteria (IC) assessed for model selection in this thesis. 

 

Chapter 3 outlines the methodology and the models used in this study. The methodology is 

illustrated as a flowchart and highlights the sequence of events in the empirical analysis of 

the simulated data. All models are defined, their theoretical underpinnings shown and the 

simulation models explained. The chapter concludes with the justification of the 

parameters used for the simulation models. 

 

Chapter 4 discusses the results and interpretations of this study. The section starts with the 

stepwise sequential analysis of a simulated dataset which follows the analytical routines 

given in the methodology. The illustration of a complete series is complemented by the 

computerised outputs from the software used in this study. The selection capabilities of the 

estimated criteria are evaluated from several arguments and ranking systems proposed for 

each of the assessment methods. The chapter concludes by identifying the better 

performing criteria for the selection of VEC models with an estimated error restriction 

constraint but an unknown lag structure. 

 

Chapter 5 discusses the validity of the software and illustrates how the software was used 

in the analysis. The validity of the software is assessed by comparing the results with a 

published source. A stepwise illustration of the assessment of a published dataset is then 

shown and the results of Chapter 4 are incorporated into the analysis. The chapter 

concludes by proposing appropriate criteria for the selection of lag length of cointegrated 

models. 
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Chapter 6 reviews the results of similar studies identified in the literature and highlights 

their pitfalls and limitations. The results of this research were compared with these studies 

and the research contributions discussed. The comparative discussion emphasises 

equivalence in terms of model dimension whilst simultaneously referring to the differences 

encountered in the literature. The chapter concludes with recommendations and 

suggestions for further research. 
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CHAPTER 2 

THEORETICAL CONSIDERATIONS 

 

2.1 Stationary and Nonstationary Time Ser ies 

 

The definition of stationarity is dependent on model dimension. For the purposes of this 

study the single equation definition by Enders ( )2004:53  was used to introduce concepts 

and notation and this was followed by Brockwell and Davis’s ( )2002: 224  multi-equation 

definition. The single equation model is given by letting tx , 1, 2, ...,t T= , denote the time 

series under consideration.  

 

The series, xt, is (covariance) stationary if the process has 

• a constant mean, ( ) ( )t s t sE x E x µ ≠= = ∀ , 

• a constant, finite variance, ( ) ( ) 2
t s t sVar x Var x σ ≠= = < ∞ ∀ , and 

• a finite covariance, ( ) ( ), and ,t s t s t i s i t s iCov x x Cov x xγ γ− + + −= = ∀ . 

 

Series that do not satisfy these criteria are said to be nonstationary and the following first 

order process provides an illustration of the difference between a stationary and a 

nonstationary process. Consider the first order autoregressive, ( )AR 1 , process 

0 1 1t t tx a a x ε−= + + , where 0a  is a constant term and for ease of exposition is set equal to 

zero. The process is stationary if the absolute value of the parameter 1 1a <  and is 

nonstationary if  1 1a =  (Engle & Granger, 1991; Lütkepohl, 2005). In the case of 1 1a =  

and 0 0a = , the process is referred to as a random walk without drift. 
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Figures 2.1 and 2.2 show two simulated ( )AR 1  processes. The processes are constructed 

by generating 300 observations for a series whose error terms are simulated from a 

standard normal distribution with a mean of zero and standard deviation of one. These 

observations are used in the ( )AR 1  process to obtain the 300 observations of the series tx  

with the process initialised by setting 0 0x = . To minimise the initial condition effect and 

to improve randomness, the first 200 observations were omitted and the remaining 100 

observations were used.  

 

A visual inspection of the series 10.8t t tx x ε−= +  in Figure 2.1 indicates that the process 

mean and variance seem stable implying that the process is stationary. On the contrary, the 

series 1t t tx x ε−= +  in Figure 2.2 shows a changing mean and fluctuating variance, 

indicating that the series may be nonstationary. Although a visual inspection is satisfactory 

at this illustrative stage, inferential procedures are preferred and this study applied the 

more accepted inferential methods developed by Dickey and Fuller ( )1979,1981 . 

 

Figure 2.1: ( )AR 1  plot for a stationary process  

Stationary AR(1)

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Period

V
al

u
e

xt

 

Stationary process simulated by the model 10.8t t tx x ε−= +  

 

 



Chapter 2 Theoretical Considerations 

 

 

9 

 

Figure 2.2: ( )AR 1  plot for a nonstationary process 
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Nonstationary process simulated by the model 1t t tx x ε−= +  

 

The multi-equation model is defined for a k-dimensional vector itx , where 1, 2, ...,i k=  

and 1, 2, ...,t T=  denote the vector time series under consideration. Similar to the single 

equation case, Brockwell and Davis (2002: 224) define the (covariance) stationary process 

for the multi-equation model using the vector series, itx . The vector is (covariance) 

stationary if the first and second moments are time invariant, i.e.  

• if the mean vector is independent of time, ( ) ( ) t sE E ≠= = ∀it is ix x � , and 

• the covariance matrices ( ) ( ) ( )( ) jCov Cov= = ∀it is t,si t+ j i s+jx ,x x ,x �  are independent of 

time. 

 

To describe this process, based on the Wold representation theorem, a stationary time 

series admits an infinite moving average representation which under certain conditions can 

be approximated by a finite order VAR with k variables and p lagged terms. This process, 

denoted as a k-dimensional ( )VAR p  process is a multi-equation model, which is easiest 

represented in matrix notation. The Figures 2.3, 2.4 and 2.5 illustrate three simulated 

( )3 VAR 1d −  processes where the term 3d shows that there are 3 variables in the model. 
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Following the methodology of the AR processes shown in Figures 2.1 and 2.2, the VAR 

processes are constructed by generating 300 observations from a series whose error terms 

are simulated from a standard normal distribution with a mean of zero and standard 

deviation of one. These observations are then used in the VAR processes to obtain 300 

observations of each series itx  with the process initialised by setting i0x = 0 . To minimise 

the initial condition effect and to improve randomness, the first 200 observations were 

omitted and the remaining 100 observations were used.  

 

A visual inspection of Figure 2.3 lends support to the expectation that the process is 

stationary as each individual series appears stable with constant mean and variance. The 

series is simulated such that the coefficients of the lag terms ensure that each single 

equation is stationary. 

 

Figure 2.3: ( )3 VAR 1d −  plot for a stationary process 
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On the contrary, the series in Figures 2.4 and 2.5 lend support to the expectation that the 

processes are nonstationary as each individual series appears less stable with a mean that is 
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time dependent and a variance that is time invariant. Although a visual inspection is 

satisfactory at this introductory stage, inferential procedures are preferred and this study 

applies the more universally practised inferential methods developed for unit root testing.  

 

The process modelled in Figure 2.4 is the simplest of the nonstationary processes in that 

the coefficient of the lagged term for each single equation ensures that each individual 

equation is a random walk. The coefficients chosen for the model in Figure 2.5 ensure 

interdependencies of the equations whilst in Figure 2.4 the equations are all independent. 

This interdependency is the more interesting process and is referred to as a nonstationary 

process, one whose characteristics are the emphasis of this study. A more detailed 

description, with definitions and literature references are provided elsewhere in this 

chapter. 

 

Figure 2.4: ( )3 VAR 1d −  plot for a nonstationary process 
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Figure 2.5: ( )3 VAR 1d −  plot for a nonstationary process 
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The Box-Jenkins approach to analysing nonstationary processes requires the differencing 

of the nonstationary series in order to transform the process into a stationary series and 

then follow their estimation and forecasting methodology. Although this method is still 

used, the development of the unit root theory and testing by Dickey and Fuller 

( )1979,1981  with further developments by Phillips and Perron (1988) and the subsequent 

theory of cointegration by Engle and Granger (1987) and Johansen ( )1988,1991  has meant 

that nonstationary processes can now be analysed in a cointegrated (regression) 

framework.  

 

Prior to this development the inclusion of nonstationary variables in a regression 

framework resulted in the well-documented spurious regression problem. The spurious 

regression problem, in the terminology of Granger and Newbold (1974), occurs when a 

causal relationship between nonstationary variables in a regression framework is inferred 
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whilst the error terms of the model are also nonstationary. The assumptions of the linear 

model are that the error terms are white noises with no autocorrelation. Given that the error 

terms are nonstationary implies that autocorrelation is present and the assumption is 

violated.    

 

2.2 The Analysis of Time Ser ies Data 

 

The earlier analytical time series methods focused on estimating and forecasting of the 

ARIMA models presented in Box and Jenkins (1976). In this section a brief summary of 

the methods and ideas of the ARIMA models are discussed as they provide a background 

for what is to follow. More detailed information on these models is available in several 

time series texts; for a more theoretical approach see for example Box and Jenkins (1976) 

or Kendall and Ord (1990) while for the practical aspects refer to Bowerman and 

O’Connell (1993). A more recent text by Enders (2004) provides a less dated approach to 

time series modelling whilst still retaining sufficient theoretical underpinnings to 

compliment the practical direction followed in recent years. 

 

The estimation and forecasting methods presented by Box and Jenkins (1976) require that 

the series be stationary. In cases where the series was stationary, the order of integration 

was defined as zero and denoted ( )I 0 .  Nonstationary processes were differenced until the 

resulting (differenced) series was stationary. The number of times ( )d  the series was 

differenced in order for the series to be stationary was defined as the order of integration, 

denoted as ( )I d . These concepts lead to the defining of ARIMA models. 

 

An ARIMA model consists of three components, an autoregressive ( )( )AR p  component 

with p terms, a orderthd −  of integration ( )( )I d  component, and a moving average, 

( )( )MA q  component with q terms. The model is represented as an ( )ARIMA , ,p d q  

model.  
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A typical ( )ARIMA , 0,p q  model, where the order of integration is zero, is simplified to 

an ( )ARMA ,p q  model and is given by  

 

0 1 1 2 2 1 1 2 2

autoregressivecomponents moving averagecomponents

... ...t t t p t p t t t q t q

p q

x a a x a x a x b b bε ε ε ε− − − − − −= + + + + + + + + +���������	����������
 ���������	���������
 ,  

 

a process with p lag terms and q moving average terms.  

 

This model can be written as two general sub-models, an ( )AR p  model and a ( )MA q  

model. The models illustrated in Figures 2.1 and 2.2 are representations of ( )AR 1  models 

with coefficients 0 0a =  and 1a  model dependent.  

 

Stationarity restrictions for the ( )AR 1  model are easily established. Enders 

( )2004:54 55−  derives the necessary and sufficient conditions for the stationarity ( )AR 1  

model using solutions to difference equations. This is a simple yet tedious procedure where 

the ( )AR 1  process is written as an infinite MA model which yields finite first and second 

moments provided the determinant of the coefficient of the lagged term, 1a , is less than 

one. It is less easy to establish these restrictions for higher order models with p lag terms 

but Enders ( )2004:59  shows that all f inite-order MA processes will always be stationary 

and all higher order AR processes will be stationary if the characteristic roots of the 

homogenous equation all lie inside the unit circle. This simplifies to the restriction that 

1

1 0
p

i
i

a
=

− >� . Given that this study emphasises the multi-equation ( )VAR p  framework, 

the stationarity restrictions for these cases are left for discussion later in this chapter. 

 

The analytical methodology of Box and Jenkins (1976) provides for the estimation of the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) from the 

estimated ARIMA model. Characteristics of the estimated ACF and PACF are then 

compared to the characteristics of the theoretical ACF and PACF to determine the order of 
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the model. The assumptions that the series is stationary and that the errors are normally 

distributed made in Box and Jenkins (1976), then allows for significance testing of a group 

of sample autocorrelations. The Box and Pierce (1970) Q-statistic, originally used for this 

purpose has since been surpassed by the Ljung and Box (1978) Q-statistic which is now 

used for the significance tests of sample autocorrelations. Forecasting with the estimated 

model then follows. In summary, the Box-Jenkins methodology requires the tentative 

identification of the model using sample ACFs and sample PACFs. This is followed by the 

estimation of the tentative models, then checking model parameter estimates using Q-

statistics and standard checks on the assumption of error normality and thereafter followed 

by forecasting if required.  

 

The singular most distinct drawback to the Box-Jenkins methodology is the requirement 

that the series under consideration must be stationary. This drawback has been addressed to 

a large extent by the cointegrated analytical methodology proposed by Robert F. Engle III 

and Clive W.J. Granger, Economics Nobel Laureates 2003, and extended to the multi-

equation systems developed to a large extent by Johansen (1988, 1991, 1992, 1995, 2005). 

 

2.3 Unit Root Testing 

 

The development of unit root theory, initially proposed by Dickey and Fuller (1979, 1981), 

has spawned a generation of unit root research. Unit root theory is the cornerstone to the 

methodology used for testing the stationarity or nonstationarity of a time series. Now that 

many of the procedures are standard offerings in econometric software packages, they have 

become routine tools for time series analysts.  

 

The original research emphasised inferential methods for testing of nonstationary series 

that were first order difference stationary. The test procedures were developed for models 

with and without intercept terms, trend terms, structural breaks in the series and other fixed 

regressor terms. Developing inferential procedures for higher order series and addressing 

concerns relating to the power of the original inferential tests followed this original 

research. A more recent addition to the literature (Muller & Elliot, 2003) attempts to 



Chapter 2 Theoretical Considerations 

 

 

16 

determine the optimal unit root test and asserts that there is little value in trying to 

determine other unit root test statistics as the available procedures are near optimal and 

leave little opportunity for further exploitation.  

 

Assuming this an acceptable conclusion, we applied arguably the most commonly used 

unit root test in the analysis of the data that was simulated for the theoretical models under 

consideration. The inferential procedure used in the analysis of the simulated series is the 

augmented Dickey-Fuller (ADF) unit root test. The ADF test used in this research was 

selected more for convenience than any other reason. The test is a standard routine in 

EViews 5.1, the software package used extensively throughout this study. The procedure 

followed in EViews 5.1 is described briefly as this was the routine used when performing 

some of the sequential stepwise routines of the methodology for this study.  

 

The ADF test constructs a model with higher order lag terms and tests the significance of 

the parameter estimates using a non-standard t-test. The model used for this routine is 

1 1 1 1 2 2 1 1...t t t t p t p tx x x x xα β β β ε− − − − − +∆ = + ∆ + ∆ + + ∆ + , where the t-test checks significance of 

the 1α  term. There are variations of this model which can account for a constant term 

and/or a trend term but the simulated models assessed in this study omitted constants and 

trends and thus no further explanation is provided. The interested reader may refer to 

Enders ( )2004:182  which provides details of additional Dickey-Fuller tests. 

 

2.4 Cointegration 

 

The concept of a cointegrated time series is introduced at this stage. A brief introduction to 

some of the lag length selection techniques available to practitioners is given. Included are 

some of the concerns of these applications with respect to the cointegrated model. The 

introduction is brief and the detailed theoretical concepts are left to the relevant section of 

this chapter. 

 

The argument for an error correction term in an autoregressive model by Engle and 
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Granger (1987) was the catalyst for extensive theoretical and empirical research. 

Additional theoretical developments were provided by Johansen (1988, 1991, 1992, 1995, 

2005), MacKinnon (1991, 1996) and Stock and Watson (1988, 1991, 1993), whilst 

empirical research provided phenomenal growth as illustrated by the abundance of 

literature in applied econometric time series. Acceptance of an error correction term in 

econometric modelling has meant cointegration analysis has become a standard procedure 

worldwide. Commercial econometric software packages such as EViews 5.1 and STATA 

have pre-programmed cointegration routines, these simple to use software packages have 

allowed for application-based studies to become almost routine.   

 

Empirical research began as early as the mid 1980s when Hall (1986) applied the single-

equation Engle and Granger two-step procedure to construct an aggregate wage 

determination model. Since then multi-equation models have become common as 

illustrated by the foreign exchange rate market efficiency models analysed by Kellard, 

Newbold and Rayner (2001) and Ferre and Hall (2002) and the monetary system model 

analysed by Krolzig (2003).  

 

In Southern Africa, researchers have used cointegration analysis for several studies. 

Gumede (2000) models import demand for several economic sectors, de Wet (2000) 

investigates purchasing power parity equilibrium, Fedderke and Joao (2001) examine the 

relationship between futures and spot markets, Leng (2002) revisits the futures and spot 

markets and Viljoen (2003) investigates efficiency of grain commodities. These are just a 

few of the empirical cointegrated studies published. 

 

2.5 Cointegrated Models 

 

The pre-cointegration method of analysis for nonstationary time series data required that 

one transforms the series by differencing until a stationary series resulted (Barr & Kantor, 

2002). The existence of the error correction term as shown by Engle and Granger (1987) 

has provided time series analysts with an alternative method for the analysis of these 

variables.  
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The original definition of cointegration as a single equation model was propositioned by 

Engle and Granger (1987), an approach that has subsequently been surpassed by the 

systems of equations (multi-equation) approach advocated by Johansen (1988, 1991, 

1995). This section introduces the underlying principles of cointegration and provides the 

notation that is used in the forthcoming sections.  

 

The theory of cointegration is introduced with elementary concepts and extended to the 

more advanced ideas. Consider the ( )AR 1  process, 1 1t t tx a x ε−= + , illustrated graphically 

in Figure 2.1. The process is stable if 1 1a <  and defined as stationary (Lütkepohl, 2005). 

In the case where 1 1a >  the process is explosive and considered to be of little importance 

to econometric analysis. The remaining scenario, when 1 1a =  results in the well 

documented random walk. The random walk is a nonstationary process as the process 

variance tends to infinity (Engle & Granger, 1991: 67). Models such as the random walk 

can be differenced, 1t t tx x x −∆ = − , resulting in a stationary differenced process. Processes 

that require differencing for stationarity are called nonstationary processes. A 

nonstationary process that when differenced d times results in a stationary process, is said 

to be a nonstationary process with order of integration, ( )I d . We omit further reference to 

explosive nonstationary processes as we only consider nonstationary processes that can be 

integrated into stationary processes. 

 

Engle and Granger (1987) developed the theory that there exists the special case where 

linear combinations of nonstationary processes are stationary. They defined this linear 

combination of nonstationary processes as cointegration and used the notation ( )CI ,d b , 

where d represents the order of integration of the nonstationary processes and b represents 

the number of stationary linear combinations between the nonstationary processes. 

Consider two ( )I 1  processes, x1t and x2t, if there exists a linear combination of the two 

processes such that the linear combination is ( )I 0 , the two ( )I 1  processes are considered 

to be ( )CI 1,1 .  
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In the notation of Engle and Granger (1987), they considered the vector 

( )1 2, ,...,t t ntx x x= t

tx  and defined that the n components of xt were ( )CI ,d b , if  

• all n components of xt are ( )I d , and 

• there exists a non-zero vector �  such that ( )I d b= −t
t ty � x �  with 0b > . The vector �  

is called the cointegrating vector. 

 

In conclusion it was shown that if xt is cointegrated, there exists an error correction model 

(ECM), other terms= + +t t -1 i t -i t∆x � x A ∆x � , where all terms in the ECM are ( )I d b− . 

The existence of the error correction term, t -1� x , shows that cointegrated variables are 

influenced by the extent of deviation from their long run equilibrium. 

 

To demonstrate these concepts consider the two ( )I 1  processes, x1t and x2t, which in the 

notation of Engle and Granger (1987) are represented by, 1 1 2 2t t ty x xα α= + . If yt is an ( )I 0  

process, x1t and x2t, have one cointegrating relationship with the cointegrating vector, 

( )1 2,α α= t� . It is worth noting, that the number of cointegrating relationships is always 

less than the number, n, of ( )I d  processes. In this example, there are two ( )I 1  processes, 

therefore the number of cointegrating relationships must be less than two.  

 

Figures 2.6 and 2.7 show two pairs of simulated ( )AR 1  nonstationary processes. The 

nonstationary processes were constructed by generating 300 observations and omitting the 

first 200 observations. The remaining 100 data observations were then used for modelling. 

The two processes in Figure 2.6 are both ( )I 1  and if differenced are ( )I 0 . Intuitively one 

can see that the series are nonstationary as the x1t process illustrates that the mean changes 

over time and that the x2t process illustrates a non constant variation over time. Intuitively 

the series are not cointegrated as they do not “move”  together. By construction, the series 

move in a different manner which illustrates that ( )I 1  series do not necessarily have linear 

combinations that are ( )I 0 . Rather the norm is that the linear combination of two ( )I 1  
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processes is itself ( )I 1 .  

 

Figure 2.6: Two AR plots for nonstationary processes 
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A nonstationary plot of the linear combination of 1 1 2 2t t ty x xα α= +  

 

In Figure 2.7, it appears that the two ( )I 1  processes “move”  together, as x1t decreases, so 

to does x2t and as x1t increases, so to does x2t. It seems intuitive that the two ( )I 1  processes 

are correlated implying a co-dependency.  
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Figure 2.7: Two nonstationary processes plotted for the same period 
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A stationary plot of the linear combination of 1 1 2 2t t ty x xα α= +  

 

Given that the individual processes are nonstationary and the extent of the deviation 

between the two processes is constant, the joint bivariate process is cointegrated and their 

linear combination is stable such that the combination is stationary, i.e. ( )I 0 . These plots 

are used for intuitive illustrations; inferential procedures were used for the analytical 

problems encountered in this study. 
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Despite the seminal work of Engle and Granger (1987), there are several distinct 

disadvantages to their proposal. Most notably are the choice of the independent variable in 

their two-step estimation procedure and the detection of the number of cointegrating 

equations in models with more than two variables. These shortcomings were addressed by 

Johansen (1988, 1991) and Stock and Watson (1988) who considered cointegration in a 

system of equations and developed the theory that is used in more recent empirical studies.       

 

The multi-equation theory of cointegration is introduced with elementary concepts and 

generalised to more advanced ideas. The introduction begins by considering a linear two-

dimensional VAR process with one lagged term, hereafter denoted as a ( )2 VAR 1d −  

process. Additional information of VAR processes are provided in Hamilton (1994), this 

thesis begins the discussion from the simplest model to consolidate notation and 

understanding.  

 

The process is defined as the ( )2 VAR 1d −  model and in matrix notation is written as 

t 1 t -1 tx = A x + �  where the term xt denotes a two dimensional vector with elements in two 

rows and one column defined as a (2x1) vector and represented as, 1

2

t

t

x

x

� �
= � �
� �

tx . The lagged 

term, xt-1 denotes a (2x1) vector, and is represented as, 1 1

2 1

t

t

x

x
−

−

� �
= � �
� �

t -1x . 

 

The ( )2 VAR 1d −  model is also referred to as a bivariate ( )VAR 1  model and when 

written in full is given by 
1,11 1 1 1,12 2 1 11,11 1,121 1 1 1

1,21 1,222 2 1 2 1,21 1 1 1,22 2 1 2

t t tt t t

t t t t t t

a x a xa ax x

a ax x a x a x

εε
ε ε

− −−

− − −

+ +� �� �� � � � � �
= + = � �� �� � � � � � � �+ +� � � � � �� � � �

. 

This model has the (2x2) parameter matrix 1,11 1,12

1,21 1,22

a a

a a

� �
= � �
� �

1A . 

 

Assuming that both processes, denoted by x1t and x2t, are first order difference stationary 

i.e. ( )I 1  and that they are cointegrated then, following Engle and Granger (1987), this 
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model can be represented as an ECM by subtracting 1 1

2 1

t

t

x

x
−

−

� �
� �
� �

 from both sides of the equation 

and rearranging into ECM format. All individual components of the ECM will now be 

( )I 0  processes, with a parameterised error correction term. This representation is shown 

below. 

 

Subtract 1 1

2 1

t

t

x

x
−

−

� �
� �
� �

 from both sides of the equation: 

1,11 1,121 1 1 1 1 1 1 1

1,21 1,222 2 1 2 1 2 1 2

1 0
.

0 1
t t t t t

t t t t t

a ax x x x

a ax x x x

ε
ε

− − −

− − −

� �� � � � � � � � � �� �
− = − +� �� � � � � � � � � �� �

� �� � � � � � � � � �� �
 

 

Re-arrange the RHS by grouping t -1x :   

1,11 1,121 1 1 1

1,21 1,222 2 1 2

1,11 1,12 1 1 1

1,21 1,22 2 1 2

1 0

0 1

1 0
.

0 1

t t t

t t t

t t

t t

a ax x

a ax x

a a x

a a x

ε
ε

ε
ε

−

−

−

−

� 	∆ � �� � � � � �� �
 
= − − +� �� �� � � � � �� �∆ 
 
� �� � � � � �� � �

− −� � � � � �
= − +� � � � � �− − � � � �� �

 

 

Finally simplify the representation by writing the model in matrix notation as 

( )=t 1 t -1 t t -1 t∆x - I - A x + � = � x + � , ( )where 1

�
= - I - A .  

 

The Johansen (1988) methodology considers three cases for the rank of the parameter 

matrix � . This is shown by considering the following scenarios. Consider all three simple 

cases when elements  1,12 1,21 0a a= = , then  1,111 1 1 1

1,222 2 1 2

1 0

0 1
t t t

t t t

ax x

ax x

ε
ε

−

−

−∆ � �� � � � � �
= − +� �� � � � � �−∆� � � � � �� �

. 

 

If �  has rank 0, then 1,11 1,22 1a a= = . This restriction ensures variables, x1t and x2t, in the 

system are random walk processes and are nonstationary. In this case there is no evidence 

of cointegration, the two variables are independent and no linear combination will be 

stationary.  
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This is seen by rewriting the ( )2 VAR 1d −  as 1 1 1 1

2 2 1 2

1

1
t t t

t t t

x x

x x

ε
ε

−

−

+� � � �
=� � � �+� � � �

. 

 

If �  has (full) rank 2, then both 1,11a  and 1,22 1a ≠ . Excluding explosive processes, both 1,11a  

and 1,22 1a < . These restrictions ensure that variables, x1t and x2t, in the system of equations 

are stationary. If they are stationary, they are ( )I 0  and not ( )I 1  processes and by 

definition the system of equations is not cointegrated. 

 

This is seen by rewriting the ( )2 VAR 1d −  as 

 
1,11 1 1 11,111 1 1 1

1,222 2 1 2 1,22 2 1 1

0

0
t tt t t

t t t t t

a xax x

ax x a x

εε
ε ε

−−

− −

+� �� �� � � � � �
= + = � �� �� � � � � � � �+� � � � � �� � � �

. 

 

The interesting case is if the rank of �  is between zero and two, i.e ( )rank 1=
�

, then 

there exists a linear combination of the columns and rows of �  that ensure that either 1tx∆  

or 2tx∆  can be written as a linear combination of the other. This is illustrated by 

considering the ( )2 VAR 1d −  model where 11 12

21 22

π π
π π
� �

= � �
� �

�
.  

 

Given that the rank of 1=
�

, let 11 12 21 0π π π= = = , then 22 0π ≠ . If 11 0π =  then 1,11 1a =  

and the series x1t is a random walk, ( )I 1  process. If 22 0π ≠  and explosive processes are 

excluded, then 1,22 1a < . Then x2t is a stationary process.  This would indicate that we have 

one ( )I 1  process and one ( )I 0  process and thus a system with no cointegration. Now 

consider the case when either of � 12 or � 21 or both ≠ 0. To ensure rank 1=
�

, there exists 

a1,12 or a1,21 or both ≠ 1, which ensures that there is a linear combination between x1t and 

x2t. This linear combination between x1t and x2t ensures that the ( )I 0  process of x2t is 

dominated by the ( )I 1  process, 1 1tx − , and is thus ( )I 1  and that the two ( )I 1  processes are 
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related in such a manner that their relationship results in a lower order integrated process, 

i.e. exhibits the evidence of cointegration as defined by Engle and Granger (1987). 

 

The ( )2 VAR 1d −  discussion is generalised to the multi-equation theory of cointegration 

by considering a k-dimensional VAR process with one lagged term, denoted as a ( )VAR 1  

process. The linear ( )VAR 1  model is defined as, t 1 t -1 tx = A x + �  where the term xt 

represents a k-dimensional vector for a multivariate series. In vector notation this (kx1) 

vector is represented as, ( )1 2t t ktx x x= t

tx � . The lagged term, xt-1 is also a (kx1) vector 

and is shown as the lagged term of the (kx1) vector xt. This is represented as 

( )1 1 2 1 1t t ktx x x− − −= t

t -1x � .  

 

The error term, εεεεt, is a (kx1) error vector represented as ( )1 2t t ktε ε ε= t

t
� � . The error 

term, εεεεt, is assumed to be a vector white noise process. That is, it is assumed that 

( )E =t
� 0 , the covariance matrix is finite, ( )E =t

t t ���� �  and there is no autocorrelation in 

the error structure, ( )E t s= ∀ ≠t
t s
�!� 0 . In addition, the covariance matrix "#  is, unless 

stated, always assumed to be non-singular. 

 

The ( )VAR 1  model is given by  

 

1,11 1 1 1,12 2 1 1,1 11,11 1,12 1,11 1 1 1

1,21 1,22 1,2 1,21 1 1 1,22 2 1 1,2 2 1 2

1, 1 1, 2 1, 1

t t k ktkt t t

k t tt t t

k k kkkt kt kt

a x a x a xa a ax x

a a a a x a x ax x

a a ax x

ε
ε

ε

− − −−

− −−

−

+ + +� �� � � � � �
� �� � � � � � + + +� �� � � � � �= + =
� �� � � � � �
� �� � � � � �� �

� � � � � �� �

$$
$ $

% %% % %
$

1

2 1 2

1, 1 1 1 1, 2 2 1 1, 1

.

t

k kt t

ktk t k t kk kt

x

a x a x a x

ε
ε

ε

−

− − −

� � � �
� � � �
� � � �+� � � �
� � � �� �+ + + � �� �

%%
$

 

 

This model can be written as an ECM by  
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(i) subtracting 

1 1

2 1

1

t

t

kt

x

x

x

−

−

−

� �
� �
� �
� �
� �
� �

& from both sides of the equation and rearranging: 

 

1,11 1,12 1,11 1 1 1 1 1 1

1,21 1,22 1,22 2 1 2 1 2 1

1, 1 1, 2 1,1 1 1

1 0 0

0 1 0

0 0 1

kt t t t

kt t t t

k k kkkt kt kt kt

a a ax x x x

a a ax x x x

a a ax x x x

− − −

− − −

− − −

� �� � � � � � � �� �
� �� � � � � � � �� �
� �� � � � � � � �� �− = − +
� �� � � � � � � �� �
� �� � � � � � � �� �� �

� �� � � � � � � �� �

' '
' '

( ( ( (( ( ( (
' '

1

2

t

t

kt

ε
ε

ε

� �
� �
� �
� �
� �
� �

(  

 

1,11 1,12 1,11 1 1 1

1,21 1,22 1,22 2 1 2

1, 1 1, 2 1, 1

1 0 0

0 1 0

0 0 1

kt t t

kt t t

k k kkkt kt kt

a a ax x

a a ax x

a a ax x

ε
ε

ε

−

−

−

� 	∆ � �� � � � � �� �

 
� �� � � � � �� �∆ 
 
� �� � � � � �� �= − − +� �� �� � � � � �� �
 
� �� � � � � �� � � �
 
∆ � �� � � � � �� � �

))
))

* ** ** * *
))

 

 

(ii) simplifying and writing in matrix notation: 

( )t 1 t -1 t∆x = - I - A x + +  

t t -1 t∆x = , x + -   ( )where 1

�
= - I - A . 

 

Analogous to the discussion for the bivariate process consider the rank of � . If �  has full 

rank k, then all variables in the system are stationary and no cointegration exists. If the 

rank of �  is 0, then all variables in the system are nonstationary random walks (excluding  

explosive cases) and no cointegration exists. If the rank of �  is r, where 0 r k< < , then the 

system is said to have r cointegrating vectors. 

 

The ( )VAR 1  model is easily generalized to include additional lagged terms.  Consider the 

k-dimensional VAR process with p lagged term, hereafter denoted as a ( )VAR p  process. 

The linear ( )VAR p  model is defined as, t 1 t -1 2 t -2 p t -p tx = A x + A x + + A x + �)  where the 

term xt represents a k-dimensional vector for a multivariate series. A further generalisation 

can be made by adding other deterministic terms, in this case define the linear ( )VAR p  
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model as, t 1 t -1 2 t -2 p t -p t tx = A x + A x + + A x + . D + �)  where the term Dt, is a matrix of 

deterministic terms (which could include an intercept term and/or other fixed regressors). 

The model parameters are the p (kxk) matrices A1, A2, …, Ap and ΦΦΦΦ (whose dimension 

depends on Dt) the parameter matrix of the deterministic terms.  

 

For ease of exposition this study assumed a zero intercept term and zero fixed regressor 

terms for all models. This simplif ication makes little difference to the findings of the study 

and leaves an option for further research. 

 

The k-dimensional A i matrices are represented as  

 

,11 ,12 ,11,11 1,12 1,1

,21 ,22 ,21,21 1,22 1,2

, 1 , 2 ,1, 1 1, 2 1,

, , .

p p p kk

p p p kk

p k p k p kkk k kk

a a aa a a

a a aa a a

a a aa a a

� �� �
� �� �
� �� �= =
� �� �
� �� �� � � �

� � � �

1 pA A

))
)) ) * ** *
))

 

 

The complete ( )VAR p  model is represented as, 

 

1,11 ,12 ,11,11 1,12 1,11 1 1

,21 ,22 ,2 21,21 1,22 1,22 2 1

, 1 , 2 ,1, 1 1, 2 1, 1

t pp p p kkt t

p p p k t pkt t

p k p k p kkk k kkkt kt kt p

xa a aa a ax x

a a a xa a ax x

a a aa a ax x x

−−

−−

− −

�� �� �� � � �
� �� �� � � �
� �� �� � � �= + +
� �� �� � � �
� �� �� � � �� � � �

� � � �� � � � �

))
)) ) * ** ** * *
))

1

2 .

t

t

kt

ε
ε

ε

� � �
� � � �
� � � �+� � � �
� � � �� � � ��

*  

 

This model can be written as an ECM by  

 

(i) subtracting 

1 1

2 1

1

t

t

kt

x

x

x

−

−

−

� �
� �
� �
� �
� �
� �

& from both sides of the equation and rearranging: 
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1,11 1,12 1,11 1 1 1 1 1 1

1,21 1,22 1,22 2 1 2 1 2 1

1, 1 1, 2 1,1 1 1

1 0 0

0 1 0

0 0 1

kt t t t

kt t t t

k k kkkt kt kt kt

a a ax x x x

a a ax x x x

a a ax x x x

− − −

− − −

− − −

� �� � � � � � � �� �
� �� � � � � � � �� �
� �� � � � � � � �� �− = −
� �� � � � � � � �� �
� �� � � � � � � �� �� �

� �� � � � � � � �� �

+

/ /
/ /0 0 0 00 0 0 0
/ /

1,11 ,12 ,12,11 2,12 2,1 1 2 1

,21 ,22 ,2 22,21 2,22 2,2 2 2 2

, 1 , 2 ,2, 1 2, 2 2, 2

t pp p p kk t t

p p p k t pk t t

p k p k p kkk k kk kt ktkt p

xa a aa a a x

a a a xa a a x

a a aa a a x x

ε
ε

ε

−−

−−

− −

� �� �� �� �
� �� �� � � �
� �� �� � � � + + +� �� �� � � �
� �� �� � � �� � � � � �� �� � � � � �

//
// / 0 00 0 0 00
//

� �
� �
� �
� �
� �
� �

 

 

1,11 1,12 1,11 1 1

1,21 1,22 1,22 2 1

1, 1 1, 2 1, 1

2,11 2,12 2,1

2,21 2,22 2,2

2, 1

1 0 0

0 1 0

0 0 1

kt t

kt t

k k kkkt kt

k

k

k

a a ax x

a a ax x

a a ax x

a a a

a a a

a

−

−

−

� 	∆ � �� � � �� �

 
� �� � � �� �∆ 
 
� �� � � �� �= − −� �� �� � � �� �
 
� �� � � �� � � �
 
∆ � �� � � �� � �

+

11
11

2 22 22 2
11

1
1

2 2
1,11 ,12 ,11 2 1

,21 ,22 ,2 22 2 2

, 1 , 2 ,2, 2 2, 2

t pp p p kt t

p p p k t pt t

p k p k p kkk kk kt ktkt p

xa a ax

a a a xx

a a aa a x x

ε
ε

ε

−−

−−

− −

� �� �� �� � � �
� �� �� � � � � �
� �� �� � � � � �+ + +� �� �� � � � � �
� �� �� � � � � �� � � � � �� � � �� � � � � �

1
11 2 22 22
11

 

 

(ii) simplifying and writing in matrix notation: 

( )t 1 t -1 2 t -2 p t -p t∆x = - I - A x + A x + ...+ A x + -  

 

(iii) converting the RHS terms to stationary processes by adding and subtracting A2xt-1, 

A3xt-1, …, Apxt-1 and A3xt-2, A4xt-2, …, Apxt-2 and … and Apxt-p+1: 
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( )

( )

( )

( )

t 1 t -1

2 t -1 3 t -1 4 t -1 p t -1 2 t -1 3 t -1 4 t -1 p t -1

3 t -2 4 t -2 p t -2 3 t -2 4 t -2 p t -2

p t -p+1 p t -p+1

2 t -2 3 t -3 p t -p t

∆x = - I - A x

+ A x + A x + A x + ...+ A x - A x - A x - A x - ... - A x

+ A x + A x + ...+ A x - A x - A x - ... - A x

+ ...+ A x - A x

+ A x + A x + ...+ A x + 3

 

 

(iv) grouping the RHS terms as lagged terms and simplifying: 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) .

t 1 2 3 4 p t -1

2 t -1 t -2 3 t -1 t -2 4 t -1 t -2 p t -1 t -2

3 t -2 t -3 4 t -2 t -3 p t -2 t -3

p t -p+1 t -p t

∆x = - I - A - A - A - A - ... - A x

- A x - x - A x - x - A x - x - ... - A x - x

- A x - x - A x - x - ... - A x - x

- ... - A x - x + 4

 

 

With some simple re-arranging, the ECM is written as 

� �
p p

t t -1 i t -1 i t -2 p t -p+1 t
i =2 i =3

∆x = 5 x - A ∆x - A ∆x - ... -A ∆x + 6  

( )where 1 2 p

�
= - I - A - A - ... - A . 

 

In conclusion, if a nonstationary ( )VAR p  process can be described as a stationary VEC 

model with ( )1p −  lag terms then according to the Engle and Granger (1987) 

representation theorem the ( )VAR p  process has at least one cointegrating relationship 

between the k variables.  
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The ( )VEC 1p −  model is defined as �
p

t t -1 j t - j +1 t
j=2

∆x = 7 x - 8 ∆x + 9 . Where xt-1 is the 

k dimensional−  error correction term with parameter matrix 
� �

≠� �
� �
�

p

i
i=1

:
= - I - A 0  and the 

stationary differenced lag terms parameterised by (for 2, 3, ..., )j p=�
p

j i
i =j

8 = A .  

 

Analogous to the discussion for the ( )2 VAR 1d −  process, the k-dimensional ( )VAR p  

process or alternatively the k-dimensional ( )VEC 1p −  process can follow one of three 

possible cases depending on the rank of � . If �  has full rank k, then all variables in the 

system are stationary and by definition no cointegration exists. If rank of �  is 0, then all 

variables in the system are nonstationary but independent and no cointegration exists. If 

rank of �  is r, where 0 r k< <  and all variables in the system are nonstationary with the 

same order of integration, then the system is said to have r cointegrating vectors. 

 

2.6 Lag Length Selection in Cointegrated Models 

 

To estimate the ECM for inferential and interpretive purposes requires the selection of the 

most appropriate number of differenced, lagged terms in the model. In several econometric 

models, the lag length choice can be justif ied on an economic theoretical basis but for 

those models that lack a theoretical basis, the selection of the number of differenced lag 

terms to include in the model is left to the analyst.  

 

A review of the literature reveals that a few attempts have been made to determine the 

most appropriate method for selecting the number of differenced lag terms in cointegrated 

models. The results from these attempts have yet to become established practices as they 

have been cautious in their recommendations. Rather the empirical cointegration studies 

have applied the methods previously developed for ARMA and/or VAR models. This may 

or may not be the correct approach but it is worthwhile noting that despite the volume of 
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research in this area, consensus has yet to be reached on a unanimous approach. One may 

argue that the methods developed for stationary VAR models are adequate for VEC 

models, although Qu and Perron (2006) demonstrate that the additional restriction on the 

VAR provides theoretical differences between the IC for VAR and VEC models. Examples 

of this distinct lack of consistency in the published empirical studies undertaken for 

determining the most appropriate lag length of their cointegrated model are provided next.  

 

Enders (2004) and Davidson and MacKinnon (2004) suggest that a likelihood ratio, 

2χ test be used to compare a complete model versus a restricted model. Several 

researchers have opted to use one (or more) of the information criteria identified in the 

ARMA and/or VAR modelling paradigm. Gumede (2000) analyses several single equation 

econometric models across eleven sectors. Sufficient evidence is provided to lend support 

to the claim that the variables in the models analysed are cointegrated. What is not 

provided is the reason or method followed to justify the inclusion of several lagged 

variables in the models. Other than concluding, “The significance of the coefficient of 

lagged imports basically suggests that the last period imports influence current period 

imports, which is appealing” , no theoretical or inferential reason is provided for the 

inclusion of lagged terms.  The comments, “significance of”  and “basically suggests”  could 

be interpreted as the variables coefficient is significant at some pre-determined 

significance level but how he decided to include or exclude lagged variables is unknown. 

 

In the efficient market study of Fedderke and Joao (2001), the conclusion of a single 

cointegrated equation is reached using two analytical approaches. The ECM established 

has several lag terms and the justif ication provided for the inclusion of the lagged terms is 

based on Akaike’s Information Criterion (AIC). In the efficient market study of Kellard, 

Newbold and Rayner (2001) the authors conclude that several of their models have 

cointegrated variables. The inclusion of lag terms in their models is justif ied using 

Schwarz’s Information Criterion (BIC). 

 

In a study by Leng (2002), the ECM estimated provides for three lag terms. The author 

chooses a model with three lag terms and motivates his choice based on the impact this has 

on reducing the effect of heteroscedasticity. If the author were to follow one of either the 
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Schwarz or Hannan-Quinn Information Criterion (HQIC) approaches to model selection, 

his results would have specified the inclusion of a single lag term. 

 

This inconsistency in selecting the number of differenced lag terms for inclusion in the 

final cointegrated model is an important research opportunity, one which this thesis 

attempts to address. The results of this study address this inconsistency and provide a 

platform from which researchers can apply cointegrated modelling more uniformly. 

 

2.7 Lag Length Selection Methods 

 

The selection of a set of variables to be used in any model is an occupational hazard for a 

statistician. With the phenomenal growth in computational capacity comes the opportunity 

to investigate and analyse large datasets. Data mining is a buzzword that is common in the 

statistical literature and the debate over dimensionality of a model has raged back and forth 

from the “Keep it sophisticatedly simple”  (KISS) as so elegantly put by Zellner (2003) to 

the concept of model complexity and selecting the best fitting model as argued by 

Bozdogan (2003).  

 

Model selection strategies have been used extensively for the determination of lag length 

in a regression framework. Two distinct strategies have been followed in the literature, 

model selection based on likelihood ratio tests for the comparison of a model nested within 

a model and model selection based on theoretic information criteria (IC). The likelihood 

ratio test approach is advocated in the texts of Enders (2004) and Davidson and 

MacKinnon (2004) and is generally used in conjunction with a stepwise strategy to identify 

significant variables in a model.  

 

The stepwise strategies have received considerable recognition in the literature and a scan 

in many time series and/or regression texts will convince anyone of the benefits of this 

approach, see for example, Mendenhall and Sincich (2003) or Bowerman and O’Connell 

(1993). Unfortunately though there are also many who emphasise the limitations of the 

stepwise strategies, see for example Montgomery, Peck and Vining (2001) and Bozdogan 
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(2003). Arguably the biggest concern to the stepwise strategy is the lack of any theoretical 

rationalisation for the sequence of variable selection. Burnham and Anderson 

( )2002:35 36−  argue that likelihood ratio tests based on arbitrary (subjective) significance 

levels are problematic if many tests are to be made and perhaps more importantly 

likelihood ratio tests of models which are not nested within a model are not possible. In 

light of the limitations of the stepwise/likelihood approach it is worthwhile reconsidering 

the IC approach developed by Akaike (1973).  The IC approach does not rely on some 

predefined significance level, nor does it matter whether or not a model is nested within 

another. The logic is to fit several competing models to a dataset and the IC will select the 

model which fits the data best. 

 

Information theoretic criteria have come a long way since Akaike first used the 

relationship between the expected log-likelihood of a model and the sufficiency theorem of 

Kullback-Leibler to derive the well known information criterion, commonly referred to as 

AIC. The Akaike logic to IC has provided the inspiration for the developments of several 

model selection criteria. The IC framework has developed along two approaches; one that 

a true model exists and the IC attempts to determine the true model. These IC are 

asymptotically consistent, assume that the true model exists and is included in the group of 

candidate models assessed. The second method develops IC that are asymptotically 

efficient and assumes that the true model does not exist but identif ies the most 

parsimonious model from the group of candidate models assessed. Akaike’s was the latter 

of the two and was motivated by the desire to develop a measure that could be used to 

compare models of different dimensions trading off the fit of the model with respect to the 

number of parameters included in the model. 

 

This study assesses the ability to select the correct lag structure of a cointegrated model 

using thirteen different criteria. These criteria have been developed to ensure they are 

either efficient or consistent estimators for model selection. The criteria used in this study 

are listed in Table 2.1. All criteria notation and references follow in Section 2.8 under the 

relevant IC. As an example, the reference to the term ( )1p rτ −  for criterion 2 is found in 

Section 2.8 under criterion MAIC (on page 53). 
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Criterion # IC definition in ( )VEC 1p −  framework 

1 ( ) ( )2
VEC -1 1ˆAIC ln 2p k p

T

−
= +
;

 

2 ( ) ( )2
1QP-VEC -1

2 ( ) 1
ˆMAIC ln .

pp
r k p

T

τ −� �+ −� �= Σ +  

3 ( ) ( )( )
( )( )( )

2
HT-VEC -1

1
ˆAICC ln .

1 1
p

kT k p

T k p k

+ −
= +

− − + +
;

 

4 
( )

( )( )( )
( ) ( )2

SR-VEC -1 11ˆMAICC ln
1 1

p p rk pkT

T TT k p k

τ −−
= + + +

− − + +
<

 

5 
( ) ( )

( )( )( )
2

VEC -1

2

2 1 2ˆAICCBD ln
1 2

p k p

T k p

− +
= +

− − +
=

 

6 ( ) ( )2
VEC -1 1 lnˆBIC lnp k p T

T

−
= +
=

 

7 
( )2

VEC( 1) 2 1 lnlnˆHQIC lnp k p T

T
− −

= Σ +  

8 
( ) ( )

( )( )
2

VEC( 1) 2 1 ln lnˆHQICC ln
1 1

p k p T

T k p k
− −

= Σ +
− − + +

 

9 
( ) ( )( )

2
VEC( 1) 1ˆLCIC ln ln 2lnln / 2p k p

T T
T

− −
= Σ + +  

10 ( ) ( )
( )

VEC( 1) 1ˆln FPE ln ln
1

p T k p
k

T k p
− � �+ −

= Σ + � �� �− −� �
 

11 
( ) ( )( )VEC 1 2 1 1ˆShibIC ln ln 1p k p

k
T

−
� �− +

= Σ + +� �
� �
� �

 

12 ( ) ( )( )2
1QP-VEC -1
( ) 1 ln

ˆMBIC ln
pp

r k p T

T

τ − + −
= Σ +  

13 ( ) ( )( ) ( )2
1QP-VEC 1

2 ( ) 1 ln ln
ˆMHQIC ln

pp
r k p T

T

τ −− + −
= Σ +  

Table 2.1: Complete list of criteria assessed in this study 
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Akaike’s criterion has been derived in a multi-equation framework, and then bias corrected 

to improve capability for small sample cases (Hurvich & Tsai, 1993). This was extended to 

the case of error restricted nonstationary VAR models (Qu & Perron, 2006) and in this 

study corrected to improve selection for small samples. To provide a more detailed 

comparative study, several other criteria used elsewhere in the literature were included for 

assessment. 

 

The majority of the criteria extracted from the literature have been defined in terms of k-

dimensional ( )VAR p  processes. This study restricts the ( )VAR p  process to a ( )1p −  

error restricted process denoted as ( )VEC 1p − . The criteria evaluated are therefore 

assessed given that the VEC model has ( )1p −  lag terms rather than the traditional p lag 

terms in a VAR framework.  

 

An additional problem with model selection in a VAR framework was that the number of 

observations changed as the lag structure changed. This problem was addressed by Ng and 

Perron (2005) who emphasised the benefits of holding the sample size fixed. This was 

particularly important in cases where the number of observations changed subject to the 

number of lag terms included in a model. The best results for IC model selection were 

obtained when the number of observations for each model were kept the same. This result 

was supported by Qu and Perron (2006) and thus the same approach was adopted in this 

study. In all cases, the number of observations used in the assessment of the IC is denoted 

by T whilst the actual number of observations available (although not always used) is N 

with T N≤ . 

 

Most of the criteria given in the forthcoming section were developed or modified assuming 

a multi-equation, ( )VARkd p−  time series framework. The criteria were developed over 

the last decade or two and in many cases applied to simulation and/or empirical studies. In 

several cases the IC had been derived by the author(s) and tested individually. Several 

attempts to compare some of the well known IC simultaneously have been made and these 

studies are discussed both in the literature review and compared to the simulation results 
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of this study. Simulation exercises have been done in several frameworks, linear 

regression, ARMA time series, multi-equation VAR models and recently in a VEC system 

of equations.  

 

The exercises most relevant to this study are the studies by Lütkepohl (1985), Hurvich and 

Tsai (1993), Koreisha and Pukkila (1993), Gonzalo and Pitarakis (1998, 2002), Kadilar and 

Erdemir (2002), and Qu and Perron (2006, 2007). The studies of Ng and Perron (2001, 

2005), Ivanov and Kilian (2005), Brüggemann, Lütkepohl and Saikkonen (2006) and 

Baltagi and Wang (2007) also have relevance. Selected results of published studies are 

tabulated in Chapter 6. The summarised results are used as a reference point to compare 

the results of this study. 

 

After the theoretical IC publications in the 1970s and early 1980s, Lütkepohl (1985) 

undertook the first VAR modelled Monte Carlo experimental study to compare criteria 

performances. The study was used to determine how frequently a criterion chose the 

correct theoretical bivariate and trivariate stationary VAR models from data simulated with 

1000  replications per model. The results of the study showed that the likelihood ratio tests 

performed poorly; in particular for small sample sizes overestimating the VAR order was 

the norm. The Lütkepohl (1985) study supported a preference for an IC analytical 

approach, an additional motivation for the methodology followed in this study. From a 

results perspective, the IC of Schwarz and Hannan-Quinn produced the better results, 

followed by AIC and Akaike’s final prediction error (FPE). Of particular interest to the 

current study was the observation that for the ( )3 VAR 1d −  model, the FPE outperformed 

AIC for the smaller sample sizes. It was concluded that as the sample size increased the 

performances of the IC improved and that the differences in performances between IC 

decreased. Lütkepohl’s (1985) conclusions were reached after the evaluation results of a 

( )VAR 1  model were completed. Numerical results for this model were not reported but 

criteria were ranked according to performance. The best performer was BIC followed by 

HQIC, FPE, AIC and finally ShibIC.  

 

The simulation study by Koreisha and Pukkila (1993) has relevance to this research. In the 



Chapter 2 Theoretical Considerations 

 

 

37 

study, extensive assessments of both ( )3 VAR 1d −  and ( )3 VAR 2d −  stationary models 

were undertaken. Sample sizes for the simulation were 50T =  and 100T = , whilst two 

alternative model parameterisations were used. The study assessed the selection 

performance of AIC, BIC and HQIC. The results for the ( )3 VAR 1d −  model showed that 

as the sample size increased the performances of all three criteria improved, a finding 

consistent with Lütkepohl (1985). Also noted was the influence of model parameter on 

criteria performance. As an illustration, the selection performance of BIC for the 

( )3 VAR 1d −  model with 50T =  was 60% for the first parameterisation and 100% for the 

second parameterisation. Koreisha and Pukkila (1993) were conservative in their model 

selection recommendations. Rather than advocate a single criterion, they noted that 

increasing the sample sized improved selection performances, especially those of BIC and 

HQIC. In addition they cautioned against the advocacy of the asymptotic property of 

consistency. Interpretations of these comments could imply a resistance to the consistent 

estimators of BIC and HQIC. Koreisha and Pukkila (1993) placed emphasis on how 

dependent criteria performances were on the number of variables in the model, the upper 

limit of the lag structure chosen for assessment and the number of non zero coefficient 

elements in the model. Summarised results from the Koreisha and Pukkila (1993) study are 

given in Chapter 6 in order to compare with the results of the current study. 

 

The theoretical derivations of a small sample bias correction for AIC have been considered 

to a large extent by Chih-Ling Tsai and other co-authors. Hurvich and Tsai (1989) 

proposed a small sample less bias corrected Akaike information criterion (AICC) for linear 

regression and ARMA time series models. A small simulation exercise of 100 replications 

was used to compare AICC with amongst others AIC, FPE, BIC and HQIC. The results 

from the study reported that AICC outperformed the other IC for sample sizes of 10T =  

and 20T = . The follow-up study reported by Hurvich, Shumway and Tsai (1990) 

proposed an unbiased small sample correction for ARMA time series models. The ( )AR 2  

simulation study undertaken provided satisfactory evidence to the researchers that AICC 

was a better performer than both AIC and BIC. This criterion was extended to consider 

( )VAR p  processes when Hurvich and Tsai (1993) reported the results of 100 replication 
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simulation exercises for stationary ( )2 VAR 1d −  and ( )2 VAR 2d −  models. The sample 

size for both simulated VAR models was 40T =  with a maximum lag length cutoff of six. 

In addition to comparing AICC with AIC and BIC, they also evaluated the performance of 

the criterion ( )AICCBD  proposed by Brockwell and Davis (1991, 432).  The results from 

the study reported that AICC and AICCBD outperformed both AIC and BIC. These results 

have implications for the current research as a small sample bias corrected criterion in a 

VEC framework is suggested using the arguments of Hurvich and Tsai (1993).  

 

Additional developments to AICC have been covered in a multivariate regression 

framework (Bedrick & Tsai, 1994), a quasi-likelihood model (Hurvich & Tsai, 1995) and 

semiparametric models (Simonoff &  Tsai, 1999). The first two studies compared several 

criteria and reported results that showed that AICC outperformed the more commonly used 

criteria. In the quasi-likelihood study Hurvich and Tsai (1995) used the AICC for a logistic 

regression model. The practical illustration used in the study considered data from the 

space shuttle Challenger prior to the 1986 accident and showed that AICC, unlike AIC, 

selected the same significant variables in the model as in the detailed findings of Dalal, 

Fowlkes and Hoadley (1989). The analysis used 23 observations, a small sample. The third 

study considered AICC for the modelling of practical problems. Examples modelled 

included the ranking of academic institutions and a mileage versus vehicle horsepower 

exercise. The Simonoff and Tsai (1999) study was a practical exercise, illustrating in a 

semiparametric setting, the use of AICC rather than a comparative study. 

 

Whilst evaluating a criterion based alternative to Johansen’s cointegration likelihood ratio 

test, Gonzalo and Pitarakis (1998) simultaneously assessed model selection performances 

of four criteria. They proposed a new criterion, a linear combination of Schwarz’s and 

Hannan-Quinn’s criteria (LCIC) and evaluated this criterion with the selection 

performances of AIC, BIC and HQIC. The simulation exercise used a  ( )3 VAR 1d −  

model with sample sizes of 150, 250, ..., 650T =  and several parameter alternatives. The 

parameter values ranged between 0.60 and 1.00 both inclusive. The parameter range 

implied that both stationary and nonstationary processes for the ( )3 VAR 1d −  model were 

evaluated. The results of the simulation exercise provided the researchers with evidence 



Chapter 2 Theoretical Considerations 

 

 

39 

supporting the use of BIC as the preferred model selector with LCIC and HQIC as 

alternatives. There was less support for the use of AIC which was reported as having 

overfitted the model more frequently than the other IC. To compare their results with the  

current study, summarised results from the Gonzalo and Pitarakis (1998) study are given in  

Chapter 6. 

 

Gonzalo and Pitarakis (2002) continued the research concentrating more on model 

selection rather than cointegration test comparisons. Unlike the previous study, the 

conclusions reached were noticeably different. Given that the primary reason for the 

follow-up study was assessment of criteria performances for model selection the study was 

more comprehensive. The study considered multi-equation models of dimensions up to and 

including 10 variables. Only three criteria were assessed; a noticeable omission was any 

reference to LCIC, the criterion defined in the 1998 study. Gonzalo and Pitarakis (2002) 

only considered the performances of AIC, BIC and HQIC in a VAR framework. Of 

particular relevance to the current research were the performance capabilities of the IC for 

the stationary ( )3 VAR 2d −  simulated model. The results for this model strongly 

advocated the use of AIC as the preferred model selector. In general the results showed 

that both BIC and HQIC were good selectors for ( )VAR 1  models but poor selectors for 

models with more than one lag term. It was these observations that presumably lead 

Gonzalo and Pitarakis (2002) to reconsider the recommendations of the 1998 study. The 

conclusions reached were that as the models’  dimensions increased in lag structure, the 

best selector was AIC with both BIC and HQIC underfitting. The exception to this was the 

( )VAR 1  model but collectively AIC was the best performer. The summarised results from 

the Gonzalo and Pitarakis (2002) study are given in Chapter 6 in order to compare with 

the results of the current study.  

 

An assessment of criteria performance for VAR and seasonal VAR models was undertaken 

by Kadilar and Erdemir (2002). Four criteria, AIC, BIC, HQIC and Shibata’s criterion 

( )ShibIC  were evaluated for simulated models with a sample sizes of 100T = . The 

exercise included assessment of 2 and 3d d  VAR models with either one or two lag terms. 
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The study followed the parameterisation approach of Koreisha and Pukkila (1993) and the 

results provided support for the choice of BIC as the preferred model selector. This 

recommendation seemed to contradict the comments of Koreisha and Pukkila (1993) 

which were more conservative in their recommendations. The researchers concluded by 

ranking the criteria in preference order, BIC followed by HQIC, AIC and lastly ShibIC. 

 

In an interesting study by Ivanov and Kilian (2005), empirical data were obtained from 

various sources and used to construct simulated series. The primary focus of the study was 

lag order selection for impulse response analysis whilst criteria performance was of 

secondary importance. The concept was interesting in that they took the empirical data and 

fitted the original model proposed by the data sources. The estimated parameters were then 

used as “ theoretical”  parameters in a Monte Carlo simulation. The IC were then evaluated 

to determine their ability to select the model from which the data were simulated. The 

study was extensive, monthly VAR models with sample sizes of 

( )240, 300, 360, 480, 600T =  were fitted, quarterly VAR models with sample sizes 

( )80,100,120,160, 200T =  were fitted as were quarterly VEC models. Three criteria AIC, 

BIC and HQIC were assessed simultaneously using likelihood sequential testing 

procedures.  

 

Several findings were reported, in particular, the IC outperformed the sequential testing 

procedures, a result consistent with Lütkepohl (1985). Contrasting performance results for 

the criteria were reported. AIC performed better that SIC and HQIC for the monthly VAR 

processes, SIC provided the best performance for quarterly VAR processes with sample 

sizes 120T ≤ whilst HQIC performed better for 120T > . This inconsistency in 

performance capability illustrates the difficulties analysts can expect when trying to 

determine the lag structure for multi-equation modelling. 

 

Two cautionary notes were mentioned, the results showed that all criteria underfitted the 

model, most notably for 240T =  and that their results were limited by the simulation 

design used. Of some concern was the use of the data from some of the empirical studies 

which originally fitted particularly large models. As an example, it was stated that Leeper 
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(1997) used a six-dimensional model with eighteen lags. Assuming all parameters are 

fitted, this would require a minimum of 2 26 18 648k p = × =  estimated parameters, clearly 

not a parsimonious model. In conclusion, the study’s intention was not to see which IC 

selected the lag length correctly, rather it was used to provide support for impulse response 

analysis and the conclusions reached were an aside issue. 

 

Studies by Qu and Perron (2006, 2007) extended the modified information criteria (MIC)  

work of Ng and Perron (2001) to the multivariate framework. They considered vector 

autoregressive moving average (VARMA) processes and derived a modified Akaike 

information criteria (MAIC) which included an additional term in the penalty function. 

They justif ied the use of the statistic by motivating that the model was a constrained VAR 

with an error correction term. They cautioned that the use was restricted to cointegrated 

models and was quite likely inappropriate in other scenarios. The results of a simulation 

study for a bivariate model provided evidence that the MAIC performed the same as or 

better than both AIC and BIC. The results indicated that both AIC and BIC underfitted, 

particularly when a negative MA component was included in the model. The study 

concluded with a tri-variate VARMA design based on an empirical study by Yap and 

Reinsel (1995). The results obtained supported the claim that MAIC outperformed AIC 

and BIC. To compare their results with the current study, summarised results from the Qu 

and Perron (2006) study are give in Chapter 6. 

 

It is worth noting that simulation based model selection is not restricted to VAR models, 

there have been several recent publications of model selection using simulation exercises 

in different frameworks. Included are a select few of the publications reviewed and the 

context of the study.  

 

In a theoretical study, Ng and Perron (2001) considered lag length selection for unit root 

tests. They argued that the existing IC methods underfitted AR and MA models when the 

roots of the models were close to unity. This adversely affected the performance of 

existing unit root tests concluding with more rejections of the unit root hypotheses. They 

derived a class of MIC which included an additional penalty term for the well known AIC 

and BIC. Their empirical analysis concluded that the MIC performed better than the well 
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known criteria but cautioned that these results were only useful in the context of unit root 

testing and unsuitable for other scenarios.  

 

In an AR study by Liew (2004), the performances of five IC were investigated. The study 

considered an ( )AR 4  process with sample sizes ( )30, 60,120, 240, 480, 960T =  and 

concluded that for lower sample sizes, i.e. 30T =  and 60T = , AIC and FPE outperformed 

the other criteria evaluated. For larger samples, HQIC was the best performer and that 

overfitting the model was negligible with AIC and FPE having the least probability of 

under estimation amongst all criteria compared. The limitations of this study were that the 

conclusions were based on comparisons generated from 1000  replications per model and 

the frequency of correct decisions for the IC were similar, for example despite the claim 

that AIC outperformed the other criteria at smaller T, the frequency of correct decisions for 

all IC fell between 53% and 57%. This range was arguably not big enough to justify fully a 

criterion preference. 

 

Ng and Perron (2005) augmented the 2001 study with an extensive simulation exercise to 

compare stationary ( )ARMA ,p q  and ( )ARCH p  processes. The study analysed the 

performances of the Akaike and the Schwarz criteria to assess how fixing the number of 

observations influenced their ability. The study used 10 variants of the IC published in 

different sources. As an example, the penalty function of the AIC in some texts was 

defined in relation to the total sample size ( )N , whilst in other sources it was defined in 

relation to the size of the data used for the fitted model ( )T . Ng and Perron’s (2005) study 

was comprehensive, 5000  replications were simulated per model for sample sizes 

( )100, 250, 500,1000T =  and twelve AR processes of lag lengths ( )0,1, 2, 3, 4, 8p = , 

eight truncated ( )ARMA 1,1  processes and five ARCH processes were assessed. They 

concluded that the AIC overfitted low order AR models whilst the BIC when compared to 

AIC underfitted higher order models. In conclusion, researchers where cautioned against 

using IC unless the criteria was defined for the model evaluated. They concluded that the 

formulation of the criterion affected the IC performance and urged that the effective 

number of observations be fixed when comparing models. This current study accepts this 
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recommendation and fixes the effective number of observations ( )T  whilst evaluating the 

simulation datasets. 

 

Hafidi and Mkhadri (2006) considered a bias correction for AIC in univariate AR, linear 

regression and multivariate linear regression models. The criterion defined as a biased 

corrected AIC (KIC) was examined in a simulation exercise and the results showed that 

KIC outperformed AIC, BIC and HQIC. The simulation exercise by Hafidi and Mkhadri 

(2006) was extensive and included linear regression models with 20 and 30T = , 

multivariate regression models with 20 and 35T =  and ( )AR 2  models with 

23and 35T = .  

 

It is also worth noting that model selection is not the only area of recent research for VAR 

modelling. There have been recent publications of alternative research investigations 

undertaken, included is a review of three recent publications and the context of the study.  

 

Residual analysis is a diagnostic tool analysts use to check the assumptions of the model. 

In a VEC framework Brüggemann et al. (2006) derive the asymptotic distribution of a 

Lagrange multiplier (LM) residual autocorrelation test. A simulation study with a 

3 VECd −  model with one cointegration relationship was used to illustrate the 

effectiveness of the LM test as compared to the usual portmanteau test. Baltagi and Wang 

(2007) revisit the proposal of an IC approach for the testing of cointegration rank. Four 

criteria, AIC, BIC, HQIC and a posterior information criterion (PIC) were used in the 

assessment of 165 datasets. Although far from conclusive, the results of the criteria based 

method were promising when compared to the Johansen trace statistic. Agreements in 

cointegration specifications between IC and the trace statistic ranged between 

23% and 71%.  

 

Typically bootstrap methods are used to find interval estimates for test statistics, however 

Demiralp, Hoover and Perez (2008) evaluated a bootstrap method for identifying a VAR. 

A simulation exercise was used to illustrate the successfulness of the method. This brief 

review of recent publications illustrates opportunities available for research in a VAR 
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equation system. 

 

In summary, the majority of studies have considered model selection for stationary VAR 

systems. Limited work on VEC modelling has been done by Brüggemann (2004) who 

considers model reduction techniques using sequential stepwise routines. The reference to 

limited work is based on the reason that the Brüggemann (2004) work is primarily 

targeting stationary VAR models with limited extension to the VEC framework. The most 

relevant and current research is the work of Qu and Perron (2006) who consider the 

asymptotic properties of a modified AIC which includes a penalty term for the error 

correction restriction. This study extends on their work whilst simultaneously 

incorporating simulation design concepts from Koreisha and Pukkila (1993) and Hurvich 

and Tsai (1993). 

 

 

Figure 2.8: Flowchart of IC developments 

 

 

This thesis considers IC model selection methods for nonstationary cointegrated models 

defined in a VEC framework. This research study extends the research of Hurvich and Tsai 

(1993) and Qu and Perron (2006) in that the proposed criterion for VEC models is a 

derivative of the two methodologies. The flowchart in Figure2.8 provides a schematic of 
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where these criteria fit in relation to a time frame. The yellow oval represents the criterion 

which is a combination of Hurvich and Tsai’s (1993) small sample bias corrected criterion 

and Qu and Perron’s (2006) modified criterion. 

 

2.8 Information Cr iter ia Used in Present Study 

 

The thirteen criteria defined in Table 2.1 will now be discussed. This section provides the 

details of the criteria with selected derivations in a VEC system of equations. Notation is 

consistent with notation used previously in this study with the k-dimensional ( )VAR p  

model defined as t 1 t -1 2 t -2 p t -p tx = A x + A x + + A x + >) , where the vector xt denotes a 

( )VARkd - p  process with zero mean. The notation is simplif ied by writing the model as 

1

p

i =

= +�t i t -i tx A x > . When cointegration exists within the system of equations, this model is 

a ( )VEC 1kd - p−  process given in ECM form as 1

p

i=2
+�t t -1 i t -i t∆x = ? x - @ ∆x + > . 

 

Suppose the VAR process ( ),t
t 1t 2t ktx = x ,x , xA  generates a set of data with N observations 

for each of the k variables of the model. The N observations may be written as a ( )xk N  

observation matrix which is a function of the ( )xk k  parameter matrices, A i and their 

respective ( )xk N  lag matrices xt-i for 1,2, ...,i p= . The k first order lag variables are 

represented as ( )1 1 1, , ,− − −
t
t -1 1t 2t ktx = x x xA , with the k ith order lag variable as 

( )t
t -i 1t -i 2t -i kt -ix = x ,x , ,xA  and the k pth order lag variables as ( ), , ,p p p− − −

t
t -p 1t 2t ktx = x x x) . 

Given that a process xt generates a set of data with N observations starting from period 1 to 

period N, the process xt-1 generates a set of N observations starting from period 0 to period 

1N −  and similarly the process xt-p generates a set of N observations starting from period 

1p− +  to period T N p= − .  

 

Hurvich and Tsai (1993) assumed that all pre-sample values are zero, a simplifying 
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assumption first suggested by Akaike (1974). In practice, this assumption is easy to 

implement as the pre-sample values necessary for the p lagged terms are usually obtained 

by omitting the first p observations from itx  in order to obtain T numerical values for the 

it px −  observations. 

 

The derivations that follow use the notation that all IC are defined with T as the fixed 

number of observations, k as the number of variables and p as the number of lagged 

dependent terms in the VAR model. A strong assumption for all criteria derived is that the 

true unknown model is nested within the set of approximating models. This assumption 

means that the true model has a lag length ( )0p  no greater than the maximum lag length 

( )p  of the approximating models, i.e. that 0p p≥ . The criteria are used as a measure of 

the goodness of fit of the model similar to the well known χ2 goodness of fit methods used 

for contingency tables. The unbiased estimated residual covariance matrix is defined as ΣB  
which is adjusted for degrees of freedom.  

 

Cr iter ion 1: Akaike’s Information Cr iter ion (AIC) 

 

Akaike uses a second order Taylor expansion as an approximately unbiased estimator of 

the Kullback-Leibler distance (Hurvich & Tsai, 1993).  The efficiency methodology 

proposed by Akaike (1974) was used for selecting the true model from several competing 

models by selecting the model which minimises the estimated criterion value. A useful 

derivation of AIC is given by Burnham and Anderson (2002: 362 - 368) but we follow the 

derivation of Qu and Perron (2006) which is specific to VEC models whilst simultaneously 

drawing on theoretical comments from Cavanaugh (1997). In most cases the derivation 

differs from Qu and Perron (2006) only in notation to ensure continuity of notation with 

this study. The notational differences are noticeable in that Qu and Perron (2006) defined a 

( )VEC p  model rather than constructing the ECM from a ( )VAR p .  

 

This proof considers the ( )VAR p  model as the ( )VEC 1p −  model, 
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1
2

+�
p

t t -1 i t -i t
i =

∆x = ? x - @ ∆x + > . Qu and Perron (2006) reparameterise the model as the 

multivariate linear model and then derive the expected Kullback-Leibler distance of the 

true unknown model.  

 

Der ivation of AIC 

 

Step 1: Define the linear transformation 

 

Let ( )=
tt t t

t t -1 t -2 t -p+1w ∆x ,∆x , ,∆xC  and - ( )= 2 3 p@D@ , @ , , @C  where wt is a ( )( )1 x1k p−  

vector and E  is a ( )( )x 1k k p −  matrix, then the ( )VEC 1p −  is equivalent to 

= + +t t -1 t t∆x � x E w �  where xt-1 is the nonstationary I(1) process, and both t∆x  and wt 

are stationary I(0) processes. Qu and Perron (2006) projected xt-1 onto the range space of 

wt by defining the terms *
t -1x  and *E  as 

1

2 2

T T

s s

−

= =

� �= − � �
� �

� �* t t
t -1 t -1 s-1 s s s tx x x w w w w  and 

1

2 2

T T

t t

−

= =

� �= + � �
� �

� �* t t
t -1 t t t@D@F? x w w w . The ( )VEC 1p −  model is simplif ied with orthogonal 

regressors *
t -1x  and wt as = + +* *

t t -1 t t∆x ? x @ w > . The dimensions of the matrix *E  are 

( )( )x 1k k p −  whilst the dimensions of the vector *
t -1x  are ( )x1k . 

 

Reparameterising the ( )VEC 1p −  model with ( )= *G ? , @ , ( )=
HJI

,K  and 

( )( ),=
tt* t

t -1 t -1 tz x w  gives t -1 t -1 t∆x = L z + � . The dimension of the parameter matrix L  is 

( )( )x 1k k p −  whilst the dimension of the data vector zt-1 is ( )( )1 x1k p− .  Given this 

multivariate linear model the log likelihood function of the ( )VEC 1p −  model is 

( ) ( ) ( ) ( )
2

1
ln ; ln 2 ln

2 2 2

T

t

Tk T
L π

=
= − − − �

t -1
t t -1 t t -1

M
x

=
∆x -
G
z
=

∆x -
G
z  where ( )=

HJI
,K . 
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The model selection choice is based on the distance between two models, the true 

unknown model and the approximating model, the smaller the distance, the better the 

model fit, a perfect fit should yield a distance of zero. This distance, referred to as the 

Kullback-Leibler distance, is defined as ( ) ( ){ }0KLd E l l= −0

M
; x
M
; x  where ( )l 0

H
; x  is the 

likelihood function of the true unknown model, ( )l
H
; x  is the likelihood function of the 

approximating model and E0 is the expectation of the function taken with respect to the 

true unknown model. The first term is a constant for all model comparisons and thus 

minimising KLd is equivalent to maximising ( ){ }0 .E l
M
; x  

 

In reality the likelihood of the approximating model is never known but can be estimated 

for the likelihood function for a set of estimated parameters. The parameters are estimated 

using maximum likelihood which provides us with a set of estimated likelihood functions 

( ) ˆl N
=
NM ; x . Therefore the model selection choice becomes a problem of comparing the 

distance between the true unknown model and the estimated approximating model given 

by ( ) ( ){ } ( ){ }ˆ ˆ0 0KLd E l l E l≈ − =0 O = O O = O
P

; x
P
; x

P
; x . AIC is defined as a quantity, whose 

expectation is twice the function to be minimised, i.e. 

( ) ( ){ } ( )ˆ0 0 0AIC 2 1 .E E E l o� �= +
� �

Q
=
QH ; x  The likelihood function in its natural log form is 

used to simplify the equations that follow. 

 

Step 2: Derivation of the IC 

 

( ){ }

( ){ } ( ){ } ( ){ } ( ){ }{ } ( ){ }

0 0

ˆ0 0 0 0 0 0

( ) ( ) ( )

;

ˆ ˆ; ; ; ; ; .
i ii iii

E E l

E l E l E l E E l E l

� �
� �

� � � �= + − + −� � � �� � � �

R
=
R

0 0R
=
R

S
x

S
x

S
x

S
x

S
x

S
x

T
 

 

Now consider the results of a Taylor expansion around ˆU  for term (ii) of AIC. 
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The orthogonality of and *
t t -1w x  simplifies the expression by ensuring the middle term 

( )*
t t -1w x  is zero. The first order linear term is zero and the remainder term is negligible for 

large T allowing for the approximation above. The expectation of term (iv) converges to a 

central chi-squared distributed random variable with ( )2 1k p −  degrees of freedom, since 

tw  is stationary, i.e. ( ) ( ) ( )2
0

ˆ ˆ ˆlim 1
T

T
t=2

E tr k p
→∞

� 	� �� �
 
 = −� �� �� �
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w w
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. We 

consider term (v) later for now consider the expectation of term (iii) of the AIC.  

 

Consider the results of a Taylor expansion around ˆU  for term (iii) of AIC. 
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Again, the orthogonality of and *
t t -1w x  simplifies the expression by ensuring the middle 

term ( )*
t t -1w x  is zero. The first order linear term is zero and the remainder term is 

negligible for large T allowing for the approximation above. The expectation of term (vi) 

converges to a central chi-squared distributed random variable with ( )2 1k p −  degrees of 

freedom, since tw  is stationary, i.e.  

( ) ( ) ( )2
0 0

2

ˆ ˆlim 1
T

T
t

E tr E k p
→∞

=

� 	� �� �� 	
 
 = −� �� � � �� �� � �� �
 
� � �
�

t
-1 * * t * *
0 0 t t 0

gih
-
h

w w
h

-
h

.  

 

Now consider terms (v) the remainder from term (ii) and term (vii) the remainder from 

term (iii).  Let A be the sum of terms given by, 

 

( ) ( )

( ) ( )
( )

0

( )

ˆ ˆ ˆ

ˆ ˆ .

T

t= 2
v

T

t=2

vii

tr

tr E

� �� �= � �� �
� �� �

� �� �� 	+ � �� �� �� � �� �� �

�

�

t
-1 * * t

0 t -1 t -1 0

t
-1 * * t
0 0 t -1 t -1 0

A jik - k x x k - k

jik - k x x k - k
 

The process *
t -1x  is a sum of two components, the nonstationary xt-1 component and the 

stationary wt component. The nonstationary component dominates the stationary 

component (Engle & Granger, 1991: 6) hence  *
t -1x  is considered a nonstationary process. 

The 2

2

lim
T

T
t

T−

→∞ =
� * * t

t -1 t -1x x  is a random variable independent of the lag length ( )1p −  and thus 

the sum of the expectation of terms (v) and (vii) is a function of a vector Wiener process 

and is a constant. Therefore we have ( ) ( ){ } ( )2
0 0

ˆAIC 2 2 1E E l C k p≈ − − −
l
; y  which 

requires that the quantity to minimise is given as 
( )2 1ˆAIC ln 2

k p

T

−
= +j . 

 

AIC has been used extensively in both simulation and empirical studies. AIC was initially 

used in single equation regression and time series models but has been extended to 

multivariate time series models by Lütkepohl (1985, 2005), Brockwell and Davis (2002), 



Chapter 2 Theoretical Considerations 

 

 

51 

Gonzalo and Pitarakis (2002), Brüggemann (2004), Ng and Perron (2005), Ivanov and 

Kilian (2005) and Qu and Perron (2006, 2007). 

 

Cr iter ion 2: Qu and Perron’s Modified Akaike’s Information Cr iter ion 

( )MAIC  

 

The disadvantage of the derivation of AIC is the asymptotic limit of the *
t -1x  nonstationary 

dominated process. Qu and Perron (2006, 2007) emphasise the finite sample dependency 

of term A (defined in criterion 1) on the lag structure of the model. Rather than accepting 

the asymptotic limit approximation, they partition the *
t -1x  nonstationary dominated 

process into the stationary and nonstationary components. These components are then 

approximated separately providing an alternative model selection criterion to the AIC 

derived as criterion 1.  

 

Qu and Perron (2006, 2007) considered that if evidence of cointegration existed, the VEC 

model had a restricted structure for the error correction parameter, � . In particular, if the 

systems of equations were cointegrated, Johansen (1988) had shown that the term �  had 

reduced rank and could be written as the product of two matrices which were denoted as 

� SJ and L SJ. The rank of �  was determined by the number of cointegrating vectors which 

in turn were determined by the column rank of L SJ. The column rank of L SJ was then 

defined as r cointegrating columns. Using the r cointegrating vector restriction, Qu and 

Perron (2006) derived a new IC called the modified AIC and abbreviated as MAIC.  

 

The derivation given by Qu and Perron (2006) partitions the process *
t -1x  into its stationary 

cointegrated and nonstationary non-cointegrated components. The cointegration rank of 

*
t -1x  was determined by the r cointegrating vectors of L SJ allowing one to rearrange the 

terms ( )v  and ( )vii  from A (of criterion 1) into the sums of stationary and nonstationary 

components. 
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Der ivation of MAIC 

 

From criterion 1,  
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( )

0

( )

ˆ ˆ ˆ
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-1 * * t

0 t -1 t -1 0

t
-1 * * t
0 0 t -1 t -1 0

A jik - k x x k - k
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There exists an invertible matrix P, with -1Q = P  such that 

( ) [ ]diag= =k k -r rQ I + m P I , n J . Thus ( ) ( ) t
n 2 r r 2m = P J - I Q = P n - I Q  where 

[ ]1 2P = P ,P  and [ ]t
1 2Q = Q ,Q  with P1 and Q1 the ( )( )xk k r−  matrices, so that 

* t *
1t -1 1 t -1v = Q x  is nonstationary and non-cointegrated and * t *

2t -1 2 t-1v = Q x  is stationary. This 

means that 1� P = 0 , and t
SJ 1

o
P = 0  for t

SJ SJk = p o  where SJp  has full rank.  

 

Defining a scaling matrix, T

T

� �
� �

= � �
� �
� �� �

k -r

r
1/2

I
0

D
I

0
 with the first block corresponding to 

* t *
1t -1 1 t -1v = Q x  and the second to * t *

2t -1 2 t-1v = Q x , then partitioning term ( )v  into component 

systems gives 
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This equation has three components, the ( )k r−  nonstationary non-cointegrated 

components of term ( )viii , the r stationary components of term ( )ix  and the orthogonal 

( )k r−  nonstationary and the r stationary components of term ( )1po v− . The r stationary 

components of term ( )ix  converges asymptotically to a chi-squared distribution with ( )rk  

degrees of freedom, i.e. 

 

( ) ( ) 2
2

ˆ ˆ ˆlim
T
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T
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tr χ
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-1 * * t t
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qir
-
r

P v v P
r

-
r s

, i.e. ( )2
0 rkE rkχ = . 

 

Given that term ( )ix  is independent of the ( )1p −  lag structure of the model, this term is a 

constant in the IC and can be ignored from further calculations. The term ( )1po v−  is 

orthogonal and can also be omitted. Now consider partitioning the term ( )vii  from A into 

the three component system given by 
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Similarly to the previous components system, the orthogonal expectation term ( )1po vii−  is 

zero and can be omitted. Term ( )xi  converges asymptotically to a chi-squared distribution 

with ( )rk  degrees of freedom leaving term ( )x  for further consideration. Qu and Perron 

(2006) imposed the cointegrated restriction on the ( )VEC 1p −  model and replaced the 

unknown parameters, t
0 0 0

u
= vxw  and 0

#
 with their respective maximum likelihood 

estimators (MLE). Grouping the remaining terms from A, gives 

( ) ( )ˆ ˆ ˆ2
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tr
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 providing 0.p p≥  

 

The term in A is now asymptotically equivalent to twice the likelihood ratio test of 

Johansen (1991) used for testing the null hypothesis of r cointegrating vectors. The LR test 

is given by 1
1

ˆ( ) ln(1 )
k

p j
j r

r Tτ λ−
= +

= − −� . Replacing the constant term in AIC with this 

additional penalty term provides the modified AIC proposed by Qu and Perron (2006, 

2007). The IC of the ( )VEC 1p −  model is given as  

( ) ( )2
1QP-VEC -1

2 ( ) 1
ˆMAIC ln .

pp
r k p

T

τ −� �+ −� �= Σ +  
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To determine the lag order of a ( )VEC 1p −  model Qu and Perron (2006) proposed the use 

of the rank restricted MAIC in lieu of the traditional AIC. 

 

Cr iter ion 3: Hurvich and Tsai’s Corrected Akaike’s Information Cr iter ia 

( )AICC  

 

One of the lesser known IC and a noticeable omission from many simulation studies, is the 

small sample bias corrected IC derived by Hurvich and Tsai (1993). The IC is derived from 

a ( )VAR p  model and abbreviated as AICC. The unbiased corrected IC is an extension of 

the univariate equivalent for ARMA models given by Hurvich and Tsai (1989). The IC 

proof in this study is adjusted for assessment as a ( )VEC 1p −  model. The IC was 

recommended by Burnham and Anderson (2002) when the sample size is small, they 

suggested the use of AICC when the ratio 2/ 40T k p < . Additional references to Hurvich 

and Tsai’s AICC for a ( )VAR p  model included the studies by Cavanaugh (1997), Kilian 

(2001) and the comments by Burnham and Anderson (2002: 425). 

 

The presentation of the IC given here follows the derivation by Hurvich and Tsai (1993) 

whilst notation is consistent with that used elsewhere in this study. The derivation begins 

by considering the ( )VAR p  process as two models, one a true model using the notation, 

( )VAR op  and the other, a set of approximating models ( )VAR p . Given the case with T 

observations xit where 1,2,...,i k=  and 1,2,...,t T= , the data matrix of the true model is 

given by 0 0Y = X L + u  whilst the data matrix of the approximating model is given by 

Y = X z + v .  Let the dimension of Y be the ( )xT k  matrix t
tx , X0 be the ( )x oT kp  matrix 

encapsulating the true models lag terms, X be the ( )xT kp  matrix encapsulating the 

candidate models lag terms, L 0 the ( )xokp k  matrix of parameter terms of the true model, L  
the ( )xkp k  matrix of parameter terms of the candidate models and u and v the respective 
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( )xk k  covariance matrices 0

#
 and { .  

 

Using the measure defined previously, ( ) ( ){ }0KLd E l l= −0

|
; x
|
; x  where ( )l 0

}
; x  is the 

likelihood function of the true model denoted by Hurvich and Tsai (1993) as ( )l 0 0z , { ; Y  

and ( )l
}
; x  is the likelihood function of the approximating model denoted by Hurvich and 

Tsai (1993) as ( )l z , { ; Y . Recall, the equations are simplified by using the likelihood 

function in its natural log form and restated by ( ){ }ˆ ˆ0KLd E l≈ ~
=
~
, � = �

�
, � ; Y  with 

( ) ( ){ }ˆ ˆ0 0 0AIC 2E E E l� �=
� �� �

~
=
~
, � = �L , # ; Y .  

 

The log likelihood function for ( )VAR p , the approximating model, is given as 

( ) ( ) ( )1
; ln2 ln

2 2 2

Tk T
l π � �= − − −

� ��
t -1�

, � Y � Y - X
� � Y - X

�
. To simplify the likelihood 

multiply the function by the constant 
2

T
−  and for ease of exposition, ignore the constant 

term, ln2
2

Tk π− . The likelihood function is then given by 

( ) ( ) ( )2 1
; lnl

T T
� �− = +
� ��

t -1�
, � Y � Y - X

� � Y - X
�

. 

 

Resuming the assumption that op p≥ , it is possible to obtain a matrix z *  of dimension 

( )( )( )xo okp p p k k+ −  which nests L 0 the parameter matrix of the true model. Thereby 

matrix ( )t
= t t

0

�
*
�

,0  where 0 is the ( )( )( )0 xp p k k−  matrix of zero elements. Letting 

Y = X z * + u  allows the re-parameterisation of the likelihood function in terms of X z *  

and taking expectations on both sides gives 

 

( ) ( ) ( )0 0

2 1
; lnE l E

T T
� � � �� �− = +� � � �� �� � � �

�
t -1�

, � Y � X
�

* + u - X
� � X
�

* + u - X
�

. 
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Using the knowledge that trace and expectation are transposable operators,   
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To estimate this equation, replace all the unknown parameters with their maximum 

likelihood estimators. The resulting expectation, assuming 0p p≥  is  

( ) ( ) ( ) ( )0 0

1ˆ ˆ ˆˆ ˆ ˆ ˆln .E l tr tr E
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Now taking expectations under the true model the IC is given by 
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( ) ( ) ( )

0 0

0 0 0 0
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i ii
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Considering term (ii) of the IC, Hurvich and Tsai (1993) used results from Wei (1990: 354) 

that 

 

( ) ( ) { }( )ˆ ,vec MN vec ⊗
-1t

0

� �
* � X X�  and  ( ) ( )ˆ ~ T kpW − 0� � .  

 

Then ( ) { }( )0
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Considering term (iii) of the IC, Hurvich and Tsai (1993) showed that 
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Consequently 
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Therefore Hurvich and Tsai (1993) proposed the use of 

( ) ( )
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2
HT-VAR ˆAICC ln

1
p

kT k p

T kp k

+
= +

− + +
{  for small sample ( )VAR p  processes. Given that 

there are p lag terms in the VAR representation and ( )1p −  in VEC representation, the IC 

used in the analysis for this study is defined as 
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Cr iter ion 4: A Modified Corrected Akaike Information Cr iter ion ( )MAICC  

 

This study proposes to combine the benefits of the small sample correction of Hurvich and 

Tsai’s (1993) AICC and the cointegrated restricted penalty of Qu and Perron’s (2006) 

MAIC. The derivation that accompanies this section is based on the results of the previous 

three derivations for AIC, MAIC and AICC.   

 

Consider the results of the Hurvich and Tsai’s derivation of the AICC. 

 

( ) ( )( )( )

( ) ( ) ( )( )

0 0

0 0

2 1
ln

1 1
ln .

E l E tr
T T

E tr E tr
T T

� � � �− = +� � � �� �

� �� �= + + � �� � � �

t-1

t-1 t -1 t

�
,
�

; Y
�

X
�

* + u - X
� �

X
�

* + u - X
�

�
u
�

u X
�

* -
� � �

* -
�

X

 

 

Using Qu and Perron’s (2006) argument of an error correction restriction allowing for the 

partitioning of the design matrix into two components, one for the stationary (lagged) 

terms and one for the nonstationary (cointegrated) terms changes the term 
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To estimate this equation, replace all the unknown parameters with their maximum 

likelihood estimators. The resulting expectation is  

( ) ( ) ( ) ( )

( ) ( )
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Now taking expectations under the true model, the IC is given by 
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Components of this IC have been considered previously,  

The expectation of term ( )ii  is ( ) ( )( )( )0
ˆ .

1 1

Tk
E tr

T k p k
� � ≈
� � − − + +

-1
0���  

 

The expectation of term ( )iv  is 
( )2 1k p

T

−
. 

 

The expectation of term ( )v  is 
( )1p r

T

τ − . 

 

Combining all four terms of the IC, gives 

 

( )( )( )
( ) ( )2

11ˆIC ln
1 1

p rk pTk

T TT k p k
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Therefore this study proposes the corrected small sample modified IC, defined as MAICC, 

as an alternative selection criterion for ( )VEC 1p −  models. 

 

 ( )

( )( )( )
( ) ( )2

SR-VEC -1 11ˆMAICC ln
1 1

p p rk pkT

T TT k p k

τ −−
= + + +

− − + +
� . 

 

The criteria that follow have been defined and used by researchers in other multivariate 

simulation studies. In the majority of cases the criteria have been stated without proof but 

have been used to measure IC performance. Like those studies, these IC have been 

included for comparative reasons despite the lack of provision of a theoretical derivation. 

In each case, the IC is defined and reference source stated.  

 

Cr iter ion 5: Brockwell and Davis Corrected AIC (AICCBD) 

 

In the study of Hurvich and Tsai (1993) a comparison of AICC was made with the 

multivariate IC of Brockwell and Davis (1991). No theoretical justif ication is given in 

either reference but for comparative interest purposes the IC was used in this study. The 

Brockwell and Davis IC used by Hurvich and Tsai (1993) follows the definition for a 

( )VAR p  model and was given as ( )

( )( )
2

VAR

2

2 2ˆAICCBD ln
2

p k p

T k p

+= +
− +

{ .  

 

This study uses the Brockwell and Davis IC in a ( )VEC 1p −  framework and states the 

definition as ( ) ( )
( )( )( )

2
VEC -1

2

2 1 2ˆAICCBD ln
1 2

p k p

T k p

− +
= +

− − +
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Cr iter ion 6: Schwarz’s Bayesian Information Cr iter ion (BIC) 

 

Schwarz (1978) derived an IC by treating the model selection problem from a Bayesian 

perspective. The criterion has been applied in empirical studies in both univariate and 

multivariate time series setting. The AIC and BIC are arguably the most popular of the IC 

and much of the subsequent developments were based upon the underlying principles of 

their derivations. In the ( )VAR p  modelling framework the IC is defined in Hurvich and 

Tsai (1993), Brüggemann (2004) and Lütkepohl (2005) as ( )
2

VAR lnˆBIC lnp k p T

T
= +� . 

This study uses the ( )VEC 1p −  framework and states the definition as 

( ) ( )2
VEC -1 1 lnˆBIC lnp k p T

T

−
= +� . 

 

Cr iter ion 7: Hannan and Quinn’s Information Cr iter ion (HQIC) 

 

Although AIC and BIC appear to be the more popular model selection methods used when 

reporting empirical studies, a third IC, derived by Hannan and Quinn (1979) using “ the law 

of the iterated logarithm” , is also often reported. In this study, modelling estimation is 

performed in the Econometric software, EViews 5.1. As an indication of HQIC’s 

importance in empirical assessments, it is worth noting that the outputs of all VEC 

estimations in EViews 5.1 include an IC results summary for the three criteria AIC, BIC 

and HQIC. Hannan and Quinn (1979) analysed the performance of HQIC and reported that 

HQIC outperforms AIC for larger size samples but under parameterises the models, 

relative to AIC, for smaller sample sizes. In the ( )VAR p  modelling framework the IC is 

defined in Gonzalo and Pitarakis (1998) and Ivanov and Kilian (2005) as 

2
VAR( ) 2 lnlnˆHQIC lnp k p T

T
= Σ + . This study uses the ( )VEC 1p −  framework and 

states the definition as 
( )2

VEC( 1) 2 1 lnlnˆHQIC lnp k p T

T
− −

= Σ + .  
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Cr iter ion 8: Hannan and Quinn’s Small Sample Corrected Information 

Cr iter ion ( )HQICC  

 

An interesting variant of the definition of HQICC was found in McQuarrie and Tsai (1998: 

206). The IC, considered as a small sample corrected IC, was stated without a theoretical 

justification.  McQuarrie and Tsai (1998: 206) defined the IC in the ( )VAR p  modelling 

framework as 
( )

( )
2

VAR( ) 2 ln lnˆHQICC ln
1

p k p T

T kp k
= Σ +

− + +
. In an effort to be as inclusive as 

possible but without exaggerating, this study assessed the performance of the HQIC variant 

using the criterion in the ( )VEC 1p −  framework. The function used in this study is 

defined as 
( ) ( )

( )( )
2

VEC( 1) 2 1 ln lnˆHQICC ln
1 1

p k p T

T k p k
− −

= Σ +
− − + +

. 

 

Cr iter ion 9: Gonzalo and Pitarakis’s Information Cr iter ion (LCIC) 

 

An interesting variation from the theoretical IC derivations was the study of Gonzalo and 

Pitarakis (1998). The researchers motivated their IC following the arguments of Zhang 

(1992) that in most cases the penalty term of the IC falls within the interval [1.5, 5.0]. 

Gonzalo and Pitarakis (1998) suggested the application of a linear function of the penalty 

term of two well known IC. As a model selection technique the suggestion has merit in that 

combining the benefits of IC could provide a useful selection strategy. The obvious 

drawback to the study was the lack of a theoretical foundation for the method and the 

decision to only consider equally weighted linear combinations of two IC. In the Gonzalo 

and Pitarakis (1998) study, the researchers used a linear combination of the BIC and 

HQIC.  

 

Gonzalo and Pitarakis (1998) defined the IC in the ( )VAR p  modelling framework as 

( )( )
2

VAR( ) ˆLCIC ln ln 2lnln / 2p k p
T T

T
= Σ + + . This study uses the IC in the 
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( )VEC 1p −  framework and states the definition as  

( ) ( )( )
2

VEC( 1) 1ˆLCIC ln ln 2lnln / 2p k p
T T

T
− −

= Σ + + . 

 

Cr iter ion 10: Final Prediction Er ror  (FPE) 

 

The mean square error (MSE) and mean absolute deviation (MAD) methods are often used 

to compare the prediction capabilities of models. Akaike’s (1969) MSE measure lead to the 

development of the final prediction error (FPE) criterion. Several researchers (see 

McQuarrie & Tsai, 1998; Liew, 2004) have used FPE in comparative studies with 

traditional IC. This study complements those studies by including the model selection 

capabilities of FPE in the ( )VEC 1p −  framework. McQuarrie and Tsai (1998: 204) 

defined the IC in the ( )VAR p  modelling framework as VAR( ) ˆFPE
k

p T kp

T kp

� �+= Σ � �−� �
. This 

study uses the natural log of FPE in the ( )VEC 1p −  framework and states the definition as 

( ) ( )
( )

VEC( 1) 1ˆln FPE ln ln
1

p T k p
k

T k p
− � �+ −

= Σ + � �� �− −� �
. 

 

Cr iter ion 11: Shibata’s Information Cr iter ion (ShibIC)  

 

In the study by Lütkepohl (1985), one of the lesser known IC developed by Shibata (1980) 

was assessed. The inclusion of Shibata was motivated not by the expectation that it would 

provide better results when compared to AIC, rather as it was expected to provide  

different results to AIC and in particular differences when used in small sample 

assessments. Given that Lütkepohl’s study simulated and assessed stationary VAR 

processes, the IC was included in this assessment for the cointegrated nonstationary 

processes.  
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It is worth noting the comment in Shibata’s (1989) paper, that if the objective of a study 

was to determine the correct model from a class of competing models for which there was 

no clear dominant model selection procedure, perhaps the most appropriate model 

selection procedure will be to develop simulation models and generate approximating 

selection results in a tabulated form. With the computational capabilities of personal 

computers, this comment may be a reality in the near future. In EViews 5.1, at the click of 

a button, analysts are already provided with tabulated results of estimated criteria for AIC, 

BIC and HQIC for some pre-determined lag specification.  

 

Lütkepohl (1985) defined the IC in the ( )VAR p  modelling framework as 

( ) ( )VAR 2 1ˆShibIC 1

k

p pk

T

� �+
= Σ +� �

� �
. This study uses the natural log of Shibata’s IC in the 

( )VEC 1p −  framework and states the definition as  

( ) ( )( )VEC 1 2 1 1ˆShibIC ln ln 1p k p
k

T
−

� �− +
= Σ + +� �

� �
� �

. 

 

Cr iter ion 12: Modified Schwarz’s Bayesian Information Cr iter ia ( )MBIC  

 

In the extension of the work by Ng and Perron (2001), two additional IC were defined in 

the  paper by Qu and Perron (2006). Not only did Qu and Perron (2006, 2007) derive 

MAIC (criterion 2), they derive a class of IC which considers the error correction 

restriction in the VAR framework. This class of IC included a modified BIC and modified 

HQIC. Both criteria were assessed in this study and the results were compared to the Qu 

and Perron study. 

 

Qu and Perron (2007) defined the IC in the ( )VAR p  modelling framework as 

( ) ( )2
1QP-VAR
( ) ln

ˆMBIC ln
pp

r k p T

T

τ − +
= Σ + . This study uses the IC in the ( )VEC 1p −  
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framework and states the definition as ( ) ( )( )2
1QP-VEC -1
( ) 1 ln

ˆMBIC ln
pp

r k p T

T

τ − + −
= Σ + . 

 

Cr iter ion 13: Modified Hannan and Quinn’s Information Cr iter ia (MHQIC) 

 

The last modified IC derived by Qu and Perron (2006) was the Hannan-Quinn multivariate 

criterion. Qu and Perron (2007) defined the IC in the ( )VAR p  modelling framework as 

( ) ( ) ( )2
1QP-VAR

2 ( ) ln ln
ˆMHQIC ln

pp
r k p T

T

τ − +
= Σ + . This study uses the IC in the 

( )VEC 1p −  framework and states the definition as  

( ) ( )( ) ( )2
1QP-VEC 1

2 ( ) 1 ln ln
ˆMHQIC ln

pp
r k p T

T

τ −− + −
= Σ + . 

 

In summary, this chapter introduced the theory of Engle and Granger’s (1987) definition of 

cointegration and provided the theoretical foundation of cointegration in the multivariate 

autoregressive framework. Extensive use of simulation modelling is presented and 

illustrative examples of models explained. This chapter also discussed the objectives of the 

study and provided motivation based on the contradicting results observed in the literature. 

The literature review in this chapter covered both national and international publications 

and for the sake of brevity has been summarised to emphasise the studies objective. In 

conclusion, this chapter closed with the theoretical foundations of model selection from an 

informational criterion perspective. The IC assessed in this study are clearly defined and 

for each, a motivation for their use is provided. 
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CHAPTER 3 

METHODOLOGY OF PRESENT STUDY 

 

3.1 Methodology 

 

Nine simulation models of different lag structure and sample sizes were used in this study. 

To simplify the analysis all models were restricted to a variable dimension of three( )3k = . 

This study simulated 5000  datasets for each variable which gave a total of 15000  series 

per model. The simulated data were used to determine the best fitted model. This was done 

by estimating six VEC models with lag lengths of 0,1, ..., 5 for each dataset. For each 

dataset the best fitted model was identified by determining the minimum criterion estimate 

of the six VEC models. The model selected for each criterion per dataset was then recorded 

and the frequency of selections summarised by lag structure.  The criterion which selected 

the correct model most often was then considered the best criterion for the analysis. 

 

To observe the influence of sample size ( )N  on the ability of the IC to select correctly, 

this study let 40,100 and 200N = . These sample sizes were categorised into three groups, 

small samples ( )40N = , common samples ( )100N =  and large samples ( )200N = . The 

effective fixed sample sizes ( )T  of 34, 94 and 194 were used to estimate the six VEC 

models. Sample sizes of approximately 100 were common in the literature and it was 

decided that knowledge of criteria model selection ability between the range of 40 and 200 

would be sufficient for cointegration practitioners. The classification that ( )200N =  is a 

large sample is debatable as asymptotically N → ∞  is the ideal scenario. However it is 

reasoned that in a practical setting, the literature review reveals that sample sizes in many 

studies are less than 200, hence the classification definition.  
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In the Monte Carlo experiment the VAR series were generated by setting the initial value 

0ix  to zero and creating 100N +  observations. To minimise the effect of the initial 

condition the first 100 observations were discarded. This approach to simulating data was 

advocated in the literature, see for example Enders (2004), Liew (2004) and Cheung and 

Lai (1993). To determine the impact of lag structure, this study constructed models with 

four different but sequential lag terms. The constructed VAR models for the study had lag 

lengths 1, 2, 3and 4 which were evaluated as VEC models of lag length 0,1, 2 and 3, 

respectively. The choice of coefficients of the VAR model ensured that the series were 

nonstationary and cointegrated. The lag length structure of the simulation models were 

restricted to the lag lengths of those found frequently, but not exclusively, in the empirical 

literature. To compare the influence of parameterisations on criteria performances, two 

simulation models were compared keeping dimension and sample size fixed. The model 

used for this comparison was the ( )3 VAR 2d −  model with samples of size 94T = . 

 

The simulated data were generated from a pre-determined theoretical model. The data 

obtained were then tested to determine whether or not they satisfied the inferential routines 

for cointegrated models. The analytical procedure of the statistical routines is shown in 

Figure 3.1. The inferential analysis followed a two step procedure. Step 1 provided for 

stationarity testing using the ADF test, whilst step 2 used the Johansen trace statistic to test 

the cointegrating relationships of the variables.  

 

Data that conformed to the theoretical specifications of the pre-determined model, i.e., that 

all variables in the model were first order stationary and that the model had one 

cointegrating relationship were classified as “meets specification”  (MS) data. In the case 

where one or more of the theoretical specifications were inferentially insignificant, the data 

were classified as does “does not meet specification”  (NMS). The data sets that did not 

meet specification were analysed separately as the priori expectations were that the results 

from these series would adversely impact on the criterion’s ability to select the correct 

model. This justif ication seemed reasonable as empirical data that fails the usual inferential 

analysis would no longer be considered cointegrated and VEC modelling would be 

terminated. Merely for comparison purposes both the MS and NMS data were analysed 
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and results reported.  

 

Figure 3.1: Flowchart of analysis procedure 

 

 

Stepwise routine of data evaluation for MS and NMS data 

 

3.2 Parameterised Simulation Models 

 

Models 1 - 3: Vector Autoregressive Models with One Lag Term 

 

The datasets for three ( )VAR 1  models were simulated by setting the intercept terms equal 

to zero. Sample sizes of 40,100 and 200N =  were simulated with the coefficients of the 

lagged terms chosen to ensure that each single equation was first order difference 

stationary, the systems of equations were nonstationary and the multi-equation models 

were cointegrated with one cointegration relationship. Each single equation’s error 
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terms were simulated from a standard normal distribution, with mean equal to zero and 

variance equal to one.  

 

The ( )VAR 1  theoretical models were given by 

 

1 10 1 1 11,11 1,12 1,13
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� � � � � � � �� �
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These models were represented as ECMs by  

(i) subtracting 
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� �
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from both sides of the equation: 
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(ii) simplifying and writing in matrix notation: 

( )t 0 1 t-1 t∆x = A - I - A x + �  

t 0 t-1 t∆x = A +
�

x + �  

( )
1,11 1,12 1,13
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1 0 0

where 0 1 0 , and

0 0 1

a a a

a a a

a a a

� �� �
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� � � �
� � � �

1 1I A � = - I - A . 

 

The data were simulated for the ( )VAR 1  models with the coefficients,  
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1 1 -1 1

2 2 -1 2

3 3 -1 3
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� �� � � � � �∆ � �� � � � � �

. 

 

Written in matrix notation, t t-1 t∆x = � x + � , where the rank of � , determined the 

number of cointegrating relationships, with 
0.6 0.4 0.5

0 0 0

0 0 0

−� �
� �= � �
� �
� �

� . 

 

To confirm that the pre-determined coefficients of the models satisfied theoretical 

specifications, i.e. that all variables were nonstationary, differenced variables were 

stationary, the VAR process was nonstationary and one cointegrating relationship existed 

within the model, consider the following discussions. 

 

The variables 2tx  and 3tx  were random walk processes which were nonstationary and 

when differenced were stationary. The variable 1tx , was a linear combination of the 

variables 2 -1tx  and 3 -1tx , both themselves random walk processes. The random walk ( )I 1  

processes dominated the lower ordered process (Engle & Granger, 1991: 6) ensuring that 

1tx  was also an ( )I 1  nonstationary process and, when differenced, was stationary. 

 

The ( )VAR 1  process is a stable process if the eigenvalues of 1A  have modulus less than 

one. This condition means that the process is stable if the reverse characteristic polynomial 

has no roots in or on the complex unit circle (Lütkepohl, 2005:15 16− ). This requirement 

is equivalent to the ( )det 0z ≠k 1I - A  for 1z ≤ . To determine whether or not the process 

was nonstationary required evaluating the reverse characteristic polynomial of the process. 

The ( )VAR 1  process was stationary if the roots of the reverse characteristic polynomial 
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were all greater than unity. The roots of the reverse characteristic polynomial were 

obtained by finding the roots for the determinant det( )kL z= − 1I A . The process would be 

stationary if 1z >  for all roots. 

 

Consider the determinant, L where 
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2 3
11 22 33 11 22 11 33 22 33 11 22 33
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a z
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a a a z a a a a a a z a a a z

= −

� �� � � �
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� �− − −� �
� �� �= −� �� �
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= − + + + + + −

= −

1I A

2 34 1.8 0.4 .z z z+ −

 

 

The roots of this polynomial are 1 1.00z = , 2 1.00z =  and 3 2.50z = . Given that at least 

one root is not greater than unity, i.e. the first and second roots equal unity, the ( )VAR 1  

process is nonstationary. 

 

Johansen (1995) showed that the rank of �  determined the number of cointegrating 

relationships. Given that 
0.6 0.4 0.5

0 0 0

0 0 0

−� �
� �= � �
� �
� �

� , the rank of �  is one. Thus the ( )VAR 1  

model provided for one cointegrating relationship between the variables 1tx , 2tx  and 3tx .  

 

To summarise, these checks confirmed that the pre-determined coefficients of the ( )VAR 1  

process satisfied the theoretical specifications for a model defined as a ( )VEC 0  process 
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with one cointegrating relationship. 

 

Models 4 - 6: Vector Autoregressive Models with Two Lag Terms 

 

The datasets for three ( )VAR 2  models were simulated by setting the intercept terms equal 

to zero. Sample sizes of 40,100 and 200N =  were simulated with the coefficients of the 

lagged terms chosen to ensure that each single equation was first order difference 

stationary, the systems of equations were nonstationary and the multi-equation models 

were cointegrated with one cointegration relationship. Each single equation’s error terms 

were simulated from a standard normal distribution, with mean equal to zero and variance 

equal to one. 

 

The ( )VAR 2  theoretical models were given by 

1 10 1 1 1 21,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23 2 2

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1 3 2

t t t

t t t

t t t

x a x xa a a a a a

x a a a a x a a a x

a a a a a ax a x x

− −

− −

− −

� � � �� � � � � � � �
� � � �� � � � � � � �= + +� � � �� � � � � � � �

� � � � � � �� � � �
� � � � � � � �� � � �

1

2

3

t

t

t

ε
ε
ε

� �
� �+ � �

� � �
� �

. 

 

These models were represented as ECMs by  

(i) subtracting 
1 1

2 1

3 1

t

t

t

x

x

x

−

−

−

� �
� �
� �
� �
� �

from both sides of the equation: 

1 10 1 11,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1

1 0 0

0 1 0

0 0 1

t t

t t

t t

x a xa a a a a a

x a a a a x a a a

a a a a a ax a x

−

−

−

� �∆ � � �� � � � � �� �
	 	� �� � � � � �� �∆ = + − +
 �� �� � � � � �� �
	 	� �� � � � � �� �∆ � �� � � � � �� �� 

1 2 1

2 2 2

3 2 3

t t

t t

t t

x

x

x

ε
ε
ε

−

−

−

�� � � �
� � � � � �+� � � � � �

� � � �� �
� � � �� �

 

 

(ii) simplifying and writing in matrix notation: 

( )t 0 1 t-1 2 t-2 t∆x = A - I - A x + A x + �  

 

(iii) adding 2 t-1 2 t-1A x - A x  to the RHS and simplifying: 
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( )
( )

t 0 1 2 t-1 2 t-1 2 t-2 t

t 0 1 2 t-1 2 t-1 t

t 0 t-1 2 t-1 t

∆x = A - I - A - A x - A x + A x + �
∆x = A - I - A - A x - A ∆x + �
∆x = A + 	 x - A ∆x + �

 

( )
1,11 1,12 1,13 2,11 2,12 2,13

1,21 1,22 1,23 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,33

1 0 0

where 0 1 0 .

0 0 1

a a a a a a

a a a a a a

a a a a a a

� �� � � �� �
	 	� � � �� �= = − − −
 �� � � �� �
	 	� � � � � �
� � � � � �� 

1 2



- I - A - A  

 

The data were simulated for the ( )VAR 2  models with the coefficients,  

1 1 1 1 2 1

2 2 1 2 2 2

3 3 1 3 2 3

0 0.4 0.4 0.5 0.2 0.2 0.0

0 0.0 0.8 0.0 0.0 0.2 0.0 .

0 0.0 0.0 0.6 0.0 0.0 0.4

t t t t

t t t t

t t t t

x x x

x x x

x x x

ε
ε
ε

− −

− −

− −

−� � � � � � � �� � � � � �
� � � � � � � �� � � � � �= + + +� � � � � � � �� � � � � �

� � � � � �� � � � � � � �
� � � � � �� � � � � � � �

 

 

Written in matrix notation, t 0 t-1 2 t-1 t∆x = A + � x - A ∆x + � , with 

1 0 0 0.4 0.4 0.5 0.2 0.2 0

0 1 0 0 0.8 0 0 0.2 0

0 0 1 0 0 0.6 0 0 0.4

0.4 0.2 0.5

0 0 0 .

0 0 0

� − �� � � � � �
� �� � � � � �= − − −� �� � � � � �
� � � � � �� �
� � � � � �� �

−� �
� �= � �
� �
� �



 

 

Using the arguments given for the ( )VAR 1  process, the ( )VAR 2  models theoretical 

specifications were confirmed. 

 

The variables 2tx  and 3tx  are random walk processes which are nonstationary and when 

differenced are stationary. The variable 1tx  is an ( )I 1  dominated nonstationary process and 

when differenced is stationary. 

 

The ( )VAR 2  process is nonstationary if the roots of the reverse characteristic polynomial 

are all greater than unity (Lütkepohl, 2005:16).  The roots of the reverse characteristic 
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polynomial were obtained by finding the roots for the determinant 

2det( )kL z z= − −1 2I A A . The process is stationary if 1z >  for all roots. 

 

Consider the determinant, L where 

2det( )kL z z= − −1 2I A A  

    

1,11 1,12 1,13 2,11 2,12 2,13
2

1,21 1,22 1,23 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,33

2 2 2
1,11 2,11 1,12 2,12 1,13 2,13

1 0 0

det 0 1 0

0 0 1

1

det

a a a a a a

a a a z a a a z

a a a a a a

a z a z a z a z a z a z

a

� �� � � �� �
� �� � � �� �= − −� �� � � �� �
� � � � � �� �� � � � � �� �

− − − − − −
= − 2 2 2

1,21 2,21 1,22 2,22 1,23 2,23
2 2 2

1,31 2,31 1,32 2,32 1,33 2,33

2 2

2

2

1

1

1 0.4 0.2 0.4 0.2 0.5

det 0 1 0.8 0.2 0

0 0 1 0.6 0.4

1 1.8 0.

z a z a z a z a z a z

a z a z a z a z a z a z

z z z z z

z z

z z

z

� �� �
� �� �− − − − −� �� �
� �� �− − − − − −� �� �

� �� �− − − + −
� �� �= − −� �� �
� �� �− −� �� �

= − + 2 3 4 5 624 0.768 0.072 0.12 0.016 .z z z z z+ − − −

 

 

The roots of this polynomial are 1 5z = , 2 3.44949z = , 3 2.5z = , 4 1z = , 5 1z =  and 

6 1.44949z = . Given that at least one root is not greater than unity, i.e. the fourth and fifth 

roots equal unity, the ( )VAR 2  process is nonstationary. 

 

Given that 

0.4 0.2 0.5

0 0 0

0 0 0

−� �
� �= � �
� �
� �

�
, the rank of �  is one. Thus the ( )VAR 2  model 

provided for one cointegrating relationship between the variables 1tx , 2tx  and 3tx . To 

summarise, the pre-determined coefficients of the ( )VAR 2  process satisfied the 

theoretical specifications for a model defined as a ( )VEC 1  process with one cointegrating 

relationship. 
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Model 7: Vector Autoregressive Models with Two Lag Terms and Different 

Coefficients 

 

The datasets for the alternatively parameterised ( )VAR 2  model were simulated by setting 

the intercept terms equal to zero. Fixed sample sizes of 100N =  were simulated with the 

coefficients of the lagged terms chosen to ensure that each single equation was first order 

difference stationary, the systems of equations were nonstationary and the multi-equation 

models were cointegrated with one cointegration relationship. Each single equation’s error 

terms were simulated from a standard normal distribution, with mean equal to zero and 

variance equal to one. 

 

The data were simulated for the ( )VAR 2  model with the coefficients,  

 

1 1 1 1 2 1

2 2 1 2 2 2

3 3 1 3 2 3

0 0.4 0.4 0.6 0.2 0.2 0.0

0 0.2 0.8 0.15 0.1 0.15 0.0

0 0.0 0.0 0.6 0.0 0.0 0.4

t t t t

t t t t

t t t t

x x x e

x x x e

x x x e

− −

− −

− −

−� � � � � � � �� � � � � �
� � � � � � � �� � � � � �= + − + − +� � � � � � � �� � � � � �

� � � � � �� � � � � � � �
� � � � � �� � � � � � � �

. 

 

Written in matrix notation, t 0 t-1 2 t-1 t∆x = A + � x - A ∆x + e , with  

 

1 0 0 0.4 0.4 0.6 0.2 0.2 0

0 1 0 0.2 0.8 0.15 0.1 0.15 0

0 0 1 0 0 0.6 0 0 0.4

0.4 0.2 0.6

0.1 0.05 0.15 .

0 0 0

� − �� � � � � �
� �� � � � � �= − − − − −� �� � � � � �
� � � � � �� �
� � � � � �� �

−� �
� �= − −� �
� �
� �

�

 

 

Using the previous arguments given for the ( )VAR 2  process, the models’  theoretical 

specifications were confirmed. 
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The variables 2tx  and 3tx  are random walk processes which are nonstationary and when 

differenced are stationary. The variable 1tx  is an ( )I 1  dominated nonstationary process and 

when differenced is stationary. 

 

The ( )VAR 2  process is nonstationary if the roots of the reverse characteristic polynomial 

are all greater than unity (Lütkepohl, 2005:16).  The roots of the reverse characteristic 

polynomial were obtained by finding the roots for the determinant 

2det( )kL z z= − −1 2I A A . The process is stationary if 1z >  for all roots. 

 

Consider the determinant, L where 

2det( )kL z z= − −1 2I A A  

1,11 1,12 1,13 2,11 2,12 2,13
2

1,21 1,22 1,23 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,33

1 0 0

det 0 1 0

0 0 1

a a a a a a

a a a z a a a z

a a a a a a

� �� � � �� �
� �� � � �� �= − −� �� � � �� �
� � � � � �� �� � � � � �� �

 

 

2 2 2
1,11 2,11 1,12 2,12 1,13 2,13

2 2 2
1,21 2,21 1,22 2,22 1,23 2,23

2 2 2
1,31 2,31 1,32 2,32 1,33 2,33

1

det 1

1

a z a z a z a z a z a z

a z a z a z a z a z a z

a z a z a z a z a z a z

� �� �− − − − − −
� �� �= − − − − − −� �� �
� �� �− − − − − −� �� �

 

 

2 2

2 2

2

2 3 4 5 6

1 0.4 0.2 0.4 0.2 0.6

det 0.2 0.1 1 0.8 0.15 0.15

0 0 1 0.6 0.4

1 1.8 0.21 0.846 0.126 0.126 0.004 .

z z z z z

z z z z z

z z

z z z z z z

� �� �− − − + −
� �� �= − + − −� �� �
� �� �− −� �� �

= − + + − − −
 

 

The roots for this polynomial are 1 30.23z = , 2 2.50z = , 3 2.24z = , 4 1.00z = , 

5 1.00z =  and 6 1.47z = . Given that at least one root is not greater than unity, i.e. the 

fourth and fifth roots equal unity, the ( )VAR 2  process was nonstationary. 
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Given that 

0.4 0.2 0.6

0.1 0.05 0.15

0 0 0

−� �
� �= − −� �
� �
� �

�
, the rank of �  was one. Thus the ( )VAR 2  model 

provided for one cointegrating relationship between the variables 1tx , 2tx  and 3tx . To 

summarise, the pre-determined coefficients of the ( )VAR 2  process satisfied the 

theoretical specifications for a model defined as a ( )VEC 1  process with one cointegrating 

relationship. 

 

Model 8: Vector Autoregressive Models with Three Lag Terms 

 

The datasets for the ( )VAR 3  model were simulated by setting the intercept terms equal to 

zero. Sample sizes of 100N =  were simulated with the coefficients of the lagged terms 

chosen to ensure that each single equation was first order difference stationary, the systems 

of equations were nonstationary and the multi-equation models were cointegrated with one 

cointegration relationship. Each single equation’s error terms were simulated from a 

standard normal distribution, with mean equal to zero and variance equal to one. 

 

The ( )VAR 3  theoretical model was given by 

 

1 10 1 1 1 21,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23 2 2

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1 3 2

t t t

t t t

t t t

x a x xa a a a a a

x a a a a x a a a x

a a a a a ax a x x

− −

− −

− −

� � � �� � � � � � � �
� � � �� � � � � � � �= + +� � � �� � � � � � � �

� � � � � � �� � � �
� � � � � � � �� � � �

1 3 13,11 3,12 3,13

3,21 3,22 3,23 2 3 2

3,31 3,32 3,33 3 3 3

.
t t

t t

t t

xa a a

a a a x

a a a x

ε
ε
ε

−

−

−

�

� �� � � �
� � � � � �+ +� � � � � �

� � � �� �
� � � �� �
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This model can be represented as an ECM by  

(i) subtracting 
1 1

2 1

3 1

t

t

t

x

x

x

−

−

−

� �
� �
� �
� �
� �

from both sides of the equation: 

1 10 1 11,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1

1 0 0

0 1 0

0 0 1

t t

t t

t t

x a xa a a a a a

x a a a a x a a a

a a a a a ax a x

−

−

−

� �∆ � � �� � � � � �� �
	 	� �� � � � � �� �∆ = + − +
 �� �� � � � � �� �
	 	� �� � � � � �� �∆ � �� � � � � �� �� 

1 2

2 2

3 2

1 3 13,11 3,12 3,13

3,21 3,22 3,23 2 3 2

3,31 3,32 3,33 3 3 3

.

t

t

t

t t

t t

t t

x

x

x

xa a a

a a a x

a a a x

ε
ε
ε

−

−

−

−

−

−

�� �
� � � �
� � � �

� �� �
� �� �

� �� � � �
� � � � � �+ +� � � � � �

� � � �� �
� � � �� �

 

 

(ii) simplifying and writing in matrix notation: 

( )t 0 1 t-1 2 t-2 3 t-3 t∆x = A - I - A x + A x + A x + �  

 

(iii) adding 2 t-1 2 t-1A x - A x , 3 t-1 3 t-1A x - A x  and 3 t-2 3 t-2A x - A x  to RHS and simplifying: 

( )
( )

t 0 1 2 3 t-1 2 t-1 2 t-2 3 t-1 3 t-2 3 t-2 3 t-3 t

t 0 1 2 3 t-1 2 t-1 3 t-1 3 t-2 t

t 0 t-1 2 t-1 3 t-1 3 t-2 t

∆x = A - I - A - A - A x - A x + A x - A x + A x - A x + A x + �
∆x = A - I - A - A - A x - A ∆x - A ∆x - A ∆x + �
∆x = A + � x - A ∆x - A ∆x - A ∆x + �

  

 

( )

1,11 1,12 1,13 2,11 2,12 2,13 3,11 3,12 3,13

1,21 1,22 1,23 2,21 2,22 2,23 3,21 3,22 3,23

1,31 1,32 1,33 2,31 2,32 2,33 3,31 3,32 3,33

where

1 0 0

0 1 0

0 0 1

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

� � � � �� �
� � � � �� �= − − − −� � � �� �

� � � � � �
� � � � � � �

1 2 3

�
= - I - A - A - A

.

� ��
	 	�

 �� �
	 	� �

�� 

 

 

The data were simulated for the ( )VAR 3  model with the coefficients,  

 

1 1 1 1 2

2 2 1 2 2

3 3 1 3 2

0 0.4 0.4 0.5 0.2 0.2 0.0 0.2 0.15 0.1

0 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.2 0.0

0 0.0 0.0 0.4 0.0 0.0 0.3 0.0 0.0 0.3

t t t

t t t

t t t

x x x

x x x

x x x

− −

− −

− −

− −� � � � � �� � � � � � � �
� � � � � �� � � � � � � �= + + +� � � � � �� � � � � � � �

� � � � � � � �� � � � � �
� � � � � � � �� � � � � �

1 3 1

2 3 2

3 3 3

.
t t

t t

t t

x

x

x

ε
ε
ε

−

−

−

� � � �
� � � �+� � � �
� � � �
� � � �
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Written in matrix notation, t 0 t-1 2 t-1 3 t-1 3 t-2 t∆x = A + � x - A ∆x - A ∆x - A ∆x + � , with  

 

1 0 0 0.4 0.4 0.5 0.2 0.2 0.0 0.2 0.15 0.1

0 1 0 0.0 0.6 0.0 0.0 0.2 0.0 0.0 0.2 0.0

0 0 1 0.0 0.0 0.4 0.0 0.0 0.3 0.0 0.0 0.3

0.6 0.35 0.6

0 0 0 .

0 0 0

� − − �� � � � � � � �
� �� � � � � � � �= − − − −� �� � � � � � � �
� � � � � � � �� �
� � � � � � � �� �

−� �
� �= � �
� �
� �

�

 

 

Using the arguments given for the ( )VAR 1  process, the ( )VAR 3  model’s theoretical 

specifications were confirmed. 

 

The variables 2tx  and 3tx  are random walk processes which are nonstationary and when 

differenced are stationary. The variable 1tx  is an ( )I 1  dominated nonstationary process and 

when differenced is stationary. 

 

The ( )VAR 3  process is nonstationary if the roots of the reverse characteristic polynomial 

are all greater than unity (Lütkepohl, 2005:16).  The roots of the reverse characteristic 

polynomial were obtained by finding the roots for the determinant 

2 3
3det( )kL z z z= − − −1 2I A A A . The process would be stationary if 1z >  for all roots. 

 

Consider the determinant, L where 

2 3
3det( )kL z z z= − − −1 2I A A A  
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1,11 1,12 1,13 2,11 2,12 2,13 3,11 3,12 3,13
2 3

1,21 1,22 1,23 2,21 2,22 2,23 3,21 3,22 3,23

1,31 1,32 1,33 2,31 2,32 2,33 3,31 3,32 3,33

1 0 0

det 0 1 0

0 0 1

a a a a a a a a a

a a a z a a a z a a a z

a a a a a a a a a

� � � � � � �� �
� � � � � � �� �= − − −� � � � � � �� �
� � � � � � � �
� � � � � � � ��

2 3 2 3 2 3
1,11 2,11 3,11 1,12 2,12 3,12 1,13 2,13 3,13

2 3 2 3 2 3
1,21 2,21 3,21 1,22 2,22 3,22 1,23 2,23 3,23

2 3 2 3
1,31 2,31 3,31 1,32 2,32 3,32 1

1

det 1

1

a z a z a z a z a z a z a z a z a z

a z a z a z a z a z a z a z a z a z

a z a z a z a z a z a z a

�
�
�

� �
�

− − − − − − − − −
= − − − − − − − − −

− − − − − − − 2 3
,33 2,33 3,33

2 3 2 3 3

2 3

2 3

2 3 4 5 6

1 0.4 0.2 0.2 0.4 0.2 0.15 0.5 0.1

det 0 1 0.6 0.2 0.2 0

0 0 1 0.4 0.3 0.3

1 1.4 0.06 0.264 0.268 0.012 0.1 0.01

z a z a z

z z z z z z z z

z z z

z z z

z z z z z z

� �� �
� �� �
� �� �
� �� �− −� �� �

� �� �− − + − + − − −
� �� �= − − −� �� �
� �� �− − −� �� �

= − − + + − − + 7 8 96 0.012 0.012 .z z z+ +

 

 

The roots of this polynomial are 1 1.76z = , 2 2.24z = , 3 2.24z = , 4 1.83z = , 5 1.83z = , 

6 1.00z = , 7 1.00z = , 8 1.69z =  and 9 1.69z = . Given that at least one root is not greater 

than unity, i.e. the sixth and seventh roots equal unity, the ( )VAR 3  process is 

nonstationary. 

 

Given that 

0.6 0.35 0.6

0 0 0

0 0 0

−� �
� �= � �
� �
� �

�
, the rank of �  was one. Thus the ( )VAR 3  model 

provided for one cointegrating relationship between the variables 1tx , 2tx  and 3tx . To 

summarise, the pre-determined coefficients of the ( )VAR 3  process satisfied the 

theoretical specifications for a model defined as a ( )VEC 2  process with one cointegrating 

relationship. 
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Model 9: Vector Autoregressive Models with Four Lag Terms 

 

The datasets for the ( )VAR 4  model were simulated by setting the intercept terms equal to 

zero. Sample sizes of 100N =  were simulated with the coefficients of the lagged terms 

chosen to ensure that each single equation was first order difference stationary, the systems 

of equations were nonstationary and the multi-equation models were cointegrated with one 

cointegration relationship. Each single equation’s error terms were simulated from a 

standard normal distribution, with mean equal to zero and variance equal to one. 

 

The ( )VAR 4  theoretical model was given by 

 

1 10 1 1 1 21,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23 2 2

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1 3 2

t t t

t t t

t t t

x a x xa a a a a a

x a a a a x a a a x

a a a a a ax a x x

− −

− −

− −

� � � �� � � � � � � �
� � � �� � � � � � � �= + +� � � �� � � � � � � �

� � � � � � �� � � �
� � � � � � � �� � � �

1 3 1 4 13,11 3,12 3,13 4,11 4,12 4,13

3,21 3,22 3,23 2 3 4,21 4,22 4,23 2 4 2

3,31 3,32 3,33 4,31 4,32 4,333 3 3 4 3

.
t t t

t t t

t t t

x xa a a a a a

a a a x a a a x

a a a a a ax x

ε
ε
ε

− −

− −

− −

�

� � � �� � � � � �
� � � �� � � � � �+ + +� � � �� � � � � �

� � � � � �� � � �
� � � � � �� � � �

 

 

This model can be represented as an ECM by  

(i) subtracting 
1 1

2 1

3 1

t

t

t

x

x

x

−

−

−

� �
� �
� �
� �
� �

from both sides of the equation: 
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1 10 1 11,11 1,12 1,13 2,11 2,12 2,13

2 20 1,21 1,22 1,23 2 1 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,333 30 3 1

1 0 0

0 1 0

0 0 1

t t

t t

t t

x a xa a a a a a

x a a a a x a a a

a a a a a ax a x

−

−

−

� �∆ � � �� � � � � �� �
	 	� �� � � � � �� �∆ = + − +
 �� �� � � � � �� �
	 	� �� � � � � �� �∆ � �� � � � � �� �� 

1 2

2 2

3 2

1 3 1 4 13,11 3,12 3,13 4,11 4,12 4,13

3,21 3,22 3,23 2 3 4,21 4,22 4,23 2 4

3,31 3,32 3,33 4,31 4,32 4,333 3 3 4

t

t

t

t t t

t t

t t

x

x

x

x xa a a a a a

a a a x a a a x

a a a a a ax x

ε

−

−

−

− −

− −

− −

�� �
� � � �
� � � �

� �� �
� �� �

� � � �� � � �
� � � �� � � �+ + +� � � �� � � �

� � � �� � � �
� � � �� � � �

2

3

.t

t

ε
ε

� �
� �
� �
� �
� �

 

 

(ii) simplifying and writing in matrix notation: 

( )t 0 1 t-1 2 t-2 3 t-3 4 t-4 t∆x = A - I - A x + A x + A x + A x + �  

 

(iii) adding 2 t-1 2 t-1A x - A x , 3 t-1 3 t-1A x - A x , 3 t-2 3 t-2A x - A x , 4 t-1 4 t-1A x - A x , 

4 t-2 4 t-2A x - A x and 4 t-3 4 t-3A x - A x  to the RHS and simplifying: 

( )

( )

t 0 1 2 3 4 t-1 2 t-1 2 t-2 3 t-1 3 t-2 3 t-2 3 t-3

4 t-1 4 t-2 4 t-2 4 t-3 4 t-3 4 t-4 t

t 0 1 2 3 4 t-1 2 t-1 3 t-1 3 t-2

4 t-1 4 t-2 4 t-3 t

t 0 t-1

∆x = A - I - A - A - A - A x - A x + A x - A x + A x - A x + A x

- A x + A x - A x + A x - A x + A x + �
∆x = A - I - A - A - A - A x - A ∆x - A ∆x - A ∆x

- A ∆x - A ∆x - A ∆x + �
∆x = A + � x - A2 t-1 3 t-1 3 t-2 4 t-1 4 t-2 4 t-3 t∆x - A ∆x - A ∆x - A ∆x - A ∆x - A ∆x + �

 

 

( )

1,11 1,12 1,13 2,11 2,12 2,13

1,21 1,22 1,23 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,33

3,11 3,12 3,13

3,21 3,22 3,23

3,31 3,32

where

1 0 0

0 1 0

0 0 1

a a a a a a

a a a a a a

a a a a a a

a a a

a a a

a a

� � � �� � �
� � � �	 � �= − − −
 � � � �� �

	 � � � � � �
� �� � � � �

−

1 2 3 4

�
= - I - A - A - A - A

4,11 4,12 4,13

4,21 4,22 4,23

3,33 4,31 4,32 4,33

.

a a a

a a a

a a a a

�� � � �
	� � � �− �� � � �
	� � � �

� � � � 

 

 

 

 



Chapter 3 Methodology of Present Study 

 

 

84 

The data were simulated for the ( )VAR 4  with the coefficients,  

 

1 1 1 1 2

2 2 1 2 2

3 3 1 3 2

0 0.4 0.4 0.5 0.2 0.2 0.1

0 0.0 0.5 0.0 0.0 0.25 0.0

0 0.0 0.0 0.4 0.0 0.0 0.3

0.15 0.15 0.2

0.0 0.15 0.0

0.0 0.0 0.15

t t t

t t t

t t t

x x x

x x x

x x x

− −

− −

− −

−� � � � � �� � � � � �
� � � � � �� � � � � �= + +� � � � � �� � � � � �

� � � � � �� � � � � �
� � � � � �� � � � � �

−� �
�+ �
�
�

1 3 1 4 1

2 3 2 4 2

3 3 3 4 3

0.1 0.1 0.0

0.0 0.1 0.0 .

0.0 0.0 0.15

t t t

t t t

t t t

x x

x x

x x

ε
ε
ε

− −

− −

− −

−� � � � � �� �
� � � � � �� � �+ +� � � � � �� � �
� � �� � � � � �
� � �� � � � � �

 

 

Written in matrix notation,  

t 0 t-1 2 t-1 3 t-1 3 t-2 4 t-1 4 t-2 4 t-3 t∆x = A + � x - A ∆x - A ∆x - A ∆x - A ∆x - A ∆x - A ∆x + � , with 

 

1 0 0 0.4 0.4 0.5 0.2 0.2 0.1

0 1 0 0.0 0.5 0.0 0.0 0.25 0.0

0 0 1 0.0 0.0 0.4 0.0 0.0 0.3

0.15 0.15 0.2 0.1 0.1 0.0

0.0 0.15 0.0 0.0 0.1 0.0

0.0 0.0 0.15 0.0 0.0 0.15

� −� � � � � �
	 � � � � � �= − − −
 � � � � � �
	 � � � � � �
� � � � � ��

− − �� � � �
	� � � �− − �� � � �
	� � � �

� � � � 

�

 

 

0.45 0.25 0.8

0 0 0

0 0 0

−� �
� �= � �
� �
� �

�
. 

 

Using the arguments given for the ( )VAR 1  process, the ( )VAR 4  model’s theoretical 

specifications were confirmed. 

 

The variables 2tx  and 3tx  are random walk processes which are nonstationary and when 

differenced are stationary. The variable 1tx  is an ( )I 1  dominated nonstationary process and 

when differenced is stationary. 
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The ( )VAR 4  process is nonstationary if the roots of the reverse characteristic polynomial 

are all greater than unity (Lütkepohl, 2005:16).  The roots of the reverse characteristic 

polynomial were obtained by finding the roots for the determinant 

( )2 3 4
3 4det kL z z z z= − − − −1 2I A A A A . The process is stationary if 1z >  for all roots. 

 

Consider the determinant, L where 

( )2 3 4
3 4det kL z z z z= − − − −1 2I A A A A  

 

1,11 1,12 1,13 2,11 2,12 2,13
2

1,21 1,22 1,23 2,21 2,22 2,23

1,31 1,32 1,33 2,31 2,32 2,33

3,11 3,12 3,13

3,21 3,22 3,23

3,31 3,32 3,33

1 0 0

det 0 1 0

0 0 1

a a a a a a

a a a z a a a z

a a a a a a

a a a

a a a z

a a a

� � � �� � �
� � � �� � �= − −� � � �� � �

� � � � � �� � �� � � � �

� �
� �− � �
� �
� �

4,11 4,12 4,13
3 4

4,21 4,22 4,23

4,31 4,32 4,33

a a a

a a a z

a a a

�� �
�� �− �� �

� � �
� � �

 

 

2 3 4 2 3 4
1,11 2,11 3,11 4,11 1,13 2,13 3,13 4,11

2 3 4 2 3 4
1,21 2,21 3,21 4,21 1,23 2,23 3,23 4,21

2 3 4 2 3 4
1,31 2,31 3,31 4,31 1,33 2,33 3,33 4,31

1

det

1

a z a z a z a z a z a z a z a z

a z a z a z a z a z a z a z a z

a z a z a z a z a z a z a z a z

� − − − − − − − −
�= − − − − − − − −�
� − − − − − − − −�

�
�
�

� ��
� ��
� ��
� ��

�� �

 

 

2 3 4 2 3 4 2 3

2 3 4

2 3 4

1 0.4 0.2 0.15 0.1 0.4 0.2 0.15 0.1 0.5 0.1 0.2

det 0 1 0.5 0.25 0.15 0.1 0

0 0 1 0.4 0.3 0.15 0.15

z z z z z z z z z z z

z z z z

z z z z

� �� �− − + − − + − + − − −
� �� �= − − − −� �� �
� �� �− − − −� �� �

 

 

2 3 4 5 6

7 8 9 10 11 12

1 1.3 0.19 0.42 0.185 0.261 0.0465

0.039 0.015625 0.01975 0.006375 0.0015 0.0015 .

z z z z z z

z z z z z z

= − − + − + +

− + − − − −
 

 

The roots of this polynomial are 1 2.25z = , 2 1.82z = , 3 1.55z = , 4 2.11z = , 5 2.11z = , 
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6 1.92z = , 7 1.92z = , 8 2.10z = , 9 2.10z = , 10 1.00z = , 11 1.00z =  and 12 1.46z = . Given that 

at least one root is not greater than unity, i.e. the tenth and eleventh roots equal unity, the 

( )VAR 4  process is nonstationary. 

 

Given that 

0.45 0.25 0.8

0 0 0

0 0 0

−� �
� �= � �
� �
� �

�
, the rank of 

�
 was one. Thus the ( )VAR 4  model 

provided for one cointegrating relationship between the variables 1tx , 2tx  and 3tx . To 

summarise, the pre-determined coefficients of the ( )VAR 4  process satisfied the 

theoretical specifications for a model defined as a ( )VEC 3  process with one cointegrating 

relationship. 

 

This chapter included a complete description of the methodology followed in this study. 

The simulation models were defined and VEC model requirements confirmed. The 

determinants for each model were solved using Mathematica 6, the code and results are 

given in Appendix 1. The roots of the polynomials were solved using R2.5.1, the code and 

results are given in Appendix 2. The rank of 
�

 was determined using EViews 5.1. 
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CHAPTER 4 

RESULTS AND INTERPRETATIONS 

 

4.1 An I llustration of a Single Replication  

 

To illustrate how each model was analysed consider the first replication of model 1, the 

( )VAR 1  model with 40N =  observations per series. This example illustrates the 

methodology and shows the inferential routine that was followed for every replication for 

all nine models. Much of the analysis was automated using EViews5.1 andExcel 2000 . 

The program routines are provided in Appendix 3 and included on the accompanying 

DVD. 

 

Table 4.1 provides an extract of the data for this illustration. The first column shows the 

time period, t, The second to fourth columns show the 40N =  data observations for the 

three variables, 11tx , 12tx  and 13tx , of the VAR model. The fifth to the seventh columns 

show the differenced data, 11tx∆ , 12tx∆  and 13tx∆ , necessary for the VEC models.  

 

t 11tx  12tx  13tx  11tx∆  12tx∆  13tx∆  

1 -22.16 -5.89 -24.00 - - - 

2 -23.71 -6.11 -24.30 -1.55 -0.22 -0.29 

3 -24.19 -5.73 -24.27 -0.48 0.38 0.03 

: : : : : : : 

38 -33.61 -11.94 -32.23 -0.09 -0.22 -1.61 

39 -33.61 -12.33 -32.82 0.00 -0.38 -0.59 

40 -35.38 -12.13 -34.61 -1.77 0.19 -1.79 

Table 4.1: Dataset number one (of 5000 ) for ( )VAR 1  with 40N =  
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Throughout the analysis the notation used to represent a data point observation is ijtx , were 

i denotes the replication number ( )1, 2 ,..., 5000i = , j denotes the variable number 

( )1, 2, 3j =  and t denotes the time period ( )1, 2, ...,t N= . In all analyses, the value of T is 

fixed as the number of observations used for estimation. 

 

Six VAR models, with lag lengths 1 to 6 were used for each replication to compare the 

criteria. That is, for the ( )VAR 1  model’s simulated data of 5000  series; 30 000  models 

were estimated, 5000  for each VEC model with lag lengths 0 to 5  both inclusive. The 

estimated likelihood functions for each model were used to calculate the respective 

criterion estimates. Thirteen criteria were compared which required a total of 390 000  

criterion estimates per model. 

 

The lag structure of the VEC models creates the problem of different sample sizes for the 

analysis. To compare models, the number of observations for each estimated VEC model 

must be the same, i.e. fixed (Ng & Perron, 2005). As an example consider the case for 

comparing the ( )VEC 0  and ( )VEC 5  models starting with 40N =  observations. The 

( )VEC 0  model only requires one observation less than the available number of 

observations. This model loses a single observation because of the differenced data. 

However the ( )VEC 5  model loses an observation for differencing and five observations 

for the lag structure, i.e. a total of six observations are lost.  To ensure a fixed number of 

observations per model the datasets for each model were fixed at T N p= − . Consider the 

datasets with 40N = , the number of observations were fixed at 40 6 34T = − = . To 

estimate the ( )VEC 0  model, 35 observations from 6t  to 40t  were used to create 34 

differenced data points. To estimate the ( )VEC 5  model, 40 observations from 1t  to 40t  

were used to create 34 differenced data points. The same data reduction system was used 

for all the VEC models.  

 

The lag structures for the six estimated models are shown in Table 4.2. The lag structure of 

the VAR is shown as an ECM, as the model was estimated as a VEC model. The lag 
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structure of the ECM is the number of differenced lag terms defined as the i jx −∆  term with 

1,2, ..., 5j = . In Table 4.2 the equivalent representations of the VAR and VEC models are 

given. The ( )VAR 1  model or equivalent ( )VEC 0  model has no ∆ terms on the right-hand 

side (RHS) hence there are zero lag terms in the VEC model. The ( )VAR 2  model or 

equivalent ( )VEC 1  model has one i jx −∆  term on the RHS hence there is one lag term in 

the VEC model. Similar interpretations apply to the remaining VEC models, the number of 

lag terms are shown in the last column of Table 4.2.  

 

Model Lag Structure of ECM 
No. of Lag 

Terms 

( ) ( )VAR 1 VEC 0≡  t t -1 t∆x = �x + �  0 

( ) ( )VAR 2 VEC 1≡  t t -1 2 t -1 t∆x = �x - A ∆x + �  1 

( ) ( )VAR 3 VEC 2≡  
� 3

t t -1 i t -1 3 t -2 t
i =2

∆x = �x - A ∆x -A ∆x + �  2 

( ) ( )VAR 4 VEC 3≡  � �4 4

t t -1 i t -1 i t -2 4 t -3 t
i =2 i =3

∆x = �x - A ∆x - A ∆x - A ∆x + �  3 

( ) ( )VAR 5 VEC 4≡  � �5 5

t t -1 i t -1 i t -2 5 t -4 t
i =2 i =3

∆x = �x - A ∆x - A ∆x - ... -A ∆x + �  4 

( ) ( )VAR 6 VEC 5≡  � �6 6

t t -1 i t -1 i t -2 6 t -5 t
i =2 i=3

∆x = �x - A ∆x - A ∆x - ... -A ∆x + �  5 

Table 4.2: Error restricted ( )VAR p  model represented as ( )VEC 1p −  model  

 

A preliminary analysis procedure included a graphical check for the stationarity of the 

data. A plot of the data from Table 4.1 is provided in Figure 4.1. On the left-hand side 

(LHS) a plot of the series 11tx , 12tx  and 13tx  is shown, there is some graphical evidence to 

suspect that the data may be nonstationary. All three series appear to be moving in a 

decreasing manner. There is some evidence that the series is cointegrated, the deviation 

between the series appears “constant” , although this visual inspection is questionable.  



Chapter 4 Results and Interpretations 

 

 

90 

 

On the RHS a plot of the differenced series is shown. All three series appear to be 

fluctuating randomly about a central point, providing some evidence of stationarity. Visual 

inspections are best used for illustrative purposes, this study followed the inferential 

routines discussed in the methodology. All inferential methods during these routines used a 

significance level of 5% unless otherwise stated. 

 

Figure 4.1: Nonstationary and stationary plots of the data from Table 4.1, the first 

replication for the ( )VAR 1 , 40N =  model 
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 �
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 �
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 �
��
 �
�� 
 �
���	��� ���� �������  

 

The methodology required that each individual series is ( )I 1  and that the number of 

cointegrating equations in the three variable model is one. The results of the unit root 

analysis for the series 11tx  are shown in Table4.3. The p-value of the test equals 0.9444, 

giving evidence to support the null hypothesis and conclude that the series 11tx  has a unit 

root and is nonstationary. The same analytical procedure was followed for 12tx  and 13tx . 
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Null Hypothesis: x11t has a unit root  

Exogenous: None   

Lag Length: 1 (Fixed)   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic  1.259000  0.9444 

Test critical values: 1% level  -2.627238  

 5% level  -1.949856  

 10% level  -1.611469  

     
     
 
Table 4.3: Augmented Dickey-Fuller test for a unit root 

 

The analysis continued with the unit root test of the differenced series. The ADF test 

assessed the differenced term, 11tx∆ , with one lag term included and intercept and trend 

components excluded. The results of the analysis are shown in Table 4.4. The p-value of 

the test equals 0.0001, giving sufficient evidence to support the alternative hypothesis that 

the series 11tx∆  has no unit root and is stationary. This analysis confirmed that the 11tx  

series was ( )I 1  and was therefore ready to be included in the MS group. The same 

procedure was followed for the 12tx  and 13tx  series. Results for these variables are included 

in the Appendix 4. Both 12tx  and 13tx  satisfied the inferential requirements to be declared 

( )I 1  processes. 
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Null Hypothesis: ∆x11t has a unit root  

Exogenous: None   

Lag Length: 1 (Fixed)   

     
        t-Statistic Prob.* 

     
     Augmented Dickey-Fuller test statistic -4.430794 0.0001 

Test critical values: 1% level  -2.628961  

 5% level  -1.950117  

 10% level  -1.611339  

     
     
 
Table 4.4: Augmented Dickey-Fuller test for a unit root 

 

The number of cointegrating equations in the three variable system of model 1 was 

determined using the Johansen trace statistic test. Theoretical specification required that 

the intercept and trend terms be excluded and that the model has one lag term. The results 

of the analysis are given in Table 4.5. The p-value of the test shows the existence of one 

cointegrating equation. This was considered sufficient statistical evidence to conclude that 

the simulated data for replication one of model 1 was ( )CI 1,1  and thus the data were 

included in the MS group. The same procedure was followed for the remaining 4999  

replications of the model. 
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Sample (adjusted): 3 40   

Included observations: 38 after adjustments  

Trend assumption: No deterministic trend  

Series: x11t x12t x13t    

Lags interval (in first differences): 1 to 1  

Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None *  0.527115  37.01330  24.27596  0.0008 

At most 1  0.149721  8.554968  12.32090  0.1968 

At most 2  0.061000  2.391706  4.129906  0.1440 

     
      Trace test indicates 1 cointegrating eqn(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

     
     Hypothesized  Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

     
     None *  0.527115  28.45833  17.79730  0.0009 

At most 1  0.149721  6.163262  11.22480  0.3315 

At most 2  0.061000  2.391706  4.129906  0.1440 

     
      Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level 
 
Table 4.5: Johansen test for cointegrating rank in multivariate model 

 

This routine was used to group the data into two distinct groups. The groups were labeled 

MS and NMS. The MS group is the database of all simulated data that provided sufficient 

statistical evidence to support the theoretical specifications of the model. The NMS group 

is the database of all simulated data that provided insufficient statistical evidence to 

support the theoretical specification of the model. Excluded from the body of the text is an 

illustration of an example of a replication classified NMS, an example of this scenario is 

provided in the Appendix 5.  
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Continuing with the analysis of replication one, the data were arranged so that 34T =  

observations were available for the estimation of the six VEC models. The model 

estimated required that the data had one cointegrating equation, no intercept or trend terms 

and was a VEC(0) model with no lag terms. The estimated output for the model is shown 

in Table 4.6 and the log-likelihood estimated for replication one of model 1 is 

( ) ( )VEC 0ˆ ˆln 134.0186L = −A, � ; X .  

 

 Vector Error Correction Estimates  

 Sample (adjusted): 2 35  

 Included observations: 34 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

    
    Error Correction: ∆x11t-5 ∆x12t-5 ∆x13t-5 

    
    CointEq1 -0.493623  0.041549  0.043008 

  (0.08793)  (0.11300)  (0.09539) 

 [-5.61390] [ 0.36769] [ 0.45086] 

    
        
 Determinant resid covariance (dof adj.)  0.582382  

 Determinant resid covariance  0.532492  

 Log likelihood -134.0186  

 Akaike information criterion  8.236385  

 Schwarz criterion  8.505743  

    
    
 
Table 4.6: Output of the estimation of  the ( )VEC 0  model 

 

Table 4.7 shows the results of the estimated log-likelihood for the ( )VEC 5  model with the 

dataset from the first replication. The models, ( )VEC 0  and ( )VEC 5 , are used to illustrate 

the methods of estimation. The ( )VEC 1  to ( )VEC 4  models followed the same procedure 

but used a different number of starting observations but the same number, 34T = , of fixed 

estimation observations. The estimation procedure for the ( )VEC 5  model required that the 
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data had one cointegrating equation, no intercept or trend terms and five lag terms. The 

estimated output for the model is shown and the estimated log-likelihood for replication 

one of model 1 is ( ) ( )VEC 5ˆ ˆln 89.4162L = −A, � ; X . 
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 Vector Error Correction Estimates  

 Sample (adjusted): 7 40  

 Included observations: 34 after adjustments 

 Standard errors in ( ) & t-statistics in [ ] 

    
        
    Error Correction: ∆x11t ∆x12t ∆x13t 

    
    CointEq1 -0.440086  0.207077  0.996112 

  (0.26423)  (0.36151)  (0.27514) 

 [-1.66554] [ 0.57281] [ 3.62038] 

D(X11T(-1))  0.086633  0.246676 -0.809456 

D(X11T(-2))  0.250518 -0.529697 -0.935089 

D(X11T(-3))  0.087501  0.097275 -0.406740 

D(X11T(-4))  0.101828 -0.031736 -0.051447 

D(X11T(-5))  0.279043  0.022864 -0.431550 

D(X12T(-1))  0.170617  0.314915  0.854390 

D(X12T(-2))  0.367975 -0.218612  0.704821 

D(X12T(-3))  0.122617  0.523011  0.761021 

D(X12T(-4)) -0.622212  0.024856  0.512090 

D(X12T(-5)) -0.221837  0.308501  0.021342 

D(X13T(-1)) -0.146244 -0.221263  0.513616 

D(X13T(-2))  0.140214  0.158223  0.754749 

D(X13T(-3))  0.082780 -0.610340  0.457827 

D(X13T(-4))  0.226216  0.084794  0.821923 

D(X13T(-5))  0.125977 -0.323462  0.453575 

    
        
     Determinant resid covariance (dof adj.)  0.260309  

 Determinant resid covariance  0.038625  

 Log likelihood -89.41621  

 Akaike information criterion  8.259777  

 Schwarz criterion  10.54932  

    
    
 
Table 4.7: Output of the estimation of  the ( )VEC 5  model 
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The estimated likelihood values were then used to determine the estimated residual 

covariance and inserted into the criteria functions defined in Chapter 2. Continuing the 

illustration, the value of AIC was estimated for both the ( )VEC 0  and ( )VEC 5  models. 

The ( )VAR p  estimated likelihood function is given in the users guide (EViews 5: 708) 

and defined in log form as ( )ln ( ) 1 ln2 ln
2 2

Tk T
L π= − + − ΣA, � ,X � , 

'where det / and number of equations
t

T kεε
� �

Σ = =� �� ��� ���
. 

 

Rearranging to obtain ln Σ�  gives  

( ) ( )( )

( ) ( )( ) ( )( )

2 ˆ ˆln ln 1 ln 2
2

34 32
134.0186 1 ln 2 0.6314.

34 2

Tk
L

T
π

π

� �
Σ = − + +

� � !

� �
= − − + + = −
� � !

A, � , X
"

 

 

Now substituting this estimate into the criterion estimate for the zero lag model gives 

( ) ( )

( ) ( )( )

2
VEC 0

2

1ˆAIC ln 2

3 0
0.6314 2

34

0.6314.

k p

T

−
= +

×
= − +

= −

�

 

 

The estimated AIC value for the ( )VEC 5  model follows the same reasoning, the estimate 

is shown below: 

( ) ( )( ) ( )( )34 32
ln 89.4162 1 ln 2 3.25506

34 2
π

# $
Σ = − − + + = −

% &' ()
 

( ) ( ) ( )( )2

VEC 5
2 3 5

AIC 3.25506 0.60800.
34

×
= − + = −  
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This illustration of the estimated criteria values for the first replication of the ( )VAR 1  

model with 40N =  is comprehensive. Similar calculations were computed for the other 

VEC models. Table 4.8 shows the criteria estimated for replication one. By design the 

criterion value which determines the best fitting model is the one with the smallest value. 

The last column identifies the model selected for each criterion. The results for replication 

one showed that the majority of criteria identif ied the ( )VEC 0  model as the best fitted 

model. This procedure was followed for all 5000  replications. 

 

Criterion VEC(0) VEC(1) VEC(2) VEC(3) VEC(4) VEC(5) 
Model 

selected 

AIC -0.6314 -0.5978 -0.2460 -0.3553 -0.3094 -0.6080 VEC(0) 

MAIC -0.2021 -0.1585 0.1396 0.1246 -0.3094 -0.6080 VEC(5) 

AICC 2.7686 2.9839 3.6951 4.1993 5.2396 6.5449 VEC(0) 

MAICC 2.2675 2.2714 2.6049 2.6078 2.5548 2.5033 VEC(0) 

AICCBD -0.5689 -0.2576 1.4094 9.2565 -20.9271 -10.3320 VEC(4) 

BIC -0.6314 -0.1937 0.5620 0.8568 1.3067 1.4122 VEC(0) 

HQIC -0.6314 -0.4600 0.0295 0.0581 0.2417 0.0809 VEC(0) 

HQICC -0.6314 -0.2870 0.5855 1.2972 2.6140 4.3065 VEC(0) 

LCIC -0.6314 -0.3269 0.2958 0.4575 0.7742 0.7466 VEC(0) 

FPE -0.6314 -0.5964 -0.2348 -0.3165 -0.2143 -0.4129 VEC(0) 

ShibIC -0.5444 -0.5656 -0.3335 -0.6117 -0.7735 -1.3110 VEC(5) 

MBIC 0.1256 0.5807 1.2420 1.7030 1.3067 1.4122 VEC(0) 

MHQIC -0.0903 0.0936 0.5155 0.6629 0.2417 0.0809 VEC(0) 

Table 4.8: Estimated criteria for replication one of  ( )VAR 1  with 40N =  

 

The section that follows summarises the results of the analysis and discusses the 

advantages and disadvantages of several criterion ranking systems. 
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4.2 Introduction to the Assessment Results 

 

The results of the simulations for the models and IC performances are reported in the 

accompanying tables. The tabulated results are the percentage of correct selections by the 

criterion. The tabulated results in section 4.3 to 4.5 include models 1 to 6 and models 8 to 9 

as defined in chapter 3. The discussion of the results for model 7 of chapter 3 is withheld 

until section 4.6. 

 

To simplify interpretations, this study defines six performance capability categories. These 

categories are shown in Table 4.9 and are rated according to the criterion’s ability to 

correctly identify a model from the simulated data of the theoretically defined VEC model.  

 

The first performance rating is defined as excellent and is assigned to criteria that select the 

correct model (95% – 100%] of the time. The second performance rating is defined as very 

good and is assigned to criteria that select the correct model (90% – 95%] of the time. The 

third performance rating is defined as good and is assigned to criteria that select the correct 

model (75% – 90%] of the time. The fourth performance rating is defined as acceptable 

and is assigned to criteria that select the correct model (60% – 75%] of the time. The fifth 

performance rating is defined as poor and is assigned to criteria that select the correct 

model (40% – 60%] of the time. The sixth and last performance rating is defined as 

unacceptable and is assigned to criteria that select the correct model [0% – 40%] of the 

time. These subjective ratings provide a method for comparing the overall capability of the 

criteria whilst still allowing individual comparisons. 
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No. 
Percentage of cor rect 

classifications (% ) Performance Rating 

1 (95 - 100] Excellent 

2 (90 - 95] Very Good 

3 (75 - 90] Good 

4 (60 - 75] Acceptable 

5 (40 - 60] Poor 

6 [0 - 40] Unacceptable 

Table 4.9: Performance capability categories 
 

The IC results are tabulated and discussed sequentially. The MS results are given first, this 

is followed by the NMS results and overall summaries conclude the discussions. 

 

4.3 How do the Information Cr iter ia Per form Individually? 

 

To answer this question, each criterion’s performance was assessed for the MS and NMS 

data.  

 

Meets Specification Data 

 

Consider the results of the percentage of correct classifications of AIC in Table 4.10. 

Results are shown for eight models. The results for the 2nd ( )VAR 2  model with the 

alternative parameterisations are withheld from this summary as they are discussed 

separately when comparing parameterisation influence with the ( )VAR 2  model defined as 

model 5 in Chapter 3. 
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VAR order  N = 40 N = 100 N = 200 

1 78.2 94.0 95.5 

2 33.2 83.7 87.2 

3   77.7   

4   17.5   
Table 4.10: AIC percentage of correct classifications for the meet specification 
database 

 

As the sample size increased from 40N =  to 200N = , the performance capability of AIC 

improved. This was observed for both the ( )VAR 1  and ( )VAR 2  models. In particular for 

the ( )VAR 1  model, when the sample size was 40, AIC’s performance capability was 

approximately 78% whilst when the sample size was 200 the performance capability was 

in excess of 95%. In general, AIC selected the correct model from which the data were 

simulated in excess of 80% of the time for the ( )VAR 1  and ( )VAR 2  models with sample 

sizes of 100 and 200. The AIC performance capabilities for the ( )VAR 2 , 40N = , and 

( )VAR 4 , 100N =  models were unacceptable, with both cases below 40%. Using the 

performance ratings, AIC was classified as a good performer or better for six of the eight 

tabulated results.  

 

The percentages of correct classifications of MAIC are given in Table 4.11. The results 

obtained were similar to those of AIC in that as the sample size increased the performance 

capability of the IC improved. The IC performance capabilities for the ( )VAR 2 , 40N =  

and ( )VAR 4 , 100N =  models were also unacceptable, with both cases below 40% whilst 

the performance ratings were similar to those of AIC. MAIC was classified as a good 

performer or better for five of the eight tabulated results. 
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VAR order  N = 40 N = 100 N = 200 

1 78.1 92.8 95.6 

2 32.1 82.6 84.3 

3   74.5   

4   17.8   
Table 4.11: MAIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of AICC are given in Table 4.12. The influence 

of sample size was less noticeable on this criterion’s performance than on AIC and MAIC. 

The performance ratings for the ( )VAR 1  models were superior to those for AIC and 

MAIC. The IC performance rating for the ( )VAR 1  models were classified as excellent for 

all the models, irrespective of the sample size. A drawback to AICC was the unacceptable 

identif ication of the ( )VAR 4 , 100N = , model. This model was selected 5.9% of the time, 

evidence that when the number of lag terms increased above three, AICC struggled to 

identify the model correctly. The IC was classified as a good performer or better for five of 

the eight results tabulated. 

 

VAR order  N = 40 N = 100 N = 200 

1 98.1 96.4 96.8 

2 21.5 84.4 87.8 

3   73.2   

4   5.9   
Table 4.12: AICC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of MAICC are given in Table 4.13. The results 

were similar to AIC’s in that as the sample size increased the performance capability of the 

IC improved. The IC performance capability for the ( )VAR 4 , 100N = , model was also 

unacceptable, with a selection of 15.8% whilst the performance ratings were similar to 
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those of AIC. MAICC was classified as a good performer or better for six of the eight 

results tabulated. 

 

VAR order  N = 40 N = 100 N = 200 

1 81.7 92.8 95.3 

2 43.3 85.3 87.8 

3   77.9   

4   15.8   
Table 4.13: MAICC percentage of correct classifications for the meet 
specification database 

 

The percentages of correct classifications of AICCBD are given in Table 4.14. The results 

differ from AIC’s for models with sample sizes of 40N = . The criterion was unable to 

identify the models when the sample sizes were small. AICCBD’s performance capability 

improved considerably as the sample size increased, the IC was classified as a good 

performer or better for the ( )VAR 1  and ( )VAR 2  models with 100N ≥ . The inability to 

identify three models was a limitation of the criterion’s capability. All three unacceptable 

ratings had identif ications of less than 1%. 

 

VAR order  N = 40 N = 100 N = 200 

1 0.0 97.3 97.1 

2 0.0 84.1 87.4 

3   58.1   

4   0.3   
Table 4.14: AICCBD percentage of correct classifications for the meet 
specification database 

 

The percentages of correct classifications of BIC are given in Table 4.15. The results were 

noticeably different from the criteria already discussed. The performance rating for the low 

order ( )VAR 1  model was excellent. Unfortunately that was the extent of this criterion’s 

ability. The higher order VAR models were selected at an unacceptable level, even for the 

larger sized samples. These results indicated that lag order dimension had a substantial 
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influence on BIC’s selection capabilities. 

 

VAR order  N = 40 N = 100 N = 200 

1 99.7 100.0 100.0 

2 4.8 18.8 23.0 

3   6.6   

4   0.0   
Table 4.15: BIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of HQIC are given in Table 4.16. The results 

differ from those of AIC in that performance capabilities for the ( )VAR 2  models were of 

lower ratings. When compared to BIC, HQIC’s performance capabilities for the ( )VAR 2  

models were better. The results of HQIC’s performance capability indicated that the 

criterion was a compromise between AIC and BIC. HQIC’s results for the low order 

( )VAR 1  model were excellent but unfortunately similar results were not observed for the 

higher order models.  

 

VAR order  N = 40 N = 100 N = 200 

1 96.1 99.8 100.0 

2 25.9 62.9 66.8 

3   48.8   

4   1.1   
Table 4.16: HQIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of HQICC are given in Table 4.17. The results 

were similar to those for HQIC in that the performance capability of the low order 

( )VAR 1  models was excellent with capability decreasing as lag order increased. 

Unacceptable performance ratings were obtained for three of the eight models assessed 

indicating a weaker performance rating than that for HQIC and much weaker performance 

rating than that for AIC. 
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VAR order  N = 40 N = 100 N = 200 

1 99.4 99.9 100.0 

2 10.1 54.6 59.0 

3   32.3   

4   0.1   
Table 4.17: HQICC percentage of correct classifications for the meet 
specification database 

 

The percentages of correct classifications of LCIC are given in Table 4.18. LCIC was 

derived as a linear combination of HQIC and BIC and priori expectation was to capture the 

benefits of each criterion’s strengths. The results were different from those for AIC in that 

the IC was an excellent performer for the low order ( )VAR 1  model but capability for 

higher order models followed the results of HQIC and decreased rapidly. LCIC was 

classified as an unacceptable performer for four of the eight results tabulated, a 

disappointing result for a criterion expected to benefit from the strengths from which it was 

derived. 

 

VAR order  N = 40 N = 100 N = 200 

1 99.1 100.0 100.0 

2 12.8 37.9 41.9 

3   21.8   

4   0.1   
Table 4.18: LCIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of FPE are given in Table 4.19. The results are 

similar to AIC in that the performance rating of the IC was classified as a good performer 

or better for six of the eight results tabulated. Unacceptable ratings were obtained for the 

( )VAR 2 , 40N = , and ( )VAR 4 , 100N = , models, an observation consistent with almost 

all criteria assessed.  The results of FPE were promising and further comparisons with the 

better performing IC follow. 
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VAR order  N = 40 N = 100 N = 200 

1 82.9 94.0 95.5 

2 36.4 83.8 87.3 

3   77.9   

4   17.1   
Table 4.19: FPE percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of ShibIC are given in Table 4.20. The results for 

the larger sized samples are similar to those for AIC. The criterion performed unacceptably 

for the 40N =  sized samples with approximately 28% and 9% capability for the ( )VAR 1  

and ( )VAR 2  models, respectively. These results indicated that ShibIC is a useful model 

selector for studies with larger sized samples but should be avoided when sample sizes are 

small.  

 

VAR order  N = 40 N = 100 N = 200 

1 28.1 90.8 94.9 

2 8.8 79.0 80.9 

3   70.9   

4   24.0   
Table 4.20: ShibIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of MBIC are given in Table 4.21. The results are 

similar to BIC in that the criterion was an excellent performer for low order models but an 

unacceptable performer for higher order models. Results were as expected as the IC was a 

derivative of BIC with the expected benefit of the error restriction constraint. Like BIC, the 

selection capabilities for the larger sample ( )VAR 1  models were 100%, a perfect score. 

Unfortunately these perfect scores were not obtained for the higher order model selections 

where the selection of ( )VAR 2  models were all rated as unacceptable. 
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VAR order  N = 40 N = 100 N = 200 

1 98.4 100.0 100.0 

2 11.8 26.8 25.3 

3   15.2   

4   0.1   
Table 4.21: MBIC percentage of correct classifications for the meet specification 
database 

 

The percentages of correct classifications of MHQIC are given in Table 4.22. The results 

are similar to those for HQIC in that the criterion was a very good performer for low order 

models with a decreasing performance ability as lag order increased. There was some 

improvement in selection capability of IC when compared to HQIC but insufficient 

improvement when compared to AIC or the AIC derivatives. 

 

VAR order  N = 40 N = 100 N = 200 

1 93.4 99.7 99.9 

2 26.3 63.3 65.2 

3   49.6   

4   2.1   
Table 4.22: MHQIC percentage of correct classifications for the meet 
specification database 

 

To provide a comprehensive comparison of the IC based on the performance rating, this 

study proposed a weighted ranking scale. Each performance capability was given a weight 

and the criteria were ranked according to their overall rating. A decreasing weight was 

assigned to decreasing performance capabilities, the weights are given in the first row of 

Table 4.23. The last column captures the rank of the criterion based on the weighted 

performance capability. 
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Weights (6) (5) (4) (3) (1) (0) 

Performance capability 

Cr iter ion Excellent Very Good Good Acceptable Poor Unacceptable Rank 

AIC 1 1 4 0 0 2 3 

MAIC 1 1 3 1 0 2 5 

AICC 3 0 2 1 0 2 1 

MAICC 1 1 4 0 1 1 2 

AICCBD 2 0 2 0 1 3 8 

BIC 3 0 0 0 0 5 12 

HQIC 3 0 0 2 1 2 6 

HQICC 3 0 0 0 2 3 10 

LCIC 3 0 0 0 1 4 11 

FPE 1 1 4 0 0 2 3 

ShibIC 0 2 2 1 0 3 8 

MBIC 3 0 0 0 0 5 12 

MHQIC 2 1 0 2 1 2 7 

Table 4.23: Performance rating summary of IC for the meet specification database 
 

In order of decreasing performance capability, the top four performing criteria were AICC, 

MAICC and AIC and FPE, with a joint ranking. The worst performing IC were jointly BIC 

and MBIC. The results of this summary showed that for the eight models assessed, the 

efficiency based criteria (Akaike criteria) performed better than the consistency based 

criteria (Bayesian criteria). It was also clear that the criteria had difficulty identifying the 

( )VAR 2 , 40N = , and ( )VAR 4 , 100N =  models. With the exception of MAICC, all 

criteria had an unacceptable rating for selecting these models. It would however be 

flattering to claim that MAICC did much better than the other IC as the criterion only did 

marginally better with ratings of unacceptable for the ( )VAR 4 , 100N =  model, and poor 

for the ( )VAR 2 , 40N =  model.  

 

The consistency based IC were very good low order model identif iers but struggled as the 

dimension of the lag term increased. This was obvious given the number of unacceptable 

ratings observed for these IC.  
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Does Not Meet Specification Data 

 

The IC capability results for the NMS data were very similar to the IC capability results for 

the respective MS data. Rather than repeat the individual criterion discussions, the results 

for the individual IC for the NMS data are tabulated in Appendix 6. For comparison 

purposes, the performance rating summaries were obtained and are given in Table 4.24 

below.  

 

Weights (6) (5) (4) (3) (1) (0) 

Performance capability 

Cr iter ion Excellent Very Good Good Acceptable Poor Unacceptable Rank 

AIC 1 1 3 1 0 2 3 

MAIC 0 2 2 2 0 2 5 

AICC 3 0 2 1 0 2 1 

MAICC 0 2 4 0 0 2 3 

AICCBD 2 0 2 0 1 3 8 

BIC 3 0 0 0 0 5 12 

HQIC 2 1 0 2 1 2 5 

HQICC 3 0 0 0 2 3 10 

LCIC 3 0 0 0 1 4 11 

FPE 1 1 4 0 0 2 2 

ShibIC 0 2 2 1 0 3 8 

MBIC 3 0 0 0 0 5 12 

MHQIC 2 1 0 2 1 2 5 

Table 4.24: Performance rating summary of IC for the does not meet specification 
database 

 

A pattern similar to Table 4.23 was observed. The efficiency based criteria performed 

better than the consistency based criteria. Ranking orders showed nominal changes, with 

FPE and MAICC changing order, but in general the results were the same. The results 

showed that there was little benefit to partition the data into two groups as no discernible 

differences were observed. 
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4.4 How do the Information Cr iter ia Per form as Sample Size 

Increases? 

 

The discussion of this question began in the previous section, the general response was that 

as sample size increased, so too do the criteria’s performance capabilities. In this section, 

the data are summarised graphically for the ( )VAR 1  and ( )VAR 2  models. Although the 

answer to this question is intuitive, the graphical results provided an opportunity for IC 

comparisons not previously observed. Given that the MS and NMS results were similar; 

this discussion is limited to the MS data only. The stacked column plots (Figures 4.2 and 

4.3) for the ( )VAR 1  and ( )VAR 2  models are provided for discussion. 

 

Figure 4.2: Criteria cumulative percentage of correct classifications for ( )VAR 1  model 
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The stacked columns in Figure 4.2 show the cumulative percentages of correct 

classifications of the IC performances for the ( )VAR 1  models with different sample sizes. 

The graph indicates that identif ication for the ( )VAR 1  models are good. Two exceptions 

were noted; the stacked columns for AICCBD and ShibIC are lower than those for the 

other IC showing that they were not as good as the other IC at identifying the low order 

models. Also noticeable are the exceptional performances of the Bayesian based criteria 

such as BIC, LCIC and MBIC and the Hannan-Quinn based criteria such as HQIC, HQICC 

and MHQIC. 

 

Figure 4.3: Criteria cumulative percentage of correct classifications for ( )VAR 2  model 
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The stacked columns in Figure 4.3 show the cumulative percentages of correct 

classifications of the IC performances for the ( )VAR 2  models with different sample sizes. 
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The results displayed for these models were interesting. In general the Bayesian and 

Hannan-Quinn based criteria performed poorly. The dominant criteria for the ( )VAR 2  

models were Akaike based criteria with MAICC outperforming all other tested IC. A clear 

distinction between the top five performing IC and the rest was observed. This observation 

was an important result for this study as the results provided the first opportunity to 

recommend a model selection criterion for practitioners to consider when modelling 

ECMs.  

 

This concludes the discussion on the IC performances as the sample size increases, the 

section that follows considers the outcomes of the IC performances as the dimension of the 

model increases with increasing lag order. The results of the forthcoming section were 

important for this study as the interpretations of the results have a direct bearing on the 

objective of identifying the most appropriate method for determining the lag structure of 

the cointegrated model. 

 

4.5 How do the Information Cr iter ia Per form as the Lag 

Length of the Model Increases? 

 

Given the relevance of this question to this study, the results will be evaluated in detail. To 

answer this question, the four models with sample sizes of 100 were the most complete 

series and hence this assessment considered their results in particular. In addition this study 

considered the individual results of the MS and NMS data of the 100N =  modelled data.  

 

The percentages of correct classifications for each model are summarised in Table 4.25, 

the results obtained were used to plot the stacked columns of the cumulative percentages of 

correct classifications shown in Figures 4.4 and 4.5. These stacked columns provide an 

excellent illustration of IC performance for the ( )VAR 1  to ( )VAR 4  models. The 

frequencies of the correct identification of the models for the MS and NMS data were then 

sorted to provide a performance ranking for the criteria. The performance ranking was 

based solely on the cumulative frequency of correct observations and provided an 
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alternative to the categorized ranking in section 4.3, Tables 4.23 and 4.24.      

 

MS Data NMS Data N = 100 
VAR(1) VAR(2) VAR(3) VAR(4) VAR(1) VAR(2) VAR(3) VAR(4) 

AIC 94.0 83.7 77.7 17.5 95.5 84.6 79.9 17.6 

MAIC 92.8 82.6 74.5 17.8 94.6 83.5 72.3 17.6 

AICC 96.4 84.4 73.2 5.9 97.9 86.5 74.4 5.6 

MAICC 92.8 85.3 77.9 15.8 94.7 85.9 78.8 16.2 

AICCBD 97.3 84.1 58.1 0.3 98.3 87.2 59.0 0.4 

BIC 100.0 18.8 6.6 0.0 100.0 19.2 7.3 0.0 

HQIC 99.8 62.9 48.8 1.1 99.8 67.5 50.2 1.3 

HQICC 99.9 54.6 32.3 0.1 99.9 59.3 33.8 0.1 

LCIC 100.0 37.9 21.8 0.1 100.0 40.6 21.5 0.1 

FPE 94.0 83.8 77.9 17.1 95.5 84.7 80.0 17.4 

ShibIC 90.8 79.0 70.9 24.0 92.7 79.0 69.3 24.1 

MBIC 100.0 26.8 15.2 0.1 100.0 28.4 17.8 0.2 

MHQIC 99.7 63.3 49.6 2.1 99.6 69.8 52.5 1.8 

Table 4.25: Percentage of correct classifications of IC for samples of size N = 100 
 

Highlighted cells in Table 4.25 identify the criteria which were the best and worst 

performers for the model identified by column label. The blue cells identify the best 

performing IC, whilst the yellow cells identify the worst performing IC. An interesting 

observation was that BIC and ShibIC lay claim to both labels depending on model lag 

structure. More importantly it was observed that the variability of performances for the 

( )VAR 1  model was considerably less than for the other models, indicating that 

identif ication of the ( )VAR 1  model was relatively easy for most IC. The real problem 

came when trying to identify the higher order lag models. It is this problem that this study 

addresses and it then provides practitioners with a justif ication for their choice of model 

lag structure. 
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Meet Specification Data 

 

The results of the cumulative percentages of correct classifications of the MS data are 

shown graphically in Figure 4.4. 

 

Figure 4.4: Criteria cumulative percentage of correct classifications for the meet 

specification, 100N =  sized models 
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The graphical results in Figure 4.4 illustrated a clear distinction in performance capabilities 

of the IC evaluated. The percentages of correct classifications of the ( )VAR 1  model, as 

observed by the height of the blue section of the stacked column, were approximately the 

same for each IC. Differences in performance capabilities were noticed as the models lag 

length was increased. The percentages of correct classifications of the ( )VAR 2  model, as 

observed by the height of the purple section of the stacked column, provided the first 

noticeable difference in performance capabilities. There were distinct differences in the 

length of the purple columns. These differences were even more noticeable for the 
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( )VAR 3  and ( )VAR 4  models as shown by the height of the yellow and red columns. The 

graphic clearly illustrates the difference in performance capability of the Akaike derived 

criteria versus the Bayesian and Hannan-Quinn derived criteria. For the models simulated 

with sample of size 100N = , the Akaike derived criteria were better performers than their 

Bayesan and Hannan-Quinn counterparts. This conclusion was reached as the cumulative 

frequency totals for the Akaike derived criteria were greater than those of their Bayesian 

and Hannan-Quinn equivalents. 

 

Does Not Meet Specification Data 

 

The results of the cumulative percentages of correct classifications for the NMS data are 

shown graphically in Figure 4.5. 

 

Figure 4.5: Criteria cumulative percentage of correct classifications for does not meet 

specification, 100N =  sized models 
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There were marginal differences between the MS and NMS data sets, these marginal 
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differences were considered negligible. The general results and interpretations were the 

same, the Akaike derived criteria were much better performers than the Bayesian and 

Hannan-Quinn derived criteria for the models simulated with the samples of size 100N = . 

The results of the MS and NMS data sets indicated that for models with unknown lag 

structure, analysts using the Bayesian and Hannan-Quinn derived criteria would select the 

( )VAR 1  model well but would be less successful in the selecting of the correct higher 

order lag models. The inference is that if the model under examination has an unknown lag 

structure and the objective of the research is to determine the best fitting model then the 

Akaike based criteria are more likely to select the correct model. 

 

The graphical displays in Figures 4.4 and 4.5 were illustrative for visual identif ication of 

poor performing criteria but numerical summaries were required for performance rankings. 

Table 4.26 summarises the cumulative frequencies of correct lag identif ication of the 

models (rather than percentages of correct classifications) for the 100N =  sized models. 

The data were summarised for the MS and NMS data separately and then combined to 

provide a cumulative total for the number of correct selections from 20000  possible 

simulations.  

 

The cumulative frequency results in Table 4.26 provided an opportunity for ranking the 

cumulative performance of the IC for models using sample sizes of 100N = . The last 

column in Table 4.26 gave the sequentially ranked IC based on the cumulative frequencies. 

The results obtained showed that there was little difference between the three top ranked 

IC based on their cumulative frequencies. An interesting observation was the poor overall 

performance of the Bayesian and Hannah-Quinn based criteria. The top ranked criterion, 

AIC, selected the correct model ( )13691 68.5%  times out of a possible 20000  times, 

whilst the bottom ranked criterion, BIC, only selected the correct model ( )6278 31.4%  

times. These low scoring percentages are an indication of the difficulty faced by analysts 

when determining the correct lag structures of the VAR models in VEC representations.  
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Meet specification 
Does not meet 
specification 

Cumulative 
Cr iter ion 

Frequency Rank Frequency Rank Frequency Rank 

AIC 11128 1 2563 1 13691 1 

FPE 11124 2 2563 1 13687 2 

MAICC 11083 3 2542 3 13625 3 

ShibIC 10768 4 2469 4 13237 4 

AICC 10625 5 2411 5 13036 5 

MAIC 10405 6 2354 6 12759 6 

AICCBD 9816 7 2221 7 12037 7 

MHQIC 8788 8 2028 8 10816 8 

HQIC 8706 9 1982 9 10688 9 

HQICC 7653 10 1746 10 9399 10 

LCIC 6545 11 1462 11 8007 11 

MBIC 5826 12 1317 12 7143 12 

BIC 5143 13 1135 13 6278 13 
Table 4.26: Frequency of correct lag identif ication and rank summary of assessment of 
models with N = 100 

 

To explain the performances of the IC, the selection choices of the criteria for individual 

models were tabulated. Given the clear distinction between the poor and better performers, 

only the results of the top five ranked IC from Table 4.26 were summarised. The 

summarised data were tabulated as percentages of correct classifications for ease of 

comparison between criteria.  

 

The results in Tables 4.27, 4.28 and 4.29 summarise the relative frequencies of the top five 

ranked IC for the ( )VAR 2 , ( )VAR 3  and ( )VAR 4  models with samples sized 100N = . 

The column highlighted in yellow identif ies the model from which the data were 

simulated, given the similarity of results between MS and NMS, the results summarised 

were only from the MS database. 
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IC by lag model VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) VAR(6) 

AIC 9.5 83.7 5.3 0.9 0.5 0.1 

FPE 9.5 83.8 5.3 0.9 0.4 0.1 

MAICC 8.3 85.3 5.4 0.8 0.2 0.0 

ShibIC 7.5 79.0 7.4 2.4 1.8 1.8 

AICC 13.6 84.4 1.9 0.1 0.0 0.0 

Table 4.27: Percentage of correct classifications summary for ( )VAR 2 , N = 

100 model 
 

The performances of the top five ranked IC for the ( )VAR 2  model were relatively 

consistent. Four of the five results ranged between 83.7% and 85.3% with the fifth result a 

credible 79.0%. Two observations need mentioning, the selection of the data as a ( )VAR 1  

model, referred to in the literature as underfitting, occurred approximately 10% of the time 

whilst the selection of the data as a ( )VAR 3  or higher order model, referred to as 

overfitting, occurred less than the underfitting. This observation indicated a bias towards 

underfitting. The noticeable exception was ShibIC which showed a bias towards 

overfitting. In general the selection performances of the top five ranked IC for the 

( )VAR 2 , 100N =  model were reasonable. 

 

The performances of the top five ranked IC for the ( )VAR 3  model, given in Table 4.28, 

were less consistent than those for the ( )VAR 2  model. The spread of the results was 

greater than that of the ( )VAR 2  model hinting that model identification was becoming 

more diff icult at the higher order. The results ranged between 70% and 78%, performances 

considerably better than those for some of the IC not grouped in the top five. Underfitting 

by AICC was more noticeable than for the other IC whilst overfitting by ShibIC was once 

again observed. The performances of the top three ranked IC were similar, both in terms of 

underfitting and overfitting with some evidence of a bias towards underfitting.  
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IC by lag model VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) VAR(6) 

AIC 0.6 13.4 77.7 5.9 1.7 0.7 

FPE 0.6 13.6 77.9 5.8 1.5 0.6 

MAICC 0.4 14.5 77.9 5.7 1.2 0.3 

ShibIC 0.4 8.7 70.9 9.6 4.9 5.5 

AICC 1.4 24.0 73.2 1.4 0.0 0.0 

Table 4.28: Percentage of correct classifications summary for ( )VAR 3 , 

100N = model 
 

The performances of the top five ranked IC for the ( )VAR 4  model are given in Table 

4.29. These results were less flattering than their performances for the lower ordered 

models. The best performance, by ShibIC, was a lowly 24% highlighting the difficulty of 

model selection for the higher dimensional models. This difficulty was consistent for all 

IC, including those not ranked in the top five.  

 

IC by lag model VAR(1) VAR(2) VAR(3) VAR(4) VAR(5) VAR(6) 

AIC 0.2 29.4 48.9 17.5 3.0 0.9 

FPE 0.2 29.8 49.3 17.1 2.8 0.7 

MAICC 0.1 29.7 51.8 15.8 2.3 0.3 

ShibIC 0.2 19.6 42.0 24.0 7.8 6.5 

AICC 0.5 49.8 43.5 5.9 0.2 0.0 

Table 4.29: Percentage of correct classifications summary for ( )VAR 4 , 

100N =  model 
 

A plausible reason for this diff iculty was that as the model lag dimension increased, the 

models parameter values decreased which made parameter estimation more difficult. As an 

illustration, the parameter values for the ( )VAR 4  model are given below: 
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Consider the coefficients for the fourth lagged term, only four of a possible nine 

coefficients were non zero, whilst three of those four coefficients were 0.1ija = , a value 

close to zero. When estimating the confidence interval for a parameter, if the interval 

covers zero, standard practice implies that the variable corresponding to the parameter is 

insignificant. In this model, the close proximity of the parameters to zero would adversely 

influence the significance of the fourth lagged vector, t -4x , leading towards model 

underfitting.  

 

Unfortunately the error corrected restriction of the VAR model usually ensures that as the 

lag dimension increases the coefficient values decrease. Exceptions to this would be 

models with small coefficient values for the lower order structure, a case not common in 

the literature. This argument applies to all higher order dimensional models, hence this 

study’s assessment restriction is to a maximum lag structure of four. 

 

Tables 4.30 and 4.31 summarise the cumulative frequencies of correct lag identification of 

the models (rather than percentages of correct classifications) for the 40N =  and 200N =  

sized models, respectively. The data were summarised for the MS and NMS data for both 

the ( )VAR 1  and ( )VAR 2  models separately and then combined to provide a cumulative 

total for the number of correct selections from 10000  replications ( )R . Just as was done 

for the 100N =  based models, the cumulative frequency results provided an opportunity 

for ranking the cumulative performances of the IC for models using the sample sizes of 

40N =  and 200N = . The last columns in Tables 4.30 and 4.31 give the ranking as 

determined by cumulative frequencies.  
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MS NMS Total 

N = 40 VAR(1) 
(R = 3876) 

VAR(2) 
(R = 1658) 

VAR(1) 
(R = 1124) 

VAR(2) 
(R = 3342) 

VAR(1) 
(R = 5000) 

VAR(2) 
(R = 5000) 

Cumulative 
Total        

(R = 10000) 
Rank 

AIC 3031 551 827 880 3858 1431 5289 9 

MAIC 3027 533 826 1022 3853 1555 5408 7 

AICC 3803 357 1097 516 4900 873 5773 3 

MAICC 3165 718 867 1271 4032 1989 6021 1 

AICCBD 0 0 0 0 0 0 0 13 

BIC 3866 79 1121 122 4987 201 5188 10 

HQIC 95 430 1065 620 1160 1050 2210 11 

HQICC 3854 167 1117 230 4971 397 5368 8 

LCIC 3842 212 1114 293 4956 505 5461 5 

FPE 3214 604 882 961 4096 1565 5661 4 

ShibIC 1088 146 261 202 1349 348 1697 12 

MBIC 3814 195 1106 313 4920 508 5428 6 

MHQIC 3621 436 1035 795 4656 1231 5887 2 

Table 4.30: Frequency of correct lag identif ication and rank summary of assessments of 
models with N = 40 

 

The results seen in Table 4.30 showed that the top ranked criterion, MAICC, selected the 

correct model 6021 out of  10000  ( )60.2%  times whilst the bottom ranked criterion, 

AICCBD was unable to select the correct model at all. The inability of AICCBD to select 

the correct model for the 40N =  sized samples was a serious shortcoming of the criterion 

and was a result of excessive overfitting by the criterion. The low scoring frequency counts 

were an indication of the difficulties faced by analysts, confronted with small datasets, who 

need to determine the correct lag structure of the VEC/VAR model. 

 

An interesting observation was the reasonable performances of the small sample correction 

criterion based on the Hurvich and Tsai (1993) methodology. Both MAICC and AICC 

were two of the better performers, with MAICC performing marginally better than AICC, 

an indication that the error restricted correction proposed by Qu and Perron (2006) 

improved the selection capability of Hurvich and Tsai’s (1993) small sample bias 

correction.  
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MS NMS Total 
N = 200 

VAR(1) 
(R = 3876) 

VAR(2) 
(R = 1658) 

VAR(1) 
(R = 1124) 

VAR(2) 
(R = 3342) 

VAR(1) 
(R = 5000) 

VAR(2) 
(R = 5000) 

Cumulative 
Total        

(R = 10000) 
Rank 

AIC 3903 3611 866 738 4769 4349 9118 5 

MAIC 3905 3490 859 710 4764 4200 8964 6 

AICC 3957 3636 880 744 4837 4380 9217 2 

MAICC 3896 3633 859 744 4755 4377 9132 3 

AICCBD 3969 3619 885 747 4854 4366 9220 1 

BIC 4086 951 914 162 5000 1113 6113 13 

HQIC 4085 2766 914 561 4999 3327 8326 8 

HQICC 4085 2443 914 500 4999 2943 7942 10 

LCIC 4086 1733 914 343 5000 2076 7076 11 

FPE 3903 3615 866 739 4769 4354 9123 4 

ShibIC 3878 3350 860 685 4738 4035 8773 7 

MBIC 4086 1047 914 205 5000 1252 6252 12 

MHQIC 4081 2697 914 558 4995 3255 8250 9 

Table 4.31: Frequency of correct lag identif ication and rank summary of assessments of 
models with N = 200 

 

The results seen in Table 4.31 for 200N =  models contradicted some of the results for the 

40N =  models. The best performing IC as identif ied by rank was AICCBD, the worst 

performer for the 40N =  case. Anomalies like this illustrate the difficulties of model 

selection and emphasise the dependency of criteria performances on sample size, 

estimation procedures and dimensions of the model both in terms of lag structure and 

variable number.  

 

Surprisingly the small sample correction based criteria, MAICC and AICC were again two 

of the better performers, with MAICC performing marginally better than AICC, lending 

support to the claim that the error restricted correction proposed by Qu and Perron (2006) 

improved the selection capability of Hurvich and Tsai’s (1993) criterion, albeit within a 

larger sample framework. 

 

The results presented in this section addressed the question of how the criteria perform as 

the lag length of the models increased. The discussions included detailed descriptions of 

individual criterion performances and proposed ranking systems. In the closing summary 
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of this chapter, these ranking systems were compared and recommendations were made. 

The final question for this chapter considers the effects of changing the parameters of the 

theoretical models whilst ensuring the error correction restriction.  

 

4.6 How do the Information Cr iter ia Per form as the Model’s 

Parameter  Structure Changes? 

 

This study considered the impact of the simulation results for two ( )VAR 2  models 

(models 5 and 7 in Chapter 3), with sample sizes of 100N = . The change in parameter 

values were intentionally kept small to allow for criteria performance comparisons. The 

parameter values of the models are shown below, the first model (model 5) was simulated 

with parameterisation:  

 

1 1 1 2 1 3 1 1 2 2 2 3 2

2 1 1 2 1 3 1 1 2 2 2 3 2

3 1 1 2 1 3 1 1 2 2 2 3 2

0.4 0.4 0.5 0.2 0.2 0.0 ,

0.0 0.8 0.0 0.0 0.2 0.0 , and

0.0 0.0 0.6 0.0 0.0 0.4 .

t t t t t t t

t t t t t t t

t t t t t t t

x x x x x x x

x x x x x x x

x x x x x x x

− − − − − −

− − − − − −

− − − − − −

= + + + − +

= + + + + +

= + + + + +

 

 

The second model (model 7) was simulated with parameterisation:  

 

1 1 1 2 1 3 1 1 2 2 2 3 2

2 1 1 2 1 3 1 1 2 2 2 3 2

3 1 1 2 1 3 1 1 2 2 2 3 2

0.6

0.2 0.15 0.1

0.4 0.4 0.2 0.2 0.

0.

0 ,

0.8 0.0 , and

0.0 0.0 0.6 0.0 0.0 0

15

.4 .

t t t t t t t

t t t t t t t

t t t t t t t

x x x x x x x

x x x x x x x

x x x x x x x

− − − − − −

− − − − − −

− − − − − −

− −

= + + + − +

= + + +

= + + + + +

 

 

The parameter changes (highlighted in red) primarily affected the 2tx  equation with 

nominal changes to four of the six lag terms in the equation. The results of the IC 

performances with the simulated data are summarised as frequencies of correct lag 

identif ication and given in Table 4.32. A performance ranking for the cumulative totals is 
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shown in the last column. Considering the similarities of the frequencies of correct lag 

identif ication for the MS and NMS data, the results were summarised as cumulative 

frequencies for the combined MS and NMS data. 

 

Total VAR(2)  N = 100 
Model 5  

(R = 5000) 
Model 7  

(R = 5000) 

∆∆∆∆ = M5 – M7    
Cumulative 

Total         
(R = 10000) 

Rank 

AIC 4193 4740 -547 (10.9%) 8933 5 

MAIC 4138 4701 -563 (11.3%) 8839 6 

AICC 4239 4844 -605 (12.1%) 9083 2 

MAICC 4271 4744 -473 (9.5%) 9015 3 

AICCBD 4232 4929 -697 (13.9%) 9161 1 

BIC 943 3712 -2769 (55.4%) 4655 13 

HQIC 3187 4897 -1710 (34.2%) 8084 9 

HQICC 2772 4882 -2110 (42.2%) 7654 10 

LCIC 1920 4564 -2644 (52.9%) 6484 11 

FPE 4198 4743 -545 (10.9%) 8941 4 

ShibIC 3951 4622 -671 (13.4%) 8573 7 

MBIC 1356 3808 -2452 (49.0%) 5164 12 

MHQIC 3225 4865 -1640 (32.8%) 8090 8 

Table 4.32: Frequency of correct lag identif ication and rank of assessments of different 
parameterisation models 

 

The frequency differences between model 5 (first parameterisation) and model 7 (second 

parameterisation), denoted as M5-M7∆ = , are highlighted in yellow on Table 4.32. It is 

clear from these differences that the IC performances for model 7 are better than those for 

model 5. All the differenced results are negative showing that all observed correct model 

selection frequencies are better for model 7 than for model 5. These results demonstrate the 

difficulties faced with large dimensional modelling problems. In addition, these differences 

demonstrate that even for models which have small parameter differences, the 

identif ication of the correct lag structure using IC is highly volatile. The percentage change 

in correct identif ication ranged between a moderate 9.5% and a volatile 55.4%.  

 

In conclusion, the IC performances were ranked using the cumulative totals of the two 

models. The selection performances for the majority of criteria were reasonable, this was 

observed by the 80.8% relative frequency for HQIC, the criteria ranked a lowly 9th. The 
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two exceptions were BIC (46.6%) and MBIC (51.6%), their selection performances were 

disappointing. 

 

4.7 Results Summary 

 

This section summarises the analysis of the results. Table 4.33 summarises the 

performance rankings of the results discussed so far. It should be noted that in many cases 

the column rankings are dependent assessments, i.e. part of the performance rating of the 

MS data was also captured in the 100N =  ranking, similarly part of the performance rating 

of the MS data was also captured in the different parameterisation assessment.  

 

Rank by 
method 

Performance 
Rating (MS) 

Performance 
Rating (NMS) 

N = 100 N = 40 N = 200 Different 
Parameter isation 

AIC 3 3 1 9 5 5 

MAIC 5 5 6 7 6 6 

AICC 1 1 5 3 2 2 

MAICC 2 3 3 1 3 3 

AICCBD 8 8 7 13 1 1 

BIC 12 12 13 10 13 13 

HQIC 6 5 9 11 8 9 

HQICC 10 10 10 8 10 10 

LCIC 11 11 11 5 11 11 

FPE 3 2 2 4 4 4 

ShibIC 8 8 4 12 7 7 

MBIC 12 12 12 6 12 12 

MHQIC 7 5 8 2 9 8 

Table 4.33: Performance ranking of IC in results chapter 
 

The ranking systems used in this study illustrated marked differences in the performance 

capabilities of some of the criteria. The performances of five of the IC were consistently 

worse than those of other IC. These criteria are those which have either a Bayesian or 

Hannan-Quinn basis. In particular, the criteria BIC, MBIC, HQIC, HQICC and LCIC are 

often ranked in the bottom half of the IC list. Considering the poor performances of these 

IC, it is strongly recommended that their application to VEC modelling be applied only 

when it is necessary to underfit the lag structure of the model based on an economic 
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justification. Except in the large sampled ( )VAR 1  models, these IC are unlikely to select 

the correct lag structure of the VEC model.  

 

Some of the criteria were inconsistent in their capabilities, as an example, AICCBD was 

ranked last for the 40N =  data and first for the 200N =  data model. This volatility in 

identif ication is not recommended for model selection and the use of this criterion for 

model selection can best be described as cautionary. Also included in this category of 

cautionary use are ShibIC and MHQIC. Both exhibit volatility in their capabilities with 

ShibIC performing poorly in small samples and MHQIC only performing well in the small 

sample case. 

 

The performances of AIC and MAIC were reasonable. The limitation of AIC was exposed 

by the low ranking for the 40N =  sized sample, whilst MAIC was a consistent performer 

for all ranked cases without performing exceptionally for any method. The use of these 

criteria for VEC modelling is justified on the basis that they are methods which have 

shown reasonable performances, are easily to implement in analysis routines and are 

theoretically justif ied.  

 

The best performing criteria were AICC, MAICC and FPE. These criteria were the most 

consistent across the ranking systems and in several cases were the best performing IC for 

the ranking method. The benefits of the Qu and Perron (2007) error restricted term in the 

VEC model was captured by the MAICC whilst maintaining the bias correction of Hurvich 

and Tsai’s (1993) small sample correction of Akaike’s original derivation. 

 

In conclusion, this chapter discussed the evaluation of the selection capabilities of thirteen 

informational criteria for nine simulation models. Assessments have been done in terms of 

the influence of sample size, parameterisation and lag structure. The results for these 

evaluations were discussed individually and performance rankings for the criteria obtained. 

The rankings are summarised and the performances of individual criteria were discussed. 
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CHAPTER 5 

ILLUSTRATIONS OF TWO EXAMPLES 

 

5.1 Introduction 

 

In this chapter, the lag length selection criteria are applied to two published datasets. The 

purposes of this were two-fold, first to provide empirical evidence of the estimation 

procedures used in this study by reproducing published results and thereafter to analyse 

data in a VEC framework and propose a model based on the criteria’s model selections. 

 

5.2 Software Validation 

 

EViews 5.1 was used for estimating the likelihood functions for the VEC models of the 

simulated data series. This section shows the computational outputs of the estimated 

routines and reconciliation of the results of the software with the results of an independent 

source. The data used for this purpose were taken from the text of Lütkepohl 

( )2005:145 148−  who used the data to show estimation and lag length selection methods 

for a stationary 3d-VAR model.  

 

The dataset for this example were three quarterly variables, investment, income and 

expenditure, which were seasonally adjusted for the periods 1960Q1 to 1982Q4. The series 

had 92 quarterly periods although Lütkepohl (2005) used the first 76 observations for VAR 

modelling. The last 16 observations were withheld for forecasting comparisons and were 

excluded from the estimation process. To validate the software, the same 76 observations 

were used for this illustration. The full and partial datasets are provided in the Appendix 7. 

The three variables in the dataset were measured in billions of Deutsche Mark for West 
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Germany and defined as the quarterly fixed investment ( )1tx , the quarterly disposable 

income ( )2tx  and the quarterly consumption expenditures ( )3tx  for the period. The time 

graphs of the complete dataset for the three variables are shown in Figures 5.1 and 5.2.  

 

Figure 5.1: Period plot for fixed investment variables from Lütkepohl (2005: 77-78) 

West German data: Lütkepohl
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Illustration of trending  1tx  series 

 

 

Figure 5.2: Period plot for disposable income and consumption expenditures variables 

from Lütkepohl (2005: 77-78) 

West German data: Lütkepohl
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The graphical displays showed that the investment, income and expenditure variables have 

an increasing trend. For the purposes of this illustration, the trends are sufficient evidence 

to conclude that the series are nonstationary. 

 

To model the series as a VAR process, the individual series were log transformed and then 

differenced to obtain a stationary series. The graphs of the transformed series are shown in 

Figures 5.3 and 5.4. A visual inspection lends support to the belief that the transformed 

series are stationary. As the purpose of this example was to reconcile the estimation results 

of EViews5.1 with the estimation results of an independent source, the assumption of 

Lütkepohl (2005) that the transformed series were stationary was accepted.  

 

Figure 5.3: Period plots for differenced logs of fixed investment variable from Lütkepohl 

(2005: 77-78) 
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Illustration of stationary transformed series, ( ) ( )1 1 1ln lnt tx x −−  

 

The illustrations in Figures 5.3 and 5.4 are replicates of the plots in Lütkepohl (2005: 79) 

and confirm that the series used for the validity process of this study are the same as the 

series already in the public domain. 
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Figure 5.4: Period plots for differenced logs of disposable income and consumption 

expenditures variables from Lütkepohl (2005: 77-78) 
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Illustration of stationary transformed series, ( ) ( )2 2 1ln lnt tx x −−  and ( ) ( )3 3 1ln lnt tx x −−  

 

The analysis by Lütkepohl (2005) restricted the maximum lag length of the VAR process 

to four. In so doing, the partial dataset of 76 observations was reduced by an additional five 

observations, four of these observations were used for the lag length upper bound and the 

fifth was used for the differencing of the log variables. Therefore a total of 71 observations 

were available for estimation.  

 

Lütkepohl (2005) estimated five VAR models starting with a ( )VAR 0  up to and including 

a ( )VAR 4  model. To estimate the ( )VAR 0  model, Lütkepohl (2005) included an 

intercept (constant) term, an approach followed in this example. Given the inclusion of an 

intercept term in the ( )VAR 0  model and to compare like models, Lütkepohl (2005) 

included intercept terms in all VAR models. The results of Lütkepohl (2005: 148) are 

shown in Table 5.1. Highlighted in yellow are the models selected by the four criteria used 

to demonstrate model selection. 
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VAR order FPE (x1011) AIC HQIC BIC 

0 2.691 -24.42 -24.42 -24.42 

1 2.500 -24.50 -24.38 -24.21 

2 2.272 -24.59 -24.37 -24.02 

3 2.748 -24.41 -24.07 -23.55 

4 2.910 -24.36 -23.90 -23.21 

Table 5.1: Criteria estimation results of Lütkepohl (2005: 148) 
 

To validate the estimation routine used in this study, the ( )VAR 1  model was estimated, 

the estimated likelihood function obtained and the AIC and BIC results computed. These 

results were then compared to the tabulated results in Table 5.1. 

 

Reconciliation of definitions 

 

To validate results required reconciling the definitions of Lütkepohl (2005) and the 

definitions used in this study. Lütkepohl (2005: 147) used the constant omitted definition 

of AIC given as ( )
2

VAR
Lut

2
AIC lnp k p

T
= +

�� � �  whilst the definition of AIC used by EViews 5.1 

is ( ) ( )
2

VAR
Eviews

2 2 2
AIC lnp k p kd

L
T T T

= − + +A,
�

, X . Hence the direct comparison of numerical 

estimates would not validate results. To compare the results, the definition of Lütkepohl 

(2005) was rearranged to include the constant terms. 

 

EViews 5.1 defines the ( )VAR p  likelihood function as 

ln ( ) ln2 ln
2 2 2

Tk Tk T
L π= − − −A, � , X �

�
. Therefore re-arranging the likelihood function in 

terms of the log determinant of the estimated error covariance matrix gives 

2
ln ln ( ) ln2 .L k k

T
π= − − −� A, � , X

�
 Substituting into ( )VAR

LutAIC p� �  gives 

( ) ( )
2

VAR
Lut-reconciled

2 2
AIC ln ln2 .p k p

L k k
T T

π= − − − +A,
�

, X� �  The use of this definition allowed 

for the comparison of numerical results. 
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Example 

 

The estimation results of the ( )VAR 1  model with intercept term included are shown in 

Table 5.2. The estimated likelihood function is ˆ ˆln ( ) 576.4087L =A, � , X .  

 

 
 Vector Autoregression Estimates  
 Sample (adjusted): 2 72  
 Included observations: 71 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
     LNDX1TV1 LNDX2TV1 LNDX3TV1 
    
    

LNDX1TV1(-1) -0.251427  0.034004 -0.004552 
  (0.11969)  (0.03062)  (0.02691) 
 [-2.10068] [ 1.11055] [-0.16912] 

LNDX2TV1(-1)  0.305564 -0.089126  0.220840 
  (0.51781)  (0.13247)  (0.11643) 
 [ 0.59011] [-0.67283] [ 1.89676] 

LNDX3TV1(-1)  0.636619  0.257615 -0.209026 
  (0.61570)  (0.15751)  (0.13844) 
 [ 1.03398] [ 1.63557] [-1.50985] 

C  0.002440  0.016296  0.019258 
  (0.01305)  (0.00334)  (0.00293) 
 [ 0.18696] [ 4.88153] [ 6.56344] 
    
     Determinant resid covariance (dof adj.)  2.12E-11  

 Determinant resid covariance  1.78E-11  

 Log likelihood  576.4087  
 Akaike information criterion -15.89884  
 Schwarz criterion -15.51641  

    
    

 
Table 5.2: EViews 5.1 estimation output for ( )VAR 1  model 

 

The Eviews 5.1 table shows the parameter estimates for the lagged terms denoted by (-1), 

whilst standard errors are shown in ( ) and t-statistics in [ ]. The log likelihood, AIC and 

BIC estimates are shown in the last column of the table. 
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Substituting the estimate of the likelihood function into the ( )VAR
Lut-reconciledAIC p� �  gives  

 

( ) ( ) ( ) ( )2

VAR 1
Lut-reconciled

2 3 12
AIC 576.4087 3 3ln2 24.50.

71 71
p π= = − − − + = −� �   

 

This is the same result obtained by Lütkepohl (2005: 148) and shown in Table 5.1. Similar 

calculations are done for the other VAR models and the estimated results are given in 

Table 5.3. The numerical values are almost identical to Lütkepohl (2005: 148), there is a 

difference of 0.01 observed for the ( )VAR 2  estimate which is assumed to be a rounding 

difference and considered negligible; all other estimates are exact to the second decimal 

point as shown in Table 5.3. 

 

VAR order ( )VAR
LutAIC p� �   ˆ ˆln ( )L A, � , X    ( )VAR

Lut-reconciledAIC p� �  Validated 

0 -24.42 564.784 -24.42 Yes 

1 -24.50 576.409 -24.50 Yes 

2 -24.59 588.859 -24.60 Yes 

3 -24.41 591.237 -24.41 Yes 

4 -24.36 598.457 -24.36 Yes 

Table 5.3: Results of AIC estimates for Lütkepohl (2005) and EViews 5.1  
 

As an additional confirmation of the estimation procedure used in this study the same 

method was used to compare the BIC estimates for the ( )VAR 1  model. The reconciled 

formula was derived by substituting the estimated covariance into the definition used by 

Lütkepohl (2005) and is given as 

( )

( ) ( )

2
VAR
Lut

2
VAR
Lut-reconciled

ln
BIC ln ,

2 lnˆ ˆBIC ln ln2 , and

p

p

pk T

T

pk T
L k k

T T
π

= Σ +

= − − − +A, � , X

	 	

	 	




 

( ) ( ) ( ) 2
VAR
Lut-reconciled

1 3 ln712
BIC 576.4087 3 3ln2 24.2114.

71 71
p π= − − − + = −� �  

The estimation results are given in Table 5.4. All f ive numerical values are identical to the 
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results of Lütkepohl (2005: 148). This reconciliation confirms the validity of the estimation 

routine used in EViews 5.1 for the VAR model. 

 

VAR order  ( )VAR
LutBIC p� �  ˆ ˆln ( )L A, � , X   

( )VAR
Lut-reconciledBIC p� �   Validated 

0 -24.42 564.784 -24.42 Yes 

1 -24.21 576.409 -24.21 Yes 

2 -24.02 588.859 -24.02 Yes 

3 -23.55 591.237 -23.55 Yes 

4 -23.21 598.457 -23.21 Yes 

Table 5.4: Results of BIC estimates for Lütkepohl (2005) and EViews 5.1 
 

5.3 An Example in a VEC Framework 

 

Given the validation evidence of the software capability this section continues with a 

second empirical example of the determination of the lag length of a cointegrated dataset. 

The dataset of four U.S. economic variables for this example was used by Lütkepohl 

(2005: 312) to model a four dimensional system from a Bayesian approach. This study 

used the same data and modelled the system in a cointegrated framework to compare the 

13 criteria defined in Chapter 2. This comparison is restricted to a maximum lag length of 

four in the VEC framework.   

 

The dataset, quarterly data for four U.S. economic variables from 1954 to 1987, each with 

136 observations are defined as 

1 logarithm of thereal money stock, M1tx = , 

2 logarithm of GNPin billionsof 1982 dollarstx = , 

3 discount interest rateon new issuesof 91-day Treasury billstx = , and 

( )4 yield on long term 20 years Treasury bondstx = . 

 

The plots of 1tx  and 2tx  are shown in Figure 5.5, whilst the plots of 3tx  and 4tx  are shown 

in Figure 5.6. Based on the graphical evidence the variables were assumed to be 
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nonstationary and of order ( )I 1 . These assumptions were considered reasonable as the 

purpose of this section was to illustrate selection capabilities of criteria rather than to 

conduct an econometric assessment of the data.  

 

Figure 5.5: Plots of 1 logarithm of thereal money stock, M1tx = , and 

 2 logarithm of GNPin billionsof 1982 dollarstx =  
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Series assumed nonstationary as mean 

changes over time. 

Series assumed nonstationary as increasing 

trend observed. 

 

 

Figure 5.6: Plots of 3 discount interest rateon new issuesof 91-day Treasury billstx = , and  

( )4 yield on long term 20 years Treasury bondstx =  

VECM Example

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100 120 140

Period

In
te

re
st

 r
at

es

x3t

 

VECM Example

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100 120 140
Per iod

In
te

re
st

 r
at

es

x4t

 

Both series assumed nonstationary as mean changes over time with some evidence of 

volatility, thus variability changes with time. 

 

The system of equations was tested for evidence of cointegration using the trace statistic 

and the computational results of the test are given in Table 5.5. These results demonstrated 

one of the difficulties when modelling a large dimensional cointegrated system; the 
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analysis produced conflicting results dependent on the structure of the model and the 

inferential test used. This study used the trace statistic to evaluate cointegrated simulation 

models without an intercept or trend term.  For consistency this practice was followed and 

the conclusion reached was that there were three cointegrated relationships between the 

four variables. Assuming the no intercept and no trend model, Table 5.5 showed that the 

trace statistic inferred three cointegrated relationships.  Accepting the conclusion of three 

cointegrated relationships and restricting the maximum lag length to four, the sample sizes 

were fixed (Ng & Perron, 2005) to 131 observations for each VEC model.  

 

 

Sample: 1 136     

Included observations: 131    

Series: X1T X2T X3T X4T     

Lags interval: 1 to 4    

      

 Selected (0.05 level*) Number of Cointegrating Relations by Model 

      
      Data Trend: None None Linear Linear Quadratic 

Test Type No Intercept Intercept Intercept Intercept Intercept 

 No Trend No Trend No Trend Trend Trend 

Trace 3 2 1 1 1 

Max-Eig 3 1 1 0 0 

      
       *Critical values based on MacKinnon-Haug-Michelis (1999)  

 
Table 5.5: Cointegration assessment of U.S. data 

 

The four VEC models were then estimated, the resulting likelihood functions determined 

and the equivalent trace statistics recorded. The log of the determinant of the estimated 

covariance matrices were calculated from the likelihood functions. To illustrate this 

procedure, extracts of these assessments for the ( )VEC 1  model are given in Tables 5.6 and 

5.7, the complete assessment results are included in the Appendix 8.  
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 Vector Error Correction Estimates   

 Sample (adjusted): 3 133   

 Included observations: 131 after adjustments  

     
           Determinant resid covariance (dof adj.)  1.88E-18   

 Determinant resid covariance  1.51E-18   

 Log likelihood  1944.394   

 Akaike information criterion -29.07472   

 Schwarz criterion -28.19679   

     
     

 
Table 5.6:  Determination of likelihood estimate for ( )VEC 1  model 

 

Table 5.6 shows the estimated log-likelihood for the ( )VEC 1  model, with 

ˆ ˆln ( ) 1944.39L =A, � , X .  This estimate was used to determine the log determinant of the 

covariance estimate, i.e. ˆln Σ . As an example, consider the ( )VEC 1  model with 

ˆ ˆln ( ) 1944.39L =A, � , X , the log determinant of the covariance estimate was calculated as 

 

( )

2 ˆ ˆln ln ( ) ln2

2
1944.39 4 4ln2 41.039.

L k k
T

T

π

π

= − − −

= − − − = −

�
A,

�
, X



 

 

This calculation was done for each model and the results summarised in Table 5.8. To 

estimate some of the criterion functions, an estimate of the trace statistic was required. To 

illustrate this procedure, extracts of this estimate for the ( )VEC 1  model are given in Table 

5.7. The trace statistic for three cointegrating relationships for the ( )VEC 1  model was 

estimated as ( )1̂ 3 3.696597τ = . 
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Sample (adjusted): 3 133   

Included observations: 131 after adjustments  

Trend assumption: No deterministic trend  

Series: X1T_3 X2T_3 X3T_3 X4T_3    

Lags interval (in first differences): 1 to 1  

Unrestricted Cointegration Rank Test (Trace)  

     
     Hypothesized  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical Value Prob.**  

     
     None *   0.324202  83.99203  40.17493  0.0000 

At most 1 *   0.132333  32.65816  24.27596  0.0035 

At most 2 *   0.076084  14.06312  12.32090  0.0253 

At most 3  0.027824  3.696597  4.129906  0.0647 

     
      Trace test indicates 3 cointegrating eqn(s) at the 0.05 level 

 *  denotes rejection of the hypothesis at the 0.05 level 
 
Table 5.7: Determination of trace statistic for ( )4 -VEC 1d  model with three cointegrated 

relationships 

 

These results for the likelihood estimates, the log determinant covariance estimates and 

trace statistics are summarised in Table 5.8.  Using these results the criterion estimates for 

model selection were calculated and the results are summarised in Table 5.9.  

 

VEC order 

Functions 1 2 3 4 

Likelihood estimate 1944.4 1964.5 1976.2 1990.3 

Covariance estimate -41.039 -41.345 -41.525 -41.739 

Trace statistic 3.6966 3.1448 3.2906 3.1608 

Table 5.8: Estimated statistics for 4d-VEC model with 3 cointegrated relationships  
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The last column in the Table 5.9 identifies the VEC model selected on the basis of the 

minimum criterion function. The results are unsurprising in that the Bayesian and Hannan-

Quinn based criteria select models of lower order than the Akaike based criteria. Given the 

propensity to underfit data by the Bayesian and Hannan-Quinn based criteria, this study 

would suggest that the most appropriate model for econometric based interpretation would 

be the ( )4 VEC 2d −  model with three cointegrated relationships. This decision would be 

based on the agreement between the model selection criteria of AIC, AICC, MAICC and 

FPE. 

 

VEC order 

No. Criterion 1 2 3 4 

Model 
Selected 

1 AIC -40.794 -40.856 -40.792 -40.762 ( )VEC 2   

2 MAIC -40.738 -40.808 -40.742 -40.714 ( )VEC 2  

3 AICC -36.612 -36.633 -36.507 -36.394 ( )VEC 2  

4 MAICC -36.593 -36.636 -36.537 -36.463 ( )VEC 2  

5 AICCBD -40.738 -40.664 -40.315 -39.739 ( )VEC 1  

6 BIC -40.443 -40.154 -39.739 -39.358 ( )VEC 1   

7 HQIC -40.652 -40.571 -40.364 -40.192 ( )VEC 1   

8 HQICC -40.623 -40.486 -40.191 -39.896 ( )VEC 1   

9 LCIC -40.547 -40.362 -40.051 -39.775 ( )VEC 1  

10 FPE -40.794 -40.856 -40.790 -40.757  ( )VEC 2  

11 ShibIC -40.744 -40.830 -40.801 -40.816  ( )VEC 2  

12 MBIC -40.415 -40.130 -39.713 -39.334 ( )VEC 1  

13 MHQIC -40.562 -40.495 -40.284 -40.115   ( )VEC 1  

Table 5.9: Criterion selection for the U.S. economic dataset 
 

To conclude, this chapter provided sufficient evidence that the estimation routines in 

EViews 5.1, the software used for analysis in this study, is adequate for the study. The 

independent assessment of the VAR models by Lütkepohl (2005) lends support to this 

conclusion. A complete illustration of a publicly available dataset has been provided and 

the results of the criteria selections have been discussed. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 

6.1 Introduction 

 

The results of criteria selection performances for other VAR model simulation studies are 

reported in this chapter. The results are summarised and comparisons with the current 

study are discussed. Included in the discussion are the arguments for the many 

contradictory conclusions reached. 

 

6.2 Discussion Including Results from Other Studies 

 

Lütkepohl (1985) reported the results of a criteria model selection simulation exercise for a 

( )3 VAR 1d −  stationary process for samples sized 40T =  and 100T = . The results were 

reported as rankings on a relative frequency ( )%  scale between 0 and 100. The results 

omitted to include the relative frequencies, so the results in Table 6.1 are approximations 

based on the position of the criteria on the scale.  

 

Stationary ( )3 VAR 1d −  models 

Criteria 40T =  100T =  

BIC 1 (~100%) 1 (~100%) 

HQIC 2 (~99%) 1 (~100%) 

FPE 3 (~85%) 3 (~92%) 

AIC 4 (~80%) 3 (~92%) 

ShibIC 5 (~18%) 5 (~87%) 
Table 6.1: Summarised relative frequencies of correct lag 
identif ication of Lütkepohl (1985) 
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The results provided strong evidence that BIC was the preferred model selector for the 

( )3 VAR 1d −  model for both the 40T =  and 100T =  sized samples. Based on these 

results, Lütkepohl (1985) advocated the use of BIC as the preferred model selector for 

VAR models. 

 

The Lütkepohl (1985) study did not include the assessment of criteria performances for 

higher order VAR models. This limitation prevented the detection of underfitting by BIC 

and HQIC as observed in the current study. The approximated results of the ( )3 VAR 1d −  

model were very close to the results of the ( )3 VAR 1d −  model of the current study. The 

rank sequences of the studies were identical, indicating a close relationship between the 

stationary and nonstationary VAR models. 

 

The next study of relevance to this thesis was the theoretical developments of the AICC by 

Hurvich and Tsai (1993). The selection performances of criteria were assessed using two 

bivariate simulation models. The results of the relative frequencies of correct lag 

identif ication are summarised in Table 6.2. The results provided satisfactory evidence that 

AICC and AICCBD were the best selectors for the ( )2 VAR 1d −  and ( )2 VAR 2d −  

models for the 40T =  sized samples. Based on these results Hurvich and Tsai (1993) 

advocated the use of AICC as the preferred model selector for small sampled VAR models. 

 

Stationary VAR models with 40T =   

Criteria ( )2 VAR 1d −  ( )2 VAR 2d −  

AIC 0.87 0.43 

AICC 0.94 0.71 

AICCBD 0.97 0.79 

BIC 0.99 0.68 
Table 6.2: Summarised relative frequencies of correct lag 
identif ication of Hurvich and Tsai (1993) 

 

Hurvich and Tsai (1993) used a 2d  model to demonstrate criteria performances whilst the 

current study used a 3d  model. The dimension incompatibility makes direct comparisons 

difficult but there are similarities worth mentioning. As expected the selection 
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performances of the criteria for the ( )VAR 1  models were better than the ( )VAR 2  models 

and performances for AIC were similar. The noticeable differences were the performances 

of AICCBD and BIC. 

 

The large scale simulation study by Koreisha and Pukkila (1993) reported the results of 

criteria model selection for several simulation models. Of interest to this study were the 

results for the ( )3 VAR 1d −  and ( )3 VAR 2d −  models for samples sized 50T =  and 

100T = . Their study also considered the selection performances of alternative model 

parameterisations defined as diagonal and triangular. The results of the relative frequencies 

of correct lag identif ication are summarised in Table 6.3. Although the results provided 

some evidence that BIC or HQIC were the preferred criteria model selectors, Koreisha and 

Pukkila (1993) were more circumspect with their recommendations. They chose not to 

advocate any particular criterion, rather they concluded that selection performances were 

influenced by model dimensions and the number of non-zero elements in the parameter 

matrices. 

 

Stationary VAR models with alternative parameterisations  

50T =  100T =  

Dimension Criteria Diagonal Triangular Diagonal Triangular 

AIC 0.88 0.96 0.99 0.98 

BIC 0.60 1.00 1.00 1.00 ( )3 VAR 1d −  

HQIC 0.83 1.00 1.00 1.00 

AIC 0.92 0.90 0.97 0.95 

BIC 1.00 1.00 1.00 1.00 ( )3 VAR 2d −  

HQIC 0.99 0.98 1.00 1.00 
Table 6.3: Summarised relative frequencies of correct lag identif ication of Koreisha and 
Pukkila (1993) 

 

The evaluations of only three criteria were the shortcomings of the Koreisha and Pukkila 

(1993) study. When compared to the current study, the performances of BIC and HQIC for 

the ( )3 VAR 2d −  model were surprising. The near perfect performances of BIC and HQIC 

were a direct contradiction to the current study and caused some concern. Inspection of the 

parameter choices for the parameter matrix 2A  revealed that the numerical values for the 
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Koreisha and Pukkila (1993) study were larger than this study providing easier 

identif ication of the 2nd order term. These results were consistent with the conclusions of 

Koreisha and Pukkila (1993) that selection performances were influenced by parameter 

matrices. The current study’s alternative parameterisation for the ( )3 VAR 2d −  model 

supported this argument. The performances of AIC in Koreisha and Pukkila’s (1993) study 

and the current study were similar. 

 

The simulation study by Gonzalo and Pitarakis (1998) reported results of criteria model 

selection for simulation models with different parameterisations. Of interest to this study 

were the results for the ( )3 VAR 1d −  models with samples sized 150T =  and other larger 

sized samples. The results of the relative frequencies of correct lag identif ication are 

summarised in Table 6.4 and 6.5. The results in Table 6.4 were obtained for the ( )VAR 1  

model by changing the parameter value of 11a  in the coefficient matrix 

12 13

21 22 23

31 32 33

11 0 0

0 1.00 0

0 0 1 0

0

.

6

0

0.a a a

a a a

a a a
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� � � �
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1A . 

 

The value of 11a  ranged between 0.60 and 1.00 both inclusive, for models with different 

sample sizes. Although Gonzalo and Pitarakis (1998) concluded that no criterion was a 

“clear overall performer”  they criticised the lack of variability in the AIC performances, 

whilst praising the performances of BIC, HQIC and LCIC. These comments typically lead 

one to discern that the results provided some evidence that BIC, HQIC and LCIC were the 

preferred criteria model selectors. An alternative interpretation of these results would be 

that the performances of BIC were highly volatile and influenced by parameter choice 

whilst AIC performances were more robust to different parameterisations.  
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Nonstationary ( )3 VAR 1d −  models with 150T =  

Criteria 11 0.60a =  11 0.70a =  11 0.80a =  11 0.90a =  11 1.00a =  

AIC 0.64 0.64 0.64 0.55 0.47 

BIC 0.97 0.76 0.23 0.02 1.00 

HQIC 0.90 0.90 0.78 0.27 0.90 

LCIC 0.96 0.92 0.52 0.10 0.98 
Table 6.4: Summarised relative frequencies of correct lag identif ication of 
Gonzalo and Pitarakis (1998) 

 

Gonzalo and Pitarakis (1998) failed to explain the poor performances of BIC, HQIC and 

LCIC for 11 0.90a =  but were sufficiently cautious so as not to advocate BIC as the 

preferred model selector. The lack of higher order VAR simulation models was a limitation 

and probably played a huge role in the decision to criticise performances of AIC. 

 

Kadilar and Erdemir (2002) reported results of criteria performances for the simulation 

exercises of ( )3 VAR 1d −  and ( )3 VAR 2d −  models with 100T = . Four criteria were 

assessed and the performances are summarised in Table 6.5. The results reported provided 

strong evidence that BIC and HQIC were the best model selectors for sample sizes of 

100T = . Based on these results Kadilar and Erdemir (2002) praised the performances of 

BIC and HQIC without going so far as to recommend them as the preferred model 

selectors for VAR models. 

 

Stationary VAR models with 100T =  

Criteria ( )3 VAR 1d −  ( )3 VAR 2d −  

AIC 0.86 0.84 

BIC 1.00 1.00 

ShibIC 0.72 0.61 

HQIC 1.00 0.99 
Table 6.5: Summarised relative frequencies of correct lag identif ication 
of Kadilar and Erdemir (2002) 

 

The study was almost a replication of the experiment undertaken by Koreisha and Pukkila 

(1993). The parameterisation choices were the same, so too were the sample sizes. The 
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inclusion of ShibIC in the assessments was the primary difference between the exercises. 

The results for BIC and HQIC in their study were almost identical to the Koreisha and 

Pukkila (1993) study. Although Kadilar and Erdemir (2002) discussed the bias corrected 

univariate criterion of Hurvich and Tsai (1989) they did not include an assessment of the 

multivariate VAR criterion of Hurvich and Tsai (1993). In all, a useful validation exercise 

but an opportunity lost to compare alternative criteria, for example AICC, or an alternative 

parametric structures. 

 

The follow-up study by Gonzalo and Pitarakis (2002) reported preferences of criteria 

model selection for several stationary ( )VAR 2kd −  ( )2, 3, ...,10k =  simulation models. 

Relevant to this study were the results for the ( )3 VAR 2d −  models with samples sized 

100,150 and 200T = . The results summarised in Table 6.6 give criteria performances for 

models with different parameterisations values. Gonzalo and Pitarakis (2002) used two 

parameterisation methods, large values (close to 1) and small values (close to 0). Based on 

these results Gonzalo and Pitarakis (2002) strongly advocated the use of AIC as the 

preferred model selector for VAR models whilst emphasising the underfitting observed by 

BIC. 

 

 Stationary ( )3 VAR 2d −  models 

100T =  150T =  200T =  

Criteria Large Small Large Small Large Small 

AIC 0.26 0.00 1.00 0.08 1.00 0.23 

BIC 0.00 0.00 0.05 0.00 0.68 0.00 

HQIC 0.46 0.00 0.99 0.00 1.00 0.00 
Table 6.6: Summarised relative frequencies of correct lag identif ication of 
Gonzalo and Pitarakis (2002) 

 

The differences in the performances between large and small parameter values were 

noticeable. The results reported strongly supported Koreisha and Pukkila’s (1993) 

conclusions that parameter choices had an influence on criteria performances. 

Unfortunately the exercise undertaken only considered the performances of three criteria 

with VAR models of maximum lag two, a limitation to an otherwise good study. The 

results of the current study were similar to those of the Gonzalo and Pitarakis (2002) study 
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with noticeable underfitting by BIC for higher order lag models with limited underfitting 

by AIC.  

 

The theoretical derivation of MAIC by Qu and Perron (2007) was followed by a simulation 

exercise to compare its performance with AIC and BIC. The results of criteria 

performances for a ( )3 VAR 3d −  model are summarised in Table 6.7. The results 

provided evidence that MAIC outperformed both BIC and AIC as model selectors for error 

restricted VAR models. Based on these results Qu and Perron (2007) advocated the use of 

MAIC as the preferred model selector for error restricted VAR models. 

 

Stationary ( )3 VAR 3d −  models with 200T =  

Criteria Intercept model Intercept and trend model 
MAIC 0.16 0.21 
AIC 0.08 0.07 

BIC 0.00 0.00 
Table 6.7: Summarised relative frequencies of correct lag identif ication of Qu 
and Perron (2007) 

 

The study reported the findings of criteria performances for two VEC models, a model 

which included an intercept term and a model which included both an intercept and trend 

term. The dimension incompatibility with this study makes direct comparisons diff icult but 

worth mentioning are the poor performances of BIC for both studies. In general, the results 

showed poor performances for all three criteria assessed, the inclusion of criteria 

performances for the lower order models could have provided additional justification for 

the recommendations made. 

 

6.3 Summary 

 

The properties of cointegrated VAR model reduction techniques are still generally 

unknown. This thesis adds to the body of knowledge by considering criteria performances 

for these error restricted VAR models. 
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In general, the limitations of previous studies were that 

• the majority of the studies only evaluated a few criteria, usually including AIC and 

BIC, 

• the lag structures of the models were predominantly lower order models, in many cases 

restricted to 1st order with more recent studies including 2nd order models, and 

• assessments of criteria performances were predominantly for unrestricted stationary 

VAR models. 

 

The consensus of most simulation studies undertaken were that 

• as the sample size increased, selection performances improved, 

• as the dimension of the lag structure increased, selection performance decreased, and 

• the parameterisation choice for models influenced the identification of the lag structure.  

 

The current study’s additions to the literature are 

• the simultaneous evaluations of the performances of many criteria not previously 

assessed together, 

• the evaluations of the performances of higher order lag models, 

• defining a small sample bias correction criterion for error restricted VAR models, 

• finding support for Gonzalo and Pitarakis’s (2002) claim that BIC underfits whilst AIC 

is the better performer, and 

• the tentative confirmation that the identif ication pattern for VEC models is similar to 

the identification pattern for VAR models. 

 

The implications for practitioners are that 

• the larger the sample, the better the chance of correct selection, 

• they must be aware that underfitting will quite likely occur, 

• higher order lag terms with parameters close to zero will unlikely be identif ied, and 

• efficiency based selection criteria are cumulatively better model selectors. 
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6.4 Conclusions 

 

This study has assessed the capabilities of thirteen IC to select the correct lag order of an 

ECM in a VAR framework. Based on simulation exercises the results of the study lend 

support for Akaike based informational criteria with one (or more) of AIC, AICC or 

MAICC as the preferred lag length selector for data based analysis.  

 

The results contradict some of the previous simulation based exercises which in general 

have used stationary ( )VAR 1  models for their simulations. The choice of the ( )VAR 1  

model has meant that BIC and HQIC have often been the preferred criterion choices, but as 

this study has shown, as the order increases, these criteria underfit considerably, 

strengthening the argument for the efficiency based preferences. These recommendations 

are not lone voices in the advocacy of Akaike based criterion choices, Hurvich and Tsai 

(1993) advocated AICC, Gonzalo and Pitarakis (2002) advocated AIC and Qu and Perron 

(2007) advocated MAIC, all directly related to AIC. 

 

6.5 Recommendations and Further Work 

 

An omission from this study was the lack of a simulation based example for the error 

restricted ( )VAR 3  and ( )VAR 4  models with 200N = . Given the performances of the IC 

in this study, this addition would add value by providing a comparison to the 100N =  

sized models and the lower order 200N =  sized models. Although smaller sized sample 

simulation studies would be beneficial to practioners, the limitation encountered when 

faced by starting with a reasonable maximum possible lag length, as 6k ≤  which was used 

in this study, requires a large sample size for estimation of all the lagged term parameters 

and the covariance matrix. This is an area that would be of particular benefit to 

practitioners as sample size is an area that has received no attention in the literature. 
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Further investigation into the influences of parameter choices should be considered as the 

results from this study and that of Koreisha and Pukkila (1993) indicate that this is an area 

that could provide useful results for practitioners.  

 

There are many areas for further research, the asymptotic properties of MAICC bear 

further investigation, the comparison of IC with sequential stepwise procedures would be 

useful as would the evaluations of models with intercept and trend components. This is an 

area open to extensive exploitation, hopefully the research continues to the extent of unit 

root testing as stated by Muller and Elliot (2003), that the available procedures are near 

optimal.  
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APPENDICES 

 

APPENDIX 1: Mathematica 6 code 

 

Ao={{1,0,0},{0,1,0},{0,0,1}} 
 A1={{0.4 z,0.4 z,0.5 z},{0,z,0},{0,0,z}} 
V1=Ao-A1 
Det[V1] 
 {{0.4 z,0.4 z,0.5 z},{0,z,0},{0,0,z}} 
 {{1-0.4 z,-0.4 z,-0.5 z},{0,1-z,0},{0,0,1-z}} 
 1-2.4 z+1.8 z2-0.4 z3 
 Clear all 
 
 all Clear 
 Ao={{1,0,0},{0,1,0},{0,0,1}} 
A1={{0.4 z,0.4 z,0.5 z},{0,0.8 z,0},{0,0,0.6 z}} 
A2={{0.2 z^2,-0.2 z^2,0},{0,0.2 z^2,0},{0,0,0.4 z^2}} 
V2=Ao-A1-A2 
 {{1,0,0},{0,1,0},{0,0,1}} 
 {{0.4 z,0.4 z,0.5 z},{0,0.8 z,0},{0,0,0.6 z}} 
 {{0.2 z2,-0.2 z2,0},{0,0.2 z2,0},{0,0,0.4 z2}} 
 {{1-0.4 z-0.2 z2,-0.4 z+0.2 z2,-0.5 z},{0,1-0.8 z-0.2 
z2,0},{0,0,1-0.6 z-0.4 z2}} 
 Det[V2] 
 1-1.8 z+0.24 z2+0.768 z3-0.072 z4-0.12 z5-0.016 z6 
 Clear all 
 
 all Clear 
 Ao={{1,0,0},{0,1,0},{0,0,1}} 
A1={{0.4 z,0.4 z,0.6 z},{0.2 z,0.8 z,0.15 z},{0,0,0.6 z}} 
A2={{0.2 z^2,-0.2 z^2,0},{-0.1 z^2,0.15 z^2,0},{0,0,0.4 z^2}} 
V2b=Ao-A1-A2 
Det[V2b] 
 {{1,0,0},{0,1,0},{0,0,1}} 
 {{0.4 z,0.4 z,0.6 z},{0.2 z,0.8 z,0.15 z},{0,0,0.6 z}} 
 {{0.2 z2,-0.2 z2,0},{-0.1 z2,0.15 z2,0},{0,0,0.4 z2}} 
 {{1-0.4 z-0.2 z2,-0.4 z+0.2 z2,-0.6 z},{-0.2 z+0.1 z2,1-0.8 
z-0.15 z2,-0.15 z},{0,0,1-0.6 z-0.4 z2}} 
 1-1.8 z+0.21 z2+0.846 z3-0.126 z4-0.126 z5-0.004 z6 
 clear all 
 
 all clear 
 Ao={{1,0,0},{0,1,0},{0,0,1}} 
A1={{0.4 z,0.4 z,0.5 z},{0,0.6 z,0},{0,0,0.4 z}} 
A2={{0.2 z^2,-0.2 z^2,0},{0,0.2 z^2,0},{0,0,0.3 z^2}} 
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A3={{-0.2 z^3,0.15 z^3,0.1 z^3},{0,0.2 z^3,0},{0,0,0.3 z^3}} 
V3=Ao-A1-A2-A3 
Det[V3] 
 {{1,0,0},{0,1,0},{0,0,1}} 
 {{0.4 z,0.4 z,0.5 z},{0,0.6 z,0},{0,0,0.4 z}} 
 {{0.2 z2,-0.2 z2,0},{0,0.2 z2,0},{0,0,0.3 z2}} 
 {{-0.2 z3,0.15 z3,0.1 z3},{0,0.2 z3,0},{0,0,0.3 z3}} 
 {{1-0.4 z-0.2 z2+0.2 z3,-0.4 z+0.2 z2-0.15 z3,-0.5 z-0.1 
z3},{0,1-0.6 z-0.2 z2-0.2 z3,0},{0,0,1-0.4 z-0.3 z2-0.3 z3}} 
 1-1.4 z-0.06 z2+0.264 z3+0.268 z4-0.012 z5-0.1 z6+0.016 
z7+0.012 z8+0.012 z9 
 clear all 
 
 all clear 
 Ao={{1,0,0},{0,1,0},{0,0,1}} 
A1={{0.4 z,0.4 z,0.5 z},{0,0.5 z,0},{0,0,0.4 z}} 
A2={{0.2 z^2,-0.2 z^2,0.1 z^2},{0,0.25 z^2,0},{0,0,0.3 z^2}} 
A3={{-0.15 z^3,0.15 z^3,0.2 z^3},{0,0.15 z^3,0},{0,0,0.15 
z^3}} 
A4={{0.1 z^4,-0.1 z^4,0},{0,0.1 z^4,0},{0,0,0.15 z^4}} 
V4=Ao-A1-A2-A3-A4 
Det[V4] 
 {{1,0,0},{0,1,0},{0,0,1}} 
 {{0.4 z,0.4 z,0.5 z},{0,0.5 z,0},{0,0,0.4 z}} 
 {{0.2 z2,-0.2 z2,0.1 z2},{0,0.25 z2,0},{0,0,0.3 z2}} 
 {{-0.15 z3,0.15 z3,0.2 z3},{0,0.15 z3,0},{0,0,0.15 z3}} 
 {{0.1 z4,-0.1 z4,0},{0,0.1 z4,0},{0,0,0.15 z4}} 
 {{1-0.4 z-0.2 z2+0.15 z3-0.1 z4,-0.4 z+0.2 z2-0.15 z3+0.1 z4,-
0.5 z-0.1 z2-0.2 z3},{0,1-0.5 z-0.25 z2-0.15 z3-0.1 
z4,0},{0,0,1-0.4 z-0.3 z2-0.15 z3-0.15 z4}} 
 1-1.3 z-0.19 z2+0.42 z3-0.185 z4+0.261 z5+0.0465 z6-0.039 
z7+0.015625 z8-0.01975 z9-0.006375 z10-0.0015 z11-0.0015 z12 
 

 

 



Appendices 

 
 

 163 

 

APPENDIX 2: R2.5.1 code 

 

VAR(1) 

> g <- polynomial(c(1, -2.4, 1.8, -0.4)) 

> solve(g) 

[1] 1.0-0i 1.0+0i 2.5+0i 

 

VAR(2) 

> g <- polynomial(c(1, -1.8, 0.24, 0.768, -0.072, -0.12, -0.016)) 

> solve(g) 

[1] -5.00000+0i -3.44949+0i -2.50000+0i  1.00000-0i  1.00000+0i  1.44949+0i 

 

VAR(2b) 

g <- polynomial(c(1, -1.8, 0.21, 0.846, -0.126, -0.126, -0.004)) 

> solve(g) 

[1] -30.228948  -2.500000  -2.244751   1.000000   1.000000   1.473699 

 

VAR(3) 

> g <- polynomial(c(1, -1.4, -0.06, 0.264, 0.268, -0.012, -0.1, 0.016, 0.012, 0.012)) 

> solve(g) 

[1] -1.757279+0.000000i -1.000000-2.000000i -1.000000+2.000000i 

[4] -1.000000-1.527525i -1.000000+1.527525i  1.000000+0.000000i 

[7]  1.000000+0.000000i  1.378639-0.971937i  1.378639+0.971937i 

 

VAR(4) 

> g <- polynomial(c(1, -1.3, -0.19, 0.42, -0.185, 0.261, 0.0465, -0.039, 0.015625, -0.01975, -0.006375, -

0.0015, -0.0015)) 

> solve(g) 
 [1] -2.251747+0.000000i -1.817428+0.000000i -1.551331+0.000000i -
0.124127-2.103708i -0.124127+2.103708i 
 [6] -0.091286-1.913075i -0.091286+1.913075i  0.794828-1.943788i  
0.794828+1.943788i  1.000000+0.000000i 
[11]  1.000000+0.000000i  1.461675+0.000000i 
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APPENDIX 3: EViews codes 

The data and computer routines are given in the accompanying DVD. 

APPENDIX 4: Routine analysis of replication 12tx  and 13tx  

The tabulated results are given in the accompanying DVD. 

APPENDIX 5: Inferential routine of NMS replication 

The tabulated results are given in the accompanying DVD. 

APPENDIX 6.1: Tabulated frequencies for individual criterion for NMS database 

The tabulated results are given in the accompanying DVD. 

APPENDIX 6.2: NMS summary for individual criteria 

The tabulated results are given in the accompanying DVD. 

APPENDIX 7: Datasets for validation and example 

Complete datasets for software validation are given on the accompanying DVD. 

APPENDIX 8: VEC(p) complete assessments 

The tabulated results are given in the accompanying DVD. 
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