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..... ...... to all who are oppressed by the ignorance of others and to ev­

eryone who is seeking himself or herself. Remember to take a chance! 

All life is a chance. The person who goes furthest is generally the one 

who is willing to do and dare. The 11SUre thing}) boat never gets far 

from the shore. Also remember that the purpose of life is to live a life 

of purpose ....... . 



Abstract 

The simplest and most widely used queueing model in call centres is the M / M / k 

system, sometimes referred to as Erla11g-C. For many applications the model is an 

over-simplification. Erlang-C model ignores among other things busy signals, customer 

impatience and services that span multiple visits. Although the Erlang-C formula is 

easily implemented, it is not easy to obtain insight from its answers (for example, to find 

an approximate answer to questions such as "how many additional agents do I need if 

the arrival rate doubles?"). An approximation of the Erlang-C formula that gives struc­

tural insight into this type of question would be of use to better understand economies 

of scale in call centre operations. Erlang-C based predictions can also turn out highly 

inaccurate because of violations of underlying assumptions and these violations are not 

straightforward to model. For example, non-exponential service times lead one to the 

M /G/k queue which , in stark contrast to theM/ M/k system, is difficult to analyse. 

This thesis deals mainly with the general M/GI/k model with abandonment. The 

arrival process conforms to a Poisson process, service durations are independent and 

identically distributed with a general distribution, there are k servers, and independent 

and identically distributed customer abandoning times with a general distribution. This 

thesis will endeavour to analyse call centres using M/GI/k model with abandonment 

and the data to be used will be simulated using EZSIM-software . The paper by Brown 

et aJ [3] entitled "Statistical Analysis of a Telephone Call Centre: A Queueing-Science 

PerspectiYe," will be the basis upon which this thesis is built. 

Key Words call centre; contact centre; queueing theory; multiserver queue; Poisson pro­

cess; service t imes; arrival t imes; uniform distribution; exponential distribution; 

multiserver queue with customer abandonment. 
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Basic Notation and Abbreviations 

Basic Notation and Abbreviations 

ACD: automatic call distributor 

CTI: computer telephone integration 

I\' R: interactive voice response 

PBX: private branch exchange 

ICT: information and communication technology 

FCFS: first come first served 

LIFO: las t in first out 

M/M/k: Erlang-C model 

M/ M/k/ k: Erlang-B model 

M/M/k/r + M: Erlang-A model 

L: average number of customers in the system 

Lq: average number of customers in the queue 

W: average amount of time a customer spends in the system 

W q: average amount of t ime a customer spends in the queue 

V: virt ual wait ing t ime 

P n: steady-state proportion of time that the birth and death process is in state n 

p: traffic intensity or utilisation factor 

>.: arrival rate 

f..L: service rate 

e: abandonment rate 

X 



1 INTRODUCTION 

1.1 Background 

Queueing theory was conceived by A. K. Erlang (Erlang (1917) !AI) at the beginning of 

the 20t h century and has flourished since, to become one of the central research themes 

of Operations Research. T he study of queues with multiple servers dates back over fifty 

years to the seminar paper of Kiefer and Wolfowitzs (Dvoretzky, Kiefer and Wolfowittz 

(1956) IB]). During the last two decades, there has been an explosive growth in the 

number of companies that provide services via the telephone as well as in the variety of 

telephone services provided. Companies that offer services via the telephone are called 

call centres and are mathematically modelled as queueing systems and analysed using 

queueing theory. Multi-server queueing plays a central role in the aualysis of call centre 

data. 

The rapid growth of telephone call centres and in general contact centres has generated 

interest in the pcrformanec of multiscrver queueing models. The call centre industry is 

thus vast and rapidly expanding in terms of both workforce and economic scope. More 

broadly, the ecmtinued growth in both the economic importaucc and c:omplcxity of call 

centres has prompted increasingly deep investigation of their operations. This is mani­

fested by a growing body of academic work devoted to call c~entrcs; research raugiug in 

discipline from f\1athematics and Statistics, through to Operations Research, Industrial 

Engineering, Iuformation Technology and Human Resource :vianagcment, all the way to 

Psychology and Sociology. Call centres are generally multiserver systems and often have 

1 



1.2. AIMS AND OBJECTIVES 2 

a very large number of servers. Therefore it is natural to look for insight into system 

performance. T he goal is to improve the quality and the efficiency of the service of call 

centres using multiserver queueing models. 

A cent ral challenge in designing and managing a service operation in general and a 

call centre in particular , is to achieve a desired balance between operational efficiency 

and service quality. Typically, call centre goals arc formulated ba.<>ed on the provision of 

service at a given quality, subject to a specified budget. There is need for continuous 

research to achieve a balance between operational efficiency and service quali ty. 

1.2 Aims and Objectives 

The aim of this thesis is to analyse call centres using the M/GI/k/r+Gl system. The 

process conforms to Poisson arrivals, service durations are independent and identically 

distributed with a general djstribution, abandonments are independent and identically 

distributed with a general distribution, there are k servers and r extra wajting spaces. 

The objectives are to: 

• usc M/Gl /k/r + GI systems to model call centres; 

• calculate the mean service t ime, mean delay and mean utilisation; 

• cakulate proportion of time servers arc idle or busy; 

• calculate the probability of abandoning. 

1.3 Significance of the Thesis 

The rapid growth of tclcphoue call centres aud more geueral customer contact centres ha.o; 

generated renewed interest in the performance of multiserver queuE>ing models when the 
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number of servers is large. Queues in service operations are often the arena where cus­

tomers, service providers (servers or agents) and managers establish contact in order to 

jointly create the service experience. Process-wise, queues play in services much the same 

role as inventories in manufacturing. But in addition, "human queues" express prefer­

ences, complaints, abandonment and even spread around negative impressions. Managers 

can use queues as indicators for control and opportunities improvement. Indeed, queues 

provide unbiased quantifiable rnea...'iures, in terms of which performance is relatively easy 

to monitor and goals are naturally formulated. 

Technological progress has significantly affected the development of the call-centre in­

dustry. Computer-Telephone Integration (CTI) provides numerous opportuni ties for 

combining telephone services with e-mail and internet services. Consequently, many 

rail ecntrcs evolve to contact. centres; a. big, growing, complicated and increasingly im­

portant part of the business landscape. Lots of data is gathered in telephone switches 

and call traeking databases. 

Research in quantitative call centre mana.gelllcnt is concem cd vvith the development of 

scientifically-based design principles and tools ihat support and balance service quality 

and efficiency. Queueing models constitute a natural convenient nurturing ground for the 

development of such principles and tools. Therefore the need to research along this line 

is of paramount importance. Even though there has been distinguished research along 

these lines (for example, Whitt (2005) j16] and Avramidis [2]), much remains to be done 

because the multi-server queue presents a formidable challenge. 
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1.4 Layout of the Thesis 

This thesis has six chapters, of which the present one, the introduction. is the first chapter. 

Chapt.cr two details lit.erat.urc review of Qucuein~ theory and discusses all those models 

that can be used in call centres and chapter 3 discusses literature review of call centres. 

The methodology to be used in t.his research is covered in c:hapt.er four. Detailed analysis 

of the thesis is done in chapter five and the results are presented. Recommendations and 

conclusion will be presented in the last chapter of this thesis, chapter six. 



2 QUEUEING THEORY 

Congestion is a natural phenomenon in real systems. A service facility gets congested if 

there are more people t han the server(s) can possibly handle. Very often the congestion is 

caused by variability in the arrival pattern of the customers or in the service mechanism or 

both. Therefore, any model must be expressed in terms of random processes and should 

yield conclusions in probabilistic terms. Queueing is therefore the mechanism that is 

used to handle congestion and helps to organise the various elements of the system in a 

manner conducive to modelling. 

Queueing theory - is a branch of applied mathematics which attempts to construct and 

analyse models for what might be called unpredictable congestion. 

Queueing system - consists of a servicing facility, a process of arrival of customers who 

wish to be served by t he facility and the process of service. 

l\1any recent developments in queueing theory have been driven in large part by a great 

interest in applications that involve human customers (for example, in the rapidly growing 

call centre sector). 

2.0.1 Why Queueing Theory? 

Networks and computers running multiuser. and multitasking operating syst.cms can be 

viewed as interconnected queueing systems. 

5 



2.1. PROBABILITY DISTRIBUTIONS 6 

• Uses of queueing analysis are to: 

- analyse and understand system behaviour using real life data; 

- project from an existing system to a future system; 

- develop an analytic model for use in designing a system and 

- create simulations that models a system. 

• Queueing theory can be used to analyse the performance of: 

- computer systems: 

- networks; 

- medical facilities , transportation systems, etc and 

- rall or contaet centres. 

For detailed understanding of queueing theory, there is need for complete understanding 

of probability distributions, since queueing theory is rooted in them. 

2.1 Probability Distributions 

Probability theory provides the foundation for queueing theory and probability theory 

itself is rooted in set theory. For the sake of completness, some of the fundamental 

notions of probability are briefly described in what follows. 

Sample space - is a set of all possible outcomes of an experiment. 

An event - is a subset of a sample spacr.. The mathematical definition of an event 

involves t he notions of sample space and Borel fields, but for practical purposes, 

the intuitive notion of an event. is sufficient. Examples of t.he kind of events of 

interest in queueing theory are; an arbitrary customer finds the server(s) busy, an 

arbitrary customer must wait more than two minutes for service or t he number of 

waiting customers at certain time is n. 
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Events are called mutually exclusive if their intersection is an empty set (that is, if t he 

occurrence of one excludes the possibility of the other occurring) . A set of events is said 

to be exhaustive if the union of the events is the same as the sample space. 

Random variable - is a real valued function defined on the sample space. It is the 

outcome of the experiment that is random and not the assigning of a real valued 

number to each possible outcome of the experiment. 

Random variables are denoted by capital letters, X, Y , etc. The expected value or 

mean of X is denoted by E(X ) and its variance by a 2 (X). where a(X) is the standard 

deviation of X. An important quantity is the coefficient of variation of the positive 

random variable X , defined as 
a(X) 

ex= E(X) 

T he coefficient of variation is a dimensionless measure of the variability of the randow 

variable X. 

Consider a sample space S. Let A be a subset of S then, the probability of A is the 

function on S denoted as P(A) and satisfies the following three axioms: 

1. 0 ~ P (A) ~ 1. 

2. P(S) = 1. 

3. The probability of the union of mutually exclusive events is equal to the sum of the 

probabilities of these events, i.e. P(U:1 Ai) = 2:::1 P (Ai) where Ai arc mutually 

exclusive events fori= 1, ... , oo. 

We use the notation P(A I B) for the conditional probability of A given B (the probability 

that event A occurs given that event B is known to have occurred). It is defined as 

P(A I B)= P(AnB) 
P(B) 
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If events A and B are independent (that is, if one of them occurs then the probability of 

the other to occur is not affected ), then 

P(A I B)= P(A), 

which implies that 

P(A n B) = P(A)P (B ) 

2.1.1 Discrete Probability Distributions 

This section discusses a number of important distributions which have been found useful 

for describiug the distribution of random variables in queueing theory. 

2.1.1.1 Bernoulli Distribution 

Consider an experiment which has only two possible outcomes. Let us call them ''success11 

and "failure11
• These two outcomes are mutually exclusive and exhaustive events. The 

Bernoulli random variable assigns the value X = 1 to the "success 11 outcome and the value 

X = 0 to the "failure 11 outcome. Let p be the probability of the "success 11 outcome. Since 

"success11 and "failure 11 are mutually exclusive and exhaustive events, the probability of 

the "failure 11 outcome is 1 - p. The probability distribution function in terms of the 

Bernoulli random variable is: 

where p is such that, 0 ~ p ~ 1. 

2.1.1.2 Binomial Distribution 

P(X = 1) = p, 

P(X = 0) = 1 - p 

Assume that n indepcndcut Bernoulli trials arc performed, let X be a randolll variable 

representing the number of successes in these n trials. Such a random variable is called 



2.1. PROBABILITY DISTRIBUTIONS 9 

binomial random variable with parameters n and p. Its probability function is given by 

fori= 0, 1, 2, ... , n. 

2.1.1.3 Poisson Distribution 

Among the discrete probability distributions, the Poisson distribution is the most appli­

cable in queueing theory. A Poisson random variable with parameter A, where A > 0, 

has the following distribution 

fori= 0, 1, 2, ... , oo. 

The Poisson random variable accurately models t he number of calls arriving at a tele­

phone exchange or internet service provider in a short period of time; for example a few 

seconds or a minute. The importance of the Poisson random variable lies in its property 

to approximate the binomial random variable in cases when n is very large and p is very 

small , so that n *pis neither too large nor too small. The Poisson process N(t) usually 

represents the number of events in an interval [0, t], such that: 

l. the number of events occurring in an interval of length t is independent of the 

number of events occurring in any other non-overlapping interval of length t; 

2. the distribution of N(t) is the same for all intervals of length t, no matter where 

the interval begins; 

3. two events cannot occur simultaneously and 

4. no matter how small t is, there is a positive probability that an event will occur in 

the interval [s, s+tJ. 
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The first two relate to the idea of independent and stationary increments, respectively. 

The Poisson distribution has been successfully used to describe such diverse phenomena 

as the number of busy channels in a telephone system, customer demand for service, etc. 

2.1.2 Continuous Probability Distributions 

There are five r.ontinuous random variables that are of particular iut.erest in queueing 

theory. These are uniform, exponent ial , gamma, Erlang and Weibull distributions. 

2.1.2.1 Uniform Distribution 

The uniform distribution is a continuous type of distribution, which may assume any 

value on a real line segment of nonzero length. The probability density function of the 

uniform random variable takes non-negative values over the interval (a, b) and is given 

by 

{ 

b~a, if a < X < b 
f( x) = 

0, elsewhere 

A uniform random variable over the interval (0, 1) is very important in simulations. 

Almost all computers programs have a function which generates uniform (0, 1) random 

deviates. 

2.1.2.2 Exponential Distribution 

The most common stochastic queueing models assume that inter-arrival times and service 

times are exponentially distributed. It is one of the most important continuous distri­

butions in queueing theory. The density of an exponential distribution with parameter 

A> 0 is given by 

{

Ae- .\x, 
f(x) = 

0, 

if X~ 0 

otherwise 
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An exponential random variable can be used to model the time until the next call arrives 

at a switch board. Interestingly, such time does not depend on how long ago the last 

call was received. This property is called the memory-less property of a random \·ariable. 

!\lore precisely, a random variable is said to posses the memory-less property if, P (X > 

t + s I X > t) = P(X > s) . This is true for the exponential distribution and is proved 

as follows 

P (X > t + s I X > t) = 

= 

= 

P(X>t+s, X>t) 
P(X >t) 

P(X >t+s 
P(X>t 

e->-(t+•) 
e Xt 

e->-te->.s 
e Xt 

= P(X > s) 

The exponential distribution is the only continuous distribution that exhibits the memory­

Jess property (Ylarkovian property). This property of the exponential random variable 

makes it useful in describing inter-arrival times and service times in queueing theory. As 

shall be shown later , the exponential random variable is integrally related to the Poisson 

random variable. This relationship will prove to be of paramount importance throughout 

the discussion of queueing theory. 

If X 1, X2, ... , Xn are independent exponential random variables with parameters A1 , 

A2, . . . , An respectively, then min(X1, X2 , ... , Xn) is again an exponential random vari­

able with parameter Al +A2 + · · · +An and the probability t hat Xi is the smallest one 

is given by >-;j(.>q+..\2+ .. +>-n), i = 1, 2, ... , n. This can be seen as follows , let X 1 and X 2 

be exponentially distributed random variables with parameters Al and A2 . It is also of 

interest to know the distribution of X= min(X1, X2) . In other words, we are interested 

in the distribution of the t ime that passes until the first one of the two random variables 
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X 1 and X 2 occurs. Note that, 

P(X > t) = P(min(X1 , X2) > t) 

= P (X1 > t , X2 > t) 

= P(X1 > t)P(X2 > t ) by independence of xl and x2 

= e-><~t e->.2t 

= e-(>., +>.2)t 

Thus, the distribution of X is exponential with parameter /\1 + >.2 . 

2.1.2.3 Gamma Distribution 

Let Y1 , Y2, .. . , Yn be the times between the occurrence of n + 1 successive events. Define 

X as 
n 

X= L Yi 
i=l 

• If Yi is an exponential random variable with parameter>.> 0, i = 1, 2, ... , nand 

li' s are independent , t hen X is gamma distributed with density function 

where 

{

1, if X E (0, oo) 
J(O,oo)(x) = 

0, elsewhere 

A more general form of the gamma density function is 

where 



2.1. PROBABILITY DISTRIBUTIONS 13 

If a: is a positive integer, it is easy to show that r(a:) = (a:- 1)! 

• If a is not an integer, the gamma random variable cannot be represented by the 

sum of identically distributed exponential random variables. 

• If a= 1, the gamma density function reduces to an exponential density function. 

2.1.2.4 Erlang Distribut ion 

The Erlang distribution is a continuous probability distribution developed by A. K. 

Erlang. It is a random variable that is closely related to exponential and gamma random 

variables. The Erlang distribution is a special case of the gamma distribution when 

the shape parameter is an integer. It represents the sum of a series of exponential 

distributions. A Gamma(a, b) distribution is equal to an Erlang(m, b) (where the first 

and second values are the scale and shape parameters respectively) distribution with 

a = m , when a is an integer. To illustrate how this random variable arises in the context 

of queueing theory, let us consider a service facility that services units at rate J..L. Service is 

performed in k pha..o:;es, where the distribution of service time in each phase is exponential 

with rate kJ..L. If Yi is the time the unit spends in the ith phase, i = 1, 2, ... , k, then the 

density function of Yi is given by 

The total time, X, spent in service is then 

k 

X= LYi 
i=l 

Since the dh;tribution of the sum of exponential distribution is a gamma, therefore t he 

density function of X is 
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Therefore, an Erlang distribution is gamma distribution with >. = kJ.L. 

A. K. Erlang worked a lot on traffic modelling. T he Erlang distribution was developed 

to examine the number of telephone calls which might be made at the same time to the 

operators of the switching stations. This work on telephone traffic engineering has been 

expanded to consider waiting times in queueing systems in general. Thus, there are two 

Erlang models, both used in modelling t raffic: 

• Erlang-B model; this is the easier of the two, and can be used, for example, in a 

call centre to calculate the number of trunks one needs to carry a certain amount 

of phone traffic wit h a certain "target service" (see Vose (2007) [20]). 

• Erlang-C model; this formula is much more difficult and is often used, for example, 

to calculate how long callers will have to wait before being connected to an agent 

in a call centre. 

2.1.2.5 Weibull Distribution 

The Weibull distribution is one of the most commonly used distributions in reliability 

engineering because of the many shapes it attains for various values of the slope parameter 

([3) . It models a great variety of data and life characteristics. 

• If (3 = 1, the Wei bull distribution is identical to the exponential distribution; 

• if {3 = 2, the Weibull distribution is identical to the Rayleigh distribution; 

• if (3 is between 3 and 4, the Weibull distribution approximates the normal distri­

bution. 

• The Weibull distribution approximates the log-normal distribution for several val­

ues of fJ for exa.mplefJ = 0.18. For mosl populations, more thatt fifty samples arc 

required to differentiate between the Weibull and log-normal distributions. 
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The 2-parameter Weibull probability density function is given by 

where T 2: 0, f3 > 0, ·17 > 0 

and 

• 17 = scale parameter, 

• (3 = shape parameter (or slope). 

The Wei bull distribution is extremely flexible. It is capable of representing a wide variety 

of data including left-skewed, symmetrical and right-skewed distributions. 

2.1.3 Poisson Process 

When the Poisson random variable was discussed, properties that it possesses were de­

fined. The relationship between exponential and Poisson random variables was pointed 

out. Let us examine these properties in detail. 

Let us consider an arrival process {N(t), t 2: 0}, where N(t) denotes the total number 

of arrivals up to timet, with N(O) = 0, and which satisfies the following assumptions: 

1. The number of e\·cnts occurring in au interval of length t is independent of the 

number of events occurring in any other non-overlapping interval of any length 

(indcpendeut iucrements) . The distribution of N ( t) is the same for all intcn·als of 

the length t, no matter where the interval begins (stationary increments). 

2. The probability that an arrival occurs between t and t + h is equal to )..h + o(h). 

This is written as P(N(h) = 1) = )..h + o(h) , where ).. is a constant independent 
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of N(h) , h is an incremental element and o(h) denotes a quantity that becomes 

negligible when compared to h as h-+ 0: that is, 

lim o(h) = 0 
h->0 h 

3. P(more than one arrival between t and t +h) = o(h), that is, P(N(h) 2': 2) = o(h). 

By definition, the Poisson process has stationary increments, that is, for any t2 > h, 

the random variables N(t2) - N(tJ) and N(t2 + u)- N(t1 +u) have the same distribution 

for any u > 0. In both cases, the distribution is Poisson with parameter, >.(t2 - t1). 

If N(h) has a Poisson distribution, with parameter >.h, then 

P (N(h) = 0) = e- >.h 

= 1- >.h + (-;~)2 + <-;~)3 + ... 

= 1- >.h + o(h) 

where 

g(h) =(-;~)
2 + <-;~)3 + .. . is o(h) and we have used the Taylor series for ex= 1 + x + 

x2 x1 x4 . h - 'h U . h' l 2T + 3T + 4T + ... wit x- "' . smg t IS resu t 

P(N(h) = 1) = >.hP(N(h) = 0) 

= >.h(1- >.h + <-;~)2 + <-;~) 3 + ... ) 
= >.h- (>.h)2 + (>.~)3 - (>.~)4 + .. . 

= >.h+o(h) 

2 (>.h)3 (>.h)4 
. ( ) . • !!..® -where g(h) =-(>.h) + 2, - 3! + .. . IS an o h smce hmh_.O h - 0 

The Poisson process is an extremely useful process for modelling purposes in many prac­

tical applications, for example, to model arrival processes for queueing models or demand 

processes for inventory systems. It is empirically found that in many circumstances, the 

arising stochastic processes can be well approximated by a Poisson process. 
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2.2 General Description of a queueing system 

Among others, a queueing model is characterized by 

• The arrival process of customers. 

Usually we a.c;;sume that the inter-arrival times arc independent and have a common 

distribution. In many practical situations, customers arrive according to a Poisson 

process (that is exponential inter-arrival times) . Customers may arrive ouc by ouc 

or in batches. An example of batch arrivals is the customs office at the border 

where travel documents of bus passengers have to be checked. 

• The behaviour of customers. 

Customers may be patient and willing to wait or customers may be impatient and 

leave after a while. For example, in call centres, customers will hang up when they 

have to wait too long before an operator is available and they may possibly try 

again after a while. 

• The service times. 

Usually we assume that the service times are independent and identically dis­

tributed, and that they are independent of the inter-arrival times. For example, 

the service times can be deterministic, exponentially distributed or have a general 

distribution. It can also occur that service times are t ime-dependent or dependent 

on queue length. For example, the processing rates of the machines in a production 

system can be increased once the number of jobs \Vaiting to be processed becomes 

too large. 

• The service discipline. 

Customers can be served one by one or in batches (bulk servers such as buses, 

elevators, etc. can serve more than one customer at a time). We have many possi­

bilities for the order in whieh they enter serviec. 
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These are: 

- first eorne first served; or first in, first out (FIFO), that is in order of arrival; 

- service in random order (SIRO), zero length; 

- last come first served; or last in, first out (LIFO); 

- priorities (for example rush orders first, shortest processing time first or cus-

tomers with high priority are served first); 

- proecssor sharing (iu eomputers that equally divide their proeessing power over 

all jobs in the system). Customers are served equally and they all effectively 

experience the same delay. 

• The service capacity. 

There may be a single server or a group of servers helping the customers. 

• The waiting room. 

There can be limitations with respect to the number of customers in the system. 

For example, in a data communication network, only finitely many cells can be 

transmitted in a switch. 

2.2.1 Notation 

A commonly used shorthand notation, called Kendall notation, for queue models de­

scribes the arrival process, service distribution, the number of servers and the buffer size 

(waiting room) as follows 

arrival process/ service distribution/number of servers/waiting room 
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Commonly used characters for the first two positions in this shorthand notation are: 

• D- Deterministic, 

• M - ~arkovian (Poisson for the arrival process or Exponential for the service time), 

and M stands for memory-less, 

• G- General distribution, 

• GI- General and independent distribution. 

The first position specifies the inter-arrival time distribution and the second one, the 

service time distribution. The third position specifies the number of servers (k) and 

the fourth position is used for the number of buffer places in addition to the number of 

servers and it is usually not used if the waiting room is unlimited. 

For example, M / M / 1 denotes a single-server queue with Poisson arrival process and 

exponential service time with infinite buffer places. An M/G/k/k denotes a queue 

with k-servers and no additional waiting room except at the servers, with t he arrival 

process being Poisson and the service time following a general distribution. 

2.2.2 Utilisation 

An important measure for queueing systems' performance is the utilisation. 

Utilisation - is the proportion of t ime t hat a server is busy on average. 

If we have multi-server queues then the system ut ilisation is the average of individual 

server utilisation. 

Major characteristics that need to be studied to understand the behaviour of a queueing 

system a.re the queue length (number of customers waiting at time t), the waiting t ime 

(the time a new arrival will have to wait till his service commences) and the length of 
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the busy period {the length of time when the server will be continuously busy). These 

factors are dependent on the input process, service mechanism and the queue discipline, 

which are subject to uncertainties and hence, are better described as random variables. 

The queue length and the waiting time are stochastic processes {family of random vari­

ables indexed by a t ime parameter) whose behaviour is given by transition distributions, 

whereas t he busy period is a random variable whose distribution is of particular inter­

est. Expected values and other moments of these distributions need to be obtained for a 

greater understanding of the processes involved. 

2.2.3 Cost Equation 

Consider a system in equilibrium in which c·ustonwrs arrive, remain in t.he system for a 

length of time, and then depart. Let Aa be t he arrival rate of customers who actually enter 

the system, W and W Q be the mean waiting t inw in the system and queue respectively, 

and L and LQ be the mean number of customers in the system and queue respectively. 

If entering customers are required to pay money according to some rule to the system, 

then we have the following basic cost identity: 

average rate at which the system earns= Aa*average amount an entering customer pays 

(2. 1) 

Equation 2.1 is an important and simple queueing theory result that applies to G/G/1 

queues (and to other systems). It is known as Little's formula. Suppose t hat in the basic 

cost identity, each customer pays $1 per unit t ime while in the system, then equation 2.1 

yields 

(2.2) 

The well known Little's formula embodied in equation 2.2 is one of tlw general and useful 

results in queueing theory. Little's formula applies to any system in equilibrium in which 

customers arrive, spend a certaiu amouut of time anrl depart. Its applicability is not 

limited to single-server queues, or single queue systems, or systems with infinite buffer. 
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It was first proved by John D. C. Little (Ross (2000) [12]) in the context of a steady-state 

queueing theory system. Little's theorem can be applied to the queue itself, that is: 

(2.3) 

If the cost rule is applied to service, then we obtain: 

average number of customers in service= >-aE[S] (2.4) 

where E[S] is defined as the average amount of time a customer spends in service. Little's 

formula gives a very important relation among the mean number of customers in the 

system, the mean service time and the average number of customers entering the system 

per unit time. It assumes that the capacity of the system is sufficient to deal with the 

customers (that is, the number of customers in the system does not grow to infinity). 

2.2.4 Steady-State Probabilities 

This thesis will only deal with stationary type of continuous Markov chains. Let X (t) 

denote the number of customers in the system at timet and define Pn, n ~ 0, by 

Pn = lim P{X(t) = n} 
t -+oo 

If the limit exists, then P n is the limiting or long-run probability that there will be n 

customers in the system. In most of the cases, it turns out to be the long-run proportion 

of time that the system contains exactly n customers. There are two other sets of limiting 

probabilities {an , n ~ 0} and {dn, n ~ 0}, where 

a11 =proportion of customers that find n customers in the system when they arrive 

dn =proportion of customers leaving behind n customers in the system when they d~opart 
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In a system in which customers arrive one at a time and are served one at a time, 

these two proportions will be equal (that is an = dn) , since in the long-run, the rate of 

transitions from n to n + 1 equals the rate from n + 1 to n. This means t hat the rate 

at which arrivals find n equals the rate at which departures leave n. Hence, on average, 

arrivals and departures always sec the same number of customers (Ross ( 2000) [1 2]). 

2.3 Single Server (Channel) Queues 

2.3 .1 Single Server Exponential Queueing System (M/M/1) 

In the M / J'vf /1 process, the queue-size increases by only one, decreases by only one and 

stays an exponential amount of time at each state. It is equivalent to a birth-and-death 

process. In this queue t he first two M s refer to the fact that both the inter-arrivals and 

service dist ributions are exponential, that is, they are ~larkovian or memory-less and 

1 means that there is a single server. Using the idea that in the long run, the rate at 

which transitions into state j occur must equal the rate at which transitions out of state 

j occur, we can determine the limiting probabilities Pn, n = 0, 1, 2, .... Now when there 

are n, n ~ 0, customers in the system, using the rate equality principle (that is, the rate 

at which the process enters state n equals the rate at whic:h it leaves state n) we c:au 

determine the limiting probabilities as follows: for state 0, the process can leave only 

through an arrival. Since the arrival rate is >. and the proportion of time that the process 

is in state 0 is P0 , then the rate at which the process leaves state 0 is >.Po. On the other 

hand, state 0 can be reached from state 1 via a departure (that is, if there is one person 

and the person completes service, then the system becomes empty). Since the service 

rate is 11 and the proportion of time that the system has exactly oue customer is P 1, it 

follows that the rate at which the process enters state 0 is 11P1. Hence we get our first 

equation 

Let us consider state 1. The process can leave this state either by an arrival or a departure. 
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Hence, when the process is in state 1, it will leave at rate (>. + J.L)P1 . State 1 can be 

entered either from state 0 via an arrival or from state 2 via a departure. Hence, the rate 

at which the process enters state 1 is >.Po+ J.LP2. Similarly other balance equations can 

be obtained by the same reasoning, to obtain 

State rate at which the process leaves rate at which it enters 

0 >.Po = J.LPl 

1 (A + JL)PJ = >.Po+ JLP2 (2.5) 

2 (>. + J.L)P2 = >.P1 + J.LP3 

n, n;::: 1 (>. + Jl)Pn = APn-l + JLPn+l 

In order to solve these equations, we re-write them in this format 

Solving in terms of Po yields 

Po Po, 

pl ~Po 
J.L 

(~f Po, ?2 = ~ P1 + ( P1 - ~Po) = ~pl 
J.L 

p3 ~ p2 + ( p2 - ~ pl) = ~p2 (*r Po, J.l 

p4 ~ p3 + ( p3 - ~ p2) = ~p3 = (~r Po, J.l 

Pn+l ~Pn+ (Pn - ~Pn-l) ~p er+l = = - Po J.l n J.L ' 
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Using the fact that I:~=O Pn = 1, thus we get 

1 = L:~=o Pn 

= 00 e)n L:n=O ~ Po 
= l ~ox ,, 

from which it follows that 

(2.6) 

The above is only valid when ~ < 1, otherwise the sum would be iufiuitc. Now the rest 
JL 

of the other values can be expressed as follows 

(2.7) 

Since Aa = >., it follows that 

w = L 
"X 

= 1 
J.L->1 

WQ = W - E[S] 

= W -l 
J.L 

= .X 
J.L(J.L- .X) 
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LQ = >.lVQ 

2.3.2 The System M/G/ 1 Queue 

;..2 
= JJ (J.L-:X) 
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(2.8) 

Let us define work for an arbitrary queueing system as t he sum of the remaining service 

times of all customers in the system at time t. Let us consider the cost rule that each 

customer pays at rate of y per unit time whcu the rcmainiug service time is y , irrespective 

of being in queue or service. Let V denote the average work in the system, then 

V = >.aE [amount paid by a customer] 

Now, let S and WQ dcnot.e tlw S<'rvice time and the t.ime an arbitrary cnst.oul('r spends 

waiting in queue, respectively. Therefore, the customer pays at a constant rate of S per 

unit while he wait.s in queue and at rate of S - x after spending an amount of time x in 

service. that is 

E[amount paid by a customer]= E [ SWQ +los (S- x)dx] 

and thus 

(2.9) 

If customer's service time is independent of his waiting time in queue, then we have 

(2.10) 

This model assumes Poissou arrivals (that is, inter-arrivals follow exponential distribu­

t ion) , a general distribution for service times and a single server. Generally, we assume 
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that customers are served in the order they come. 

Customer's wait in queue = work in the system when he arrives (2.11) 

Taking expectation of equation 2.11 yields 

WQ =average work as seen by an arrival 

Since these are Poisson arrivals, the average work as seen by an arrival will equal average 

work in the system 

Hence 

upon simplifying yields the Pollaczek formula (Ross (2000) [12]), 

WQ = 2 (1 - >..E[S]) (2.12) 

where E [SJ and E (S2
) are the first two moments of the service distribution. The quan­

t ities L, LQ and W can be obtained from equation 2.12 as 

LQ = >..WQ = 
W = WQ+E[S] 

L = >..W = 

~~=+E[S] 

.,..,..,.-~~+>..E[SJ 

(2.13) 
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2.4 Multiserver Queues 

2.4.1 M/fvf/k/k Que ue 

TheM/ M / k/k Queue is a queueing system in which arrivals that find all servers busy 

do not. enter but are lost to the system. This system ha.'> Poisson arrivals, service t imes 

are exponentially distributed and there arc k servers. The balance equations are 

State Rate leave = rate enter 

0 >..Po = /l.Pl 

1 (>.. + f.L) pl = 2f.LP2 +>..Po 

2 (>.. + 2f.L) p2 = 3f.LP3 + A.P1 

i, 0 < i < k (>.. + if.L) pi = (i + 1) Pi+l + >..Pi-1 

k kf.LPk = >..Pk- 1 

Rewriting gives 

>..Po J.,tP1 

A.P1 = 2J.,tP2 

>..P2 3f.LP3 

>..Pk-1 kf.LPk 

which can be re-vYritten as 

pl = llpo 
IJ. 

p2 .ll..p1 w: = = 2 Po 2p. 

ilL p3 = .ll..p2 = R 3p. 3! 0 

pk = k>.p. pk-1 
(~f 
~~ Po 
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k 
and also using " . Pi = 1, we obtain 

L...,l=O 

Pi= L:J=o (>-.E [S])j /j! , i = 0, 1, ... , k 
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Since E [SJ = t• where E [SJ is the mean service t ime, the preceding can be written as 

i = 0, 1, ... , k (2.14) 

This is the same system as the previous model except that the service distribution is 

general (that is, M/G/k/ k), with no queue allowed. This model is sometimes called 

the Erlang loss (Erlang-B) system. The equation 2.14 remains valid for more general 

systems, but the proof is more advanced (Ross (1996) [11]). 

2.4.2 M/M/k Queue 

The balauec equations are 

State Rate leave = rate enter 

0 >-.Po = /-LPI 

1 (>-. + JL ) PI = 2JtP2 + >-.Po 

2 (>-. + 2!-L)P2 = 3!-LP3 + >-.PI 

i, 0, i < k (>-.+il-L) pi = (i + 1) Pi+I + >-.Pi- 1 

n, n 2:: k (>-.+k!-L)Pn = kfLPn+l + >-.Pn- l 

and also using the fact that L:~o Pi = 1, we obtain 

u,)' ~k , 
k - 1 ~ k~ 

L ,=O tl + k .(k~ >. 

i .:_ k 

( ,\ )' k 
iij; k R 

k! o. i > k 



3 CALL CENTRES 

3.1 Introduction 

Service engineering is a newly emerging discipline that seeks to develop scientifically­

based engineering principles and tools, often culminating in software, which support the 

design and management of service operations. A contact centre is a collection of resources 

providing an interface between the serviec provider aud its remote customers. The dassi­

cal contact centre is the telephone call centre, containing a collection of customer service 

representatives who talk to customers OV(~r the telephone. Due to advauccs in Information 

and Communication Technology, the number, size and scope of contact centres, as well 

as the number of people who are employed there or use them as customers, is growing 

explosively. Call centres are locations where calls are placed or received in high volume 

for the purpose of sales, marketing, customer service, telemarketing, technical support, 

or other specialised business activity. In a call centre, the service representatives are 

supported by quite elaborate information-and-communication-technology (ICT) equip­

ment, such as a private branch exchange (PBX), an automatic call distributor (ACD), a 

personal computer (PC) and assorted databases. There are different kinds of call centres 

namely: 

• call centres with only inbound traffic (customer-generated calls); 

• call centres with only outbound traffic (agent-generated calls like tele-marketing); 

• or a combination of t hese. 

29 
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Inbound call centres are usually supported by interactive voice response (IVR) units, 

which serve as elaborate answering machines. Through a selection of menus, I\'R units 

attempt to respond to the customer's needs and if necessary, help route the call to an 

appropriate service representative (agent) . 

This research focuses only on inbound traffic and models of those calls that are passed 

to agents by the IVR.. If the utilisation of ACD signifies the basic paradigm of the first 

generation of call centres, the adoption of interactive voice response, introduction of call 

blending and development of web-enabled multimedia contact centres might bC' seen as 

significant steps in their late evolution. A call centre remains defined fundamentally by 

the integration of telephone and computer technologies. 

In analysing call centres, it. is necessary to take account of differences in relation to 

a number of important variables like size, industrial sector, market conditions, complex­

ity and call cyeles times, the nature of operations (inbound or outbound) , the precise 

manner of technological integration, the effectiveness of representative organisations and 

tuanagcmeut styles, priorities, aud huma11 resource practices. The opposing goals of ef­

ficiency and excellent service are both central to call centres. High levels of service are 

important since the number of completely satisfied customers is one of the few predictors 

of long-term profitability. Efficiency and service are more salient than in most service 

organisa.tions. To achieve efficiency, call centre management focuses on the selection, 

implementation and use of technology. The technology is used to facilitate the physi­

cal concentration of staff, labour scheduling, staff monitoring and high productivity rates. 

Telephone call centre agents provide tele-services as they speak with customers over 

the phone. They interact with a computer terminal, inputing and retrieving informa­

tion related to customers and their requests. Customers are either being served or are 

waiting in what is called a tele-queue, a phantom queue which they share, invisible to 

each other and to agents who serve them. Customers wait in this queue until either 
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End of servtce 

an agent is allocated to serve them (through supporting software) or they become im­

patient and abandon the tele-queue. Customers in the tele-queue are nominally served 

on a first-come-first-serve (FCFS) basis and customer's place in queue are distinguished 

by the time at which they arrive to the queue. In a queueing model of a call centre 

the customers are callers, the servers are communication equipment (IVR) or telephone 

agents and queues are populated by callers that await service. Figure 3.1 illustrate the 

stages that calls go through. 

Callers are first served by IVR (interactive voice response) unit and some of the calls 

are terminated at this stage, and those callers who request to talk to agents pass the 

dashed line in the diagram (Figure 3.1). Each call that crosses the dashed line can be 
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thought as passing through up to three stages. The first stage is the arrival stage, which 

is triggered by calls exit from the IVR. If no server or appropriate server is available, 

then the call enters the second stage, the queueing stage. T he last stage is service. Calls 

that are served immediately skip the queueing stage and calls t hat abandon never enter 

the service stage. Figure 3.2 illustrate what happens to the callers who pass through t he 

IVR stage. 

Figure ~1.2 shows a simplified representative of t raffic: flows iu a call centre. fucoming <:ails 

form a single queue, waiting for service from one of k statistically identical agents. There 

are k + r telephone trunk-lines. These are connected to all Automatic Call Distributor 

(ACD) which manages the queue, connects customers to available agents and also archives 
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operational data. Customers who arrive when all lines are occupied encounter a busy 

signal. The model in figure 3.2 ignores multiple service types and skilled-based routing 

that are present in many call centres. However, a lot of questions still remain open even 

for models with homogeneous servers or customers. 

3.2 Call Centres as Queueing Systems 

Call centres can be viewed as queueing systems. Figure 3.2, which is an operational 

scheme of a simple call centre shows clearly that a call centre is a queueing system. In 

a queueing model of a call centre, the customers are callers, servers (resources) are tele­

phone agents or communication equipment and tele-queues consists of callers that await 

service by the system resource. A Modern call centre is often a complicated queueing 

network. The mere incorporation of an IVR, prior to joining the agent's tele-queue, al­

ready creates two stations in tandem, not mentioning multiple teams of specialised or 

cross-trained agents. 

3.3 Models for Call Cent res 

Call cent res are a growing part of the economy and they are complicated because t hey in­

volw multiple sites with multipk groups of ageut.s havinp, different skills, serving multiple 

classes of customers with different needs. Another reason why call centres are compli­

cated is that waiting customers may abandon. Moreover, the probability distributions of 

both service times and abandonment times often are not nearly exponential, making it 

inappropriate to directly apply a simpl<! :vlarkovian model (Whitt (2005) [HiJ), a model 

wit h memory-less property. Assuming that waiting customers cannot see the queue, it is 

natural to a.<;sume that the customers aba.11douing times are identically and indepeudeut. 

distributed (i.i.d) with a general distribution. Several models have been and are still been 

developed for call ceutres, and a lot of research is still required in this cugiueeriug service. 
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Scientific models are prerequisites for climbing t he performance ladder and the Erlang 

models constitute the starting point. The most commonly used models are the Erlang-C 

(M/M/k) and Erlang-A (M/M/k/r+M) models. 

3.3.1 Erlang-C Model (M/M/k) 

This model was introduced by Erlang (Erlang (1917) I AI) , the founder of queueing theory. 

It has been prevalent in call centre applications for many years, being the mathematical 

engine of workforce management. This is the most simplified and easy to use model. 

Erlang-C assumes Poisson arrivals at a constant rate . .\, exponentially distributed service 

times with rate f..L , and k independent statistically-identical agents. The model assumes 

infinite patience of customers, that is custo, 1911; Erlang, 1917mers who are delayed in 

queue keep on waiting until they are served , there is no abandonment. 

This model docs not acknowledge customer's heterogeneity, server 's skill levels, or time­

dependent parameters. But models which ignore abandonment either distort or fail to 

provide information that is important to call centre managers. This is so because of the 

following: 

1. Abandonment statistics constitute the only ACD (automatic call distributor) mea­

surement that is customer-subjective. Those who abandon declare that the service 

offered is not worth its wait. 

2. Some call centres focus only on the average waiting time of only those who get 

served. This does not acknowledge abandoning customers. But under such circum­

stances, the service order that optimises performance is last-in-first-out (LIFO), 

which clearly suggests that a distorted focus has been chosen. 

3. Ignoring abandonment can cause either under- or over-staffing: if service level is 

measured only for those customers who reach service, the result is unjustly opti­

mistic. The effect of an abandonment is less delay for those further back in line as 
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well as for fut ure arrivals. This would lead to under-staffing. On the other hand, 

using workforce management tools that ignore abandonment would result in over­

staffing as actually fewer agents are needed in order to meet abandonment-ignorant 

service goals. 

3.3.2 Erlang-A Model (M/M/k/r+M) 

The classical M / M /k queueing model, called Erlang-C, is the model most frequently 

used in workforce management of call centres. Customer abandonment is not a minor, let 

alone a negligible aspect of a call centre operat ions. The Erla.ng-A model is an Erlang-C 

model onto which exponentially distributed customer patience is added, hence t he " + M " 

notation. 

l\1andelbaum and Zeltyn (2004) [8] int roduced a simple way to model abandonment. 

They suggested to enrich Erlang-C by associating each arrival (caller) with an expo­

nentially distributed patience time with mean e-1. An arrival encounters an offered 

waiting time, which is defined as the t ime that this customer would have to wait given 

that his or her patience is infinite. If the offered waiting time exceeds the customer 's 

patience time, then the call is abandoned, otherwise the customer awaits service. The 

patience parameter, 0, will be referred to as the individual abandonment rate. We denote 

this model by 

M /M/k/r+M 

and refrr to it as Palm/ Erlang-A. Here the A stands for abandonmeut. and r is the extra 

waiting space. The model interpolates between Erlang-C and Erlang-B. The latter is 

theM/ M / k/k model, in which there a.rc k t.runk lilies. Hence, customers that cannot 

be served immediately are blocked. 

The Erlang-A model is characterised by four parameters, which are 
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• >. - arrival rate or calls per unit of time. 

• JL - service rate. 

• k - number of servers or agents. 

• e - individual abandonment rate ( 11 e is the average patience time). 

These parameters are needed for performance measures that are necessary for efficiency 

purposes. One of the performance measure that is important and is rarely used in practice 

is the fraction of customers who encounter a delay. This is a useful measure of congestion. 

General performance measures considered are 

• probability of abandonment, 

• average waiting time and 

• probability of waiting. 

In this model , the processes of arrivals, patience and service are mutually independent.. 

For a customer, the pa-tience time 8 is the time that the customer is willing to wait for 

service, a wait that reaches e results in an abandonment. 

3.3.3 Other Models 

Whitt (2005) [Hi[ approximated M/GI/k/r + GI model by M/M/k/r + M(n) 

model, where M(n) denotes state-dependent Markovian abandonment, n being position 

of the nth caller in the queue. He made this approximation because it. produced a 

Markovian model that can be analysed. Some use inhomogeneous Poisson arrival and 

consider service time as log-normally distributed (sec Brown et al (2005) [31) . Generally 

a lot of models are still being proposed. 
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3.4 Performance Measures 

The performance level of a call centre is usually measured in terms of the waiting t ime 

of calls and the productivity of the call centre employees (often called agents). One of 

the main problems in managing a call centre is the uncertainty in call volume and the 

fact that calls need to be answered quickly (on average between 10- 20 seconds). The 

most popular measure of operational performance is the fraction of served customers 

that have been waiting less t han some given time. For example, in a call centre that 

caters to emergency calls, waiting times should be very small (if not zero). A common 

rule of thumb is the goal that at least 80% of the customers be served within 20 seconds. 

Another important measure that is rarely used in practice is the fraction of customers 

who encounter a delay. This is a useful measure of congestion. General performance 

measures considered are: 

1. Blockage - what percentage of customers will not be able to access the centre at 

a given time due to insufficient network facilities in place. 

2. Abandon R ate - call centres measure the number of abandons as well as the rate 

since both correlate with retention and revenues. While abandonment is afrect.cd by 

the average waiting time in queue, there are a number of other factors that influence 

this number, such as individual caller tolerance, t ime of the day and availabili ty of 

service alternatives. 

3. Self-Service Availability - increasingly, a call centres activities are being off­

loaded today from call centre agents to self-service alternatives. 

4. Agent Occupancy - it is a measure of time an agent is busy on calls compared 

to available or idle time, calculated by dividing workloads hours by staff hours. 

Occupancy is an important measure of how well the call centre has scheduled its 

staff and how efficiently it is using its resources. If occupancy is too low, agents 

are sitting around idle with not enough to do. 
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These performance measures should be able to answer the following questions: 

• What. is the probability of abandonment? 

• How long does a customer expect to wait in the queue before they are served? Also 

how long will they have to wait before the service is complete? 

• What is the probability of a customer having to wait longer than a given time 

interval before they are served? 

• What is the average length of the queue? 

• What is the probability that the queue will exceed a certain length? 

• What is the expected utilisation of the server and the expected time period during 

which he will be fully occupied? In fact if we can assign costs to factors such as 

customer waiting time and server idle time then we can investigate how to design 

a system at minimum total cost. 

For a call centre system, the mean service time is one essential quantity for calculating 

several basic performance measures, such as average waiting time in the system or average 

delay in the queue. When combined with a prediction of future arrival rates, it can also 

be used to predict the future workload that will arrive to the system, which can be used 

for agent staffing and capacity planning. 

3.5 Traffic Intensity 

One factor that is of importance is traffic intensity p = d~;~~~~~;~~te, where arrival rate is 

the number of arrivals per unit time and departure rate is the number of departures per 

unit time. Traffic intensity is a measure of congestion of the system. If it is near to zero, 

then t here is very little queueing and as the traffic intensity increases (to near 1 or even 

greater than 1) the amount of queueing increases. Traffic intensity is determined by the 
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arrival rate (>.), service rate (~-t) and the number of servers (k), that is 

There are two types of traffic in telecommunications 

• offered traffic, 

• carried traffic. 

Offered t raffic is the mean number of arrivals per mean service time. :-.Jamely, it is 

equal to the ratio ~· This ratio is t hetraffic intensity p for M/M/1 queue. 

In M / M /1, we must have that p cannot exceed unity for stability and it also 

represents the server utilisation which cannot exceed unity in this queue. Offered 

traffic is measured in Erlangs named after the Danish mathematician A. K. Erlang 

who was the originator of queueing theory and tele-traffic. One Erlang represents 

traffic load of one arrival, on average, per mean service time. 

Carried traffic is defined as the mean number of customers or calls leaving the system 

after completing service during a time period and is equal to the mean service t ime. 

It is abo measured in Erlangs and it is equal to the mean number of busy servers 

which is equal to the mean queue size. 

In practice the number of servers is limited and the offered t raffic is higher than the 

carried traffic because some of the calls are blocked due to call congestion when all 

circuits are busy. 

3.6 Workforce Management : Staffing 

As the techuology has become more sophisticat ed, product aud process knowledge as 

well as customer information have been embedded in the system, reducing training costs. 
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Continual control can be maintained over the call times, call volumes and virtually every 

activity the employee performs. Additionally, technology allows monitoring of the quality 

of the agents' interactions. Supervisors have the ability to assess agent performance by 

randomly checking their calls or computer screens. Thus agents can be monitored closely 

for performance and burnout, and appropriate interventions made. 

It is important for a call centre's manager to be able to anticipa-te the impact of changes 

on the service level. Examples of such changes are an increase in the call arrival rate due 

to a marketing campaign, or a change in the nu1nber of agents on shift. The c:lassical 

formula such as Erlang-C or Erlang-A, if fed by point forecasts of the arrivaL service and 

time to abandonment rate for the target period, can he' used to find the minimal staffing 

that meets all targets for performance constraints. Brown et al (2005) [3] find Erlang-A 

to work well against empirical data. 

3 .6 .1 Square-root Staffing 

• The offered load (intensity) parameter R represents t he amount of work (measured 

in time units of service) that arrives to the system per unit time. It is significant to 

the staffing problem since Rand its neighbomhood provide nominal staffing levels, 

deviations from which could result in extreme performance (staffing high above R 

would result in a very high quality of service and staffing far below R would result 

in a very high utilisation). 

The square root safety staffing (Avramidis (2005)[2]) k = R + o (where o = !3R~) 

is for achieving a. given dday probability a: unckr an offered load (t.ra.ffic). R = * 
denote the average offered load (where..\ is the average call arrival rate and t is the 

mean call duration), is the safety st.affing above the load to account for stochastic 

variability. In this formula k is the number of servers and /3 is a quality of service 

parameter; the larger it is, the better is the operational service level. The approx­

imation has been extended to more general queues, and is very robust. Large k 
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ensures simultaneously high quali ty of service and high server utilisat ion , which 

characterise a quality and efficiency driven call centre. Of course, in practice the 

value of k derived from this formula must be rounded to an integer. 

T he square-root staffing rule has a conceptual dimension that clearly shows the 

economies of scale in running a large call centre. It also has an economic dimen­

sion, which allows one to determine actual values for the constant {3 by t rading off 

service level and agents costs. Indeed , for large call centres 

• {3 = 1 or larger would give rise to negligible abandonment (quality-driven caii 

centre). 

• {3 = -1 or lower would give about 8 - 12% abandonment (efficiency-driven call 

centre). 

• {3 around 0 (preferably positive) would result in about 2 - 3% abandonment (Whitt 

(1999) [15]). 

Staffing recommendations depend on the measure of performance to be controlled as 

well as on the patience distribution beyond the mean. A common naive "deterministic" 

approach to staffing can yield good to very good results, in the presence of abandonment. 

3.6.2 Real-time Staffing 

This is a dynamic staffing in the real time scale of length of a call, done in response to 

observed system state, including information about the history of the call centre on that 

day and information about the ealls currently in process. The whole purpose is to have 

sufficient flexibility to be able to add agents when they are needed and to pull them off to 

c!o altemative work when they are not needed. Of course, call c:cntre managers routinely 

do some form of real-time staffing, but systematic real-t ime staffing based on substantial 

data and analysis so far is only a dream. Real-time staffing places great challenges upon 

queueing theory, because it requires that we consider the time-dependent behaviour of the 
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queueing system. Usually, performance analysis is confined to a description of the steady­

state behaviour. However, recent research has begun seeking algorithms to describe the 

time-dependent behaviour of queueing systems (see Whitt (2005) !16]). 

3.6.3 Short- term Staffing 

This is the daily staffing done in response to forecasted demand and knowledge of the 

available agents. A significant challenge in short-term staffing is that the call arrival rate 

varies significantly over the day. In some cases, the call holding times are sufficiently 

short that the time-dependence can be safely ignored. Then, it is appropriate to use a 

dynamic steady state, using the parameters that are appropriate at any given instant 

(a short-term average) , rather than the long-run average parameters over an entire day. 

A significant component of short-term staffing is scheduling work shifts for the agents, 

including breaks for coffee and lunch. 

3.6.4 Long- t erm Staffing 

This staffiug is done in the time scale of t.hc length of time required to hire and train 

agents. There are different challenges in the long-term staffing when it takes a relatively 

long time to train new agents. Over the longer time scale, it is also important to address 

agents atrition and agents career paths. The purpose is to have agents and customers 

both satisfied. 



4 METHODOLOGY 

4.1 Limitations of Mathematical Approach 

Classic queueing theory is often too mathematically restrictive to be able to model all 

real-world situations exactly. This restriction arises because the underlying assumptions 

of t he theory do not always hold in the real world. For example. the mathematical mod­

els often assume infinite numbers of customers, infini te queue capacity or no bounds on 

inter-arrival or service t imes, when it is quite apparent that these bounds must exist in 

reality. Often, although the bounds do exist , they can be safely ignored because the 

differ<'JH'es hrtwcen the real-world and theory is not that different . In other rases the 

theoretical solution may either prove intractable or insufficiently informative to be useful. 

Alternative means of analysis have thus been devised in order to provide some insight into 

problems which do not fall under the mathematical scope of queueing theory, though they 

are often scenario-specific since they generally consist of computer simulations a.nd/ or of 

analysis of experimental data. Therefore in-order to analyse M / GI/k/r + GI model, 

we have to resort to simulation sine a theoretical solution is intractable. A free software, 

EZSI\1 (downloaded at http: //www-ref. usc.edu;-khoshnev /softwa.re.html) was used to 

simulate results presented for theM /GI /k/r + GI model. 

43 
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4.2 Simulation Software (EZSIM) 

EZSI.\1 is the simulation software used in t he results presented in this thesis. It is a 

general purpose process-oriented simulation modelling tool for discrete systems involving 

entity flow. Models in EZSIM are presented in network form. Each node in the model 

network represents a process and branches show the entity path from one node to another. 

The major issues in simulation program development consists of the initialisation routine, 

the input routine, the event t iming routine, the arrival event routine, the departure 

event routine, the statistics routine and the output rout ine (see Khoshmnevis (1994) 

[4]). Figure 4.1 shows the main modules in a queueing simulation program. 

General eveut- ba.c;cd simulation programs have the followi ng modules: 

• Main routine - transfers control between the major modules of the program. 

• Initialisation routine - initialises all variables and clear the statistical data that 

may been gathered in a previous run. 

• Events timing routine - locates the most imminent future event, advances the sim­

ulation clock to the t ime of the event and calls the corresponding event-processing 

routine. 

• Future events list {calendar) - contains the list of the unprocessed future events. 

Other information such as the attributes of entities causing the event, may be 

stored in this structure. 

• Event processing routines - are individual modules each representing an event in 

the system. 

• Library nmtines - include a module for pscudo-raudom number generation and 

several modules for random variates with various distribution types. 
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Start 

1 .. 

Initialise user variables 

,. 
Receiver user inputs 

,, 
Call events routine 

1. 
Print simulation results 

,. 
stop 

Figure 4.1: Flowchart of the main module in the queueing simulation program 



4.2. SIMULATION SOFTWARE (EZSIM) 46 

• Statistics routine - collects and processes certain statistics that are specified by 

the user and general quantities desired in statistics reports such as mean, standard 

deviation, minimum, maximum and last value observed at the end of a simulation. 

• Output routine - gathers the values collected by the statistics routine and may 

perform some operations on these va.lueH to create! measures such a.s overall averages. 

EZSIYI allows its user to quickly build a model of the system under study, run the model 

in either the batch mode or animation mode, verify the model and observe t he desired 

statistics. The user can quickly change model parameters or configuration and run the 

model several t imes in a single session. 

Numerous windows (menus and context-sensitive help prompts) are available through­

out the above stages. EZSIJ\1 enables the user to concentrate on the system structure 

and high-level dependencies while the Hystem checks the integrity of the model structure 

as it is being constructed by the user. The following stages are involved in a complete 

stand-alone EZSIM session and arc Hhowll in figure 4. 2. 

• model network construction, 

• nodal parameter specification, 

• model initialisation, 

• desired statistics specification, 

• execution in batch or in real-time with animation, 

• output observation on screen, 

• model and output disk file and/ or hard-copy generation, 

• possible model modification and re-execution. 
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Figure 4.2: Flowchart of the procedure for using the stand-alone EZSIM environment 
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EZSL\1 starts with its opening menu, which allows for file creation, retrieval, listing, re­

naming and deletion. After this specification the graphics screen is invoked. It provides 

an environment for construction or modificat ion of a model network. The first stage 

under graphics screen is network construct ion activity. Using the help key (H) while in 

the graphics mode, all graphics control parameters and node definitions can be reviewed 

on the screen 

A node is a common process that some entities go through. After node selection a ded­

icated window that guides t he user in identifying each parameter relcwant to the node 

in question is shown. After completing the answers to the questions regarding a node, 

the control key returns to the graphics screen for selection of the next node or further 

network construction and edit ing. Hitting the Esc key after the completion of the nodal 

pararnetN identifi<"ation stag;e starts t he system initialisation stage. This iuit iaJisation 

stage occurs only if there are quantities (such as user variables and resources) that need 

to be specified . 

Nodes commonly used in queueing problems are Source, Queue, Facility, Delay and Ter­

mina tc. 

Source node creates entities. Each entity that the Source node creates may have a name, 

which becomes an attribute for the ent ity (called NAl\IE). It is possible to specify 

the total number of entities to be created by the Source node. 

Facility node acts as a server. Entities remain in the node for the duration of their 

service. When the node is occupied , the arriving entities have to wait until the 

node is free. A Facility node must be preceded by a Queue node. Multiple parallel 

or series servers may be specified for a giYen Facility. 

Queue node represents buffers before Facility nodes and is always succeeded by a facility 

node. A queue may have capacity limitation, various priority disciplines such as 

first-in-fist-out (FIFO), last-in-first-out (LIFO) and so on. 

Delay node is used for creating a delay that corresponds to the t raversal t ime of the 
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entity from one node to another, or may also be used for collecting several incoming 

branches and for creating several outgoing branches. 

Terminate node ends t.he path of enti ties. When the entity enters a Terminate node it. 

is considered to be out of the network. 

EZSI11 has a unique capability of provision for prevention of coding as well as logical 

errors in simulation. This is so since all names of nodes, variables, attributes, and re­

sources are entered only once when building an EZSI::vi model. All subsequent references 

to names are made through selection windows. By incorporating the generic logical rules 

governing discrete systems, EZSI!\f also offers some provision for prevent ing logical errors. 

For example, connection between certain nodes are not allowed, system variables cannot 

be overwritten, the nature of a considerable number of statistics types are automatically 

distinguished, the user is aided in building conditional and other forms of expressions 

with minimal chance for errors, and an event animation module for effective checking of 

entity flow and possible blockages is provided. 

4.3 Specifications for the Model 

In this thesis, a single call centre with a single group of agents and serving a single group 

of callers will be considered. The model to be used assumes Poisson arrivals, exponC'utial 

service times, and general and independently distributed abandonment. EZSIM will be 

used to simulate performance measures using the following specifications 

Source node: the node is called ARRIVE and the entity name is CUST; first creation 

time is zero; time between creations is exponent ial with different inter-arrival times 

depending on the number of servers and traffic intensity; default maximum number 

of creation is used and time to stop creation is 2200. 

Queue node: the node is called LINE; queue capacity is 10 if servers arc 4, 12 if servers 

are 5 and 15 if servers are 6. For full queue situation BALK is selected; when queue 
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is full, entities balk to LOST (a Terminate node); for balking traversal time, zero 

is selected and the same for ini tial number in queue. FIFO is selected as the queue 

discipline; for maximum waiting time for entities in the queue, different distribution 

are selected each at a time and when waiting time is up, entities go to ABANDON 

(another Terminate node). 

Facility node: the name for the node is SERVER Number of parallel servers used are 

4, 5 and 6. For service duration , exponential is used with mean 1. For other 

specifications, their defaults are selected. 

Terminate node: three nodes are used and are labelled LOST, ABANDON and LEAVE 

and only LEAVE is connected to the Facility node. Their defaults are selected in 

all the nodes. 

For the Source node, two t raffic intensities are used which are 0.926 and 1.1. For traffic 

intensity of 0.926, three inter-arrival times arc used 0.27, 0.22 a.nd 0.18 which corresponds 

respectively to 4, 5 and 6 servers. Likewise for traffic intensity of 1.1 , inter-arrival times 

used are 0.2083 , 0.167 and 0.1389. The Source uodc is connected to the Queue norle 

and the Queue node to the Facility node then the Facility node to the Terminate node 

labelled LEAVE. 

In the Desired Statist.ies, LOST, ABANDON, SERVED a.nd TOTAL were used as Statis­

tics names and Counting of entities at a node was selected for each of the statistics name. 

Finally length of simulation nm was 2300 and length of transient period was llOO (mea­

surements in minutes). Initially the simulation was run in animation mode and when 

everything was observed to be in-order, the batch mode was used to get the statistics for 

a sample of ten using different seeds for each of the nodes. 
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4.4 Parameter Estimation 

In order to apply the model, it is necessary to input values for its four parameters: >. 

(arrival rate), J.L (service rate), () (abandonment. rate) and k (number of servers). In call 

centres, a model should be used to support solutions of the staffing problem, namely: how 

many agents should be answering calls during a specified time period. Typically, the goal 

is to provide a satisfactory service level (for example, fraction abandoning less than 5%), 

but sometimes one optimises an ec:onomie measure- minimise cost or maximise revenues. 

Arrivals: An arrival is an event that indicates a need for a service. The stream of cus-

tamers that demand service at a particular facility will be called the arrival pattern 

or process. Typically such a stream must be thought of as stochastic, for the exact 

instants at which customers appear tend to vary haphazardly and unpredictably. 

Common call-centre practice assumes that the arrival process is Poisson with a 

rate that remains constant for blocks of time, often individual 30 minutes or 60 

minutes, then a queueing model is fit for each block of time. The intended model 

M /GI/k/r + GI queue ignores the time dependence almost found in call arrival 

processes, but the time dependence often tends to be not too important over short 

time intervals, such as 15 - 60 minutes. 

The goal is to predict these arrival rates, over short time-intervals (15, 30 min­

utes or 1 hour) , chosen so that the rates are approximately constant during an 

interval. Then the time homogeneous model is applied separately over each in­

terval. The goal can be achieved in two stages. First, t ime series algorithms are 

used to predict daily volumes, taking into account t rends and special days. Second, 

one uses parametric regression techniques for predicting the fraction of arrivals per 

time-interval, out of the daily-total. This fraction, combined with the daily total, 

yields actual arrival rates per each time-interval. 

Service: The service facility may be described as the element of the service system that 
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actually satisfies the demand customer. Service durations are assumed general and 

independent. Average service times tend to be relatively stable from day to day. 

However. they often change depending on the time of day. Some studies (Whitt 

(2005) [15]) find that exponential distribution provides an adequate fit to empirical 

data. Also other parametric families that arose in applications includes gamma and 

log-normal. Brown et al (2005) [3] find that the log-normal distribution provides 

an excellent fit to the data, especially after excluding the short time. 

Idle-time, namely the time that. an agent is immediately accessible for service, is 

normally used to estimate the average service time during any time interval. When 

the agents are busy, arriving calls often queue. Often when people find themselves 

in circumstances involving delay, they react to minimise or avoid it. Others balk, 

refuse to join the line or qumw, when t.hey find the line to be too long and others 

renege (abandon), leaving a line after a period spent waiting for service. 

W aiting t ime: All customers who abandon the tele-queue would have waited. Also, the 

times at which customers who arc served would have abandoned, had they not been 

served, are not observed. Therefore, the characterisation of pat ience and time to 

abandon is based on censored data (Miller (1981) [91). The ma.ximmu waiting time 

a customer is willing to wait in queue is his patience time, A , also know as time 

to abandonment. The t.irne a customer must wait before beginning service is his 

virtual queue time, V. The actual waiting time is T = min(A, V), terminated by 

either abaudonment (when V > T) , or beginning of service (V = T ). With respect 

to parametric models of patience, the Weibull distribution is a possible candidate 

because of its wide usc in survival analysis which involve data that is censored. 

The ACD (automatic call distributor) collects data on T and the abandonment 

indicator, I (V > T); The patience time, A, cannot be observed. Real data will 

encounter the classical problem of censoring, and t herefore requires techniques from 

the field of survival analysis (Miller (1981) [9]). This procedure is used to estimate 
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the distribution of patience. 

4.5 Beyond Erlang-A 

A natural first approximation to try for the M/GI/k/r + GI queueing model is the 

more elementary Erlang-A model, M / M /k/r+GI, where we obtain both the exponen­

tial time to abandon and the exponential service time distribution by using exponential 

distributions with the same means as given in the distributions. This research will con­

centrate more on the distribution of abandoning t imes, hence the M/GI /k/ r + GI 

will be approximated with M/M/k/r + GI, where we have assumed that the service 

times arc exponential. 

There is a vast literature 011 statistical inference and forecasting, but surprisingly lit­

tle has been devoted to stochastic processes and much less to queueing models in general 

and call centres in partieular. Indeed, the prac.tiee of statistics and time series in the 

world of call centres is still at its infancy, and serious research is required to bring it to 

par with it.s needs. 



5 ANALYSIS 

All simulation experiments reported in this thesis were based on 10 independent replica­

tions of 2300 runs observed using different seeds from one to twenty. The statistics were 

collected after a transient period of 1100 runs as it was observed that statistics were now 

reliable. Time was in minutes. Two different traffic intensities of 0.926 and 1.1 were used 

for all the considered distributions. This is in line with other studies (Nikolic (2006) [10] 

and Whitt (2005) [15]) where similar intensities were used. Experiments were repeated 

with 3, 4 and 5 servers. 

Independent replicates made it possible to reliably estimate confidence intervals using 

the t-statistic and for all estimates, half confidence interval width at 95% confidence 

inter\'al were calculated. 

In trying to understand the behaviour of the M / GI/k/r + GI model, an important 

initial insight is that, in contrast to single-server queues, the waiting times in multi­

server queues (with large number of servers) tend to be quite small relative to the mean 

service times. This phenomenon is well established in call centres and is reflected by the 

classical 80/20 rule (Whitt (19D9) 1151). 

5. 1 Performa nce measures 

Performance measure is the specific representation of a call centre capacity, process or 

outcome deemed to be relevant to the assessment of perfomance. 

54 
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The following perfomance measures are considered: 

• LQ - length of queue, 

• W- waiting time, 

• U - server utilisation, 

• B- proportion of busy periods, 

• I - proprortion of idle periods , 

• P (A ) -probability of abandonment, and 

• P(Balk) - probability of balking. 

5.2 Assumptions 

The following assumptions are made in the analysis of the simulated data: 

• replica tion of experiments are independent for each seed ; 

• service t imes are exponentially distributed; 

• Erlang-A (model with abandoning time that is exponentially distributed) is con­

sidered as the standard for comparison with other distributions; and 

• callers who abandon do not retry. 

5.3 Distribution of Service Times 

Already, some work has been do11e in the distribution of service times (Brown ct al 

(2005) [3J) and some distributions such as log-normal and gamma have provided a good 

fit to certain types of call centre data. This research assumes that services times are 

exponentially d istributed and hence we focused more on the distribution of abandonment. 
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5.4 Distribution of Abandoning Times 

To define performance measures we examine, S (the event t hat a typical customer who 

enters the system is eventually served) and A (the event that a typical customer who en­

ters the system abandons before starting service). The mean delay (system waiting time) 

of a customer is the time from the moment a customer arrives until his or her service is 

completed. 

5.4.1 Light Loads 

Table 5.1 shows the simulations using Erlang-A model and three ot her distributions of 

abandonment. The distributions considered are uniform, log-normal and gamma with 

parameters (0.5 , 1.5); (1, 1) and (2, 2) respectiYely (where the first and the second values 

are the scale and shape parameters respectively). All the models have common inter­

arrival time of 0.27, mean service t ime f.L- l = 1.0 and mean time to abandon 1.0 (all 

measurements are in minutes). Using the Erlang-A model as t he standard , we noticed 

that the estimate of mean length of queue was bigger for the other distributions of 

abandonment and this caused the waiting times to be larger as well. The estimate of 

mean length of queue seems almost the same for exponential and gamma distributions 

of abandonment and their standard errors are also similar (with gamma having 1.8% 

while cxponent.iaJ has 2.4%). 

The estimate of variance for the length of queue was small for cxponent.ial distribu­

tion while for the rest of other distributions for abandonment are very high (as high as 

1.87 for log-normal while for exponential it. is 0.87). T he estimate for mean waiting time 

in queue was high for uniform and log-normal and almost doubled that of exponential 

and gamma with the exponential distribution having a bigger standard error of 6% com­

pared to 5% for gamma. Similarly, exponential and gamma distributions have small 

estimates of variance for waiting time in queue but the exponential distribution had 

double standard error as compared to the gamma distribution (0.1 for exponential and 
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Table 5.1: Comparison of steady-state performance m easures for differ­
ent distributions of abandonment; exponential (M/ M/ 4/ lO+ M), uniform 
(M/!\f/ 4/ 10+ U(0.5, 1.5)), log-normal (M.'M/4/ lO+ LN(l, 1)) and gamma 
(M/ !\1/ 4 110+ gamma(2, 2)) with 4 servers and traffic intensity of 0.926. 

Performance M/M/4/10+M M/M/4/10+U(0.5,1.5) M/M/4/10+LN(1,1) M/M/4/1 0 +GAMA(2 ,2) 

Measure 

E(Lq) 0.318 ± 0.017 0.584 ±0.029 0.882 ± 0.063 0.353 ± 0.013 

Var(Lq) 0.869 ± 0.037 1.327 ± 0.041 1.871 ±0.077 0.935 ±0.022 

E(W) 0.077 ± 0.046 0.141 ±0.006 0.219 ±0.014 0.083 ±0.0035 

Var(W) 0.18 ±0.0072 0.275 ±0.006 0.433 ±0.015 0.187 ±0.0035 

E(U) 1.549 ± 0.0137 1.626 ±O.D25 1.679 ± 0.021 1.564 ± 0.015 

Var(U) 1.736 ± 0.0086 1.795 ± 0.013 1.828 ±0.013 1.751 ±0.010 

E(l) 0.146 ± 0.0047 0.116 ± 0.008 0.096 ±0.006 0.14 ± 0.0067 

E(B) 0.503 ± 0.0064 0.501 ±0.0098 0.501 ± 0.005 0.5 ± 0.0034 

P(A) 0.17 ± 0.008 0.121 ±0.008 0.082 ± 0.006 0.1 58 ±0.0045 

P(Balk) 0 0 0.0064 ±0.0013 0 
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0.05 for gamma). 

There seems to be not much difference in the estimates of mean server utilisation 

for all the distributions, although uniform and gamma distributions of abandonment 

shows high standard errors, 3.5% for the uniform distribution which was almost dou­

ble that of the e>..rponential distribution (which was 1.9%) . The estimates of variance for 

serveT utilisation was almost the same for all the considered d istributions. The estimate 

of mean for proportion of busy periods was almost the same, although the log-normal 

distribut ion of abandonment had a smaller staudard Nror of 0. 7% (exponential had 0.9% 

and 0.87% for gamma ) . Proportion of time that servers are idle was smallest for the 

Jog-normal distribution. This is because this distribution has the lougrst. waiting time 

as well as the longest queue as compared to other distributions for abandonment. Hence 

servers arc busier for the log-normal distribution than for the other distributions. The 

exponential distribution for abandonment had the biggest percentage of estimate of mean 

for server idleness. 

It can be concluded that estimates of the mean and variance for server utilisation and 

estimates of means for proportion of idleness as well as proportion of busy periods 

seems not that different for the four distributions of abandonment. But if we consider 

estimates of mean length of queue and mean waiting time in queue, exponential and 

gamma distributions seems to be the best. 

The estimate for the probability of abandoning was larger for the Erlang-A model (with 

exponential abandonment distribution) , doubling that of log-normal with similar stan­

dard errors. But log-normal had high probability of balking (P (B alk)) , that is, more 

people do balk and therefore reduce the number of those who abandon. The gamma 

distribution had a low estimate for probability of abandonment as compared to the 

exponential distribution (exponential had 0.17 and 0.16 for gamma). Generally gamma 

and exponential distributions, although having some differences, seems to show similar 
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performance measures. 

Table 5.2 shows the same distributions for abandonment as in table 5.1, but this time with 

5 servers. The inter-arrival time was 0.22 and the rest of the other parameters remained 

the same as in the last section. The same trend observed in table 5.1 is also reflected in 

this table 5.2, although the estimate of mean length of queue had slightly increased and 

the estimate of mean waiting time in the system had slightly decreased. The estimate of 

mean proportion of idle periods is shorter for uniform and log-normal distributions, and 

high for the exponential distribution. The estimate of mean proportion of busy periods 

changed slightly for all the considered distributions. 

The estimates of mean and variance of server utilisation as well as mean for idle and 

busy periods changed slightly for all different distributions of abandonment. The es­

timate of mean server utilisation was 2 for all the distributions, and the estimate 

of mean proportion of busy periods estimate was 0.5 for all the distributions. As 

observed before (table 5.1), the log-normal distribution had the smallest estimate for 

probability of abandoning with 0.004 being the probability of balking, while other dis­

tributions do not have customers who balk. Gamma and exponential distributions have 

estimates of 0.128 and 0.144 respectively for probability of abandonment. These two ta­

bles (tables 5.1 and 5.2) confirm that gamma distribution of abandonment seems to be the 

best amongst the four, followed by exponential distribution (although it had a high prob­

ability of abandoning). This is because good performance measures should have smaller 

values for mean length of queue, mean waiting time, mean proportion of idle periods 

and probability of abandoning as well as smaller variance::; and standard errors. With 

different sets of data from call centres, one would expect different distributions to suit 

different situations. 

The same trend (as shown in tables 5.1 and 5.2) was observed with 6 servers as shown 

in table 5.3. The estimate of mean length of queue increased as the number of servers 

increased for all the distributions (figure 5.1) . The variance estimates also increased 
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Table 5.2: Comparison of steady-state performance measures for differ­
ent distributions of abandonment; exponential (l\11'M/ 4/ 10+ :t\1), uniform 
(M/ :t-.1 / 4/ 10+U(0.5, 1.5)), log-normal (~ IM/4/lO+LN( l, 1)) and gamma 
(f\f / M/ 4/ 1 0 f·gamrna(2, 2)) wit.h 5 S<'rvers and traffic intensity of 0. 926. 

Performance r M/M/5/12+M M/M/5/12+U(0.5,1.5) M/M/5/12+LN(1 ,1) M/M/5/12+GAMA(2 ,2) 

Measure 

ECLQ) 0.335 ± 0.0158 0.614 ± 0.03 1.032 ± 0.036 0.37 4 ± 0.023 

VarCLQ) 0.945 ± 0.0315 1.441 ± 0.05 2.187 ± 0.047 1.011 ± 0.031 

E(W) 0.066 ± 0.0035 0.124 ± 0.005 0.208 ± 0.0066 0.075 ± 0.0038 

VarC'N) 0.162 ± 0.0054 0.251 ± 0.0079 0.413 ±0.009 0.167 ± 0.0048 

E(U) 1.964 ± 0.022 2.059 ± 0.021 2.129 ± 0.03 1.976 ± 0.026 

Var(U) 2.155 ±0.01 3 2.235 ± 0.012 2.284 ± 0.017 2.176 ±0.016 

E(l) 0.137 ± 0.0056 0.108 ± 0.0056 0.089 ± 0.0079 0.132 ± 0.007 

E(B) 0.502 ± 0.054 0.501 ± 0.0063 0.505 ± 0.007 0.5 ± 0.0067 

P(A) 0.144 ± 0.0066 0.089 ± 0.0077 0.073 ± 0.004 0.128 ± 0.006 

P(Balk) 0 0 0.004 ± 0.0011 0 
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Table 5.3: Comparison of steady-state performance measures for differ­
ent distributions of abandonment; exponential (M:'M/ 4/ 10+!\I), uniform 
(M/ .t\1/ 4/ lO+ U(O.S, 1.5)) , log-normal (M/ I\1/ 41 10+ LN(l, 1)) and gamma 
(M/ M/4 ' 10+ gamma(2, 2)) with 6 servers and traffic intensity of 0.926. 

Performance M/M/6/15+M M/M/6/15+U(0.5,1.5 M/M/6/15+LG(1 ,1) M/M/6/15+GAMA(2 ,2) 

measure 

ECLQ) 0.366 ±0.02 0.77 ± 0.047 1.102 ± 0.072 0.439 ± 0.017 

VarCLQ) 1.018 ± 0.043 1.69 ±0.048 2.339 ±0.094 1.141 ± 0.0235 

E(W) 0.06 ± 0.003 0.125 ± 0.006 0.185 ± 0.011 0.071 ± 0.0023 

Var(W) 0.147 ± 0.005 0.246 ± 0.006 0.367 ±0.014 0.159 ± 0.0023 

E(U) 2.404 ±0.014 2.535 ±0.023 2.59 ± 0.022 2.445 ± 0.0173 

Var(U) 2.607 ±0.01 2.708 ±0.017 2.747 ± 0.014 2.635 ± 0.0103 

E(l) 0.126 ± 0.004 0.092 ±0.0056 0.081 ± 0.004 0.114 ± 0.005 

E(B) 0.502 ±0.0045 0.497 ±0.0068 0.498 ± 0.0045 0.5 ± 0.0048 

P(A) 0.133 ± 0.0053 0.083 ± 0.006 0.0068 ±0.0049 0.12 ± 0.0053 

P(Balk) 0 0 0.001 ± 0.0003 0 
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uponenlial uniform log-normal gamma 
probability dhi,riburion for abandonment 

Figure 5.1: Bar graph of estimated mean length of queue for different distributions of 
abandoning times with 4, 5 and 6 servers respectively. 

across the different distributions of abandonment. The estimated mean waiting time 

in system and its variance slightly decreased for all the distribution although the traffic 

intensity was kept at 0.926. The estimate of meau server utilisation and its varianc:e also 

increased across the different distributions. The mean proportion of idle or busy periods 

estimates changed slightly, but the probability of abandonment decreased as the number 

of servers increased, with exponential decreasing from 0.17 to 0.13 as servers increased 

4 four to 6. The estimate for probability of abandoning for the gamma distribution 

decreased from 0. 16 to 0.12 as servers increased from four to six. Generally, as the servers 

are increased whilst maintaining the same traffic intensity, the probability of abandoning 

and mean waiting times estimates decreased. 
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5.4.1.1 Testing for Equality of Performance Measures 

We compared the perfomance measures for all other distributions of abandoning time 

with that of expoueutial. Table 5.4 revealed that the other two distributions for aban­

donment (that is, uniform and log-normal) did not have overlapping confidence intervals 

with that of exponential for all the perfomctncc measur<'s. This means that the perfo­

mance measures for exponential distribution are not the same as for the uniform and log­

normal distributions. The eonfidcuec iutNvals for gamma and exponential distributions 

for abandonment were overlapping and the majority of gamma's perfomance measures 

were contained in the confideuce intervals of exponential (for example, cstimat,es of mean 

waiting times, mean of idle as well as busy periods), therefore statistically, the perfo­

mance measures for gamma and exponential are not necessarily different. The gamma 

distribution had a smaller confidence width when compared to exponential (see tables 

5.1 to 5.3) distribution of abandonment and this implies that gamma distribution has 

better performance measures than exponential. 
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Table 5.4: 95% Confidence Intervals for exponential , uniform, log-normal and gamma 
distributions of abandoning times. 

95o/o Confidence Interval 
u. f 'h . , -~ smq our servers w1t exponent/a, um orm, oq-norma an gamma I d 

Perfprman( M/M/4/10+M M/M/4/10+U(0.5,1.5) M/M/4/10+LN(1, 1) M/M/1 0 + GAMA(2 ,2) 
Measure 

E(lq) (0.30; 0.335) (0.555; 0.613) (0.819; 0.945) (0.340; 0.366) 

Var(Lq) (0.832; 0.906) (1 .286; 1.368) (1 .794; 1.948) (0.913; 0.957) 

E(W) (0.031; 0.123) (0 .135; 0.147) (0. 105; 0.233) (0.08; 0.087) 

Var(W) (0.173; 0.187) 0.135; 0.147) 0.205; 0.233) (0.078; 0.087) 
E(U) (1.535; 1.563) (1 .601; 1.651) 1.658; 1.7) i (1 .549; 1.579) 
Var(U) ,(1 .729; 1.745) (1 . 782; 1 .808) (1 .815; 1.841) 1(1 .75; 1.752) 
E(l) 0.141; 0.1507 (0.108; 0.124) (0.09; 0.102) [(0.133 0.147) 
E(B) i (0.496; 0.509) (0.491; 0.511) (0.496; 0.506) [(0.497; 0.5031 

u · r . I 'f I d smg 1ve servers Wit exponent/a, um orm, Oftnorma an gamma 

E(lq) (0.319; 0.351) (0.611; 0.617) (0.996; 1.068) (0.351; 0.397) 

Var(Lq) 0.91 4; 0.977) (1 .436; 1.446) (2.14; 2.234) (0.98; 1.042) 

E(W) (0.064; 0.07) (0.119; 0.129) (0.201 ; 0.215) (0.071; 0.079) 

Var(W) 0. 157; 0. 167) (0.243; 0.259) (0.404; 0.422) (0.162; 0.172) 
E(U) : (1 .942; 1.986) (2.038; 2.08) [(2.'1; 2.132) [(1.95; 2.002) 
Var(U) !(2 .142; 2.168) (2.223; 2.247) [(2.267; 2.301) I (2. 76; 2.192) 
E(l) '(().131; 0.143) (0.102; 0.114) [(0.081; 0.097) [(0.125; 0.139) 
E(B) 0.448; 0.556) (0.496; 0.507) I (0.498; o.512) [(0.493; 0.507) 
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5.4.1.2 Comparison of Exponential and Gamma Distributions with Erlang 

Distributions 
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Since we have observed that exponential and gamma distributions have the same per­

formance measures, we compared them with the Erlang distribution with parameters 

(1, 2) and (1, 0.5) (where the first and second Yalues arc the seale and shape parameters 

respectively) . Again comparison were made with 4, 5 and 6 servers. Table 5.5 shows 

these performance measures for 4 servers. T he two Erlang distributions (depicted as E 2 

(Erlang(1, 2)) and Eo.s (Erlang(1 , 0.5))) showed that Eo.s had better performance mea­

sures when compared to E2 (see figure 5.2). E2 has estimates of meau length of queue 

and waiting time in system that is three times bigger when compared to Eo.s and the 

same relates to the standard errors, but Eo.s had a smaller variance of length of queue 

estimate with h igh standard error of 13.2% compared to 5% of E2 , which is lower. There 

is not much difference in the estimates of mean server utilisation for the two distribu­

t ions and the same applies to the estimates of mean proportion of idle and busy periods. 

E2 had a smaller probability of abandoning of 0.14 compared to 0.20 of Eo.s. Gener­

ally Eo.s has better performance measures when compared to E2. The same trend was 

maintained with 5 and 6 servers (tables 5.5 and 5.6 respectively) . 

On comparing Eo.s with exponential and gamma distributions of abandonmeut, it was 

observed that Eo.s has much better performance measures than the other two distribu­

tious (gamma and exponential). The estimates of mean server utilisation and mean 

proportion of idle periods were slightly higher for Eo.s when compared with the other 

two distributions (gamma and exponential). Also the estimate for probability of abandoning 

was high for Eo.5· The trend was the same when servers were increased from 4 to 6 (tables 

5.6 and 5.7). 
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Table 5.5: Comparison of steady-state performance measures of different Erlang 
distributions (~f/M,'5/12+E(l, 0.5), M/ M/ 5 /12+E(l, 2) and Erlang-A) with 
gamma distribution (:t--1/ :t--1 / 5/ 12 -1 gamma(2, 2)) with 4 server::; and traffic in­
tensity of 0.926. 

Performance M/M/4/10+M M/M/4/1 O+GAMA(2 ,2) MIM/4/1 O+E(1 ,2) M/M/4/10+E(1, 0.5) 

Measure 

E(LQ) 0.318 ±0.017 0.353 ± 0.013 0.511 ± 0.033 0.181 ± 0.0078 

Var(Lq) 0.869 ± 0.037 0.935 ± 0.022 1.232 ± 0.049 0.585 ±0.1320 

E(W) 0.077 ±0.046 0.083 ± 0.0035 0.125 ± 0.0077 0.045 ± 0.004 

Var(W) 0.18 ±0.0072 0.187 ± 0.0035 0.273 ± 0.011 0.114 ± 0.004 

E(U) 1.549 ± 0.0137 1.564 ± 0.015 1.614 ±0.024 1.488 ±0.0125 

Var(U) 1.736 ±0.0086 1.751 ±0.010 1.783 ±0.012 1.689 ±0.009 

E(l) 0.146 ±0.0047 0.14 ± 0.0067 0.122 ± 0.008 0.172 ± 0.0045 

E(B) 0.503 ± 0.0064 0.5 ± 0.0034 0.505 ±0.009 0.501 ±0.0063 

P(A) 0.17 ±0.008 0.158 ± 0.0045 0.139 ± 0.005 0.197 ± 0.0055 

P(Balk) 0 0 0.0006 ± 0.0003 0 
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Table 5.6: Comparison of steady-state performance measures of different Erlang 
distribut ions (~I/f-.1 /5.'12+E(l , 0.5), M; :to.f.'5/ 12+ E (l, 2) and Erlang-A) with 
gamma distribution (:to-1 / M/5/12 1 gamrna(2,2)) with 5 servers and traffie in­
tensity of 0.926. 

Performance M/M/5/12+M M/M/5/12+GAMA(2 ,2) M/M/5!12+E(1 ,2) M/M/5/12+E(1 , 0.5) 

Measure 

ECLQ) 0.335 ± 0.0158 0.37 4 ± 0.023 0.517 ± 0.023 0.195 ±0.005 

VarCLQ) 0.945 ± 0.0315 1.011 ± 0.031 1.326 ± 0.0503. 0.636 ± 0.0136 

E(W) 0.066 ± 0.0035 0.075 ± 0.0038 0.104 ± 0.006 0.04 ±0 

Var(W) 0.162 ± 0.0054 0.167 ± 0.0048 0.24 ± 0.0101 0.103 ±0.03460 

E(U) 1.964 ± 0.022 1.976 ± 0.026 2.013 ± 0.0135 1.88 ±0.0169 

Var(U) 2.155 ±0.013 2.176 ±0.016 2.203 ±0.0083 2.095 ± 0.0097 

E(l) 0.137 ±0.0056 0.132 ± 0.007 0.122 ±0.003 0.164 ± 0.005 

E(B) 0.502 ± 0.054 0.5 ±0.0067 0.501 ±0.004 0.499 ±0.004 

P(A) 0.144 ± 0.0066 0.128 ± 0.006 0.113 ± 0.004 0.1646 ± 0.0049 

P(Balk) 0 0 0.0003 ± 0.0003 0 



5.4. DISTRIBUTION OF ABANDONING TIMES 68 

Table 5.7: Comparison of steady-state performance measures of different Erlang 
distributions (M/ M/ 5/ 12 l E(1, 0.5), M/M/5/12-~ E(l , 2) and Erlaug-A) with 
gamma distribution (!vf/ M/ 5/ 12+ gamma(2, 2)) with 6 servers and traffic in­
tensity of 0.926. 

Performance M/M/6/15+M M/M/6/15+GAMA(2 ,2) M/M!6/15+E(1 ,2) M/M!6/15+E(1, 0.5) 

measure 

ECLQ) 0.366 ±0.02 0.439 ± 0.017 0.583 ± 0.028 0.213 ±0.0076 

Var(Lq) 1.018 ± 0.043 1.141 ± 0.0235 1.464 ± 0.0496 0.689 ± 0.016 

E(W) 0.06 ± 0.003 0.071 ± 0.0023 0.095 ± 0.005 0.033 ± 0.00346 

Var(W) 0.147 ±0.005 0.159 ± 0.0023 0.221 ± 0.007 0.094 ± 0.0037 

E(U) 2.404 ± 0.014 2.445 ± 0.0173 2.225 ± 0.019 2.33 ± 0.0151 

Var(U) 2.607 ±0.01 2.635 ± 0.0103 2.662 ± 0.014 2.54 ± 0.0111 

E(l) 0.126 ±0.004 0.114 ±0.005 0.107 ± 0.0048 0.146 ± 0.0037 

E(B) 0.502 ± 0.0045 0.5 ± 0.0048 0.497 ± 0.0048 0.5 ± 0.0053 

P(A) 0.133 ± 0.0053 0.12 ±0.0053 0.104 ± 0.0052 0.157 ±0.005 

P(Balk) 0 0 0 0 
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Table 5.8: 95% Confidence intervals for exponential. gamma and Erlang distributions of 
abandoning times 

95°/o Confidence Interval 
sm.G our seNers w1t exponet1a , .Gamma an u . f . I dE I b d r anq a an onment 

Perfprmanc M/M/4/10+M M/M/1 0 + GAMA(2 ,2) M/M/4/10+E(1 ,2) M/M/4/10+E(1 ,0.5) 
Measure 

E(Lq) (0.30; 0.335) (0.340; 0.366) 0.478; 0.544) (0.175; 0.189) 

Var(Lq) (0.832; 0.906) (0.913; 0.957) (1 .183; 1.281) (0.473; 0.717) 

E(W) (0.031 ; 0.123) (0.08; 0.087) (0 .11 7; 0 .133) (0.041; 0.049) 

Var(W) (0.173; 0.187) (0.078; 0.087) (0.262; 0.284) (0. 11 ; 0. 118) 
E(U) (1 .535; 1.563) (1 .549; 1.579) 1(1 .59; 1.638) ! (1.476; 1.501) 
Var(Ul (1.729; 1.745) (1.75; 1.752) 1(1 .771; 1.795) i(1.68; 1.699) 
E(l) 0.141; 0.1507 (0.133 0.147) 1(0.114; 0.13) 1(0.168; 0.177) 
E(B) (0.496; 0.509) (0.497; 0.503) I (0.496; o.514) i (0.495; 0.507) 

smg /Ve seNers w1t exponent/a, gamma an u · r . J dE I b d r ang a an onment 

E(Lq) (0.319; 0.351) (0.351; 0.397) (0.494; 0.54) (0.19; 0.2) 

Var(Lq) 0.914; 0.977) (0.98; 1.042) (1.276; 1.376) (0.622; 0.65) 

E(W) (0.064; 0.07) (0.071; 0.079) (0.098; 0.11 

Var(\V) 0.157; 0.167) (0.162; 0.172) (0.23; 0.25) (0. 1 ; 0. 1 065) 
E(U) (1 .942; 1.986) I (1.95; 2.002) (2.0; 2.027) I (1.863; 1.897) 
Var(U) (2.142; 2.168) 1(2.76; 2.192) (2.195; 2.211) I (2.085; 2.1 05) 
E(l) (0.131 ; 0.143) 1(0.125; 0.139) (0.019; 0.1251 I (0. 159: o. 169) 
E(B) 0.448; 0.556) I (0.493; o.507) (0.497; 0.505) 1(0.495; 0.503) 

smg s1x seNers w1t exponent/a , gamma an u· . J dEl b d rang a an onment 

E(Lq) (0.364; 0.368) (0.422; 0.456) (0.555; 0.611) (0.206; 0.221) 

Var(Lq) (0.935; 1.061) (1 .1 19; 1.168) (1.414; 1.514) (0.673; 0.675) 

E(W) (0.053; 0.063) (0.069; 0.073) (0.09; 0.1) (0.03; 0.036) 

Var(W) (0.142; 0.152) (0.157; 0.161) (0.214; 0.228) (0 .09; 0.0944) 
E(U) I (2.39; 2.4181 IQ-428: 2.462) (2.206; 2.244) 1(2.315; 2.345) 
Var(U) I (2.59; 2.608) 1(2.625; 2.645) (2.648; 2.676) I (2.529; 2.551) 
E(l) 1(0.124; 0.13) i (0.1 09; 0.119) _(0.1 02; 0.112) l(0.143; 0.15) 
E(B) I (0.498: o.5o7) 1(0.495; 0.505) (0.495; 0.502) I (0.495: o.505) 
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uponmenllal gamma E~ang0.2) ErlangO.OS) 
Probability dls1rlbution for abandonment 

Figure 5.2: Bar graph of estimated meau length of queue for different distributions with 
4, 5 and 6 servers respectively. 

In testing equality of performance measures for exponential and Erlang distributions 

of abandoning time, we noted that none of the Erlang distributions have confidence 

intervals that overlap with that of the exponential distribution (as shown in table 5.8). 

Good performance measures should have smaller values for mean length of queue , mean 

waiting time, mean proportion of idle periods and probability of abandoning as well 

as smaller standard errors. Although the confidence intervals of exponential distribution 

do not overlap with the confidence intervals of E2 and Eo.s, Eo.s had the best perfomance 

measures. This is because it has the smallest values for mean length of queue, mean 

waiting time, mea.n proportion of idle periods and probability of abandoning as well 

as smaller standard errors when compared to the rest of distributions of abandonment.. 
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Table 5.9: Coefficient of variation for estimated mean length of queue. 
Distribution I 4 Servers I 5 Servers I 6 Servers I 
Exponential 2.931 2.902 2.757 

Gamma 2.739 2.688 2.433 
Log-normal 1.551 1.433 1.388 

L;niform 1.973 1.955 1.688 
Erlang(l, 2) 2.172 2.227 2.075 

Erlang(1, 0.5) 4.226 4.090 3.897 

5.4.1.3 Coefficient of Variation 

The coefficient of variation is a dimensionless measure of variation and we checked the 

performance mea.<;ures' variability for the different distributions of abandonment. A 

comparison was made for all t he distributions that have been discussed so far. 

Scrutiny of these distributions of abandonment was done by considering variability of 

performance measures. Generally, from table 5.9, it was observed that the relative vari­

ability for length of queue was different for all the distributions and tended to decrease 

as the number of servers increased. This i.s because with more calls, t here is need to have 

more servers and this reduces variability as calls are answered quickly. Those distribu­

tions that had poor performance measures (log-normal and uniform) had low coefficient 

of variation and the opposite was true for those distributions that have good perfor­

mance measures. E2 and Eo.5 have marked differences in variations with E 0.5 doubling 

the variability of E2. The trend is. the better the distribution in performance measures 

the higher the coefficient of variation. Although this seems strange. this variability is 

expected since we are dealing with callers. 

Table 5.10 shows that as the calls increased resulting in increase in the number of servers, 

t he relative variability of amount of t ime in the system also increased. This is because 

generally with more calls one also expects the amount of waiting time to increase. 

The relative variability in this ca.'>c was even greater than the relative variability of 

length of queue. This is because this is total delay, which includes waiting time in the 
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Table 5.10: Coeffieieut of variation for estimated mean waiting times in the system . 
Distribution I 4 Servers I 5 Servers I 6 Servers I 
Exponential 5.510 6.098 6.390 

Gamma 5.210 5.449 5.616 
Log-normal 3.005 3.090 3.275 

'Cnifonn 3.719 4.040 3.968 
Erlang(l, 2) 4.180 4.711 4.948 

Erlaug(l , 0.5) 7.503 8.023 9.291 

Table 5.11: Coefficient of variation for estimated mean server utilisation. 
Distribution I 4 Servers I 5 Servers I 6 Servers I 
Exponential 0.851 0.747 0.672 

Gamma 0.846 0.747 0.664 
Log-normal 0.805 0.710 0.640 

Uniform 0.824 0.726 0.649 
Erla.ng(1, 2) 0.827 0.737 0.733 

Erlang(l , 0.5) 0.873 0.770 0.684 

queue as well as service time. The same trend of t he different distribution for abandon­

ment was maintained, that is, distributions with good performance measures have poor 

relative variability. 

The coefficieut of variation for server utilisation (table 5.11) wa.c:; the same for all the 

distribut ions considered for abandoning time. The rela tive variability decreased as the 

number of servers increased, despite the fact that the traffi c: intensity remained the same. 

Despite the type of distribution used for abandoning, the relative variability was not dif­

ferent for server utilisation unlike the variation in length of queue and waiting time 

in the system. 

Erlang(l, 0.5) has the best performance measures although it has the highest relative 

variability for length of queue and amouut of waiting time. Expouential and gamma 

distributions have similar performance measures as well as the coefficient of variation. 

Although the other distributions have a. generally low coefficient of variation , their per­

formance measures are not good enough. Variation on its own is not of concern in call 
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centres because generally length of calls vary a lot and so to specify a good distribution 

using solely this measure is not good enough. 

5.4.2 Heavy Loads 

Having used traffic intensity of 0.926 in the previous subsections, and having seen that 

the exponential, gamma and Erlang (Eo.s) distributions are more or less the same. we 

investigated if there was any difference when traffic intensity changes. Using t raffic inten­

sity of 1.1, which is relatively heavy loads, table 5.12 was analysed. The estimated mean 

length of queue was shorter for the Erlang distribution (Eo.5) of abandonment than 

the gamma and exponential distributions and had smaller standard error as well. This 

also applied to the variance of length of queue. T he mean delay (system waiting time) 

was similar for all the distributions of abandonment as well as estimate of variance 

for waiting times for the three distributions. T he estimates of mean and variance for 

server utilisation was almost the same across the different distributions and all the 

distributions had almost the same percentage standard errors. The exponent ial distri­

bution had a high proportion of mean idle estimate due to the fact that its estimates for 

mean length of queue and waiting time are slightly smaller than the other distribut ions. 

The mean proportion of busy periods estimate was exactly t he same across all the dis­

tributions whether light or heavy loads. The Erlang distribut.iou (Eo.s) had also a high 

probability of abandoning of 0.26. compared to 0.22 and 0.24 for gamma and expo­

llential distributions respectively. Overall, although tlwrc arc slight diffcreuces in t.hc-'ie 

distributions, they gave us similar performance measures. The same pattern that was 

shown iu lighter loads was also observed for heavy loads. Therefore changes in traffic: 

intensity does not alter the perfomance of these distributions for abandonment. T he 

performance mc~asurcs have showu that Erlan g distribut ion had the best performance 

measures compared to the rest of other distributions, although it had greater relative 

variability. 
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Table 5.12: Validi ty of abandoning distribution with t raffi c: intensity of 1.1. 

Traffic intensitv = 1.1 

Pefformance M/M/4/10+M M/M/4/1 O+GAMA(2 0 2) M/M/4/1 O+E(1 0 0.5) 

measure 

E(LQ) 0.511 ± 0.0149 0.582 ± 0.0286 0.285 ± 0.008 

Va!(Lo) 1.156 ± 0.0298 1.254 ± 0.041 0.76 ± 0.013 

E(W) 0.104 ± 0.0037 0.114 ± 0.006 0.059 ± 0.0023 

VarCW) 0.209 ± 0.0053 0.215 ± 0.007 0.13 ± 0.0034 

E(U) 1.693 ± 0.0068 1.713 ± 0.0122 1.63 ± 0.0123 

Var(U) 1.824 ± 0.005 1.836 ±0.0077 1.773 ± 0.0048 

E(l)_ 0.09 ± 0 0.084 ± 0.0037 0.11 6 ± 0.0037 

E(B) 0.5 ±0.067 0.5 ± 0.00477 0.499 ± 0.0063 

P(A) 0.235 ± 0.0057 0.224 ± 0.0089 0.261 ± 0.0067 

P(Balk) 0 0.0001 2 ± 0.0001 0 

Comparing lighter loads and heavy loads, it, wa.<> noticed that the quality of approxi­

mation using lighter loads were better than in heavy loads because in heavy loads the 

arrival rate is bigger thau service rate so, to maintain stabili ty, there will be a lot of 

callers that will abandon (leading to high probability of abandoning). Because of more 

calls arriving, there will be longer lengths of queue and waiting times in system. That 

should be expected because in lighter loads where the arrival rate was smaller t han the 

sen·ice rate, shorter length of queue aud waiting times in system as well as few aban­

donment were observed. 
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Normally, the time that the facility is not in use is the time during which money is 

spent but no revenue is collected. It is therefore important to design ::;ystems that will 

maintain high server utilization. Most of the distribution that were considered for 

abandonment had a mean of 1. This was done so as to compare them using the same 

mean. The results showed that the distributions for abandonment must not necessarily be 

exponential (as some research claim, Brown et al (2002) [3] and Madelbaum (2002) [7]). 

Other distributions (Erlang and gamma) arc as similar or sometimes better for example 

Erlang(l , 0.5). This shows that the distribution for abandonment is a general one and not 

necessarily exponential. With slight modification of parameters most of the dist ributions 

may give better performance measurements than the exponential distribution (compare 

E2 and Eo.5)· 



6 CONCLUSIONS 

6.1 Limitations 

Every software irrespective of how good it is has its own limitations and EZSI:t-.1 is no 

exception. The software is difficult to implement with a lot of servers as it was not 

designed to eater for a large number of servers and has limited simulation tinw, which 

makes it difficult to loop and had to resort to the use of different seeds and then find 

averages. Financial const raius made it difficult t.o usc licensed software, but the results 

obtained were tested for their validity by changing loads. In this work we used 4 to 6 

servers and the obtained results were consistent. for light and heavy loads. 

6.2 Areas of Further Research 

This model did not consider retrials, that is wheu a customer re-dials into the ceutre 

after having encountered a busy signal or having abandoned. It has been observed that 

in most. call r.entres, the majority of retrials is due to customer abandonnwnt , because 

the bottleneck resource are the agents, not the number of telephone lines. There is need 

for some research that for.uscs on retrials since the retrial volume can be of the order of 

first-time calls. There is need for testing these results using a large number of servers as 

well to incorporate multi-skills in the call centre. Also with advent of c:ontac:t centres, call 

centres that includes e-mail and internet, more research is needed in understanding their 

operations. However, results obtaiued in this research cau still be exteudcd to contact 

centres with some modification. 

76 
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6.3 Conclusion 

Modern call centres operate under many uncertainties and complexities, notably, uncer­

tain and/ or time-varying primitives and complex daily control and routing eontrol ac­

tions. These realities stretch the limits of existing analytical models from queueing theory, 

optimal queueing control and stochastic programming. The high operational complexity 

and the prevalent uncertainty suggest that simulation modelling and simulation-based 

decision-making should have a central role in the management of call centres. Simulation 

appears to be the most viable option for accurate performance measures and subsequent 

decision support, hence the usc of EZSII\1 in this research. 

From the various distributions that were considered for abandoning times, not much 

difference could be inferred from them, with the exception of uniform and log-normal. 

The Erlang(l, 0.5) distribution seems to be better f than exponential and gamma dis­

tributions by analysing the performance measures. In general it can be concluded that 

depending on the nature of data, the abandoning time is general and independently dis­

tributed, different distributions may be used for different sets of call centre data. Service 

times have been observed to follow a general distribution, though the exponential dis­

tribution was used in this research. The M/GI/k/r + GI model is the best model 

for call centres although it is generally difficult to analyse and in this research EZSEV! 

software made it possible to analyse. 
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Appendix 

The simulation was done by EZSIM which is a free software that can be downloaded at 

http: / / www-rcf.usc.edu;-khoshnev ; software.html. Excel was used to create the tables 

for the different distributions for t he abandoning times. The tables on the next pages 

show the performance measures for the different distributions used for the abandoning 

time. All statistics obtained from the software are measured in minutes and traffic inten­

sity of 0.926 and 1.1 were used. The distributions that were considered were exponential , 

uniform, log-normal, gamma and Erlang. 

The model used in this thesis had six nodes. that is the Source, Queue, Facility and 

three Terminates nodes. The three Terminate nodes were labelled as Lost, Abandon and 

Leave. Leave was connected from the Facility node that had parallel servers. Those who 

were balked were sent to the Lost node and those who were abandoned were sent. to the 

Abandon node. The model used is shown below and an example of results obtained from 

the model with an <'Xponential abandonment dist.ri hut ion arc shown overleaf. 
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Table 6.1: Model spccificatiou for Erlang-A. 
Disk file name: G: \ TM-M-~1. EZ 
Project name: ERLANG-A DISTRIBUTIO 
Date: 01/08/09 
Analyst: JACOB 

Node name : ARRIVE 
Node type : SO 
Entity name: CUST 
First creation time : 0 
Time between creations: EXPON(0.2083,11) 
Maximum no . of creations <INF > : 
Time to stop creation<INF> : 2200 

Node name : LINE 
Node type: QU 
Queue capacity <INF>: 10 
For full queue situation: BALK 
When queue is full, entities balk to: LOST 
Balking traversal time : 0 
Initial numbe r in the queue <0>: 0 
Queue discipline: FIFO 

Node name: LEAVE 
Node type: TE 
Termination count < INF > : 

Node name: LOST 
Node type: TE 
Termination count <INF> : 

Node name : ABANDO 
Node type : TE 
Termination count < HJF > : 

Node name : SERVER 
Node type : FA 
Number of paralle l servers <1>: 4 
Service duration : EXPON ( 1, 11) 
Sc hedule breakdowns <N> : loi 

Does the facility use other resources <N> : N 

Information on desired statistics 
Name: LOST 
Statistics type: COUNT 
Variable type : OBS.BASED 
Co llect at node: LOST 
Name: ABANDON 
Statistics type: COUNT 
Variable type: OBS.BASED 
Collect at node : ABANDO 
Name: SERVED 
Statistics type : COUNT 
Variable type: OBS.BASED 
Collect at node: LEAVE 

ii 
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Table 6.2: Output from model using Erlang-A. 
*** E Z S I M STATISTICAL REPORT *** 

Simulation Proje ct : ERLANG-A DISTRIBUT IO 
Analyst: JACOB 
Date : 01/08/09 
Disk file name: G:\TM-M-M.OUT 

Current Time : 2200.78 Transient Period: 1100.00 

Q U E U E S : 
NAME MIN/ MAX/LAST 

LENGTH 

LINE 0 / 1 0/ 0 

F A C I L I T I E S: 
NAME NBR MIN/MAX/LAST 

SRVRS UTILIZATION 

SERVER 4 

V A R I A B L E S: 
NAME 

LOST 
ABANDON 
SERVED 

MEAN 

4.00E+OO 
1. 50E+03 
3. 80E+03 

0/ 4/ 0 

STD 

0. OOE+OO 
O. OOE+OO 
0. OOE+OO 

MEAN 
LENGTH 

0.71 

MEAN 
UTLZ 

1. 76 

STD 
LENGTH 

1.41 

STD 
UTLZ 

1. 87 

MEAN 
DELAY 

0. 13 

MEAN 
I DLE 

0 . 07 

MIN MAX 

4.00E+OO 
1.50E+03 
3 .8 0E+03 

4.00E+OO 
1 . 50E+03 
3 . 80E+03 

iii 

STD 
DELAY 

0.24 

MEAN 
BUSY 

0.51 

No . OBSRVD 

4 
1502 
3 797 
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Exponential abandoning times with 0.926 traffic intensity. 

TRAFFIC INTENSITY = 0.926 
MIM/4/10+M interarrival time=O 27, mean service time=1 min, mean time abandon= 1 min 

seed mean leng std length mean dela std delay mean utlz std utlz mean idle mean bUS) balk abandon served Iota I P(A) 
1 0.31 0.87 0 DB 0.18 1.54 1.73 015 0.5 0 681 3477 4158 0.163781 
2 0.35 0.93 0.08 0.2 1.57 1.75 0.14 0.51 0 692 3455 4147 0.166868 
3 0.36 0.98 0.09 0.19 1.57 1.74 0.14 0.51 0 796 3419 4215 0.188849 
4 0 32 0.85 0.08 0.18 1.57 1.75 0.14 0.51 0 748 3349 4097 0.182573 
5 0.3 0.82 0.07 0.17 1.53 1.73 0.15 0.51 0 674 3365 4039 0.166873 
7 0.34 09 0.08 019 1 56 1.75 0.14 0.51 0 781 3423 4204 0.185775 
8 0.28 0.81 0.07 0.17 1.51 1.71 0.16 0.48 0 631 3416 4047 0.155918 
9 0.31 0.83 0.07 0.17 1.56 1.74 0.14 0.5 0 693 3501 4194 0.165236 

10 0.29 0.83 0.07 0.17 1.54 1.73 0.15 0.5 0 645 3442 4087 0.157817 
11 0.32 0.87 0 08 0.18 1.54 1.73 0.15 05 0 723 3402 4125 0.175273 

Mean 0.318 0869 0.077 0.18 1.549 1.736 0146 0.503 0 706.4 3424.9 4131.3 0 170896 
sd 0 024413 0.051274 0 006403 0 01 0 019209 0 012 0.006633 0.009 0 52.09261 44.37894 59.98842 0.010999 
error 0.017463 0.036677 0.00458 0.007153 0.013741 0.008584 0.004745 0.006438 0 37.26222 31 .74457 42.91015 0.007867 
95% Cl 0 32:tD.01::0.869:tD.0::0.077± 0.00.18 :tD.OO 1.549 :tD.O 1.736 :tD 0 0 146:t!l.O 0.503 ±.0064 0 17 :tD.OOi 

MIMI5112+M 
1 0.33 0.88 006 0.15 1.98 2.18 0.13 05 0 735 4304 5039 0.145862 
2 0.35 098 0.07 0.17 1 96 2.16 0.14 05 0 723 4364 5087 0 142127 
3 035 1 0 07 0.17 1.96 2.16 0 14 05 2 775 4279 5056 0153283 
4 0.33 0.95 006 0.16 195 2.16 0 14 05 0 715 4289 5004 0.142886 
5 0 37 0.99 007 0.17 2.03 2.12 012 0.52 0 813 4269 5082 0 159976 
6 0.33 0.93 0.07 0.16 1.94 2.16 0 14 0.5 0 723 4248 4971 0.145444 
7 0.34 0.98 0.07 0.17 1.97 2.16 014 0.5 0 738 4424 5162 0.142968 
8 0.34 0.95 0.07 0.16 1.99 2.17 0.13 0.51 0 736 4324 5060 0 145455 
9 0.33 0 93 006 0.16 1 95 2.16 0 14 0.49 0 716 4420 5136 0 139408 

10 028 0.86 0 06 0.15 191 2.12 0.15 0.5 0 597 4273 4870 0.122587 
Mean 0.335 0945 0.006 0.162 1.964 2.155 0137 0.502 0.2 727.1 4319.4 50467 0.144 
sd 0 022023 0.044102 0 004899 0.007483 0.030397 0.018574 0.00781 0 007483 0.6 52.11804 59 71298 79 52239 0.009135 
error 0.015753 0.031547 0.003504 0.005353 0.021743 0.013286 0.005587 0.005353 0.43 37.28041 42.71313 56.88294 0.006534 
95% C.l .335:tD 01~ 0.945:tD.0~0.006:tD.OC0.162:tD.OC 1.964:t!J.Q';2.155:tD.D10.137:tD.OC0.502:tD.054 0.144:t!l.OC 

MIMI6/15+M 
1 0.32 0.93 005 0.14 2.37 2.58 0.13 0.49 0 7?!9 5205 5934 0.122851 
2 0.35 0.96 0.06 0.14 2.42 2.62 0.12 0.51 0 778 5370 6148 0.126545 
3 0 37 1.04 0.06 0.15 2.39 2.6 0.13 0.5 0 791 5259 6050 0.130744 
4 0.36 1.01 006 0.14 2.39 2.6 0.13 0.5 0 836 5263 6099 0.137072 
5 0.38 1.06 0.06 0.15 2.42 2.62 0.12 0.51 0 853 5257 6110 0.139607 
6 0.36 1.02 0.06 0.15 2.4 2.61 0.13 0.5 0 771 5302 6073 0.126955 
7 0.37 1.03 0.06 0.15 2.4 2.61 0.13 0 51 0 831 5282 6113 0.13594 
9 0.43 115 0.07 0.16 2.43 2.62 0.12 0.5 0 918 5314 6232 0.147304 

10 0 37 099 0.06 0.15 2.43 2.62 012 05 0 783 5374 6157 0 127172 
11 0.35 0.99 0 06 0.14 2.39 2.59 0.13 05 0 794 5265 6059 0 131045 

mean 0.366 1.018 0.06 0.147 2.404 2.607 0126 0.502 0 808.4 5289.1 6097.5 0.132524 
sd 0 027968 0.060148 0 004714 0 006749 0.020111 0.014181 0 005164 0.000325 0 52.76404 52 5578 78.63453 0.007418 
error 0.020006 0.043024 0.003372 0.004828 0.014385 0.010144 0 003694 0.004524 0 37.7425 37.59497 56.24784 0.005306 
95% C. I 0.366:tD.O; 1.018:t£l.OLO.Il3:tD.OO: 0.147 :t!J.OC 2.404:tD.012.607:tD.01 .126:t!l.OO' 0.502:tD.DC 0 0.133:tD.OC 
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Table 6.3: U11iform aba11doning t imes with 0.926 traffic intcusity. 
Traffic lntesitv 0.926 

M!M/4110+U(0.5; 1.5) interarrivaltime=0.27 , seNrce lime= 1 
seed mean leng std length mean dela std delay mean utlz sld utlz mean idle mean bus) balk abandor served total P(Al 

1 0.57 1.29 0.14 0.27 1.64 1.8 0.11 0.5 2 472 3589 4063 0.11617 
2 0.66 1.42 0.16 0.29 1.66 1.82 0.1 1 0.52 2 581 3565 4148 0.140068 
3 0.61 1.35 0.15 0.28 1.68 1.82 0.1 0.52 2 514 3629 4145 0.124005 
4 0 57 1 32 0 14 0.27 158 178 0.13 0.49 0 468 3558 4026 0 116244 
5 0 58 1.34 0.14 0.28 1.63 1.79 0.12 0.5 4 479 3602 4085 0.1 17258 
6 0.54 1.26 0.13 0.27 1.57 1.77 0.13 0.49 3 455 3539 3997 0.113835 
7 0.61 138 014 028 1 64 18 0.11 0.51 3 554 3583 4140 0.133816 
8 0.61 1.38 0.14 0.28 1.64 1.8 0.11 0.51 3 554 3583 4140 0.133816 
9 0.57 1.29 0.14 0.27 1.63 1.8 0.11 0.49 0 457 3703 41 60 0.109856 

10 0.52 1.24 0.13 0.26 1.59 1.77 0.13 0.48 0 436 3627 4063 0.10731 
mean 0.584 1.327 0.141 0.275 1.626 1.795 0.116 0.501 1.9 497 3597.8 4096.7 0.121238 
sd 0.040056 0.057552 0.008756 0.008498 0.03534 0.017795 0.01075 0.013703 1.45 50.24164 46.59948 57.1m52 0.011173 
error 0028652 0.041167 0.006263 0.003079 0.025279 0.012729 0.007689 0.009802 1.04 35.93821 33.33294 41 .34513 0.007992 
95% C I 0.584:tD.O; 1.327:iD.OL0.141:tD.OC0.275:tD.OC 1 .626:1D .O~ 1.795:tD.010.116:tD.OC0.501:tD.0098 0 121:tD oc 

M!M/5/12+U(0.5; 1.5) mterarrival time=0.22, service time =1 

1 0.54 1.32 0.11 0.23 204 2.22 0.11 0.49 0 384 4599 4983 0.077062 
2 0.66 1.49 0.13 0.26 2.09 2.25 0.1 0.51 0 502 4542 5044 0 099524 
3 0.63 1.49 0.13 0.26 2.04 2.23 0.11 0.51 1 468 4529 4998 0.093637 
4 0.59 1.42 012 0.25 2.02 2.21 0.12 0.49 0 431 4550 4981 0.086529 
5 064 1.46 0.13 0.26 2.06 2.24 0.11 0.51 1 454 4493 4948 0.091754 
6 0.62 1.46 0.12 0.25 2.03 2.22 0.12 0.49 0 463 4476 4939 0.093744 
7 0.6 1.4 0.12 0.24 2.08 2.25 0.1 0.5 1 396 4725 51 22 0.077314 
8 0 67 1.53 0.13 0.26 209 2.25 01 05 0 540 4555 5095 0105986 
9 0.63 1.5 0.13 0.26 2.1 2.26 0.1 0.51 0 464 4645 5109 0.09082 

10 0.56 1.34 0 12 0.24 2 04 2.22 0 11 0.5 0 356 4624 4980 0 071486 
mean 0.614 1 441 0.124 0.251 2.059 2.235 0.108 0.501 0.3 445.8 4573 8 5019.9 0.088786 
sd 0.041687 0.069833 0.006992 0.01 1005 0 028848 0 017159 0 007888 0.008756 0.48 55.57937 75 36401 67.69613 0 010779 
error 0.029819 0.049952 0.005001 0.007872 0.020635 0.012274 0.005642 0.006263 0.35 39.75633 53.90842 48.42353 0.00771 
955 C. I 0.614:tD.O: 1.441:1D.OW. 124:1D.OC 0.251 :tD.OC2 .059:tD.O~ 2.235:tD.010.10B:tD.OC0.501 :tD.0063 0. 089:1D. oc 

M/M/6/15+U(0.5; 1.5) rnt erarrival time= 0.18, seNice time = 1 
1 073 1.68 0.12 0.24 2.49 2.68 0.1 0.48 0 497 5538 6035 0 082353 
2 0.69 1.61 0.12 0.24 2.52 2.69 0.1 0.5 0 444 5582 6026 0.073681 
3 0.87 1.8 0.14 0.26 2.58 2.74 0.08 0.51 0 608 5651 6259 0.09714 
4 0.71 1.66 0.12 0.24 2.5 2.68 0.1 0.49 0 461 5588 6049 0.076211 
5 0.84 1.8 0.14 0.26 2.59 2.75 0.08 0.51 0 596 5591 6187 0.096331 
6 0.79 1.74 0.13 0.25 2.56 2.73 0.09 0.5 0 542 5578 6120 0.088562 
7 0.74 1.65 0.12 0.24 2.52 2.7 0.09 0.49 0 485 5717 6202 0.078201 
8 0.75 1.67 0.12 0.24 2 54 2.71 0.09 0.5 0 492 5645 6137 0 080169 
9 0.86 1.68 012 0.25 2.53 2.7 0.09 0.49 0 523 5615 6138 0.085207 

10 0.72 1.62 0.12 0 24 2 52 27 0.1 0.5 0 457 5618 6075 0.075226 
mean 0.77 1 691 0125 0.246 2.535 2.708 0.092 0.497 0 510.5 5612.3 6122.8 0.083::00 
sd 0 065659 0.067569 0 008498 0.008433 0.032745 0.024404 0 007888 0.009487 0 56.64166 49.69697 77.59983 0 008415 
error 0.046966 0.048333 0.006079 0.006032 0.023423 0.017456 0.005642 0.005786 0 40.51619 35.5486 55.50772 0.00602 
95% C. I 0. 77:1D.04i 1.69:t0.04E 0.125:tO.OC 0.246:1D.OC 2.535:1D.O~ 2.708:t0.010.092:tD.OC0.497:tD.0068 0. 083:1D _()( 
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Table 6.4: Log-normal abandoning times with 0.926 traffic intensity. 
Traffic inetsitv 0.926 

MIM/4!10+LN(1,1) 
seed mean !eng· std length mean dela std delay mean utlz std utlz mean idle mean bus} balk abandon served total P(A) P(Balk) 

1 095 2 0.23 0.45 1.67 1.83 01 0.5 35 366 3692 4093 0.08942 0.0086 
2 0.95 1.93 0.24 0.45 1.69 1.83 0 09 0.5 18 342 3691 4051 0 08442 0 0044 
3 0.84 1.81 0.21 0.41 1.69 1.84 0.09 0.5 24 316 3737 4077 0.07751 0.0059 
4 0 79 1.78 0.2 0.43 1 62 1.8 011 0 49 29 286 3643 3958 0 07226 0 0073 
5 085 1.85 0.21 0.44 1 68 1.82 01 0.51 19 319 3635 3973 0.08029 0 0048 
6 0.77 1.74 0.19 0.41 1.64 1.8 0.11 0.49 15 285 3667 3967 0.07184 0 0038 
7 0.83 1.79 0.21 0.41 1.69 1.83 0.09 0.5 27 310 3775 4112 0.07539 O.Oil36 
8 0.83 1.79 0.21 0.41 1.69 1.83 0.09 0.5 27 310 3775 4112 007539 0.0036 
9 0.99 1.98 0.24 0.46 1.71 1.85 0.09 0.51 27 380 3746 4153 0.0915 0.0065 

10 1.02 2.04 0.25 0.46 1.71 1.85 0.09 0.51 41 400 3712 4153 0.09632 0.0099 
mean 0.882 1.871 0.219 0.433 1.679 1.828 0.096 0.501 26.2 331.4 3707.3 4065 0.08143 0.0064 
sd 0.087661 0.107129 0.019692 0.021628 0.028848 0.017512 0.008433 0.007379 7.86 39 2972 50.612 74.94 0.00857 0.0019 
error 0 062705 0 07663 0.01 4086 0.015471 0 020635 0 012526 0.006032 0 005278 5 62 28 1095 36203 5361 0.00613 0 0013 
95% C I 0.882:l:D ~ 1.B71:l:D.Oi0.219:l:D.010.433:l:D.011 .679:l:D.!r 1.82B:l:D.010.096:l:D.OCO 501:l:D.005 0. 082:l:D ( 0 .006:l:D 

MIM/5112+LN(1 ,1) 
1 095 2.11 019 0.4 2 09 2.26 0.1 0 49 27 325 4614 4966 0 06545 0.0054 
2 1.11 2.25 0.22 0.42 2.16 2.3 0.08 0.51 29 431 4696 5156 0.08359 0.0056 
3 0.99 2.07 0.2 0.39 2.11 2.28 009 0.5 7 338 4732 5077 0.06657 0.0014 
4 106 2.21 0 21 0.41 2.18 2.31 0.08 0.51 18 369 4794 5181 0 07122 0 0035 
5 1.09 2.28 0.22 0.43 2.14 2.29 0.09 0.51 33 403 4594 5030 0.08012 0.0066 
6 1.04 2.26 0.21 0.43 2.08 2.26 0 1 0.49 16 355 4673 5044 0.07038 0 0032 
7 103 216 0.21 0.41 216 2.3 0.08 0.51 18 363 4638 5019 0 07233 0.0036 
8 1.03 2.16 0.21 0.41 2.16 23 0.08 0.52 20 355 4634 5009 0.07087 0.004 
9 1.05 2.19 0.21 0.42 2.15 2.3 0.08 0.51 18 363 4677 5058 0.07177 0.0036 

10 097 2.18 0.2 0.41 206 2 24 0 11 0.5 19 372 4533 4924 0 07555 0.0039 
mean 1.032 2.187 0.208 0.413 2.129 2284 0.089 0.505 20 5 367.4 4658.5 5046 0.07278 0.0041 
sd 0.050509 0.066341 0.009189 0.012517 0.040947 0.02319 0011005 0.009718 7.41 30.4492 73.509 78.22 0.00562 0.0015 
error 0.036129 0.047454 0.006573 0.008953 0.02929 0.016588 0 007872 0.006952 5.3 21 .7806 52.582 55.95 0.00402 0.0011 
95% C.I1 .032:!D DC 2.187:l:D.OL0.208:l:D.OC0.413:l:D.OC2.129:l:D.O: 2 284:l:D.010.089:l:D.OCO 505:l:DOJ7 0 073:l:D.C0.0041± 

M/Mi5115/LN(1 ,1) 
1 1.3 2.54 0.21 0.39 2.66 2.79 0.07 0.5 5 460 5760 6225 0.0739 0.0008 
2 108 2.31 018 0.37 2 59 2 74 008 0.5 10 353 5716 6079 0 05807 0 0016 
3 103 2.24 0 17 0.35 2.56 2.73 0 09 0.49 7 356 5672 6035 0.05899 0 0012 
4 1 12 2 42 0 19 038 259 2.75 008 0.5 8 411 5631 6050 0.06793 0.0013 
5 1.12 2.36 0.19 0.38 2 61 2.76 0.08 0.51 8 347 5767 6122 0.05668 0.0013 
6 1.06 2.23 0.18 0.35 2.6 2.75 0.08 0.5 2 353 5809 6164 0.05727 0.0003 
7 1 17 2 45 0.2 0.38 2 59 2.75 0 08 0.5 8 386 5777 6171 0.06255 0 0013 
8 1.17 2.45 0.2 0.38 2.59 2.75 0.08 0 5 8 386 5777 6171 0.06255 0.0013 
9 1.04 2.29 0.17 0.36 2.56 2.73 0.08 0.49 3 340 5807 6150 0.05528 0.0005 

10 0.93 2.1 0.16 0.33 2.55 2.72 0.09 0.49 3 301 5735 6039 0 04984 0.0005 
mean 1.102 2.339 0.185 0.367 2.59 2.747 0.081 0.498 6.2 3693 57451 6121 0.06031 0.001 
sd 0.099978 0.130848 0.01581 1 0.018886 0.031269 0.019465 0.005676 0.006325 2.7 4 43.7824 57.699 66.19 0.0068 0.0005 
error 0.071515 0.093596 0.01131 0.013509 0.022367 0.013924 0.00406 0.004524 1 96 31 .3179 41 .273 47 35 0 00487 0.0003 
96% C. 1 102:l:D.Oi:?.339:l:D.O<;O 185:l:D.OI0.367:l:D.012 59:l:D.02~2.747:l:D.010 081:l:D OCO 498:!D.0045 0.0068:!D 0001±.( 
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Table 6.5: Gamma abandoning times with 0.926 t raffic intensity. 
Traffic lntensitv 0.926 

M/M/4/10+GAM(2,2l 
seed mean I eng· std length mean dela std delay mean utlz std utlz mean idle mean bUS) balk abando1 seJVed total P(A) 

1 0.39 0.97 0.09 0.19 1.6 177 0.13 0.51 0 717 3443 4160 0.172356 
2 0.37 0.98 0.09 0.19 1.56 1.74 0.14 0.5 0 669 3410 4079 0.164011 
3 0.33 0.88 0.08 0.18 1.57 1.75 0.14 0.5 0 626 3485 4111 0.152274 
4 0.35 0.95 0.09 0.19 1.56 1.75 0.14 0.5 0 638 3469 4107 0 155345 
5 0.34 092 0.08 019 1.55 1.773 0.15 0.5 0 624 3400 4024 0.15507 
6 0.34 0.91 0.08 0.18 1.56 1 74 0.14 0.5 0 630 3440 4070 0. 154791 
7 0.36 0.95 0.08 0.19 1.58 1.76 0.13 0.5 0 641 3507 4148 0.154532 
8 0.36 0 95 0.08 019 1.58 1 76 013 05 0 641 3507 4148 0154532 
9 034 092 0.08 019 1.56 1 74 014 05 0 618 3438 4056 0 152367 

10 034 0.92 0.08 018 1 52 1 73 016 0 49 0 652 3438 4090 0 159413 
mean 0 353 0.935 0083 0.187 1.564 1.7513 0.14 0.5 0 645.6 3454 4099 0 157469 
sd 0.018288 0.030277 0.00483 0 00483 0.021187 0 01 419 0.009428 0 004714 0 2914 37 24 44 13 0 006288 

95% 0.013081 0 021657 0.003455 0.003455 0.015155 0 01015 0.006744 0 003372 0 20 844 2664 31 57 0 004498 
95% C.l 0.353±0.010.935±0.0~0.083±0.0C0 . 187±0.0C 1.564±0.011 .751±0.010.14±0.00f0.5:t0.0034 0.158±0.0C 

MIM/5112+GAMA(2 ,2) 
1 0.39 1.01 0.08 0.17 2 2.19 0.13 0.5 0 637 4373 5010 0.127146 
2 0.38 1.03 0.07 0.17 1.98 2.17 0.13 0.5 0 634 4386 5020 0.126295 
3 0.4 1.04 0.08 0.17 1.99 2.19 0.13 0.51 0 700 4370 5070 0.138067 
4 0.38 1 0.08 0.17 2 2.19 0.13 0 5 0 638 4442 5080 0.125591 
5 0.33 0.96 0.07 0.16 1.93 2.15 0.15 0.49 0 570 4346 4916 0 115948 
6 0.42 1.09 0.08 0.18 2.01 2.2 0.12 0.51 0 729 4419 51 48 0.141608 
7 0.35 098 0.07 016 1 97 2 17 0.13 05 0 642 4399 5041 0 127356 
8 0.35 0.98 0.07 0.16 1.97 2.17 0.13 0.5 0 642 4399 5041 0.127356 
9 0.41 106 008 0.17 2.01 22 0.12 0.51 0 693 4366 5059 0 136984 

10 033 0.96 007 0.16 1.9 2.13 015 0 48 0 572 4313 4885 0 117093 
mean 0.374 1.011 0.075 0.167 1.976 2.176 0.132 0.5 0 645.7 4381 5027 0.128344 
sd 0.032387 0.043576 0.00527 0.006749 0.035963 0.022706 0.010328 0.009428 0 51 .193 36.66 77.13 0.008436 
error 0.023166 0.03117 0.00377 0.004828 0.025725 0.016242 0.007388 0.006744 0 36.618 26.22 55.17 0.006035 
95%C 0.374±0.~ 1.011±00:0.075±0.0C0.167:1!l 0:: 1 976:t0.~2.176±0.010 132±0CJC0.5±0.0067 0.128±0.0C 

M!MI0/15+GAMA(2 ,2) 
1 0.42 1.1 0.07 0.16 2.46 2.64 0.11 0.5 0 700 5421 6127 0.115228 
2 0.42 1.13 0.07 0.16 2.43 2.62 0.12 0.49 0 663 5458 6121 0.108316 
3 0.45 1.14 0.07 0.16 2.47 2.65 0.11 0.51 0 782 5368 6150 0.127154 
4 0 46 117 0.07 016 2.45 2 64 0.11 0.5 0 761 5464 6225 0 122249 
5 0.43 1.13 0.07 0.16 2.41 2.62 0.12 0.5 0 685 5349 6034 0.113523 
6 0.47 1.17 008 016 2.46 2.65 0.11 0.51 0 791 5357 6148 0.12866 
7 0.42 1 12 0.07 016 2.45 2.63 0.11 05 0 693 5372 6065 0 114262 
8 0.46 1.18 0.07 0.16 2.47 2.65 0.11 0.5 0 813 5444 6257 0 129934 
9 0.46 1.18 0.07 0.16 2.45 2.64 0.11 0.5 0 751 5343 6094 0.123236 

10 0.4 1.09 0.07 0.15 2.4 2.61 0.13 0.49 0 694 5317 6011 0.115455 
mean 0.439 1.141 0.071 0.159 2.445 2.635 0 114 0.5 0 733.9 5389 6123 0 119802 
sd 0.023781 0.032813 0.003162 0003162 0.024152 0.014337 0.006992 0.006667 0 51 982 52.8 77 75 0.007415 
error 0.017011 0.023471 0.002262 0.002262 0.017276 0.010256 0.005001 0.004769 0 37.183 37.77 55.61 0.005304 
955 C. I 0.439±0.01 1 .141±0.0~0.071:t0.0::0. 159±0.0::2.445±0.012.635±0.010.1 14±0.0::0.5±0.0048 0 12±0.00E 
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Table 6.6: Gamma abandoning times with 0.926 traffic intensity. 
Traffic intensitv = 0.926 

MIM4110+GAMA(0.5,2) 
seed mean !eng std length mean dela std delay mean utlz std utlz mean idle mean bUS) bali- abando1 served total P(A) P(Batk) 

1 1.04 205 0.26 0 48 1.71 1.85 0.09 0.5 37 339 3781 4157 0 081549 O.CX:l8901 
2 1.05 2.1 0.26 0.5 1.7 1.84 0.09 0.5 36 320 3712 4068 0.078663 0.00885 
3 0.92 1.87 0.24 0.45 1.69 1.84 0.09 0.5 29 293 3720 4042 0.072489 0.007175 
4 0.92 1.89 0.23 0.46 1.71 1.84 0.09 0.5 22 283 3791 4096 0.069092 0.005371 
5 0.91 1.97 0.24 0.47 1.63 1.81 0.11 0.49 41 288 3663 3992 0.0721 44 0.010271 
6 1.03 2.09 0.25 0.49 1.72 1.85 0.08 0.51 40 338 3753 4131 0.08182 0.009683 
7 1.02 2.04 0.26 0.48 1.72 1.86 0.08 0.5 30 306 3823 4159 0.073575 0.007213 
8 1.02 2.04 0.26 0.48 1.72 1.86 0.08 0.5 30 306 3823 4159 0.073575 0.007213 
9 0.98 2.04 0.24 0.48 1.68 1.82 0.09 0.49 43 328 3719 4090 0.080196 0.010513 

10 0.93 2.02 0.24 0.49 1.63 1.81 0.11 0.49 42 268 3699 4009 0.06685 0.010476 
mean 0.982 2.011 0.248 0.478 1.691 1.838 0.091 0.498 35 306.9 3748 4090 0.07 4995 0.008567 
sd 0.056529 0.07781 0.011353 0 014757 0.034785 0 018738 0 011005 0 006325 69 24.154 54.53 62.08 0.005267 0.001751 
error 0.040436 0.055658 0.008121 0.010556 0.024882 0 013403 0 007872 0 004524 5 17.278 39 44.4 0.003768 0 001252 
95% C. 0 982:!:D.Ol2.011:!:D.OED248±0.0C0.478±{l011.691:!:D.C41 .838:!:D 010 091:!:D.OC0.498:!:D 0045 0.075±0.0CO 0086±0 C 

MIM/5112+GAMA(0.5 ,2) 
1 0.89 199 0.19 0.38 2.11 2.28 009 0 49 13 261 4701 4975 0 052462 0.002613 
2 0.96 2.04 0.2 04 2.12 228 0.09 0.5 12 249 4758 5019 0.049611 0.002391 
3 1.01 2 22 0.21 0 43 21 2 27 009 0.5 32 308 4670 5010 0 061477 0 006387 
4 1.1 2.27 0.22 0.43 2.13 229 0.09 05 21 332 4668 5021 0 066122 0.004182 
5 1.08 2 31 0.22 0 44 212 2 28 0.09 0.5 30 315 4692 5037 0.062537 0.005956 
6 0.99 2.11 0.21 0.41 2.13 2.29 0.09 05 21 246 4755 5022 0.048984 0 004182 
7 1.07 2.24 0.21 0.43 2.13 2.28 0.09 0.49 12 323 4709 5044 0.064036 0.002379 
8 1.03 2 15 0.21 0.41 2.15 23 0.08 0.5 13 281 4761 5055 0.055589 0.002572 
9 0.97 215 0.2 0.42 2.1 2.27 0.09 0.49 21 283 4681 4985 0.05677 0.004213 

10 1.03 2 15 0.21 0 41 212 2 28 009 05 10 278 4689 4977 0 055857 0 002009 
mean 1.013 2.163 0.208 0.416 2.121 2 282 0.089 0.497 19 287.6 4708 5015 0.057345 0.003688 
sd 0.06343 0.100338 0.009189 0.017764 0.015239 0.009189 0.003162 0.00483 7.8 30.689 36.45 27.87 0.())5()()9 0.001557 
error 0.045372 0.071773 0.006573 0.012707 O.D109 0.006573 0.002262 0.003455 5.6 21 .952 26.07 19.94 0.004299 0.001113 
955 C. I 1.013:!:D.Ot 2.163±0.0i0 21±0.00C0.416±0.012.121±0.012.282:1lJ.OC0.089±0.0C0.497±00035 0.057:1lJ.OC0.0037:1lJ.C 

M/m/6115+GAMA(0.5,2) 
1 1.28 2.67 0.21 0.42 2.61 2.76 0.07 0.5 19 394 5715 6128 0.064295 0.003101 
2 1.08 2.32 0.18 0.37 2.57 2.73 0.08 0.49 8 312 5767 6087 0.051257 0.001314 
3 1.33 2.74 0.22 043 2.64 2.76 0.07 0.5 31 373 5764 6168 0 060473 0.005026 
4 118 2 47 0.2 039 26 2.76 008 0 49 7 335 5845 6187 0 054146 0001131 
5 1.31 2.63 0.22 0.42 2.62 2.77 0.07 0.5 16 357 5807 6180 0.057767 0.002589 
6 1.32 2.68 0.22 0.42 2.64 2.78 0.07 0.5 4 372 5824 6200 0.06 0.000645 
7 0.98 2.27 0.17 0.36 2.55 2.71 0.09 0.49 9 270 5705 5984 0.04512 0.001504 
8 1.2 2.57 0.2 0.4 2.59 2.75 0.08 0.5 13 383 5724 6120 0.002582 0.002124 
9 1.07 2.33 0.18 0.37 2.57 2.73 0.08 0.49 2 291 5814 6107 0.04765 0.000327 

10 1.38 2.78 0.23 0.44 2.63 2.78 0.07 0.51 24 412 5675 6111 0.067419 0.003927 
mean 1 213 2.546 0.203 0.402 2.602 2 755 0.076 0.497 13 349.9 5764 6127 0.057071 0.002169 
sd 0.133587 0.1865 0.020575 0.028206 0.031552 0.024608 0.006992 0.000749 9.2 46.525 57.66 63.4 0.007335 O.CXl15 
error 0.095556 0.133405 0.01 4717 0.020176 0.02257 0.017602 0.005001 0.004828 6.6 33.279 41 .24 45.35 0.005247 0.001073 
95% C.i 1 213:!0~2 546±0 1~0.203±0.010.402±0.0: 2 602±0.0;2.755:1lJ 0'10.076:!:D.OC0.497:!D.0048 0.057:!:0 oco 0022:!{) ( 
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Table 6.7: Erlang abandoning times with 0.926 traffic intensitv. 
Traffic intensitv = 0.926 

MIM/4/10+E(1 ,2) 
seed mean leng· std length mean del a std delay mean utlz std utlz mean idle mean bUS) balk abandon served total P(A) P(Balk) 

1 0.49 1 22 0.12 0.27 1.59 1.77 0.13 0.49 0 524 3578 4102 0 12774 0 
2 0.52 1 21 0.13 0.26 1 64 1.8 011 0 52 5 602 3565 4172 0.1443 0.0012 
3 0 49 1 2 0.12 0.27 1 6 1 78 0.13 051 3 576 3537 4116 013994 0.0007 
4 0.5 1.22 0.12 0.27 1.59 1.77 0.13 0.5 0 561 3501 4062 0.13811 0 
5 0.53 1.26 0.13 0.28 1.63 1.79 0.12 0.51 2 596 3557 4155 0.14344 0.0005 
6 0.46 1.18 0.11 0.27 1.57 1.76 0.14 0.5 1 537 3493 4031 0.13322 il.0002 
7 0.57 1 32 0.14 0.29 1.65 1.8 0.11 0.51 5 620 3648 4273 0.1451 0.0012 
8 0 57 1.32 0.14 0.29 1.65 1.8 0.11 051 5 620 3648 4273 0.1 451 0.0012 
9 0.43 1.1 0.11 0.24 1.57 1.76 0.13 0.48 1 523 3612 4136 0 12645 0.0002 

10 0.55 1 29 013 029 1.65 1 8 0 11 0 52 2 596 3547 4145 0 14379 0.0005 
mean 0.511 1.232 0.125 0.273 1.614 1.783 0.122 0.505 2.4 575.5 3569 4147 0.13872 0.0006 
sd 0.046056 0.067954 0.010801 0.01567 0.0334 0.017029 0.011353 0.012693 2.01 37.423 54.24 79.04 0.00718 0.0005 
error 0 032944 0 048608 0 007726 0.01121 0 023891 0.012181 OCD3121 0 009079 1 44 26 769 38.8 56 54 0.00513 0.0003 
95% C.l 0.511:!D.O~ 1.232:!D OL 0.125:!D.OC 0.273:!D f 1.614:tD.O; 1.783:!D.010.122:!D.OC 0 505:!D.009 0.139:!D.l O.IXXll± 

M/M/5/12+E(1 ,2) 
1 0.48 1.22 0.1 0.22 2.01 2.2 0.12 05 0 571 4430 5001 0.11418 0 
2 0.52 1.35 0.1 0.25 2.02 2.21 0 12 0.5 1 538 4506 5045 0.10664 0.0002 
3 0.52 1.34 0.1 0.24 2.02 2.2 0.12 0.5 7 558 4479 5044 0.11063 0.0014 
4 0.49 1.24 0.1 0.23 2.01 2.21 0.12 0.5 0 570 4489 5059 0.11267 0 
5 0.55 1 36 0.11 0.25 2.03 2.22 0 12 0.51 0 608 4377 4985 0.12197 0 
6 0.52 1.36 0.11 0.25 1.98 2.19 0.13 0.5 0 550 4396 4946 0.1112 0 
7 0.47 1.27 0.09 0.22 1.98 2.18 0.13 0.49 3 526 4567 5096 0. 1 0322 0.0006 
8 05 1 28 01 0.23 2 03 2.21 0.12 0.5 1 592 4412 5005 0 11828 0.0002 
9 0.55 1.42 0.11 0.25 2.02 22 0.12 0.5 2 598 4467 5067 0 11802 0.0004 

10 0.57 1.42 0.12 0.26 2.03 2.21 0.12 0.51 0 582 4480 5062 0.11497 0 
mean 0.517 1.326 0.104 0.24 2 013 2.203 0.122 0.501 1.4 569.3 4460 5031 0.11318 0.0003 
sd 0.032677 0.070427 0.008433 0.01414 0.018886 0.011595 0.004216 0.005676 2.22 26.575 57 16 45.4 0 00561 O.OCXJ4 
error 0.02337 4 0.050377 0.006032 0.01012 0 013509 0.008294 0.003016 0.004ffi 1.59 19.009 40.89 32.47 0.00401 0.0003 
95% C. I 0.517:!D.0~ 1 .326:!D 0~0 104:!D.OC0.24:!D 0 2.013:!D 012 203:!D.OC0.122:!D.OCO 501:!D 004 0 113:!D.i O.C003:t 

MIM/6/15+E(1 .2) 
1 0.55 1.38 0.09 0.21 2.46 2.66 0.11 0.5 0 622 5363 5985 0.10393 
2 0.5 1.39 0.08 0.21 2.42 2.62 0.12 0.5 0 542 5452 5994 0.09042 
3 0.61 1.54 0.1 0.23 2.46 2.65 0.11 0.5 0 649 5406 6055 0.10718 
4 0.6 1.47 0.1 0.22 2.49 2.68 0.1 0.5 0 694 5483 6177 0.11235 
5 0.62 156 0.1 0.24 2 49 2.68 0.1 0.51 0 683 5409 6092 0.11211 
6 0.59 1.43 0.1 0.22 2 47 2.66 0.11 0 49 0 622 5491 6113 0.10175 
7 0.62 151 0.1 0.22 2 52 2.69 0.1 05 0 693 5572 6265 0.11061 
8 0.61 1.54 0.1 0.23 2.48 2.66 0.1 0.49 0 647 5520 6167 0.10491 
9 0.55 1.39 0.09 0.21 2.46 2.66 0.11 0.49 0 578 5500 6078 00951 

10 0.58 1.43 0.09 0.22 2.46 2.66 0.11 0.49 0 611 5272 5883 0.10386 
mean 0.583 1.464 0.095 0.221 2.471 2.662 0.107 0.497 0 634.1 5447 6081 0.10422 
sd 0.038887 0 069314 0.007071 0 00994 0.026437 0.019322 0.006749 O.OD6749 0 49.769 86.81 109.7 0.00714 
error 0 027816 0.049581 0 005058 0 00711 001891 0 013821 0.004828 0.004828 0 356 62.1 78.46 0 00511 
95% C I 0 583:!D.Oa464:!D.OL 0 095:!D.OC 0.221 :!D l 2.225:!D 0 12 662:!D.01 0.107 :!D DC 0.497 :!D.0048 0 104:!D.0052 



Appendix 2: Simulated Performance Measures Results vii 

Table 6.8: Abandoning times with traffic intensity of 1.1 for different distributions. 
Trame intensitv=1.1 

mtaerarrival time= 0.2083, service time= 1 
seed mean len9' std length mean dela std delay mean utlz std utlz mean idle mean bUS) balk abandon served total P(A) P(Balk) 
M/M/4/10+GAMA(2. 2) 

1 0.63 1.32 0.12 0.23 1.72 1.84 0.08 0.5 1 1177 3737 4915 0.239471 0.000203 
2 0.58 1.27 0.11 0.22 1.7 1.83 0.09 0.5 1 1074 3786 4861 0.220942 0.000206 
3 0.59 1.24 0.12 0.21 1.73 1.85 0.08 0.51 1 1117 3821 4939 0.226159 0.000202 
4 0 62 1.29 0.12 0.22 1.72 1.84 0.08 0.5 0 1184 3733 4917 0.240797 0 
5 0.59 1.28 0.12 0.22 1.72 1.84 008 0.5 0 1116 3807 4923 0.226691 0 
6 0.6 128 012 0.22 172 1.84 0.08 0.5 2 1095 3802 4899 0.223515 0.000408 
7 0.52 1.17 0.1 0.2 1.69 1.82 009 0.49 0 992 3820 4812 0.206151 0 
8 0.52 1.17 0.1 0.2 1.69 1.82 0.09 0.49 0 992 3820 4812 0.206151 0 
9 0.62 1.32 0.12 0.22 1.74 1.85 0.08 0.51 1 1164 3783 4948 0.235247 0.000202 

10 0.55 1 2 0.11 0.21 1.7 1.83 0.09 0.5 0 1023 3744 4767 0.21 46 0 
mean 0582 1.254 0.11 4 0.215 1.713 1836 0084 0.5 0.6 1093.4 3785 3 4879 0.223973 0.000122 
sd 0.039944 0.056608 0.008433 0.009718 0.017029 0 0107 0.005164 0.006667 0.7 72.379 35.296 62.61 0.01245 0.0001 43 
error 0.028573 0.040492 0.006032 0.006952 0.01 2181 0.0077 0.003694 0.004769 0.5 51 .773 25.247 44.79 0.008905 0.000102 
95% C 0 582:1:0.0; 1.254:i:!J.Ot0. 114:i:O.OC 0.215:i:O.OC 1.713:1:0.011 .836:![0.084:1:0 0( 0.5:1:0.00477 0.224:1:0.0( 0.00012:1:0 

MIM/4110+E(1 , 0 5) 
1 0 26 0.72 0.05 0.13 1 61 1 76 012 0.49 0 1175 3595 4770 0.246331 0 
3 0.29 0.76 0.06 0.13 1.64 1.78 0.11 0.51 0 1310 3525 4835 0.270941 0 
4 0.29 0.75 0.()5 0.13 1.61 1.77 0.12 0.49 0 1281 3626 4907 0.261056 0 
5 0.3 0.79 0.06 0.14 1.64 1.78 0.11 0.51 0 1285 3528 4813 0.266985 0 
6 0.28 0.77 0.06 0.13 1.61 1.77 0.12 0.5 0 1302 3466 4768 0.27307 0 
7 0.29 0.77 0.06 0.13 1.65 1.78 0.11 0.5 0 1309 3677 4986 0.262535 0 
8 029 077 0.06 0.13 1 65 178 0.1 1 0.5 0 1309 3677 4986 0 262535 0 
9 0 28 0 75 006 0.12 1 61 1.77 0 12 0.49 0 1200 3653 4861 0.248509 0 

10 0.29 077 0.06 0.13 1.62 1.77 0. 12 0.51 0 1286 3509 4795 0.268196 0 
11 0.28 0.75 0.06 0.13 1.62 1.77 0.12 0.49 0 1229 3633 4862 0.252777 0 

mean 0.285 0.76 0.059 0.13 1.626 1.773 0.1 16 0.499 0 1269.4 3588.9 4858 0.261294 0 
sd 0.010801 0.018856 0.003162 0 004714 0.017127 0.0067 0 005164 0.008756 0 48 091 76.209 79.97 0.009278 0 
error 0.007726 0.013488 0.002262 0.003372 0.012251 0 0048 0.003694 0.006263 0 34 4 54.513 57.2 0.006637 0 
95% C 0 285:1:0 OC0.76±0 .01~0 059:i:O.OC0.13:!ll~1 63:i:!J.Q1; 1 773:![0.116:i:O.OC0.499±0.0063 0.261:i:O.OC 0 

MIMI4/10+M 
1 0.54 1.24 0.11 0.22 1.69 1.82 0.09 0.5 1 1204 3710 4915 0.244964 0.000203 
2 0.54 1.19 0 11 0.22 1.7 1.84 009 0.51 0 1193 3689 4882 0.244367 0 
3 0 52 1 15 0.11 0.21 1 69 1.83 009 0.51 0 1153 3698 4851 0.237683 0 
4 0.49 1 11 0.1 0.2 168 1.82 009 0.49 0 1100 3784 4884 0.225225 0 
5 0.52 1.18 0.1 1 0.21 1.71 1.83 0.09 0.51 0 1155 3712 4867 0.237313 0 
6 0.51 1.16 0.1 0.21 1.7 1.82 0.09 0.51 2 1142 3583 4727 0.241591 0.000423 
7 0.49 1.14 0.1 0.21 1.68 1.82 0.09 0.49 0 1125 3828 4953 0.227135 0 
8 0.5 1.11 0.1 0.2 1.7 1.82 0 09 0.49 0 1131 3822 4953 0.228346 0 
9 0.48 1.11 0.1 02 1 69 1.82 009 0.49 0 1097 3800 4897 0.224015 0 

10 0.52 1.17 0.1 0.21 1.69 1.82 0.09 0.5 0 1145 3700 4845 0.236326 0 
mean 0.511 1.156 0.104 0.209 1.693 1.824 0.09 0.5 0.3 1144.5 3732.6 4877 0.234697 6.27E-05 
sd 0.02079 0.041687 0.005164 0.007379 0.009487 0.007 1.46E-17 0.009428 0.67 34.77 75.832 64.78 0.007932 0.000142 
error 0.014871 0.029819 0.003694 0.005278 0.006786 0.005 1 OSE-17 0.0067 44 0.48 24.871 54.243 46.34 0.005674 0.000101 
95% C 0.511±0.011.156:i:0. 0~0.104:i:O.OC0.209±0 OC 1.693:1:0 DC 1 824:![0.09:1:0 0.0094:i:0.0067 0.235:1:0.0: 0 



Bibliography 

[1] Adans, I. and R. Jacques (2002), Queueing Theory, Eindhoven, Netherlands. 

[2] Avramidis, A. and P. L'Ecuyer, Modelling and Simulation of Call Centres, 

Proceedings of 2005 Winter· conference. 

[3] Brown, L. , N. Gans, A. 1\Iandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, 

Statistical Analysis of a Telephone C a ll Centre : A Queueing Science­

P erspective, JASA , 100(469) , 2005, 35-50. 

[4] Khoshmnevis, B. (1994), Discrete System Simulation, McGraw-Hill, New York. 

[5] Koole, G. and A. ~Iandelbaum , Queueing M odels of Call Centre : An Intro­

duction, Annals of Operations Research, 113, 2002, 41-59. 

[6] Mandelbaum, A. , Ca ll Cent r es: R esearch bibliography with abstracts , Tech­

nical Report, Haifa, 2002. 

[7] Mandelbaum, A., A. Sakov and S. Zeltyn , Empirical Analysis of a Call Centre. 

Technical Report, Haifa, 2001. 

[8] Mandelbaum A and Zeltyn S (2004), Th e P a lm / Erlang-A Queue, with Ap­

plication to Call Cent res, Springer Berlin Heidelberg, New York. 

[9] Miler, R., G. (1981), Survival Analysis, John Wiley, New York. 

I 



Bibliography II 

[10] . "ikolic, ="! •. Statistical Integration of Erlang's Equation, European Journal of 

Opc..rational research, 187, 2008, 1487-1493. 

[11] Ross, S. YI. (1996), Stochastic Processes, Wiley, New York. 

[12] Ross, S. M. (2000), Introduction to Probability Models (Seventh Edition), 

Academic Press, New York. 

[13] Ross, S. :\1. (2002), Simulation, Academic Press, New York. 

[1 4] White, J . A., J. W. Schmodt and G. K. Bennett (1975) , Analysis of Queueing 

Systems, Academic Press, New York. 

[15] Whitt, W. , Dynamic Staffing in a Telephone Call Centre Aiming at to 

Immediately Answer all Calls, Operations Research letters, 24(5) , 1999, 205-212. 

IJG] Whitt. W. , Engineering Solution of a Basic Call-centre Model, Managern(m.t 

Science, 51(2), February 2005, 221-235. 

[17] Whitt, W. , Stochastic Models for the Design and Management of Customer 

Contact Ce ntres: Some Research Directions, working paper, f\1areh 2002. 

jl8] Whitt , W. , Understanding the Efficiency of Multi-server Service Systems. 

Management Science, 38 , 1992, 708- 723. 

[1 9] Zukerman, M. (2000) , Introduction to Queueing theory and Stochastic Tete­

traffic Models, Academic Press, New York. 

]20] ht.t.p: / jwww. voscsoftware.corn/ ModclRiskHclp/ iJH1cx.htm7;· Distributions 

/ Continuous_ distributions 'Erlang_ distribution.htm 

[A] Erlang, A. K. , Solution of some Problems in the Theory of Probabilities of 

Significance in Automatic Telephone Exchanges, Elektrotkeknikertn, vol 13, 

1917. 



Bibliography III 

[B] Dvoretzky, A., Kiefer, J. and Wolfowitz, J .. Asymptotic minimax charact er of 

the sample distribution function and of the classical multinomial estima­

tor, Annals of Mathematical Statistics, 27 (3), 1956, 642-669 . 

. 
( 

•. . :.~ .: .. . I 

·~::.!):{1~·:·:.:1: 'i; _.,,.,,,h. 

·- --· 


