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Abstract

For the case where L is an ecl-premonoid, we explore various characteriza-
tions of SL-topological spaces, in particular characterization in terms of a

convergence function lim: FS
L(X) → LX . We find we have to introduce a

new axiom , L⊗ on the lim function in order to completely describe SL-

topological spaces, which is not required in the case where L is a frame. We
generalize the classical Kowalski and Fischer axioms to the lattice context

and examine their relationship to the convergence axioms. We define the
category of stratified L-generalized convergence spaces, as a generalization
of the classical convergence spaces and investigate conditions under which

it contains the category of stratified L-topological spaces as a reflective sub-
category. We investigate some subcategories of the category of stratified

L-generalized convergence spaces obtained by generalizing various classical
convergence axioms.
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agement and patience throughout the past two years, and for reading and
commenting on huge documents at short notice. My thanks also to Dad

and Mum, Shaun and Judy for love and support, especially the financial
support. I couldn’t have done it without you guys. Thanks to countless

other friends for keeping me motivated.

3



Introduction

The purpose of the research conducted for this thesis was threefold. First,
we sought to extend the category theoretic results for stratified L-topological
spaces obtained by Jäger [21, 22, 23, 24] for the case where L is a frame to the

more general case where L is an ecl-premonoid. Secondly we endeavoured
to characterize stratified L-topological spaces in terms of a limit function,

specifying filter convergence. Lastly we defined the category of stratified
L-generalized convergence spaces in the ecl-premonoid context and studied

the relationships between several of its subcategories.
In Chapter 1 we present the background set theory and category theory

necessary for understanding the rest of the text. We cover abstract and
concrete categories, cartesian closedness, reflective subcategories and what

it means for a category A to be topological over a category B. We also
present some theorems used in proofs in later chapters.

Chapter 2 begins with the definition of the category of classical topo-

logical spaces. We continue with characterizations of topological spaces in
terms of interior, neighbourhood filter and convergence function. As an

aid to developing intuition for the general ecl-premonoid case we examine
the relationship between alternative convergence axioms, in particular the

Kowalski and Fischer axioms, which play an important role later. Lastly we
define the category of convergence spaces, a cartesian closed supercategory

of the category of topological spaces.
Chapter 3 contains the lattice theory background necessary for under-

standing the main research. In the first section we cover properties of the
lattice L. Here we present an extension of a proof from Höhle ([18]), showing
that the underlying lattice of any GL-monoid is a frame. Next we look at

properties of L-sets, in particular, how their properties are influenced by the
properties of L, and properties of images and inverse images of L-sets. In the

final section we cover stratified L-filter theory, developing concepts of the
infimum of a family of stratified L-filters and the supremum of two stratified

L-filters, properties of image and inverse images of stratified L-filters and
the product of two stratified L-filters.

In Chapter 4 we begin by defining the category of stratified L-topological
spaces for the ecl-premonoid case (cf. [20]). We then obtain character-

izations for stratified L-topological spaces in terms of interior operators,
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neighbourhood spaces and convergence functions, generalized to the lattice
context. In generalizing the characterization by convergence from the frame

case to the ecl-premonoid case we obtain what seems to be a new conver-
gence axiom, L⊗, related to whether the neighbourhood filter is actually a

stratified L filter or merely a function Ux : LX → L. L⊗ is always satisfied
in the frame case. In the classical case one of the convergence axioms states

that the convergence function lim factors through infima of sets of stratified
L-filters. In the general ecl-premonoid case (indeed even in the frame case

[23]) this axiom is not quite sufficient in our scheme for characterization of
stratified L-topological spaces. We try to investigate why. We try to re-

place the condition guaranteeing idempotency of the interior operator with
generalizations of the Kowalski and Fischer iterated limit axioms. Here we
discover that the form of the axioms changes slightly from the frame case

to take into account that we are using the implication defined by the GL-
monoid operation.

In Chapter 5 we define the category of stratified L-generalized conver-
gence spaces and prove some of its categorical properties. We present a new

lemma showing that the requirement that all objects in the category satisfy
the L⊗ axiom is equivalent a monotonicity condition M on the lattice L

is satisfied. This criterion sharpens a previously know result where it was
known that M implies that all stratified L-generalized convergence spaces

satisfy L⊗. The monotonicity condition is sufficiently general to cover the
important special cases of frames and GL-monoids with square roots. We
prove that the L⊗ axiom is independent of several of the more basic conver-

gence axioms and is not satisfied by all stratified L-generalized convergence
spaces in the general ecl-premonoid case. In the final section of the chapter

we generalize the definitions of various subcategories of the category of strat-
ified L-generalized convergence spaces and investigate their properties. We

enter into a short discussion of the form of the axiom which defines stratified
L-limit spaces, as there are several possibilities for generalizing the axiom

from the frame to the ecl-premonoid case. We present a new proof that the
category of stratified L-principal convergence spaces is topological in the

ecl-premonoid case.
Lastly we summarize our progress and outline some open problems and

interesting directions for possible future research in Chapter 6.
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Chapter 1

Category theory

Properties of topological spaces (and many other branches of mathematics)

can be placed conveniently within the framework of category theory [34].
Hence before the investigation of the spaces we are interested in, we here

present a summary of the category theoretic definitions and results needed
in the main text. A short discussion of the necessary set theory and nota-

tion conventions precedes the category theory. The main reference for this
chapter is Adámek et al. [1].

1.1 Set theory

A full discussion of the necessary set theory which provides a foundation for
category theory is beyond the scope of this text, however in order to facilitate

proofs later on a summary of some theory is appropriate. For further details
see e.g. [1, 17]. Briefly, a class is a collection of objects determined by a

logical condition. A class which is a member (i.e. an object) of another class
is called a set. We shall rarely if ever use the definition just given in proving

that some class is a set, instead we shall usually rely on the following axioms
given in Herrlich and Strecker [17].

1. For each set X and each property P , we can form the set { x ∈
X | P (x) } of members of X which possess the property P . Note that
this means that any subclass of a set is also a set.

2. For each set X we can form the set P(X) of all subsets of X .

3. For all sets X, Y we can form the usual {X, Y } (pair), (X, Y ) (ordered
pair), X ∪Y (union), X∩Y (intersection), X\Y (complement), X×Y
(cartesian product), and Y X (set of all functions from Y to X), and
all of these constructions are sets.

4. For any set I and any family (Xi)i∈I of sets, the following constructions
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are also sets: {Xi | i ∈ I } (the image set of the indexing function),⋃

i∈I

Xi,
⋂

i∈I

Xi (if I 6= ∅),
∏

i∈I

Xi.

5. The classes of the natural numbers N, integers Z, rational numbers Q
and real numbers R are sets.

The usual conventions (see e.g. [16]) have been observed for set theoretic
notation throughout this text. In some examples properties of R and N are

used without explicit mention. Further details may be found in e.g. Suppes
[38]. The abbreviation ‘iff’ for ‘if and only if’ has been used throughout.

Relations

Because we will be dealing with lattices, we will need some definitions from
the theory of relations. These definitions are basic but they are included for

completeness.

Definition 1.1.1 [16]: Let X be a set. Then a relation on X is a subset
R ⊆ X ×X . (x, y) ∈ R is usually denoted xR y.

Definition 1.1.2 [16]: A relation R on a set X is said to be

1. reflexive iff ∀x ∈ X, xRx.

2. transitive iff ∀x, y, z ∈ X, xRy and yR z ⇒ xR z.

3. symmetric iff ∀x, y ∈ X, xR y ⇒ yRx.

4. anti-symmetric iff ∀x, y ∈ X, xR y and yRx⇒ x = y.

Definition 1.1.3 [16, 38]: A relation R on a set X is said to be

1. a quasi-ordering iff it is reflexive and transitive.

2. a partial ordering iff it is reflexive, anti-symmetric and transitive.

3. an equivalence relation iff it is reflexive, symmetric and transitive.

Example 1.1.4 : The real numbers R with the usual order relation ≤ form
a partially ordered set. A further example is given by the power set P(X)

of X , ordered by inclusion, i.e. for A,B ∈ P(X), A ≤ B ⇔ A ⊆ B.
Equality,‘=’, is an equivalence relation on R.

7



1.2 Abstract Categories

We begin with an informal definition in order to familiarize ourselves with

the concepts, and later sharpen this to a formal definition (Definition 1.2.1).
Loosely speaking, a category consists of:

1. A class of objects, in our case usually structured sets e.g. vector spaces.

2. A class of morphisms between objects obeying the rules

(a) For every object there is an identity morphism.

(b) Composition of morphisms is associative.

In our case morphisms will usually be functions between the struc-
tured sets which satisfy some axioms. For example for the category

VEC (the category of vector spaces and morphisms between them) the
morphisms are linear functions between vector spaces i.e. functions f
which satisfy the axiom

f(ax+ by) = af(x) + bf(y)

for all vectors x, y and all scalars a, b. Note that for a vector space
(X,+, ·), the identity function idX is a morphism (i.e. the identity

function is linear). Composition in the category VEC is the usual
composition of functions and is of course associative.

For the rest of this chapter, examples will usually relate to the following
categories:

SET The category whose objects are sets and morphisms the functions

between them. Composition is the usual function composition and
identity on a set X is the usual identity function.

VEC The category of vector spaces, already introduced. Objects are vector
spaces and morphisms are linear functions between vector spaces.

TOP The category of topological spaces. Objects are topological spaces i.e.

structures (X, τ) where X is a non-empty set and τ is a topology. Mor-
phisms are continuous functions and composition is the usual function

composition.

Functors are functions between categories. An example is the forgetful

functor from TOP to SET, which maps topological spaces (X, τ) to their
underlying sets X and continuous functions φ : (X, τX) → (Y, τY ) to the

corresponding set functions φ : X → Y .
Although the categories described so far all consist of structured sets

and morphisms which are in some sense structure preserving functions, this
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need not be the case. In fact these categories are all examples of concrete

categories which are a special case of the general definition of an abstract

category. Objects in a category need not be structured sets, morphisms need
not be functions and furthermore, even if the morphisms are functions, com-

position need not be the usual composition of functions. However, through-
out this text we will only really be dealing with “nice” concrete categories

whose objects are structured sets and in which morphisms are functions and
composition is function composition. We begin our discussion with abstract

categories and their properties.

Abstract Categories

Definition 1.2.1 is the formal expression of the rather vague definition of a

category given previously.

Definition 1.2.1 [1]: A category A = (O, hom, id, ◦) consists of

1. A class O of A-objects.

2. A function hom which associates with each pair (A,B) of A-objects

a set hom(A,B). The members of the set hom(A,B) are called A-
morphisms from A to B. The sets hom(A,B) are further required to

be pairwise disjoint.

3. A function id which associates with each A-object A a morphism
idA ∈ hom(A,A).

4. A morphism composition ◦ which satisfies the following conditions

(a) g ◦ f ∈ hom(A,C) is defined wherever f ∈ hom(A,B) and
g ∈ hom(B,C).

(b) Wherever defined, h ◦ (g ◦ f) = (h ◦ g) ◦ f . (Associativity)

(c) If f ∈ hom(A,B) then f ◦ idA = f and idB ◦ f = f .

Remark 1.2.2 : We often refer to the class O of A-objects as Ob (A).
Similarly we define Mor (A) = ∪{ hom(A,B) | A,B ∈ Ob (A) }, the class of

A-morphisms. For f ∈ hom(A,B) we usually write A
f−→ B or f : A → B.

A is referred to as the domain of f , B is the codomain. The sets hom(A,B)

are required to be pairwise disjoint so that each morphism f ∈ Mor (A) has
a unique domain and codomain. We define the functions

dom: Mor (A) → Ob (A) (A
f−→ B) 7→ A

cod: Mor (A) → Ob (A) (A
f−→ B) 7→ B
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For h : A→ C, f : A→ B and g : B → C we may express the statement
h = g ◦ f by saying that the triangle

A B

C

f

gh

commutes.

Example 1.2.3 : All of the categories mentioned so far (SET, VEC and

TOP) satisfy the requirements of Definition 1.2.1. We expand further on
TOP (see e.g. [1]), since it will be one of the most important examples in

the following discussion.

Objects Objects are topological spaces i.e. structures (X, τ) satisfying:

∅ 6= X , X is a set, τ ⊆ P(X)

τ is called a topology on X .Members of τ are called open sets and

must satisfy the following axioms:

O1 ∅, X ∈ τ .

O2 A,B ∈ τ ⇒ A ∩ B ∈ τ (Finite intersections of open sets are
open).

03 A ⊆ τ ⇒ ∪A ∈ τ (Arbitrary unions of open sets are open).

Morphisms Morphisms between topological spaces (X, τX) and (Y, τY ) are

continuous functions φ : X → Y satisfying the axiom
∀V ∈ τY , φ←(V ) ∈ τX (Inverse images of open sets are open).

Identity The identity function idX : X → X is continuous between the
topological space (X, τ) and itself.

Composition Composition is the usual function composition.

Remark 1.2.4 : Consider the topological spaces (X, τ1) and (X, τ2) defined
by τ1 = P(X) and τ2 = {∅, X} (these are both easily verified to be topologies

on X). Then the identity function idX is continuous between (X, τ1) and
(X, τ2), as well as being continuous between (X, τ1) and (X, τ1). Since in

general τ1 6= τ2, it seems that we are violating the condition that hom-sets
must be pairwise disjoint. To get around this problem, we define a morphism
in TOP as a triple ((X, τX), φ : X → Y, (Y, τY )). In other words, we regard

idX : (X, τ1) → (X, τ2) as a different morphism to idX : (X, τ1) → (X, τ1).
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Subcategories

We often have situations where objects and morphisms of one category A

may be regarded as naturally belonging to a larger category B. The formal

definition of a subcategory (Definition 1.2.5) ensures that morphisms and
identities of the subcategory behave as expected (i.e. in the same way in

both categories A and B).

Definition 1.2.5 [1]: Let A,B be categories. A is a subcategory of B ⇔

1. Ob (A) ⊆ Ob (B).

2. ∀A,A′ ∈ Ob (A), homA(A,A′) ⊆ homB(A,A′).

3. ∀A ∈ Ob (A), idA in A is the same as idA in B, i.e. the identity

function id in A is the restriction of the identity in B to Ob (A).

4. g ◦A f = g ◦B f wherever defined i.e. morphism composition in A is
the same as morphism composition in B.

A is a full subcategory of B ⇔

1. A is a subcategory of B.

2. ∀A,A′ ∈ Ob (A), homA(A,A′) = homB(A,A′).

Example 1.2.6 : Let SETi be the category consisting of objects all sets

and morphisms all injective functions between sets. Then SETi is easily
seen to be a category and SETi is a non-full subcategory of SET.

The concept of a subcategory is useful because it allows us to apply con-
cepts related to the supercategory without modification to the subcategory.

If we further restrict the concept of a subcategory we obtain special sub-
categories which have “nice” relationships to the categorical properties of

the supercategory. One such restricted definition which has proved useful is
that of a reflective subcategory.

Definition 1.2.7 [1]: Let A be a subcategory of B, B ∈ Ob (B).

A ∈ Ob (A) is an A-reflection for B ⇔

∃ r ∈ homB(B,A) ∀A′ ∈ Ob (A) ∀ f ∈ homB(B,A′)

∃ ! f ′ ∈ homA(A,A′), f = f ′ ◦ r.

In other words, A is an A-reflection for B if there is an r : B → A such that

for every f from B to an A-object A′ there is a unique A-morphism f ′ from
A to A′ such that the triangle
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B A

A′

r

f ′f

commutes.
r may be referred to as an A-reflection arrow for B.

Definition 1.2.8 [1]: A is a reflective subcategory of B ⇔
1. A is a subcategory of B.

2. ∀B ∈ Ob (B) ∃AB ∈ Ob (A) such that AB is an A-reflection for B.

Remark 1.2.9 : Examples of reflective subcategories will be given later in
the chapters on classical topological spaces and L-topological spaces.

Lemma 1.2.10 [1]: Let A be a reflective subcategory of B. Then

A is a full subcategory of B ⇔

∀A ∈ Ob (A), A
idA−−→ A is an A-reflection arrow.

Proof :

Assume A is a full subcategory of B. Let A,A′ ∈ Ob (A), f ∈ homB(A,A′).

Then f ∈ homA(A,A′) and f = f ◦ idA. Now let f ′ ∈ homA(A,A′),
f = f ′ ◦ idA. Then f ′ = f , so ∃ !f ′ ∈ homA(A,A′), f = f ′ ◦ idA. Thus

A
idA−−→ A is an A-reflection arrow.

Now assume ∀A ∈ Ob (A), A
idA−−→ A is an A-reflection arrow. Let

f ∈ homB(A,A′). Then ∃ !f ′ ∈ homA(A,A′) f = f ′ ◦ idA = f ′. Thus

f ∈ homA(A,A′). Therefore A is a full subcategory of B. �

Functors

A functor F from a category A to a category B is simply a function mapping
objects of A to objects of B and morphisms of A to morphisms of B. In order

to be useful, however, such a function must preserve some of the structure
of the category A. Hence we define a functor as a function between A

and B preserving composition and identities. Definition 1.2.11 is the formal
definition.

Definition 1.2.11 [1]: Let A, B be categories. F : A → B is a functor ⇔
1. F assigns to each A ∈ Ob (A) an object F (A) ∈ Ob (B).
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2. F assigns to each f ∈ homA(A,A′) a morphism
F (f) ∈ homB(F (A), F (A′)) in such a way that:

(a) F (g ◦ f) = F (g) ◦ F (f) wherever g ◦ f is defined.

(b) F (idA) = idF (A) for all A ∈ Ob (A).

The action of a functor on a morphism is usually represented as

F (A
f−→ A′) = F (A)

F (f)−−−→ F (A′)

We often leave out the brackets and write F (A
f−→ A′) = FA

Ff−−→ FA′.

Example 1.2.12 : Let A be a category. The identity functor idA defined
by

idA(A
f−→ A′) = A

f−→ A′

is a functor.

Lemma 1.2.13 [1]: Let F : A → B, G : B → C be functors. Define the
composite functor G ◦ F : A → C by

(G ◦ F )(A
f−→ A′) = G(FA)

G(Ff)−−−−→ G(FA′)

Then G ◦ F is a functor.

Definition 1.2.14 [1]: Let F : A → B be a functor. Then

1. F is an embedding ⇔ F is injective on morphisms.

2. F is faithful ⇔ all hom-set restrictions

F : homA(A,B) → homB(FA, FB)

are injective.

3. F is full ⇔ all hom-set restrictions are surjective.

4. F is an isomorphism ⇔ ∃G : B → A G◦F = idA and F ◦G = idB.

A is isomorphic to B ⇔ there exists an isomorphism F : A → B.

Example 1.2.15 : The identity functor is an isomorphism idA : A → A.

Let U : TOP → SET be the forgetful functor which maps (X, τX)
φ−→ (Y, τY )

to X
φ−→ Y . Then U is faithful and full but is not an embedding since, with

reference to Remark 1.2.4, we can define two morphisms φ, ψ ∈ Mor (TOP)
such that codφ = (X, τ1) 6= (X, τ2) = codψ and

U((X, τ1)
φ−→ (X, τ1)) = X

idX−−→ X = U((X, τ1)
ψ−→ (X, τ2))

so U is not injective on morphisms.
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Lemma 1.2.16 [1]: Let A be a subcategory of B. We define the inclusion

functor E : A ↪→ B by E(A
f−→ A′) = A

f−→ A′. Then

1. E is an embedding.

2. E is a full functor ⇔ A is a full subcategory of B.

Lemma 1.2.17 [1]:

1. A composite of embeddings is an embedding.

2. F : A → B is an embedding ⇔ F is faithful and injective on objects.

3. F : A → B is an isomorphism ⇔ F is faithful, full and bijective on
objects.

Lemma 1.2.18 [1]: Let F be a functor between categories A and B. If F

is a full functor, or is injective on objects, then the image of A under F ,
F (A), is a subcategory of B.

1.3 Concrete categories

The definition of an abstract category ignores the fact that objects in a
category may have a structure of their own. Concrete categories provide

a way to apply category theory to categories where the structures of the
objects in the category are of interest. Constructs are categories consisting
of structured sets and structure preserving functions between those sets, and

are the primary examples of concrete categories.

Concrete categories

Definition 1.3.1 [1]: A concrete category (A, U) over a base category X is

a category A together with a faithful functor U : A → X.
A concrete category over SET is called a construct.

Example 1.3.2 : Any category A can be regarded as a concrete category
(A, idA) over A. The category TOP cat be regarded via the forgetful

functor U : TOP → SET as a construct (TOP, U).

Remark 1.3.3 [1]: For a concrete category (A, U) over a category X, be-
cause U is faithful, we can regard homA(A,B) as a subset of homX(UA, UB)

in the following way: we define the convention that

φ : UA→ UB ∈ homA(A,B) ⇔ ∃ f ∈ homA(A,B) Uf = φ
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For f ∈ homA(A,B) we say that f is identity carried if

U(A
f−→ B) = UA

idUA−−−→ UB

Note that if f is identity carried then UA = UB but A is not necessarily
equal to B.

Example 1.3.4 : Consider the concrete category TOP. Let U be the
forgetful functor from TOP into SET. We know that when we say φ : X →
Y is a morphism from (X, τX) to (Y, τY ) we really mean that there is f =
((X, τX), φ, (Y, τY )) such that f ∈ homTOP((X, τX), (Y, τY )) and Uf = φ.
Since U is faithful this morphism f is necessarily unique and we may simply

refer to it as φ as well, and we write φ : (X, τX) → (Y, τY ).

Definition 1.3.5 [1]: Let (A, U) be a concrete category over X. Let

X ∈ Ob (X). The A-fibre of X is the class defined by

FibreA(X) = {A ∈ Ob (A) | U(A) = X }.

Ordering on the elements of FibreA(X) is achieved by

A ≤ B ⇔ idX ∈ homA(A,B).

This turns FibreA(X) into a quasi-ordered class (i.e. ≤ is reflexive and

transitive). (A, U) is said to be fibre-small if each A-fibre is a set (as
opposed to being a proper class). (A, U) is said to be amnestic if each
A-fibre is a partially ordered class.

Example 1.3.6 : Let X be a set. The TOP-fibre of X is the class

FibreTOP(X) = { (Y, τ) ∈ Ob (TOP) | U(Y, τ) = X }.

In other words, the class of all topological spaces over X . This is a set since
P(P(X)) is a set and the class of all topologies over X can be considered as

a subset of P(P(X)). Hence TOP is fibre small. In this fibre,

(X, τ1) ≤ (X, τ2) ⇔ idX ∈ homTOP((X, τ1), (X, τ2))

⇔ τ2 ⊆ τ1

Now if (X, τ1) ≤ (X, τ2) and (X, τ2) ≤ (X, τ1) then (X, τ1) = (X, τ2), so
TOP is amnestic.
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Concrete subcategories

We now wish to have a mechanism which enables us to consider certain
concrete categories as sub-structures of other concrete categories. In other

words, subcategories of concrete categories which are in themselves concrete

and can therefore be expected to have the same concrete categorical prop-

erties as their supercategories.
The concept we are looking for is that of a concrete subcategory (Defini-

tion 1.3.7).

Definition 1.3.7 [1]: Let (A, U), (B, V ) be concrete categories over X.

Then (A, U) is a concrete subcategory of (B, V ) ⇔
1. A is a subcategory of B.

2. U = V ◦ E, where E : A ↪→ B is the inclusion functor.

Remark 1.3.8 : The second condition of Definition 1.3.7 expresses the fact
that if (A, U) is a concrete subcategory of (B, V ) (over X), then A-objects

must have the same underlying X-objects when regarded as B-objects.

Example 1.3.9 : A trivial example of a concrete subcategory is SETi

(defined in Example 1.2.6) considered as a concrete subcategory of SET.
SETi may be regarded as a construct via the inclusion functor E while

SET may be regarded as a construct via it’s identity functor idSET. Since
SETi is a subcategory of SET and E = idSET◦E, we may regard (SETi, E)

as a concrete subcategory of (SET, idSET).
Another example is the category HAUS (see e.g. [5]), the category

of all Hausdorff spaces, whose objects are the Hausdorff topological spaces
and whose morphisms are the continuous functions between them. HAUS

can naturally be considered as a subcategory of TOP, so there is an in-

clusion functor E : HAUS ↪→ TOP. We know that (TOP, U), where U
is the forgetful functor into SET, is a construct. We can therefore regard

(HAUS, U ◦ E) as a subconstruct of (TOP, U).

Definition 1.3.10 [1]: Let (A, U), (B, V ) be concrete categories over X.
Then (A, U) is a concretely reflective subcategory of (B, V ) ⇔

1. (A, U) is a concrete subcategory of (B, V ).

2. ∀B ∈ Ob (B) ∃AB ∈ Ob (A) ∃ r ∈ homB(B,AB),

(a) V r = idV B.

(b) r is an A-reflection arrow for B (see Definition 1.2.7).

In other words, (A, U) is a concretely reflective subcategory of (B, V ) iff for

every B-object B there is an identity-carried A-reflection arrow.
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Remark 1.3.11 : Examples of concretely reflective subcategories will be
given later in the chapters on classical topological spaces and L-topological

spaces.

Concrete functors

Definition 1.3.12 [1]: Let (A, U), (B, V ) be concrete categories over X.

F is a concrete functor between concrete categories (A, U) and (B, V ) ⇔

1. F : A → B is a functor.

2. U = V ◦ F .

Remark 1.3.13 : The second condition is easier to understand if one thinks

in terms of a functor mapping a construct to another construct, e.g. mapping
for example topological spaces to neighbourhood spaces. What the condition
says is that the underlying set does not change.

Note that since both U and V are faithful, this implies that F must be
faithful too. This means that every concrete functor is faithful [1].

Definition 1.3.14 [1]: Let (A, U), (B, V ) be concrete categories over X.
Let F : (A, U) → (B, V ), G : (A, U) → (B, V ) be concrete functors. We

define
F ≤ G ⇔ ∀A ∈ Ob (A) F (A) ≤ G(A).

Note that U = V ◦ F = V ◦ G so that V (F (A)) = V (G(A)) meaning that

F (A) and G(A) are always members of the same fibre of X.

Definition 1.3.15 [1]: Let (A, U), (B, V ) be concrete categories over X.

F : (A, U) → (B, V ) is a concrete isomorphism ⇔

1. F is a concrete functor between (A, U) and (B, V ).

2. F : A → B is an isomorphism (see Definition 1.2.14).

Example 1.3.16 : Let (A, U) be a concrete category over X. Then idA is
a concrete isomorphism between (A, U) and (A, U).

1.4 Topological categories

Many of the useful properties of topological spaces and related construc-

tions such as neighbourhood spaces may be regarded as properties of the
corresponding categories. In this way notions such as topological spaces,
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limit spaces and uniform spaces may be drawn together and given a com-
mon framework through category theory [34]. Accordingly we define what

it means for a category to be topological.

Definition 1.4.1 [1]: Let A be a category. S is a source in A ⇔

S = (A, (fi)i∈I)

where A ∈ Ob (A) and (fi)i∈I ∈ Mor (A)I is a class of morphisms indexed

by the class I with the property that ∀ i ∈ I dom fi = A. Alternative

notation for S is (A
fi−→ Ai)i∈I. A is referred to as the domain of the source

S while the Ai are referred to as the codomain.

Definition 1.4.2 [1]: Let G : A → B be a functor. T is a G-structured

source in B ⇔

1. T is a source in B.

2. the codomain of T is given by a family (GAi)i∈I where ∀ i ∈ I Ai ∈
Ob (A).

Definition 1.4.3 [1]: Let A, U) be a concrete category over X. We recall
the convention (see Remark 1.3.3) that

ψ ∈ homA(A′, A) ⇔ ∃ f ∈ homA(A′, A), Uf = ψ.

We define S is an initial source in (A, U) ⇔

1. S = (A
fi−→ Ai)i∈I is a source in A.

2. ∀A′ ∈ Ob (A) ∀ψ : UA′ → UA

( ∀ i ∈ I (Ufi) ◦ ψ ∈ homA(A′, Ai)) ⇔ ψ ∈ homA(A′, A).

Definition 1.4.4 [1]: Let (A, U) be a concrete category over X. (A, U) is

a topological category over X ⇔ every U -structured source (X
φi−→ UAi)I

has a unique initial lift (A
fi−→ Ai)I i.e. there exists a unique initial source

(A
fi−→ Ai)I such that

∀ i ∈ I U(A
fi−→ Ai) = X

φi−→ UAi.

Another way of saying this is that (A, U) has initial structures.
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Remark 1.4.5 : Throughout the following discussion we will be dealing
with constructs (concrete categories over SET) which are topological over

SET. Preuss ([34]) defines a construct (A, U) to be topological if it satisfies
the following three conditions:

1. (A, U) is topological over Set (in the sense already defined).

2. (A, U) is fibre small.

3. (A, U) satisfies the terminal separator property i.e. for any singleton
set {x} there exists exactly one A ∈ Ob (A) such that UA = {x}.

We will use the definition given by Adámek et al. ([1]), but wherever possible

we will prove the extra properties needed for Preuss’s stronger definition as
well, in order that our results may apply more widely.

Adámek et al. define a construct (A, U) to be well-fibred iff for all

X ∈ Ob (SET) with |X | ≤ 1 there exists a unique A ∈ Ob (A) such that
UA = X . For us this is essentially the same as the terminal separator

property since we consider constructs where one of the conditions on the
objects is that the underlying sets are non-empty.

Example 1.4.6 : The category TOP satisfies the terminal separator prop-
erty. Consider a one point set X = {x}. Now both ∅ and X must be mem-
bers of any topology τ on X , but these are the only possible subsets of X ,

so the only possible topology on X is P(X) = {∅, X}.

Lemma 1.4.7 [1]: Let (A, U) be a concrete category which is amnestic

over its base category X. Then for any U -structured source (X
φi−→ UAi)i∈I

in X, if that source has an initial lift (A
fi−→ Ai)i∈I, that initial lift is unique.

Proof :

Let (X
φi−→ UAi)i∈I be a U -structured source in X which has an initial lift

(A
fi−→ Ai)i∈I and another initial lift (B

gi−→ Ai)i∈I. Now A,B ∈ Ob (A) and

idUA = idX ∈ homX(UA,X). By definition

∀ i ∈ I φi ◦ idX ∈ homA(A,Ai).

Thus since both sources are initial, we have that idX ∈ homA(A,A), which
tells us nothing new, but also idX ∈ homA(A,B). Thus we have that A ≤ B.

Similarly B ≤ A. Since (A, U) is amnestic, B = A.
For the morphisms, select i ∈ I . We have

U(A
fi−→ Ai) = U(B

gi−→ Ai) = U(A
gi−→ Ai).
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Since U is faithful, fi = gi. So we have proved that

(A
fi−→ Ai)i∈I = (B

gi−→ Ai)i∈I.

�

Proving that a construct has initial structures

To prove that a construct (A, U) has initial structures (i.e. is topological
over Set) we need the following steps:

1. We define a U -structured source (X
φi−→ Xi)I in SET

where (Xi, ξi) ∈ Ob (A) and φi : X → Xi are functions.

2. We now need to find a structure ξX on X such that (X, ξX) ∈ Ob (A)

and ∀ i ∈ I φi ∈ homA((X, ξX), (Xi, ξi)).

3. Next we need to prove that ((X, ξX)
φi−→ (Xi, ξi))I is an initial source

in A. To do this, let (Y, ξY ) ∈ Ob (A) and ψ : Y → X be a function.

We need to prove that

∀ i ∈ I φi ◦ ψ ∈ homA((Y, ξY ), (Xi, ξi))

⇒ ψ ∈ homA((Y, ξY ), (X, ξX)).

4. Lastly we need to prove that ((X, ξX)
φi−→ (Xi, ξi))I is the unique lift

of (X
φi−→ Xi)I which is initial in (A, U). In this we are assisted

by the fact that this is automatic if we are considering an amnestic
construct (Lemma 1.4.7). All of the categories we will be considering

are amnestic constructs.

Examples will be given in later chapters and the procedure should become
clear.

1.5 Cartesian closed categories

Definition 1.5.1 [3]: Let A be a category. Then T ∈ Ob (A) is a terminal

object iff

∀A ∈ Ob (A), ∃ !f ∈ homA(A, T ).

Let A,B ∈ Ob (A). Then a product diagram for A and B consists of an

object P ∈ Ob (A) and morphisms p1 : P → A, p2 : P → B such that given
any X ∈ Ob (A), x1 : X → A, x2 : X → B there exists a unique u : X → P

such that the following diagram commutes:
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X

A P B

x1 x2

p1 p2

u

i.e. such that x1 = p1 ◦ u and x2 = p2 ◦ u.

A is said to have all binary products iff a product diagram exists for every
A,B ∈ Ob (A). A is said to have all finite products iff it has a terminal

object and all binary products.

Remark 1.5.2 : For the object P in Definition 1.5.1, we normally write
P = A× B. For the morphism u we normally write u = 〈x1, x2〉.

Example 1.5.3 : Any one element set {x} together with P({x}) = {∅, {x}}
is a terminal object in the category TOP.

Example 1.5.4 : Let A,B ∈ Ob (SET), i.e. A and B are sets. Let

A ×B = { (a, b) | a ∈ A and b ∈ B }. Let πA : A× B → A (a, b) 7→ a and
πB : A×B → B (a, b) 7→ b. Then (A×B, πA, πB) is a product diagram in

SET for A and B.
Any one-element set {x} is a terminal object for the category SET,

hence SET has all finite products.

Lemma 1.5.5 [3]: Products are unique up to isomorphism.

Definition 1.5.6 [3]: Let A be a category with binary products. Let

f : A→ B and f ′ : A′ → B′ be morphisms in A. We define the morphism
f × f ′ : A× A′ → B × B′ such that the following diagram commutes:

A A×B B

A′ A′ ×B′ B′

p1 p2

q1 q2

f f ′f × f ′

i.e. f × f ′ = 〈f ◦ p1, f
′ ◦ p2〉.

Example 1.5.7 : Let ∅ 6= X, Y, U, V ∈ Ob (SET) and let f : X → U ,

g : Y → V be functions. Then we know that the normal cartesian products
X×Y, U×V and projection functions πX , πY , πU , πV form product diagrams

for X, Y and U, V , thus we can define f × g : X × Y → U × V . Now
πU((f × g)(x, y)) = (f ◦ πX)(x, y) = f(x) for (x, y) ∈ X × Y and similarly

πV ((f × g)(x, y)) = g(y), thus f × g(x, y) = (f(x), g(y)).
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Definition 1.5.8 [3]: Let A be a category with binary products and let
A,B ∈ Ob (A). Then an exponential of A and B consists of an object BA ∈
Ob (A) (usually called an exponential object) and a morphism ε : BA×A→
B (usually called the evaluation mapping) such that

∀Z ∈ Ob (A) ∀ f : Z × A→ B ∃ !f̃ : Z → BA

such that ε ◦ (f̃ × idA) = f , i.e. there exists a unique f̃ (the transpose of f)
such that the diagram below commutes.

BA × A B

Z ×A

ε

f̃ × idA f

Example 1.5.9 : Let A,B ∈ Ob (SET). Define

BA = { g | g is a function between A and B }.

Define ε : BA × A → B (g, a) 7→ g(a). Let Z ∈ Ob (SET) and let f : Z ×
A → B be a function. For z ∈ Z, define fz : A → B by fz(a) = f(z, a).
Now fz ∈ BA by the definition. Define f̃ : Z → BA z 7→ fz. Now let

(z, a) ∈ Z ×A. Then f(z, a) = fz(a) = ε(fz, a) = ε ◦ (f̃ × idA)(z, a). Lastly
assume h : Z → BA has the property that ε ◦ (h × idA) = f . Let z ∈ Z.

Then ∀ a ∈ A, h(z)(a) = f̃(z)(a) = f(z, a), thus h = f̃ . We have proved
that (BA, ε) is an exponential of A and B in the category SET.

Definition 1.5.10 [3]: A category A is cartesian closed iff

1. A has all finite products.

2. A has all exponentials, i.e. for every pair of objects A,B ∈ Ob (A)
there exists an exponential of A and B.

Example 1.5.11 : By Examples 1.5.4 and 1.5.9, SET is cartesian closed.

1.6 Categorical theorems

In this section we present some useful theorems which are used later in
proving properties of different categories.

Theorem 1.6.1 [1]: Let (A, U) be a concrete subcategory of a concrete

category (B, V ) over X. Let E : A ↪→ B be the inclusion functor. Then

22



(A, U) is a full, concretely reflective subcategory of (B, V ) ⇔
There exists a functor G : (B, V ) → (A, U) such that

G ◦ E = idA and E ◦G ≥ idB.

Proof :

Assume that (A, U) is a full, concretely reflective subcategory of (B, V ). We

define the functor G as follows: we know that

∀B ∈ Ob (B) ∃ an identity-carried A-reflection arrow, rB : B → AB.

We define a selection function s : Ob (B) → Mor(B)

B 7→
{

idB B ∈ Ob (A)

One of the rB’s otherwise

This is possible by the axiom of choice. Now we define the functor G by the
diagram below.

B B′

G(B) G(B′)

f

s(B) s(B′) ◦ f

G(f)

s(B′)

We can do this since for each B
f−→ B′ ∈ Mor (B), the morphism s(B′) ◦ f

is uniquely defined. The morphism G(f) is defined as the unique morphism

such that s(B′) ◦ f = G(f) ◦ s(B), which is possible since s(B) is an A-
reflection arrow.

Now let A
f−→ A′ ∈ Mor (A). Then E(A

f−→ A′) = A
f−→ A′. We calculate

G ◦ E(A
f−→ A′) using the diagram below.

A A′

G(A) = A G(A′) = A′

f

idA idA′ ◦ f

G(f) = f

idA′

So we have that G ◦ E = idA.
Let B ∈ Ob (B). We know that s(B) : B → G(B) is identity carried.

Hence B ≤ G(B) = E ◦G(B) and we have that E ◦G ≥ idB.
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For the converse, assume that there exists a functor G : (B, V ) → (A, U)
such that

G ◦ E = idA E ◦G ≥ idB

Let B ∈ Ob (B). We define AB = GB ∈ Ob (A). Because E ◦G ≥ idB we

have
∃ r ∈ homB(B,AB) V r = idV B

so r is identity carried. For each B ∈ Ob (B) we select one rB ∈ homB(B,AB)
such that V rB = idV B. This is possible by the axiom of choice. We now

prove that rB is an A-reflection arrow.
Let A ∈ Ob (A), f ∈ homB(B,A). Then Gf ∈ homA(AB, A) since

GA = A from G ◦ E = idA. So (Gf) ◦ rB ∈ homB(B,A). Now G is a

concrete functor, thus U ◦G = V . Also (A, U) is a concrete subcategory of
(B, V ), so U = V ◦ E. So we have V ◦E ◦G = V .

V ((Gf) ◦ rB) = V (Gf) ◦ V (rB) = V (Gf) ◦ idV B

= V (Gf) = V ◦ E ◦G(f) = V (f).

Since (Gf) ◦ rB, f ∈ homB(B,A) and V is faithful we have (Gf) ◦ rB = f .
We need to prove that f ′ ◦ rB = f ⇒ f ′ = Gf . Assume f ′ ◦ rB = f . Then

V (f ′ ◦ rB) = V ((Gf) ◦ rB) and V (f ′) = V (Gf), so f ′ = Gf since V is
faithful.

Lastly we need to prove that (A, U) is a full subcategory of (B, V ). Let
A,A′ ∈ Ob (A), f ∈ homB(A,A′). Then Gf ∈ homA(A,A′) and

V (A
Gf−−→ A′) = V ◦ E(A

Gf−−→ A′) = V A
V ◦E◦G(f)−−−−−−→ V A′ = V A

V f−−→ V A′.

Because V is faithful we have f = Gf , thus f ∈ homA(A,A′). �

Theorem 1.6.2 [1]: Let (A, U), (B, V ) be concrete categories over a cate-

gory X. Then
(A, U) is isomorphic to a full, reflective subcategory of (B, V ) ⇔ There exist

functors F : (A, U) → (B, V ), G : (B, V ) → (A, U) such that the following
conditions are satisfied:

1. F is an embedding.

2. G ◦ F = idA and F ◦G ≥ idB.

Proof :

Assume that (A, U) is isomorphic to a full, reflective subcategory (C, W ) of
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(B, V ). Let E be the inclusion functor E : (C, W ) ↪→ (B, V ). By Theorem
1.6.1, there exists a functor K : (B, V ) → (C, W ) such that

K ◦ E = idC and E ◦K ≥ idB.

Since (A, U) is isomorphic to (C, W ), there exists an isomorphism functor
H : (A, U) → (C, W ) with inverse H−1. We define the functors F and G by

F = E ◦H and G = H−1 ◦K.

Then F is an embedding since H and E are both embeddings and a com-

posite of embeddings is an embedding (see Lemma 1.2.17). We calculate

G ◦ F = H−1 ◦K ◦ E ◦H = H−1 ◦ idC ◦H = idA,

F ◦G = E ◦H ◦H−1 ◦K = E ◦K ≥ idB.

For the converse, assume that we have functors F : (A, U) → (B, V ) and
G : (B, V ) → (A, U) such that F is an embedding and

G ◦ F = idA and F ◦G ≥ idB.

Since F is an embedding, it is injective on objects (see Lemma 1.2.17) and

hence F (A), the image of A under F , is a subcategory of B (see Lemma
1.2.18). Let E be the inclusion functor E : F (A) ↪→ B. Then with W =

V ◦E, we can regard (F (A), W ) as a concrete subcategory of (B, V ).
Since F is an embedding, (A, U) is isomorphic to (F (A), W ). The iso-

morphism functor is simply F : (A, U) → (F (A), W ). We define
K : (B, V ) → (F (A), W ) by K = F ◦ G. Now E ◦K = F ◦ G ≥ idB and

K ◦E = K ◦E ◦F ◦F−1 = F ◦G◦F ◦F−1 = F ◦ idA◦F−1 = idF (A). Thus by
Theorem 1.6.1, (F (A), W ) is a full, reflective subcategory of (B, V ), which

is isomorphic to (A, U). �

Theorem 1.6.3 [1]: Let (A, U) be a full concretely reflective subcategory
of an amnestic category (B, V ), with base category X. Then

(B, V ) is topological over X ⇒ (A, U) is topological over X.

Proof :

Since (A, U) is a full, concretely reflective subcategory of (B, V ), by the
axiom of choice we can associate with each B ∈ Ob (B) an identity carried

A-reflection arrow rB. Furthermore for those B ∈ Ob (A), we can specify
(by Lemma 1.2.10), that this reflection arrow shall be the identity on B,

25



namely idB. We define a functor G : (A, U) → (B, V ) in such a way as to
make the diagram below commute.

B B′

G(B) G(B′)

f

rB rB′ ◦ f

G(f)

rB′

Now let (X
φi−→ UAi)i∈I be a U -structured source in X. Then (X

φi−→
V Ai)i∈I is a V -structured source which has a unique initial lift (B

fi−→ Ai)i∈I

in B, since B is topological over X. We prove that (GB
Gfi−−→ Ai)i∈I is an

initial lift of (X
φi−→ UAi)i∈I in A.

Consider the diagram generated when we attempt to find Gfi:

B Ai

G(B) Ai

fi

rB idAi
◦ fi

Gfi

idAi

From the diagram we have (Gfi) ◦ rB = fi so

V (Gfi) = V (Gfi) ◦ idV B = V (Gfi) ◦ V (rB) = V (Gfi ◦ rB) = V fi = φi

Thus (GB
Gfi−−→ Ai)i∈I is a lift of (X

φi−→ UAi)i∈I in A. We now prove that

it is initial.
Let A ∈ Ob (A), ψ ∈ homX(UA,X), ∀ i ∈ I φi ◦ψ ∈ homA(A,Ai). We

need to prove that ψ ∈ homA(A,GB). We know that ψ ∈ homX(V A,X)

and also ∀ i ∈ I φi ◦ ψ ∈ homB(A,Ai). Since (B
fi−→ Ai)i∈I is an initial

lift in B, we have that ψ ∈ homB(A,B), i.e. ∃ g ∈ homB(A,B) V g = ψ.
Let’s look at the diagram of what happens when we map g to Mor (A) using

the functor G:

A B

A GB

g

idA rB ◦ g

Gg

rB

So we have Gg = rB◦g and U(Gg) = V ◦E(Gg) = V (rB◦g) = idV B◦V g = ψ
thus ψ ∈ homA(A,GB).

Since (B, V ) is amnestic, (A, U) is also amnestic and thus

(GB
Gfi−−→ Ai)i∈I is automatically a unique initial lift of (X

φi−→ UAi)i∈I.
Thus (A, U) is topological over X. �
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Chapter 2

Classical Topological Spaces

In this chapter we introduce the classical topological spaces and the corre-

sponding categories which we will later generalize to the lattice case. The
purpose is to provide us with some concrete examples which we may keep

in mind as we generalize in Chapters 4 and 5. In the first section we collect
some preliminary results which we will need later. Next, the category TOP

is defined and some of its categorical properties are stated. In the following
section we define the category TCS of topological convergence spaces and

show that it is isomorphic to TOP. We pay particular attention to the
classical Kowalski and Fischer axioms since they will play an important role
in later chapters. Lastly we weaken the TCS axioms to obtain a category

CONV, which is topological over SET, cartesian closed, and contains TCS

as a reflective subcategory.

2.1 Filter Theory

One of the original strands in the study of topological spaces arose from

the study of open sets in metric spaces [39]. One very useful property of
such open sets is that they can be characterized by convergence of sequences

i.e. functions whose domain is N[36]. It was hoped initially that topological

spaces could be characterized by convergence of sequences as well, but this
turns out not to be true [39]. However, topological spaces can be character-

ized by the convergence of filters (see e.g. [29]), which are a generalized form
of sequence. In this section we will develop some filter theory to the point

where we can use it in Section 2.3 to formulate axioms which characterize
topological spaces. Although many proofs in Section 2.3 are not given, the

purpose of presenting the necessary filter theory in the classical case is to
make comparison with the general L-filter case easier and more intuitive.
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Definition 2.1.1 [5]: Let X be a non-empty set. Then F ⊆ P(X) is a
filter on X ⇔

F1 F 6= ∅ and ∅ /∈ F .

F2 ∀A,B ⊆ X, A ∈ F and A ⊆ B ⇒ B ∈ F .

F3 ∀A,B ⊆ X, A, B ∈ F ⇒ A ∩ B ∈ F .

The set of all filters on X is denoted F (X). We define an order on F (X) by

∀F , G ∈ F(X), F ≤ G ⇔ F ⊆ G.

Example 2.1.2 : For x ∈ X we define [x] = {A ⊆ X | x ∈ A }. [x] ∈ F(X)

is the point filter at x. The set {X} is a filter on X .

Remark 2.1.3 : For all F ∈ F(X), X ∈ F , since F 6= ∅, thus ∃A ⊆ X
in F and by F2, X ∈ F .

Lemma 2.1.4 [5]: Let ∅ 6= X ∈ Ob (SET). Let (Fi)i∈I ∈ F(X)I be a
collection of filters on X indexed by the class I . Then

⋂
i∈I Fi ∈ F(X) and

furthermore
⋂
i∈I Fi is the largest filter G on X such that ∀ i ∈ I, G ⊆ Fi.

A mapping φ : X → Y induces mappings φ : P(X) → P(Y ) and
φ← : P(Y ) → P(X) in the following way. We define, for A ⊆ X and B ⊆ Y

φ(A) = { y ∈ Y | ∃x ∈ A φ(x) = y },
φ←(B) = { x ∈ X | φ(x) ∈ B }.

Lemma 2.1.5 [39]: Let ∅ 6= X, Y ∈ Ob (SET),F ∈ F(X). Let φ : X → Y

be a function. We define

φ(F ) = {B ⊆ Y | φ←(B) ∈ F }.

Then φ(F ) ∈ F(Y ). We call φ(F ) the image of F under φ.

Remark 2.1.6 : Note that the definition of φ(F ) differs from the usual

definition of the image of a collection of subsets A of X under φ. The
definition given in Lemma 2.1.5 is equivalent to

φ(F ) = {B ⊆ Y | ∃F ∈ F , φ(F ) ⊆ B }.

The latter is given by φ(A) = { φ(A) | A ∈ A}. This should cause no
confusion provided that we are aware of it.
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Lemma 2.1.7 [5]: Let ∅ 6= X, Y ∈ Ob (SET),F ∈ F(Y ). Let φ : X → Y
be a function. We define

φ←(F ) = { φ←(A) | A ∈ F }.
Then ( ∀A ∈ F , φ←(A) 6= ∅) ⇔ φ←(F ) ∈ F(X). We call φ←(F ) the
inverse image of F under φ.

Lemma 2.1.8 [5]: Let ∅ 6= X ∈ Ob (SET),F , G ∈ F(X). We define F ∨
G ⊆ P(X) by

A ∈ F ∨ G ⇔ ∃A1 ∈ F , A2 ∈ G, A1 ∩ A2 ⊆ A

Then F ∨ G ∈ F(X) ⇔ ∀F ∈ F ∀G ∈ G, F ∩G 6= ∅. If this condition is
satisfied then F ∨ G is the least upper bound of F and G in F (X).

Lemma 2.1.9 [5]: Let ∅ 6= X, Y ∈ Ob (SET) and let πX , πY be the usual
projection functions from X × Y to X, Y . Let F ∈ F(X), G ∈ F(Y ). Then

π←X (F ), π←Y (G) ∈ F(X × Y ), and furthermore π←X (F ), π←Y (G) satisfy the
condition of Lemma 2.1.8. Thus we can define

F × G = π←X (F ) ∨ π←Y (G).

Lemma 2.1.10 [7, 28]: Let ∅ 6= J,X ∈ Ob (SET), G ∈ F(J). Let (Fj)j∈J ∈
F (X)J be a collection of filters on X indexed by J. We define the compres-

sion operator κ by

κ(G, (Fj)j∈J) =
⋃

G∈G

⋂

j∈G

Fj

Then κ(G, (Fj)j∈J) ∈ F(X).

Proof :

F1 By Remark 2.1.3 and Lemma 2.1.4, J ∈ G and
⋂
j∈J Fj ∈ F(X)

so ∅ 6= κ(G, (Fj)j∈J). Similarly since ∀G ∈ G, ⋂
j∈GFj ∈ F(X), by

the definition ∅ /∈ κ(G, (Fj)j∈J).

F2 Let A,B ⊆ X,A ∈ κ(G, (Fj)j∈J), A ⊆ B. Then by the definition of
κ(G, (Fj)j∈J), ∃G ∈ G ∀ j ∈ G, A ∈ Fj. By F2,

∃G ∈ G ∀ j ∈ G, B ∈ Fj. Thus B ∈ κ(G, (Fj)j∈J).

F3 Let A,B ∈ κ(G, (Fj)j∈J). Then by the definition of κ(G, (Fj)j∈J),

∃G,H ∈ G, A ∈ ⋂
j∈GFj and B ∈ ⋂

k∈H Fk. Now ∅ 6= G ∩ H ∈ G
by F1 and F3, we have ∀ j ∈ G, A ∈ Fj and ∀ k ∈ H, B ∈ Fk.
Thus ∀ i ∈ G ∩H, A, B ∈ Fi. By F3, ∀ i ∈ G ∩H, A ∩ B ∈ Fi.
So we have A ∩B ∈ ⋂

i∈G∩H Fi and A ∩ B ∈ κ(G, (Fj)j∈J).
�
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2.2 Topological Spaces

Topological spaces and the category TOP have already been defined in

Chapter 1 (Example 1.2.3). We restate the definition formally.

Definition 2.2.1 [5, 39]: Let ∅ 6= X ∈ Ob (SET), τ ⊆ P(X). Then (X, τ)
is a topological space ⇔
O1 ∅, X ∈ τ

O2 A,B ∈ τ ⇒ A ∩B ∈ τ

03 A ⊆ τ ⇒ ∪A ∈ τ

τ is referred to as a topology on X .

Definition 2.2.2 [1]: We define the category TOP by

Objects Topological spaces (X, τ)

Morphisms Functions φ : X → Y between topological spaces (X, τX) and
(Y, τY ) which satisfy ∀V ∈ τY , φ←(V ) ∈ τX . These are called

continuous functions.

Identity The identity morphism for a topological space (X, τ) is the usual

idX : (X, τ) → (X, τ).

Composition Morphism composition is the usual function composition.

Example 2.2.3 : In the TOP-fibre of X , i.e. the class of all topologies

on the fixed set X , topologies are ordered by τ1 ≤ τ2 ⇔ τ2 ⊆ τ1, when the
order is defined as in definition 1.3.5. In this fibre, the smallest element is

(X,P(X)) and the largest element is (X, τ0) where τ0 = {∅, X}.

Remark 2.2.4 : There is the obvious forgetful functor U : TOP → SET.
Thus (TOP, U) can be regarded as a concrete category over SET, i.e. a

construct. Through abuse of notation we also refer to this category as TOP.

Lemma 2.2.5 [1]: The category TOP is fibre-small, amnestic and has the
terminal separator property.

Remark 2.2.6 : The fact that TOP is amnestic, fibre small and has the

terminal separator property was proved in Examples 1.3.6 and 1.4.6.

Theorem 2.2.7 (see e.g. [1]): The category TOP is topological over SET.

Theorem 2.2.8 [1, 2, 11]: The category TOP is not cartesian closed.
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2.3 Characterizations of Topological Spaces

It is well known (see e.g. [5, 39]) that classical topological spaces may be

viewed in several different but equivalent ways. The formulation is usually
chosen depending on the problem the topological machinery is being applied

to. In this section we explore the various standard axiom schemes which
describe topological spaces. It will be shown in Chapter 4 that these axiom

schemes can be translated into the more general setting of L-sets, where
they similarly suffice to characterize L-topological spaces.

Definition 2.3.1 [5, 39]: Let (X, τ) be a topological space. We define the

interior operator int by

I0 int: P(X) → τ A 7→ intA =
⋃

{ V ∈ τ | V ⊆ A }.

In cases where no ambiguity can arise we will use the shortened notation A◦

for intA.

Lemma 2.3.2 [5, 39]: Let (X, τ) be a topological space. Then the interior

operator int has the following properties for all A,B ⊆ X

I1 A ∈ τ ⇔ A = A◦.

I2 A◦ ⊆ A.

I3 X◦ = X .

I4 A◦ ∩B◦ = (A ∩B)◦.

I5 A ⊆ B ⇒ A◦ ⊆ B◦.

I6 (A◦)◦ = A◦.

Remark 2.3.3 : Note that property I5 follows from I4. We state it here

separately for comparison with the general ecl-premonoid case in chapter 4.

Definition 2.3.4 : Let X be a non-empty set and let int : P(X) → P(X)

be an operator satisfying the properties I2 to I6 of Lemma 2.3.2. Then
(X, int) is an interior space.

Lemma 2.3.5 [5, 39]: The properties of Lemma 2.3.2 characterize topo-

logical spaces, i.e. if (X, int) is an interior space then it can be mapped
uniquely to a topological space (X, τ) via I1, and the topological space so

defined can be mapped back to the same interior space (X, int) via I0. In
this way the topological axioms O1–O3 describe essentially the same object

as the interior axioms I2–I6.
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Remark 2.3.6 : Lemmas 2.3.2 and 2.3.5 are proved in the general ecl-
premonoid case as Lemmas 4.2.2 and 4.2.4 respectively.

Definition 2.3.7 [5, 39]: Let (X, int) be an interior space. We define the
neighbourhood filter Ux at x ∈ X by

N0 Ux = {A ⊆ X | x ∈ A◦ }.

Lemma 2.3.8 [5, 39]: The neighbourhood filter at x ∈ X has the following
properties:

N1 ∀A ⊆ X, A ∈ Ux ⇔ x ∈ A◦.

N2 ∀A ∈ Ux x ∈ A.

N3 X ∈ Ux.

N4 ∀A,B ⊆ X, A, B ∈ Ux ⇒ A ∩ B ∈ Ux.

N5 ∀A,B ⊆ X, A ⊆ B and A ∈ Ux ⇒ B ∈ Ux.

N6 ∀A ⊆ X, A ∈ Ux ⇒ ∃B ∈ Ux ∀ y ∈ B, A ∈ Uy.

Remark 2.3.9 : By the axioms N2, N3, N4 and N5, Ux ∈ F(X).

Definition 2.3.10 [5, 39]: Let X be a non-empty set and let (Ux)x∈X be a
collection of filters on X indexed by X satisfying axioms N2–N6 of Lemma

2.3.8. Then (X, (Ux)x∈X) is a neighbourhood space.

Lemma 2.3.11 [5, 39]: The properties of Lemma 2.3.8 characterize interior

spaces, i.e. if (X, (Ux)x∈X) is a neighbourhood space then it can be mapped
uniquely to an interior space (X, int) via N1, and the interior space so
defined can be mapped back to the same neighbourhood space (X, (Ux)x∈X)

via N1 again. In this way the interior axioms I2–I6 describe essentially the
same object as the neighbourhood axioms N2–N6.

Remark 2.3.12 : Lemmas 2.3.8 and 2.3.11 are proved in the general ecl-
premonoid case as Lemmas 4.2.6 and 4.2.9 respectively.

A convergence structure on a set X is defined by most authors (see e.g.
[9]) as a function τX → P(F (X)). From this point of view, for x ∈ A, τ(x)

is interpreted as the set of all filters on X which converge to x. We can
equivalently specify a function lim: F (X) → P(X) which specifies the set

of points limF to which each filter F converges. This is the viewpoint we
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shall adopt as standard, since it is closely related to the concepts in later
chapters.

Definition 2.3.13 [9]: Let (X, (Ux)x∈X) be a neighbourhood space. We
define the limit function

Lp lim: F (X) → P(X), limF = { x ∈ X | Ux ⊆ F }.

Lemma 2.3.14 (see [21] for the frame case): The lim function satisfies the
following properties:

L0 ∀x ∈ X, Ux =
⋂{F ∈ F(X) | x ∈ limF }.

L1 ∀x ∈ X, x ∈ lim[x].

Lp ∀F ∈ F(X), limF = { x ∈ X | Ux ⊆ F }.

Lt ∀x ∈ X, A ∈ Ux ⇒ ∃B ∈ Ux ∀ y ∈ B, A ∈ Uy.

Remark 2.3.15 : The axiom scheme given above is a mixture of the stan-
dard axioms for neighbourhood spaces and the standard axioms for con-

vergence relations (see e.g. [7, 26]) translated into axioms in terms of the
lim function. The reason this approach has been adopted is to make more

clear the comparison between the classical case and the more general ecl-
premonoid case.

Definition 2.3.16 (see [21] for the frame case): Let X be a non-empty set
and let lim: F (X) → P(X) be a function satisfying axioms L1, Lp and
Lt of Lemma 2.3.14, with Ux defined by L0. Then (X, lim) is a topological

convergence space.

Lemma 2.3.17 (see [21] for the frame case): The properties of Lemma

2.3.14 characterize neighbourhood spaces, i.e. if (X, lim) is a topological
convergence space then it can be mapped uniquely to a neighbourhood

space (X, (Ux)x∈X) via L0, and the neighbourhood space so obtained can
be mapped back to the same topological convergence space (X, lim) via Lp.
In this way the neighbourhood axioms N2–N6 describe essentially the same

object as the topological convergence axioms.

Remark 2.3.18 : Lemmas 2.3.14 and 2.3.17 are proved in the general ecl-

premonoid case as Lemmas 4.2.11 and 4.2.14 respectively.
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Remark 2.3.19 : From Lemmas 2.3.5, 2.3.11 and 2.3.17, we have that
topological spaces have at least four equivalent characterizations, hence in

the future when a topological space is defined it will be possible to use either
it’s ‘canonical’ axioms, or the interior operator, or the neighbourhood filter,

or the lim function in proofs.

Lemma 2.3.20 (see [21] for the frame case): Let (X, τX), (Y, τY ) be topo-
logical spaces. Let φ : X → Y be a function. Then

φ is a continuous function ⇔ ∀V ∈ τY , φ←(V ) ∈ τX

⇔ ∀x ∈ X ∀B ⊆ Y, B ∈ Uφ(x)
Y ⇒ φ←(B) ∈ UxX

⇔ ∀F ∈ F(X), φ(limX F ) ⊆ limY φ(F ).

Remark 2.3.21 : Lemma 2.3.20 is proved in the general ecl-premonoid
case as Lemma 4.3.2.

Definition 2.3.22 (see [21] for the frame case): We define the category

TCS of topological convergence spaces by

Objects Spaces (X, lim) which satisfy axioms L1, Lp and Lt, with Ux
defined by L0.

Morphisms Functions φ : (X, limX) → (Y, limY ) which satisfy

∀F ∈ F(X), φ(limX F ) ⊆ limY φ(F ).

Identity The identity morphism for a topological convergence space (X, lim)

is the usual idX : (X, lim) → (X, lim).

Composition Morphism composition is the usual function composition.

Theorem 2.3.23 : The category TOP is isomorphic to the category TCS.

Proof :

We define functors

F : TOP → TCS

(X, τX)
φ−→ (Y, τY ) 7→ (X, limτX )

φ−→ (Y, limτY ).

G : TCS → TOP

(X, limX)
φ−→ (Y, limY ) 7→ (X, τlimX

)
φ−→ (Y, τlimY

).
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Then by Lemmas 2.3.5, 2.3.11, 2.3.17 and 2.3.20 we have

F ◦G = idTOP and G ◦ F = idTCS.

So TOP is isomorphic to TCS. �

2.4 Alternatives to the Lp and Lt axioms

It is desirable, in Lemma 2.3.14, that for topological convergence spaces we
should express the Lp and Lt axioms entirely in terms of some simple (or at

least, simple-looking) axiom on the function lim, rather than as it is in the
Lemma, where we have to first define the neighbourhood filter Ux and only
then check if the filter satisfies the conditions. In fact, this is possible and

we can replace the Lp axiom with an equivalent condition on lim. We have
two different axioms which achieve the desired result for the Lt axiom, both

equivalent to each other, at least in the presence of the axioms L1 and Lp.
The first axiom K is due to Kowalski [28], the second, F, is due to Fischer

[7].

Lemma 2.4.1 : Let X be a non-empty set and let lim: F (X) → P(X) be
a function satisfying the axiom L1 of Lemma 2.3.14. Then axiom Lp of

Lemma 2.3.14 (with Ux defined by L0) is equivalent to:

∀F , G ∈ F(X), F ⊆ G ⇒ limF ⊆ limGL2

and

∀ ∅ 6= I ∈ Ob (SET), ∀ (Fi)i∈I ∈ F(X)I, lim(
⋂

i∈I

Fi) =
⋂

i∈I

limFi.
LpW2

i.e. Lp ⇔ L2 and LpW2, provided that L1 is satisfied.

Proof :

Assume that axiom Lp is satisfied, i.e.

Lp ∀F ∈ F(X), limF = { x ∈ X | Ux ⊆ F }.

Define Ux by

L0 Ux =
⋂

{F ∈ F(X) | x ∈ limF }.

We need L1 so that this intersection is non-empty. We prove that Lp ⇒
L2. Let F , G ∈ F(X),F ⊆ G. Then

x ∈ limF ⇔ Ux ⊆ F ⇒ Ux ⊆ G ⇔ x ∈ limG.
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Next we prove that Lp ⇒ LpW2. Let I be a non-empty set indexing a
family of filters (Fi)i∈I. Then

x ∈
⋂

i∈I

limFi ⇔ ∀ i ∈ I, x ∈ limFi

⇔ ∀ i ∈ I, Ux ⊆ Fi
⇔ Ux ⊆

⋂

i∈I

Fi ⇔ x ∈ lim
⋂

i∈I

Fi.

Now assume that axioms L2 and LpW2 are satisfied. We prove that
(L2 and LpW2) ⇒ Lp. Let x ∈ X . We define Ux via L0. Then it is clear

that x ∈ limF ⇒ Ux ⊆ F , for F ∈ F(X). For the converse, assume that
Ux ⊆ F . Then by L2, limUx ⊆ limF . Now by LpW2

limUx = lim(
⋂

x∈limG

G) =
⋂

x∈limG

(limG).

So x ∈ limUx. Thus x ∈ limF . We have proved that x ∈ limF ⇔ Ux ⊆ F ,

which is the axiom Lp. �

Definition 2.4.2 : Let X be a non-empty set and let lim: F (X) → P(X)
be a function satisfying the axioms L1 and Lp of Lemma 2.3.14. Then

(X, lim) is a principal convergence space.

Remark 2.4.3 : Kent and Richardson ([26]) use a weaker axiom scheme

where a convergence space (their terminology) (X, lim) is defined as one
which satisfies the axioms L1, L2 and Kent:

Kent ∀F ∈ F(X) ∀x ∈ X, x ∈ limF ⇒ x ∈ lim(F ∩ [x])

Under these conditions they are able to prove that the axiom F is equiva-

lent to (X, τlim) being a topological space. Previously Kowalsky ([28]) had
proved that a pretopological space (again, Kent and Richardson’s terminol-

ogy) (X, lim) (i.e. one which satisfies L1, L2 and ∀x ∈ X, x ∈ limUx) is
equivalent to a topological space (X, τlim) iff it satisfies the axiom K. Thus

all the results in this section are implied by the results previously obtained
by Kent and Richardson and Kowalsky. The reason that they are stated

here in this formulation is for comparison with results in Chapters 4 and
5, where we follow Jäger’s development of convergence theory for the frame
case ([21, 23, 24, 22]).

Lemma 2.4.4 : In a principal convergence space (X, lim),
∀x ∈ X, Ux ∈ F(X). Furthermore ∀x ∈ X, x ∈ limUx.
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Proof :

Let x ∈ X . Define Ux by L0. Then by L1, the intersection exists, hence by
Lemma 2.1.4, Ux ∈ F(X). Now by Lp, limUx = { z ∈ X | Uz ⊆ Ux }. But

Ux ⊆ Ux, so x ∈ limUx. �

Lemma 2.4.5 : Let (X, lim) be a principal convergence space. Then the
axiom Lt of Lemma 2.3.14 is equivalent to:

K ∀G ∈ F(X) ∀ (Fy)y∈X ∈ F(X)X ∀x ∈ X,

x ∈ limG and ∀ y ∈ X, y ∈ limFy
⇒ x ∈ limκ(G, (Fy)y∈X)

where κ(G, (Fy)y∈X) =
⋃

G∈G

⋂

z∈G

Fz is the compression operator defined in

Lemma 2.1.10.

Proof :

We prove that K ⇒ Lt. Assume the axiom K. Let x ∈ X . Now by Lemma
2.4.4, x ∈ limUx and ∀ y ∈ X, y ∈ limUy. Taking G = Ux and Fy = Uy
in the statement of K, we deduce that x ∈ limκ(Ux, (Uy)y∈X). Therefore
by Lp, Ux ⊆ κ(Ux, (Uy)y∈X). Let U ∈ Ux. Then by the definition of

κ(G, (Fy)y∈X),
∃V ∈ Ux ∀ y ∈ V, U ∈ Uy.

Now we prove that Lt ⇒ K. Let G ∈ F(X), ∀ y ∈ X, Fy ∈ F(X).
Let x ∈ X, x ∈ limG and ∀ y ∈ X, y ∈ limFy. Let U ∈ Ux. Then by Lt,

∃V ∈ Ux ∀ y ∈ V, U ∈ Uy. Now Ux ⊆ G and ∀ y ∈ V, Uy ⊆ Fy by Lp,
so U ∈ ⋂

y∈V Uy and thus U ∈ ⋃
V ∈G

⋂
y∈V Uy ⊆ κ(G, (Fy)y∈X). �

Lemma 2.4.6 : Let (X, lim) be a principal convergence space. Then the

axiom K of Lemma 2.4.5 is equivalent to:

F ∀ ∅ 6= J ∈ Ob (SET) ∀φ : J → X, ∀G ∈ F(J)

∀ (Fj)j∈J ∈ F(X)J ∀x ∈ X,

x ∈ limφ(G) and ∀ j ∈ J, φ(j) ∈ limFj
⇒ x ∈ limκ(G, (Fj)j∈J)

where κ(G, (Fj)j∈J) =
⋃

G∈G

⋂

z∈G

Fz is the compression operator defined in

Lemma 2.1.10.
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Proof :

It is obvious, by taking J = X and φ = idX , that F implies K. We prove
the converse. Let ∅ 6= J ∈ Ob (SET), G ∈ F(J), (Fj)j∈J ∈ F(X)J and

x ∈ X such that x ∈ limφ(G) and ∀ j ∈ J, φ(j) ∈ limFj. Now by K

and Lp, and by Lemma 2.4.4, we have that Ux ⊆ κ(Ux, (Uy)y∈X). Let

A ∈ κ(Ux, (Uy)y∈X). We define the set A◦ by z ∈ A◦ ⇔ A ∈ Uz. Now,
A ∈ κ(Ux, (Uy)y∈X) implies that A ∈ ⋃

B∈φ(G)

⋂
y∈B Uy, since Ux ⊆ φ(G)

by Lp. Thus there exists B ∈ φ(G) such that ∀ y ∈ B, A ∈ Uy. By our
definition of A◦, this implies that ∃B ∈ φ(G) such that B ⊆ A◦. φ(G) is

a filter, thus A◦ ∈ φ(G), so by the definition of φ(G) (2.1.5), φ←(A◦) ∈ G.
Now j ∈ φ←(A◦) ⇒ φ(j) ∈ A◦ ⇒ A ∈ Uφ(j) ⊆ Fj, thus A ∈ ⋂

j∈φ←(A◦) Fj.
Thus A ∈ ⋃

G∈G

⋂
j∈GFj = κ(G, (Fj)j∈J). We have proved that

Ux ⊆ κ(Ux, (Uy)y∈X) ⊆ κ(G, (Fj)j∈J).

By Lemma 2.4.4, x ∈ limUx, thus by L2, which is implied by Lp, we have
that x ∈ limκ(G, (Fj)j∈J). �

2.5 Convergence Spaces

We now define a new category, the category of convergence spaces, CONV.
A major reason (see e.g. [35]) for the definition of CONV was that the

category TOP is not cartesian closed [2, 11, 31]. However CONV is carte-
sian closed [33, 35] and contains TCS (isomorphic to TOP) as a reflective

subcategory [33].

Definition 2.5.1 [9, 28]: Let X be a non-empty set and let lim: F (X) →
P(X) be a function satisfying the axioms L1 (see Lemma 2.3.14) and L2

(see Lemma 2.4.1). Then (X, lim) is a convergence space.

Definition 2.5.2 (See e.g. [33, 35]): We define the category CONV of
convergence spaces by

Objects Convergence spaces (X, lim).

Morphisms Functions φ : (X, limX) → (Y, limY ) which satisfy

∀F ∈ F(X), φ(limX F ) ⊆ limY φ(F ).

Identity The identity morphism for a convergence space (X, lim) is the
usual idX : (X, lim) → (X, lim).

Composition Morphism composition is the usual function composition.
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Theorem 2.5.3 [9]: The category CONV is topological over SET. Fur-
thermore it is amnestic, fibre small and has the terminal separator property.

Example 2.5.4 : Let ∅ 6= X ∈ Ob (SET) and let (Xi, limi)i∈I be a family
of convergence spaces indexed by the set I . Let φi be a function from X to
Xi for each i ∈ I . Define

lim: F (X) → P(X) F 7→
⋂

i∈I

φ←i (limi φ(F ))

Then (X, lim) is an initial structure in TCS.

We now show the basic structures involved in the proof that CONV

is cartesian closed, i.e. we show how finite products and exponentials are
formed in CONV.

Lemma 2.5.5 [33]: Let (X, limX), (Y, limY ) ∈ Ob (CONV). Define

limX × limY : F (X × Y ) → P(X × Y )

F 7→ π←X (limX πX(F ))∧ π←Y (limY πY (F ))

Then ((X × Y, limX × limY ), πX, πY ) are a product diagram for the objects

(X, limX) and (Y, limY ) in CONV. For the one element set {x}, we define
lim: F ({x}) → P({x}) F 7→ {x}. Then the object ({x}, lim) is a terminal

object in CONV. Thus CONV has all finite products.

Lemma 2.5.6 [6, 33]: Let (X, limX), (Y, limY ) ∈ Ob (CONV). We define

C(X, Y ) = homCONV((X, limX), (Y, limY )). We also define

ε : C(X, Y ) ×X → Y (g, x) 7→ g(x)

Now define clim: F (C(X, Y )) → P(C(X, Y )) by

f ∈ climF ⇔ ∀x ∈ X ∀G ∈ F(X)

x ∈ limX G ⇒ f(x) ∈ limY ε(F × G)

Then (C(X, Y ), clim) ∈ Ob (CONV) and
ε ∈ homCONV((C(X, Y ), clim), (Y, limY)). Further, ((C(X, Y ), clim), ε) is

an exponential in CONV for the objects (X, limX) and (Y, limY ), in the
sense that if φ is a morphism between (Z × X, limZ × limX) and (Y, limY )

then we can define a unique φ̃ given by φ̃(z) = φ(z,−) such that φ̃ ∈
homCONV(Z, limZ) → (C(X, Y ), clim) and so that the diagram

(C(X, Y ), clim) × (X, limX) (Y, limY )

(Z, limZ) × (X, limX)

ε

φ̃× idX φ
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commutes.

Theorem 2.5.7 [33, 35]: The category CONV is cartesian closed.

Theorem 2.5.8 [33]: The category TCS is a full, reflective subcategory of
the category CONV.
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Chapter 3

Lattices, L-sets and L-filters

P(X), the power set of a set X , is usually defined as the set of all subsets

of X . We could also view it as the set of all characteristic functions over
X , since there is a bijective relationship between P(X) and {0, 1}X given

by A 7→ χA where χA(x) =

{
1 x ∈ A

0 x ∈ X\A
is the characteristic function of

A ⊆ X .

If we have A,B ∈ P(X), then we can obtain χA∩B and χA∪B from

χA∩B(x) = min{χA(x), χB(x)}
χA∪B(x) = max{χA(x), χB(x)}

L-sets over a base set X are simply the extension of the idea of character-
istic functions to a set L other than {0, 1}. A function a : X → L x 7→ a(x)

is called an L-set. The value a(x) is interpreted as the degree of membership

of x in a. By analogy with the relationships between A ∩ B,A ∪ B and

their characteristic functions, we seek to define an analogue of union and
intersection for our L-sets. In order to do this we require that L satisfies

some properties. Most importantly, L must be a lattice.
The first section of this chapter details the lattice structure of the set L

which is used as the basis for L-sets throughout the rest of the text. The
following section explores properties of L-sets using the structure previously

defined, and the final section contains some definitions and results concern-
ing L-filters, the generalization of classical filters to the L-set case.

3.1 Lattice theory

The properties of the set L determine the logic that we have available to
us. The set {0, 1} with 0 ≤ 1 has a number of nice properties which mean

that when we translate statements back and forth between characteristic
functions and the subsets of X that they represent, the statements are made
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in terms of boolean logic. When we change {0, 1} to L, we are also switching
from boolean logic statements to many-valued logic.

We want to be able to define operations on L-sets which are general-
izations of union and intersection. In order to do this we require that L

is a complete lattice, so that we have sup (
∨

) and inf (
∧

) operations (the
analogues of boolean or and and respectively) available to us. We will need

to have some form of implication operator on L (analogous to the boolean
implication) available to us. This leads us to define a frame. It turns out

that we can relax the axioms further and define an ecl-premonoid. This
is the framework for L which is used throughout the rest of this text. A

lattice is a partially ordered set which satisfys some additional axioms. We
begin by restating the definition of a partially ordered set from Chapter 1
(Definition 1.1.3).

Definition 3.1.1 [4]: (L,≤) is a partially ordered set (a poset) ⇔

L is a non-empty set and

≤ is a relation on L (i.e. a subset of L× L) which satisfies

PO1 ∀α ∈ L, α ≤ α. (reflexive)

PO2 ∀α, β ∈ L, α ≤ β and β ≤ γ ⇒ α ≤ γ. (transitive)

PO3 ∀α, β, γ ∈ L, α ≤ β and β ≤ α⇒ α = β. (anti-symmetric)

If (L,≤) satisfies the additional condition

POL ∀α, β ∈ L, α ≤ β or β ≤ α. (linearity)

then (L,≤) is called a linearly ordered set or chain and ≤ is called a linear

order on L.

Example 3.1.2 : Let X be a non-empty set. Then the subsethood rela-
tion on P(X) is reflexive, anti-symmetric and transitive. It is not linearly

ordered. Thus (P(X),⊆) is a poset which is not a chain. The real numbers
R and the natural numbers N are both posets under the usual ordering ≤.

Definition 3.1.3 [4]: Let (L,≤) be a poset and let β, γ ∈ L,A ⊆ L. Then

1. β is a lower bound of A ⇔ ∀α ∈ A, β ≤ α.

2. γ is an upper bound of A ⇔ ∀α ∈ A, α ≤ γ.

3. β is the greatest lower bound of A ⇔ β is a lower bound of A and
∀ δ ∈ L, δ is a lower bound of A⇒ δ ≤ β.

4. γ is the least upper bound of A ⇔ γ is an upper bound of A and

∀ δ ∈ L, δ is an upper bound of A⇒ γ ≤ δ.

42



Remark 3.1.4 : For a subset A of L, the greatest lower bound and the
least upper bound are unique if they exist [4]. The set of lower bounds for

A is denoted, in this text, by lb(A), similarly the set of upper bounds for
A is denoted ub(A). We denote the greatest lower bound of A by

∧
A and

the least upper bound of A by
∨
A. We refer to

∧
A as the meet of A and∨

A as the join of A. For a two element subset {α, β} ⊆ L we write α ∧ β
for

∧{α, β} and α ∨ β for
∨{α, β}.

Definition 3.1.5 [4]: (L,≤) is a lattice ⇔

1. (L,≤) is a poset.

2. ∀ {α, β} ⊆ L ∃λ, µ ∈ L, λ = α ∧ β, µ = α ∨ β. i.e. every two
element subset of L has a meet and a join.

(L,≤) is a complete lattice ⇔

1. (L,≤) is a poset.

2. ∀A ⊆ L ∃λ, µ ∈ L, λ =
∧
A, µ =

∨
A. i.e. every subset of L has

a meet and a join.

In a complete lattice,
∧
L is denoted ⊥, the smallest element, and

∨
L by

>, the largest element. A complete lattice (L,≤) which satisfies the frame

law

FL ∀α ∈ L ∀B ⊆ L, α ∧ (
∨
B) =

∨

β∈B

(α ∧ β)

is called a frame or a complete Heyting algebra [25].

Remark 3.1.6 : For a complete lattice (L,≤), we define
∧ ∅ = > and∨ ∅ = ⊥. This is consistent with the given definition of

∧
A and

∨
A for a

given A ⊆ L, since lb(∅) = L and ub(∅) = L.

Example 3.1.7 : Let X be a non-empty set, then we already know that
(P(X),⊆) is a poset. Any collection A of subsets of X has a meet (∩A)

and a join (∪A). Thus (P(X),⊆) is a complete lattice. In addition the
subsethood relation satisfies the frame law, thus (P(X),⊆) is a frame. The

smallest element is ∅ and the largest element is X .
The interval [0, 1] together with the usual ≤ relation on R is a frame

[36].

Definition 3.1.8 [20]: Let (L,≤) be a frame. We may define an implication

operator → on L by

→ : L× L→ L α→ β =
∨

{ λ ∈ L | α ∧ λ ≤ β }.
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Obviously we can define an implication operator for any complete lattice.
However, the frame law gives the implication operator some of the desirable

properties of the usual boolean implication. These will be explored further
after we have defined GL-monoids, which are a generalization of frames.

Lemma 3.1.9 : The
∧

and
∨

operations have the following properties:

1. Let A ⊆ L, γ ∈ L. Then

( ∀α ∈ A, γ ≤ α) ⇔ γ ≤
∧
A

and ( ∀α ∈ A, α ≤ γ) ⇔
∨
A ≤ γ.

2. Let α, β, γ ∈ L. Then

α ≤ β ⇒ α ∧ γ ≤ β ∧ γ and α ≤ β ⇒ α ∨ γ ≤ β ∨ γ.

3. Let A,B ⊆ L. Then

A ⊆ B ⇒
∧
B ≤

∧
A and A ⊆ B ⇒

∨
A ≤

∨
B.

4. Let A = {αij | i ∈ I, j ∈ J } be a subset of L indexed by sets I and

J. Then
∨
A =

∨

i∈I,j∈J

αij =
∨

j∈J

(
∨

i∈I

αij) =
∨

i∈I

(
∨

j∈J

αij)

and
∧
A =

∧

i∈I,j∈J

αij =
∧

j∈J

(
∧

i∈I

αij) =
∧

i∈I

(
∧

j∈J

αij).

Proof :

1. Let A ⊆ L, γ ∈ L. Then ∀α ∈ A, γ ≤ α implies that γ is a lower

bound for A, thus by the definition of
∧
A (Definition 3.1.3), γ ≤ ∧

A.
The converse follows from the transitivity of ≤. The proof for

∨
A is

similar.

2. Let α, β, γ ∈ L, α ≤ β. Then α∧γ ≤ α, but α ≤ β, thus by transitivity

α∧ γ ≤ β. Also α∧ γ ≤ γ. Thus α ∧ γ is a lower bound of {β, γ} and
so α ∧ β ≤ β ∧ γ.

3. Let A,B ⊆ L,A ⊆ B. Then ∀ β ∈ B,
∧
B ≤ β. Since A ⊆ B,

we have ∀α ∈ A,
∧
B ≤ α. Thus

∧
B is a lower bound for A,

therefore
∧
B ≤ ∧

A. Also we have ∀ β ∈ B,
∨
B ≥ β. Therefore

∀α ∈ A,
∨
B ≥ α. Thus

∨
B is an upper bound for A and

∨
A ≤∨

B.
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4. Let A = {αij | i ∈ I, j ∈ J } be a subset of L indexed by sets I and
J. Let m ∈ I, n ∈ J. Then αmn ≤ ∨

i∈I,j∈J αij. Thus∨
n∈J αmn ≤ ∨

i∈I,j∈J αij . Finally
∨
m∈I(

∨
n∈J αmn) ≤ ∨

i∈I,j∈J αij .
Now let i ∈ I, j ∈ J. Then αij ≤ ∨

m∈I αmj ≤ ∨
m∈I(

∨
n∈J αmn).

Therefore
∨
i∈I,j∈J αij ≤

∨
m∈I(

∨
n∈J αmn). The proof for

∧
is similar.

�

As mentioned before, we seek to relax the conditions on the set L in
order that our topological theory may apply as widely as possible. One of

the first definitions which relaxes the requirements of a frame is that of a
GL-monoid. The ‘GL’ is an abbreviation of ‘generalized logic’.

Definition 3.1.10 [18]: (L,≤, ∗) is a GL-monoid ⇔

1. (L,≤) is a complete lattice,

2. ∗ : L× L→ L is an operator satisfying:

GL1 ∀α ∈ L, α ∗ > = α. (identity)

GL2 ∀α, β ∈ L, α ∗ β = β ∗ α. (commutativity)

GL3 ∀α, β, γ ∈ L, α ∗ (β ∗ γ) = (α ∗ β) ∗ γ. (associativity)

GL4 ∀α, β ∈ L, α ≤ β ⇒ ∃ δ ∈ L, α = β ∗ δ. (divisibility)

GL5 ∀ β ∈ L ∀A ⊆ L, β ∗ (
∨
A) =

∨
α∈A(β ∗ α). (∗ distributes

over
∨

)

For a GL-monoid, we can define an implication operator analogous to the

frame implication, given by

→ : L× L→ L α→ β =
∨

{ λ ∈ L | α ∗ λ ≤ β }.

A GL-monoid is called a complete MV-algebra if the condition

MV ∀α ∈ L, (α→ ⊥) → ⊥ = α

holds [19].

Example 3.1.11 : Any frame (L,≤) is an example of a GL-monoid, with
∗ = ∧. By Lemma 3.1.16, any continuous T-norm is an example of a GL-

Monoid operation on the set [0, 1]. The Lukasiewicz T-norm TL (see Exam-
ple 3.1.13 below) is an example of an MV-algebra operation on [0, 1] where

the ∗ operation is not ∧ [20].

Definition 3.1.12 [37]: T : [0, 1]× [0, 1] → [0, 1] is a T-norm ⇔

T1 ∀α, β ∈ [0, 1], T (α, β) = T (β, α). (commutativity)

T2 ∀α, β, γ ∈ [0, 1], T (T (α, β), γ) = T (α, T (β, γ)). (associativity)
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T3 ∀α, β, γ ∈ [0, 1], β ≤ γ ⇒ T (α, β) ≤ T (α, γ). (monotonicity)

T4 ∀α ∈ [0, 1], T (α, 1) = α. (identity)

A T-norm is continuous iff it is continuous with respect to the usual topolo-
gies on [0, 1]× [0, 1] and [0, 1].

Example 3.1.13 : The most important examples of T-norms are the fol-

lowing:

1. Tm(α, β) = α ∧ β, the minimum T-norm.

2. Tp(α, β) = α · β, the product T-norm.

3. TL(α, β) = (α+ β − 1) ∨ 0, the Lukasiewicz T-norm.

4. TD(α, β) =

{
minα, β α = 1 or β = 1

0 otherwise
, the drastic product.

Of these, Tm, Tp and TL are continuous, while TD is not [27].

We now prove that any continuous T-norm is a GL-monoid operation on
[0, 1]. In order to do this we require two auxiliary lemmas before the main

proof.

Lemma 3.1.14 [27]: Let T be a T-norm. Then

∀α ∈ [0, 1], T (0, α) = T (α, 0) = 0.

Proof :

By axiom T4, we have that T (0, 1) = 0. Let α ∈ [0, 1]. Then α ≤ 1. Hence
T (0, α) ≤ T (0, 1) = 0 by T3. Thus by T1, T (0, α) = T (α, 0) = 0. �

Lemma 3.1.15 [36]: Let ∅ 6= A ⊆ R. Then if
∨
A exists, M =

∨
A ⇔

1. M is an upper bound of A.

2. ∀ ε ∈ R ε > 0 ∃α ∈ A, α ∈ (M − ε,M ] ⊆ R.

Proof :

Let M =
∨
A, ε > 0. Then by definition, M ∈ ub(A). Assume @α ∈ A

such that α ∈ (M − ε,M ]. Then M − ε < M and M − ε ∈ ub(A), which is

a contradiction.
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Conversely, assume that M ∈ ub(A) and ∀ ε > 0, (M − ε,M ] 3 α ∈ A.
Assume that M 6= ∨

A. Then ∃N < M, N =
∨
A since M ∈ ub(A). Let

ε = M −N . But then by assumption ∃α ∈ A such that
α ∈ (M − ε,M ] = (N,M ], which is a contradiction. �

Lemma 3.1.16 [27]: Any continuous T-norm T is GL-monoid operation

on [0, 1] i.e. ([0, 1],≤, T ) is a GL-monoid.

Proof :

The properties GL1,GL2 and GL3 follow from the conditions T4, T1

and T2 respectively. For GL4 we note that for β ∈ [0, 1], the function
T (·, β) defined by T (·, β)(α) = T (α, β) is continuous. Now T (·, β)(0) = 0

and T (·, β)(1) = β by Lemma 3.1.14 and by axiom T4. Let α ∈ [0, 1], α≤ β.
Then by the intermediate value Theorem [36] ∃ γ ∈ [0, 1], α = T (·, β)(γ) =

T (γ, β).
We first prove GL5 for the empty set. In [0, 1],

∨ ∅ = 0 as for any complete

lattice. Let β ∈ [0, 1]. Then

T (β,
∨

∅) = T (β, 0) = 0 =
∨

{ T (β, α) | α ∈ ∅ }

Now let ∅ 6= A ⊆ [0, 1], β ∈ [0, 1].

If ∀ ε > 0 ∃α ∈ A, α ∈ (T (β,
∨
A)−ε, T (β,

∨
A)], then by Lemma 3.1.15,

T (β,
∨
A) =

∨{ T (β, α) | α ∈ A }. Let σ =
∨
A, ε > 0. T is continuous, so

∃ δ > 0 ∀ γ ∈ [0, 1], |σ − γ| < δ ⇒ |T (β, σ)− T (β, γ)|< ε

Let γ ∈ (σ− δ
2 , σ]∩A. This set is non-empty by Lemma 3.1.15. Then γ ≤ σ,

so by T3, T (β, γ) ≤ T (β, σ). Thus T (β, γ) ∈ (T (β, σ)− ε, T (β, σ)]. �

Lemma 3.1.17 : Let (L,≤, ∗) be a GL-monoid. Then

1. ∀α, β, γ ∈ L, α ≤ β ⇒ α ∗ γ ≤ β ∗ γ.

2. ∀α, β ∈ L, α ∗ β ≤ α ∧ β.

Proof :

Let α, β ∈ L, α ≤ β. Then α∨β = β. Thus γ∗β = γ∗(α∨β) = (γ∗α)∨(γ∗β)
by GL5. So γ ∗ α ≤ γ ∗ β.

Now let α, β be arbitrary members of L. β ≤ > so α ∗ β ≤ α ∗> = α by
what we have just proved and by GL1. Also α ≤ > so α ∗ β ≤ > ∗ β = β.

Therefore α ∗ β ∈ lb({α, β}) and α ∗ β ≤ α ∧ β. �
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Lemma 3.1.18 [18]: Let (L,≤, ∗) be a GL-monoid. Then the implication
operator defined by

→ : L × L→ L α→ β =
∨

{ λ ∈ L | α ∗ λ ≤ β }

has the following properties:

1. ∀α, β, δ ∈ L, δ ≤ α→ β ⇔ α ∗ δ ≤ β.

2. ∀α, β ∈ L, α ∗ (α→ β) ≤ β.

3. ∀α, β ∈ L, α ≤ (α→ β) → β.

4. ∀α, β, γ ∈ L, α ∗ (β → γ) ≤ β → (α ∗ γ).

5. ∀α, β, γ ∈ L, α ≤ β ⇒ γ → α ≤ γ → β.

6. ∀α, β.γ ∈ L, α ≤ β ⇒ α→ γ ≥ β → γ.

7. ∀α ∈ L,B ⊆ L, α→ (
∧
B) =

∧
β∈B(α→ β).

8. ∀α ∈ L,B ⊆ L, (
∨
B) → α =

∧
β∈B(β → α).

9. ∀α ∈ L, α→ > = >, > → α = α, ⊥ → α = >.

10. ∀α, β ∈ L, α ≤ β ⇔ α→ β = >.

Proof :

1. Let α, β, δ ∈ L, δ ≤ α→ β. Then by the definition,

δ ≤ ∨{ λ | α ∗ λ ≤ β }. Therefore α ∗ δ ≤ α ∗ ∨{ λ | α ∗ λ ≤ β } by
Lemma 3.1.17. Thus α ∗ δ ≤ ∨{α ∗ λ | α ∗ λ ≤ β } ≤ β by GL5.

Now let α ∗ δ ≤ β. Then δ ∈ { λ | α ∗ λ ≤ β }. Thus

δ ≤ ∨{ λ | α ∗ λ ≤ β } = α→ β.

2. Let α, β ∈ L. We have α → β ≤ α → β. Then by what we have just

proved in 1 above, α ∗ (α→ β) ≤ β.

3. Let α, β ∈ L. We have α ∗ (α→ β) ≤ β. Then by 1 above,
α ≤ (α→ β) → β.

4. Let α, β, γ ∈ L. Then β ∗ β → γ ≤ γ. Thus α ∗ β ∗ (β → γ) ≤ α ∗ γ.
Then by 1 above, α ∗ (β → γ) ≤ β → (α ∗ γ).

5. Let α ≤ β, γ ∈ L. Then γ ∗ (γ → α) ≤ α, so γ ∗ (γ → α) ≤ β. Thus

by 1 above, γ → α ≤ γ → β.
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6. Let α ≤ β, γ ∈ L. Then β ∗ (β → γ) ≤ γ. Now
α ∗ (β → γ) ≤ β ∗ (β → γ) by Lemma 3.1.17, thus α ∗ (β → γ) ≤ γ.

Finally β → γ ≤ α→ γ.

7. Let α, δ ∈ L,B ⊆ L. Then

δ ≤ α→ (
∧
B) ⇔ δ ∗ α ≤

∧
B

⇔ ∀ β ∈ B, δ ∗ α ≤ β

⇔ ∀ β ∈ B, δ ≤ α→ β

⇔ δ ≤
∧

β∈B

(α→ β).

8. Let α, δ ∈ L,B ⊆ L. Then

δ ≤ (
∨
B) → α⇔ δ ∗ (

∨
B) ≤ α

⇔
∨

β∈B

(δ ∗ β) ≤ α

⇔ ∀ β ∈ B δ ∗ β ≤ α

⇔ ∀ β ∈ B δ ≤ β → α

⇔ δ ≤
∧

β∈B

(β → α).

9. Let α ∈ L. Then α → > =
∨{ λ | α ∗ λ ≤ >}. But α ∗ > ≤ >, thus

> ∈ { λ | α ∗ λ ≤ >}. Finally α → > ≥ > and by anti-symmetry

α→ > = >.

Next we have > → α =
∨{ λ | > ∗ λ ≤ α } =

∨{ λ | λ ≤ α } = α.

Finally ⊥ → α =
∨{ λ | ⊥ ∗ λ = ⊥ ≤ α } = >.

10. Let α, β ∈ L. Assume α ≤ β. Then >∗α ≤ β and by what we proved
earlier, > ≤ α → β, i.e. α → β = >. Now assume α → β = >. Then

> ≤ α→ β and again > ∗ α ≤ β, thus α ≤ β.
�

For any GL-monoid we can show that the underlying lattice is a frame.

We generalize a proof in Höhle ([18]).

Lemma 3.1.19 [18]: Let (L,≤, ∗) be a GL-monoid. Then

∀α, β ∈ L, α ∗ (α→ β) = α ∧ β.
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Proof :

Let α, β ∈ L. From Lemma 3.1.18, we have α ∗ (α→ β) ≤ β. We also have
α→ β ≤ > = α→ α. Thus by Lemma 3.1.18 again, α ∗ (α→ β) ≤ α.

Now α ∧ β ≤ α. By divisibility, ∃ γ ∈ L, α ∗ γ = α ∧ β. Then
γ ≤ α→ (α ∧ β) ≤ α→ β. Thus α ∧ β = α ∧ γ ≤ α ∗ (α→ β). �

Lemma 3.1.20 (see [18] for the case of B finite): Let (L,≤, ∗) be a GL-

monoid. Then

∀α ∈ L ∀B ⊆ L, α ∧
∨
B =

∨

β∈B

(α ∧ β).

Proof :

Let α ∈ L,B ⊆ L. Then by Lemmas 3.1.18 and 3.1.19, we have

α ∧
∨
B =

∨
B ∧ α = (

∨
B) ∗ ((

∨
B) → α)

=
∨

β∈B

(β ∗ ((
∨
B) → α)) ≤

∨

β∈B

(β ∗ (β → α))

=
∨

β∈B

(β ∧ α).

On the other hand, we have ∀ β ∈ B, α∧∨
B ≥ α∧β. Thus α∧∨

B ≥∨
β∈B(α ∧ β), and the result follows. �

Definition 3.1.21 [20]: Let (L,≤, ∗) be a GL-monoid. Then (L,≤, ∗) has
square roots iff there exists an operator S : L→ L satisfying the conditions

Sq1 ∀α ∈ L, α = S(α) ∗ S(α).

Sq2 ∀α, β ∈ L, β ∗ β ≤ α⇒ β ≤ S(α).

If (L,≤, ∗) has square roots then we may define the monoidal mean operator

~ by

~ : L× L→ L α ~ β = S(α) ∗ S(β).

An additional condition satisfied by several useful GL-monoids with square
roots is

Sq3 ∀α, β ∈ L, S(α ∗ β) = (S(α) ∗ S(β)) ∨ S(⊥).
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Example 3.1.22 : The T-norms Tm, Tp and TL all have square roots [20].
For Tm, S(α) = α, for Tp, S(α) =

√
α and for TL, S(α) = α+1

2 . The

associated monoidal mean operators are given by, for Tm, α~β = α∧β, for
Tp, α~ β =

√
α · β and for TL, α ~ β = α+β

2 .

Remark 3.1.23 : If a GL-monoid has square roots, then the square root
operator S is unique [20].

Another type of operation on L, which is a generalization of the concept
of GL-monoids, is a completely lattice ordered premonoid operation. Usually

this is simply abbreviated to cl-premonoid.

Definition 3.1.24 [20]: (L,≤,⊗) is a cl-premonoid ⇔

1. (L,≤) is a complete lattice.

2. ⊗ : L× L→ L is an operator satisfying:

CLP1 ∀α ∈ L, α ≤ α⊗> and α ≤ > ⊗ α.

CLP2 ∀α, β, γ, δ ∈ L, α ≤ β and γ ≤ δ ⇒ α ⊗ γ ≤ β ⊗ δ.

CLP3 ∀ β ∈ L ∀ ∅ 6= A ⊆ L,

β ⊗ (
∨
A) =

∨

α∈A

(β ⊗ α) and (
∨
A) ⊗ β =

∨

α∈A

(α⊗ β).

Example 3.1.25 : Any GL-monoid (L,≤, ∗) is a cl-premonoid, with ⊗ = ∗.
The monoidal mean operator for a GL-monoid with square roots which

satisfies condition Sq3 is a cl-premonoid [20]. The T-norms Tm, Tp and TL
all satisfy this condition [20].

Remark 3.1.26 : Note that in condition CLP3 of Definition 3.1.24, the ⊗
operation is only required to distribute over non-empty joins. Consider the
monoidal mean operator associated with TL, where we have α ~ β = α+β

2 .

Taking β = 1, A = ∅, we have
∨
A = 0. Then β ~ (

∨
A) = 1

2 , while∨
α∈A(β ~ α) =

∨ ∅ = 0. The reason that CLP3 only refers to non-empty

sets is so that we can include examples such as this.

If L is a GL-monoid under an operation ∗, and a cl-premonoid under

an operation ⊗, then provided that the operations satisfy the domination
condition of Definition 3.1.27, the resultant structure is called an enriched

cl-premonoid, usually abbreviated ecl-premonoid.

Definition 3.1.27 [20]: (L,≤, ∗,⊗) is an enriched cl-premonoid ⇔

1. (L,≤, ∗) is a GL-monoid.
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2. (L,≤,⊗) is a cl-premonoid.

3. L satisfies the domination axiom. ∀α1, α2, β1, β2 ∈ L

(α1 ⊗ α2) ∗ (β1 ⊗ β2) ≤ (α1 ∗ α2) ⊗ (β1 ∗ β2).

An ecl-premonoid (L,≤,⊗, ∗) has the pseudo-bisymmetry property iff
∀α1, α2, β1, β2 ∈ L

(α1 ∗ α2) ⊗ (β1 ∗ β2) = [(α1 ⊗ β1) ∗ (α2 ⊗ β2)]∨
[(α1 ⊗⊥) ∗ (α2 ⊗>)] ∨ [(⊥⊗ β1) ∗ (>⊗ β2)].

Example 3.1.28 : A frame is an example of an enriched cl-premonoid
which satisfies the pseudobisymmetry property, with ∗ = ⊗ = ∧. Fur-

ther examples of pseudobisymmetric ecl-premonoid structures are structures
(L,≤, ∗,~), where (L,≤, ∗) is a GL-monoid with square roots which satisfies

condition Sq3 and ~ is the associated monoidal mean operator [20].

Remark 3.1.29 : The pseudobisymmetry condition is mainly used in situ-

ations where we need a least upper bound for two L-filters. We will explicitly
point out where the condition is used when it is necessary.

Lemma 3.1.30 : Let (L,≤, ∗,⊗) be an ecl-premonoid. Then

1. ∀α, β ∈ L, α ∗ β ≤ α ⊗ β.

2. ∀α, β, γ, δ ∈ L, (α→ β) ⊗ (γ → δ) ≤ (α⊗ γ) → (β ⊗ δ).

Proof :

Let α, β ∈ L. Then by the domination axiom, CLP1 and CLP2,

α ∗ β ≤ (α⊗>) ∗ (>⊗ β) ≤ (α ∗ >) ⊗ (> ∗ β) = α⊗ β.

Now let γ, δ ∈ L. We have α ∗ (α→ β) ≤ β and γ ∗ (γ → δ) ≤ δ. Therefore

by CLP2,

[α ∗ (α→ β)] ⊗ [γ ∗ (γ → δ)] ≤ β ⊗ δ.

But by domination

[α ∗ (α→ β)] ⊗ [γ ∗ (γ → δ)] ≥ (α⊗ γ) ∗ [(α→ β) ⊗ (γ → δ)].
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Thus

(α⊗ γ) ∗ [(α→ β) ⊗ (γ → δ)] ≤ β ⊗ δ.

Then by Lemma 3.1.18, we have

(α→ β) ⊗ (γ → δ) ≤ (α⊗ γ) → (β ⊗ δ).

�

Throughout the rest of the text, L will be assumed to have the full ecl-
premonoid structure. References to the set L are hence references to the

ecl-premonoid (L,≤, ∗,⊗). Also we will assume X to be a non-empty set,
unless explicitly mentioned otherwise.

3.2 L-sets

L-sets are a generalization of characteristic functions to a lattice L. In our
case we require the lattice to be an ecl-premonoid. [0, 1]-sets, or fuzzy sets,

were first defined and studied by Zadeh [40]. Later these were generalized
to lattices by Goguen [15]. Based on what has been said in the introduction

to this chapter, we define an L-set over X as a function from X to L. We
denote by LX the set of all such functions. We can extend the relation ≤
and the operations

∧
,
∨
, ∗,⊗,→ to LX as shown in this section.

Definition 3.2.1 : Let a, b ∈ LX ,Γ ⊆ LX . Then

a ≤ b⇔ ∀x ∈ X a(x) ≤ b(x).

We may define the L-sets
∧

Γ and
∨

Γ by

(
∧

Γ)(x) =
∧

g∈Γ

g(x) and (
∨

Γ)(x) =
∨

g∈Γ

g(x).

We may also define the L-sets a ∗ b, a⊗ b and a→ b by

∀x ∈ X, (a ∗ b)(x) = a(x) ∗ b(x),

∀x ∈ X, (a⊗ b)(x) = a(x) ⊗ b(x),

∀x ∈ X, (a→ b)(x) = a(x) → b(x).

Let α ∈ L,A ⊆ X . We define the L-set αA by

αA(x) =

{
α x ∈ A

⊥ x ∈ X\A
.
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Example 3.2.2 : Two special L-sets are >X and ⊥X which have the prop-
erty

∀ a ∈ LX ⊥X ≤ a ≤ >X

Remark 3.2.3 : With Definition 3.2.1, we have that (LX ,≤, ∗,⊗) forms an
ecl-premonoid, with smallest element ⊥X and largest element >X . The only
possible problem is that the implication on LX induced by the ∗ operation

on L might be different from the implication induced by the ∗ operation on
LX . However we have by Lemma 3.2.4 (below) that they are the same, so

that all the results of Section 3.1 apply to LX . Note however though, that
only the ecl-premonoid properties of L are passed on to LX . In particular,

if L is a linearly ordered set then LX need not be linearly ordered. (For
example {0, 1} is linearly ordered but {0, 1}X is not, in general.)

Lemma 3.2.4 : Let a, b ∈ LX . Define a→ b and a b by

∀x ∈ X, (a→ b)(x) = a(x) → b(x) =
∨

{ λ ∈ L | a(x) ∗ λ ≤ b(x) }

a b =
∨

{ l ∈ LX | a ∗ l ≤ b }

Then a→ b = a b.

Proof :

Let x ∈ X . Then

(a b)(x) =
∨

{ l(x) | a ∗ l ≤ b }

=
∨

{ l(x) | ∀ y ∈ X a(y) ∗ l(y) ≤ b(y) }

≤
∨

{ l(x) | a(x) ∗ l(x) ≤ b(x) }

≤
∨

{ λ | a(x) ∗ λ ≤ b(x) } = (a→ b)(x).

To prove that a → b ≤ a  b consider λ ∈ L such that a(x) ∗ λ ≤ b(x).

Let l = λ{x}. Then ∀ y ∈ X a(y) ∗ l(y) ≤ b(y). Thus we have that
λ = l(x) ∈ { l(x) | a ∗ l ≤ b }. Therefore

{ λ ∈ L | a(x) ∗ λ ≤ b(x) } ⊆ { l(x) | a ∗ l ≤ b }
thus

∨
{ λ ∈ L | a(x) ∗ λ ≤ b(x) } ≤

∨
{ l(x) | a ∗ l ≤ b }

so finally (a→ b)(x) ≤ (a b)(x).

�

54



As we saw in Chapter 2, a mapping φ : X → Y induces mappings
φ : P(X) → P(Y ) and

φ← : P(Y ) → P(X)

∀A ⊆ X, φ(A) = { y ∈ Y | ∃x ∈ A φ(x) = y }.
∀B ⊆ Y, φ←(B) = { x ∈ X | φ(x) ∈ B }.

We now wish to generalize this to the L-set case in such a way that when

we take L = {0, 1} we regain our previous definition.

Definition 3.2.5 [40]: Let φ be a function between non-empty sets X and
Y . Let a ∈ LX , b ∈ LY , x ∈ X, y ∈ Y . We define

φ(a)(y) =
∨

{ a(x) | φ(x) = y },
φ←(b)(x) = b(φ(x)) = (b ◦ φ)(x).

We refer to φ(a) as the image of the L-set a under φ. φ←(b) is referred to
as the inverse image of the L-set b under φ.

The properties stated below of Lemmas 3.2.6 and 3.2.9 are not difficult

to prove. Some of them are described in [30]. We prove them anyway, to
make sure.

Lemma 3.2.6 : Let φ : X → Y, ψ : Y → Z be functions. Let a, a′ ∈
LX , b, b′ ∈ LY , c ∈ LZ . Then

1. φ←(φ(a)) ≥ a. If φ is injective then φ←(φ(a)) = a.

2. φ(φ←(b)) ≤ b. If φ is surjective then φ(φ←(b)) = b.

3. ψ(φ(a)) = (ψ ◦ φ)(a).

4. (ψ ◦ φ)←(c) = φ←(ψ←(c)).

5. φ(>X) = >φ(X) φ(⊥X) = ⊥Y .

6. φ←(>Y ) = >X φ←(⊥Y ) = ⊥X .

7. a ≤ a′ ⇒ φ(a) ≤ φ(a′).

8. b ≤ b′⇒ φ←(b) ≤ φ←(b′).

Proof :

1. Let x ∈ X . Then

φ←(φ(a))(x) = φ(a)(φ(x)) =
∨

φ(z)=φ(x)

a(z) ≥ a(x).
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Assume φ is injective. Then { z ∈ X | φ(z) = φ(x) } = {x}, so
φ←(φ(a))(x) = a(x).

2. Let y ∈ Y . Then

φ(φ←(b))(y) =
∨

φ(x)=y

φ←(b)(x) =

{
b(y) y ∈ φ(X)

⊥ y /∈ φ(X)

}
≤ b(y).

If φ is surjective then ∀ y ∈ Y y ∈ φ(X), so φ(φ←(b))(y) = b(y).

3. Let z ∈ Z. Then

ψ(φ(a))(z) =
∨

ψ(y)=z

φ(a)(y) =
∨

ψ(y)=z

∨

φ(x)=y

a(x)

=
∨

(ψ◦φ)(x)=z

a(x) = (ψ ◦ φ)(a)(z).

4. (ψ ◦ φ)←(c) = c ◦ ψ ◦ φ = φ←(c ◦ ψ) = φ←(ψ←(c)).

5. Let y ∈ Y . Then

φ(>X)(y) =
∨

φ(x)=y

>X(x) =

{
> y ∈ φ(X)
⊥ y /∈ φ(X)

}
= >φ(X)(y)

and φ(⊥X)(y) =
∨

φ(x)=y

⊥X(y) = ⊥ = ⊥Y (y).

6. Let x ∈ X . Then

φ←(>Y )(x) = >Y (φ(x)) = > = >X(x)

andφ←(⊥Y )(x) = ⊥Y (φ(x)) = ⊥ = ⊥X(x).

7. Let a ≤ a′, y ∈ Y . Then

φ(a)(y) =
∨

φ(x)=y

a(x) ≤
∨

φ(x)=y

a′(x) = φ(a′)(y).

8. Let b ≤ b′, x ∈ X . Then

φ←(b)(x) = b(φ(x)) ≤ b′(φ(x)) = φ←(b′)(x).

�

Lemma 3.2.7 : Let ∅ 6= X ∈ Ob (SET), a ∈ LX . Then

idX(a) = a and id←X (a) = a.
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Proof :

Let x ∈ X . Then idX(a)(x) =
∨

idX(z)=x a(z) = a(x) and id←X (a)(x) =

a(idX(x)) = a(x). �

Definition 3.2.8 : Let φ : X → Y be a function between non-empty sets

X and Y . Let Γ ⊆ LX and ∆ ⊆ LY . We define

φ(Γ) = { φ(a) | a ∈ Γ } ⊆ LY ,

φ←(∆) = { φ←(b) | b ∈ ∆ } ⊆ LX .

Lemma 3.2.9 : Let φ : X → Y be a function between non-empty sets X

and Y . Let Γ ⊆ LX , a, b ∈ LX ,∆ ⊆ LY , c, d ∈ LY . Then

1. φ←(
∧

∆) =
∧
φ←(∆).

2. φ←(
∨

∆) =
∨
φ←(∆).

3. φ←(c ∗ d) = φ←(c) ∗ φ←(d).

4. φ←(c⊗ d) = φ←(c) ⊗ φ←(d).

5. φ←(c→ d) = φ←(c) → φ←(d).

6. φ(
∧

Γ) ≤ ∧
φ(Γ).

7. φ(
∨

Γ) =
∨
φ(Γ).

8. φ(a ∗ b) ≤ φ(a) ∗ φ(b).

9. φ(a⊗ b) ≤ φ(a) ⊗ φ(b).

Proof :

1. Let x ∈ X . Then

φ←(
∧

∆)(x) = (
∧

∆)(φ(x)) =
∧

b∈∆

b(φ(x))

=
∧

b∈∆

φ←(b)(x) = (
∧
φ←(∆))(x).
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2. Let x ∈ X . Then

φ←(
∨

∆)(x) = (
∨

∆)(φ(x)) =
∨

b∈∆

b(φ(x))

=
∨

b∈∆

φ←(b)(x) = (
∨
φ←(∆))(x).

3. Let x ∈ X . Then

φ←(c ∗ d)(x) = (c ∗ d)(φ(x)) = c(φ(x)) ∗ d(φ(x)) = (φ←(c) ∗φ←(d))(x).

4. Let x ∈ X . Then

φ←(c⊗d)(x) = (c⊗d)(φ(x)) = c(φ(x))⊗d(φ(x)) = (φ←(c)⊗φ←(d))(x).

5. Let x ∈ X . Then

φ←(c→ d)(x) = (c→ d)(φ(x))

= c(φ(x)) → d(φ(x)) = (φ←(c) → φ←(d))(x).

6. Let y ∈ Y . Then

φ(
∧

Γ)(y) =
∨

φ(x)=y

(
∧

Γ)(x) ≤
∨

φ(x)=y

a(x) = φ(a)(y) ∀ a ∈ Γ.

Therefore φ(
∧

Γ)(y) ≤
∧

a∈Γ

φ(a)(y) = (
∧
φ(Γ))(y).

7. Let y ∈ Y . Then

φ(
∨

Γ)(y) =
∨

φ(x)=y

(
∨

Γ)(x) =
∨

φ(x)=y

∨

a∈Γ

a(x)

=
∨

a∈Γ

∨

φ(x)=y

a(x) =
∨

a∈Γ

φ(a)(y) = (
∨
φ(Γ))(y).

8. Let y ∈ Y . Then

φ(a ∗ b)(y) =
∨

φ(x)=y

a(x) ∗ b(x)

≤
∨

φ(x)=y

a(x) ∗
∨

φ(z)=y

b(z) = (φ(a) ∗ φ(b))(y).
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9. Let y ∈ Y . Then

φ(a⊗ b)(y) =
∨

φ(x)=y

a(x) ⊗ b(x)

≤
∨

φ(x)=y

a(x) ⊗
∨

φ(z)=y

b(z) = (φ(a) ⊗ φ(b))(y).

�

Lemma 3.2.10 (see e.g. [21] for the frame case): Let ∅ 6= X, Y, U, V ∈
Ob (SET). Let f : X → U and g : Y → V be functions. Let π1, π2 denote
the usual projections from X × Y to X, Y and let σ1, σ2 denote the usual

projections from U × V to U, V respectively. We have the function

f × g : X × Y → U × V (x, y) 7→ (f(x), g(y)).

Let a ∈ LX , b ∈ LY . We define a × b ∈ LX×Y by a × b = π←1 (a) ∗ π←2 (b).

Then
(f × g)(a× b) = σ←1 (f(a)) ∗ σ←2 (g(b)) = f(a) × g(b).

Proof :

Let (u, v) ∈ U × V . Then

(f × g)(a× b)(u, v) =
∨

f×g(x,y)=(u,v)

a× b(x, y) =
∨

f(x)=u
g(y)=v

a(x) ∗ b(y)

=
∨

f(x)=u
g(y)=v

a(x) ∗
∨

f(x)=u
g(y)=v

b(y) =
∨

f(x)=u

a(x) ∗
∨

g(y)=v

b(y)

= f(a)(u) ∗ g(b)(v) = (σ←1 (f(a)) ∗ σ←2 (g(b)))(u, v)

= (f(a) × g(b))(u, v).

�

3.3 L-filters

In classical topology, a topology over X may be described by convergence of
filters [39], which are special collections of subsets of X . It turns out that

stratified L-topological spaces can be similarly described by convergence of
stratified L-filters, which are a generalization of classical filters. This section

collects the stratified L-filter results used in later chapters.

Definition 3.3.1 [20]: Let F : LX → L. Then F is a stratified L-filter ⇔
F1 F (>X) = >,F (⊥X) = ⊥.
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F2 a ≤ b⇒ F (a) ≤ F (b).

F3 F (a)⊗ F (b) ≤ F (a⊗ b).

Fs α ∗ F (a) ≤ F (αX ∗ a).

We define

FS
L (X) = {F ∈ L(LX) | F is a stratified L-filter }.

Let F , G ∈ FS
L (X). We define an order on FS

L(X) by

F ≤ G ⇔ ∀ a ∈ LX F (a) ≤ G(a).

Example 3.3.2 : For x ∈ X we define the point filter at x by

∀ a ∈ LX , [x](a) = a(x)

Then [x] is a stratified L-filter.

Lemma 3.3.3 [20]: Let (Fi)i∈I be a collection of stratified L-filters over
X , indexed by a non-empty set I . We define a function

(
∧

i∈I

Fi) :  LX → L, (
∧

i∈I

Fi)(a) =
∧

i∈I

Fi(a).

Then
∧
i∈I Fi ∈ FS

L(X) and furthermore
∧
i∈I Fi is greatest lower bound of

{Fi | i ∈ I }.

Proof :

F1 We have

(
∧

i∈I

Fi)(⊥X) =
∧

i∈I

Fi(⊥X) =
∧

i∈I

⊥ = ⊥

and (
∧

i∈I

Fi)(>X) =
∧

i∈I

Fi(>X) =
∧

i∈I

> = >.

F2 Let a, b ∈ LX , a ≤ b. Then

(
∧

i∈I

Fi)(a) =
∧

i∈I

Fi(a) ≤ Fj(a) ≤ Fj(b) for all j ∈ I.

Therefore (
∧

i∈I

Fi)(a) ≤
∧

i∈I

Fi(b) = (
∧

i∈I

Fi)(b).
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F3 Let a, b ∈ LX . Then

(
∧

i∈I

Fi)(a) ⊗ (
∧

i∈I

Fi)(b) ≤ Fj(a) ⊗Fj(b) ≤ Fj(a⊗ b) ∀ j ∈ I.

Therefore (
∧

i∈I

Fi)(a) ⊗ (
∧

i∈I

Fi)(b) ≤
∧

i∈I

Fi(a⊗ b) = (
∧

i∈I

Fi)(a⊗ b).

Fs Let α ∈ L, a ∈ LX . Then

α ∗ (
∧

i∈I

Fi)(a) ≤ α ∗ Fj(a) ≤ Fj(αX ∗ a) ∀ j ∈ I.

hence α ∗ (
∧

i∈I

Fi)(a) ≤
∧

i∈I

Fi(a⊗ b) = (
∧

i∈I

Fi)(αX ∗ a).

Let G ∈ FS
L(X), ∀ i ∈ I, G ≤ Fi. Let a ∈ LX . Then

∀ i ∈ I, G(a) ≤ Fi(a). Thus G(a) ≤ ∧
i∈I Fi(a) = (

∧
i∈I Fi)(a), so

G ≤ ∧
i∈I Fi. Since ∀ j ∈ I,

∧
i∈I Fi ≤ Fj, we have that

∧
i∈I Fi is the

greatest lower bound of the set {Fi | i ∈ I }. �

Example 3.3.4 : Let A ⊆ X . We define [A] =
∧
x∈A[x]. The smallest

possible filter on X is given by F0 =
∧
F∈FS

L (X) F . It is not difficult to show

(see [20]) that F0(a) =
∧
x∈X a(x) =

∧
F6=F0

F .

Lemma 3.3.5 [13, 14]: Let (L,≤, ∗,⊗) be an ecl-premonoid which further

satisfies the pseudo-bisymmetry condition. Let F , G ∈ FS
L (X). Define

H : LX → L a 7→
∨

{F (a1) ∗ G(a2) | a1 ∗ a2 ≤ a }.

Then

H is an upper bound in FS
L(X) for F and G ⇔

∀ a1, a2 ∈ LX , a1 ∗ a2 = ⊥X ⇒ F (a1) ∗ G(a2) = ⊥.

If an upper bound for F and G exists in FS
L(X), we define

F ∨ G =
∧

{K ∈ FS
L (X) | F ≤ K and G ≤ K }.

Remark 3.3.6 : By Lemma 3.3.3, we have that F ∨ G ∈ FS
L(X).

Lemma 3.3.7 [20]: Let ∅ 6= X, Y ∈ Ob (SET), φ : X → Y,F ∈ FS
L(X) We

define φ(F ) by
φ(F )(a) = F (φ←(a)) for a ∈ LY .

Then φ(F ) ∈ FS
L(Y ).
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Proof :

F1 We have

φ(F )(⊥Y ) = φ(φ←(⊥Y )) = F (⊥X) = ⊥
and φ(F )(>Y ) = φ(φ←(>Y )) = F (>X) = >.

F2 Let a, b ∈ LY , a ≤ b. Then φ←(a) ≤ φ←(b), hence

φ(F )(a) = F (φ←(a)) ≤ F (φ←(b)) = φ(F )(b).

F3 Let a, b ∈ LY . Then

φ(F )(a)⊗ φ(F )(b) = F (φ←(a)) ⊗ F (φ←(b)) ≤ F (φ←(a) ⊗ φ←(b))

= F (φ←(a⊗ b)) = φ(F )(a⊗ b).

Fs Let α ∈ L, a ∈ LY . Then

α ∗ φ(F )(a) = α ∗ F (φ←(a)) ≤ F (αX ∗ φ←(a))

= F (φ←(αY ) ∗ φ←(a)) = F (φ←(αY ∗ a)) = φ(F )(αY ∗ a).

�

Lemma 3.3.8 : Let F , G ∈ FS
L (X),F ≤ G. Let φ : X → Y , ψ : Y → Z be

functions between non-empty sets X , Y , and Z. Then

1. φ(F ) ≤ φ(G)

2. ψ(φ(F )) = (ψ ◦ φ)(F )

Proof :

1. Let a ∈ LY . Then φ(F )(a) = F (φ←(a)) ≤ G(φ←(a)) = φ(G)(a).

2. Let a ∈ LZ . Then

ψ(φ(F ))(a) = φ(F )(ψ←(a)) = F (φ←(ψ←(a)))

= F ((ψ ◦ φ)←(a)) = (ψ ◦ φ)(F )(a).
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�

Lemma 3.3.9 [13]: Let ∅ 6= X, Y ∈ Ob (SET), φ : X → Y,F ∈ FS
L (Y ).

We define φ←(F ) : LX → L by

φ←(F )(a) =
∨

{F (b) | φ←(b) ≤ a } for a ∈ LX .

Then

φ←(F ) ∈ FS
L (X) ⇔ ∀ b ∈ LY , φ←(b) = ⊥X ⇒ F (b) = ⊥.

Proof :

Assume that φ←(F ) ∈ FS
L (X). Let b ∈ LY such that φ←(b) = ⊥X . Then

⊥ = φ←(F )(⊥X) ≥ F (b). Thus F (b) = ⊥.

For the converse, assume that ∀ b ∈ LY , φ←(b) = ⊥X ⇒ F (b) = ⊥.
We prove the properties F1–F3 and Fs:

F1 By our assumption, φ←(F )(⊥X) = ⊥. Now φ←(>Y ) = >X , so
φ←(F )(>X) ≥ F (>Y ) = >.

F2 Let a, b ∈ LX , a ≤ b. Then

φ←(F )(a) =
∨

φ←(c)≤a

F (c) ≤
∨

φ←(c)≤b

F (c) = φ←(F )(b).

F3 Let a, b ∈ LX . We calculate

φ←(F )(a)⊗ φ←(F )(b) =
∨

{F (a′) ⊗ F (b′) | φ←(a′) ≤ a and φ←(b′) ≤ b }
F3

≤
∨

{F (a′⊗ b′) | φ←(a′ ⊗ b′) ≤ a⊗ b }

≤
∨

{F (c′) | φ←(c′) ≤ a⊗ b } = φ←(F )(a⊗ b).

Fs Let α ∈ L, a ∈ LX . Then

α ∗ φ←(F )(a) =
∨

{α ∗ F (b) | φ←(b) ≤ a } ≤
∨

{F (αY ∗ b) | φ←(b) ≤ a }

≤
∨

{F (αY ∗ b) | φ←(αY ∗ b) ≤ αX ∗ a }

≤
∨

{F (c) | φ←(c) ≤ αX ∗ a } = φ←(F )(αX ∗ a).
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Thus φ←(F ) ∈ FS
L(X). �

Example 3.3.10 : Let ∅ 6= X, Y ∈ Ob (SET). Define πX : X × Y →
X (x, y) 7→ x. Let b ∈ LX such that π←X (b) = ⊥X×Y . Let x ∈ X . Then
∃ y ∈ Y, (x, y) ∈ π←X ({x}). Thus b(x) = b ◦ πX(x, y) = ⊥. So b = ⊥X .

Thus by Lemma 3.3.9, ∀F ∈ FS
L (X), π←X (F ) ∈ FS

L (X × Y ).

Lemma 3.3.11 : Let ∅ 6= X, Y ∈ Ob (SET). Define π1 : X × Y →
X (x, y) 7→ x. Define π2 : X × Y → Y (x, y) 7→ y. Let F ∈ FS

L (X), G ∈
FS
L (Y ). Then

∀ a1, a2 ∈ LX×Y , a1 ∗ a2 = ⊥X×Y ⇒ π←1 (F )(a1) ∗ π←2 (G)(a2) = ⊥.
Thus by Lemma 3.3.5, if L is pseudo-bisymmetric, we may define

F × G = π←1 (F ) ∨ π←2 (G).

Proof :

Let a1, a2 ∈ LX×Y , a1 ∗ a2 = ⊥X×Y . Then

π←1 (F )(a1) ∗ π←2 (G)(a2) =
∨

π←1 (b1)≤a1

F (b1) ∗
∨

π←2 (b2)≤a2

G(b2)

=
∨

π←1 (b1)≤a1,π
←
2 (b2)≤a2

F (b1) ∗ G(b2)

≤
∨

π←1 (b1)∗π
←
2 (b2)=⊥X×Y

F (b1) ∗ G(b2).

Now let b1 ∈ LX , b2 ∈ LY such that π←1 (b1) ∗ π←2 (b2) = ⊥X×Y . Let

λ = G(b2). Then F (b1) ∗G(b2) = F (b1) ∗λ
Fs

≤ F (b1 ∗λX). Let x ∈ X and let

b1(x) = µ. Then b1∗λX(x) = b1(x)∗G(b2) = µ∗G(b2)
Fs

≤ G(µY ∗b2). Now let
y ∈ Y . Then µY ∗ b2(y) = b1(x)∗ b2(y) = (π←1 (b1)∗π←2 (b2))(x, y) = ⊥. Thus

µY ∗ b2 = ⊥Y , so G(µY ∗ b2) = ⊥. Then b1 ∗ λX = ⊥X , so F (b1 ∗ λX) = ⊥.
Finally we have that F (b1) ∗ G(b2) = ⊥.

So we have proved that π←1 (F )(a1) ∗ π←2 (G)(a2) = ⊥. By Example
3.3.10, π←1 (F ), π←2 (G) ∈ FS

L(X × Y ). Then by Lemma 3.3.5, there exists

H ∈ FS
L(X × Y ) such that π←1 (F ) ≤ H and π←2 (G) ≤ H. Thus we may

define F × G as the least upper bound of π←1 (F ) and π←2 (G). �

Remark 3.3.12 [21]: If L is a frame then for F ∈ FS
L(X), G ∈ FS

L(Y ), a ∈
LX×Y we have

F × G(a) =
∨

{F (a1) ∧ G(a2) | a1 × a2 ≤ a }.
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Also note that in the proof of Lemma 3.3.11, the stratification condition was
used to prove that F ×G exists. Hence we are not sure if the product filter

F × G exists for L-filters which are not stratified.

Lemma 3.3.13 (see [21] for the frame case): Let X, Y, π1, π2 be defined as

in the statement of Lemma 3.3.11. Then

1. ∀F ∈ FS
L (X × Y ), π1(F )× π2(F ) ≤ F .

2. ∀G1 ∈ FS
L(X) ∀G2 ∈ FS

L (Y ), πi(G1 × G2) ≥ Gi , i ∈ {1, 2}.

3. ∀F ∈ FS
L (X × Y ), πi(π1(F ) × π2(F )) = πi(F ) , i ∈ {1, 2}.

Proof :

1. Let F ∈ FS
L(X × Y ), a ∈ LX×Y . We calculate

π←1 (π1(F ))(a) =
∨

π←1 (b)≤a

π1(F )(b) =
∨

π←1 (b)≤a

F (π←1 (b)) ≤ F (a).

Thus π←1 (π1(F )) ≤ F and similarly π←2 (π2(F )) ≤ F . Thus

π←1 (π1(F ))∨ π←2 (π2(F )) = π1(F ) × π2(F ) ≤ F .

2. Let G1 ∈ FS
L (X), G2 ∈ FS

L (Y ), a ∈ LX . We calculate

π1(G1 × G2)(a) = (G1 × G2)(π←1 (a))

≥ π←1 (G1)(π1(a)) =
∨

π←1 (b)≤π←1 (a)

G1(b) ≥ G1(a).

Thus π1(G1 × G2) ≥ G1. Similarly π2(G1 × G2) ≥ G2.

3. This is an immediate consequence of what we have just proved.
�

The diagonal filter G(F(·)) of Definition 3.3.14 was first defined in con-
nection with convergence by Gähler ([12]). We follow Jäger’s notation and

definition.

Lemma 3.3.14 [24]: Let ∅ 6= X ∈ Ob (SET), ∅ 6= J ∈ Ob (SET), G ∈
FS
L (J),

(Fj)j∈J ∈ FS
L (X)X. For a ∈ LX we define the L-set F(·)(a) ∈ FS

L (J) by

F(·)(a)(j) = Fj(a).

We define the diagonal filter G(F(·)) by

∀ a ∈ LX , G(F(·))(a) = G(F(·)(a)).

Then G(F(·)) ∈ FS
L (X).

65



Proof :

F1 F(·)(⊥X)(j) = Fj(⊥X) = ⊥ so F(·)(⊥X) = ⊥J . Thus G(F(·))(⊥X) = ⊥.
Similarly G(F(·))(>X) = >.

F2 Let a, b ∈ LX , a ≤ b. Then F(·)(a)(j) = Fj(a) ≤ Fj(b) = F(·)(b)(j).
Thus G(F(·))(a) ≤ G(F(·))(b).

F3 Let a, b ∈ LX . Then

(F(·)(a) ⊗F(·)(b))(j) = Fj(a) ⊗Fj(b)
≤ Fj(a⊗ b) = F(·)(a⊗ b)(j).

G(F(·))(a) ⊗ G(F(·))(b) ≤ G(F(·)(a) ⊗ F(·)(b))

≤ G(F(·)(a⊗ b)) = G(F(·))(a⊗ b).

Fs Let α ∈ L, a ∈ LX . Then

αJ ∗ F(·)(a)(j) = α ∗ Fj(a) ≤ Fj(αX ∗ a) = F(·)(αX ∗ a)(j).

So

α ∗ G(F(·))(a) = α ∗ G(F(·)(a)) ≤ G(αJ ⊗ F(·)(a))

≤ G(F(·)(αX ∗ a)) = G(F(·))(αX ∗ a).

�
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Chapter 4

Stratified L-Topological

Spaces

In this chapter we define stratified L-topological spaces and explore some
of their properties. We prove that the category SL− TOP of stratified L-

topological spaces is topological. Next we prove that stratified L-topological
spaces can be characterized in terms of interior operators, neighbourhood

filters or limit functions in much the same way as their classical counterparts.
In characterizing them by neighbourhood filter or limit function, we find that

we have to introduce a new axiom, the L⊗ axiom. This axiom is always
satisfied in the classical case. Next we prove that SL− TOP is isomorphic

to SL− TCS, the category of stratified L-topological convergence spaces.
Initially in our characterization by the limit function we use Lp and Lt

axioms based on the classical ones, which make use of the L-neighbourhood

filter, and the next section deals with the attempt to translate these to
something entirely in terms of the limit function, as in [23, 24] for the special

case where L is a frame. In this we are successful with the Fischer and
Kowalski axioms, however our attempt to translate the Lp axiom as was

done in Chapter 2 fails. The best we are able to do is show how the Lp

axiom splits into two axioms, LpW1 and LpW2, in the general case. We

can state LpW2 entirely in terms of the limit function, but LpW1 still
requires the L-neighbourhood filter. In the classical case the LpW1 axiom

is always true, and hence the Lp axiom is equivalent to the LpW2 axiom
in this case.

4.1 Stratified L-topological spaces

Definition 4.1.1 [20]: Let (L,≤,⊗, ∗) be an ecl-premonoid. Then (X,∆)
is a stratified L-topological space ⇔

∅ 6= X ∈ Ob (SET),∆ ⊆ LX .
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LO1 ⊥X ,>X ∈ ∆.

LO2 a, b ∈ ∆ ⇒ a⊗ b ∈ ∆.

LO3 Γ ⊆ ∆ ⇒ ∨
Γ ∈ ∆.

LOs α ∈ L, a ∈ ∆ ⇒ αX ∗ a ∈ ∆.

For (X,∆X), (Y,∆Y ) stratified L-topological spaces, φ : X → Y is continu-

ous between (X,∆X) and (Y,∆Y ) ⇔

φ←(∆Y ) ⊆ ∆X .

We will abbreviate ‘stratified L-topological space’ as ‘SL-topological space’.

Example 4.1.2 : Let ∅ 6= X ∈ Ob (SET). Then (X,LX) is an SL-

topological space.

Lemma 4.1.3 : Let φ : X → Y be continuous between SL-topological
spaces (X,∆X) and (Y,∆Y ). Let ψ : Y → Z be continuous between (Y,∆Y )

and (Z,∆Z). Then ψ ◦ φ : X → Z is continuous between (X,∆X) and
(Z,∆Z). Further idX is continuous between (X,∆X) and itself.

Proof :

Let c ∈ ∆Z . Then ψ←(c) ∈ ∆Y since ψ is continuous. So φ←(ψ←(c)) ∈ ∆X .
But φ←(ψ←(c)) = (ψ ◦ φ)←(c) (see Lemma 3.2.6) so we have

∀ c ∈ ∆Z (ψ ◦ φ)←(c) ∈ ∆X .

For the second part, we have that id←X (a) = a for all a ∈ LX (see Lemma

3.2.7) thus idX is continuous between (X,∆X) and itself. �

Lemma 4.1.4 : The class of all SL-topological spaces and continuous func-
tions between them forms a construct, the concrete category SL −TOP.

Proof :

Define a class O by

O = { (X,∆) | (X,∆) is an SL-topological space }

Let (X,∆X), (Y,∆Y ) ∈ O. Define

hom((X,∆X), (Y,∆Y )) = { ((X,∆X), φ, (Y,∆Y )) | φ←(∆Y ) ⊆ ∆X }.
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Define
id(X,∆X) = ((X,∆X), idX , (X,∆X)).

Finally define

((Y,∆Y )
ψ−→ (Z,∆Z)) ◦ ((X,∆X)

φ−→ (Y,∆Y )) = (X,∆X)
ψ◦φ−−→ (Z,∆Z).

Then (O, hom, id, ◦) = SL− TOP is an abstract category in the sense of

Definition 1.2.1. Now we simply define a forgetful functor

U : SL −TOP → SET (X,∆X)
φ−→ (Y,∆Y ) 7→ X

φ−→ Y.

Then (SL −TOP, U) is a concrete category over SET, i.e. a construct,

which we refer to by abuse of notation as SL −TOP as well, since it should
be clear from the context as to whether we are referring to it as an abstract

or as a concrete category. �

We now prove that SL −TOP is topological over SET. In order to do

this we will need some preliminary groundwork.

Lemma 4.1.5 [20]: Let (X,∆i)i∈I be a non-empty collection of SL-topological
spaces with a common base set X indexed by the class I . Then ∆ =

⋂
i∈I ∆i

is a stratified L-topology on X .

Proof :

LO1 ∀ i ∈ I ⊥X ,>X ∈ ∆i so ⊥X ,>X ∈ ∆.

LO2 Let a, b ∈ ∆. Then ∀ i ∈ I a, b ∈ ∆i so ∀ i ∈ I a ⊗ b ∈ ∆i, thus
a⊗ b ∈ ∆.

LO3 Let Γ ⊆ ∆. Then ∀ i ∈ I Γ ⊆ ∆i so ∀ i ∈ I
∨

Γ ∈ ∆i, thus∨
Γ ∈ ∆.

LOs Let α ∈ L, a ∈ ∆. Then ∀ i ∈ I αX ∗ a ∈ ∆i so αX ∗ a ∈ ∆.
�

Definition 4.1.6 [20]: Let (X,∆) be an SL-topological space, Γ ⊆ LX .
Then

Γ is a sub-base for ∆ ⇔
∆ =

⋂
{Λ | (X,Λ) ∈ Ob (SL− TOP) and Γ ⊆ Λ }.

We will denote the fact that Γ is a sub-base for ∆ by ∆ = 〈Γ〉.
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Lemma 4.1.7 : Let ∅ 6= X ∈ Ob (SET). Then

∀Γ ⊆ LX ∃∆ ⊆ LX (X,∆) ∈ Ob (SL−TOP) and ∆ = 〈Γ〉.

Proof :

Let Γ ⊆ L. We know that (X,LX) ∈ Ob (SL− TOP) and that Γ ⊆ LX ,

thus {Λ | (X,Λ) ∈ Ob (SL− TOP) and Γ ⊆ Λ } is non-empty and by
Lemma 4.1.5 we have that

∆ =
⋂

{Λ | (X,Λ) ∈ Ob (SL− TOP) and Γ ⊆ Λ } = 〈Γ〉

is a stratified L-topology on X . �

Lemma 4.1.8 [20]: Let (X,∆X), (Y,∆Y ) be SL-topological spaces. Let ΓY
be a sub-base for ∆Y and let φ be a function from X to Y . Then

φ is continuous from (X,∆X) to (Y,∆Y ) ⇔ φ←(ΓY ) ⊆ ∆X .

Proof :

Let φ be continuous from (X,∆X) to (Y,∆Y ), i.e. φ←(∆Y ) ⊆ ∆X . Then

ΓY ⊆ ∆Y so φ←(ΓY ) ⊆ ∆X .
Now assume φ←(ΓY ) ⊆ ∆X . We shall prove that

ΛY = { b ∈ LY | φ←(b) ∈ ∆X } is an SL-topology on Y . Then ΓY ⊆ ΛY .
But ∆Y is the smallest stratified L-topological space on Y containing ΓY ,

thus ∆Y ⊆ ΛY and we have that φ←(∆Y ) ⊆ ∆X

It remains to prove that ΛY = { b ∈ LY | φ←(b) ∈ ∆X } is a stratified

L-topology on Y . The proof makes use of Lemmas 3.2.6 and 3.2.9.

LO1 φ←(⊥Y ) = ⊥X ∈ ∆X , φ
←(>Y ) = >X ∈ ∆X so ⊥Y ,>Y ∈ ΛY .

LO2 Let a, b ∈ ΛY . Then ∆X 3 φ←(a)⊗φ←(b) = φ←(a⊗ b) so a⊗ b ∈ ΛY .

LO3 Let Σ ⊆ ΛY . Then φ←(Σ) ⊆ ∆X . Thus ∆X 3 ∨
φ←(Σ) = φ←(

∨
Σ)

so
∨

Σ ∈ ΛY .

LOs Let α ∈ L, a ∈ ΛY . Then ∆X 3 αX ∗ φ←(a) = φ←(αY ∗ a) so
αY ∗ a ∈ ΛY .

�

Theorem 4.1.9 [20]: SL− TOP is topological over SET. Furthermore
SL −TOP is amnestic, fibre-small and has the terminal separator property.
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Proof :

First, we prove that SL −TOP is amnestic. To this end, let (X,∆1), (X,∆2)
be members of the same SL −TOP-fibre of X , and let the conditions

(X,∆1) ≤ (X,∆2) and (X,∆2) ≤ (X,∆1) hold. Then we have id←X (∆1) ⊆
∆2, thus ∆1 ⊆ ∆2. Similarly we have ∆2 ⊆ ∆1. Hence ∆2 = ∆1.

Now we prove that SL −TOP is topological over SET, following the
procedure outlined in Chapter 1. Let ∅ 6= X ∈ Ob (SET). Let (Xi,∆i)i∈I ∈
Ob (SL− TOP)I be a non-empty family of SL-topological spaces indexed
by the class I . Let (φi : X → Xi)i∈I be a corresponding family of set

functions. Define
∆X = 〈

⋃

i∈I

φ←i (∆i)〉

Then (X,∆X) is an SL-topological space by Lemma 4.1.7 and
∀ i ∈ I, φi is continuous between (X,∆X) and (Xi,∆i). Let (Y,∆Y ) be

an SL-topological space, ψ : Y → X be a function. We seek to prove that

∀ i ∈ I φi ◦ ψ is continuous between (Y,∆Y ) and (Xi,∆i) ⇒
ψ is continuous between (Y,∆Y ) and (X,∆X).

Assume that ∀ i ∈ I (φi ◦ ψ)←(∆i) ⊆ ∆Y . Then, by Lemma 4.1.8

ψ←(∆X) ⊆ ∆Y ⇔ ψ←(〈
⋃

i∈I

φ←i (∆i)〉) ⊆ ∆Y

⇔ ψ←(
⋃

i∈I

φ←i (∆i)) ⊆ ∆Y

⇔ ∀ i ∈ I ψ←(φ←i (∆i)) ⊆ ∆Y .

But ψ←(φ←i (∆i)) = (φi ◦ ψ)←(∆i). So we have, by our assumption, that

ψ←(∆X) ⊆ ∆Y . Hence

∀ i ∈ I φi ◦ ψ is continuous between (Y,∆Y ) and (Xi,∆i) ⇒
ψ is continuous between (Y,∆Y ) and (X,∆X).

Since we have that SL− TOP is amnestic, we have proved that SL −TOP

is topological over SET.
Let X be a non-empty set. Let Γ ⊆ LX . Then (X,Γ) either is or is not

an SL-topological space. Thus

FibreSL−TOP(X) ⊆ (P(LX)){0,1} ∈ Ob (SET).

so SL− TOP is fibre small.
Lastly, let X = {x}, (X,∆) ∈ Ob (SL−TOP). Then by LO1 and LOs,

we have {αX | α ∈ L } ⊆ ∆. But LX = {αX | α ∈ L }. Therefore ∆ = LX

and there is only one stratified L-topology on the one point set {x}. �
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4.2 Characterization of stratified L-topological spaces

In this section we explore the characterization of SL-topological spaces by

interior, neighbourhood filter and convergence function, analogous to the
classical characterization of topological spaces detailed in Chapter 2.

Definition 4.2.1 [8, 20]: Let (X,∆) be a SL-topological space. We define
the interior operator on LX by

I0 int : LX → ∆, int(a) =
∨

{ g ∈ ∆ | g ≤ a }.

We will usually denote the interior operator acting on an L-set a as a =

int(a), except where the expanded notation makes more sense.

Lemma 4.2.2 [20]: The interior operator has the following properties:

I1 ∀ a ∈ LX , a ∈ ∆ ⇔ a ≤ a.

I2 ∀ a ∈  LX , a ≤ a.

I3 >X = >X .

I4 ∀ a, b ∈ LX , a⊗ b ≤ a⊗ b.

I5 ∀ a, b ∈ LX , a ≤ b⇒ a ≤ b.

I6 ∀ a ∈ LX , a = a.

I7 ∀α ∈ L ∀ a ∈ LX , αX ∗ a ≤ αX ∗ a.

Proof :

Let (X,∆) be an SL-topological space with the interior operation defined as
in Definition 4.2.1. From the definition and properties of the

∨
operation

(Lemma 3.1.9), I2 is true. For I3 we note that by O1, >X ∈ ∆. Thus from
the definition, TX ≥ >X . Note that ∀ a ∈ LX , a ∈ ∆ from O3. Taking

a, b ∈ LX , from O2 and I2 we have that ∆ 3 a⊗b ≤ a⊗b, hence I4 follows.
I5 is immediate from the definition and from properties of the

∨
operation.

Now let a ∈ ∆. Then from the definition of a, a ≤ a. For the converse let

a ∈ LX , a ≤ a. Then from I2, we have that a = a. But a ∈ ∆ by O3. So
I6 is true. Finally let α ∈ L, a ∈ LX . Then ∆ 3 αX ∗ a ≤ αX ∗ a by I2 and

Os. Thus by the definition αX ∗ a ≥ αX ∗ a. �

Definition 4.2.3 : Let X be a non-empty set and let int: LX → LX be an

operator satisfying the properties I2 to I7 of Lemma 4.2.2. Then (X, int) is
a stratified L-interior space. We will abbreviate ‘stratified L-interior space’

as ‘SL-interior space’.
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Lemma 4.2.4 [20]: The properties of Lemma 4.2.2 characterize

SL-topological spaces, i.e. if (X, int) is an SL-interior space then it can

be mapped uniquely to a SL-topological space (X,∆) via I1, and the SL-
topological space so defined can be mapped back to the same SL-interior

space (X, int) via I0. In this way the axioms O1–O3 describe essentially
the same object as the interior axioms I2–I7.

Proof :

Let (X, int) be an SL-interior space. Define a ∈ ∆ ⇔ a ≤ a (this is the I1

axiom). Then by definition, ⊥X ≤ ⊥X . From I3, >X ∈ ∆, so the O1 axiom

is satisfied. For O2, let a, b ∈ ∆. Then a ⊗ b ≤ a⊗ b ≤ a⊗ b from I4 and
I1. Let Γ ⊆ ∆. Then

∨
Γ ≤ ∨

g∈Γ g ≤ ∨
Γ by I1 and I5, so

∨
Γ ≤ ∨

Γ and

O3 is satisfied. Finally let α ∈ L, a ∈ ∆. Then αX ∗ a ≤ αX ∗ a ≤ αX ∗ a,
by I7, so Os is satisfied.

Let a∆ denote the interior operator defined by ∆ via I0, i.e.
a∆ =

∨{ b ∈ ∆ | b ≤ a }. We seek to prove that a∆ = a for all a. Let
a ∈ LX . Then from I6, a ∈ ∆ and from I2, a ≤ a, thus a∆ ≥ a. By

definition and by I5, a∆ ≤ a, thus a = a∆. �

Definition 4.2.5 [20]: Let (X, int) be an SL-interior space. For x ∈ X we
define the L-neighbourhood filter at x, Ux, by

N1 ∀ a ∈ LX , Ux(a) = a(x).

Lemma 4.2.6 [20]: The L-neighbourhood filter at x ∈ X has the following
properties:

N1 ∀ a ∈ LX , a(x) = Ux(a).

N2 ∀ a ∈ LX , Ux(a) ≤ a(x).

N3 Ux(>X) = >.

N4 ∀ a, b ∈ LX , Ux(a) ⊗ Ux(b) ≤ Ux(a⊗ b).

N5 ∀ a, b ∈ LX , a ≤ b⇒ Ux(a) ≤ Ux(b).

N6 ∀ a ∈ LX , Ux(a) ≤ ∨{ Ux(b) | ∀ y ∈ X b(y) ≤ Uy(a) }.

N7 ∀α ∈ L ∀ a ∈ LX , α ∗ Ux(a) ≤ Ux(αX ∗ a).
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Proof :

Let (X, int) be an SL-interior space. Let x ∈ X, a, b ∈ LX . Then
Ux(a) = a(x) ≤ a(x) from I2 so N2 is true. From I3,

Ux(>X) = >X(x) = >X(x) = >, so N3 is true. N4 and N5 similarly follow
directly from I4 and I5. For N6, note that ∀ y ∈ X, a(y) = Uy(a) ≥ a(y).

Thus a ∈ { b ∈ LX | ∀ y ∈ X, b(y) ≤ Uy(a) }. From I6, Ux(a) ≤ Ux(a).
So we have Ux(a) ≤ ∨{ Ux(b) | ∀ y ∈ X, b(y) ≤ Uy(a) }. Finally for N7,

let α ∈ L. Then α ∗ Ux(a) = (αX ∗ a)(x) ≤ αX ∗ a(x) = Ux(αX ∗ a). �

Remark 4.2.7 : By the axioms N2, N3, N4, N5 and N7, Ux ∈ FS
L (X).

Definition 4.2.8 : Let X be a non-empty set and let (Ux)x∈X be a collec-

tion of filters on X indexed by X satisfying axioms N2–N7 of Lemma 4.2.6.
Then (X, (Ux)x∈X) is a stratified L-neighbourhood space. We will abbreviate

‘stratified L-neighbourhood space’ as ‘SL-neighbourhood space’.

Lemma 4.2.9 [20]: The properties of Lemma 4.2.6 characterize SL-interior
spaces, i.e. if (X, (Ux)x∈X) is an SL-neighbourhood space then it can be
mapped uniquely to an SL-interior space (X, int) via N1, and the SL-interior

space so defined can be mapped back to the same SL-neighbourhood space
(X, (Ux)x∈X) via N1 again. In this way the interior axioms I2–I7 describe

essentially the same object as the neighbourhood axioms N2–N7.

Proof :

Let (X, (Ux)x∈X) be an SL-neighbourhood space. For a ∈ LX and for each
x ∈ X , define int(a)(x) = a(x) = Ux(a). Now let a ∈ LX . From N2 we

have ∀x ∈ Xa(x) ≤ a(x), hence a ≤ a and I2 is satisfied. Similarly N3

implies I3. For I4, let a, b ∈ LX , x ∈ X . Then

(a⊗ b)(x) = Ux(a) ⊗ Ux(b) ≤ Ux(a⊗ b) = a ⊗ b(x) by N4. If a ≤ b then
∀x ∈ X, a(x) ≤ b(x) by N5, so I5 is satisfied. For I6, note that

{ Ux(b) | ∀ y ∈ X b(y) ≤ Uy(a) } = { Ux(b) | b ≤ a }. If b ≤ a then by I5,
b ≤ a. Now a ≤ a, thus Ux(a) =

∨{ Ux(b) | ∀ y ∈ X b(y) ≤ Uy(a) }. Thus

by N6, a(x) ≤ a(x) for all x ∈ X . Finally for I7, let α ∈ L, a ∈ LX , x ∈ X .
Then (αX ∗a)(x) = α∗Ux(a) ≤ Ux(αX ∗a) = αX ∗ a(x), thus I7 is satisfied.

If we now define Uxint(a) = a(x) then from N1, Uxint(a) = Ux(a). �

Definition 4.2.10 [20]: Let (X, (Ux)x∈X) be an SL-neighbourhood space.
We define the limit function lim: FS

L(X) → LX by defining the value of

limF at each x ∈ X :

Lp ∀x ∈ X ∀F ∈ FS
L (X), limF (x) =

∧

a∈LX

(Ux(a) → F (a)).
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Lemma 4.2.11 (see [21] for the frame case): The lim function satisfies the
following properties:

L0 ∀x ∈ X, Ux(a) =
∧
F∈FS

L (X)(limF (x) → F (a)).

L1 ∀x ∈ X, lim[x](x) = >.

L⊗ ∀x ∈ X ∀ a, b ∈ LX , Ux(a) ⊗ Ux(b) ≤ Ux(a⊗ b).

Lp ∀x ∈ X ∀F ∈ FS
L(X), limF (x) =

∧
a∈LX(Ux(a) → F (a)).

Lt ∀x ∈ X ∀ a ∈ LX , Ux(a) ≤ ∨{ Ux(b) | ∀ y ∈ X b(y) ≤ Uy(a) }.

Proof :

We prove first two minor results. Let x ∈ X . Then

limUx(x) =
∧
a∈LX(Ux(a) → Ux(a)) = >. Secondly let F , G ∈ FS

L (X),F ≤
G. Then by Lp and the fact that the implication is an increasing function

in the second argument (Lemma 3.1.18), limF ≤ limG. To prove L0, first
note that

∧

F∈FS
L

(X)

(limF (x) → F (a)) ≤ limUx(x) → Ux(a) = Ux(a).

Also

∧

F∈FS
L

(X)

(limF (x) → F (a)) =
∧

F∈FS
L

(X)

(
∧

b∈LX

(Ux(b) → F (b)) → F (a))

≥
∧

F∈FS
L (X)

((Ux(a) → F (a)) → F (a)) ≥ Ux(a).

For L1, let x ∈ X . Then lim[x](x) =
∧
a∈LX (Ux(a) ⇒ a(x)) = >, by N2.

The L⊗ axiom is simply the N4 axiom, Lp is the definition, and finally Lt

is simply the N6 axiom. �

Definition 4.2.12 : Let X be a non-empty set and let lim: FS
L(X) → LX

be a function satisfying axioms L1, L⊗, Lp and Lt of Lemma 4.2.11, with
Ux defined by L0. Then (X, lim) is a stratified L-topological convergence

space. We will abbreviate ‘stratified L-topological convergence space’ as

‘SL-topological convergence space’.

Remark 4.2.13 : The labels given to the axioms for SL-topological con-

vergence spaces are more or less traditional (see e.g. [21, 24, 22, 7]), hence
they have been retained although in later sections the labelling conventions

do tend to become slightly bewildering.
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Lemma 4.2.14 (see [21] for the frame case): The properties of Lemma
4.2.11 characterize SL-neighbourhood spaces, i.e. if (X, lim) is an SL-

topological convergence space then it can be mapped uniquely to an SL-
neighbourhood space (X, (Ux)x∈X) via L0, and the SL-neighbourhood space

so obtained can be mapped back to the same SL-topological convergence
space (X, lim) via Lp. In this way the neighbourhood axioms N2–N7 de-

scribe essentially the same object as the topological convergence axioms.

Proof :

Let (X, lim) be an SL-topological convergence space. Define
Ux(a) =

∧
F∈FS

L (X)(limF (x) → F (a)). This is axiom L0 in Lemma 4.2.11.

From the definition, Ux(a) ≤ lim[x](x) → [x](a) = a(x), thus by L1, N2 is
satisfied. For N3, we calculate Ux(>X) =

∧
F∈FS

L(X)(limF (x) → F (>X)) =

>. N4 is simply the L⊗ axiom. For N5, let a, b ∈ LX , a ≤ b. Then for all

F ∈ FS
L(X), F (a) ≤ F (b), and by Lemma 3.1.18,

Ux(a) =
∧

F∈FS
L (X)

(limF (x) → F (a)) ≤
∧

F∈FS
L(X)

(limF (x) → F (b)) = Ux(b).

N6 is given by the Lt axiom. Finally let α ∈ L, a ∈ LX . Then by Lemma
3.1.18,

α ∗ Ux(a) = α ∗
∧

F∈FS
L (X)

(limF (x) → F (a)) ≤
∧

F∈FS
L (X)

(limF (x) → (α ∗ F (a)))

≤
∧

F∈FS
L

(X)

(limF (x) → F (αX ∗ a)) = Ux(αX ∗ a).

If we now define limU F (x) =
∧
a∈LX(Ux(a) → F (a) for F ∈ FS

L (X), x ∈
X , then by Lp, limU = lim. �

4.3 Stratified L-topological convergence spaces

We now wish to define a category of SL-topological convergence spaces iso-

morphic to SL −TOP. Jäger does this for the case where L is a frame
in [21]. In order achieve our goal we will have to find the condition on a

function φ : X → Y between two such convergence spaces (X, limX) and
(Y, limY ) which is equivalent to φ being continuous between the correspond-

ing SL-topological spaces (X,∆X) and (Y,∆Y ). There is some background
to be filled in before we proceed with the main proof.

Lemma 4.3.1 : Let (X, limX), (Y, limY ) be SL-convergence spaces. Let
φ : X → Y be a function. Then
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∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ) ⇔

∀F ∈ FS
L (X) ∀x ∈ X, limX F (x) ≤ limY φ(F )(φ(x)).

Proof :

From Lemma 3.2.6 we have that ∀ a ∈ LX , ∀ b ∈ LY , φ(a) ≤ b ⇔ a ≤
φ←(b). Let F ∈ FS

L (X), a= limX F , b= limY φ(F ). Then immediately

φ(limX F ) ≤ limY φ(F ) ⇔ limX F ≤ φ←(limY φ(F )

⇔ ∀x ∈ X, limX F (x) ≤ limY φ(F )(φ(x)).

�

Lemma 4.3.2 (see [21] for the frame case): Let (X,∆X), (Y,∆Y ) be SL-

topological spaces. Let (X, limX), (Y, limY ) be the corresponding
SL-topological convergence spaces. Let φ : X → Y be a function. Then

φ is continuous ⇔ φ←(∆Y ) ⊆ ∆X

⇔ ∀x ∈ X ∀ b ∈ LY Ux∆X
(φ←(b)) ≥ Uφ(x)

∆Y
(b)

⇔ ∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

Proof :

We prove that

φ←(∆Y ) ⊆ ∆X ⇔ ∀x ∈ X ∀ b ∈ LY Ux∆X
(φ←(b)) ≥ Uφ(x)

∆Y
(b).

Assume φ←(∆Y ) ⊆ ∆X . Let x ∈ X, b ∈ LY . Then

Uφ(x)
∆Y

(b) =
∨

b′∈∆Y ,b
′≤b

b′(φ(x)) =
∨

b′∈∆Y ,b
′≤b

φ←(b′)(x)

≤
∨

a′∈∆X ,a′≤φ←(b)

a′(x) = Ux∆X
(φ←(b)).

Now we assume ∀x ∈ X ∀ b ∈ LY Ux∆X
(φ←(b)) ≥ Uφ(x)

∆Y
(b). Let b ∈

∆Y , x ∈ X . Then b ≤ bY . So

φ←(b)(x) = b(φ(x)) ≤ bY (φ(x)) = Uφ(x)
∆Y

(b) ≤ Ux∆X
(φ←(b)) = φ←(b)

X
(x).

This is true for all x ∈ X , thus φ←(b) ∈ ∆X and φ←(∆Y ) ⊆ ∆X .
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Next we prove that

∀x ∈ X ∀ b ∈ LY Ux∆X
(φ←(b)) ≥ Uφ(x)

∆Y
(b)

⇔ ∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

Assume ∀x ∈ X ∀ b ∈ LY Ux∆X
(φ←(b)) ≥ Uφ(x)

∆Y
(b). Let x ∈ X,F ∈

FS
L (X).

limY φ(F )(φ(x)) =
∧

b∈LY

(Uφ(x)
∆Y

(b) → φ(F )(b))

≥
∧

b∈LY

(Ux∆X
(φ←(b)) → F (φ←(b)))

≥
∧

a∈LX

(Ux∆X
(a) → F (a)) = limF (x).

Thus by Lemma 4.3.1, ∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

Now assume ∀F ∈ FS
L(X) φ(limX F ) ≤ limY φ(F ). Let x ∈ X, b ∈

LY . Then

Ux∆X
(φ←(b)) =

∧

F∈FS
L (X)

(limX F (x) → F (φ←(b)))

≥
∧

F∈FS
L

(X)

(limY φ(F )(φ(x)) → φ(F )(b))

≥
∧

G∈FS
L (Y )

(limY G(φ(x)) → G(b)) = Uφ(x)
∆Y

(b).

�

Theorem 4.3.3 (see [21] for the frame case): The category SL− TCS,
which has objects (X, lim) which are stratified L-topological convergence

spaces and morphisms all functions φ which satisfy φ(limX F ) ≤ limY φ(F )
for F ∈ FS

L (X) and (X, limX), (Y, limY ) SL-topological convergence spaces,

is isomorphic to the category SL −TOP. Hence it is topological over SET,
amnestic, fibre small and has the terminal separator property.

Proof :

We define functors

F : SL− TOP → SL− TCS

(X,∆X)
φ−→ (Y,∆Y ) 7→ (X, lim∆X

)
φ−→ (Y, lim∆Y

)
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and

G : SL− TCS → SL− TOP

(X, limX)
φ−→ (Y, limY ) 7→ (X,∆limX

)
φ−→ (Y,∆limY

).

Then by 4.2.11, 4.2.14 and 4.3.2 we have

F ◦G = idSL−TOP and G ◦ F = idSL−TCS.

So SL −TOP is isomorphic to SL −TCS. �

4.4 Alternatives to the Lp and Lt axioms

As we did in the classical case, we now attempt to translate our axioms for
topological convergence spaces into simple axioms entirely in terms of the

lim function. In this section we are basically generalizing the work of Jäger
([21, 22, 23, 24]) from the frame case to the ecl-premonoid case. We begin

with Lp.

The Lp axiom

Definition 4.4.1 : Let X be a non-empty set and let lim: FS
L (X) → LX

be a function. Then (X, lim) is a stratified L-preconvergence space. We will

abbreviate ‘stratified L-preconvergence space’ as ‘SL-preconvergence space’.

Lemma 4.4.2 : Let (X lim) be an SL-preconvergence space. We define the
axiom

L2 ∀F , G ∈ FS
L (X), F ≤ G ⇒ limF ≤ limG.

Then

lim satisfies Lp ⇒ lim satisfies L2.

Proof :

Let F , G ∈ FS
L (X),F ≤ G, x ∈ X . Then

limF (x)
Lp
=

∧

a∈LX

(Ux(a) → F (a)) ≤
∧

a∈LX

(Ux(a) → G(a))
Lp
= limG(x).

�
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Lemma 4.4.3 : Let (X, lim) be an SL-preconvergence space. Then the
following conditions are necessary and sufficient so that ∀x ∈ X, Ux ∈
FS
L (X), when Ux is defined by L0:

LB ∀x ∈ X, Ux(⊥X) = ⊥.

L⊗ ∀x ∈ X, ∀ a, b ∈ LX , Ux(a) ⊗ Ux(b) ≤ Ux(a⊗ b).

Proof :

If ∀x ∈ X, Ux ∈ FS
L (X), then LB and L⊗ are automatically true. We

prove that together they imply the result. Assume LB and L⊗. Let x ∈ X .

F1 Ux(>X)
L0
=

∧
F∈FS

L (X)(limF (x) → F (>X)) = >. Ux(⊥X)
LB
= ⊥.

F2 Let a, b ∈ LX , a ≤ b. Then

Ux(a) =
∧

F∈FS
L (X)

(limF (x) → F (a))

F2

≤
∧

F∈FS
L

(X)

(limF (x) → F (b)) = Ux(b).

F3 This is simply the L⊗ axiom.

Fs Let α ∈ L, a ∈ LX . Then by Lemma 3.1.18,

α ∗ Ux(a) = α ∗
∧

F∈FS
L

(X)

(limF (x) → F (a))

≤
∧

F∈FS
L (X)

(α ∗ (limF (x) → F (a)))

≤
∧

F∈FS
L

(X)

(limF (x) → (α ∗ F (a)))

≤
∧

F∈FS
L (X)

(limF (x) → F (αX ∗ a)) = Ux(αX ∗ a).

�

Remark 4.4.4 : Note that if an SL-preconvergence space (X, lim) satisfies

L1, then it automatically satisfies LB, since for x ∈ X ,
Ux(⊥X) =

∧
F∈FS

L
(X)(limF (x) → F (⊥X)) ≤ lim[x](x) → ⊥ = > → ⊥ = ⊥.
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Lemma 4.4.5 : Let (X, lim) be an SL-preconvergence space satisfying L1,
L⊗ and Lp. Then

∀x ∈ X, limUx(x) = >.

Proof :

Let x ∈ X . LB and L⊗ are satisfied, thus by Lemma 4.4.3, Ux ∈ FS
L(X),

so we can calculate limUx. Now

limUx(x)
Lp
=

∧

a∈LX

(Ux(a) → Ux(a)) = >.

�

Definition 4.4.6 [10, 23]: Let (X, lim) be an SL-preconvergence space. We

define the stratified α-level L-neighbourhood filter at x ∈ X , Uxα , by

Lα Uxα =
∧

{F ∈ FS
L(X) | α ≤ limF (x) }.

Lemma 4.4.7 : Let (X, lim) be an SL-preconvergence space. Then

lim satisfies Lp ⇒ ∀α ∈ L ∀x ∈ X, limUxα(x) ≥ α.

Proof :

Assume Lp. Let x ∈ X, α ∈ L. We have:

limUxα(x)
Lp
=

∧

a∈LX

(Ux(a) → Uxα(a)) =
∧

a∈LX

(Ux(a) → (
∧

α≤limF(x)

F (a)))

=
∧

a∈LX

∧

α≤limF(x)

(Ux(a) → F (a)) =
∧

α≤limF(x)

∧

a∈LX

(Ux(a) → F (a))

=
∧

α≤limF(x)

limF (x) ≥ α.

�

Lemma 4.4.8 (see [23] for the frame case): Let (X, lim) be an

SL-preconvergence space. Define Ux(a) via L0 (see Lemma 4.2.11) and Uxα
via Lα. Then

∀ a ∈ LX ∀x ∈ X, Ux(a) ≥
∧

α∈L

(α→ Uxα(a)).

If lim satisfies Lp then equality holds.
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Proof :

We begin by noting that α ≤ limF (x) ⇒ Uxα ≤ F , for α ∈ L, x ∈ X ,
F ∈ FS

L(X). Let αF = limF (x). Then UxαF ≤ F . Let a ∈ LX . From L0

and Lemma 3.1.18 we have:

Ux(a)
L0
=

∧

F∈FS
L

(X)

(limF (x) → F (a))

≥
∧

F∈FS
L

(X)

(αF → UxαF (a)) ≥
∧

α∈L

(α→ Uxα(a)).

Now assume Lp. By Lemmas 3.1.18 and 4.4.7 we have

Ux(a)
L0

≤ limUxα(x) → Uxα(a), ∀α ∈ L

≤ α→ Uxα(a), ∀α ∈ L.

Thus Ux(a) ≤ ∧
α∈L(α→ Uxα(a)). �

Lemma 4.4.9 (see [23] for the frame case): Let (X, lim) be an
SL-preconvergence space. Then

∀F ∈ FS
L(X) ∀x ∈ X, limF (x) ≤

∨
{α ∈ L | Uxα ≤ F }.

If lim satisfies Lp then equality holds.

Proof :

We have α ≤ limF (x) ⇒ Uxα ≤ F . Thus limF (x) ∈ {α ∈ L | Uxα ≤ F } and
the result follows. Now assume Lp. Let F ∈ FS

L (X), α ∈ L,Uxα ≤ F . Then

by L2 and Lemma 4.4.7, α ≤ limUxα(x) ≤ limF (x). Thus∨{α ∈ L | Uxα ≤ F } ≤ limF (x). �

Lemma 4.4.10 (see [23] for the frame case): Let (X, lim) be an

SL-preconvergence space. We define the axiom

LpW2 ∀F ∈ FS
L (X) ∀x ∈ X, limF (x) =

∨
{α ∈ L | Uxα ≤ F }.

Then if lim satisfies L2, the following are equivalent:

1. lim satisfies LpW2.

2. ∀α ∈ L ∀F ∈ FS
L (X) ∀x ∈ X, α ≤ limF (x) ⇔ Uxα ≤ F .

3. ∀α ∈ L ∀x ∈ X, α ≤ limUxα(x).
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4. ∀ (Fi)i∈I ∈ FS
L(X)I, lim(

∧
i∈I Fi) =

∧
i∈I limFi.

Proof :

(1 ⇒ 2) It is always true that α ≤ limF (x) ⇒ Uxα ≤ F . Conversely assume

Uxα ≤ F . Then α ∈ { β ∈ L | Uxβ ≤ F }, thus by (1), α ≤ limF (x).

(2 ⇒ 3) For α ∈ L, x ∈ X , we have Uxα ≤ Uxα . Hence by (2), α ≤ limUxα(x).

(3 ⇒ 4) Let x ∈ X, (Fi)i∈I ∈ FS
L(X)I. It is always true (by L2) that

lim
∧
i∈I Fi(x) ≤ ∧

i∈I limFi(x). Let α =
∧
i∈I limFi(x). Then

α ≤ limUxα(x) = lim
∧
α≤limG(x) G(x) ≤ lim

∧
i∈I Fi(x).

(4 ⇒ 1) It is always true (see Lemma 4.4.9), that limF (x) ≤ ∨{α ∈ L | Uxα ≤
F }. Let Uxα ≤ F . Then by L2,

limF (x) ≥ limUxα(x) = lim(
∧

α≤limG(x)

G)(x)
4
=

∧

α≤limG(x)

limG(x) ≥ α.

Thus limF (x) ≥ ∨{α ∈ L | Uxα ≤ F }.
�

Lemma 4.4.11 (see [23] for the frame case): Let (X, lim) be an

SL-preconvergence space. We define the axiom

LpW2’ ∀ (Fi)i∈I ∈ FS
L(X)I, lim(

∧

i∈I

Fi) =
∧

i∈I

limFi.

Then

lim satisfies LpW2 ⇔ lim satisfies LpW2’.

Proof :

We prove that LpW2 ⇒ L2. Let x ∈ X,F , G ∈ FS
L (X),F ≤ G. Then

limF (x) =
∨{α ∈ L | Uxα ≤ F } ≤ ∨{α ∈ L | Uxα ≤ G } = limG(x). Hence

by Lemma 4.4.10, LpW2 ⇒ LpW2’. For the converse we simply need to
prove that LpW2’ ⇒ L2. Let F , G ∈ FS

L (X), F ≤ G. Then F ∧G = F and

limF = limF ∧ G LpW2’
= limF ∧ limG ≤ limG. Thus LpW2’ ⇒ L2. Then

by Lemma 4.4.10, LpW2’ ⇒ LpW2. �

We recognize the form of LpW2’ in Lemma 4.4.11 as being the same as
that of the classical LpW2 axiom, which turned out to be equivalent to the

classical Lp axiom. It would be quite nice if the generalized LpW2 axiom
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also turned out to be equivalent to the generalized Lp axiom, since if so, we
have achieved our goal of translating the Lp axiom into a simple condition

on the lim function. Unfortunately this generalization does not hold (shown
for the frame case in [23]), as the following chain of proofs shows.

Lemma 4.4.12 (see [23] for the frame case): Let (X, lim) be an
SL-preconvergence space. Then

lim satisfies Lp ⇔ lim satisfies Lp’,

where Lp’ is given by:

Lp’ ∀α ∈ L ∀x ∈ X,

{F ∈ FS
L (X) | α ≤

∧

a∈LX

(Ux(a) → F (a)) }

= {F ∈ FS
L(X) | α ≤ limF (x) }.

Proof :

Lp’ follows trivially from Lp. We prove the converse. Assume Lp’. Let
α = limG(x) for G ∈ FS

L(X), x ∈ X . Then

G ∈ {F ∈ FS
L(X) | limG(x) ≤ limF (x) }

= {F ∈ FS
L(X) | limG(x) ≤

∧

a∈LX

(Ux(a) → F (a)) }.

Thus limG(x) ≤ ∧
a∈LX(Ux(a) → G(a)). Now let α =

∧
a∈LX(Ux(a) →

G(a)). Similarly it follows that
∧
a∈LX(Ux(a) → G(a)) ≤ limG(x). �

If we weaken Lp’, we obtain the axiom LpW1.

Definition 4.4.13 (see [23] for the frame case): Let (X, lim) be an SL-

preconvergence space. We say that lim satisfies the axiom LpW1 iff

LpW1 ∀α ∈ L ∀x ∈ X,
∧

{F ∈ FS
L(X) | α ≤

∧

a∈LX

(Ux(a) → F (a)) }

=
∧

{F ∈ FS
L(X) | α ≤ limF (x) }.
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Remark 4.4.14 : Let α ∈ L,F ∈ FS
L(X). Then

α ≤
∧

a∈LX

(Ux(a) → F (a)) ⇔ ∀ a ∈ LX , α ≤ Ux(a) → F (a)

⇔ ∀ a ∈ LX , α ∗ Ux(a) ≤ F (a).

If we define [α ∗ Ux] =
∧{F ∈ FS

L(X) | ∀ a ∈ LX , α ∗ Ux(a) ≤ F (a) },
then we can state LpW1 succinctly as

∀α ∈ L ∀x ∈ X, [α ∗ Ux] = Uxα .

Lemma 4.4.15 (see [23] for the frame case): Let (X, lim) be an
SL-preconvergence space. Then

lim satisfies Lp ⇔ lim satisfies LpW1 and LpW2.

Proof :

Lp obviously implies LpW1. We know from Lemma 4.4.9 that Lp implies

LpW2. Assume now that lim satisfies LpW1 and LpW2. Let x ∈ X,F ∈
FS
L (X). Then

∧

a∈LX

(Ux(a) → F (a)) =
∧

a∈LX

(
∧

G∈FS
L

(X)

(limG(x) → G(a)) → F (a))

≥
∧

a∈LX

((limF (x) → F (a)) → F (a))

≥ limF (x).

Now let α =
∧
a∈LX (Ux(a) → F (a)). Then we have ∀ a ∈ LX α ≤

Ux(a) → F (a), thus ∀ a ∈ LX α ∗ Ux(a) ≤ F (a). Now [α ∗ Ux] ≤ F from
the definition of [α ∗ Ux], and by LpW1, [α ∗ Ux] = Uxα, so Uxα ≤ F . Since

LpW2 ⇒ L2, we have

limF (x)
L2

≥ limUxα(x)
LpW2

≥ α =
∧

a∈LX

(Ux(a) → F (a)).

Thus Lp is true. �

The following example shows that in an SL-preconvergence space (X, lim)
satisfying axioms L1, L2 and L⊗, the LpW1 axiom does not imply the
LpW2 axiom.
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Example 4.4.16 [23]: Let ∅ 6= X ∈ Ob (SET), |X |> 1. Define lim: FS
L(X) →

LX for F ∈ FS
L (X), x ∈ X by

limF (x) =

{
⊥ F = F0

> F 6= F0

.

where F0 =
∧
F∈FS

L
(X) F =

∧
F6=F0

F as in Example 3.3.4. Then it is easy to

see that lim satisfies L1 and L2. We show that lim does not satisfy LpW2:
∧

F6=F0

limF (x) = > 6= ⊥ = lim
∧

F6=F0

(x) = limF0(x).

Thus by Lemma 4.4.10, LpW2 is not satisfied.
Now we show that lim does satisfy LpW1. Let a ∈ LX . Then

Ux(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a))

= (
∧

F6=F0

(> → F (a)))∧ (⊥ → F0(a))

= (
∧

F6=F0

F (a))∧ F0(a) = F0(a).

We also have for α ∈ L that

Uxα =

{∧
F∈FS

L
(X) F , α = ⊥∧

F6=F0
F , α > ⊥

}
= F0.

Thus ∀α ∈ L ∀ a ∈ LX , α ∗ Ux(a) ≤ α ∧ Ux(a) ≤ Ux(a) = Uxα(a),

so [α ∗ Ux] = Uxα . So lim satisfies LpW1.

The following example shows that in an SL-preconvergence space (X, lim)
satisfying axioms L1, L2 and L⊗, the LpW2 axiom does not imply the

LpW1 axiom.

Example 4.4.17 [23]: Let L = {⊥, α,>} with ⊥ < α < > and let X =
{x, y}. For z ∈ X,F ∈ FS

L (X) we define the discrete stratified L-generalized

convergence on X by

limF (z) =

{
> F ≥ [z]

⊥ otherwise
.

Then lim satisfies L1 and L2. We show that lim satisfies LpW2. Let
(Fi)i∈I ∈ FS

L (X)I with
∧
i∈I limFi(z) = >. Then by definition, ∀ i ∈

I, Fi ≥ [z]. Thus
∧
i∈I Fi ≥ [z]. Finally

lim
∧

i∈I

Fi(z) = > =
∧

i∈I

limFi(z).
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Now we show that lim does not satisfy LpW1. For z ∈ X, a ∈ LX we
calculate

Uz(a) =
∧

F∈FS
L(X)

(limF (z) → F (a))

= (
∧

F≥[z]

(> → F (a)))∧ (
∧

F6≥[z]

(⊥ → F (a)))

= (
∧

F≥[z]

F (a)) ∧> = [z](a).

Thus Uz = [z]. We define

G : LX → L a 7→





> a = >X

α a(x) = > and a(y) 6= >
α a(x) = α

⊥ a(x) = ⊥

.

Then it is easy to show that G ∈ FS
L (X). Let a ∈ LX be defined by

a(x) = >, a(y) = α. Then [x](a) = > > α = G(a). Thus G 6≥ [x], thus

limG(x) = ⊥. But

∧

b∈LX

(Ux(b) → G(b)) =
∧

b∈LX

(b(x) → G(b))

= (> → >) ∧ (> → α) ∧ (α→ α) ∧ (⊥ → ⊥) = α 6= ⊥ = limG(x).

Thus lim does not satisfy Lp. Hence by Lemma 4.4.15, lim does not satisfy
LpW1.

Remark 4.4.18 : By Example 4.4.17, we have that even under the assump-
tion that L1, L2 and L⊗ are satisfied, Lp 6⇔ LpW2. However we still have

the hope that perhaps by assuming other axioms (e.g. LK) in addition to
L1 and L2, Lp will prove to be equivalent to LpW2. However (see Remark

4.4.29), this is not true for LK or LF. This is still an open question as to
whether a formulation can be found to avoid the LpW1 axiom.

Lemma 4.4.19 [23]: Let (L,≤, ∗,⊗) = ({0, 1},≤,∧,∧). Let (X, lim) be an

SL-preconvergence space. Then the LpW1 axiom is always satisfied.

Proof :

Let x ∈ X . We calculate

[0 ∧ Ux] =
∧

{F ∈ FS
L (X) | ∀ a ∈ LX , 0 ∧ Ux(a) ≤ F (a) }
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=
∧

{F ∈ FS
L (X)} =

∧

0≤limF(x)

F = Ux0 .

[1 ∧ Ux] =
∧

{F ∈ FS
L (X) | ∀ a ∈ LX , 1 ∧ Ux(a) ≤ F (a) }

=
∧

{F ∈ FS
L (X) | ∀ a ∈ LX , Ux(a) ≤ F (a) } = Ux.

Let a ∈ LX , then

Ux(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a))

=
∧

F∈FS
L (X)

limF(x)=0

(0 → F (a)) ∧
∧

F∈FS
L (X)

limF(x)=1

(1 → F (a))

= 1 ∧ Ux1 (a) = Ux1 (a).

Therefore

[1 ∧ Ux] = Ux1 .

Thus in the case L = {0, 1} it is true that ∀α ∈ L, [α ∗ Ux] = Uxα . �

Remark 4.4.20 : Lemma 4.4.19 shows that in the classical case the Lp

axiom is equivalent to LpW2, as was shown in Chapter 2.

The Kowalski axiom

Definition 4.4.21 (see [23] for the frame case): Let (X, lim) be an SL-

preconvergence space. Then lim satisfies the Kowalski axiom ⇔

LK ∀G ∈ FS
L (X) ∀x ∈ X ∀ (Fy)y∈X ∈ FS

L (X)X

limG(x) ∗
∧

y∈X

limFy(y) ≤ limG(F(·))(x).

The LK axiom generalizes the K axiom in the following way. Let L =

{0, 1} and let (X, lim) be an SL-preconvergence space. With each A ⊆ P(X)
we associate AL ∈ LX via

x ∈ A⇔ AL(x) = 1

With each A ⊆ P(X) we associate AL : LX → L via

A ∈ A ⇔ AL(AL) = 1.
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In this way we identify the sets FS
L (X) and F (X).

We define the limit function lim: F (X) → P(X) by

x ∈ limF ⇔ limFL(x) = 1.

Then

lim satisfies the LK axiom ⇔ lim satisfies the K axiom.

Lemma 4.4.22 (see [23] for the frame case): Let (X, lim) be an

SL-preconvergence space. Then

lim satisfies Lt ⇔ ∀x ∈ X Ux ≤ Ux(U (·)).

Proof :

Assume Lt. Let x ∈ X, a ∈ LX . Then by Lt,

Ux(a) ≤ ∨{ Ux(b) | ∀ y ∈ X, b(y) ≤ Uy(a) }. Let b ∈ LX .
Now ∀ y ∈ X, b(y) ≤ Uy(a) ⇔ b ≤ U (·)(a) ⇒ Ux(b) ≤ Ux(U (·)(a)). So by
Lt, Ux(a) ≤ Ux(U (·))(a). For the converse, assume Lt’. Let x ∈ X, a ∈ LX .

Then U (·)(a) ∈ { b ∈ LX | b ≤ U (·)(a) }, thus Ux(U (·)(a)) ∈ { Ux(b) | b ≤
U (·)(a) }. Finally Ux(a) ≤ Ux(U (·))(a) ≤ ∨{ Ux(b) | ∀ y ∈ X, b(y) ≤
Uy(a) }. �

Lemma 4.4.23 (see [23] for the frame case): Let (X, lim) be an
SL-preconvergence space satisfying L1, Lp and L⊗. Then

lim satisfies Lt ⇔ lim satisfies LK.

Proof :

Assume LK. By Lemma 4.4.3, ∀x ∈ X, Ux ∈ FS
L (X). Thus we can

calculate limUx(x) = > for each x ∈ X . By LK we have

> = > ∗ > = limUx(x) ∗
∧

y∈X

limUy(y) ≤ lim(Ux(U (·)))(x).

By Lp, > = limUx(U (·))(x) =
∧
a∈LX (Ux(a) → Ux(U (·))(a)), thus

∀ a ∈ LX , Ux(a) ≤ Ux(U (·))(a) and we have proved that LK ⇒ Lt.

Now assume Lt. Let x ∈ X, G ∈ FS
L(X), (Fy)y∈X ∈ FS

L (X)X.
Let β =

∧
y∈X limFy(y). Then

∀ y ∈ X β ≤ limFy(y)
Lp
=

∧

a∈LX

(Uy(a) → Fy(a))
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so ∀ y ∈ X ∀ a ∈ LX β ≤ Uy(a) → Fy(a)

thus ∀ y ∈ X ∀ a ∈ LX β ∗ Uy(a) ≤ Fy(a)

therefore ∀ a ∈ LX βX ∗ U (·)(a) ≤ F(·)(a)

finally ∀ a ∈ LX G(F(·))(a) ≥ G(βX ∗ U (·)(a)) ≥ β ∗ G(U (·))(a).

Hence

limG(F(·))(x) =
∧

a∈LX

(Ux(a) → G(F(·))(a))

≥
∧

a∈LX

(Ux(U (·))(a) → (β ∗ G(U (·))(a)))

≥ β ∗
∧

a∈LX

(Ux(U (·)(a)) → G(U (·)(a)))

≥ β ∗
∧

b∈LX

(Ux(b) → G(b))

= limG(x) ∗
∧

y∈X

limFy(y).

Thus we have proved that Lt ⇒ LK. �

We have proved with Lemma 4.4.23 that for SL-topological convergence

spaces we may replace the Lt axiom with the LK axiom. However all of
L1, Lp and L⊗ are involved in the proof of Lemma 4.4.23, so we have no

guarantee that we can leave any of them out and still replace the Lt axiom.

The Fischer axiom

Definition 4.4.24 (see [24] for the frame case): Let (X, lim) be an

SL-preconvergence space. Then lim satisfies the Fischer axiom ⇔

LF ∀ ∅ 6= J ∈ Ob (SET) ∀φ : J → X ∀G ∈ FS
L (J)

∀x ∈ X ∀ (Fj)j∈J ∈ FS
L(X)J

limφ(G)(x) ∗
∧

j∈J

limFj(φ(j)) ≤ limG(F(·))(x).

Lemma 4.4.25 (see [24] for the frame case): Let (X, lim) be an
SL-preconvergence space. Then

1. lim satisfies LF ⇒lim satisfies LK.

2. lim satisfies L1, L2 and LF ⇒ lim satisfies LpW2.
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Proof :

Let lim satisfy LF.

1. Let J = X, φ = idX . Then LK follows immediately.

2. Assume L1. Let x ∈ X . Define φ : J → X j 7→ x. Let G = [J].

Then for a ∈ LX ,

φ(G)(a) = G(φ←(a)) =
∧

j∈J

([j]φ←(a)) = a(x) = [x](a).

So φ(G) = [x]. Now for b ∈ LJ ,

G(F(·))(b) =
∧

j∈J

[j](F(·)(b)) =
∧

j∈J

Fj(b).

So G(F(·)) =
∧
j∈J Fj. Finally we have

lim[x](x) ∗
∧

j∈J

limFj(x)
L1
=

∧

j∈J

limFj(x) ≤ lim(
∧

j∈J

Fj)(x).

From L2, lim(
∧
j∈J Fj)(x) ≤ ∧

j∈J limFj(x). Thus LpW2 is satisfied.

�

The following example shows that in an SL-preconvergence space (X, lim)

satisfying axioms L1, L2 and L⊗, the LK axiom does not imply the LF

axiom.

Example 4.4.26 [24]: Let X ∈ Ob (SET) be an infinite set. We define,

for x ∈ X,F ∈ FS
L(X),

limF (x) =

{
> ∃ finite A ∈ Ob (SET) such that F ≥ [A]

⊥ otherwise
.

Then L1 and L2 follow immediately. We now show that LpW2 is not
satisfied. Let A be an infinite subset of X . Assume ∃B ⊆ A finite such

that [B] ≤ [A]. Then

[B](>B) =
∧

x∈B

>B(x) = > > ⊥ =
∧

y∈A

>B(y) = [A](>B).

This contradicts our assumption. Thus there exists no finite B ⊆ A such
that [B] ≤ [A]. Thus for x ∈ X ,

∧

y∈A

lim[y](x) = > 6= ⊥ = lim[A](x) = lim
∧

y∈A

[y](x)
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and we have that LpW2 is not satisfied. Therefore by Lemma 4.4.25, LF

is not satisfied by lim.

Now we prove that lim satisfies LK. Let x ∈ X, G ∈ FS
L (X), (Fy)y∈X ∈

FS
L (X)X. Assume that

limG(x) ∗
∧

y∈X

limFy(y) = limG(x) ∧
∧

y∈X

limFy(y) = >.

Then ∃A ⊆ X, (By)y∈X ∈ P(X)X such that A is finite and ∀ y ∈ X, By
is finite and G ≥ [A] and ∀ y ∈ X, Fy ≥ [By]. Hence we have G(F(·)) ≥
[A]([B(·)]). For a ∈ LX we have

[A]([B(·)])(a) = [A]([B(·)](a)) =
∧

y∈A

([B(·)](a)(y))

=
∧

y∈A

([By](a)) =
∧

y∈A

(
∧

z∈By

a(z))

=
∧

z∈
S

y∈ABy

a(z) = [
⋃

y∈A

By](a).

Now A is a finite set and so are all the Bys, thus
⋃
y∈ABy is a finite set and

therefore limG(F(·))(x) = >. Thus LK is satisfied.

Lemma 4.4.27 (see [24] for the frame case): Let (X, lim) be an
SL-preconvergence space satisfying L1 and L2. Then

lim satisfies LK and LpW2 ⇔ lim satisfies LF.

Proof :

We have that LF ⇒ LpW2 and LK from Lemma 4.4.25. We prove the con-
verse. Let ∅ 6= J ∈ Ob (SET), φ : J → X, G ∈ FS

L(J), (Fj)j∈J ∈ FS
L (X)J.

We define (Hy)y∈X by

Hy =

{∧
j∈φ←(y) Fj , y ∈ φ(J)

[y] , y ∈ X\φ(J)
.

Then φ(G)(H(·))(a) = G(φ←(H(·)(a))). Let j ∈ J. We calculate

φ←(H(·)(a))(j) = H(·)(a)(φ(j)) = Hφ(j)(a) ≤ Fj(a) = F(·)(a)(j).

Thus φ←(H(·)(a)) ≤ F(·)(a), so φ(G)(H(·)) ≤ G(F(·)).

Now we calculate
∧

y∈X

limHy(y) =
( ∧

y∈φ(J)

limHy(y)
)
∧

( ∧

y∈X\φ(J)

limHy(y)
)
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=
( ∧

y∈φ(J)

lim
∧

j∈φ←(y)

Fj(y)
)
∧

( ∧

y∈X\φ(J)

lim[y](y)
)

LpW2
=
L1

( ∧

y∈φ(J)

∧

j∈φ←(y)

limFj(φ(j))
)
∧>

=
∧

j∈J

limFj(φ(j)).

Let x ∈ X . From LK we have

limφ(G)(x) ∗
∧

y∈X

limHy(y) ≤ limφ(G)(H(·))(x).

Thus by what we have just proved,

limφ(G)(x) ∗
∧

j∈J

limFj(φ(j)) ≤ limG(F(·))(x).

so the LF axiom is satisfied. �

The following example shows that in an SL-preconvergence space (X, lim)

satisfying axioms L1, L2 and L⊗, the LF axiom does not imply the LpW1

axiom.

Example 4.4.28 [24]: Let L = {⊥, α,>} with ⊥ < α < > and let X =

{x, y}. As in Example 4.4.17, for z ∈ X,F ∈ FS
L(X) we define the discrete

stratified L-generalized convergence on X by

limF (z) =

{
> F ≥ [z]

⊥ otherwise
.

Then we know that (X, lim) satisfies LpW2 and not LpW1. We show that

lim satisfies LK. Let x ∈ X, G ∈ FS
L (X), (Fy)y∈X ∈ FS

L (X)X. Assume that

limG(x) ∧
∧

y∈X

limFy(y) = >.

Then G ≥ [x] and ∀ y ∈ X, Fy ≥ [y]. Thus G(F(·)) ≥ [x]([·]). Now for

a ∈ LX

[x]([·])(a) = [x]([·](a)) = [·](a)(x) = [x](a).

thus G(F(·)) ≥ [x], so limG(F(·))(x) = >. Thus LK is satisfied. By Lemma

4.4.27, LF is satisfied.

Remark 4.4.29 : By Example 4.4.28and by Lemma 4.4.27, there exists an

SL-preconvergence space which satisfies all of L1, L2, LpW2, LK but does
not satisfy LpW1 and hence does not satisfy Lp. Thus we must include

the LpW1 axiom in order to obtain an SL-topological convergence space.
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Lemma 4.4.30 (see [24] for the frame case): Let (X, lim) be an
SL-preconvergence space satisfying L1, L2 and L⊗. Then

lim satisfies LF and LpW1 ⇔ lim satisfies Lt and Lp.

Proof :

If lim satisfies LF and LpW1, then by Lemma 4.4.27, lim also satisfies

LpW2 and LK. Thus by Lemmas 4.4.15 and 4.4.23, lim satisfies Lp and
Lt. Conversely, assume lim satisfies Lt and Lp. Then by Lemmas 4.4.15

and 4.4.23, lim satisfies LK, LpW1, and LpW2. Therefore by Lemma
4.4.27, lim satisfies LF as well. �
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Chapter 5

Stratified L-convergence

spaces

From Chapter 2 we know that TCS, isomorphic to the category TOP, is
contained as a full, reflective subcategory in CONV, the category of clas-

sical convergence spaces. CONV is both Cartesian closed and topological
over SET. In [21], Jäger proved that for the case where L is a frame, the

generalization of CONV, SL −GCS, is topological, Cartesian closed and
contains SL −TCS as a full, reflective subcategory. In this chapter we look

at extending SL −GCS and various of its subcategories to the case where
L is an ecl-premonoid, in the hope that a similar situation will apply.

5.1 Generalized convergence spaces

The objects of the category CONV are defined (see e.g. [28]) as those
classical preconvergence spaces which satisfy the classical L1 and L2 axioms.

Similarly, in [21], objects of the category SL −GCS are defined as those
L-preconvergence spaces which satisfy L1 and L2, in the case where L is a

frame. Our initial generalization is simply to extend this definition to the
ecl premonoid case.

Definition 5.1.1 (see [21, 22] for the frame case): We define the category
SL −GCS by

Objects stratified L-generalized convergence spaces (X, lim).

Morphisms Functions φ : X → Y between spaces (X, limX) and (Y, limY )

which satisfy

∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

The identity function idX is a morphism from (X, lim) to itself. Morphism

composition is the usual function composition.
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Definition 5.1.2 : Let (X, lim), (X, lim) ∈ Ob (SL− GCS). We define

lim ≤ lim ⇔ ∀F ∈ FS
L(X) limF ≤ limF .

Remark 5.1.3 : Both (X, lim) and (X, lim) are members of the X-fibre of

SL −GCS. In terms of the ordering on the fibre defined in Definition 1.3.5,
we have

(X, lim) ≤(X, lim)

⇔ idX ∈ homSL−GCS((X, lim), (X, lim))

⇔ ∀F ∈ FS
L(X) limF = idX(limF ) ≤ lim idX(F ) = limF

⇔ lim ≤ lim .

Theorem 5.1.4 (see [21] for the frame case): SL− GCS is topological
over SET. Furthermore it is amnestic, fibre-small and has the terminal
separator property.

Proof :

Let ∅ 6= X ∈ Ob (SET) and let ((Xi, limi))i∈I be a family of SL-generalized
convergence spaces indexed by the class I . Let (φi : X → Xi)i∈I be a corre-

sponding family of functions. For F ∈ FS
L (X) we define

limX F =
∧

i∈I

φ←i (limi φi(F ))

We prove that limX satisfies L1 and L2. Let x ∈ X . Then

limX [x](x) =
∧

i∈I

φ←i (limi φi([x]))(x) =
∧

i∈I

limi[φi(x)](φi(x))
L1
= >

Thus limX satisfies L1. Now let F , G ∈ FS
L(X),F ≤ G. Then

∀ i ∈ I, φi(F ) ≤ φi(G)

hence by L2 ∀ i ∈ I, limi φi(F ) ≤ limi φi(G)

by Lemma 3.2.6 ∀ i ∈ I, φ←i (limi φi(F )) ≤ φ←i (limi φi(G))

finally limX F =
∧

i∈I

φ←i (limi φi(F )) ≤
∧

i∈I

φ←i (limi φi(G)) = limX G.

Thus limX satisfies L2. We have proved that (X, limX) is an SL-generalized
convergence space, i.e. (X, limX) ∈ Ob (SL− GCS). Now from Lemma
3.2.6, ∀ a ∈ LX , φi(φ

←
i (a)) ≤ a, thus

∀ i ∈ I, ∀F ∈ FS
L (X), φi(limX F ) ≤ φi(φ

←
i (limi φi(F ))) ≤ limi φi(F ).
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Thus all of the functions φi are continuous between (X, limX) and (Xi, limi).

Next we prove that the source S = ((X, limX)
φi−→ (Xi, limi))i∈I is initial.

Let (Y, limY ) be an SL-generalized convergence space and let ψ : Y → X be
a function. We seek to prove that

∀ i ∈ I, φi ◦ ψ is continuous between (Y, limY ) and (Xi, limi)

⇒ ψ is continuous between (Y, limY ) and (X, limX).

Assume that ∀ i ∈ I ∀F ∈ FS
L (Y ), (φi ◦ ψ)(limY F ) ≤ limi(φi ◦ ψ)(F ).

Now (φi ◦ ψ)(limY F ) = φi(ψ(limY F )), and (φi ◦ ψ)(F ) = φi(ψ(F )). Thus

∀ i ∈ I, ψ(limY F ) ≤ φ←i ((φi ◦ ψ)(limY F )) ≤ φ←i (limi φi(ψ(F ))).

Thus ψ(limY F ) ≤ ∧
i∈I φ

←
i (limi φi(ψ(F ))) = limX ψ(F ).

We now prove that SL −GCS is amnestic. Let (X, lim), (X, lim) be

SL-generalized convergence spaces and let (X, lim) ≤ (X, lim), (X, lim) ≤
(X, lim). Then from Remark 5.1.3 and Definition 5.1.2, we have that

∀F ∈ FS
L (X), limF = limF , thus lim = lim and (X, lim) = (X, lim).

Since S is initial in SL− GCS and SL− GCS is amnestic, we have proved

that SL −GCS is topological over SET.
Let limS

L(X) = { lim | (X, lim) ∈ Ob (SL −GCS) }. Then

limS
L(X) ⊆ FS

L(X)(LX). Now FS
L(X) ∈ Ob (SET) since FS

L (X) ⊆ L(LX),

thus limS
L(X) ∈ Ob (SET). Now FibreSL−GCS(X) = {X} × limS

L(X) and
SL −GCS is fibre small.

Lastly let X = {x}. Now LX = {αX | α ∈ L }. Let F ∈ FS
L(X),

α ∈ L. Then F (αX) ≥ α ∗ F (>X) = α = [x](αX), thus

∀F ∈ FS
L(X), [x] ≤ F . Then if (X, lim) is an SL-generalized convergence

space, ∀F ∈ FS
L (X), limF (x)

L2

≥ lim[x](x)
L1
= >. Thus limF = >X for

F ∈ FS
L(X). Thus there is only one object in the SL −GCS-fibre of X . So

SL −GCS satisfies the terminal separator property. �

Cartesian closedness in SL − GCS

The material of this subsection is a little sketchy, as it was not a focus of the
thesis. Only preliminary definitions have been made and no new results have

been obtained. Nevertheless it seems logical to present the the definitions
here, since some of the motivation for the definition of SL −GCS was the

hope that it would turn out to be cartesian closed. It is known that in the
frame case (which covers the classical case as well), SL− GCS is cartesian

closed [21].

Lemma 5.1.5 (see [21] for the frame case): Let

(X, limX), (Y, limY ) ∈ Ob (SL −GCS). Let πX , πY denote the usual pro-
jections from X × Y to X, Y respectively. We define
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limX × limY : FS
L(X × Y ) → LX×Y

F 7→ π←X (limX πX(F )) ∧ π←Y (limY πY (F )).

Then (X × Y, limX × limY ) ∈ Ob (SL −GCS) and
((X × Y, limX × limY ), πX, πY ) forms a product (in the sense of Definition

1.5.1) for (X, limX), (Y, limY ) in SL −GCS.

Proof :

This is a corollary of Theorem 5.1.4. �

Corollary 5.1.6 : SL − GCS has all finite products.

Lemma 5.1.7 [21]: Let L satisfy the pseudo-bisymmetry condition. Let
(X, limX), (Y, limY ) ∈ Ob (SL− GCS). We define

C(X, Y ) = homSL−GCS((X, limX), (Y, limY )).

We define
ev : C(X, Y ) ×X → Y (g, x) 7→ g(x).

For F ∈ FS
L (C(X, Y )), g ∈ C(X, Y ), we define

climF (g) =
∧

G∈FS
L

(X)

∧

x∈X

(limX G(x) → limY ev(F × G)(g(x))).

Then if L is a frame, (C(X, Y ), clim) ∈ Ob (SL− GCS) and ev is continuous

between (C(X, Y ), clim) and (Y, limY ).

Lemma 5.1.8 [21]: Let L satisfy the pseudo-bisymmetry condition. Let

(X, limX), (Y, limY ) ∈ Ob (SL− GCS). Let φ : (Z × X, limZ × limX) →
(Y, limY ) ∈ Mor (SL −GCS). For z ∈ Z, we define φz : X → Y by φz(x) =

φ(z, x). We define
φ̃ : Z → Y X z 7→ φz.

Then if L is a frame, ∀ z ∈ Z, φz ∈ C(X, Y ) and

φ̃ ∈ homSL−GCS((Z, limZ), (C(X, Y ), clim)).

Lemma 5.1.9 [21]: Let L satisfy the pseudo-bisymmetry condition. Let

(X, limX), (Y, limY ) ∈ Ob (SL− GCS). Then if L is a frame, the evaluation
mapping ev together with the structure (C(X, Y ), clim) form an exponential

in SL− GCS for the objects (X, limX) and (Y, limY ). Thus if L is a frame
the category SL −GCS is cartesian closed.
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SL − TCS as a subcategory of SL − GCS

In the frame case (see [21]), we have that SL− TCS is contained as a
reflective subcategory in SL− GCS. We attempt to prove that this is true

in the ecl-premonoid case.

Lemma 5.1.10 : SL −TCS is a full subcategory of SL− GCS.

Proof :

We know that Ob (SL− TCS) ⊆ Ob (SL− GCS), since all objects in
SL −TCS satisfy L1 and L2. Let (X, limX), (Y, limY ) ∈ Ob (SL− TCS).
Then from the definition of SL −TCS in Theorem 4.3.3 and from Definition

5.1.1,

φ ∈ homSL−TCS((X, limX), (Y, limY ))

⇔ φ ∈ homSL−GCS((X, limX), (Y, limY )).

Thus SL −TCS is a full subcategory of SL −GCS. �

Lemma 5.1.11 : Let (X, lim) be an SL-generalized convergence space. De-
fine

∀x ∈ X ∀ a ∈ LX , Uxlim(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a)).L0

∀x ∈ X ∀ a ∈ LX , alim(x) = Uxlim(a).N1

∆lim = { a ∈ LX | a ≤ alim }.I1

Then

lim satisfies L⊗ ⇒ (X,∆lim) is an SL-topological space.

Proof :

We prove that ∆lim satisfies LO1–LOs. Note that Uxlim ∈ FS
L(X) for x ∈ X

by Lemma 4.4.3.

LO1 ⊥X ≤ ⊥X lim
by definition of ⊥X . Let x ∈ X . By N1 and L0,

>X lim
(x) = Uxlim(>X) = >. Thus >X ∈ ∆lim.

L02 Let a, b ∈ ∆lim, x ∈ X . Then

(a⊗ b)(x) = a(x) ⊗ b(x)
I1

≤ alim(x) ⊗ blim(x)

= Uxlim(a) ⊗ Uxlim(b)
L⊗
≤ Uxlim(a⊗ b) = a⊗ blim(x).

Thus a⊗ b ∈ ∆lim.
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L03 We prove that a ≤ b ⇒ alim ≤ blim. Let a, b ∈ LX , a ≤ b. Let x ∈ X .
Then by L0, Uxlim(a) ≤ Uxlim(b). Now let Γ ⊆ ∆lim. Then

∨
Γ ≤

∨

g∈Γ

g
lim

≤
∨

Γ
lim
.

Thus
∨

Γ ∈ ∆lim.

LOs Let α ∈ L, a ∈ ∆lim, x ∈ X . Then

αX ∗ a(x) ≤ α ∗ alim(x) = α ∗ Uxlim(a) ≤ Uxlim(αX ∗ a) = αX ∗ a
lim

(x).

Thus αX ∗ a ∈ ∆lim.
�

Lemma 5.1.12 was proved previously as Lemma 4.2.11.

Lemma 5.1.12 : Let (X,∆) be an SL-topological space. Define lim∆ by

∀ a ∈ LX , a∆ =
∨

{ b ∈ ∆ | b ≤ a }.I0

∀ a ∈ LX ∀x ∈ X, Ux∆(a) = a∆(x).N1

∀F ∈ FS
L (X) ∀x ∈ X, lim∆ F (x) =

∧

a∈LX

(Ux∆(a) → F (a)).Lp

Then (X, lim∆) is an SL-topological convergence space, and hence an SL-
generalized convergence space.

Lemma 5.1.13 : Let (X,∆) ∈ Ob (SL−TOP) and let

(X, lim) ∈ Ob (SL− GCS). Then

1. ∆(lim∆) = ∆.

2. lim(∆lim) ≥ lim.

Proof :

1. This is an obvious implication of Lemma 4.2.14.

2. Let x ∈ X, a ∈ LX . Then

Ux(∆lim)(a) = a∆lim
(x) =

∨
{ b(x) | b ∈ ∆lim, b ≤ a }

=
∨

{ b(x) | b ≤ blim, b ≤ a } ≤
∨

{ blim(x) | b ≤ a }
= alim(x) = Uxlim(a).
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So we have that ∀x ∈ X, Ux∆lim
≤ Uxlim.

Now let x ∈ X,F ∈ FS
L (X). Then

lim(∆lim) F (x) =
∧

a∈LX

(Ux∆lim
(a) → F (a) ≥

∧

a∈LX

(Uxlim(a) → F (a))

=
∧

F∈FS
L

(X)

(
∧

G∈FS
L

(X)

(limG(x) → G(a)) → F (a))

≥
∧

F∈FS
L (X)

((limF (x) → F (a)) → F (a)) ≥ limF (x).

Thus we have proved that lim(∆lim) ≥ lim. Note that this is true

regardless of whether ∆lim is an SL-topology on X or not.
�

Lemma 5.1.14 : Let (X, limX), (Y, limY ) ∈ Ob (SL− GCS) and let
φ ∈ homSL−GCS((X, limX), (Y, limY )). Then

(X,∆limX
), (Y,∆limY

) ∈ Ob (SL−TOP) ⇒
φ ∈ homSL−TOP((X,∆limX

), (Y,∆limY
)).

Proof :

We know that φ ∈ homSL−GCS((X, limX), (Y, limY )) ⇔

∀F ∈ FS
L (X), φ(limX F ) ≤ limY φ(F ).

Let b ∈ ∆limY
. Then b ≤ blim and ∀ y ∈ Y, b(y) ≤ UylimY

(b). Let x ∈ X .
We calculate:

φ←(b)(x) = b(φ(x)) ≤
∧

G∈FS
L

(Y )

(limY G(φ(x)) → G(b))

≤
∧

F∈FS
L (X)

(limY φ(F )(φ(x)) → φ(F )(b))

≤
∧

F∈FS
L

(X)

(φ(limX F )(φ(x)) → F (φ←(b)))

≤
∧

F∈FS
L (X)

(limX F (x) → F (φ←(b))) = UxlimX
(φ←(b)).

Thus φ←(b) ∈ ∆limX
. So we have that φ←(∆limY

) ⊆ ∆limX
. Thus if

(X,∆limX
), (Y,∆limY

) are SL-topological spaces, then

φ ∈ homSL−TOP((X,∆limX
), (Y,∆limY

)). �
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Theorem 5.1.15 (see [21] for the frame case): If the L⊗ axiom is satisfied
by all (X, lim) ∈ Ob (SL−GCS) then SL −TCS is a reflective subcategory

of SL− GCS.

Proof :

If the L⊗ axiom is satisfied by all (X, lim) ∈ Ob (SL −GCS) then by

Lemma 5.1.11, ∀ (X, lim) ∈ Ob (SL− GCS), (X,∆lim) ∈ Ob (SL− TOP).
Thus by Lemmas 5.1.11, 5.1.12 and 5.1.14, we can define functors:

F : SL− GCS →SL− TOP

F ((X, limX)
φ−→ (Y, limY )) = (X,∆limX

)
φ−→ (Y,∆limY

),

G : SL −TOP →SL− GCS

G((X,∆X)
φ−→ (Y,∆Y )) = (X, lim∆X

)
φ−→ (Y, lim∆Y

).

Let (X,∆X), (Y,∆Y ) be SL-topological spaces. Then by Lemma 5.1.13,

(F ◦G)((X,∆X)
φ−→ (Y,∆Y )) = F ((X, lim∆X

)
φ−→ (Y, lim∆Y

))

= (X,∆lim∆X
)
φ−→ (Y,∆lim∆Y

)

= (X,∆X)
φ−→ (Y,∆Y )

= idSL−TOP((X,∆X)
φ−→ (Y,∆Y )).

Thus F ◦G = idSL−TOP. Now let (X, lim) be an SL-generalized convergence
space. Then by Lemma 5.1.13,

(G ◦ F )(X, lim) = G(X,∆lim) = (X, lim∆lim
) ≥ (X, lim).

Thus F ◦G ≥ idSL−GCS.

Finally by Theorem 4.3.3, we have that SL− TOP is isomorphic to
a reflective subcategory of SL− GCS. Since SL− TOP is isomorphic to

SL −TCS, we have that SL −TCS is a reflective subcategory of SL −GCS.
�

Given that the L⊗ axiom is a requirement of Theorem 5.1.15, it would be
quite convenient if every SL-generalized convergence space satisfied L⊗. Un-
fortunately this is not the case, as shown by the following counter-example,

originated by Lu and Yao ([32]) in connection with proving that Uxlim is not
always a stratified L-filter.

Example 5.1.16 [32]: Let L = {⊥, α,>}, with ⊥ < α < >. Define the ∗
operation by Table 5.1 (a). Then (L,≤, ∗) is a GL-monoid. We consider an

ecl-premonoid (L,≤, ∗, ∗). The implication operator defined by ∗ is shown
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∗ ⊥ α >
⊥ ⊥ ⊥ ⊥
α ⊥ ⊥ α

> ⊥ α >

(a)

→ ⊥ α >
⊥ > > >
α α > >
> ⊥ α >

(b)

Table 5.1: ∗ and → operations on L

in Table 5.1 (b). Let X = {x, y}. For µ, ν ∈ L, define (µ, ν) = µ{x} ∨ ν{y}.
Now define the lim function by

∀F ∈ FS
L(X) ∀ z ∈ X, limF (z) =

{
F (>, α) z = x

F (α,>) z = y
.

lim obviously satisfies L1 and L2. The lim function induces the neighbour-
hood filter at z ∈ X :

∀ a ∈ LX , Uzlim(a) =
∧

F∈FS
L (X)

(limF (z) → F (a)).

Let a be the L-set (>, α). Then a ∗ a = (>,⊥). Now Uxlim(a) = >, trivially.
We calculate

Uxlim(a ∗ a) =
∧

F∈FS
L (X)

(limF (x) → F (a))

=
∧

F∈FS
L

(X)

(F (>, α) → F (>,⊥))

≤ [y](>, α) → [y](>,⊥) = α→ ⊥ = α

6≥ > ∗ > = Uxlim(a) ∗ Uxlim(a).

Thus lim does not satisfy the L⊗ axiom.

For the case where L is a frame, we have that for all SL-generalized

convergence spaces (X, lim), ∀x ∈ X, Uxlim ∈ FS
L(X) ([21]). In other

words, the L⊗ axiom is satisfied. When we examine the proof that Uxlim ∈
FS
L (X), it turns out to depend on the condition that ∀α ∈ L, α ≤ α∧α,

which is of course satisfied for L being a frame. The corresponding condition
for L an ecl-premonoid is ∀α ∈ L, α ≤ α⊗ α.

Definition 5.1.17 : Let (L,≤, ∗,⊗) be an ecl-premonoid. We say that L
satisfies the monotonicity condition iff

M ∀α ∈ L, α ≤ α ⊗ α.
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Lemma 5.1.18 : The ecl-premonoid L satisfies the monotonicity condition
M iff

∀ (X, lim) ∈ Ob (SL−GCS), lim satisfies L⊗.

Proof :

Let L satisfy the monotonicity condition M and (X, lim) be an SL-generalized
convergence space. Let x ∈ X, a, b ∈ LX . Then by Lemma 3.1.30 and F3,

Ux(a) ⊗ Ux(b) =
∧

F∈FS
L

(X)

(limF (x) → F (a))⊗
∧

G∈FS
L

(X)

(limG(x) → G(b))

≤
∧

F∈FS
L (X)

(limF (x) → F (a))⊗ (limF (x) → F (b))

≤
∧

F∈FS
L

(X)

((limF (x) ⊗ limF (x)) → F (a⊗ b))

M

≤
∧

F∈FS
L

(X)

(limF (x) → F (a⊗ b) = Ux(a⊗ b)

Thus lim satisfies L⊗.
Next, assume that L does not satisfy M. Then ∃α ∈ L, α 6≤ α⊗α. We

note that if α→ (α⊗α) = > then α ≤ α⊗α, so we know that α→ (α⊗α) <
>. We now construct an SL-generalized convergence space which does not

satisfy L⊗. Let X = {x, y}. For µ, ν ∈ L we define (µ, ν) = µ{x} ∨ν{y}. For

F ∈ FS
L(X) we define

limF (z) =

{
F (>, α) z = x

F (α,>) z = y
.

Then (X, lim) ∈ Ob (SL −GCS). Let a = (>, α). Then a⊗ a = (>, α⊗α)
and Ux(a) = >. We calculate

Ux(a⊗ a) =
∧

F∈FS
L (X)

(limF (x) → F (a⊗ a)) =
∧

F∈FS
L (X)

(F (a) → F (a⊗ a))

≤ [y](>, α) → [y](>, α⊗ α) = α→ (α⊗ α) < Ux(a) ⊗ Ux(a)

Thus lim does not satisfy L⊗. �

Remark 5.1.19 : Lemma 5.1.18 tells us that SL −TCS is a reflective
subcategory of SL− GCS in the important special cases of the frame where

∗ = ⊗ = ∧, and of GL-monoids (L,≤, ∗) with monoidal mean operators
where ⊗ = ~. It does not apply to the general situation, e.g. where ⊗ = ∗,

since if α ≤ α ∗ α for all α, then ∗ = ∧.
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Difficulties with the L⊗ axiom

In view of Theorem 5.1.15, it seems reasonable to change the definition of
objects in SL −GCS to those SL-preconvergence spaces which satisfy L1,

L2 and L⊗. We experiment with this definition.

Definition 5.1.20 : We define the category SL −GCS⊗ by

Objects SL-generalized convergence spaces (X, lim) additionally satisfying
L⊗.

Morphisms Functions φ : X → Y between spaces (X, limX) and (Y, limY )

which satisfy

∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

The identity function idX is a morphism from (X, lim) to itself. Morphism

composition is the usual function composition.

Theorem 5.1.21 : SL− TCS is a reflective subcategory of SL −GCS⊗.

Proof :

The proof is the same as the proof of Theorem 5.1.15, only now we have
that every object in SL −GCS⊗ satisfies L⊗. �

Conjecture 5.1.22 : SL − GCS⊗ is not topological over SET in general.

Motivation:

Let ∅ 6= X ∈ Ob (SET), (Xi, limi)i∈I ∈ Ob (SL−GCS⊗)I and let (φi : X →
Xi)i∈I be a set of functions indexed by I . As previously we define limX by

limX F =
∧

i∈I

φ←i (limi φi(F )).

If (X, lim) ∈ Ob (SL− GCS⊗) then for a, b ∈ LX , x ∈ X , we should have

that
UxlimX

(a) ⊗ UxlimX
(b) ≤ UxlimX

(a⊗ b).

We attempt to prove this:

UxlimX
(a) ⊗ UxlimX

(b)

=
∧

F∈FS
L

(X)

(limX F (x) → F (a))⊗
∧

G∈FS
L

(X)

(limX G(x) → G(b))
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≤
∧

F∈FS
L

(X)

((limX F (x) → F (a))⊗ (limX F (x) → F (b)))

≤
∧

F∈FS
L (X)

((limX F (x) ⊗ limX F (x)) → (F (a)⊗ F (b)))

≤
∧

F∈FS
L

(X)

((limX F (x) ⊗ limX F (x)) → F (a⊗ b)).

At this point, if we knew that limX F (x)⊗limX F (x) ≥ limX F (x) (as would

be implied for example by the monotonicity condition M), then we would
be able to say that

UxlimX
(a) ⊗ UxlimX

(b) ≤
∧

F∈FS
L

(X)

(limX F (x) → F (a⊗ b)) = UxlimX
(a⊗ b).

Possibly a different method of proof other than the naive approach used here
might work but as it stands at the moment we are not sure that SL −GCS⊗
is topological over SET. �

Remark 5.1.23 : We are not sure that SL− GCS⊗ is topological over

SET. Because the L⊗ axiom seems so difficult to work with, and we know
that restricting the lattice via the monotonicity condition M can guarantee

that all SL-generalized convergence spaces satisfy L⊗, we have preferred to
instead work with the category SL −GCS where spaces are only required

to satisfy L1 and L2. Together with M , this captures the important special
cases of frames (L,≤,∧,∧) and GL-monoids with monoidal mean operators

(L,≤, ∗,~).

5.2 Subcategories of SL − GCS

Kent convergence spaces

Definition 5.2.1 (see [22] for the frame case): Let (X, lim) be an SL-

preconvergence space. Then lim satisfies the L3w axiom ⇔

L3w ∀F ∈ FS
L (X) ∀x ∈ X, limF (x) ≤ lim(F ∧ [x])(x).

If lim additionally satisfies L1 and L2, then (X, lim) is a stratified L-Kent

convergence space. We abbreviate ‘stratified L-Kent convergence space’ as
SL-Kent convergence space.

Definition 5.2.2 (see [22] for the frame case): We define the category
SL −KCS by

Objects SL-Kent convergence spaces (X, lim).
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Morphisms Functions φ : X → Y between spaces (X, limX) and (Y, limY )
which satisfy

∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

The identity function idX is a morphism from (X, lim) to itself. Morphism
composition is the usual function composition.

Lemma 5.2.3 : SL −KCS is a full subcategory of SL− GCS.

Proof :

It is obvious that Ob (SL− KCS) ⊆ Ob (SL −GCS) and that for

(X, limX), (Y, limY ) in Ob (SL−KCS),

homSL−KCS((X, limX), (Y, limY )) = homSL−GCS((X, limX), (Y, limY )).

Identity and morphism composition are the same in both categories. Thus

SL −KCS is a full subcategory of SL −GCS. �

Lemma 5.2.4 : Let (X, lim) ∈ Ob (SL− GCS). We define

limF (x) =
∨

G∧[x]≤F

limG(x).

Then (X, lim) ∈ Ob (SL−KCS) and lim ≥ lim.

Proof :

Let x ∈ X . Then

lim[x](x) =
∨

G∧[x]≤[x]

limG(x) ≥ lim[x](x) = >.

Thus L1 is satisfied. Now let F , G ∈ FS
L(X),F ≤ G. Then

limF (x) =
∨

H∧[x]≤F

limH(x) ≤
∨

H∧[x]≤G

limH(x) = limG(x).

Thus L2 is satisfied. Next we note that for G ∈ FS
L(X), G ∧ [x] ≤ F ⇒

G ∧ [x] ≤ F ∧ [x], thus

limF (x) =
∨

G∧[x]≤F

limG(x) ≤
∨

G∧[x]≤F∧[x]

limG(x) = lim(F ∧ [x])(x).

So L3w is satisfied. We have proved that (X, lim) ∈ Ob (SL− KCS).

Finally, limF (x) ≥ limF (x) for all x ∈ X , since F ∧ [x] ≤ F . �
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Lemma 5.2.5 : Let (X, lim) ∈ Ob (SL− GCS) and

(X, lĩm) ∈ Ob (SL− KCS). Then

lim ≤ lĩm ⇒ lim ≤ lĩm .

Proof :

Assume that lim ≤ lĩm. Let x ∈ X,F ∈ FS
L (X). Then

limF (x) =
∨

G∧[x]≤F

limG(x) ≤
∨

G∧[x]≤F

lĩmG(x)

L3w

≤
∨

G∧[x]≤F

lĩm(G ∧ [x])(x) ≤ lĩmF (x).

Thus lim ≤ lĩm. �

Remark 5.2.6 : It is obvious that lĩm = lĩm since lĩm ≤ lĩm.

Lemma 5.2.7 : Let φ : (X, limX) → (Y, limY ) ∈ Mor (SL−GCS). Then

φ : (X, limX) → (Y, limY ) ∈ Mor(SL −KCS).

Proof :

We have

∀F ∈ FS
L (X), φ(limX F ) ≤ limY φ(F ).

Let x ∈ X,F ∈ FS
L(X). We calculate

limY φ(F )(φ(x)) =
∨

H∧[φ(x)]≤φ(F)

limY H(φ(x))

≥
∨

φ(G)∧φ([x])≤φ(F)

limY φ(G)(φ(x))

≥
∨

G∧[x]≤F

limX G(x) = limX F (x).

Let y ∈ Y . Then

φ(limX F )(y) =
∨

φ(x)=y

limX F (x) ≤
∨

φ(x)=y

limY φ(F )(φ(x)) ≤ limY φ(F )(y).
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Thus φ ∈ homSL−KCS((X, limX), (Y, limY )). �

Theorem 5.2.8 (see [22] for the frame case): SL −KCS is a full reflective

subcategory of SL− GCS.

Proof :

We know from Lemma 5.2.3 that SL− KCS is a full subcategory of

SL −GCS. We define a functor

F : SL− GCS → SL −KCS

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).

This is possible by Lemmas 5.2.4 and 5.2.7. We also have the inclusion
functor

E : SL −KCS ↪→ SL− GCS

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).

Let (X, limX) ∈ Ob (SL− GCS). Then E ◦ F (X, limX) = (X, limX) ≥
(X, limX) by Lemma 5.2.5. Now let (X, limX), (Y, limY ) ∈ Ob (SL− KCS).

Let φ ∈ homSL−KCS((X, limX)
φ−→ (Y, limY )). Then by Remark 5.2.6 and

Lemma 5.2.3, F ◦E((X, limX)
φ−→ (Y, limY )) = (X, limX)

φ−→ (Y, limY ). Thus

we have F ◦E = idSL−KCS and E ◦F ≥ idSL−GCS. Then by Theorem 1.6.2,
SL −KCS is a reflective subcategory of SL− GCS. �

Limit spaces

Definition 5.2.9 (see [22] for the frame case):
Let (X, lim) be an SL-preconvergence space. Then lim satisfies the L3 axiom
⇔

L3 ∀F , G ∈ FS
L (X) limF ∗ limG ≤ lim(F ∧ G).

If lim additionally satisfies L1 and L2, then (X, lim) is a stratified L-limit

space. We abbreviate ‘stratified L-limit space’ as SL-limit space.

Definition 5.2.10 (see [22] for the frame case): We define the category

SL − LIM by

Objects SL-limit spaces (X, lim).
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Morphisms Functions φ : X → Y between spaces (X, limX) and (Y, limY )
which satisfy

∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

The identity function idX is a morphism from (X, lim) to itself. Morphism

composition is the usual function composition.

Lemma 5.2.11 : SL − LIM is a full subcategory of SL −KCS.

Proof :

We need to prove that Ob (SL− LIM) ⊆ Ob (SL−KCS). If this is the
case then it is obvious that SL− LIM is a full subcategory of SL −KCS.

Let (X, lim) ∈ Ob (SL− LIM). Let F ∈ FS
L(X), x ∈ X . Then

limF (x)
L1
= limF (x) ∗ lim[x](x)

L3

≤ lim(F ∧ [x])(x).

Thus L3w is satisfied and (X, lim) ∈ Ob (SL −KCS). �

Lemma 5.2.12 : Let (X, lim) ∈ Ob (SL− KCS). We define

limF =
∨

{ n∗
i=1

limFi | n ∈ N, (Fi)i∈I ∈ FS
L(X)[n],

n∧

i=1

Fi ≤ F }.

Then (X, lim) ∈ Ob (SL− LIM). Furthermore lim ≥ lim.

Proof :

We prove that lim satisfies L1, L2 and L3. Let x ∈ X . Then lim[x] ∈
{ ∗ni=1 limFi | n ∈ N,

∧n
i=1 Fi ≤ [x] }. Thus lim[x](x) ≥ lim[x](x) = >, so

L1 is satisfied. Now let F , G ∈ FS
L(X),F ≤ G. Then it is obvious that

limF ≤ limG, so L2 is satisfied.
For L3, let F , G ∈ FS

L(X). Then

limF ∗ limG =
∨

{ m∗
i=1

limFi |
m∧

i=1

Fi ≤ F } ∗
∨

{ n∗
j=1

limGj |
n∧

j=1

Gj ≤ G }

!
=

∨
{ (

m∗
i=1

limFi) ∗ (
n∗
j=1

limGj) |
m∧

i=1

Fi ≤ F and

n∧

j=1

Gj ≤ G }

≤
∨

{ p∗
k=1

limHk |
p∧

k=1

Hk ≤ F ∧ G } = lim(F ∧ G).
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Note in the step marked ‘!’, that we have used the property of the ∗ operator,
that it distributes over arbitrary joins. (Property GL5 in Chapter 3). We

have proved that (X, lim) is an SL-Limit space.
Finally, let F ∈ FS

L(X). Then limF ∈ { ∗ni=1 limFi | n ∈ N,
∧n
i=1 Fi ≤

F }. So lim ≥ lim. �

Lemma 5.2.13 : Let (X, lim) ∈ Ob (SL− KCS),

(X, lĩm) ∈ Ob (SL− LIM). Then

lim ≤ lĩm ⇒ lim ≤ lĩm .

Proof :

Assume that lim ≤ lĩm. Let F ∈ FS
L(X). Then

limF =
∨

{ n∗
i=1

limFi |
n∧

i=1

Fi ≤ F } ≤
∨

{ n∗
i=1

lĩmFi |
n∧

i=1

Fi ≤ F }

L3

≤
∨

{ lĩm
n∧

i=1

Fi |
n∧

i=1

Fi ≤ F } ≤ lĩmF .

Thus lim ≤ lĩm. �

Remark 5.2.14 : Obviously, lĩm = lĩm since lĩm ≤ lĩm.

Lemma 5.2.15 : Let (X, limX)
φ−→ (Y, limY ) ∈ Mor (SL− KCS). Then

(X, limX)
φ−→ (Y, limY ) ∈ Mor (SL− LIM).

Proof :

Let F ∈ FS
L (X), x ∈ X . Then

limY φ(F )(φ(x)) =
∨

{ n∗
i=1

limY Gi(φ(x)) |
n∧

i=1

Gi ≤ φ(F ) }

≥
∨

{ n∗
i=1

limY φ(Hi)(φ(x)) |
n∧

i=1

φ(Hi) ≤ φ(F ) }

≥
∨

{ n∗
i=1

limX Hi(x) |
n∧

i=1

Hi ≤ F } = limX F (x).
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Thus ∀F ∈ FS
L(X), φ(limX F ) ≤ limY φ(F ). Therefore

φ ∈ homSL−LIM((X, limX), (Y, limY )). �

Theorem 5.2.16 (see [22] for the frame case): SL − LIM is a full reflective

subcategory of SL− KCS.

Proof :

We know from Lemma 5.2.11 that SL − LIM is a full subcategory of

SL −KCS. We define a functor

F : SL− KCS → SL− LIM

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).

This is possible by Lemmas 5.2.12 and 5.2.15. Since SL− LIM is a sub-
category of SL −KCS, we also have the inclusion functor

E : SL − LIM ↪→ SL −KCS

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).

Let (X, lim) ∈ Ob (SL− KCS). Then E ◦ F (X, lim) = (X, lim) ≥ (X, lim).

Now let (X, limX)
φ−→ (Y, limY ) ∈ Mor (SL− LIM). Then F◦E((X, limX)

φ−→
(Y, limY )) = (X, limX)

φ−→ (Y, limY ). Thus F ◦ E = idSL−LIM and E ◦ F ≥
idSL−KCS. By Theorem 1.6.2, SL − LIM is a reflective subcategory of
SL −KCS. �

Discussion: The form of the L3 axiom

The classical L3 axiom (see e.g. [26]) has the form

L3 ∀F , G ∈ F(X), limF ∩ limG ⊆ lim(F ∩ G).

In [22], Jäger extends this to the case where L is a frame, resulting in the
axiom

L3 ∀F , G ∈ FS
L (X), limF ∧ limG ≤ lim(F ∧ G).

In extending to the ecl-premonoid case, we have available to us three possible

generalizations of the ∧ operation, namely the ∧, ∗ and ⊗ operations, all
of which coincide in the frame case. It is not immediately clear which of

these should be used in the generalized L3 axiom. We bear some principles
in mind as we investigate. Firstly, we will try to choose our L3 so that the

category SL− LIM (with objects those spaces (X, lim) satisfying L1, L2
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and L3) is a reflective subcategory of SL− KCS, as it is in the frame case
([22]). Ideally we should be able to extend Jäger’s proofs almost without

modification. Secondly, if possible in our proofs we should not require L to
have properties beyond the usual ecl-premonoid properties. Lastly we should

try to avoid strange constructions such as F ∗G and F⊗G for F , G ∈ FS
L(X),

since these will usually only be stratified L-filters if (L,≤, ∗,⊗) satisfies extra

conditions.
We thus have three possible candidates for our generalized L3 axiom

which we shall initially consider:

∀F , G ∈ FS
L(X), limF ∧ limG ≤ lim(F ∧ G).L3∧

∀F , G ∈ FS
L (X), limF ∗ limG ≤ lim(F ∧ G).L3∗

∀F , G ∈ FS
L(X), limF ⊗ limG ≤ lim(F ∧ G).L3⊗

As we have already seen, L3∗ results in SL− LIM being a reflective
subcategory of SL −KCS and also does not require L to satisfy extra con-

ditions when proving this. Thus L3∗ satisfies our criteria. We now show
why the other axioms were rejected.

Firstly, by induction we may restate the axioms as

∀n ∈ N, ∀ (Fi)n1 ∈ FS
L (X)[n],

n∧

i=1

limFi ≤ lim(

n∧

i=1

Fi)L3∧

∀n ∈ N, ∀ (Fi)n1 ∈ FS
L (X)[n],

n∗
i=1

limFi ≤ lim(

n∧

i=1

Fi)L3∗

∀n ∈ N, ∀ (Fi)n1 ∈ FS
L (X)[n],

n
⊗
i=1

limFi ≤ lim(

n∧

i=1

Fi)L3⊗

Where we define
n⊗
1
ai = an ⊗ an−1 ⊗ . . .⊗ a1.

Let (X, lim) ∈ Ob (SL− KCS). We need to define lim such that

(X, lim) ∈ Ob (SL − LIM) (i.e. satisfies L1, L2 and L3) and lim ≥ lim.

Furthermore, we need that if (X, lĩm) ∈ Ob (SL− LIM) and lim ≤ lĩm then

lim ≤ lĩm.
If we are to use Jäger’s proofs we need to define our lim to be a gener-

alization of the one used in his paper [22]. With this in mind we have three

possibilities for lim which are immediately obvious. Let F ∈ FS
L(X). We

define:

lim∧F = {
n∧

1

limFi | n ∈ N,
n∧

i=1

Fi ≤ F }.

lim∗F = { n∗
1

limFi | n ∈ N,
n∧

i=1

Fi ≤ F }.
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lim⊗F = {
n
⊗
1

limFi | n ∈ N,
n∧

i=1

Fi ≤ F }.

If �,⊕ ∈ {∧, ∗,⊗} then we can restate the axiom and the definition of

limF as:

∀n ∈ N, ∀ (Fi)n1 ∈ FS
L (X)[n],

n�
i=1

limFi ≤ lim(
n∧

i=1

Fi),L3�

lim�F = {
n
�
i=1

limFi | n ∈ N,
n∧

i=1

Fi ≤ F }.

Now let (X, lim) satisfy L1 and L2. Let (X, lĩm) satisfy L1, L2 and
L3⊕ and let lim ≤ lĩm. We want lim� ≤ lĩm. We have

lim�F = { n�
i=1

limFi | n ∈ N,
n∧

i=1

Fi ≤ F }

≤ {
n
�
i=1

lĩmFi | n ∈ N,
n∧

i=1

Fi ≤ F }

?
≤ { lĩm

n∧

i=1

Fi | n ∈ N,
n∧

i=1

Fi ≤ F }

≤ lĩmF .

The step labelled ‘?’ obviously follows if lĩm satisfies the L3� axiom, i.e. if

L3⊕ = L3�. Hence whichever of lim∧, lim∗ or lim⊗ we use, we must use
the corresponding axiom (L3∧, L3∗ or L3⊗ respectively). In particular,

we cannot have a situation where our SL-limit spaces satisfy L3∗ and lim
is defined as lim = lim∧, since in this case the proof we have just been

examining doesn’t work. Remember, we are trying for a quick fix here by
generalizing Jäger’s frame proofs and hoping that they work in the ecl-

premonoid case.
Now let’s look at the proof that lim� satisfies the L3� axiom. Let

F , G ∈ FS
L(X). Then

lim�F� lim� G

=
∨

{ m�
i=1

limFi |
n∧

i=1

Fi ≤ F } �
∨

{ n�
j=1

limGj |
n∧

j=1

Gj ≤ G }

?
=

∨
{ (

m
�
i=1

limFi) � (
n
�
j=1

limGj) |
n∧

i=1

Fi ≤ F and

n∧

j=1

Gj ≤ G }

!
≤

∨
{

p
�
k=1

limHk |
p∧

k=1

Hk ≤ F ∧ G }.
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For the step labelled ‘?’, we have to assume that � distributes over
arbitrary joins. This is true in the general ecl-premonoid case for ∧, ∗ but

not for ⊗ (⊗ does not distribute over empty joins in general). For the
step labelled ‘!’, we need to assume that � is commutative, since otherwise

we are unjustified in assuming that (am � . . . � a1) � (bn � . . . � b1) =
am� . . . a1 � bn� . . . b1 for ai, bj ∈ LX . This rules out the ⊗ operation since

in the general case it is not commutative. If a space satisfies the L3∧ axiom,
then it also satisfies the L3∗ axiom by Lemma 3.1.17, thus the L3∧ axiom

is stronger than the L3∗ axiom and the category of limit spaces defined
by L3∗ includes those defined by L3∧. For the L3∗ axiom, the category

SL − LIM so defined is a reflective subcategory of SL −KCS, as proved
previously. This is the reason that we take L3∗ as the generalization of L3

to the ecl-premonoid case. We can define a category SL − LIMS of strong

SL-limit spaces which satisfy the axiom L3∧.

Principal convergence spaces

Definition 5.2.17 (see [21, 22] for the frame case): Let (X, lim) be an

SL-preconvergence space. Then lim satisfies the Lp axiom ⇔

Lp ∀F ∈ FS
L (X) ∀x ∈ X, limF (x) =

∧

a∈LX

(Uxlim(a) → F (a)),

Where for x ∈ X, a ∈ LX , Uxlim(a) =
∧
F∈FS

L
(X)(limF (x) → F (a)). If lim

additionally satisfies L1 and L2, then (X, lim) is a stratified L-principal

convergence space. We abbreviate ‘stratified L-principal convergence space’
as SL-principal convergence space.

Definition 5.2.18 (see [21, 22] for the frame case): We define the category

SL −PCS by

Objects SL-principal convergence spaces (X, lim).

Morphisms Functions φ : X → Y between spaces (X, limX) and (Y, limY )

which satisfy

∀F ∈ FS
L (X) φ(limX F ) ≤ limY φ(F ).

The identity function idX is a morphism from (X, lim) to itself. Morphism
composition is the usual function composition.

Lemma 5.2.19 : SL −PCS is a full subcategory of SL − LIM.

Proof :
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We prove that Lp implies L3. Let (X, lim) be an SL-principal convergence
space. Let F , G ∈ FS

L (X), x ∈ X . Then

limF (x) ∗ limG(x)
Lp
=

∧

a∈LX

(Uxlim(a) → F (a)) ∗
∧

b∈LX

(Uxlim(b) → G(b))

≤
∧

a∈LX

(
(Uxlim(a) → F (a)) ∗ (Uxlim(a) → G(a))

)

≤
∧

a∈LX

(
(Uxlim(a) → F (a)) ∧ (Uxlim(a) → G(a))

)

=
∧

a∈LX

(Uxlim(a) → (F ∧ G)(a)) = limF ∧ G(x).

Thus Ob (SL −PCS) ⊆ Ob (SL− LIM).
Now for (X, limX), (Y, limY ) ∈ Ob (SL−PCS), obviously

homSL−PCS((X, limX), (Y, limY )) = homSL−LIM((X, limX), (Y, limY )).

Since composition and identity are defined to be the same for both cate-
gories, we have proved that SL −PCS is a full subcategory of SL− LIM.

�

Lemma 5.2.20 (see [21, 22] for the frame case): Let

(X, lim) ∈ Ob (SL− LIM). For F ∈ FS
L (X), x ∈ X we define

limF (x) =
∧

a∈LX

(Uxlim(a) → F (a)).

Then (X, lim) ∈ Ob (SL−PCS) if lim satisfies the L⊗ axiom. Furthermore

lim ≥ lim (regardless of whether lim satisfies L⊗).

Proof :

We prove that lim satisfies L1 and Lp. We know from Lemma 4.4.2 that

Lp implies L2. Let x ∈ X, a ∈ LX . Then

Uxlim(a) =
∧

F∈FS
L(X)

(limF (x) → F (a)) ≤ lim[x](x) → [x](a)
L1
= [x](a).

So lim[x](x) =
∧
a∈LX(Ux(a) → [x](a)) ≥ ∧

a∈LX([x](a) → [x](a)) = >.
Thus lim satisfies L1.

Again, let x ∈ X, a ∈ LX . Now

Ux
lim

(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a))
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=
∧

F∈FS
L

(X)

(
∧

b∈LX

(Uxlim(b) → F (b)) → F (a))

≥
∧

F∈FS
L (X)

((Uxlim(a) → F (a)) → F (a)) ≥ Uxlim(a).

Since lim satisfies L1, we have that

lim satisfies L⊗ ⇔ ∀x ∈ X, Uxlim ∈ FS
L(X).

(see Lemma 4.4.3). Thus, assuming that lim does satisfy L⊗, for x ∈ X we

can calculate

limUxlim(x) =
∧

a∈LX

(Uxlim(a) → Uxlim(a)) = >.

Then Ux
lim

(a) ≤ limUx(x) → Ux(a) = Ux(a). Thus if lim satisfies L⊗,

Uxlim = Ux
lim

for all x ∈ X . Then limF (x) =
∧
F∈FS

L
(X)(Uxlim(a) → F (a) for

all x ∈ X,F ∈ FS
L (X), so lim satisfies the Lp axiom.

Finally, let F ∈ FS
L (X), x ∈ X . Then

limF (x) =
∧

a∈LX

(Uxlim(a) → F (a))

=
∧

a∈LX

(
∧

G∈FS
L

(X)

(limG(x) → G(a)) → F (a))

≥
∧

a∈LX

((limF (x) → F (a)) → F (a)) ≥ limF (x).

Thus lim ≥ lim. Note that this is true regardless of whether lim satisfies
L⊗ or not. �

Lemma 5.2.21 : Let (X, lim) ∈ Ob (SL− GCS). Then

lim satisfies Lp 6⇒ lim satisfies L⊗.

Proof :

We prove that (X, lim) from our previous example (Example 5.1.16) satisfies
the Lp axiom. Hence, since we have already proved that it does not satisfy

the L⊗ axiom, we will have proved that Lp 6⇒ L⊗.
We know from Lemma 5.2.20 that lim ≥ lim always. Now lim satisfies

Lp iff lim = lim. Assume that lim does not satisfy Lp. Then ∃F ∈
FS
L (X) ∃ z ∈ X, limF (z) > limF (z). Now

limF (z) > limF (z) ⇔
∧

a∈LX

(Uzlim(a) → F (a)) > limF (z)

117



⇒ ∀ a ∈ LX , Uzlim(a) → F (a) > limF (z).

Assume z = x. Then Uxlim(>, α) = > and limF (x) = F (a), thus ∃ a ∈
LX , Uxlim(a) → F (a) 6> limF (x). But if we assume z = y then similarly
Uylim(α,>) = > and limF (y) = F (α,>) and thus ∃ a ∈ LX , Uylim(a) →
F (a) 6> limF (y). Thus we have that lim = lim, and lim satisfies Lp. �

Lemma 5.2.22 : Let (X, lim) ∈ Ob (SL− LIM),

(X, lĩm) ∈ Ob (SL− PCS). Then

lim ≤ lĩm ⇒ lim ≤ lĩm .

Proof :

Assume that lim ≤ lĩm. Let x ∈ X, a ∈ LX . Then

Uxlim(a) =
∧

F∈FS
L (X)

(limF (x) → F (a))

≥
∧

F∈FS
L

(X)

(lĩmF (x) → F (a)) = Ux
lfim(a).

Now let F ∈ FS
L(X). Then

limF (x) =
∧

a∈LX

(Uxlim(a) → F (a)) ≤
∧

a∈LX

(Ux
lfim(a) → F (a))

Lp
= lĩmF (x).

Thus lim ≤ lĩm. �

Remark 5.2.23 : Obviously, lĩm = lĩm since lĩm ≤ lĩm.

Lemma 5.2.24 : Let (X, limX)
φ−→ (Y, limY ) ∈ Mor (SL− LIM). Then

(X, limX), (Y, limY ) ∈ Ob (SL −PCS)

⇒ (X, limX)
φ−→ (Y, limY ) ∈ Mor(SL −PCS).

Proof :

Let x ∈ X, b ∈ LY . We calculate

Uφ(x)
limY

(b) =
∧

H∈FS
L

(Y )

(limY H(φ(x)) → H(b))
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≤
∧

G∈FS
L

(X)

(limY φ(G)(φ(x)) → φ(G)(b))

≤
∧

G∈FS
L(X)

(limX G(x) → G(φ←(b))) = UxlimX
(φ←(b)).

Now let F ∈ FS
L(X). Then

limY φ(F )(φ(x)) =
∧

b∈LY

(Uφ(x)
limY

(b) → φ(F )(b))

≥
∧

b∈LY

(UxlimX
(φ←(b)) → F (φ←(b)))

≥
∧

a∈LX

(UxlimX
(a) → F (a)) = limX F (x).

Thus we have that φ ∈ homSL−LIM((X, limX), (Y, limY )). Thus

(X, limX), (Y, limY ) ∈ Ob (SL −PCS) ⇒
φ ∈ homSL−PCS((X, limX), (Y, limY )).

�

Theorem 5.2.25 (see [21, 22] for the frame case): If L satisfies condition
M, then SL− PCS is a full reflective subcategory of SL − LIM

Proof :

Assume that L satisfies M. By Lemma 5.1.18, this is equivalent to the
condition that all (X, lim) ∈ Ob (SL− GCS) satisfy L⊗. We know from

Lemma 5.2.19 that SL −PCS is a full subcategory of SL− LIM. We define
a functor

F : SL− LIM → SL −PCS

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).

This is possible by Lemmas 5.2.20 and 5.2.24. Note that

(X, lim) ∈ Ob (SL− PCS) is guaranteed by the fact that lim satisfies the
L⊗ axiom. Since SL −PCS is a subcategory of SL − LIM, we also have

the inclusion functor

E : SL −PCS ↪→ SL− LIM

(X, limX)
φ−→ (Y, limY ) 7→ (X, limX)

φ−→ (Y, limY ).
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Let (X, lim) ∈ Ob (SL − LIM). Then E ◦ F (X, lim) = (X, lim) ≥ (X, lim).

Now let (X, limX)
φ−→ (Y, limY ) ∈ Mor (SL− PCS). Then F◦E((X, limX)

φ−→
(Y, limY )) = (X, limX)

φ−→ (Y, limY ). Thus F ◦ E = idSL−PCS and E ◦ F ≥
idSL−LIM. By Theorem 1.6.2, SL −PCS is a reflective subcategory of

SL − LIM. �

We know that if L satisfies M, then SL −PCS is topological over SET,
since it is a full reflective subcategory of SL −GCS. However it is inter-

esting to note that we can prove that SL −PCS is topological over SET

without invoking the L⊗ axiom or M. This raises the hope that SL− PCS

can be proved to be a reflective subcategory of SL −GCS in general.

Theorem 5.2.26 : SL− PCS is topological over SET. Furthermore it is
amnestic, fibre small and has the terminal separator property.

Proof :

SL −PCS is a full subcategory of SL −GCS (Lemma 5.2.19), hence it
is amnestic and fibre small. Since SL− GCS has the terminal separator

property, we need to prove that the unique generalized convergence structure
on the one point set {x} is also a principal convergence structure, in other

words, satisfies the Lp axiom. Let X = {x}. From Theorem 5.1.4, the
only convergence structure on X is given by limF (x) = > for F ∈ FS

L(X).

Now for a ∈ LX , Uxlim(a) =
∧
F∈FS

L
(X)(limF (x) → F (a)) =

∧
F∈FS

L
(X) F (a).

Thus

limF (x) =
∧

a∈LX

(Uxlim(a) → F (a)) = > = limF (x).

Thus lim satisfies Lp.

Let ∅ 6= X ∈ Ob (SET) and let ((Xi, limi))i∈I be a family of SL-principal
convergence spaces indexed by the class I . Let (φi : X → Xi)i∈I be a corre-

sponding family of functions. For F ∈ FS
L (X) we define

limX F =
∧

i∈I

φ←i (limi φi(F )).

Then we know from the proof of Theorem 5.1.4 that limX satisfies L1 and
L2 and further that all of the functions φi are continuous (in the category

SL −GCS) between (X, limX) and (Xi, limi). If we can prove that limX

satisfies Lp, then (X, limX) ∈ Ob (SL−PCS) and all of the φis are con-

tinuous in SL− PCS.
Let F ∈ FS

L(X), x ∈ X, i ∈ I . Then

limX F (x) =
∧

a∈LX

(UxlimX
(a) → F (a)) ≤

∧

b∈LXi

(UxlimX
(φ←i (b)) → F (φ←i (b))).
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Let b ∈ LXi . Then

UxlimX
(φ←i (b)) =

∧

G∈FS
L

(X)

(limX G(x) → G(φ←i (b)))

=
∧

G∈FS
L(X)

(
∧

j∈I

φ←j (limj φj(G))(x) → φi(G)(b))

≥
∧

G∈FS
L

(X)

(limi φi(G)(φi(x)) → φi(G)(b))

≥
∧

H∈FS
L (Xi)

(limiHi(φi(x)) → H(b)) = Uφi(x)
limi

(b).

Thus

limX F (x) ≤
∧

b∈LXi

(UxlimX
(φ←i (b)) → F (φ←i (b)))

≤
∧

b∈LXi

(Uφi(x)
limi

(b) → φi(F )(b))

= limi φi(F )(φi(x))
Lp
= limi φi(F )(φi(x))

= φ←i (limi φi(F ))(x).

Finally

limX F (x) ≤
∧

i∈I

φ←i (limi φi(F )(x) = limX F (x)

From Lemma 5.2.20, we know that limX ≥ limX , thus limX = limX . Thus
limX satisfies Lp.

We know from Theorem 5.1.4 that the source

S = ((X, limX)
φi−→ (Xi, limi))i∈I is initial. Since SL − PCS is amnestic we

have proved that SL −PCS is topological over SET. �

Discussion: Changing the definition of SL −PCS

Examining the proof of Theorem 5.2.26, we see that initial structures in

SL −PCS are formed in exactly the same way as in SL− GCS. This
leads us to suspect that SL− PCS could in fact be a reflective subcategory
of SL− LIM, and possibly the proof of Theorem 5.2.25 can be improved to

remove the dependence on the L⊗ axiom. In the final part of this section
we look at an attempted approach which initially seems as if it might be

successful, but ultimately fails.
We seek to find a functor F which maps objects and functors of SL − LIM

to SL −PCS in such a way that F (X, lim) ≥ (X, lim). As a candidate for
F (X, lim) we suggest (X, lim) where lim is defined as in Lemma 5.2.27.
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Lemma 5.2.27 : Let (X, lim) be an SL-generalized convergence space. As
in Lemma 4.2.11, we define

L0 ∀x ∈ X ∀ a ∈ LX , Uxlim(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a)).

We further define

NF ∀x ∈ X, N x
lim =

∧
{ G ∈ FS

L (X) | Uxlim ≤ G }.

Then ∀x ∈ X, Uxlim ≤ [x] and N x
lim ∈ FS

L (X).

Proof :

Let a ∈ LX . Then Uxlim(a) ≤ lim[x](x) → [x](a) = > → [x](a) = [x](a).
Thus Uxlim ≤ [x]. The set { G ∈ FS

L (X) | Uxlim ≤ G } is non-empty, thus
N x

lim ∈ FS
L(X). �

Lemma 5.2.28 : Let (X, lim) ∈ Ob (SL −GCS). Define lim as in Lemma
5.2.27. Then

Ux
lim

= N x
lim.

Proof :

Let a ∈ LX . Then

Ux
lim

(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a))

=
∧

F∈FS
L (X)

(
∧

b∈LX

(N x
lim(b) → F (b)) → F (a))

≥
∧

F∈FS
L

(X)

((N x
lim(a) → F (a)) → F (a)) ≥ N x

lim(a)

Thus Ux
lim

≥ N x
lim. Also we have

limN x
lim(x) =

∧

a∈LX

(N x
lim(a) → N x

lim(a)) = >

Thus Ux
lim

(a) ≤ > → N x
lim

(a) = N x
lim

(a). So Ux
lim

= N x
lim. �

Lemma 5.2.29 : Let (X, lim) ∈ Ob (SL −GCS). Define lim as in Lemma
5.2.27. Then

lim = lim ⇔ lim satisfies L⊗ and Lp.

122



Proof :

Assume lim = lim. Then N x
lim = Ux

lim
= Uxlim. Thus lim satisfies L⊗.

Furthermore for F ∈ FS
L(X), x ∈ X ,

limF (x) = limF (x) =
∧

a∈LX

(N x
lim(a) → F (a)) =

∧

a∈LX

(Uxlim(a) → F (a)).

Thus lim satisfies Lp.
For the converse, assume that lim satisfies L⊗ and Lp. Then Uxlim ∈

FS
L (X). Thus Uxlim = N x

lim. So for F ∈ FS
L(X), x ∈ X ,

limF (x) =
∧

a∈LX

(N x
lim(a) → F (a)) =

∧

a∈LX

(Uxlim(a) → F (a))
Lp
= limF (x).

Thus lim = lim. �

Lemma 5.2.30 : Let (X, lim) ∈ Ob (SL −GCS). Define lim as in Lemma
5.2.27. Then (X, lim) ∈ Ob (SL−PCS).

Proof :

By Lemma 5.2.28, Ux
lim

= N x
lim ∈ FS

L(X). Thus N x
lim

= Ux
lim

= N x
lim. Let

F ∈ FS
L(X), x ∈ X . Then

limF (x) =
∧

a∈LX

(N x
lim

(a) → F (a)) =
∧

a∈LX

(N x
lim(a) → F (a)) = limF (x).

Thus by Lemma 5.2.29, lim satisfies Lp and L⊗. It is obvious that lim
satisfies L1 and L2, hence (X, lim) ∈ Ob (SL− PCS). �

Lemma 5.2.31 : Let (X, lim) ∈ Ob (SL −GCS). Define lim as in Lemma

5.2.27. Then
lim ≥ lim ⇒ lim satisfies L⊗.

Proof :

By definition (see Lemma 5.2.27), ∀x ∈ X, Uxlim ≤ N x
lim. Assume lim ≥

lim. Let x ∈ X, a ∈ LX then by Lemma 5.2.28,

Uxlim(a) =
∧

F∈FS
L

(X)

(limF (x) → F (a))
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≥
∧

F∈FS
L

(X)

(limF (x) → F (a) = Ux
lim

(a) = N x
lim(a).

Thus Uxlim = N x
lim ∈ FS

L (X), thus lim satisfies L⊗. �

Remark 5.2.32 : We know by Lemmas 5.2.19 and 5.2.21 that we have an

example of an SL-limit space (X, lim) which does not satisfy L⊗. Thus for
this limit space by Lemma 5.2.31, lim 6≥ lim. Thus (X, lim) 6≥ (X, lim).

Hence our proposed functor F fails to have the required properties and we
cannot use this functor to prove that SL− PCS is a reflective subcategory

of SL− LIM.

Topological convergence spaces

Objects of SL− TCS satisfy the axioms L⊗ and Lt in addition to the L1,

L2 and Lp axioms. Hence Ob (SL−TCS) ⊆ Ob (SL− PCS). Again, we
have that

φ ∈ homSL−TCS((X, limX), (Y, limY )) ⇔
φ ∈ homSL−PCS((X, limX), (Y, limY )).

Thus SL −TCS is a full subcategory of SL −PCS.
We know that if we structure L so that the L⊗ axiom is satisfied for all

SL-generalized convergence spaces over L, in other words, if L satisfies con-
dition M, then SL −TCS is a full, reflective subcategory of SL −GCS and

there exist functors F : SL −GCS → SL − TCS and G : SL− TCS →
SL −GCS such that G is the inclusion functor and

G ◦ F ≥ idSL−GCS and F ◦G = idSL−TCS.

If we now restrict F to the objects of SL −PCS, then we obtain

G ◦ F ≥ idSL−PCS and F ◦G = idSL−TCS.

so SL −TCS is a full, reflective subcategory of SL− PCS if L is structured
so that the L⊗ axiom is satisfied by all L-convergence spaces.
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Chapter 6

Conclusion

In summary, we have successfully characterized stratified L-topological

spaces (X,∆) by axioms on a convergence function lim: FS
L (X) → LX . In

particular, we found that such a function must satisfy the axioms L1, Lp,

Lt and L⊗. The L⊗ axiom is a new requirement which is always satisfied
by lim in the previously known case where L is a frame. We showed that

the L⊗ axiom is not always satisfied and is not implied by L1, L2 or Lp.
We showed in the category SL− GCS whose objects satisfy L1 and L2,

that all such objects satisfy L⊗ if and only if the monotonicity condition
M is satisfied. The monotonicity condition includes the important special
cases of frames and those ecl-premonoids defined by a GL-monoid and the

associated monoidal mean operator.
We have formulated the generalizations to the ecl-premonoid case of the

Kowalski and Fischer axioms, LK and LF and investigated their relationship
to the generalized Lp and Lt axioms. Also we have generalized Jäger’s

previous results ([23, 24]) and shown that the Lp axiom is equivalent to the
requirement that two simpler, independent axioms are satisfied, LpW1 and

LpW2.
We have defined the category SL − GCS of SL-convergence spaces, and

shown that it is topological over SET and contains a reflective subcate-
gory SL −TCS, isomorphic to SL −TOP, if the monotonicity condition
is satisfied by L. Although strictly speaking outside the scope of the thesis,

as a first step towards investigating cartesian closedness of SL −GCS we
have made some definitions based on the structures used to prove cartesian

closedness in the frame case. We have left as an open problem the question
as to whether the category SL −GCS⊗ whose objects satisfy L1, L2 and

L⊗ is topological over SET.
We have investigated some subcategories of SL −GCS, defined by re-

stricting the objects of SL −GCS with axioms which are generalizations of
axioms which have proved important in the classical case (see e.g. [26]).

In particular we have shown that SL −KCS, the category of SL-Kent
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convergence spaces, is a reflective subcategory of SL −GCS. Similarly
SL − LIM, the category of SL-limit spaces, is a reflective subcategory of

SL −KCS. The L3 axiom which defines SL− LIM required some care to
generalize. We have shown that SL −PCS, the category of SL-principal

convergence spaces, is a reflective subcategory of SL − LIM if all spaces in
Ob (SL− LIM) satisfy L⊗. However we managed to prove that SL− PCS

is topological over SET, with initial stuctures formed in the same way as
for SL− LIM. This leads us to speculate that perhaps SL− PCS is a re-

flective subcategory of SL− LIM in general, although we have left this as
an open problem.

Probably the most useful issue which could be addressed by future re-
search is a search for a simpler formulation of the L⊗ axiom. Although many
of the important special cases are covered by restricting the lattice with the

monotonicity condition, the fact remains that examples of SL-topological
spaces exist even when L does not satisfy M. A simpler formulation of L⊗
would enable us for example to investigate conditions under which categories
are topological over SET when the objects are required to satisfy L⊗.
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