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ABSTRACT

In this thesis we first extend the notion of fuzzy normality to the notion of normality of
a fuzzy subgroup in another fuzzy group. This leads to the study of normal series of
fuzzy subgroups, and this study includes solvable and nilpotent fuzzy groups, and the
fuzzy version of the Jordan—Holder Theorem.

Furthermore we use the notion of normality to study products and direct products of
fuzzy subgroups. We present a notion of fuzzy isomorphism which enables us to state
and prove the three well-known isomorphism theorems and the fact that the internal
direct product of two normal fuzzy subgroups is isomorphic to the external direct
product of the same fuzzy subgroups.

A brief discussion on fuzzy subgroups generated by fuzzy subsets is also presented, and
this leads to the fuzzy version of the Basis Theorem. Finally, the notion of direct
product enables us to study decomposable and indecomposable fuzzy subgroups, and this
study includes the fuzzy version of the Remak—Krull-Schmidt Theorem.

AMS CLASSIFICATION CODES : 03 E72, 20N99.

KEY WORDS :
Fuzzy subgroup, normal fuszy subgroup, level subgroup, fuszy isomorphism, fuzsy point,
homomorphism, fussy product, fussy direct product, solvable, nilpotent and fuzzy quotient.



CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

PREFACE

CHAPTER 1 FUZZY NORMALITY, FUZZY QUOTIENT, FUZZY
ISOMORPHISM AND PRODUCTS OF FUZZY SUBGROUPS.
INTRODUCTION.
1.1  PRELIMINARIES.
1.2 ISOMORPHISM AND QUOTIENT FUZZY SUBGROUPS.

1.3 NORMALITY AND PRODUCTS OF FUZZY SUBGROUPS.

CHAPTER 2 FUZZY CONGRUENCE RELATIONS AND NORMAL FUZZY
SUBGROUPS.
INTRODUCTION.
2.1 FUZZY SUBGROUPS GENERATED BY FUZZY SUBSETS.

2.2 FUZZY CONGRUENCE RELATIONS INDUCED BY NORMAL
FUZZY SUBGROUPS.

CHAPTER 3 DIRECT PRODUCTS OF FUZZY SUBGROUPS AND THE
FUZZY ISOMORPHISM THEOREMS.

INTRODUCTION.

3.1 PRODUCTS AND DIRECT PRODUCTS OF FUZZY SUBGROUPS.

3.2 THE ISOMORPHISM THEOREMS.

PAGE

iv

13

23

23

24
35

42

42
43
49

il



CHAPTER 4 CYCLIC FUZZY SUBGROUPS AND THE BASIS THEOREM

INTRODUCTION.
41 CYCLIC FUZZY SUBGROUPS.

42 THE BASIS THEOREM.

CHAPTER 5 THE FUZZY REMAK—KRULL-SCHMIDT THEOREM AND THE

FUZZY JORDAN—HOLDER THEQOREM.

INTRODUCTION.
5.1 THE FUZZY REMAK—KRULL—SCHMIDT THEOREM.

52 THE JORDAN—HOLDER THEOREM.

CHAPTER 6 SOLVABILITY AND NILPOTENCY IN FUZZY SUBGROUPS.

6.1 INTRODUCTION.

6.2 SOLVABILITY IN FUZZY SUBGROUPS.

6.3 NILPOTENCY IN FUZZY SUBGROUPS.

REFERENCES

PAGE

56

56
56
61

74

74
74
87

94

94
95
102

114

i



v

ACKNOWLEDGEMENTS

I would like to thank Professor W.J. Kotzé sincerely for patiently guiding me
throughout my research. My sincere thanks must also go to Dr V. Murali for the
motivation, extra help and advice that he rendered to me.

I also thank very much Professor T. van Dyk, Head of the Department of Mathematics
at the University of Fort Hare, for giving me time to go to Rhodes University almost
every week to meet my supervisor. I also thank him very much for the encouragement
that he has given me.

My thanks also go to Mrs G.J. Harwood for the excellent job she did in the typing of
this thesis.

Finally I thank The Almighty for giving me the courage and capability to complete my
studies.



PREFACE

In [12] Rosenfeld introduced the notion of fuzzy subgroup of a group. He proved that a
homomorphic pre—-image of a fuzzy subgroup is always a fuzzy subgroup, and a
homomorphic image of a fuzzy subgroup that has a certain condition (sup property) is
always a fuzzy subgroup. Since then we proved that a homomorphic image of any fuzzy
subgroup is always a fuzzy subgroup, and this proof is included in this thesis.
Subsequently, we have discovered that in [30] Eroglu also proved that a homomorphic
image of a fuzzy subgroup is a fuzzy subgroup. A similar result was also obtained by
Kumar in [35].

In [2] Das introduced the notion of a level subgroup of a fuzzy subgroup. He
characterized fuzzy subgroups of finite groups by their level subgroups. Further
characterizations of fuzzy subgroups were established by Bhattacharya in [4]. In [57]
Mashinchi and Zahedi corrected a Theorem of [2].

In [7] Bhattacharya and Mukherjee introduced the notions of fuzzy normality and a
fuzzy coset. In this thesis we develop more general notions of fuzzy normality and
cosets. This general notion of fuzzy normality is characterized by level subgroups. (We
also generalize the notion of a fuzzy coset given in [7] using the notion of fuzzy point
given in [20]). We then prove that if y is a fuzzy normal subgroup, then the supremum
of its fuzzy cosets is a fuzzy subgroup.

In 7] Bhattacharya and Mukherjee presented a definition of a fuzzy quotient group. In
[11] we used this definition to prove analogues of the first and the third isomorphism
theorems. However, the fuzzy version of the second isomorphism theorem fails to hold.
In this thesis we have modified the definition of a fuzzy quotient group given by Foster
in [3], (this makes it possible for us) to prove a fuzzy version of the second isomorphism
theorem.

In [43] Mukherjee and Bhattacharya introduced a notion of a fuzzy normalizer of a fuzzy
subgroup. This fuzzy normalizer is not a fuzzy set, it is a crisp group in which the fuzzy
subgroup is fuzzy normal. In this thesis we define a fuzzy normalizer N(u) of a fuzzy
subgroup  such that N(u) is a fuzzy subgroup in which g is fuzzy normal. In [43] and
[50] two different notions of fuzzy Abelian were defined. In [11] we defined a fuzzy
subgroup 4 to be fuzzy Abelian if each nonzero level subgroup of x is Abelian. It is now
clear that this is a weaker notion of fuzzy Abelian than that given in [50]. In this thesis
we use the weaker notion of [11].



In [1] Bhattacharya and Mukherjee introduced the concept of fuzzy solvable. We deduce
from this definition that a fuzzy solvable fuzzy subgroup is necessarily fuzzy normal. It
is desirable that a fuzzy subgroup be fuzzy solvable without necessarily being fuzzy
normal, since in the crisp case a subgroup H of a group ¥ can be solvable without being
normal in & . In this thesis we give a definition of fuzzy normality which will ensure
that a fuzzy solvable fuzzy subgroup need not be fuzzy normal. In [11] we introduced a
notion of fuzzy isomorphism. In this thesis we improve on it.

In [49] Ray has also given a notion of fuzzy isomorphism. It is easy to check that our
notion of fuzzy isomorphism is stronger than Ray’s. Our version allows us to prove
fuzzy counterparts of the isomorphism theorems.

In [14] Sherwood introduced the concept of the external direct product of fuzzy
subgroups. In [11] we introduced the concept of an internal direct product and then
proved that the internal and the external direct products are isomorphic when the fuzzy
subgroups are fuzzy normal.

In [9] Murali studied fuzzy congruence relations. In [10] we proved that normal fuzzy
subgroups and fuzzy congruence relations determine each other in a group—theoretic
sense. This study of fuzzy congruence relations is included here. Fuzzy congruence
relations have also been studied by, inter alia, Sidky and Ghanim in [52].

In Chapter 1 we first present preliminaries. Then we characterize fuzzy normality in
several ways. We introduce the notion of a fuzzy subgroup being normal in another
fuzzy subgroup. This notion is further characterized by level subgroups. Our definition
of fuzzy normality ensures that any fuzzy subgroup is normal in itself as in the crisp
case. We also present a general notion of a fuzzy coset. We then show that the
supremum (fuzzy union) of all fuzzy cosets of a fuzzy normal subgroup is also a fuzzy
subgroup which is analogous to the crisp case. The fuzzy union of fuzzy cosets of a fuzzy
subgroup u can then be regarded as a fuzzy quotient group ¥ /u, where ¥ is the
underlying group. However, this notion of quotient does not produce expected results
and so we do not pursue it. Instead we present a more suitable notion of a quotient
group. This is a generalization of Foster’s quotient in [3]. Fuzzy isomorphism is also
presented in Chapter 1. We end Chapter 1 with the notion of a product of two fuzzy
subgroups of the same group, (see Zadeh [15] and Makamba [11]).
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In Chapter 2 we first study fuzzy subgroups generated by fuzzy subsets. This study
includes the notions of a fuzzy normalizer and a fuzzy centre of a given fuzzy subgroup.
We end Chapter 2 by linking the notion of fuzzy normality given in [7] to the notion of
fuzzy congruence relations.

Chapter 3 is a further study of direct products of fuzzy subgroups. In Section 3.1 we
show that if 4 and v are normal fuzzy subgroups, then pv is the smallest fuzzy subgroup
of ¥ containing both 4 and v provided u(e) = v(e), where e is the identity element of
the underlying group % . We also establish analogues of the Dedekind and Modular
laws. Hence the lattice of fuzzy normal subgroups on % is a modular lattice. When ¥
is finite, we show that uv is the internal direct product if and only if every nonzero level
subgroup of pv is an internal direct product of the corresponding level subgroups of p
and v. We also show that the internal and the external direct products of fuzzy normal
subgroups are isomorphic. We end the chapter by stating and proving analogues of the
three well-known isomorphism theorems in group theory. We also show, by means of
an example, that the second isomorphism theorem need not hold if we use the quotient
of Mukherjee and Bhattacharya introduced in [1].

In Chapter 4 we discuss cyclic fuzzy subgroups. We show that every finite Abelian
fuzzy subgroup can be decomposed into a direct product of cyclic p—fuzzy subgroups.
(This is an analogue of the Basis Theorem in group theory). In [50] Sidky and Mishref
have also worked with cyclic fuzzy subgroup. Our definition of a cyclic fuzzy subgroup
does not require the zero—level subgroup to be cyclic as is the case in [50]. We end
Chapter 4 with a notion of dimension of a fuzzy subgroup which is also a fuzzy vector
space over the field 7, where p is a prime number. This notion of dimension is related
to Lowen’s notion of dimension given in [16] in the sense that both notions use the crisp
dimension of the support of the fuzzy subgroup and also the range of the fuzzy subgroup.

Chapter 5 is an extension of Chapter 4. In Section 5.1 we discuss decomposable and
indecomposable fuzzy subgroups. We state and prove an analogue of the well-known
Remak—Krull-Schmidt Theorem in group theory. Before proving this theorem, we
discuss equivalent fuzzy subgroups. This leads us to define the length of a fuzzy
subgroup : see [61]. The Remak—Krull-Schmidt Theorem then holds for a fuzzy
subgroup of finite length. In Section 5.2 we study normal series of fuzzy subgroups.
Our definition of a normal series is such that if p = py > pe> --- > px is a normal series,
then each 4 is normal in pi but need not be normal in the whole group % as is the
case in [1]. We end Chapter 5 by stating and proving analogues of the Zassenhaus
lemma and the Jordan—Hdolder Theorem.
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The latter theorem is preceded by notions of a maximal normal fuzzy subgroup and a
maximal chain of normal fuzzy subgroups.

Chapter 6 is a further study of normal series of fuzzy subgroups. In Section 6.1 we study
solvable fuzzy subgroups. Our definition of solvability differs from the definition of
solvability given in [1] in that our notions of fuzzy normal and quotient are weaker than
those given there, but our notion of fuzzy Abelian is stronger than the notion of fuzzy
Abelian given in [1]. This makes the two notions of fuzzy solvability completely
different. We also show, by means of examples, that if in our definition of a solvable
series we replace our quotient by the quotient given in [1], then some of the crisp results
on solvability have no fuzzy analogues. In crisp group theory every nilpotent group is
solvable. In Section 6.3 we study nilpotent fuzzy subgroups and establish some
analogues of the results on nilpotent groups.



CHAPTER 1

FUZZY NORMALITY, FUZZY QUOTIENT, FUZZY ISOMORPHISM
AND PRODUCTS OF FUZZY SUBGROUPS.

INTRODUCTION

In [12] Rosenfeld proved that a homomorphic image of a fuzzy subgroup which has the
sup property is a fuzzy subgroup. Since then we managed to prove that a homomorphic
image of any fuzzy subgroup is always a fuzzy subgroup. The proof is included in this
chapter.  Subsequently we discovered that in [30] Eroglu also proved that a
homomorphic image of a fuzzy subgroup is a fuzzy subgroup. A similar result was
obtained by Kumar in [35]. In Proposition 1.1.5 we characterize the notion of fuzzy
normality given in [7] in several ways. In [4] Bhattacharya used the notion of a level
subgroup introduced by Das in [2] to characterize fuzzy subgroups by their level
subgroups. In [7] it is shown that a fuzzy subgroup is fuzzy normal if and only if all its
level subgroups are normal subgroups of the underlying group. We show in this chapter
that if the support of the fuzzy subgroup is normal in the underlying group, the fuzzy
subgroup need not be fuzzy normal. It is obvious that fuzzy normality of a fuzzy
subgroup implies normality of its support. The notion of fuzzy normality given in [7] is
not general enough to allow us to say that a fuzzy subgroup is normal in another fuzzy
subgroup. Hence in this chapter we generalize the notion of fuzzy normality given in [7].
This general fuzzy normality is further characterized by level subgroups. Our definition
of fuzzy normality ensures that any fuzzy subgroup is normal in itself as in the crisp
case.

We have also generalized the notion of a fuzzy coset given in [7]. It is then easily shown
that the supremum of all fuzzy cosets of a normal fuzzy subgroup v in a fuzzy subgroup
p is also a fuzzy subgroup. This is analogous to the crisp result which asserts that the
set of all cosets of a normal subgroup is a group. The supremum of fuzzy cosets can
then be regarded as a fuzzy quotient p/v. However, this gets more complicated, and we
have not pursued it. Instead we present a quotient which is a modified version of
Foster’s definition of a fuzzy quotient group given in [3]. Our definition of a fuzzy
quotient then allows us to prove analogues of the three isomorphism theorems in
Chapter 3 and the Zassenhaus lemma in Chapter 5. In [7] Bhattacharya and Mukherjee
introduced a notion of a fuzzy quotient group. In [11] we used this definition to prove
analogues of the first and the third isomorphism theorems.



However, using the quotient given in [7], the second isomorphism theorem does not hold.

In crisp group theory it is true that ¥ /¢ is isomorphic to {e} for every group ¥,
where e is the identity element in % . This result does have a fuzzy analogue if we use
our notion of a fuzzy quotient. However, if we use the quotient given in [7], the above
result has no fuzzy analogue. For this and other reasons mentioned earlier, in this thesis
we do not use the quotient given in [7].

In [43] Mukherjee and Bhattacharya introduced a definition of fuzzy Abelian. However,
that definition was retracted since it was equivalent to fuzzy normal. Another definition
of fuzzy Abelian was introduced by the same authors in [1]. This definition of fuzzy
Abelian is still not acceptable to us since it implies that any fuzzy subgroup p of a group
% satisfying p(e) 2 u(x) for all x € ¥\ {e} is necessarily fuzzy Abelian. We feel this is

a very weak condition for fuzzy Abelian. Also this definition is equivalent to saying that
the p(e) — level subgroup of p is Abelian. In [11] we defined u to be fuzzy Abelian iff
each nonzero level subgroup of y is Abelian. This is the definition that we will use in
this thesis. In Section 1.2 we present a definition of fuzzy isomorphism which is a
modified version of fuzzy isomorphism given in [11]. If two fuzzy subgroups p and v are
fuzzy isomorphic, it is easily shown that each level subgroup of y is isomorphic to some
level subgroup of v. We end this chapter with an introductory discussion of a product of
two fuzzy subgroups. This is part of the work done in [11}].

REMARK :
Subsequent to our definitions of fuzzy normal and fuzzy coset, we have discovered that
these two definitions coincide with those of Malik, Mordeson and Nair in [59].

-~

1.1 : PRELIMINARIES

Definition [15] : Let % be a set. A fuzzy subset of ¥ is a mapping p: ¥— [0,1]. If
and v are fuzzy subsets of ¥ such that u(x) < v(x) for all x € ¥, we write p< v or
¢ C v and say that pis contained in v or uis a fuzzy subset of v.



DEFINITION : 1.1.1 [12]
Let ¥ be a group. A map p: g— [0,1] is called a fuzzy subgroup of 7 if

(i) #(xy) > min(u(x), p(y)) forallx,y€ g;
)  p(x)=p(x?) forallxe g,

NOTE : In this thesis the letter % will always denote a group, unless specified
otherwise, and the letter e will always denote the identity element of % .
If 4 is a fuzzy subgroup of ¥, we’ll always assume that p(e) > 0. If p
and v are fuzzy subgroups of ¥ mentioned in a theorem, proposition,
definition or example, we’ll always assume that p(e) = v(e), although
this is not always necessary. We are not necessarily assuming that

we) = 1.
DEFINITION : 1.1.2 [7]

Let y be a fuzzy subgroup of #. pis called fuzey normalin ¢ if y(a*'xa) > p(x) for
all a, x€ ¥. Wealso say that pis a normal fuzzy subgroup of ¥.

The support of u is the set supp 4 = {x € ¢ : px) > 0}. It is clear that supp pis a
subgroup of & whenever y is a fuzzy subgroup of %. If u is fuzzy normal, then
supp u is a normal subgroup of % But the converse is not true, see Example 1.1.6.

DEFINITION : 1.1.3 [2]

Let 4 be a fuzzy subgroup of %, 0< a< ule).
Let 1% = p'e,1] = {x € % :x)2> o} Then p% is a subgroup of % , called the
level subgroup of p corresponding to a.

PROPOSITION : 1.1.4
Let p be a fuzzy subgroup of ¥ . Then supp p = U{pa: 0 < a< ple)}

PROOF :

Straightforward.



PROPOSITION : 1.1.5
Let 4 be a fuzzy subgroup of . Then the following are equivalent :

(i) w(a'xa) > p(x) for all x € supp p, a € ¢;

(ii) wa'xa) > p(x) for all x, a € ¥;

(iii)  u(x) = p(a'xa) for all a, x € ¥;

(iv) w(ax) = p(xa) for all a, x € %;

(v) p'[a,1] is a normal subgroup of ¥ for all a€ [0,u(e)] ;
(vi)  p'(a,1] is a normal subgroup of ¥ for all a€ [0,u(e)).

PROOF :
Straightforward. (See [10]).

The following example shows that if supp u is normal in ¥, p need not be fuzzy
normal :

EXAMPLE : 1.1.6
Let ¥ =S; = {e, a, a%, b, ab, a’}, b? = e = a’. S is the symmetric group on 3

symbols.

1 x=e¢e
Define p: ¢ — [0,1] by u(x) ={ /2 x = b

1/3 otherwise .

p(a?) =1/3>1/3 = u(a).
p(ab) =1/32> 1/53 = p(a).
p(a?b) > u(a?) A p(b) = /3.

So uis a fuzzy subgroup of ¥ and supp y = S; is normal in %.

“-1[1/27 1] = {xe ?: ﬂ’(x) 2 1/2} = {e’b}

is not normal in ¢. Hence p is not fuzzy normal.



DEFINITION : 1.1.7 [7]

Let v be a fuzzy subgroup of % and let x € . A left fuzzy coset of v associated with
x, denoted by xv, is a fuzzy subset of ¢ defined by (xv)(y) = Ux'y)V yeg. A
right fuzzy coset of vis defined by (vx)(y) = v(yx™).

If v is fuzzy normal, then the set & , = {xv:x¢€ :ﬁ} is a group under the binary

operation defined by (xv)(yv) = (xy) v, x,y€ ¥. We also have xv = vx for all x€ ¢ .
(See [7], Proposition 4.3 and Theorem 4.5).

PROPOSITION : 1.1.8 [7]

Let u be a fuzzy subgroup of ¥. pis fuzzy normal if and only if xp = ux for all
X€Y.

PROOF :

Obvious.

DEFINITION : 1.1.9 [12]

Let ¥ and %’ be groups, and f: ¥ — %’ a homomorphism. Let y be a fuzzy
subgroup of ¥. The image of u under f, f(u), is a fuzzy subset of f( & ) defined by

f(u)(f(x)) = sup {u(y) : f(y) = f(x)}. Let f(u)(y) = 0ify ¢ f( ). Then f(u) becomes
a fuzzy subset of ¢’. In fact, f(1) becomes a fuzzy subgroup of g’ :—

PROPOSITION 1.1.10

Let ¥ and ¥’ be groups, f: ¥ — %’ a homomorphism and x a fuzzy subgroup of
¢, then f(u) is a fuzzy subgroup of %’.

PROOF :

Suppose first that fis onto g’

Therefore f(p)(f(x)) = £(a) s:pf(x) p(a)

It is clear that £(u)(£(x)) = £(u)(f(x)™).



We now show that f(u)(f(x)i(y)) 2 f(u)(f(x)) A Hu)(f(y))-
Let oy = f(p)(f(x)), oy = f(w)({(y)) and & = f(p)(E(x)(y))-

Assume oy, oy, a > 0.
Now oy = sup{u(a): f(a) = f(x)}, @, = sup{u(a): {(a) = f(y)},
a = sup{u(a): f(a) = f(xy)}.
Let € > 0 such that € < min(a,, a,, @). Therefore there exist a,, a,, f(a,) = f(x) and
f(a,) = f(y), such that &, — € < pfa,) and a, — € < p(a,).
Therefore @, — € A ay — € < p(a,) A p(a,) < aa,).
Since f(a,a,) = f(xy), u(a,a,) ¢ {sup (a) : f(a) = f(xy)} =
Hence @, — €A oy, — € < a. This is true for every € € (0, min(ay,09,a)). Therefore
oA ol a
If o = 0, we claim that a, or a, is zero.
Suppose a,,a, > 0, therefore u(a,), p(a,) > 0 for some a,,a, satisfying f(a,) = f(x) and
f(a,) = 1(y), hence sup wa) 2 plagay) 2 pag) A p(a,) > 0.
f(a) = £(xy)
Contradiction !
Therefore f(u) is a fuzzy subgroup of f( ).

Now suppose that f is not necessarily onto. Let y, € f( %) and y, ¢ {( ).
Therefore y,y, ¢ f( ? ). Hence f(u)(y,y,) = 02 0 = f(p)(y) A f(u)(y,)-

Other cases are similarly proved. Therefore f(y) is a fuzzy subgroup of %’.

PROPOSITION 1.1.11

Let 4 be a fuzzy normal subgroup of . Letf: ¥ — %’ be a homomorphism where
%’ is a group. Then f(u) is fuzzy normal in ( & ).

PROOF :

Straightforward.



In [1], P. Bhattacharya and N.P. Mukherjee introduced a notion of fuzzy Abelian. We
feel that their notion of fuzzy Abelian is too weak since for example any fuzzy subgroup
p satisfying {x € ¢ : u(x) = p(e)} = {e} is necessarily fuzzy Abelian even if supp 4 is not
Abelian. Hence we introduce another notion of fuzzy Abelian which is strong enough to
ensure that supp p is also Abelian.

DEFINITION : 1.1.12

Let p be a fuzzy subgroup of ¢. pis fuzzy Abelian if u* is Abelian for all t € (0,4(e)].

Whenever fuzzy Abelian is mentioned in this thesis, the version of Definition 1.1.12
should be assumed.

PROPOSITION : 1.1.13

¢ is fuzzy Abelian if and only if supp u is Abelian.

PROOF :

Suppose supp p is Abelian. Now u* C supp ¢ for all t € (0,u(e)], and so utis Abelian
for all t € (0,u(e)]. Hence p is fuzzy Abelian.

Conversely, suppose u® is Abelian for all t € (0,u(e)]. Let a, b € supp g Since

supp i = U{u® 0 < t < p(e)}, a€ u't and b€ b2 for some t,, t, € (0,u(e)].

Suppose t; < t,. Then p*2C p*. Hence a, b € p't. Therefore ab = ba.

The proof is complete..

DEFINITION : 1.1.14 [20]

A fuzzy set in ¥ is called a fuzzy point if and only if it takes the value 0 for all y € 74
except one, say, x € %. Ifits value at xis A, 0 < A < 1, we denote this fuzzy point by
Xy, where the point x is called its support. The fuzzy point x A is said to be in the

fuzzy set pif A < u(x), and we write x )\ € b



Let p be a fuzzy subgroup of ¥.
In this thesis the fuzzy subgroup pe is defined by

ﬂe(X)={”(e) x=e
0 X+ e.

DEFINITION : 1.1.15 [1]

Let u be a fuzzy subgroup of % and v a normal fuzzy subgroup of % such that v< p.
The quotient p/v is a fuzzy subset of & = {xv:x€ ¥} defined by u/v (xv) = u(x)

forallxe f

It is trivial that p/v is a fuzzy subgroup of &,

If v< p are fuzzy subgroups of ¥, we shall say that v is a fuzzy subgroup of y, or v is
contained in p.

1.2 : ISOMORPHISM AND QUOTIENT FUZZY SUBGROUPS

In defining isomorphism of fuzzy subgroups of 4 and vin %, and 4 o respectively, we

must ensure that x4 and v turn out to be essentially the same when we rename the
elements of ¥, and ¥ ,, i.e. as functions, they must behave in a similar manner. For

example, if u(x) > p(y) and f : supp 4 — supp v is an isomorphism, then we must have
that 1(f(x)) > f(y))

Further, the following properties are desirable :

-

Im p must be equipotent to Im ». %, and ¥, need not be isomorphic.
If p = av for some fixed a € I*, we want x and v to be isomorphic.

If f: supp 4 — supp v is an isomorphism, we want f(x) to be equal to v. Also there
must be a one—to—one correspondence between the fuzzy subgroups of y and the fuzzy
subgroups of v.



The definition below does have the above properties :

DEFINITION : 1.2.1

Let ¢, and ¥, be groups and y and v fuzzy subgroups of %, and ¥, respectively.
An isomorphism f : supp px — supp v is a fuzzy isomorphism of y onto v if 3 a
constant k € R* such that u(x) = k (f(x)) for all x € supp &\ {e}.

We then say that uis isomorphic to v and write pu~ v.

EXAMPLE : 1.2.2.

Let S; = {e, a, a?%, b, ab, a?b}, a! = e=1b? and 7, = {0, 1, 2, 3, 4, 5} under
addition modulo 6.

Define = S; — [0,1] by u(e) = 1, w(a) = 1/ = p(a?) ; u(b) = 0 = w(ab) = ua?b).
Then p is a fuzzy subgroup of S, and supp u = A, = {, a, a’}.

Define v : I;— [0,1] by (0) = 1; ¥(2) = /3 = (4) ; v(1) = »(5) = 0 = »«(3).
Therefore v is a fuzzy subgroup of Z, supp v = {0, 2,4} ~ I

Define f : supp p— supp v by f(e) = 0 ; f(a) = 2 ; f(a?) = 4.

we)  =4(0) = Uf(e)).

Ma) =1/ =35 1(2) = 3/2 U({(a))
and  pa?) =3/, Y(f(a?)).
wx) =0 =3/y U{(x)), x # ¢, a, a’.

Therefore p ~ .

Note that I, is not isomorphic to S,.

Im p# Im v, but Im g is equivalent to Im v.
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PROPOSITION : 1.2.3.
Let 1 and v be fuzzy subgroups of the groups %, and ¥, respectively. Suppose p=~ v.

Then p is fuzzy Abelian if and only if v is fuzzy Abelian.

PROOF :
Trivial.

PROPOSITION : 1.2.4.
Let y, and p, be fuzzy subgroups of the groups ¥, and ¥,, respectively, such that
i~ py. Then, given any t € (0, p,(e)], there exists s € (0, py(e)] such that pb~ us.

PROOF :

Let  : supp p, — Supp p, be an isomorphism such that p,(x) = k p, (f(x)) for all
x € supp 4, \ {e}, k fixed. Define g: puf — ,u,;/k by g =f|ui. Let x€ . Then
p(x) > t and k p, (f(x)) > t. Hence f(x) € p;/ k. So g is well—defined.

Clearly g is an injective homomorphism. Let y € p.;/ k. Then u,(y)2 t/k.
Now y = f(x) for some x € supp 4, Therefore k u, (f(x)) > t. Hencex € ul.
Therefore g is onto.

The proof is complete.

PROPOSITION : 1.2.5.

Let p and v be fuzzy subgroups of the groups %, and ¥,, respectively. Suppose
p~ v. If pis fuzzy normal in supp y, then v is fuzzy normal in supp v.

PROOF :

Straightforward.
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Before proceeding with the notion of isomorphism, we have to give a weaker notion of a
fuzzy quotient. The quotient given in Definition : 1.1.15 [1] is not good for the second
Isomorphism Theorem, (see Chapter 3). Also we do not have the crisp analogue that

Bl fhe

MOTIVATION :

Let p be a normal fuzzy subgroup of ¥ . Let f: ¥ — % /J be the canonical
homomorphism where &% is a normal subgroup of ¥ contained in supp x. Then f(u)
is a fuzzy subgroup of ¢ /%, (Proposition 1.1.10).

p(e) xeH
Letu(x):{o x¢ K.

Then v is a normal fuzzy subgroup of ¥ and supp v = % C supp 4.
Now f(u)(x #) = sup{p(a) : a supp v = x supp v}

This motivates the following definition :

DEFINITION : 1.2.6

Let u and v be fuzzy subgroups of ¥, where v is fuzzy normal and supp v C supp u.
The fuzzy quotient group x4 modulo v, denoted by u/v, is the function

p/v: ¢ [supp v— [0,1] defined by

p/v (x supp v) = sup{u(a) : a supp v = x supp v}. Iff: ¥— ¥ [supp vis the
canonical homomorphism, then f(u) = p/v.

To distinguish between the quotients in Definitions 1.2.6 and 1.1.15, we call the
quotient in definition 1.1.15 the strong fuzzy quotient and denote it by (u/v)s. So
whenever we mention a quotient u/v, definition 1.2.6 is to be assumed.

THE RELATIONSHIP BETWEEN (u/v), AND pfv:

Let ¥ ={xv:xe g}, E ={xeg:ux)=vle)}. F,» g/E, Sowe can write
(/V)(xv) = (B[V)§(xE,) = p(x) for all x€ g

If supp v = E,, then ¥ /E = ¥ [supp v F and hence (p/v)s = (p/v).
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However, if EV g supp v, then

(u/v)s(xE ) < pfv(xsupp v) forallxe ¥, and §/suppve F [F SUPP ¥ where
Z, Supp v _ {xv : x € supp v}. So we see that (u/v); can be obtained from u/v by

demanding that supp v be replaced by E ,, € supp v.

PROPOSITION : 1.2.7

Let u be a fuzzy subgroup of . Then u/p.~ pand p/u> p,.

PROOF :
Define f : supp p/p, — supp p by f(x supp p,) = x. Clearly f defines a fuzzy
isomorphism between p/p, and p.

Define g : supp 4, — supp u/u by g(e) = supp .

It is trivial that p(e) = p/p(g(e)). Therefore p/p ~ p,.

REMARK : 1.2.8

(a) Since (u/u) (xp) = p(x) for all x € ¢, (u/u)s need not be isomorphic to .

(b) It is possible for u,/v to be equal to p,/v with g, # p,, (contrary to the crisp

case).
For example let S, = {e, a, a?, b, ab, a’b}, a’ = e = b.

S3 is the symmetric group on 3 symbols.

1 Xx=e
Let p,(x) =(1/y x=a,a?
e xg Ay

Az is the alternating group of degree 3, i.e. A; is the set of all even
permutations in Sj.
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1 x=€
Let pq(x) ={1/3 x=a,a

e xg Ay

1 x=e
u(x) ={1/y x=a,al

0 xf A,

v is fuzzy normal.
Wy, te are fuzzy subgroups of Sy, and p # p,.

It is routine to check that p,/v = p,/v.

1.3 : NORMALITY QOF A FUZZY SUBGROUP IN ANOTHER FUZZY SUBGROUP AND
PRODUCTS OF FUZZY SUBGROUPS.

The notion of fuzzy normality does not have the crisp analogue that a group ¥ is
normal in itself or that & is normal in ¥ . This notion is needed in solvable fuzzy
subgroups. For example if we have a chain g > p > -+« 2 pn of fuzzy subgroups, we
want to define what is meant by the chain being normal. It is too strong to require that
each p; be fuzzy normal. We only require that y; be normal in p;_,.

MOTIVATION :

Let v < u be fuzzy subgroups of ¥ and ay a fuzzy point in p, i.e. p(a) > A > 0. The
product a,v, defined by a )‘z/(x) = A A ¥(a”x) for all x€ @, can be viewed as another
version of a left fuzzy coset of v since supp ayV = a supp v, a crisp left coset.
Likewise for va, defined as va,(x) = A A y(xa™t). If ayv = va, for all fuzzy points

ay,thenav =va forallae ¢, ie vis fuzzy normal.

PROPOSITION : 1.3.1
Let v be a fuzzy subgroup of % such that a\V = vay for alla€ ¥ and A fixed.
Then supp v is normal in %.
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PROOF :

We have AA y{a'x) = M A (xa™) forallxe g.

Therefore A A {a"'xa) = A A v(xaa™) = A A (x).

Let x € supp v. Therefore A A (x) > 0 implies that {a"'xa) > 0.
Hence a'xa € supp v forallac ¢.

The proof is complete.

The above discussion motivates the following definition :

DEFINITION : 1.3.2

Let v and p be fuzzy subgroups of ¥ such that v< u. vis a normal fuzzy subgroup of
piff ayv = va, for all fuzzy points a, in p, i.e. iff A A ax) = A A (xal) for all

x € ¥ and all fuzzy points ay in p. We write v < p.

Note that v « piff ay l/a./il = ve, for all A such that a, € p.

PROPOSITION : 1.3.3

A fuzzy subgroup v in ¥ is normal in itself, i.e. va v.

PROOF :

Let ay € v.

ay¥(x) = A va’'x) > A A (a) A y(x)
= A A U(x)
= a,(a) A Y(aa'x)
> AN alx)
= a,(x).

Therefore a \Y = AN
Similarly, va \ = AN v
Hence ayv = vay for all ay € v.

The proof is complete.



PROPOSITION : 1.3.4

v < pif and only if »* « pt for each t € [0,1].

PROOF :

Suppose v 4 p.
Let a€ pu* and x€ v, ie a € p and x.€ v.

= - -1
Hence a,v = va,, i.e. aa; = e,

Therefore v(a'xa)A t = y(x) A t = t.
Hence v{a'xa)> t; i.e a'xae st

Conversely, suppose v* < ¢ for all t € [0,1].
Let ay € 4, and xe ¥.

Case x ¢ supp v:
If a"'xa € supp v, then a”'xa € v* for some t < A. Hence x, € v since v* < pb.

Therefore x € supp v. Contradiction.
Hence A A v(x) = 0 = A A v(a'xa).

Casexy € v:
A A »
Since v” < u”, we have (a xa))‘e v.

Hence A A y(x) = X = A A v(alxa).

Case xy ¢ v, X€ supp V:
x € v for some t < A. Therefore a, € p.

Therefore t A ux) =t =t A v(axa).
Suppose A A 1(x) 2 A A v (atxa).

If LHS = ), then RHS = 1(a'xa).
ie. yalxa) < A< yx).

Hence x, € v.

Contradiction !

(*)

15



Therefore LHS of (*) = »(x) < A

ie. ya'xa) < u(x) < A
Let t, = v(x).

Therefore x, € v and a, € p.
1 1

Hence t, A (x) = t, A {a"'xa) since 'l < pbL.

Therefore 1(x) = v(a'xa).
Hence A A (x) = ) A va 'xa).
Therefore eyv = a, v ajl.

Hence AV = 1Ay,

The proof is complete.

REMARK :

If supp v < supp g, it does not follow that v < p.
Consider ¥ = S; = {e, a, a?, b, ab, a’b}, where b? = e = al.

1 x=e
Let ulx) = /s x#e, and

1 x=e¢e
V(X)={1/2X b

/3 otherwise .

v and p are fuzzy subgroups of %.
Now supp v = S; = supp p.

So supp v < supp .
But v = {xe g :v(x)> 1/} = {e,b}
and 7= {xeg ux)2 s} =5,

1, . !
so v 12 is not normal in 1 /2,
Hence v is not normal in p.

16



DEFINITION : 1.3.5 [15]

Let u and v be fuzzy subsets of . The product uv: ¥ — [0,1] is defined by

pr(x) = sup  p(x) Av(x,).
X = XX,

PROPOSITION : 1.3.6

Let p, v, & be fuzzy subsets of .

Then (W)é(x) = sup  min(u(x,), ux;), £(xy)).
X = X1X2X3

Hence (pv)é = p(v€).

PROOF :

Let0# a= sup min(p(x,), U(X,), é(x,))-
X = XXXy

Let ¢ € (0,a). Therefore there exist x,, x,, x4 such that
a—c¢ < min (uxy), ”(x;), £(xy))
= min [min (#(Xl): Z/(X2)), §(X3)]
Therefore a — € < min (1(x,), ¥(x,)). Let y, = x,x,.

Hencea—e < sup  min (p(a), ¥a,)) = py))
Vi = 243
Therefore a — e < pr(y,) A é(x,)

¢ (wr) €(x).
Hence a < (w)é(x).
Now let e € (0, (uv)é(x)).
Therefore there exist x;, x, such that x = x;x, and

(m)¢(x) — € < min (p(x), &(x,))

- [x152py1y2/1'(y1) A V(yz)] N Exa)

There exist y,,y, such that

E(x) A sup  u(yy) A U(y,) — € < plyy) A Uyy) A E(xy).
X = VY2

17
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Therefore (u)é(x) — € < (u(y,) A Uy,)) A §(x,) + €.

Hence (puv)é(x) — 2¢ < a.
Therefore (uv)é(x) < a.
Hence a = (uv)é(x).
Similarly, a = p(v€)(x).

The case when a = 0 is easy.

Therefore the proof is complete.

PROPOSITION : 1.3.7
If p is a fuzzy subgroup of ¥, then 1 = p, hence p® = p for all natural numbers n.

PROOF :

Trivial.

PROPOSITION : 1.3.8

Let u be a fuzzy subset of ¥. Then y is a fuzzy subgroup of ¢ if and only if p=p
and p(x) = p(x") for all xe &.

PROOF :
= Obvious
=: Letx,yeg. Now u(xy) = p*(xy). Letz = xy.

Therefore p(xy) = p*(z) = sup  p(z,) A p(z,)
z = 2,2,

> p(x) A p(y).

-

The proof is complete.

PROPOSITION : 1.3.9

Let p and v be fuzzy subgroups of ¢ such that pv = vu. Then uv is a fuzzy subgroup

of 4.



PROOF :
Clearly uy(x) = w/x') forall xe %.
pv = pt =p{(pv)v] by Proposition 1.3.6
= pl(vi)v]
= (uv)(w) = (pv)*.
Therefore by Proposition 1.3.8, uv is a fuzzy subgroup of %.

PROPOSITION : 1.3.10

Let py, py, p be fuzzy subgroups of ¥ such that
() o< and

(ii) By 9 e

Then p,p, is a fuzzy subgroup of ¥.

PROOF :
Let a, € pand x € . Then
A p(ax) = AA p(xa™)

Let x = xx, and x;'x,;x, = a,.
Suppose p,pq(x) # 0.

Then pp,(x) = sup  p(x) A poxy)
X = XX,

= sup (%, 8, x51) A Ay, where A, = po(x,) # 0,
X = XXq

= sup Ay A py(ay) by ®
X = X438

= sup pa(X) N py(2y)
X = Xg3y

= pghiy(X)-
If pyps(x) = 0, it is easily shown that p.u,(x) = 0. Hence, by Proposition 1.3.9,
fuypty is a fuzzy subgroup of ¥.

Further results on products will be given in Chapter 3.

19
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The following easy result will be useful later :

PROPOSITION : 1.3.11

Let p be a fuzzy subgroup of ¥ and 7% a normal subgroup of %.

p(x) xeH
Define v: ¥ — [0,1] by »(x) =1 , XgH
Then v« p.
PROOF :

Similar to the proof of Proposition 1.3.4.

We end this chapter by proving that the fuzzy union of all the left fuzzy cosets of the
form a \V» where v< p, is a fuzzy subgroup of ¥.

THEOREM : 1.3.12

Let v < p be fuzzy subgroups of ¢ such that v« y. Definew : ¥ — I by

w(x) = sup a A ¥(x). Then w is a fuzzy subgroup of ¥.
a, € 4
A

PROOF

w(x) = sup MA Y alx)

ay € 4

= sup AA ¥ xal) sincevayp
ay € p

= sup AA yax?) since »(x) = Ux)V xe ¢
ay € p

= sup AA v ax?)
a)‘\‘ € U

= sup AA yalx?)
ay € p

= sup ay ¥x7) = w(x).
a, € p



Next we show that w(xy) > w(x) A w(y), x,y€ ¥.

w(x) = a'/\s:;pﬂa,)\ Ux) and w(y) = bﬂsgpﬂbﬂ y).

Let A, B¢ (0,1] such that 2y, bﬂe p Let a= AA (. Then (a,b)ae e

w(xy) = sup ¢, /xy)
Cy€En

> sup (ab)a Uxy)
a.)‘, bﬁE 14

= sup AABAv(blalxy)
ay, bﬁe 7

= sup AABAyalxybl) since vay,
a,)‘, bﬂ €L

> sup  AAva'x)ABAy(yb?)
ay, bﬂe b

= a)"sgge ”[a)‘ v(x) A bﬂ Uy)]

= q, say.
Let a; = w(x), oy = w(y).
Let oy = ag A ay.

We claim that a, = a; :
Clearly o, < o4.

oy = sup ay Ux)A ay,. Let €€ (0, ay A o).
ay € p

Therefore ¢, —e < b Bo Y(y) for someb fo € M-
Hence a) ¥(x) A (ap —€) < ay v(x) A bﬂ0 v(y)
$a, forall ay € p.

Therefore  sup [ay ¥(x) A (0 —€)] < o
ay € p

Hence ag A (ay —€) < o forall e€ (0, ay A o).
Therefore a3 A o, < oy ;ie < o

Hence w(xy) > w(x) A w(y), as required.

21
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REMARK : 1.3.13

The fuzzy subgroup w, defined above, can be thought of as another version of a fuzzy
quotient u/v since in the crisp case the set

{aN:aeg}= ¢g/N forNa %
Unfortunately the collection {a A Viay € i} does not form a group except if A is

fixed. So we do not pursue this apparent new notion of a fuzzy quotient.
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CHAPTER 2

FUZZY CONGRUENCE RELATIONS AND NORMAL FUZZY SUBGROUPS

INTRODUCTION

Given a fuzzy subset v of a group ¥, is there a smallest fuzzy subgroup p of ¥
containing v 7 Of course the answer is in the affirmative. But we want to know the
structure of u. For example we know that given fuzzy subgroups x and » such that

p(e) = v(e), the smallest fuzzy subgroup containing p and v is v (see Chapter 3). In
this chapter we answer the above question by studying fuzzy subgroups generated by
fuzzy subsets. We also construct, from a given fuzzy subgroup p, some fuzzy subgroups
that are normal in x. In [43] Mukherjee and Bhattacharya introduced a notion of fuzzy
normalizer. This fuzzy normalizer is not a fuzzy subset, but a crisp set in which the
fuzzy subgroup is fuzzy normal, which is basically a crisp normalizer. In this chapter we
present a fuzzy normalizer N(u) of a fuzzy subgroup p in which p is fuzzy normal. A
notion of a fuzzy centre is also introduced, and it is easily shown that it behaves like the
Ccrisp centre.

In [9] Murali studied fuzzy congruence relations on algebras. In Section 2.2 we present
the work done by us in [10]. Here we unite the two notions of fuzzy normality and
congruence in a fuzzy subgroup setting. In particular we prove that every fuzzy
congruence relation determines a normal fuzzy subgroup. Conversely, given a normal
fuzzy subgroup, we can associate a fuzzy congruence relation. The association between
normal fuzzy subgroups and fuzzy congruence relations is bijective and unique.

Subsequent to the work in [10], Sidky and Ghanim studied fuzzy congruence relations on
semigroups in [52]. In the most recent publication, Kuroki [58] has also studied fuzzy
congruence relations and normal fuzzy subgroups. The difference between the notions of
fuzzy equivalence relation given in [10] and [52] is that in [52] the sup—min transitivity
of Definition 3.1 in [10] is replaced by the sup — T transitivity, where T is a t—norm.
The substitution property in the definition of a fuzzy congruence relation is also replaced
by T—compatible and T—equivalence. In this thesis we do not use a t—norm.
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2.1 : FUZZY SUBGROUPS GENERATED BY FUZZY SUBSETS :

DEFINITION : 2.1.1

Let ¥ be a group and v a fuzzy subset of %, v# 0. The smallest fuzzy subgroup of
% containing v, denoted by < v >, is called the fuzzy subgroup o f ¢ generated by v.

NOTE :

1. I {v, : Ae A} is a set of fuzzy subgroups, then /\ vy = inf v, isalso a
AE A A€ A

fuzzy subgroup of %. Therefore definition 2.1.1 makes sense.

2. By<{v,:A€ A} > wemean < v v, >, where VAya= supAua.
a€ A a € a€

3. The notion of fuzzy generation coincides with the notion of crisp generation when
[0,1] is {0,1}.

PROPOSITION : 2.1.2

Let v be a fuzzy subset of ¥ and 4= < v >. Then supp p = < supp v >.

PROOF :
Straightforward.

DEFINITION : 2.1.3

Let v be the supremum of a finite number of fuzzy points. If p = < v >, then p is
said to be finitely generated. If p=< a \ > for some fuzzy point a \ then p is said to

be cyclic.

It is clear that a level subgroup of a finitely generated fuzzy subgroup is finitely
generated.
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PROPOSITION : 2.1.4

Let v be a fuzzy subset of §. Let x € § such that x = alf k. k“ , where each kj

is an integer for each i € {1,2,-- - ,n}. Choose A; € (0,1] such that A; < ©(ai), and let
A = inf{Ay,- -+ ,An}. Define w: ¥ — [0,1] by w(x) = sup A, where the supremum is
taken over all the n—tuples {)\,--+,An}, n€ N. Then

(i) wis a fuzzy subgroup of ¥,

(i) w=<v>.

PROOF :

(i) Suppose A< v(a). Now a = aa”la implies that w(a)> A. Hence w v.

_ ak k2 ~kn | a;kzazkl.

X = kn(:) x1=ag

So it is easy to see that w(x) = w(x™).

Let w(y) = Sup B, where = inf{fy, - - .85}, y = bT1b52 - - . b8 such that
Bi< Y(b;),i=1,---5, and w(x) = Sup A, where A = inf{A;,--- ,Ap},

X = ak1a12(2 . alrfn such that A; ¢ »{a;) foreachi=1,2,---n

AA B =inf{A, -+ An,By -+ s} and xy = a¥t ... gKnpTiL.. ps

So it is easy to see that w(xy)> sup AA f=sup AA sup = w(x)A oy).
Hence wis a fuzzy subgroup of %.

(ii) Let p= < v>. Since w? v, it is obvious that w> u.
Let A< w(x),x€ ¥. Sox€ supp w.

w(x) = sup f§, where f = inf(fy,- - - fa}, x = bIbK2 ... bED such that
Bi < Y(b;) for each i = 1,2,---,n. Hence

inf{u(by), 4(ba), -, p(bn)}
inf{i(b;), ¥(b2), - -, ¥(bn)}
inf{By, -+, Pu} = B

Therefore u(x) > w(x). Hence y = w.

w(x)

IV v IV

DEFINITION : 2.1.5

Let 4 be a fuzzy subgroup of ¢. The commutator fuzzy subgroup of p, denoted by 4,
is the smallest normal fuzzy subgroup of x such that p/y’ is fuzzy Abelian.
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The above definition makes sense since g <« p and p/p = p,, hence pfp is fuzazy

Abelian.

THEOREM : 2.1.6
Let 1 be a fuzzy subgroup of %. Let w = < {a, bﬂ a)"l bb‘ Pay, bﬂe p} >. Then
wap;w>y and #/wis fuzzy Abelian.

PROOF :

Clearly w< p. We claim that w< p: Let §< u(a) and x€ ¢ .

ablwaﬂ(x) = AN w(axal) and eﬁw(x) = B A ofx).

Suppose w(x) = sup a, a = inf{Ay,- - - ,An,f1," - + ,0n} where

X = (albiamglbil)k1 ‘e (a,nbnal;lb;,‘)k“ such that

Ai< w(a;) and Fi< p(bi),i=1,2,---,n.

axa™ = (aa;a”)(abjat)(aa'a)(abilat) - - - (aana)(abnat)(aa;la)(ab;la?)
& x=aba’bi - abajlbl

Also p{aasa™) 2 wla) A p(ai) 2 BA X, i=1,2--n& gai)> BA Ay, i=1.2,--- 1.
Therefore fA w(x) = A w(axa™). This is also true for the case w(x) = 0.
Hence agw = waﬂ for all aﬂe L

It is easy to show that u/w is fuzzy Abelian and w?> y'.

This completes the proof.

CONSTRUCTION OF FUZZY SUBGROUPS FROM A GIVEN FUZZY SUBGROUP.

Let u be a fuzzy subgroup of % . Define u, : ¥ — [0,1] by py(x) = p(x)p(x), x # €, and

() = u(e).

In general, u,(x) = [(x)], x # e, and p,(e) = p(e).

PROPOSITION : 2.1.7

Let u be a fuzzy subgroup of %. Then p, is a fuzzy subgroup of %.
Also un is a fuzzy subgroup of % for each natural number n.
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PROOF :
Clearly p,(x) = po(x71),
1y(xy) = p(xy)u(xy), and

wxy) 2 px) A uy).
Suppose  u(x)< p(y). Then p(xy)> wx).
Hence pxy) p(xy) 2 p(x) p(x) = po(x).

iLe. Ha(Xy) 2 g(x) 2 () A pay).
S0  py is a fuzzy subgroup of ¥.
Similarly u, is a fuzzy subgroup of %

It is easy to see that y is fuzzy normal if and only if each y, is fuzzy normal.

The following fuzzy groups will be used in the study of nilpotent groups :

DEFINITION : 2.1.8

Let p and v be fuzzy subgroups of %. If hy € pand kg€ v, then

[y kgl =3 kgt hy kg and (2] = < {lhy kgl hy € u kge v} >.

Let x = a%1ak2 ... a¥ne ¢, where ki€ 7,i=1,2,--+,n. Let A = inf{Ay - ,An},

a; = [hy,ks] such that £;< p(hs) and Gi < (ki) and A; = &5 A fifor eachi = 1,2,--- n.
It is easy to show that [y,/](x) = sup A, where the supremum is taken over all the
n—tuples {Ay,- -+ ,An}, n € N.

PROPOSITION : 2.1.9

(] = vyl

PROPOSITION : 2.1.10

[4,V] = p, if and only if k)\hﬁ = hﬂk/\ forallk, € v, hﬂe L
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PROOF :
= :Letx = a]fla};? e algn, a; = [hk;] and A; = &; A B; such that
;< w(h;) and B; < v(k;) foreachi = 1,2,---,n. Let A = inf{A,--- A }.
Then p(x) = sup A.
e) x=e

I'l'e(x)z{l(‘)( ) X# e.
Now A< pe(ai) implies pe(x) 2 pe(ar) A - -+ A pe(an) = pe(aj) > A; for some
j€ {1,2,--- n}

Suppose A; # 0. So pe(as) = p(e) for all i = 1,2,--- n. Therefore a; = e, and the
result follows.

Suppose pe(as) =0foralli=12--- n.
aj = [hy,k;] implies h; ¢ supp por ki ¢ supp v. Either case yields the desired result.
The converse is obvious.

DEFINITION : 2.1.11

Define a sequence of fuzzy subgroups of x as follows :

1) = 1 1) = [y (), al, vs(we) = [ve(ms), s - -

PROPOSITION : 2.1.12

Let u be a fuzzy subgroup of ¥. Then > 7,(u) 2 15(k) 2 -++ and 7;(p) < pfor
allie N

PROOF :

T = (1), 4l = [, 1l < 1
Y1) = [7a(w), 1 < [74(ws), ] = 7y(1s)-
Hence, by induction, v,,,() < 7,(1).

Let ay € yu. We will show that a, 7(s) = 7;(p)a,.

Let a'ly = a,]fla}z(2 o a,lrf“ such that for eachi = 1,--- n, a; = [h;k;] such that

&< Yia(w)(hy) and By € (ky). Let Ay = & A By and f = inf{A,- -, A} In fact we

ly = cee
can assume that a”'y = a,a, ay
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Then A A 7,(p)(aly) =sup(fA A) = XA sup 8

1) = [ = I 1w

(Ya'l)ﬂ = aﬂ(al/\l e an/\n)aél.
Assume, without loss of generality, that a, AT Bmy, = h;éikgb hif.kiﬂ.. Therefore
4y — -1 -1

(g = [aghigp 2gkipg )
Hence A A 7;(p)(y 27) 2 A A 73()(a”y).
By symmetry, A A 73(p)(a”'y) 2 A A ;(p)(y a7).
Hence ay 7;(4) = Ti(w)a, forallie M.

THE NORMALIZER OF A FUZZY SUBGROUP :

DEFINITION : 2.1.13

Let 4 be a fuzzy subgroup of ¥. The fuzzy subset N(u), of %, defined by

sup{} : X\b = p Xy, Xy 8 fuzzy point in ¥}
N(p)(x) = {

0 otherwise

is called the normalizerof pin %.

THEOREM : 2.1.14
Let u be a fuzzy subgroup of %. Then

(i) N(p) is a fuzzy subgroup of ¥ ;
(i)  peN(p);
(iii) N(p) is the largest fuzzy subgroup of ¥ such that < N(u).

PROOF :
(i) xyp = px, if and only if x3'p = px;t.

Hence N(x)(x) = 0 if and only if N(g)(x) = 0.
Suppose  N(p)(x)  =sup{A:x,p=px,}
Therefore N(u)(x) = sup{) : x3'p = px;'} = N(p)(x).
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We now claim that N(p)(xy) > N(g)(x) A N(u)(y). If N(u)(x) = 0, there is
nothing to prove.
Suppose N(u)(x) > 0.

Let N(u)(y) = sup{f-ypgu=nyg}>0.
Take any A; and any f;, and let a;; = A; A B;-
(xy), #Ma) = oayhu(y’x'a)
ij

= ay; A p(xa y™) since Vo B=HY,

= a;; A pla yx) |
= (#)(XY)aij(a)-
N(p)(xy) = sup{d : (xy)yp = plxy)y} 2 sup{ay; : xy o= px, and
y ﬂj,u =upy ﬂj}' Therefore
N(p)(xy) 2 sup{diA By xyp=pxy andypp=p Yg}
= sup{d; 1 x; p=px) } A sup{f;: Ygh=HYg}
= N(p)(x) A N(p)(y)-

Clearly p < N(u).
Let ay € N(u). We want to show that ayu = p ay.

Case N(u)(a) = X :
So A = sup{};: ayp=p a/\i}. Now A; A p(a™x) = A A p(x 2”) forall xe g
and all a,)\i satisfying a/\i p=p al\i.
Hence sup[A; A p(a™x)] = sup[A; A p(x a™)].
1 1
Therefore (sup A;) A u(a'x) = (s1i1p M)A p(xa™)
1

ie. A p(aix) = XA p(xal)
ie. A= pay.
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Case N(u)(a) 7 A:

3 A a)‘ip, = ,ua)‘i, such that A; ? A

Now A; A p(a™'x) = A; A p(x a™) forall xe ¢.
Hence A; A A A p(a™'x) = A A A A p(xa™)

ie. M p(alx) = A A p(xat)
i.e. a.)\ ‘u = /1: a)‘.
This proves (ii).

(iii) Let p < w, for some fuzzy subgroup win %¥. We want to show that
w < N(p). Let ay€w. Thena, u=pa,.

Hence N(p)(a) = sup{};: Ay h= 4 aAi}z A
Hence N(g)(a) > w(a).

This completes the proof.

PROPOSITION : 2.1.15

Let 4 be a fuzzy subgroup of % such that u(supp ) C [a, p(e)] for some & > 0. Then
supp N(u) = N(supp ).

PROOF :

Let a € N(supp p). So supp g = a(supp w)a™.
If a € supp p, there exists A > 0 such that ay € p. So ayp = pa,.

Hence a € supp N(u).
Suppose a ¢ supp p. Let x€ ¥.

Suppose a'x € supp g Then xa™ = a(a™'x)a™ € supp x and conversely.
Now u(a'x) > aand p(xa™) > a

So ah plalx) = a= aA u(xal).

Suppose a”'x ¢ supp p. So xa™' ¢ supp pu.

Therefore oA p(a™lx) = 0 = aA p(xa™).

Hence a A= R,

Therefore a € supp N(u).
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Supp N(p) ={x€ ¥ : x,p = px, for some A > 0}

¢ {xe g : x(supp p) = (supp ) x}
= N(supp p).

Hence N(supp p) = supp N(g).

DEFINITION : 2.1.16

Let u be a fuzzy subgroup of . The centre of y, denoted by Z(p), is a fuzzy subset
of ¢ defined by

sup{A, x € p such that x)‘bﬂ = bﬂx/\ for all bﬁe p }

Z(p)(x) = { if x ¢ Z(supp 4)

Clearly Z(p) # 0 since u(e) > 0.
Let a€ ¥. Then p(a)> Z(u)(a)-

PROPOSITION : 2.1.17

Z(p) < p

PROOF :

First we prove that Z(p) is a fuzzy subgroup of ¥. Let x € ¢ such that Z(u)(x) > 0.
So Z(u)(x) = sup A, Xy € p such that x/\bﬂ = bﬂx)‘ for all bﬁe L.

We claim that x)‘bﬂ— bﬁx)\ if and only 1fx ﬂ— bﬁ )‘

(=) Leta=AAgG
Therefore (xb) , = (bx) , hence aA b (x'y) = aA b (yx*) forallye g.

If y = xb, then LHS = @. Hence RHS = a. So xb = bx.
Now x)"lbﬁ(y) = AA bﬂ(xy) (1)
and bﬂx)"l(y) = AA bﬁ(y X) (2)

If (1) = 0 and (2) # 0, then y = bx! = x"!b, contradicting the fact that
(1) = 0. So (1) and (2) are either both zero or both nonzero.

If (1) and (2) are > 0, then y = x"'b = bx™!, hence (1) = (2).

Therefore Z{(p)(x) = Z(p)(x) > 0.
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Clearly Z(p)(x) = 0 if and only if Z(x)(x™!) = 0.
Next we show that Z{(p)(xy) > Z(p)(x) A Z(p)(y).
Consider Z(p)(x) = sup{A;: X/\ibﬂ = bﬂx)\i} and

Z(p)(y) = sup{f; : yﬁjbﬁ = bﬁyﬁj} as required in Definition 2.1.16.
Let o5 = A;A B
Therefore xaij b g= b ﬂx &; and yaij b 5= b ﬂyaij.
Now (xy) aijb 8 =xaij(yaijb ﬂ) =x aij(b ﬂyaij)
= (xaijb )yaij = bﬂ(xaij yaij) = bﬂ(xy) &

Therefore
Z(p)(xy)  =sup{X: (xy)ybg=blxy),}

Z sup{A; A B x/\ibﬁ = bﬁx/\i and yﬁjbﬂ = bﬁyﬂj}

= sup{};: x)‘ibﬁ= bﬁx)\i} A sup{g; : yﬁjbﬂ = bﬂyﬁi}

= Z(p)(x) A Z(p)(y)-

If Z(p)(x) = 0, the result is trivial. Hence Z(p) is a fuzzy subgroup of %.
We now show that Z(u) < p:
Let a) € . We will show that a, Z(x) = Z(p)a,.
ay Z(u)(x) = AA Z(p)(a”'x) = A A sup A; and (a“‘x))‘ibﬂ = bﬁ(a"x))‘i,
(a'x), € pand Z(p) ay(x) = AA Z(p)(xa™) = XA sup ),

1
(x a'l))\ibﬁ = bﬂ(x a'l))‘i. (a"x))‘ibﬂ = bﬁ(a'lx))\i for all bﬂ € u if and only
if (x a"))‘ibﬂ = bﬁ(x a,'l))‘i for all bﬁe p. Hence ay Z(p) = Z(p)a, for all
ay €

The proof is complete.

PROPOSITION : 2.1.18

Z(supp u) = supp Z(p). Hence Z(p) is fuzzy Abelian.
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obvious.
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The notions of fuzzy centre and normalizer are good extensions of the crisp analogues.

More precisely

PROPOSITION : 2.1.19

(i)
(if)

PROOF :

(i)

IfH < ¢, then Xn(H) = N(XH).

Easy.

Xg (supp X5) = {1} € [o1] for some & > 0.
So supp N(XH ) = N(supp Xg) = N(H) by Proposition 2.1.15.

N(H) = {xe g : xHx' = H}.
Supp N(xgz ) = {x€ ¥ : A xgz (x72) = A Xg (ax) for some A > 0}.

Now let xe N(H). SoxHx1=H.
Suppose Xy (x'a)# 0. Thenx™a€ H. Sox"a =hfor somehe H.

Henceax' =xhx™e H. Soxg(x"a)# 0 x; (ax™)#0.
Hence A A xg (xa) = xz (ax™) A X forall Ae (0,1].

ie. X, Xg = Xg X, forallxe N(H).

SoN(g)() = { sup{d : xyp = px) 0 = ¥y}

0 otherwise
1 xe N(H)
=)0 x¢N(H) = Iy (),

The proof is complete.



For the sake of completeness we define the notion of fuzzy centralizer :

DEFINITION : 2.1.20

The centralizer of a fuzzy point a 3 € u, denoted by C/L(a. ﬁ)’ is defined by

sup{}, x, € g such that x,a,=ax,}
C (agx) = { A N8RBT
0

i i < .
It is clear that Cﬂ(a, ﬁ) is a fuzzy subgroup of ¥ and that Cu(a ﬂ) <

otherwise.

Also ch(a) = CXy(Xa)’ A€ Y.

DEFINITION : 2.1.21

The centralizer of a fuzzy subgroup u is a fuzzy subset of ¥ defined by

sup{A A B, a, € y ,, such that a;bg=Dba, forallbge u}
) = g RO Z

0 otherwise.
It is not hard to prove that C(u) is a fuzzy subgroup of ¥, and that
supp C(p) = C ?(Supp K)-

In case p = x A then Z(u) = C(u).

-

2.2 : FUZZY CONGRUENCE RELATIONS INDUCED BY NORMAL FUZZY SUBGROUPS

DEFINITION : 2.2.1 [§]

A fuzzy relation von ¥ is a mapping v: ¥ x ¥ — [0,1].
Denote the set of all fuzzy relations on % by I( % ).
For pe I( %), let t5 = sup{u(x,y) : (x,y)€ ¥x ¢ }

If t, = 0, then we have the empty relation

px,y) =0 forall x, y€ %

35
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In this section assume that 0 < t, ¢ 1. Two operations are defined onI( %) x I( %),

one, called the composition and denoted by p o v, is defined as

po yx,y) = Zug [1(x,2) A (z,)]

for p, ve I( ).

The other, called the multiplication and denoted by p.v or simply pv, is defined as
p(x,y) = sup{[u(x;,¥;) A ¥(xp,¥,)] - x = x1x2 and y = yyya} for u, v€ I( Z).
(See [9]).

DEFINITION : 2.2.2 [8]
A fuzzy relation g on ¥ is said to be a fuzzy equivalence relation on ¥ if
(i) u(x,x) =ty for all x € ¢, (Reflexive).

(ii) wx,y) = u(yx) forall x,y€ ¢, (Symmetric).
(iii) po u < p, where o denotes the composition, (Transitive).

It is readily checked that if y is a fuzzy equivalence relation, then y is idempotent

for o, i.e. p o u = p Furthermore, for each t € [0, to], the t—cut, xb, is a crisp
equivalence relation, where ut is the relation x u'y & u(x,y) > t. In particular, the
to—cut pubo is a crisp equivalence relation and as such yields a partition of # in the
crisp sense. The to—cut classes of % under this partition are denoted by X, ¥, €, etc.,
containing representative elements x, y, e respectively.

For each to—cut class %, for x € ¥, a fuzzy subset p. : ¥ — [0,1] is defined as

u)_c(a) = p(x,a) forall xe ¢.

Now for each t € [0,t,], the collection { Ct}_c : x€ ¥} of t—cuts is a crisp partion of ¥.

DEFINITION : 2.2.3

A fuzzy equivalence relation p on ¥ is called a fuzzy congruence relation of ¥ if
pp g .
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The relation pp < g can be thought of as a substitution property as is well known in
crisp congruence relation on a group or a general algebra. Moreover, one can
interpret in the crisp case a congruence relation as an equivalence relation E which is
at the same time a subgroup of % x ¥ . Analogously, a fuzzy equivalence relation
which is at the same time a fuzzy subgroup of ¥ x ¥ is called a fuzzy congruence
relation. It is easily checked that for each t € [0,t,], u® is a congruence relation if and
only if u is a fuzzy congruence relation on ¥.

CONGRUENCE AND NORMAL SUBGROUPS :

We now turn our attention to the relationship between fuzzy congruence relations on ¥
on the one hand, and normal fuzzy subgroups on the other. Firstly we have

THEOREM : 2.2.4

Let u be a normal fuzzy subgroup of . Definev: ¢ x ¥ — [0,1] by
U(x,y) = u(xy™). Then vis a fuzzy congruence relation on %.

PROOF :

Ux,y) = pxy™) < ple) = to. Also
Ux,x) = ple) = to forallxe .
Hence v is reflexive.

uxy) = wlxy™) = pl(xy™) ] = plyx?) = fy,x) forall x,y€ g.

Z €

=sup [u(xz") A w(zy™)]
Z € ﬁ

< u(xz'zy™)
= p(xy™)
= Ux,y).

vo uxy) = sup ;V(x,z) A Az,y)]

Finally we show that vv < v.

v(x,y) = sup{[U(x;,y,) N UxXy,¥,)] 1 X = x1Xp and y = y1y2}

whereas v(x,y) = u(x y!) = p(xx,y;'y;!) for every representation x = x,x,, y = y,y,.
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But u(x,%,y5'y;") = w(xyy1'y X551

2 ﬂ(XJIl) A IJ'(Y1X2Y§,IYI1)
= p(xy) A u(xyy5")

= U(x,,¥,) N U(x,,¥,) since p is fuzzy normal.

Hence vv(x,y) < v(x,y).

This completes the proof.

The following is a sort of converse to the above Theorem. Every fuzzy congruence
relation determines a normal fuzzy subgroup.

THEOREM : 2.2.5

Let u be a fuzzy congruence relation on ¥. Then there is a normal fuzzy subgroup v
of ¢ such that u(x,y) = u(xy™).

PROOF :

Clearly p(x,x) = to forall x € . uto is a crisp congruence relation on %. Let [e] o

be the class containing the identity e in the partition of ¥ yielded by ut°.
Define v: ¢ — [0,1] by »(x) = p(x,e) for all x€ g. ‘

(i)
(i)

v is well defined.

wx,e) = p(xe) forall xe ¢ :
Suppose x € [e]uto. Then x p.t°e and x! pt" xl. Hence e ut‘) x’! and this
implies that u(x,e) = to = p(x,e).

Suppose x ¢ [e]ﬂt0 . Then u(x,e) < to, and also u(x,e) < t, since

[e]#tog #. Let t, = p(x,e) and t, = p(xe). Ift, <ty then x € [e]ut1 and

x ¢ [e]“tz. Alsoxte [e]‘ut2 implies that x € [e] e

This is a contradiction.

A similar contradiction arises if we assume that t, < t;. Therefore t, = t,,

ie vx)=vyxT)forallxe g.
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(i) uxy) = pxye)
> w(x,e) A u(y,e) since pis a fuzzy congruence relation,

= ¥(x) A Uy).

(iv) u(x,e) = u(xy,y) forall x,y€ ¢ :

Let t, = p(xy,y) and t, = p(x,e). Ift, > t,, then [e] ¢, C [e]

7 put

xy ptty and y'ubty! implies that x pble.
Hence y(x,e) > t,, and this implies that t, > t,, a contradiction !
A similar contradiction results if t;, < t,.

Therefore pu(x,e) = u(xy,y).
So u(xyt,e) = u(x,y). Hence vixy™) = p(x,y).

(v) v is fuzzy normal in ¥.
Y(atxa) = p(ax a,e)
=p(xa,a)

= u(x,e) forallx,ae ¥.
So v(alxa) = v(x).

This completes the proof.

THEOREM 2.2.6

Let 4 be a fuzzy congruence relation on %, and to = sup u(x,y). The collection
X, YE¥

{#)—( : x € ¢} is a fuzzy partition of ¥ in the sense that sup pe =1 7 where

X€E€Y

I ?(X) =toforallxe ¥, and p_ A uy(a) <to forx# y,forallae ¥. Furthermore
{,u}_( : x € ¢ } is a group under a suitably defined binary operation. The fuzzy subset
e of ¥ is precisely the left fuzzy coset xu of ks agsociated with x € %, where

g = [e]ﬂto.
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PROOF :

It is easy to check that sup fie = I..
X €Y g

We now show that pg A ,uy(a) <t,V a€e¥,x¢¥.
Suppose pg A u?(a.) = to for some a€ ¥. Then pi(a) =t = ,u.?(a).

Hence u(x,a) = p(y,a) for all x€ %, y € §. Therefore x u%oa and y pboa implies that
x ptoy. Soye XN § =49, a contradiction.
Now define a binary operation as follows :

g by = Mg where xy is the class containing xy for x € X, y € .

The multiplication is well defined :
Let x,x,€ X and y,y,€ §.

We must show that u(xy,a) = u(x,y,,a) forallae g.
Now x ubo x, and y pbo y, implies that xy pto x,y,. So x,y, € Xy.
Hence u(xy,x,y,) = to. If a€ Xy, then p(xy,a) = t, = p(x,y,,3).
If a ¢ Xy, then p(xy,a) < to and p(x,y,;,a) < to.
Therefore p(xy,a) > p(xy,x,;y,) A p(xy,,3)
=p(x,y1,3).
Similarly p(x,y,,a) > p(xy,a).
Hence p(xy,a) = p(x,y,,a).
S0 'u’x_y(a') = Wxyy,8)-

We next show that {p,)_( : X € ¥} is a group under the binary operation defined above.
Palie = s Since p—(a) = p(ex,a) = u(x,a) = p(a) forallace g.

Similarly pcps = pe.
Define x ! = [x71] ubo forxe g.

Then H}—( ﬂ’i -1 = /“'é- S0 (/1')‘()-1 = 'u'}_( -1-
The associativity (”i p}_,),uZ = u}_{(,uy '"'z) follows from the same property in ¥ .

Finally we recall that the left fuzzy coset of p associated with x € ¢ is xu defined by

(xp)(y) = p(xly) forallye g.
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By Theorem 2.2.5, ks is a fuzzy normal subgroup of %. We claim that Xfs = fhe for
all xe 7 :
xpus(y) = pg(x7ly) = p(xly.e) = plxx"y x) = u(y x)
= mxy) = pg(y) forallye 7.

This completes the proof.
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CHAPTER 3

DIRECT PR.ODUCTS OF FUZZY SUBGROUPS AND
THE FUZZY ISOMORPHISM THEOREMS.

INTRODUCTION

The product of two fuzzy subgroups was introduced in Chapter 1. In Proposition 1.3.10
we proved that if uy and pp are fuzzy subgroups of u such that pg or y, is normal in g,
then pip is a fuzzy subgroup of %. It is easy to show that normality of u; or pz in p is
essential for ujus to be a fuzzy subgroup. It is also easily shown that if uv is a fuzzy
subgroup of ¥, then it is the smallest fuzzy subgroup of % containing both x and v on
condition u(e) = v(e). Analogues of the Dedekind and Modular laws are presented and
proved in this chapter. In [14] Sherwood introduced the notion of an external direct
product of fuzzy subgroups. In [11] we introduced the notion of an internal direct
product and then proved that the internal and the external direct products of normal
fuzzy subgroups are isomorphic. When % is a finite group, we show that uv is an
internal direct product if and only if every nonzero level subgroup of pv is an internal
direct product of the corresponding level subgroups of x and v.

In Section 3.2 we introduce a notion of a fuzzy kernel of a homomorphism. It turns out
that the fuzzy kernel is the homomorphic pre—image of the trivial fuzzy subgroup whose
support is the identity element of the underlying group. This fuzzy kernel is a
generalization of the fuzzy kernel given in [11]. K f: ¥ — g’ 1is a group
homomorphism, and u is a fuzzy subgroup of ¥, it is easily checked that the fuzzy
kernel of f associated with p is fuzzy normal in p.

Finally we state and prove analogues of the three well-known isomorphism theorems in
group theory. This is an improvement of part of the work done in [11]. We also show,
by means of an example, that the second isomorphism theorem fails if we use the
quotient of Mukherjee and Bhattacharya introduced in [1].

Subsequent to the work that we have done on direct products, it is interesting to note
that Malik, Mordeson and Nair in [59] defined an internal direct product of fuzzy
subgroups as in [11]. Finally they proved that if v is a compatible and divisible fuzzy
subgroup in a fuzzy subgroup u, then v is a direct factor of . In this thesis we have not
studied divisible and pure fuzzy subgroups.
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3.1 : PRODUCTS AND DIRECT PRODUCTS OF FUZZY SUBGROUPS.

By proposition 1.3.10, if y is fuzzy normal in %, and v is a fuzzy subgroup of ¥, then
pv is a fuzzy subgroup of ¥ . We show, by an example, that if 4 and v are both not
fuzzy normal in some larger fuzzy group, then uv need not be a fuzzy subgroup of .

EXAMPLE : 3.1.1
Let ¥ =S; = {e, a,a% b, ab, a’b}, b2 = e = al.
Let H = {e,b} and K = {e, ab} and p = xp, v = xy.

Then y and v are not fuzzy normal. Now p(a’b) = 0, while pi(a?) = 1 = u(b).
ie. p(a?d) } pv(a?) A py(b).

THEOREM : 3.1.2
Let u, v be fuzzy subgroups of % where p is fuzzy normal. Then uv is the smallest
fuzzy subgroup of ¥ containing both y and v.

PROOF :
For any x€ ¢
pAx) > min((x), e))
= p(x) since v(e) = pfe).
So pv > p. Similarly uv> v.
Let £ be a fuzzy subgroup of ¥ such that u< £ and v < &
Let a = p(x) > 0, x € #. Forany 0 < € < a, there exist x,,x, € ¥, such that

X = X(,X,, With a—e < p(x,) A v(x,).
Therefore ¢(x,) A é(x,) > a—e and £3(x) > a—e.

Hence £(x) > a—e since £2 = ¢.
So §(x) > a = py(x). I p(x) = 0, then pr(x) < €(x). Therefore £ > uv.

The proof is complete.

REMARK : 3.1.3

The above theorem is not necessarily true if u(e) # v(e).
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PROPOSITION : 3.1.4

Let p, py, iy be fuzzy subgroups of ¥ such that p = pyu,. Then

supp 4 = (supp p,)(5upp 4,)-

PROOF :

Straightforward.

We now state and prove the Dekekind and the Modular laws :

PROPOSITION : 3.1.5 (DEDEKIND LAW)

Let y, v, ¢ be normal fuzzy subgroups of ¥ with u < ¢. Then pvA £ = p(v A §).

PROOF :
(v A £)(x) = sup  (min(u(x,), xx,)) A £(x))
X = XX,
= sup  (u(xy) A ¥(x;) A ¢(x))
X = XX,
> sup  (pl(xy) A Uxy) A &(xy) A £(x5))
X = XX,
= swp () A ) A €(xy)), since s < &
X = XX,
So (wv A £)(x) > sup  min(u(x,), (VA £)(x,))
X = XX,
= W A €§)(x),
ie puvA € > (v A €).
Conversely
wn €)(x) > min  [p(xg), vA £(x,)]
X = XX,

= minfu(x;), 1x,), §(x,)]
> minfu(x,), Ux,), £(x;) A £(x,)] 2 minfp(xy), 1(xy), &(x1) A £(x)]
= min{i(x,), uxy), ()] since u < &

Therefore p(v A €)(x) > min(p(x,), Y(x,)) A £(x).
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Hence p(v A €)(x) > p(x) A €(x) and therefore (v A §) = pv A £

PROPOSITION : 3.1.6 (MODULAR LAW)

Let p, v and £ be normal fuzzy subgroups of ¥ with 4 < v. Suppose also that
ph € =vA €and p€ = v€. Then p=v.

PROOF :

w(x) = p(x) = sup  p(xy) A u(x,)
X = XXy

> sup  px) A (pA €)(x,)
X = XX,

= pp A €)(x)
= v A §)(x)
= pé A Y(x) by the Dedekind Law,

= (V€ A V)(x) since pé = v¢
= 1(x) since v V¢
ie. g2 v. Therefore p = v.

The following obvious result will be useful later.

PROPOSITION : 3.1.7

Let p, v, £, abe fuzzy subgroups of %. If p< vand £< a, then pf < va.

PROOF :

Straightforward.

PROPOSITION 3.1.8
Let p, 4, py be fuzzy subgroups of ¥ with p,u, < 4. Suppose also that u, A p, = p,
and g = ppy. Then supp p = supp g, ® supp p,, where ® denotes the internal direct

product.
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PROOF :

Straightforward.
This motivates the following definition :

DEFINITION : 3.1.9
Let p, py, py be fuzzy subgroups of %. Then pis the fuzzy internal direct product of

py and p,, and we write p = p, @ p,, if

(i) By g QL
{) =
(i) Ay = e

PROPOSITION : 3.1.10

Let % be a finite group with p,,u, fuzzy subgroups of ¥ and p, fuzzy normal. Then

(1yptg)® = pipd, where pf = {x€ ¢ : py(x) > t}, i=1.2.

PROOF :
Let x € pfué. Then there exist x, € pf and x, € i, x = x,x,, such that
min((x,), fy(x5)) 2 4
Thus p,p.(x) > t, and hence x € (pp,)"
Conversely, let x € (py)"; i.€. pypg(x) 2 t.
Since ¥ is finite, there exist y,,y, € ¥, X = y,¥,, such that pu,(x) = p,(y,) A py(y,).
So py(y,) > t and p,(y,) > t. Hence x € piul.

This completes the proof.

PROPOSITION : 3.1.10/

Let @ be a group with py, yg fuzzy subgroups of ¥ and uy fuzzy normal. If pus has
the sup property, then (uus)® = piuf, where uf = {x € ¢ : ps(x) > t},i=1,2.
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PROOF :

Similar to Proposition 3.1.10.

THEOREM : 3.1.11

Let ¢ be a finite group and p,,u, be fuzzy subgroups of ¥, where p, is fuzzy normal.
Then p,u, is a fuzzy internal direct product if and only if for each t € (0, pu,(e)],
(pyisy)t is the internal direct product of uf and pg.

PROOF :

(=):  If yu, is a fuzzy internal direct product, then f,,p, < pypis and py A fg = i,
By proposition 3.1.10, ()" = pips. Clearly uf « %. By Proposition 1.3.4,

p5 9 (ytta)"

Clearly pfn p5 = {e}. So (uy,)" = ui® 4.

(&): Conversely, suppose (puq)® = pt @ pt for all t € (0, p,u,(e)].
ptand pba pbul.

By proposition 1.3.4, p,pe <@ pyp,. We now argue that p, A p, = p,.

Let x € supp g, \ {e}. Thus x€ p! for some t € (0, y,(e)] and x ¢ pf since
pin ps = {e}. Hence 0< p(x) < t.

We claim that p,(x) =0:

Suppose 0 < pa(x) = t1 < t. Then pbC pbt. Soxe pbt and x € pit.
Therefore x = e, a contradiction. Hence py(x) = 0.

If x ¢ supp p, then y,(x) = 0. Hence pp, = 1 ® .

THEOREM : 3.1.11/

Let % be a group and fi,up be fuzzy subgroups of % where y is fuzzy normal. If
pai2 has the sup property, then pyus is a fuzzy internal direct product if and only if for
each t € (0, p(e)], (ppe)* is the internal direct product of uf and pul.
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PROOF :

Similar to Theorem 3.1.11.

REMARK : 3.1.12

For the converse of Theorem 3.1.11, ¥ need not be finite.

DEFINITION : 3.1.13 [14]
Let p and v be fuzzy subgroups of the groups ¥, and %, respectively. The fuzzy
external direct product of 4 and v is the mapping ux v: %, x %, — [0,1] defined by

px U(xy,Xp) = plx) A v(x,), x;€ ¥y, 0 = 1,2.

PROPOSITION : 3.1.14

(i) px vis a fuzzy subgroup of ¥, x %,.
(i)  supp (ux ¥) = supp px supp v.

(i)  (px v)'=putx 4V t€ (0, ule) A (e)).
PROOF :

Straightforward.

THEOREM : 3.1.15

Let p and v be fuzzy subgroups of %. If uvis a fuzzy internal direct product, then
LV =pU® un [1x U,

PROOF :

By proposition 3.1.14, supp px v = supp 4 x supp v. By Proposition 3.1.8,

supp £ ® v = supp 4 ® supp v. Define f: supp px v— supp u® v by f(a,b) = ab for
a € supp 4, b € supp v.

fis a crisp isomorphism.
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We will show that p® v (f(a,b)) = = ¥((a,b)) :

pe f(a,b)) = p® v(ab) = sup u(x)A v(y) > 0 since a€ supp xand b€ supp v.
ab = xy

So we can assume that x € supp p and y € supp v. Hence, if ab = xy, then a = x and

b=y. Sope ¥(f(ab)) = u(a) A {b) = ux Ya,b).

This completes the proof.

We end this section by defining a direct product of more than two fuzzy subgroups.

DEFINITION : 3.1.16

Let {y; : i = 1,2,--+ ,n} be a collection of fuzzy subgroups of % . Let u be a fuzzy
subgroup of . Then p is the internal direct product of the p;, i = 1,---,n, and we

write 4= p;® - -+ ® p, in case
(i) p;ep forali=1,--- n,

(ii) piA<inuj>=ue,i=1,---,n, and

n
@ vme Vo
1=

Further results on direct products will be given in Chapter 4.

We first need the isomorphism theorems.

3.2 THE ISOMORPHISM THEOREMS

DEFINITION : 3.2.1
Let f: ¥— %! bea homomorphism of a group ¥ into a group %' Let u be a fuzzy
subgroup of % . The fuzzy kernel of { corresponding to y is the fuzzy subgroup b of

defined by
s p(x) xekerf

pe(x) = {

where ker f denotes the usual crisp kernel of f.

0 xgkerf
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PROPOSITION : 3.2.2

fy = f(f(u)e) N 1, where f(p), is the fuzzy point of ¢' having support f(e).

PROOF :
[ (E(w)e) A pl(x) = plx) A £(p)o(£(x)).

For x € ker f, [{1(f(i)e A pl(x) = u(x) A £()(f(e))
= p(x) Ap(e)
= p(x),
otherwise x ¢ ker f and [f(f(p) A £](x) = u(x) A 0= 0.

Therefore [f(f(1)e A p](x) = pg(x).

PROPOSITION : 3.2.3

The fuzzy kernel fog < b

DEFINITION : 3.2.4

Let 1 and v be fuzzy subgroups of ¥ and ¥ ! respectively. A homomorphism
f: supp u— supp vis a fuzzy epimorphism of p onto v if f(p) = v. (We usually write
f:p—v).

THEOREM : 3.2.5 (THE FIRST ISOMORPHISM THEOREM)

Let ¢ and & be groups. Let u and v be fuzzy subgroups of ¥ and J respectively.
Let f : 4 — v be a fuzzy epimorphism. Let ke be the fuzzy kernel of f corresponding

to 4. Then “/uE ~ V.

PROOF :
SUpp L, = ker {.
SUPD f4/ fiy = SUDPD p/supp pg and pf fig 8 indeed a fuzzy subgroup of supp u/ by
Define 7 : supp p,/p,E — supp v by
Y(x supp [I,E) = f(x) for all x € supp p.
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If x supp s, € SUPP 4/ pig, then p/ g (x Supp pg) > 0.
Hence sup{s(a) : a supp pp = x supp pip} > 0. Therefore f(x)((x)) > 0,

i.e. f(x) € supp v. Therefore 9 is well—defined.
Clearly 7 1is a bijective homomorphism, i.e. supp p/ fig = SUDD V.

up  p(a) = f(p)(£(x)) = v(%(x supp py))-

by (X SUPD piy) = f(a.)S: £(x)

ie. “/”‘E ~ v,

REMARK : 3.2.6

Theorem 3.2.5 still holds in terms of the strong quotient given in definition 1.1.15 [1].

THEOREM : 3.2.7 (THE SECOND ISOMORPHISM THEOREM)

Let 4 and v be fuzzy subgroups of %, with v fuzzy normal. Then
(a) (kA v) < p,and

() e uf(uv).

PROOF :

(a) Clear.

(b) Define f : supp uv — supp p/(u A v) by f(x,x,) = x, supp(g A v), where
X, € Supp K, X, € supp v. fis a well-defined crisp isomorphism. We claim

that f(uv)(f(x)) = p/(p A v)(f(x)), x € supp pv :
f(x) = f(x,x,) = x, supp(p A v).

Let o, = f(pw)(f(x)) and oy = p/(p A v)(f(x)).
o, = sup{pv(a): f(a) = f(x)} = sup{pr(a): a; supp (£ A v) = x; supp (A v),

a = a,3,, &, € SUPp 4, &, € SUPP V}.

Let €€ (0, oy A a,). So there exists y, y = y,y, and

¥, 8UpD pA v =X,

supp pA v, such that oy — e < u(y) = sup  p(z,) A Uz,).
Yy = Zy2
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Let B, = o—u(y). So a; = B, + wAy). We can assume that € is small
enough so that uy) > €. So there exist z,,2,, y = z,z,, such that

pAy)—e < ilz;) A Uz,).

f(y) = z, supp pA v =x, supp pA v.

Let B, = uAy) — u(z,) A Uz,) < €. Therefore p(y) = B, + u(z,) A Uz,).

0y up  p(a) implies that there exists a,, f(a,) = f(x), such that

= S
f(a) = £(x)
oy—€ < pa,). Let a, = b,b,, b, supp pA v =x, supp pA v
Let By = oy — p(a,) < €
Therefore a, = p(a,) + By

> 1{z,) + B, (otherwise use z, in the place of a,),

> wzy) A v(zy) + f

> py) — €+ By

=q —f—€+ G
Ase— 0,8, — 0,i =1,3. Hence o2 ;. (1)
o, = f(pv)(f(x)) = sup{pv (a,a,): a1 supp g A v = x; supp A v}

> sup{s (a,a,): a1 Supp g A v = x; supp pA v}
= 1 (p A V)(ER)) = oo,
Therefore o, > a, (2)
(1) and (2) imply that o = o,
Now ker f = supp v.

pr(x) xe€kerf
e w00 = {0 L e

By the first isomorphism Theorem (Theorem 3.2.5)
(W) [(w)g = pluh v.
Furthermore pv/(uv), & pvfv:
Let «: supp pv/ (;u/)E — supp pv/v be given by
o(xXy supp (wv)g) = XX, supp v = XX, supp (uv),. Therefore a is a

crisp isomorphism.
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prfv (ofxx, supp (pv)g)) = wv/v(xx, supp )

= sup{uv(a): a supp v = x;x, supp v} = sup{ur(a): a supp (,uu)E
= x1xg supp (pv)g} = (wv)/(uv)g (xix, supp (wv)g).

So ;w/(p,V)E ~ pvfv and it follows that pv/v e pfuA v.

REMARK : 3.2.8

The assumption made throughout this thesis that u(e) = v(e) for fuzzy subgroups of
the same group ¥ that are mentioned in a theorem has played a role in the proof of
Theorem 3.2.7.

The following example shows that if we use the quotient given in Definition 1.1.15[1],
the second isomorphism theorem fails :

EXAMPLE : 3.2.9
Let ? =53 = {e, 2, 3'2; b, ab, azb}, al =e =02

Define p: S, — [0,1] by = x .- Then pis a fuzzy normal subgroup of ¥.
3

Define v : §; — [0,1] by ¥(e) = 1, (a) = /2 = ¥(a?), ¥(b) = 1/4 = v(ab) = (a?b).
Then v is a fuzzy normal subgroup of S,.

Let Ev = {x€ S, : y(x) = 1(e)}. Supp p= A, = {e, a,a’}. Suppv=S,.

supp pv/v = {x,x, V: X, € Supp g, X, € SUpp v}
~ {xx, Ev: x, € supp v, x, € supp v}
= (supp p supp v)/Ev

= supp 4/Ev - supp v/E v
= Ay/Ev - S,/Bv=S§,/Ev~ §,.

But supp pfpA v = {x(uA v) : x€ supp pu}
v {XE,U,A i XE supp 4}

= A3/E,u/\ Y A,

Therefore supp pv/v is not isomorphic to supp u/pA v.
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Hence pv/v is not isomorphic to u/uA v.

THEOREM : 3.2.10 (THE THIRD ISOMORPHISM THEOREM)

Let v< p< € be fuzzy subgroups of ¥ such that y and v are normal in {. Then

(i) plve &fv and
(i) &fu= (&) (ufv).

PROOF :

(1) Let (a supp v), € {/v. We can assume that a, € &
(a supp v), u/v(x supp v)
= AA p/v(ax supp v) = X A sup{u(y): y supp v = a”'x supp v}
= sup{A A p(a’'xy): y € supp v} = sup{a, u(xy): y € supp v}
= sup{ua/\(xy): y € supp v} since < £
= sup{ua, (z): z supp v = x supp v}
= A A sup{u(za™): z supp v = x supp v}

= A A sup{u(y): ya supp v = x supp v}
= p/v (a supp v), (x supp v).

(ii) Define f : supp &/v — supp &/u by f(x supp v) = x supp g fis an
epimorphism.
We claim that f(¢/v) = ¢/u:
f(¢/v)(x supp p) = sup{{/v(a supp v): a supp p = x supp u}

= sup sup{¢(a’): a’ supp v = x supp v}
a Supp 4 = X SuUpp

= sup{{(b): b supp 4 = x supp u} = é/u (x supp 4).
ker f = {x supp v : x € supp u} = supp u/v.

(¢/v)(xsuppv) x € supp u
Define (¢/v)g, (x supp v) = { 0 otherwise

By the First Isomorphism Theorem (Theorem 3.2.5), (§/v)/({/v)g = &/p.

We claim that (§/v)/(¢/v)g = (§/v)/(u/v) :

Define a : supp (§/v)/(€/v)g — supp (£/v)/(u/v) by
o(x supp v supp (¢/v);) = x supp v supp p/v.
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a is a bijective homomorphism since supp (¢/ V)E = supp p/v.

(&/v)/(&/v)g (x supp v supp (£/v)g)

= sup{¢{/v(a supp v): a supp v supp (¢/v), = x supp v supp (¢/v)z}
= (£/v)/(p/v) (ofx supp v supp (£/v))-

Hence (£/v)/(u/v)= (§/v).

REMARK : 3.2.11

The above Theorem is still valid even if the quotients are replaced by the strong
quotients given in Definition 1.1.15 [1].



56

CHAPTER 4
CYCLIC FUZZY SUBGROUPS AND THE BASIS THEOREM

INTRODUCTION :

In this chapter we first discuss cyclic fuzzy subgroups. In [50] Sidky and Mishref defined
a fuzzy subgroup p to be cyclic iff each level subgroup of y is cyclic. Our notion of fuzzy
cyclic is such that if p is fuzzy cyclic, then all the nonzero level subgroups of y are cyclic,
but the zero level subgroup of x need not be cyclic. Furthermore, our definition of fuzzy
cyclic uses the notion of a fuzzy subgroup generated by a fuzzy subset. We also attempt
to give characterizations of cyclic fuzzy subgroups and finitely generated fuzzy
subgroups. Examples of cyclic fuzzy subgroups and fuzzy direct products are presented.
We also define p—fuzzy subgroups and then prove that every finite Abelian fuzzy
subgroup is a direct sum of p—fuzzy subgroups. The major result in this chapter is the
Basis Theorem which asserts that every finite Abelian fuzzy subgroup is a direct sum of
cyclic p—fuzzy subgroups. We end the chapter with a notion of dimension of a fuzzy
subgroup that is also a fuzzy vector space over the field I, where p is a prime number.

4.1 : CYCLIC FUZZY SUBGROUPS
Let ¥ be a group and x, a fuzzy point in . Recall that < x ) > is the smallest fuzzy
subgroup of # containing x \ A fuzzy subgroup p is cyclic in 7 if there exists a fuzzy

point Xy such that = < Xy >

PROPOSITION : 4.1.1
Let p = <x>‘>and
A ae<x>
V(a)-{o ag <x> Vaeyg.
Then y = v.
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PROOF :
Let age v. Ifa=e, thenee <x>. Hence v{e) = A2 f. Now u(x)> X and
we)2 ux)2 A2 . Soag =eg€ p.

Suppose a # e.
{a)?> 8> 0. Hence {a) = A> fanda€e <x>. Soa=x"{for someme 1.

Therefore p(a) > w(x)> A2 f. So age b Therefore v< p.
Now Xy €V since x € < x >. By definition of u, p< v.

Hence p = v.

DEFINITION : 4.1.2

Let p and v be fuzzy subgroups of % such that v < p. v is cyclic in p in case there
exists a fuzzy point Xy € b such that v = < Xy >

We can apply proposition 4.1.1 to show that

A a€E<x>,ate
Ha)=(p(e) a=e ;
0 otherwise

where v is the fuzzy subgroup given in Definition 4.1.2.

NOTE: (i) The condition v(e) = p(e) is important in products of fuzzy
subgroups.

(ii) By A\B we mean {x€ A : x¢ B}.

PROPOSITION : 4.1.3
Let Xy yﬂe [0,1]?, xty.

Assume that ﬁ is Abelian and finite.

A aE<x>§<y>
_ )8 aE<CYy >\ <x>
Let Ma)= Y3vh aeccxoncyo>
ANG a€e<x>@Xy> \<x>U<y>
0 otherwise

Then v = < x)\,yﬁ> in g.



PROOF :

Let p= < x)‘,yﬁ >.

We first note that {(e) = AV f. Secondly 3 n € I*such that y" =e.
Soe=y---y, hence y(e) = < X\¥g >(e)> AV 8= 1fe).

By definition of < X)¥g >, Ma)S AV AY aey.

Hence p(e) = AV 8= fe).
Let a, be ¥. We want to show that v is a fuzzy subgroup of ¥.

Casea,be <x>\<y>:

abe <x>:sovfab)=Aor AV 4
A = 1(a) implies that (ab) > {a) A ¥(b).
Similarly ifa,be <y >\ <x>.

Casea,be <x>N<y>:

abe <x>N<y>.
Therefore v(ab) = AV 8> v(a) A p(b).

Casea,be <x><y>\<x>U<y>.

Therefore ab € < x >< y > since ¥ is Abelian.
Now v(a) A (b) = A A < 1(ab).

Caseac <x>\<y>,be<y>\<x>:

Therefore ab€é < x >< y >. So this case is similar to the previous case.

Caseac <x>\<y>andbe<x><y>\<x>U<y>:

Similar to the previous case.

Caseae <x>\<y>andbe<x>N<y>:

Therefore ab€ < x >. So {ab) = A or AV . Either case implies

ab) > »(a) A yb) = A

Caseaf <x><y>andbe<x><y>:

Then 1(a) = 0< ¥(ab). It is easy to show that v(a) = »(a) V ae ¥.

So v is indeed a fuzzy subgroup of . v contains x A and y g Hence v> p.

58
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Let agev. So (a) 2 &.

Case (i) : ae <x>\<y>.

Therefore a = x™ for some m € 1.

p(a) = sup{p: B, =gy "0 Any 84y € X,V yﬂ}'
So\;< AV i=1,--n

ap=Xgeo xgandu(a)=)\2 €.

Since xy € u, then x,.€ . Hence a,€ p. Similarlyifae <y >\ <x>.
s 3 ¢

Case (ii) : ae <x>N<y>.
Similar to Case (i).

Case (iii) : ae <x><y>\<x>U<y>.
va)= AN g2 fsinceage v.

a = x"y" = (xy)"y"™", say, since ¥ is Abelian.
Therefore ag = (xy)6 ‘e (XY)E Yeoor Ve
(xy))\ A ﬁe p since x,, yg€ -

Hence (xy) eV €u Soa ¢ € p. Therefore v< p.
Hence p = v.

The proof is complete.

DEFINITION : 4.1.4

A fuzzy subgroup uof ¥ is a p—fuzey subgroup iff each nonzero level subgroup of p is
a p—group, where p is a fixed prime.

Clearly p is a p—fuzzy subgroup iff supp p is a p—group.

We aim to show that every fuzzy subgroup of a finite Abelian group is a direct sum of
cyclic p—fuzzy subgroups. We begin by examining certain specific examples.
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EXAMPLE : 4.15
Let ¢ be the Klein 4—group. So ¢ = {0, x,, X;, X3}, where 2x; = 0 for all i = 1,2,3,

and x; + X; = Xy, i, j, k distinct.

Define : ¥ — [0,1] by

a, x=0
Mx)=(a; x=x4,X%,
a; X=X,

where o, > o > ¢;.
Then p is a fuzzy subgroup of %
Define y; : ¥ — [0,1] by

[ e(x) xe<xp>
k=10 x¢<x;>,i=1,2,3.

So
a, x=0
p(x) =S a;, x€<x>,x%0
0 xg<x»>

Therefore g, is cyclic in 4. Similarly, p, and g, are cyclic in p.

py < psince ¥ is Abelian.

It is not hard to see that p, + py + pg = p.

NOTE : The + sign has replaced the product sign as is customary when dealing
with Abelian groups.

The sum ; + py + 41y is not direct since for example x4, € (1 + fip) A i3 for some
A€ (0,1].

We claim that p = py + pg but p# p + py ¢

wxg) = ag and (g + my)(xy) = (g + M) (X + Xg) = py(x)) A y(x5) = o # 5.
SOt py + py.



Now (u, + p3)(x,) = (g + 13)(Xy + X3) = p(%3) A p13(x3)
= y(xy) = plxp) = pxy)-

Clearly (4, + g)(xg) = p(x;), i = 2,3,

Hence p = py + py. Infact p= py @ pg.

Each p, is a 2—fuzzy subgroup.

EXAMPLE 4.1.6

elements of 7.

Let H, = {0,3} and H, = {0,2,4}.
Define s : ¥ — [0,1] by

e, x=1,2,4,5
p(x)=¢a, x=3
1 x=0

where 1 > a3 > a; > 0. Then pis a fuzzy subgroup of ¥.

Let wi) = {40 xE M

p, is a cyclic 2—fuzzy subgroup of u, and p, is a cyclic 3—fuzzy subgroup of p.
We now show that u = p, + u,.

(s + 1)(5) = (g + 1g)(3+2) = 1y(3) A py(2) = o = 5)

(g + 15)(4) = 1y(0) A pg(4) = p1y(4) = pf4).
Similarly (u; + 1y)(x) = u(x) for all x € .

Hence p = p; ® p,.

4.2 : THE BASIS THEOREM

DEFINITION : 4.2.1

L is finite in case supp y is finite.
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DEFINITION : 4.2.2

Let m € 7' and p a fuzzy subgroup of ¥. Then my is defined by

sup{f: y, € p and x = my}
(mp)(x) = { othegmse

It is then easy to see that

sup{x(y): x = my, y € supp s}
(mp)(x) = { otherwise

Also mxg = (mx)ﬂ
(mp)(x) = sup uy) < sup p(my)= ux).

X = my X = my

Somy < L

PROPOSITION : 4.2.3

Let 4 be a fuzzy subgroup of an Abelian group %, and let m € I*. Then my is a
fuzzy subgroup of %.

PROOF :

Obvious.

THEOREM : 4.2.4

Every finite Abelian fuzzy subgroup u is a direct sum of p—fuzzy subgroups.

PROOF :
Let A, = {x € p: o(x) = p° for some s € 7'}

Let p be a prime number and define p;, : ¥ — [0,1] by p,(x) = sup{] : X, € AL},

otherwise p,(x) = 0.

We will show that u, is a fuzzy subgroup of ¢. Now pu,(x+y) = V A
(x+y), € A}

pp(x) = VA A and po(y) = V Ag-
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Case (i) : X, ¥y € Supp p.
o(x+y) | fem(o(x), o(y)) = p® for some s € I+, and p(x+y) > p(x) A p(y) > A A A,
H € A .

ence (x+y))‘1 A X, € A

Therefore p,(x) A £,(¥) = V V (A A N)

P
¢ Vo
€

) (x+y))\ A,

Case (ii) : x € supp 4, y £ supp A
So pp(y) = 0. Hence py(x+y) 2 py(x) A pp(y).
If x, y ¢ supp 4, then /,Lp(x+y) > ,u.p(x) A pp(y)- So Ky is a fuzzy subgroup of ¥ and

fp < B

We now show that p= ¥ i -
p|o(supp 4)

Let xy € p, x# 0 and o(x) = n.

Therefore n = p§1p§2 cee pik, where the p;’s are distinct primes and s; € I+ for all
. n S.
i=1,--k Setn;= ps.i . Son;p;* =n.

1

Also (n,,n,,--+,n,) = 1implies there exist m; € Z,i = 1,- - - )k, such that
k

i=1
k

Hence ¥ mpn;x=x (*)
i=1

Now p}imn; x = n m; x = m;(nx) = 0.
So o(m;n; x) | pl. Therefore o(m.n; x) = pt! for some t; € T*.

Clearly (m;n; x))\ € psince xy € L.

Let us first show that
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po(x) = ,u(x) x € supp g such that o(x) = p® for some s € 7*.
otherwise

Now let ag € p, = pS. V € -
ow let ag€ p, o(a) = p°. py(a) = =y et o(x) = p)

So py(a)2 B, ie ag€ fip-
Now  u(x) 2p, +-+-+ upk(m1n1 x + -+ + myn, x), see (¥),
1
2 ”p1(m1n1 x) Aees A upk(mknk X)

= p(mm; x)A -+ A g(m,n, x)
Hence p(x) = #p1(m1n1 X)A - A ;ka(mknk X)

k
= [é}- Hp. ](x)

The fact that < V Hi > A gy = p, follows straight from Group Theory since
it

Supp 4 = supp fy + -+ + Supp py.

This completes the proof.

RECALL :

Let V be a vector space over a field F. pu is a fuzzy vector space of V in case p is a
fuzzy subgroup of V under addition such that u{a x) > u(x) for all o€ F and xe V.

REMARK : 4.2.5
(i) We are assuming that I, = {0,1,2,---,p—1} under addition and

multiplication modulo p.

(i) If supp 4 = H,; ® H, and we define fuzzy subgroups x; by p(x) = u(x) if x €
H; and py(x) = 0 for x ¢ H;, it does not follow that y = p, + p,. See example
4.1.5.

However we have



LEMMA : 4.2.6

Let p be a finite fuzzy vector space of the vector space % over the field I, where p is
a prime number.

Suppose supp p = {0, X, X9, * * Xy, Yo * *o¥n} = < X, >0 -+ & <Xy >,

Then there exist cyclic fuzzy subgroups w,,w,, -+ ,w, such that py = w, @ ... ® w,.

PROOF :
The elements x,,- - - ,x form a basis for supp p as a vector space over I,
Letk=2. Sosuppp=<x,>0 <X, >.

Define ; : ¥ — [0,1] by

)= {40 228

We show that y; is cyclic :

Let x€ < x; >, x# 0 (the additive identity element of ¥). Sox = myx;, m; € I,
m; # 0.

Now py(mx;) > py(x;) = p(x;) = p(mi'mxy) > p(mix;) = py(myx,).

So p;(mix;) = py(x;)-

Soif x€ < x; >, x# 0, then p(x) = pu(x;). Hence g, is a cyclic fuzzy subgroup of p.
o(x;) =pforalli=1,--k Soeach y;isa p—fuzzy subgroup for a fixed p.

Let p(x;) = o, ply;) = o with oy < o foralli=1,---,nand o, > a; for all
i=1,---,n.

The sum g, + p, may not be equal to x by Remark 4.2.5.

Suppose p(y;) # (1 + - -+ + m)(yy)-
Replace x, or x, by y,. So {x,,y,} or {x,,y,} spans supp p.

Suppose {x,,y,} is a basis for supp . Sosuppp=<x,>0 <y, >.

€< >
Letvy(x) = { 40%) Z€ <70

v, is a cyclic p—fuzzy subgroup of p.
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We now show that p = p, + v, :

Let x; = myx, + m;y,.

Then (g, + v4)(x,) > pg(%3) A v5(¥n)
= pi(x9) A 1(yn)
= p(x5) 2 1xy) 2 (g + V) (xy)-

Therefore (p, + v,)(x,) = u(x,).

Clearly u(x,) = (ig + vp)(x,) :

Now let y, = m,x, + m;y,, m; € I,

(Bt vad(yD) 2 pa(xg) A v(v,)

= Hg(X5)

= Wy; = my¥n)

> wy;) A (myy,)

= uy;)

> (4y + va)(y1)
Therefore u(y;) = (g + v)(y3)-

The fact that u, A v, = p, is obvious.

Hence p = py @ v,.

If {x,,y,} is a basis, it can be shown that = p, & v .

Now assume that if supp p = < x;, >® .-+ ® < x; >, then there exist cyclic p—fuzzy

subgroups w,,wy, -+ ,Wy, such that py=w,® --- ® wy.

Letsuppp=< x>0 -+ & < x5, >.

Note that y; = mx, + --+ + m,,, x;.,, implies that p(y;) > a, A oy A -+ A o A o,y

where o; = p;(x;), y; as defined at the beginning of this proof.
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Also w(y,) > o; foralli=1,--k + 1, .-.,n. We can assume without loss of

generality that {y ,x,," --,x,} is a basis for supp p.

Let v, be as defined above.
Now supp p = <y, >@® < x, >0 --- ® < x, > We will find cyclic p—fuzzy

subgroups w, -+ Wy, suchthat y=w,;® .-- e w @ v .

Let H=<x,>0--- 8 <x >.
€eH
Define w : ¢ — [0,1] by w(x) = { ﬁ(x) §¢ qH-
So supp w = H. By induction there exist cyclic p—fuzzy subgroups w,- - - ,w, such

that w =w,;® ... ® w,.

Soif x€ H, then p(x) = (w;® --- ® w,)(x).
Also w; = w on some cyclic group < a; > in H. So w; = pon < a; > and 0

elsewhere.

Let ys = mja; + --- + mya, + m_y, € supp f.
Therefore
(W + v)(¥s) =(Wy+ - + wi + yp)(ma + myay + -+ + myay + myyy)

2 wi(a)A e Aw(ay) A vy(yg)
=wy(a) A - A wi(ay)
=(w,+ -+ +w)(ma; + -+ + may)
= mmgay + -+ myay)
= p(¥ys —myYy)
> u(ys)
2 (Wit 4w+ ) ().

So ru’(ys) = (Wl toee F Wt Vn)(ys)'
The sum (w, + - -+ + wy + v,) is clearly direct.

This completes the proof.
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LEMMA : 4.2.7
An Abelian fuzzy subgroup u, with pu = u,, is a fuzzy vector space over I,and pis a
direct sum of cyclic fuzzy subgroups p,,-- -4, such that |supp g;| = p, where p; is

finite, Vi =1, --,n.

PROOF :

Assume supp g is finite.
From Group Theory, supp u is a vector space over I,. Clearly pis a fuzzy vector

space over Z_. Suppose that {x,,---,x, } is a basis for supp . By Lemma 4.2.6, there
P 1 n

exist cyclic fuzzy subgroups w,,---,w,, | supp w;| =p,suchthat p=w,® --- ® w.

This completes the proof.

REMARK :
For the rest of this chapter, we will sometimes denote a fuzzy point x A by (x,A) to

avoid clumsiness.

LEMMA : 4.2.8

Let u be a p—fuzzy subgroup of %.
Let < (y,80), (y2,8,) > = < (yu.0,) > @ < (¥4,0,) >, where (y;,0;) € p such that

(Yi)ﬁi) = (pxiJAi)7 i= 1)2

Then < (xl;)‘i); (x27’\2) >=< (X1;/\1) > 8 < (X27’\2) >.

PROOF :

Let v = < (x4,Ay), (X3,A5) > 5 wy = < (x3,Ay) >,i =12, Clearly w, A wy = p,. Also
w® wy{v. Let (a,A)ev. SoAlsup{fra=a+---+a,f=0Ar---ASE,
(230:) € (xpA) V (92 }-

Therefore a; = x, or x,,.

Suppose a = mx, # 0.
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Then (a,)) = (mx,A) € < (x,A,) > since w,(mx,) = A, = (a) > A. Incasea =0,
then w,(0) > A. Similarly when a = mx,.

Suppose a = mX; + myX,, m;x;# 0V i =12

So (a,A) = (m,x;,A) + (myx,,A) € w, + wy since w; (myx;) = A;2 A A Ay =v(a)> A

Therefore v = w; @ w,.

NOTE : Lemma 4.2.8 can be extended to any finite number of fuzzy points.

THEOREM : 4.2.9 (THE BASIS THEOREM)

Every finite Abelian fuzzy subgroup £ is a direct sum of cyclic p—fuzzy subgroups.

PROOF :

In view of Theorem 4.2.4, we may assume that y is a p—fuzzy group.
Let m € I* such that p®u = u,.

If m = 1, then the theorem is just lemma 4.2.7. Suppose the theorem holds when
P"u = p. Let p™p = p,. Let v=pp. Then p"v = p,.

Therefore by induction, v = p; ® - -+ ® p,, where each y, is a cyclic p—fuzzy subgroup.
So there exist (y;,A;) € v, such that g, = < (y;,A;) > fori=1,2,--. t.

So (¥;,A;) € pu. We claim that (y;,A;) = p(y,0) for some (y,0) € u:

A; < puly;) = sup{p(x): y; = px, x € supp u}
=u(y;), ¥; =Dy, since g is finite.

(v,A;) € pand (y;,A;) = (py,A;) = p(y,4;), and the claim is proved.

So if (y;,A;) € pu, then there exists (z;,0;) € p such that (y;,A;) = p(z5,6;). (¥)

Let w= < (23,0;): 1 =1,2,---,t >. Therefore w= < (z,0,) > --- ® < (2,,6,) > by
lemma 4.2.8.

We will show that wis a direct summand of x.

Let p[p](x) = sup{f: (x,5) € p and (px,6) = (0,4)}-

If x ¢ supp p or if px # 0, then define pfp](x) = 0. So p(u[p]) = p,. By lemma 4.2.7,
u[p] is a fuzzy vector space over I, and is also a direct sum of cyclic p—fuzzy

subgroups.
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Let o(y;) = k;. So p(k;z;) = k;y; = 0. Hence o(k;z;) = p. Let n; = plp)(k;z;). So
(kizs,m;) € plp].

Now {k,z,,-- k,z} is a linearly independent subset of supp p[p]. So there exist
X, Xg," * + X such that {kz,-- k.z, x,---,x;} is a basis for supp y[p]. Therefore

supp plp] = <kjz; >80 .- 8 <kz >0 <x,>86 - & <X >.

Letwi(x)={6‘[P](X) i;:iji’a“d qiz{g[p](x) x§<k§zi>.

Let { = w,® --- ® w,, and note that wy(x) = pp](x) = plp](mx;) = wlpl(x;),
where x € < x; >, as in lemma 4.2.6.
So wj is a cyclic p—fuzzy subgroup of y for each i. Because of lemma 4.2.6, we can

assume that p[p] = q,® ---® ¢, ® w® --- 0 w.

We claim that p= (@ w:
€N w= p, follows straight from Group Theory. So we only have to show that

p=£&+ w Clearly £ + w< p.
Let (x,0) € p. Therefore (px,0) € pu = v.
So px = (cy;) + +-+ + (cyy), ;€ L and f = A A -+ A Ay, where ), is the degree of

membership of ¢,y;.
|
So p(x,0) = (eypA) + -+ + (eypAy) = .21 (pcizy, B;) by (*), (see Proposition
1=

5.1.1).
Hence p(x,8) —Z (p c;z5,6;) = (0,0),
1

ie. p((x.f) =2 (czfy) = (0,6)
i
So (x,0) "‘5_3 (ci24,8;) € ulp)-
i
Therefore (x,8) — ¥ (cy23,0;) = ¥ (biksz;,m;) + % (a'jxj7pj)7 where (a'jxj;pj) € w;.
i i j

SO (X,ﬂ) = 2 ((Cl + biki)zi, lBi A 771) + E (anXJ,pJ) € w+ 5
1 J

Hence p= wo £ = < (z,,0) >® -+ & < (z,0,)>® we ---0 w,

The proof is complete.
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In the above theorem the fact that y[p] is a fuzzy subgroup in p is obvious.

REMARK :

If 4 can be decomposed into cyclic fuzzy subgroups whose supports are of prime
orders, then the Remak—Krull-Schmidt theorem in Chapter 5 will show that such a
decomposition is unique up to isomorphism.

DEFINITION : 4.2.10

Let 4 be a finite Abelian fuzzy subgroup of % which is also a fuzzy vector space over
I. A basisfor pis a set {x, PUIRREE #3 } of fuzzy points such that
1 n

P
(i) p=< xl)‘1" - ,xn)\n > and
(ii) the set {x,,- -+ ,x_} is linearly independent.

The following result follows immediately from Group Theory.

PROPOSITION : 4.2.11
Let p be a finite Abelian fuzzy subgroup of % with py = p, for some prime p. Then

any two decompositions of p into a direct sum of cyclic fuzzy subgroups have the
same number of summands.

PROOF :

Follows from Group Theory.

We end this chapter by defining a dimension for y :

DEFINITION : 4.2.12

Let u be a finite fuzzy vector space over I, Let {x, A0 %n) } be a basis for p.
1 n

Let s be the number of distinct A; in the basis for u. Then the dimension of y is

defined to be (n,s).
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NOTE :

If dim(y) = (n,1), then Proposition 4.1.3 suggests that u is of form

ma)=[X a€<x, - ,x, > =supp
0 af <Xy, e ,X0> :

So | R(u)] € 2, where R(p) is the range of . In fact it can be shown that if
By = pon < x; > and O elsewhere, then = y; ® --- ® p.. By Remark 4.2.5 this

result is not true in general.

PROPOSITION : 4.2.13
Any two finite Abelian fuzzy subgroups that are vector spaces over I, and having the

same demension (n,1) are isomorphic in the sense of definition 1.2.1.

PROOF :

This follows immediately from the note immediately after Definition 4.2.12. The
isomorphism of the supports follows from linear algebra.

Finally, all the groups we have used in this chapter are finite. So let us end this chapter
by giving an example of a fuzzy subgroup p with infinite support such that u is a direct
product of some fuzzy subgroups.

EXAMPLE : 4.2.14

Let ¥ =R\{0} under multiplication. So ¥ is infinite. Define u: ¥ — [0,1] by

1/, a€<2> \ {1}

/3 a€<2><X3>\<2>
Ma)=3 1/, aec25¢55\ <2>
1/ a€<3>5>\<3>

/4 a€<2><3>5 >\ <2><3>U<3><5>U<2><5>,
1 a=1.

Otherwise p(a) = 0.
p(23) = tf3 = pu(3) 2 p(2) A 1(3).

p(2x5) = 1/4 = p(5) > p(2) A p(5)
p(3x5) = 14 = p(5) > u(3) A u(5).
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So it is easy to show that 4 is a fuzzy subgroup of %.

Define y; : ¥ — [0,1], i =1,2,3, by
gy = pon < 2> and p, = 0 elsewhere,
ko = pon < 3 > and p, = 0 elsewhere,

kg = pon < 5> and p, = 0 elsewhere.

We show that g = p, ® pu, @ py, :

Clearly pspi; A py, = pie, 1,3,k distinct. Let y = 2°18%2 5%, 5, € 1\{0}.

Therefore ppiop,(y) = p(2) A p(3) A (5) = 1/4 = u(y).

Hy¢ <2><3><5 >, then iy) = 0 = pypous(y). So it easy to show that
Pafatty(X) = p(x)V x € . Hence y = 4, ® iy ® pg.

Supp 4 = < 2 >< 3 >< 5 > is infinite, but finitely generated.



74

CHAPTER 5

THE FUZZY REMAK—KRULL-SCHMIDT THEOREM AND
THE FUZZY JORDAN-—HOLDER THEOREM

INTRODUCTION :

This chapter is an extension of Chapter 4. In Section 5.1 we discuss decomposable and
indecomposable fuzzy subgroups. In particular we state and prove the
Remak—Krull-Schmidt theorem for fuzzy subgroups. In the proof of this theorem we
follow the lattice—theoretic approach, (see for example Cohn [61]). This requires the
notion of finite length for the lattice of fuzzy subgroups of a group ¥. Our definition of
finite length ensures that if 4 is a fuzzy subgroup of a finite group %, then the lattice of
fuzzy subgroups of 4 is of finite length. This notion of finite length reduces to the crisp
notions of ascending chain condition (ACC) and descending chain condition (DCC). We
end Section 5.1 with the Kuro§—Ore theorem for fuzzy subgroups. This theorem is a
weaker version of the Remak—Krull-Schmidt theorem.

Section 5.2 is aimed at proving the Jordan—Holder theorem for fuzzy subgroups. In the
definition of a normal series of fuzzy subgroups, Bhattacharya and Mukherjee [1] require
that each fuzzy subgroup in the series be fuzzy normal in the underlying group. If

b= > -+ > pxis called a normal series, we feel that it is too strong to require every
fuzzy subgroup u;-to be fuzzy normal in ¥ . Our definition of a normal series requires
only that each p;,, be normal in y,. We begin Section 5.2 by proving a fuzzy version of

the Zassenhaus lemma, which is a generalization of the second isomorphism theorem.
This is followed by the Schreier theorem, which is the backbone of the Jordan—Hoélder
theorem. In defining a maximal chain of fuzzy subgroups, we have ensured that if ¢ is
finite, then any chain of fuzzy subgroups of % can be refined to a maximal chain.
Finally, the Jordan—Hoélder theorem is stated and proved.

5.1 THE REMAK-—KRULL-SCHMIDT THEOREM

DEFINITION : 5.1.1

Let u be a fuzzy subgroup of ¥ . uis said to be indecomposable iff 4 is not a fuzzy
point, and if g~ p, ® u,, then pu, or u, is a fuzzy point. If yis not indecomposable, it

is said to be decomposable.
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PROPOSITION : 5.1.2

Let 4 be an indecomposable fuzzy subgroup of §. If p=~ pu; ® p,, then p= p or p~ p,.

PROOF :

If p~ p ® p,, then p, or u, is a fuzzy point. Suppose y, is a fuzzy point with
support e. Let f: p— pu, ® pu, be a fuzzy isomorphism. Define g : p— p, by

g(x) = f(x). f(x) € supp pp, = {e}supp p, = supp y,. So g is a crisp isomorphism.
There exists k € R* such that

w(x) =k ppq(f(x)) for all x € supp p \ {e}.
Therefore k ;1(15 _pél()a) A ,dz(b) = p(x).

Hence k{uy(e) A my(f(x))] = u(x)
Therefore k p,(f(x)) = p(x) since g, (e) = py(e).
Hence pu, =~ p.

This completes the proof.

PROPOSITION : 5.1.3

Let p~ p, ® py, where pu,p,,u are fuzzy subgroups of %. Then there exist wy,w, < p,
wy,w, fuzzy subgroups of ¥, such that g = w; ® wy, p; ~ w;, 1 = 1,2. If p; is

indecomposable, then w; is indecomposable.

PROOF :
Let f: p— p,® p, be a fuzzy isomorphism. So there exists k € R* such that

p(x) = k p,pq(f(x)) for all x € supp 4\ {e}.

kpi(£(x)) xe€suppp{e}
Let wy(x) = #;(f(e)) x=¢e
0 X ¢ supp 4

Clearly w; < p,i=1,2.
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It is also clear that each wj is a fuzzy subgroup of ¥. Let x € supp 4\ {e}.

Wy (X) = supX )“:1("1) A wy(x,)
X = XXy

= f(i)sgpf/&(l%)(ci)b/\ pa(£(xq))

=k pypa(i(x)) = ()
Clearly w,wy(e) = ule).

It is also obvious that w, A wy = p,.

It is easy to check that w; « g, i = 1,2.

Hence p= w,® w,.

Define g : w; — p; by g(x) = f(x).

If x € supp w; = supp £(p;) = £(supp p;), then f(x) € supp ;. So g is well—defined.
g is a crisp isomorphism.

k 1(g(x)) = k (£(x)) = wy(x).

So g is a fuzzy isomorphism.

Suppose y, is indecomposable. Let w, = v, ® v,. w, = {(k p5,). Hence k g, = f(v,1,).

So k p,(f(x)) = sup v ,v,(y) = v,v,(x) since f is one~to—one.
£(y) = £(x)

Let v (f(x)) = 1/x v4(x), x # e, and v ({(e)) = v;(e).

Then y, = v} ® v} since

vivy(£(x)) ff(x)sgpf(:é) (£(a)) A vy(£(b))

=1/ sup v, (a) A v,(b)
X=a

= 1/x yry(x) = py(f(x)).
If p, is indecomposable, then vl, say, is a fuzzy point. So v, is also a fuzzy point.

Hence w, is indecomposable.

This completes the proof.
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The above proposition allows us to replace =~ with = in the definition of an
indecomposable fuzzy subgroup, (Definition : 5.1.1).

PROPOSITION : 5.1.4

Let p= p, ® p,. Then p/p, ~ py.

PROOF :
Straightforward.

Let 4 be a fuzzy subgroup of % . Let 2(u) be the set of all fuzzy subgroups » such
that v < u, where < is defined by 1(x) < u(x)V x € ¥, and u(e) = v(e). Then

(2(u), <) is a complete lattice. The supremum of v; and v, in P (p) is the smallest
fuzzy subgroup of x containing v and v,. In case v; and v, are normal, the supremum
of v; and v, is the product vyvs.

DEFINITION : 5.1.5 [61]

A lattice .¢is a modular lattice or a Dedekind lattice iff (cv a)Ab=(cADb)V a
Y a,b,ce £ such that a< b.

The lattice #(u) need not be a modular lattice. Let #n(u) be the subset of 2 (u)
consisting of normal fuzzy subgroups in g, i.e. if v€ #y(p), then v« y. In Chapter 3
(Proposition 3.1.5), we proved the Dedekind law for fuzzy subgroups in Pn(u).

Hence #n(u)is a modular lattice. #n(g) need not be a distributive lattice.

DEFINITION : 5.1.6 [61]

Let ¢ be a lattice with 0 and 1. x;,x; € £ are related if there exists y € .£ such that
X Ay=0=xAyandx;Vy=1=xVy.

In the lattice #(u), 0 = pe and 1 = p. So in Pp(p), 1 and v, are related iff there
exists w € Pn(p) such that A w=pe =1 A w and yiw = p = w. If Py(u)is a
distributive lattice, then vy and v, are related iff vy = v,.

Now we want to define the notion of length on Hy).
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DEFINITION : 5.1.7 [61)

Let .¢ be a lattice. The length of . is the supremum of the number of nontrivial
intervals (i.e. intervals with distinct end—points) in any chain. In particular, a lattice
is of finite length when there is a finite bound on the lengths of its chains. The length
of a point a € £ #(a), is the length of [0,a]. It is then easy to show that

fa) + {b) =HaAb)+ 4aVvDb)¥abeL

The following example shows that when defining finite length for 2(u), we cannot just
mimic the above definition.

EXAMPLE : 5.1.8

Let ? = S3 = {e,a’a2,b,ab’a2b}, a3 =e =h2 Let

1 x=e 1 x=e
wx)={ 1/, x=a,a2 and yx)={1/3 x = a,a?
/3 othervise, 0  otherwise.

Then v < w. We can construct infinitely many fuzzy subgroups between v and w as
follows :

Let a; = 3/4 and oy = 9/40.

Let aw be defined by aw(x) = { Z{SE&) i; Z , a€ (0,1].

Now aqqw€ w and v < qqw.

Similarly, v < o (qw) < ayw < w.

Therefore v < .-+ < m(mw) < qw < w is an infinite chain of fuzzy subgroups,
although % is a finite group.

Now let us look again at the fuzzy subgroups ap, a€ (0,1]. oy is fuzzy normal
in ¥ & pis fuzzy normal in ¢, apis cyclic & pis cyclic, supp (au) = supp 4 and
wx) > uy) & op(x) > au(y).

So there is no essential difference between p and au except that the degree of
membership of x in ap is always less than its degree of membership in g. We would like
to call such fuzzy sugbroups equivalent. But there are other fuzzy subgroups of u that
behave like au. So we want to put all these fuzzy subgroups in one class.
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EXAMPLE : 5.1.9

Let S; be as before.

1 X =e 1 x=ce :
Let y{x) =< 1/2 x = a,a? and py(x)={ 3/s x = a,a2  Although v# oy,
1/4 otherwise 1/5 otherwise.

v and g behave similarly, as described above.

This motivates the following definition :

DEFINITION : 5.1.10

Let p and v be fuzzy subgroups of ¥ such that

(1)  “x)>uAy) & ux) > uy), and
(i) uvx)=0& wx)=0.

Then 4 and v are said to be equivalent, and we write u= v or v= u.
Obviously the relation = is an equivalence relation on 2(u).

EXAMPLE : 5.1.11

Let S3 be as before.

1 x=e¢ 1 x=e

Let y(x) ={ 1/ x = a,a?  and V(x):{ /g otherwise.
1/5 otherwvise.

v< p Let v < w< pu, where wis a fuzzy subgroup of S3. It is easy to see that w= v
or Wz .

Now let % be a finite group, say | ¥ | = m, m an odd number. Let x be a fuzzy
subgroup of ¥. Then |R(p)| < m—;l + 1, where R(y) is the range of p.

Suppose | R(u)| = 5%1 + 1. It is easy to see that the number of equivalence classes of

fuzzy subgroups of % whose supports equal supp u is less than or equal to the
m-1

number of permutations of 5

objects taken all at a time, which is equal to

( —m—;—l ]!, a finite number.
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Since a finite group must have finitely many subgroups, we conclude that there are
finitely many equivalence classes of fuzzy subgroups of ¥ induced by =. In
particular, if ¥ < p in a finite group %, then there are only finitely many fuzzy
subgroups between y and v, up to equivalence.

Let g1 < p2 € -+ < pn be a chain of fuzzy subgroups of ¥ such that no two quotients
of the form p;/p; , are equivalent, and that each p;/p;., is nontrivial, i.e. p;/p;

is not isomorphic to pe, then the length of the chain is n—1.

Let us call two fuzzy subgroups v and p distinct if 4 and v are not equivalent. So the
length of a chain py < -+ < pn is the number of nontrivial distinct fuzzy quotients of
the form p;/p; ;. Note that we are assuming that each p;, <« p; so that the

quotients are fuzzy subgroups.

The length of a chain py > pa> p2 --- is the number of nontrivial distinct quotients
of the form pu/pa, paf iz, « - -, finf iy, = -+
The length of a quotient p/v is the supremum of the number of distinct nontrivial

quotients in any chain of fuzzy subgroups between y and v. We write £ (p/v) for the
length of u/v. pfvis of finite length in case £ (u/v) is finite.

EXAMPLE : 5.1.12

1 x=e 1 x=e
Let y = S3, ;/.(x): 1/2 X = a,a? V(X)= 1/4 x = a,a?
1/5 otherwise 0 otherwise.

The only fuzzy subgroup, up to equivalence, that lies strictly between v and u is

_J1 x=e _J1 xesuppv
w(x)—{a otherwise,1/4<a<1/3' w/u(xsuppu)—{a X ¢ supp v -

plwe pe and wf/vz pfv. It is now obvious that £ (u/v) = 1.

We define the length of a fuzzy subgroup p to be £(p) = £ (p/ue). Let p be as given in
the above example. Then £ () = 2.

Now uv/v~ pfv A v whenever the quotients are defined, (See Chapter 3).

Let wi/ws= v1/va, where v< wa€ wi€ pwv and v< vo < v < pv.
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Therefore supp ws = supp vy, also pwi/wr = pvfwy = pwafwe  pfph we = pfpA va.

Let f be the fuzzy isomorphism from pwi/wy onto p/pA wy = p/pA va. Therefore
f(wi/we) = f(v1/va) and pA vy < f(wifwa), f(v1/12) < b

This shows that to each quotient w;/ws, there corresponds a quotient
wy/why, pA v< wh € W) < p, which behaves similarly to wy/ws.

Hence £ (uvfv) =€ (ufpA v).

DEFINITION : 5.1.13

The length of the lattice P(x) is £ (P(w)) = £(p). So P(u) is of finite length in case
L (,u) <wm.

If £ (1) < w, it is not hard to prove that £ (p) > £ (u/v) + £(v).

Now let #(u) be of finite length, and v < v, < --- be a normal chain in #(g). This
chain must "stop" in the sense that there exists ng € N such that for all n> no, v_,,/v,

is equivalent to one of the quotients that appeared before. Hence supp vn and
supp V,., are subgroups that have appeared before in the chain

supp v € supp v2 C
This shows that supp p has the ACC. Similarly supp x has the DCC whenever #(y) is
of finite length.

PROPOSITION : 5.1.14
I p= p ® po, then there exist vy, v such that g = v;® v and v;= p; for each

=12

PROOF :

_[wn(x) xesupppi ; _
Let 1/1—{ X £ Supp 41 i=1,2.

Clearly vy, is a direct product. Suppose p(x) > v, (x) for some x.

Now vy (x) = vi(x1) A va(xg) = va(x2), say, where xi € supp ui = supp vs, i = 1,2.
ve (x2) = p(x2). So p(x) > plxz).
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Since p= pupa, ppa (x) > pape (X2).
Therefore p;(x;) A pa(x2) > pa(x2) since xi € supp ui.
Therefore pa(x2) > pa(x2), an absurdity. Hence g = vv,.

PROPOSITION : 5.1.15
Let p= 1 ® pp and py = v1® vy. Then

(a) vi< 4 and
(b) if £(4) <w, then £(p) <w,i=1,2.

PROOF :

(b) Suppose £ (u) < w. Let pi= w2 wp2 ---. Therefore p> wy> we > ---
Hence there exists ng € N such that ¥V n> no w,/w,,, is equivalent to one of

the fuzzy subgroups that have already appeared. This shows that &) < w,
i=12.

(a) We must show that a;v; = vjay V ay € p. Letxe g.

Case a’x € supp v :

vi(alx) = p(ax) since py = vy @ 1.

Also xa™ € supp v; implies that vy(xa™) = yy(xa™!). Hence
a /\ui(x) = AA m(alx) = A A py(xa™t) since py < p,

= A A vi(xa™) = via, (x).

Case a™'x ¢ supp v; :
xa™ ¢ supp vi. Hence a,vj(x) = 0 = vja,(x).

This completes the proof.

PROPOSITION : 5.1.16

Let u be a fuzzy subgroup of ¥, p# pe. If £ () <w, then 4 is a direct product of a
finite number of indecomposable fuzzy subgroups.
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PROOF :

If u is indecomposable, there is nothing to prove. So suppose p is decomposable, say
b= v ® Uy, vi,a # We. If pp is decomposable, we can write pp = 15 ® pg. If yj is
decomposable, then pyg = v3 ® u4.

By Proposition 5.1.15, y = v;® v, ® v3® u4. By induction, we have

p=wv® - @y _ ® pu, where each v; is indecomposable. Now we have the

descending chain x> up > p3 > -- -, where each p; < p (by Proposition 5.1.15). Since
{ (p) < », there exists ng € N such that if n > ng then p,/p, ., is one of the quotients

that have appeared previously. So if p, = v  ® u,,,, then p /p,,, ~ v, implies v, is

isomorphic to a fuzzy subgroup that has appeared previously. In fact since supp p
has the DCC, we can assume pu;,, = p,, hence y, = v, is indecomposable.

Hence p = v1® 15, ® --- ® vy, where each v; is indecomposable.

PROPOSITION : 5.1.17
(a) Let vy, v5 be related in Pp(p). Then £ (vy) = £ (ve).
(b) If vy, = ppy where ps A py = pe and v is related to p, then £ (v A p)) =0,

hence v A p} = pe.

PROOF :

(a) Let iw=p= 1w and A w=pe=1sA w
Now »w/w = nw/wimplies £ (nw/w) = £ (raw/w),
hence £ (v1/v1 A w) = £ (v2/va A w) by isomorphism.
But 1 A w= pe = va A w, hence £ (1) = £(1a).

(b)  (uwy/uy) = £(mpi /i) = EQu/py A m) = €(p) since p1 A p}) = pe.
Therefore £ (v/v A u)) = £ ().
tv) 2L/ hv) + E(WAvY)
= £ () + £ (py A ).
Therefore £ (v) — £ (p1) > £(p) A v).
But £ (v) = £ (w), hence £ (i) A v) < 0, therefore £ (4} A v) = 0.

Hence p/| A v = Le.
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In the next two theorems we will often write p = y; ® pe when we actually mean

L~ 1 ® uy. This is not a bad notation because of Proposition 5.1.3.

fpo p @ p,~ p @ v, we will still say that pu, is pu, — related to v,.

THEOREM : 5.1.18 (REMAK—KRULL—SCHMIDT)

Let 4 be a fuzzy subgroup of % such that £ (2P(u)) <w. H (W) p=p1® pp--- ® py

and (2) 4 = 11 ® 1, ® -+« @ vy, where each p; and v; are indecomposable fuzzy

subgroups, then

(1)
(i)

(i)

PROOF :

each y; is related to some v; ;

m = n, and for each r € [0,n], there is a re—indexing so that

ue NIQMQ"'@/JT@VrH@"'@Vn;

each p; is isomorphic to some vj.

Pn(u) is a modular lattice.

(1)

Let  py=py® -+ ®p;®p;,8 - ®py and
Vi=y® -8 @V, & .- @y,
" _
We note that w< | I (wpy A ;) for any we 2 (p). (3)
1=1

We aim to prove that each y; is 4} — related to some v; using induction on

(). (4)

Let £ (z) = 1. Hence any quotient u/v, where v < p, is equivalent to /e or
pfp. Soif p = p ® us = vy ® 1y, where the pi’s and v4’s are indecomposable,
then p or pp equals pe and vy or v; equals pe. Hence p; is trivially p) —

related to some v;. Suppose now that (4) is true for a fuzzy subgroup w
whose length is less than £ (1). We consider two cases :
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(a) Case p,v/; # p for some j:
We may assume that supp yiz/j # supp u, otherwise we can replace
the above condition by supp {5 # Supp f.

Let wy = v A pyv, and w = wywy -+ w

he w; < vy for all j, hence

wj A Wi < vy A Vy = p,. Therefore w= w;® w,® --- @ w,
If wj =V V j, then vi = v A vy, hence vy $ v
S0 p = vV < ;e
Therefore y = pyV V j, a contradiction. Hence there exists a
such that Wi ¥ Uj- It also follows that supp w; # Supp v; for some j.
Hence £ (v;) # £ (w;), and v;/w; is not isomorphic to f,.
If vj/wj = o [wj for some ' ¢ w, then supp v; = supp «’, hence «’ is
indecomposable. But ¥ = wj® (v A w}) by lemma 4.10 [61]. Therefore

wj = o', and this contradicts the fact that vj/wj is not isomorphic to pe.
Hence we conclude that £ (w) < £ (p). So we can apply the induction
hypothesis on £ (w).

By (3) above, y1 < w. Bylemma 4.10 [61], w = p1® (wA p}). (5)

Since £ (1) < w, each w; can be decomposed into a direct product of a
finite number of indecomposable fuzzy subgroups. Suppose
W=1u®e®u®e®- -0 u, ® e, where each u; and e; are
indecomposable, and w; = u; ® e;.

By induction, g is w A pj — related to uwj or e; for some i, by

comparing (5) and the above decomposition of the wi’s. Suppose py
is wA ) — related to u;.

Therefore w=p1® (wA u)) =u1® (WA py).

Now uyp) = uy (wA gy = m (wA )y = p. Since py and uy are
related, £ (u1) = £(u;). Now uyp)| = p = pp, hence, by Proposition
5.1.17, £ (ug A p}) = 0. Therefore us A p} = pre. So p=us® .



(i)

(b)

Suppose fi = [, ® (o ® ++- O @ U B .- OV

Therefore p=py® pp® --- @ p_Sp @Y, ®-.-- 8y

Supposen >m. Thenp=p®--- @y ®v ,® .- 8V
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Now u; < wy € vy, hence by lemma 4.10 [61], vy = u;1 ® (v; A u)). But
vy is indecomposable, hence vy = u; = wy, and v A v = pe. So vy is
wA p —related to py. Now vy = wy = p,v| A vy, therefore vy < p v,

and so p < ;. Therefore p = p,1,. (6)

Case pv; = pfor all j.
Suppose v # p for all j. Then, by applying (a) with the ps's and

vy’s interchanged, we find that v; is related to some p;. So we may
replace v, by puy’, v, by 12’ , and so on until we reach j such that

j =1,say 1’ = 1. (6) implies that p = vy, and this contradicts
our supposition above. Therefore there exists j such that uju’1 = U,
say for j=1. So vy = p = pu).

Now vy /p, = py/uy, and so v, /(w; A v,) ~ p, by the second

isomorphism theorem. Therefore £ (y1) = £ (v /1) A ).

E(v) 2 L (vyfvyhpt) + £ (v A ph)
=& (p) +€ (v Apf) (7)

So £ (v;) — £ (p) 2 0. By (b), p = p, = vy, hence a similar
argument shows that £ (y,) — £ (v,) > 0. Therefore £ (p,) = £ (v,),
hence (7) implies £ (v, A ) = 0. So v, A p; = p,. Therefore

p=v 8 =p e, ie y is p) —related to v,.

Suppose v; is v/; —related to p;, i = 1,2, -+ ,n.

Therefore p = 1 ® V| = p1® 1,8 --- ® vy by (i).

n

Since v, is v/, —related to p,, v, ® v, = pu ® V.

n

n?

hence v,y = p, = + -+ = v,. Contradiction ! Therefore n < m.

By symmetry, m < n. Therefore m = n.
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(iii) Suppose y is p) — related to vy. So pp = p = vy and
pg Ay = pe = vy Ay, Hence pp'/p) ~ uy and vy /i) ~ v, by the

second isomorphism theorem. So u, ~ v, since ' /iy = vy’ /1.

This completes the proof of the theorem.

DEFINITION : 5.1.19 [61]

Let p; be a fuzzy subgroup of p. piis irreducible in piff p; # viva, where vy, vy # ps,
v,ve € 2 (p). A decomposition g = pup --- pn is érredundant iff no p; can be
omitted in the decomposition.

THEOREM : 5.1.20 (KUROS—ORE)

Let y be a fuzzy subgroup of ¢ such that

(1) p= e --- ur and (2) p = vy --+ Vs are irredundant decompositions of y
where each factor is irreducible in p. Then r = s, and for each m € [1,1], there is a
re-indexing so that g~ g <o fig Vpyy o0 Vg
PROOF :

This follows from theorem 4.14 [61].

5.2 : THE JORDAN—HOLDER THEOREM

LEMMA : 5.2.1

Let p, v, u* be fuzzy subgroups of ¢ such that u, v < y*. Then uv < u*.

PROOF :
Straightforward.
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THEOREM : 5.2.2 (ZASSENHAUS LEMMA)

Let u, v,

(a)
(b)
()

PROOF :

(a)

()

¥, v* be fuzzy subgroups of ¥. Suppose also that v « v* and p < p*. Then

p(p* A v) <« pl(p* A vF),
v(p A v*) < y(p* A v¥), and

wu* A F) [ A vy Apt A ) [u(p A o).

p* N va p* A v*since v« v, Hence p(p* A v) « p*(u* A v*) since p < p*.
Therefore u{p* A v) @ p(p* A V¥).
Similarly (b) holds.

supp (# A v*) and supp (4* A v) are normal in

supp (p* A v*) = supp p* N supp v*.

Therefore D = supp (A v*)(u* A v) < supp (u* A V¥).
Let x supp v(p A v*) € supp v(p* A v¥)/v(p A v¥).

Therefore sup{v(y* A v*)(a) : a supp v(u A v*) = x supp A v*)} > 0.
So there exists a, such that v(p* A v*)(a,) > 0

where a,, supp v(p A v*) = x supp v(uA v¥).

Hence there exist a,,a,, a, = a,3,, such that v(a,) A (u* A *)(a,) > 0, where
a8, supp (g A v*) = x supp v(p A v¥).

So a, € supp v and a, € supp (p* A v*).

Hence x supp (p A v*) = a, supp v(pA v*).

Define 9 : supp v{u* A v*)/v(p A v¥) — supp u* A ¥/ w, where

w= (A V¥)(u* A v), by

Wx supp v(pA v¥)) = x,D, where D = supp w,

x supp Up A v*) = x;x, supp v(pA v¥),

x, € supp v and x, € supp(p* A v*).

It is routine to check that 9 is a well—defined crisp isomorphism.
We now argue that

v(p* A ) [u(p A v*) (xosupp v(p A v¥)) = p* A ¥ fw (9(x supp v(p A v¥)) -
Let LHS = o, and RHS = a,.
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Therefore o, = sup{v(p* A v*)(a) : a supp A v*) = xg supp (A v¥)}
X, as defined above.

So o, = sup v(p*A u*)(xga)
a € supp v(p Av¥)

> sup v(p* Av*)(x,a)
a€ supp (p*A v)(s Av¥)

> sup p*A v¥(x,3)
a€d

= sup u*AVX(y)
yD = x,D

= p* A V¥ [w (x,D).

= 4 A Vo (dx supp Wk 1)) = g,
ie a2 o 1)
Next we show that a,2> «;:
oy = sup{v(p* A v*)(y) : y supp v(u A v*) = x5 supp (p A v¥)}.
Let e€ (0, oy A a,). There exists y,, y, supp #{p A v*) = x, supp Au A v*),
such that a; > U(u* A ¥)(y,) > a;—¢/2. Let f, = o — (p* A ¥)(y,). So
0y = V(¥ A P)(y,) + By 0 B, < .

Wit (r) = sup M) A (8 A ().
Yo = VY2

So there exist y,,¥,,¥, = ¥;¥5, ¥4 € SUPD ¥, ¥, € supp (1* A v*), such that
Uy ) A (A V*)(yy) > v(p* A v*)(y,) —¢/2= o — B — ¢/

Therefore o < y,) A (u* A v*)(y,) + B, + ¢/a. (2)
Also, x supp (u A V*) =y, supp v{puA v*).

So x = y,b’, b’ € supp (A v¥), y, =y,

Therefore x supp v (p A v*) =y, supp (p A v¥).

Hence oy, = p* A ¥/ w (¢(x supp v(u A v*)))

=p*A ¥ |w(y,D)= sup p* A Xy).
¥D =y, D

There exists y,, ysD = y,D, such that o, — /5 < (p* A v*)(y,).
Let B, = ay — (p* A v*)(y,) < e
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Therefore o, = (u* A v*)(y,) + Os,
> (¥ A v*)(y,) + B, otherwise use y, in the place of y,.

So ay 2 (u* A v*)(ya) A Uyy) + By

So a, > oy — f;, —¢[2 + B, by (2).

Ase— 0, 8, B,— 0.

Hence o, > o (3)
(3) and (1) imply that oy = 0.

ie. v uF A ) (N vF) e pF A VK w.

By symmetry, p(p* A v¥)/u(p* A V)~ p* A VFw.
Therefore v{p* A ¥)/u(p A v¥) e p(p* A v¥) [ u(p* A v).

The proof is complete.

REMARK :

Zassenhaus Lemma is a generalization of the second isomorphism theorem (Theorem
3.2.7). (Set v = v, and p* = X?)

DEFINITION : 5.2.3
Let p be a fuzzy subgroup of % containing the fuzzy subgroups u;,
i=1,2,---,n, satisfying
T S e ()
and (ii) i 9 g 1= 2,000

Then (*) is called a normal series or a normal chain of p.

DEFINITION : 5.2.4
Let p=p > py> -+ > p, = i, be a normal series of . A refinement of the series is a

normal series obtained from the above series by inserting new fuzzy subgroups
without removing any in the above series.
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DEFINITION : 5.2.5

Two normal chains,

WVv=pw<ms - S pn=p and (2Jv=ryy< 1< - < vy = g are said to be
isomorphic if there is a one—to—one correspondence between the quotient fuzzy groups
of (1) and (2) such that the corresponding quotient fuzzy groups are isomorphic.

PROPOSITION : 5.2.6

Let (1) and (2) be as in definition 5.2.5. If (1) and (2) are isomorphic, then their
lengths are equal.

PROOF :

Let py € w< fhyay-

Therefore wfpy < pyeoq/ e vj4y/v;, say. Hence there is a quotient f(w/p) < ¥4/,
where f @ ./ — vj,/v; is a fuzzy isomorphism. w/p, and f(w/s) behave
similarly. Let f(w/p) = ' A vy /v So vy < W' A vy, < vy, The quotients Pt/ W
and uj+1/ w' A v, behave similarly.

Hence (1) and (2) must have the same length.

DEFINITION 5.2.7

A chain v = py < p1 < + -+ < pn = p of normal fuzzy subgroups is a mazimal chain (or
a composition series) iff whenever p; < w< p;, where wa p;, then w/p; = p;/p;_ or

Wi = Wi-1/ Wi V15 @ mazimal normal fuzzy subgroup of piff v# p, and whenever

v< wf p, where wa y, wfvs plv or wfvs vfv.

EXAMPLE : 5.2.8

1 X = €
Let ¥=S;. Let p(x)={ 3/4 x = a,a? ,and V(X):{l = e .
1 -
/2 otherwise /2 otherwise

vt p and vap.
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It is easy to see that v is a maximal normal fuzzy subgroup of n.

1 x=e¢e
Let vi(x) =¢ 1/ x = a,a? . Let vy < w< u, where wa p.
0 otherwise

1 X € supp 1y 1 x
€ su v
[I:/Vl(x supp Vl) = { 1/2 X¢ supp v H w/Vl(X supp Vl) = { a Otherw;i)ls)e 1 !

for some a > 0, therefore w/v; = pfv; or wfv; = vif/vy. So vy is a maximal normal
fuzzy subgroup of u. Observe that v; < v < pu, but both »; and v are maximal normal
fuzzy subgroups of p.

DEFINITION : 5.2.9

i is simple in case e is a maximal normal fuzzy subgroup of u. So if pe < w < g,
where wa g, then w= p or w= pe.

THEOREM 5.2.10

p/v is simple if and only if v is a maximal normal fuzzy subgroup of 4.

PROOF :
=3 : Obvious
=: Let v be a maximal normal fuzzy subgroup of . Let w/v < p/v. Let

f: 4 — /v be the natural homomorphism. v < pA £ (w/v) = £ < u. By maximality
of v, §/lv= plv or €fvs vfv. But €/v = wfv, hence w/v= ufv or wfvs v/v. Thus
/v is simple.

PROPOSITION : 5.2.11

Let (1) v = p € -+ < pup = p be a maximal chain. Any refinement of this chain has
the same length as the length of (1).
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PROOF :
Let p, ¢ w< fy,, Where w @ gy, Since the chain is maximal, w/py = py, /1, or

w/p, = i/t Hence no new equivalence classes of quotients are formed when

refining the chain. Hence the length of the chain remains unaltered by a refinement
of the chain.

THEOREM : 5.2.12 (SCHREIER)

Any two normal chains of fuzzy subgroups between the same two fuzzy subgroups
have isomorphic refinements.

PROOF :

Let (D v=po< < pm=p and QJv=1r< < -+ < vy = pbe two normal
chains. Fori=12,---,m and j=1,2,---, n, let y; = (p; A vj)yj_l,

b= (1/j A By Koy = (1o A Vj)Vj-l, vy; = (Vg A py;-- By Zassenhaus lemma,
il G v/ vG)pi=1,2,--m 5 j=12,- -+ 0.

The chains v =y, < v € --- $ vy

I

VigS mer S g S Vg S o S V=4 (3)
and v =iy & fayg € oe e S gy $ g € S gy S g S S iy = 4 (4)

refine (1) and (2) respectively. (3) and (4) are clearly isomorphic.

THEOREM : 5.2.13 (JORDAN—HGOLDER)

Let 4 be a fuzzy subgroup of finite length. Any finite normal chain of fuzzy
subgroups of p can be refined to a maximal chain, and any two maximal chains
between two given fuzzy subgroups have the same length.

PROOF :
Let (Q)v=m<ms< - <pn=p and

(2)v=1vy< < -+ { vy=p betwo normal chains between v and p. Since
{(y) < w, (1) can be refined to a maximal chain. Suppose now that (1) and (2) are
maximal chains. By the Schreier theorem, (1) and (2) have isomorphic refinements
(1) and (2)’ respectively. Since (1)’ and (2)’ are isomorphic, they have the same
length. By Proposition 5.2.11, (1) and (2) have the same length.

This completes the proof.
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CHAPTER 6

SOLVABILITY AND NILPOTENCY IN FUZZY SUBGROUPS.

6.1 : INTRODUCTION

DEFINITION : 6.1.1 [i1]

Let 4 be a fuzzy subgroup of %. uis fuzzy solvable if there is a chain of fuzzy normal

subgroups g = v, > - -+ > 1y with 1 (x) = v,(e) only when x = e, and v;(e) = v,(e),

1< i < k, such that v;/v;,, is fuzzy Abelian.

Some comments about this definition :

(i)

(i)

(iii)

(iv)

We deduce from the definition that a solvable fuzzy subgroup must be fuzzy
normal. We feel this is a strong demand since in the crisp case a subgroup H
of ¢ can be solvable even if H is not normal in §. For example let

#=8;=1{e,a,a?, b, ab, a’h}, a =e=">b%. Let H={e,b}. Hisnot

normal in ¥, but H is solvable. Also, the demand that all the fuzzy

subgroups in the solvable series for x be fuzzy normal is strong.

By u fuzzy Abelian, the authors mean that Eu ={xeyg : ux) = pule)} is

Abelian. We remarked earlier that this definition of fuzzy Abelian is not
acceptable to us since any fuzzy subgroup x having Eﬂ = {e} is necessarily

fuzzy Abelian-although the other level subgroups need not be Abelian.

Let p be fuzzy normal and Elt = {e}. In terms of Definition 6.1.1 it is

straightforward to see that u is fuzzy solvable.

If u is fuzzy Abelian, y need not be solvable, contrary to the crisp case.
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EXAMPLE :
Consider S, = {e, a, a?, b, ab, a’b}, a® = e = b2

Define p by p(e) = 1, u(b) = 1/, and p(x) =0, x# e,b.
 is not fuzzy normal in S;.

E, = {e} implies that y is fuzzy Abelian. But y is not solvable since 4 is not

fuzzy normal.
If u is fuzzy solvable, then supp u need not be solvable :

EXAMPLE :
Let ¥ be a non—solvable group. Define p: g — [0,1] by
1 x=e
w(x) = 1y x#e then p is fuzzy normal in ¥ and E, = {e}.

Hence, by (iii) above, p is fuzzy solvable. But supp u = # is not solvable.

The authors state only two analogues of the crisp case, viz. :

(a) A subgroup of a solvable group is solvable.
(b) A quotient of a solvable group is solvable.

We aim to give a more acceptable definition of a solvable fuzzy subgroup u such that

(a)
(b)
()

@ is not necessarily fuzzy normal,
quotients used are those given in Definition 1.2.6.
supp p is solvable.

6.2 : SOLVABILITY IN FUZZY SUBGROUPS.

DEFINITION : 6.2.1

Let p be a fuzzy subgroup of ¥. Let p=py 2 -+ 2 py = i be a normal series for p.

If p;/py,, is fuzzy Abelian for all i = 1,.-- k—1, then the series is a solvable series for

, and u is said to be fuzzy solvable (or just solvable) in é.
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REMARK : 6.2.2

Definition 6.2.1 does not necessarily imply definition 6.1.1 since our notion of
normality in the series is weaker than saying that each y; is fuzzy normal in ¥ .

On the other hand our definition is not necessarily weaker than Definition 6.1.1 since
Definition 6.2.1 implies that supp p is solvable, whereas Definition 6.1.1 does not
necessarily imply that supp p is solvable. It is now obvious that solvability in terms
of Definition 6.1.1 does not imply solvability in terms of Definition 6.2.1.

From now on, whenever solvability is mentioned, we have Definition 6.2.1 in mind
unless specified otherwise. The following two propositions are straightforward.

PROPOSITION : 6.2.3

Let u be a solvable fuzzy subgroup of %. Then supp p is solvablein ¥.

PROPOSITION : 6.2.4

If 4 is fuzzy Abelian, then u is solvable.

REMARK : 6.2.5

The notion of Abelian used above is the notion given in this thesis. If we use the
notion of Abelian given in [1], Proposition 6.2.4 still holds. For example if EM is

Abelian, then let

Khor Y € By = {xthe : e (x4te) = f e (epte)} = {xpse : plx) = pe)}.
Thenx,y€ E . Soxy=yx. Hence (xpe)(yue) = Xyt = yXte = (1) (Xtte)-
Hence p/p, is fuzzy Abelian in terms of the definition in [1]. It now follows that u is

solvable in terms of Definition 6.2.1.

Note that this does not contradict (iv) in 6.1 since in our definition of solvability we
do not require that u be fuzzy normal.
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In the above example the use of the strong quotient is not harmful since

p/ e (X SUPP p) = p1f e (€ SUPD pie)

& u(x) = p(e) also in terms of our quotient.

PROPOSITION : 6.2.6

A fuzzy subgroup of a solvable fuzzy subgroup is solvable.

PROOF :

Let v < p be fuzzy subgroups of %, where p is fuzzy solvable. Let
B= [y 2 g s+ e 2 py = fi, be a solvable series for y. Consider

V= AU igAv> coo > p A v=p,. Nowwv<vand y;< p;_, hence

VA p;a vA py,. It now follows that v is solvable.

REMARK : 6.2.7

Using Definition 6.1.1 of solvability, it is not apparant how a non—fuzzy normal
subgroup v of a solvable fuzzy subgroup p can be fuzzy solvable.

Suppose that in Proposition 6.2.6 we replace the quotients u;/p;,, by the strong
quotients (u;/4;,,)s given in Definition 1.1.15 [1], then it is not necessarily true that a

fuzzy subgroup of a solvable fuzzy subgroup is solvable.

EXAMPLE : 6.2.8

¢ 1/3<csl,xed,
Let ¥ =8S,. Let ux) = 0 x¢A, . Then p is a fuzzy subgroup of %.

We show that p is solvable :
Let S be a normal subgroup of A, of order 4.

¢, 0<cy<c, x€8§
Define py(x) ={ o 4 ¢S

Let py = o, by = p. Each p; is fuzzy normal in ¢ and (p;/p;,,)s is fuzzy Abelian.

Hence p is solvable.
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/3 x €A, \ {e}

Let (x) =¢c !/3<c<1l, x=e.

0 x ¢ A,
NOTE : We use the same c that is used in the definition of y. v is fuzzy normal
in ¢. Suppose that v = v; > --- > v, is a solvable series for ». Then (v/v,); is fuzzy

Abelian. Therefore for all x,y € supp v = A,, xyxlyte E = {e}. Hence A, is
2

Abelian. Contradiction ! Therefore v is not solvable.

It is clear that solvability in terms of the strong quotients implies solvability. We now
show that a homomorphic image of a solvable group is solvable.

PROPOSITION : 6.2.9

Let u be a fuzzy subgroup of ¥. Letf: ¥ — ¥’ be an epimorphism, where %’ is a
group. If uis solvable in ¥, then f(y) is solvablein %’.

PROOF :

Let p=p 2> -+ 2y = p, be a solvable series for u. Therefore p; < ;..

We claim that f(u;) < f(y;_) :

Let f(a), € f(u;_ ). We will show that f(a), f(u;) = f(y;) f(a),. We consider various
A i-t A i i A

cases :

(i) Case ay € py :
Let x € %.
f(e) , f(p3)((x)) = A A f(p)(£(x))
= sup{A A p;(y): faya™) = f(axa™)}
= sup{u;(a-t(ayat)a) A A: f(ayal) = f(axa™)}

= sup{A A p;(ayat): f(aya™) = f(axa™)} since p; < p;,
= sup{} A p;(2): f(z) = f(axa™)}

= f{)(f(axa 1)) A A
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Hence (f(e) yf(u:))(f(x)) = (f(a) y£(p)f(a) ;) E(x)).
Case ay ¢ p;.

Now A< (y)sgpf (a)#i-l(Y)'

Case A = sup
f(y) = £(a)

Let €€ (0,1). There exists y,, f(y,) = f(a), such that A—e < p;_(y,),

pi4(y) :

ie. (¥o)y_ € Mt
Therefore by Case (i), f(y), _, Hu)((x)) = Huo)i(y,),_ ().
Hence f(a) A—e f(ps)(£(x)) = f(p;)f(a) \—ef(x)). € is arbitrarily small.

Hence £(a) , f(u;)((x)) = £(up)f(a) , (£(x)).

Case A < f(a)sipf(gf-i(Y) :

Therefore A < p;_(y) for some y satisfying f(y) = f(a). Hence, as above,
fla)nf(us)(f(x)) = fus)f(a)y(£(x)).

So the series f(p) = f(p;) > -+ > (i) = f(p,)f(e) is a normal series for f(y).

It is easy to show that each f(y,)/f(u;,,) is fuzzy Abelian. Hence f(u) is

solvable.

PROPOSITION : 6.2.10

Let v <

p be fuzzy subgroups of ¥ such that v « u. If p is solvable, then u/v is

solvable.

PROOF :

Let f : supp 4 — supp p/v be the natural homomorphism. Therefore f(u) = p/v is

solvable

by Proposition 6.2.9.



100

PROPOSITION : 6.2.11
Let 4 and v be fuzzy subgroups of the groups %, and ¥, respectively, such that
ie) = v(e’), where ¢’ is the identity in ¥, and e is the identity in %, Then px v

is solvable.

PROOF :

Straightforward.

PROPOSITION : 6.2.12

Let v < u be fuzzy subgroups of % such that v « y. Suppose u/v and v are both
solvable, then p is solvable.

PROOF :
Let pfv =p,fv> -+ 2 pfv=vfvand v= vy, 2 --- > v, = v, be solvable series for
p/v and v respectively.

Let f: ¥ — ¢ [supp v be the natural homomorphism.
Let p, = f1(p;/v) and p}’ = pi A p2 v

CLAIM :  uy [v=pi[v=p/v.

It is clear that u) /v = p;/v.

py’ [v (x supp v) = gy A pfv (x supp v)

= sup{f(u;/v)(a) A p(a): a supp v = x supp v}

= p;/(x supp v) A sup{u(a): a supp v = x supp v}

= py/v A pfv (x supp v)

= py/v (x supp v).

Hence pfv =y}’ [v> «-+ > p/ [v = v[vis a solvable series for u/v.
Therefore = py" > py’ 2+~ 2 pp’ 2 V2 2 -+ 2y =V,

is a normal series for p. (*)
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Note that pl’ = po A p=£1(p,/v) A p> vsinceif x € supp v, then

po' (X) = /v (e supp v) A p(x) = p(e) A p(x) = u(x) 2 ¥(x).

Let x, y € supp ;' = supp p; A p = supp £(p;/v) A supp p.

Therefore f(x), f(y) € supp p;/v. Hence f(xyx-tyt) € supp p;,,/v. This implies that
xyxly™ € supp £ (u;,4/v) = supp p}.-

Therefore xyxy™ € supp p}/, hence py’ [p}%, is fuzzy Abelian. Supp p,’ = supp v.

Hence p/’ [vis also fuzzy Abelian. Hence (*) is a solvable series for p.

PROPOSITION : 6.2.13

Let 4 and v be fuzzy subgroups of ¥ such that v is fuzzy normal in %. Suppose p
and v are solvable. Then pv is also solvable.

PROOF :

Define f : supp g — supp pv/v by f(a) = a supp v. fis a homomorphism.

We claim that f(p) = pv/v.
() (x supp v) = sup{u(a): a supp v = x supp v} < pv/v (x supp v).
pv/v(x supp v) = sup{p(a): a supp v = x supp v}

= sup{ sup p(a;) A (a,): a supp ¥ = x supp u}
a= a3,

= sup{u(a;) A v(a,): a,a, supp v = x supp v},
a, € supp V.
Hence
wv/U(x supp v) = sup{p(a,) A ¥(a,): a, supp v = x supp v}
< sup{u/v(a, supp v) A v/v(a, supp v): a, supp v = x supp v}

= p/v (x supp v) A v/v (e supp v)

= p/v (x supp v).
So wv/v = pfv, where pfv (x supp v) = sup{u(a): a supp v = x supp v}.
So f(u) = wv/v.
Hence pv/v is solvable.
So, by Proposition 6.2.12, pv is solvable.
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Let p be a fuzzy subgroup of % . Recall that the commutator fuzzy subgroup of y,
denoted by 4/, is the smallest fuzzy subgroup of y such that u/u’ is fuzzy Abelian.

By 4®) we mean (&' )’, and by 4{*) we mean o)

PROPOSITION : 6.2.14
Let pp=pg > -+ 2 p, = p, be a solvable series for p ; then u; > u(i)
foralli =1,2,--- n.

PROOF :

Straightforward.

THEOREM : 6.2.15

Let p be a fuzzy subgroup of . p is solvable if and only if there exists n € N such
that 4™ = p_

PROOF :

Let p=p > --- 2 p, = p, be a solvable series for y. Therefore p, > //,(n). Hence

#(n) = p,. Conversely, let n € N such that u(n) = p,. Now

p> > d®y ooy um) - fte is a normal series for u. Clearly u9 7584 55 fuzgy

Abelian. Hence u is solvable.

6.3 : NILPOTENCY IN FUZZY SUBGROUPS

Let p and v be fuzzy subgroups of .
Recall Definition 2.1.8 : [u,v] = <{[hy k] thy € p, kg€ v}>.

DEFINITION : 6.3.1
The descending central series of 4, (DCS), is the normal series g = v,(1) > 7o) > « - -

given in Definition 2.1.11.
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DEFINITION : 6.3.2

A fuzzy subgroup p is nilpotent if there exists m € I such that v,,,(1) = 4,

PROPOSITION : 6.3.3

A fuzzy subgroup of a nilpotent fuzzy subgroup is nilpotent.

PROOF :

Let v < p be fuzzy subgroups of ¥ where 4 is nilpotent. Therefore
7(v) < %(p), i € K. There exists m € T such that vy, ,(#) = ke 2 Y (V).

ie. (V) = pe.

The proof is complete.

Let f: 4 — v. From now on assume f(v) = pA £(v), so that () < p.

THE ASCENDING CENTRAL SERIES (ACS) :

Let p be a fuzzy subgroup of ¥. Define a sequence of fuzzy subgroups of u as follows :
Let 1° = p,, p! = Z(p). Hence p! < p. Let v, : p— p/u' be the natural homomorphism,
and u]f: the fuzzy kernel of v, associated with . Then “é < p, and pf “}15 = pfpt. Let

pg = He- Let p? = 7"(Z(ufpy))-

Then 1/ pg, = T py) = b2/ p"

p' < p? : Let x € supp p!. Then x supp pu! = e supp pl.
So p*(x) = Z(p/p')(e supp u') = p/p'(e supp u')
=p(e) 2 pg(x) 2 p'(x)
We now claim that p? < p:
Let ay € p. We will show that a u? = pla )\
Let x€ ¥. Therefore a) 4*(x) = AA p2(a™'%) = A A 7 (Z(p/u"))(a'x)

= AN Z(p/p') (2 x supp u').
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Now Z(p/p') « p/u' and (a supp '), € ufp'
since sup{s(x): x supp u! = a supp p'} > A.

Hence a, p(x) =4 A Z(u/p") (xa™! supp p')
= ,u2a,/\ (x).

Let 1, : 4 — p/u? be the natural map, and p,é the fuzzy kernel of 7, associated with p?.
Therefore p,% a u, and pfp? = pf ué . Let p3 = 1 YZ(p/ ,u,é )). It can be shown that
pa < 42, and g fud = Z(p/pl) = 1 uP.
Clearly the quotients u3/u? are fuzzy Abelian. By induction, we obtain a chain of
normal fuzzy subgroups of y :

po = p < pt< g < < -+ such that

u* pg = pi!/ut is fuzzy Abelian. (In fact p'*'/p! = Z(u/p")).

The above series is called the ascending central series of y.

We will prove later that (i) p = 4" & Yp.(#) = fe, and (i) 7;,,(p < ,u;:"i. Before we do

this, we need some lemmas :

LEMMA : 634
Let v« pand v< p, < g Then [p,u] < vimplies that p /v < Z (ufv).

If v = puon supp v, then the converse is also true.

PROOF :

(=»):  Let (x supp v)y € /v, and (y supp v)g € p/v.
Then sup{y,(a): a supp v = xsupp v} > A > A—efor e€ (0, A A ).
So there exists a, a supp v = x supp v, such that p,(a) > A—¢,
hence a A—e € M-
Similarly there exists b, b supp v = y supp v, such that u(b) > f—e,
hence b f—e € L.
So [u,p] (a'bab) > A—e A f—e. (See the definition of [u,,u]).
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Hence a™'b!ab € supp v.

Therefore ab supp v = ba supp v. So (xy supp v) AN A= (yx supp v) AN P
ie. (xsupp v), € Z(p/v). '

v < 2.

Let ct€ (gl

So €< [pg,p(c) = sup{¢{’: Cer =81y, """ Bn) 0 B4y,
= [higi’ kiﬁi]’ hié'i € Ly kiﬁie K}

Now (h;k; supp V)fi A= (k;h; supp V)ﬁi/\ 8,

since p, /v < Z(p/v).

Therefore [h;,k;] € supp v.

So v([h;k;]) = p([hyk;]) 2 €A B; = A, hence 3y, € V.

Therefore cfe v and [p,p]< v

This completes the proof.

LEMMA : 6.3.4/

[ p,]';l'i,u] < u%'i‘l if and only if p®1 [ BB T (pf R,

PROOF :

This is similar to the proof of lemma 6.3.4.

LEMMA : 6.3.5

Let f: p— v be a fuzzy epimorphism. Let u, be a fuzzy subgroup of % such that

iy € (). Then £(u) € Z(v) = Z(H(w).
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PROOF :

Let bge f(uy), i-e-f )sgpbui(a) > B

a
Let e € (0,4). There exists a,, f(a,) = b, such that u,(a,) > f(y,)(b) — €.
So pfa,) > B—¢ie. Bog ¢ € M-

Hence f(a,) fe€ f(p,).

Let ¢y € v = f(s). Assume c€ (0,5A A). Therefore sup p(x)> A.
x) =¢

There exists x,, f(x,) = ¢, such that u(x,) > A—¢, i.e. x, Amg € B
By hypothesis, (a,x,) Beh A—e = (x,a,) e A A—e

Therefore f(a,)f(x,) Beh et = f(x)f(a,) Beh dee

ie. (bc)ﬁ—e/\ e = (Cb)ﬂ—e/\ \— for €> 0.

So (bc)ﬁ/\ A= (Cb)ﬂ/\ )~ Hence bﬁe Z(v).

This completes the proof.

THEOREM : 6.3.6

For any fuzzy subgroup p, 4 = p™ if and only if v,,,(4) = g,

Moreover, 7;,,(¢) < p,g'i. (For the notation, see the construction of the DCS and
ACS). "
PROOF :

(=) p"=p 7L = v = [y, -+ . We will prove, by induction on i,

that 7;,,(4) < pt:
Leti=0. LHS = 4 = RHS.
Assume 7;,4(1) < pp

Now um-i/um-i-l — Z(ﬂ/ﬂm_i-l)-

Therefore by Lemma 6.3.4', [ug'i, ] < p,;‘)'“.

Hence Yp(4) = [7141(8) 54
< lughed < gttt
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Hence 7;,,() ¢ ug'i forallie N,i< m.

Let i = m. Therefore 7y, (1) < 43 = pe

(&) Yper(w) = pte- We will prove, by induction on j, that yy,.;(s) < 4.

Let j = 0 : Therefore LHS = v,,,(¢) = 4, = RHS.

Assume 7yp,q(1) < 4.

Define f : pf Ypay-j(#) — 1/ by £(x SUPP Yypay-5(4)) = x supp 4.

We claim that f(s/ Yy.y(w)) = p/w :

£/ Ya1-(1)) (x 5upp ) = Sup{t/7 pes-;(14)(a SUPD Yypuy-5(1)): & SUPD il = x supp pi}

= sup { sup pu(y): aD = xD}, where D, = supp 74, .;(1)
yD; = aD, D = supp i,

<sup [ sup wy):aD =xD since D> D,.
yD = aD

= sup pa)= p/w (xsupp ).
aD = xD

Let €€ (0, u/p (x supp ).
There exists z,, z,D = xD, such that

/i (x supp @) — € < i24) € (1] Ypay-5(1)) (x sUDP p).

Since ¢ is arbitrarily small, the claim is proved.

Now [y (1), 4l = Tmje1()-

Therefore, by Lemma 6.3.4, 7p;(1)/ Yuj+1(#) € Z(1/ Ypa1-5(1))-

Therefore (.5 (4)/ Ym-j+1(#)) ¢ Z(E(1/ Yye1-5(1))) by Lemma 6.3.5.

RHS = Z(u/p) = pi*!/ .

Tasi/ 1 € Yeg ()] Vmsr5(1)-  Henmce vy 5(w)/f < pi*'/pd. 1t is not hard to
show that pi*'> 7,.(4).

Let j = m—1. Sou"™> 7,(p) = p

But 4> g™ Hence p = u®, and the proof is complete.
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PROPOSITION : 6.3.7

If u is nilpotent, then p is solvable.

PROOF :

This follows from Theorem 6.3.6 and the construction of the ACS.

THEOREM : 6.3.8

Let p be a fuzzy subgroup of %. pis nilpotent if and only if there exists a series
B= o2 B2+ 2 fiy = fi such that p; < pand py/p, < Z(p/py.y) for all

i=0,1,2,---,n—1. (Such a series is called a central series of y).

PROOF :

(=): The ascending central series of y satisfies the above properties.

(&=):  Consider the ascending central series of p :

P =pe p =2y Pt g

We will show that there exists m € 7 such that x™ = u.

Now jiy, = o implies that pu_o/py -y a0d Z(p/py) * Z(p)-
Therefore p,., < Z(p) = p'.

Let D = supp p!, D, = supp p,-

p[p(xD) = Z(p/p")(xD)
> Z(p/ to-1)(xDy) since D> D,
> pyof o (xDy) by hypothesis.

Therefore sup p*(a) >  sup p,.(a)
aD = xD aD, = xD,

p*(a) = Z(u/p')(aD) = Z(p/p")(xD) = p*(x).

Therefore p(x) >  sup  p,,(2) 2 py-4(x)-
aD, = xD,

SO 12> fiyy.
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Assume p*> p .. We will show that z5*1> p_ . ..
n-k n-k-1

pk*t ] uk(x supp p*) = Z(p/ p*)(x supp p¥)
> Z(ps] fo 1) (X SUPD pig )
> fi-y-1/ o1 (X SUPD fi ).
Therefore

sup{p**! (a): a supp p* = x supp p*} > sup{p, ..., (a): a SUDP py; = X SUDD fi, }-

We can show, as above, that p**!(a) = p**!(x) for all a satisfying
a supp u* = x supp pk.

Therefore p**(x) > ppyp-(%).

Hence p* > ., for all k< n.

Let k = n. Then p®> p, = p. So p = p".

i.e. pis nilpotent.

PROPOSITION : 6.3.9

A homomorphic image of a nilpotent fuzzy subgroup is nilpotent.

PROOF :

Let f: p— v be a fuzzy epimorphism, where p is a nilpotent fuzzy subgroup.
By Theorem 6.3.8, there is a normal series g = p > p;> <+« 2 fi, = fhe, p; < pand

»u'i/:u'i-l-ls Z(iu’/p'iq); i= 071>' .t an—l-

Now f(u) = f(po) 2 () 2 -+ - 2 fuy) = fu)e.
f(p;) < £(p). We claim that £(u;)/f(ps,,) < Z(8(p)/H(1141)) -

Let D = supp f(uy,,).

Let (£(a)D),, € f(ug)/f(sso) and (D)D) g€ (1)Kt
Therefore sup{f (s;) (f(x)): f(x)D = f(a)D}> A and

sup{£ (u) (f(x)): {x)D = {(b)D} 2 4.
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Now

sup {f(c)sgpfl&)(c): f(x)D = f(a)D} = sup{g;(c): f(c)D = f(a)D} > A and

sup {f(c)sipf(x)u(C): f(x)D = f(b)D} = sup{u(c)): f(c)D = f(b)D}> ﬁ'r

Let €€ (0, AA ). There exist c,,c,, f(c,)D = f(a)D, f(c,)D = f(b)D, such that
pi(c,) > A—e and p(c,) > f—e.

Therefore ¢,y € p; and Cig (€ b

By hypothesis, (c,¢; SUPD £541)y_, fe= (C1€o SUPD Hiag) y _ p B

CoCq Colei! € supp ., implies that f(c,) f(c,) f(c,) ™ f(c,) ™ € supp f(y;,,) and
therefore (f(c,) f(c,)D) A—eh fe = (£(c;) £(co)D)y _, o Be

Hence (f(a) {(b)D), _, , Be = ((b) f(a)D), _, Be

This is true for every ¢ arbitrarily small.

Hence (f(a) f(b)D), , g= ((b) f(a)D), , B

ie. (1(a)D), € Z(E(u)/Hks.,))-

The proof is complete.

PROPOSITION : 6.3.10

A quotient of a nilpotent fuzzy subgroup is nilpotent.

PROOF :

Let v « u, where p is nilpotent.
v: p— wlvis a fuzzy epimorphism, where 9{a) = a supp v.
Hence, by Proposition 6.3.9, u/v is nilpotent.

PROPOSITION : 6.3.11

A direct product of a finite number of nilpotent fuzzy groups is nilpotent.
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PROOF :
Let 4 = p, x g, where p, is nilpotent, i = 1,2.
Let By =Vg2 2 e 2 v = (), and
Py = Wg2 wy2 -+ > w, = (4y), be central series of u; and p, respectively.
We can assume, without loss of generality, that n = k.
Therefore p, x pig = vy x w2 +++ > vy x wy = (§y)e * (ly)e is a normal series of
ENY
It is straightforward to show that v; x w;/V;, ¢ Wiy € Ll * Po/Viey x Wiey)-

This completes the proof.

PROPOSITION : 6.3.12

Let v< Z(u), v« p. If p/vis nilpotent, then g is nilpotent.

PROOF :
Let pfv=§,> &2 -+ > &, = v/v be a central series of u/v. Let v: u— p/vbe the
natural map. Let u; = v1(§;) and w; = u; A p.

Therefore w; a p. ¢; = w;/v.

Conmsider p= pAu 2 w2 - > w2 v v, (1)

(1) is a normal series.

We claim that (1) is a central series :

wif Wiy = (w3/V)[(wiay/v) $ B((0/v) [ (034/7))
= Z(.u'/wi+ 1) :

Therefore w;/w;,; < Z(pf wyyy)-

wnfv = vlv < Tulv).

Z(p) 2 v= vfve and Z(pfve) = Z(k).

Therefore v/v, < Z(p/v,). The claim is proved, and hence  is nilpotent.
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REMARK : 6.3.13

Many of the results in this section will not hold if the quotients are replaced by the
strong quotients. This is because to show that p/v is Abelian, one takes x,y € supp u
and then show that xyx”'y" € E , where E = {x€ ¥ : 1(x) = v(e)}. This is a strong

condition.

PROPOSITION : 6.3.14

Let p and v be normal nilpotent fuzzy subgroups of w, where w is a fuzzy subgroup of
%. Then pvis a normal nilpotent fuzzy subgroup of w.

PROOF :

Clearly pv < w.
Define f: px v— pv/u A v by f(a,b) = ab supp g A v. It is easy to show that fis a
homomorphism.

pv/uh v=1(px v). Hence pv/p A v is nilpotent since y x v is nilpotent.
We can then construct a central series for pv using a central series for pv/p A v.

PROPOSITION : 6.3.15

Let v, w< p be fuzzy subgroups of ¥. Then v< N#(w) if and only if [w,/] < w.

PROOF :
(=) Leta,€ [w]
So A< [w(a) =  sup A
a’\s ) ai'\1 an/\n, ai'\i: [hifi’kiﬂi] ’
. k. < :
hlfie W, 1ﬂie v N“(w)

By hypothesis kiﬁiw = w kiﬁ.' (1)

1

h{éi kil, higi kiﬂi w(y) = & A B A w (ki hi' kihyy)

= §i A B A w (hil(khyy k5Y)) = & A By A w(ksh; y ki)
= &; A B; A w(h; y) by (1) above,
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= & A B; N w(y) since hi§,€ w
= eé‘i/\ ﬂi (d(}’)

Therefore [h; . ,k; = < w.

erefore | ig; 1ﬁi]w ee p g, WS Y

Hence ay €w and therefore ay € w
S

Hence [w,V] < w.

(e=): Leta, € v. We will show that a,Abﬂa)“1 € wfor all bﬁe w.
Now a,b ﬁa)"lb Bl € w by hypothesis.

Therefore bﬂal\béla)"1 w=ey, g v
Therefore a,)\bﬁla)“1 w=egpyw since bﬂe w.

So(aba™),, gE W as required.

PROPOSITION : 6.3.16

Let u be nilpotent and v § p. Then v Nﬂ(u).

PROOF :
We claim that there exists i such that v> 7;,,(1), but v} ;(g) in the DCS of p.
Let p= 71() 2 - -+ 2 Ypey(p) = p be the DCS of p.

VY Yme(). v} yy(p), we are done.

Suppose v v, (p) :

If v} v,.4(p), we stop ; otherwise repeat the process. This process must come
to an end since v } v,(#). The claim is proved.

Now [7y;(p),¥] € [3(m)om] = 7iaq(80)-

Therefore [v, 7;(p)] £ v.

Hence, by Proposition 6.3.15, 7;() < N (v).

fv= Nu(u), then +,(p) < v, which contradicts our claim above.

Hence v # Nu(u) and the proof is complete.
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