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ABSTRACT 

In this thesis we first extend the notion of fuzzy normality to the notion of normality of 

a fuzzy subgroup in another fuzzy group. This leads to the study of normal series of 

fuzzy subgroups, and this study includes solvable and nilpotent fuzzy groups, and the 

fuzzy version of the Jordan-Holder Theorem. 

Furthermore we use the notion of normality to study products and direct products of 

fuzzy subgroups. We present a notion of fuzzy isomorphism which enables us to state 

and prove the three well-known isomorphism theorems and the fact that the internal 

direct product of two normal fuzzy subgroups is isomorphic to the external direct 

product of the same fuzzy subgroups. 

A brief discussion on fuzzy subgroups generated by fuzzy subsets is also presented, and 

this leads to the fuzzy version of the Basis Theorem. Finally, the notion of direct 

product enables us to study decomposable and indecomposable fuzzy subgroups, and this 

study includes the fuzzy version of the Remak-Krull-Schmidt Theorem. 

AMS CLASSIFICATION CODES: 03 E72, 20N99. 

KEYWORDS: 
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PREFACE 

In [12] Rosenfeld introduced the notion of fuzzy subgroup of a group. He proved that a 

homomorphic pre-image of a fuzzy subgroup is always a fuzzy subgroup, and a 

homomorphic image of a fuzzy subgroup that has a certain condition (sup property) is 

always a fuzzy subgroup. Since then we proved that a homomorphic image of any fuzzy 

subgroup is always a fuzzy subgroup, and this proof is included in this thesis. 

Subsequently, we have discovered that in [30] Eroglu also proved that a homomorphic 

image of a fuzzy subgroup is a fuzzy subgroup. A similar result was also obtained by 

Kumar in [35]. 

In [2] Das introduced the notion of a level subgroup of a fuzzy subgroup. He 

characterized fuzzy subgroups of finite groups by their level subgroups. Further 

characterizations of fuzzy subgroups were established by Bhattacharya in [4]. In [57] 

Mashinchi and Zahedi corrected a Theorem of [2]. 

In [7] Bhattacharya and Mukherjee introduced the notions of fuzzy normality and a 

fuzzy coset. In this thesis we develop more general notions of fuzzy normality and 

cosets. This general notion of fuzzy normality is characterized by level subgroups. (We 

also generalize the notion of a fuzzy coset given in [7] using the notion of fuzzy point 

given in [20]). We then prove that if J1. is a fuzzy normal subgroup, then the supremum 

of its fuzzy cosets is a fuzzy subgroup. 

In [7] Bhattacharya and Mukherjee presented a definition of a fuzzy quotient group. In 

[11] we used this definition to prove analogues of the first and the third isomorphism 

theorems. However, the fuzzy version of the second isomorphism theorem fails to hold. 

In this thesis we have modified the definition of a fuzzy quotient group given by Foster 

in [3], (this makes it possible for us) to prove a fuzzy version of the second isomorphism 

theorem. 

In [43] Mukherjee and Bhattacharya introduced a notion of a fuzzy normalizer of a fuzzy 

subgroup. This fuzzy normalizer is not a fuzzy set, it is a crisp group in which the fuzzy 

subgroup is fuzzy normal. In this thesis we define a fuzzy normalizer N(J1.) of a fuzzy 

subgroup J1. such that N(J1.) is a fuzzy subgroup in which J1. is fuzzy normal. In [43] and 

[50] two different notions of fuzzy Abelian were defined. In [11] we defined a fuzzy 

subgroup J1. to be fuzzy Abelian if each nonzero level subgroup of J1. is Abelian. It is now 

clear that this is a weaker notion of fuzzy Abelian than that given in [50]. In this thesis 

we use the weaker notion of [11]. 
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In [1] Bhattacharya and Mukherjee introduced the concept of fuzzy solvable. We deduce 

from this definition that a fuzzy solvable fuzzy subgroup is necessarily fuzzy normal. It 

is desirable that a fuzzy subgroup be fuzzy solvable without necessarily being fuzzy 

normal, since in the crisp case a subgroup H of a group '# can be solvable without being 

normal in ,#. In this thesis we give a definition of fuzzy normality which will ensure 

that a fuzzy solvable fuzzy subgroup need not be fuzzy normal. In [11] we introduced a 

notion of fuzzy isomorphism. In this thesis we improve on it. 

In [49] Ray has also given a notion of fuzzy isomorphism. It is easy to check that our 

notion of fuzzy isomorphism is stronger than Ray's. Our version allows us to prove 

fuzzy counterparts of the isomorphism theorems. 

In [14] Sherwood introduced the concept of the external direct product of fuzzy 

subgroups. In [11] we introduced the concept of an internal direct product and then 

proved that the internal and the external direct products are isomorphic when the fuzzy 

subgroups are fuzzy normal. 

In [9] Murali studied fuzzy congruence relations. In [10] we proved that normal fuzzy 

subgroups and fuzzy congruence relations determine each other in a group-theoretic 

sense. This study of fuzzy congruence relations is included here. Fuzzy congruence 

relations have also been studied by, inter alia, Sidky and Ghanim in [52]. 

In Chapter 1 we first present preliminaries. Then we characterize fuzzy normality in 

several ways. We introduce the notion of a fuzzy subgroup being normal in another 

fuzzy subgroup. This notion is further characterized by level subgroups. Our definition 

of fuzzy normality ensures that any fuzzy subgroup is normal in itself as in the crisp 

case. We also present a general notion of a fuzzy coset. We then show that the 

supremum (fuzzy union) of all fuzzy cosets of a fuzzy normal subgroup is also a fuzzy 

subgroup which is analogous to the crisp case. The fuzzy union of fuzzy cosets of a fuzzy 

subgroup I-" can then be regarded as a fuzzy quotient group '# /1-", where '# is the 

underlying group. However, this notion of quotient does not produce expected results 

and so we do not pursue it. Instead we present a more suitable notion of a quotient 

group. This is a generalization of Foster's quotient in [3]. Fuzzy isomorphism is also 

presented in Chapter 1. We end Chapter 1 with the notion of a product of two fuzzy 

subgroups of the same group, (see Zadeh [15] and Makamba [11]). 
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In Chapter 2 we first study fuzzy subgroups generated by fuzzy subsets. This study 

includes the notions of a fuzzy normalizer and a fuzzy centre of a given fuzzy subgroup. 

We end Chapter 2 by linking the notion of fuzzy normality given in [7] to the notion of 

fuzzy congruence relations. 

Chapter 3 is a further study of direct products of fuzzy subgroups. In Section 3.1 we 

show that if fJ, and 11 are normal fuzzy subgroups, then fJ,1I is the smallest fuzzy subgroup 

of ; containing both fJ, and 11 provided fJ,(e) = 1I(e) , where e is the identity element of 

the underlying group ;. We also establish analogues of the Dedekind and Modular 

laws. Hence the lattice of fuzzy normal subgroups on ; is a modular lattice. When; 

is finite, we show that fJ,1I is the internal direct product if and only if every nonzero level 

subgroup of fJ,1I is an internal direct product of the corresponding level subgroups of fJ, 

and 11. We also show that the internal and the external direct products of fuzzy normal 

subgroups are isomorphic. We end the chapter by stating and proving analogues of the 

three well-known isomorphism theorems in group theory. We also show, by means of 

an example, that the second isomorphism theorem need not hold if we use the quotient 

of Mukherjee and Bhattacharya introduced in [1]. 

In Chapter 4 we discuss cyclic fuzzy subgroups. We show that every finite Abelian 

fuzzy subgroup can be decomposed into a direct product of cyclic p-fuzzy subgroups. 

(This is an analogue of the Basis Theorem in group theory). In [50] Sidky and Mishref 

have also worked with cyclic fuzzy subgroup. Our definition of a cyclic fuzzy subgroup 

does not require the zero-level subgroup to be cyclic as is the case in [50]. We end 

Chapter 4 with a notion of dimension of a fuzzy subgroup which is also a fuzzy vector 

space over the field "U.p , where p is a prime number. This notion of dimension is related 

to Lowen'S notion of dimension given in [16] in the sense that both notions use the crisp 

dimension of the support.of the fuzzy subgroup and also the range of the fuzzy subgroup. 

Chapter 5 is an extension of Chapter 4. In Section 5.1 we discuss decomposable and 

indecomposable fuzzy subgroups. We state and prove an analogue of the well-known 

Remak-Krull-Schmidt Theorem in group theory. Before proving this theorem, we 

discuss equivalent fuzzy subgroups. This leads us to define the length of a fuzzy 

subgroup : see [61]. The Remak-Krull-Schmidt Theorem then holds for a fuzzy 

subgroup of finite length. In Section 5.2 we study normal series of fuzzy subgroups. 

Our definition of a normal series is such that if fJ, = fJ,1 ~ /12 ~ ••• ~ fJ,k is a normal series, 

then each fJ,i is normal in fJ,i-l but need not be normal in the whole group ; as is the 

case in [1]. We end Chapter 5 by stating and proving analogues of the Zassenhaus 

lemma and the Jordan-HOlder Theorem. 
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The latter theorem is preceded by notions of a maximal normal fuzzy subgroup and a 

maximal chain of normal fuzzy subgroups. 

Chapter 6 is a further study of normal series of fuzzy subgroups. In Section 6.1 we study 

solvable fuzzy subgroups. Our definition of solvability differs from the definition of 

solvability given in [1] in that our notions of fuzzy normal and quotient are weaker than 

those given there, but our notion of fuzzy Abelian is stronger than the notion of fuzzy 

Abelian given in [1]. This makes the two notions of fuzzy solvability completely 

different. We also show, by means of examples, that if in our definition of a solvable 

series we replace our quotient by the quotient given in [1], then some of the crisp results 

on solvability have no fuzzy analogues. In crisp group theory every nilpotent group is 

solvable. In Section 6.3 we study nilpotent fuzzy subgroups and establish some 

analogues of the results on nilpotent groups. 



CHAPTER 1 

FUZZY NORMALITY, FUZZY QUOTIENT, FUZZY ISOMORPHISM 

AND PRODUCTS OF FUZZY SUBGROUPS. 

INTRODUCTION 

1 

In [12] Rosenfeld proved that a homomorphic image of a fuzzy subgroup which has the 

sup property is a fuzzy subgroup. Since then we managed to prove that a homomorphic 

image of any fuzzy subgroup is always a fuzzy subgroup. The proof is included in this 

chapter. Subsequently we discovered that in [30] Eroglu also proved that a 

homomorphic image of a fuzzy subgroup is a fuzzy subgroup. A similar result was 

obtained by Kumar in [35]. In Proposition 1.1.5 we characterize the notion of fuzzy 

normality given in [7] in several ways. In [4] Bhattacharya used the notion of a level 

subgroup introduced by Das in [2] to characterize fuzzy subgroups by their level 

subgroups. In [7} it is shown that a fuzzy subgroup is fuzzy normal if and only if all its 

level subgroups are normal subgroups of the underlying group. We show in this chapter 

that if the support of the fuzzy subgroup is normal in the underlying group, the fuzzy 

subgroup need not be fuzzy normal. It is obvious that fuzzy normality of a fuzzy 

subgroup implies normality of its support. The notion of fuzzy normality given in [7] is 

not general enough to allow us to say that a fuzzy subgroup is normal in another fuzzy 

subgroup. Hence in this chapter we generalize the notion of fuzzy normality given in [7]. 

This general fuzzy normality is further characterized by level subgroups. Our definition 

of fuzzy normality ensures that any fuzzy subgroup is normal in itself as in the crisp 

case. 

We have also generalized the notion of a fuzzy coset given in [7]. It is then easily shown 

that the supremum of all'fuzzy cosets of a normal fuzzy subgroup 1/ in a fuzzy subgroup 

J.I. is also a fuzzy subgroup. This is analogous to the crisp result which asserts that the 

set of all cosets of a normal subgroup is a group. The supremum of fuzzy cosets can 

then be regarded as a fuzzy quotient J.I./1/. However, this gets more complicated, and we 

have not pursued it. Instead we present a quotient which is a modified version of 

Foster's definition of a fuzzy quotient group given in [3]. Our definition of a fuzzy 

quotient then allows us to prove analogues of the three isomorphism theorems in 

Chapter 3 and the Zassenhaus lemma in Chapter 5. In [7] Bhattacharya and Mukherjee 

introduced a notion of a fuzzy quotient group. In [11] we used this definition to prove 

analogues of the first and the third isomorphism theorems. 
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However, using the quotient given in [7], the second isomorphism theorem does not hold. 

In crisp group theory it is true that C; / C; is isomorphic to {e} for every group C;, 
where e is the identity element in C;. This result does have a fuzzy analogue if we use 

our notion of a fuzzy quotient. However, if we use the quotient given in [7], the above 

result has no fuzzy analogue. For this and other reasons mentioned earlier, in this thesis 

we do not use the quotient given in [7]. 

In [43] Mukherjee and Bhattacharya introduced a definition of fuzzy Abelian. However, 

that definition was retracted since it was equivalent to fuzzy normal. Another definition 

of fuzzy Abelian was introduced by the same authors in [1]. This definition of fuzzy 

Abelian is still not acceptable to us since it implies that any fuzzy subgroup ;.t of a group 

C; satisfying ;.t{ e) ? ;.t{x) for all x E C; \ {e} is necessarily fuzzy Abelian. We feel this is 

a very weak condition for fuzzy Abelian. Also this definition is equivalent to saying that 

the j.t(e) -level subgroup of ;.t is Abelian. In [11] we defined j.t to be fuzzy Abelian iff 

each nonzero level subgroup of j.t is Abelian. This is the definition that we will use in 

this thesis. In Section 1.2 we present a definition of fuzzy isomorphism which is a 

modified version of fuzzy isomorphism given in [11]. If two fuzzy subgroups ;.t and v are 

fuzzy isomorphic, it is easily shown that each level subgroup of j.t is isomorphic to some 

level subgroup of v. We end this chapter with an introductory discussion of a product of 

two fuzzy subgroups. This is part of the work done in [11]. 

REMARK: 

Subsequent to our definitions of fuzzy normal and fuzzy coset, we have discovered that 

these two definitions coincide with those of Malik, Mordeson and Nair in [59]. 

1.1: PRELIMINARIES 

Definition [15] : Let C; be a set. A fuzzy subset of C; is a mapping ;.t: C; -i [0,1]. If;.t 

and v are fuzzy subsets of C; such that ;.t(x) ~ v(x) for all x E C;, we write ;.t~ v or 

j.t ~ v and say that ;.t is contained in v or j.t is a fuzzy subset of v. 
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DEFINITION: 1.1.1 [12] 

Let c; be a group. A map J.t: c;--+ [0,1] is called a fuzzy subgroup of c; if 

(i) J.t(xy) ~ min(j.t(x), j.t(y)) for all x, y E c;i 
(ii) J.t(x) = j.t(x-1) for all x E c;. 

NOTE: In this thesis the letter c; will always denote a group, unless specified 

otherwise, and the letter e will always denote the identity element of c;. 
If J.t is a fuzzy subgroup of C;, we'll always assume that J.t( e) > O. If J.t 

and v are fuzzy subgroups of c; mentioned in a theorem, proposition, 

defini tion or example, we'll always assume that J.t( e) = v( e), although 

this is not always necessary. We are not necessarily assuming that 

j.t(e) = 1. 

DEFINITION: 1.1.2 (7] 

Let J.t be a fuzzy subgroup of c;. f.L is called fuzzy normal in c; if j.t( a -lxa) ~ f.L(x) for 

all a, x E c;. We also say that J.t is a normal fuzzy subgroup of c;. 

The support of J.t is the set supp f.L = {x E c; : j.t(x) > O}. It is clear that supp J.t is a 

subgroup of c; whenever J.t is a fuzzy subgroup of c;. If f.L is fuzzy normal, then 

supp f.L is a normal subgroup of 'I But the converse is not true, see Example 1.1.6. 

DEFINITION: 1.1.3 [2] 

Let J.t be a fuzzy subgroup of C;, 0 ~ a ~ J.t( e). 

Let f.La = J.t-l[a,l] = {x E c; : j.t(x) ~ a}. Then J.ta is a subgroup of C;, called the 

level subgroup of J.t corresponding to a. 

PROPOSITION : 1.1.4 

Let J.t be a fuzzy subgroup of c;. Then supp J.t = U W a : 0 < a ~ f.L( e)}. 

PROOF: 

Straigh tforward. 



PROPOSITION: 1.1.5 

Let J.L be a fuzzy subgroup of rp. Then the following are equivalent: 

(i) J.L(a-lxa) ~ J.L(x) for all x E supp J.L, a E rp; 
(ii) J.L(a-lxa) ~ J.L(x) for all x, a E rp; 
(iii) J.L(x) = J.L(a-lxa) for all a, x E rp; 
(iv) J.L(ax) = J.L(xa) for all a, x E rp; 
(v) J.L-l[a,l] is a normal subgroup of rp for all aE [O,J.L(e)] ; 
(vi) J.L-l(a,l] is a normal subgroup of rp for all aE [O,J.L(e)]. 

PROOF: 

Straightforward. (See [10]). 

The following example shows that if supp J.L is normal in rp, J.L need not be fuzzy 

normal: 

EXAMPLE: 1.1.6 

4 

Let rp = S3 = {e, a, a2, b, ab, a2b}, b2 = e = a3. S3 is the symmetric group on 3 

symbols. 

Define J.L : rp ~ [0,1] by J.L( x) = { ~ /2 : : : 
lis otherwise. 

J.t(a 2) = 1/3 ~ 1/3 = J.t(a). 

J.t ( ab ) = 1 /3 ~ 1/3 = J.t ( a) . 

J.t(a 2b) ~ J.t(a2
) A J.t(b) = lis. 

So J.L is a fuzzy subgroup of rp and supp J.L = S3 is normal in rp. 

is not normal in rp. Hence J.L is not fuzzy normal. 
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DEFINITION: 1.1.7 [7] 

Let v be a fuzzy subgroup of 1 and let x E 1. A left fuzzy coset of v associated with 

x, denoted by xv, is a fuzzy subset of 1 defined by (xv)(y) = v(x-1y) V Y E 1. A 

right fuzzy coset of v is defined by (v.x:)(y) = v(yx-1
). 

If v is fuzzy normal, then the set :y v = {xv : x E 1} is a group under the binary 

operation defined by (xv)(yv) = (xy) v, x, Y E 1· We also have xv = v.x: for all x E 1· 
(See [7], Proposition 4.3 and Theorem 4.5). 

PROPOSITION : 1.1.8 [7] 

Let J1. be a fuzzy subgroup of 1. J1. is fuzzy normal if and only if XJ1. = J1X for all 

xE 1. 

PROOF: 

Obvious. 

DEFINITION: 1.1.9 [12] 

Let 1 and l' be groups, and f: 1 -! l' a homomorphism. Let J1. be a fuzzy 

subgroup of 1. The image of J1. under f, f(J1.) , is a fuzzy subset of f( 1) defined by 

f(J1.)(f(x)) = sup {f.£(y) : f(y) = f(x)}. Let f(J1.)(Y) = 0 if y ¢ f( 1). Then f(J1.) becomes 

a fuzzy subset of 1'. In fact, f(J1.) becomes a fuzzy subgroup of l' :-

PROPOSITION 1.1.10 

Let 1 and l' be groups, f: 1 -! l' a homomorphism and J1. a fuzzy subgroup of 

1, then f(J1.) is a fuzzy subgroup of l' . 

PROOF: 

Suppose first that f is onto 1'. 
Therefore f(J1.)(f(x)) = sup f.£(a) 

f(a) = f(x) 
It is clear that f(J1.)(f(x)) = f(J1.)(f(xt1). 



We now show that f(Jt)(f(x)f(y)) ~ f(Jt)(f(x)) " f(Jt)(f(y)). 

Let at = f(Jt)(f(x)), ~ = f(Jt)(f(y)) and a = f(Jt)(f(x)f(y)). 

Now at = sup{jt(a): f(a) = f(x)}, a2 = sup{jt(a): f(a) = fey)}, 

a = sup{Jt(a): f(a) = f(xy)}. 

6 

Let E > 0 such that E < min(at, a2, a). Therefore there exist at, a2, feat) = f(x) and 

f(a2) = fey), such that at - E < jt(a1) and a2 - E < jt(a2). 

Therefore at - E" ~ - E < Jt(at) " jt(a2) $ jt(ata2)· 

Since f(ata2) = f(xy), jt(ata2) $ {sup jt(a) : f(a) = f(xy)} = a. 

Hence at - E" a2 - E < a. This is true for every E E (0, mine al,a2,a)). Therefore 

at" a2 $ a. 

If a = 0, we claim that at or a2 is zero. 

Suppose a t,a2 > 0, therefore jt(at), Jt(a2) > 0 for some at,a2 satisfying feat) = f(x) and 

f(a2) = fey), hence sup jt(a) ~ Jt(ata2) ~ Jt(at) " Jt(a2) > o. 
f(a) = f(xy) 

Contradiction ! 

Therefore f(Jt) is a fuzzy subgroup of f( 'P). 

Now suppose that f is not necessarily onto. Let y 1 E f( 'P) and Y2 t f( 'P). 

Therefore Y1Y2 t f( 'P). Hence f(Jt)(YtY2) = 0 ~ 0 = f(Jt)(Yl) " f(Jt)(Y2)· 

Other cases are similarly proved. Therefore f(Jt) is a fuzzy subgroup of 'P I • 

PROPOSITION 1.1.11 

Let Jt be a fuzzy normal subgroup of 'P. Let f: 'P -I 'P I be a homomorphism where 

'P I is a group. Then f(Jt) is fuzzy normal in f( 'P). 

PROOF: 

Straightforward. 
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In [1], P. Bhattacharya and N.P. Mukherjee introduced a notion of fuzzy Abelian. We 

feel that their notion of fuzzy Abelian is too weak since for example any fuzzy subgroup 

/L satisfying {x E c; : /L( x) = JL( e)} = {e} is necessarily fuzzy Abelian even if supp /L is not 

Abelian. Hence we introduce another notion of fuzzy Abelian which is strong enough to 

ensure that supp /L is also Abelian. 

DEFINITION : 1.1.12 

Let /L be a fuzzy subgroup of C;. /L is fuzzy Abelian if /Lt is Abelian for all t E (O,/L( e)). 

Whenever fuzzy Abelian is mentioned in this thesis, the version of Definition 1.1.12 

should be assumed. 

PROPOSITION: 1.1.13 

/L is fuzzy Abelian if and only if supp /L is Abelian. 

PROOF: 

Suppose supp /L is Abelian. Now /Lt ~ supp /L for all t E (O,/L( e)), and so /Lt is Abelian 

for all t E (0 ,/L( e)). Hence /L is fuzzy Abelian. 

Conversely, suppose /Lt is Abelian for all t E (O,JL(e)). Let a, bE supp /L. Since 

supp /L = U{jtt: 0 < t ~ /L(e)}, a E /Lt1 and bE /Lt2 for some t i, t2 E (O,/L(e)). 

Suppose ti < t2. Then /Lt2 ~ /Lt 1. Hence a, b E /Lti. Therefore ab = ba. 

The proof is complete .. 

DEFINITION: 1.1.14 [20] 

A fuzzy set in c; is called a fuzzy point if and only if it takes the value 0 for all y E c; 
except one, say, x E ,#. If its value at x is )., 0 < ). ~ 1, we denote this fuzzy point by 

x)., where the point x is called its support. The fuzzy point x). is said to be in the 

fuzzy set /L if ). ~ /L( x), and we wri te x). E /L. 
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Let f./, be a fuzzy subgroup of ~. 

In this thesis the fuzzy subgroup f./,e is defined by 

f./,e( x) = { It ( e ) x = e 
o x f e. 

DEFINITION : 1.1.15 [1] 

Let f./, be a fuzzy subgroup of ~ and v a normal fuzzy subgroup of ~ such that v ~ j},. 

The quotient f./,/v is a fuzzy subset of :7 v = {xv: x E P'} defined by f./,/v (xv) = f./,(x) 

for all x E ~. 

It is trivial that f./,/ v is a fuzzy subgroup of :7 v' 

If v ~ f./, are fuzzy subgroups of ~, we shall say that v is a fuzzy subgroup of j}" or v is 

contained in f./,. 

1.2 : ISOMORPHISM AND QUOTIENT FUZZY SUBGROUPS 

In defining isomorphism of fuzzy subgroups of j}, and v in P' 1 and P' 2 respectively, we 

must ensure that f./, and v turn out to be essentially the same when we rename the 

elements of ~ 1 and ~ 2' i.e. as functions, they must behave in a similar manner. For 

example, if jJ,(x) > f./,(y) and f: supp f./, -t supp v is an isomorphism, then we must have 

that v(f(x)) > v{f(y)). 

Further, the following properties are desirable: 

1m f./, must be equipotent to 1m v. ~ 1 and ~ 2 need not be isomorphic. 

If f./, = av for some fixed a E "U!, we want f./, and v to be isomorphic. 

If f : supp f./, -t supp v is an isomorphism, we want f(f./,) to be equal to v. Also there 

must be a one-to-one correspondence between the fuzzy subgroups of f./, and the fuzzy 

subgroups of v. 
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The definition below does have the above properties: 

DEFINITION : 1.2.1 

Let <J 1 and <J 2 be groups and J.L and v fuzzy subgroups of <J 1 and <J 2 respectively. 

An isomorphism f : supp J.L ~ supp v is a fuzzy isomorphism of J.L onto v if:1 a 

constant k E !R+ such that J.L(x) = k v(f(x)) for all x E supp J.L \ {e}. 

We then say that J.L is isomorphic to v and write J.L ~ v. 

EXAMPLE: 1.2.2. 

Let S3 = {e, a, a2
, b, ab, a2b}, a3 = e = b2, and 716 = {5, 1, 2, 3, 4, 5} under 

addition modulo 6. 

Define J.L : S3 ~ [0,1] by J.L(e) = 1, J.L(a) = 1/2 = J.L(a2
) ; J.L(b) = 0 = J.L(ab) = J.L(a2b). 

Then J.L is a fuzzy subgroup of S3 and supp J.L = A3 = {e, a, a2}. 

Define v : 716 ~ [0,1] by v(5) = 1 ; v(2) = l/a = v(4) ; v(l) = v(5) = 0 = v(3). 

Therefore v is a fuzzy subgroup of 71 6, supp v = {5, 2, 4} ~ 713, 

Define f: supp J.L~ supp v by f(e) = 5 ; f(a) = 2 ; f(a2) = 4. 

and 

J.L( e) 
J.L( a) 
J.L( a 2) 

J.L(x) 

Therefore J.L ~ v. 

= v(5) = v(f(e)). 
= 1/2 = 3/2 V(2) = 3/2 v(f(a)) 

= 3/2 v(f( a2
)). 

= 0 = 3/2 v(f(x)), x t e, a, a2
• 

Note that 716 is not isomorphic to S3' 

1m J.L t 1m v, but 1m J.L is equivalent to 1m v. 
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PROPOSITION: 1.2.3. 

Let f.L and 1/ be fuzzy subgroups of the groups ~ t and ~ 2 respectively. Suppose f.L ~ 1/. 

Then f.L is fuzzy Abelian if and only if 1/ is fuzzy Abelian. 

PROOF: 

Trivial. 

PROPOSITION : 1.2.4. 

Let f.Lt and f-L2 be fuzzy subgroups of the groups ~ t and ~ 2' respectively, such that 

f.Ll ~ f-L2. Then, given any t E (0, f.Lt(e)], there exists s E (0, f-L2(e)] such that f.Lr ~ f.L~. 

PROOF: 

Let f : supp f.Ll -+ supp f.L2 be an isomorphism such that f.Lt(x) = k f-L2 (f(x)) for all 

x E supp f.Lt \ {e}, k fixed. Define g : f.Lr -+ f.L~/k by g = fl f.Lr· Let x E f.Lr. Then 

f.Lt(x) ~ t and k f-L2 (f(x)) ~ t. Hence f(x) E f.L~h. So g is well-defined. 

Clearly g is an injective homomorphism. Let y E f.L~h. Then f-L2(Y) ~ t/k. 

Now y = f(x) for some x E supp f.Lt. Therefore k f-L2 (f(x)) ~ t. Hence x E f.Lr. 

Therefore g is onto. 

The proof is complete. 

PROPOSITION : 1.2.5. 

Let f.L and 1/ be fuzzy subgroups of the groups ~ t and ~ 2' respectively. Suppose 

f.L ~ 1/. If f.L is fuzzy normal in supp f.L, then 1/ is fuzzy normal in supp 1/. 

PROOF: 

Straigh tforward. 
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Before proceeding with the notion of isomorphism, we have to give a weaker notion of a 

fuzzy quotient. The quotient given in Definition: 1.1.15 [1] is not good for the second 

Isomorphism Theorem, (see Chapter 3). Also we do not have the crisp analogue that 

11/ 11 ~ l1e' 

MOTIVATION: 

Let 11 be a normal fuzzy subgroup of ,#. Let f: '# ~ '# / df be the canonical 

homomorphism where df is a normal subgroup of '# contained in supp 11. Then f(l1) 

is a fuzzy subgroup of '# / df, (Proposition 1.1.10). 

{
~(e) xEdf 

Let v(x) = ° x ~ df. 

Then v is a normal fuzzy subgroup of '# and supp v = df ~ supp J.t. 

Now f(J.t)(xdf) = sup{J1(a) : a supp v = x supp v} 

This motivates the following definition: 

DEFINITION: 1.2.6 

Let J.t and v be fuzzy subgroups of '#' where v is fuzzy normal and supp v ~ supp J.t. 
The fuzzy quotient group 11 modulo v, denoted by J.t/ v, is the function 

I1/V: '# /supp v ~ [0,1] defined by 

J.t/v (x supp v) = supw(a) : a supp v = x supp v}. If f: '# ~ '# /supp v is the 

canonical homomorphism, then f(J.t) = J.t/v. 

To distinguish between the quotients in Definitions 1.2.6 and 1.1.15, we call the 

quotient in definition 1.1.15 the strong fuzzy quotient and denote it by (J.t/v)s. So 

whenever we mention a quotient J.t/ v, definition 1.2.6 is to be assumed. 

THE RELATIONSHIP BETWEEN (p./v)s AND p./v: 

Let jlv={XV:XE,#},Ev={XE,#:V(x)=v(e)}. jlv~ ,#/Ev' So we can write 

(J.t/v)s(xv) = (J.t/v)s(xEv) = J1(x) for all x E ,#. 

If supp v = Ev, then '# /Ev = '# /supp v~ jlv and hence (J.t/v)s = (J.t/v). 
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However, if Ev ¥ supp v, then 

(J-t/v)s(x Ev) ~ J-t/v (x supp v) for all x E '#' and '# /supp v~ :Y v/:Y v supp v, where 

:Y v supp v = {xv: x E supp v}. So we see that (J-t/v)s can be obtained from J-t/v by 

demanding that supp v be replaced by Ev ~ supp v. 

PROPOSITION : 1.2.7 

Let J-t be a fuzzy subgroup of ,#. Then J-t/ J-te ~ J-t and J-t/ J-t ~ J-te· 

PROOF: 

Define f: supp J-t/ J-te -+ supp J-t by f(x supp J-te) = x. Clearly f defines a fuzzy 

isomorphism between J-t/ J-te and J-t. 

Define g : supp J-te -+ supp J-t/ J-t by g( e) = supp J-t. 

It is trivial that j.t( e) = Ji-/ J-t(g( e)). Therefore J-t/ J-t ~ J-te· 

REMARK: 1.2.8 

(b) It is possible for J-tdv to be equal to Jb2/v with J-t1 f Jb2, (contrary to the crisp 

case). 

For example let S3 = {e, a, a2, b, ab, a2b}, as = e = b2• 

Ss is the symmetric group on 3 symbols. 

x=e 

x = a, a2 

x ¢ A3 

As is the alternating group of degree 3, i.e. As is the set of all even 

permutations in Ss. 
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=r;. 
x=e 

x = a, a2 

1/4 x ¢ A3 

Let lt2(x) 

v(x) ={> 
x=e 

x = a, a2 

x ¢ A3 

11 is fuzzy normal. 

J.t1' It2 are fuzzy subgroups of S3' and J.t1 f. 1t2. 

It is routine to check that J.td 11 = 1t2/1I. 

1.3 : NORMALITY OF A FUZZY SUBGROUP IN ANOTHER FUZZY SUBGROUP AND 

PRODUCTS OF FUZZY SUBGROUPS. 

The notion of fuzzy normality does not have the crisp analogue that a group '# is 

normal in itself or that cJ{ is normal in ,#. This notion is needed in solvable fuzzy 

subgroups. For example if we have a chain J.t ~ J.tl ~ ••• ~ J.Itn of fuzzy subgroups, we 

want to define what is meant by the chain being normal. It is too strong to require that 

each f.Li be fuzzy normal. We only require that f.Li be normal in f.Li -1· 

MOTIVATION: 

Let 11 ~ J.t be fuzzy subgroups of '# and a). a fuzzy point in f.L, i.e. f.L(a) ~ ). > O. The 

product a). 11, defined by a).v(x) = ). A 1I(a-1x) for all x E '# ' can be viewed as another 

version of a left fuzzy coset of 11 since supp a).l1 = a supp 11, a crisp left coset. 

Likewise for l/a). defined as l/a).(x) = ). A 1I(xa-1). If a).l1 = l/a). for all fuzzy points 

a)., then all = l/a for all a E '# ' i.e. 11 is fuzzy normal. 

PROPOSITION: 1.3.1 

Let 11 be a fuzzy subgroup of '# such that a).l1 = l/a). for all a E '# and), fixed. 

Then supp 11 is normal in c;. 



PROOF: 

We have). A z;(a-Ix) = ). A v(xa-I) for all x E '# . 
Therefore). A z;(a-Ixa) = ). A z;(xaa-I) = ). A z;(x). 

Let x E supp v. Therefore). A z;(x) > 0 implies that z;(a-Ixa) > O. 

Hence a-Ixa E supp v for all a E ,#. 
The proof is complete. 

The above discussion motivates the following definition: 

DEFINITION: 1.3.2 
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Let v and f1. be fuzzy subgroups of '# such that v ~ f1.. v is a normal fuzzy subgroup of 

f1. iff a).v = va). for all fuzzy points a). in f1., i.e. iff ). A z;(a-Ix) = ). A z;(xa-I) for all 

x E '# and all fuzzy points a). in f1.. We write v 4 f1.. 

Note that v 4 f1. iff a). va>. I = lie). for all ). such that a). E f1.. 

PROPOSITION : 1.3.3 

A fuzzy subgroup v in '# is normal in itself, i.e. v 4 V. 

PROOF: 

Let a). E v. 

a).v(x) = ). A z;(a-Ix) 

Therefore a). v = ). A v. 

Similarly, va). = ). A v. 

~ ). A v(a) A vex) 

= ). A vex) 
= a). ( a) A v( aa -Ix) 

~ ). A z;( a -Ix) 

= a).z;(x). 

Hence a).v = va). for all a). E v. 

The proof is complete. 



PROPOSITION : 1.3.4 

V4 f." if and only if V t 4 f."t for each t E [0,1]. 

PROOF: 

Suppose v 4 f.". 

Let a E f."t and x E vt, i.e. at E f." and ~ E v. 

Therefore v(a-1xa) " t = v(x) " t = t. 
Hence v(a-1xa) ~ t; Le. a-1xa E vt. 

Conversely, suppose vt 4 f."t for all t E [0,1]. 

Let a A E f.", and x E ~ . 

Case xt snpp v: 

If a-1xa E supp v, then a-1xa E vt for some t ~ A. Hence xt E v since vt 
4 f."t. 

Therefore x E supp v. Contradiction. 

Hence A" v(x) = ° = A" v(a-1xa). 

Case xA E v: 

Since VA 4 f."\ we have (a-1xa) A E v. 

Hence A" v(x) = A = A" v(a-1xa). 

Case xA t v, x E snpp v : 

x E vt for some t < A. Therefore at E f.". 

Therefore t " v( x) = t = t " v( a -lxa). 

Suppose A " v(x) ? A" v (a-1xa). 

If LHS = A, then RHS = v(a-1xa). 

i.e. v(a-1xa) < A 5 v(x). 

Hence x A E v. 

Contradiction! 
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(*) 



Therefore LHS of (*) = lI(x) < ). 

i.e. v(a-1xa) < lI(x) < ).. 
Let tt = lI(x). 

Therefore xt E II and at E fJ,. 
t t 

Hence t1 A v(x) = t1 A v(a-1xa) since lItl <l fJ,t I . 

Therefore v(x) = 1I(a-1xa). 

Hence). A v(x) = ). A v(a-1xa). 

Therefore e).lI = a). II a~l. 

Hence a).lI = va).. 

The proof is complete. 

REMARK: 

If supp II <l supp fJ" it does not follow that II <l fJ,. 

Consider ~ = S3 = {e, a, a2
, b, ab, a2b}, where b2 = e = a3. 

Let !'(x) = {~f, :;:, and 

v(x) = 1/2 x = b { 

1 x = e 

tis otherwise. 

II and fJ, are fuzzy subgroups of ~. 

Now supp II = Sa = supp fJ,. 

So supp II <l supp fJ,. 

But 1I
1h = {xE ~ : lI(x) ~ Ih} = {e,b} 

and fJ, 1/2 = {x E ~ : J.L(x) ~ 1/2} = Sa, 

so II 1h is not normal in fJ, 112. 
Hence II is not normal in fJ,. 
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DEFINITION : 1.3.5 [15] 

Let /-L and v be fuzzy subsets of 1. The product /-LV: 1 - [0,1] is defined by 

p.v(x) = sup p.(x1) A v (x2). 
x = x1x2 

PROPOSITION: 1.3.6 

Let /-L, v, e be fuzzy subsets of 1. 

PROOF: 

Let ° f a = sup min(/-L(x1), v(x2), e(x3)). 
x = xlx~3 

Let € E (O,a). Therefore there exist xl' x2, x3 such that 

a - € < min (/-L(x1), v(x2), e(x3)) 

= min [min (/-L(x1), v(x2)), e(x3)] 

Therefore a - € < min (tt(x1), v(x2))· Let y 1 = x1x2. 

Hence a- € < sup min (/-L(a1), v(a2)) = /-Lv(Yl)' 
Y1 = a1a2 

Therefore a - € < /-LV (y 1) A e (x3) 

~ (p.v) e( x) . 
Hence a S (/-Lv)~(x). 
Now let € E (0, (JLv)e(x)). 

Therefore there exist xl' x2 such that x = x1x2 and 

< min (/-Lv(x1), e(x2)) 

= [ sup /-L(Yl) A V(Y2)] A ~(x2)' 
xl = Y lY 2 

There exist Y 1,y 2 such that 

e(x2) A sup /-L(Yl) A v(Y2) - € < /-L(Yl) A V(Y2) A ~(x2)' 
xl = Y lY2 
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Therefore (J,Lv)e(x) - c < (JL(Y 1) A v(y 2)) A e( x2) + c. 

Hence (JLv)e(x) - 2c < a. 

Therefore (JLV)e(x) ~ a. 

Hence a = (JLv)e(x). 
Similarly, a = JLCve)(x). 
The case when a = 0 is easy. 

Therefore the proof is complete. 

PROPOSITION: 1.3.1 

If JL is a fuzzy subgroup of '1, then JL2 = JL, hence JLD = JL for all natural numbers n. 

PROOF: 

Trivial. 

PROPOSITION : 1.3.8 
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Let JL be a fuzzy subset of ,#. Then JL is a fuzzy subgroup of '1 if and only if JL2 = JL 

and JL(x) = JLCx-1
) for all x E '1. 

PROOF: 

=::} : Obvious 

¢= : Let x, y E ,#. Now JL(XY) = JL2(xy). Let z = xy. 

Therefore JLCxy) = JL2(Z) = sup p,(z 1) A P,(z2) 
z = z1z2 

~ p,(x) A p,(y). 

The proof is complete. 

PROPOSITION: 1.3.9 

Let JL and v be fuzzy subgroups of '1 such that JLV = VJL. Then JLV is a fuzzy subgroup 

of '1. 



PROOF: 

Clearly J./,l)(x) = J1.v(x-1) for all x E ,#. 

J./,l) = 1-£2Jl =1-£ [(I-£II)II] by Proposition 1.3.6 

= 1-£[( 1IJ1.) II] 

= (1-£1I) (J1.II) = (J1.II) 2• 

Therefore by Proposition 1.3.8, I-£II is a fuzzy subgroup of ,#. 

PROPOSITION: 1.3.10 

Let 1-£1' 1-£2' 1-£ be fuzzy subgroups of '# such that 

(i) 1-£1,1-£2 S 1-£ and 

(ii) J1.1 ~ J1.. 

Then J1.11-£2 is a fuzzy subgroup of ,#. 

PROOF: 

Let a), E 1-£ and x E ,#. Then 

Suppose J1.11-£2(X) f O. 

Then J1.11-£2(x) 

), " 1-£1 ( a -1x) = ), " 1-£1 (xa -1) --

- sup 1-£1(x1) " l-£2(x2) 
x = x 1X 2 

= sup J1.1(x2 a1 x21) " ),2' where ),2 = J1.2(x2) f 0, 
x = x1x2 

= sup ),2"J1.1(a1) 
x = x2a1 

= sup l-£2(x2) " J1.1(a1) 
x = x2a1 

= 1-£2J1.1 ( X ) . 

If J1.1J1.2(x) = 0, it is easily shown that J1.2J1.1(x) = O. Hence, by Proposition 1.3.9, 

1-£11-£2 is a fuzzy subgroup of '#. 

Further results on products will be given in Chapter 3. 
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The following easy result will be useful later : 

PROPOSITION: 1.3.11 

Let f.L be a fuzzy subgroup of rp and J'{ a normal subgroup of rp. 

{ 

It(x) x E J'{ 
Define v: rp --i [0,1] by v(x) = 0 x ~ J'{ 

Then v <I f.L. 

PROOF: 

Similar to the proof of Proposition 1.3.4. 

We end this chapter by proving that the fuzzy union of all the left fuzzy cosets of the 

form aAv, where v <I f.L, is a fuzzy subgroup of rp. 

THEOREM: 1.3.12 

Let v ~ f.L be fuzzy subgroups of rp such that v <I f.L. Define w rp --i I by 

w(x) = sup a A v(x). Then w is a fuzzy subgroup of rp. 
aA E It 

PROOF 

w(x) sup A A v(a-lx) 
aA E JL 

sup AA v(xa-l) 
a.x E It 

since v <I f.L 

sup .x A v(a x-l) 
aA E It 

= sup.x A v(a x-l) 
a~l E It 

sup AA v(a-lx-l) 
a.x E It 

= sup aA v(x-l) = w(x-l). 
a A E JL 

since v(x) = v(x-l) V x E rp 



Next we show that w(xy) ~ w(x) II w(y), x, Y E ,#. 

w(x) = sup aA v(x) and w(y) = sup b{J v(y). 
aA E IJ. b{J E IJ. 

Let A, {JE (0,1] such that aN b{3E ",. Let a = A II {J. Then (ab)a E ",. 

w(xy) = sup cA v(xy) 
cA E IJ. 

~ sup (ab)a v(xy) 
aA, b{3E p, 

sup A II (J II v(b -1a -1xy) 
aA, b{JE IJ. 

sup A II (J II v(a-1xy b-1) since v <l "', 

aA, b{JE IJ. 

~ sup A II v(a-1x) II (J II v(y b-1) 
aA, b{JE IJ. 

= sup [aA v(x) II b{3 v(y)] 
aA, b{3E IJ. 

Let a3 = w(x), a2 = w(y). 

Let a4 = a g II ~. 

We claim that a4 = a1 : 

Clearly at ~ a4• 

a4 = sup a>. v(x) II a2• Let € E (0, ~ II ( 3). 

aA E IJ. 

Therefore a2 - € < b (Jo v(y) for some b (Jo E ",. 

Hence aA v(x) II (~- €) ~ aA v(x) II b{Jo v(y) 
~ a 1 for all a A E IJ.. 

Therefore sup [aA v(x) II (~- E)] ~ ai . 

aA E IJ. 

Hence a3 " (a2 - €) ~ a i for all € E (0, ~" ( 3). 

Hence w(xy) ~ w(x) " w(y), as required. 

21 
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REMARK: 1.3.13 

The fuzzy subgroup w, defined above, can be thought of as another version of a fuzzy 

quotient /1-111 since in the crisp case the set 

{aN : a E '#} = '# IN for N <l 'I 
Unfortunately the collection {a). 11 : a). E j.£} does not form a group except if ). is 

fixed. So we do not pursue this apparent new notion of a fuzzy quotient. 
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CHAPTER 2 

FUZZY CONGRUENCE RELATIONS AND NORMAL FUZZY SUBGROUPS 

INTRODUCTION 

Given a fuzzy subset 1/ of a group C;, is there a smallest fuzzy subgroup fJ. of c; 
containing 1/? Of course the answer is in the affirmative. But we want to know the 

structure of fJ.. For example we know that given fuzzy subgroups fJ. and 1/ such that 

J.L(e) = v(e), the smallest fuzzy subgroup containing fJ. and 1/ is fJ.v (see Chapter 3). In 

this chapter we answer the above question by studying fuzzy subgroups generated by 

fuzzy subsets. We also construct, from a given fuzzy subgroup /1, some fuzzy subgroups 

that are normal in fJ.. In [43] Mukherjee and Bhattacharya introduced a notion of fuzzy 

normalizer. This fuzzy normalizer is not a fuzzy subset, but a crisp set in which the 

fuzzy subgroup is fuzzy normal, which is basically a crisp normalizer. In this chapter we 

present a fuzzy normalizer N(fJ.) of a fuzzy subgroup fJ. in which fJ. is fuzzy normal. A 

notion of a fuzzy centre is also introduced, and it is easily shown that it behaves like the 

crisp centre. 

In [9] Murali studied fuzzy congruence relations on algebras. In Section 2.2 we present 

the work done by us in [10]. Here we unite the two notions of fuzzy normality and 

congruence in a fuzzy subgroup setting. In particular we prove that every fuzzy 

congruence relation determines a normal fuzzy subgroup. Conversely, given a normal 

fuzzy subgroup, we can associate a fuzzy congruence relation. The association between 

normal fuzzy subgroups and fuzzy congruence relations is bijective and unique. 

Subsequent to the work in [10], Sidky and Ghanim studied fuzzy congruence relations on 

semigroups in [52]. In tne most recent publication, Kuroki [58] has also studied fuzzy 

congruence relations and normal fuzzy subgroups. The difference between the notions of 

fuzzy equivalence relation given in [10] and [52] is that in [52] the sup-min transitivity 

of Definition 3.1 in [10] is replaced by the sup - T transitivity, where T is at-norm. 

The substitution property in the definition of a fuzzy congruence relation is also replaced 

by T-compatible and T-equivalence. In this thesis we do not use at-norm. 
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2.1: FUZZY SUBGROUPS GENERATED BY FUZZY SUBSETS: 

DEFINITION: 2.1.1 

Let ~ be a group and va fuzzy subset of ~, v:f. 0. The smallest fuzzy subgroup of 

~ containing v, denoted by < v>, is called the fuzzy subgroup of ~ generated by v. 

NOTE: 

1. If {v). : ). E ~} is a set of fuzzy subgroups, then A v). = inf v). is also a 
).E~ ).E~ 

2. 

3. 

fuzzy subgroup of ~. Therefore definition 2.1.1 makes sense. 

By < {v\ : ). E ~} > we mean < V v >, where V v = sup v . 
1'\ aE~a aE~a aE~a 

The notion of fuzzy generation coincides with the notion of crisp generation when 

[0,1] is {0,1}. 

PROPOSITION: 2.1.2 

Let v be a fuzzy subset of ~ and /.It = < v>. Then supp /.It = < supp v>. 

PROOF: 

Straightforward. 

DEFINITION: 2.1.3 

Let v be the supremum of a finite number of fuzzy points. If /.It = < v >, then /.It is 

said to be finitely generated. If /.It = < a). > for some fuzzy point a)., then /.It is said to 

be cyclic. 

It is clear that a level subgroup of a finitely generated fuzzy subgroup is finitely 

generated. 
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PROPOSITION: 2.1.4 

k k k Let 11 be a fuzzy subset of ,#. Let x E '# such that x = a 1
1a 2

2 ... ann, where each ki 

is an integer for each i E {1,2,· .. ,n}. Choose Ai E (0,1] such that Ai $ v(ai), and let 

A = inf{Al, ... ,An}. Define w: '# -+ [0,1] by w(x) = sup A, where the supremum is 

taken over all the n-tuples {Ab· .. ,An}, n E IN. Then 

(i) w is a fuzzy subgroup of '#' 
(ii) W=<1I>. 

PROOF: 

(i) Suppose A ~ 1I(a). Now a = aa-1a implies that w(a) ~ A. Hence w ~ 11. 

k1 k2 kn -1 -kn -k2 -k1 x = a 1 a 2 ... an <=> x = an ... a2 a 1 

So it is easy to see that w(x) = w(x-1). 

Let w(y) = Sup {:J, where {:J = inf{{:Jb· .. ,{:Js}, y = b~lb~2 ... b~s such that 

(:Ji ~ 1I{b i), i = 1,· .. ,s, and w(x) = Sup A, where A = inf{Al'· .. ,An}, 

X = a~la~2 ... a!n such that Ai ~ 1I{ai) for each i = 1,2, ... ,no 

A A (:J = inf{Al,· .. ,An,{:Jb· .. ,{:Js} and xy = a~1 ... a!nb~l ... b~s. 

So it is easy to see that w(xy) ~ sup A A {:J = sup A A sup (:J = w(x) A w(y). 
Hence W is a fuzzy subgroup of ,#. 

(ii) Let /1 = < 11 >. Since W ~ 11, it is obvious that W ~ /1. 

Let A ~ w(x), x E ,#. So x E supp w. 

w(x) = sup {:J, where {:J = inf({:Jb· .. ,{:In}, x = b~lb~2 ... b!n such that 

(:Ji 5 1I{bi) for each i = 1,2, ... ,no Hence 

I-£(x) ~ inf{/1(b1), J.£{b2),· .. , J.£{bn)} 

~ inf{1I{b1), 1I(b2),·· ., 1I(bn)} 

~ inf{{:Jl, ... , {:In} = (:J. 

Therefore J.£{ x) ~ w( x). Hence /1 = W. 

DEFINITION: 2.1.5 

Let 1-£ be a fuzzy subgroup of ,#. The commutator fuzzy subgroup of /1, denoted by 1-£' , 

is the smallest normal fuzzy subgroup of /1 such that /1//1' is fuzzy Abelian. 
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The above definition makes sense since J1, <I J1, and J1,/ J1, ~ J1,e' hence J1,/ J1, is fuzzy 

Abelian. 

THEOREM: 2.1.6 

Let J1, be a fuzzy subgroup of ,#. Let w = < {aA b,8 a>.l bil : aA, b,8 E J1,} >. Then 

w <I J1, ; W ~ J1,' and J1, /w is fuzzy Abelian. 

PROOF: 

Clearly w ~ J1,. We claim that w <I J1,: Let,8 ~ j.t( a) and x E '# . 
aj/warfx) = ,8" w{axa-1

) and e,8w{x) = ,8" w{x). 

Suppose w{x) = sup ct, ct = inf{Al, ... ,An,,81,· .. ,,8n} where 

x = (alblai:lbi:l)kl ... (anbna~lb~l)kn such that 

Ai ~ J1,(ai) and ,8i ~ j.t(bi), i = 1,2,· .. ,n. 

axa-1 = (aala-l)(abla-l)(aai:la-l)(abi:la-l) ... (aana-l)(abna-l)(aa~la-l)(ab~la-l) 

{:::} x = alblai:lbi:l ... anbna~lb~l. 

Also J1,(aaia-1) ~ j.t(a) A J1,(ai) ~ ,8 A Ai, i = 1,2,··· ,n {:::} j.t(ai) ~ ,8 A Ai, i = 1,2,· .. ,n. 
Therefore ,8 A w{x) = ,8 A w{axa-1). This is also true for the case w(x) = o. 
Hence a,8w = wa,8 for all a,8 E J1,. 

It is easy to show that J1,/ w is fuzzy Abelian and w ~ J1,' • 

This completes the proof. 

CONSTRUCTION OF FUZZY SUBGROUPS FROM A GIVEN FUZZY SUBGROUP. 

Let J1, be a fuzzy subgroup of ,#. Define f-L2 : '# -i [0,1] by J1,2(x) = j.t(x)j.t(x), x * e, and 

f-L2( e) = J1,( e). 

In general, J1,n(x) = [j.t(x)]n, X * e, and J1,n(e) = J1,(e). 

PROPOSITION: 2.1.7 

Let J1, be a fuzzy subgroup of ~. Then J1,2 is a fuzzy subgroup of ~. 

Also J1,n is a fuzzy subgroup of ~ for each natural number n. 



PROOF: 

f1-2( xy) 

p,(xy) 

Suppose 

Hence 

i.e. 

= p,(xy )f.L(xy), and 

~ f.L(x) A f.L(y). 

p,(x) ~ f.L(y). Then p,(xy) ~ p,(x). 

p,(xy) f.L(xy) ~ p,(x) f.L(x) = f-L2(x). 

f1-2(xy) ~ f1-2(x) ~ f.La(x) A f.La(y). 

So f-L2 is a fuzzy subgroup of rp. 
Similarly f.Ln is a fuzzy subgroup of 'I 
It is easy to see that f.L is fuzzy normal if and only if each f.Ln is fuzzy normal. 

The following fuzzy groups will be used in the study of nilpotent groups: 

DEFINITION: 2.1.8 

Let f.L and v be fuzzy subgroups of rp. If h).. E f.L and k~ E v, then 

[h.A,k,B] = h~l kj/ h.A k,B' and [f.L,v] = < {[h.A,k,B] : h.A E f.L, k,BE v} >. 

Let x = a~la~2 ... a!n E rp, where ki E -0., i = 1,2,··· ,no Let.A = inf{.At, ... ,.An}, 
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ai = [hi,ki] such that ei ~ p,(hi) and ,Bi ~ v(ki) and .Ai = ei A ,Bi for each i = 1,2,· .. ,no 

It is easy to show that [f.L,v](x) = sup .A, where the supremum is taken over all the 
n-tuples {.At, ... ,.An}, n E IN. 

PROPOSITION: 2.1.9 

PROPOSITION: 2.1.10 



PROOF: 
k k k => : Let x = a 1

1a 2
2 

••• ann, ai = [hi,ki] and Ai = ei II (3i such that 

ei ~ JL(h i ) and (3i ~ lI(k i ) for each i = 1,2,··. ,no Let A = inf{A1,·· • ,An}. 

Then JLe(x) = sup A. 

JL (x) = { jj ( e ) x = e 
e 0 xf.e. 

Now Ai ~ JLe(ai) implies JLe(x) ~ JLe(al) II ... II JLe(an) = JLe(aj) ~ Aj for some 

j E {1,2, ... ,n} 
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Suppose Aj f. o. So JLe(ai) = JL(e) for all i = 1,2,··· ,no Therefore ai = e, and the 

result follows. 

Suppose JLe(ai) = 0 for all i = 1,2,· .. ,no 

ai = [hi,ki] implies hi t supp JL or ki t supp 1I. Either case yields the desired result. 

The converse is obvious. 

DEFINITION: 2.1.11 

Define a sequence of fuzzy subgroups of JL as follows : 

PROPOSITION: 2.1.12 

Let JL be a fuzzy subgroup of 'I. Then JL ~ /l(JL) ~ /2(JL) ~ ••• and /i(JL) <3 JL for 

all i E IN. 

PROOF: 

/2(JL) = [/l(JL), JL] = [JL, JL] ~ JL. 

/3(JL) = b2(JL), JL] ~ bl(JL), JL] = /2(JL)· 

Hence, by induction, /n+l(JL) ~ /n(JL). 

Let a A E JL. We will show that a A /i(JL) = /i(JL) a A· 

Let a-1y = a~la~2 ... a!n such that for each i = 1,··· ,n, ai = [hi,kJ such that 

ei ~ /i-l(JL)(hi) and (3i ~ JL(k i )· Let Ai = ei II {3i and {3 = inf{A 1,· •• ,An}. In fact we 
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Then A A 'Yi(JL)(a-1y) = SUp(,B A A) = A A sup ,B 

'Yi(JL) = bi-1(JL),JL] = [JL, 'Yi-1(JL)]. 

(ya-1),B = a,e(alAI ... anA)aj/ 

Assume, without loss of generality, that alAI· .. anAn = hihkihi hieiki,Bi' Therefore 

(ya-I),B = [arJtieiaj3l, atfi,Biaj31]. 

Hence A A 'Yi(JL)(y a-I) ~ A A 'Yi(JL)(a-1y). 

By symmetry, A II 'Yi(JL)(a-1y) ~ A II 'Yi(JL)(ya-1). 

Hence aA 'Yi(JL) = 'Yi(JL)aA for all i E IN. 

THE NORMALIZER OF A FUZZY SUBGROUP: 

DEFINITION: 2.1.13 

Let JL be a fuzzy subgroup of ,#. The fuzzy subset N(JL), of '#' defined by 

{ 

sup{-\ : x)J.f, = J1. xA' xA a fuzzy point in '#} 
N(JL)(x) = 

o otherwise 

is called the normalizer of JL in ,#. 

THEOREM: 2.1.14 

Let JL be a fuzzy subgroup of ,#. Then 

(i) N(JL) is a fuzzy subgroup of '# ; 
(ii) JL <I N(JL) ; 

(iii) N(JL) is the largest fuzzy subgroup of '# such that JL <I N(JL). 

PROOF: 

Hence 

Suppose 

Therefore N(JL)(x) 

= 0 if and only if N(JL)(x-1) = O. 

= SUp{A : xAJL = JLX A} 

= SUp{A : x~lJL = JLx~l} = N(JL)(x-1). 
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We now claim that N(Jt)(xy) ~ N(Jt)(x) A N(Jt)(y). If N(Jt)(x) = 0, there is 

nothing to prove. 

Suppose N(Jt)(x) > O. 

Let N(Jt)(y) = sup{.8j : y (if = Jt y,8) > O. 

Take any ).i and any ,8j' and let a ij = ).i A ,8j' 

(xy) a .. jt(a) = aij A Jt(y-1 x-1a) 
IJ 

= aij A Jt(x-1 a y-l) since y a .. Jt = Jt Y a .. 
IJ IJ 

= aij A jt(a y-1x-1) 

= (Jt)(xY)aJa). 
IJ 

N(Jt)(xy) = SUp{A : (xy)).Jt = jt(xy)).} ~ sup{ aij : x).p = Jt x).i and 

y ,8/ = Jt y ,8j}' Therefore 

N(Jt) (xy) ~ sUP{).i A ,8j : x).p = Jt x).i and y,8jJt = Jt y,8) 

= supO i : x).p = Jt x).i} A sup{,Bj : y,8/ = Jt y,8) 

= N(Jt)(x) A N(Jt)(y). 

(ii) Clearly Jt ~ N(Jt). 

Let a>.. E N(Jt). We want to show that a>..Jt = Jt a>... 

Case N(J.£)(a) = ). : 

So ). = SUp{A i : a ).jJt = Jt a).). Now).i A jt( a-1x) = ).i A Jt(x a -1) for all x E ~ 

and all a).. satisfying a).. Jt = Jt a). .. 
1 1 1 

Hence sUP[).i A Jt(a-1x)] = SUP[).i A Jt(x a-l)]. 
i i 

Therefore (sup ).i) A Jt(a-1x) = (sup ).i) A Jt(x a-l) 
i i 

i.e. ). A jt(a-lx) = ). A jt(x a-l) 

i.e. a).Jt = Jt a).. 



Case N(J.')(a) fA: 

3 Ai' aAP = Ji, aA., such that Ai> A. 
1 1 f 

Now A i A Ji,( a -lx) = A i A Ji,( x a -1 ) for all x E r; . 
Hence Ai A A A Ji,(a-1x) = Ai A A A Ji,(x a-i) 

i.e. A A Ji,(a-1x) = A A Ji,(x a-i) 

i.e. aA Ji,= Ji,aA· 

This proves (ii). 

(iii) Let Ji, <l w, for some fuzzy subgroup win r;. We want to show that 

w ~ N(Ji,). Let aA E w. Then aA Ji, = Ji, aA· 

Hence N(Ji,)(a) = SUp{Ai : aAiJi, = Ji, aA) ~ A. 

Hence N(Ji,)(a) ~ w(a). 

This completes the proof. 

PROPOSITION: 2.1.15 
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Let Ji, be a fuzzy subgroup of r; such that Ji,(supp Ji,) ( [a, Ji,(e)] for some a> O. Then 

supp N(Ji,) = N(supp Ji,). 

PROOF: 

Let a E N(supp Ji,). So supp j.£ = a(supp Ji,)a-1. 

If a E supp Ji" there exists A > a such that a}.. E Ji,. So a}..Ji, = Ji,a}.,: 

Hence a E supp N(Ji,). 

Suppose a ~ supp Ji,. Let x E r; . 
Suppose a-1x E supp Ji,. Then xa-1 = a(a-1x)a-1 E supp Ji, and conversely. 

Now Ji,(a-1x) ~ a and Ji,(xa-1) ~ a. 

So a A Ji,(a-1x) = a = a A Ji,(xa-1). 

Suppose a -lx ~ supp Ji,. So xa -1 ~ supp Ji,. 

Therefore a A Ji,(a-1x) = a = a A Ji,(xa-1). 

Hence a ~ = Ji,a a' 

Therefore a E supp N(Ji,). 



Supp N(Jt) = {x E '# : x AJt = Jt x},. for some A > O} 

( {x E '# : X(SUpp Jt) = (SUpp Jt) x} 

= N(supp Jt). 

Hence N(supp Jt) = supp N(Jt). 

DEFINITION: 2.1.16 
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Let Jt be a fuzzy subgroup of ,#. The centre of Jt, denoted by Z(Jt), is a fuzzy subset 

of '# defined by 

_ { sup{..\, xA E p, such that xAb{3 = b{f-A for all b{3E p, } 
Z(Jt)(x)- 0 if x¢ Z(supp p,) . 

Clearly Z(Jt) f 0 since jt(e) > O. 

Let a E ,#. Then jt(a) ~ Z(Jt)(a). 

PROPOSITION : 2.1.17 

PROOF: 

First we prove that Z(Jt) is a fuzzy subgroup of ,#. Let x E '# such that Z(Jt)(x) > O. 

So Z(Jt)(x) = sup A, xA E Jt such that xAb{3= brA for all b{3E Jt. 

We claim that xA b{3 = brA if and only if x~lb{3 = b{3 x~ 1. 

(=}): Let a = A A (3. 

Therefore (xb) a = (bx) a' hence a A b a(x-1y) = a A b a(y X-i) for all y E ,#. 

If y = xb, then LHS = a. Hence RHS = a. So xb = bx. 

Now x~lbIY) = A A blxy) 

and br~l(y) = A A bly x) 

(1) 

(2) 

If (1) = 0 and (2) f 0, then y = bx-1 = x-1b, contradicting the fact that 

(1) = O. So (1) and (2) are either both zero or both nonzero. 

If (1) and (2) are> 0, then y = x-1b = bx-1, hence (1) = (2). 

Therefore Z(Jt)(x) = Z(Jt)(x-1) > O. 



Clearly Z(p,)(x) = 0 if and only if Z(p,)(x-1) = O. 

Next we show that Z(J.£)(xy) ~ Z(J.£)(x) " Z(J.£)(Y). 

Consider Z(J.£)(x) = sUPPi: x)..ibp= bpX)..i} and 

Z(J.£)(Y) = sup{Pj : y pjbp = bpY Pj} as required in Definition 2.1.16. 

Let aij = )..i" Pj. 

Therefore xa .. bp = bpXa .. and Ya .. bp = baYa .. · 
~ ~ ~ ~ ~ 

Now (xY)a .. bp =xajYa .. ba) = xajbaYaJ 
IJ IJ IJ fJ IJ fJ IJ 

- (x b)y - a .. a a .. 
IJ fJ IJ 

= b,,{xa .. YaJ = ba(xY)a .. · 
P' IJ IJ fJ IJ 

Therefore 

Z(J.£)(xy) = sup{).. : (xy))..bp = bp(XY))..} 

~ supP i" Pj : x)..ibp = bpX)..i and Y pjbp = bpY Pj} 

= SUp{Ai : x)..ibp = bpX)..i} " sup{Bj : Y pjbp = bpY p) 
= Z(J.£) (x) " Z(J.£)(Y)· 

If Z(J.£)(x) = 0, the result is trivial. Hence Z(J.£) is a fuzzy subgroup of ~. 

We now show that Z(J.£) <I 1£ : 

Let a).. E 1£. We will show that a).. Z(J.£) = Z(J.£) a)... 

a).. Z(J.£)(x) = ).." Z(J.£)(a-1x) = ).." sUP)..i and (a-1x))..ibp = brf.a-1x))..i' 

(a-lx))... E 1£ and Z(J.£) a).. (x) = ).. " Z(J.£)(x a-l) = ).. " sup )..i' 
1 
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(x a-lh.}p = bp(X a-l) )..i. (a-lx) )..ibp = bp(a-lx))..i for all bp E 1£ if and only 

if (x a-l))..ibp = brf.x a-l))..i for all bpE 1£. Hence a).. Z(J.£) = Z(J.£)a).. for all 

a).. E 1£. 

The proof is complete. 

PROPOSITION: 2.1.18 

Z(supp 1£) = supp Z(J.£). Hence Z(J.£) is fuzzy Abelian. 



PROOF: 

obvious. 
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The notions of fuzzy centre and normalizer are good extensions of the crisp analogues. 

More precisely 

PROPOSITION : 2.1.19 

(i) XZ( <J) = Z(X <J) ; 

(ii) If H ~ <J, then XN(H) = N(XH)· 

PROOF: 

(i) Easy. 

(ii) X
H 

(supp X
H

) = {1} ( [a,l] for some a> o. 

So supp N(XH ) = N(supp XH ) = N(H) by Proposition 2.1.15. 

N(H) = {x E <J : x H x-i = H}. 

Supp N(XH ) = {x E <J : ). A XH (x-ia) = ). A XH (a x-l) for some). > OJ. 

Now let x E N(H). So x H x-l = H . 

Suppose X
H 

(x-ia) * o. Then x-ia E H. So x-ia = h for some hE H. 

Hence a x-i = x h x-i E H. So X
H 

(x-ia) * 0 ¢::} X
H 

(a x-i) * o. 
Hence). A X

H 
(x-ia) = X

H 
(a x-i) A ). for all ). E (0,1]. 

i.e. xl XH = XH xl for all x E N(H). 

= { supP : x).J1. = J1.x). ,J1. = X H} 

o otherwise 

{ 

1 x E N (H) 
= 0 x¢N(H) =XN(H)(x). 

The proof is complete. 



For the sake of completeness we define the notion of fuzzy centralizer: 

DEFINITION: 2.1.20 

The centralizer of a fuzzy point a 13 E 1-", denoted by C f.t( a 13)' is defined by 

{ 

sup{A, X.x E p, such that x.xaf3= arr.x} 

Cia
f3)(x) = 0 otherwise. 

It is clear that Cf.t(af3) is a fuzzy subgroup of ~ and that Cf.t(af3) ~ f.t. 

DEFINITION : 2.1.21 

The centralizer of a fuzzy subgroup f.t is a fuzzy subset of ~ defined by 

= {SUP{A A fJ, a.x E X ~ such that a.xbfJ= bpa.x for all bfJE p,} 

o otherwise. 

It is not hard to prove that C(f.t) is a fuzzy subgroup of ~, and that 

supp C(f.t) = C ~ (supp f.t). 

In case f.t = X ~' then Z(f.t) = C (f.t) . 

2.2 : FUZZY CONGRUENCE RELATIONS INDUCED BY NORMAL FUZZY SUBGROUPS 

DEFINITION: 2.2.1 [81 

A fuzzy relation 11 on ~ is a mapping 11: ~ x ~ -i [0,1]. 

Denote the set of all fuzzy relations on ~ by II ( ~). 

For f.tE II( ~), let to = sup{f.t(x,y) : (x,y) E ~x ~ } 

If to = 0, then we have the empty relation 

f.t(x,y) = ° for all x, y E 'I 
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In this section assume that ° < to ~ 1. Two operations are defined on II( C;) x II( C;), 

one, called the composition and denoted by J.L 0 v, is defined as 

J.L 0 v(x,y) = sup [J.L(x,z) A v(z,y)] 
ZEC; 

The other, called the multiplication and denoted by J.L.V or simply J.LV, is defined as 

J.LV(x,y) = sup{[J.L(xt,yt) A v(x2,y2)] : x = X1X2 and y = Y1Y2} for J.L, v E II( C;). 

(See [9]). 

DEFINITION : 2.2.2 [8] 

A fuzzy relation J.L on C; is said to be a fuzzy equivalence relation on C; if 

(i) J.L(x,x) = to for allxE C;, (Reflexive). 

(ii) J.L(x,y) = J.L(y,x) for all x, y E C;, (Symmetric). 

(iii) J.L 0 J.L 5 J.L, where 0 denotes the composition, (Transitive). 

It is readily checked that if J.L is a fuzzy equivalence relation, then J.L is idempotent 

for 0, i.e. J.L 0 J.L = J.L. Furthermore, for each t E [0, to], the t-cut, J.L\ is a crisp 

equivalence relation, where J.Lt is the relation x J.Lty {:::} J.L(x,y) ~ t. In particular, the 

to-cut J.Lto is a crisp equivalence relation and as such yields a partition of C; in the 

crisp sense. The to-cut classes of C; under this partition are denoted by x, y, e, etc., 

containing representative elements x, y, e respectively. 

For each to-cut class x, for x E C;, a fuzzy subset J.Lx : C; ~ [0,1] is defined as 

J.Lx(a) = J.L(x,a) for all xE C;. 

Now for each t E [O,to]' the collection { C t x : x E C;} of t-cuts is a crisp partion of C;. 

DEFINITION: 2.2.3 

A fuzzy equivalence relation J.L on C; is called a fuzzy congruence relation of C; if 

J.LJ.L 5 J.L. 
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The relation J.tJ.t $ J.t can be thought of as a substitution property as is well known in 

crisp congruence relation on a group or a general algebra. Moreover, one can 

interpret in the crisp case a congruence relation as an equivalence relation E which is 

at the same time a subgroup of 'I x 'I. Analogously, a fuzzy equivalence relation 

which is at the same time a fuzzy subgroup of 'I x 'I is called a fuzzy congruence 

relation. It is easily checked that for each t E [O,to], J.tt is a congruence relation if and 

only if J.t is a fuzzy congruence relation on 'I. 

CONGRUENCE AND NORMAL SUBGROUPS: 

We now turn our attention to the relationship between fuzzy congruence relations on 'I 
on the one hand, and normal fuzzy subgroups on the other. Firstly we have 

THEOREM: 2.2.4 

Let J.t be a normal fuzzy subgroup of 'I. Define 11: 'I x 'I -+ [0,1] by 

1I(x,y) = J.t(xy-1). Then 11 is a fuzzy congruence relation on 'I. 

PROOF: 

1I(x,y) = J.t(xy-1) $ J.t(e) = to. Also 

v(x,x) = J.t(e) = to for all x E 'I. 
Hence 11 is reflexive. 

1I(x,y) = J.t(xy-1) = J.t[(xy-1t1] = J.t(yx-1) = 1I(Y,x) for all x, y E 'I. 

11 0 v(x,y) = sup [1I(x,z) A 1I(z,y)] 
ZE'J 

= sup [J.t(xz-1) A J.t(zy-1)] 
ZE'J 

$ J.t(xz-1zy-1) 

= J.t(xy-1) 

= 1I(x,y). 

Finally we show that 1111 $ 11. 

1I1I(x,y) = sup {[1I(x1,y 1) A 1I(x2'Y2)] : x = X1X2 and y = Y1Y2} 

whereas 1I(x,y) = J.t(x y-1) = J.t(xl~Y21Yl1) for every representation x = x 1x2) Y = Y1Y2' 



= j.£(x1yily 1x2yilyil) 

~ j.L(x1yil) A j.£(Y1x2yilyil) 

= j.£(x1yi1
) A j.L(x2Yi 1

) 

= v(X1,y 1) "v(x2'Y2) since j.L is fuzzy normal. 
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Hence vv( x,y) ~ v( x,y ). 

This completes the proof. 

The following is a sort of converse to the above Theorem. Every fuzzy congruence 

relation determines a normal fuzzy subgroup. 

THEOREM: 2.2.5 

Let j.L be a fuzzy congruence relation on ,#. Then there is a normal fuzzy subgroup v 

of '# such that j.£(x,y) = v(xy-l). 

PROOF: 

Clearly j.L(x,x) = to for all x E ,#. j.Lto is a crisp congruence relation on ,#. Let [elj.Lto 

be the class containing the identity e in the partition of '# yielded by j.Lto. 

Define v: '# -I [O,ll by v(x) = j.£(x,e) for all x E ,#. 

(i) v is well defined. 

(ii) j.L(x,e) = j.L(x-l,e) for all x E '# : 
Suppose x E [elj.Lto' Then x j.Ltoe and x-1 j.Lto x-1. Hence e j.Lto x-1, and this 

implies that j.L(x-l,e) = to = j.L(x,e). 

Suppose x ~ [elj.Lto' Then j.£(x,e) < to, and also j.£(x-l,e) < to since 

[elj.Lto ~ ,#. Let t1 = j.L(x,e) and t2 = j.£(x-1,e). If t1 < t 2, then x E [elj.Lt1 and 

x ~ [elj.Lt2' Also x-l E [elj.Lt2 implies that x E [elj.Lt2' 

This is a contradiction. 

A similar contradiction arises if we assume that t2 < t 1. Therefore t1 = t 2, 

i.e. v(x) = v(x-l) for all x E ,#. 



(iii) v(xy) = JL(xy,e) 

~ JL(x,e) A JL(y,e) since JL is a fuzzy congruence relation, 

= v(x) A v(y). 

(iv) JL(x,e) = JL(xy,y) for all x, y E 'P : 

Let tl = JL(xy,y) and t2 = JL(x,e). If tl > t 2, then [e1JLt1 ~ [elJLt2' 

xy JLt1y and y-1JLt 1y-l implies that x JLt 1e. 

Hence JL(x,e) ~ t i, and this implies that t2 ~ t i, a contradiction! 

A similar contradiction results if ti < t 2. 

Therefore JL(x,e) = JL(xy,y). 

So JL(xy-l,e) = JL(x,y). Hence v(xy-l) = JL(x,y). 

( v ) v is fuzzy normal in 'P. 

v( a -lxa) = JL( a -lx a,e) 

=JL(xa,a) 

= JL(x,e) for all x, a E 'P. 

So v(a-1xa) = v(x). 

This completes the proof. 

THEOREM 2.2.6 
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Let JL be a fuzzy congruence relation on 'P, and to = sup JL(x,y). The collection 
x, y E 'P 

{JL- : x E 'P} is a fuzzy partition of 'P in the sense that sup JL- = II ct1' where 
x XE'Px ~ 

II 'P (x) = to for all x E 'P, and JLx A JLy( a) < to for X:f y, for all a E 'P. Furthermore 

{JLx : x E 'P} is a group under a suitably defined binary operation. The fuzzy subset 

JLx of 'P is precisely the left fuzzy coset XJL of JLe associated with x E 'P, where 

e = [e]JLto' 
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PROOF: 

It is easy to check that sup /1-x = II <Ii. 
XE~ ;r 

We now show that /1-x A /1-y(a) < to Y a E ~, x f y. 

Suppose ~- A ~-(a) = to for some a E <Ii. Then /1--(a) = to = /1--(a). x y ;r x y 

Hence /1-(x,a) = J1-(y,a) for all x E x, Y E y. Therefore x /1-toa and y /1-toa implies that 

x /1-toy. So Y E x n y = 0, a contradiction. 

Now define a binary operation as follows: 

~- ~- = J.b:;;:;;, where xy is the class containing xy for x E x, Y E y. 
x Y xy 

The multiplication is well defined: 

Let x,xl E x and Y'Yl E y. 

We must show that J1-(xy,a) = /1-(x1Yl,a) for all a E ~. 

Now X /1-to xl and y /1-to Yl implies that xy /1-to x1Yl· So x1Yl E xy. 

Hence J1-(xy,x1Yl) = to· If a E xy, then J1-(xy,a) = to = J1-(x1Yl,a). 

If a ~ xy, then J1-(xy,a) < to and J1-(x1Yl,a) < to· 

Therefore /1-(xy,a) ~ /1 (xy ,x lY 1) A /1 (x1Y l' a) 

=/1(x 1Yl'a). 

Similarly J1-(x1y 1,a) ~ J1-(xy,a). 

Hence J1-(xy,a) = J1-(x1Yl,a). 

So J.hXy(a) = J1-(x1Yl,a). 

We next show that {/1-x : x E ~} is a group under the binary operation defined above. 

/1-e/1-x = /1-x since /hex(a) = J1-(ex,a) = J1-(x,a) = /1-x(a) for all aE~. 

Similarly ~-/1-- = /1--. x e x 

Define x -1 = [x-11/1-to for x E ~ . 

Then /1-- ~- -1 = /1--. So (~- )-1 = Ibv -1-
X X e x x 

The associativity (/1-x /1-y)/1-1, = /1-x(/1-y /1-1,) follows from the same property in ~. 

Finally we recall that the left fuzzy coset of /1- associated with x E ~ is X/1- defined by 

(x/1-)(Y) = /1-(x-1y) for all y E ~. 
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By Theorem 2.2.5, J1.e is a fuzzy normal subgroup of 1. We claim that xJ1.e = J1.x for 

allxE1: 

XJ1.e(y) = J1.e(x-1y) = JJ.(x-1y,e) = JJ.(xx-1y,x) = JJ.(y,x) 

= JJ.(x,y) = J1.x(Y) for all y E 1· 

This completes the proof. 
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CHAPTER 3 

DIRECT PRODUCTS OF FUZZY SUBGROUPS AND 

THE FUZZY ISOMORPHISM THEOREMS. 
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The product of two fuzzy subgroups was introduced in Chapter 1. In Proposition 1.3.10 

we proved that if 1-£1 and /12 are fuzzy subgroups of 1-£ such that 1-£1 or /12 is normal in 1-£, 

then 1-£1/12 is a fuzzy subgroup of 1. It is easy to show that normality of 1-£1 or /12 in 1-£ is 
essential for 1-£1/12 to be a fuzzy subgroup. It is also easily shown that if 1-£1.1 is a fuzzy 

subgroup of 1, then it is the smallest fuzzy subgroup of 1 containing both 1-£ and 1.1 on 

condition p,(e) = 1.I(e). Analogues of the Dedekind and Modular laws are presented and 

proved in this chapter. In [14] Sherwood introduced the notion of an external direct 

product of fuzzy subgroups. In [11] we introduced the notion of an internal direct 

product and then proved that the internal and the external direct products of normal 

fuzzy subgroups are isomorphic. When 1 is a finite group, we show that 1-£1.1 is an 

internal direct product if and only if every nonzero level subgroup of 1-£1.1 is an internal 

direct product of the corresponding level subgroups of 1-£ and 1.1. 

In Section 3.2 we introduce a notion of a fuzzy kernel of a homomorphism. It turns out 

that the fuzzy kernel is the homomorphic pre-image of the trivial fuzzy subgroup whose 

support is the identity element of the underlying group. This fuzzy kernel is a 

generalization of the fuzzy kernel given in [11]. If f : 1 -+ l' is a group 

homomorphism, and 1-£ is a fuzzy subgroup of 1, it is easily checked that the fuzzy 

kernel of f associated with J.£ is fuzzy normal in 1-£. 

Finally we state and prove analogues of the three well-known isomorphism theorems in 

group theory. This is an improvement of part of the work done in [11]. We also show, 
by means of an example, that the second isomorphism theorem fails if we use the 

quotient of Mukherjee and Bhattacharya introduced in [1]. 

Subsequent to the work that we have done on direct products, it is interesting to note 

that Malik, Mordeson and Nair in [59] defined an internal direct product of fuzzy 

subgroups as in [11]. Finally they proved that if 1.1 is a compatible and divisible fuzzy 

subgroup in a fuzzy subgroup 1-£, then 1.1 is a direct factor of 1-£. In this thesis we have not 
studied divisible and pure fuzzy subgroups. 
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3.1 : PRODUCTS AND DIRECT PRODUCTS OF FUZZY SUBGROUPS. 

By proposition 1.3.10, if J.L is fuzzy normal in '#' and II is a fuzzy subgroup of '#' then 

J.L1I is a fuzzy subgroup of ,#. We show, by an example, that if J.L and _II are both not 

fuzzy normal in some larger fuzzy group, then J.L1I need not be a fuzzy subgroup of ,#. 

EXAMPLE: 3.1.1 

Let rt1 = S = {e a a 2 b ab a 2b} b2 - e - a 3 
;r 3 "'" ,--. 

Let H = {e,b} and K = {e, ab} and J.L = XH, II = XK 

Then J.L and II are not fuzzy normal. Now J.Lv( a 2b) = 0, while J.Lv( a 2) = 1 = J.Lv(b). 

i.e. J.Lv(a2b) i J.L1I(a2) II J.L1I(b). 

THEOREM: 3.1.2 

Let J.L, II be fuzzy subgroups of '# where J.L is fuzzy normal. Then J.L1I is the smallest 

fuzzy subgroup of '# containing both J.L and II. 

PROOF: 

For any x E '# 
J.Lv(x) ~ min(J.L(x), lI(e)) 

= J.L(x) since 1I( e) = J.L( e). 

So J.L1I ~ J.L. Similarly J.L1I ~ II. 

Let e be a fuzzy subgroup of '# such that J.L ~ e and II ~ e. 
Let a = J.L1I(X) > 0, x E ,#. For any ° < € < a, there exist x1,X2 E '#' such that 

x = x1,x2' with a-€ < J.L(x1) II v(x2). 

Therefore e(x1) II e(x2) > a-€ and e(x) > a-E. 

Hence e(x) > a-€ since e2 = e. 

So e(x) ~ a = J.L1I(X). If J.Lv(x) = 0, then J.L1I(X) ~ e(x). Therefore e ~ J.L1I. 

The proof is complete. 

REMARK: 3.1.3 

The above theorem is not necessarily true if J.L( e) f 1I( e). 



PROPOSITION : 3.1.4 

Let /1, /11' /12 be fuzzy subgroups of '# such that /1 = /1tl12. Then 

supp /1 = (supp /1t)(supp /12)' 

PROOF: 

Straightforward. 

We now state and prove the Dekekind and the Modular laws: 

PROPOSITION: 3.1.5 (DEDEKIND LAW) 

Let /1, v, e be normal fuzzy subgroups of '# with /1 < e· Then /1v A e = f1(v A e)· 

PROOF: 

(/1V A e)(x) 

So (p,v A O(x) 

i.e. /1v A e 
Conversely 

= sup (min(f1(xt), v(~)) A e(x)) 
x = xtx2 

= sup (f1(xt) A v(x2) A e(x)) 
x = xtx2 

~ sup (f1(xt) A v(x2) A e(xt) A e(x2)) 
x = x1x2 

= sup (f1(xt) A v(~) A e(x2)), since /1 < e· 
x = x1x2 

~ sup min(f1(x1), (v A e)(x2)) 
x = x1x2 

= f1(v A e)(x), 

~ f1(v A e)· 

> min [f1(xt), v A e(x2)] 
x = xtx2 

= min[f1(x1), v(x2), e(x2)] 
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~ min[f1(x1), v(x2), e(x1) A e(~)] ~ min[f1(x1), v(x2), e(x1) A e(x)] 

= min[f1(x1), v(x2), e(x)] since /1 < e· 

Therefore f1(v A e)(x) ~ min(f1(x1), v(x2)) A e(x). 



Hence /1(v" e)(X) ~ /1v(X) " e(x) and therefore J1(v" e) = /1v" e· 

PROPOSITION: 3.1.6 (MODULAR LAW) 

Let /1, v and e be normal fuzzy subgroups of c; with /1 ~ v. Suppose also that 

/1" e = v" e and /1e = ve· Then /1 = v. 

PROOF: 

= sup J1(xt ) II J1(xa) 
x = x1xa 

~ sup J1(x1) " (/1" e)(xa) 
x = x1xa 

= /1(/1 II e)(x) 

= /1(v" e)(x) 
= /1e" v(x) by the Dedekind Law, 

= (ve II v)(x) since /1e = ve 
= v(x) since v ~ ve 

i.e. /1 ~ v. Therefore /1 = v. 

The following obvious result will be useful later . 

PROPOSITION : 3.1.7 

Let /1, v, e, a be fuzzy subgroups of C;. If /1 ~ v and e ~ a, then /1e ~ va. 

PROOF: 

Straightforward. 

PROPOSITION 3.1.8 
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Let /1, /11' /-La be fuzzy subgroups of c; with /11,/-La 4 /1. Suppose also that /11 " /1a = /1e' 

and /1 = /11/1a' Then supp /1 = supp /11 ® supp /1a' where ® denotes the internal direct 

product. 
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PROOF: 

Straightforward. 

This motivates the following definition: 

DEFINITION: 3.1.9 

Let f.L, f.Ll, Il2 be fuzzy subgroups of ,#. Then f.L is the fuzzy internal direct product of 

f.Ll and f.L2, and we write f.L = f.Ll ® 1l2, if 

(i) f.Ll' Il2 <I f.L, 

( ii ) f.L = f.Llf.L2 

(iii) f.Ll" Il2 = f.Le· 

PROPOSITION : 3.1.10 

Let '# be a finite group with f.Ll,1l2 fuzzy subgroups of 'J and f.Ll fuzzy normal. Then 

(f.Llf.L2)t = f.Li~, where f.Lt = {x E 'J : f.Li(x) ~ t}, i = 1,2. 

PROOF: 

Let x E f.LiJ4· Then there exist xl E f.L~ and x2 E 14, x = x1x2' such that 

min(f.Ll(x1), ll2(x2)) ~ t. 

Thus f.Llf.L2(x) ~ t, and hence x E (f.Llll2)t. 

Conversely, let x E (f.Llll2)t ; i.e. f.Llf.L2(x) ~ t. 

Since 'J is finite, there exist Yl,y2 E '#' x = Y1Y2' such that f.Llf.L2(x) = f.Ll(Yl)" f.L2(Y2)' 

So f.Ll(y 1) ~ t and ll2(y 2) ~ t. Hence x E f.L~~. 

This completes the proof. 

PROPOSITION : 3.1.10' 

Let 'J be a group with f.Ll, f.L2 fuzzy subgroups of 'J and f.Ll fuzzy normal. If f.Llf.L2 has 

the sup property, then (f.Llf.L2)t = f.Lif.L~, where f.Lt = {x E 'J : f.Li(X) ~ t}, i = 1,2. 
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PROOF: 

Similar to Proposition 3.1.10. 

THEOREM: 3.1.11 

Let <J be a finite group and 1-£1,1-£2 be fuzzy subgroups of <J, where 1-£1 is fuzzy normal. 

Then 1-£11-£2 is a fuzzy internal direct product if and only if for each t E (0, 1-£11-£2(e)], 

(l-£ll-£2)t is the internal direct product of I-£f and 14. 

PROOF: 

(=:::::} ): If 1-£11-£2 is a fuzzy internal direct product, then 1-£1,1-£2 <3 1-£11-£2 and 1-£1 A 1-£2 = I-£e· 

By proposition 3.1.10, (1-£11-£2)t = I-£~JiJ. Clearly I-£~ <3 'P. By Proposition 1.3.4, 

14 <3 (1-£11-£2)t. 

Clearly I-£j n 14 = {e}. So (1-£11-£2)t = I-£t ® 14· 

(~): Conversely, suppose (1-£11-£2)t = I-£t ® 14 for all t E (0, 1-£11-£2(e)]. 

I-£t and I-£~ <3 I-£tl-£~· 

By proposition 1.3.4, 1-£1,1-£2 <3 1-£11-£2. We now argue that 1-£1 A 1-£2 = I-£e· 

Let x E supp 1-£1 \ {e}. Thus x E I-£t for some t E (0, 1-£1( e)] and x ~ I-£~ since 

I-£j n I-£~ = {e}. Hence 0 ~ l-£2(x) < t. 

We claim that 1-£2(x) = 0 : 

Suppose 0 < 1-£2(X) = tl < t. Then I-£j ~ I-£j1. So x E I-£t1 and x E 1-£~1. 

Therefore x = e, a contradiction. Hence 1-£2(X) = o. 

If x ~ supp 1-£1' then 1-£1(X) = o. Hence 1-£11-£2 = 1-£1 ® 1-£2· 

THEOREM: 3.1.11' 

Let 'P be a group and I-£hl-£2 be fuzzy subgroups of 'P where 1-£1 is fuzzy normal. If 

1-£11-£2 has the sup property, then 1-£11-£2 is a fuzzy internal direct product if and only if for 

each t E (0, I-£(e)], (1-£11-£2)t is the internal direct product of I-£t and I-£~. 
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PROOF: 

Similar to Theorem 3.1.11. 

REMARK : 3.1.12 

For the converse of Theorem 3.1.11, '1 need not be finite. 

DEFINITION: 3.1.13 [14] 

Let J.!. and 11 be fuzzy subgroups of the groups '11 and '12 respectively. The fuzzy 

external direct product of J.!. and 11 is the mapping J.!. x 11: '11 x '12 -I [0,1] defined by 

J.!. x v(x1,x2) = J.t(x1) A 1I(x2), xi E '1 i, i = 1,2. 

PROPOSITION: 3.1.14 

(i) J.t x 11 is a fuzzy subgroup of '11 x '12' 
(ii) supp (J.!. x 11) = supp J.!. x supp 11. 

(iii) (J.!.x 1I)t=J.!.tx 1It VtE (0, J.!.(e) A v(e)]. 

PROOF: 

Straightforward. 

THEOREM: 3.1.15 

Let J.!. and 11 be fuzzy subgroups of '1. If J.!.1I is a fuzzy internal direct product, then 

J.!.1I = J.!. ® 11!::! J.!. x 11. 

PROOF: 

By proposition 3.1.14, supp J.!. x 11 = supp J.!. x supp 11. By Proposition 3.1.8, 

supp J.!. ® 11 = supp J.!. ® supp 11. Define f : supp J.!. x 11-1 supp J.!. ® 11 by f( a, b) = ab for 

a E supp J.!., bE supp 11. 

f is a crisp isomorphism. 
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We will show that J.L~ 11 (f(a,b)) = J.LX v((a,b)) : 

J.L~ v(f(a,b)) = J.L~ 1I(ab) = sup J.L(x) A 1I(Y) > 0 since a E supp J.L and bE supp 11. 
ab = xy 

So we can assume that x E supp J.L and y E supp 11. Hence, if ab = xy, then a = x and 

b = y. So J.L ~ 11( f( a, b)) = J.L( a) A v(b) = J.L x 11( a, b). 

This completes the proof. 

We end this section by defining a direct product of more than two fuzzy subgroups. 

DEFINITION: 3.1.16 

Let {J.Li : i = 1,2", . ,n} be a collection of fuzzy subgroups of ,#. Let J.L be a fuzzy 

subgroup of <J. Then J.L is the internal direct product of the J.Li, i = 1,' .. ,n, and we 

write J.L = J.L1 ~ ••• ~ J.Ln, in case 

(i) II. 4 I/. for all i = 1 . .. n 
1""1 I"" " , 

(ii) J.Li A < V J.LJ. > = J.Le, i = 1,' •. ,n, and 
i f j 

(iii) 
n 

J.L = < V J.L. > • 1 
1=1 

Further results on direct products will be given in Chapter 4. 

We first need the isomorphism theorems. 

3.2 THE ISOMORPHISM THEOREMS 

DEFINITION : 3.2.1 

Let f: <J -t <J 1 be a homomorphism of a group <J into a group <J 1. Let J.L be a fuzzy 

subgroup of <J. The fuzzy kernel of f corresponding to J.L is the fuzzy subgroup J.LE of 

<J defined by 

{ 

JL(x) x E ker f 
J.LE(x) = , 

o x ~ ker f 

where ker f denotes the usual crisp kernel of f. 



PROPOSITION : 3.2.2 

J.L
E 

= f- 1(f(J.L)e) A J.L, where f(J.L)e is the fuzzy point of ,#1 having support fee). 

PROOF: 

[f-1(f(J.L)e) A J.L](X) = J.LCx) A f(J.L)e(f(x)). 

For x E ker f, [f-1(f(J.L)e A J.L](x) = Jt(x) A f (Jt)(f (e)) 

= Jt(x) A Jt(e) 
= Jt(x) , 

otherwise x ¢ ker f and [f-1(f(J.L)e A J.L](x) = J.LCx) A 0 = o. 

Therefore [f-1(f(J.L)e A J.L](x) = ~(x). 

PROPOSITION : 3.2.3 

The fuzzy kernel J.LE <I J.L. 

DEFINITION: 3.2.4 

Let J.L and 11 be fuzzy subgroups of '# and '# 1 respectively. A homomorphism 
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f : supp J.L -I supp 11 is a fuzzy epimorphism of J.L onto 11 if f(J.L) = 11. (We usually write 

f : J.L -I 11). 

THEOREM: 3.2.5 (THE FIRST ISOMORPHISM THEOREM) 

Let '# and d{ be groups. Let J.L and 11 be fuzzy subgroups of '# and d{ respectively. 

Let f : J.L -I 11 be a fuzzy epimorphism. Let J.L
E 

be the fuzzy kernel of f corresponding 

to J.L. Then J.L / J.L
E 
~ 11. 

PROOF: 

supp J.LE = ker f. 

supp J.L/ J.LE = supp J.L/supp J.LE and J.L/ J.LE is indeed a fuzzy subgroup of supp J.L/ J.LE. 

Define 7/J : supp J.L/ J.L
E 
-I supp 11 by 

7/i..x supp J.L
E

) = f(x) for all x E supp J.L. 



If x supp J.LE E supp J.L/ J.LE, then J.L/ J.LE (x supp J.LE) > O. 

Hence sup{Jt (a) : a supp J.LE = x sUPP J.LE} > o. Therefore f(J.L)(f(x)) > 0, 

i.e. f(x) E supp v. Therefore 'I/J is well-defined. 

Clearly 'I/J is a bijective homomorphism, i.e. supp J.L/ J.LE ~ supp v. 

J.L/ J.LE (x supp ~) = sup J.L(a) = f(J.L)(f(x)) = 11( 'l/i.,x supp ~)). 
f(a) = f(x) 

i.e. J.L/ ~ ~ v. 

REMARK: 3.2.6 
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Theorem 3.2.5 still holds in terms of the strong quotient given in definition 1.1.15 [1]. 

THEOREM: 3.2.7 (THE SECOND ISOMORPHISM THEOREM) 

Let J.L and v be fuzzy subgroups of '#' with v fuzzy normal. Then 

( a) (J.L" v) <I J.L, and 

(b) J.LV / v ~ J.L/ (/1" v). 

PROOF: 

(a) Clear. 

(b) Define f : supp J.LV---+ supp /1/(J.L" v) by f(xtx2) = x t supp(J.L" v), where 

xt E supp J.L, x2 E supp v. f is a well-defined crisp isomorphism. We claim 

that f(J.Lv) (f(x) ) = J.L/(J.L" v)(f(x)), x E supp J.Lv : 

f(x) = f(x tx2) = xt supp(J.L" v). 

Let at = f(J.Lv)(f(x)) and ~ = J.L/(J.L A v) (f(x)). 

at = sup{Jtv(a): f(a) = f(x)} = sup{Jtv(a): al supp (J.LA v) = Xl supp (/1" v), 

a = a la2, at E supp /1, a2 E supp v}. 

Let E E (0, al " a2). So there exists y, y = Y1Y2 and 

Yl supp J.L A v = Xl 

supp J.LA v, such that al - E < J.Lv(y) = sup J.L(zl) A v(z2). 
y = zlz2 
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Let fil = al-I-£v(y). So al = fil + I-£v(Y). We can assume that E is small 

enough so that I-£v(Y) > E. SO there exist zl,z2' Y = zlz2' such that 

I-£v(Y)-E < t-£(zl) " v(z2)· 

f(y) = zl supp 1-£" v = xl supp 1-£" v. 

Let fi2 = I-£v(Y) - t-£(zl) " v(z2) < E. Therefore I-£v(y) = fi2 + t-£(zl) " v(z2)· 

a2 = sup t-£(a) implies that there exists ao' f(ao) = f(x), such that 
f(a) = f(x) . 

aa-E < 1-£( ao)· Let ao = bl b2, b1 supp 1-£" v = xl supp 1-£" v. 

Let fi3 = aa - 1-£( ao) < E. 

Therefore aa = t-£( ao) + fi3 

~ t-£(zl) + fi3 (otherwise use Zl in the place of ao), 

~ 1-£( zl) " v( z2) + fia 

> I-£v(Y) - E + fia 

= al - fil - E + fia· 

As E ---I 0, fii ---I 0, i = 1,3. Hence a2 ~ a l . (1) 

al = f(l-£v)(f(x)) = sup{j.£v (ala2): al supp 1-£" v = Xl supp 1-£" v} 

~ Sup{j.£ (ala2): al supp 1-£" v = Xl supp 1-£" v} 

= 1-£/(1-£" v)(f(x)) = aa· 
Therefore al ~ a2 

(1) and (2) imply that a l = a2• 

Now ker f = supp v. 

{ 

j.£v(x) 
Let (I-£v)E(x) = 0 

x E ker f 

x t ker f 

By the first isomorphism Theorem (Theorem 3.2.5) 

(I-£v) / (I-£v)E ':!. 1-£/1-£" v. 

Furthermore I-£V / (I-£v)E ':!. I-£v / v : 

Let a: supp I-£v/(l-£v)E ---I supp I-£v/v be given by 

(2) 

a(xlx2 supp (I-£V) E) = xlX2 Supp V = xlx2 supp (I-£v)E. Therefore a is a 

crisp isomorphism. 



jlvlV (a(xlx2 SUpp (jlV)E)) = jlVIV(X1X2 SUpp v) 

= sup{f.Lv(a): a supp v = xlX2 supp v} = sup{f.Lv(a): a supp (jlv)E 

= xlX2 supp (jlv)E} = (jlv)/(jlv)E (x1x 2 supp (jlv)E)' 

So jlVI(jlv)E ~ jlvlv and it follows that jlvlv ~ jll jl A v. 

REMARK : 3.2.8 
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The assumption made throughout this thesis that Jl( e) = v( e) for fuzzy subgroups of 

the same group 'J that are mentioned in a theorem has played a role in the proof of 

Theorem 3.2.7. 

The following example shows that if we use the quotient given in Definition 1.1.15[1], 

the second isomorphism theorem fails : 

EXAMPLE: 3.2.9 

Let 'J = S3 = {e, a, a2
, b, ab, a2b}, a3 = e = b2

. 

Define jl : S3 -I [0,1] by jl = X
A 

. Then jl is a fuzzy normal subgroup of 'J. 
3 

Define v: S3 -I [0,1] by v(e) = 1, v(a) = 1/2 = v(a2), v(b) = 1/4 = v(ab) = v(a2b). 

Then v is a fuzzy normal subgroup of S3' 

Let Ev = {x E S3 : v(x) = v(e)}. Supp jl = A3 = {e, a, a2
}. Supp v = S3' 

supp jlVIV 

But supp jll jl A v 

= {x1x 2 v: Xl E supp jl, x 2 E supp v} 

~ {x1x 2 Ev : Xl E supp v, x 2 E supp v} 

= (supp jl supp v) lEv 

= supp jllEv· supp viE v 

= A3/ Ev . S3/Ev = S3/Ev ~ S3' 

= {x(jl A v) : x E supp jl} 

~ {x EjlA v: xE supp jl} 

= A3/EjlA v~ A3 · 

Therefore supp jlVlv is not isomorphic to supp jll jl A v. 



Hence /k1l /11 is not isomorphic to /k/ /k A 11. 

THEOREM: 3.2.10 (THE THIRD ISOMORPHISM THEOREM) 

Let 11 ~ /k ~ e be fuzzy subgroups of '# such that /k and 11 are normal in e. Then 

(i) /k/1I <I eI 11 and 

(ii) e/ /k ~ (e/ lI)/(/k/lI). 

PROOF: 

(i) Let (a supp 11). E e/lI. We can assume that a). E e. 
(a supp 11). /k/ v(x supp 11) 

= ). A /k/v(a-1x supp 11) =,\ A sUPW(y): y supp 11 = a-Ix supp 1I} 
= sup{,\ A ~(a-lxy): yE supp 1I} = sup{a).~(xy): yE supp 1I} 

= sup{~a).(xy): y E supp 1I} since /k<l e 

= supWa). (z): z supp 11 = X supp 1I} 

= ,\ A sup{/k( za -1): z supp 11 = X supp 1I} 
=,\ A suPW(y): ya supp 11 = X supp 1I} 
= /k/1I (a supp 11). (x supp 11). 
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(ii) Define f : supp ellI -I supp e/ /k by f(x supp 11) - X supp /k. f is an 

epimorphism. 

We claim that f(e/ lI) = e//k: 
f(e/ lI)(x supp /k) = sup{e/lI(a supp v): a supp /k = x supp /k} 

- sup sup{e (a' ): a' supp 11 = X supp 1I} 
a supp ~ = x supp ~ 

= sup{e(b): b supp /k = x supp /k} = U~ (x supp~). 

ker f = {x supp 11 : x E supp /k} = supp /k/1I. 

{ 

(Uv)(x supp v) x E supp /k 
Define (e/ lI)E (x supp 11) = 0 otherwise . 

By the First Isomorphism Theorem (Theorem 3.2.5), (el lI)/(e/ lI)E ~ e//k. 

We claim that (e/lI)/(e/lI)E ~ (e/lI)/(/k/lI) : 

Define a: supp (e/lI)/(e/lI)E -I supp (ellI)/(/k/lI) by 

a(x supp 11 supp (e/lI)E) = x supp 11 supp /k/1I. 



a is a bijective homomorphism since supp (e/1I)E = supp /1/11. 

(e!1I)/(e/1I)E (x supp 11 supp (e!1I)E) 

= sup{ U 11 (a supp v): a supp 11 supp (e/ 1I)E = x supp 11 supp ee/1I)E} 

= (e!1I)/(/1/1I) (a(x supp 11 supp (e/1I)E)· 

Hence (e!1I)/(/1/1I) ~ (e/1I). 

REMARK: 3.2.11 
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The above Theorem is still valid even if the quotients are replaced by the strong 

quotients given in Definition 1.1.15 [1]. 
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CHAPTER 4 

CYCLIC FUZZY SUBGROUPS AND THE BASIS THEOREM 

INTRODUCTION: 

In this chapter we first discuss cyclic fuzzy subgroups. In [50] Sidky and Mishref defined 

a fuzzy subgroup J1, to be cyclic iff each level subgroup of J1, is cyclic. Our notion of fuzzy 

cyclic is such that if J1, is fuzzy cyclic, then all the nonzero level subgroups of J1, are cyclic, 

but the zero level subgroup of J1, need not be cyclic. Furthermore, our definition of fuzzy 

cyclic uses the notion of a fuzzy subgroup generated by a fuzzy subset. We also attempt 

to give characterizations of cyclic fuzzy subgroups and finitely generated fuzzy 

subgroups. Examples of cyclic fuzzy subgroups and fuzzy direct products are presented. 

We also define p-fuzzy subgroups and then prove that every finite Abelian fuzzy 

subgroup is a direct sum of p-fuzzy subgroups. The major result in this chapter is the 

Basis Theorem which asserts that every finite Abelian fuzzy subgroup is a direct sum of 

cyclic p-fuzzy subgroups. We end the chapter with a notion of dimension of a fuzzy 

subgroup that is also a fuzzy vector space over the field "O.p, where p is a prime number. 

4.1 : CYCLIC FUZZY SUBGROUPS 

Let '# be a group and x oX a fuzzy point in ,#. Recall that < x oX > is the smallest fuzzy 

subgroup of '# containing x oX. A fuzzy subgroup J1, is cyclic in '# if there exists a fuzzy 

point XoX such that J1, = < XoX >. 

PROPOSITION: 4.1.1 

Let J1, = < x oX > and 

() {
,\ aE<x> 

va = 0 a¢<x> VaE,#. 

Then J1, = v. 



PROOF: 

Let a~ E II. If a = e, then e E < x >. Hence v(e) = >. ~ {3. Now Jt(x) ~ >. and 

It(e) ~ Jt(x) ~ >. ~ {3. So ~ = ep E Jt. 

Suppose a:f. e. 

v( a) ~ {3 > O. Hence v( a) = >. ~ {3 and a E < x >. So a = xID for some m E 71. 

Therefore It( a) ~ Jt(x) ~ >. ~ {3. So a {3 E Jt. Therefore II ~ Jt. 

Now x>. E II since x E < x >. By definition of Jt, Jt ~ II. 

Hence Jt = II. 

DEFINITION: 4.1.2 
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Let Jt and II be fuzzy subgroups of '# such that II ~ Jt. II is cyclic in J.L in case there 

exists a fuzzy point x>. E Jt such that II = < x>. >. 

We can apply proposition 4.1.1 to show that 

{

A aE<x>,a:f.e 
v(a) = Jt(e) a = e , 

o otherwise 
where II is the fuzzy subgroup given in Definition 4.1.2. 

NOTE: (i) The condition lI(e) = Jt(e) is important in products of fuzzy 
subgroups. 

(ii) By A\B we mean {XE A: x¢ B}. 

PROPOSITION: 4.1.3 

Let x>" Y {3 E [0, 1] '# , x:f. y. 

Assume that '# is Abelian and finite. 

Let lI(a) = I L fi 
AA{3 
o 

Then II = < x>.,y {3 > in ,#. 

aE<x>\<y> 
a E < Y > \ < x > 
aE<x>n<y> . 
a E < x >< Y > \ < x > U < y > 
otherwise 



PROOF: 

Let It = < x).. ,y {J >. 

We first note that v(e) = ).. V {J. Secondly 3 n E u.+ such that yn = e. 

So e = y ... y, hence J.£(e) = < x)..'y {J >(e) ~ ).. V {J = v(e). 

By definition of < x)..,y {J >, J.£(a) ~ ).. V {J V a E 'J. 
Hence J.£(e) = ).. V {J = v(e). 

Let a, b E 'J. We want to show that v is a fuzzy subgroup of 'J. 

Case a, b E < x > \ < y > : 

ab E < x > : so v( ab) = ).. or ).. V {J. 

).. = v(a) implies that v(ab) ~ v(a) A v(b). 

Similarly if a, b E < y > \ < x >. 

Case a, b E < x > n < y > : 

ab E < x > n < y >. 
Therefore v(ab) = ).. V {J~ v(a) A v(b). 

Case a, b E < x >< y > \ < x > U < y >. 

Therefore ab E < x >< y > since 'J is Abelian. 

Now v(a) A v(b) = ).. A {J~ v(ab). 

Case a E < x > \ < y >, b E < y > \ < x > : 

Therefore ab E < x > < y >. So this case is similar to the previous case. 

Case a E < x > \ < y > and b E < x >< y > \ < x > U < y > : 

Similar to the previous case. 

Case a E < x > \ < y > and b E < x > n < y > : 

Therefore ab E < x >. So v(ab) ::::: ).. or ).. V {J. Either case implies 

v(ab) ~ v(a) A v(b) = )... 

Case a ¢ < x >< y > and b E < x >< y > : 

Then v(a) = 0 ~ v(ab). It is easy to show that v(a) = v(a-1) V a E 'J. 
So v is indeed a fuzzy subgroup of 'J. v contains x).. and y {J. Hence v ~ It. 
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Let ae E v. So v(a) ~ e. 

Case (i) : a E < x> \ < y >. 
Therefore a = xm for some m E "0.. 

J1-(a) = sup{p: ap = a1)q ... anAl' aiAi E xA V y {3}. 

So Ai ~ A V (3, i = 1,· .. ,no 

a e = x e . .. x e and v( a) = A ~ e· 
Since x}.. E J.£, then x e E J.£. Hence a e E J.£. Similarly if a E < y > \ < x >. 

Case (li) : a E < x > n < y >. 
Similar to Case (i). 

Case (iii) : a E < x >< y> \ < x > U < y >. 
v(a) = A" {3 ~ e since ae E v. 

a = xmyn = (xy)myn-m, say, since r; is Abelian. 

Therefore ae = (xy) e ... (xy) eYe· .. y~. 

(xy) A " (J E J.£ since x,AI y (J E J.£. 

Hence (xy) e,y e E J.£. So a e E J.£. Therefore v ~ J.£. 

Hence J.£ = v. 

The proof is complete. 

DEFINITION: 4.1.4 
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A fuzzy subgroup J.£ of r; is a p-fu,zzy subgroup iff each nonzero level subgroup of J.£ is 

a p-group, where p is a fixed prime. 

Clearly J.£ is a p-fuzzy subgroup iff supp J.£ is a p-group. 

We aim to show that every fuzzy subgroup of a finite Abelian group is a direct sum of 

cyclic p-fuzzy subgroups. We begin by examining certain specific examples. 



60 

EXAMPLE: 4.1.5 

Let '# be the Klein 4-group. So '# = {O, xl' ~, x3}, where 2xi = 0 for all i = 1,2,3, 

and xi + Xj = xk' i, j, k distinct. 

Define /-L: '# ---I [0,1] by 

Then /-L is a fuzzy subgroup of ,#. 
Define /-Li: '# ---I [0,1] by 

So 

x E < xi> 
x ¢ < xi >, i = 1,2,3. 

X=o 
x E < Xl >, x f 0 
x ¢ < xl> 

Therefore /-Ll is cyclic in J.£. Similarly, /-L2 and /-L3 are cyclic in /-L. 

/-Li <l /-L since '# is Abelian. 

It is not hard to see that /-Ll + /-La + /-L3 = /-L. 

NOTE: The + sign has replaced the product sign as is customary when dealing 

with Abelian groups. 

The sum /-Ll + /-La + /-L3 is not direct since for example xa). E (/-Ll + /-L2) A /-La for some 

). E (0,1]. 

We claim that /-L = /-La + /-La but /-L f /-L1 + /-L2 : 

/-L(xa) = a3 and (/-Ll + /-L2)(xa) = (/-Ll + /-L2)(x1 + x2) = /-L1(x1) A /-L2(x2) = a1 f a3• 

So /-L f /-L1 + /-La. 



= (112 + J-La)(X2 + X3) = l12(x2) A J.£3(x3) 

= l12(x2) = j.t(x2) = J.£(xJ 

Clearly (112 + J-La)(xi) = j.t(xi)' i = 2,3. 

Hence J.£ = 112 + J.£3· In fact J.£ = 112 (D J-La. 

Each J.£i is a 2-fuzzy subgroup. 

EXAMPLE 4.1.6 
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Let r; = u. 6 = {O, I, 2, 3, 4, 5}. To avoid clumsiness we will omit the bars above the 

elements of u. 6• 

Let Hl = {0,3} and H2 = {0,2,4}. 

Define J.£: r; -I [0,1] by 

x=1,2,4,5 
x=3 
x=o 

where 1 > a3 > al > o. Then J.£ is a fuzzy subgroup of r;. 

Let ( ) _ {JL(X) x E Hi 
JLi x - 0 x~Hi 

J.£l is a cyclic 2-fuzzy subgroup of J.£, and 112 is a cyclic 3-fuzzy subgroup of J.£. 

We now show that J.£ = J.£l + 112· 

(J.£l + 112)(5) 

(J.£l + J.£2)( 4) 

= (J.£l + 112)(3+2) = J.£1(3) A J.£2(2) = al = j.t(5) 

= J.£1(0) A 112(4) = 112(4) = j.t(4). 

Similarly (J.£l + J.£2)(x) = j.t(x) for all x E r; . 
Hence J.£ = J.£l (D 112· 

4.2 : THE BASIS THEOREM 

DEFINITION : 4.2.1 

J.£ is finite in case supp J.£ is finite. 



DEFINITION : 4.2.2 

Let mE 7[+ and J.t a fuzzy subgroup of c;. Then mJ.t is defined by 

_ { sup{p: y pEP, and x = my} 
(mJ.t)(x) - 0 otherwise 

It is then easy to see that 

(mJ.t)(x) ={ Sllp{p,(y): x = my~ yE suppp,} 
o otherwIse 

Also mx(3 = (mx) (3" 

(mJ.t)(x) = sup J.t(y) < 
x = my 

So mJ.L ~ J.L. 

PROPOSITION: 4.2.3 

sup J.t(my) = J.t(x). 
x = my 
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Let J.t be a fuzzy subgroup of an Abelian group C;, and let m E 71+. Then mJ.L is a 

fuzzy subgroup of c;. 

PROOF: 

Obvious. 

THEOREM: 4.2.4 

Every finite Abelian fuzzy subgroup J.L is a direct sum of p-fuzzy subgroups. 

PROOF: 

Let Ap = {x). E J.t: o(x) = pS for some s E 7Z+}. 

Let p be a prime number and define J.tp : c; --+ [0,1] by J.tp(x) = sup{). : x). E Ap}, 

otherwiseJ.Lp(x) = o. 

We will show that J.tp is a fuzzy subgroup of c;. Now J.tp(x+y) = V)., 
(x+y). E Ap 



Case (i) : x, yE supp p.. 

o(x+y) I lcm(o(x), o(y)) = pS for some s E "0.+, and JL{x+y) ~ JL{x) A JL{y) ~ At A A2• 

Hence (x+Y)A A A E Ap. 
t 2 

Therefore fLp(X) A fLp(Y) 

Case (ii) : x E sUPP p.., Y ~ sUPP p.. 

So fLp(Y) = O. Hence fLp(x+y) ~ fLp(X) A fLp(Y). 
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If x, Y ¢ supp j.t, then fLp(X+Y) ~ fLp(x) A fLp(Y). So fLp is a fuzzy subgroup of ? and 

fLp ~ fL· 

We now show that fL = ~ fLp : 
plo(suPPIL) 

Let x>. E fL, x f 0 and o(x) = n. 

Therefore n = p~lp~2 ... p~k, where the Pi'S are distinct primes and si E "0.+ for all 

i = 1"" ,k. Set ni = +.. So niP~i = n. 
Pi 1 

Also (nt,n2,' •• ,nk) = 1 implies there exist mi E "0., i = 1,' .. ,k, such that 

k 
~ mini = l. 

i=l 

k 
Hence ~ mini x = x 

i=l 
(*) 

s' Now Pi1 mini x = n mi x = mi(nx) = O. 

So o(mini x) I p~i. Therefore o(mini x) = pii for some ti E "0.+. 

Clearly (mini x) A E fL since xA E fL· 

Let us first show that 



I-£p(x) = { ",(x) x E supp p. such that o(x) = pS for some s E ll+. 
o otherwise 

Now let af3 E 1-£, o(a) = pS. I-£p(a) = V e . 
ae E Ap' Ap = {x,A E p. : o(x) = pS} 

Now J.£(x) 

~ p,p (mtnt x) A •.. A p,p (mknk x) 
t k 

= J.£(m1n1 x) A ••• A J.£(mknk x) 

~ J.£(x). 
Hence J.£(x) = I-£p (m1n1 x) A ••• A I-£p (mknk x) 

1 k 

= [ . ~ I-£P.j (x). 
1=1 1 

The fact that < V I-£i > A I-£J. = I-£e follows straight from Group Theory since 
i f j 

supp 1-£ = supp P,1 + . .. + supp i-£k. 

This completes the proof. 

RECALL: 
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Let V be a vector space over a field F. 1-£ is a fuzzy vector space of V in case 1-£ is a 

fuzzy subgroup of V under addition such that 1-£( a x) ~ J.£(x) for all a E F and x E V. 

REMARK: 4.2.5 

(i) We are assuming that IIp 

multiplication modulo p. 

{O,1,2, ... ,p-1} under addition and 

(ii) If supp 1-£ = H1 ED H2 and we define fuzzy subgroups I-£i by P,i(x) = J.£(x) if x E 

Hi and I-£i(x) = a for x ¢ Hi' it does not follow that 1-£ = 1-£1 + 1-£2. See example 

4.1.5. 

However we have 
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LEMMA: 4.2.6 

Let I-" be a finite fuzzy vector space of the vector space '# over the field 71.p , where p is 

a prime number. 

Suppose supp I-" = {O, x1,x2,' •• ,xk' Yk+1'" . ,yn} = < xl > ED ••• ED < xk >. 

Then there exist cyclic fuzzy subgroups wllw2,'" ,wk such that I-" = w1 (9 ••• (9 wk' 

PROOF: 

The elements xl" .. ,xk form a basis for supp I-" as a vector space over 71. p' 

Let k = 2. So supp I-" = < xl > ED < x2 >. 

Define I-"i: '# -+ [0,1] by 

1-"1'(X) = {"'o(X) x E < xi > 
x ¢ < xi> . 

We show that J1-i is cyclic : 

Let x E < xi >, x:J: ° (the additive identity element of ,#). So x = mixi' m i E 71. p , 

mi:J: 0. 

Now I-"i(mixi) ~ I-"i(xi) = j.£(xi) = I-"(milmixi) ~ I-"(mixi) = l-"i(mixJ 

So I-"i(mixi) = I-"i(xi)' 

So if x E < xi >, x:J: 0, then j.£(x) = l-"(xJ Hence I-"i is a cyclic fuzzy subgroup of 1-". 

O(xi) = p for all i = 1" .• ,k. So each I-"i is a p-fuzzy subgroup for a fixed p. 

i = 1,'" ,no 

The sum 1-"1 + 1-"2 may not be equal to I-" by Remark 4.2.5. 

Suppose I-"(Y i):J: (1-"1 + . .. + J1-k)(Y J 
Replace x t or x2 by Yn' So {xt,yn} or {x2,yn} spans supp 1-". 

Suppose {x2,y n} is a basis for supp 1-". So supp I-" = < x2 > (9 < y n >. 

Let LI (x) = { '" (x) x E < Y n > . 
n 0 x¢<Yn > 

LIn is a cyclic p-fuzzy subgroup of 1-". 



We now show that J.L = 1-£2 + lin : 

Let xl = m2x2 + mnyn· 

~ l-£2(x2) A lIn(Yn) 

= J.L( x2) A J.L(y n) 

= J.L(x2) ~ J.L(xl) ~ (1-£2 + lIn)(XJ 

Therefore (1-£2 + lIn )(Xl) = J.L(xJ 

Clearly J.L(x2) = (1kJ + lIn)(X2) : 

Now let Yi = m2x2 + mny n' mi E "D.p. 

~ lkJ(x2) A lIn(Yn) 

= lkJ(x2) 

= J.L(Yi - mnYn) 

~ J.L(y i) A J.L( mny n) 

= J.L(Yi) 

~ (1kJ + lIn)(Yi) 

Therefore J.L(y i) = (1kJ + II n)(Y i)' 

The fact that IkJ A lin = I-'e is obvious. 

Hence I-' = IkJ e lin' 

If {xl,yn} is a basis, it can be shown that I-' = 1-'1 e lin' 
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Now assume that if SUpp J.L = < Xl > e ... E9 < xk >, then there exist cyclic p-fuzzy 

subgroups w1,W2,'" ,wkl such that J.L = w1 E9 ••• E9 wk' 

Let supp J.L = < Xl > E9 ••• E9 < xk+l >. 

Note that Y i = mlxl + ... + mk+l xk+l implies that J.L(y i) ~ a l A ~ A ... A ak A ak+l' 

where a i = I-'i(xi)' I-'i as defined at the beginning of this proof. 
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Also "ry ) > (}. for all i = 1 ... k + 1 ... n We can assume without loss of 
fl'\ n - 1 "" . 

generality that {y n,x1,' .. ,xk} is a basis for supp 1-£. 

Let Zln be as defined above. 

Now supp 1-£ = < Yn > ED < x1 > ED ••• ED < xk >. We will find cyclic p-fuzzy 

subgroups w l' • •• W k, such that 1-£ = W 1 ED ••• ED W k ED ZI n' 

Let H = < x1 > ED ••• ED < xk >. 

Define w: r; ---I [0,1] by w(x) = {~(x) ~ ¢ ~ . 
So supp w = H. By induction there exist cyclic p-fuzzy subgroups w1,'" ,wk such 

that w = w1ED ••• ED wk' 

So if x E H, then p,(x) = (w1 ED ••• ED wk)(x), 

Also wi = w on some cyclic group < ai > in H. So wi = 1-£ on < ai > and 0 

elsewhere. 

Let y s = m1a1 + . .. + mkak + mny n E supp 1-£. 

Therefore 

= (W1 + ... + wk + Zln)(m1a1 + m2a2 + ... + mkak + mnYn) 

~ w1(a1) A ••• A wk(ak) A Zln(Yn) 

= w1(a1) A ••• A wk(ak) 

= (W1 + ... + wk)(m1a1 + ... + mkak) 

= p,(m1a1 + ... + mkak) 

= I-£(Y s - mny n) 

~ I-£(Y s) 

~ (W1 + ... + wk + Zln)(Ys)' 

The sum (w1 + ... + wk + Zln) is clearly direct. 

This completes the proof. 
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LEMMA: 4.2.7 

An Abelian fuzzy subgroup fl, with Pfl = fle, is a fuzzy vector space over 7l.p and fl is a 

direct sum of cyclic fuzzy subgroups fll" •• ,fln such that I supp flil = p, where fli is 

finite, 'if i = 1" .. ,no 

PROOF: 

Assume supp fl is finite. 

From Group Theory, supp fl is a vector space over 7l. p . Clearly fl is a fuzzy vector 

space over 7l. p . Suppose that {xl" .. ,xn} is a basis for supp fl. By Lemma 4.2.6, there 

exist cyclic fuzzy subgroups wl,'" ,wn' I supp wil = p, such that fl = w1 ED ••• ED wn. 

This completes the proof. 

REMARK: 

For the rest of this chapter, we will sometimes denote a fuzzy point x A by (X,A) to 

avoid clumsiness. 

LEMMA: 4.2.8 

Let fl be a p-fuzzy subgroup of r;. 
Let < (Yl,(31), (Y2,/32) > = < (Yl,(3l) > ED < (Y2,{:J2 ) >, where (Yi,(3i) E fl such that 

(Yi,(3i) = (pxi,A i), i = 1,2. 

Then < (X1,A1), (X2 ,A2) > = < (Xl ,A l ) > ED < (X2 ,A2) >. 

PROOF: 

Let v = < (X 1,A 1), (X 2,A2) > ; wi = < (xi,Ai) >, i = 1,2. Clearly wl A w2 = fle. Also 

w1 ED w2 ~ V. Let (a)) E V. SO A ~ sup{(3: a = a1 + . .. + an' (3 = (31 A ••• A (3n, 

(ai,(3i) E (X1,A1) V (X2,A2))· 

Therefore ai = xl or x2· 

Suppose a = mXl f. O. 
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Then (a,A) = (mx1,A) E < (X1,A1) > since w1(mx1) = Al = v(a) ~ A. In case a = 0, 

then w1(0) ~ A. Similarly when a = mx2• 

Suppose a = m1x1 + m2x2, mixi * 0 V i = 1,2. 

So (a,).) = (m1x1,).) + (m2x2,A) E w1 + w2 since wi (mix i) = Ai ~ A1 " A2 = v(a) ~ A. 

Therefore v = w1 E9 w2• 

NOTE: Lemma 4.2.8 can be extended to any finite number of fuzzy points. 

THEOREM: 4.2.9 (THE BASIS THEOREM) 

Every finite Abelian fuzzy subgroup J.L is a direct sum of cyclic p-fuzzy subgroups. 

PROOF: 

In view of Theorem 4.2.4, we may assume that J.L is a p-fuzzy group. 

Let mE 7f.+ such that pmJ.L = J.Le. 

If m = 1, then the theorem is just lemma 4.2.7. Suppose the theorem holds when 

pmJ.L = J.Le. Let pm+1J.L = J.Le. Let v = pJ.L. Then pmv = J.Le. 

Therefore by induction, v = J.Ll E9 ••• E9 J.Lt' where each J.Li is a cyclic p-fuzzy subgroup. 

So there exist (Yi,Ai) E v, such that J.Li = < (Yi,).i) > for i = 1,2,··· ,to 

So (Yi,Ai) E pJ.L· We claim that (Yi,Ai) = p(y,{3) for some (y,{3) E J.L : 

Ai ~ PJ.L(Yi) = SUp{", (x) : Yi = px, x E sUPP "'} 

=",(yd, Yi = py, since", is finite. 

(y,Ai) E J.L and (Yi,Ai) = (py,Ai) = p(y,Ai)' and the claim is proved. 

So if (Yi,Ai) E PJ.L, then there exists (zi,{3i) E J.L such that (Yi,Ai) = P(zi,{3i)' (*) 

Let w = < (zi,{3i): i = 1,2,· .. ,t >. Therefore w = < (zl,{31) > E9 ••• E9 < (Zt,{3t) > by 

lemma 4.2.8. 

We will show that w is a direct summand of J.L. 

Let J.L[p](x) = sup{{3: (x,{3) E J.L and (px,{3) = (0,{3)}. 

If x ~ supp J.L or if px * 0, then define J.L[p](x) = 0. So p(J.L[pD = J.Le. By lemma 4.2.7, 

J.L[p] is a fuzzy vector space over 7lp and is also a direct sum of cyclic p-fuzzy 

subgroups. 
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Let o(Yi) = ki· So p(kizi) = kiYi = O. Hence o(kizi) = p. Let "'i = J.£[p](kizJ So 

(kizi, "'i) E J.£[p J. 

Now {k1z1,'" ,ktzt} is a linearly independent subset of supp J.£[p]. So there exist 

x1,X2,' •• ,xs such that {k1z1,'" ,ktzt, Xl"" ,Xs} is a basis for supp J.£[pJ. Therefore 

supp J.£[p] = < k1z1 > e ... e < ktzt > e < Xl > e ... e < Xs >. 

X E < Xi > and q. = {Jt[p](x) 
X ~ < xi> ' 1 0 

x E < kiz i > 
X ~ < kiz i > . 

where x E < xi >, as in lemma 4.2.6. 

So wi is a cyclic p-fuzzy subgroup of J.£ for each i. Because of lemma 4.2.6, we can 

assume that J.£[p] = ql e ... e qt e w1 e ... e ws. 

We claim that J.£ = e e w: 

e" w = J.£e follows straight from Group Theory. So we only have to show that 

J.£ = e + w. Clearly e + w S J.£. 

Let (x,(3) E J.£. Therefore (px,(3) E pJ.£ = TJ. 

SO px = (c1y 1) + ... + (ctY t), ci E 7I and (3 = A1 " ••• " \' where Ai is the degree of 

membership of ciY i· 

t 
+ (ctYt,\) = ~ (PCizi, (3i) by (*), (see Proposition 

i=1 

5.1.1). 

Hence p(x,(3) - ~ (p cizi,(3i) = (0,(3), 
i 

So (x,(3) - ~ (cizi,(3i) E J.£[pJ. 
1 

Therefore (x,(3) - ~ (Cizi,(3i) = ~ (bikizi''''i) + ~ (ajxj,Pj)' where (ajxj,Pj) E wi· 
1 1 J 

So (x,(3) = ~ ((ci + biki)zi' (3i" "'i) + ~ (ajXj,Pj) E w + e· 
1 J 

Hence J.£ = we e = < (zl,(31) > e ... e < (Zt,(3t) > e w1 e ... e ws. 

The proof is complete. 
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In the above theorem the fact that tL[p] is a fuzzy subgroup in tL is obvious. 

REMARK: 

If tL can be decomposed into cyclic fuzzy subgroups whose supports are of prime 

orders, then the Remak-Krull-Schmidt theorem in Chapter 5 will show that such a 

decomposition is unique up to isomorphism. 

DEFINITION: 4.2.10 

Let tL be a finite Abelian fuzzy subgroup of 'P which is also a fuzzy vector space over 

lip. A basis for tL is a set {Xi). , ••• 'Xn). } of fuzzy points such that 
i n 

(i) tL = < Xi). , ..• 'Xn). > and 
i n 

(ii) the set {xi" .. ,xn} is linearly independent. 

The following result follows immediately from Group Theory. 

PROPOSITION : 4.2.11 

Let tL be a finite Abelian fuzzy subgroup of 'P with PtL = tLe for some prime p. Then 

any two decompositions of tL into a direct sum of cyclic fuzzy subgroups have the 

same number of summands. 

PROOF: 

Follows from Group Theory. 

We end this chapter by defining a dimension for tL : 

DEFINITION : 4.2.12 

Let tL be a finite fuzzy vector space over lip. Let {Xi). , ••• ,xn). } be a basis for tL. 
1 n 

Let s be the number of distinct ).i in the basis for tL. Then the dimension of tL is 

defined to be (n,s). 



NOTE: 

If dim(j.£) = (n,l), then Proposition 4.1.3 suggests that j.£ is of form 

j.t(a) = {,\ a E < xl"" ,xn > = supp JI.. 
o a ¢ < xl" .. ,xn > 

So I R(j.£) I ~ 2, where R(j.£) is the range of j.£. In fact it can be shown that if 
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J1i = J1 on < xi > and 0 elsewhere, then J1 = J11 ED ••• ED J1n . By Remark 4.2.5 this 

result is not true in general. 

PROPOSITION: 4.2.13 

Any two finite Abelian fuzzy subgroups that are vector spaces over 7lp and having the 

same demension (n,l) are isomorphic in the sense of definition 1.2.1. 

PROOF: 

This follows immediately from the note immediately after Definition 4.2.12. The 

isomorphism of the supports follows from linear algebra. 

Finally, all the groups we have used in this chapter are finite. So let us end this chapter 

by giving an example of a fuzzy subgroup J1 with infinite support such that j.£ is a direct 

product of some fuzzy subgroups. 

EXAMPLE: 4.2.14 

Let C; = IR\{O} under multiplication. So C; is infinite. Define j.£: C; -+ [0,1] by 

1/2 a E <2>\{1} 

11s a E < 2 >< 3 > \ < 2 > 
j.£(a) = 1/4 a E < 2 >< 5 > \ < 2 > 

1/4 a E < 3 >< 5 > \ < 3 > 
1/4 a E < 2 >< 3 >< 5 > \ < 2 >< 3 > U < 3 >< 5 > U < 2 >< 5 >, 
1 a = 1. 

Otherwise j.t(a) = 0. 

J1 (2x 3) = 1/3 = j.t(3) ~ J1(2) A j.t(3). 

J1 (2x 5) = 1/4 = J1(5) ~ j.t(2) A J1(5) 

J1 (3x 5) = 1/4 = j.£( 5) ~ J1( 3) A J1( 5 ) . 



So it is easy to show that J.L is a fuzzy subgroup of ,#. 

Define J.Li: '# -+ [0,1], i = 1,2,3, by 

J.L1 = J.L on < 2 > and J.L1 = 0 elsewhere, 

1"2 = J.L on < 3 > and 1"2 = 0 elsewhere, 

1"3 = J.L on < 5 > and 1"3 = 0 elsewhere. 

We show that J.L = J.L1 ED J.L2 ED J.Lg : 

Clearly J.LiJ.Lj A I"k = J.Le , i,j,k distinct. Let y = 2S1 3S2 5Sg , si E 7l\{0}. 

Therefore J.L11"21"3(y) = J.L(2) A J.L(3) A J.L(5) = 1/4 = J.L(y). 
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If y ¢ < 2 >< 3 >< 5 >, then J.L(y) = 0 = J.L11"21"3(Y). So it easy to show that 

J.L11"2J.Lg (x) = J.L( x) V x E ,#. Hence J.L = J.L1 ED J.L2 ED J.Lg. 

Supp J.L = < 2 >< 3 >< 5 > is infinite, but finitely generated. 



CHAPTER 5 

THE FUZZY REMAK-KRULL-SCHMIDT THEOREM AND 

THE FUZZY JORDAN-HOLDER THEOREM 

INTRODUCTION: 
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This chapter is an extension of Chapter 4. In Section 5.1 we discuss decomposable and 

indecomposable fuzzy subgroups. In particular we state and prove the 

Remak-Krull-Schmidt theorem for fuzzy subgroups. In the proof of this theorem we 

follow the lattice-theoretic approach, (see for example Cohn [61]). This requires the 

notion of finite length for the lattice of fuzzy subgroups of a group ,#. Our definition of 

finite length ensures that if p, is a fuzzy subgroup of a finite group '#' then the lattice of 

fuzzy subgroups of p, is of finite length. This notion of finite length reduces to the crisp 

notions of ascending chain condition (ACC) and descending chain condition (DCC). We 

end Section 5.1 with the Kuros-Ore theorem for fuzzy subgroups. This theorem is a 

weaker version of the Remak-Krull-Schmidt theorem. 

Section 5.2 is aimed at proving the Jordan-Holder theorem for fuzzy subgroups. In the 

definition of a normal series of fuzzy subgroups, Bhattacharya and Mukherjee [1] require 

that each fuzzy subgroup in the series be fuzzy normal in the underlying group. If 

p, = P,1 ~ ••• ~ p,k is called a normal series, we feel that it is too strong to require every 

fuzzy subgroup p,i·to be fuzzy normal in ,#. Our definition of a normal series requires 

only that each P,i+l be normal in P,i' We begin Section 5.2 by proving a fuzzy version of 

the Zassenhaus lemma, which is a generalization of the second isomorphism theorem. 

This is followed by the Schreier theorem, which is the backbone of the Jordan-Holder 

theorem. In defining a maximal chain of fuzzy subgroups, we have ensured that if '# is 

finite, then any chain of fuzzy subgroups of r; can be refined to a maximal chain. 

Finally, the Jordan-HOlder theorem is stated and proved. 

5.1 THE REMAK-KRULL-SCHMIDT THEOREM 

DEFINITION: 5.1.1 

Let J.L be a fuzzy subgroup of ,#. p, is said to be indecomposable iff p, is not a fuzzy 

point, and if p, ~ P,1 ® P,2' then P,1 or ~ is a fuzzy point. If p, is not indecomposable, it 

is said to be decomposable. 
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PROPOSITION : 5.1.2 

Let"" be an indecomposable fuzzy subgroup of ,#. If "" ~ ""1 ~ 1-£2, then "" ~ ""1 or "" ~ 1-£2. 

PROOF: 

If "" ~ ""1 ~ 1-£2, then ""1 or ""2 is a fuzzy point. Suppose ""1 is a fuzzy point with 

support e. Let f : "" --+ ""1 ~ ""2 be a fuzzy isomorphism. Define g : "" --+ 1-£2 by 

g(x) = f(x). f(x) E supp ""11-£2 = {e }supp 1-£2 = supp 1-£2. So g is a crisp isomorphism. 

There exists k E IR + such that 

tt( x) = k ""11-£2(f(X)) for all x E supp "" \ {e}. 

Therefore k sup ""1(a) A ""2(b) = ",,(x). 
f(x) = ab 

Hence k[""1(e) A l-£2(f(x))] = tt(x). 

Therefore k l-£2(f(x)) = tt(x) since ""1 (e) = l-£2(e). 

This completes the proof. 

PROPOSITION : 5.1.3 

Let "" ~ ""1 ~ 1-£2, where ""1,1-£2,j.t are fuzzy subgroups of ,#. Then there exist W1,W2 ~ "", 

W1,W2 fuzzy subgroups of '#' such that j.t = w1 ~ W2, ""i ~ Wi' i = 1,2. If ""i is 

indecomposable, then Wi is indecomposable. 

PROOF: 

Let f: "" --+ ""1 ~ ""2 be a fuzzy isomorphism. So there exists k E IR+ such that 

",,(x) = k ""11-£2(f(x)) for all x E supp "" \ {e}. 

x E SUpp "" \ {e} 
x=e 

x ¢ supp "" 

Clearly Wi ~ "", i = 1,2. 



It is also clear that each wi is a fuzzy subgroup of ? Let x E supp J.L \ {e}. 

= sup W1(x1)Aw2(x2) 

x = x1x2 

= k sup f!1(f(x 1» A f!2(f(x 2» 
f(x) = f(xt)f(x 2) 

=k J.L1J.L2(f(x» = J.L(x) 

Clearly wt w2( e) = J.L( e). 

It is also obvious that Wi A w2 = J.Le. 

It is easy to check that wi <3 J.L, i = 1,2. 

Hence J.L = w1 @ w2· 

Define g : wi -t J.Li by g(x) = f(x). 
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If x E Supp wi = supp f-1(J.Li) = f-l(SUpp J.Li)' then f(x) E supp J.Li. So g is well-defined. 

g is a crisp isomorphism. 

So g is a fuzzy isomorphism. 

Suppose J.L1 is indecomposable. Let w1 = v1 @ v2• w1 = f-1(k J.LJ Hence k J.L1 = f(V1V2)· 

So k J.L1(f(x)) = sup v tV 2(Y) = v1v2(x) since f is one-to~ne. 
fey) = f(x) 

Let vt (f(x» = 1/k vi(x), Xf e, and vt (f(e» = viCe). 

Then J.L1 = vi @ v~ since 

= sup vi (f(a» A vHf(b» 
~ f (x) = f ( aD ) 

= 1/k sup v1(a) A v2(b) 
x = ab 

= 1/k V1V2(X) = J.L1(f(x)). 

If J.L1 is indecomposable, then v~, say, is a fuzzy point. So v2 is also a fuzzy point. 

Hence w1 is indecomposable. 

This completes the proof. 
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The above proposition allows us to replace ~ with 

indecomposable fuzzy subgroup, (Definition: 5.1.1). 

in the definition of an 

PROPOSITION : 5.1.4 

Let p, = P,1 ® 11-2. Then p,/ P,1 ~ 11-2. 

PROOF: 

Straigh tforward. 

Let P, be a fuzzy subgroup of ,#. Let .9'>(p,) be the set of all fuzzy subgroups 11 such 

that 11 S p" where S is defined by v(x) S p,(x) V x E '#' and p,(e) = v(e). Then 

(.9'>(p,), S) is a complete lattice. The supremum of 111 and 112 in .9'> (p,) is the smallest 

fuzzy subgroup of p, containing 111 and 112. In case 111 and 112 are normal, the supremum 

of 111 and 112 is the product lItl12. 

DEFINITION: 5.1.5 [61] 

A lattice $' is a modular lattice or a Dedekind lattice iff (c va) A b = (c A b) V a 

V a,b,c E $' such that as b. 

The lattice .9'> (p,) need not be a modular lattice. Let .9'> n(P,) be the subset of .9'> (p,) 
consisting of normal fuzzy subgroups in p" i.e. if 11 E .9'>n(P,), then 11 ~ p,. In Chapter 3 

(Proposition 3.1.5), we proved the Dedekind law for fuzzy subgroups in .9'>n(P,). 

Hence .9'>n(P,) is a modular lattice. .9'>n(P,) need not be a distributive lattice. 

DEFINITION: 5.1.6 [61] 

Let $' be a lattice with 0 and 1. Xl,X2 E $' are related if there exists y E $' such that 

Xl A Y = 0 = X2 A Y and Xl V Y = 1 = X2 V y. 

In the lattice .9'>(J.t), 0 = P,e and 1 = J.t. So in .9'>n(J.t), 111 and 112 are related iff there 

exists wE .9'>n(P,) such that 111 A w = J1.e = 112 A wand 1I1W = J.t = 1I2W. If .9'>n(P,) is a 

distributive lattice, then 111 and 112 are related iff 111 = 112. 

Now we want to define the notion of length on 3{p,). 
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DEFINITION: 5.1.7 [61] 

Let $' be a lattice. The length of $' is the supremum of the number of nontrivial 

intervals (i.e. intervals with distinct end-points) in any chain. In particular, a lattice 

is of finite length when there is a finite bound on the lengths of its chains. The length 

of a point a E ~ l(a), is the length of [O,a]. It is then easy to show that 

l( a) + f(b) = l( a A b) + l( a Vb) V a, bE $'. 

The following example shows that when defining finite length for .9'(f.L), we cannot just 

mimic the above definition. 

EXAMPLE: 5.1.8 

Let <J = S3 = {e,a,a2,b,ab,a2b}, a3 = e = b2. Let 

{ 

1 x = e 

w(x) = 1/2 X = a,a 2 

1/3 otherwise, 
and vex) = { l;, x = e 

x = a,a 2 

otherwise. 

Then 1) < w. We can construct infinitely many fuzzy subgroups between 1) and was 

follows: 

Let a1 = 3/4 and a2 = 9/ 10 . 

Let aw be defined by aw(x) = {~~(l) ~ * ~, a E (0,1]. 

Now a1w~ w and 1) < a1w. 

Similarly, 1) < a2 (a1w) < a1W < w. 

Therefore 1) < ... < a2( a1w) < a1w < w is an infinite chain of fuzzy subgroups, 

although <J is a finite -group. 

Now let us look again at the fuzzy subgroups af.L, a E (0,1]. af.L is fuzzy normal 

in <J ¢::} f.L is fuzzy normal in <J, af.L is cyclic ¢::} f.L is cyclic, supp (af.L) = supp f.L and 

f.L(x) > f.L(y) ¢::} af.L(x) > af.L(Y)· 

So there is no essential difference between f.L and af.L except that the degree of 

membership of x in af.L is always less than its degree of membership in f.L. We would like 

to call such fuzzy sugbroups equivalent. But there are other fuzzy subgroups of f.L that 

behave like af.L. So we want to put all these fuzzy subgroups in one class. 



EXAMPLE: 5.1.9 

Let S 3 be as before. 

{ 

1 x = e 

Let JLC x) = 1 h x = a, a 2 

1/4 otherwise 
and lI(x) = { ~ / 4 

11s 

1I and f.L behave similarly, as described above. 

This motivates the following definition: 

DEFINITION : 5.1.10 

Let f.L and 1I be fuzzy subgroups of '# such that 

(i) v(x) > v(y) {:::} JLCx) > JLCy), and 

(ii) lI(x) = 0 {:::} JLCx) = o. 

x = e 
x = a,a2 

otherwise. 

Al though 1I f. af.L, 

Then f.L and 1I are said to be equivalent, and we write f.L:: 1I or 1I:: f.L. 

Obviously the relation:: is an equivalence relation on !l'(f.L). 

EXAMPLE: 5.1.11 

Let S3 be as before. 

{ 

1 x = e 

Let JLCx) = 1/2 X = a,a 2 

1/3 otherwise. 
{ 

1 x = e 
and v(x) = 1/5 otherwise. 
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1I < f.L. Let 1I < W < f.L, where w is a fuzzy subgroup of S3. It is easy to see that W:: 1I 

or w:: f.L. 

Now let '# be a finite group, say! '#! = m, m an odd number. Let f.L be a fuzzy 

subgroup of ,#. Then! R(f.L)! ~ m;1 + 1, where R(f.L) is the range of f.L. 

Suppose! R(f.L)! = m;1 + 1. It is easy to see that the number of equivalence classes of 

fuzzy subgroups of '# whose supports equal supp f.L is less than or equal to the 

number of permutations of m;1 objects taken all at a time, which is equal to 

( m;1 )!, a finite number. 
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Since a finite group must have finitely many subgroups, we conclude that there are 

finitely many equivalence classes of fuzzy subgroups of <J induced by::. In 

particular, if II ~ /1 in a finite group <J, then there are only finitely many fuzzy 

subgroups between /1 and II, up to equivalence. 

Let /11 ~ /12 ~ ... ~ /1n be a chain of fuzzy subgroups of <J such that no two quotients 

of the form /1d /1i-1 are equivalent, and that each /1d /1i-1 is nontrivial, i.e. /1d /1i-1 

is not isomorphic to /1e, then the length of the chain is n-1. 

Let us call two fuzzy subgroups II and /1 distinct if /1 and II are not equivalent. So the 

length of a chain /11 ~ ... ~ /1n is the number of nontrivial distinct fuzzy quotients of 

the form /1d /1i-1. Note that we are assuming that each /1i-1 <I /1i so that the 

quotients are fuzzy subgroups. 

The length of a chain /11 ~ /12 ~ /1 ~ ... is the number of nontrivial distinct quotients 

of the form /11//12, /12//13, ... , /1n/ /1n+1' .... 

The length of a quotient /1/11 is the supremum of the number of distinct nontrivial 

quotients in any chain of fuzzy subgroups between /1 and II. We write l (/1/11) for the 

length of /1/ II. /1//1 is of finite length in case l (/1/ II) is finite. 

EXAMPLE: 5.1.12 

Let <J = S3, J1Cx) = { ~ /2 
1/3 

x = e 

x = a,a 2 

otherwise 
{ 

1 x = e 

II(X)= 1/4 x = a,a 2 

o otherwise. 

The only fuzzy subgroup, up to equivalence, that lies strictly between II and /1 is 

w(x) = {! ~the~wise, 1/4 < a < 1/3. W/II (x supp II) = {! ~ t ~~~~ ~ . 
/1/ W ':!. /1e and w/ II:: /1/11. It is now obvious that l (/1/ II) = 1. 

We define the length of a fuzzy subgroup /1 to be l (/1) = l (/1/ /1e). Let /1 be as given in 

the above example. Then l (/1) = 2. 

Now /111/1I':!. /1/11/\ II whenever the quotients are defined, (See Chapter 3). 

Let w1/ W2 :: 111/112, where II ~ W2 ~ W1 ~ /111 and II ~ 112 ~ III ~ /111. 



Therefore supp W2 = supp V2, also J.Lwd W2 = J.Lv/ W2 = J.LW2/ W2 ~ J.L/ J.L A W2 = J.L/ J.L A V2· 

Let f be the fuzzy isomorphism from J.Lw1/ W2 onto J.L/ J.L A W2 = J.L/ J.L A V2. Therefore 

f( w1/ W2) == f( v1/ V2) and J.L A V2 $ f( wd W2), f( v1/ V2) $ J.L. 

This shows that to each quotient wd W2, there corresponds a quotient 

w'd w'2' J.L A v $ W2 $ w'1 $ J.L, which behaves similarly to W1/ W2. 

Hence l (J.Lv/v) = l (J.L/ J.L A v). 

DEFINITION : 5.1.13 
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The length of the lattice .9'(J.L) is l (.9'(J.L)) = l (J.L). So .9'(J.L) is of finite length in case 

l (J.L) < w. 

If l (J.L) < 00, it is not hard to prove that l (J.L) ~ l (J.L/v) + l (v). 

Now let .9' (J.L) be of finite length, and V1 $ V2 $ ... be a normal chain in .9' (J.L). This 

chain must "stop" in the sense that there exists no E IN such that for all n ~ no, vn+dvn 

is equivalent to one of the quotients that appeared before. Hence supp Vn and 

supp vn+1 are subgroups that have appeared before in the chain 

supp V1 ~ supp V2 ~ •••. 

This shows that supp J.L has the ACC. Similarly supp J.L has the DCC whenever .9'(J.L) is 

of finite length. 

PROPOSITION : 5.1.14 

If J.L == J.L1 ® /-L2, then there exist V1, V2 such that J.L = V1 ® V2 and Vi == J.Li for each 

i = 1,2. 

PROOF: 

Let VI' = {fl,o(x) x E supp J1,i i - 12 x ~ supp J1,i' - ,. 

Clearly V1V2 is a direct product. Suppose J.L(x) > V1V2 (x) for some x. 

Now V1V2 (x) = V1(X1) " V2(X2) = V2(X2), say, where Xi E Supp J.Li = supp Vi, i = 1,2. 

V2 (X2) = J.L(X2). SO J.L(x) > J.L(X2). 



Since /1 == /11/Ul, /11/Ul (x) > /11/12 (X2). 
Therefore /11(Xl) A /Ul(X2) > /12(X2) since Xi E supp /1i. 

Therefore /Ul(X2) > /Ul(X2), an absurdity. Hence /1 = 111 112. 

PROPOSITION: 5.1.15 

Let /1 = /11 ® /Ul and /11 = 111 ® 112· Then 

( a) IIi <I J.£ and 

(b) if l (J.£) < CD, then l (J.£i) < CD, i = 1,2. 

PROOF: 
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(b) Suppose l (/1) < CD. Let /1i = WI ~ W2 ~ •••. Therefore J.£ ~ WI ~ W2 ~ •••. 

Hence there exists no E IN such that 'V n ~ no wnl wn+l is equivalent to one of 

the fuzzy subgroups that have already appeared. This shows that l(J.£i) < CD, 

i = 1,2. 

(a) We must show that a).lIi = Ilia). V a). E J.£. Let x E 'J. 
Case a -Ix E SUPP Vi : 

lIi(a-1x) = /11(a-1x) since /11 = 111 ® 112. 

Also xa-1 E supp IIi implies that lIi(xa-1) = /11(xa-1). Hence 

a).lIi(x) = ). A JLl(a-1x) = ). A /11(xa-1) since /11 <I /1, 

= ). A lIi(xa-1) = Via). (x). 

Case a -Ix ¢ SUPP Vi : 

xa-1 ~ supp IIi. Hence a).lIi(x) = 0 = Ilia). (x). 

This completes the proof. 

PROPOSITION: 5.1.16 

Let /1 be a fuzzy subgroup of 'J, J.£:f. JLe. If l (JL) < CD, then JL is a direct product of a 

finite number of indecomposable fuzzy subgroups. 
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PROOF: 

If J.£ is indecomposable, there is nothing to prove. So suppose J.£ is decomposable, say 

J.£ = 111 ® J.£2, 1I1,J.£2 * J.te. If J.£2 is decomposable, we can write J.£2 = 112 ® J.£s· If J.£s is 

decomposable, then J.£s = liS ® J.£4· 

By Proposition 5.1.15, J.£ = 111 ® 112 ® liS ® J.£4. By induction, we have 

J.£ = 111 ® ••• ® IIn-1 ® J.£n, where each IIi is indecomposable. Now we have the 

descending chain J.£ ~ J.£2 ~ J.£s ~ ••• , where each J.£i <3 J.£ (by Proposition 5.1.15). Since 

l (J.£) < ro, there exists no E IN such that if n ~ no then J.£nl J.£n+l is one of the quotients 

that have appeared previously. So if J.£n = lin ® J.£n+l' then J.£nl J.£n+l ~ lin implies lin is 

isomorphic to a fuzzy subgroup that has appeared previously. In fact since supp J.£ 

has the DCC, we can assume J.£n+t = J.£e, hence J.£n = lin is indecomposable. 

Hence J.£ = 111 ® 112 ® ••• ® lin, where each IIi is indecomposable. 

PROPOSITION : 5.1.17 

(a) Let 111, 112 be related in .9'Jn(J.£). Then l (111) = l (112). 

(b) If 1IJ.£'l = J.£lJ.£'t where J.£1 " J.£'t = J.te and II is related to J.£l, then l (II" J.£'t) = 0, 

hence II" J.£'t = J.£e· 

PROOF: 

(a) Let 1I1W = J.£ = 1I2W and 111" W = J.te = 112" W. 

Now 111 wi W = 112 wi w implies l (111 wi w) = l (112 wi w), 
hence l (lit/III" w) = l (112/112" w) by isomorphism. 

But 111" w = J.£e = 112" w, hence l (111) = l (112). 

(b) l (lIJ.£'l 1 J.£'t) = l (J.£lJ.£'l 1 J.£'l) = l (J.£t/ J.£'l " J.£1) = l (J.£l) since J.£l " J.£'t = J.te. 

Therefore l (II 1 II" J.£'l) = l (J.£l). 

l (11) ~ l (111 J.£'l " 11) + l (J.£'l " II) 

= l (J.£1) + l (J.£'t " II). 

Therefore l (II) -l (J.£l) ~ l (J.£'t " II). 

But l (II) = l (J.£l), hence l (J.£'t " II) ~ 0, therefore l (J.£'t " II) = O. 

Hence J.£'l " 11 = J.£e· 



In the next two theorems we will often write J1, = j.£i ® /lIJ, when we actually mean 

W:::!. j.£i ® /lIJ,. This is not a bad notation because of Proposition 5.1.3. 

If J1, ~ J1,1 ® f-£2 ~ J1,1 ® v2' we will still say that f-£2 is J1,1 - related to v2• 

THEOREM: 5.1.18 (REMAK-KRULL-SCHMIDT) 
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Let J1, be a fuzzy subgroup of '§ such that l (.9'(J1,» < 00. If (1) j.£ = j.£i ® /lIJ, ••• ® J.£m 

and (2) J1, = Vi ® V2 ® ••• ® Vn, where each J1,i and Vj are indecomposable fuzzy 

subgroups, then 

(i) each J1,i is related to some Vj ; 

(ii) m = n, and for each r E [O,n], there is a re-indexing so that 

J1, ~ j.£i ® /lIJ, ® • • • ® J.Lr ® Vr+ 1 ® • •• ® Vn ; 

(iii) each J1,i is isomorphic to some Vj. 

PROOF: 

.9'n(j.£) is a modular lattice. 

(i) Let 

11. = Vi ® ••• ® V· 1 ® V'+ l ® ••• ® V 
1 1- 1 n' 

m 

We note that w ~ n (WJ1,'i A J1,i) for any W E .9' n (J1,). 
i=l 

(3) 

We aim to prove that each J1,i is J1,'i - related to some Vj using induction on 

(4) 
Let l (J1,) = 1. Hence any quotient J1,/ V, where V <I J1" is equivalent to J1,/ J.£e or 

J1,/ J1,. So if j.£ = J1,1 ® /lIJ, = Vi ® V2, where the J1,i'S and Vi'S are indecomposable, 

then j.£i or /lIJ, equals J.£e and Vi or V2 equals J.£e. Hence j.£i is trivially J1,'i -

related to some Vj. Suppose now that (4) is true for a fuzzy subgroup w 

whose length is less than l (J1,). We consider two cases: 
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(a) Case Jl.tvj f Jl. for some j : 

We may assume that supp J,Ltvj * supp J,L, otherwise we can replace 

the above condition by supp J,Ltvj * supp J,L. 

Let Wj = lIj A J,Ltvj, and W = wtw2 ••• wn. Wj ~ lIj for all j, hence 

Wj A wj ~ lIj A lIj = J,Le' Therefore W = wt ® w2 ® ••• ® wn. 

If Wj = lIj V j, then lIj = lIj A J,Llvj, hence lIj ~ J,Ltvj. 

So J,L = lIj vj ~ J,Ltllj' 

Therefore J,L = J,Ltvj V j, a contradiction. Hence there exists a j 

such that Wj * lIj' It also follows that supp Wj * supp lIj for some j. 

Hence l (lIj) * l (Wj)' and lIj/Wj is not isomorphic to J,Le' 

If lIj/ Wj :: w' / Wj for some w' ~ w, then supp lIj = supp w', hence w' is 

indecomposable. But w' = Wj ® (w' A wj) by lemma 4.10 [61]. Therefore 

Wj = w', and this contradicts the fact that lIj/ Wj is not isomorphic to J,Le. 

Hence we conclude that l (w) < l (J,L). So we can apply the induction 

hypothesis on l (w). 

By (3) above, J,LI ~ W. By lemma 4.10 [61], W = J,Lt ® (w A J,L/t ). (5) 

Since l (J,L) < 00, each Wi can be decomposed into a direct product of a 

finite number of indecomposable fuzzy subgroups. Suppose 

W = Ul ® el ® U2 ® e2 ® ••• ® Un ® en, where each Ui and ei are 

indecomposable, and Wi = Ui ® ei. 

By induction, J,Ll is W A J,L/l - related to Ui or ei for some i, by 

comparing (5) and the above decomposition of the Wi'S. Suppose J,Ll 

is W A J,L/t - related to Ul. 

Therefore W = J,Ll ® (wA J,L/t ) = Ul ® (wA J,L/t )· 

Now UlJ,L/1 = Ut (WA J,L/t)J,L/t = J,Lt (wA J,L/t)J,L/t = J,L. Since J,Ll and Ut are 

related, l (J,Ll) = l (UI)' Now UtJ,L/1 = J,L = J,LIJ,L/l' hence, by Proposition 

5.1.17, l (Ut A J,L/t ) = O. Therefore Ut A J,L/t = J,Le· So J,L = Ul ® J,L/t · 
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Now Ul ~ Wl ~ Ill, hence by lemma 4.10 [61], III = Ul ~ (Ill A U/
l ). But 

III is indecomposable, hence III = Ul = Wt, and III A U'l = J1.e. SO III is 

(6) 

(b) Case 1'1vj = I' for all j. 

Suppose IIjJl/t f Jl for all j. Then, by applying (a) with the Jli'S and 

IIi'S interchanged, we find that IIj is related to some Jlj. So we may 

replace lit by Jll' , 1I2 by jl2' , and so on until we reach j such that 

j' = 1, say l' = 1. (6) implies that Jl = IIlJl/t, and this contradicts 

our supposition above. Therefore there exists j such that IIj Jl/l = Jl, 

say for j = 1. So IItJl'l = Jl = JltJl/1. 

Now 1I1Jl/t I Jl/l = Jlt/-t'd /-t't, and so lid (/-t't A lit) ~ /-tt by the second 

isomorphism theorem. Therefore l (Jll) = l (lI ll Jl/t A Ill). 

l (lit) ~ l (11 tf 11 t A J1. 't) + l ( 11 t A J1. 't ) 
= l (J1.t) + l (11 t A J1. '1 ) (7) 

So l (lit) - l (Jlt) ~ O. By (b), /-t = JllVt = 1I1Vt , hence a similar 

argument shows that l (Jlt) - l (lit) ~ o. Therefore l (Jlt) = l (lit), 

hence (7) implies l (lit A Jl/t) = O. So lit A /-t'l = tLe. Therefore 

(ii) Suppose IIi is vi - related to /-ti' i = 1,2" .. ,no 

Therefore tL = tLt ~ v t = /-tt ~ 1I2 ~ ••• ~ lin by (i). 

Suppose tL = tL1 ~ tL2 ~ ••• ~ Jlr-t ~ IIr ~ ••• ~ lin· 

Since IIr is vr - related to /-tr' IIr ~ Vr = /-tr ~ v r · 

Therefore tL = tLl ~ jl2 ~ ••• ~ tLr-t ~ tLr ~ IIr+t ~ ••• ~ lin· 

Suppose n > m. Then /-t = tLl ~ ••• ~ /-tm ~ IIm+t ~ ••• ~ lin' 

hence IIm+t = tLe = ... = lin· Contradiction! Therefore n ~ m. 

By symmetry, m ~ n. Therefore m = n. 
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(iii) Suppose fl.t is fl.'t - related to lit· SO fl.Ifl.'1 = fl. = lItfl.'t and 

fl.I 1\ fl.'t = fl.e = lit 1\ fl.'t· Hence fl.lfl.'d fl.'t ~ fl.1 and lIIfl.'t / fl.'1 ~ III by the 

second isomorphism theorem. So fl.t ~ lI1 since fl.Ifl.'l / fl.'1 = lI1fl.'t / fl.'1 . 

This completes the proof of the theorem. 

DEFINITION : 5.1.19 [61] 

Let fl.i be a fuzzy subgroup of fl.. fl.i is irreducible in fl. iff fl.i:f lIll12, where lIt,lI2 '" fl.i, 

lIt, lI2 E.J' (fl.). A decomposition fl. = fl.tfJ.2 ••• f1.n is -irredundant iff no fl.i can be 

omitted in the decomposition. 

THEOREM: 5.1.20 (KUROS-DRE) 

Let fl. be a fuzzy subgroup of '# such that 

(1) fl. = fl.tfJ.2 ••• f1.r and (2) fl. = lIll12 ••• lis are irredundant decompositions of fl. 

where each factor is irreducible in fl.. Then r = s, and for each m E [l,r], there is a 

re-indexing so that fl. ~ fl.1f-L2 ••• fl.m lIm+l ••• lIr · 

PROOF: 

This follows from theorem 4.14 [61]. 

5.2 : THE JORDAN-HoLDER THEOREM 

LEMMA: 5.2.1 

Let fl., lI, fl.* be fuzzy subgroups of '# such that fl., II <I fl.*. Then fl.V <I fl.*. 

PROOF: 

Straightforward. 
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THEOREM: 5.2.2 (ZASSENHAUS LEMMA) 

Let J1., 11, J1.*, 11* be fuzzy subgroups of r;. Suppose also that 11 4 11* and J1. 4 J1.*. Then 

( a) J1.(J1.* A 11) 4 J1.(J1.* A 11*), 
(b) 1I(J1.A 11*)4 1I(J1.*A 11*), and 

(c) ji.{J1.* A 11*)/ J1.(J1.* A 11) ~ v(J1.* A 1I*)/1I(J1. A 11*). 

PROOF: 

(a) J1.* A 11 4 J1.* A 11* since 11 4 11*. Hence ji.{J1.* A 11) 4 J1.*(J1.* " 11*) since J1. 4 J1.*. 
Therefore ji.{J1.* A 11) 4 ji.{J1.* A 11*). 
Similarly (b) holds. 

(c) supp (J1. A 11*) and supp (J1.* A 11) are normal in 

supp (J1.* A 11*) = supp J1.* n supp 11*. 

Therefore D = supp (J1." 11*)(J1.* A 11) 4 supp (J1.* " 11*). 
Let x supp 1I(J1. A 11*) E supp 1I(J1.* A 1I*)/1I(J1. A 11*). 

Therefore SUp{II(J1.* A 1I*)(a) : a supp 1I(J1.A 11*) = x supp 1I(J1.A 11*)} > O. 

So there exists ao such that 11 (p. * A 11*) (ao) > 0 

where ao supp v(J1. A 11*) = x supp 1I(J1. A 11*). 

Hence there exist a t ,a2, ao = a la2, such that lI(at ) A (J1.* A 1I*)(a2) > 0, where 

a la2 supp 1I(J1. A 11*) = x supp 1I(J1. A 11*). 

So a l E supp 11 and a2 E supp (J1.* A 11*). 

Hence x supp 1I(J1. A 11*) = a2 supp v(J1. A 11*). 

Define 7/J: supp 1I(J1.* A 1I*)/II(J1.A 11*) -I supp J1.* A 1I*/w, where 

w = (J1. A 11*)(J1.* A 11), by 

7/J(x supp 1I(J1. A 11*)) = x2D, where D = supp w, 

x supp v(J1. A 11*) = x lx 2 supp 1I(J1. A 11*), 

Xl E supp 11 and x2 E supp(J1.* A 11*). 

It is routine to check that 7/J is a well-defined crisp isomorphism. 

We now argue that 

1I(J1.* A 1I*)/II(J1.A 11*) (x supp 1I(J1.A 11*)) = J1.* A 1I*/w (7/J(x supp 1I(J1.A 11*)) : 
Let LHS = at and RHS = a2• 
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Therefore a 1 = sup{v (JL* /I. v*)( a) : a supp v(fJ. /I. v*) = X2 supp v(fJ. /I. v*)} 

~ as defined above. 

So a1 = sup v(JL* /I. v*)(x,aa) 
a E Supp v(JL /I. v ) 

~ sup v(JL* /I. v*) (x2a) 
a E Supp (JL* /I. v) (JL /I. v*) 

~ sup fJ.* /I. v*(x2a) 
a E D 

sup fJ.* /I. v*(y) 
yD = x2D 

= fJ.* /I. v*/w (x2D). 

= fJ.* /I. v*/w ('l/i..x supp v(fJ./I. v*))) = a2· 

i.e. a 1 ~ ~ (1) 

Next we show that ~ ~ a 1 : 

a 1 = sup{v(JL* /I. v*)(y) : y supp v(fJ./I. v*) = X2 supp v(fJ./I. v*)}. 

Let E E (0, a1 /I. ~). There exists Yo, Yo supp v(fJ. /I. v*) = x2 supp v(fJ. /I. v*), 

such that a1 ~ v(fJ.* /I. v*)(yo) > a1 - e/2. Let P1 = a1 - v(fJ.* /I. v*)(yo). So 

a1 = v(fJ.* /I. v*)(y 0) + P1, 0 ~ P1 < E. 

v(fJ.* /I. v*)(y 0) = sup v(y 1) /I. (fJ.* /I. v*)(y 2)· 
Yo = Y 1Y2 

So there exist Y1,y2,yo = Y1Y2' Y1 E supp v, Y2 E supp (fJ.* /I. v*), such that 

Therefore a1 < v(y 1) /I. (fJ.* /I. V*)(Y2) + P1 + e/2. 

Also, x supp v(fJ. /I. v*) = Yo supp v(fJ. /I. v*). 

So x = yob / , b l E supp v(fJ./I. v*), Yo = Y1Y2. 

Therefore x supp v (fJ. /I. v*) = Y 2 SUpp V(fJ. /I. v*). 

Hence a2 = fJ.* /I. v* / w ('l/i..x supp v(fJ. /I. v*))) 

= fJ.* /I. v*/w (Y2D) = sup fJ.* /I. v*(y). 
yD = Y2D 

There exists Y3' Ya D = Y2D, such that a2 - e/2 < (fJ.* /I. v*)(Ya). 

Let P2 = ~ - (fJ.* /I. v*)(Ya) < E. 

(2) 
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Therefore a2 = (j.£* A v*)(y 3) + (32' 

~ (j.£* A v*)(Y2) + (32' otherwise use Y2 in the place of Y3' 

So a2 ~ (j.£* A v*)(y 2) A v(y 1) + (32' 

So ~ > a 1 -(31- E/2 + (32 by (2). 

As € -+ 0, (31' (32 -+ O. 

Hence ~ ~ a1 

(3) and (1) imply that ~ = a1• 

i.e. v(j.£* A v*)/v(j.£ A v*) ~ j.£* A v* / w. 

By symmetry, J1.(j.£* A v*)/ J1.(j.£* A v) ~ j.£* A v* / w. 

Therefore v(j.£* A v*)/v(j.£ A v*) ~ J1.(j.£* A v*)/ J1.(j.£* A v). 

The proof is complete. 

REMARK: 

(3) 

Zassenhaus Lemma is a generalization of the second isomorphism theorem (Theorem 

3.2.7). (Set v = ve and j.£* = X r;)' 

DEFINITION : 5.2.3 

Let j.£ be a fuzzy subgroup of r; containing the fuzzy subgroups j.£i' 

i = 1,2,· .. ,n, satisfying 

and 

(i) 

(ii) 

j.£ = j.£1 ~ Jb2 ~ ••• ~ j.£n = j.£e 

1I··<l1I.· 1 i=2···n r-1 r-1 - , " • 

Then (*) is called a normal series or a normal chain of j.£. 

DEFINITION: 5.2.4 

(*) 

Let j.£ = j.£1 ~ j.£2 ~ ••• ~ j.£n = j.£e be a normal series of j.£. A refinement of the series is a 

normal series obtained from the above series by inserting new fuzzy subgroups 

without removing any in the above series. 
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DEFINITION : 5.2.5 

Two normal chains, 

(1) II = J10 ~ /1-1 ~ ••• ~ J.Lm = /1- and (2) II = lIo ~ III ~ ••• ~ lin = /1-; are said to be 

isomorphic if there is a one-to-one correspondence between the quotient fuzzy groups 

of (1) and (2) such that the corresponding quotient fuzzy groups are isomorphic. 

PROPOSITION: 5.2.6 

Let (1) and (2) be as in definition 5.2.5. If (1) and (2) are isomorphic, then their 

lengths are equal. 

PROOF: 

Let 11k ~ w ~ 11k+1' 

Therefore w/11k ~ l1k+dl1k ~ lIj+dvj' say. Hence there is a quotient f(w//1-k) ~ Vj +dllj' 

where f : 11k+t//1-k --I lIj+dllj is a fuzzy isomorphism. w/11k and f(W//1-k) behave 

Similarly. Let f(w//1-k) = w' II lIj +1/lIj . So lIj ~ WI II lIj +1 ~ lIj +1. The quotients /1-k+l/W 

and lIj + d w' II Vj + 1 behave similarly. 

Hence (1) and (2) must have the same length. 

DEFINITION 5.2.7 

A chain II = J10 ~ /1-1 ~ ••• ~ I1-n = /1- of normal fuzzy subgroups is a maximal chain (or 

a composition series) iff whenever /1-H ~ W ~ /1-i' where W <1 /1-i' then w/ /1-H :: /1-J /1-i-1 or 

w/ /1-i-l :: /1-i-d /1-i-1' II is a maximal normal fuzzy subgroup of /1- iff v f /1-, and whenever 

II ~ W ~ /1-, where W <1 /1-, w/ lI:: /1-/ II or w/ lI:: lI/ lI. 

EXAMPLE: 5.2.8 

Let <§ = S 3· Let p,( x) = { ~ / 4 

1/2 
II f /1- and II <1 /1-. 

x = e 

x = a,a2 ,and 

otherwise 

lI(X) = { 1 x = e 
1/2 otherwise 



It is easy to see that II is a maximal normal fuzzy subgroup of J.L. 

{ 

1 x = e 

Let 1I1(X) = 1/2 X = a, a 2 . Let III ~ W ~ J.L, where W <I J.L. 

a otherwise 

{ 
1 x E supp III {1 x E supp V1 

J.L/II1(X supp Ill) = 1/2 x t supp III ' W/Vl(X supp Ill) = a otherwise 
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for some a > 0, therefore W/II1 :: J.L/II1 or W/II1:: lit/ill. SO III is a maximal normal 

fuzzy subgroup of J.L. Observe that III < II < J.L, but both III and II are maximal normal 

fuzzy subgroups of J.L. 

DEFINITION : 5.2.9 

J.L is simple in case J.Le is a maximal normal fuzzy subgroup of J.L. So if J.Le ~ W ~ J.L, 

where W <I J.L, then W:: J.L or W = J.Le. 

THEOREM 5.2.10 

J.L/ II is simple if and only if II is a maximal normal fuzzy subgroup of J.L. 

PROOF: 

:=::} : Obvious 

¢= : Let II be a maximal normal fuzzy subgroup of J.L. Let W/II <I J.L/II. Let 

f: J.L -I J.L/II be the natural homomorphism. II ~ J.L A f-l(W/II) = e ~ J.L. By maximality 

of II, e/II:: J.L/II or all:: II/II. But e/II = W/II, hence W/II:: J.L/II or W/II:: II/II. Thus 

J.L/ II is simple. 

PROPOSITION: 5.2.11 

Let (1) 11= J.Ll ~ ••• ~ J.Ln = J.L be a maximal chain. Any refinement of this chain has 

the same length as the length of (1). 
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PROOF: 

Let f1.k ~ w ~ f1.k+l' where w <l JLk+l' Since the chain is maximal, wI JLk == f1.k+l1 f1.k or 

wI f1.k == f1.kl f1.k· Hence no new equivalence classes of quotients are formed when 

refining the chain. Hence the length of the chain remains unaltered by a refinement 

of the chain. 

THEOREM : 5.2.12 (SCHREIER) 

Any two normal chains of fuzzy subgroups between the same two fuzzy subgroups 

have isomorphic refinements. 

PROOF: 

Let (1) 11 = fJ.o ~ f1.1 ~ ••• ~ f1.m = f1. and (2) 11 = 110 ~ 111 ~ ••• ~ lin = f1. be two normal 

chains. For i = 1,2,' . ',m and j = 1,2,' .. , n, let JLij = (f1.i A lIj )lIj _1, 

lIji = (lIj A f1.i)JLi-l' f1.0j = (f1.0 A lIj)lIj _1, 1I0i = (110 A f1.i)JLi-l· By Zassenhaus lemma, 

f1.ij l f1.(i-l)j ~ lIj )lI(j-l)i' i = 1,2,' .. ,m ; j = 1,2,' .. ,n. 

The chains 11 = 1101 ~ 1111 ~ ••• ~ lIn1 ~ 1112 ~ ••• ~ lIn2 ~ 1113 ~ ••• ~ lInm = JL (3) 

and 11 = f1.0 1 ~ JLll ~ ••• ~ f1.ml ~ f1.12 ~ ••• ~ f1.m2 ~ f1.13 ~ ••• ~ f1.mn = f1. (4) 

refine (1) and (2) respectively. (3) and (4) are clearly isomorphic. 

THEOREM: 5.2.13 (JORDAN-HOLDER) 

Let f1. be a fuzzy su~group of finite length. Any finite normal chain of fuzzy 

subgroups of f1. can be refined to a maximal chain, and any two maximal chains 

between two given fuzzy subgroups have the same length. 

PROOF: 

Let (1) 11 = fJ.o ~ JLl ~ ••• ~ JLn = JL and 

(2) 11 = 110 ~ 111 ~ ••• ~ 11m = f1. be two normal chains between 11 and f1.. Since 

l (f1.) < CD, (1) can be refined to a maximal chain. Suppose now that (1) and (2) are 

maximal chains. By the Schreier theorem, (1) and (2) have isomorphic refinements 

(I)' and (2)' respectively. Since (1)' and (2)' are isomorphic, they have the same 

length. By Proposition 5.2.11, (1) and (2) have the same length. 

This completes the proof. 
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CHAPTER 6 

SOLVABILITY AND NILPOTENCY IN FUZZY SUBGROUPS. 

6.1 : INTRODUCTION 

DEFINITION: 6.1.1 [IJ 

Let J1 be a fuzzy subgroup of 1. J1 is fuzzy solvable if there is a chain of fuzzy normal 

subgroups J1 = 111 ~ .•• ~ 11k with lIk(x) = 1I1(e) only when x = e, and lIi(e) = lIt(e), 

1 ~ i < k, such that lIJlIi+1 is fuzzy Abelian. 

Some comments about this definition: 

(i) We deduce from the definition that a solvable fuzzy subgroup must be fuzzy 

normal. We feel this is a strong demand since in the crisp case a subgroup H 

of 1 can be solvable even if H is not normal in 1. For example let 

1= S3 = ie, a, a2
, b, ab, a2b}, a3 = e = b 2

• Let H = {e,b}. H is not 

normal in 1, but H is solvable. Also, the demand that all the fuzzy 

subgroups in the solvable series for J1 be fuzzy normal is strong. 

(ii) By J1 fuzzy Abelian, the authors mean that EJ1 = {x E 1 : J1(x) = J1(e)} is 

Abelian. We remarked earlier that this definition of fuzzy Abelian is not 

acceptable to us since any fuzzy subgroup J1 having E J1 = {e} is necessarily 

fuzzy Abelian -although the other level subgroups need not be Abelian. 

(iii) Let J1 be fuzzy normal and E J1 = {e}. In terms of Definition 6.1.1 it is 

straightforward to see that J1 is fuzzy solvable. 

(iv) If J1 is fuzzy Abelian, J1 need not be solvable, contrary to the crisp case. 



EXAMPLE: 

Consider S3 = {e, a, a2, b, ab, a2b}, a3 = e = b2. 

Define J1. by J1.(e) = 1, JJ.(b) = 1/2 and JJ.(x) = 0, xt e,b. 

J1. is not fuzzy normal in S3' 
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Ej.L = {e} implies that J1. is fuzzy Abelian. But J1. is not solvable since J1. is not 

fuzzy normal. 

(v) If J1. is fuzzy solvable, then supp J1. need not be solvable: 

EXAMPLE: 

Let '# be a non-solvable group. Define J1.: '# --+ [0,1] by 

{ 

1 x = e 
JJ.(x) = 1/2 X t e, then J1. is fuzzy normal in 1 and Ej.L = {e}. 

Hence, by (iii) above, J1. is fuzzy solvable. But supp J1. = 1 is not solvable. 

(vi) The authors state only two analogues of the crisp case, viz. : 

(a) A subgroup of a solvable group is solvable. 

(b) A quotient of a solvable group is solvable. 

We aim to give a more acceptable definition of a solvable fuzzy subgroup J1. such that 

(a) J1. is not necessarily fuzzy normal, 

(b) quotients used are those given in Definition 1.2.6. 

(c) supp J1. is solvable. 

6.2: SOLVABILITY IN FUZZY SUBGROUPS. 

DEFINITION : 6.2.1 

Let J1. be a fuzzy subgroup of ,#. Let J1. = J1.1 ~ ••• ~ J1.k = J1.e be a normal series for J1.. 

If J1.) J1.i+1 is fuzzy Abelian for all i = 1,· .. ,k-l, then the series is a solvable series for 

J1., and J1. is said to be fuzzy solvable (or just solvable) in ,#. 
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REMARK: 6.2.2 

Definition 6.2.1 does not necessarily imply definition 6.1.1 since our notion of 

normality in the series is weaker than saying that each Iki is fuzzy normal in '#. 
On the other hand our definition is not necessarily weaker than Definition 6.1.1 since 

Definition 6.2.1 implies that supp Ik is solvable, whereas Definition 6.1.1 does not 

necessarily imply that supp Ik is solvable. It is now obvious that solvability in terms 

of Definition 6.1.1 does not imply solvability in terms of Definition 6.2.1. 

From now on, whenever solvability is mentioned, we have Definition 6.2.1 in mind 

unless specified otherwise. The following two propositions are straightforward. 

PROPOSITION: 6.2.3 

Let Ik be a solvable fuzzy subgroup of ~. Then supp Ik is solvable in ,#. 

PROPOSITION: 6.2.4 

If Ik is fuzzy Abelian, then Ik is solvable. 

REMARK : 6.2.5 

The notion of Abelian used above is the notion given in this thesis. If we use the 

notion of Abelian given in [1], Proposition 6.2.4 still holds. For example if Elk is 

Abelian, then let 

Xlke, Ylke E Elk/Ike = {Xlke: Ik/lke (xlke) = Ik/lke (elke)} = {Xlke: f.£(x) = f.£(e)}. 

Then x, y E Elk' So xy = yx. Hence (xlke)(Ylke) = xYlke = YXlke = (Ylke)(Xlke). 

Hence Ik/ Ike is fuzzy Abelian in terms of the definition in [1]. It now follows that Ik is 

solvable in terms of Definition 6.2.1. 

Note that this does not contradict (iv) in 6.1 since in our definition of solvability we 

do not require that Ik be fuzzy normal. 



In the above example the use of the strong quotient is not harmful since 

Ji-/ Ji-e (x supp Ji-e) = Ji-/ Ji-e (e supp Ji-e) 

¢::} JJ.(x) = JJ.( e) also in terms of our quotient. 

PROP OSmON : 6.2.6 

A fuzzy subgroup of a solvable fuzzy subgroup is solvable. 

PROOF: 

Let 1/ $ Ji- be fuzzy subgroups of <J, where Ji- is fuzzy solvable. Let 

Ji- = Ji-1 ~ f.£a ••• ~ Ji-n = Ji-e be a solvable series for Ji-. Consider 

1/ = Ji-1 A 1/ ~ f.£a A 1/ ~ ••• ~ Ji-n A 1/ = Ji-e· Now 1/ <3 1/ and Ji-i <3 Ji-i -1' hence 

1/ A Ji-i <3 1/ A I-'i -1' It now follows that 1/ is solvable. 

REMARK : 6.2.7 
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Using Definition 6.1.1 of solvability, it is not apparant how a non-fuzzy normal 

subgroup 1/ of a solvable fuzzy subgroup Ji- can be fuzzy solvable. 

Suppose that in Proposition 6.2.6 we replace the quotients Ji-d Ji-i+1 by the strong 

quotients (Ji-i/ Ji-i+1)S given in Definition 1.1.15 [1], then it is not necessarily true that a 

fuzzy subgroup of a solvable fuzzy subgroup is solvable. 

EXAMPLE: 6.2.8 

{ 

C 1/ 3 < c $ 1, x E A4 
Let <J = S4' Let JJ.(x) = 0 x ~ A4 Then Ji- is a fuzzy subgroup of <J. 

We show that Ji- is solvable: 

Let S be a normal subgroup of A4 of order 4. 

{ 

Cl 0 < c1 < C, xES 
Define Ji-2(x) = 0 x ~ S 

Let Ji-3 = Ji-e , Ji-1 = Ji-. Each Ji-i is fuzzy normal in <J and (Ji-J Ji-i+1)S is fuzzy Abelian. 

Hence Ji- is solvable. 
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{ 

1/ 3 X E A4 \ {e} 
Let 1I( x) = c lis < c ~ 1, x = e . 

o x ~ A4 

NOTE: We use the same c that is used in the definition of j.£. 11 is fuzzy normal 

in 'j. Suppose that 11 = 111 ~ ••• ~ lin is a solvable series for 11. Then (11/112)5 is fuzzy 

Abelian. Therefore for all X,y E supp 11 = A4, xyx-1y-l E E = {e}. Hence A4 is 
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Abelian. Contradiction! Therefore 11 is not solvable. 

It is clear that solvability in terms of the strong quotients implies solvability. We now 

show that a homomorphic image of a solvable group is solvable. 

PROPOSITION: 6.2.9 

Let j.£ be a fuzzy subgroup of 'j. Let f: 'j -I 'j I be an epimorphism, where 'j I is a 

group. If j.£ is solvable in 'j, then f(j.£) is solvable in 'j I • 

PROOF: 

Let j.£ = j.£1 ~ ... ~ j.£k = j.£e be a solvable series for j.£. Therefore j.£i <I j.£i -1' 

We claim that f(j.£i) <I f(j.£i -1) : 

cases: 

(i) Case a A E i-'i-l : 

Let x E 'j. 
f( e). f(j.£i) (f( x)) 

= SUp{A " Pi(Y): f(aya-1) = f(axa-1)} 

= sUPWi(a-1(aya-1)a)" A: f(aya-1) = f(axa-1)} 

= SUp{A " Pi(aya-1): f(aya-1) = f(axa-1)} since j.£i <I j.£H 

= SUp{A " Pi(z): f(z) = f(axa-1)} 

= f(j.£i)(f(axa-1)) " ). 



(ii) Case a,\ ¢ Jl.i-1 

Now A ~ sup tLi-1(Y). 
fey) = f(a) 

Case A = sup tLi-l(y) : 
fey) = f(a) 

Let € E (O,A). There exists Yo, f(yo) = f(a), such that A-€ < JLi-l(YO)' 

i.e. (yo) A-€ E JLi-l· 

Therefore by Case (i), f(yo) A-€ f(JLi)(f(x)) = f(JLi)f(yo) A_/f(x)). 

Hence f(a) A-€ f(JLi)(f(x)) = f(JLi)f(a) A_/f(x)). € is arbitrarily small. 

Hence f( a) A f(JLi) (f( x)) = f(JLi)f( a) A ( f( x)). 

Case A < sup JLf-l(y): 
f(a) = fey) 
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Therefore A < tLi-l(y) for some y satisfying fey) = f(a). Hence, as above, 

So the series f(JL) = f(JLi) ~ ... ~ f(JLk) = f(JL)f(e) is a normal series for f(JL). 

It is easy to show that each f(JLi)/f(JLi+l) is fuzzy Abelian. Hence f(JL) is 

solvable. 

PROPOSITION: 6.2.10 

Let v ~ JL be fuzzy subgroups of 'J such that v <I JL. If JL is solvable, then JL/ v is 

solvable. 

PROOF: 

Let f : supp JL -+ supp JL/v be the natural homomorphism. Therefore f(JL) = JL/v is 

solvable by Proposition 6.2.9. 
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PROPOSITION: 6.2.11 

Let /1 and 1/ be fuzzy subgroups of the groups '# 1 and '# 2 respectively, such that 

J],(e) = v(e'), where e' is the identity in '# 2 and e is the identity in '# 1. Then /1 x 1/ 

is solvable. 

PROOF: 

Straightforward. 

PROP OSmON : 6.2.12 

Let 1/ ~ /1 be fuzzy subgroups of '# such that 1/ ~ /1. Suppose /1/1/ and 1/ are both 

solvable, then /1 is solvable. 

PROOF: 

Let /1/1/ = /1d1/ ~ ... ~ /1n /1/ = 1//1/ and 1/ = 1/1 ~ ... ~ 1/k = 1/e be solvable series for 

/1/1/ and 1/ respectively. 

Let f: '# -I '# /supp 1/ be the natural homomorphism. 

Let /1'i = f-1(/1i/1/) and /1'i' = /1'i 1\ /1 ~ 1/. 

CLAIM : 

It is clear that /1'J 1/ = /1d 1/. 

/1'i' /1/ (x supp 1/) = /1'i 1\ /1/1/ (x supp 1/) 

= sup{£-l(J1d1/)(a) 1\ J],(a): a supp 1/ = X supp 1/} 

= /1dV(x supp 1/) 1\ sup{J1(a): a supp 1/ = X supp 1/} 

= /1d1/ 1\ /1/1/ (x supp 1/) 

= /1d1/ (x supp 1/). 

Hence /1/1/ = /1'1' / 1/ ~ ... ~ /1~' /1/ = 1//1/ is a solvable series for /1/1/. 

Therefore /1 = /1'1' ~ /12' ~ ... ~ /1~' ~ 1/~ 1/2 ~ ••• ~ 1/k = 1/e 

is a normal series for /1. (*) 
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Note that J.L~' = J.L~ A J.L = f-1(J.Ln / v) A J.L ~ v since if x E supp v, then 

J.L~' (x) = J.Ln/v (e supp v) A J.L(x) = J.L(e) A J.L(x) = J.L(x) ~ v(x). 

Let x, y E supp J.L'/ = supp J.L'i A J.L = supp f-l(J.Li/ v) A supp J.L. 

Therefore f(x), f(y) E supp J.Ldv. Hence f(xyx-1y-1) E supp J.Li+t!v. This implies that 

xyx-1y-1 E supp f-1 (J.Li+t!v) = supp J.L'i+1· 

Therefore xyx-1y-l E supp J.L'i ~ l' hence J.L'i' / J.L'i ~ 1 is fuzzy Abelian. Supp J.L~' = supp v. 

Hence J.L~' /v is also fuzzy Abelian. Hence (*) is a solvable series for J.L. 

PROPOSITION : 6.2.13 

Let J.L and v be fuzzy subgroups of r; such that v is fuzzy normal in r;. Suppose J.L 

and v are solvable. Then J.Lv is also solvable. 

PROOF: 

Define f : supp J.L -+ supp J.Lv/v by f(a) = a supp v. f is a homomorphism. 

We claim that f(J.L) = J.Lv/v. 

f(J.L)(x supp v) 

J.Lv/v(x supp v) 

a2 E supp v. 

Hence 

J.Lv/v(x supp v) 

= sup{j.t(a): a supp v = x supp v} ~ J.Lv/v (x supp v). 

= sup{J.Lv(a): a supp v = x supp v} 

= sup{ Sup j.t(a1) A v(a2): a supp v = x supp v} 
a = a1a2 

= sup{J.L(a1) A v(a2): a1 supp v = x supp v} 

~ sup{J.L/v(a1 supp v) A v/v(a2 supp v): a1 supp v = x supp v} 

= J.L/v (x supp v) A v/v (e supp v) 

= J.L/v (x supp v). 

So J.Lv/v = J.L/v, where J.L/v (x supp v) = sup{J.L(a): a supp v = x supp v}. 

So f(J.L) = J.Lv/v. 

Hence J.Lv/v is solvable. 

So, by Proposition 6.2.12, J.Lv is solvable. 



102 

Let /1. be a fuzzy subgroup of 'I. Recall that the commutator fuzzy subgroup of /1., 

denoted by /1.' , is the smallest fuzzy subgroup of /1. such that /1.//1.' is fuzzy Abelian. 

By /1.(2) we mean (/1.' )' , and by /1.(n) we mean /L(n-l)' . 

PROPOSITION: 6.2.14 

Let /1. = /1.1 ~ ••• ~ /1.n = /1.e be a solvable series for /1. ; then /1.i ~ /1.(i) 

for all i = 1,2" .. ,no 

PROOF: 

Straightforward. 

THEOREM : 6.2.15 

Let /1. be a fuzzy subgroup of 'I. /1. is solvable if and only if there exists n E IN such 

that /1.(n) = /1.e. 

PROOF: 

Let /1. = /1.1 ~ ••• ~ /Ln = /1.e be a solvable series for /1.. Therefore /1.n ~ /1.(n). Hence 

/1.(n) = /1.e. Conversely, let n E IN such that /1.(n) = /1.e. Now 

/1.? /1.' ? /1.(2) ? ••• ? /1.(n) = /1.e is a normal series for /1.. Clearly /1.(i) / /1.(i+l) is fuzzy 

Abelian. Hence /1. is solvable. 

6.3 : NILPOTENCY IN FUZZY SUBGROUPS 

Let /1. and lJ be fuzzy subgroups of 'I. 
Recall Definition 2.1.8 : [/L,lJ] = <([h)..,k~] :h).. E /L, k~ E lJ}>. 

DEFINITION : 6.3.1 

The descending central series of /1., (DCS), is the normal series /1. = '1(/1.) ~ '2(/1.)? ••• 

given in Definition 2.1.11. 
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DEFINITION : 6.3.2 

A fuzzy subgroup p, is nilpotent if there exists mE II such that 'Ym+1(P,) = P,e' 

PROPOSITION: 6.3.3 

A fuzzy subgroup of a nilpotent fuzzy subgroup is nilpotent. 

PROOF: 

Let v $ p, be fuzzy subgroups of r; where p, is nilpotent. Therefore 

'Yi{v) $ 'Yi{P,), i E IN. There exists mE II such that 'Ym+1(P,) = P,e ~ 'Ym+1(V). 

i.e. 'Ym+1{V) = P,e' 

The proof is complete. 

Let f: p,-+ v. From now on assume f-1(v) = p,A f-l(V), so that f-l(v) $ p,. 

THE ASCENDING CENTRAL SERIES (ACS) : 

Let p, be a fuzzy subgroup of r;. Define a sequence of fuzzy subgroups of p, as follows : 

Let p,0 = P,e' p,1 = Z(p,). Hence p,l <I p,. Let 'Y1 : P, -+ p,/ p,l be the natural homomorphism, 

and iii the fuzzy kernel of 'Y1 associated with p,l. Then p,i <I p" and p,/ p,i = p,/ p,1. Let 

~ = P,e' Let J.L2 = 'Yil(Z(J.L/ p,i))' 

Then p,2 / p,i = Z(p,/ p,i) = p,2 / J.Ll. 

p,l $ p,2 : Let x E supp J.Ll. Then x supp p,l = e supp p,l. 

So J.L2{x) = Z(p,/p,l)(e supp p,l) = p./p.l(e supp p.l) 

= p.(e) ~ p.i(x) ~ p.1(x) 

We now claim that p,2 <I P, : 

Let a>. E p,. We will show that a,\ p,2 = p,2 a A . 

Let x E r;. Therefore a A p,2(X) = A A p,2( a-Ix) = A A 'Yil(Z(p,/ p,l))( a-Ix) 

= A A Z(p,/p,1)(a-1x supp p,1). 



Now Z(f.LI p}) <3 f.LI f.Ll and (a supp f.Ll) A E f.LI f.Ll 

since sup{tt(x): x supp f.Ll = a supp f.Ll} ~ A. 

Hence aA f.L2(X) =,\ A Z(ttlpl) (xa-l supp pl) 

= p2a,\ (x) . 
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Let 1'2 : f.L ~ f.LI f.L2 be the natural map, and ~ the fuzzy kernel of 1'2 associated with f.L2. 

Therefore f.Li <3 f.L, and f.LI f.L2 = f.LI f.Li· Let J.L3 = 1'2l( Z(J.LI f.Li )). I t can be shown that 

f.Li ~ f.L3, and f.L3 I f.Li = Z(f.L/~) = f.L3 I f.L2 . 

Clearly the quotients f.L3 I f.L2 are fuzzy Abelian. By induction, we obtain a chain of 

normal fuzzy subgroups of f.L : 

f.L0 = f.Le S f.Ll S f.L2 S f.L3 S ... such that 

f.Lit11 J.L~ = f.Li+ 11 f.Li is fuzzy Abelian. (In fact f.Li+11 f.Li = Z(f.LI f.Li)). 

The above series is called the ascending central series of f.L. 

We will prove later that (i) f.L = f.Lm ¢:::} 1'm+1(f.L) = f.Le, and (ii) 1'i+1(f.L S f.L~-i. Before we do 

this, we need some lemmas: 

LEMMA: 6.3.4 

Let v <3 f.L and v ~ f.L1 ~ J.L. Then [f.L1'J.L] ~ v implies that f.Ld v ~ Z (f.LI v). 

If v = f.L on supp v, then the converse is also true. 

PROOF: 

(~): Let (x supp vh. E f.LdV, and (y supp v)f3 E f.Llv. 

Then sup{f.L1(a): a supp v = x supp v} ~ A > A-I: for I: E (0, A A fl). 

So there exists a, a supp v = x supp v, such that f.L1(a) > A-I:, 

hence a A-I: E f.L1· 

Similarly there exists b, b supp v = y supp v, such that J.L(b) > {3-1:, 

hence b {3-1: E f.L. 

So [f.L1'f.L] (a-1b-lab) ~ A-I: A {3-1:. (See the definition of [f.Ll'f.L]). 
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Therefore ab supp 11 = ba supp 11. So (xy supp 11) A A {3 = (yx supp v) A A f3' 

i.e. (x supp 11) A E Z(J-t/ v). 

(F): J-tl/lI~ Z(J-t/lI). 

Let c ~ E [J-tl,J-t]. 

So ~ 5 [J-tl' J-t] ( c) = sup{e' : ce = alAI' .. anAn' aiAi 

= [hi~i' ki{3i], hi~i E J-tI' ki{3i E J-t}. 

Now (hiki supp 11) ~i A {3i = (kihi supp 11) ~i A (3i 

since J-tdll $ Z(J-t/lI). 

Therefore [hi,ki] E supp 11. 

So lI([hi,kJ) = J-t([hi,kJ) ~ ~i A (3i = Ai' hence aiAi E 11. 

Therefore c ~ E 11 and [J-tl,J-t] ~ 11. 

This completes the proof. 

LEMMA: 6.3.4' 

[ ~-i,J-t ] ~ ~-i-I if and only if J-tm- i / J-tm-i -1 ~ Z(J-t/ J-tm- i-1). 

PROOF: 

This is similar to the proof of lemma 6.3.4. 

LEMMA: 6.3.5 

Let f : J-t -+ 11 be a fuzzy epimorphism. Let J-tl be a fuzzy subgroup of <J such that 

J-tl $ Z(J-t). Then f(J-tl) 5 Z(lI) = Z(f(J-t)). 
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PROOF: 

Let b,8E f(JLl)' i.e. sup ~l(a) ~ ,8. 
£(a) = b 

Let f E (0,,8). There exists ao' f(ao) = b, such that JLl(aO) > f(JLl)(b) - Eo 

So JLl(aO) > ,8 - f, i.e. aO,B-f E JLt· 

Hence f( ao) ,B-f E f(JLJ 

Let CAE v = f(JL). Assume f E (0,,8 A A). Therefore sup JL(x) ~ A. 
f(x) = c 

There exists Xl' f(xl) = c, such that JL(xt) > A-f, i.e. xtA_ f E JL. 

By hypothesis, (aoxt),B-f A A-f = (xlaO),B-f A A-f· 

Therefore f( ao)f( xl) ,B-f A A-f = f( xl)f( ao) ,B-f. A .A-f· 

i.e. (bC),B-f A A-f. = (cb),B-f. A .A-f. for f > o. 
So (bc),8A A = (cb),8A A· Hence b,8E Z(v). 

This completes the proof. 

THEOREM: 6.3.6 

For any fuzzy subgroup JL, JL = JLm if and only if 'Ym+l(JL) = JLe. 

Moreover, 'Yi+l(JL) ~ lLi-i . (For the notation, see the construction of the DCS and 

ACS). 

PROOF: 

(~ ): JLm = JL. 'Yl(JL) = JL, 'Y2(JL) = ['Yl(JL),JL], • •• . We will prove, by induction on i, 

that 'Yi+l(JL) ~ JL~-i : 

Let i = O. LHS = JL = RHS. 

Assume 'Yi+l(JL) ~ JL~-i. 

Now JLm- i/ JLm- i-1 = Z(JL/ JLm- i-1). 

Therefore by Lemma 6.3.4' , [JL~ -l,JL] ~ JL~ -i-1. 

Hence 'Yi+2(JL) = [1 i+l(~) ,~J 
~ [~~-i,~J ~ ~~-i-l . 



Hence 'Yi+1(/-£) ~ /-£~-i for all i E IN, i ~ m. 

Let i = m. Therefore 'Ym+1(/-£) 5 t1 = /-£e· 

(F): 'Ym+1(/-£) = /-£e. We will prove, by induction on j, that 'Ym+1-j(/-£) ~ /-£j. 

Let j = 0 : Therefore LHS = 'Ym+1(/'£) = /-£e = RHS. 

Assume 'Ym+1-j(/-£) ~ /-£j. 

Define f: /-£/'Ym+1-j(/'£) -I /-£//.£j by f(x supp 'Ym+1-j(/-£)) = x supp p). 

We claim that f(/-£/ 'Ym+1-j (/-£)) = /-£/ /-£j : 
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f(/-£/'Ym+1-j(/-£)) (x supp /-£j) = suPW!7m+1-j(/-£)(a supp 'Ym+1-j(/-£)): a supp /-£j = x supp /-£j} 

= sup { sup /-£(y): aD = XD}, 
yD1 = aD1 

~ sup { sup p,{y): aD = xD} 
yD = aD 

- sup p,{a) = /-£/ /-£j (x supp /-£j). 
aD = xD 

Let € E (0, /-£/ /-£j (x supp p))). 
There exists zo' zoD = xD, such that 

where D1 = SUPP 1m+l-j(/L), 
D =suPP/Lj, 

since D ~ D1. 

/-£/ /-£j (x supp /-£j) - f < I-£Czo) 5 f(/-£/ 'Ym+l-j(/-£)) (x supp /-£j). 

Since f is arbitrarily small, the claim is proved. 

Now ['Ym-j(/-£)' /-£] = 'Ym-j+l(/-£). 

Therefore, by Lemma 6.3.4, 'Ym-j(/-£)/ 'Ym-j+l(/-£) 5 Z(/.£/ 'Ym+l-j(/-£)). 

Therefore fC'Ym-j (/-£)/'Ym-j+l(/-£)) 5 Z(f(/-£/'Ym+1-j(/-£))) by Lemma 6.3.5. 

RHS = Z(/-£/ p)) = /-£j +1/ /-£j. 

'Ym-//-£)//-£j ~ f('Ym-j(/-£)/'Ym+l-j(/'£)). Hence 'Ym-j(/-£)//.£j 5 /-£j+1//-£j. It is not hard to 

show that /-£j+1 ~ 'Ym-j(/-£). 

But /-£ ~ /-£m. Hence /-£ = /-£m, and the proofis complete. 



PROPOSITION : 6.3.7 

If I.L is nilpotent, then I.L is solvable. 

PROOF: 

This follows from Theorem 6.3.6 and the construction of the ACS. 

THEOREM: 6.3.8 

Let I.L be a fuzzy subgroup of 'I. Jb is nilpotent if and only if there exists a series 

I.L = l.Lo ~ 1.L1 ~ ••• ~ I.Ln = l.Le such that l.Li <I I.L and I.Ld l.Li +1 S Z(I.L/ l.Li +1) for all 

i = 0,1,2,· .. ,n-l. (Such a series is called a central series of I.L). 

PROOF: 

(~ ): The ascending central series of I.L satisfies the above properties. 

({=): Consider the ascending central series of I.L : 

I.L0 = l.Le S 1.L1 = Z(I.L) S 1.L2 S ... S I.Lm S ... 

We will show that there exists m E 71. such that I.Lm = I.L. 

Now I.Ln = l.Le implies that I.Ln-d I.Ln ~ I.Ln-1 and Z(Jb/ I.Ln) ~ Z(I.L). 

Therefore I.Ln -1 5 Z(I.L) = 1.L1. 

Let D = supp Jb1, D1 = sUPP Jbn-1' 

= Z(Jb/ Jb1)(xD) 

~ Z(Jb/ Jbn-1)(xD 1) 

~ Jbn -2/ Jbn -1 (xD 1) 

since D ~ D1 

by hypothesis. 

Therefore sup 1.L2(a) ~ sup Jbn-2(a) 
aD=xD aD1=xD1 

Jb2(a) = Z(Jb/Jb1)(aD) = Z(Jb/Jb1)(xD) = Jb2(x). 

Therefore Jb2(x) ~ sup 1bn-2(a) ~ I.Ln -2(x). 
aD1 = xD1 
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Assume J.Lk ~ J.Ln-k' We will show that J.Lk+l ~ J.Ln-k-l' 

= Z(J.L/ JLk)(x Supp J.Lk) 

~ Z(J.L/ J.Ln-k)(x Supp J.Ln-k) 

~ JLn-k-d JLn-k(x Supp J.Ln-k)· 

Therefore 

sup{J.Lk+l (a): a Supp J.Lk = x Supp J.Lk} ~ sUP{J.Ln-k-l (a): a Supp J.Ln-k = x Supp J.Ln-k}' 

We can show, as above, that J.Lk+1(a) = JLk+l(x) for all a satisfying 

a Supp J.Lk = x Supp J.Lk. 

Therefore J.Lk+l(x) ~ JLn-k-l(x). 

Hence J.Lk ~ J.Ln-k for all k ~ n. 

Let k = n. Then JLn ~ J.Lo = JL. So JL = JLn. 

i.e. JL is nilpotent. 

PROPOSITION: 6.3.9 

A homomorphic image of a nilpotent fuzzy subgroup is nilpotent. 

PROOF: 

Let f : J.L --+ v be a fuzzy epimorphism, where J.L is a nilpotent fuzzy subgroup. 

By Theorem 6.3.8, there is a normal series JL = J.Lo ~ J.Ll ~ ••• ~ J.Ln = J.Le, J.Li <I J.L and 

J.LJ JLi+l ~ Z(JL/ JLi+l)' i = 0,1,' .. ,n-I. 

Now f(JL) = f(J.Lo) ~ f(J.Ll) ~ ••• ~ f(JLn) = f(J.L)e· 

f(J.Li) <I f(J.L). We claim that f(J.Li)/f(J.Li+l) ~ Z(f(J.L)/f(J.Li+l)) : 

Let D = Supp f(J.Li+l)' 

Let (f(a)D),X E f(J.Li)/f(J.Li+l) and (f(b)D),8E f(J.L)/f(J.Li+l)· 

Therefore sup{f(~i)(f(x)): f(x)D = f(a)D} ~,X and 

sup{f(~)(f(x)): f(x)D = f(b)D} ~ ,8. 



Now 

sup { sup fli(C): f(x)D = f(a)D} = SUp{fli(C): f(c)D = f(a)D} ~ A 
f(c) = f(x) 

and 

sup { sup JL(c): f(x)D = f(b)D} = sup{JL(c)): f(c)D = f(b)D} ~ {3. 
f(c) = f(x) 

Let € E (0, ,X A {3). There exist co'cl, f(co)D = f(a)D, f(cl)D = f(b)D, such that 

Therefore Co ,X-€ E JLi and cl/3-€ E "". 

By hypothesis, (COcl supp ""i+l) ,X-€ A /3-€ = (clCo supp JLi+l) ,X-€ A /3-€. 

cocl C~lCl1 E supp JLi+l implies that f(co) f(c l) f(co)-l f(C1t1 E supp f(JLi+1) and 

therefore (f(co) f(c 1)D)'x_€A /3-€ = (f(c1) f(co)D),X_u\ /3-€. 

Hence (f(a) f(b)D),X_€ A /3-€ = (f(b) f(a)D),X_€ A /3-€. 

This is true for every € arbitrarily small. 

Hence (f( a) f(b )D),X A {3 = (f(b) f(a)D),X A {3. 

i.e. (f(a)D),X E Z(f(JL)/f(JLi+t))· 

The proof is complete. 

PROPOSITION: 6.3.10 

A quotient of a nilpotent fuzzy subgroup is nilpotent. 

PROOF: 

Let 11 4 JL, where JL is nilpotent. 

"(: JL-+ JL/ll is a fuzzy epimorphism, where "((a) = a supp 11. 

Hence, by Proposition 6.3.9, JL/ll is nilpotent. 

PROPOSITION: 6.3.11 

A direct product of a finite number of nilpotent fuzzy groups is nilpotent. 
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PROOF: 

Let f.L = f.L1 x /-La, where f.Li is nilpotent, i = 1,2. 

Let f.L1 = Vo ~ v1 ~ .•• ~ vn = (f.L1)e and 

/-La = Wo ~ w1 ~ ••• ~ ~ = (/-La)e be central series of f.L1 and /-La respectively. 

We can assume, without loss of generality, that n = k. 

Therefore f.L1 x /-La = Vo x Wo ~ ••• ~ vn x wn = (f.Ll)e x (/-La)e is a normal series of 

This completes the proof. 

PROPOSITION: 6.3.12 

Let v ~ Z(f.L), v ~ f.L. If f.L/v is nilpotent, then f.L is nilpotent. 

PROOF: 

Letf.L/ v = eo~ el~'" ~ en=v/vbeacentralseriesoff.L/v. Let 1: f.L-+ f.L/vbethe 

natural map. Let ui = Tl( ei) and wi = ui A f.L. 

Therefore wi ~ f.L. ei = wi/v. 

Consider f.L = f.L A Uo ~ w1 ~ ••• ~ wn ~ V ~ ve' 

(1) is a normal series. 

We claim that (1) is a central series : 

WJWi+1~ (wdv)/(wi+dv)~ Z((p,/v)/(lJJi+dv)) 

~ Z (p, / IJJ i + 1) . 

Therefore wJ wi+1 ~ Z(f.L/ wi+l)' 

wn/v = v/v ~ Z(f.L/v). 

Z(f.L) ~ v~ v/ve and Z(f.L/ve) ~ Z(f.L). 

Therefore v/ve ~ Z(f.L/ve). The claim is proved, and hence f.L is nilpotent. 

(1) 
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REMARK: 6.3.13 

Many of the results in this section will not hold if the quotients are replaced by the 

strong quotients. This is because to show that J.t/ v is Abelian, one takes x,y E supp J.t 

and then show that xyx-1y-l E Ev' where Ev = {x E '# : v(x) = v(e)}. This is a strong 

condition. 

PROPOSITION: 6.3.14 

Let J.t and v be normal nilpotent fuzzy subgroups of w, where w is a fuzzy subgroup of 

,#. Then J.tv is a normal nilpotent fuzzy subgroup of w. 

PROOF: 

Clearly J.tV <I w. 

Define f : J.t x v -+ IW/ J.t A v by f( a,b) = ab supp J.t A v. It is easy to show that f is a 

homomorphism. 

J.tv/ J.t A v = f(J.t x v). Hence J.tv/ J.t A v is nilpotent since J.t x v is nilpotent. 

We can then construct a central series for J.tV using a central series for J.tv/ J.t A v. 

PROPOSITION: 6.3.15 

Let v, w 5 J.t be fuzzy subgroups of ,#. Then v 5 N J.t( w) if and only if [w,v] 5 w. 

PROOF: 

(:::::} ): Let a.x E [w,v]. 

So .x ~ [w,v](a) = sup As 
a A = a 1 A ... a A ' a· A = [h. t , k it:! ] , 

s 1 n n 1 i \i fJi 

By hypothesis ki.B
i 
w = W ki.Bi' 

h:e1 k:.B1 h'
e 

k . .B w(y) = e· A .B. A w (k:l h:l k.h.y) 1.1.1.1. 11 1111 
1 1 1 1 

= ei A .Bi A W (hi1(kihiy ki1)) = ei A .Bi A w(kihi Y ki1) 

= ei A .Bi A W (hi y) by (1) above, 

(1) 



= ei A f3i A w(y) since hiei E W 

= eeiA f3i w(y). 

Therefore [hiei,kif3i]w = e e
i 

A f3
i 

W ~ w. 

Hence a.x E w and therefore a.x E w. 
s 

Hence [w,v] ~ w. 

(F): Let a.x E v. We will show that a.x b~~l E W for all bf3 E w. 

Now a.x b~~lbi/ E w by hypothesis. 

Therefore b~.x bjia~l w = e.x A f3 w. 

Therefore a.x b jia ~ 1 w = e f3 A .x w since b f3 E w. 

So ( a b a -1).x A f3 E w, as required. 

PROPOSITION: 6.l.16 

Let J.£ be nilpotent and v f J.£. Then v f N J.£(v). 

PROOF: 

We claim that there exists i such that v ~ 'Yi+l(J.£), but vi 'Yi(J.£) in the DCS of J.£. 

Let J.£ = 'Y1(J.£) ~ ... ~ 'Ym+l(J.£) = J.£e be the DCS of J.£. 

v ~ 'Ym+l(J.£). If vi 'Ym(J.£), we are done. 

Suppose v ~ 'Ym(J.£) : 
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If v i 'Ym-1(J.£), we stop ; otherwise repeat the process. This process must come 

to an end since vi 'Yl(J.£). The claim is proved. 

Now bi(J.£),v] ~ blJ.£),J.£] = 'Yi+l(J.£)· 

Therefore [v, 'Yi(J.£)] ~ v. 

Hence, by Proposition 6.3.15, 'Yi(J.£) ~ N
I1
(v). 

If v = N J.£(v) , then 'Yi(J.£) ~ v, which contradicts our claim above. 

Hence v:f:. N J.£( v) and the proof is complete. 
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