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ABSTRACT 
 
This thesis describes the development and application of a neural network based 

ionospheric model for the bottomside electron density profile over Grahamstown, 

South Africa. All available ionospheric data from the archives of the 

Grahamstown (33.32ºS, 26.50ºE) ionospheric station were used for training 

neural networks (NNs) to predict the parameters required to produce the final 

profile. Inputs to the model, called the LAM model, are day number, hour, and 

measures of solar and magnetic activity. The output is a mathematical 

description of the bottomside electron density profile for that particular input set. 

The two main ionospheric layers, the E and F layers, are predicted separately 

and then combined at the final stage.  For each layer, NNs have been trained to 

predict the individual ionospheric characteristics and coefficients that were 

required to describe the layer profile.  NNs were also applied to the task of 

determining the hours between which an E layer is measurable by a ground-

based ionosonde and the probability of the existence of an F1 layer. The F1 

probability NN is innovative in that it provides information on the existence of the 

F1 layer as well as the probability of that layer being in a L-condition state - the 

state where an F1 layer is present on an ionogram but it is not possible to record 

any F1 parameters.  In the event of an L-condition state being predicted as 

probable, an L algorithm has been designed to alter the shape of the profile to 

reflect this state. A smoothing algorithm has been implemented to remove 

discontinuities at the F1-F2 boundary and ensure that the profile represents 

realistic ionospheric behaviour in the F1 region.  

Tests show that the LAM model is more successful at predicting Grahamstown 

electron density profiles for a particular set of inputs than the International 

Reference Ionosphere (IRI). It is anticipated that the LAM model will be used as 

a tool in the pin-pointing of hostile HF transmitters, known as single-site location. 
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Chapter 1 

 

INTRODUCTION 
 
In this thesis I present research into the development of an ionospheric model 

for the bottomside electron density profile over Grahamstown, South Africa 

(33.32°S, 26.50°E). The bottomside ionosphere is that region of the upper 

atmosphere lying between about 80 km and 350 km. This region of the 

ionosphere is divided into layers, referred to as E, F1 and F2. The division of the 

bottomside ionosphere into layers and the physical processes that give rise to 

these layers are described in detail in McNamara [1991] and Davies [1990]. 

 

1.1 Ionospheric Data 
The behaviour of the ionosphere is monitored by using an ionospheric sounder 

called an ionosonde. Each sounding produces an ionogram, a graph of virtual 

height versus frequency that represents the response of the ionosphere to 

diurnal, seasonal, solar and magnetic variations. These variations are the main 

variables that need to be considered when developing an ionospheric model. 

However, there could be other minor variations that induce ionospheric 

response. The process of interpreting the ionograms and recording ionospheric 

parameters from the ionograms is called scaling. Each ionogram can be 

converted into an electron density profile, n(h). This profile represents how the 

electron density varies with real height. An example of a daytime ionogram with 

its corresponding electron density profile is shown in figure 1-1.  
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Figure 1-1: a) A daytime ionogram and b) its corresponding electron density 

profile. The critical frequencies and electron densities for each layer are 

indicated. 

 
 
It is often more convenient to work with a frequency versus real height profile, 

f(h). Electron density is simply related to frequency by the equation: 

 
( )210-3 f/MHz10  1.24N/m ×=  (1-1)
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For the past 29 years vertical incidence ionospheric data has been collected at 

the Grahamstown ionospheric station. Prior to 1996 a Barry Research Vertical 

Chirp Sounder (Verti) was used to collect the data, which was then manually 

scaled. In 1996 a Digital Portable Sounder (DPS) system was installed. This DPS 

system was designed and built by the University of Massachusetts Lowell Center 

for Atmospheric Research (UMLCAR). The DPS operates on a pulse sounding 

technique (UMLCAR, [1996]).  

The data from the DPS is automatically scaled using UMLCAR software, called 

Artist. The Artist scaling software records the ionospheric characteristics and 

gives a description of the electron density profile. This description can take the 

form of a listing of real heights with their corresponding electron densities or a 

set of Chebyshev coefficients and peak heights. The output from Artist is 

recorded in Standard Archiving Output (SAO) format. SAO format has become 

the international standard format for recording ionospheric data. Galkin [1998] 

gives a full description of the SAO format. 

The Grahamstown ionograms that were measured with the Verti sounder were 

manually scaled. Therefore the ionospheric data for the period January 1973 to 

April 1996 only has information on the important ionospheric parameters (Wakai 

et al., [1985]) and their virtual heights. There is no real height information for 

this period at all. 

Current global ionospheric models, such as the International Reference 

Ionosphere (IRI), do not perform well in the South African region. This is mostly 

due to an historic paucity of available data in this area. In South Africa there are 

now two other ionospheric stations continuously collecting data in addition to the 

Grahamstown station, namely, Louisvale (28.51°S, 21.24°E) and Madimbo 

(22.38°S, 30.88°E), which have only been operational for one year.  

Grahamstown has the largest archived ionospheric database in the Southern 

African region, which makes it an excellent base from which to design an 

ionospheric model.  
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1.2 Neural Networks 
Throughout this thesis neural networks (NNs) are used as a tool for predicting 

different parameters that make up the ionospheric model. Briefly a NN is a 

computer program that is trained by presenting to its input any number of multi-

dimensional input vectors that correspond to a known measured parameter. The 

NN learns to identify the relationship between the input vectors and the known 

output. Haykin [1994] and Fausett [1994] give detailed information on the 

concept of NNs. 

The NN software package used for training the NNs required for this project was 

version 4.2 of the Stuttgart Neural Network Simulator (SNNS). SNNS (SNNS, 

[1995a]) was developed by the University of Stuttgart Institute for Parallel and 

Distributed High Performance Systems and is available via the Internet (SNNS, 

[1995b]). 

The most important requirement for training NNs is access to a large database. 

For ionospheric modelling the dataset should ideally span at least 22 years, being 

1 solar cycle. In the case of each layer’s peak electron density the available 

Grahamstown data contains more than 22 years worth. For the real height and 

complete profile information there are only 5 years of data available. However, it 

is still possible to set up the model and prove that it performs accurately. The 

advantage of NNs is, that once they are set up and the input space is decided, it 

will be a relatively simple procedure to retrain when additional data becomes 

available.  

The standard NN architecture that has been used throughout consists of one 

input layer, one hidden layer and one output layer. Unless stated otherwise the 

number of nodes in the hidden layer is 15. The input and output nodes are 

dependent on the parameter the NN is being trained to predict. 

Training the NN is an iterative process that starts with randomly chosen weights 

in the NN model (Haykin, [1994]). Identical results for the same training data but 

different starting conditions are not guaranteed. For each NN required in the 

development of this model twenty five NNs were trained, all with the same NN 
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architecture and training sets but with different starting weights. The mean 

output from these NNs is the output used. This was done to minimize the effects 

of statistical variability. McKinnell [1996] and Williscroft and Poole [1996] show 

how neural networks can be applied to the task of ionospheric modelling. 

 

1.3 An Application 
The main application for this new ionospheric model is in the field of Direction 

Finding (DF) systems. DF systems are used to find the location of a transmitter 

by measuring the elevation angle and azimuth of the incoming signal. The 

accuracy of any DF system relies on a good knowledge of the behaviour of the 

ionosphere and how this behaviour changes over time. With a good ionospheric 

model the radio waves can be traced back from the DF site to the transmitter 

and the location of the transmitter determined. This technique is referred to as 

reverse ray tracing. Both High-Frequency (HF) communicators and DF stations 

benefit from a reliable ionospheric model.  

GrinTek Ewation is a company that designs and builds DF systems. I am 

investigating with them the possibility of incorporating my model into their DF 

systems to enable them to improve the accuracy of their current systems. 

 

1.4 Towards a New Ionospheric Model 
The ionospheric model required to do ray tracing should take the form of a 

model for predicting the variation of electron density with height. In my master’s 

thesis, McKinnell [1996], I dealt with the prediction of the peak ionospheric 

electron density, foF2. I used NNs to predict foF2 for the Grahamstown station 

given day number, time of day, sunspot number and the magnetic index ak.  

In this thesis I expand upon this method by using NNs to produce a model for 

the entire bottomside electron density profile. A model f(h) profile is shown in 

figure 1-2. The f(h) model is split into two main sections, the E layer (fsE to foE, 
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including the valley) and the F layer (fsF1 to foF2). The contribution of each 

layer to the final NN based model is developed separately. The model layers are 

combined to form a smooth f(h) profile that can easily be converted to its 

equivalent n(h) profile. 

During the process of developing this model I show how NNs can be used to 

determine different ionospheric states such as the presence of a F1 layer. I 

investigate a solution to the F1 ledge problem and introduce a new technique for 

smoothing out the electron density profiles to ensure more realistic results.  

 

 

 

 

Figure 1-2: A model f(h) profile. The start and end points of each section as 

well as other required parameters are shown. 
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The next chapter in this thesis describes existing ionospheric models that I have 

utilized at different stages in the development of my model. Initial attempts to 

find a suitable technique are described in chapter 3. The following chapters detail 

the process of developing each model layer and the final outcome. Finally, I 

show that I have achieved the aim of producing a model for the ionosphere over 

Grahamstown, South Africa. This model can be easily expanded and improved to 

cover the whole of South Africa and all ionospheric events. I also show that this 

model has an improved accuracy for predicting ionospheric behaviour over the 

International Reference Ionosphere (IRI), which is the current model used.  
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Chapter 2 

 

EXISTING MODELS 
 
 

2.1 Introduction 
Various groups have attempted to model the bottomside ionosphere and its 

parameters. The ionospheric models discussed in this chapter are the 

International Reference Ionosphere (IRI), the Titheridge model and the 

University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR) 

model. These models are used either for comparison or in conjunction with the 

new NN based ionospheric model.  

Mostly due to a lack of data from the Southern African region, global ionospheric 

models do not in general perform well at predicting ionospheric behaviour at 

these latitudes. It is possible that the South African NN based model developed 

in this thesis can be used to assist with improving these global models.  

 

2.2 The International Reference Ionosphere 
The International Reference Ionosphere (IRI) is an international project jointly 

sponsored by the Committee on Space Research (COSPAR) and the International 

Union of Radio Science (URSI). These organizations formed a Working Group in 

the late nineteen sixties to produce an empirical standard model of the 

ionosphere, based on all available data sources. This Working Group meets on an 

annual basis to discuss and implement improvements to the IRI model.  
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For a given location, time and date, IRI describes the electron density, electron 

temperature, ion temperature, and ion composition in the altitude range from 

about 50 km to about 2000 km, as well as the electron content. It provides 

monthly averages of these parameters for magnetically quiet conditions. 

Since inception several improved versions of the IRI have been released. The 

latest three versions are referred to as IRI 90, IRI 95 and IRI 2001. Bilitza 

[1990] gives a detailed description of the IRI 90 model while Bilitza [1997] and 

Bilitza [2001] provide details of the subsequent improvements. In McKinnell 

[1996] I discussed the IRI with reference to predicting ionospheric characteristics 

for Grahamstown and made some comparisons with the foF2 value. Some details 

on the IRI’s prediction method will be provided in the relevant chapters of this 

thesis as required, but for full details the reader is referred to the 

abovementioned publications. 

Although the IRI is based on all major ionospheric data sources, no Southern 

African data was used and, therefore, the IRI does not do particularly well at 

predicting ionospheric conditions in South Africa. Despite this, up until now, the 

IRI has been the best empirical ionospheric model available in the Southern 

African region. I will use the IRI to make comparisons with the NN based model. 

Part of the aim in developing this model is to provide a better ionospheric model 

for South Africa.   

The National Space Science Data Center (NSSDC) provided the IRI 2001 model 

in the form of Fortran subroutines. I wrote a front-end Fortran program to take 

year, day number and hour and use those subroutines to produce an electron 

density profile for comparison purposes. In predicting the bottomside profile, the 

IRI 2001 version has only improved on previous versions in the F1 region. 
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2.3 The UMLCAR Model 
The University of Massachusetts Lowell Center for Atmospheric Research 

(UMLCAR) is the birthplace of the DPS, the equipment currently gathering data 

at the three South African stations. The software that controls the DPS and 

scales the data is also a product of UMLCAR. Artist, the scaling software, scales 

the ionogram and inverts it to produce an electron density profile. This inversion 

technique is the basis of the UMLCAR model, and details of this procedure can be 

found in Huang and Reinisch [1996]. More information on the scaling procedure 

plus the inversion process can be found in Reinisch and Huang [1983]. 

This section describes the part of the UMLCAR model that approximates the E 

layer. The UMLCAR model for the E layer assumes a parabolic profile shape. For 

the section of the profile leading up to the peak of the E layer, hmE, the 

frequency, f, at each height, h, can be calculated as follows (Huang and 

Reinisch, [1996]): 
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where y is the layer half-thickness at f = 0.0 MHz, foE is the E layer critical 

frequency and hmE is the peak height. The layer half-thickness is the difference 

between hmE and the height at f = 0.0 MHz. When a measurement is possible, 

the DPS measured values of foE and hmE are used otherwise predicted values 

are used. UMLCAR uses the same method as the IRI for predicting foE. This 

method takes the form of an analytical equation, which has four terms. These 

terms are made up of a solar activity factor, a seasonal factor, a latitude factor 

and a time of day factor. The full form of this expression appears in Bilitza, 

[1990]. For hmE a constant value of 110 km is used when no measured value is 

available. 
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The UMLCAR model for the E layer is used in conjunction with the NN based 

model for the E layer. The details of this appear in chapter 4. Details of other 

parts of the UMLCAR model will appear as required.  

 

2.4 The Titheridge Model 
Dr John Titheridge is the author of the generalized program POLAN (Titheridge, 

[1985]). POLAN is an ionogram analysis software package that takes raw 

ionograms, scales them and inverts them to produce a n(h) profile in a similar 

way to the task that the ARTIST software performs. 

Dr Titheridge has completed extensive research into modelling the E layer peak 

(Titheridge, [2000]), using a chemical analysis of the atmospheric processes at 

work as the electron density at the peak (NmE) changes. It is this part of his 

model that will be used in this thesis. Titheridge [2000] presents analytical 

equations for the calculation of NmE and hmE. The predicted values for NmE and 

hmE are calculated as functions of latitude, season, hour and solar flux. These 

equations are valid for all conditions, nighttime and daytime. 

The foE value is calculated from the NmE value using equation 1-1 and is much 

better behaved in the Titheridge model than in the IRI. A simple equation for 

calculating the hmE value is preferred over the constant value quoted by the IRI. 

Fortran programs for calculating NmE and hmE were obtained from Dr 

Titheridge, and these were converted to C programs to use in conjunction with 

the NN based model for foE and hmE. This combination of the models will be 

discussed in chapter 4. 
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2.5 Conclusion 
The IRI is currently the best available global ionospheric model, however, as will 

be shown later in this thesis, the IRI does not predict the ionosphere over South 

Africa very well. A disadvantage of the IRI is that it only gives monthly median 

values; the actual values can deviate by up to 30% due to large day-to-day 

variations. Also, the IRI takes the 12-month running mean sunspot number as an 

input. I shall use NNs to show that this is not the optimum solar activity input for 

predicting ionospheric characteristics. However, the IRI has undergone extensive 

international critical review and is constantly being improved. Hopefully, the NN 

based South African model will assist in the further improvement of the IRI.  

The major advantage of the Titheridge model is that an attempt has been made 

to predict the value of hmE under all conditions. Most ionospheric models adopt 

the IRI’s fixed hmE value of 110 km or a similar fixed value. Since measured 

hmE values have proven that hmE is variable, this area has been identified 

(Bilitza, [1998]) as requiring further work.  

The development of a new empirical ionospheric model for the prediction of the 

electron density profile including ionospheric parameters is presented in this 

thesis. This model will initially be a single station model that takes easily acquired 

input parameters and allows the description of the electron density profile to be 

available in different formats. I will name this new model the LAM model, and 

the presentation on the development of this model will begin in the next chapter. 
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Chapter 3 

 

LAM MODEL: INITIAL ATTEMPTS 
 
 

3.1 Introduction 
Various groups (Altinay et al [1997], Williscroft and Poole [1996], Wintoft and 

Cander [1999]) have used NNs for predicting the non-linear behaviour of the 

ionosphere. Mostly these groups have concentrated their efforts on predicting 

the critical frequency of the F2 layer, foF2, which is related to the peak 

ionospheric electron density by equation 1-1. Stanislawska [2000] has made an 

attempt at forecasting n(h) profiles at a single station by using NNs to predict 

the ionogram and then using the POLAN (Titheridge, [1985]) inversion technique 

to determine the n(h) profile. The method of NNs has been shown to be 

successful in modelling the behaviour of the ionosphere over Grahamstown 

(Williscroft and Poole [1996], McKinnell [1996], Poole and McKinnell [2000]).  

The requirements for the LAM model include (i) that the inputs should be easily 

acquired parameters, and (ii) that the predictions should be an improvement on 

similar predictions made by the IRI. This chapter describes the preliminary 

investigation into the use of NNs to produce a bottomside ionospheric electron 

density profile for Grahamstown, South Africa - the LAM model. This preliminary 

investigation was undertaken with the aim of proving the method in order to 

justify further research.   

The contents of this chapter were presented at the 1999 International Reference 

Ionosphere (IRI) Workshop and were published in McKinnell and Poole [2001]. 
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3.2 The Data 
This preliminary investigation was carried out in 1999. At that time only three 

years of electron density profile data was available for Grahamstown and the 

other two South African stations were not operational. The available data range 

spanned the period April 1996 to May 1999 inclusive. Although there is additional 

ionospheric data archived from before April 1996, this data does not contain any 

real height information. Therefore initial attempts excluded it.  

The Artist scaling software that runs on the DPS can provide, on request and 

specification, electron density profile information as a set of (n, h) points, where 

n is the electron density in m-3 and h is the height in km. The height increments 

must be specified. 

All the available electron density profile points were extracted from the Artist 

SAO format files. The n(h) profiles start at the height corresponding to an 

electron density of 4.96×108 m-3 and end at the peak height of the F2 layer, 

hmF2, proceeding in height increments of 5.0 km. The number of data points 

available exceeded 900 000 and were made up as follows: 1156 days (April 1996 

to May 1999), 24 hours per day, 1 profile per hour, and approximately 35 points 

per profile. 

 

3.3 The Inputs 
The electron density in the ionosphere varies diurnally and seasonally. There can 

also be a response in the electron density to changes in solar activity and 

magnetic activity. In McKinnell [1996], I showed that the peak electron density 

(foF2) is dependent on day number, hour, solar activity and magnetic activity. 

For these initial attempts at predicting the electron density at other heights I will 

make use of this information. As a requirement for training a NN, input 

parameters representing the variables that the output responds to are required. 

Day number (DN), 1 ≤ DN ≤ 365, represents the seasonal variation and hour 

(HR), 0 ≤ HR ≤ 23, the diurnal variation. The HR input is in Universal Time (UT). 
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As explained in Poole and McKinnell [2000] the DN and HR inputs are split into 

their cyclic components and presented to the NN as four inputs, two for DN and 

two for HR. These four inputs are calculated as follows: 
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As a measure of solar activity a two month running mean value of the daily 

sunspot number, R2, was used. At this stage I chose not to investigate the solar 

activity input further, but to use the R2 value, which previously proved to be the 

optimum value for predicting the peak electron density (Williscroft and Poole 

[1996], McKinnell [1996]). The range of R2 from April 1996 to May 1999 is on 

the increasing slope of the sunspot cycle, and varies in value from 0 to 100. This 

limits the input space to this range of R2. 

In addition, for this preliminary stage, I restricted the dataset to 12 noon South 

African Standard Time (SAST) data only, therefore, the hour inputs were 

withdrawn from the input space. Magnetic influences were also excluded here.  
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3.4 The Electron Density at 150 km 
An initial idea was to train separate NNs to predict the electron density at each 

height required to make up the profile. To investigate this idea, one height was 

initially selected and a NN was trained to predict the electron density at that 

height. For this first attempt, the dataset was limited to all 12h00 South Africa 

Standard Time (SAST) data. A height that lay well away from any peculiarities at 

that hour (e.g. the valley region) was chosen. This height was 150 km and the 

dataset was further limited to contain only those points at that height. 

The range of electron density in any one profile can cover up to four orders of 

magnitude. Although this was not a problem when dealing with only one height 

at a time, the log of the electron density was used as the output. The inputs to 

the NN were DNS, DNC and R2, and the output was the log of the electron 

density, Log(n), at 150 km. The total number of input vectors that the NN was 

trained with was 983, 70% of which was used for training and 30% for testing 

the NN. Figure 3-1 illustrates the inputs and output to this NN, using a block 

diagram. 

The nature of NNs is to provide an average output for a given input set. Figure 

3-2 shows the dataset of 12h00 SAST measured values for Log(n) at 150 km. A 

predicted Log(n) at 150 km was obtained from the NN for every input vector, 

training and testing sets, and these values are also shown in figure 3-2. It can be 

seen from this graph that the NN has learnt the relationship between the input 

parameters and the output. Although the NN trained well, this would not be an 

ideal method for predicting the entire bottomside profile. Several NNs would 

need to be trained for every height required in the profile, and the number of 

points in a profile is not a fixed value and is very user dependent. It would be 

difficult to build in mechanisms to deal with the many different aspects of the 

profile (e.g. valley and F1 regions). Altogether this is an inelegant way of tackling 

the problem and it was abandoned at this stage. Therefore, an alternative 

method is presented next.  

 



page 17 
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Figure 3-1: An illustration of the inputs and output to the NN that was trained 

to predict the electron density, n, at a height of 150 km at 12h00 SAST.  
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Figure 3-2: A graph of the measured and predicted values of the log of the 

electron density, Log(n), at a height of 150 km. These values are the 12h00 

SAST values for Grahamstown for the period April 1996 to May 1999.   
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The Peak Height, hmF2
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Figure 3-3: The hmF2 NN has three inputs and one output, which is the hmF2 

value at 12h00 SAST. 

 
 

3.5 The peak height, hmF2 
The real height at which the critical frequency of the F2 layer, foF2, occurs is 

hmF2. The value of hmF2 indicates the peak height of the bottomside electron 

density profile, and is required if the entire profile is to be predicted. In this 

section I discuss an initial attempt to predict an hmF2 value that could be used 

when predicting the rest of the profile. 

The value of hmF2 varies in a similar manner to foF2, in that it depends on day 

number (DN), hour (HR) and solar activity. The hour was again restricted to 12 

noon SAST, and R2 was used as the measure of solar activity. A NN was then 

trained to predict the 12h00 SAST value of hmF2. The input vectors spanned 

three years from April 1996 to May 1999. Figure 3-3 shows a block diagram of 

the inputs and output for this initial hmF2 NN. 

Figure 3-4 shows a distribution of hmF2 over the three year period. The 

predicted hmF2 values show that the NN produces an average value of hmF2 for 

each set of input data. 
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Figure 3-4: The distribution of the 12h00 SAST measured and predicted hmF2 

values for Grahamstown for the period April 1996 to May 1999. 

 

 

3.6 Electron Density Profile Prediction 
In this section I make an attempt to predict the entire bottomside profile with 

one NN. As this was still a preliminary investigation, I again used inputs that had 

previously been shown to be optimal for the prediction of ionospheric 

characteristics (Williscroft and Poole, [1996]). 

Inputs to the NN included DNS, DNC and R2, but excluded magnetic influences. 

Again only the 12h00 SAST profiles were used for training this initial NN and so 

the HS and HC inputs were excluded. Real height was included as an input and 

the output was the log of the electron density, Log(n), at that input height. 

Figure 3-5 shows the block diagram of the inputs and output of the initial profile 

prediction NN.  
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Electron Density Profile Prediction NN
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Figure 3-5: The electron density NN inputs and output. This NN predicts the 

log of the electron density, Log(n), at 12h00 SAST for the selected input set. 

 
 
As a test of the NN’s ability to predict the bottomside electron density profile, the 

NN was presented with input data corresponding to summer (DN = 1) and winter 

(DN = 180) at low, medium and high levels of R2. The low, medium and high 

values of R2 were chosen according to the percentage of R2 values (90%, 50% 

and 10% respectively) that lay above the value chosen. For example, the low R2 

value was chosen such that 90% of all R2 values lay above that value. The R2 

values that were used to determine these levels were those that appeared in the 

original dataset with which the NN was trained.  

The hmF2 NN was used to predict an hmF2 value which provided the cut off 

height for the profile. Then the profile prediction NN predicted the electron 

density at input heights from 90.0 km to hmF2 in steps of 5.0 km. An average 

electron density profile was then predicted for each set of input data. These 

profiles are shown in figure 3-6. 
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Figure 3-6: The average 12h00 SAST Grahamstown electron density profiles at 

(a) low R2 (R2=20), (b) medium R2 (R2=45) and (c) high R2 (R2=60) as 

determined by the NN for a test input set. 
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NNs interpolate well through the input space, therefore, although the NN was 

trained with a height increment of 5.0 km, the predicted profiles could have 

different height increments and the NN would still predict reasonable average 

profiles. 

 

3.7 Conclusion 
This chapter discussed preliminary investigations into the use of NNs for the 

prediction of bottomside profiles. As can be seen, from figures 3-2, 3-4 and 3-6, 

the NNs have successfully predicted the average shape and location of the 

electron density profiles. The ease with which NNs have gained the knowledge 

that allows for successful prediction shows that it will almost certainly be possible 

to produce a NN based electron density profile model.  

For this investigation, DN and R2 were used as inputs to all the NNs. R2 was 

used as a measure of the solar activity because it has proved to be optimal for 

the prediction of foF2. Another solar time series may be more effective in 

predicting the shape of the entire profile, or different solar time series may be 

needed for different parts of the profile. The effect of magnetic influences was 

excluded from the initial attempts. A magnetic time series, A16, was shown to be 

required for the prediction of foF2 to allow for variations in magnetic activity 

(Williscroft and Poole [1996], McKinnell [1996]). This requirement will need to be 

investigated for the entire profile. There may be other measurable and easily 

accessible parameters upon which the profile is dependent and, which could be 

used for improving the prediction.  

The HS and HC inputs (equations 3-3 and 3-4) were also excluded as only 12h00 

SAST data were considered. In future developments the NNs will need to be 

expanded to include all hours. Some thought is required here as different parts 

of the profile are not measurable at all hours, and a mechanism for handling 

those times will need to be developed. 
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Ideally one solar cycle (approximately 22 years) of ionospheric data is required in 

order to train a NN to its full potential. The dataset used for these initial attempts 

was severely limited in that it only spanned three years. This limited dataset can 

still be used to develop the model. It will be a relatively simple procedure to re-

train the NNs once more data becomes available. The NN based model will be 

useable even if developed with a limited dataset, however, the user must be 

made aware of the limitations of the input space.  

The larger archived data base that came from data measured by the Verti 

sounder (previously operational at Grahamstown) will be used for developing the 

critical frequency sections of the model while the smaller data base from 

measurements made with the DPS sounder will be used when real height 

information is required. 

 

 

 

Figure 3-7: The model frequency versus height profile will be divided into two 

sections, the E layer and F layer, for the purposes of developing the LAM 

model. 
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The lower parts of the bottomside electron density profile, the E layer including 

the valley, were not predicted particularly well by these first NNs. It is possible 

that there were not enough data points available to adequately describe the 

shape of the profile in that region. In that case there would not have been 

sufficient examples available from which the NN could learn. The solution here 

would be to either train a separate NN to predict the E layer or to obtain more 

data points for that layer. 

At this point I made the decision to develop the LAM model in two main sections, 

combining them at the end. Therefore, the model was split into the E layer and 

the F layer, which are shown in figure 3-7 and discussed in the following two 

chapters. Although NNs have been shown to successfully predict foF2 (Williscroft 

and Poole [1996], McKinnell [1996]), these initial attempts inspire further 

confidence in the use of NNs as a tool for ionospheric prediction in the South 

African region. 
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Chapter 4  

 

LAM MODEL: E LAYER 
 
 

4.1 Introduction 
In this chapter I present the development of the LAM model for the E layer. The 

subject of this chapter formed the basis of a paper that was presented at the 

2001 International Reference Ionosphere (IRI) Workshop, (McKinnell and Poole 

[2002]).  

The E layer is that region of the ionosphere from 85 km to about 150 km. Below 

the E layer is the D layer. The ionosonde is not able to take measurements from 

the D layer and, therefore, the lowest region for which South African data exists 

is the E layer.  

An example of the E layer of a model electron density profile for Grahamstown, 

midday South African Standard Time (SAST), is shown in figure 4-1. This profile 

is shown as a height versus frequency profile, where the x-axis variable is 

frequency in MHz instead of electron density. Electron density is proportional to 

the frequency squared, as shown in equation (1-1), therefore, frequency will be 

used throughout this thesis, reserving the option to convert to electron density in 

the final model if required. In figure 4-1 the ionospheric characteristics that are 

important for defining the start and end points of the profile are indicated. 

Several neural networks (NNs) have been designed to predict the parameters 

needed to describe the electron density profile in the E layer.  
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Figure 4-1: An example of a Grahamstown E layer profile for 12h00 SAST. The 

start and end points of the profile are labeled. 

 
 

4.2 The Inputs 
It is well known that the ionospheric E layer responds to seasonal, diurnal and 

solar changes (Muggleton [1975], Titheridge [2000]). There is also a 

dependence on geographic position, but initially the LAM model will be a single 

station model and, therefore, geographic position is not considered as an input 

at this stage.  

DNS, DNC, HS and HC represent seasonal and diurnal variations in the input 

space. These four inputs are defined in chapter 3 by equations (3-1) to (3-4). 

The other inputs required were determined by using the peak characteristics to 

investigate the response of the E layer to various variables. Therefore, these 

inputs are discussed in the E layer peak section of this chapter. 
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4.3 The E Layer Peak 
The maximum electron density in the ionospheric E layer is measured in terms of 

the critical frequency of that layer, foE, which is an easily measurable quantity. 

The peak height of the E layer, hmE, is the real height that corresponds to foE. 

These values, foE and hmE, have the units MHz and km respectively. The peak 

of the E layer is required in order to determine the profile. Therefore, the first 

step is to establish a model for foE and hmE. 

 

4.3.1 foE 
The IRI (Bilitza [1990]) uses an analytical model for the prediction of foE 

developed by Kouris and Muggleton [1973] for the International Radio 

Consultative Committee (CCIR model). This model predicts the monthly median 

value of foE as a function of season, time, solar activity and geographic position. 

As a measure of solar activity the 12-month running mean value of the 10.7 cm 

solar radio flux is used. The contributions to this model are explained in detail in 

Muggleton [1975]. UMLCAR use the same CCIR model in the Artist scaling 

software to predict foE at times when no E layer measurements are possible 

(Huang and Reinisch [1996]). The IRI will be used as a comparison for 

predictions made by the LAM model. 

Titheridge [2000] has developed a global analytical model for the peak of the E 

layer that is much simpler than the CCIR model used by the IRI. This model will 

be referred to as the JET model. The JET model prediction for foE depends on 

geographic latitude, season, local time and solar activity. At times when the LAM 

model is unable to make an E layer peak (foE, hmE) prediction, the JET model 

will be used.  

The ionospheric data archive for the Grahamstown station contains 28 years of 

measured foE values. These values span more than one solar cycle and make an 

ideal dataset for using NNs to develop an empirical model for predicting foE.  
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4.3.1.1 Determining the inputs 
As a measure of the solar activity the sunspot number (SSN) was considered. 

Most ionospheric models have adopted the procedure of using a 12-month 

running mean value of the daily SSN (R12) as the solar activity input. In 

particular the IRI requires R12 as an input (Bilitza [1990]). Williscroft and Poole 

[1996] and McKinnell [1996] show that a 2-month running mean value of the 

SSN (R2) is an optimum input for predicting the peak ionospheric electron 

density (foF2). In McKinnell [1996] I used NNs to determine the optimum length 

of time over which the daily value of the SSN should be averaged in order to 

predict the noon value of foF2. The same method is used here to determine the 

SSN input required for predicting foE. 

Eight different NNs were trained and tested with five inputs and one output. The 

first four inputs were DNS, DNC, HS, and HC, for all eight NNs. Running means 

of the daily sunspot number over the preceding 1/30, 1/2, 1, 2, 4, 8, 12 and 16 

months made up the fifth input for the corresponding NN. The output was the 

foE value in MHz. 

The root mean square (rms) error between the measured and predicted values 

of foE was used as a criterion for determining the optimum solar activity index.  

Figure 4-2 shows the rms errors obtained for each of the eight NNs. From this 

graph it can be seen that R1 (1-month running mean value of the daily SSN) 

gave the lowest rms error.  

Other models use the 10.7 cm solar radio flux (SF) as a measure of solar activity. 

No significant difference was found when comparing the rms errors obtained 

from using the SF index with those from using the SSN index. As the daily SSN 

value is more readily available than the daily SF value, R1 will be used as the 

solar activity input for predicting the foE value.  
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Figure 4-2: This graph shows the rms errors between the measured and 

predicted foE values. The rms errors apply to eight different NNs, each trained 

with a different time length of daily SSN as the solar activity input. The 

optimum time length appears to be near one month. 

 
 
Another variable that could be used as an input to the foE NN is the zenith angle 

(ZA), which can be calculated analytically if the year, day number and hour are 

known. To find the response of foE to ZA, a NN was trained with R1 and ZA as 

inputs. The rms error between the measured and predicted foE values increased 

slightly when using ZA instead of the DN and HR inputs. It made no difference to 

the rms error when ZA was included with DN, HR and R1. The ZA input was 

providing no additional information to the input space that could improve the 

prediction of foE.  

McKinnell [1996] and Williscroft and Poole [1996] show how foF2 responds to a 

magnetic activity input. The procedure for determining the optimum magnetic 

activity index is the same as the procedure for determining the optimum solar 

activity index and is reported in full in both of these publications. A similar 

procedure was carried out to determine the response of foE to magnetic activity. 
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The addition of a magnetic activity input resulted in an improvement in the rms 

error of 0.5%. This was considered not significant enough to warrant the 

addition of another input and, therefore, the magnetic activity input was 

excluded from the training of the E layer NNs. 

 

4.3.1.2 Training the foE NN 
The architecture of the NN that was trained to predict the foE value was made 

up of one input layer with 5 nodes, one hidden layer with 15 nodes and one 

output layer with 1 node. A block diagram of the inputs that were presented to 

the NN (DNS, DNC, HS, HC, and R1) and the corresponding output (foE in MHz) 

is shown in figure 4-3. The dataset consisted of all measured data from 1973 to 

2000 inclusive and totalled 88443 input vectors. Of that dataset, 70% was used 

for training and 30% for testing. 
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Figure 4-3: This block diagram shows the inputs used for training the NNs that 

predict the peak characteristics of the E layer, foE and hmE.  
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4.3.2 hmE 
The IRI does not use a model to predict hmE but assumes a constant height of 

105 km in the IRI 90 version and 110 km in the IRI 95 and IRI 2001 versions 

(Bilitza [1990], Bilitza [1998]), under all conditions. It has been recognized 

(Bilitza [1998]) that this is not a good assumption for the hmE value since 

available data shows a dependence of hmE on latitude, season, time and solar 

activity. A few groups have attempted to provide a model for hmE. 

Titheridge [2000] has developed a simple analytical model for the hmE value 

that estimates variations of hmE with latitude, season, local time and solar flux. 

Ivanov-Kholodny et al. [1998] have used data from a mid latitude incoherent 

scatter radar to establish an empirical hmE model. They predict hmE at this 

latitude using seasonal, diurnal and solar inputs and then extend their model to 

other latitudes using the solar zenith angle. 

The procedure followed in the development of the LAM model for predicting the 

hmE parameter is similar to that employed in developing the LAM model for 

predicting foE. I shall refer back to the foE section of this chapter for procedures 

that were discussed earlier but are also relevant here, and use this section to 

describe items that are unique to the hmE model. 

Almost five years of hourly measured hmE values are available for the 

Grahamstown station. This dataset spans the period April 1996 to December 

2000 inclusive and covers the solar cycle from minimum to maximum.  Although 

this is not a comprehensive dataset, there is still enough available data for a NN 

to be set up and trained to predict hmE to suitable accuracy.  

 

4.3.2.1 Determining the inputs 
The seasonal and diurnal changes are discussed in chapter 3 and the inputs 

representing these changes are as shown in equations (3-1) to (3-4).  

To determine the solar dependence of hmE the SSN was used and a similar 

procedure to that for foE was followed. Eight NNs were trained each with the DN 
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and HR inputs plus an input representing the level of solar activity. This solar 

activity input took the form of running means of daily SSN over the preceding 
1/30, 1/2, 1, 2, 4, 8, 12 and 16 months. As was the case for the prediction of foE, 

the 1-month running mean SSN value (R1) was found to be an optimum 

measure of the solar activity for predicting hmE. 

The solar zenith angle (ZA) was also considered as an input parameter here, but 

it did not contribute any further information towards improving the prediction of 

hmE. Therefore DNS, DNC, HS, HC, and R1 were used as inputs. 

The available hmE data are restricted to five years, which imposes limitations on 

the input space with which the NN is trained. Figure 4-4 shows a graph of R1 

versus DN that illustrates these restrictions. The R1 values in this graph are from 

1996 to 2000, which covers solar minimum to the recent solar maximum, but 

there are still parts of the input space that are not sufficiently covered by the 

dataset. Although NNs interpolate reasonably well, they do not extrapolate well. 

The green squares in figure 4-4 represent examples of areas of the input space 

for which the NN is not sufficiently trained, and which should be avoided when 

interrogating the model. It is reasonably easy to re-train a NN, and a future plan 

is to re-train as soon as more data becomes available. 

 

4.3.2.2 Training the hmE NN 
A NN was trained to predict hmE using the available five years of measured hmE 

data and the same set of input parameters as for foE. A block diagram of the 

inputs that were presented to the NN (DNS, DNC, HS, HC, and R1) and the 

corresponding output (hmE in km) is shown in figure 4-3. The dataset consisted 

of all measured data from 1996 to 2000 inclusive, and totalled 10422 input 

vectors. Of that dataset, 70% was used for training and 30% for testing. 
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Figure 4-4: This graph illustrates the extent to which the input space (R1, DN) 

is covered by the limited available dataset. The green boxes indicate examples 

of areas that should be avoided when interrogating the NNs. 

 
 

4.4 The E Limits NN 
Another restriction on the E layer dataset is that the NN is only trained with data 

that is measured or derived from measured data. Measurements of the E layer 

are only available for the hours between sunrise and sunset. These hours vary 

with season and solar activity. Therefore, a mechanism is needed for 

determining those hours between which an E layer could be measured, and thus 

successfully predicted by a NN. 

Using the foE dataset, the start and end hours for measured E characteristics 

were extracted. With DNS, DNC, and R1 as inputs a NN was trained to predict 

the start hour (SH) and end hour (EH) for measured E characteristics. This NN 

will be referred to as the “E limits NN”. Determining these limits this way means 

that the danger of interrogating the E layer NNs with input parameters with 

which they have not been trained is avoided.  
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Figure 4-5: A block diagram that shows the inputs and outputs of the E limits 

NN. 

 

 

To check the dependence of the outputs on R1 a NN was trained with only the 

DN inputs. Using the rms error criterion a dependence on R1 was found. 

Therefore, R1 will be included as an input for this NN. 

Figure 4-5 shows a diagram depicting the inputs and outputs to the E limits NN. 

For the hours that fall outside of the E limits SH and EH, existing models will be 

used to determine the E layer description. In the case of the peak characteristics, 

foE and hmE, the JET E layer peak model (Titheridge [2000]) is used, and for the 

profile description the UMLCAR model (Huang and Reinisch [1996]) is used. 

 

4.5 Describing the Profile 
The IRI applies an exponential function to connect the D layer profile with the E 

layer peak (Bilitza [1990]). The D layer profile is determined from empirical 

relationships that have been defined by using rocket measurements. It has been 

recognized by the IRI community that a data based description of the E layer 

profile shape is required for use in the IRI model (Bilitza [1998]).  
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Hafner et al. [2001] use a combination of cubic spline fitting to known E layer 

profiles and then linear interpolation to deal with latitudinal and solar 

dependences. 

4.5.1 The Data 
There are five years of profile data available for the Grahamstown station. 

Ionograms from the DPS are automatically scaled using the Artist scaling 

software. Artist reports the electron density profile description in two formats. 

The first format is a set of Chebyshev coefficients for each individual layer. For 

the E layer there are three Chebyshev coefficients that, together with the peak 

characteristics (foE, hmE), are used to determine the height at each frequency 

analytically. In this case the frequency is the independent variable with an 

increment of 0.02 MHz. The second format is a listing of frequencies at given 

heights where the height is the independent variable and the user decides what 

height increment will be used. These formats are equivalent since they are 

derived from the same model. Thus there are two methods that can be adopted 

for setting up the NN to provide a model description of the profile. The “cheby 

method” uses the data as presented in the first format while the “direct method” 

uses the data as presented in the second format. Both methods are explained 

here and then compared. 

 

4.5.2 Direct Method 
For this method the data is available as a set of height, frequency points 

provided directly by Artist. The height is the independent variable here with a 

height increment chosen to be 0.5 km. The E layer profile data was extracted in 

this format for all measured profiles from 1996 to 2000. This amounted to 

443551 input vectors. 

Five NNs were trained to predict the frequency in MHz at a particular height. 

Each NN used different combinations of the input parameters DNS, DNC, HS, HC, 

R1, ZA and height to make up the input vector for training the NN. The lowest 
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rms error was obtained for the NN that was trained with an input vector made up 

of all seven of these parameters. However, the difference between the rms 

errors for the NN trained with the solar zenith angle (ZA), and the NN trained 

without, was hardly significant. The improvement in the rms error was not worth 

the complexity of adding another dimension to the input space. Therefore ZA 

was excluded and the NN was trained with DNS, DNC, HS, HC, R1 and height as 

the inputs. The output was the frequency in MHz at the corresponding input 

height. The visual representation of the direct method NN is shown in figure 4-6. 

The lowest height presented to the NN for training was the height at a frequency 

of 0.2 MHz, which is the starting frequency of the Artist profile output. A lot of 

effort was expended in an attempt to find a convenient height with which to start 

interrogating the NN. For a prediction with the direct method a starting height is 

required as part of the first input set. An analysis of all available heights 

corresponding to a frequency of 0.2 MHz revealed that 87.4% reported a height 

of 90.0 km at 0.2 MHz. Therefore, when interrogating the direct method NN to 

predict the E layer profile, the first input height will be 90.0 km. 
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Figure 4-6: A block diagram of the inputs and output to the E layer profile NN 

using the direct method.  
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4.5.3 Cheby Method 
An alternative method for describing the E layer profile in the LAM model is to 

train a NN to predict the three Chebyshev coefficients, A0, A1 and A2. Artist 

provides a set of these coefficients for every ionogram. The three coefficients are 

used in an analytical equation to provide the real height in km for a given 

frequency in MHz. These equations are described in Huang and Reinisch [1996] 

but are reproduced here for ease of reference. To calculate the height, h, in km 

at a frequency, f, in MHz: 
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In the above equations f is the given frequency and fs is the start frequency of 

the E layer, which was fixed at 0.2 MHz. The Ti
* are the shifted Chebyshev 

polynomials which are functions of g. The value of n in the summation of 

equation (4-1) is 2 for the E layer. 

Reliable predictions for the three Chebyshev coefficients (A0, A1 and A2) can be 

used in conjunction with the peak parameter predictions (foE, hmE) in the above 

equations to obtain the real height as a function of frequency.  
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Initially, using DNS, DNC, HS, HC and R1 as inputs and the three Chebyshev 

coefficients as outputs, a NN was trained with data derived from measured 

ionograms for the period 1996 to 2000 inclusive. Although this NN contained 

enough information about the relationship between the coefficients, it did not 

contain any knowledge of how the coefficients were related to the peak 

characteristics. There are five variables required to calculate the profile from 

equation (4-1). 

The outputs of the NN were then changed to foE, hmE, A0, A1 and A2. The 

inputs remained the same. Thus the predictions of the coefficients are based on 

all the available information required to obtain the entire profile. The individual 

NNs trained to predict foE and hmE are not wasted, as they will be used to 

predict those characteristics. A more accurate prediction of foE would be 

expected from the foE NN than from the profile NN, as the input space used to 

train the foE NN was more comprehensive.  

This E layer profile NN is used when the hour for which a profile is required falls 

between SH and EH as determined by the E limits NN (section 4.4). If the input 

hour falls outside of this range the UMLCAR model (Huang and Reinisch [1996]) 

is used to determine the profile. The UMLCAR model is used with hmE and foE as 

determined by the JET model (Titheridge [2000]), and an E layer half thickness 

of 28 km. The layer half thickness, y, is the difference between the peak height, 

hmE, and the height at a frequency of 0.0 MHz.  

Figure 4-7 is a block diagram of the process used in determining the E layer 

profile description. 
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Figure 4-7: A diagram depicting the process for determining the E layer 

profile. The inputs and outputs are shown for the cheby method NN. 

 
 

4.5.4 Direct vs Cheby 
An advantage of the cheby method is that only five outputs for one input set are 

required in order to obtain the entire E layer profile. With the direct method an 

output is required for every height in the profile. 

With the cheby method, the predicted coefficients contain all the information 

required to produce the profile from 0.2 MHz up to the E layer peak. Also, the 

requirement for a starting input height is eliminated. This makes the cheby 

method an elegant way in which to obtain a description of a profile for a 

particular input set. Therefore, for the development of the LAM model, my 

preference is for the cheby method over the direct method and all further LAM 

model development, as described in this thesis, uses the cheby method. 
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Figure 4-8: The shape of the model valley region used in the UMLCAR model 

and adopted in the LAM model. 

 

 

4.6 The E-F Valley 
At the top of the E layer an ionization valley exists which forms the transition 

from the E layer to the F layer. It is not possible to determine the valley shape 

from the ordinary ray of an ionogram. A way to resolve this problem is to 

assume a general shape for the profile within the valley and then use the 

observed virtual heights from the ionogram to determine the details. However, 

usually there is not enough information on the ionogram to provide any details. 

Titheridge [1985] has covered the valley area in detail for his electron density 

profile model, POLAN. However, since the Grahamstown ionograms are 

measured with a DPS and scaled with Artist, the valley shape assumed by the 

UMLCAR model (Huang and Reinisch [1996]) will be adopted by the LAM model. 

This valley region shape is shown in figure 4-8. 

The only information required to construct this valley shape is the width of the 

valley, W, which has the units km. There exists a data base of W values, which 

have been determined by the Artist scaling software. This data base shows that 
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the W values respond to changes in DN, HR and R1. A NN was trained to predict 

the W values for times when it is possible to measure an E layer. At times that 

fall outside of the boundaries set by the E limits NN, the F layer is determined 

first and the W value is taken to be the difference between hmE and the start of 

the F layer, hsF. Since the shape of the valley layer is based on an assumption, 

and not on actual measured ionograms, there is some room to adjust the W 

value to ensure a smooth transition from E to F layer. 

The shape of the valley consists of three parts, a parabolic section at the top of 

the E layer followed by a slab of constant frequency (the valley bottom 

frequency, fv) and then an upper section where the frequency increases linearly 

with height. Once the W value is determined the rest of the valley can be 

described by using equations (4-4) to (4-7) (Huang and Reinisch [1996]). 

First, define dp from W 
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4.7 Results 
There are two different methods that can be used for presenting the results from 

a NN based model. The first is a comparison between the measured and 

predicted values, using the input set associated with the measured value to 

obtain the predicted value. The second is by varying each input variable 

individually while keeping the other inputs constant and observing the effect on 

the output. Both of these methods are used here to present the results obtained 

from the E layer contribution to the LAM model. 

For the E layer model the input parameters were DN, HR and R1. To investigate 

the relationship between the E layer description and the inputs the second 

method is used. 
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Figure 4-9: The distribution of R1 values, for the years 1973 to 2000 inclusive, 

that was used to determine typical low and high values of R1. 
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Typical high and low values were chosen for each of these inputs. The values of 

DN were arbitrarily chosen as follows: 20 being typical for the summer months, 

and 180 typical for the winter months. A value of 10h00 UT (12h00 SAST) was 

chosen for the HR input when a fixed value was required. For R1, values of 10 

and 125 were chosen as typical indicators of low and high solar activity, shown in 

figure 4-9. These values were selected such that approximately 70% of the data 

lay between the low and high values, 10% at the low end and 20% at the high 

end. The same high and low R1 values were used when interrogating all E layer 

NNs; those that were trained with the 28-year dataset (foE and E limits) as well 

as the 5-year dataset (hmE and E profile). The difference is that with the 5-year 

dataset approximately 78% of the data lay symmetrically between the low and 

high values. The distribution of R1 for the 28-year dataset is shown in figure 4-9 

and illustrates the selected low and high values of R1. For this results section, 

these values remain as described here, unless otherwise indicated. 
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Figure 4-10: Results from the E limits NN for the year 2000. 
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4.7.1 E Limits NN: 
The E limits NN was trained to predict the hours between which the E layer is 

measurable by our ground based ionosonde. The outputs from this NN are the 

start hour (SH) and the end hour (EH). In figure 4-10 the graph of hour versus 

day number is shown for the year 2000, which corresponds to high R1.   

The E limits NN was trained with data from 1973 to 1999 inclusive. As the 

dataset already covered more than a solar cycle, the year 2000 was reserved to 

use for testing how successfully the NN could determine the E layer limits when 

presented with unseen data. 

 

4.7.2 The E Layer Peak – foE 
The foE NN was trained to predict the critical frequency of the E layer using DN, 

HR and R1 as inputs. For hours that fall outside of the SH and EH limits set by 

the E limits NN, the JET model (Titheridge [2000]) is used. At the SH and EH 

boundaries the two models, JET and LAM, merge in a realistic manner.  
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Figure 4-11: Graphs of the predicted foE values over one day for three days of 

the year (winter solstice, spring equinox, summer solstice) at (a) low R1 

(R1=10) and (b) high R1 (R1=125). The LAM model was used for the daytime 

values and the JET model for the nighttime.  
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Figure 4-11 shows graphs of foE values predicted over one day for three days of 

a year for low and high R1. The three days were chosen to coincide with the 

winter solstice, spring equinox and summer solstice. In figure 4-12 the measured 

and predicted foE values for two years, 1989 and 1995, taken from the original 

dataset are graphed. These values are for 12h00 SAST only. The rms error 

between the measured and predicted values is 0.25 MHz for 1989 and 0.13 MHz 

for 1995. 

To investigate the relationship between R1, DN and foE the DN was varied from 

1 to 365, the hour was fixed at 12h00 SAST and the R1 value varied from 10 to 

130 in steps of 20. The result is the graph shown in figure 4-13. This graph 

shows that the foE NN has learnt the relationship between the inputs and output. 

NNs can also be used in the same way to discover new relationships between 

parameters. 

 

 

foE predicted by LAM model

2.7

3.1

3.5

3.9

4.3

4.7

0 50 100 150 200 250 300 350 400

Day Number (DN)

fo
E/

[M
H

z]

measured
predicted 1989

1995

 
Figure 4-12: This graph shows the measured and predicted 12h00 SAST foE 

values for 1989 (a year of high R1) and 1995 (a year of low R1). The rms 

errors were 0.25 MHz and 0.13 MHz respectively. 
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Figure 4-13: A graph of the variation of foE with DN and R1. The hour is fixed 

at 12h00 SAST and R1 is varied from 10 to 130 in steps of 20. 

 

 

4.7.3 The E Layer Peak - hmE 
The hmE NN was trained to predict hmE using DN, HR and R1 as inputs. As a 

limited dataset was used for training the NN, the NN was only interrogated with 

input data for which it had been trained. 

As before, the NN is only used for predictions at hours that fall inside the 

boundaries set by the E limits NN. Outside of these boundaries the JET model 

(Titheridge [2000]) is used. In figure 4-14 the predicted values of hmE are 

shown for two days coinciding with the summer and winter solstice, at low and 

high R1. The daytime behaviour of hmE predicted by the NN and illustrated in 

these graphs is identical to the daytime behaviour of hmE reported in Titheridge 

[2000]. 

The relationship between DN, R1 and hmE was investigated and is illustrated in 

figure 4-15. R1 is varied from 10 to 130 in steps of 20 and the hour is fixed at 

12h00 SAST. 
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Figure 4-14: The hmE values over one day at low and high R1 are shown for 

(a) summer solstice (DN=356) and (b) winter solstice (DN=173). 
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Figure 4-15: A graph of the variation of hmE with DN and R1. The hour is 

fixed at 12h00 SAST and R1 is varied from 10 to 130 in steps of 20. 
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Predicted hmE Comparisons
year = 1999, hour = 12h00 SAST
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Figure 4-16: Comparisons of measured and predicted values of hmE. The LAM 

model is compared to the JET model and the IRI for 1999 at 12h00 SAST. 

 
 
Figure 4-16 illustrates the differences in the predicted hmE values of the three 

models, LAM, IRI and JET. This comparison was done for one year, 1999, at 

12h00 SAST. As can be seen from this graph the IRI fixed value of 110 km is not 

optimal for these prediction purposes. The JET model appears to overestimate 

the actual values while the LAM model provides a better average prediction. 

 

4.7.4 E Layer Profile Results 
The first results from the LAM model’s E layer profile are shown in figure 4-17. 

These graphs show the predicted E layer profiles for four days, one day for each 

season, at low R1 and high R1. The hour input was fixed at 12h00 SAST. 
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Predicted E Layer Profile at High R1
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Figure 4-17: These graphs show the LAM model E layer profile predictions. 

The profiles are for 12h00 SAST at (a) low R1 (R1=10) and (b) high R1 

(R1=125). 
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To illustrate the variation of the profile shape during the course of one day, the 

predicted E layer profiles were determined for a summer day at low R1. These 

profiles are shown in figure 4-18a and figure 4-18b. The first graph shows the 

profiles leading up to 12h00 SAST and the second graph the profiles at later 

times.  

The nature of NNs is to give the best average output for a particular set of 

inputs. Six examples have been selected to demonstrate the performance of the 

E layer model. In each example input sets have been chosen for which actual 

profiles exist in the original dataset. The LAM model has produced predicted 

profiles for each set of inputs to the best of its ability, which is determined by the 

NNs that make up the model. Best and worst case scenarios have been 

deliberately chosen for this demonstration. As an added comparison profiles 

predicted by the IRI 2001 are shown for each of the input sets.  

These examples are shown in figure 4-19. Two profiles from three different solar 

activity levels are presented. The profiles were chosen from the original dataset 

and then the LAM model and the IRI 2001 were used with the actual profile’s 

input set. Therefore, the DN and R1 inputs differ for each profile shown. The first 

two profiles, figures 4-19(a) and 4-19(b), are for summer and autumn at high 

R1. Figures 4-19(e) and 4-19(f) show the profiles for summer and winter at low 

R1. The two middle profiles, figures 4-19(c) and 4-19(d), are for summer and 

spring at an R1 level that falls between the high and low levels. 
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Figure 4-18: These graphs show the predicted E layer profiles at different 

hours for one summer day (DN=20) at low R1 (R1=10). The profiles are 

labeled according to the hour of the day in UT that the profile represents. For 

this example the E limits NN determined SH as 05h00 UT and EH as 16h00 

UT. 
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Figure 4-19: Comparisons of the LAM model for the E layer with the IRI 2001 

and actual DPS profiles. These comparisons are shown for midday local time 

at three levels of solar activity. 
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DN = 270, HR = 07h00 SAST, R1 = 28 
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DN = 270, HR = 07h00 SAST, R1 = 116 
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Figure 4-20: Comparisons of the LAM model for the E layer with actual and IRI 

2001 predicted profiles. The input dataset was DN=270, HR=07h00 SAST at 

(a) R1=28 and (b) R1=116. 

 
 
From figure 4-19 it can be seen that in some cases the LAM model profile fits the 

actual profile particularly well while in other cases the LAM model profile deviates 

from the actual profile. This deviation usually falls well within the estimated 

profile uncertainty, which is discussed in the next section of this chapter. In 

addition, the dataset from which the hmE and profile NNs were trained is limited. 

The predictions from these NNs will improve as more data becomes available and 

the NNs are re-trained. 

The comparisons with the IRI 2001 illustrates in all cases that the LAM model is 

an improved predictor of the E layer profile compared to the IRI for the 

Grahamstown ionosphere.  

Figure 4-20 shows more of the same comparisons as in figure 4-19 but for a 

different hour of the day, 07h00 SAST. Profiles for a spring day (DN=270) at low 

R1 (R1=28) and high R1 (R1=116) are predicted with the LAM model and 

compared to actual and IRI 2001 predicted profiles. 
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4.7.5 Estimating the Uncertainty 
In Poole and McKinnell [2000] a technique for finding the uncertainty in the 

prediction of a NN based model is described. This technique was employed to 

investigate the uncertainty in the prediction of the E layer contribution to the 

LAM model. 

An uncertainty can be determined by finding a statistical measure of the 

differences between the predicted and measured values. For each input vector of 

the original dataset used to train the NN (NN1), the difference between the 

predicted and measured output value is evaluated and squared. A second NN 

(NN2) is then trained with the same input data as NN1 but with the squared 

differences as the output. Since it is the nature of NNs to find the mean 

predicted value, the square root of the output of NN2 is a root mean squared 

(rms) difference. This difference represents a measure of the variation that can 

be expected between any predicted and measured value. More details of this 

technique and how it was applied to foF2 can be found in Poole and McKinnell 

[2000]. 

Determining the uncertainty in the LAM model prediction of the E layer profile 

requires applying the above technique to all the relevant datasets. For the peak 

characteristics, foE and hmE, the uncertainty in each prediction is directly the 

square root of the output of the relevant squared differences NN. However, for 

the E layer profile it seemed that a complicated propagation of errors calculation 

was required to determine the uncertainty on each of the heights that make up 

the profile. 

The E layer profile NN has five outputs (as shown in figure 4-7) each of which 

plays a role in determining the final shape of the profile. The three Chebyshev 

coefficients (A0, A1 and A2) are not independent of each other, which is the 

reason it is not a simple mathematical procedure to find the uncertainty on 

heights calculated with equation (4-1). However, for the E layer, the relationship 

between the coefficients can be approximated using linear regression techniques. 

Figure 4-21 illustrates the dependence of A1 and A2 on A0. These graphs were 
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plotted using all available Grahamstown data and then linear regression was 

applied to fit a straight line to the data. For A1 versus A0, the slope of the fitted 

straight line was – 0.41 and for A2 versus A0 the slope of the fitted straight line 

was 0.09. Therefore, straight line equations can be written to approximate the 

values of A1 and A2 given A0. 

Using this linear approximation, the estimated uncertainty in the start height of 

the E layer, hsE, can be determined. The uncertainty in hsE is evaluated in terms 

of the uncertainty in A0, which is predicted by the squared differences NN 

corresponding to the E profile NN. Under normal conditions, the minimum 

frequency the Grahamstown DPS sounds at is set to 2.0 MHz and therefore the 

height corresponding to 2.0 MHz is taken to be hsE.  

The estimated uncertainty in the peak height of the E layer, hmE, is not 

dependent on the Chebyshev coefficients and provides an indication of the 

maximum uncertainty in the E layer for a given input set.  

 

 

E Layer Coefficient Relations 

0

5

10

15

20

25

-60 -50 -40 -30 -20 -10 0

A0/[km]

A
1/

[k
m

]

(a) 

E Layer Coefficient Relations 

-6

-5

-4

-3

-2

-1

0

-60 -50 -40 -30 -20 -10 0

A0/[km]

A
2/

[k
m

]

(b) 

Figure 4-21: The relationships between the three coefficients that describe the 

E layer profile are illustrated here. An approximation of the functions that 

relate A1 and A2 to A0 was determined using linear regression. 
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Therefore, the estimated uncertainties in hsE and hmE are known and can be 

used to determine the uncertainty profiles in the E layer. Using these 

uncertainties, hsE and hmE were adjusted by adding and subtracting the 

uncertainty from the predicted value to determine the maximum and minimum 

values respectively. The maximum uncertainty profile was determined by 

interpolating between hsE+hsE(error) and hmE+hmE(error) in such a way that 

the profile shape was retained. Similarly, the minimum uncertainty profile was 

determined by interpolating between hsE-hsE(error) and hmE-hmE(error). The 

uncertainties due to hsE and hmE are referred to as hsE(error) and hmE(error) 

respectively.   

The examples of figures 4-19(c) and 4-19(d) are shown again in figure 4-22 with 

their corresponding uncertainty profiles. These estimated uncertainty profiles 

represent the maximum possible statistical variation of the average predicted E 

layer profile for a given input set. 
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Figure 4-22: These are the same profiles as shown in figures 4-19(c) and 4-

19(d) with their uncertainty profiles. The solid black line is the actual profile 

and the red diamond shape points are the LAM model profile. The solid blue 

lines are the maximum and minimum uncertainty profiles. 
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4.8 Conclusion 
This chapter has presented the development of the E layer contribution to the 

LAM model. NNs have been used to provide information on all aspects of the E 

layer profile, including reasonable times of day to expect a measurable E layer 

and the variability limits that can be placed on the profile.  

The discussions in this chapter have also set the scene for the development of 

the other contributions to the LAM model, which will be discussed in the 

following chapters. The cheby method for setting up the profile NN was 

introduced in this chapter and will now be my preferred method for setting up 

NNs to predict the other sections of the entire bottomside profile. 

As mentioned before the dataset used to train the hmE and profile NNs was 

limited to only five years. When this dataset has been increased the NNs will be 

re-trained, thereby improving the LAM model’s ability to find the profile. 

In spite of this limited dataset, the LAM model is still an improved predictor of 

the ionospheric E layer description when compared to the IRI. The IRI has 

acknowledged the need for improvements in the E layer predictions, especially 

for hmE, and it is possible that the LAM model could be useful in assisting the 

IRI in making the necessary improvements. 
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Chapter 5 

 

LAM MODEL: F LAYER 
 
 

5.1 Introduction 
This chapter discusses the F layer contribution to the LAM model. The F layer of 

the bottomside ionosphere falls in the region from about 150 km to 350 km and 

is divided into two sections, the F1 and F2 layers. Details on the physical 

processes that give rise to the distinction between F1 and F2 can be found in 

McNamara [1991]. For the purposes of HF propagation the most important layer 

in the ionosphere is the F2 layer, since this layer is always present and 

measurable. There are specific conditions under which an F1 layer is not present 

at all. In particular, the F1 layer is never present at night.  

For the development of a model for the F layer, three points on the electron 

density profile need to be identified. Firstly, there is the peak of the F layer 

corresponding to the point of maximum electron density in the ionosphere, which 

is described by the ionospheric characteristics, foF2 and hmF2. Secondly, the 

starting point of the F layer is identified by the characteristics fsF and hsF, which 

are determined by the E layer model. The third point is identified by the 

ionospheric characteristics foF1 and hmF1, which define the peak of the F1 layer.  

An example of the F layer profile for the daytime ionosphere over Grahamstown, 

showing both an F1 and F2 layer, is illustrated in figure 5-1, in which the 

important points, as mentioned above, are shown. 
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Figure 5-1: An example F layer profile for Grahamstown, showing both an F1 

and F2 layer, and indicating the required ionospheric characteristics.  

 

 

A model of the F layer would need to predict all six of the ionospheric 

characteristics mentioned above as well as a description of the shape in between 

the defining points. There would also need to be some mechanism for identifying 

the conditions required for an F1 layer to exist. This chapter discusses how these 

considerations were addressed for the LAM model. 

 

5.2 The F2 Peak 
An important parameter in ionospheric modelling is the maximum ionospheric 

electron density, which is quantified by the critical frequency of the F2 layer, 

foF2. foF2 is a measurable quantity that is directly related to the maximum 

electron density via equation (1-1). The real height at which foF2 occurs is 

hmF2, the peak height of the F2 layer. 

An initial attempt at predicting hmF2 was discussed in chapter 3. Over the years 

several groups have successfully predicted the ionospheric parameter foF2, and 



page 60 

 

there are analytical and empirical models available that predict foF2 under any 

conditions. In this section the models that predict foF2 and hmF2 for the LAM 

model are discussed. 

 

5.2.1 foF2 
The maximum ionospheric electron density is quantified by the measurable 

ionospheric parameter, foF2, which is, therefore, of fundamental importance in 

ionospheric modelling. Much international effort has gone into producing an 

accurate prediction and forecasting tool for foF2.  

The IRI (Bilitza [1990]) offers two choices for predicting foF2; both are 

mathematical descriptions. The first is based on Fourier Analysis using monthly 

median values, while the second is based on worldwide values of foF2 described 

in terms of Legendre functions. Sets of coefficients are provided for predicting 

foF2 at high and low solar activity, while foF2 values at intermediate levels are 

found by linear interpolation. The 12-month running mean of the daily SSN (R12) 

is used as an input to the IRI and the predicted foF2 value is identical for all 

input sets where R12 levels are greater than 150. 

Although a large global data base of foF2 values is available, one of the largest 

data sparse areas is that of the Southern Africa region. Most of the available 

models, including the IRI, that are based on this data base, use mathematical 

construction techniques to determine the description of foF2 in these data sparse 

areas. As a result, the predictions of foF2 are often not particularly accurate in 

the Southern African region.  

In recent years a number of groups have developed models for the prediction of 

foF2 using NNs (Williscroft and Poole [1996], Altinay et al. [1997], Wintoft and 

Cander [1999]). In McKinnell [1996] I demonstrated the use of NNs for 

predicting the 12h00 SAST foF2 value for Grahamstown. This work was 

expanded to include all hours and the results are presented in Poole and 

McKinnell [2000], where a section on the use of NNs to develop a short-term 
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foF2 forecasting program has been included. As well as providing a foF2 

prediction tool, NNs have provided a means to discover new ways in which an 

output is dependent on different inputs. This is demonstrated in the 

abovementioned publications. 

 

5.2.1.1 The Inputs 
It has been shown previously (Poole and McKinnell [2000]) that the optimum 

input variables for predicting foF2 are geophysical parameters representing 

season, time, solar cycle and magnetic activity. The requirement for the LAM 

model to predict foF2 is identical to that reported in Poole and McKinnell [2000] 

and, therefore, the same input variables will be used here without reporting the 

techniques involved in obtaining them. 

DN and HR represent the seasonal and diurnal variations as defined in chapter 3 

equations (3-1) to (3-4). A 2-month running mean value of the daily SSN (R2) 

and a 2-day running mean value of the hourly magnetic ak index (A16) were 

found to be the optimum parameters for representing the solar cycle and 

magnetic variations respectively. The magnetic indices were obtained from the 

Hermanus Magnetic Observatory. Full details on determining the A16 index can 

be found in McKinnell [1996]. At this stage the LAM model is a single station 

model and therefore any latitudinal dependence was excluded at this point.  

 

5.2.1.2 Training the foF2 NN 
A NN was trained to predict the foF2 value for Grahamstown. The input vector 

consisted of six parameters, DNS, DNC, HS, HC, R2 and A16 and the output 

vector was the foF2 value in MHz. A block diagram depicting these inputs and 

output is shown in figure 5-2.  
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Figure 5-2: A block diagram of the inputs and outputs to the F2 peak NNs. R2 

is the 2-month running mean of the daily SSN and A16 is the 2-day running 

mean of the hourly ak magnetic index. 

 
 
All Grahamstown foF2 data from January 1973 to December 2000 inclusive were 

used for training the NN. This amounted to 192491 vectors, 70% of which were 

used for training and 30% for testing. 

 

5.2.2 hmF2 
The hmF2 value is obtained from the MUF(3000) value, which is the maximum 

usable frequency that will be reflected by the ionosphere at oblique incidence 

over a path of 3000 km (Bradley and Dudeney [1973]). The MUF value has been 

routinely scaled from ionograms, and numerical maps of these values have been 

established. These maps are used by the IRI in conjunction with an analytical 

equation to calculate hmF2 (Bilitza [1990]). The R12 value and the magnetic dip 

latitude are required as inputs for this equation. Recent versions of the IRI have 

incorporated improvements to the hmF2 prediction by using incoherent scatter 

radar data. 



page 63 

 

Grahamstown ionograms that have been scaled with the Artist scaling software 

of the DPS report the hmF2 value as part of the SAO format. In chapter 3 an 

initial attempt to predict the 12h00 SAST hmF2 value was discussed. That 

procedure is expanded on in this section.  

 

5.2.2.1 The Inputs 
The hmF2 value has a similar variation to that of foF2. Seasonal and diurnal 

variations are represented by the quadrature components of DN and HR as 

defined in chapter 3, equations (3-1) to (3-4).  

A similar investigation to that used to determine the optimum solar input for foF2 

(McKinnell [1996]) and foE (Chapter 4) was used to determine the solar input for 

hmF2. Seven NNs were trained to predict hmF2 using DNS, DNC, HS, HC and a 

solar activity index as the inputs. The solar activity index was determined by a 

running mean of the daily SSN over the preceding 1/30, 1/2, 1, 2, 4, 8, and 16 

months. The rms error between the measured and predicted values was the 

lowest for the NN that used R2 as the solar activity input. Therefore, as for the 

foF2 NN, R2 will be used as the optimum solar activity input for predicting hmF2. 

A slight improvement in the rms error was detected when a magnetic activity 

index was added to the input vector. Four NNs were trained, each with a 

different magnetic activity input that was determined from the running mean of 

the hourly magnetic ak index over the 12 (A4), 24 (A8), 48 (A16) and 96 (A32) 

preceding hours. The rms error for the NN trained with the A4 index was the 

lowest. However, the improvement in the rms error when using the A4 index 

compared to using the A16 index was only 1.5%. Therefore, for simplicity, the 

A16 index will be used as the optimum magnetic activity input for predicting 

hmF2, as in the case of predicting foF2.  
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5.2.2.2 Training the hmF2 NN 
The inputs (DNS, DNC, HS, HC, R2, A16) and output (hmF2 in km) to the hmF2 

NN are shown in figure 5-2. A NN was trained with these inputs to predict the 

Grahamstown hmF2 value. All hmF2 values from April 1996 to December 2000 

inclusive were used for training. The total number of vectors was 32377, 70% for 

training and 30% for testing.  

 

5.3 The F1 Peak 
The critical frequency of the F1 layer is foF1, and the real height at which the 

bottomside profile reaches foF1 is hmF1. This point has been poorly represented 

in ionospheric modelling in the past, due to a paucity of accurately scaled F1 

layer data. The F1 peak models developed for the LAM model represent an 

attempt to provide an empirical model for predicting foF1 and hmF1 with 

improved accuracy over current global models such as the IRI. 

 

5.3.1 foF1 
The IRI (Bilitza [1990]) predicts foF1 using an analytical equation that is a 

function of the solar zenith angle, R12 and the magnetic dip latitude. Ducharme 

et al [1971] established this IRI foF1 equation by making use of the worldwide 

ionosonde data that was available at that time. Very little reliable Southern 

African data was included in this development and, therefore, the IRI prediction 

of foF1 in the South African region is poor. 

Up until now there has been no documented evidence of any group attempting 

to model foF1 using NNs. 
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5.3.1.1 The Inputs 
There is a known seasonal, diurnal and solar variation in foF1 (McNamara and 

Reinisch [1995]). As for the other ionospheric characteristics, the seasonal and 

diurnal variations will be represented by the quadrature components of DN and 

HR, which are defined in equations (3-1) to (3-4). 

As in section 5.2.2.1, the solar activity index was determined by training seven 

NNs to predict foF1 with differing time lengths of daily SSN. At this point it was 

also felt that reaffirmation of the use of SSN in preference to the 10.7 cm Solar 

Radio Flux (SF) was required. Therefore, a further seven NNs were trained to 

predict foF1 using differing time lengths of the daily SF value. Using the rms 

criterion, the solar activity index that proved to be optimum for predicting foF1 

was found to be R2, as in the case of foF2 and hmF2. Figure 5-3 illustrates 

graphically the rms errors between the measured and predicted foF1 values 

obtained for each of the 14 NNs. RX is the SSN index and SFX is the Solar Flux 

index with X being the time length over which the running mean was taken. The 

X values are labeled on the graph. 

The addition of a magnetic activity input further improved the rms error between 

the measured and predicted foF1 values. As with hmF2, four NNs were trained, 

each with the inputs DNS, DNC, HS, HC, R2 and AX, where AX is the magnetic 

activity input. The AX value corresponds to the running mean of the hourly ak 

index over the preceding 12, 24, 48 and 96 hours; X = 4, 8, 16 and 32 

respectively. From the rms errors of these four NNs, A8 was found to be the 

optimal input to represent the level of magnetic activity when predicting foF1.  

 

5.3.1.2 Training the foF1 NN 
Figure 5-4 shows the inputs and output to the foF1 NN. A NN was trained to 

predict foF1 for Grahamstown. There were 50310 vectors available in the foF1 

dataset, 70% of which was used for training and 30% for testing the NN. The 

dataset spanned the period January 1973 to December 2000 inclusive. 
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RMS Errors for Solar Activity Input
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Figure 5-3: The rms errors between the measured and predicted foF1 values 

are shown. Different data lengths of SSN and SF were used as the solar 

activity input. The optimum input appears to be near R2.  

 
 

F1 Peak Prediction NN

foF1

DNS

DNC

R2

HS

HC

A8

foF1 NN

hmF1 NN hmF1

 
Figure 5-4: The F1 peak prediction NNs, showing the inputs and outputs to 

the foF1 NN and the hmF1 NN. 
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5.3.2 hmF1 
The IRI (Bilitza [1990]) does not provide an expression for determining the hmF1 

value, but determines hmF1 as the height at which the IRI bottomside profile 

reaches the F1 peak electron density. This IRI profile is described by a parameter 

referred to as the thickness parameter, B0 (Bilitza et al [2000]). This B0 

parameter is based on ionosonde measurements and will affect the value of 

hmF1 in the IRI.  

Various groups (McNamara and Reinisch [1995], Radicella and Mosert de 

Gonzalez [1991]) have developed empirical relationships between hmF1 and the 

F1 peak electron density. No South African data was utilized in the development 

of these relationships, although Radicella and Mosert de Gonzalez [1991] did use 

Brazilian data from similar latitudes when developing their equation. 

 

5.3.2.1 The Inputs  
The optimal inputs for predicting hmF1 were determined by investigating the 

response of hmF1 to seasonal, diurnal, solar and magnetic variations. These 

investigations were carried out in an identical manner to those for determining 

the inputs required for predicting foF1 (section 5.3.1.1).  

The optimal inputs were again found to be DNS, DNC, HS, HC, R2, and A8. To 

confirm the dependence of the hmF1 prediction on A8, this parameter was 

removed from the input space and the NN re-trained. The rms error between the 

measured and predicted hmF1 values increased by 5%, which proved that the 

A8 input should be included.  
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5.3.2.2 Training the hmF1 NN 
A NN was trained to predict hmF1 (in km) given the inputs, DNS, DNC, HS, HC, 

R2 and A8. The block diagram of the inputs and output to the NN is shown in 

figure 5-4. For this NN, data was only available from April 1996 to December 

2000 inclusive. This amounted to 10965 input vectors, of which 70% were used 

for training the NN and 30% for testing. 

 

5.4 F1 Occurrence Probability 
One of the problems in modelling the ionospheric F1 layer is that the F1 layer is 

not always present. Apart from the fact that the F1 layer is definitely not present 

at night, it is also absent during the day under certain conditions. The critical 

frequency of the F1 layer, foF1, is scaled when a definite cusp is apparent on the 

ionogram. In this case an F1 layer is definitely present. However, there are 

instances where a ledge appears on the ionogram instead of a cusp. In this case 

numerical values for foF1 are difficult to obtain from the ionogram, and the F1 

layer is then scaled as “L-condition”. Any reliable ionospheric electron density 

model requires a mechanism for identifying the occurrence of an F1 layer and 

predicting the shape of the profile around that layer. 

The IRI (Bilitza [1990]) makes use of the Ducharme et al [1971] formula for 

determining the foF1 value, which also provides a formula for determining a 

critical solar zenith angle for the occurrence probability of the F1 layer. An F1 

layer only exists when the zenith angle is less than this critical angle. In addition 

to the restriction imposed by this formula, the IRI also omits the F1 layer at night 

and in winter. 

More recently, Scotto et al [1997] have proposed that the IRI use a probability 

function, which has a dependence on the solar zenith angle, R12 and 

geomagnetic latitude, as a means for determining the presence of an F1 layer. In 

developing this probability Scotto et al [1997] have included L-condition hours in 

their data base. 
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This section discusses pioneering attempts at using NNs to develop a mechanism 

for determining the probability of occurrence of the F1 layer, which can be 

incorporated into the LAM model.  

 

5.4.1 Initial Attempts 
Initially, a similar procedure to that used in chapter 4, section 4.4, for 

establishing the E limits NN was followed. Using the foF1 values data base, the 

start and end hour of each F1 day was extracted. Therefore, for each input set 

there existed two hours between which an F1 layer was measurable. 

A NN was then trained to predict the start and end hours of a measurable F1 

layer, given DNS, DNC and R2. Although this NN trained well it did not take into 

account those periods when there was no F1 layer during the day. Even though 

there was no training data for those periods, the NN still provided seemingly 

reasonable outputs when presented with the appropriate input set. However, a 

closer look at the input space revealed that there are large gaps in the areas 

where no F1 was measurable during the daytime. The NN is, therefore, being 

interrogated with input data with which it has not been trained. Also, this NN 

does not provide a good solution to all the aspects of the F1 occurrence problem 

since no provision has been made for L-condition times. This attempt was then 

abandoned in favour of a new method that provided an elegant solution to these 

problems. 

 

5.4.2 F1 Probability NN 
The occurrence of an F1 layer can be classified into three categories as follows: 

 

• F: The F1 layer exists and can be measured 

• L: The F1 layer exists in a L-condition state 

• N: The F1 layer does not exist 
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In the case of category F, the peak layer characteristics as well as a description 

of the F1 profile would be predicted and smoothly inserted between the E layer 

and the F2 layer. With category N, no F1 layer is present and, therefore, no F1 

predictions are required. However, in the event of category L, an algorithm 

needs to be developed for predicting a realistic description of the F1 layer part of 

the profile under this condition. 

The data that has been measured with the DPS sounder and scaled with the 

Artist software does not include L-condition information. Fortunately, examples 

of all three categories can be found in the data base of Verti data from 

Grahamstown, which spans the period January 1973 to April 1996 inclusive. This 

dataset was manually scaled and instances of L-condition were recorded.  

For every input datum (DN, HR, R2) in the data base, a category (F, L, N) was 

assigned according to the above criteria. Three outputs, defined as P(F), P(L) 

and P(N), were then attached to each input set. For a particular input set a value 

of 0 or 1 was assigned to each output as shown in table 5-1. 

A NN was trained with the inputs DNS, DNC, HS, HC and R2 to predict the three 

outputs, P(N), P(L) and P(F). Using the rms criterion, the magnetic activity input 

was found to have no effect on the predicted outputs and therefore was not 

included in the input space for this NN. When interrogated the NN will produce a 

value for each of the outputs that falls between 0 and 1. Each of these output 

values can be viewed as the probability of the occurrence of the particular 

category represented by the output. This NN will be referred to as the “F1 

Probability NN”. Figure 5-5 is a block diagram of this NN’s inputs and outputs. 

 

Category P(N) P(L) P(F) 
F 0 0 1 
L 0 1 0 
N 1 0 0 

Table 5-1: This table shows the values of each output for the three different 

categories. 
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Figure 5-5: The inputs and outputs to the F1 Probability NN. The outputs 

represent the probability of occurrence of the three different F1 existence 

categories. 

 
 
Conditions need to be applied to the three outputs that are predicted by this NN 

in order to determine which category has the highest probability. For every input 

set the sum of P(F), P(N) and P(L) is equal to 1. If P(N) is greater than 0.5 the 

category is N and no F1 layer exists, while if P(F) is greater than 0.5 the category 

is F. If both P(N) and P(F) are less than 0.5, the category is L and the L 

algorithm (described later in section 5.5.4) will be applied.  

 

5.5 The F Layer Profile 
A method for predicting the F layer profile from foE to foF2 that will produce 

valid predictions under any condition, and for all outcomes of the F1 Probability 

NN, is required. 

As part of its SAO format output, the Artist scaling software of the DPS provides 

a description of the F1 layer profile, when present, and a description of the F2 

layer profile. These descriptions take the form of a set of five Chebyshev 

coefficients for each layer. As the cheby method (chapter 4) is the preferred 
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method for profile prediction for the LAM model, the Chebyshev coefficient 

descriptions are of interest here. 

The Grahamstown Verti data provides no profile information at all and so only 

the Grahamstown DPS data were used for profile prediction. This means that the 

dataset that was available for the development of the F layer profile contribution 

to the LAM model was limited to the period April 1996 to December 2000 

inclusive, covering approximately 22% of a 22-year sunspot cycle. 

 

5.5.1 Initial Attempts 
This section describes an initial attempt at modelling the profile description of the 

F layer. Although this attempt was subsequently abandoned, it is described here 

for completeness. 

The F layer profile consists of the F1 layer, when present, and the F2 layer. Each 

of these layers is described in the DPS output in terms of five Chebyshev 

coefficients and the ionospheric peak layer characteristics. In this initial attempt, 

the two layers are dealt with individually and therefore two NNs were trained, 

one to predict the F1 layer description (F1NN) and one to predict the F2 layer 

description (F2NN). 

F1NN was trained to predict the five Chebyshev coefficients that describe the F1 

layer (F1A0, F1A1, F1A2, F1A3 and F1A4), using the same input space that was 

found to be optimal for F1 peak prediction (DNS, DNC, HS, HC, R2, A8). The 

training and testing data for the F1NN contained only F1 layer information that 

came from the DPS F1 layer descriptions.  

F2NN was trained to predict the five Chebyshev coefficients that describe the F2 

layer. The same input space used for predicting the F2 peak characteristics 

(DNS, DNC, HS, HC, R2 and A16) was used for training F2NN. All F2 layer 

information, irrespective of the presence of an F1 layer, was used in the training 

and testing of F2NN.  
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These two NNs, F1NN and F2NN, were trained completely independently, 

although there was some overlap in the input space where both F1 and F2 layers 

were present for the same input set. After F1NN and F2NN have predicted the 

coefficients they are used together with the values for the layer peak in the 

analytical equation for determining the height given the frequency (Huang and 

Reinisch [1996]), which appears in chapter 4, equation (4-1). 

Although F1NN and F2NN trained well, and the predicted coefficients resulted in 

realistic profiles for each layer, there was no continuity in the profile at the F1-F2 

boundary. Additional information was required to ensure a smooth continuous 

profile at the F1-F2 boundary. When an F1 layer is present, the starting height of 

the F2 layer, hsF2, should equal the peak height of the F1 layer, hmF1. The two 

NNs, F1NN and F2NN, had learned the relationship between the input 

parameters and the output vectors that were the coefficients, as well as the 

dependence of the coefficients on each other. As was the case in chapter 4 with 

the E layer, the profile NNs required more information in the training stage than 

was originally planned for in this initial attempt. In order to determine the profile 

from equation (4-1) the peak layer information is required as well as the 

coefficients that describe the shape of the profile. Therefore, this approach was 

abandoned and a more satisfactory method was adopted. 

The original datasets that were used to train the F1NN and F2NN were combined 

and then re-divided into two subsets. One subset consisted of all vectors where 

only F2 information was available (i.e. no F1 layer was measurable), while the 

second subset contained all vectors where both F1 and F2 layer information was 

available for the same input vector. The first subset will be referred to as the “F2 

set” and the second as the “F1F2 set”.  

 

5.5.2 The F2 Set 
The F2 set contained all information required to predict the F2 layer profile 

description in the absence of an F1 layer. A NN was trained to predict the profile 



page 74 

 

description parameters, with six inputs and seven outputs. The inputs were DNS, 

DNC, HS, HC, R2 and A16 while the outputs were foF2, hmF2, F2A0, F2A1, F2A2, 

F2A3 and F2A4. F2AX, X = 0, 1, 2, 3, 4, refers to the five coefficients that 

describe the F2 layer. The dataset was made up of all ionograms for which no F1 

layer was reported and covered the period April 1996 to December 2000 

inclusive. Before training each output was plotted in chronological order against 

an index value and all outliers were eliminated. This was done in order to ensure 

that the prediction results from the NN were not skewed by incorrect data. In 

particular, there are instances where the ionograms have been inaccurately 

scaled. After eliminating outliers 20070 input vectors were available, 70% of 

which were used for training and 30% for testing. Figure 5-6 shows a visual 

representation of this NN’s inputs and outputs. This NN will be referred to as the 

F2NN, and replace the earlier F2NN of the initial attempts section (section 5.5.1). 
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Figure 5-6: A block diagram of the inputs and outputs to the F2NN. This NN is 

trained to predict the parameters required for F2 profile description in the 

absence of an F1 layer. 
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5.5.3 The F1F2 Set 
When an F1 layer is present, as determined by the F1 probability NN, all 

characteristics and coefficients required to determine a description of the shape 

of the F layer profile from foE to foF2, via foF1, are predicted. In this case fifteen 

parameters are required and, therefore, the NN trained to predict this description 

had fifteen outputs, namely foE, foF1, hmF1, foF2, hmF2, F1A0, F1A1, F1A2, 

F1A3, F1A4, F2A0, F2A1, F2A2, F2A3 and F2A4. F1AX and F2AX, X = 0, 1, 2, 3, 

4, refers to the five coefficients that describe the F1 and F2 layers respectively. 

The inputs, DNS, DNC, HS, HC, R2 and A16, were the same as for F2NN. 

 

 

The F1F2 Set NN

F1F2NN

DNS

DNC

R2

HS

HC

A16

F1A0

F1A2
F1A1

hmF1
foF1

F1A4
F1A3

F2A0

F2A2
F2A1

F2A4
F2A3

hmF2
foF2

foE

 

Figure 5-7: The inputs and outputs to the F1F2NN are shown in this diagram. 

There are 15 outputs that represent the characteristics and coefficients 

required to construct the profile from foE to foF2 when an F1 layer is present. 
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All Grahamstown data from April 1996 to December 2000, inclusive, that 

contained F1 layer information were used for training and testing this NN. After 

eliminating outliers, a total of 9979 input vectors were available and, again, 70% 

were used for training and 30% for testing the NN. This NN will be referred to as 

the F1F2NN. A block diagram of the inputs and outputs appears in figure 5-7. 

 

5.5.3.1 The F1-F2 Boundary 
Given that an F1 layer is present, as determined by the F1 probability NN, the 

F1F2NN predicts the fifteen parameters that are required by equation (4-1) to 

determine the F layer profile from foE to foF2. The F1F2NN produces an average 

output to the best of its ability for each one of these fifteen parameters. In order 

for the profile to be continuous at the F1-F2 boundary, the peak height of the F1 

layer, hmF1, must be equal to the starting height of the F2 layer, hsF2. The 

predicted value of hsF2 is determined by the coefficients and peak characteristics 

of the F2 layer as predicted by the F1F2NN, while hmF1 is predicted directly.  

The difference between hmF1 and hsF2 is a value that can be either positive or 

negative and appears to always be smaller than the estimated uncertainty in 

hmF1. 

Following a similar procedure to that discussed in chapter 4 section 4.7.5, an 

estimate of the uncertainty in hmF1 was predicted. The difference between the 

measured and predicted hmF1 values for each input set was calculated and a NN 

was trained to predict the square of this difference. The uncertainty in hmF1, 

hmF1(error), is the square root of the output of the squared differences NN. 

If hmF1(error) is greater than (hmF1-hsF2), then the entire F2 profile can be 

shifted by an amount equal to (hmF1-hsF2) to ensure a continuous  profile 

through the F1-F2 boundary. Provided the hmF1(error) condition is met, this 

height domain shift is well within the statistical variation of the predicted profile. 
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5.5.4 The L-Condition Algorithm 
If the F1 probability NN reports an L-condition as being most likely to occur, then 

an F1 layer does exist and should be predicted. However, in reality no 

measurements would have been possible for that layer. For the LAM model, an 

algorithm is required that will produce an F layer profile, which, once converted 

into its equivalent ionogram, will show evidence of the L-condition on the 

ionogram. In addition, the L-condition F layer profile must provide a smooth 

transition from the F layer profile before L-condition, to the F layer profile after 

L-condition.  

Values for the F1 layer peak (foF1, hmF1) can be predicted for the L-condition 

input set using the F1 peak NNs. These NNs will interpolate through the input 

space to produce these values, and they will be accurate enough to use here.  

L-conditions can be reported either for a few hours around sunrise and sunset, 

or over the whole day from sunrise to sunset, therefore the algorithm must take 

into account both of these situations.  

The LAM model is presented with a particular input set (DN, HR, R2 and A16), 

for which it is required to determine the F layer profile. If the F1 probability NN 

reports an L-condition as probable for that input set, then the period of time over 

which an L-condition is most probable for that given DN is determined.  

Working backwards and forwards from the input set hour, HR, in steps of 0.1 

hour, a time is reached on either side where L-condition occurrence is not 

probable. A weighting function, wf, is then calculated, which determines whether 

HR is close to a time of N category (no F1 present) or close to a time of F 

category (F1 definitely present). The value for wf will be a number between 0 

and 1, with 0 for the HR nearest to N category (min), and 1 for the HR nearest 

to F category (max).  

In the special case where an L-condition is reported for all hours in an F1 day, 

the L occurrence period is divided into two, and each half is dealt with 

separately.  For this case, wf is calculated with the middle point as the maximum 

value, and either end the minimum value. 
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The weighting function, wf, is calculated as follows: 

 

P(F)  P(L)
P(L)

 Y 
+

=  (5-1)

minmax

minx

YY
YY

  wf
−

−
=  (5-2)

 

P(L) and P(F) are outputs from the F1 probability NN, and Y is calculated for 

each of the three hours, min, max and x, where min and max are the start and 

end hours of L-condition occurrence, as discussed above, and x is the hour of 

interest. 

For the L-condition hour, two F layer profiles are predicted using F1F2NN and 

F2NN, and a foF1 value is predicted using the foF1 NN. At each frequency 

between foE and foF2 two heights exist as determined from predictions made by 

the two F layer profile NNs. These heights will be referred to as hN (no F1 layer) 

and hF (definite F1 layer) respectively. The height for the L-condition hour, hx, is 

calculated as follows: 

 

( ) wfhhhh NFNx ×−+=  (5-3)

 

5.6 Results 
The results presented in this chapter are those related to the F layer contribution 

to the LAM model. As in chapter 4, some results will be presented as 

comparisons with actual DPS data and the IRI 2001, while other results will 

illustrate the response of the output vector to the variation of the input 

parameters. 
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For illustration purposes, typical high and low values were chosen for each input 

parameter using the same procedure as described in chapter 4. For the F layer 

model the inputs were DN, HR, and R2, with additional inputs being A16 for the 

F2 peak and F profile models, and A8 for the F1 peak model.  Typical values of 

DN were arbitrarily chosen as 20 for the summer months and 180 for the winter 

months. 

For the critical frequency models, foF2 and foF1, a larger dataset (28 years) was 

available for training the NNs than for the other model contributions (5 years). 

The 28-year dataset (Verti plus DPS data) covered the time period January 1973 

to December 2000 inclusive, while the 5-year dataset (DPS data only) began in 

April 1996 and ended in December 2000.  

For the R2 variable, the typical low and high values were chosen such that 

approximately 70% of the data lay symmetrically between the chosen values. 

This was applied to both the 28-year and 5-year datasets, resulting in a typical 

low value of 15 for both datasets, and high values of 140 and 120 representing 

the 28-year and 5-year datasets, respectively.  

The distribution of R2 for the smaller dataset (April 1996 to December 2000) is 

shown in figure 5-8, with the selected low and high values indicated. 

As typical indicators of low and high levels of magnetic activity, the values of 3 

and 15 respectively were chosen. These values were selected such that 

approximately 70% of the data lay between the low and high values with 

approximately 18% on the high end and 12% on the low end. The A16 

distribution was used to select these values and is shown for the smaller dataset 

(April 1996 to December 2000) in figure 5-9. The A8 distribution produced the 

same low and high values as A16 for typical indicators of the A8 input. There 

was only a small difference between the 28-year and 5-year datasets for the A16 

and A8 distributions and, therefore, these selected values will be used 

throughout. 
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Distribution of R2: April 1996 to December 2000
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Figure 5-8: The distribution of R2 values, for the period April 1996 to 

December 2000 inclusive, that was used to determine typical low and high 

values of R2. 

Distribution of A16: April 1996 to December 2000
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Figure 5-9: The distribution of A16 values, for the period April 1996 to 

December 2000 inclusive, that was used to determine typical low (A16=3) and 

high (A16=15) indicators of magnetic activity. The same values were used for 

the A8 input. 
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5.6.1 F2 Peak 
Williscroft and Poole [1996], McKinnell [1996] and Poole and McKinnell [2000] all 

show results from the NN based model for predicting foF2, the maximum 

electron density in the ionosphere, for Grahamstown. In particular McKinnell 

[1996] shows the variation of the 12h00 SAST foF2 value with changes in solar 

and magnetic activity. These results will not be repeated here but new results 

from the updated foF2 model will be shown.  

Figure 5-10 shows the measured and predicted 12h00 SAST foF2 values for the 

year 2001. This is unseen data for the NN since it was trained and tested with 

data from 1973 to 2000 inclusive. However, the input data for the year 2001 is 

covered by the training input space and, therefore, the NN can be interrogated 

with this data. The rms error between the measured and predicted 12h00 SAST 

foF2 values for 2001 was 0.93 MHz. 
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Figure 5-10: The measured and predicted 12h00 SAST foF2 values for 2001.  
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The diurnal variation is investigated in figure 5-11, which shows four graphs of 

foF2 versus hour. Each graph illustrates the variation of foF2 over three days, a 

day in summer, winter and spring, at the four different combinations of low and 

high levels of solar and magnetic activity. These results confirm those of 

McKinnell [1996], where only the 12h00 SAST values were dealt with. 
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Figure 5-11: Four graphs are shown illustrating the diurnal variation of the 

predicted foF2 value for three days of the year. These graphs are shown for 

different levels of solar and magnetic activity. 



page 83 

 

The inputs required for predicting the peak height, hmF2, from the LAM model 

are DN, HR, R2 and A16. Just over five years of Grahamstown hmF2 data (April 

1996 to December 2000) were used for training a NN to predict hmF2. Figure 5-

12 shows the measured hmF2 values over this period for one hour, 12h00 SAST, 

along with the predicted values. The NN has produced an average hmF2 value 

for each input set.  

The relationship between hmF2 and the input parameters is investigated in 

figures 5-13 and 5-14. In figure 5-13, the HR has been fixed at 12h00 SAST and 

the DN varied from 1 to 365. Four subsets of hmF2 values were then predicted 

using the four combinations of the low and high values of R2 and A16.  

From these graphs it can be seen that high magnetic activity decreases the hmF2 

value during the summer but increases it during the winter. At high solar activity 

in the winter months the effect of the magnetic activity input is stronger than in 

the summer.  

Figure 5-14 illustrates the diurnal variation of hmF2 by varying the HR input from 

0 to 23. Four graphs that illustrate the hmF2 values for low and high R2 are 

shown. Figures 5-14(a) and 5-14(b) are the predicted hmF2 values for a summer 

day at low and high A16 respectively. Figures 5-14(c) and 5-14(d) are the 

predicted values for a winter day at low and high A16 respectively. 
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Figure 5-12: The measured and predicted hmF2 values for April 1996 to 

December 2000. These are the 12h00 SAST values only. 
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Figure 5-13: An illustration of the relationship between hmF2 and the input 

parameters. The high and low labels refer to the high and low levels of R2 and 

A16. 
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Figure 5-14: Four graphs illustrating the diurnal variation of the hmF2 value 

for low and high R2 are shown. Graphs (a) and (b) show a summer day while 

graphs (c) and (d) show a winter day at low and high A16 respectively. 

 
 

5.6.2 F1 Probability 
The F1 Probability NN predicts three outputs that describe the probability of an 

F1 occurrence given the inputs DN, HR, and R2. These outputs are defined as 

P(N), P(L) and P(F), where N, L, and F are the three categories of F1 existence 

as described in section 5.4.2. That section also describes the procedure followed 

in using these outputs to determine the state of the F1 layer. 
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Figure 5-15: These two graphs illustrate graphically the outputs from the F1 

Probability NN. The occurrence probability of an F1 layer for a summer day at 

high R2 at (a) the start and (b) the end of an F1 day is shown. On the graphs 

the vertical black lines indicate the boundaries between which the L-condition 

algorithm is applied. 
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High solar activity is a time when all three of the states of F1 occurrence are 

most likely to occur in any one day. Figure 5-15 shows the three outputs from 

the F1 probability NN for a summer day at high R2.  Two graphs are shown to 

illustrate the start and end of an F1 day, where it can be seen that the NN has 

learnt the average progression from a state of no F1 (category N) to a state of 

definite F1 (category F). On these graphs the two vertical solid lines represent 

the boundaries between which the L-condition algorithm (section 5.5.4) is 

applied. 

Another example of the predictions made by the F1 probability NN is shown in 

figure 5-16. This example is for an autumn day (DN=90) at high R2, which is an 

area of the input space that is most likely to have L-condition status over the 

entire day. This is an example of the special case referred to in section 5.5.4. 
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Figure 5-16: The three outputs from the F1 probability NN are shown to 

illustrate an example where L-condition status is most probable over an entire 

F1 day. In this case the L-condition algorithm will be applied to all hours that 

fall inside the boundaries indicated by the vertical solid lines. 
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5.6.3 F1 Peak 
Two NNs were trained to predict the critical frequency of the F1 layer, foF1, and 

the peak height, hmF1, given the inputs, DN, HR, R2 and A8. In the LAM model, 

these NNs are only interrogated at times when the existence of an F1 layer is 

probable, as determined by the F1 probability NN. 

The dataset used for training the foF1 NN spanned the years 1973 to 2000 

inclusive. Figure 5-17 shows the 12h00 SAST measured and predicted foF1 

values for two years taken from this dataset, a year at low R2 (1976) and a year 

at high R2 (1980). The NN provided predicted foF1 values for input vectors that 

produced a P(N) output from the F1 probability NN of less than 0.5. Since a 

value of foF1 is provided by the NN for use in the L-condition algorithm, foF1 

predictions for the incidences of L-condition have been included for all of the 

results presented in this section. The F1 probability NN has learnt that during 

autumn and winter of a high solar activity year the F1 layer does not exist in any 

state. This explains the gaps in the predicted foF1 values for 1980 shown in 

figure 5-17. 

There are measured foF1 values available for Grahamstown for the year 2001 

which the NN has never seen before. Figure 5-18 shows the 2001 measured and 

predicted foF1 values for 12h00 SAST. The rms error between these measured 

and predicted values was 0.47 MHz. 

To investigate the relationship between foF1 and the inputs, HR, R2 and A8, 

each input was varied in turn while the others remained fixed at the typical low 

and high values. The diurnal variation is shown in the four graphs of figure 5-19. 

Each graph represents a season, summer (DN=20), autumn (DN=90), winter 

(DN=180), and spring (DN=270). Only hours for which the F1 probability NN 

determined the probable existence of an F1 layer are shown. For each season, 

the predicted foF1 values at the four combinations of low and high R2 and A8 

are shown. These graphs reveal that the magnetic activity input, A8, has a very 

small effect on the value of foF1, which is seen mostly in summer and at high 

R2. 
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Figure 5-17: The measured and predicted 12h00 SAST foF1 values for 1976 

(low R2) and 1980 (high R2). The rms errors were 0.13 MHz and 0.51 MHz 

respectively. 
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Figure 5-18: This figure shows the measured and predicted 12h00 SAST foF1 

values for 2001, a year of high R2. The rms error was 0.47 MHz. 
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Figure 5-19: These four graphs show the predicted foF1 values for test input 

sets that were used to investigate the relationship between the input 

parameters and foF1. The low and high labels refer to the typical low and high 

values of R2 and A8. 

 
 
Figures 5-20 and 5-21 confirm the findings of figure 5-19, while investigating the 

solar and magnetic variations further. In figure 5-20, R2 was allowed to vary 

while the other inputs were fixed. The 12h00 SAST foF1 values were predicted 

for a summer and winter day at low and high A8. Figure 5-21 illustrates the 

seasonal and solar response of foF1 to increases in magnetic activity. 
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Figure 5-20: This graph represents the seasonal response of foF1 to increased 

solar activity at high and low levels of magnetic activity. The break in the 

winter graphs at a R2 of 110 is due to that area being where the probability of 

no F1 layer presence is high. 
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Figure 5-21: This graph illustrates the small influence that the magnetic 

activity input, A8, has on the prediction of foF1. The most notable effect on 

the value of foF1 is at high R2. 
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Figures 5-20 and 5-21 verify that there is almost no response from the foF1 

value to a change in the level of magnetic activity in the winter months at low 

solar activity. It is also apparent that the foF1 value increases in winter at high 

R2 and decreases in summer at all levels of R2 for increasing A8.  

The Grahamstown data available for training the hmF1 NN spanned the period 

April 1996 to December 2000 inclusive. Figure 5-22 shows the measured and 

predicted 12h00 SAST hmF1 values for this period. From this graph it can be 

seen that the NN is producing an average hmF1 value for each input set. 

Figures 5-23 and 5-24 illustrate the relationship between hmF1 and the input 

parameters, DN, HR, R2 and A8. The seasonal variation of hmF1 at 12h00 SAST 

is demonstrated in figure 5-23, where the DN has been varied from 1 to 365 and 

the other parameters fixed. The four graphs represent the four combinations of 

the typical low and high values of R2 and A8. A value for hmF1 was only 

predicted for those input sets that yielded a probable F1 layer outcome from the 

F1 probability NN (P(N) < 0.5). 

The diurnal variation of hmF1 is shown in the four graphs of figure 5-24. The 

graphs show predicted hmF1 values for the four combinations of low and high R2 

and A8 in summer and winter. 

From these graphs it can be seen that the hmF1 value increases in summer and 

decreases in winter with increasing solar activity. Also, the effect of magnetic 

activity on the hmF1 value is considerably greater than its effect on the foF1 

value. In summer an increase in magnetic activity results in a large increase in 

hmF1, while in winter the increase is less. 
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Figure 5-22: All 12h00 SAST measured and predicted hmF1 values are shown 

in this graph. The measured values are those that were used to train and test 

the hmF1 NN. 
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Figure 5-23: Predicted hmF1 values were obtained for each DN from 1 to 365 

at four combinations of the low and high R2 and A8 values. 
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Figure 5-24: The diurnal variation of the hmF1 values for a summer and 

winter day at low and high R2 are shown in this figure. Graphs (a) and (c) are 

at low magnetic activity and graphs (b) and (d) are at high magnetic activity. 

 
 

5.6.4 F Layer Profile Results 
The F layer profile contribution to the LAM model describes the electron density 

distribution from foE to foF2. First results show that the NN has learnt the 

relationship between the shape and location of the profile and the input 

variables.  
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Two NNs, F1F2NN and F2NN, were trained with the input set, DN, HR, R2 and 

A16, to predict the profile description under certain conditions. A program was 

written which takes a given input set, and the F1 probability NN, to determine 

which NN (F1F2NN or F2NN) is required. The outputs from the NNs are then 

used in conjunction with equation (4-1) to determine the electron density profile 

for that input set. Therefore, the output from the F layer profile model is a 

complete bottomside F layer profile, and the results in this section will be shown 

as such.  
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Figure 5-25: Predicted F layer profiles for different combinations of the input 

variables are shown. R refers to solar activity and A refers to magnetic 

activity. 
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Figure 5-25 shows four graphs that represent the response of the profile to 

changes in the input variables. The hour input was fixed at 12h00 SAST and the 

other three input parameters were varied. The profiles for the four combinations 

of low and high solar (R2) and magnetic (A16 or A8) activity are illustrated for 

each of the four seasons, summer, autumn, winter and spring. 

These results confirm the findings of McKinnell [1996] for foF2. It can be seen 

from the graphs of figure 5-25 that, at high solar activity, a well-defined F1 layer 

is only present in the summer. Also, the effect of the magnetic activity on the F 

layer profile is greatest in the summer and smallest in the spring; while in the 

winter and autumn months, increasing the magnetic activity input had very little 

effect on the F1 layer but a noticeable effect on the F2 layer. 
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Figure 5-26: An example of the diurnal variation of the F layer profile for a 

summer day at high solar and low magnetic activity. The profiles are labeled 

according to the hour input in terms of hour, e.g. 3.5 = 03h30 UT. 
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To illustrate the diurnal variation of the F layer profile during a period where the 

F1 layer is developing, the HR input was varied from 03h30 UT to 06h30 UT in 

steps of 0.5 hour for a summer day at high solar and low magnetic activity. An L-

condition profile was reported as probable for the hour 05h30 UT with a 

weighting function of 0.53. The L-condition algorithm (section 5.5.4) was applied 

here and figure 5-26 shows the variation in the predicted profiles as the hour 

moves through the start of the F1 day. 

Six examples of actual 12h00 SAST F layer profiles from DPS ionograms are 

shown in figure 5-27. The input variables from these profiles were used as inputs 

to the LAM model and the IRI 2001. Figure 5-27 includes the LAM model and IRI 

2001 predicted F layer profiles, for comparison. 

It is clear from these graphs that once again the LAM model is a better predictor 

of Grahamstown profiles than the IRI. In some of the examples the LAM model 

fits the actual data very well (e.g. figure 5-27(c)) while in other examples the 

LAM model deviates from the actual data. This deviation usually falls within the 

estimated uncertainty limits for the predicted profile. 

Figure 5-28 shows comparisons of actual 23h00 SAST F layer DPS profiles with 

the LAM model and IRI 2001 predicted profiles. At this hour there is only an F2 

layer present and, therefore, the F2NN was used for predicting the 

characteristics and coefficients required for describing the LAM model profile.   
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Figure 5-27: Comparisons of the LAM model F layer profile with actual DPS 

and IRI 2001 profiles. All of these profiles are 12h00 SAST profiles. 
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Figure 5-28: Comparisons of actual DPS F layer profiles with LAM model and 

IRI 2001 profiles at 23h00 SAST. 

 

5.6.5 Estimating the Uncertainty 
To estimate the uncertainty profiles for the F layer contribution to the LAM 

model, the same technique that was applied to finding the uncertainty estimate 

for the E layer contribution was used. A procedure for determining a statistical 

measure of the uncertainty in the output of a NN was introduced and discussed 

in Poole and McKinnell [2000]. Applying this procedure to finding uncertainty 

estimates for profile models that are NN based, is discussed with reference to 

the E layer in section 4.7.5 of this thesis. 

For each NN trained to predict a parameter required for the F layer profile 

prediction model, the squared differences between the measured and predicted 

outputs were determined. Additional NNs were then trained, with the same input 

sets, to predict the squared differences. 

To determine an estimate of the uncertainty profiles for the F layer, the variation 

in each of the heights that contribute to the predicted profile, from hsF to hsF2, 

is required. The predicted Chebyshev coefficients and peak characteristics were 

applied to equation (4-1) to determine these heights. Determining the 
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uncertainty would be simple if these Chebyshev coefficients were independent, 

but they appear to be related to each other by an unknown function. These 

relationships are illustrated in figure 5-29 where F1A1 and F1A2 have been 

plotted against F1A0, and F2A1 and F2A2 have been plotted against F2A0. All 

available Grahamstown data were used for plotting these graphs and the 

relationships between the first three coefficients of each layer (F1 and F2) are 

shown. It is possible that each coefficient depends on more than one of the 

other coefficients. Since these relationships are unknown and appear to be too 

complicated to be approximated, a simpler procedure for determining the 

uncertainty at each height was required. 
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F2 Layer Coefficient Relations 

-30

-20

-10

0

10

20

30

-190 -140 -90 -40

F2A0/[km]

F2
A

2/
[k

m
]

(d) 

Figure 5-29: The relationship between the coefficients within each layer was 

investigated by plotting these graphs.  They showed that the relationship is 

not a simple one and cannot be easily approximated. 
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For the predicted peak height of each layer, the square root of the output from 

the corresponding squared differences NN provided the uncertainty in the peak 

height directly. Therefore, the variation in the peak height of each layer can be 

predicted with confidence. Since the profile shape of each layer is described by a 

Chebyshev polynomial that is forced to pass through the peak of the previous 

layer, the estimated uncertainty in the peak height can be used as the 

uncertainty in the start height of the next layer. When an E layer is predicted by 

the E layer NNs (chapter 4), the estimated uncertainty in hsF (start height of the 

F layer) is determined by a combination of the uncertainties on hmE (E layer 

peak height) and W (valley width). In the case of a JET model prediction for 

hmE, an uncertainty of 0.5 km is used for hsF (Titheridge [2000]). The estimated 

start and peak heights of each layer is, therefore, known. 
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Figure 5-30: A daytime and nighttime profile are shown with their uncertainty 

profiles. The solid black line is the actual DPS profile; the red diamond shape 

points are the LAM model predicted profile and the solid blue lines are the 

uncertainty profiles. 
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Using these uncertainties, the start and peak heights of each layer were adjusted 

by adding and subtracting the uncertainty from the predicted value, to determine 

the maximum and minimum values respectively. At heights between the two end 

heights, the uncertainty was determined by interpolating between the adjusted 

start and peak heights while retaining the shape of the predicted profile. In this 

way maximum and minimum uncertainty profiles were obtained for the F layer. 

Figure 5-30 illustrates the uncertainty profiles for two examples. The first 

example shows a 12h00 SAST profile for a summer day for which an F1 layer has 

been reported. In the second example, a nighttime profile is shown for a summer 

day at high solar activity.  

These uncertainty profiles represent the maximum possible statistical variation of 

the average predicted profile for a given input set. 

 
 

5.7 Discussion and Conclusion 
This chapter has discussed the development of the F layer contribution to the 

LAM model for predicting the bottomside profile. NNs have been used for the 

first time as a tool for providing predictions of the electron density profile 

description. Also, NNs have provided an effective mechanism for determining the 

probability of existence of an F1 layer.  

The nature of a NN is to provide an average output for a given input set to the 

best of its ability. The ability of a NN is affected by the quantity and quality of 

the data with which it is trained. The dataset used to train most of the 

components required for predicting the F layer profile was limited to data derived 

from DPS measurements for the period April 1996 to December 2000. This time 

frame only contains one quarter of the solar activity information ideally required 

for predicting ionospheric characteristics. In addition, the data from the DPS is 

scaled with the Artist scaling software, which on occasion inaccurately scales the 

F1 region and makes no allowance for the L-condition category. Equation (4-1), 

developed by UMLCAR for use in Artist and adopted by the LAM model, produces 
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a profile from knowledge of the Chebyshev coefficients. The disadvantage of this 

approach is that the slope of the height with respect to the frequency, dh/df, 

tends to infinity at the critical frequency of the layer. Although this works well at 

foE and foF2, whenever a value for foF1 is recorded, an F1 profile is inserted and 

an irregular F1-F2 boundary is observed on the profile. In the next chapter it is 

shown that profiles that have dh/df equal to infinity at foF1, do not convert into 

realistic ionograms. Also, the electron density profiles do not have a smooth 

transition from the F1 layer to the F2 layer. A smoothing technique will be 

introduced into the LAM model to ensure that the predicted profiles are smooth, 

and that they convert into realistic ionograms.  

However, in spite of the limitations imposed on the model by the available data, 

it has been shown that the LAM model is capable of predicting accurate 

descriptions of the shape and location of the average profile for a given input 

set.  In particular, when predicting the F1 region the LAM model is a better 

solution than the IRI for Grahamstown.  

In chapter 6, the E and F layer contributions to the LAM model are combined to 

form a model that will predict a smooth electron density profile for Grahamstown 

under any condition. 
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Chapter 6 

 

LAM MODEL: FINAL PROFILE 
 
 

6.1 Introduction 
The previous two chapters discussed the development of the E and F layer 

contributions to the LAM model. In this chapter, these two layers are joined to 

produce a smooth bottomside electron density profile that provides a realistic 

description of the average behaviour of the ionosphere under given conditions. 

There are two boundaries that require careful consideration, the E-F boundary 

and the F1-F2 boundary. Both of these have been discussed briefly in the 

previous chapters, but will be revisited in this chapter. 

As a means of determining the ability of the LAM model to produce realistic 

results, the predicted profiles have been converted to their equivalent ionograms. 

The procedure for converting profiles into ionograms is included in this chapter. 

The LAM model’s “smoothing technique” is introduced as an attempt to find an 

elegant solution to the problem of discontinuity at the F1-F2 boundary in both 

the predicted profiles and the ionograms. 
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6.2 E-F Boundary 
As discussed in chapter 4, section 4.6, there exists an ionization valley between 

the E and F layers. 

Although there are a few different approaches to developing the profile in the E-

F transition region (Bilitza [1998], Chasovitin et al. [1996]), the LAM model 

adopts the UMLCAR E-F valley model (Huang and Reinisch [1996]). All of the 

available profile data for Grahamstown is derived from measurements taken by 

the DPS sounder and scaled with the UMLCAR Artist software. Since the 

ionograms do not provide enough information to determine the shape of the 

valley region, a mathematical construction technique is required. For both of 

these reasons, the best approach for the LAM model is to use the E-F valley from 

the UMLCAR model. 

 

 

 

Figure 6-1: The shape of the valley model that forms the transition from the E 

to F layer. For a smooth transition, hsF must equal hmE+W. 
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To ensure a smooth transition from the E layer to the F layer via the valley, the 

starting height of the F layer, hsF, must be equal to the peak height of the E 

layer plus the valley width, hmE+W. These points are indicated on the diagram 

shown in figure 6-1, which is a replica of the valley shape shown in figure 4-8, 

with the addition of annotation relevant to this discussion.  

The E limits NN determines the hours between which the E layer NNs can be 

interrogated to predict the E layer. Between these hours, the E layer NNs predict 

average values for hmE and W, while the F layer NNs predict an average value 

for hsF. Each of these predicted values has a corresponding estimated 

uncertainty. These uncertainties are a measure of the statistical variation that 

can be expected from the prediction. Since the valley model, for which W is the 

only required parameter, is a mathematical construction, and provided that the 

difference between hsF and hmE+W does not exceed the estimated uncertainty 

of either, the predicted F layer in the LAM model is shifted by an amount equal 

to the difference between hsF and hmE+W. Thus a smooth E-F boundary is 

ensured for LAM model predictions.  

Outside of the hours predicted by the E limits NN, the UMLCAR (Huang and 

Reinisch [1996]) and JET (Titheridge [2000]) models are used. In this case, 

there is no problem with the E-F boundary, as the valley width, W, is determined 

by taking the difference between hmE and hsF. The JET model determines the 

predicted value of hmE, while the F layer contribution to the LAM model 

determines the predicted value of hsF. 

 

6.3 Converting to Ionograms 
In order to determine the ability of the LAM model to predict profiles that 

realistically describe ionospheric behaviour, a procedure for converting the 

profiles into their equivalent ionograms was required. This conversion procedure 

was especially required in the case where the L algorithm was implemented in 

the prediction, as an L-condition can only really be visualized on an ionogram.  
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Since this conversion procedure is not the emphasis of this thesis, the formulae 

are not reproduced here but can be found in Paul [1967]. As well as the f(h) 

profile points, an analytical expression for the slope, dh/df, is required. Initially, 

the derivative of equation (4-1) was taken since this equation is used to 

determine the real height at a particular frequency, given the Chebyshev 

coefficients. A simpler method is to assume linear segments between the real 

height points and calculate dh/df by determining the slope of each segment. 

Experimentation showed that this linear segment method did not reduce the 

accuracy of the conversion significantly. By using the real height points instead 

of equation (4-1), the benefit of additional techniques implemented in the LAM 

model (e.g. the L algorithm) will be apparent in the ionogram after conversion. 
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Figure 6-2: An example of a frequency vs. height profile and its equivalent 

ionogram. The input set for this example is such that a sharp cusp at foF1 

would be expected on the ionogram. 
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Using equations from Paul [1967] and the programming code from Poole [1985], 

a program was developed that took the profile as a listing of real height versus 

frequency points and produced the equivalent ionogram, in the form of virtual 

heights at each frequency. This program shall be referred to as “NHTOVI”. 

Although the programming code of Poole [1985] converted ionograms into 

electron density profiles, which is the opposite of what was required here, it 

proved useful as a starting point for creating NHTOVI.  

To illustrate results from NHTOVI, an example of a profile and its equivalent 

ionogram is shown in figure 6-2. The input set chosen for this illustration is a 

summer day (DN=20) at 12h00 SAST for low solar and magnetic activity, which 

is an area of the input space where a sharp cusp at foF1 would be expected on 

the ionogram. 

 

6.4 F1-F2 Boundary 
The F1-F2 boundary was discussed in chapter 5, section 5.5.3.1, but will be 

revisited here since there is still a problem outstanding.  

Any profile that is determined by using Chebyshev polynomials will exhibit an 

unnatural step at the F1-F2 boundary. Although this Chebyshev polynomial 

method ensures that the peak height of the F1 layer, hmF1, is equal to the 

starting height of the F2 layer, hsF2, the slope of the profile, dh/df, tends to 

infinity at the critical frequency of the F1 layer, foF1. Two examples of the F1-F2 

boundary are shown in figure 6-3; one is a profile derived from actual DPS 

measurements and the other is a profile predicted by the LAM model. The 

profiles have been enlarged to show only the area surrounding the F1-F2 

boundary, and the vertical line identifies the location of the foF1 value.  
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F1-F2 Boundary of LAM Model Profile 
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(a) 

F1-F2 Boundary of Actual Profile 
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Figure 6-3: The area surrounding the F1-F2 boundary of a profile is shown for 

(a) LAM model predicted profile and (b) an actual DPS profile. At foF1 the 

slope of the profile tends to infinity, which explains the unnatural step in the 

profile at foF1.  

 
 
Ionograms resulting from profiles that have this step at the F1-F2 boundary 

show a sharp cusp at foF1. All profiles derived from the Chebyshev coefficient 

method that have an F1 layer will, therefore, convert to ionograms with a sharp 

cusp at foF1. A small area of the input space exists where a sharp cusp at foF1 is 

expected. Examples of the output from three input sets are shown in figures 6-4, 

6-5 and 6-6. Figures 6-4 and 6-5 illustrate predicted LAM model profiles with 

their corresponding ionograms for an input set where a probable L-condition was 

predicted (figure 6-4), and where a sharp cusp would be expected on the 

ionogram (figure 6-5). Figure 6-6(a) is an example of an actual DPS ionogram, 

while figure 6-6(b) shows the profile, determined by using Chebyshev 

coefficients provided by the Artist scaling software, and the equivalent ionogram, 

as determined by converting the profile. This figure illustrates a case where a 

sharp cusp should not appear on the ionogram at foF1, but an F1 layer still 

exists. In order to solve these problems, a mechanism is required for smoothing 

out the F1-F2 boundary in such a way that the slope of the profile at foF1 never 

approaches infinity and that a more realistic profile is predicted for all input sets. 
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Figure 6-4: A LAM model predicted profile with its equivalent ionogram is 

shown for 12h00 SAST on an autumn day at high solar activity and low 

magnetic activity. The cusp on the ionogram at foF1 should not be present for 

this input set. 
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Figure 6-5: A LAM model predicted profile and ionogram are shown for 12h00 

SAST on a summer day, at low solar and magnetic activity. 

 



page 111 

 

 

(a) 
 

75

175

275

375

475

575

675

2 3 4 5 6 7 8 9 10 11 12 13

frequency/[MHz]

he
ig

ht
/[k

m
]

f(h) profile
DPS ionogram
ionogram

summer, high R, low A
HR = 08h30 UT

(b) 

Figure 6-6: An actual DPS ionogram is shown at the top with the Artist 

determined profile, and converted ionogram below. The Artist virtual height 

points are superimposed on the converted ionogram in (b) to illustrate the 

differences in the F1 region.  
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6.5 The Smoothing Technique 
A technique was developed that could be applied to any profile, actual or 

predicted, determined by using the Chebyshev coefficient method. This 

technique, called the “smoothing technique”, was implemented in order to 

smooth out the F1-F2 boundary on the profile and ensure that the resulting 

profiles reflected realistic ionospheric behaviour. The smoothing technique will be 

applied whenever an F1 layer is present, whether or not the F1 layer was 

recorded as an L-condition. The development of this technique is discussed in 

this section with the assumption that the profile has already been determined for 

a given input set. 

Two points, f1 and f2, on the profile are selected such that they lie on either side 

of the critical frequency of the F1 layer, foF1. The method by which f1 and f2 are 

selected is described later. The real height is then constrained to vary from f1 to 

f2 in a manner that does not allow the height to go asymptotic at foF1. The 

constraints were as follows: 

• the heights, h1 and h2, corresponding to points, f1 and f2, were fixed 

• the slope of the profile, dh/df, was fixed at f1 and f2 

After extensive experimentation, the best results were found when a 3rd order 

polynomial was fitted between f1 and f2, while adhering to the above 

constraints.  

A criterion is required that allows for distinction between three different types of 

input set;  

(i) one where a sharp cusp is expected on the ionogram,  

(ii) one where an L-condition is probable,  

(iii) one where an F1 layer is definitely present but no sharp cusp is 

expected.  

The third case would typically occur in the few hours after and before an L-

condition event. It is unrealistic to expect a sharp cusp on the ionogram that 

occurs immediately after or before an L-condition ionogram.  
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The probability of the existence of an F1 layer is predicted by the F1 probability 

NN, chapter 5 section 5.6.2. Archived Grahamstown chirp-sounder (Verti) data 

from the twenty-five years prior to 1998 were used in developing this F1 

probability NN. In addition to the probability of occurrence of the F1 layer, as a 

definite layer or in an L-condition state, this NN can provide information 

regarding the hours between which a definite F1 layer can be expected.  

After examining many ionograms, an hour limit to determine the hours in a 

particular day between which a type (i) input set could be expected, was decided 

upon. This hour limit was set at three hours; which means that a sharp cusp can 

be expected on the ionogram from three hours after the definite F1 start hour, to 

three hours before the definite F1 end hour. The definite F1 start and end hours 

are determined by the F1 probability NN. Although this hour limit criterion proved 

adequate for use here, a detailed investigation is required in order to find a more 

stringent criterion. This detailed investigation would require manually rescaling 

all available Grahamstown DPS ionograms and time constraints did not allow for 

that at this stage. 

 

 

Type n m 

(i) 6 3 

(ii) 10 50 

(iii) 3 50 

 

Table 6-1: The points, f1 and f2, are located at n points before, and m points 

after foF1, where the points are spaced at frequency intervals of 0.02 MHz. 

This table lists values for n and m, which depend on the type of input set. 
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The selection process for the points, f1 and f2 is dependent on which type (i, ii, 

iii, as described on page 112) of input set the profile has been determined for. 

Each real height in the profile is determined at discrete frequencies that are 

spaced at 0.02 MHz intervals. The location of the frequency points, f1 and f2, is 

determined by starting at the foF1 value and moving n frequency points in the 

decreasing direction and m frequency points in the increasing direction. Table 6-

1 lists the values of the integers n and m corresponding to each type of input 

set. 

Figure 6-7 illustrates an enlarged view of the F1-F2 boundary of a profile before 

and after the smoothing technique has been applied. This smoothing technique 

has been implemented in the LAM model. 

The criteria for determining whether an input set is type (i) or not, and the 

selection process for f1 and f2, were decided upon after extensive 

experimentation with many f(h) profiles and their corresponding ionograms. 

Although these decisions work well in this smoothing technique, a new and more 

rigorous investigation is required on this topic. NNs could possibly be employed 

to determine more stringent criteria. 

Examples of predicted profiles with the smoothing technique applied, and their 

corresponding ionograms are shown in figures 6-8 to 6-10.  
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Figure 6-7: An illustration of an enlarged view of the F1-F2 boundary of the 

profile. The red line shows the shape of the profile after the smoothing 

technique has been applied. The vertical lines indicate the f1, foF1 and f2 

points. 
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Figure 6-8: A LAM model predicted profile with its equivalent ionogram for 

10h00 UT on a summer day at low solar and magnetic activity. This is a type 

(i) input set. 
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Figure 6-9: This LAM model predicted profile plus ionogram is for an input set 

where a L-condition was predicted as probable. The L-condition algorithm 

(with a weighting function of 0.94) has been used as well as the smoothing 

technique in predicting this profile. 
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Figure 6-10: This is the same actual DPS profile shown in figure 6-6, but after 

the smoothing technique has been applied. The virtual height points from the 

original ionogram have again been superimposed. 
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6.6 Conclusion 
The E and F layer contributions to the LAM model have been combined in this 

chapter to produce a model that has the ability to predict the entire bottomside 

electron density profile for Grahamstown. A valley layer has been inserted 

between the E and F layers and a smoothing technique has been developed to 

ensure a smooth transition from F1 to F2. Results from the LAM model will be 

presented in the next chapter. 
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Chapter 7 

 

RESULTS 
 
 

7.1 Introduction 
The LAM model has been implemented using C++ programming code and 

designed to accept one of two different input sets; either year, day number and 

hour, or day number, hour, R and A, where R and A are indications of the level 

of solar and magnetic activity expected. When the first input set is given, the 

required R and A values are calculated using a given database of daily sunspot 

numbers and hourly magnetic ak indices. The output from the LAM model is the 

predicted bottomside electron density profile for Grahamstown for the given 

input set. For the results presented in this chapter, the predicted output was 

given as a listing of frequency and height points that can be plotted to produce a 

smooth profile. 

The first set of results illustrates the response of the bottomside electron density 

profile to changes in input variables, while the second set shows comparisons 

between the measured and predicted electron density profiles.  
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7.2 Input Space Variations 
The results section of chapter 4 and chapter 5 illustrated the response of the 

individual ionospheric characteristics and coefficients to changes in the input 

variables. These characteristics and coefficients were then used to produce 

predicted profiles for the E layer (chapter 4) and the F layer (chapter 5). 

This section illustrates the response of the entire bottomside profile, as predicted 

by the LAM model, to changes in the input variables. The input variables are day 

number (DN), hour (HR), solar activity (R) and magnetic activity (A). To 

represent the seasonal variation in the input space, typical values of DN were 

selected to coincide with the summer solstice (DN=356), winter solstice 

(DN=173), autumn equinox (DN=81), and spring equinox (DN=265). Typical 

values were chosen to indicate high and low levels of solar and magnetic activity. 

These values were selected, using the 5-year dataset, such that 70% of the data 

lay symmetrically between the chosen values. This procedure is similar to that 

followed in chapter 4, section 4.7 and chapter 5, section 5.6, where graphical 

illustrations showing how these values were chosen are presented. For the solar 

activity input, values of 15 and 120 were selected to be typical indicators of low 

and high solar activity respectively, while for the magnetic activity input values of 

3 and 15 were selected to represent the low and high levels of magnetic activity 

respectively. It is important to realize that this “high” level of magnetic activity is 

based on the available dataset, which only spans 5 years. In true magnetic 

terms, an ak value of 15 describes unsettled conditions rather than severe, which 

only occurs very rarely. When a fixed value for the diurnal variation (HR input) is 

required, 12h00 SAST is typically used. 
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(b) R = low, A = low 
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Figure 7-1: An illustration of the profile’s response to changes in the input 

variables. The seasonal variations for the four combinations of high and low 

solar and magnetic activity are shown. 

 
 
Figure 7-1 illustrates the seasonal variation of the electron density profile for the 

four combinations of low and high solar and magnetic activity. These profiles 

were determined for 12h00 SAST at each of the four typical DN values 

mentioned above. 
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The solar and magnetic input variations are shown in figure 7-2 and 7-3 

respectively. In figure 7-2 the solar input, R, has been varied from 10 to 130 in 

increments of 20 and the predicted profiles determined for low and high 

magnetic activity at 12h00 SAST on a summer and a winter day. 
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Figure 7-2: For these profiles the solar input variable has been varied from 10 

to 130 in steps of 20 while the other inputs were kept fixed. These are the 

summer and winter 12h00 SAST profiles for low and high levels of magnetic 

activity. 
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The response of the electron density profile to changes in the magnetic activity, 

A, is illustrated in figure 7-3. For two days of the year at low and high solar 

activity, the 12h00 SAST electron density profiles have been predicted with the 

magnetic input, A, varying from 0 to 24 in steps of 2. These graphs clearly show 

that the magnetic activity input produces the most significant change in the F2 

layer heights at high solar activity in the summer. As shown in chapter 5, the 

magnetic activity input has a very small effect on the F1 layer with almost no 

effect visible in the winter at high solar activity. There is no magnetic activity 

influence in the E layer prediction. 
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Figure 7-3: These graphs illustrate the response of the electron density profile 

to variations in the magnetic input, A, for a summer and winter day at low and 

high solar activity, R.  
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LAM Model Predicted Profiles
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Figure 7-4: The LAM model predicted profiles for a summer day at low solar 

and low magnetic activity. The profiles are shown at hourly intervals for (a) 

the first 12 hours, and (b) the second 12 hours of the day. Labels on the 

graphs indicate the hours in UT. 
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The diurnal variation is demonstrated in figures 7-4 and 7-5, where the predicted 

LAM model profiles are shown for a summer and winter day at low solar and low 

magnetic activity. These profiles were determined at intervals of one hour and 

the hour is indicated on the graphs in universal time (UT).  

From figure 7-4, it can be seen that the lowest maximum electron density 

(quantified by the foF2 value) occurs at about 02h00 UT and not at midnight. 

This is confirmed by the findings of Poole and McKinnell [2000].  
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Figure 7-5: The LAM model predicted profiles for a winter day at low solar and 

low magnetic activity. The profiles are shown at hourly intervals for (a) the 

first 12 hours, and (b) the second 12 hours of the day. Labels on the graphs 

indicate the hours in UT. 
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In figure 7-6, an hour increment of 0.16 hour (10 minutes) has been used in 

order to show the change the profile undergoes during an L-condition period. For 

this example, no F1 layer is present at 04h10 UT and a definite F1 layer is 

present at 06h00 UT. 
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Figure 7-6: The LAM model predicted profiles are shown for the period 04h10 

UT to 06h00 UT on a summer day at high solar and low magnetic activity. 

This graph illustrates the transition from a profile with no F1 layer to a profile 

with a definite F1 layer. 
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7.3 Profile Comparisons 
In this section, several examples of actual DPS profiles have been selected and 

compared to profiles predicted by the LAM model and the IRI 2001. The 

predictions were made using the input sets from the actual DPS profiles. These 

examples have been deliberately selected to show both best and worst case 

scenarios. 

In figure 7-7 six actual DPS profiles from 12h00 SAST are shown with the 

equivalent predicted LAM model and IRI 2001 profiles. These six input sets were 

selected such that three levels of solar activity and all seasons were covered.  

In figures 7-8 and 7-9, further comparisons between actual DPS profiles and 

predicted profiles are shown. Both the LAM model and IRI 2001 predicted 

profiles for each actual DPS input set are shown. Each figure illustrates six 

examples, two examples at three different hours.  

Although in some of these examples the LAM model predicted profile deviates 

from the actual DPS profile, the deviation is always well within the estimated 

uncertainty of the profile. It is also clear from these examples that the IRI 2001 

is not providing accurate predictions of the electron density profile over 

Grahamstown, particularly in the F1 region. 
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Figure 7-7: In this figure six examples of actual midday SAST DPS profiles are 

shown for three levels of solar activity. The equivalent LAM model and IRI 

2001 profiles are also shown for comparison.  
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Figure 7-8: Two examples of actual DPS profiles for three different hours, 

04h00 UT, 07h00 UT and 13h00 UT are shown. The equivalent LAM model 

and IRI 2001 profiles are also shown for comparison.  
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Figure 7-9: Two examples of actual DPS profiles for three different hours, 

16h00 UT, 19h00 UT and 21h00 UT are shown. The equivalent LAM model 

and IRI 2001 profiles are also shown for comparison.  
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7.4 Uncertainty Profiles 
The LAM model predicts an average electron density profile for a given input set. 

As an indication of the variability that can be expected on this prediction, 

uncertainty profiles have been estimated. The details of the procedure followed 

in determining these uncertainty profiles have been explained in chapters 4 and 

5, with reference to the E and F layers respectively and, therefore, will not be 

repeated here.  

Figures 7-10 and 7-11 shows two examples of predicted profiles with their 

estimated uncertainty profiles. In these examples the predicted profiles were 

determined for input sets where actual DPS profiles were available, and these 

actual profiles are also shown for comparison. 
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Figure 7-10: A predicted daytime LAM model profile with its uncertainty 

profile. The red crosses show the actual DPS profile corresponding to the 

input set given to the LAM model.  
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Figure 7-11: A predicted nighttime LAM model profile is shown with its 

uncertainty profiles. The red crosses show the actual DPS profile 

corresponding to the input set given to the LAM model. 
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Chapter 8 

 

APPLICATION 
 
 

8.1 Introduction 
The traditional user of the ionosphere is the high-frequency (HF) communicator. 

In spite of current modern technologies, such as satellites, HF communication via 

the ionosphere is still popular. This is mainly due to the fact that the ionosphere 

is an inexpensive natural medium and, therefore, accessible in developing 

countries where the expensive infrastructure required for more modern 

technologies has not been built. 

The main application for the LAM model ionosphere is in the field of direction 

finding (DF) systems. DF systems use a technique referred to as single station 

location (SSL) for determining the location of an HF transmitter by means of ray 

tracing. This technique is dependent on the radio waves being reflected by the 

ionosphere and, therefore, a reliable description of the ionosphere is required in 

order to obtain an accurate location. Reliable ionospheric models are essential, 

as real-time data are not always available. 

Ray tracing is the technique used to determine the ground range between a 

transmitter and a receiver by following the path that the radio wave takes 

through the ionosphere from the transmitter to the receiver. SSL is ray tracing in 

reverse, since the path is followed from the receiver back to the transmitter. 

To illustrate a basic application for the LAM model, a simple ray tracing algorithm 

is presented and demonstrated in this chapter. 
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8.2 Ray Tracing 
With a knowledge of the elevation angle and radio frequency of the signal, as 

well as a suitable description of the ionosphere, which can take the form of an 

ionospheric profile for a particular input set, the path that the radio signal follows 

from the transmitter to the receiver, or vice versa, can be determined. A ray 

tracing algorithm was set up to determine and compare the paths of the signal 

through the LAM and IRI model ionospheres. 

The curved earth-ionosphere geometry (Davies [1990]) used in the algorithm is 

illustrated in figure 8-1. The elevation angle (E) is provided by the user and is 

the angle between the tangent to the ground at the transmitter location (T) and 

the ray path. The radio frequency, fr, is related to the plasma frequency, fv, at 

the height of reflection by the secant law (Davies [1990]), which takes the form: 

 
 Asecfv  fr ×≈  (8-1)

 

A is the angle between the ray path and the radius vector at the point of entry 

into the bottom of the ionosphere. The distance from the center of the earth to 

the bottom of the ionosphere is the sum of the earth radius (a=6371.2 km) and 

ho, where ho is the first real height that occurs in the given electron density 

profile. The angle B is the angle subtended at the earth’s center by the segment 

of the path from the transmitter (T) to the bottom of the ionosphere. Both of 

these angles, A and B, are determined geometrically. 

To determine the path through the ionosphere, Snell’s Law is applied in the form 

(Davies [1990]): 

 

µ1 sin Am = µ2 sin A2(m+1) 
(8-2)
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Figure 8-1: An illustration of the curved earth-ionosphere system used to 

determine the ray tracing algorithm. The ground range, D, is the distance 

from the transmitter to the receiver, which is the final output required from 

the algorithm. 
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The phase refractive index, µ, is dependent on the plasma frequency, fn, and is 

calculated, ignoring the effects of the magnetic field, (McNamara [1991]) by 

 

µ2 = 
2

fr
fn - 1 �

�

�
�
�

�  (8-3)

 

From the bottom of the ionosphere, height=ho, to the height of reflection, hr, 

the ionosphere is divided into small height segments with a height increment, dh, 

of 0.02 km. For each segment, values for the angles, A2 and i, are determined 

using equation (8-2), where m is the current segment number, and geometry. 

Once these angles are known, the small angle, dB, which is subtended at the 

earth’s center by the small segment, can be calculated. From the radian 

definition of the angle (Ohanian [1985]), the increase in ground range, dx, is 

determined as follows: 

dx = a x dB (8-4)

where a is the radius of the earth. This is repeated for each small segment until 

the height of reflection is reached, which is defined to be the height at which the 

value of sin A2 is greater than 1. The ray path is taken to be symmetrical about 

the height of reflection. A graph of altitude versus ground range is then plotted 

to illustrate the ray path, where altitude is the real height above the ground. 

 

8.3 Ray Tracing Results 
Chapter 7 demonstrated the differences between the IRI and LAM models. To 

further illustrate these differences, the ray tracing algorithm was applied to each 

of these model ionospheres. For a particular input set (DN, HR, R, A) each model 

predicted an electron density profile. The path of a radio wave through each of 

these model ionospheres, at a particular frequency and elevation angle, was then 

determined. It was found that there were significant differences in both the 

ground ranges and paths corresponding to the two different models.  
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Examples of the ray paths of a radio wave passing through the LAM and IRI 

model ionospheres are shown in figures 8-2, and 8-3. The paths are plotted as 

altitude versus ground range, where altitude is the height above ground level 

with the maximum altitude corresponding to the height of reflection. Ground 

range is the distance along the earth’s surface from transmitter to receiver. 

In figure 8-2, the input set is 12h00 SAST on a summer day at a medium level of 

solar activity. The elevation angle and radio frequency were chosen to be 20.0 

degrees and 19.1 MHz respectively, which corresponded to reflection within the 

F2 layer. The difference in ground range between the LAM and IRI model 

ionospheres, expressed as a percentage of the LAM model ground range, was 

33.6%. 
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Figure 8-2: Ray tracing through the LAM and IRI model ionospheres, at a 

radio frequency that corresponded to a height of reflection within the F2 

region. Identical input parameters produced different ground range values.  
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Ray Tracing through a model ionosphere
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Figure 8-3: Another example of the difference between the LAM and IRI 

model ionospheres. Again identical input parameters produced a significant 

difference in ground range. 

 
 
A second example is shown in figure 8-3, where the input set is 12h00 SAST on a 

winter day at high solar activity. The elevation angle and radio frequency were 

chosen to be 20.0 degrees and 21.5 MHz respectively. For this example, the 

difference in ground range between the LAM and IRI model ionospheres, again 

expressed as a percentage of the LAM model ground range, was 28.5%. 

The LAM and IRI model profiles corresponding to the input sets used in figures 

8-2 and 8-3 are illustrated with their corresponding actual DPS profiles in chapter 

7, figure 7-7. 

The LAM and IRI model ionospheres that were used in the figure 8-2 example 

are used again in figure 8-4, but this time the elevation angle and radio 

frequency were selected such that the height of reflection occurred within the F1 

layer close to the critical frequency foF1. The difference in ground ranges 

corresponded to 26.7% of the LAM model ground range.  
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Ray Tracing through a model ionosphere
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Figure 8-4: Ray paths through the LAM and IRI model ionospheres at an 

elevation angle and radio frequency that resulted in a height of reflection 

within the F1 region, close to foF1. 

 
 
A radio wave traveling through the ionosphere is continuously refracted or bent 

towards the ground. The amount of refraction is controlled by the phase 

refractive index, µ, which depends on the radio frequency, fr, and the plasma 

frequency, fn (equation 8-3). In the case where fn is near in value to fr the index 

µ becomes significantly less than 1, which results in a noticeable bend in the ray 

path at a height lower than the height of reflection. This effect on the ray path is 

evident in figure 8-4 (the point is marked a on the graph), where fr was chosen 

to be 10.7 MHz and the plasma frequency at the height of reflection was 5.1 

MHz. In figures 8-2, and 8-3, the values of fr chosen were significantly greater 

than the plasma frequencies at which reflection occurred, therefore, the ray 

paths in those cases were smooth at all heights. 
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Evidence of the effect that the LAM model smoothing technique (chapter 6, 

section 6-5) has on the model profile, is also visible when ray tracing. The 

smoothing technique was implemented in order to ensure a smooth continuous 

transition from the F1 layer to the F2 layer. Figure 8-5 illustrates the difference in 

ground range and ray path before and after the smoothing technique was 

applied. The difference in ground range in figure 8-5, expressed as a percentage 

of the ground range after smoothing, is 8.45%. 

It seems reasonable in the light of the results presented in chapter 7 to deduce 

that the range determination using the LAM model is more accurate than that 

using the IRI.  
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Figure 8-5: Ray paths through the LAM model ionosphere before and after the 

smoothing technique had been applied. The height of reflection is close to 

foF1. 
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The difference in ground range between the LAM and IRI model ionospheres is 

dependent on the two variables, elevation angle and radio frequency. To 

illustrate the extent of these differences, the ground ranges resulting from ray 

tracing through the LAM and IRI model ionospheres were determined for 

different combinations of these two variables. The difference in ground range, 

dD, was expressed as a percentage of the LAM model ground range, D(LAM), 

and calculated as follows: 

 

D(LAM)
D(LAM) - D(IRI)

  100  %dD ×=  (8-5)

where D(IRI) is the ground range determined by ray tracing through the IRI 

model ionosphere.  
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Figure 8-6: A graph of the percentage difference (%dD) in ground range 

between the LAM and IRI model ionospheres for various radio frequencies and 

elevation angles. The elevation angles, in degrees, are indicated on the graph 

as labels next to the relevant curves. 
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A graph of %dD versus radio frequency, fr, is shown in figure 8-6. The input set 

used for this illustration was 12h00 SAST on an autumn day at low R and A. The 

corresponding profiles for this input set are plotted in chapter 7, figure 7-7. For 

elevation angles from 5.0 degrees to 30.0 degrees in steps of 5.0 degrees, %dD 

was calculated for values of fr that ranged from fb to fe in steps of 0.5 MHz. The 

value of fb is defined to be the first radio frequency at which the height of 

reflection occurs within the F region of the LAM model, and the value of fe is 

defined to be the maximum possible radio frequency for which reflection will 

occur in either model ionosphere. The values of fb and fe depend on the elevation 

angle. Only reflection heights that occur within the F region of the LAM model 

have been considered for this illustration. The results from each elevation angle 

are shown in figure 8-6, where the values of the elevation angles are indicated 

as labels on the graph.  

This graph illustrates the extent to which the LAM and IRI model ionospheres 

differ. In particular, the greatest %dD occurs in the F1 region, where the IRI 

model is known to be inadequate. For every elevation angle, the maximum radio 

frequency, fe, occurred within the IRI model ionosphere, which indicates that 

reflection would have continued to occur at higher radio frequencies in the LAM 

model. 

 

8.4 Direction Finding Systems 
GrinTek Ewation (GEW) is a company that designs and builds direction-finding 

(DF) systems. These DF systems use the SSL technique to determine the location 

of remote transmitters. The success of this technique relies on the availability of 

accurate ionospheric data, with which to perform the ray tracing required for 

identifying the transmitter location.  

In the first instance, the DF system makes use of the real-time data that is 

available from the three South African ionospheric stations, which are located in 

such a way as to optimize the coverage of the available data over the whole 
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country. However, this data is frequently unavailable, due to hardware and 

manpower problems and, therefore, the availability of a reliable ionospheric 

model is of particular importance.  

At present the GEW DF systems make use of the IRI model ionosphere in the 

event that real-time data is unavailable. To test the DF systems, attempts are 

made to determine the location of known transmitters. During these tests, 

operators of these systems are reporting that the ground range determined 

when the IRI model ionosphere is used, misses the mark by approximately 30%. 

Since this is clearly not adequate, it is of extreme importance that a more 

accurate replacement is found for the IRI. This difference is in the right direction 

and is consistent with the differences between the IRI and the LAM model. 

It has been shown in the previous chapters of this thesis that the LAM model is a 

better predictor of the Grahamstown ionosphere than the IRI. Therefore, the 

LAM model is a better candidate for replacing the IRI in the GEW DF systems. 

It was hoped that results from implementing the LAM model into the GEW DF 

systems would be available for presentation in this thesis. Unfortunately due to 

software problems on the DF system side and time constraints, the 

implementation by GEW has not been completed yet. However, it is a future plan 

that the LAM model will replace the IRI in the GEW DF systems, thereby 

improving the accuracy of these systems for the South African region. 
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Chapter 9 

 

CONCLUSION 
 
 

9.1 The LAM Model – Version 2002 
This thesis has described the development of the first version of the LAM model, 

a single station ionospheric model for the bottomside electron density profile. In 

addition to predicting the ionospheric behaviour over Grahamstown more 

accurately than the IRI, the LAM model has also provided elegant solutions to a 

few of the more troublesome problems that arise in ionospheric modelling. In 

particular, the probability of occurrence of an F1 layer can be predicted very 

easily. 

The LAM model is available as a C++ program that requires as input the year, 

day number and hour in universal time (UT), e.g. year=2002, DN=180, 

HR=10h00 UT. The user has the option to enter the sunspot number (R) and 

magnetic index (A) as inputs instead of the year. Where the year has been given 

as an input, the required solar and magnetic indices are calculated using data 

that is provided in additional files. 

The output from the LAM model program is available as a listing of frequency 

and height points, as used in the previous chapter, or as a description of the 

profile in terms of Chebyshev coefficients. 

A block diagram of all the components that contribute to the LAM model, version 

2002, is shown in figure 9-1. 
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Figure 9-1: A block diagram depicting the process that the LAM model follows 

when predicting a profile for a particular set of inputs. 
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9.2 LAM Model Limitations 
There are two main limitations that should be taken into account when using the 

LAM model. The first is the extent of the input space with which the model was 

developed. Two datasets were used for training and testing the neural networks 

(NNs) that contribute to this model, a 28-year dataset and a 5-year dataset. The 

difference between these two datasets arises from the ionospheric sounder and 

scaling methods that were used to record the data. To recap, the 28-year 

dataset consists of vertical chirpsounder (Verti) data that was manually scaled 

and only contains information on the critical frequencies and their virtual heights. 

In contrast, the 5-year dataset consists of Digisonde (DPS) data, which was 

scaled with the Artist scaling software and contains electron density profile 

information. Although the 28-year dataset was used wherever possible, the 

major contribution to the model came from using the 5-year dataset. The data 

from this 5-year dataset only covered one rising section of a solar cycle, from 

solar minimum to solar maximum and, therefore, the input space is particularly 

limited in the solar variation. This limitation does not affect the accuracy of the 

LAM model as long as the user remembers this limitation and does not 

interrogate the model with data for which it has not been trained. 

The second limitation arises from the fact that the LAM model is a single station 

model. Only ionospheric data from the Grahamstown, South Africa ionospheric 

station were used in the development of the LAM model. Therefore, at this 

stage, the model is only valid for use in the Grahamstown area.  In spite of this 

limitation, the LAM model can still provide a better indication of South African 

ionospheric behaviour than global ionospheric models. This is due to existing 

global empirical ionospheric models, such as the IRI, being based on little or no 

South African ionospheric data. 
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9.3 LAM Model Advantages 
The LAM model is an empirical model that is neural network (NN) based. All 

available archived ionospheric data have been used in the development of this 

model. The major advantage of using NNs over other more conventional 

methods for ionospheric prediction lies in the ability of NNs to learn the 

relationships between the output and the input parameters without the need for 

additional user input. 

Attempts to provide predictions of the more complicated ionospheric problems 

have proved successful in the LAM model. In particular, the F1 layer is predicted 

for the Grahamstown ionosphere with much more confidence than could be the 

case with the global ionospheric IRI model. The pioneering attempt to use NNs 

for predicting the probability of the existence of an F1 layer, as well as the 

prediction of the hours between which an E layer is measurable by a ground 

based ionosonde, have been very successful in the LAM model. These predictions 

are an additional advantage of the LAM model and prove the method of 

employing NNs to solve ionospheric prediction problems. 

As well as predicting future ionospheric behaviour, the LAM model can also be 

used to investigate relationships between the input variables (day number, hour, 

solar and magnetic activity) and the electron density profile. Chapter 7 illustrated 

some of these relationships and compared the LAM model to the IRI. An aim in 

developing this model was to provide a better solution to predicting South 

African ionospheric behaviour than that of using the IRI model. It is clear from 

the results of chapter 7 that this aim has been met. 

An additional advantage of the LAM model is that it is relatively easy to update 

the model when more data becomes available, thereby enlarging the input space 

and improving the ionospheric representation of the model. 
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9.4 Future Work and Conclusion 
Future work includes updating the model as more data becomes available. The 

Grahamstown ionospheric station is continuing to collect and archive ionospheric 

data on a half-hourly basis. In order to improve the extent of the input space, 

the model requires updating with additional data from the Grahamstown station 

until at least 22 years of electron density profile data (one solar cycle) has been 

added.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-2: An illustration of a simple map of South Africa with the three 

South African ionospheric stations indicated. These stations are situated in 

such a way as to provide optimal coverage of the entire country. 
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As well as the Grahamstown station, South Africa has two additional ionospheric 

stations that are located in such a way as to optimize the ionospheric coverage 

over the entire country. These two stations are located at Louisvale (28.5ºS, 

21.2ºE) in the Northern Cape province and Madimbo (22.4ºS, 30.9ºE) in the 

Limpopo province. The location of the three South African ionospheric stations is 

illustrated in figure 9-2. 

The Louisvale and Madimbo stations have only been continuously collecting 

ionospheric data for one year. It is anticipated that as soon as sufficient data has 

been archived from these two stations, the LAM model will be expanded to 

include this data and will, therefore, become more representative of the entire 

South African ionosphere. 

Future plans also include researching the F1 region in more detail. Although the 

LAM model provides an elegant solution to most of the F1 problems, it is felt that 

a research project that deals entirely with the scaling and predicting of the F1 

layer is required. Working with the data while developing this LAM model, 

highlighted areas of the input space where the F1 layer is inadequately treated in 

the Artist scaling procedure. Since the Artist data was used in the development 

of the LAM model, all of the available F1 data requires re-scaling manually in 

order to check that the automatic scaling software has not compromised the 

model. This would also assist in improving the L algorithm and smoothing 

technique for future versions of the LAM model.  

This new NN based ionospheric model, the LAM model, has been shown to 

provide more accurate descriptions for the electron density profile over 

Grahamstown than the global IRI model. Since the IRI is the most commonly 

used global ionospheric model, it is hoped that the LAM model can be used to 

assist the IRI community in improving the current model in the southern 

hemisphere. In particular, the method of employing NNs to the task of 

ionospheric prediction, as in the development of the LAM model, could be applied 

to any large ionospheric database where ionospheric prediction was required. 

Also, further relationships between potential input variables and an ionospheric 
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output could be investigated with relative ease.  The IRI community has access 

to the worldwide data base of ionospheric records which would be required if this 

method is to be considered. 

This thesis has described the development of a NN based ionospheric model for 

the bottomside electron density profile over Grahamstown, South Africa. This 

model provides accurate predictions of the electron density profile that are an 

improvement on the IRI. Allowance has been made for additions to the model 

that will ultimately expand and improve it even further. It is anticipated that the 

LAM model will prove invaluable to both the DF system operators of GrinTek 

Ewation and the worldwide ionospheric community. 
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