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Abstract 

We start by discussing fuzzy sets and the algebra of fuzzy sets. We consider some 
properties of fuzzy modeling tools. This is followed by considering the Mamdani and 
Sugeno models for designing fuzzy controllers. Various methods for using sets of data for 
desining controllers are discussed. This is followed by a chapter illustrating the use of 
genetic algorithms in designing and optimizing fuzzy controllers.Finally we look at some 
previous applications of fuzzy control in telecommunication networks, and illustrate a 
simple application that was developed as part of the present work. 
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Chapter 1 

Introduction 

The first controllers 

During the 1970's the first fuzzy logic controller was developed by Abraham 
Mamdani and a research assistant of his, Seto Assilian [23]. Mamdani was at­
tempting to create an adaptive system that could learn how to control an in­
dustrial process. After trying conventional approaches to control and failing, his 
assistant suggested using fuzzy logic. It produced better results than the previ­
ously attempted approaches. During the 1980's Michio Sugeno developed his own 
version of a fuzzy controller that could control the motion of a car [53] [54]. Using 
20 fuzzy if - then rules Sugeno's controller was able to drive a model car through 
angled corridors after a learning session. 

Thus fuzzy controllers were initially developed as systems that could automat­
ically emulate the control process of a skilled human operator. In developing a 
fuzzy controller a human operator is required to express his expertise in the form 
of rules in a natural language. Whereas controllers developed by traditional strate­
gies require exact knowledge, in the development of a fuzzy controller, vagueness 
of information creates no problem and is in fact desired. Fuzzy systems represent 
a step in the direction of modeling human decision making processes. A fuzzy sys­
tem creates an interface of communication between humans and systems which is 
clearly one of the objectives of Zadeh's seminal papers on Fuzzy Sets and Fuzzy 
Logic[65][66]. \ 

While the West has been slow in accepting the new technology in Japan,a wide 
range of problems have been solved using it. Applications range from industrial 
robots and machinery to consumer prbducts like video cameras, washing machines 
and T.V.'s 

The need for fuzzy theory 

Probability is the mathematical tool for dealing with stochastic uncertainty. 
In a statement like "the probability of getting a tail on the flip of a coin is 0.5" the 
uncertainty of getting a tail is modeled by the number 0.5. The event of getting 
a tail is a well - defined event. 

The aim of fuzzy theory is modeling a different kind of uncertainty namely 
lexical or linguistic uncertainty - the type of uncertainty or vagueness which is 
inherent in natural language. It would be difficult if -not impossible to model a 

1 ~ 



CONTROVERSY 2 

concept like" comfortable temperature" using a set with crisp boundaries. The 
problem is that a temperature arbitrarily close to the boundary of such a set of 
comfortable temperatures would not be considered comfortable at all. This does 
not conform to our experience of how temperatures change. The problem is that 
the event of a temperature being comfortable is less well - defined than a prob­
ability as in the above example. Also, in deciding whether a given temperature 
is comfortable a certain amount of subjectivity is inevitable. Classes arising in 
natural language like "comfortable temperature" or "tall men" have been termed 
subjective categories by psycholinguists. Membership of a thing to a subjective 
category is a matter of degree - the degree to which the thing satisfies the criteria 
that define the category. Similarly, elements have a degree of belonging to a fuzzy 
set instead of it being a simple matter of inclusion or exclusion as in the case of a 
crisp set. This gradual transition from non - membership to membership allows 
one to represent subjective categories as fuzzy sets, i.e. the idea of a fuzzy set 
is the modification to the concept of set that one needs to deal with linguistic 
uncertainty. 

Contrqversy 

The development of Fuzzy Theory has been clouded by controversy and Zadeh 
has been severely critisized for his ideas. For example, according to Kalman [59J 
the major problems facing systems analysts - developing a deep insight into the 
nature of systems - is not addressed by Fuzzy Theory and" ... Zadeh's solution 
has no chance to contribute to this basic problem ... " Even today, after hundreds 
of successful applications of the theory, this attitude persists. One reason, strange 
as it may be, seems to be the name "Fuzzy" itself. It is notable that Van Altrock 
in [59J mentions that the Japanese language does not have a negative connptation 
to the word "fuzzy". Maybe it creates the impression that the reasoning itself 
is vague. This is not true. The theory is developed to deal with vagueness but 
is based on solid mathematical foundations. Another reason may be what Zadeh 
has termed the "hammer" principle, according to which if you have a hammer in 
your hand everything starts to look like a nail. 

Traditional controllers run the risk of becoming so simple that they are un­
realistic or so complicated that they become impractical. Fuzzy controllers have 
often been compared with traditional controllers in studies. These studies gener­
ally prove that fuzzy controllers are more robust, have slower rise times and faster 
settling times. Their control signals are generally smoother as well. Considering 
such benefits it becomes difficult to understand the contoversy surrounding fuzzy 
systems. 
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Aim and development of the work 
This work was commisioned as part of Telkom (S.A.)'s COE programme. 

From this one can assume that their research departments are becoming aware 
of the importance of fuzzy solutions to complex problems. ITAS (Integrated 
Technologies Application Strategies) - the division where such solutions would 
presumably first be researched, is almost exclusively populated by researchers 
who have not been exposed to fuzzy theory. Someone wishing to develop a fuzzy 
controller for use in one of Telkom's networks would need to become exposed to 
the background theory in this area. They would need material on the different 
methods that have been developed to create fuzzy solutions as well as examples 
of previous applications of the theory in telecommunication networks. Thus the 
topics discussed were chosen with the needs of such a prospective developer in 
mind. Hence the focus is on the mathematical structures and tools that support 
the development of fuzzy solutions. It is hoped that the work will serve the 
purpose of demystifying the subject and to create an appreciation of the beauty 
and simplicity of a field of study that we thoroughly enjoyed working in. 

In the second chapter we will start by defining the basic concepts and all of 
the operators necessary for the developments to come. Concepts from fuzzy logic 
that are required will also be briefly discussed. The chapter will also introduce 
the structure and operational details of the two main types of controllers. It will 
end with a discussion on some mathematical properties of fuzzy controllers. 

Chapter 3 looks at the use of sets of input - output data in designing fuzzy 
controllers. Chapter 4 discusses the use of Genetic Algorithms in the design and 
optimization of fuzzy controllers. Chapter 5 looks at the ways in which fuzzy 
systems have been used in Network Management in Telecommunications Engi­
neering and discusses an application which was developed to illustrate possible 
uses of some of the theory. Chapter 7 contains the appendices. The first of these 
contains the proofs of two statements made in Chapter 3, the seconp a number of 
results from the application in Chapter 5 and finally the third appendix contains 
the programmes that were written to demonstrate the application. .I 



Chapter 2 

Background Theory 

Definitions 

The algebra of fuzzy sets 
Fuzzy logic is an extention of two valued logic. Instead of the truth value 

of a statement being only ° or 1 any value in [0, 1] is possible. In two valued 
logic we study how (true or false) statements are connected and how we can make 
inferences from these connections. To connect statements we use the conjunction 
and disjunction operators, while we require the implication operator to make 
inferences (together with rules for valid implications, for example modus ponens). 

The algebra of fuzzy sets was constructed in such a way the crisp Set Theory 
and crisp Logic become special cases of the now more general Fuzzy Set The­
ory. In the development of Fuzzy Logic the logical operators of conjunction and 
disjunction were extended to t - norms and t - conorms respectively. 

Definition 1 A triangular norm (or t - norm) is a map: 

T: [0, IF --7 [0,1] satisfying: 

1. T(a,b) = T(b,a) (r is commutative) 

2. T(a, T(b, c)) = T(T(a, b), c) (r is associative) 

3. a ~ b =? T(a, c) ~ T(b, c) (r is monotone) 

4. T(a, 1) = a (boundary condition) Va,b,c E [0,1] 

Definition 2 A triangular conorm (or an s - norm or a t - conorm) is a map: 

S: [0,1]2 --7 [0,1] satisfying 

1. S(a, b) = S(b, a) (S is commutative) 

2. S(a, S(b, c)) = S(S(a, b), c) (S is associative) 

3. a ~ b =? S(a, c) ~ S(b, c) (T is monotone) 

4. S(a,O) = a Va, b, c E [0,1] 

4 



DEFINITIONS 5 

There are infinely many t - norms and t - conorms. Only a few have been 
used in practical control. Some of these are: 

Example 3 

T m (x, y) = min { x, y} 
Sm(x,y) = max{x,y} 

Tp(x,y) = x x y 

Sp(x,y) = x+y - x x y 

TL(x,y) = max{x + y -1, O} 

S L (x, y) = min { x + y, I} 

(2.1) 

Definition 4 Let X be an arbitrary set. A fuzzy subset A of X is characterised 
by a membership function: 

f1A: X -+ [0,1] 

Remark 1 In the traditional literature a fuzzy subset A of X is usually denoted 
by greek letters ego f1A. A(x) (or f1A(X)) is understood to be the "degree" to which 
x belongs to A, or the truth value of the statement x E A. X is called the universe 
of discourse. The unit interval [0,1] is in what follows often denoted by I and the 
family of all fuzzy subsets of X by IX. 

Definition 5 The support of a fuzzy set A is the set: 

supp(A) = {x EX: f1A(X) > O} 
I 

Definition 6 The core of a fuzzy se~ A is the set: 

core(A) = {x EX: f1A(X) = I} 

Definition 7 A fuzzy singleton is a fuzzy set A S. t.: 

supp(A) ={x} for some x EX 

Definition 8 A fuzzy number is a fuzzy set A satisfying: 

1. maX{f1A(x): x E X} = 1 
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Definition 9 For A and B fuzzy subsets of X we can now define: 

1. J-LAnB(X) = T(J-LA (x), J-LB(X)) 

2. J-LAUB(X) = S(J-LA(X),J-LB(X)) 

3. J-LA,(x)=l-J-LA(x) 

for T and Sat - norm and co - norm respectively. 

Definition 10 A fuzzy relation R is a fuzzy subset of a product space: 

Definition 11 If AI, A 2 , .•. , An are fuzzy subsets of Xl, ... , Xnrespectively then the 
cartesian product of AI, ... , An is a fuzzy set on the product space defined as: 

or 

J-LAI XA2 x ... xAn (Xl, ... Xn) J-LAI (Xl) . J-LA2 (X2) ..... J-LAn (Xn) 
or if n < 2 

! 

Definition 12 For A a fuzzy subset of X , R a fuzzy relation on X x Y and T a 
t-norm 

J-LAoR(Y) = sup {T(J-LA (x) , J-LR(X, y)) : X E X} (2.2) 

In the case of A being a fuzzy relation on X x Y and B being a fuzzy relation 
on Y x Z this definition changes to: 

J-LAOB(X, z) = sUp{T(J-LA(X, Y), J-LB(Y, z)) : Y E Y} 

The above definition'"-is Zadeh's Compositional Rule of Inference. It is used in 
the inference process of a fuzzy controller as explained-later. 
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Linguistic variables and fuzzy if - then rules 
As stated earlier the concept of a fuzzy set is what one needs to deal with 

linguistic uncertainty. A related concept is that of a linguistic variable. According 
to Zadeh this is a variable whose values are sentences in a natural or artificial 
language. More specifically: 

Definition 13 A linguistic variable is characterised by a quintuple 

(x, 8'(x) , U, G, M) where 

x is the name of the variable; 
8'(x) is the term set of x or the set of linguistic values of x; 
Each linguistic value of x represents a fuzzy subset of the universe of discourse 

U· , 
G is a syntactic rule for generating the names, X of values of x. 
M is a semantic rule for associating with each value X of x its value M(X), a 

fuzzy subset of U. 
This definition is very general and is a bit more than what we will require. A 

simple example will illustrate the terms which we find necessary. 

Example 14 Suppose one wanted to deszgn a fuzzy controlled air - conditioner. 
Here one linguistic variable might be x = temperature, which might have the term 
set: 

8'( x) = {cool; warm; hot} 

The elements of 8'( x) are the linguistic values of x and each has an associated 
fuzzy set; as illustrated in Figure 2.1. 

I 

lleooI llwarm 

x=temp 

Figure 2.1: Fuzzy sets on x=temperature 

We refer to "warm" -as the linguistic label of the fuzzy set /1warm. Similarly for 
the rest. 
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Fuzzy Rules 

The essential part of a fuzzy controller is a collection of conditional statements 
called fuzzy if - then rules. The condition part of a rule specifies a collection of 
conditions on input variables. Not every input variable need be mentioned in any 
particular rule though in most controllers each rule contains a condition for every 
variable. Such a condition is given in the form of a linguistic term of a linguistic 
variable. These conditions are aggregated in the rule in the form of sentence 
connecti ves (either "and" or "or"). In the case of use of the sentence connective 
"or" such a rule can be ( and is for inference purposes ) rewritten in the form of 
"and" rules. 

There are mainly two types of fuzzy controllers which differ in terms of the 
form of the consequence of the rules they use. The Mamdani controller has lin­
guistic labels of fuzzy sets in the conditions in both the antecedent and consequent 
of a rule. The Sugeno controller has linguistic labels in the antecedent of each 
rule. The consequent of a rule is a functional relationship between the output 
variable and the collection of input variables as will be seen clearly below. 

Fuzzy Logic and the !'1amdani controller 

Fuzzy implication functions 
Three main categories of fuzzy implication operators have been defined. These 

are fuzzy conjunction, fuzzy disjunction and the fuzzy implication operators. 
The fuzzy conjunction is defined using a triangular norm. Suppose A and B 

are fuzzy sets on the domains X and Y respectively. In the following T will denote 
a t - norm and Sat - conorm. Then the truth value of the statement 

can be defined by means of a fuzzy conjunction as 
I 

or by means of a fuzzy disjunction as 

Examples of Fuzzy implication functions are 

1 Material implication: 
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2 Propositional Calculus: 

9 

If one restricts to crisp membership values and S = "or" and T = "and" then 
(2) recovers the implication operater in two - valued logic. 

3 Generalization of modus ponens: 

4 Generalization of modus tollens: 

Clearly now one can define many different fuzzy implication operators by 
using different t - norms and t - conorms. For example each rule in a Mamdani 
rulebase can be interpreted as a fuzzy co~unction with the minimum operator as 
the chosen t - norm. 

Inference in the Marndani Controller 
Suppose that we have an n input - 1 output system to be controlled by a 

Mamdani controller. Suppose that Xi E Xi for 1 SiS n. The rule base of such a 
controller consists of rules of the form: 

Rr : if Xl is Ar I and X2 is Ar 2 and ... and Xn is Ar n then y. is Br , , '\ 

Here 1 S r S k. Each Ar,i and Br is the linguistic label of some fuzzy/set on 
X and Y respectively Vi E {I, 2, ... , n} and Vr E {I, 2, ''', k}. 

At this point the notation can be" simplified to: 

Rr : if x is Ar then y is Br Vr E {I; ... ; k} (2.3) 

Such a rule can be represented as a fuzzy implication (conjunction) as: 

The truth value of the implication is calculated as: 

fJ,Ar-->Er (x, y) = min {fJ,A,.z:,l (Xl); fJ,Ar ,2 (X2); ... ; fJ,Ar,n (Xn); VEr (y)} for a given vector 
(x,y). 
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We now combine the collection of rules Rr into a fuzzy relation as: 

A given crisp input from the process is first fed into the fuzzifier module of 
the fuzzy controller. Here it is transformed into a fuzzy set as follows. Suppose 
the crisp input is XO = (x~, x~, ... , x~). For each i E {I; 2; ... ; n} the fuzzifier creates 
the fuzzy set Ai defined on Xi with membership function: 

{ 
0 if x =1= x? 

f-LAi(X) = l·f _ 0 
1 X - xi 

So a crisp input (x~, ... , x~) creates a collection of fuzzy sets Ai, i = 1, ... , non 
the different universes of discourse. Simplifying the notation again, let 

This input fuzzy set is now composed with the fuzzy relation R to produce 
the output fuzzy set B according to the compositional rule of inference (CRI): 

R 0 A which is as before (2.4) 

_ m~x {min{f-LR(x, y); f-LA(X)}} 
XEII i =l Xi 

Simplifying the last equation as follows gives a working definition that leads 
to an easier calculation process. 

Suppose x =1= (X~, X~, ... , x~). Then f-LA(X) = 0 
Suppose x = (x~,x~, ... ,x~). Then f-LA(x) = 1. In this case 

min {f-LR(X, y); f-LA (x)} f-LR(X, y) 2: 0, hence 

_ mnax {min{f-LR(x, y), f-LA(X)}} 
XEIIi =l Xi 

occurs when x = (x~, ... , x~) and clearly: 

f-LR(X, y) 
max {min{f-Lr,l(X~); ... ; f-Lr,n(x~); VBr(Y)}} r=l; ... ;k 

J 

(2.5) 
(2.6) 

Often observed data are disturbed by random noise. In such a case a different 
fuzzification interface @s been found useful. In [76] such a data set containing 
noise is fuzzified into an isosceles triangle. The vertex of the triangle corr~sponds 
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to the mean of the data set, while the base of the triangle is twice the standard 
deviation. 

The above CRI is the so - called max - min CRI. It is by far the most commonly 
used in fuzzy controller design. Other forms of the CRI that have been used are: 

the sup - product operation due to Kaufmann; 
the sup - bounded product and 
the sup - drastic product operation (both due to Mizumoto) 
The simplified inference procedure is now illustrated below using two rules: 
Suppose the rules are: 

RI if Xl is An and X2 is Al2 then y is BI 

R2 if Xl is A21 and X2 is A22 then y is B2 

where Arl and Ar2 are linguistic labels offuzzy sets on Xl and X 2 respectively 
for r = 1,2. B I , B2 are linguistic labels of fuzzy sets on Y. 

For a crisp input (x~, xg) the inference process now proceeds as follows: 
1) Calculate Tr = min{/LArl (x~) ,/LAr2 (xgn 
2) Now define voutput(y) = { vBr(y)~f VBr(Y) .~ Tr 

r Tr otherwIse 

3) Calculate the union of vrutput(y) and v:;utput(y) which is the output fuzzy 
set to be defuzzified. 

The first two steps are shown below: 

x 0 
1 

y 

Figure 2.2: Inference in the Mamdani controller 

The union of the two fuzzy sets on Y, B' in the figure is then the final fuzzy 
output to be defuzzified: 
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B' 

y 

Figure 2.3: Output fuzzy set to be defuzzified 

Defuzzification 

Defuzzification is the process by which the output fuzzy set is transformed 
into a crisp value that can be used by a controller. The two most commonly used 
defuzzification strategies are: 

Centre of Area Criterion 

This method divides the first moment of the area under voutput(y) in half: 

Jy yvoutput(y)dy 
Yo = Jy voutput (y)dy 

The Maximum Criterion 

This method chooses the smallest y value at which voutput(y) reaches ~ maxi­
mum value. 

Mean of Maxima Criterion 

This method considers the collection of values for which voutput(y) reaches a 
maximum value and calculates the centre of area of such values. 

The Mean of Maxima is reported in to lead to harsh discontinuities. Braae 
and Rutherford in [3] present a study on defuzzification strategies and conclude 
that the COA leads to superior results. 

The Sugeno Controller 

The rules in a Sugeno Controller have form: 
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Rr : if Xl is Ar,l and X2 is Ar,2 and ' .. and Xn is Ar,n then y = fr(XI' , .. , xn) (r = 1, ... , k) 

Only the sets Xl, X 2, ... , Xn are partitioned by fuzzy sets. fr usually has form: 

where a~ E IR. Vi E {O; 1; ... ; n}. 
For a crisp input value xO = (x~, ... , x~) the output of the fuzzy controller is 

calculated as: 
First the degree of satisfaction ( or degree of truth) of each rule is calculated 

as: 

Secondly the final output of the controller is given by: 

The t-norm used in the calculation of Tr is usually the minimum or product. 

The Approximating Capabilities of Fuzzy Systems 
Since the first fuzzy controllers were designed by Mamdani and Sugeno fuzzy 

control has been applied to an increasingly wider range of problems. 
When one considers the wide range of applications one question that comes 

to mind is "What kind of systems and processes can be controlled by a fuzzy 
controller?" Another is "If a system is controllable (using conventional control) 
can one find a fuzzy controller that is capable of controlling the plpcess as well?" 

Some answers to questions like these were produced in [60J [9J 
In [60J the author shows that a certain class of Fuzzy Controllers are Uriiversal 

Approximators. By this is meant that given a continuous function: 

with 
U c IR.n , U compact 

there exists a fuzzy controller that can approximate the function f to an 
arbitrary degree of accuracy. 

The proof as presented in [60J follows: 
Let us first consider the design parameters of fuzzy systems. These are: 
1) the number of fuzzy sets defined on the input and output universes of 

discourse. 
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2) the membership functions of these fuzzy sets. 
3) the number of fuzzy rules in the rule base. 
4) the linguistic statements of the fuzzy rules. 
5) the decision making logic in the inference procedure. 
6) the defuzzification method. 
Thus there is a range of different" classes" of fuzzy controllers, each of which 

has a particular choice for each of the design parameters noted above. In what 
follows we focus on the class of fuzzy controllers with the following parameters: 

a) The fuzzy rules have the form of rules in a Mamdani rule base. 
b) all membership functions have the following Gaussian form: 

i r 1 Xi - xi 2 
f-Lki,r(Xi) = ai exp( --2 ( r )) 

CJi 

with i = 0, I, ... , nand r = 1,2, ... ,p. Here i = 0 represents the membership 
functions for the output space, i.e. 

AD =B. 
ko,r Jr 

Also 0 ~ ai ~ 1 and xi is the point in the input or output space where the 
fuzzy set f-L1. r achieves its maximum membership value. 

c) prod~~t inference logic is used. ". 
d) the centre of area defuzzification method is used. 
In the following we denote the set of fuzzy systems with the above parameters 

by F 
l.e. let U c jRn, then 

Here (,r is the point in the output space jR at which Vjr achieves its maximum 
value. We assume that p 2': 1 and that U is compact. ' 

We now make F into a metric space by defining: J 

It is clear that F is non - empty since p 2': 1. Also the denominator of the 
expression defining f E F is never zero since the Gaussian functions. are never 
zero. The last two facts show that (F, dco ) is well - defined. 

According to the Stone - Weierstrass theorem: 
If Z is a set of real continuous functions on a compact set U s.t.: 
1) Z is an algebra; 
2) Z separates points on U and 
3) V point u E U :3 Z E Z which does not vanish at that point. 
then (Z,dco ) is dense in (C[U],dco ). The proof follows in the form of three 

lemmas: 
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Lemma 15 (F, d=) is an algebra 

Proof. 
Let h,h E F. 
Hence 

and 

Then 

15 

are both Gaussian their product is Gaussian as well. 

which also has the required form, hence hh E F. 
Finally, for arbitrary c E R : 

which shows that 

ch E F 

as well. 

Lemma 16 (F, d=) separates points on U. 

Proof. 

(F, d=) separates points on U ~ for arbitrary iP, fl E U, s.t. XO =I=- fl :3 f E F 
~ s.t. 

f(xO) =I=- fUl) 
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C· -0 -0 U t -0 (0 0 0)-0 lven x ,Y E ,s .. x = Xl' X2, ... , Xn ,Y = (y~, yg, ... y~), we construct 
the required f E F as follows. 

Vi E (1; ... ; n} we define 2 fuzzy sets: 

exp [ - ~ (Xi - X?)2] with linguistic label Ai and 

exp [- ~ (Xi - y?)2] with linguistic label A; 
If x? = y? then Ai = A7 and the i-th subspace of U has only one fuzzy set 

defined on it. 
We also define two fuzzy sets jjl and jj2 with linguistic labels BI and B2 

respectively on lR: 

[ 
(z - zj)2] 

Vj(z) = exp - z ' for j = 1,2 

and zj will be specified later. Our controller will run on two rules: 

Rr : if Xl is A~ and X2 is A; and ... and Xn is A~ then z is Br 

Now 

f(iP) 

f(rl) 

where 

1 
a= ----------~------~ 

1 + II~=1 exp [- (X?7?)2] 

Now iP =1= rl =? ::Ji : x? =1= y?, hence 

=1= 1 or 

a =1= I-a 

choose 

o and Z2 = 1, then 

1 - a =1= a = f (1;/) 
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Lemma 17 (F, doo ) vanishes at no point of U. 

Proof. 
Considering the form of the equations in (1) and the form of the inference 

function j, the required j E (F, doo ) is constructed by choosing all Zj > 0 (j = 

1, ... ,K) 
The three lemmas thus prove that for any given real continuous g defined on 

the compact U c .ll~;n and arbitrary c > O,::J j E (F, dcxJ s.t. : 

supl g(x) - j(x) 1< c 
xEU 

The above shows that a certain class of fuzzy controllers is capable of approx­
imating any real continuous function on a compact domain to arbitrary accuracy. 
More work on the mathematical properties of fuzzy controllers has been done. 
For example, in [7] the author proves a similar result for Sugeno type controllers. 
In [6] he develops a theory of the fuzzy controller and in [8] looks at relationships 
between neural networks, continuous functions and fuzzy systems. 

Chapter conclusion 
This chapter served the purpose of introducing the notation and terminology 

that we will require in the rest of the work. Another important part of the chapter 
is the discussion of Mamdani's model used to build fuzzy controllers. The final 
section on the approximating capabilities of fuzzy controllers was included to give 
some indication of the theoretical developments in the research areas in fuzzy 
systems. 



Chapter 3 

Designing fuzzy controllers 

Introduction 
This chapter focuses on the determination of the parameters of a fuzzy con­

troller. This requires us to determine the fuzzy partitions of the input and output 
spaces as well as finding a set of fuzzy if-then rules that will drive the inference 
process of the fuzzy controller. 

Semantics play an important role in fuzzy controller design. The linguistic 
terms of fuzzy sets used to partition the spaces are intended to form a link be­
tween the imprecise knowledge of an expert and the inference process implemented 
on a computer. Hence initial ideas on the design process of a fuzzy controller cen­
tred around a control expert expressing his knowledge of the system in terms of 
linguistic terms. These linguistic terms ale then translated into fuzzy sets to be 
used in the inference process. 

The above approach, however, suffers from a number of drawbacks. A number 
of papers [23], [53], [54J comment on the difficulty that process controllers experi­
ence in trying to express their knowledge of the system verbally. Also, in [23J the 
author notes that the system can actually learn the operators' failures as well as 
their successes. 

After those attemps a number of other approaches have been developed. Many 
of these depend on analysing pairs of input-output data for the system to be 
controlled. The data will connect the desired output for a given input, hence can 
be seen as specifying a partially defined control function. The data set is then used 
to design a fuzzy controller that extends the partially defined control func'tion to 
the rest of the input space. 

A telecommunications network seems ideal for gathering data and using this 
approach. Once the variables have been decided upon the necessary software can 
be added to the nodes of the network. In this way the nodes of the ne~work can 
record the values of the identified variables, perhaps as a function of time, during 
the operation of the network. 

For the above reason we focus on methods that use pairs of input -output 
data. 

The first method we consider starts out with a fuzzification of the crisp notion 
of an equivalence relation and other related concepts. The outcome of the devel­
opment is an arrival at~Mamdani's inference process with a new mathematical 
structure to support it. 

18 
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Fuzzy control using fuzzy equivalence relations 

Fuzzy equivalence relations on single spaces 
Definition 18 A fuzzy equivalence relation (w.r.t. the t-norm T ) on the set X 
zs a map: 

E 

E1) E(x,x) 
E2) E(x, y) 
E3) E(x, z) 

X x X --t I satisfying: 

1 

E(y,x) 
> T(E(x, y), E(y, z)) \;Ix, y, z EX 

Property E1 is referred to as reflexivity while E2 makes E symmetric. The 
last property means that E is transitive with respect to T 

When the T-norm above is the Lukasiewicz t-norm then the following inter­
esting relationship exists between fuzzy equivalence relations and pseudometrics 
onX. 

Proposition 19 Let TL denote the Lukasiewicz conjunction as before. Then: 

(i) If E is a fuzzy equivalence relation em X with respect to TL then OE = 1- E 
is a pseudometric on X, and 

(ii) If 0: X --t I is a pseudometric on X then Eo(x, y) = 1- min(o(x, y), 1) is 
a fuzzy equivalence relation on X w.r.t. TL . 

Proof. 
(i) Suppose E is a fuzzy equivalence relation on X w.r.t. TL . Then 
(a) o(x, y) = 1 - E(x, y) 2: 0 \;Ix, y E X is clear. 
(b) o(x,y) = 1- E(x,y) = 1- E(y,x) = o(y, x) 
(c) From the transitivity of E w.r.t. TL get: 

Now 

TL(E(x, y), E(y, z)) < E(x, z) =? 

max(E(x, y) + E(y,z) -1,0) < E(x, z), hence 

E(x, y) + E(y, z) < E(x, z) + 1, hence 

-E(x,z) < 1- (E(x,y) +E(y,z)) 

OE(X, y) + OE(y, z) 1 - E(x, y) + 1 - E(y, z) 
2 - (E(x, y) + E(y, z)) 
1 + 1 - (E(x, y) + E(y, z)) 

> 1 - E(x, z) 
OE(X,Z) 

.I 
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Hence 8E is a pseudometric on X. 
(ii) Suppose 8 is a pseudometric on X. Then 

8' (x, y) = min { 8 (x, y), 1 } 

is also a pseudometric and so satisfies the triangle inequality 

El) 

E2) 

E3) 

8' (x, z) :S 8' (x, y) + 8' (y, z) 

E8(X,x) 1 - min(8(x, x), 1) 
1 - min(O, 1) 

1 

1 - min ( 8 (x, y), 1) 

1 - min ( 8 (y, x), 1) 

Ely, x) 

TL(E8(x, y), E8(y, z)) max(E8(x, y) + E8(y, z) - 1,0) 

max(l- 8'(x,y) + 1- 8'(y,z) -1,0) 

max(l- (8'(x,y) + 8'(y,z)),O) 
< max(l- 8'(x,z),O) 

E8(X,Z). 

This completes the proof. 

An ordinary (or crisp) equivalence relation Rj on a set X defines a partition of 
X into equivalence classes s.t. if M is a part of the partition we have for x, y E X 

x E M and x Rj y * Y E M. 

The following concept generalizes the above to the setting of fuzzy equivalence 
relations and fuzzy sets. Where necessary we will use the notation 

xTy instead of T(x, y) 

for the action of at-norm. 
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Definition 20 A fuzzy set f.1 E IX is called extensional with respect to the fuzzy 
equivalence relation E (w.r.t. at-norm T) on X {::} 

T(f.1(x),E(x,y)) ~ f.1(y) VX,y E X 

Definition 21 Let E be a fuzzy equivalence relation on X and let f.1 E I x. The 
fuzzy set 

Jl = 1\ {v : f.1 ~ v and v is extensional wrt E} 

is called the extensional hull of f.1 wrt E. 

(3.1) 

Proposition 22 Let E be a fuzzy equivalence relation on X and let f.1 E I x. Then 

Proof. 

(i) Jl(x) = V{f.1(Y) T E(x, y) : y E X} 

(ii) Jl is extensional wrt E 

(iii) Jl = Jl 

(i) Let jl(x) = V{f.1(z) T E(x, z) : z EX} 
Now 

jl(x) T E(x, y) E(x, y) T jl(x) 

E(x, y) T~ V {f.1(z) T E(x, z) : z EX} 

V{f.1(z) T E(x, y) T E(x, z)} 

< V{f.1(z) T E(y, z) : z E X} 
jl(y) 

Hence jl is extensional wrt E. 
Also 

(3.2) 
(3.3) 

jl(x) = V{f.1(y) T E((x,y) : y E X} ~ f.1(x) T E(x,x) = f.1(x). 
~ 

Now Jl(x) is the smallest extensional fuzzy set s.t. f.1 ~ Jl. Since jl ~ f.1 and jl 
is extensional, we get jl ~ Jl.' 

To see that jl ~ Jl, let v be an. arbitrary fuzzy set extensional wrt E, s.t. 
f.1 ~ v. Since 

v(x) ~ v(y) T E(x, y) ~ f.1(y) T E(x, y) VyEX 

we get 
v(x) ~ V{f.1(y) T E(x,y) : y E X} = jl(x). 

Hence 

Jl(x) > jl(x) 

and so Jl f.1. 

(ii) proved in (i) 
(iii) follows from (ii) and the definition of Jl. This -completes the proof. 
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Example 23 We now consider the extensional hulls of some fuzzy sets that are 
common in control problems. 

1. Let X ~ JR., Xo E X 

For x, y E X, we define 

E(x, y) 

f1xo (x) 

1 - min {I x - y I, I}, 

{
I if x = Xo d 
o otherwise an 

I X I ---t I is the Lukasiewicz t-norm 

We calculate the extensional hull of f1xo using 3.2 of the proposition above 

7lxo(x) = sup{max{f1xo(Y) +E(x,y) -I}: y E X} 

.Now y =I Xo =? f1xo(y) = 0 =? max{f1xo(Y) + E(x, y) - 1, O} = O. 
Clearly now the sup in 3.4 occurs when y = Xo, hence 

max{f1xo(xo)~+ E(xo, x) - 1, O} 

E(xo, x) 
1 - min {I Xo - xl, 1 } 

{

l-(X-XO) ifxE[xo,xo+1) 
1 - (xo - x) if x E (xo - 1, xo) 

o otherwise 

(3.4) 

which is the isosceles triangle with base length of 2 and vertex at (xo, 1). 
More generally, if we use E(x,y) = 1-min{k 1 x-y 1,1} for a fixed k > 0 (this 

will also be a fuzzy equivalence relation on X w.r.t. TL since min{~ 1 x-y I, I} is 
a pseudometric on X. - Proposition 19) we obtain for 7lxo(x) an isosceles ttiangle 
with base length ~. 

2. For the same fuzzy equivalence relation and t-norm as above we consider 
M ~ X, where M is an interval. Again, f1M is the characteristic function of 
M. : 

{
I if x E M 

f1M(X) = 0 otherwise 

7lM(X) = sup{ max{f1M(Y) + E(x, y) - 1, O} : y EX}. (3.5) 

Suppose that x E M, then 
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Let 

x. inf M and 

x supM. 

If x E (x. - 1, x.), then the sup in 3.5 occurs for some y EM, since 11M (y) = 0 
elsewhere. Also 

E (x, y) = 1 - min {I x - y I, 1 } 

To maximize E(x, y) we need y = x., leading to 

It is also easy to see that for x E (x, x + 1) we get 

71M(x) = E(x, x) 

The two extensional hulls are illustrated below. 

Figure 3.1: Extensional hulls of I1xo and 11M. 

Product spaces and mappings 

x 

J 

We need now to extend the notion of fuzzy equivalence relations fror;n a single 
space to a product of spaces. The fuzzy equivalence relations on single spaces are 
combined to form a fuzzy equivalence relation on the product space. 

Suppose now that the spaces X and Y have the fuzzy equivalence relations E 
and F defined on them. Let H be the fuzzy equivalence relation to be defined on 
XxY. 

What would one require from this H? Firstly that 

H ( (x, y), (Xl, yl) ) 
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which is the degree of similarity of (x, y) and (x', y') depends only on E(x, x') 
and F(y, y') and not on the specific choice of x, x', y, y'. So we define 

H : (X X y)2 ---t I 

as 
H((x, y), (x', y')) = h(E(x, x'), F(y, y')) 

for some function h : 12 ---t I that satisfies: 

hI) h(o;, (3) = h((3,o;) 

h2) h(o;, 1) = 0; 

h3) 0;::; '"'( =? h(o;, (3) ::; h('"'(,(3) '1/0;,(3,,",( E I 

Clearly axioms El and E2 of definition 18 of 3.1.1 are satisfied by H defined 
in this way. 

Here (hI) ensures that E and F have the same influence on H, while (h2) 
ensures that 

H((x,y), (x',y)) = E(x,x') 

(h3) requires that the degree of simllarity between (x,y) and (x',y') does 
not exceed the degree of similarity between (x", y) and (x"', y') if the degree of 
similarity between x and x' is less than or equal to the similarity degree between 
x" and XIII. 

Of course axiom E3 of Definition 18 of 3.1.1 (transitivity) must also be satisfied 
for H to be an equivalence relation on X x Y. We consider the following cases: 

Proposition 24 Let E and F be fuzzy equivalence relations on X and Y respec­
tively, w.r.t. at-norm T. Then 

1. 
J 

HT((x, y), (x'., y')) = E(x, x') T F(y, y') 

is a fuzzy equivalence relation on X x Y w.r.t T satisfying (hl)-(h3). In 
particular for T = Tm (see example3) : 

Hm((x,y), (x',y')) = min{E(x, x'),F(y, y')} 

is a fuzzy equivalence relation on X x Y with respect to Tm satisfying (hl)-
(h3). 

2. If H is a fuzzy equivalence relation with respect to T which satisfies (hl)­
(h3), then 
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(cf. the observation under example3) 
Proof. 

1) HT clearly satisfies (hl)-(h3). To show that H is an equivalence relation 
w.r.t. T, firstly observe that for at-norm 

T(T(a, b), T(c,d)) = T(T(a, c), T(b,d)) (3.6) 

since both sides reduce to T(T(a,T(b,c)),d) by virtue of the associative law 
for t-norms. So: 

H((x, y), (x', y')) T(E(x, x'), F(y, y')) (3.7) 
> T(T(E(x, z), E(z, x')), T(F(y, Zl), F(Z', y'))) (3.8) 

T(T(E(x, z), F(y, Zl)), T(E(z, x'), F(Z', y'))) 
T(H( (x, y), (z, Zl)), H( (z, Zl), (x', y'))) (3.9) 

Here 3.8 holds since E and Fare equhralence relations with respect to T and 
3.9 holds due to 3.6 above. 

2) To prove 2 assume that H((x, y), (xl, y')) = h(E(x, x'), F(y, y')). On the 
one hand: 

H ( (x, y), (x', y') ) > H ( (x, y), (x' , y)) T H ( (x' , y), (x', y') ) 
- h(E(x, x'), F(y, y)) T h(E(X', x'), F(y, y')) 

E(x, x') T F(y, y') 

On the other hand we need to show that 

h(a, (3) :S min{ a, (3} 

From (h3) and (h2) get 

h(a,(3) :S h(a, 1) = a 

Also, using (hI) obtain 

h( a, (3) :S (3 

This completes the proof. 

I 

Given two spaces X....and Y with similarity relations E and F respectively, we 
want to consider maps between X and Y that preservE) the similarity of points. 
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Definition 25 Let E and F be fuzzy equivalence relations on X and Y respec­
tively. A mapping 

<p:X---+Y 

is called extensional w.r.t. E and F if E(x, x') :::; F(<p(X),<p(X')) Vx,x' EX. 

Thus the extensionality of a map requires that the degree of similarity of the 
images of two points be at least as great as the degree of similarity of the points. 

Notel This concept should be carefully distinguished from that of extensionality 
of a fuzzy set on X w.r.t. a fuzzy equivalence relation on X. ( Definition 20 
) 

Note2 If we have a fuzzy set f1 : X ---+ I on a pseudometric space (X,8) and the 
usual metric on I, then E,5(X, x') = 1- min(8(x, x'), 1) is a fuzzy equivalence 
relation on X w.r.t. TL and so is F(rl,r2) = 1-min(1 rl -r21, 1) on I. (See 
Proposition 19). Then saying that f1 is extensional w.r.t. Es and F i.t.o. 
the Definition 25 above means that 

1 - min(8(x, x'), 1) :::; 1 - min(1 f1(x) - f1(x' ) 1,1) Vx, x' EX 

or min(1 f1(:r;) - f1(x' ) 1,1) :::; min(8(x, x'), 1) 
or 1 f1(x) - f1(x' ) I:::; min(8(x, x'), 1) 

which is equivalent to ordinary continuity of f1. 

Definition 26 Let E I , E 2, ... , En be fuzzy equivalence relations on Xl, ... , Xn re­
spectively) w. r. t. the t-norm T. Define 

EI, ... ,n : (Xl X ... X Xn)2 ---+ I 

((Xl, ... ,xn), (x~, ... ,x~)) 1---7 min{EI(xI'X~), ... ,En(xn,x~)}\ 

Then we have the following : J 

1. EI, ... ,n is a fuzzy equivalence relation on Xl X X 2 X ... X X n. 

2. The projection 

is extensional w.r.t. EI, ... ,n and Ei Vi E {I; 2; ... n}. 

3. If E is a fuzzy equivalence relation on Xl X X 2 X ... X Xn s.t. all projections 
I1i are extensional;" ... then 

E:::; EI, ... ,n-
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Proof. 
1) EI, ... ,n is clearly reflexive and symmetric. It is also transitive w.r.t. T since: 

EI, ... ,n((XI, ... , xn), (x;, ... , x~)) T EI, ... ,n((x;, ... x~), (x{, ... , x~)) 
min{ Ei(Xi, x~) : i E {I; ... ; n}} T min{ Ej (xj , x~) : j E {I; ... ; n}} 

< min{ Ei(Xi, x~) T Ei(X~, x~)} 

< min{Ei(xi, x~)} 

EI, ... ,n((XI, ... ,xn), (x~, ... ,x~)). 

2) 

EI, ... ,n((XI, ... ,Xn),(X;, ... ,X~)) < Ei(Xi'X~)) 

Ei (IIi (Xl , ... , xn ), IIi (X; , ... , X~)). 

3) Since IIi is extensional w.r.t. E and E i , get: 

E( (Xl, ... , xn), (x;, ... X~)) < Ei(Xi, x~) Vi E {I; ... ; n} and hence 

E( (XI, ... xn), (x;, ... , x~)) < EI, ... ,n( (Xl, ... , xn), (x;, ... , x~)) 

This completes the proof. 

Mamdani's Model Revisited 
Design of a controller based on similarity 

The control expert must first decide on canonical representations of the lin­
guistic variables which make up the k rules, i.e. he has to provide k 
(n + 1) tuples: 

~ 
( (x~, ... , x~) , yr) E (X I X ... X Xn) X Y : r E {I; 2; ... ; k} 

I 

such that for example, xl is a point in Xl which can be truly considered 
"large" if that is the linguistic variable in that case, etc. In other words the rules 
can be expressed as follows: 

Rr : If Xl is approximately x~; X2 is approximately x;; ... ; Xn is approximately x~; 

then y is approximately yr 

On each Xi and Y we decide on fuzzy equivalence relations E I , ... , En and F 
with respect to a t-norm. Then we use on the product space Xl X X 2 X ... X Xn X Y 
the equivalence relation 
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of Definition 26. In other words, in view of Proposition 27, we choose the 
coarsest equivalence relation on the product space that will make the projections 
extensional. 

Now for a crisp input (Xl, X2, ... , Xn) E Xl X X 2 X .. ·Xn and an arbitrary y E Y, 
(Xl, X2, ... , Xn, y) is equivalent to the pre-assigned (x~, x2, ... , x~, yr) to the degree 

which we can write as 

This is a fuzzy set on Y which represents the output through rule r as a result of 
the crisp input (Xl, ... ,Xn). 

Clearly, the rule which gives the largest value (degree of equivalence) is the 
most significant for the specific input (Xl, ... , Xn). 

So we consider the final output as: 

max Or(XI, ;:., xn)(Y) 
l::;r::;n 

max min{ EI (X~, Xl)' ... , En(x~, xn), F(yr, y)}. 
r 

If we use the equivalence relations E I , E2, ... , En, F w.r.t. TL as in Example 23, 
then, as we have seen in that example, EI(X~, x) is the extensional hull 7lxr(x) of 

1 

the crisp point x~. 
So we get 

O(XI, ... , xn) =max min{71xr (Xl)' ... , 7lxr (Xn), 7lyr (y)} 
r 1 n , 

Now one sees the connection with Mamdani's model if we compare this las~ equa­
tion with equation 2.6 from Chapter 2. 

Fuzzy Control using fuzzy relational equations 
We now refer back to Chapter 2, where the controlled system is m~delled as 

a fuzzy relational equation of form 

B=AoR 

For this section we let Xr and Yr (for r E {I; ... ; k}) denote fuzzy sets on X 
and Y respectively, while R is a fuzzy relation on the product space X X Y. For 
each r, Xr and Yr satisfy the above equation, hence 

- (3.10) 
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Thus we consider a collection of fuzzy sets X r , as input measurements to a 
process controller. Each Xr produces an output fuzzy set by application of 3.10. 

The problem we focus on now is the following. Given a collection {(Xr, Yr.) : 
r E {I; ... ; k}}, we are interested in finding a fuzzy relation R that satisfies all k 
equations simultaneously. We are also interested in finding maximal solutions to 
such a set of fuzzy relational equations. We will prove a theorem regarding the 
maximal solution for such a system of equations. We need some new concepts in 
order to develop our approach. 

Definition 27 Let L be a lattice, a, bEL. We define the operation a as follows. 
Let c = aab. Then c is the greatest element in L s.t. 

a/\c-:5.b (3.11 ) 

We call c the relative pseudocomplement of a in b. 

The following expression can now be seen to be equivalent to the definition 
above. 

b _ { 1 .if a -:5. b 
aa - b if a> b (3.12) 

We now need to be able to apply this operation to fuzzy sets and relations, 
hence we extend the definition to these cases as 

Definition 28 Let A and B be fuzzy sets on X and Y respectively, R a fuzzy 
relation on X x Y. 

1. If 
B=AaR (3.13) 

then B has membership function 
J 

(3.14) 

2. 
G=AaB (3.15) 

has membership function 

Vx E X,Vy E Y (3.16) 

Now that we have the necessary definitions in place, let us prove some lemmas 
that we need for the main results 

a /\ (aab) -:5. b .(3.17) 
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2 

3 

4 

5 

6 

Proof. 

1. 

aab;::: b 

aa(aab) ;::: b 

aa(b V c) ;::: aab Va, b, eEL 

{
a A 1 if a ::; b 

a A (aab) = a A b if a > b 

Suppose that a ::; b. Then 

Suppose a> b. Then 

Hence the result. 
2. 

a A (aab) = a A 1 = a ::; b 

a A (aab) = a A b = b 

{ 
1 if a ::; b 

aab = b otherwise 

Hence the result is clear. 

3. 

hence 

b" _ {1 if a ::; b 
aa - b if a> b 

aa(aab) { 
aa 1 if a ::; b 
aab if a> b 

{ 
1 if a ::; b 

aab if a> b 

{
lb if a ::; b 

if a> b 

which proves that the result holds. 

30 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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4. 

_ { 1 if a :::; (b V c) 
aa (b V c) - b V c if a > (b V c) 

Now if aa(b V c) = 1 then aa(b V c) :::::: aab is clear. 
If a > (b V c ) then a > b and a > c. Then 

{ 
b if b > c 

aa(b V c) = b V c = ·f - b 
c 1 c> 

Now 
b V c = b = aab (since a > b) 

hence 
aa(b V c) = aab 

and 
b V c = c > b = aab 

hence 
aa(b V c) > aab 

5. Let 

where I = V {J'Lxr (x) 1\ J'LR(X, Yo) : x E X} 
Now suppose that f3 = 1. In this case the result is immediate. 
Otherwise, suppose \ 

f3 = I = V {J'Lxr (x) 1\ J'LR(X, Yo) : x E X} 

Then 

hence 

J'LXr(XO) 

J'Lxr (xo) 1\ J'LR(XO, Yo) 

J'LR(XO, Yo) 

This completes the proof. 

> J'LXr (xo) 1\ J'LR(XO, yo) hence 

J'LR(XO, Yo) or 

J'Lxr (xo) 1\ J'LR(XO, Yo) 
< V {J'Lxr (x) 1\ J'LR(X, yo) : x E X} = I = f3 

" 



FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS 

6 

let 

f-txrO(XrQYr)(Y) = V {f-txr (X) 1\ f-t(XrQYr ) (X, y) : x E X} 

= f-txr(xo) 1\f-t(XrQYr)(xo,Y), for some Xo E X 

f3 = f-txr(xo) 1\ [f-txr(xo)af-tYr(Y)] 

suppose f-txr (xo) ~ f-tYr (y) 
then 

f3 = f-txr(XO) 1\ 1 = f-txr(xo) ~ f-tyr(y) 

otherwise f-t Xr (xo) > f-tYr (y) Then 

Hence the result 
We are now in a position to state and prove the theorems that we need. 
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Theorem 29 Given the equation Yr = Xr 0 R, the least upper bound solution to 
it is given by: 

Proof. 
Let 

T = {R E 8'(X X Y) : Yr = Xr 0 R} 

We show 

1. RET 

2. RET =} R ~ R 

3. if Ro E 8'(X X Y) and Ro 2': R V RET then Ii ~ Ro 

1. 

Also 

Xr 0 (XraYr) ~ Yr from lemma 6 

hence Xr 0 R ~ Yr 

R ~ Xra(Xr 0 R) from lemma 5 

hence Xr 0 R ~ Xr 0 (Xra(Xr 0 R)) 

hence Yr ~ Xr 0 (XraYr) 
hence Yr ~ Xr 0 R 
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hence the result. 

2. From lemma 5 we get 

R ~ Xra(Xr 0 R) 

and RET =? Yr = Xr 0 R 

hence R ~ XraYr 

and R = XraYr 

hence R ~ R 

3. This is clear since RET. This completes the proof. 

Application in controller design 

33 

One can now design a controller in which the inference of the output fuzzy 
set(s) for a given input fuzzy set occurs as the calculation of a fuzzy relational 
equation. We illustrate this with a simple example. 

Example 30 Suppose we have a single Jnput - single output system where the 
input space is X = {Xl; X2; ... ; xd and the output space is Y = {Yl; Y2; ... ; Y5}. We 
have the following fuzzy sets defined on the two spaces: 

Xs = [1 .8 .6 .2 OJ 

X M = [.2 .6 1 .6 .2J 

XL = [.2 .4 .6 .8 1J 

Ys = [.2 .4 .8 1 1J 

Y M = [.2 .4 1 .4 .2J 

YL = [1 .8 .6 .4 .2J 

The controller that we design operates on the following three rules: 

rl If X is S then y is L 

r2 If X is M then Y is M 

r3 If x is L then y is S 

(3.24) 

(3.25) 

" 

In the case of this controller designed using fuzzy relational equations the rules 
become: 

rl YL = Xs 0 Rl 

r2 YM = X M 0 R2 

r3 Ys = XL 0 R3 
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We now think of the relations Rl - R3 as translating each input fuzzy set to 
an output fuzzy set. At this point we use the definitions of the input and output 
fuzzy sets to determine the relations Rl - R3 as follows: 

We make use of the operation defined in 3.16 and calculate: 

1. 

Rl (x, y) = XS(x)aYL(y) 

which turns out to be 

1 .8 .6 .4 .2 
1 1 .6 .4 .2 

R1 = 1 1 1 .4 .2 
1 1 1 1 1 
1 1 1 1 1 

2. 

R2(x, y~ = XMaYM 

which is 
1 1 1 1 1 
.2 .4 1 .4 .2 

R2 = .2 .4 1 .4 .2 
.2 .4 1 .4 .2 
1 1 1 1 1 

and the last relation is 

1 1 1 1 1 
.2 1 1 1 1 " 

R3 =. .2 .4 1 1 1 
.2 .4 1 1 1 
.2 .4 .8 1 1 

The last step of this process is to take the intersection of the three fuzzy 
relations to produce a single relation that is used for any input fuzzy set. This 
turns out to be 

1 .8 .6 .4 .2 
.2 .4 .6 .4 .2 

R= .2 .4 1 .4 .2 
.2 .4 1 .4 .2 
.2 .4 .8 1 1 -
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For a given input fuzzy set A = [.2 .5 .6 .3 .4] we now calculate the output 
fuzzy set as: 

B(y) (A 0 R)(y) 
sup [A(x) 1\ R(x,y)] 
xEX 

[.2 .4 .6 .4 .4] 

This then completes this section dealing with some of the theory of fuzzy 
relational equations and their application to controller design. 

The method of Wang and Mendel 
Wang and Mendel developed a general method for using numerical data to 

develop a fuzzy controller. Their five step procedure is quite simple and is outlined 
below. 

as: 

The system 
Let us consider an n-input m-output system where one datum is represented 

(3.26) 

with 

Xir E Xi Vi E {1;2; ... ;n} and Yjr E 1) Vj E {1;2; ... im} 

Also, we assume that we have k such input output pairs of data available, i.e. 

TE{1;2; ... ;k} 

The steps 
.Stepl 

During this step the input and output spaces are partitioned by fuzzy sets. 
The decision as to how many of these is left up to the developer, as well as the 
shapes of membership functions. Let us denote the membership functions on set 
Xi by 

/1il , /1i2, ... , /1it( i) Vi 

and the ones on Yj by 

Vjl, Vj2, ... , Vjs(j)Vj 

Let Ail, ... ,Ait(i) and Bjl, ... ,Bjs(j) be the corresponding linguistic labels for 
the fuzzy sets above. ~ 
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Step2 

During this step we start to construct the rule base for the controller. vVe 
consider an input - output tuple as in 3.25 We determine the fuzzy set on domain 
Xi to which Xir has the highest membership value as the fuzzy set (or equivalently 
the linguistic label) to occur in position i of rule r. This is done for every coordinate 
entry of the input - output tuple. It leads to a rule: 

Rr : if Xl is AI;3r(l) and X2 is A2,a,.(2) and ... and Xn is An;3r(n) 

then YI is Elir(l) and ... and Ym is Emir(m) 

This is done for each of the k pairs of data, leading to k rules of the above 
form. 

Step3 

We now have a collection of k rules - one derived from each datum. Clearly it is 
possible to generate inconsistent rules, i.e. two rules are inconsistent if they specify 
the same antecedent fuzzy sets but different consequent fuzzy sets. To overcome 
this problem we define and calculate a degree of validity for each rule. From a 
collection of inconsistent rules we then simply choose the rule with highest validity 
and discard the rest. The most natural way of defining the degree of validity of 
rule r is 

dl(r) = II~=IJLi;3r(i)(Xir) X IIj=IVjir(j)(Yjr) 

If an expert on the system is available we can now also define a subjective 
degree of validity for each datum. This gives a measure to which we believe 
that the particular datum is representative of the system. Thus data points that 
give the desired relationship between input and output get higher scores for the 
subjective degree of validity than those that give a less realistic relrtionship. Let 
us label the second degree of validity as d2 (r). Finally 

J 

is the final value for the degree of validity of rule r. 

Step4 

In addition to the rules derived from the data the expert can also give linguistic 
rules based on his/her experience of the system under control. The rules derived 
in the previous steps are all "and" rules, i.e. rules where every condition in the 
antecedent must be satisfied for the rule to fire. In this step it is possible that 
"or" rules, i.e. rules where only one condition in the antecedent has to be satisfied 
for the rule to fire, are lidded to the list of rules. The process of comparing the 
degrees of validity of different rules is repeated and the l?est rules are chosen again. 
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With the rules determined above in place the following defuzzification proce­
dure is used. 

Defuzzification 

We define the centre of a fuzzy set Vjryr(j) as 

Then for rule r and input (Xl, ... , Xn) we define: 

The output is then calculated as 

for each coordinate j. 
The authors of [41 J illustrate their approach by designing a controller for the 

truck backer-upper problem. The problem consists of designing a controller that 
can reverse a truck into a loading dock position. They also design a controller 
that predicts the next element in a chaotic time series. The method is clearly very 
simple and their two applications show good results. 

Fuzzy clustering 

Fuzzy clustering has emerged as another method for designing fuzzy con-
trollers. \ 

Clustering techniques 

Fuzzy clustering algorithms are used to search for patterns in data. 

Given a collection: 

,I 

of vectors Xk E IR.m, a hard or crisp clustering algorithm will produce a partition 
of X. An element Xk E X will have a membership degree of 1 to one of the parts 
and zero to the rest. Fuzzy clustering fuzzifies this notion by producing a number 
of fuzzy clusters. Each point Xk E X will have a degree of membership ( ranging 
in [0,1 J ) to each fuzzy ~cluster. In this section we consider two fuzzy clustering 
algorithms and discuss how these can be used in designing fuzzy controllers. 
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The Fuzzy c-Means Algorithm 

This algorithm classifies the data set into c clusters. Note that c has to be 
at least 2, otherwise all points belong to the same ( and only) cluster. Also c=n 
would imply that each cluster contains a single point. Hence for the problem to 
be non-trivial we require that 

2:::;c<n 

The algorithm works best when the data are approximately evenly distributed 
around distinct cluster centers. We think of a cluster center Vi ( i = 1; ... ; c ) as 
being a prototype of the elements in cluster i. Note that Vi need not be a point 
in cluster i. The FCM algorithm aims to minimize the sum of distances of points 
from prototypes. 

Letting /1ik be the membership degree of datum k to cluster i, Vi be the 
prototype for cluster i, and dik be the distance of datum k to the i - th cluster 
center, Vi, we seek values of /1ik and Vi such that the value of the objective function: 

n C 

J( c) = L I)/1ik)W (dik )2 (3.27) 
k=l i=l 

is minimized. In 3.27 w is a weight on ",membership values, referred to as the 
fuzziness index. We place the following two constraints on membership values: 

1. 

2. 

n 

L /1ik > 0 ViE {I; ... ; c} and 
k=l 

C 

L/1ik = 1 Vk E {I; ... ; n} 
i=l 

" The first constraint ensures t~at each cluster has at least one point with 
non-zero membership degree to it. The second constraint means that the 
sum of membership degrees for each element k must be one. In the Appendix 
we prove that the membership values /1ik that leads to a minimum value of 
J(c) are given by the expression: 

1 
(3.28) /1ik = d 2 

,,",C (!:!:ik)-~j=l djk w-l 

A necessary condition on the prototypes is: 

(3.29) 
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" .' 

We collect together the membership degrees /-Lik in a partition matrix 

/-LIn 

U= 

/-Len 

The FCM algorithm iterates the following steps: 

39 

1. Given the desired number of clusters, c, the fuzziness index, W, we make an 
initial guess at the partition matrix, Ua. 

2. Calculate the cluster centers (prototypes) using: 

3. Compute the distances from each element in the set to each cluster center, 
using: 

(t) _ (t) _ (t) 2 

(

m )~ 
dik - IIXk - Vi II - [;(Xkj - Vij ) 

for each cluster i = 1; ... ; c and elements k = 1; ... ; n 

4. Update the membership values of each data point. The updated values /-Lik of 
element k in cluster i are computed by: 

and the partition matrix U is updated. 

5. The iterative process stops when it has converged under some selected norm; 
otherwise a new iteration is performed (set t = t + 1 and return to step 2). 
The norm for checking convergence might be: 

max I /-L~t+I) - /-L(t) 1< c 
i,k tk tk-

for some predifined value of c > O. 
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Deriving rules from fuzzy clusters 

In order to derive if-then rules from the fuzzy clusters we project each cluster 
to each coordinate space. This is done by taking the i-th coordinate of each data 
point and assigning to it the membership value of the original data point to the 
cluster. This yields a discrete fuzzy set on the i - th coordinate space. This fuzzy 
set can be extended to the whole space by a piecewise linear fuzzy set defined on 
the basis of the discrete points, or an enveloping fuzzy set. Each fuzzy cluster will 
then induce a rule of form: 

if 6 is P,l and ... and ~n-l is p,n-l then ~n is p,n 

Here, the P,i denotes the extension of the i - th projection of the considered cluster 
and 6, ... , ~n-l are input variables, while ~n is the output variable. The above rule 
would clearly be for a multi input - single output controller. It is easy to see how 
it can be extended to the multi input multi output case. 

As mentioned above the FCM algorithm produces the best results when the 
data are approximately spherically distributed around the cluster centre. What 
of cases where a linear model better approximates the data? In these cases we 
can make use of fuzzy c-lines and fuzzy c~elliptotypes. 

Fuzzy c-lines and fuzzy c-elliptotypes 

For a collection of points X in three dimensions we calculate the centre of 
gravity of the points as: 

1 n 

V = - LXk 
n k=l 

This point v has the property that the sum of squared distances of data points to 
v is minimal. We are interested in a line that best represents the dhta points. We 
would thus require the line with the property that the sum of squared d~tances 
from the data points to the line is minimal. For a line l, we now define the moment 
of inertia of the line w.r.t. the data points as: 

n 

Iz = L (dkZ )2 

k=l 

where dkZ is the distance of the point k to the line l. The line with smallest moment 
of inertia passes through the centre of gravity. We refer to this line as the principal 
axis of inertia of the data set and we find its direction by determining the largest 
eigenvector of the matrix: 

n 

J= L(Xk-V)(Xk-vf 
k=l 
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Here (Xk - v) is a column vector. The expression for the distance dkl from point 
Xk to line lis: 

dkl = Jllxk - vI12 - ((Xk - v) • U)2 

The figure below illustrates this distance. 

v u 

Figure 3.2: Calculating distances for the fuzzy c-elliptotypes 

The dot indicates scalar product, i.e. the projection of the vector Xk - v in the 
direction of u. The vector u is determined as said above as the largest eigenvector 
of the matrix J. Suppose now that we are searching for a number, c clusters 
again. We can now drop the restriction on the dimensionality, i.e. the data need 
not necessarily be three-dimensional. We modify the above formulae as: 

q 

dkl = IIXk - vill 2 - L ((Xk - Vi) • Uij)2 
j=l 

,(3.30) 

Here Vi is the centre of cluster i, while Uij is the j - th largest eigen-value of the 
matrix: 

n 

Ji = L (/-Likt (Xk - Vi) (Xk - vif 
k=l 

Here /-Lik denotes the membership of point Xk in fuzzy set i, and the power w is 
again the fuzziness index as in the FCM case. Note that in 3.30 we now do not 
project (Xk - Vi) to one axis only. Instead we project it to q axes. This produces 
inertia ellipses in two dimensions, ellipsoids in three dimensions and elliptotypes 
in m dimensions. Thus the value q selected for the summation can at most be 
m. The iterative fuzzy cJ.ines algorithm can now be generalized from the FCM as 
follows: 
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1. Given an initial set of membership values /1ik for all points k in the clusters 
i, compute an iterated approximation to the cluster centres, using: 

2. Next, find the largest eigen-value (or eigen-values) of matrix Ji and the 
corresponding eigen-vector(s) Uij for each cluster, and compute the distances 
dik . 

3. Update the assumed membership values for the next iteration, using: 

4. We continue iterating until there is almost no more change in the mem­
bership values between successive iterations. A criterion for stopping the 
iterations can be, for example: 

max 11/1~~+I) - /1~!) II :s; E for some E > 0 
t,k 

The authors of [64J use a combination of the above methods to search for 
clusters in a set of synthetic 2 dimensional data points. Each cluster iden­
tifies a specific range of values of the variables of the system which are 
associated with it. Hence each cluster becomes a local model. Also, the 
model is direction free in the sense that no distinction is made regarding the 
character of the variables. After clustering one is free to decide on which 
variables are to be treated as input and which as output variables. Suppose 
now we have a point x E }Rm and we have decided that the input variables 
will be the first ml coordinates of x and that the remaining ones are/output 
variables. We determine an output for the input x' = (Xl, X2, ... , X m1 ) as 
follows. . 

1. We calculate the distance from the point x' to each cluster. Here the dis­
tances will be calculated in }Rml. Let 8i be the distance from x' to cluster i 
Vi: 1 :s; i :s; c. 

2. The smallest distance corresponds to the best local linear model for this 
point: 

(3.31 ) 

(3.32) 
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The value of 3.32 is now used to determine a subset of the output space where 
an output is found for the input Xl. Let ryio (y) now represent the distance from 
the point y E ]Rm2 to the centre of the identified cluster (measured in ]Rm2). We 
choose the output from the set: 

Unfortunately the authors do not discuss how to reach a single output. Maybe 
one first determines the set 0 and then pick a point Yo that has the smallest 
distance to the identified local model. They test their approach on the above 
mentioned synthetic data set. The data is non-linearly (approximately linearly) 
spread across the plane. The procedure outlined above is then applied to the data 
and three fuzzy clusters are identified that approximates the non-linear function 
qui te closely. 

The authors of [13] developed an algorithm that identifies the parameters for 
a simplified Takagi - Sugeno controller. Similar to [64] their approach combines 
FCM clustering with the fuzzy c-lines clustering. They develop four objective 
functions which are used to optimize both the premise and consequence parameters 
for the simplified model of the Takagi - Sugeno controller. 

Chapter Conclusion 
Chapter 3 then considered three of the main directions that have in recent 

years emerged as methods of designing fuzzy controllers. The area of fuzzy rela­
tional equations is of course much wider than the above discussion indicates. The 
operators were chosen because of their application in controller design. Similarly, 
fuzzy clustering has developed in various directions. For example measures of 
cluster validity have not been discussed. The work on fuzzy equivalence relations 
is too mathematically pleasing to have been omitted. The sectio~ on Wang and 
Mendel's method is probably easiest to directly apply. 

J 



Chapter 4 

The use of Genetic Algorithms 

Introduction 

Genetic Algorithms are computer programs that search a space of solutions 
to a problem in order to produce optimal or near optimal solutions. The set of 
solutions on which the G.A. acts at time t is called the population or generation 
at time t, denoted G(t). The solutions are usually coded in as strings of bits 
although other coding schemes are also fairly common. Often the parameters to 
be optimized are not coded and the actual real or integer values of the parameters 
are used in the string representation. Gray codes have also been used. One such 
coded solution is called a chromosome while a substring is called a gene and a 
single bit has been termed an allele in G.A. terminology. 

The strings in the population are sltbjected to genetic operators called se­
lection, crossover and mutation in an attempt to produce strings that represent 
increasingly better solutions to the problem considered. 

G.A.'s have been used to solve a wide range of different kinds of problems. In 
the last decade or so they have become more and more important as means for 
designing and optimizing fuzzy controllers. They are interesting in this respect 
since they are successful in producing good controllers and represent probably one 
of the first systematic tools for the design of fuzzy controllers. 

This chapter focuses on the different ways in which G.A.'s have been used to 
design and optimize fuzzy controllers. We present the material t~at is required 
by someone who wishes to optimize an existing controller. Theoretical aSp'ects of 
G.A.'s are hence not of importance to us. I 

Applying G.A. 's 

Three main directions have emerged here namely: 

1. G.A.'s have been used to tune the scaling factors of the input and output 
variables of a controller. 

2. G.A.'s have been used to produce high performance membership functions, 
and, 

3. G.A.'s have been used to produce optimal rule bases. 

44 
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Combinations of the above are common as we shall see in the following. 
G.A.'s differ from one another in terms of: 

1. The way in which the solution to the problem is coded. 
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2. The specific forms of the reproduction operators, i.e. selection, crossover 
and mutation. 

3. The function used to evaluate how good a solution to the problem a specific 
string represents, called the fitness function. 

We will start the discussion by looking at the most commonly used reproduc­
tion operators. 

Genetic Operators 
Selection 

As stated above each string has an associated fitness value which is an indi­
cation of its relative worth as a solution to the problem. Selection is the process 
by which copies of high fitness strings are. selected from the population at time t, 
P(t) and promoted to P(t + 1). The number of copies of a string promoted to 
P( t + 1) is usually proportional to the fitness of the string. 

If Ii is the fitness of string i in the present population then the probability of 
selecting string i is often given by: 

where L fJ is the sum of fitness values for all strings in P(t). ~ 
Some schemes automatically promote the string with highest fitness value to 

the next generation. Such schemes use so-called elitist selection proceduret 
The newly selected strings form ~he mating pool and await the application of 

the other two genetic operators. 

Crossover 

This process allows two strings to swop information. Simple crossover proceeds 
in three steps: 

1. two strings are randomly selected from the mating pool. 

2. a position along the length of the strings is selected uniformly at random. 

3. the substrings following the crossing site are swopped. 
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A simple example illustrates this: 
A = 10100 101110 B = 00101 100011 (before crossover) 
A'= 10100 100011 B'= 00101 101110 (after crossover) 
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Here it can be seen that position 5 was chosen as the crossing site. More 
complex crossover oprators have been employed and will be discussed later. 

Mutation 

Mutation randomly, with a given probability alters the value of a bit. In the 
case of binary coding a zero becomes a one and vice versa. In the case of integer 
coding the value of the integer increases or decreases by one. 

Mutation is an attempt to prevent the permanent loss of any single bit. The 
reasoning is as follows: Suppose that in some generation a particular bit is absent 
in all strings. For example all strings may have a zero in position 5 while a one in 
position 5 may be crucial to a good solution. In such a case the other operators 
will never produce the required bit in successive generations. 

Techniques for coding information 

When a G.A. is applied to a controller design problem the first step requires 
us to code the parameters to be optimized in strings so that the genetic operators 
can be applied to the strings. A string could represent a fuzzy set on a particular 
domain or the collection of rules in a rule base, or even the whole data base of the 
fuzzy controller. The following examples illustrate different strategies that have 
been used by researches. 

Methods for coding rule bases 

The simplest method for coding a rule base as a bit string is to let each bit 
position represent a rule. A 0 switches a rule off and a 1 switches it on. Genetic 
operators are applied to these strings to produce optimal rule bases. This rbethod 
was used in [42] Notice that here the output membership functions of each rule 
stay constant and are not affected by the learning process. 

The output fuzzy sets of rules can also be included in the rule base coding 
and thus be subject to change during the learning process. In this regard an often 
used technique is to number the fuzzy sets on the output space. For· example, 
suppose we have the rule table below: 

This rule base can now be coded as the string (1, 2, 4, 6, 0, 3, 1, 6, 3). The 
mutation operator applied to this string will increase or decrease an integer by one 
or set it to zero. One could also have a combination of the above two approaches 
as shown in the next example. 

Example 31 In [50} the output fuzzy sets are numbered from ° to 6, i.e. NE = 0, 
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Au A12 A13 
A21 Bl B2 B4 
A22 B6 - B3 
A23 Bl B6 B3 

Table 4.1: Example of coded rule table 

NM = 1, ... , PB = 6. The FLC parameters are represented in a string consisting 
of 3 substrings. Substring 1 codes the rules in the rule base. Each rule is coded 
using 4 bits. The first bit switches a rule on or off. The three bits following it 
gives the binary code of the number of the output fuzzy set occurring in that rule. 
Thus substring 1 consists of a collection of strings each of which codes a rule as 
shown below: 

rulel 
.......--"----
1 010 
~ 

output 1 

rule2 
...---"-----o 110 
~ 

output2 

Here the codes for rules 1 and 2 are shown. Rule 1 is switched on and its 
output fuzzy set is the fuzzy set with binary code 010 i.e. NS. Similarly, Rule 2 
is switched off and the binary code of its output fuzzy set is 110 or PM. 

Example 32 In [22] the rule base of a controller is optimized. A rule base is 
represented as C r = C r1 C r2 ... Crm. For each i : 1 :::;: i :::;: m, C ri represents a 
rule of the rule base r. Cri is a substring coding the parameters of the member­
ship functions occurring in rule i. Each membership function is assumed to be 
trapezoidal, hence needs four parameters to code it. Hence: 

I 

codes a rule in an n input - 1 output system. The substring Cil, ail, bi1 , d il 

codes the parameters for the fuzzy set on the first domain and so on. 

Example 33 In [31] the designers work with a 2 input - 1 output system. The 
crossover operator is applied directly to the rule base in the form of a rule table. 
The operator is called a "point - radius" operator. It's operation is illustrated 
below: 

One can see here that the cells with capital letter entries have been swapped. 
In this case the point is the address (ze,ns) and the radius is 1. If one is working 
with a system with more than 2 inputs the rule base can not be represented as a 
rule table. In such a case one would need an extension of the method illustrated 
above. The extension for a 3 input - 1 output system :would look like this: 
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NM NS ZE PS PM 
NM ps pm ps ze nm 
NS nm PS ns ps pm 
ZE PM PS ZE pm nm 
PS nm PM ps nm ns 
PM ps pm nm ns ns 

Table 4.2: Rule Base 1 before crossover 

NM NS ZE PS PM 
NM pm ps pm nm nm 
NS ns NS nm ns pm 
ZE PS NM ZE ps ns 
PS ns PM nm ns nm 
PM pm nm ns ps ns 

Table 4.3: Rule Base- 2 before crossover 

NM NS ZE PS PM 
NM ps pm ps ze nm 
NS nm NS ns ps pm 
ZE PS NM ZE pm nm 
PS nm PM ps nm ns 
PM ps pm nm ns ns 

Table 4.4: Rule Base 1 after crossover 
! 

NM NS ZE PS PM 
NM pm ps pm nm nm 
NS ns PS nm ns pm 
ZE PM PS ZE ps ns 
PS ns PM nm ns nm 
PM pm nm ns ps ns 

Table 4.5: Rule Base 2 after crossover 
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Suppose that the input variables are labeled Xi for 1 :s; i :s; 3. Also, let the 
number of linguistic terms on domain i be ni. Instead of using letters like ps in 
the address of a cell in the rule base, let us number the linguistic terms on domain 
i as 1,2, ... , ni. So a vector like (aI, a2, a3) with ai E {I; ... ; nd for i = 1,2,3 gives 
the address of a cell in the rule base that is filled with the output fuzzy set of the 
particular rule. Suppose two rule bases are to be crossed over and the point is 
(aI, a2, a3) and the radius is no. 

Then we identify in the two rule bases the cells with addresses : 

(aI, a2, a3 + 1), (al, a2, a3 + 2), ... , (aI, a2, a3 + no), (aI, a2, a3 - 1), (aI, a2, a3-
2), ... , (aI, a2, a3 - no); 

(aI, a2 + 1, a3), (aI, a2 + 2, a3), ... , (aI, a2 + no, a3), (aI, a2 - 1, a3), ... , (aI, a2 -
no, a3); 

and a similar expression with the first entry changing and the other two staying 
constant. These cells in the two rule bases are then swopped. 

Example 34 Tan and Hu in {56} design a rule base and membership functions 
for a controller that balances an inverted pendulum. The chromosome string to 
which the G.A. is applied consists of four substrings. The first substring codes 
the membership functions for the first input variable, the second substring codes 
the membership functions for the second input variable. The third substring codes 
the rule base and the final substring codes the output membership functions. Each 
membership function is coded as a 24 bit string consisting of three 8 - bit substrings, 
one substring for each of the left base, centre and right base of a triangular fuzzy 
set. 

The rule base was coded as follows. Each domain ( input and output ) has 8 
linguistic terms defined on it. The membership functions on the qutput domain 
are numbered from 0 to 7 as in example 2. Each rule is assigned a position in the 
rule string. This position is filled with a 4 - bit code that gives the numbef of the 
output fuzzy set appearing in that mle. 

Thus the rule base requires 32 bytes while each of the other substrings require 
24 bytes, giving a total of 104 bytes to represent the system. 

Coding of fuzzy sets 

Example 35 This example extends the work described in example 5 by Kinzel et 
al. In order to code a collection of fuzzy sets the authors represent a domain by 
a string of genes. Each gene lists the values of a fuzzy set at a particular point 
of the domain. Suppose domain Xi has left boundary bz and right boundary br. 
Suppose also that the n3!mber of fuzzy sets on Xi zs ni. Then the fuzzy partition 
on Xi is coded as: 
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/1il (b z) 

/1i2 (b z) 

/1il (br ) 

/1i2 (br ) 

~---------v~--------~ 
coding of domain Xi 
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A two point crossover operator is used which exchanges the ranges of two 

~ve( nrrrn )h( Tf( rra rn )1:::::; :~~:: with 
(~) (~) (~) (~) (~) (~) (~) 

rn ( n ( n ( ~ ) ( n ( n ( n and 

(~) (~) (~) (~) (~) (~) (~) 
where it can be seen that the fourth vectors in the strings were swopped. This 

crossover operation on the strings can be seen as: 

Example 36 In a number of papers Karr discusses the use of G.A. 's to determine 
the optimal fuzzy sets to be used with a fixed rule base. The fuzzy sets are either 
triangular or trapezoidal. A trapezoidal fuzzy set is represented by coding the four 
parameters on its domain that define it, while a triangular fuzzy set needs three 
parameters to specify it. Karr uses a 'l bit code for each parameter. For each 
parameter the user defines a minimum and maximum value, Pmin and Pmax . In 
general if an m-bit string is used for the coding and b is the inte¢er value of the 
binary code for P then b is determined via the equation: J 

b 
P = Pnlln + 2m _ 1 (Pmax - Pmin ) 

The coded parameters for each fuzzy set are simply concatenated into a single 
string. These strings are again concatenated to represent the whole collection of 
input and output fuzzy sets. This is a fairly common technique and Karr calls it 
a concatenated, mapped, unsigned, binary coding. 

Example 37 In this example the G.A.is applied to produce an optimal Data Base. 
The Data Base contain! the parameters of the FLC, normalization limits of the 
variables and the definition of membership functions. 
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1. The collection of FLC parameters are: 

where N = number of input variables; M = number of output variables; 
ni = number of fuzzy sets on domain i Vi : 1 ::; i ::; Nand 
mj = number of fuzzy sets on domain j V j : 1 ::; j ::; M. 
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2. The normalization limits of input and output variables are collected together 
in an ( N + M ) x 2 matrix 

3. Each membership function is coded as a trapezoidal fuzzy set, hence 4 pa­
rameters define it. The collection of all fuzzy sets is coded as an L x 4 
matrix, (where the total number of fuzzy sets on input and output domains 
is L) with each row giving the parameters that define a fuzzy set. 

Now let La = sum of linguistic terms on all input domains and 
Lc = sum of linguistic terms on all o~~put domains 
Then 

N 

La 'L:ni and 
i=l 

M 

Lc 'L:mj and 
j=l 

L La + Lc 

A rule string consists of two substrings, one of length La ancP one of length 
Lc. Hence each linguistic term on each domain is assigned one bit positiqn. If a 
linuistic term occurs in a rule then that linguistic term's bit is 1, if not it is O. 

To illustrate the above suppose we have a system with the following parame-
ters 

N = 3' M = l' n = (3 4 3)' m = (5) , , , , , 

Then the rule 

is coded as: 

010 0001 100 - 00010 
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Other Genetic Operators 

Most of the G.A.'s used in the reports use simple crossover and mutation 
operators. The following examples look at novel operators that have been defined 
for learning rule bases and membership functions. 

Example 38 For this example refer back to example 4 above. As stated there a 
rule is represented by a string: 

So each string Cri codes a rule and has (n + 1) X 4 entries. For the discussions 
to follow we relabel the parameters in the string as: 

Cri 

where H 
(CI, C2, ... , CH) 

(n+l)x4 

For Ch a gene in Cri , i.e. Vh E {I, 2, ... , H} we define an interval [c~, c~], in 
which we adjust the value of Ch by means of the genetic operators. 

If t _ 1(mod4), i.e. if 4 I t - 1 then Ct is the first in a list of four real values 
that codes a fuzzy set, namely Ct, cHI, CH2, Ct+3. The intervals of performance of 
the above real parameters are: 

Ct E [c~, c~] = [Ct -
CHI - Ct CHI - Ct] 

2 ' Ct + 2 

CHI E [C~+I' C~+I] = [CHI -
CHI - Ct CH2 - CHI] 

2 ' CHI + 2 

E [C~+2' C~+2] = [CH2 -
cH2 - CHI CH3 - Ct+2] 

CH2 
2 

, CH2 + 2 ~ 

E [C~+3' c~+3] = [CH3 -
CH3 - CH2 CH3 - CH2] .I 

CH3 
2 

, CH3 + 2 

Michalewicz defines a mutation operator that uses a function: 

that has the properties: 

• b.(t, y) E [0, y] 

• the probability that b.(t, y) is close to zero increases as t insreases. 

• the operator does~ a uniform search in the initial space when t is small and 
when t is larger does a local search. 
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If C; = (Cl, ... , Ck, ••• , C H) is a chromosome and Ck was selected for mutation 
then the result of the mutation is a vector: 

with 

k E {l, ... ,H} and 

{ 

Ck + l:l(t, c~ - Ck) if a randomly chosen digit is a } 
Ck - l:l (t, Ck - c~) if a randomly chosen digit is 1 

This kind of mutation operator has been termed soft mutation, i.e. soft muta­
tion changes the shape of the fuzzy set. On the other hand hard mutation changes 
the variable occurring in the rule, for example a part of a rule ... X2 is A. .. might 
change to .. . X3 is A ... when hard mutation is applied to the rule. 

In the same work [22J an interessting crossover operator, called max-min arith­
matical crossover is also defined. It is used in addition to the simple crossover 
commonly used and described earlier. Max-min arithmatical crossover works as 
follows. 

Suppose C; and C~ are two chromos<?mes to be crossed. Four chromosomes 
are now generated, namely: 

CHI = aCt + (1 - a)Ct 
1 w v 

C~+1 = aC; + (1 - a)C~ 
CHI h· h h HI . { I } 3 W IC asc3k =mIn Ck,Ck 

C t+I . h HI {'} 4 whIc has C4k = max Ck, Ck 

Of these two offspring the two with highest fitness function values are chosen 
to be promoted to the next generation. The parameter a can be fixed or made to 
depend on t. ~ 

I 

Fitness Functions 

The fitness functions used are generally not explicitly discussed in the litera­
ture. The following examples show the forms of some of the fitness functions used 
in the above-mentioned examples. 

Consider again the work done by Karr in example 7 above. The example 
describes how fuzzy sets are coded to be optimized for a liquid level system. The 
system consists of a cylindrical vessel into which and out of which liquid flows 
at rates Qin and Qout respectively. The rates Qin and Qout are controlled by the 
fuzzy controller. The aim of the fuzzy controller is to drive the height of the liquid 
in the vessel to some specified setpoint as soon as possible. 

To determine the fi~ess of a string, the coded fuzzy sets are used to run the 
controller. The squared error between the liquid level height and the setpoint is 
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then calculated for the first 20 seconds of controller runtime. These measurements 
are then added. This is done for four different starting heights of the liquid level. 
The sums of squared errors for the four cases are then added. Thus the equation 
used is: 

case4 [20S 1 
I = i=~el j~S (25 - hij )2 

Karr also designs a system that controls the titration of an acid-base solution. 
The aim here is to get the pH of the solution to the value 7 (neutral) as soon as 
possible by controlling the inflow rates of acid and base into the solution mixture. 
The fitness function for this GA is: 

It is clear that fitness functions will be application dependent. However, gen­
eral types of fitness functions exist. For example the above two are examples of 
a type where some parameter has to achieve some special value, c. Another ex­
ample of this type is that discussed by Kiuzel et al in example. In that work the 
controller was designed to balance an inverted pendulum. Let ip(t) be the angle 

the pendulum makes with the vertical, while ip represents the angular velocity of 

the pendulum. If x(t) = (ip (t), Cp (t)) and c = (0, 0) then: 

rnaxtime 

1= L t(x(t) - C)2 
t=start 

and is clearly similar in form to the previous two examples. 
Tan et al in [56] also design a fuzzy controller for the inverted pendulum prob­

lem. Instead of the fitness function used by Kinzel et al they used the following 
.! 

function: 
For this system there are three possible outcomes namely, either the pendulum 

falls or the time necessary to balance it expires or the pendulum balances (using 
some E-criterion). The fitness function is split up into these three cases as follows: 

{

II (t) if the pole balanced } 
I itness = reward if time expires 

12 (t) if pole fell over 

where the functions h (t) and 12 (t) and reward are illustrated in Figure 4.1 
below: 

One can see from this fitness function that the longer a solution string keeps 
the pendulum from falling over the higher it's fitness is. Also, the longer _a string 
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fitness 

reward 

t 

Figure 4.1: Fitness function for the pendulum example 

takes to balance the pendulum the smaller it's fitness value is. This is as one 
would expect as the controller is supposed to balance the pendulum in minimum 
time. 

In [42] a rule base is optimized. In order to keep the rule base as small as 
possible each string is penalized for the number of rules that are active in it. 

Some implementational details 

G.A. 's running in parallel 

Pham and Karaboga in [48] describe their implementation of a Genetic fuzzy 
system. They use a G.A. to optimize the relation matrix for a fuzzy controller. 
The scheme consists of starting with a number, n say, of initial popula9ons of 
strings, each of which is generated by a random number generator. The initial 
populations have G.A. 's applied to 'them which are executed in parallel. After 
a fixed number, maXI of iterations of the G.A. the first phase of the learning 
process is completed. A second phase then starts. This consists of choosing the 
fittest ~ strings of each solution set and collecting them together into a new initial 
population. The G.A. is then applied to this new initial population, this time for 
a number, max2 of iterations. After that the string with highest fitness value is 
chosen as the desired fuzzy relation matrix. 

Gray codes 

Traditional binary ~oding has the drawback that in order to change a decimal 
number by one often requires a change of more than one digit in the binary form 
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Decimal Number Binary Code Gray Code 
a 000 000 
1 001 001 
2 010 011 
3 011 010 
4 100 110 
5 101 111 
6 110 101 
7 111 100 

Table 4.6: Three bit Gray code 

of the number. For example changing from 3 to 4 translates to changing from 
all to 100. This creates the problem that a string that is close to an optimum 
solution cannot move closer to that optimum by mutation. Gray codes have been 
used to solve this problem. The Gray codes for three bit strings are shown below: 

As can be seen changing a number by one is always a one bit change in a Gray 
coding scheme as is required. 

Chapter Conclusion 
This chapter is a summary of some of the different methods developed for 

applying G.A.'s to the tasks of designing and optimizing fuzzy controllers that 
have been investigated in the literature. As stated above G.A.'s represent effective 
systematic tools for optimizing fuzzy controllers and as such are indispensible 
tools for the developer of a Fuzzy Logic Controller. We tried to concentrate on 
the practical aspects of this area in order to make application in fuzzy controller 
design straightforward. Of course hundreds of papers have been written on the 
topic and many other techniques have been developed that we have not touched 
upon. 

I 



Chapter 5 

Application 

Introduction 
In this chapter we look at some applications of Fuzzy Control in Telecommu­

nication systems. The first section considers some of the reported work in the 
literature. The second section considers one of the methods in congestion control 
commonly used in Intelligent Networks and fuzzify the algorithm. Afterwards we 
look at the results of the fuzzy method of controlling congestion and compare it 
with results for the crisp version of the algorithm. 

Previous Work 
ATM is an emerging set of standards and protocols that have been designed 

in order to support a range of different types of communication traffic on a single 
network. The different types of traffic are to include voice, video and data traffic 
together with a range of future possible types. 

The different traffic types differ in terms of traffic characteristics like sensitiv­
ity to delay, burstiness, and average holding time. Various models and assump­
tions are used in designing networks supporting conventional telephone traffic. 
These include methods based on Poisson arrival processes, Bernoulli assumptions, 
packet train models and fluid flow models [10]. 

However, because of the bursty and non-linear nature of the heterogeneous 
traffic envisaged for the ATM network, these assumptions no lonker lead to an 
accurate analysis of the network. I 

Video traffic is particularly bursty. This means that the arrival of packets at 
the destination machine often occurs in large bursts with relatively few packets 
arriving at other times. Hence it becomes important for the destination machine 
to predict how the traffic arrives. This is done in an attempt to prepare the 
destination machine to prevent cells being lost due to buffer overflow. 

The authors of [51] designed a fuzzy mechanism that predicts the amount of 
video traffic to arrive at discrete points in time. 

The fuzzy learning algorithm used is based on building a fuzzy relation using 
adaptive clustering. The relation is used to estimate the possible system response 
to a new and unknown set of system inputs. 

The delayed values 2f ATM traffic, y(k -1) and y(k -x) are used as inputs to 
the model (with x defined as the delay between the first and second obseryation). 

57 
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After a learning phase, the fuzzy rules are used with the observed values, to 
predict the future value of traffic, y(k), i.e. one observation point in advance. 
An indicator of prediction accuracy is the mean squared error between the actual 
traffic and predicted traffic as defined below: 

where: 
Yn(k) is the normalized value of observed traffic intensity 
Ynest (k) is the normalized value of estimated traffic and N is the number of 

observations. 
The fuzzy prediction scheme was compared with conventional methods and 

showed satisfactory results. 
As stated above, ATM networks are designed to handle a range of traffic types. 

When a number of such bursty traffic sources add cells to the network the network 
will inevitably be subject to congestion. Traditional approaches to congestion 
management include admission control algorithms, smoothing functions and the 
use of finite sized buffers with queue management techniques. 

In admission control, upon arrival ;r a new call or message, the network 
predicts the performance degradation that may result, based on current network 
traffic and the traffic characteristics of the new call. It accepts the call only if the 
desired performance requirements are met. The admission control policy accepts 
or rejects an entire call or message as opposed to individual cells of the call. 

The traffic smoothing function reduces congestion by buffering incoming cells 
and injecting them into the network at a slower speed. 

In the case of finite sized buffers with queue management techniques predefined 
buffer content thresholds are used to guide the discard of cells \ and to adapt 
the service process to the occupancy of the buffer. Some queue management 
techniques use two threshold values, L1 and L2 say, where L1 < L2. The btIffer is 
'full' as soon as the buffer occupancy. exceeds L 2 . All incoming cells and messages 
are then blocked until the buffer occupancy becomes less than L 1 . 

Whether the queue management technique uses a single or a double threshold 
value, it partitions the buffer into two states, admit or block. The choice of this 
crisp cut-off value is clearly critical. For a low value, i.e. cells are only accepted 
if the buffer occupancy is very low, 25% say, buffer utilization may be very poor. 
The buffer may be basically empty and still block incoming calls. On the other 
hand a high threshold value may lead to problems in the case of bursty traffic. 

For the above reasons, the authors of [2] decided to experiment with the use 
of fuzzy thresholds. The controller has the occupancy level (as % of total buffer 
capacity) as a universe of discourse. Two fuzzy sets are defined, one called "Degree 
of Blocking" and the second called "Degree of Admittl1nce". These are sigmoidal 
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and inverses of each other. Degree of Blocking is zero at 20% occupancy and rises 
to flatten out (at a value of 1) at around 80% occupancy. 

The fuzzy thresholding scheme differs from fixed thresholding schemes in that 
it blocks a fraction of incoming cells and not necessarily all incoming cells from a 
new connection. The fraction of cells blocked is determined by the value of the 
fuzzy set" Degree of Blocking" at the occupancy level of the buffer at the time of 
arrival of the call. 

The authors report on simulations that were run to compare the performance 
of the fuzzy thresholding scheme with that of crisp cell blocking methods. The 
results indicate that the fuzzy version adapts well to sharp changes in cell arrival 
rates and maximum burstiness of bursty traffic sources, yielding lower cell discard 
rates, high throughput of cells and lower cell blocking rates. 

Fuzzy control has also been applied in the area of traffic routing in telecom­
munications networks. 

In most networks traffic is routed under fixed rules. In order to cater for 
periods of peak traffic fixed routing schemes have to provide over-capacity. Such 
networks have often been shown to be unable to accomodate demands with the 
required grade of service. 

Adaptive routing methods have also been developed. These depend on the 
availability of network resources. One such routing scheme is implemented by 
AT&T and is called Real-Time Network Routing (RTNR). For each origin-destination 
node pair, it considers the number of idle circuits between the node pair and de­
termines a level of availability of the node-pair link. The routing then depends on 
the availability levels of possible routes together with the class of service of the 
call. 

The authors of [12J have fuzzified the RTNR technique. Fuzzy adaptive rout­
ing of telephone traffic uses a set of routing rules that order and select paths from 
an origin switch to a destination switch. The paths always have only two "legs" 
at most, i.e. are composed of two chained circuit groups for a stre~m going from 
an origin node to a destination node. I 

It determines, for each origin-destination node pair, the availability of all paths 
and the quality of all routes, and deci·des on the best route for routing the current 
traffic. 

The fuzzy controller consists of two inference engines. The first rule base 
uses the number of idle cicuits in a circuit group and determines a fuzzy set 
describing the availability of that circuit group. This fuzzy output from the first 
inference engine is fed to the second inference engine. Using pairs of fuzzy values 
of individual circuit groups, the second inference engine combines the two fuzzy 
sets and produces a fuzzy set describing the availability of that circuit pair. The 
defuzzification module now uses the fuzzy route quality as obtained from the 
second inference engine ~and determines, for each traffic stream, the route quality 
and the best path is selected for all individual traffic relations. 
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The fuzzy adaptive routing was simulated in a model of the French long dis­
tance telephone network. The results show that although fuzzy adaptive routing is 
robust and efficient other methods do outperform it slightly in terms of percentage 
of network loss. 

In [11 J the authors construct a fuzzy traffic controller for ATM networks. The 
controller is a fuzzy implementation of the two threshold congestion controller and 
the equivalent capacity admission control method. 

The equivalent capacity admission control method works by assigning to each 
connection an amount of bandwidth called the equivalent or effective bandwidth. 
Each connection is treated as if it requires this amount of bandwidth through­
out its duration. The actual bandwidth utilized varies between some minimum 
bitrate and the peak rate of the connection. The concept of effective bandwidth 
simplifies Call Admission Control (CAC). The CAC mechanism calculates an ef­
fective bandwidth for each connection request. This effective bandwidth is added 
to the sum of the bandwidths of existing connections utilizing the same link(s). If 
the result is less than the total capacity of the link(s) the connection is allowed. 
Obviously, if the result exceeds the total capacity of the link(s), the connection 
cannot be allowed. 

The ATM traffic controller is based on the following model of an ATM network. 
Input traffic is categorized into two types, real-time (type 1) and non real-time 
(type 2). Examples of real-time traffic include video and voice, and data is an 
example of non real-time traffic. The ATM traffic for the two traffic types are 
first stored in separate pre-buffers in the Customer Premises Equipment(CPE). 
Let the size of the pre-buffer for type i traffic be Ki (i = 1, 2). As for transmission 
capacity, a portion, Cr of capacity is reserved for type 1 traffic and the remaining 
1 - Cr is reserved for type 2 traffic. If either traffic type does not use the total 
capacity reserved for it, the unused portion can be used for the other type. 

The various modules and their operation can be described as follows. The 
Performance Measures Estimator measures the system performance variables, 
namely: 

" 
q que~elength 

~q queue length change rate 

PI cell loss probability 

These variables are defined and measured for each traffic type separately and 
their values are fed to the Fuzzy Congestion Controller which produces an output, 
y. A positive value of y indicates that the system is relatively free from congestion 
and a negative value that the system is congested. The value of y is used to 
modify the rate at which cells of the two traffic types are transmitted to avoid or 
relieve congestion. 

The Fuzzy Bandwidth Predictor predicts the equivalent capacity Ce for a new 
call from the traffic parameters specified in the traffic_ contract. 
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The Network Resource Estimator is responsible for the accounting of system 
resources. For every new call accepted, the call's equivalent capacity, Ce is sub­
tracted from Ca. Conversely, for every connection that is released, the connection's 
equivalent capacity is added to Ca. 

The results of simulations run by the authors indicates that the fuzzy ad­
mission controller improves system utilization by 11 % while the performance of 
the fuzzy congestion controller is 4% better than the conventional two-threshold 
congestion method. 

Another application of Fuzzy Control in ATM networks is in developing polic­
ing mechanisms for this type of network. 

When a user requests a new connection the Network Management System 
checks the available resources to determine if the requirements of the connection 
can be met. If enough resources are available, a decision is made to allow the 
connection. This process is called Connection Acceptance Control (CAC). The 
Network Management System will also reserve the necessary resources for the 
accepted call. The new call will only be accepted if the Quality of Service of the 
existing as well as the new call can be guaranteed. 

Another network management function, Usage Parameter Control (UPC), is 
required to ensure that each source confo~ms to its negotiated parameters. 

A major problem in defining an efficient policing mechanism is identifying the 
traffic parameters that best characterize the behaviour of the source. The difficulty 
comes from the fact that different sources have different statistical properties as 
they range across different services. Also, one needs to define parameters that can 
be monitored during the call. The two traffic parameters that are enforced by 
UPC are the Peak Cell Rate (PCR) and the Mean Cell Rate (MCR). Enforcing 
the PCR is not difficult. However, enforcing the MCR is problematic, since short 
term statistical fluctuations are allowed as long as the source respects the average 
value negotiated, An in the long term. 

~ 

Most of the control mechanisms are window based. In these mechanisms a 
constant upper bound is set on the number of cells that can be accepted in ~ fixed 
time interval, T. This upper bound is called the window. Examples of window 
based mechanisms are the Jumping Window and the Exponentially Weighted 
Moving Average [10J. Both of these schemes seem to be unable to cope efficiently 
with the conflicting requirements of an ideal policer - that is, a low false alarm 
probability and high responsiveness. A false alarm can be explained a~ follows. 
The policing mechanism should police the average rate, i.e. a source is allowed 
to exceed it's negotiated rate parameter at times, as long as the average rate is 
respected. Suppose now that a particular source exceeds its negotiated rate for 
a period of time. Suppose the policing mechanism cuts off the source while the 
excessive traffic from the source did not affect the Quality of Service of any other 
connection. We refer to.this as a false alarm. 

The authors of [10J constructed a fuzzy policer and_compared its performance 
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with that of the conventional policing mechanisms. As stated above the target 
of the fuzzy policer is to make a generic source respect its negotiated MCR, 
An. The inputs to the fuzzy controller used are: the average number of cell 
arrivals per window since the start of the connection, Aoi , and the number of 
cell arrivals in the last window, Ai. The first gives an indication of the long term 
behaviour of the source while the second indicates current behaviour. A third 
parameter, the value of Ni in the current window is used to indicate the degree of 
tolerance the mechanism has over the source. Thus, the control mechanism grants 
credit to a source that in the past has respected the parameter negotiated by 
increasing its value for Ni in the current window up to a maximum possible value 
for N i , provided that it continues with the non-violating behaviour. Conversely, 
every time a source violates its negotiated parameter Ni for the source will be 
decreased. The output of the fuzzy controller is 6Ni+l, the change to be made 
to the threshold Ni in the next window. 

The input domains of discourse are partitioned by three fuzzy sets each, Low, 
Medium and High, while seven fuzzy sets partitions the output domain of dis­
course, namely ranging from Negative Big through Zero to Positive Big. 

The performance of the fuzzy mechanism has been evaluated through several 
simulations and compared with some of the more popular policing systems like the 
EWMA. The results indicate that the performance of the fuzzy policer is much 
better than that of the conventional policing systems. 

Intelligent Networks 

The Intelligent Network was invented by Bellcore Labs during the 1970's. The 
fundamental principle underlying the IN is the separation of switching and control 
functions in the network. The aim of this separation is facilitating the creation of 
new services and minimizing the time taken for the development and deployment 
of such new services. ~ 

The two entities of an IN that will concern us here are the SCP (Bervice 
Control Point) and the SSP (Service, Switching Point). 

The SCP is a centralized non-switching node connected to the switches via 
the common channel signalling system. It contains service specific software and 
subscriber data. Examples of SCP based services include user authentication, call 
number translation and alternative forms of billing. The SSP is a switch with 
enhancements to the call control functionality of the PSTN switch. 

The SCP communicates with the SSP, allowing it to establish or release con­
nections. When an SSP receives an IN service type call it transmits the request 
to the SCPo The SCP validates the call and performs a number of service related 
functions like caller authentication. If these functions are successful the SCP will 
command the SSP to establish a connection to the call party. The SCP also sends 
a packet back to the requesting SSP to acknowledge receipt of the service request. 
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A typical service setup scenario will involve five to ten messages between the 
SSP and SCPo A number of SSP's will be connected to a single SCPo IN congestion 
control schemes attempt to control the rate at which new service requests are 
transmitted to the SCP in order to avoid or relieve congestion at the SCPo 

The Model 
The developed algorithm models the operation of a single SCP connected to 

four SSP's. The arrival times of packets at the SSP's are randomly generated. 
No more than one packet arrives at an SSP and each arriving packet represents a 
request for a service. This service request is enqueued at the SSP request queue. 
As soon as it is possible to, this first packet in the SSP request queue is processed. 
The processing speed of the request queue is set at 7ms per packet. After the 
processing of a packet at the SSP is completed it is sent to the SCPo At the SCP 
it is again placed in a queue where it awaits processing by the SCPo After being 
processed by the SCP an acknowledgement packet is sent to the SSP that sent the 
request. This packet is placed in the SSP acknowledgement queue where it awaits 
processing. In the SSP the processing of acknowledgements takes precedence over 
the processing of new requests. Acknowledgement packets are processed at a rate 
of 3ms per packet. 

The processing time of the SCP has two components, a fixed value of 10 ms per 
packet and a randomly generated component. The random number comes from 
an exponential distribution with mean equal to one. These two components are 
added to yield the processing time for each packet. Figure 5.1. below illustrates 
this simplified network model. 

acknowledgements 

Request ~ ~ Aokn ~ ~ queue queue 

! 

0 0 

SSPI SSP4 

requests U 
0 SCP 

Figure 5. ~ Simple IN model used in the simulation 
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Some IN cogestion control schemes 

IN congestion control schemes are usually either rate based or window based 
schemes. We will focus on the window based schemes. 

The Static Window Mechanism 

The operation of the static window based scheme is outlined in the following. 
Each SSP connected to the congestion avoiding SCP is assigned a window size. 
The window size of an SSP is the maximum number of unacknowledged requests 
that an SSP is allowed to have at any point in time. That means that if the 
number of outstanding requests equals the window size the SSP is not allowed 
to transmit any more requests until some acknowledgements have been received. 
Hence each SSP has two variables, out, the number of outstanding service requests 
and win, the window size. On transmission of a service request to the SCP out 
is incremented by one and on receipt of an acknowledgement from the SCP out 
is decremented by one. As the name indicates the window size is not changed 
during the operation of the network. 

The Adaptive Window Mechanism 

In the adaptive window scheme the window size of an SSP is continually 
changed. The value of the window size varies between winmin and winmax. An 
SSP keeps track of any of its requests that are lost or dropped at the SCP due 
to the SCP queue being full. In addition to the two variables used in the static 
case the adaptive window scheme uses a counter, c, which varies between cmin 
and cmax. Every request that is dropped decreases the out variaBle by one and 
decreases the win variable by one (unless the window size is already at its mi~imum 
value) . Every acknowledgement that is received increases c by one. When c 
reaches a maximum value, indicating that number of successfully transmitted 
requests, the window size is increased by one and c is reset to zero (cmin). 

The Fuzzy Adaptive Window Mechanism 

One can also devise a fuzzy scheme to adapt the window size of an SSP. This 
was done and its performance compared with those of the above two schemes. 
The fuzzy controller uses the round trip delay (rtd) of requests as its input and 
its output is the window size of the SSP. The rtd of a request is the difference 
between the arrival time~f an acknowledgement and the time at which the request 
was transmitted to the SCPo 
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The System, the variables and the operation of the 
algorithms 

The simplified IN is represented by the following system variables 

65 

1. The number of packets in each of the request and acknowledgement queues 
for each SSP., 

qa number of packets in ack. queue 

qr number of packets in req. queue 

2. The number of packets in the SCP queue, represented by Qlength. 
3. Q is a vector representing the SCP queue. An i (for 1 :::; i :::; 4) occurring 

at some position in Q represents a request from SSP i. 
4. Q max is the maximum length of the SCP queue, while qr max is the 

corresponding limit on the lengths of SSP request queues. For the simulation 
Q max=100 and qr max=5. 

5. Transmission times were set at 10ms for both directions of transmission. 
6. The states of each SSP and the SCPo These can be either busy or idle 

and control the operation of the respective SSP or the SCPo For example, when 
an SSP starts processing a request or aclv1owledgement, the state of the SSP is 
switched to busy (or 1) and the 'end of the busy cycle' (ebc) time is set. At this 
time the state is switched back to idle and the SSP is ready to process the next 
acknowledgement if qr > o. If qa = 0 and qr > 0 it processes a request. When 
the state is busy nothing can be processed. 

The events that change the state of the system are: 
1. Arrival of new requests or acknowledgements at an SSP. This increases 

either qa or qr for the SSP. 
2. Processing of a request or an acknowledgement by an SSP. This switches 

the state to busy and sets the ebc time. ~ 

3. Transmission of a request from an SSP to the SCPo Either qa or qr (as 

) 
I 

appropriate reduces by one. 
4. Arrival of packets at the SCPo If the SCP queue is not full this increases the 

Qlength by the number of arriving packets and slots the numbers of the requesting 
SSP's into the next available positions in Q. 

5. Processing of a packet at the SCP switches its state to busy and sets the 
time for the end of its busy cycle. 

6. Transmission of an acknowledgement from the SCP Q decreases the Qlength 
by one and removes the first packet in Q from the vector. 

The variables listed above are the variables required to describe the status of 
the system at any point in time. However in order to measure system performance 
for the various control schemes other variables had to be added. These are all listed 
with their initial values.in the copies of the programs in the appendix. The i in 
SSP(i).qr refers to qr for the i-th SSP. Similarly for the rest of the variables. 
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The algorithm is a discrete event simulation. It updates the values of the 
variables at discrete points in time (at every 1ms point). 

The Fuzzy Controller 

The fuzzy controller has one input, rtd (round trip delay) and one output, 
window size. The rtd ranges from 0 ms to 1200 ms. Window size ranges in the set 
{1; 2; ... ; 30}. Each domain is partitioned by seven fuzzy sets with linguistic labels 
Very Small, Small, Small Medium, Medium, Large Medium, Large, Very Large. 

These are illustrated below: 

rtd 

o 200 400 600 800 1000 1200 

Figure 5.2: Fuzzy sets on round trip delay 

! 

VS S M L VL 

Figure 5.3: Fuzzy sets on window size 

We require the window size to be smaller for a larger round trip delay and 
vice versa so the fuzzy ~ontroller is driven by the following rules: 

Rl : if rtd is VS then ws is VL 
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window size 40 80 120 160 200 240 280 320 
COA 27 27 26 26 26 24 23 23 
MOM 28 28 25 25 25 25 25 20 
MAX 29 28 25 24 24 23 23 18 

Table 5.1: Output for Defuzzification mechanisms 

R2 if rtd is 8 then ws is L 

R3 if rtd is 8M then ws is LM 

R4 if rtd is M then ws is M 

R5 if rtd is LM then ws is 8M 

14, if rtd is L then ws is 8 

R7 if rtd is VL then ws is V8 

We constructed three controllers, each with a different defuzzification mech­
anism. The defuzzification mechanisms were the Centre Of Area, the Mean of 
Maxima and the Maximum criteria respectively. Then we compared their outputs 
over a range of round trip delay values. The results are shown in the table 5.l. 

As can be seen the output of the COA defuzzification yields a slightly smoother 
transition from one value of round trip delay to the next. Although not shown in 
the table, this pattern is displayed over the rest of the range of values for round 
trip delay. For this reason the COA defuzzification mechanism was used in all 
further work. 

The Genetic Algorithm 

The letters a, b, c, d, e, f, g, h, i, j, k, 1 parameterize the start- and endpoints 
of the supports of the fuzzy sets. Each list of twelve parameter values defines a 
fuzzy controller. Each parameter has a range as indicated below: I 

a E' {0;1;2} 

b E {3;4;5} 

C E {5;6;7} 

d E {8;9;10} 

e E {10;11;12} 

f E {13;14;15} 

9 E {15;16;17} 

h E {18;19;20} 

Z E {20;21;22} 

J E {23;24;25} 
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k E {25;26;27} 

l E {28;29;30} 
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The controller was designed in this way so that a GA could be applied to it 
in order to determine a list of parameters for an optimal controller. The Centre 
Of Area defuzzification method was used. 

The following steps outline the operation of the GA: 

1 The algorithm starts with a randomly chosen initial population of different 
strings. 

2 For each string the network simulation is run three times and an average 
fitness value is calculated for the string. The fitness value of a string is equal 
to the number of packets processed by the SCP during the runtime of the 
simulation. 

3 A number of strings with highest fitness values are promoted directly to the 
following generation. A second number of strings are chosen randomly to 
which the crossover and mutation operators are applied. The crossed over 
and mutated strings are added to tlre following generation. New strings are 
compared to old ones to ensure that no repetitions occur. 

4 The algorithm now iterates steps 2 and 3 until the fifth generation strings 
are evaluated and the string with highest fitness value is chosen. This string 
was then used in all following simulations. 

Simulations 
The aim of the simulations is to determine which congestion qontrol mecha­

nism optimizes the throughput of the SCPo Before the simulations were run to 
obtain the performance indices for the different congestion controllers, w'e opti­
mized the performance of the static and fuzzy controllers. 

First we determined at which value of window size the static window mecha­
nism yielded a maximum value for SCP throughput. The values of window size 
were chosen from the set {12; 14; ... ; 32}. For each value in this set the network sim­
ulation was run three times and an average value for SCP throughput calculated. 
Maximum throughput occurred at a window size of 20. 

With the fuzzy controlled algorithm it turned out to be impractical to calculate 
a value of window size for each new value of round trip delay. Instead, we let an 
SSP accept a number of acknowledgements, after which the fuzzy controller uses 
the final value of round trip delay to calculate a new value of window size. We 
refer to this number a&-the firing cycle of the fuzzy controller. Using a range 
of values for the firing cycle, we determined that optimum performance occurred 
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at a firing cycle of 10. Results for these two optimization steps are included in 
Appendix B. 

The throughput of the SCP is simply the number of requests going through the 
SCP from the start to the end of the simulation. One timestep in the simulation 
represents 1 ms. The simulation runs for 75 s, i.e. 75000 iterations. During the 
simulation the algorithm keeps track of the number of packets through the SCP 
in each second. We are interested in the operation of the SCP under overload 
conditions. Thus the arrival rates of requests at the SSP's were chosen such that 
the SCP is overloaded. The simulation was run with two different inputs. For 
the first input the rate of arrival of requests at the SSP's ( and hence at the 
SCP ) starts at twenty packets per second. It then increases in steps until it 
reaches a maximum value of 40 packets per second. It then tapers off until it 
reaches a constant 35 packets per second, which stays the same until the end of 
the experiment. Since there are four SSP's overload starts when the rate of arrival 
at the SSP's is greater than 25. The throughput of the SCP is calculated as 

75 

SCPthroughput = L SCPcaps(t) 
t=l 

where SCPcaps(t) is the number of, call attemps that the SCP processes 
in second t. SCPthroughput is also used as the fitness of a string during the 
operation of the genetic algorithm. For the second run of the simulation the 
arrival rates of requests at the different SSP's were independently and randomly 
chosen from the set of values: 

{35; 36 ... ; 40} 

For each input the simulation was run ten times for each mechanism. This yielded 
ten values of throughput for each of the three mechanisms. For e8fh mechanism 
we then calculated the average throughput and a 95% confidence interval for the 
true value of the mean using the Student's t distribution. The results of the two 
runs of the simulation can be seen in. the tables in Appendix 2. 
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Discussion and Conclusion 

We now turn our attention to the two tables of results in Appendix B. These 
summarize the results for the various simulations of the network. The last three 
rows of the tables give some statistics for the data. We now use the values for 
the averages and the last entry in each column to calculate the 95% confidence 
interval for the true value of the mean (using a Student's t-distribution). These 
ranges are shown in the Table 6.1 below. 

In both cases the Adaptive Window Mechanism outperforms the other two 
schemes. In one case the fuzzy scheme performs slightly better than the Static 
Window Mechanism. However, the differences are very small and while the fuzzy 
controller does not perform better than the other two mechanisms, its performance 
is very close to the performance of the other two schemes. 

Future work will probably also include an investigation of rate based schemes 
and a comparison of these with the schemes discussed above. In some of these 
schemes the SCP sends an explicit rate control signal to the SSP to inform it 
of its allowed rate. These schemes have the advantage that the SSP receives the 
congestion information much quicker than in the above discussed cases. It is quite 
possible that this will increase the system performance. 

Final Remarks J 

In this work we have attempted ,to do the following: 

1. Provide an introduction to the mathematical background forming the basis 
for fuzzy model development. Specifically the two most commonly used 
fuzzy modeling tools, the Mamdani and Sugeno Controllers were discussed 

95% Conf. Int. 95% Conf. Int. 
Static Window 6804-6814 6836-6844 

Adaptive Window 6806-6816 6837-6848 
Fuzzy Window 6803-6811 6838-6846 

Table 6.1: Summary of results in Table~ B.2 and B.3 
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in the second chapter. The Sugeno controller was basically just introduced 
while the Mamdani Controller was discussed in much more detail. The 
inference process was considered and mathematical structures developed to 
support the modeling process. 

2. Provide some indication of theoretical questions that have been investigated 
regarding the modeling capabilities of fuzzy systems. This is done (as said 
before) in an attempt to change the attitude that the reasoning in fuzzy 
systems is vague and not rigorous. The idea is to provide a set of simple 
and rigorous structures on which to develop the processes and reasoning 
schemes employed in fuzzy modeling. 

3. Introduce the reader to some of the systematic tools used to design fuzzy 
controllers, including fuzzy equivalence relations, fuzzy relational equations, 
fuzzy clustering and an ad hoc method referred to as Wang and Mendel's 
method. Of course each of these areas has developed independently of fuzzy 
control. The focus here was on providing a set of procedures for starting 
with a set of data for the system and ending up with a controller for the 
system. 

4. Discuss the use of genetic algorithmS'"for designing controllers and optimizing 
existing controllers. Here again the focus was on the practical aspects of the 
area. 

5. Indicate some of the previous research work done in applying fuzzy con­
trollers to telecommunication networks. While only a few examples were 
considered many more exist and most show that there is good reason for in­
vestigating the use of fuzzy solutions to problems in network management. 

6. Produce a simple fuzzy controller to illustrate the possibIr use of fuzzy 
control in congestion control in a telecommunications network. It is hoped 
that we have shown that further investigations are justified. J 

Appendices 
The appendices contain the following: 

1. The first appendix contains the proofs of the statements 3.27 and 3.28. 

2. The second appendix contains four tables summarizing the results for the 
experimental runs of the various mehanisms. 

3. The third appendix contains the following: 

4. The code for the simulation using the static window. 
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5. The code for the simulation using the adaptive window. 

6. The code for the simulation using the fuzzy window. 

7. The code for the fuzzy controller 

8. The code for the genetic algorithm 

9. A graph showing the variation with time of arrival rates of packets at the 
SSP's for a sample input. 

10. A graph showing the number of packets processed by the SCP per second 
for the sample input. 

11. A list and a table giving the final values of variables in the simulation for 
the above sample run of the simulation. 

J 
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Appendix A 

l. We start by proving that a necessary condition for the function in 3.26 to 
have a minimum is given by the formula in 3.27 : 

Proof. Note that 
n c 

J(c) = :L 2)J.lik)W(dik )2 
k=l i=l 

has a trivial minimum at zero. To avoid this trivial minimum we modify the 
function above to: 

nee 

i (c) = :L :L (J.lik) W (dik ) 2 - ). (1 - :L J.lik) 
k=l i=l i=l 

For a minimum we take the derivative of the modified objective function 
and set it equal to zero: 

8]' w-l 2( ) -8 = WJ.ljk d Vj,Xk -). = a and 
J.ljk 

(7.1) 

8]' c 

- = 1 - :L J.lik = a 
8), k=l 

(7.2) 

Now from 3.32 get 

J (7.3) 

(7.4) 

From 7.1 get: 

c 

1 = ~J.lik 
i=l 

{ 

c 1 ) 1 
= ~ 1 )'w-l using 7.2 hence 

i=l (WdYk) w-l _ 
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hence 

1 

Another necessary condition for a local minimum is 

1 
w-l 

2. Next, 3.27 is proved below: 

Proof. For a local minimum we need 

Now 

a n c 

avo L Lf-LfJIIXj - vll1
2 

l j=11=1 

t, f-L0 a~i IIXj - Vi 112 

~ IIUJ lim IIXj - (Vi + t~) 112 - IIXj - vi11 2. t E R . C E R m 

~ ~lJ t-tO t " '" 
j=l 
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(7.5) 

(7.6) 

,I 

tf-L0 E~ ~ [((Xj - Vi) - t~f ((Xj - Vi) - t~) - (Xj - Vi)T (Xj - Vi)] 
j=l 

n w . -2t (Xj - Vi? ~T~ L f-L.. hm ----'--"----'--'-----'-
j=l lJ t-tO t 

n 

-2 L f-L0 (Xj ~Vi)T ~ 
j=l 



Finally, get: 

n 

LILt (Xj - Vi) 
j=l 

which completes the proof. 
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Appendix B 

The three tables in this appendix contain the results from the two simulation runs. 
Table 8.1 shows the throughput of the SCP for different values of the window size 
in the Static Window mechanism. Clearly the highest throughput occurred for a 
window size of 20. 

Tables 8.2 and 8.3 give the throughput for the different runs of the three 
mechanisms for the two inputs: 
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Window Size Throughput 
12 2684 
14 2690 
16 2685 
18 2687 
20 2690 
22 2687 
24 2689 
26 2619 
28 2454 
30 2310 
32 2177 

Table 8.1: Optimizing Window Size for the Static Window 

Firing Cycle Throughput 
5 1822 
10 1824 
15 1815 
20 1816 
25 1815 
30 1817 
35 1819 

Ta ble 8.2: Optimizing Firing Cycle 

Run Static Window Adaptive Window Fuzzy Window 
1 6803 6811 6814 
2 6816 6803 680b 
3 6802 6817 6801 
4 6813 6825 6810 
5 6818 6813 6800 
6 6800 6805 6806 
7 6801 6807 6811 
8 6809 6815 6805 
9 6814 6810 6814 
10 6813 6807 6806 

Average 6809 6811 6807 
Std. Dev. 6,8 6,5 5,4 
Conf. Int. 6804-6814 6806-6816 6803-6811 

Table 8.3: Results for the three mechanisms for input 1 
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Run Static Window Adaptive Window Fuzzy Window 
1 6840 6838 6841 
2 6849 6850 6833 
3 6833 6843 6833 
4 6845 6836 6849 
5 6833 6845 6849 
6 6841 6834 6849 
7 6835 6833 6841 
8 6841 6857 6838 
9 6837 6844 6841 
10 6845 6851 6845 

Average 6840 6843 6842 
Std. Dev. 5,4 7,9 6,1 
Conf. Int. 6836-6844 6837-6848 6838-6846 

Table 8.4: Results for the three mechanisms for input ~2 
I 



Appendix C 

This appendix contains copies of the software developed. The following programs 
and graphs are included: 

1. The simulation using the static window mechanism; 

2. The simulation using the adaptive window mechanism; 

3. The simulation using the fuzzy window; 

4. The fuzzy controller; 

5. The genetic algorithm; 

6. A graph illustrating the variation o( arrival rates of packets at the SSP's 

7. A graph illustrating the output from the simulation using the static window; 

8. The final values of some of the variables for the above run of the simulation. 

The graph in 9.2plots the number of packets processed by the SCP in every 
second for the 25 seconds of the runtime of the simulation. The system perfor­
mance is summarized by the following list and 9.1 of final values of variables. 

se P throughput - 2277 

Q length - 78 
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Figure 9.1: Variation of arrivals for the sample input 

" 

SSP(I) SSP(2) SSP(3) SSP(4) 
Q dropped '0 0 0 0 
Req. queue 0 0 0 0 
Ack. queue 0 0 0 0 

Dropped 220 221 221 222 
Outstanding 18 17 17 17 

Number of Ack. Packets 561 562 562 561 
State 0 0 0 0 

Arrival time 25003 25013 25012 25021 

Table 9.1: Final values of variables for the sample run above 
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Figure 9,2: Processing of packets at the SCP 
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%network simulation with static window 
for i=1:4 

end 

ebc (i) =0; 
state(i)=O; 
qa(i)=O; 
qr(i)=O; 
at(i)=O; 
iat(i)=O; 
count(i)=O; 
qrtt(i)=O; 
dropped(i)=O; 
SSP(i) .qaat=[O 0]; 
SSP(i) .Qat=[]; 
SSP(i) .arr=[]; 
arrived(i)=O; 
win(i)=20; 
pack_off (i) =0; 
out(i)=O; 
SSP (i) . ttimes= [] ; 
qatt(i)=O; 
nap (i) =0; 
arrival(i)=O; 

Q= [] ; 
Qlength=O; 
eff=[]; 
SCP.eff=[] ; 
Qtimer=[] ; 
SCP.tt=O; 
SCP off load=[]; 

- -
time=[]; 
qrmax=5; 

for t=1:75000 
% SSP's modules 

SCP.state=O; 
Qmax=lOO; 

SCP.ebc=O; 
SCP.counter=O; 
Qdropped=O; 
SCP.caps=O; 

% module 1 - state control 
for i=1:4 

end 

if ebc(i)==t 
state(i)=O; 

end 

% module 2 - ack que arrivals 
for i=1:4 

if SSP(i) .qaat(l)==t 
qa(i)=qa(i)+l; 
l=find(SSP(i) .ttimes==SSP(i) .qaat(2)); 
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end 
end 

SSP (i) . ttimes (1) = []; 
out(i)=size(SSP(i) .ttimes,2); 

%module 3 - ack que transmissions 
for i=1:4 

end 

if qatt(i)==t 
qa(i)=qa(i)-l; 
nap(i)=nap(i)+l; 

end 

%module 4 - ack que processing 
for i=1:4 

end 

if qa(i»O & state(i)==O 
state(i)=l; 
ebc(i)=t+3; 
qatt(i)=t+3; 

end 

% module 5 - req que arrivals 
for i=1:4 

end 

if at(i)==t 

end 

arrival (i)=arrival(i) + 1; 
if qrmax > qr(i) 

qr(i) = qr(i) + 1; 
else 

dropped (i) = dropped (i) + 1; 
end 

for i=1:4 

if t==l 
pps=35; 

end 

iat(i)=floor((1000/(pps+1) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 
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end 

" " 

if t==at(i) 

end 

SSP (i) .arr(size(SSP(i) .arr,2)+1)=t; 
if arrived(i)<pps 

n=floor(t/10000) ; 
m=floor( (t-n*10000)/1000); 
trem=n*10000+(m+1)*1000-t; 

end 

iat(i)=floor( (trem/(pps-arrived(i)+l))*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 

if rem(t,1000)==O 
iat(i)=floor( (1000/(pps+1) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 
arrived(i)=O; 

end 

% module 7 - request que transmissions 
for i=1:4 

end 

if qrtt(i)==t & win(i) > out (i) 
qr(i)=qr(i) - 1; 
SSP (i) .Qat (size (SSP (i) .Qat, 2) +1) =t+10; 
count(i)=count(i)+l; 
SSP (i) . ttimes (size U?SP (i) . ttimes, 2) +1) =t; 
out(i)=size(SSP(i) .ttimes,2); 

elseif qrtt(i)==t & ~(win(i) > out (i) ) 
qrtt(i) = qrtt(i) + 1; 

end 

% timeout check 
if t>1200 

for i=1:4 
l=find (t-S'SP (i) . ttimes>1200) ; 
if isempty(l)==O 

for j=1:size(1,2) 
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SSP ( i) . t time s (1 (j ) ) = [ ] i 
end 

end 
out(i)=size(SSP(i) .ttimes,2) i 

end 
end 

% module 8 - req que processing 
for i=1:4 

end 

if state(i)==O & qr(i»O 
state(i)=li 
ebc(i)=t+7i 
qrtt(i)=t+7i 

end 

% module 9 - SCP state control 
if SCP.ebc==t 

SCP.state=Oi 
end 

% module 10 - arrivals at SCP~ 
for i=1:4 

end 

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t 
if size(Q,2)<Qmax 

end 

Q(size(Q,2)+1)=ii 
Qtimer(size(Qtimer,2)+1)=t-10i 

elseif size(Q,2)==Qmax 
Qdropped=Qdropped+1i 

end 
SSP ( i) . Qa t ( 1 ) = [ ] i 

% module 11 - SCP transmission 
if SCP.tt==t 

end 

SSP(Q(l)) .qaat(1)=t+10i 
SSP(Q(l)) .qaat(2)=Qtimer(1)i 
Q(l)=[]i 
Qtimer(l)=[]i 
SCP.counter=SCP.counter+1i 

% module 12 - SCP processing 
if SCP.state==O & size(Q,2»0 
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end 

SCP.state=l; 
% rand number generator 
r=rand(l,l) ; 
x=-log(r) ; 
if x-floor(x)<.5 
x=floor (x) ; 
else 
x=ceil (x) ; 
end 
SCP.ebc=t+10+x; 
SCP.tt=t+10+x; 

for j=1:75 
time(j)=j; 

end 
if rem(t,1000)==0 

Dropped(t/1000)=dropped(1) ; 
dropped(l)=O; 
Arrivals(t/1000)=arrival(1); 
arrival(l)=O; 

end 

SCP off_load(t/1000)=sum(count); 
count=zeros(1,4) ; 
SCP_dropped(t/1000)=Qdropped; 
Qdropped=O; 

Qlength(t/1000)=size(Q,2) ; 
SCP.caps(t/1000)=SCP.counter; 
SCP.counter=O; 
pps=round(35+5*rand(1,1)) ; 

end 
figure(l) 
plot(time,SCP dropped) ;axis([O 75 0 50]) ;xlabel('tim~ in 
seconds');ylabel('Dropped.at SCP'); 
figure (2) 
plot (time, Dropped) ;axis([O 75 0 100]);xlabel('time in 
seconds');ylabel('Dropped at SSP(l) '); 
figure (3) 
plot(time,SCP.caps) ;axis( [0 75 80 100]) ;xlabel('time in 
seconds') ;ylabel('Processed at SCP'); 
figure(4) 
plot(time,Qlength);axis([O 75 60 100]);xlabel('time in 
seconds');ylabel('Qlength'); 
figure(5) 
plot(time,Arriva~s) ;axis([O 75 20 50]);xlabel('time in 
seconds' ) ; ylabel ( , Arrivals at SSP (1) , L; 
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E=sum(SCP.caps)*(l­
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps)) )); 
disp(['Static case :']); 
disp ( [' time=' num2str (t) ':']); 
disp(['Dropped at SCP='num2str(sum(SCP dropped))]); 
disp(['Dropped at SSP(1)='num2str(sum(Dropped) )]); 
disp( ['Processed by SCP='num2str(sum(SCP.caps))]); 
disp( ['Arrivals at SSP(1)='num2str(sum(Arrivals))]); 
disp(['Efficiency='num2str(E)]) ; 

%network simulation with adaptive window 
for i=1:4 

ebc(i)=O; 
state(i)=O; 
qa(i)=O; 
qr(i)=O; 
at(i)=l; 
count(i)=O; 
qrtt(i)=O; 
dropped(i)=O; 

end 

SSP (i) . qaa t= [0 0]; 
SSP(i) .Qat=[]; 
pack_off(i)=O; 
win(i)=l; 
out(i)=O; 
SSP(i) .ttimes=[]; 
qatt(i)=O; 
nopack(i)=l; 
nap(i)=O; 
c(i)=O; 
arrival(i)=O; 
arrived (i) =0; 

Q= [] ; 
Qlength=O; 
winmin=l; 
winmax=26; 
Qtimer=[]; 
SCP.tt=O; 
SCP off load=[]; - -
time= [] ; 
qrmax=5; 
cmax=4; 

SCP.state=O; 
Qmax=lOO; 
eff= [] ; 
SCP.eff=[] ; 
SCP. ebc=O; 
SCP.counter=O; 

Qdropped=O; 
SCP.caps=O; 
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for t=1:75000 
% SSP's modules 
% module 1 - state control 
for i=1:4 

end 

if ebc(i)==t 
state(i)=O; 

end 

% module 2 - ack que arrivals 
for i=1:4 

if SSP(i) .qaat(l)==t 
qa(i)=qa(i)+l; 
l=find(SSP(i) .ttimes==SSP(i) .qaat(2)); 
SSP (i) . ttimes (1) = [] ; 
out(i)=size(SSP(i) .ttimes,2); 
c(i)=c(i)+l; 

end 
end 

if c(i»cmax 

end 

c(i)=O; 
if win (i) <winmax 

win(i)=win(i)+l; 
end 

%module 3 - ack que transmissions 
for i=1:4 

end 

if qatt(i)==t 
qa(i)=qa(i)-l; 
nap(i)=nap(i)+l; 

end 

%module 4 - ack que proce~sing 
for i=1:4 

end 

if qa(i»O & state(i)==O 
state(i)=l; 
ebc(i)=t+3; 
qatt(i)=t+3; 

end 

% module 5 - req que arrivals 
for i=1:4 

if at(i)==t 

if qrmax > qr(i) 
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end 
end 

qr(i) = qr(i) + 1; 
else 

dropped(i) = dropped(i) + 1; 
end 

% module 6 - packet generator 
for i=1:4 

if t==l 
pps=35; 

end 

iat(i)=floor( (1000/(pps+1) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 

if t==at(i) 
arrived(i)=arrived(i)+l; 
if arrived(i)<pps 

n=floor(t/10000) ; 
m=floor( (t-n*10000)/1000); 
trem=n*10000+(m+1)*1000-t; 
iat(i)=floor( (trem/(pps-arrived(i)+l))*rand(l,l)); 
if iat(i)==O 

end 

end 
end 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 

if rem(t,1000)==O 

end 

iat(i)=floor( (1000/(pps+1) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 
arrived(i)=O; 

% module 7 - request que transmissions 
for i=1:4 
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if qrtt(i)==t & win(i) > out (i) 
qr(i)=qr(i) - 1; 
SSP(i) .Qat(size(SSP(i) .Qat,2)+1)=t+l0; 
count(i)=count(i)+l; 
SSP(i) .ttimes(size(SSP(i) .ttimes,2)+1)=t; 
out(i)=size(SSP(i) .ttimes,2); 

elseif qrtt(i)==t & ~(win(i) > out(i)) 
qrtt(i) = qrtt(i) + 1; 

end 
end 

% timeout check 
if t>1200 

end 

for i=1:4 

end 

l=find(t-SSP(i) .ttimes>1200); 
if isempty(l)==O 

end 

for j=1:size(1,2) 
SSP (i) . ttimes (1 (j ) ) = [ J ; 

end 
if ~(win(i)==winmin) 

win(i)=win(i)-l; 
end 

out(i)=size(SSP(i) .ttimes,2); 

% module 8 - req que processing 
for i=1:4 

end 

if state(i)==O & qr(i»O 
state(i)=l; 
ebc(i)=t+7; 
qrtt(i)=t+7; 

end 

% module 9 - SCP state control 
if SCP.ebc==t 

SCP.state=O; 
end 

% module 10 - arrivals at SCP 
for i=1:4 

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t 
if size(Q,2)<Qmax 

Q(size(Q,2)+1)=i; 
Qtimer(size(Qtimer,2)+1)=t-l0; 
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elseif size(Q,2)==Qmax 
Qdropped=Qdropped+l; 

end 
SSP (i) .Qat (1) = [] ; 

end 
end 

% module 11 - SCP transmission 
if SCP.tt==t 

end 

SSP(Q(l)) .qaat(1)=t+l0; 
SSP(Q(l)) .qaat(2)=Qtimer(1); 
Q(l)=[]; 
Qtimer(l)=[] ; 
SCP.counter=SCP.counter+l; 

% module 12 - SCP processing 
if SCP.state==O & size(Q,2»0 

SCP.state=l; 

end 

% rand number generator 
r=rand(l,l) ; 
x=-log(r) ; 
if x-floor(x)<.5 
x=floor (x) ; 
else 
x=ceil (x) ; 
end 
SCP.ebc=t+l0+x; 
SCP.tt=t+l0+x; 

for j=l: 75 
time(j)=j; 

end 
if rem(t,1000)==O 

Dropped(t/l000)=dropped(1) ; 
dropped (1) =0; 
Arrivals(t/l000)=arrival(1); 
arrival(l)=O; 
SCP_off load(t/l000)=sum(count); 
count=zeros(1,4) ; 
SCP_dropped(t/l000)=Qdropped; 
Qdropped=O; 

Qlength(t/l0~)=size(Q,2) ; 
SCP.caps(t/l000)=SCP.counter; 
SCP.counter=O; 
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pps=round(35+5*rand(1,1)) ; 

end 

end 
figure(l) 
plot(time,SCP_dropped);axis([O 75 0 50]);xlabel('time in 
seconds') ;ylabel('Dropped at SCP'); 
figure(2) 
plot (time, Dropped) ;axis([O 75 0 80]) ;xlabel('time in 
seconds');ylabel('Dropped at SSP(l) '); 
figure(3) 
plot(time,SCP.caps) ;axis([O 75 80 100]) ;xlabel('time in 
seconds') ;ylabel('Processed at SCP'); 
figure(4) 
plot (time, Qlength) ;axis([O 75 0 100]) ;xlabel('time in 
seconds');ylabel('Qlength'); 
figure(5) 
plot (time,Arrivals) ;axis([O 75 0 80]);xlabel('time in 
seconds');ylabel('Arrivals at SSP(l) '); 
E=sum(SCP.caps) * (1-
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps)))) ; 
disp(['Adaptive case: ']); 
disp ( [' time=' num2str (t) ':']); 
disp(['Dropped at SCP='num2str(sum(SCP_dropped))]); 
disp(['Dropped at SSP(1)='num2str(sum(Dropped)) ]); 
disp(['Processed by SCP='num2str(sum(SCP.caps)) ]); 
disp(['Arrivals at SSP(1)='num2str(sum(Arrivals)) ]); 
disp(['Efficiency='num2str(E)]) ; 

\ 
%network simulation with fuzzy window 

for i=1:4 
ebc(i)=O; 
state(i)=O; 
qa(i)=O; 
qr(i)=O; 
at(i)=l; 
count(i)=O; 
qrtt(i)=O; 
dropped(i)=O; 
SSP (i) . qaa t= [0 0]; 
SSP(i) .Qat=[]; 
SSP ( i) . a r r= [ ] ; 
pack_off (i)=O-; 
win(i)=l; 
out(i)=O; 
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end 

rtdl(i)=O; 
SSP(i) .ttimes=[]; 
qatt(i)=O; 
nopack(i)=l; 
nap(i)=O; 
fuzzcount(i)=O; 
arrival(i)=O; 
arrived(i)=O; 

Q= [] ; 
Qlength=O; 
Qtimer=[]; 
SCP.tt=O; 
SCP off load=[]; 
time=[]; 
qrmax=5; 
cmax=4 ; 

for t=1:75000 
% SSP's modules 

SCP.state=O; 
Qmax=lOO; 
SCP.ebc=O; 
SCP.counter=O; 
Qdropped=O; 
SCP.caps=O; 
fuzzcountmax=lO; 
E=O; 

% module 1 - state control 
for i=1:4 

end 

if ebc(i)==t 
state(i)=O; 

end 

% module 2 - ack que arrivals 
for i=1:4 

end 

if SSP (i) .qaat(l)==t 
qa(i)=qa(i)+l; 
l=find(SSP(i) .ttimes==SSP(i) .qaat(2)); 
SSP (i) . ttimes (1) = [] ; 
out (i) =size (SSP (i) . ttimes, 2) ; 
fuzzcount(i)=fuzzcount(i)+l; 
if fuzzcount(i)==fuzzcountmax 

end 
end 

fuzzcount(i)=O; 
rtd(i)=t-SSP(i) .qaat(2); 
win(i)=fuzzy7coaga(rtd(i)) ; 

%module 3 - ack que transmissions 
for i=1:4 

if qatt(i)==t 
qa(i)=qa(i)-l; 
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end 

nap(i)=nap(i)+l; 
end 

%module 4 - ack que processing 
for i=1:4 

end 

if qa(i»O & state(i)==O 
state(i)=l; 
ebc(i)=t+3; 
qatt(i)=t+3; 

end 

% module 5 - req que arrivals 
for i=1:4 

end 

if at(i)==t 

end 

arrival (i)=arrival(i) + 1; 
if qrmax > qr(i) 

qr(i) = qr(i) + 1; 
else 

dropped(i) 
end 

dropped(i) + 1; 

% module 6 - packet generator 
for i=1:4 

if t==l 
pps=35; 

end 

iat(i)=floor( (1000/(pps+l) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+l; 
else 

at(i)=t+iat(i) ; 
end 

if t==at(i) 
arrived(i)=arrived(i)+l; 
SSP(i) .arr(size(SSP(i) .arr,2)+1)=t; 
if arrived(i)<pps 

n=floor(t/l0000) ; 
m=floor( (t-n*10000)/1000); 
trem=n*10000+(m+l)*1000-t; 
iat(i)=floor((trem/(pps-arrived(i)+l) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+l; 
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end 

end 
end 

else 
at(i)=t+iat(i) ; 

end 

if rem(t,1000)==O 

end 

iat(i)=floor( (1000/(pps+1) )*rand(l,l)); 
if iat(i)==O 

at(i)=t+1; 
else 

at(i)=t+iat(i) ; 
end 
arrived(i)=O; 

% module 7 - request que transmissions 
for i=1:4 

end 

if qrtt(i)==t & win(i) > out (i) 
qr(i)=qr(i) - 1; 
SSP(i) .Qat(size(SSP(i) .Qat,2)+1)=t+10; 
count(i)=count(i)+l; 
SSP(i) .ttimes(size(SSP(i) .ttimes,2)+1)=t; 
out(i)=size(SSP(i) .ttimes,2); 

elseif qrtt(i)==t & ~(win(i) > out (i) ) 
qrtt(i) = qrtt(i) + 1; 

end 

% timeout check 
if t>1200 

end 

for i=1:4 

end 

l=find (t-Ssp (i) . ttimes>1200) ; 
if isempty(l)==O . 

for j=1:size(1,2) 
SSP ( i) . t time s (1 (j ) ) = [ ] ; 

end 
if ~(win(i)==winmin) 

win(i)=win(i)-l; 
end 

end 
out (i) =size (SSP (i) . ttimes, 2) ; 

% module 8 - req que processing 
for i=1:4 
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end 

if state(i)==O & qr(i»O 
state(i)=l; 
ebc(i)=t+7; 
qrtt(i)=t+7; 

end 

% module 9 - SCP state control 
if SCP.ebc==t 

SCP.state=O; 
end 

% module 10 - arrivals at SCP 
for i=1:4 

end 

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t 
if size(Q,2)<Qmax 

end 

Q(size(Q,2)+1)=i; 
Qtimer(size(Qtimer,2)+1)=t-l0; 

elseif size(Q,2)==Qmax 
Qdropped=Qdropped+l; 

end 
SSP (i) . Qa t (1) = [ ] ; 

% module 11 - SCP transmission 
if SCP.tt==t 

SSP(Q(l)) .qaat(1)=t+l0; 
SSP(Q(l)) .qaat(2)=Qtimer(1); 
Q(l)=[]; 

end 

Qtimer(l)=[]; 
SCP.counter=SCP.counter+l; 

% module 12 - SCP processing 
if SCP.state==O & size(Q,2»0 

SCP.state=l; 
% rand number generator 
r=rand(l,l) ; 
x=-log(r) ; 
if x-floor(x)<.5 
x=floor(x) ; 
else 
x=ceil(x); 
end 

103 

J 



end 

SCP.ebc=t+10+x; 
SCP.tt=t+10+x; 

for j=l: 75 
time(j)=j; 

end 
if rem(t,lOOO)==O 

Dropped(t/1000)=dropped(1) ; 
dropped (1) =0; 
Arrivals(t/1000)=arrival(1); 
arrival(l)=O; 

end 
end 

SCP off load(t/1000)=sum(count); 
count=zeros(1,4) ; 
SCP_dropped(t/1000)=Qdropped; 
Qdropped=O; 
Qlength(t/1000)=size(Q,2) ; 
SCP.caps(t/1000)=SCP.counter; 
SCP.counter=O; 
pps=round(35+5*rand(1,1) ); 

E=sum(SCP.caps) * (1-
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps)))); 
figure(l) 
plot(time,SCP_dropped);axis([O 75 0 50]);xlabel('time in 
seconds') ;ylabel('Dropped at SCP'); 
figure (2) 
plot (time, Dropped) ;axis([O 75 0 50]);xlabel('time in 
seconds');ylabel('Dropped at SSP(l) '); 
figure(3) 
plot(time,SCP.caps);axis([O 
seconds') ;ylabel('Processed 
figure(4) 

~ 
75 80 100]) ;xlabel('time 
at SCP'); 

in 
J 

plot(time,Qlength);axis([O 75 80 100]);xlabel('time in 
seconds') ;ylabel('Qlength'); 
figure (5) 
plot (time,Arrivals) ;axis([O 75 40 60]) ;xlabel('time in 
seconds');ylabel('Arrivals at SSP(l) f); 
disp ( [' time=' num2str (t) ':']); 
disp(['Dropped at SCP='num2str(sum(SCP_dropped)) ]); 
disp(['Dropped at SSP (1)='num2str (sum (Dropped) )]); 
disp(['Processed by SCP='num2str(sum(SCP.caps))]); 
disp(['Arrivals at SSP(1)='num2str(sum(Arrivals))]); 
disp( ['Efficiency='num2str(E)]); 
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%fuzzy Controller 
function ws=fuzzy7coaga(rtd) 

a=1;b=4;c=6;d=8;e=12;f=14;g=15;h=20;ip=22;j=24;kp=26;1p=30; 

x= s ym ( , x' ) ; 
f1=-(1/200)*rtd+1; 
f2=(1/200)*rtd; 
f3=-(1/200)*rtd+2; 
f4=(1/200)*rtd-1; 
f5=-(1/200)*rtd+3; 

ip+5) ; 
f6=(1/200)*rtd-2; 

kp+5) ; 
f7=-(1/200)*rtd+4; 
f8=(1/200)*rtd-3; 
f9=-(1/200)*rtd+5; 
f10=(1/200)*rtd-4; 
f11=-(1/200)*rtd+6; 
f12=(1/200)*rtd-5; 

gl=-(1/b)*x+1; 
g2=(x-a)/(5-a) ; 
g3=(d-x)/(d-5); 
g4=(x-c)/(10-c) ; 
g5=(f-x)/(f-10) ; 
g6=(x-e)/(15-e) ; 
g7=(h-x)/(h-15) ; 
g8=(x-g)/(20-g) ; 
g9=(j-x)/(j-20) ; 
g10=(x-ip)/(25-ip) ; 
gll=(lp-x)/(lp-25) ; 
g12=(x-kp)/(30-kp) ; 

if rtd>=O & rtd<200 

y1_2=(-5*b)/(a-b-5) ; 
y3_4=(d* (10-c)+c* (d-5) )/(d-c+5); 
y5_6=(f*(15-e)+e* (f-10) )/(f-e+5); 
y7_8=(h*(20-g)+g*(h-15) )/(h-g+5); 
y9 10=(j* (25-ip)+ip* (j-20) )/(j-

y11 12=(lp*(30-kp)+kp*(lp-25) )/(lp-

" 

z2_10=f2*(25-ip)+ip;z3 10=f3* (25-ip)+ip; 
z4 10=f4*(25-ip)+ip;zl_11=-f1*(lp-25)+lp; 
z2 12=f2*(30-kp)+kp;zl 12=f1*(30-kp)+kp;z2 11=­

f2*(lp-25)+lp; 
if f1>=f2 & f2<=(y11_12-kp)/(30-kp) 

ws=(int(g10*x,x,ip,z2_10)+int(f2*x,x,z2 10,z2_12)+ 
int(g12*x,x,z2_12,zl_12)+int(f1*x,x,zl_12,30))/(int( 
g10,x,ip,~2 10)+int(f2,x,z2 10,z2 12)+int(g12,x,z2 1 
2,zl 12) 
+int(f1,x,zl12,30)); 
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ws=round(double(ws)); 
elseif f1>(y11_12-kp)/(30-kp) & f2>(y11_12-kp)/(30-kp) S=I 
int(g11*x,x,z2_11,y11_12)+int(g12*x,x,y11_12,z1_12)+int(f1* 
x,x,z1_12,30))/(int(g10,x,ip,z2_10)+int(f2,x,z2_10,z2_11)+i 
nt(g11,x,z2 11,y11 12)+int(g12,x,y11 12,z1 12)+int(f1,x,z1 
12,30)); 

ws=round(double(ws)) ; 
elseif f2>f1 & f1<=(y11 12-kp)/(30-kp) 

ws=(int(g10*x,x,ip,z2_10)+int(f2*x,x,z2_10,z2 11)+int(g11*x 
,x,z2_11,z1_11)+int(f1*x,x,z1_11,30) )/(int(g10,x,ip,z2_10)+ 
int(f2,x,z2 10,z2 11)+int(g11,x,z2 11,z1 11)+int(f1,x,z1 11 
,30) ) ; 

ws=round(double(ws)) ; 
end 

end 

if rtd>=200 & rtd<400 
z4_8=f4* (20-g)+g;z4 10=f4*(25-ip)+ip;z3 10=f3*(25-

ip)+ip;z3_11=-f3* (lp-25)+lp; 
z4_9=-f4*(j-20)+j;z3_9=-f3*(j-20)+j; 
if f3>=f4 & f4<=(y9 10-ip)i(25-ip) 

ws=(int(g8*x,x,g,z4_8)+int(f4*x,x,z4_8,z4 10)+int(g10*x,x,z 
4_10,z3_10)+int(f3*x,x,z3_10,z3_11)+int(g11*x,x,z3_11,Ip))/ 
(int(g8,x,g,z4_8)+int(f4,x,z4_8,z4_10)+int(g10,x,z4 10,z3 1 
0)+int(f3,x,z3_10,z3_11)+int(gll,x,z3 11,lp)); 

ws=round(double(ws) ); 
elseif f4>(y9 10-ip)/(25-ip) & f3>(y9 10-ip)/(25-ip) 

ws=(int(g8*x,x,g,z4 8)+int(f4*x,x,z4 8,z4 9)+int(g9*x,x,z4 
9,y9_10)+int(g10*x,x,y9_10,z3_10)+int(g11*x,x,z3_10,lP) )/(1 
nt(g8,x,g,z4_8)+int(f4,x,z4_8,z4_9)+int(g9,x,z4 9,y9~10)+in 
t(g10,x,y9_10,z3_10)+int(g11,x,z3 10,lp)); 

ws=round(double(ws) ); 
elseif f4>=f3 & f3<=(y9 10-ip)/(25-ip) 

ws=(int(g8*x,x,g,z4 8)+int(f4*x,x,z4_8,z4_9)+int(g9*x,x,z4 
9,z3_9)+int(f3*x,x,z3_9,z3_11)+int(gll*x,x,z3_11,lp) )/(int( 
g8,x,g,z4_8)+int(f4,x,z4_8,z4_9)+int(g9,x,z4 9,z3 9)+int(f3 
,x,z39,z3_11)+int(g11,x,z3_11,lp)); 

ws=round(double(ws)); 
end 

end 

if rtd>=400 & rtd<600 
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z6_6=f6*(15-e)+e;z6_8=f6*(20-g)+g;z58=f5*(20-
g)+g;z5_9=-f5*(j-20)+j; 

z6 7=-f6*(h-15)+h;z5 7=-f5*(h-15)+h; 
if f5>=f6 & f6<=(y7 8-g)/(20-g) 

ws=(int(g6*x,x,e,z6_6)+int(f6*x,x,z6_6,z6 8)+int(g8*x,x,z6 
8,z5_8)+int(f5*x,x,z5_8,z5_9)+int(g9*x,x,z5_9,j))/(int(g6,x 
,e,z6_6)+int(f6,x,z6_6,z6_8)+int(g8,x,z6 8,z5 8)+int(f5,x,z 
5 8,z5 9)+int(g9,x,z5_9,j)); 

ws=round(double(ws)); 
elseif f6>(y7 8-g)/(20-g) & f5>(y7 8-g)/(20-g) 

ws=(int(g6*x,x,e,z6_6)+int(f6*x,x,z6_6,z6_7)+int(g7*x,x,z6 
7,y7_8)+int(g8*x,x,y7_8,z5_8)+int(f5*x,x,z5_8,z5_9)+int(g9* 
x,x,z5_9,j))/(int(g6,x,e,z6_6)+int(f6,x,z6_6,z6_7)+int(g7,x 
,z6_7,y7_8)+int(g8,x,y7 8,z5 8)+int(f5,x,z5 8,z5 9)+int(g9, 
x,z59,j)); 

ws=round(double(ws) ); 
elseif f5<=f6 & f5<=(y7 8-g)/(20-g) 

ws=(int(g6*x,x,e,z6 6)+int(f6*x,x,z6_6,z6 7)+int(g7*x,x,z6 
7,z5_7)+int(f5*x,x,z5_7,z5_9)~int(g9*x,x,z5_9,j) )/(int(g6,x 
,e,z6_6)+int(f6,x,z6_6,z6_7)+int(g7,x,z6 7,z5 7)+int(f5,x,z 
5 7,z5 9)+int(g9,x,z5_9,j)); 

ws=round(double(ws)) ; 
end 

end 

if rtd>=600 & rtd<800 
z8_4=f8*(lO-c)+c;z8 5=-f8*(f-IO)+f;z7 6=f7*(15-

e)+e;z77=-f7*(h-15)+h; 
z8_6=f8* (15-e)+e;z7_5=-f7* (f-IO)+f; 
if f7> (y5 6-e) / (15-e) & f8> (y5 6-e) / (15-e)' 

wS=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8_4,z8_5)+int(g5*x,x,z8 
5,y5_6)+int(f6*x,x,y5_6,z7_6)+int(f7*x,x,z7_6,z7_7)+int(g7* 
x,x,z7_7,h) )/(int(g4,x,c,z8_4)+int(f8,x,z8_4,z8_5)+int(g5,x 
,z8_5,y5_6)+int(f6,x,y5 6,z7 6)+int(f7,x,z7 6,z7 7)+int(g7, 
x,z77,h)); 

ws=round(double(ws)) ; 
elseif f7>=f8 & f8<=(y5 6-e)/(15-e) 

ws=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8_4,z8 6)+int(g6*x,x,z8 
6,z7 6)+int(f7*x,x,z7_6,z7 7)+int(g7*x,x,z7_7,h))/(int(g4,x 
,c,z8_4)+int(f8,K,z8_4,z8_6)+int(g6,x,z8 6,z7 6)+int(f7,x,z 
76,z7_7)+int(g7,x,z7_7,h)); 

ws=round(double(ws)) ; 
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elseif f8>f7 & f7<=(y5 6-e)/(15-e) 

ws=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8 4,z8 5)+int(g5*x,x,z8 
5,z7_5)+int(f7*x,x,z7_5,z7_7)+int(g7*x,x,z7_7,h) )/(int(g4,x 
,c,z8_4)+int(f8,x,z8_4,z8_5)+int(g5,x,z8 5,z7 5)+int(f7,x,z 
7 5,z7_7)+int(g7,x,z7_7,h)); 

ws=round(double(ws)) ; 
end 

end 

if rtd>=800 & rtd<1000 
z10 2=fl0*(5-a)+a;z10 3=-fl0*(d-5)+d;z9 4=f9*(10-

c)+c;z95=-f9*(f-l0)+f; 
z10 4=fl0*(10-c)+c;z9 3=-f9*(d-5)+d; - -
if f9>(y3 4-c)/(10-c) & fl0>(y3 4-c)/(10-c) 

ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10_2,z10_3)+int(g3*x,x 
,z10_3,y3_4)+int(g4*x,x,y3_4,z9_4)+int(f9*x,x,z9_4,z9_5)+in 
t(g5*x,x,z9_5,f))/(int(g2,x,a,z10_2)+int(fl0,x,z10_2,z1o_3) 
+int(g3,x,z10_3,y3_4)+int(g4,x,y3 4,z9 4)+int(f9,x,z9 4,z9 
5)+int(g5,x,z9_5,f)); 

ws=round(double(ws) ); 
elseif f9>=fl0 & fl0<=(y3 4-c)/(10-c) 

ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10 2,z10 4)+int(g4*x,x 
,z10_4,z9_4)+int(f9*x,x,z9_4,z9_5)+int(g5*x/ x,z9_5,f))/(int 
(g2,x,a,z10_2)+int(fl0,x,z10_2,z10_4)+int(g4,x,z10 4,z9 4)+ 
int(f9,x,z9_4,z9_5)+int(g5,x,z95,f)); 

ws=round(double(ws)); 
elseif fl0>f9 & f9<=(y3 4-c)/(10-c) 

\ 
ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10_2,z10_3)+int(g3*x,x 
,z10_3,z9_3)+int(f9*x,x,z9_3,z9_5)+int(g5*x,x,z9_5,f~)/(int 

(g2,x,a,z10 2)+int(fl0,x,z10 2,z10 3)+int(g3,x,z10 3,z9 3)+ 
int(f9,x,z9=3,z9_5)+int(g5,x~z9 5,f)); 

end 
end 

ws=round(double(ws)) ; 

if rtd>=1000 & rtd<=1200 
z12 1=-b*(f12-1);zll 2=fl1*(5-a)+a;zll 3=-f11*(d-

5)+d;zll_1=-b*(fll-l) ; 
z122=f12*(5-a)+a; 
if fll>(yl 2-a)/(5-a) & f12>(yl 2-a)/(5-a) 

ws=(int(f12*x,x,0,z12_1)+int(gl*x,x,z~2_1,yl_2)+inttg2*x,x, 

yl 2,zll 2)+int(fll*x,x,zll 2,zll 3)+int(g3*x,x,zll 3,d))/( 
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int(f12,x,0,z12_1)+int(gl,x,z12_1,y1_2)+int(g2,x,y1 2,zll_2 
)+int(f11,x,zll_2,zll_3)+int(g3,x,zll 3,d)); 

ws=round(double(ws)) ; 
elseif f11<=f12 & f11<=(y1 2-a)/(5-a) 

ws=(int(f12*x,x,0,z12_1)+int(gl*x,x,z12_1,zll 1)+int(f11*x, 
x,zll_1,zll_3)+int(g3*x,x,zll_3,d))/(int(f12,x,0,z12_1)+int 
(gl,x,z12 1,zll 1)+int(f11,x,zll 1,zll 3)+int(g3,x,zll 3,d) 
) ; 

ws=round(double(ws)); 
elseif f12<=f11 & f12<=(y1 2-a)/(5-a) 

ws=(int(f12*x,x,0,z12_2)+int(g2*x,x,z12_2,zll 2)+int(f11*x, 
x,zll_2,zll_3)+int(g3*x,x,zll_3,d) )/(int(f12,x,0,z12_2)+int 
(g2,x,z12 2,zll 2)+int(f11,x,zll 2,zll 3)+int(g3,x,zll 3,d) 
) ; 

ws=round(double(ws)); 
end 

end 

%Genetic Algorithm 2 
global E choice q parameter 
el sel=[10 10 4 2]; 
mut=[20 15 8 4]; 
cross=[20 15 8 4]; 
choose; 
parameter1=choice; 
for r=2:60 

choose; 
parameter1(r, :)=choice; 
t=l; J 

while t<r 
if isequal (parameter1 (t, :),parameter1(r,:) )==1 

choose; 
t=l; 

else 
t=t+1; 

end 
parameter1(r, :)=choice; 

end 
end 
parameter=parameter1; 
for q=1:60; 

for s=1:3 
netsimandfuzzwin22; 
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Eff 123(s)=E; 
end 
AveEff(q)=sum(Eff_123)/3; 
parameterl(q,13)=AveEff(q) ; 
parameter(q,13)=E; 

end 
minimum=find(parameter(:,13)==min(parameter(:,13))); 
% Cycles 
disp(['Generation 1 done']); 
for v=1:4 

el selection=[]; 
nat selection=[]; 
crossover=[]; 
mutation=[]; 

% Select sel(v) strings from parameter 
% Elitist promotion (selection) 
maximum=[]; 
while size(maximum,2)<el sel(v) 

w= [] ; 
w=find(parameter(:,13)==max(parameter(:,13))) ; 
maximum=[maximum w']; 
for ind=l:size(w,l) 

parameter(w(ind),13)=O; 
end 

end 
ind=O; 
for ind=l:el sel(v) 

el selection(ind, :)=parameter(maximum(ind),:); 
end 
if size (maximum,2»el_sel (v) 

for ind=1:size(maximum,2)-el sel(v) 
" 

nat_selection (ind, :)=parameter(maximum(ind+el sel(v)),:); 
end 

end 

%Choose more strings to complete nat_selection 
if cross(v)+mut(v)-size(nat selection,l»O 
maximum=[]; 
w= [] ; 
while size(maximum,l)<cross(v)+mut(v)-size(nat selection,l) 

w=find(parameter(:,13)==max(parameter(:,13))) ; 
maximum=[maximum w']; 
for ind=l:size(w,l) 

parameter(w(ind),13)=O; 
end 
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end 
end 
ind=O; 
for ind=1:size(maximum,2) 

nat selection(size(nat selection,l)+ind, :)=parameter(maximu 
m (ind) , : ) ; 
end 
if size(nat selection,l»cross(v)+mut(v) 

for ind=l:size(parameterlprimel,l)-(cross(v)+mut(v)) 
nat selection(cross (v)+mut (v)+ind, :)=[]; 

end 
end 
parameter=[]; 

% Apply crossover and mutation to nat selection 

%crossover operator 

while size (crossover,l)<cross (v) 
intl=round(l+(size(nat_selection,l)-l)*rand(l,l)) ; 
int2=round(1+(size(nat selection,l)-l)*rand(l,l)); 
while isequal(int2,intl)==1 

end 

int2=round(1+(size(nat selection,l)-l)*rand(l,l)); 
end 
crosspnt=round(2+9*rand(1,1)) ; 
crossedl=nat_selection(intl, :); 
crossed2=nat_selection(int2, :); 
temp=crossedl(1,crosspt:13); 
crossedl(1,crosspt:13)=crossed2(1,crosspt:13) ; 
crossed2(1,crosspt:13)=temp; 
vectl=find(parameterl(:,1:12)==crossedl(1,1:12)) ; 
if vectl==[] 

,I 
crossover(size(crossover,l)+l, :)=crossedl(l, :); 
parameterl(size(parameterl,l)+l, :)=crossedl(l, :); 

end 
vect2=find(parameterl(:,1:12)==crossed2(1,1:12)); 
if vect2== [] 

crossover(size(crossover,l)+l, :)=crossed2(1,:); 
parameterl(size(parameterl,l)+l, :)=crossed2(1,:); 

end 

if size(crossover,l»cross(v) 

end 

for ind=l:size(crossl,l)-cross(v) 
crossover (50+ind, :)=[]; 

end 
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% mutation operator 
while size (mutate, l)<mut (v) 

int3=round(1+(size(nat selection,l)-l)*rand(l,l)); 
mutpt=round(l+ll*rand(l,l)); 
mutate=nat_selection(int3,:) ; 

end 

if rem(mutpt+1,2)==O 
min1= (floor (mutpt/2) )*5; 
max1=min1+2; 

elseif rem(mutpt,2)==O 
min1=floor((mutpt-1)/2)*5+3; 
max1=min1+2; 

end 
if mutate (mutpt)==min1 

mutate (mutpt)=min1+1; 
elseif mutate (mutpt)==max1 

mutate (mutpt)=max1-1; 
else 

mutval=round(rand(l,l) ); 
if mutval==O 

mutate (mutpt)=min1; 
else 

mutate (mutpt)=max1; 
end 

end 
vect3=find(parameter1(:,l:12)==mutate) ; 
if vect3==[] 

mutation (size (mutation, 1)+1, :)=mutate; 
parameter1(size(parameter1,l)+l, :)=mutate; 

end 

% Make new parameter 

parameter=el selection; 
ind=O; 
for ind=l:size(crossover,l) 

parameter (size (parameter, 1) +1, :)=crossover(ind, :); 
end 
ind=O; 
for ind=l:size (mutation, 1) 

parameter (size (parameter, 1) +1, :)=mutation(ind,:); 
end 

% Run controllers, record fitness values 

for q=l:size(parameter,l) 
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for s=1:3 
netsimandfuzzwin22; 
Eff 123(s)=E; 

end 
AveEff(q)=sum(Eff 123)/3; 
parameter(q,13)=AveEff(q); 
parameter(q,13)=E; 

end 
disp([num2str(v)]); 
end 

maximum= [] ; 
maximum=find(parameter(:,13)==max(parameter(:,13))); 
disp(['optimal controller parameters 
are'mat2str(parameter(maximum(1), :))]); 
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