
METHODS FOR DESIGNING AND OPTIMIZING
FUZZY CONTROLLERS

THESIS
Submitted in partial fulfillment of the

Requirements for the Degree of
MASTER of SCIENCE

of Rhodes University

by

Andre Michael Swartz

SUPERVISOR: Prof W. Kotze

December 1999

J

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and gratitude to:

My supervisor, Prof. W. Kotze for his unfailing commitment, guidance, encouragement
and patience.

Prof. F. Klawonn for his valued assistance and suggestions.

The staff of the Mathematics Department at Rhodes University, who always made
learning mathematics a pleasure.

Baron Peterssen who made financial support through Telkom S.A. possible.

My family for being a source of constant inspiration and encouragement. It is to them that
I dedicate this thesis.

.I

ii

Contents

page

ACKNOWLEDGEMENTS 11

LIST OF TABLES VI

LIST OF FIGURES VI

Chapter

1 Introduction 1

The first controllers 1
The need for fuzzy theory 1
Controversy 2
Aim and development of the work ~ 3

2 Background Theory 4

Definitions 4
The algebra of fuzzy sets 4
Linguistic variables and fuzzy if-then rules 7

Fuzzy Rules 8
Fuzzy Logic and the Mamdani controller 8

Fuzzy implication functions 8
Inference in the Mamdani Controller 9
Defuzzification

J 12
Centre of Area Criterion 12
The Maximum Criterion 12
Mean of Maxima Criterion 12

The Sugeno Controller 12
The Approximating Capabilities of Fuzzy Systems 13
Chapter Conclusion 17

3 Designing fuzzy controllers 18

Introduction 18
Fuzzy control using fuzzy equivalence relations 19

Fuzzy eq'iiivalence relations on single spaces 19
- Product spaces and mappings 23 -

Mamdani's Model revisited 27

iii

Design of a controller based on similarity 27
Fuzzy Control using fuzzy equivalence relations 28

Application in controller design 33
The Method of Wang and Mendel 35

The system 35
The steps 35

Stepl 35
Step2 36
Step3 36
Step4 36
Defuzzification 37

Fuzzy clustering 37
Clustering techniques 37

The Fuzzy c-means algorithm 38
Deriving rules from fuzzy clusters 40
Fuzzy c-lines and fuzzy c-elliptotypes 40

Chapter Conclusion 43

4 The use of Genetic Algorithms 44

Introduction 44
Applying G.A.' s 44

Genetic Operators 45
Selection 45
Crossover 45
Mutation 46

Techniques for coding information 46
Methods for coding rule bases 46
Coding of fuzzy sets 49
Other Genetic Operators 52
Fitness Functions 53

Some implementational details J 55
G.A. 's running in parallel 55
Gray codes 55

Chapter Conclusion 56

5 Application 57

Introduction 57
Previous Wark 57
Intelligent Networks 62
The Model 63
Some IN congestion control schemes 64

- The Static Window Mechanism 64 -

iv

6

7

8

The Adaptive Window Mechanism 64
The Fuzzy Adaptive Window Mechanism 64
The System, the variables and the operation of the algorithms 65

The Fuzzy Controller 66
Genetic Algorithm 67

Simulations 68

Discussion and Conclusion
Final Remarks
Appendices

Bihiliograpby

Appendices
Appendix A
Appendix B
Appendix C

v

70
70
71

73

80
80
83
86

List of Tables

4.1 Example of coded rule table 47
4.2 Rule Base 1 before crossover 48
4.3 Rule Base 2 before crossover 48
4.4 Rule Base 1 after crossover 48
4.5 Rule Base 2 after crossover 48
4.6 Three bit Gray code 56

5.1 Output for Defuzzification mechanisms 67

6.1 Summary of results in Tables B.2 and B.3 70

8.1 Optimizing Window Size for the Static Window 84
8.2
8.3 Results for the three mechanisms for input 1 84
8.4 Results for the three mechanisms for input 2 84

9.1 Final values of variables for the sample run 87

List of Figures

2.1 Examples of fuzzy sets on x=temperature 7
2.2 Inference in the Mamdani Controller 11
2.3 Output fuzzy set to be defuzzified 12

3.1 Extensional hulls of).lxo and).lM 23
3.2 Calculating the distances for fuzzy c-elliptotypes 41

J

4.1 Fitness functions for the pendu!um example 55

5.1 Simple IN model used in the simulation 63
5.2 Fuzzy sets on round trip delay 66
5.3 Fuzzy sets on window size 66

9.1 Variation of arrivals for the sample input 87
9.2 Processing of packets at the SCP 88

vi

Abstract

We start by discussing fuzzy sets and the algebra of fuzzy sets. We consider some
properties of fuzzy modeling tools. This is followed by considering the Mamdani and
Sugeno models for designing fuzzy controllers. Various methods for using sets of data for
desining controllers are discussed. This is followed by a chapter illustrating the use of
genetic algorithms in designing and optimizing fuzzy controllers.Finally we look at some
previous applications of fuzzy control in telecommunication networks, and illustrate a
simple application that was developed as part of the present work.

J

vii

Chapter 1

Introduction

The first controllers

During the 1970's the first fuzzy logic controller was developed by Abraham
Mamdani and a research assistant of his, Seto Assilian [23]. Mamdani was at
tempting to create an adaptive system that could learn how to control an in
dustrial process. After trying conventional approaches to control and failing, his
assistant suggested using fuzzy logic. It produced better results than the previ
ously attempted approaches. During the 1980's Michio Sugeno developed his own
version of a fuzzy controller that could control the motion of a car [53] [54]. Using
20 fuzzy if - then rules Sugeno's controller was able to drive a model car through
angled corridors after a learning session.

Thus fuzzy controllers were initially developed as systems that could automat
ically emulate the control process of a skilled human operator. In developing a
fuzzy controller a human operator is required to express his expertise in the form
of rules in a natural language. Whereas controllers developed by traditional strate
gies require exact knowledge, in the development of a fuzzy controller, vagueness
of information creates no problem and is in fact desired. Fuzzy systems represent
a step in the direction of modeling human decision making processes. A fuzzy sys
tem creates an interface of communication between humans and systems which is
clearly one of the objectives of Zadeh's seminal papers on Fuzzy Sets and Fuzzy
Logic[65][66]. \

While the West has been slow in accepting the new technology in Japan,a wide
range of problems have been solved using it. Applications range from industrial
robots and machinery to consumer prbducts like video cameras, washing machines
and T.V.'s

The need for fuzzy theory

Probability is the mathematical tool for dealing with stochastic uncertainty.
In a statement like "the probability of getting a tail on the flip of a coin is 0.5" the
uncertainty of getting a tail is modeled by the number 0.5. The event of getting
a tail is a well - defined event.

The aim of fuzzy theory is modeling a different kind of uncertainty namely
lexical or linguistic uncertainty - the type of uncertainty or vagueness which is
inherent in natural language. It would be difficult if -not impossible to model a

1 ~

CONTROVERSY 2

concept like" comfortable temperature" using a set with crisp boundaries. The
problem is that a temperature arbitrarily close to the boundary of such a set of
comfortable temperatures would not be considered comfortable at all. This does
not conform to our experience of how temperatures change. The problem is that
the event of a temperature being comfortable is less well - defined than a prob
ability as in the above example. Also, in deciding whether a given temperature
is comfortable a certain amount of subjectivity is inevitable. Classes arising in
natural language like "comfortable temperature" or "tall men" have been termed
subjective categories by psycholinguists. Membership of a thing to a subjective
category is a matter of degree - the degree to which the thing satisfies the criteria
that define the category. Similarly, elements have a degree of belonging to a fuzzy
set instead of it being a simple matter of inclusion or exclusion as in the case of a
crisp set. This gradual transition from non - membership to membership allows
one to represent subjective categories as fuzzy sets, i.e. the idea of a fuzzy set
is the modification to the concept of set that one needs to deal with linguistic
uncertainty.

Contrqversy

The development of Fuzzy Theory has been clouded by controversy and Zadeh
has been severely critisized for his ideas. For example, according to Kalman [59J
the major problems facing systems analysts - developing a deep insight into the
nature of systems - is not addressed by Fuzzy Theory and" ... Zadeh's solution
has no chance to contribute to this basic problem ... " Even today, after hundreds
of successful applications of the theory, this attitude persists. One reason, strange
as it may be, seems to be the name "Fuzzy" itself. It is notable that Van Altrock
in [59J mentions that the Japanese language does not have a negative connptation
to the word "fuzzy". Maybe it creates the impression that the reasoning itself
is vague. This is not true. The theory is developed to deal with vagueness but
is based on solid mathematical foundations. Another reason may be what Zadeh
has termed the "hammer" principle, according to which if you have a hammer in
your hand everything starts to look like a nail.

Traditional controllers run the risk of becoming so simple that they are un
realistic or so complicated that they become impractical. Fuzzy controllers have
often been compared with traditional controllers in studies. These studies gener
ally prove that fuzzy controllers are more robust, have slower rise times and faster
settling times. Their control signals are generally smoother as well. Considering
such benefits it becomes difficult to understand the contoversy surrounding fuzzy
systems.

AIM AND DEVELOPMENT OF THE WORK 3

Aim and development of the work
This work was commisioned as part of Telkom (S.A.)'s COE programme.

From this one can assume that their research departments are becoming aware
of the importance of fuzzy solutions to complex problems. ITAS (Integrated
Technologies Application Strategies) - the division where such solutions would
presumably first be researched, is almost exclusively populated by researchers
who have not been exposed to fuzzy theory. Someone wishing to develop a fuzzy
controller for use in one of Telkom's networks would need to become exposed to
the background theory in this area. They would need material on the different
methods that have been developed to create fuzzy solutions as well as examples
of previous applications of the theory in telecommunication networks. Thus the
topics discussed were chosen with the needs of such a prospective developer in
mind. Hence the focus is on the mathematical structures and tools that support
the development of fuzzy solutions. It is hoped that the work will serve the
purpose of demystifying the subject and to create an appreciation of the beauty
and simplicity of a field of study that we thoroughly enjoyed working in.

In the second chapter we will start by defining the basic concepts and all of
the operators necessary for the developments to come. Concepts from fuzzy logic
that are required will also be briefly discussed. The chapter will also introduce
the structure and operational details of the two main types of controllers. It will
end with a discussion on some mathematical properties of fuzzy controllers.

Chapter 3 looks at the use of sets of input - output data in designing fuzzy
controllers. Chapter 4 discusses the use of Genetic Algorithms in the design and
optimization of fuzzy controllers. Chapter 5 looks at the ways in which fuzzy
systems have been used in Network Management in Telecommunications Engi
neering and discusses an application which was developed to illustrate possible
uses of some of the theory. Chapter 7 contains the appendices. The first of these
contains the proofs of two statements made in Chapter 3, the seconp a number of
results from the application in Chapter 5 and finally the third appendix contains
the programmes that were written to demonstrate the application. .I

Chapter 2

Background Theory

Definitions

The algebra of fuzzy sets
Fuzzy logic is an extention of two valued logic. Instead of the truth value

of a statement being only ° or 1 any value in [0, 1] is possible. In two valued
logic we study how (true or false) statements are connected and how we can make
inferences from these connections. To connect statements we use the conjunction
and disjunction operators, while we require the implication operator to make
inferences (together with rules for valid implications, for example modus ponens).

The algebra of fuzzy sets was constructed in such a way the crisp Set Theory
and crisp Logic become special cases of the now more general Fuzzy Set The
ory. In the development of Fuzzy Logic the logical operators of conjunction and
disjunction were extended to t - norms and t - conorms respectively.

Definition 1 A triangular norm (or t - norm) is a map:

T: [0, IF --7 [0,1] satisfying:

1. T(a,b) = T(b,a) (r is commutative)

2. T(a, T(b, c)) = T(T(a, b), c) (r is associative)

3. a ~ b =? T(a, c) ~ T(b, c) (r is monotone)

4. T(a, 1) = a (boundary condition) Va,b,c E [0,1]

Definition 2 A triangular conorm (or an s - norm or a t - conorm) is a map:

S: [0,1]2 --7 [0,1] satisfying

1. S(a, b) = S(b, a) (S is commutative)

2. S(a, S(b, c)) = S(S(a, b), c) (S is associative)

3. a ~ b =? S(a, c) ~ S(b, c) (T is monotone)

4. S(a,O) = a Va, b, c E [0,1]

4

DEFINITIONS 5

There are infinely many t - norms and t - conorms. Only a few have been
used in practical control. Some of these are:

Example 3

T m (x, y) = min { x, y}
Sm(x,y) = max{x,y}

Tp(x,y) = x x y

Sp(x,y) = x+y - x x y

TL(x,y) = max{x + y -1, O}

S L (x, y) = min { x + y, I}

(2.1)

Definition 4 Let X be an arbitrary set. A fuzzy subset A of X is characterised
by a membership function:

f1A: X -+ [0,1]

Remark 1 In the traditional literature a fuzzy subset A of X is usually denoted
by greek letters ego f1A. A(x) (or f1A(X)) is understood to be the "degree" to which
x belongs to A, or the truth value of the statement x E A. X is called the universe
of discourse. The unit interval [0,1] is in what follows often denoted by I and the
family of all fuzzy subsets of X by IX.

Definition 5 The support of a fuzzy set A is the set:

supp(A) = {x EX: f1A(X) > O}
I

Definition 6 The core of a fuzzy se~ A is the set:

core(A) = {x EX: f1A(X) = I}

Definition 7 A fuzzy singleton is a fuzzy set A S. t.:

supp(A) ={x} for some x EX

Definition 8 A fuzzy number is a fuzzy set A satisfying:

1. maX{f1A(x): x E X} = 1

DEFINITIONS 6

Definition 9 For A and B fuzzy subsets of X we can now define:

1. J-LAnB(X) = T(J-LA (x), J-LB(X))

2. J-LAUB(X) = S(J-LA(X),J-LB(X))

3. J-LA,(x)=l-J-LA(x)

for T and Sat - norm and co - norm respectively.

Definition 10 A fuzzy relation R is a fuzzy subset of a product space:

Definition 11 If AI, A 2 , .•. , An are fuzzy subsets of Xl, ... , Xnrespectively then the
cartesian product of AI, ... , An is a fuzzy set on the product space defined as:

or

J-LAI XA2 x ... xAn (Xl, ... Xn) J-LAI (Xl) . J-LA2 (X2) J-LAn (Xn)
or if n < 2

!

Definition 12 For A a fuzzy subset of X , R a fuzzy relation on X x Y and T a
t-norm

J-LAoR(Y) = sup {T(J-LA (x) , J-LR(X, y)) : X E X} (2.2)

In the case of A being a fuzzy relation on X x Y and B being a fuzzy relation
on Y x Z this definition changes to:

J-LAOB(X, z) = sUp{T(J-LA(X, Y), J-LB(Y, z)) : Y E Y}

The above definition'"-is Zadeh's Compositional Rule of Inference. It is used in
the inference process of a fuzzy controller as explained-later.

DEFINITIONS 7

Linguistic variables and fuzzy if - then rules
As stated earlier the concept of a fuzzy set is what one needs to deal with

linguistic uncertainty. A related concept is that of a linguistic variable. According
to Zadeh this is a variable whose values are sentences in a natural or artificial
language. More specifically:

Definition 13 A linguistic variable is characterised by a quintuple

(x, 8'(x) , U, G, M) where

x is the name of the variable;
8'(x) is the term set of x or the set of linguistic values of x;
Each linguistic value of x represents a fuzzy subset of the universe of discourse

U· ,
G is a syntactic rule for generating the names, X of values of x.
M is a semantic rule for associating with each value X of x its value M(X), a

fuzzy subset of U.
This definition is very general and is a bit more than what we will require. A

simple example will illustrate the terms which we find necessary.

Example 14 Suppose one wanted to deszgn a fuzzy controlled air - conditioner.
Here one linguistic variable might be x = temperature, which might have the term
set:

8'(x) = {cool; warm; hot}

The elements of 8'(x) are the linguistic values of x and each has an associated
fuzzy set; as illustrated in Figure 2.1.

I

lleooI llwarm

x=temp

Figure 2.1: Fuzzy sets on x=temperature

We refer to "warm" -as the linguistic label of the fuzzy set /1warm. Similarly for
the rest.

FUZZY LOGIC AND THE MAMDANI CONTROLLER 8

Fuzzy Rules

The essential part of a fuzzy controller is a collection of conditional statements
called fuzzy if - then rules. The condition part of a rule specifies a collection of
conditions on input variables. Not every input variable need be mentioned in any
particular rule though in most controllers each rule contains a condition for every
variable. Such a condition is given in the form of a linguistic term of a linguistic
variable. These conditions are aggregated in the rule in the form of sentence
connecti ves (either "and" or "or"). In the case of use of the sentence connective
"or" such a rule can be (and is for inference purposes) rewritten in the form of
"and" rules.

There are mainly two types of fuzzy controllers which differ in terms of the
form of the consequence of the rules they use. The Mamdani controller has lin
guistic labels of fuzzy sets in the conditions in both the antecedent and consequent
of a rule. The Sugeno controller has linguistic labels in the antecedent of each
rule. The consequent of a rule is a functional relationship between the output
variable and the collection of input variables as will be seen clearly below.

Fuzzy Logic and the !'1amdani controller

Fuzzy implication functions
Three main categories of fuzzy implication operators have been defined. These

are fuzzy conjunction, fuzzy disjunction and the fuzzy implication operators.
The fuzzy conjunction is defined using a triangular norm. Suppose A and B

are fuzzy sets on the domains X and Y respectively. In the following T will denote
a t - norm and Sat - conorm. Then the truth value of the statement

can be defined by means of a fuzzy conjunction as
I

or by means of a fuzzy disjunction as

Examples of Fuzzy implication functions are

1 Material implication:

., .'
FUZZY LOGIC AND THE MAMDANI CONTROLLER

2 Propositional Calculus:

9

If one restricts to crisp membership values and S = "or" and T = "and" then
(2) recovers the implication operater in two - valued logic.

3 Generalization of modus ponens:

4 Generalization of modus tollens:

Clearly now one can define many different fuzzy implication operators by
using different t - norms and t - conorms. For example each rule in a Mamdani
rulebase can be interpreted as a fuzzy co~unction with the minimum operator as
the chosen t - norm.

Inference in the Marndani Controller
Suppose that we have an n input - 1 output system to be controlled by a

Mamdani controller. Suppose that Xi E Xi for 1 SiS n. The rule base of such a
controller consists of rules of the form:

Rr : if Xl is Ar I and X2 is Ar 2 and ... and Xn is Ar n then y. is Br , , '\

Here 1 S r S k. Each Ar,i and Br is the linguistic label of some fuzzy/set on
X and Y respectively Vi E {I, 2, ... , n} and Vr E {I, 2, ''', k}.

At this point the notation can be" simplified to:

Rr : if x is Ar then y is Br Vr E {I; ... ; k} (2.3)

Such a rule can be represented as a fuzzy implication (conjunction) as:

The truth value of the implication is calculated as:

fJ,Ar-->Er (x, y) = min {fJ,A,.z:,l (Xl); fJ,Ar ,2 (X2); ... ; fJ,Ar,n (Xn); VEr (y)} for a given vector
(x,y).

FUZZY LOGIC AND THE MAMDANI CONTROLLER 10

We now combine the collection of rules Rr into a fuzzy relation as:

A given crisp input from the process is first fed into the fuzzifier module of
the fuzzy controller. Here it is transformed into a fuzzy set as follows. Suppose
the crisp input is XO = (x~, x~, ... , x~). For each i E {I; 2; ... ; n} the fuzzifier creates
the fuzzy set Ai defined on Xi with membership function:

{
0 if x =1= x?

f-LAi(X) = l·f _ 0
1 X - xi

So a crisp input (x~, ... , x~) creates a collection of fuzzy sets Ai, i = 1, ... , non
the different universes of discourse. Simplifying the notation again, let

This input fuzzy set is now composed with the fuzzy relation R to produce
the output fuzzy set B according to the compositional rule of inference (CRI):

R 0 A which is as before (2.4)

_ m~x {min{f-LR(x, y); f-LA(X)}}
XEII i =l Xi

Simplifying the last equation as follows gives a working definition that leads
to an easier calculation process.

Suppose x =1= (X~, X~, ... , x~). Then f-LA(X) = 0
Suppose x = (x~,x~, ... ,x~). Then f-LA(x) = 1. In this case

min {f-LR(X, y); f-LA (x)} f-LR(X, y) 2: 0, hence

_ mnax {min{f-LR(x, y), f-LA(X)}}
XEIIi =l Xi

occurs when x = (x~, ... , x~) and clearly:

f-LR(X, y)
max {min{f-Lr,l(X~); ... ; f-Lr,n(x~); VBr(Y)}} r=l; ... ;k

J

(2.5)
(2.6)

Often observed data are disturbed by random noise. In such a case a different
fuzzification interface @s been found useful. In [76] such a data set containing
noise is fuzzified into an isosceles triangle. The vertex of the triangle corr~sponds

FUZZY LOGIC AND THE MAMDANI CONTROLLER 11

to the mean of the data set, while the base of the triangle is twice the standard
deviation.

The above CRI is the so - called max - min CRI. It is by far the most commonly
used in fuzzy controller design. Other forms of the CRI that have been used are:

the sup - product operation due to Kaufmann;
the sup - bounded product and
the sup - drastic product operation (both due to Mizumoto)
The simplified inference procedure is now illustrated below using two rules:
Suppose the rules are:

RI if Xl is An and X2 is Al2 then y is BI

R2 if Xl is A21 and X2 is A22 then y is B2

where Arl and Ar2 are linguistic labels offuzzy sets on Xl and X 2 respectively
for r = 1,2. B I , B2 are linguistic labels of fuzzy sets on Y.

For a crisp input (x~, xg) the inference process now proceeds as follows:
1) Calculate Tr = min{/LArl (x~) ,/LAr2 (xgn
2) Now define voutput(y) = { vBr(y)~f VBr(Y) .~ Tr

r Tr otherwIse

3) Calculate the union of vrutput(y) and v:;utput(y) which is the output fuzzy
set to be defuzzified.

The first two steps are shown below:

x 0
1

y

Figure 2.2: Inference in the Mamdani controller

The union of the two fuzzy sets on Y, B' in the figure is then the final fuzzy
output to be defuzzified:

FUZZY LOGIC AND THE MAMDANI CONTROLLER 12

B'

y

Figure 2.3: Output fuzzy set to be defuzzified

Defuzzification

Defuzzification is the process by which the output fuzzy set is transformed
into a crisp value that can be used by a controller. The two most commonly used
defuzzification strategies are:

Centre of Area Criterion

This method divides the first moment of the area under voutput(y) in half:

Jy yvoutput(y)dy
Yo = Jy voutput (y)dy

The Maximum Criterion

This method chooses the smallest y value at which voutput(y) reaches ~ maxi
mum value.

Mean of Maxima Criterion

This method considers the collection of values for which voutput(y) reaches a
maximum value and calculates the centre of area of such values.

The Mean of Maxima is reported in to lead to harsh discontinuities. Braae
and Rutherford in [3] present a study on defuzzification strategies and conclude
that the COA leads to superior results.

The Sugeno Controller

The rules in a Sugeno Controller have form:

.,
"

THE APPROXIMATING CAPABILITIES OF FUZZY SYSTEMS 13

Rr : if Xl is Ar,l and X2 is Ar,2 and ' .. and Xn is Ar,n then y = fr(XI' , .. , xn) (r = 1, ... , k)

Only the sets Xl, X 2, ... , Xn are partitioned by fuzzy sets. fr usually has form:

where a~ E IR. Vi E {O; 1; ... ; n}.
For a crisp input value xO = (x~, ... , x~) the output of the fuzzy controller is

calculated as:
First the degree of satisfaction (or degree of truth) of each rule is calculated

as:

Secondly the final output of the controller is given by:

The t-norm used in the calculation of Tr is usually the minimum or product.

The Approximating Capabilities of Fuzzy Systems
Since the first fuzzy controllers were designed by Mamdani and Sugeno fuzzy

control has been applied to an increasingly wider range of problems.
When one considers the wide range of applications one question that comes

to mind is "What kind of systems and processes can be controlled by a fuzzy
controller?" Another is "If a system is controllable (using conventional control)
can one find a fuzzy controller that is capable of controlling the plpcess as well?"

Some answers to questions like these were produced in [60J [9J
In [60J the author shows that a certain class of Fuzzy Controllers are Uriiversal

Approximators. By this is meant that given a continuous function:

with
U c IR.n , U compact

there exists a fuzzy controller that can approximate the function f to an
arbitrary degree of accuracy.

The proof as presented in [60J follows:
Let us first consider the design parameters of fuzzy systems. These are:
1) the number of fuzzy sets defined on the input and output universes of

discourse.

THE APPROXIMATING CAPABILITIES OF FUZZY SYSTEMS 14

2) the membership functions of these fuzzy sets.
3) the number of fuzzy rules in the rule base.
4) the linguistic statements of the fuzzy rules.
5) the decision making logic in the inference procedure.
6) the defuzzification method.
Thus there is a range of different" classes" of fuzzy controllers, each of which

has a particular choice for each of the design parameters noted above. In what
follows we focus on the class of fuzzy controllers with the following parameters:

a) The fuzzy rules have the form of rules in a Mamdani rule base.
b) all membership functions have the following Gaussian form:

i r 1 Xi - xi 2
f-Lki,r(Xi) = ai exp(--2 (r))

CJi

with i = 0, I, ... , nand r = 1,2, ... ,p. Here i = 0 represents the membership
functions for the output space, i.e.

AD =B.
ko,r Jr

Also 0 ~ ai ~ 1 and xi is the point in the input or output space where the
fuzzy set f-L1. r achieves its maximum membership value.

c) prod~~t inference logic is used. ".
d) the centre of area defuzzification method is used.
In the following we denote the set of fuzzy systems with the above parameters

by F
l.e. let U c jRn, then

Here (,r is the point in the output space jR at which Vjr achieves its maximum
value. We assume that p 2': 1 and that U is compact. '

We now make F into a metric space by defining: J

It is clear that F is non - empty since p 2': 1. Also the denominator of the
expression defining f E F is never zero since the Gaussian functions. are never
zero. The last two facts show that (F, dco) is well - defined.

According to the Stone - Weierstrass theorem:
If Z is a set of real continuous functions on a compact set U s.t.:
1) Z is an algebra;
2) Z separates points on U and
3) V point u E U :3 Z E Z which does not vanish at that point.
then (Z,dco) is dense in (C[U],dco). The proof follows in the form of three

lemmas:

THE APPROXIMATING CAPABILITIES OF FUZZY SYSTEMS

Lemma 15 (F, d=) is an algebra

Proof.
Let h,h E F.
Hence

and

Then

15

are both Gaussian their product is Gaussian as well.

which also has the required form, hence hh E F.
Finally, for arbitrary c E R :

which shows that

ch E F

as well.

Lemma 16 (F, d=) separates points on U.

Proof.

(F, d=) separates points on U ~ for arbitrary iP, fl E U, s.t. XO =I=- fl :3 f E F
~ s.t.

f(xO) =I=- fUl)

THE APPROXIMATING CAPABILITIES OF FUZZY SYSTEMS 16

C· -0 -0 U t -0 (0 0 0)-0 lven x ,Y E ,s .. x = Xl' X2, ... , Xn ,Y = (y~, yg, ... y~), we construct
the required f E F as follows.

Vi E (1; ... ; n} we define 2 fuzzy sets:

exp [- ~ (Xi - X?)2] with linguistic label Ai and

exp [- ~ (Xi - y?)2] with linguistic label A;
If x? = y? then Ai = A7 and the i-th subspace of U has only one fuzzy set

defined on it.
We also define two fuzzy sets jjl and jj2 with linguistic labels BI and B2

respectively on lR:

[
(z - zj)2]

Vj(z) = exp - z ' for j = 1,2

and zj will be specified later. Our controller will run on two rules:

Rr : if Xl is A~ and X2 is A; and ... and Xn is A~ then z is Br

Now

f(iP)

f(rl)

where

1
a= ----------~------~

1 + II~=1 exp [- (X?7?)2]

Now iP =1= rl =? ::Ji : x? =1= y?, hence

=1= 1 or

a =1= I-a

choose

o and Z2 = 1, then

1 - a =1= a = f (1;/)

CHAPTER CONCLUSION 17

Lemma 17 (F, doo) vanishes at no point of U.

Proof.
Considering the form of the equations in (1) and the form of the inference

function j, the required j E (F, doo) is constructed by choosing all Zj > 0 (j =

1, ... ,K)
The three lemmas thus prove that for any given real continuous g defined on

the compact U c .ll~;n and arbitrary c > O,::J j E (F, dcxJ s.t. :

supl g(x) - j(x) 1< c
xEU

The above shows that a certain class of fuzzy controllers is capable of approx
imating any real continuous function on a compact domain to arbitrary accuracy.
More work on the mathematical properties of fuzzy controllers has been done.
For example, in [7] the author proves a similar result for Sugeno type controllers.
In [6] he develops a theory of the fuzzy controller and in [8] looks at relationships
between neural networks, continuous functions and fuzzy systems.

Chapter conclusion
This chapter served the purpose of introducing the notation and terminology

that we will require in the rest of the work. Another important part of the chapter
is the discussion of Mamdani's model used to build fuzzy controllers. The final
section on the approximating capabilities of fuzzy controllers was included to give
some indication of the theoretical developments in the research areas in fuzzy
systems.

Chapter 3

Designing fuzzy controllers

Introduction
This chapter focuses on the determination of the parameters of a fuzzy con

troller. This requires us to determine the fuzzy partitions of the input and output
spaces as well as finding a set of fuzzy if-then rules that will drive the inference
process of the fuzzy controller.

Semantics play an important role in fuzzy controller design. The linguistic
terms of fuzzy sets used to partition the spaces are intended to form a link be
tween the imprecise knowledge of an expert and the inference process implemented
on a computer. Hence initial ideas on the design process of a fuzzy controller cen
tred around a control expert expressing his knowledge of the system in terms of
linguistic terms. These linguistic terms ale then translated into fuzzy sets to be
used in the inference process.

The above approach, however, suffers from a number of drawbacks. A number
of papers [23], [53], [54J comment on the difficulty that process controllers experi
ence in trying to express their knowledge of the system verbally. Also, in [23J the
author notes that the system can actually learn the operators' failures as well as
their successes.

After those attemps a number of other approaches have been developed. Many
of these depend on analysing pairs of input-output data for the system to be
controlled. The data will connect the desired output for a given input, hence can
be seen as specifying a partially defined control function. The data set is then used
to design a fuzzy controller that extends the partially defined control func'tion to
the rest of the input space.

A telecommunications network seems ideal for gathering data and using this
approach. Once the variables have been decided upon the necessary software can
be added to the nodes of the network. In this way the nodes of the ne~work can
record the values of the identified variables, perhaps as a function of time, during
the operation of the network.

For the above reason we focus on methods that use pairs of input -output
data.

The first method we consider starts out with a fuzzification of the crisp notion
of an equivalence relation and other related concepts. The outcome of the devel
opment is an arrival at~Mamdani's inference process with a new mathematical
structure to support it.

18

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 19

Fuzzy control using fuzzy equivalence relations

Fuzzy equivalence relations on single spaces
Definition 18 A fuzzy equivalence relation (w.r.t. the t-norm T) on the set X
zs a map:

E

E1) E(x,x)
E2) E(x, y)
E3) E(x, z)

X x X --t I satisfying:

1

E(y,x)
> T(E(x, y), E(y, z)) \;Ix, y, z EX

Property E1 is referred to as reflexivity while E2 makes E symmetric. The
last property means that E is transitive with respect to T

When the T-norm above is the Lukasiewicz t-norm then the following inter
esting relationship exists between fuzzy equivalence relations and pseudometrics
onX.

Proposition 19 Let TL denote the Lukasiewicz conjunction as before. Then:

(i) If E is a fuzzy equivalence relation em X with respect to TL then OE = 1- E
is a pseudometric on X, and

(ii) If 0: X --t I is a pseudometric on X then Eo(x, y) = 1- min(o(x, y), 1) is
a fuzzy equivalence relation on X w.r.t. TL .

Proof.
(i) Suppose E is a fuzzy equivalence relation on X w.r.t. TL . Then
(a) o(x, y) = 1 - E(x, y) 2: 0 \;Ix, y E X is clear.
(b) o(x,y) = 1- E(x,y) = 1- E(y,x) = o(y, x)
(c) From the transitivity of E w.r.t. TL get:

Now

TL(E(x, y), E(y, z)) < E(x, z) =?

max(E(x, y) + E(y,z) -1,0) < E(x, z), hence

E(x, y) + E(y, z) < E(x, z) + 1, hence

-E(x,z) < 1- (E(x,y) +E(y,z))

OE(X, y) + OE(y, z) 1 - E(x, y) + 1 - E(y, z)
2 - (E(x, y) + E(y, z))
1 + 1 - (E(x, y) + E(y, z))

> 1 - E(x, z)
OE(X,Z)

.I

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 20

Hence 8E is a pseudometric on X.
(ii) Suppose 8 is a pseudometric on X. Then

8' (x, y) = min { 8 (x, y), 1 }

is also a pseudometric and so satisfies the triangle inequality

El)

E2)

E3)

8' (x, z) :S 8' (x, y) + 8' (y, z)

E8(X,x) 1 - min(8(x, x), 1)
1 - min(O, 1)

1

1 - min (8 (x, y), 1)

1 - min (8 (y, x), 1)

Ely, x)

TL(E8(x, y), E8(y, z)) max(E8(x, y) + E8(y, z) - 1,0)

max(l- 8'(x,y) + 1- 8'(y,z) -1,0)

max(l- (8'(x,y) + 8'(y,z)),O)
< max(l- 8'(x,z),O)

E8(X,Z).

This completes the proof.

An ordinary (or crisp) equivalence relation Rj on a set X defines a partition of
X into equivalence classes s.t. if M is a part of the partition we have for x, y E X

x E M and x Rj y * Y E M.

The following concept generalizes the above to the setting of fuzzy equivalence
relations and fuzzy sets. Where necessary we will use the notation

xTy instead of T(x, y)

for the action of at-norm.

FUZZY CONTROL USING FUZZY EQUIVALENCE RELATIONS 21

Definition 20 A fuzzy set f.1 E IX is called extensional with respect to the fuzzy
equivalence relation E (w.r.t. at-norm T) on X {::}

T(f.1(x),E(x,y)) ~ f.1(y) VX,y E X

Definition 21 Let E be a fuzzy equivalence relation on X and let f.1 E I x. The
fuzzy set

Jl = 1\ {v : f.1 ~ v and v is extensional wrt E}

is called the extensional hull of f.1 wrt E.

(3.1)

Proposition 22 Let E be a fuzzy equivalence relation on X and let f.1 E I x. Then

Proof.

(i) Jl(x) = V{f.1(Y) T E(x, y) : y E X}

(ii) Jl is extensional wrt E

(iii) Jl = Jl

(i) Let jl(x) = V{f.1(z) T E(x, z) : z EX}
Now

jl(x) T E(x, y) E(x, y) T jl(x)

E(x, y) T~ V {f.1(z) T E(x, z) : z EX}

V{f.1(z) T E(x, y) T E(x, z)}

< V{f.1(z) T E(y, z) : z E X}
jl(y)

Hence jl is extensional wrt E.
Also

(3.2)
(3.3)

jl(x) = V{f.1(y) T E((x,y) : y E X} ~ f.1(x) T E(x,x) = f.1(x).
~

Now Jl(x) is the smallest extensional fuzzy set s.t. f.1 ~ Jl. Since jl ~ f.1 and jl
is extensional, we get jl ~ Jl.'

To see that jl ~ Jl, let v be an. arbitrary fuzzy set extensional wrt E, s.t.
f.1 ~ v. Since

v(x) ~ v(y) T E(x, y) ~ f.1(y) T E(x, y) VyEX

we get
v(x) ~ V{f.1(y) T E(x,y) : y E X} = jl(x).

Hence

Jl(x) > jl(x)

and so Jl f.1.

(ii) proved in (i)
(iii) follows from (ii) and the definition of Jl. This -completes the proof.

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 22

Example 23 We now consider the extensional hulls of some fuzzy sets that are
common in control problems.

1. Let X ~ JR., Xo E X

For x, y E X, we define

E(x, y)

f1xo (x)

1 - min {I x - y I, I},

{
I if x = Xo d
o otherwise an

I X I ---t I is the Lukasiewicz t-norm

We calculate the extensional hull of f1xo using 3.2 of the proposition above

7lxo(x) = sup{max{f1xo(Y) +E(x,y) -I}: y E X}

.Now y =I Xo =? f1xo(y) = 0 =? max{f1xo(Y) + E(x, y) - 1, O} = O.
Clearly now the sup in 3.4 occurs when y = Xo, hence

max{f1xo(xo)~+ E(xo, x) - 1, O}

E(xo, x)
1 - min {I Xo - xl, 1 }

{

l-(X-XO) ifxE[xo,xo+1)
1 - (xo - x) if x E (xo - 1, xo)

o otherwise

(3.4)

which is the isosceles triangle with base length of 2 and vertex at (xo, 1).
More generally, if we use E(x,y) = 1-min{k 1 x-y 1,1} for a fixed k > 0 (this

will also be a fuzzy equivalence relation on X w.r.t. TL since min{~ 1 x-y I, I} is
a pseudometric on X. - Proposition 19) we obtain for 7lxo(x) an isosceles ttiangle
with base length ~.

2. For the same fuzzy equivalence relation and t-norm as above we consider
M ~ X, where M is an interval. Again, f1M is the characteristic function of
M. :

{
I if x E M

f1M(X) = 0 otherwise

7lM(X) = sup{ max{f1M(Y) + E(x, y) - 1, O} : y EX}. (3.5)

Suppose that x E M, then

FUZZY CONTROL USING FUZZY EQUIVALENCE RELATIONS 23

Let

x. inf M and

x supM.

If x E (x. - 1, x.), then the sup in 3.5 occurs for some y EM, since 11M (y) = 0
elsewhere. Also

E (x, y) = 1 - min {I x - y I, 1 }

To maximize E(x, y) we need y = x., leading to

It is also easy to see that for x E (x, x + 1) we get

71M(x) = E(x, x)

The two extensional hulls are illustrated below.

Figure 3.1: Extensional hulls of I1xo and 11M.

Product spaces and mappings

x

J

We need now to extend the notion of fuzzy equivalence relations fror;n a single
space to a product of spaces. The fuzzy equivalence relations on single spaces are
combined to form a fuzzy equivalence relation on the product space.

Suppose now that the spaces X and Y have the fuzzy equivalence relations E
and F defined on them. Let H be the fuzzy equivalence relation to be defined on
XxY.

What would one require from this H? Firstly that

H ((x, y), (Xl, yl))

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 24

which is the degree of similarity of (x, y) and (x', y') depends only on E(x, x')
and F(y, y') and not on the specific choice of x, x', y, y'. So we define

H : (X X y)2 ---t I

as
H((x, y), (x', y')) = h(E(x, x'), F(y, y'))

for some function h : 12 ---t I that satisfies:

hI) h(o;, (3) = h((3,o;)

h2) h(o;, 1) = 0;

h3) 0;::; '"'(=? h(o;, (3) ::; h('"'(,(3) '1/0;,(3,,",(E I

Clearly axioms El and E2 of definition 18 of 3.1.1 are satisfied by H defined
in this way.

Here (hI) ensures that E and F have the same influence on H, while (h2)
ensures that

H((x,y), (x',y)) = E(x,x')

(h3) requires that the degree of simllarity between (x,y) and (x',y') does
not exceed the degree of similarity between (x", y) and (x"', y') if the degree of
similarity between x and x' is less than or equal to the similarity degree between
x" and XIII.

Of course axiom E3 of Definition 18 of 3.1.1 (transitivity) must also be satisfied
for H to be an equivalence relation on X x Y. We consider the following cases:

Proposition 24 Let E and F be fuzzy equivalence relations on X and Y respec
tively, w.r.t. at-norm T. Then

1.
J

HT((x, y), (x'., y')) = E(x, x') T F(y, y')

is a fuzzy equivalence relation on X x Y w.r.t T satisfying (hl)-(h3). In
particular for T = Tm (see example3) :

Hm((x,y), (x',y')) = min{E(x, x'),F(y, y')}

is a fuzzy equivalence relation on X x Y with respect to Tm satisfying (hl)-
(h3).

2. If H is a fuzzy equivalence relation with respect to T which satisfies (hl)
(h3), then

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 25

(cf. the observation under example3)
Proof.

1) HT clearly satisfies (hl)-(h3). To show that H is an equivalence relation
w.r.t. T, firstly observe that for at-norm

T(T(a, b), T(c,d)) = T(T(a, c), T(b,d)) (3.6)

since both sides reduce to T(T(a,T(b,c)),d) by virtue of the associative law
for t-norms. So:

H((x, y), (x', y')) T(E(x, x'), F(y, y')) (3.7)
> T(T(E(x, z), E(z, x')), T(F(y, Zl), F(Z', y'))) (3.8)

T(T(E(x, z), F(y, Zl)), T(E(z, x'), F(Z', y')))
T(H((x, y), (z, Zl)), H((z, Zl), (x', y'))) (3.9)

Here 3.8 holds since E and Fare equhralence relations with respect to T and
3.9 holds due to 3.6 above.

2) To prove 2 assume that H((x, y), (xl, y')) = h(E(x, x'), F(y, y')). On the
one hand:

H ((x, y), (x', y')) > H ((x, y), (x' , y)) T H ((x' , y), (x', y'))
- h(E(x, x'), F(y, y)) T h(E(X', x'), F(y, y'))

E(x, x') T F(y, y')

On the other hand we need to show that

h(a, (3) :S min{ a, (3}

From (h3) and (h2) get

h(a,(3) :S h(a, 1) = a

Also, using (hI) obtain

h(a, (3) :S (3

This completes the proof.

I

Given two spaces X....and Y with similarity relations E and F respectively, we
want to consider maps between X and Y that preservE) the similarity of points.

FUZZY CONTROL USING FUZZY EQUIVALENCE RELATIONS 26

Definition 25 Let E and F be fuzzy equivalence relations on X and Y respec
tively. A mapping

<p:X---+Y

is called extensional w.r.t. E and F if E(x, x') :::; F(<p(X),<p(X')) Vx,x' EX.

Thus the extensionality of a map requires that the degree of similarity of the
images of two points be at least as great as the degree of similarity of the points.

Notel This concept should be carefully distinguished from that of extensionality
of a fuzzy set on X w.r.t. a fuzzy equivalence relation on X. (Definition 20
)

Note2 If we have a fuzzy set f1 : X ---+ I on a pseudometric space (X,8) and the
usual metric on I, then E,5(X, x') = 1- min(8(x, x'), 1) is a fuzzy equivalence
relation on X w.r.t. TL and so is F(rl,r2) = 1-min(1 rl -r21, 1) on I. (See
Proposition 19). Then saying that f1 is extensional w.r.t. Es and F i.t.o.
the Definition 25 above means that

1 - min(8(x, x'), 1) :::; 1 - min(1 f1(x) - f1(x') 1,1) Vx, x' EX

or min(1 f1(:r;) - f1(x') 1,1) :::; min(8(x, x'), 1)
or 1 f1(x) - f1(x') I:::; min(8(x, x'), 1)

which is equivalent to ordinary continuity of f1.

Definition 26 Let E I , E 2, ... , En be fuzzy equivalence relations on Xl, ... , Xn re
spectively) w. r. t. the t-norm T. Define

EI, ... ,n : (Xl X ... X Xn)2 ---+ I

((Xl, ... ,xn), (x~, ... ,x~)) 1---7 min{EI(xI'X~), ... ,En(xn,x~)}\

Then we have the following : J

1. EI, ... ,n is a fuzzy equivalence relation on Xl X X 2 X ... X X n.

2. The projection

is extensional w.r.t. EI, ... ,n and Ei Vi E {I; 2; ... n}.

3. If E is a fuzzy equivalence relation on Xl X X 2 X ... X Xn s.t. all projections
I1i are extensional;" ... then

E:::; EI, ... ,n-

FUZZY CONTROL USING FUZZY EQUNALENCE RELATIONS 27

Proof.
1) EI, ... ,n is clearly reflexive and symmetric. It is also transitive w.r.t. T since:

EI, ... ,n((XI, ... , xn), (x;, ... , x~)) T EI, ... ,n((x;, ... x~), (x{, ... , x~))
min{ Ei(Xi, x~) : i E {I; ... ; n}} T min{ Ej (xj , x~) : j E {I; ... ; n}}

< min{ Ei(Xi, x~) T Ei(X~, x~)}

< min{Ei(xi, x~)}

EI, ... ,n((XI, ... ,xn), (x~, ... ,x~)).

2)

EI, ... ,n((XI, ... ,Xn),(X;, ... ,X~)) < Ei(Xi'X~))

Ei (IIi (Xl , ... , xn), IIi (X; , ... , X~)).

3) Since IIi is extensional w.r.t. E and E i , get:

E((Xl, ... , xn), (x;, ... X~)) < Ei(Xi, x~) Vi E {I; ... ; n} and hence

E((XI, ... xn), (x;, ... , x~)) < EI, ... ,n((Xl, ... , xn), (x;, ... , x~))

This completes the proof.

Mamdani's Model Revisited
Design of a controller based on similarity

The control expert must first decide on canonical representations of the lin
guistic variables which make up the k rules, i.e. he has to provide k
(n + 1) tuples:

~
((x~, ... , x~) , yr) E (X I X ... X Xn) X Y : r E {I; 2; ... ; k}

I

such that for example, xl is a point in Xl which can be truly considered
"large" if that is the linguistic variable in that case, etc. In other words the rules
can be expressed as follows:

Rr : If Xl is approximately x~; X2 is approximately x;; ... ; Xn is approximately x~;

then y is approximately yr

On each Xi and Y we decide on fuzzy equivalence relations E I , ... , En and F
with respect to a t-norm. Then we use on the product space Xl X X 2 X ... X Xn X Y
the equivalence relation

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS 28

of Definition 26. In other words, in view of Proposition 27, we choose the
coarsest equivalence relation on the product space that will make the projections
extensional.

Now for a crisp input (Xl, X2, ... , Xn) E Xl X X 2 X .. ·Xn and an arbitrary y E Y,
(Xl, X2, ... , Xn, y) is equivalent to the pre-assigned (x~, x2, ... , x~, yr) to the degree

which we can write as

This is a fuzzy set on Y which represents the output through rule r as a result of
the crisp input (Xl, ... ,Xn).

Clearly, the rule which gives the largest value (degree of equivalence) is the
most significant for the specific input (Xl, ... , Xn).

So we consider the final output as:

max Or(XI, ;:., xn)(Y)
l::;r::;n

max min{ EI (X~, Xl)' ... , En(x~, xn), F(yr, y)}.
r

If we use the equivalence relations E I , E2, ... , En, F w.r.t. TL as in Example 23,
then, as we have seen in that example, EI(X~, x) is the extensional hull 7lxr(x) of

1

the crisp point x~.
So we get

O(XI, ... , xn) =max min{71xr (Xl)' ... , 7lxr (Xn), 7lyr (y)}
r 1 n ,

Now one sees the connection with Mamdani's model if we compare this las~ equa
tion with equation 2.6 from Chapter 2.

Fuzzy Control using fuzzy relational equations
We now refer back to Chapter 2, where the controlled system is m~delled as

a fuzzy relational equation of form

B=AoR

For this section we let Xr and Yr (for r E {I; ... ; k}) denote fuzzy sets on X
and Y respectively, while R is a fuzzy relation on the product space X X Y. For
each r, Xr and Yr satisfy the above equation, hence

- (3.10)

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS 29

Thus we consider a collection of fuzzy sets X r , as input measurements to a
process controller. Each Xr produces an output fuzzy set by application of 3.10.

The problem we focus on now is the following. Given a collection {(Xr, Yr.) :
r E {I; ... ; k}}, we are interested in finding a fuzzy relation R that satisfies all k
equations simultaneously. We are also interested in finding maximal solutions to
such a set of fuzzy relational equations. We will prove a theorem regarding the
maximal solution for such a system of equations. We need some new concepts in
order to develop our approach.

Definition 27 Let L be a lattice, a, bEL. We define the operation a as follows.
Let c = aab. Then c is the greatest element in L s.t.

a/\c-:5.b (3.11)

We call c the relative pseudocomplement of a in b.

The following expression can now be seen to be equivalent to the definition
above.

b _ { 1 .if a -:5. b
aa - b if a> b (3.12)

We now need to be able to apply this operation to fuzzy sets and relations,
hence we extend the definition to these cases as

Definition 28 Let A and B be fuzzy sets on X and Y respectively, R a fuzzy
relation on X x Y.

1. If
B=AaR (3.13)

then B has membership function
J

(3.14)

2.
G=AaB (3.15)

has membership function

Vx E X,Vy E Y (3.16)

Now that we have the necessary definitions in place, let us prove some lemmas
that we need for the main results

a /\ (aab) -:5. b .(3.17)

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS

2

3

4

5

6

Proof.

1.

aab;::: b

aa(aab) ;::: b

aa(b V c) ;::: aab Va, b, eEL

{
a A 1 if a ::; b

a A (aab) = a A b if a > b

Suppose that a ::; b. Then

Suppose a> b. Then

Hence the result.
2.

a A (aab) = a A 1 = a ::; b

a A (aab) = a A b = b

{
1 if a ::; b

aab = b otherwise

Hence the result is clear.

3.

hence

b" _ {1 if a ::; b
aa - b if a> b

aa(aab) {
aa 1 if a ::; b
aab if a> b

{
1 if a ::; b

aab if a> b

{
lb if a ::; b

if a> b

which proves that the result holds.

30

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS 31

4.

_ { 1 if a :::; (b V c)
aa (b V c) - b V c if a > (b V c)

Now if aa(b V c) = 1 then aa(b V c) :::::: aab is clear.
If a > (b V c) then a > b and a > c. Then

{
b if b > c

aa(b V c) = b V c = ·f - b
c 1 c>

Now
b V c = b = aab (since a > b)

hence
aa(b V c) = aab

and
b V c = c > b = aab

hence
aa(b V c) > aab

5. Let

where I = V {J'Lxr (x) 1\ J'LR(X, Yo) : x E X}
Now suppose that f3 = 1. In this case the result is immediate.
Otherwise, suppose \

f3 = I = V {J'Lxr (x) 1\ J'LR(X, Yo) : x E X}

Then

hence

J'LXr(XO)

J'Lxr (xo) 1\ J'LR(XO, Yo)

J'LR(XO, Yo)

This completes the proof.

> J'LXr (xo) 1\ J'LR(XO, yo) hence

J'LR(XO, Yo) or

J'Lxr (xo) 1\ J'LR(XO, Yo)
< V {J'Lxr (x) 1\ J'LR(X, yo) : x E X} = I = f3

"

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS

6

let

f-txrO(XrQYr)(Y) = V {f-txr (X) 1\ f-t(XrQYr) (X, y) : x E X}

= f-txr(xo) 1\f-t(XrQYr)(xo,Y), for some Xo E X

f3 = f-txr(xo) 1\ [f-txr(xo)af-tYr(Y)]

suppose f-txr (xo) ~ f-tYr (y)
then

f3 = f-txr(XO) 1\ 1 = f-txr(xo) ~ f-tyr(y)

otherwise f-t Xr (xo) > f-tYr (y) Then

Hence the result
We are now in a position to state and prove the theorems that we need.

32

Theorem 29 Given the equation Yr = Xr 0 R, the least upper bound solution to
it is given by:

Proof.
Let

T = {R E 8'(X X Y) : Yr = Xr 0 R}

We show

1. RET

2. RET =} R ~ R

3. if Ro E 8'(X X Y) and Ro 2': R V RET then Ii ~ Ro

1.

Also

Xr 0 (XraYr) ~ Yr from lemma 6

hence Xr 0 R ~ Yr

R ~ Xra(Xr 0 R) from lemma 5

hence Xr 0 R ~ Xr 0 (Xra(Xr 0 R))

hence Yr ~ Xr 0 (XraYr)
hence Yr ~ Xr 0 R

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS

hence the result.

2. From lemma 5 we get

R ~ Xra(Xr 0 R)

and RET =? Yr = Xr 0 R

hence R ~ XraYr

and R = XraYr

hence R ~ R

3. This is clear since RET. This completes the proof.

Application in controller design

33

One can now design a controller in which the inference of the output fuzzy
set(s) for a given input fuzzy set occurs as the calculation of a fuzzy relational
equation. We illustrate this with a simple example.

Example 30 Suppose we have a single Jnput - single output system where the
input space is X = {Xl; X2; ... ; xd and the output space is Y = {Yl; Y2; ... ; Y5}. We
have the following fuzzy sets defined on the two spaces:

Xs = [1 .8 .6 .2 OJ

X M = [.2 .6 1 .6 .2J

XL = [.2 .4 .6 .8 1J

Ys = [.2 .4 .8 1 1J

Y M = [.2 .4 1 .4 .2J

YL = [1 .8 .6 .4 .2J

The controller that we design operates on the following three rules:

rl If X is S then y is L

r2 If X is M then Y is M

r3 If x is L then y is S

(3.24)

(3.25)

"

In the case of this controller designed using fuzzy relational equations the rules
become:

rl YL = Xs 0 Rl

r2 YM = X M 0 R2

r3 Ys = XL 0 R3

- . -

FUZZY CONTROL USING FUZZY RELATIONAL EQUATIONS 34

We now think of the relations Rl - R3 as translating each input fuzzy set to
an output fuzzy set. At this point we use the definitions of the input and output
fuzzy sets to determine the relations Rl - R3 as follows:

We make use of the operation defined in 3.16 and calculate:

1.

Rl (x, y) = XS(x)aYL(y)

which turns out to be

1 .8 .6 .4 .2
1 1 .6 .4 .2

R1 = 1 1 1 .4 .2
1 1 1 1 1
1 1 1 1 1

2.

R2(x, y~ = XMaYM

which is
1 1 1 1 1
.2 .4 1 .4 .2

R2 = .2 .4 1 .4 .2
.2 .4 1 .4 .2
1 1 1 1 1

and the last relation is

1 1 1 1 1
.2 1 1 1 1 "

R3 =. .2 .4 1 1 1
.2 .4 1 1 1
.2 .4 .8 1 1

The last step of this process is to take the intersection of the three fuzzy
relations to produce a single relation that is used for any input fuzzy set. This
turns out to be

1 .8 .6 .4 .2
.2 .4 .6 .4 .2

R= .2 .4 1 .4 .2
.2 .4 1 .4 .2
.2 .4 .8 1 1 -

THE METHOD OF WANG AND MENDEL 35

For a given input fuzzy set A = [.2 .5 .6 .3 .4] we now calculate the output
fuzzy set as:

B(y) (A 0 R)(y)
sup [A(x) 1\ R(x,y)]
xEX

[.2 .4 .6 .4 .4]

This then completes this section dealing with some of the theory of fuzzy
relational equations and their application to controller design.

The method of Wang and Mendel
Wang and Mendel developed a general method for using numerical data to

develop a fuzzy controller. Their five step procedure is quite simple and is outlined
below.

as:

The system
Let us consider an n-input m-output system where one datum is represented

(3.26)

with

Xir E Xi Vi E {1;2; ... ;n} and Yjr E 1) Vj E {1;2; ... im}

Also, we assume that we have k such input output pairs of data available, i.e.

TE{1;2; ... ;k}

The steps
.Stepl

During this step the input and output spaces are partitioned by fuzzy sets.
The decision as to how many of these is left up to the developer, as well as the
shapes of membership functions. Let us denote the membership functions on set
Xi by

/1il , /1i2, ... , /1it(i) Vi

and the ones on Yj by

Vjl, Vj2, ... , Vjs(j)Vj

Let Ail, ... ,Ait(i) and Bjl, ... ,Bjs(j) be the corresponding linguistic labels for
the fuzzy sets above. ~

THE METHOD OF WANG AND MENDEL 36

Step2

During this step we start to construct the rule base for the controller. vVe
consider an input - output tuple as in 3.25 We determine the fuzzy set on domain
Xi to which Xir has the highest membership value as the fuzzy set (or equivalently
the linguistic label) to occur in position i of rule r. This is done for every coordinate
entry of the input - output tuple. It leads to a rule:

Rr : if Xl is AI;3r(l) and X2 is A2,a,.(2) and ... and Xn is An;3r(n)

then YI is Elir(l) and ... and Ym is Emir(m)

This is done for each of the k pairs of data, leading to k rules of the above
form.

Step3

We now have a collection of k rules - one derived from each datum. Clearly it is
possible to generate inconsistent rules, i.e. two rules are inconsistent if they specify
the same antecedent fuzzy sets but different consequent fuzzy sets. To overcome
this problem we define and calculate a degree of validity for each rule. From a
collection of inconsistent rules we then simply choose the rule with highest validity
and discard the rest. The most natural way of defining the degree of validity of
rule r is

dl(r) = II~=IJLi;3r(i)(Xir) X IIj=IVjir(j)(Yjr)

If an expert on the system is available we can now also define a subjective
degree of validity for each datum. This gives a measure to which we believe
that the particular datum is representative of the system. Thus data points that
give the desired relationship between input and output get higher scores for the
subjective degree of validity than those that give a less realistic relrtionship. Let
us label the second degree of validity as d2 (r). Finally

J

is the final value for the degree of validity of rule r.

Step4

In addition to the rules derived from the data the expert can also give linguistic
rules based on his/her experience of the system under control. The rules derived
in the previous steps are all "and" rules, i.e. rules where every condition in the
antecedent must be satisfied for the rule to fire. In this step it is possible that
"or" rules, i.e. rules where only one condition in the antecedent has to be satisfied
for the rule to fire, are lidded to the list of rules. The process of comparing the
degrees of validity of different rules is repeated and the l?est rules are chosen again.

FUZZY CLUSTERING 37

With the rules determined above in place the following defuzzification proce
dure is used.

Defuzzification

We define the centre of a fuzzy set Vjryr(j) as

Then for rule r and input (Xl, ... , Xn) we define:

The output is then calculated as

for each coordinate j.
The authors of [41 J illustrate their approach by designing a controller for the

truck backer-upper problem. The problem consists of designing a controller that
can reverse a truck into a loading dock position. They also design a controller
that predicts the next element in a chaotic time series. The method is clearly very
simple and their two applications show good results.

Fuzzy clustering

Fuzzy clustering has emerged as another method for designing fuzzy con-
trollers. \

Clustering techniques

Fuzzy clustering algorithms are used to search for patterns in data.

Given a collection:

,I

of vectors Xk E IR.m, a hard or crisp clustering algorithm will produce a partition
of X. An element Xk E X will have a membership degree of 1 to one of the parts
and zero to the rest. Fuzzy clustering fuzzifies this notion by producing a number
of fuzzy clusters. Each point Xk E X will have a degree of membership (ranging
in [0,1 J) to each fuzzy ~cluster. In this section we consider two fuzzy clustering
algorithms and discuss how these can be used in designing fuzzy controllers.

FUZZY CLUSTERING 38

The Fuzzy c-Means Algorithm

This algorithm classifies the data set into c clusters. Note that c has to be
at least 2, otherwise all points belong to the same (and only) cluster. Also c=n
would imply that each cluster contains a single point. Hence for the problem to
be non-trivial we require that

2:::;c<n

The algorithm works best when the data are approximately evenly distributed
around distinct cluster centers. We think of a cluster center Vi (i = 1; ... ; c) as
being a prototype of the elements in cluster i. Note that Vi need not be a point
in cluster i. The FCM algorithm aims to minimize the sum of distances of points
from prototypes.

Letting /1ik be the membership degree of datum k to cluster i, Vi be the
prototype for cluster i, and dik be the distance of datum k to the i - th cluster
center, Vi, we seek values of /1ik and Vi such that the value of the objective function:

n C

J(c) = L I)/1ik)W (dik)2 (3.27)
k=l i=l

is minimized. In 3.27 w is a weight on ",membership values, referred to as the
fuzziness index. We place the following two constraints on membership values:

1.

2.

n

L /1ik > 0 ViE {I; ... ; c} and
k=l

C

L/1ik = 1 Vk E {I; ... ; n}
i=l

" The first constraint ensures t~at each cluster has at least one point with
non-zero membership degree to it. The second constraint means that the
sum of membership degrees for each element k must be one. In the Appendix
we prove that the membership values /1ik that leads to a minimum value of
J(c) are given by the expression:

1
(3.28) /1ik = d 2

,,",C (!:!:ik)-~j=l djk w-l

A necessary condition on the prototypes is:

(3.29)

FUZZY CLUSTERING

" .'

We collect together the membership degrees /-Lik in a partition matrix

/-LIn

U=

/-Len

The FCM algorithm iterates the following steps:

39

1. Given the desired number of clusters, c, the fuzziness index, W, we make an
initial guess at the partition matrix, Ua.

2. Calculate the cluster centers (prototypes) using:

3. Compute the distances from each element in the set to each cluster center,
using:

(t) _ (t) _ (t) 2

(

m)~
dik - IIXk - Vi II - [;(Xkj - Vij)

for each cluster i = 1; ... ; c and elements k = 1; ... ; n

4. Update the membership values of each data point. The updated values /-Lik of
element k in cluster i are computed by:

and the partition matrix U is updated.

5. The iterative process stops when it has converged under some selected norm;
otherwise a new iteration is performed (set t = t + 1 and return to step 2).
The norm for checking convergence might be:

max I /-L~t+I) - /-L(t) 1< c
i,k tk tk-

for some predifined value of c > O.

FUZZY CLUSTERING 40

Deriving rules from fuzzy clusters

In order to derive if-then rules from the fuzzy clusters we project each cluster
to each coordinate space. This is done by taking the i-th coordinate of each data
point and assigning to it the membership value of the original data point to the
cluster. This yields a discrete fuzzy set on the i - th coordinate space. This fuzzy
set can be extended to the whole space by a piecewise linear fuzzy set defined on
the basis of the discrete points, or an enveloping fuzzy set. Each fuzzy cluster will
then induce a rule of form:

if 6 is P,l and ... and ~n-l is p,n-l then ~n is p,n

Here, the P,i denotes the extension of the i - th projection of the considered cluster
and 6, ... , ~n-l are input variables, while ~n is the output variable. The above rule
would clearly be for a multi input - single output controller. It is easy to see how
it can be extended to the multi input multi output case.

As mentioned above the FCM algorithm produces the best results when the
data are approximately spherically distributed around the cluster centre. What
of cases where a linear model better approximates the data? In these cases we
can make use of fuzzy c-lines and fuzzy c~elliptotypes.

Fuzzy c-lines and fuzzy c-elliptotypes

For a collection of points X in three dimensions we calculate the centre of
gravity of the points as:

1 n

V = - LXk
n k=l

This point v has the property that the sum of squared distances of data points to
v is minimal. We are interested in a line that best represents the dhta points. We
would thus require the line with the property that the sum of squared d~tances
from the data points to the line is minimal. For a line l, we now define the moment
of inertia of the line w.r.t. the data points as:

n

Iz = L (dkZ)2

k=l

where dkZ is the distance of the point k to the line l. The line with smallest moment
of inertia passes through the centre of gravity. We refer to this line as the principal
axis of inertia of the data set and we find its direction by determining the largest
eigenvector of the matrix:

n

J= L(Xk-V)(Xk-vf
k=l

FUZZY CLUSTERING 41

Here (Xk - v) is a column vector. The expression for the distance dkl from point
Xk to line lis:

dkl = Jllxk - vI12 - ((Xk - v) • U)2

The figure below illustrates this distance.

v u

Figure 3.2: Calculating distances for the fuzzy c-elliptotypes

The dot indicates scalar product, i.e. the projection of the vector Xk - v in the
direction of u. The vector u is determined as said above as the largest eigenvector
of the matrix J. Suppose now that we are searching for a number, c clusters
again. We can now drop the restriction on the dimensionality, i.e. the data need
not necessarily be three-dimensional. We modify the above formulae as:

q

dkl = IIXk - vill 2 - L ((Xk - Vi) • Uij)2
j=l

,(3.30)

Here Vi is the centre of cluster i, while Uij is the j - th largest eigen-value of the
matrix:

n

Ji = L (/-Likt (Xk - Vi) (Xk - vif
k=l

Here /-Lik denotes the membership of point Xk in fuzzy set i, and the power w is
again the fuzziness index as in the FCM case. Note that in 3.30 we now do not
project (Xk - Vi) to one axis only. Instead we project it to q axes. This produces
inertia ellipses in two dimensions, ellipsoids in three dimensions and elliptotypes
in m dimensions. Thus the value q selected for the summation can at most be
m. The iterative fuzzy cJ.ines algorithm can now be generalized from the FCM as
follows:

FUZZY CLUSTERING 42

1. Given an initial set of membership values /1ik for all points k in the clusters
i, compute an iterated approximation to the cluster centres, using:

2. Next, find the largest eigen-value (or eigen-values) of matrix Ji and the
corresponding eigen-vector(s) Uij for each cluster, and compute the distances
dik .

3. Update the assumed membership values for the next iteration, using:

4. We continue iterating until there is almost no more change in the mem
bership values between successive iterations. A criterion for stopping the
iterations can be, for example:

max 11/1~~+I) - /1~!) II :s; E for some E > 0
t,k

The authors of [64J use a combination of the above methods to search for
clusters in a set of synthetic 2 dimensional data points. Each cluster iden
tifies a specific range of values of the variables of the system which are
associated with it. Hence each cluster becomes a local model. Also, the
model is direction free in the sense that no distinction is made regarding the
character of the variables. After clustering one is free to decide on which
variables are to be treated as input and which as output variables. Suppose
now we have a point x E }Rm and we have decided that the input variables
will be the first ml coordinates of x and that the remaining ones are/output
variables. We determine an output for the input x' = (Xl, X2, ... , X m1) as
follows. .

1. We calculate the distance from the point x' to each cluster. Here the dis
tances will be calculated in }Rml. Let 8i be the distance from x' to cluster i
Vi: 1 :s; i :s; c.

2. The smallest distance corresponds to the best local linear model for this
point:

(3.31)

(3.32)

CHAPTER CONCLUSION 43

The value of 3.32 is now used to determine a subset of the output space where
an output is found for the input Xl. Let ryio (y) now represent the distance from
the point y E]Rm2 to the centre of the identified cluster (measured in]Rm2). We
choose the output from the set:

Unfortunately the authors do not discuss how to reach a single output. Maybe
one first determines the set 0 and then pick a point Yo that has the smallest
distance to the identified local model. They test their approach on the above
mentioned synthetic data set. The data is non-linearly (approximately linearly)
spread across the plane. The procedure outlined above is then applied to the data
and three fuzzy clusters are identified that approximates the non-linear function
qui te closely.

The authors of [13] developed an algorithm that identifies the parameters for
a simplified Takagi - Sugeno controller. Similar to [64] their approach combines
FCM clustering with the fuzzy c-lines clustering. They develop four objective
functions which are used to optimize both the premise and consequence parameters
for the simplified model of the Takagi - Sugeno controller.

Chapter Conclusion
Chapter 3 then considered three of the main directions that have in recent

years emerged as methods of designing fuzzy controllers. The area of fuzzy rela
tional equations is of course much wider than the above discussion indicates. The
operators were chosen because of their application in controller design. Similarly,
fuzzy clustering has developed in various directions. For example measures of
cluster validity have not been discussed. The work on fuzzy equivalence relations
is too mathematically pleasing to have been omitted. The sectio~ on Wang and
Mendel's method is probably easiest to directly apply.

J

Chapter 4

The use of Genetic Algorithms

Introduction

Genetic Algorithms are computer programs that search a space of solutions
to a problem in order to produce optimal or near optimal solutions. The set of
solutions on which the G.A. acts at time t is called the population or generation
at time t, denoted G(t). The solutions are usually coded in as strings of bits
although other coding schemes are also fairly common. Often the parameters to
be optimized are not coded and the actual real or integer values of the parameters
are used in the string representation. Gray codes have also been used. One such
coded solution is called a chromosome while a substring is called a gene and a
single bit has been termed an allele in G.A. terminology.

The strings in the population are sltbjected to genetic operators called se
lection, crossover and mutation in an attempt to produce strings that represent
increasingly better solutions to the problem considered.

G.A.'s have been used to solve a wide range of different kinds of problems. In
the last decade or so they have become more and more important as means for
designing and optimizing fuzzy controllers. They are interesting in this respect
since they are successful in producing good controllers and represent probably one
of the first systematic tools for the design of fuzzy controllers.

This chapter focuses on the different ways in which G.A.'s have been used to
design and optimize fuzzy controllers. We present the material t~at is required
by someone who wishes to optimize an existing controller. Theoretical aSp'ects of
G.A.'s are hence not of importance to us. I

Applying G.A. 's

Three main directions have emerged here namely:

1. G.A.'s have been used to tune the scaling factors of the input and output
variables of a controller.

2. G.A.'s have been used to produce high performance membership functions,
and,

3. G.A.'s have been used to produce optimal rule bases.

44

APPLYING G.A. 'S

Combinations of the above are common as we shall see in the following.
G.A.'s differ from one another in terms of:

1. The way in which the solution to the problem is coded.

45

2. The specific forms of the reproduction operators, i.e. selection, crossover
and mutation.

3. The function used to evaluate how good a solution to the problem a specific
string represents, called the fitness function.

We will start the discussion by looking at the most commonly used reproduc
tion operators.

Genetic Operators
Selection

As stated above each string has an associated fitness value which is an indi
cation of its relative worth as a solution to the problem. Selection is the process
by which copies of high fitness strings are. selected from the population at time t,
P(t) and promoted to P(t + 1). The number of copies of a string promoted to
P(t + 1) is usually proportional to the fitness of the string.

If Ii is the fitness of string i in the present population then the probability of
selecting string i is often given by:

where L fJ is the sum of fitness values for all strings in P(t). ~
Some schemes automatically promote the string with highest fitness value to

the next generation. Such schemes use so-called elitist selection proceduret
The newly selected strings form ~he mating pool and await the application of

the other two genetic operators.

Crossover

This process allows two strings to swop information. Simple crossover proceeds
in three steps:

1. two strings are randomly selected from the mating pool.

2. a position along the length of the strings is selected uniformly at random.

3. the substrings following the crossing site are swopped.

APPLYING G.A.'S

A simple example illustrates this:
A = 10100 101110 B = 00101 100011 (before crossover)
A'= 10100 100011 B'= 00101 101110 (after crossover)

46

Here it can be seen that position 5 was chosen as the crossing site. More
complex crossover oprators have been employed and will be discussed later.

Mutation

Mutation randomly, with a given probability alters the value of a bit. In the
case of binary coding a zero becomes a one and vice versa. In the case of integer
coding the value of the integer increases or decreases by one.

Mutation is an attempt to prevent the permanent loss of any single bit. The
reasoning is as follows: Suppose that in some generation a particular bit is absent
in all strings. For example all strings may have a zero in position 5 while a one in
position 5 may be crucial to a good solution. In such a case the other operators
will never produce the required bit in successive generations.

Techniques for coding information

When a G.A. is applied to a controller design problem the first step requires
us to code the parameters to be optimized in strings so that the genetic operators
can be applied to the strings. A string could represent a fuzzy set on a particular
domain or the collection of rules in a rule base, or even the whole data base of the
fuzzy controller. The following examples illustrate different strategies that have
been used by researches.

Methods for coding rule bases

The simplest method for coding a rule base as a bit string is to let each bit
position represent a rule. A 0 switches a rule off and a 1 switches it on. Genetic
operators are applied to these strings to produce optimal rule bases. This rbethod
was used in [42] Notice that here the output membership functions of each rule
stay constant and are not affected by the learning process.

The output fuzzy sets of rules can also be included in the rule base coding
and thus be subject to change during the learning process. In this regard an often
used technique is to number the fuzzy sets on the output space. For· example,
suppose we have the rule table below:

This rule base can now be coded as the string (1, 2, 4, 6, 0, 3, 1, 6, 3). The
mutation operator applied to this string will increase or decrease an integer by one
or set it to zero. One could also have a combination of the above two approaches
as shown in the next example.

Example 31 In [50} the output fuzzy sets are numbered from ° to 6, i.e. NE = 0,

APPLYING G.A. 'S 47

Au A12 A13
A21 Bl B2 B4
A22 B6 - B3
A23 Bl B6 B3

Table 4.1: Example of coded rule table

NM = 1, ... , PB = 6. The FLC parameters are represented in a string consisting
of 3 substrings. Substring 1 codes the rules in the rule base. Each rule is coded
using 4 bits. The first bit switches a rule on or off. The three bits following it
gives the binary code of the number of the output fuzzy set occurring in that rule.
Thus substring 1 consists of a collection of strings each of which codes a rule as
shown below:

rulel
.......--"----
1 010
~

output 1

rule2
...---"-----o 110
~

output2

Here the codes for rules 1 and 2 are shown. Rule 1 is switched on and its
output fuzzy set is the fuzzy set with binary code 010 i.e. NS. Similarly, Rule 2
is switched off and the binary code of its output fuzzy set is 110 or PM.

Example 32 In [22] the rule base of a controller is optimized. A rule base is
represented as C r = C r1 C r2 ... Crm. For each i : 1 :::;: i :::;: m, C ri represents a
rule of the rule base r. Cri is a substring coding the parameters of the member
ship functions occurring in rule i. Each membership function is assumed to be
trapezoidal, hence needs four parameters to code it. Hence:

I

codes a rule in an n input - 1 output system. The substring Cil, ail, bi1 , d il

codes the parameters for the fuzzy set on the first domain and so on.

Example 33 In [31] the designers work with a 2 input - 1 output system. The
crossover operator is applied directly to the rule base in the form of a rule table.
The operator is called a "point - radius" operator. It's operation is illustrated
below:

One can see here that the cells with capital letter entries have been swapped.
In this case the point is the address (ze,ns) and the radius is 1. If one is working
with a system with more than 2 inputs the rule base can not be represented as a
rule table. In such a case one would need an extension of the method illustrated
above. The extension for a 3 input - 1 output system :would look like this:

APPLYING G.A. 'S 48

NM NS ZE PS PM
NM ps pm ps ze nm
NS nm PS ns ps pm
ZE PM PS ZE pm nm
PS nm PM ps nm ns
PM ps pm nm ns ns

Table 4.2: Rule Base 1 before crossover

NM NS ZE PS PM
NM pm ps pm nm nm
NS ns NS nm ns pm
ZE PS NM ZE ps ns
PS ns PM nm ns nm
PM pm nm ns ps ns

Table 4.3: Rule Base- 2 before crossover

NM NS ZE PS PM
NM ps pm ps ze nm
NS nm NS ns ps pm
ZE PS NM ZE pm nm
PS nm PM ps nm ns
PM ps pm nm ns ns

Table 4.4: Rule Base 1 after crossover
!

NM NS ZE PS PM
NM pm ps pm nm nm
NS ns PS nm ns pm
ZE PM PS ZE ps ns
PS ns PM nm ns nm
PM pm nm ns ps ns

Table 4.5: Rule Base 2 after crossover

APPLYING G.A. '5 49

Suppose that the input variables are labeled Xi for 1 :s; i :s; 3. Also, let the
number of linguistic terms on domain i be ni. Instead of using letters like ps in
the address of a cell in the rule base, let us number the linguistic terms on domain
i as 1,2, ... , ni. So a vector like (aI, a2, a3) with ai E {I; ... ; nd for i = 1,2,3 gives
the address of a cell in the rule base that is filled with the output fuzzy set of the
particular rule. Suppose two rule bases are to be crossed over and the point is
(aI, a2, a3) and the radius is no.

Then we identify in the two rule bases the cells with addresses :

(aI, a2, a3 + 1), (al, a2, a3 + 2), ... , (aI, a2, a3 + no), (aI, a2, a3 - 1), (aI, a2, a3-
2), ... , (aI, a2, a3 - no);

(aI, a2 + 1, a3), (aI, a2 + 2, a3), ... , (aI, a2 + no, a3), (aI, a2 - 1, a3), ... , (aI, a2 -
no, a3);

and a similar expression with the first entry changing and the other two staying
constant. These cells in the two rule bases are then swopped.

Example 34 Tan and Hu in {56} design a rule base and membership functions
for a controller that balances an inverted pendulum. The chromosome string to
which the G.A. is applied consists of four substrings. The first substring codes
the membership functions for the first input variable, the second substring codes
the membership functions for the second input variable. The third substring codes
the rule base and the final substring codes the output membership functions. Each
membership function is coded as a 24 bit string consisting of three 8 - bit substrings,
one substring for each of the left base, centre and right base of a triangular fuzzy
set.

The rule base was coded as follows. Each domain (input and output) has 8
linguistic terms defined on it. The membership functions on the qutput domain
are numbered from 0 to 7 as in example 2. Each rule is assigned a position in the
rule string. This position is filled with a 4 - bit code that gives the numbef of the
output fuzzy set appearing in that mle.

Thus the rule base requires 32 bytes while each of the other substrings require
24 bytes, giving a total of 104 bytes to represent the system.

Coding of fuzzy sets

Example 35 This example extends the work described in example 5 by Kinzel et
al. In order to code a collection of fuzzy sets the authors represent a domain by
a string of genes. Each gene lists the values of a fuzzy set at a particular point
of the domain. Suppose domain Xi has left boundary bz and right boundary br.
Suppose also that the n3!mber of fuzzy sets on Xi zs ni. Then the fuzzy partition
on Xi is coded as:

APPLYING G.A.'S

/1il (b z)

/1i2 (b z)

/1il (br)

/1i2 (br)

~---------v~--------~
coding of domain Xi

50

A two point crossover operator is used which exchanges the ranges of two

~ve(nrrrn)h(Tf(rra rn)1:::::; :~~:: with
(~) (~) (~) (~) (~) (~) (~)

rn (n (n (~) (n (n (n and

(~) (~) (~) (~) (~) (~) (~)
where it can be seen that the fourth vectors in the strings were swopped. This

crossover operation on the strings can be seen as:

Example 36 In a number of papers Karr discusses the use of G.A. 's to determine
the optimal fuzzy sets to be used with a fixed rule base. The fuzzy sets are either
triangular or trapezoidal. A trapezoidal fuzzy set is represented by coding the four
parameters on its domain that define it, while a triangular fuzzy set needs three
parameters to specify it. Karr uses a 'l bit code for each parameter. For each
parameter the user defines a minimum and maximum value, Pmin and Pmax . In
general if an m-bit string is used for the coding and b is the inte¢er value of the
binary code for P then b is determined via the equation: J

b
P = Pnlln + 2m _ 1 (Pmax - Pmin)

The coded parameters for each fuzzy set are simply concatenated into a single
string. These strings are again concatenated to represent the whole collection of
input and output fuzzy sets. This is a fairly common technique and Karr calls it
a concatenated, mapped, unsigned, binary coding.

Example 37 In this example the G.A.is applied to produce an optimal Data Base.
The Data Base contain! the parameters of the FLC, normalization limits of the
variables and the definition of membership functions.

APPLYING G.A.'S

1. The collection of FLC parameters are:

where N = number of input variables; M = number of output variables;
ni = number of fuzzy sets on domain i Vi : 1 ::; i ::; Nand
mj = number of fuzzy sets on domain j V j : 1 ::; j ::; M.

51

2. The normalization limits of input and output variables are collected together
in an (N + M) x 2 matrix

3. Each membership function is coded as a trapezoidal fuzzy set, hence 4 pa
rameters define it. The collection of all fuzzy sets is coded as an L x 4
matrix, (where the total number of fuzzy sets on input and output domains
is L) with each row giving the parameters that define a fuzzy set.

Now let La = sum of linguistic terms on all input domains and
Lc = sum of linguistic terms on all o~~put domains
Then

N

La 'L:ni and
i=l

M

Lc 'L:mj and
j=l

L La + Lc

A rule string consists of two substrings, one of length La ancP one of length
Lc. Hence each linguistic term on each domain is assigned one bit positiqn. If a
linuistic term occurs in a rule then that linguistic term's bit is 1, if not it is O.

To illustrate the above suppose we have a system with the following parame-
ters

N = 3' M = l' n = (3 4 3)' m = (5) , , , , ,

Then the rule

is coded as:

010 0001 100 - 00010

APPLYING G.A.'S 52

Other Genetic Operators

Most of the G.A.'s used in the reports use simple crossover and mutation
operators. The following examples look at novel operators that have been defined
for learning rule bases and membership functions.

Example 38 For this example refer back to example 4 above. As stated there a
rule is represented by a string:

So each string Cri codes a rule and has (n + 1) X 4 entries. For the discussions
to follow we relabel the parameters in the string as:

Cri

where H
(CI, C2, ... , CH)

(n+l)x4

For Ch a gene in Cri , i.e. Vh E {I, 2, ... , H} we define an interval [c~, c~], in
which we adjust the value of Ch by means of the genetic operators.

If t _ 1(mod4), i.e. if 4 I t - 1 then Ct is the first in a list of four real values
that codes a fuzzy set, namely Ct, cHI, CH2, Ct+3. The intervals of performance of
the above real parameters are:

Ct E [c~, c~] = [Ct -
CHI - Ct CHI - Ct]

2 ' Ct + 2

CHI E [C~+I' C~+I] = [CHI -
CHI - Ct CH2 - CHI]

2 ' CHI + 2

E [C~+2' C~+2] = [CH2 -
cH2 - CHI CH3 - Ct+2]

CH2
2

, CH2 + 2 ~

E [C~+3' c~+3] = [CH3 -
CH3 - CH2 CH3 - CH2] .I

CH3
2

, CH3 + 2

Michalewicz defines a mutation operator that uses a function:

that has the properties:

• b.(t, y) E [0, y]

• the probability that b.(t, y) is close to zero increases as t insreases.

• the operator does~ a uniform search in the initial space when t is small and
when t is larger does a local search.

APPLYING G.A. 'S 53

If C; = (Cl, ... , Ck, ••• , C H) is a chromosome and Ck was selected for mutation
then the result of the mutation is a vector:

with

k E {l, ... ,H} and

{

Ck + l:l(t, c~ - Ck) if a randomly chosen digit is a }
Ck - l:l (t, Ck - c~) if a randomly chosen digit is 1

This kind of mutation operator has been termed soft mutation, i.e. soft muta
tion changes the shape of the fuzzy set. On the other hand hard mutation changes
the variable occurring in the rule, for example a part of a rule ... X2 is A. .. might
change to .. . X3 is A ... when hard mutation is applied to the rule.

In the same work [22J an interessting crossover operator, called max-min arith
matical crossover is also defined. It is used in addition to the simple crossover
commonly used and described earlier. Max-min arithmatical crossover works as
follows.

Suppose C; and C~ are two chromos<?mes to be crossed. Four chromosomes
are now generated, namely:

CHI = aCt + (1 - a)Ct
1 w v

C~+1 = aC; + (1 - a)C~
CHI h· h h HI . { I } 3 W IC asc3k =mIn Ck,Ck

C t+I . h HI {'} 4 whIc has C4k = max Ck, Ck

Of these two offspring the two with highest fitness function values are chosen
to be promoted to the next generation. The parameter a can be fixed or made to
depend on t. ~

I

Fitness Functions

The fitness functions used are generally not explicitly discussed in the litera
ture. The following examples show the forms of some of the fitness functions used
in the above-mentioned examples.

Consider again the work done by Karr in example 7 above. The example
describes how fuzzy sets are coded to be optimized for a liquid level system. The
system consists of a cylindrical vessel into which and out of which liquid flows
at rates Qin and Qout respectively. The rates Qin and Qout are controlled by the
fuzzy controller. The aim of the fuzzy controller is to drive the height of the liquid
in the vessel to some specified setpoint as soon as possible.

To determine the fi~ess of a string, the coded fuzzy sets are used to run the
controller. The squared error between the liquid level height and the setpoint is

APPLYING G.A. 'S 54

then calculated for the first 20 seconds of controller runtime. These measurements
are then added. This is done for four different starting heights of the liquid level.
The sums of squared errors for the four cases are then added. Thus the equation
used is:

case4 [20S 1
I = i=~el j~S (25 - hij)2

Karr also designs a system that controls the titration of an acid-base solution.
The aim here is to get the pH of the solution to the value 7 (neutral) as soon as
possible by controlling the inflow rates of acid and base into the solution mixture.
The fitness function for this GA is:

It is clear that fitness functions will be application dependent. However, gen
eral types of fitness functions exist. For example the above two are examples of
a type where some parameter has to achieve some special value, c. Another ex
ample of this type is that discussed by Kiuzel et al in example. In that work the
controller was designed to balance an inverted pendulum. Let ip(t) be the angle

the pendulum makes with the vertical, while ip represents the angular velocity of

the pendulum. If x(t) = (ip (t), Cp (t)) and c = (0, 0) then:

rnaxtime

1= L t(x(t) - C)2
t=start

and is clearly similar in form to the previous two examples.
Tan et al in [56] also design a fuzzy controller for the inverted pendulum prob

lem. Instead of the fitness function used by Kinzel et al they used the following
.!

function:
For this system there are three possible outcomes namely, either the pendulum

falls or the time necessary to balance it expires or the pendulum balances (using
some E-criterion). The fitness function is split up into these three cases as follows:

{

II (t) if the pole balanced }
I itness = reward if time expires

12 (t) if pole fell over

where the functions h (t) and 12 (t) and reward are illustrated in Figure 4.1
below:

One can see from this fitness function that the longer a solution string keeps
the pendulum from falling over the higher it's fitness is. Also, the longer _a string

APPLYING G.A. '8 55

fitness

reward

t

Figure 4.1: Fitness function for the pendulum example

takes to balance the pendulum the smaller it's fitness value is. This is as one
would expect as the controller is supposed to balance the pendulum in minimum
time.

In [42] a rule base is optimized. In order to keep the rule base as small as
possible each string is penalized for the number of rules that are active in it.

Some implementational details

G.A. 's running in parallel

Pham and Karaboga in [48] describe their implementation of a Genetic fuzzy
system. They use a G.A. to optimize the relation matrix for a fuzzy controller.
The scheme consists of starting with a number, n say, of initial popula9ons of
strings, each of which is generated by a random number generator. The initial
populations have G.A. 's applied to 'them which are executed in parallel. After
a fixed number, maXI of iterations of the G.A. the first phase of the learning
process is completed. A second phase then starts. This consists of choosing the
fittest ~ strings of each solution set and collecting them together into a new initial
population. The G.A. is then applied to this new initial population, this time for
a number, max2 of iterations. After that the string with highest fitness value is
chosen as the desired fuzzy relation matrix.

Gray codes

Traditional binary ~oding has the drawback that in order to change a decimal
number by one often requires a change of more than one digit in the binary form

CHAPTER CONCLUSION 56

Decimal Number Binary Code Gray Code
a 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Table 4.6: Three bit Gray code

of the number. For example changing from 3 to 4 translates to changing from
all to 100. This creates the problem that a string that is close to an optimum
solution cannot move closer to that optimum by mutation. Gray codes have been
used to solve this problem. The Gray codes for three bit strings are shown below:

As can be seen changing a number by one is always a one bit change in a Gray
coding scheme as is required.

Chapter Conclusion
This chapter is a summary of some of the different methods developed for

applying G.A.'s to the tasks of designing and optimizing fuzzy controllers that
have been investigated in the literature. As stated above G.A.'s represent effective
systematic tools for optimizing fuzzy controllers and as such are indispensible
tools for the developer of a Fuzzy Logic Controller. We tried to concentrate on
the practical aspects of this area in order to make application in fuzzy controller
design straightforward. Of course hundreds of papers have been written on the
topic and many other techniques have been developed that we have not touched
upon.

I

Chapter 5

Application

Introduction
In this chapter we look at some applications of Fuzzy Control in Telecommu

nication systems. The first section considers some of the reported work in the
literature. The second section considers one of the methods in congestion control
commonly used in Intelligent Networks and fuzzify the algorithm. Afterwards we
look at the results of the fuzzy method of controlling congestion and compare it
with results for the crisp version of the algorithm.

Previous Work
ATM is an emerging set of standards and protocols that have been designed

in order to support a range of different types of communication traffic on a single
network. The different types of traffic are to include voice, video and data traffic
together with a range of future possible types.

The different traffic types differ in terms of traffic characteristics like sensitiv
ity to delay, burstiness, and average holding time. Various models and assump
tions are used in designing networks supporting conventional telephone traffic.
These include methods based on Poisson arrival processes, Bernoulli assumptions,
packet train models and fluid flow models [10].

However, because of the bursty and non-linear nature of the heterogeneous
traffic envisaged for the ATM network, these assumptions no lonker lead to an
accurate analysis of the network. I

Video traffic is particularly bursty. This means that the arrival of packets at
the destination machine often occurs in large bursts with relatively few packets
arriving at other times. Hence it becomes important for the destination machine
to predict how the traffic arrives. This is done in an attempt to prepare the
destination machine to prevent cells being lost due to buffer overflow.

The authors of [51] designed a fuzzy mechanism that predicts the amount of
video traffic to arrive at discrete points in time.

The fuzzy learning algorithm used is based on building a fuzzy relation using
adaptive clustering. The relation is used to estimate the possible system response
to a new and unknown set of system inputs.

The delayed values 2f ATM traffic, y(k -1) and y(k -x) are used as inputs to
the model (with x defined as the delay between the first and second obseryation).

57

PREVIOUS WORK 58

After a learning phase, the fuzzy rules are used with the observed values, to
predict the future value of traffic, y(k), i.e. one observation point in advance.
An indicator of prediction accuracy is the mean squared error between the actual
traffic and predicted traffic as defined below:

where:
Yn(k) is the normalized value of observed traffic intensity
Ynest (k) is the normalized value of estimated traffic and N is the number of

observations.
The fuzzy prediction scheme was compared with conventional methods and

showed satisfactory results.
As stated above, ATM networks are designed to handle a range of traffic types.

When a number of such bursty traffic sources add cells to the network the network
will inevitably be subject to congestion. Traditional approaches to congestion
management include admission control algorithms, smoothing functions and the
use of finite sized buffers with queue management techniques.

In admission control, upon arrival ;r a new call or message, the network
predicts the performance degradation that may result, based on current network
traffic and the traffic characteristics of the new call. It accepts the call only if the
desired performance requirements are met. The admission control policy accepts
or rejects an entire call or message as opposed to individual cells of the call.

The traffic smoothing function reduces congestion by buffering incoming cells
and injecting them into the network at a slower speed.

In the case of finite sized buffers with queue management techniques predefined
buffer content thresholds are used to guide the discard of cells \ and to adapt
the service process to the occupancy of the buffer. Some queue management
techniques use two threshold values, L1 and L2 say, where L1 < L2. The btIffer is
'full' as soon as the buffer occupancy. exceeds L 2 . All incoming cells and messages
are then blocked until the buffer occupancy becomes less than L 1 .

Whether the queue management technique uses a single or a double threshold
value, it partitions the buffer into two states, admit or block. The choice of this
crisp cut-off value is clearly critical. For a low value, i.e. cells are only accepted
if the buffer occupancy is very low, 25% say, buffer utilization may be very poor.
The buffer may be basically empty and still block incoming calls. On the other
hand a high threshold value may lead to problems in the case of bursty traffic.

For the above reasons, the authors of [2] decided to experiment with the use
of fuzzy thresholds. The controller has the occupancy level (as % of total buffer
capacity) as a universe of discourse. Two fuzzy sets are defined, one called "Degree
of Blocking" and the second called "Degree of Admittl1nce". These are sigmoidal

PREVIOUS WORK 59

and inverses of each other. Degree of Blocking is zero at 20% occupancy and rises
to flatten out (at a value of 1) at around 80% occupancy.

The fuzzy thresholding scheme differs from fixed thresholding schemes in that
it blocks a fraction of incoming cells and not necessarily all incoming cells from a
new connection. The fraction of cells blocked is determined by the value of the
fuzzy set" Degree of Blocking" at the occupancy level of the buffer at the time of
arrival of the call.

The authors report on simulations that were run to compare the performance
of the fuzzy thresholding scheme with that of crisp cell blocking methods. The
results indicate that the fuzzy version adapts well to sharp changes in cell arrival
rates and maximum burstiness of bursty traffic sources, yielding lower cell discard
rates, high throughput of cells and lower cell blocking rates.

Fuzzy control has also been applied in the area of traffic routing in telecom
munications networks.

In most networks traffic is routed under fixed rules. In order to cater for
periods of peak traffic fixed routing schemes have to provide over-capacity. Such
networks have often been shown to be unable to accomodate demands with the
required grade of service.

Adaptive routing methods have also been developed. These depend on the
availability of network resources. One such routing scheme is implemented by
AT&T and is called Real-Time Network Routing (RTNR). For each origin-destination
node pair, it considers the number of idle circuits between the node pair and de
termines a level of availability of the node-pair link. The routing then depends on
the availability levels of possible routes together with the class of service of the
call.

The authors of [12J have fuzzified the RTNR technique. Fuzzy adaptive rout
ing of telephone traffic uses a set of routing rules that order and select paths from
an origin switch to a destination switch. The paths always have only two "legs"
at most, i.e. are composed of two chained circuit groups for a stre~m going from
an origin node to a destination node. I

It determines, for each origin-destination node pair, the availability of all paths
and the quality of all routes, and deci·des on the best route for routing the current
traffic.

The fuzzy controller consists of two inference engines. The first rule base
uses the number of idle cicuits in a circuit group and determines a fuzzy set
describing the availability of that circuit group. This fuzzy output from the first
inference engine is fed to the second inference engine. Using pairs of fuzzy values
of individual circuit groups, the second inference engine combines the two fuzzy
sets and produces a fuzzy set describing the availability of that circuit pair. The
defuzzification module now uses the fuzzy route quality as obtained from the
second inference engine ~and determines, for each traffic stream, the route quality
and the best path is selected for all individual traffic relations.

PREVIOUS WORK 60

The fuzzy adaptive routing was simulated in a model of the French long dis
tance telephone network. The results show that although fuzzy adaptive routing is
robust and efficient other methods do outperform it slightly in terms of percentage
of network loss.

In [11 J the authors construct a fuzzy traffic controller for ATM networks. The
controller is a fuzzy implementation of the two threshold congestion controller and
the equivalent capacity admission control method.

The equivalent capacity admission control method works by assigning to each
connection an amount of bandwidth called the equivalent or effective bandwidth.
Each connection is treated as if it requires this amount of bandwidth through
out its duration. The actual bandwidth utilized varies between some minimum
bitrate and the peak rate of the connection. The concept of effective bandwidth
simplifies Call Admission Control (CAC). The CAC mechanism calculates an ef
fective bandwidth for each connection request. This effective bandwidth is added
to the sum of the bandwidths of existing connections utilizing the same link(s). If
the result is less than the total capacity of the link(s) the connection is allowed.
Obviously, if the result exceeds the total capacity of the link(s), the connection
cannot be allowed.

The ATM traffic controller is based on the following model of an ATM network.
Input traffic is categorized into two types, real-time (type 1) and non real-time
(type 2). Examples of real-time traffic include video and voice, and data is an
example of non real-time traffic. The ATM traffic for the two traffic types are
first stored in separate pre-buffers in the Customer Premises Equipment(CPE).
Let the size of the pre-buffer for type i traffic be Ki (i = 1, 2). As for transmission
capacity, a portion, Cr of capacity is reserved for type 1 traffic and the remaining
1 - Cr is reserved for type 2 traffic. If either traffic type does not use the total
capacity reserved for it, the unused portion can be used for the other type.

The various modules and their operation can be described as follows. The
Performance Measures Estimator measures the system performance variables,
namely:

"
q que~elength

~q queue length change rate

PI cell loss probability

These variables are defined and measured for each traffic type separately and
their values are fed to the Fuzzy Congestion Controller which produces an output,
y. A positive value of y indicates that the system is relatively free from congestion
and a negative value that the system is congested. The value of y is used to
modify the rate at which cells of the two traffic types are transmitted to avoid or
relieve congestion.

The Fuzzy Bandwidth Predictor predicts the equivalent capacity Ce for a new
call from the traffic parameters specified in the traffic_ contract.

PREVIOUS WORK 61

The Network Resource Estimator is responsible for the accounting of system
resources. For every new call accepted, the call's equivalent capacity, Ce is sub
tracted from Ca. Conversely, for every connection that is released, the connection's
equivalent capacity is added to Ca.

The results of simulations run by the authors indicates that the fuzzy ad
mission controller improves system utilization by 11 % while the performance of
the fuzzy congestion controller is 4% better than the conventional two-threshold
congestion method.

Another application of Fuzzy Control in ATM networks is in developing polic
ing mechanisms for this type of network.

When a user requests a new connection the Network Management System
checks the available resources to determine if the requirements of the connection
can be met. If enough resources are available, a decision is made to allow the
connection. This process is called Connection Acceptance Control (CAC). The
Network Management System will also reserve the necessary resources for the
accepted call. The new call will only be accepted if the Quality of Service of the
existing as well as the new call can be guaranteed.

Another network management function, Usage Parameter Control (UPC), is
required to ensure that each source confo~ms to its negotiated parameters.

A major problem in defining an efficient policing mechanism is identifying the
traffic parameters that best characterize the behaviour of the source. The difficulty
comes from the fact that different sources have different statistical properties as
they range across different services. Also, one needs to define parameters that can
be monitored during the call. The two traffic parameters that are enforced by
UPC are the Peak Cell Rate (PCR) and the Mean Cell Rate (MCR). Enforcing
the PCR is not difficult. However, enforcing the MCR is problematic, since short
term statistical fluctuations are allowed as long as the source respects the average
value negotiated, An in the long term.

~

Most of the control mechanisms are window based. In these mechanisms a
constant upper bound is set on the number of cells that can be accepted in ~ fixed
time interval, T. This upper bound is called the window. Examples of window
based mechanisms are the Jumping Window and the Exponentially Weighted
Moving Average [10J. Both of these schemes seem to be unable to cope efficiently
with the conflicting requirements of an ideal policer - that is, a low false alarm
probability and high responsiveness. A false alarm can be explained a~ follows.
The policing mechanism should police the average rate, i.e. a source is allowed
to exceed it's negotiated rate parameter at times, as long as the average rate is
respected. Suppose now that a particular source exceeds its negotiated rate for
a period of time. Suppose the policing mechanism cuts off the source while the
excessive traffic from the source did not affect the Quality of Service of any other
connection. We refer to.this as a false alarm.

The authors of [10J constructed a fuzzy policer and_compared its performance

INTELLIGENT NETWORKS 62

with that of the conventional policing mechanisms. As stated above the target
of the fuzzy policer is to make a generic source respect its negotiated MCR,
An. The inputs to the fuzzy controller used are: the average number of cell
arrivals per window since the start of the connection, Aoi , and the number of
cell arrivals in the last window, Ai. The first gives an indication of the long term
behaviour of the source while the second indicates current behaviour. A third
parameter, the value of Ni in the current window is used to indicate the degree of
tolerance the mechanism has over the source. Thus, the control mechanism grants
credit to a source that in the past has respected the parameter negotiated by
increasing its value for Ni in the current window up to a maximum possible value
for N i , provided that it continues with the non-violating behaviour. Conversely,
every time a source violates its negotiated parameter Ni for the source will be
decreased. The output of the fuzzy controller is 6Ni+l, the change to be made
to the threshold Ni in the next window.

The input domains of discourse are partitioned by three fuzzy sets each, Low,
Medium and High, while seven fuzzy sets partitions the output domain of dis
course, namely ranging from Negative Big through Zero to Positive Big.

The performance of the fuzzy mechanism has been evaluated through several
simulations and compared with some of the more popular policing systems like the
EWMA. The results indicate that the performance of the fuzzy policer is much
better than that of the conventional policing systems.

Intelligent Networks

The Intelligent Network was invented by Bellcore Labs during the 1970's. The
fundamental principle underlying the IN is the separation of switching and control
functions in the network. The aim of this separation is facilitating the creation of
new services and minimizing the time taken for the development and deployment
of such new services. ~

The two entities of an IN that will concern us here are the SCP (Bervice
Control Point) and the SSP (Service, Switching Point).

The SCP is a centralized non-switching node connected to the switches via
the common channel signalling system. It contains service specific software and
subscriber data. Examples of SCP based services include user authentication, call
number translation and alternative forms of billing. The SSP is a switch with
enhancements to the call control functionality of the PSTN switch.

The SCP communicates with the SSP, allowing it to establish or release con
nections. When an SSP receives an IN service type call it transmits the request
to the SCPo The SCP validates the call and performs a number of service related
functions like caller authentication. If these functions are successful the SCP will
command the SSP to establish a connection to the call party. The SCP also sends
a packet back to the requesting SSP to acknowledge receipt of the service request.

THE MODEL 63

A typical service setup scenario will involve five to ten messages between the
SSP and SCPo A number of SSP's will be connected to a single SCPo IN congestion
control schemes attempt to control the rate at which new service requests are
transmitted to the SCP in order to avoid or relieve congestion at the SCPo

The Model
The developed algorithm models the operation of a single SCP connected to

four SSP's. The arrival times of packets at the SSP's are randomly generated.
No more than one packet arrives at an SSP and each arriving packet represents a
request for a service. This service request is enqueued at the SSP request queue.
As soon as it is possible to, this first packet in the SSP request queue is processed.
The processing speed of the request queue is set at 7ms per packet. After the
processing of a packet at the SSP is completed it is sent to the SCPo At the SCP
it is again placed in a queue where it awaits processing by the SCPo After being
processed by the SCP an acknowledgement packet is sent to the SSP that sent the
request. This packet is placed in the SSP acknowledgement queue where it awaits
processing. In the SSP the processing of acknowledgements takes precedence over
the processing of new requests. Acknowledgement packets are processed at a rate
of 3ms per packet.

The processing time of the SCP has two components, a fixed value of 10 ms per
packet and a randomly generated component. The random number comes from
an exponential distribution with mean equal to one. These two components are
added to yield the processing time for each packet. Figure 5.1. below illustrates
this simplified network model.

acknowledgements

Request ~ ~ Aokn ~ ~ queue queue

!

0 0

SSPI SSP4

requests U
0 SCP

Figure 5. ~ Simple IN model used in the simulation

SOME IN COGESTION CONTROL SCHEMES 64

Some IN cogestion control schemes

IN congestion control schemes are usually either rate based or window based
schemes. We will focus on the window based schemes.

The Static Window Mechanism

The operation of the static window based scheme is outlined in the following.
Each SSP connected to the congestion avoiding SCP is assigned a window size.
The window size of an SSP is the maximum number of unacknowledged requests
that an SSP is allowed to have at any point in time. That means that if the
number of outstanding requests equals the window size the SSP is not allowed
to transmit any more requests until some acknowledgements have been received.
Hence each SSP has two variables, out, the number of outstanding service requests
and win, the window size. On transmission of a service request to the SCP out
is incremented by one and on receipt of an acknowledgement from the SCP out
is decremented by one. As the name indicates the window size is not changed
during the operation of the network.

The Adaptive Window Mechanism

In the adaptive window scheme the window size of an SSP is continually
changed. The value of the window size varies between winmin and winmax. An
SSP keeps track of any of its requests that are lost or dropped at the SCP due
to the SCP queue being full. In addition to the two variables used in the static
case the adaptive window scheme uses a counter, c, which varies between cmin
and cmax. Every request that is dropped decreases the out variaBle by one and
decreases the win variable by one (unless the window size is already at its mi~imum
value) . Every acknowledgement that is received increases c by one. When c
reaches a maximum value, indicating that number of successfully transmitted
requests, the window size is increased by one and c is reset to zero (cmin).

The Fuzzy Adaptive Window Mechanism

One can also devise a fuzzy scheme to adapt the window size of an SSP. This
was done and its performance compared with those of the above two schemes.
The fuzzy controller uses the round trip delay (rtd) of requests as its input and
its output is the window size of the SSP. The rtd of a request is the difference
between the arrival time~f an acknowledgement and the time at which the request
was transmitted to the SCPo

SOME IN COGESTION CONTROL SCHEMES

The System, the variables and the operation of the
algorithms

The simplified IN is represented by the following system variables

65

1. The number of packets in each of the request and acknowledgement queues
for each SSP.,

qa number of packets in ack. queue

qr number of packets in req. queue

2. The number of packets in the SCP queue, represented by Qlength.
3. Q is a vector representing the SCP queue. An i (for 1 :::; i :::; 4) occurring

at some position in Q represents a request from SSP i.
4. Q max is the maximum length of the SCP queue, while qr max is the

corresponding limit on the lengths of SSP request queues. For the simulation
Q max=100 and qr max=5.

5. Transmission times were set at 10ms for both directions of transmission.
6. The states of each SSP and the SCPo These can be either busy or idle

and control the operation of the respective SSP or the SCPo For example, when
an SSP starts processing a request or aclv1owledgement, the state of the SSP is
switched to busy (or 1) and the 'end of the busy cycle' (ebc) time is set. At this
time the state is switched back to idle and the SSP is ready to process the next
acknowledgement if qr > o. If qa = 0 and qr > 0 it processes a request. When
the state is busy nothing can be processed.

The events that change the state of the system are:
1. Arrival of new requests or acknowledgements at an SSP. This increases

either qa or qr for the SSP.
2. Processing of a request or an acknowledgement by an SSP. This switches

the state to busy and sets the ebc time. ~

3. Transmission of a request from an SSP to the SCPo Either qa or qr (as

)
I

appropriate reduces by one.
4. Arrival of packets at the SCPo If the SCP queue is not full this increases the

Qlength by the number of arriving packets and slots the numbers of the requesting
SSP's into the next available positions in Q.

5. Processing of a packet at the SCP switches its state to busy and sets the
time for the end of its busy cycle.

6. Transmission of an acknowledgement from the SCP Q decreases the Qlength
by one and removes the first packet in Q from the vector.

The variables listed above are the variables required to describe the status of
the system at any point in time. However in order to measure system performance
for the various control schemes other variables had to be added. These are all listed
with their initial values.in the copies of the programs in the appendix. The i in
SSP(i).qr refers to qr for the i-th SSP. Similarly for the rest of the variables.

SOME IN COGESTION CONTROL SCHEMES 66

The algorithm is a discrete event simulation. It updates the values of the
variables at discrete points in time (at every 1ms point).

The Fuzzy Controller

The fuzzy controller has one input, rtd (round trip delay) and one output,
window size. The rtd ranges from 0 ms to 1200 ms. Window size ranges in the set
{1; 2; ... ; 30}. Each domain is partitioned by seven fuzzy sets with linguistic labels
Very Small, Small, Small Medium, Medium, Large Medium, Large, Very Large.

These are illustrated below:

rtd

o 200 400 600 800 1000 1200

Figure 5.2: Fuzzy sets on round trip delay

!

VS S M L VL

Figure 5.3: Fuzzy sets on window size

We require the window size to be smaller for a larger round trip delay and
vice versa so the fuzzy ~ontroller is driven by the following rules:

Rl : if rtd is VS then ws is VL

SOME IN COGESTION CONTROL SCHEMES 67

window size 40 80 120 160 200 240 280 320
COA 27 27 26 26 26 24 23 23
MOM 28 28 25 25 25 25 25 20
MAX 29 28 25 24 24 23 23 18

Table 5.1: Output for Defuzzification mechanisms

R2 if rtd is 8 then ws is L

R3 if rtd is 8M then ws is LM

R4 if rtd is M then ws is M

R5 if rtd is LM then ws is 8M

14, if rtd is L then ws is 8

R7 if rtd is VL then ws is V8

We constructed three controllers, each with a different defuzzification mech
anism. The defuzzification mechanisms were the Centre Of Area, the Mean of
Maxima and the Maximum criteria respectively. Then we compared their outputs
over a range of round trip delay values. The results are shown in the table 5.l.

As can be seen the output of the COA defuzzification yields a slightly smoother
transition from one value of round trip delay to the next. Although not shown in
the table, this pattern is displayed over the rest of the range of values for round
trip delay. For this reason the COA defuzzification mechanism was used in all
further work.

The Genetic Algorithm

The letters a, b, c, d, e, f, g, h, i, j, k, 1 parameterize the start- and endpoints
of the supports of the fuzzy sets. Each list of twelve parameter values defines a
fuzzy controller. Each parameter has a range as indicated below: I

a E' {0;1;2}

b E {3;4;5}

C E {5;6;7}

d E {8;9;10}

e E {10;11;12}

f E {13;14;15}

9 E {15;16;17}

h E {18;19;20}

Z E {20;21;22}

J E {23;24;25}

SIMULATIONS

k E {25;26;27}

l E {28;29;30}

68

The controller was designed in this way so that a GA could be applied to it
in order to determine a list of parameters for an optimal controller. The Centre
Of Area defuzzification method was used.

The following steps outline the operation of the GA:

1 The algorithm starts with a randomly chosen initial population of different
strings.

2 For each string the network simulation is run three times and an average
fitness value is calculated for the string. The fitness value of a string is equal
to the number of packets processed by the SCP during the runtime of the
simulation.

3 A number of strings with highest fitness values are promoted directly to the
following generation. A second number of strings are chosen randomly to
which the crossover and mutation operators are applied. The crossed over
and mutated strings are added to tlre following generation. New strings are
compared to old ones to ensure that no repetitions occur.

4 The algorithm now iterates steps 2 and 3 until the fifth generation strings
are evaluated and the string with highest fitness value is chosen. This string
was then used in all following simulations.

Simulations
The aim of the simulations is to determine which congestion qontrol mecha

nism optimizes the throughput of the SCPo Before the simulations were run to
obtain the performance indices for the different congestion controllers, w'e opti
mized the performance of the static and fuzzy controllers.

First we determined at which value of window size the static window mecha
nism yielded a maximum value for SCP throughput. The values of window size
were chosen from the set {12; 14; ... ; 32}. For each value in this set the network sim
ulation was run three times and an average value for SCP throughput calculated.
Maximum throughput occurred at a window size of 20.

With the fuzzy controlled algorithm it turned out to be impractical to calculate
a value of window size for each new value of round trip delay. Instead, we let an
SSP accept a number of acknowledgements, after which the fuzzy controller uses
the final value of round trip delay to calculate a new value of window size. We
refer to this number a&-the firing cycle of the fuzzy controller. Using a range
of values for the firing cycle, we determined that optimum performance occurred

SIMULATIONS 69

at a firing cycle of 10. Results for these two optimization steps are included in
Appendix B.

The throughput of the SCP is simply the number of requests going through the
SCP from the start to the end of the simulation. One timestep in the simulation
represents 1 ms. The simulation runs for 75 s, i.e. 75000 iterations. During the
simulation the algorithm keeps track of the number of packets through the SCP
in each second. We are interested in the operation of the SCP under overload
conditions. Thus the arrival rates of requests at the SSP's were chosen such that
the SCP is overloaded. The simulation was run with two different inputs. For
the first input the rate of arrival of requests at the SSP's (and hence at the
SCP) starts at twenty packets per second. It then increases in steps until it
reaches a maximum value of 40 packets per second. It then tapers off until it
reaches a constant 35 packets per second, which stays the same until the end of
the experiment. Since there are four SSP's overload starts when the rate of arrival
at the SSP's is greater than 25. The throughput of the SCP is calculated as

75

SCPthroughput = L SCPcaps(t)
t=l

where SCPcaps(t) is the number of, call attemps that the SCP processes
in second t. SCPthroughput is also used as the fitness of a string during the
operation of the genetic algorithm. For the second run of the simulation the
arrival rates of requests at the different SSP's were independently and randomly
chosen from the set of values:

{35; 36 ... ; 40}

For each input the simulation was run ten times for each mechanism. This yielded
ten values of throughput for each of the three mechanisms. For e8fh mechanism
we then calculated the average throughput and a 95% confidence interval for the
true value of the mean using the Student's t distribution. The results of the two
runs of the simulation can be seen in. the tables in Appendix 2.

Chapter 6

Discussion and Conclusion

We now turn our attention to the two tables of results in Appendix B. These
summarize the results for the various simulations of the network. The last three
rows of the tables give some statistics for the data. We now use the values for
the averages and the last entry in each column to calculate the 95% confidence
interval for the true value of the mean (using a Student's t-distribution). These
ranges are shown in the Table 6.1 below.

In both cases the Adaptive Window Mechanism outperforms the other two
schemes. In one case the fuzzy scheme performs slightly better than the Static
Window Mechanism. However, the differences are very small and while the fuzzy
controller does not perform better than the other two mechanisms, its performance
is very close to the performance of the other two schemes.

Future work will probably also include an investigation of rate based schemes
and a comparison of these with the schemes discussed above. In some of these
schemes the SCP sends an explicit rate control signal to the SSP to inform it
of its allowed rate. These schemes have the advantage that the SSP receives the
congestion information much quicker than in the above discussed cases. It is quite
possible that this will increase the system performance.

Final Remarks J

In this work we have attempted ,to do the following:

1. Provide an introduction to the mathematical background forming the basis
for fuzzy model development. Specifically the two most commonly used
fuzzy modeling tools, the Mamdani and Sugeno Controllers were discussed

95% Conf. Int. 95% Conf. Int.
Static Window 6804-6814 6836-6844

Adaptive Window 6806-6816 6837-6848
Fuzzy Window 6803-6811 6838-6846

Table 6.1: Summary of results in Table~ B.2 and B.3

70

APPENDICES 71

in the second chapter. The Sugeno controller was basically just introduced
while the Mamdani Controller was discussed in much more detail. The
inference process was considered and mathematical structures developed to
support the modeling process.

2. Provide some indication of theoretical questions that have been investigated
regarding the modeling capabilities of fuzzy systems. This is done (as said
before) in an attempt to change the attitude that the reasoning in fuzzy
systems is vague and not rigorous. The idea is to provide a set of simple
and rigorous structures on which to develop the processes and reasoning
schemes employed in fuzzy modeling.

3. Introduce the reader to some of the systematic tools used to design fuzzy
controllers, including fuzzy equivalence relations, fuzzy relational equations,
fuzzy clustering and an ad hoc method referred to as Wang and Mendel's
method. Of course each of these areas has developed independently of fuzzy
control. The focus here was on providing a set of procedures for starting
with a set of data for the system and ending up with a controller for the
system.

4. Discuss the use of genetic algorithmS'"for designing controllers and optimizing
existing controllers. Here again the focus was on the practical aspects of the
area.

5. Indicate some of the previous research work done in applying fuzzy con
trollers to telecommunication networks. While only a few examples were
considered many more exist and most show that there is good reason for in
vestigating the use of fuzzy solutions to problems in network management.

6. Produce a simple fuzzy controller to illustrate the possibIr use of fuzzy
control in congestion control in a telecommunications network. It is hoped
that we have shown that further investigations are justified. J

Appendices
The appendices contain the following:

1. The first appendix contains the proofs of the statements 3.27 and 3.28.

2. The second appendix contains four tables summarizing the results for the
experimental runs of the various mehanisms.

3. The third appendix contains the following:

4. The code for the simulation using the static window.

APPENDICES 72

5. The code for the simulation using the adaptive window.

6. The code for the simulation using the fuzzy window.

7. The code for the fuzzy controller

8. The code for the genetic algorithm

9. A graph showing the variation with time of arrival rates of packets at the
SSP's for a sample input.

10. A graph showing the number of packets processed by the SCP per second
for the sample input.

11. A list and a table giving the final values of variables in the simulation for
the above sample run of the simulation.

J

Bibliography

[1] Abe, S., Neural Networks and Fuzzy Systems: Theory and Applications,
Kluwer Academic Publishers, 1997.

[2] Bonde, A. and Ghosh, S., A comparative study of Fuzzy versus Fixed thresh
olds for robust Queue Management in cell-switching networks, IEEE/ ACM
Transactions on Networking, vol 2, no 4, August 1994, pp337-344.

[3] Braae, M., and Rutherford, D., Fuzzy- Relations in a Control setting, Kyber
netes, vol 7, 1978, ppI85-188.

[4] Braae M. and Rutherford D.A., Selection of parameters for a fuzzy logic
controller, Fuzzy Sets and Systems, 1979, ppI85-199.

[5] Buckley, J., Universal Fuzzy Controllers, Automatica, vol ~8, no 6, 1992,
ppI245-1248.

[6] Buckley, J., Theory of the fuzzy controller: An introduction, Fuzzy Sets and
Systems, vol 51, 1992, pp249-258.

[7] Buckley, J., Sugeno type controllers are universal controllers, Fuzzy Sets and
Systems, vol53 , 1993, pp299-303.

[8] Buckley, J., Num~rical relationships between neural networks, continuous
functions and fuzzy systems, Fuzzy Sets and Systems, vol 60, 1993, ppl-8.

73

BIBLIOGRAPHY 74

[9] Castro, J.L., Fuzzy Logic Controllers are Universal Approximators, IEEE
Transactions on Systems, Man and Cybernetics, vol 25, no 4, April 1995,
pp629-635.

[10] Catania, V., Ficili, G., Palazzo, S., and Panno, D., A Comparative Analy
sis of Fuzzy versus Conventional Policing Mechanisms for ATM Networks.,
IEEE/ ACM Transactions on Networking, vol. 4, no. 3, June 1996, pp449-459.

[11] Cheng, R., Chang, C., Design of a Fuzzy Traffic Controller for ATM Net
works, IEEE/ ACM Transactions on Networking, vol 4, no.3, June 1996,
pp460-469.

[12] Chemouil, P., Khalfet, J., Lebourges, M., A Fuzzy Control Approach for
Adaptive Traffic Routing., IEEE Communications Magazine, July 1995,
pp70-76.

[13] Chen, J., Xi, Y., Zhang, Z., A clustering algorithm for fuzzy model identifi
cation, Fuzzy Sets and Systems, vol 98, 1998, pp319-329 .

[14] Cooper, M., Vidal, J., Genetic design of Fuzzy Controllers: The Cart and
Jointed-Pole problem., Second International Conference on Fuzzy Theory and
Technology, Durham, NC, 1993, ppI332-1337.

~

[15] Cox, E., Solving Problems with Fuzzy Logic, AI Expert, March 1992, pp28-
32. "

[16] Czogala, E., Hirota, K, Probabilistic sets: Fuzzy and stochastic approach to
decision, control and recognition processes, Verlag, 1986, pp73-83.

[17] De Silva, C., Intelligent Control: Fuzzy Logic Applications, CRC Press, 1995

[18] Forrest S., Geneti.c Algorithms: Principles of Natural Selection Applied to
Computation, Science, vol. 261, August 1993, pp872-877.

BIBLIOGRAPHY 75

[19] Gaines, B., Foundations of fuzzy reasoning, Int. J. Man-Machine Studies, vol
8,1976, pp623-668.

[20] Goldberg, D., Genetic and Evolutionary Algorithms come of age., Commu
nications of the ACM, vol. 37, no.3, Marchl994, pp113-119.

[21] Harris, C., Advances in Intelligent Control, Taylor and Francis Ltd., 1994.

[22] Herrera, F., Lozano, M.,Verdegay, J., Tuning Fuzzy Logic Controllers by
Genetic Algorithms, International Journal of Approximate Reasoning, vol
12, 1995, pp301-315.

[23] Jantzen, J., "Fuzzy Control," Technical University of Denmark: Electric
Power Eng. Dept.,1991, pp41-61.

[24] Karr, C., Genetic Algorithms for Fuzzy Controllers, AI Expert, Feb.1991,
pp26-32.

[25] Karr, C., Applying Genetics to Fuzzy Logic, AI Expert, March 1991, pp38-43.

[26] Karr, C. and Gentry, E., Fuzzy Control of pH using Genetic Algorithms.,
IEEE Transactions on Fuzzy Systems, vol l,no. 1, Feb.1993, pp46-53.

J

[27] Kickert, W., and Van Naute Lemke, H., Application of a Fuzzy Controller in
a Warm Water Plant, Automatica, vol 12, 1976, pp301-308.

[28] Kickert, W., and Mamdani, E., Analysis of a Fuzzy Logic Controller, Fuzzy
Sets and Systems,

vol 1,1978, pp29-44.

[29] Klawonn, F. and E:ruse, R., Equality relations as a basis for fuzzy control,
Fuzzy Sets and Systems, vol 54, 1993, ppI47-156.

BIBLIOGRAPHY 76

[30] Klawonn, F., Fuzzy sets and vague environments., Fuzzy Sets and Systems,
vo166, 1994, pp207-221.

[31] Klawonn, F., Kinzel J., Kruse R., Modifications of Genetic Algorithms for
Designing and Optimizing Fuzzy Controllers, IEEE International Conference
on Fuzzy Systems, 1996, ppl-6.

[32] Klawonn F. and Kruse R, Constructing a fuzzy controller from data, Fuzzy
Sets and Systems, vol 85, 1997, pp237-255.

[33] Kroszynski U., Zhou J., Fuzzy Clustering, Principles, Methods and Examples,
at http://www.ifs.dtu.dk/people/homepage/urikroszynski/fuzzyintro.htm.

[34] Lee, C., Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Part 1 and
Part 2, IEEE Transactions on Systems, Man and Cybernetics, vol 20, no.2,
March/April 1990, pp404-435.

[35] Liska, J. and Melsheimer, S., Complete Design of Fuzzy Logic Systems Using
Genetic Algorithms, IEEE International Conference on Fuzzy Systems, 1994,
pp1377-1382.

[36J Magdalena, L. and Monasterio-Huelin, F., A Fuzzy Logic Gontroller with
learning through evolution of its Knowledge Base., International Journal of ,
Approximate Reasoning, Oct., 1996, pp335-358. "

[37] Mamdani, E., Application of fuzzy algorithms for control of a simple dynamic
plant, Proc. lEE, vol 121, no12, Dec. 1974, pp1585-1588.

[38] Mamdani, E.H. and Assilian, S., An experiment in Linguistic Synthesis with
a Fuzzy Logic Controller, Int. J. Man-Machine Studies, vol 7, 1975, ppl-13.

[39] Mamdani, E.H., Advances in the linguistic synthesis of fuzzy controllers, Int.
J. Man-Machine Studies, vol 8,1976, pp669-678. -

BIBLIOGRAPHY 77

[40] Mamdani, E. H., Applications of Fuzzy Logic to Approximate Reasoning
using Linguistic Synthesis, IEEE Transactions on Computers, vol.c-26, no.12,
December 1977, pp1l82-1191.

[41] Wang, L. and Mendel J. M., Generating Fuzzy Rules by Learning from Ex
amples., IEEE Transactions on Systems, Man and Cybernetics, vol 22, no 6,
Dec.92, pp1414-1427.

[42] Nelles, 0., Fischer, M., Muller, B., Fuzzy Rule extraction by a Genetic Al
gorithm and constrained non-linear optimization of membership functions,
IEEE International Conference on Fuzzy Systems, 1996, pp213-219.

[43] Nguyen, H., Sugeno, M., Tong, R, Yager, R, Theoretical Aspects of Fuzzy
Control, John Wiley and Sons, 1995.

[44] Omidyar, C. and Pujolle, G., Introduction to Flow and Congestion Control,
IEEE Communications Magazine, November 1996, pp30-32.

[45] Pedrycz, W. and Czogala, E., On identification in fuzzy systems and its
applications in control problems, Fuzzy Sets and Systems, vol 6, 1981, pp153-
167.

[46] Pedrycz, W., An approach to the analysis of fuzzy systems., Int. J. 9ontrol,
vol 34, 1981, pp403-421.

[47] Pedrydcz, W., Fuzzy Control and Fuzzy Systems, John Wiley and Sons, 1993.

[48] Pham, D. T. and Karaboga, D., Optimum design of Fuzzy Logic Controllers
using Genetic Algorithms., J. Syst Engineering, 1991, pp1l4-118.

[49] Pham, X. and Betts, R, Congestion Control for Intelligent Networks, Com
puter Networks and ISDN Systems, vol 26, 1994, pp511-524.

BIBLIOGRAPHY 78

[50J Qi, X., Chin, T., Genetic algorithm based fuzzy controller for higher oredr
systems, Fuzzy Sets and Systems, vol 91, 1997, pp279-284.

[51J Scheffer, M., Kunicki, J., Fuzzy Adaptive Traffic Enforcement for ATM Net
works., Regional International Teletraffic Conference, South Africa, 1995,
ppl-4.

[52J Self, K., Designing with Fuzzy Logic, IEEE Spectrum, Nov.1990, pp42-45.

[53J Sugeno, M. and Nishida, M., Fuzzy Control of Model Car, Fuzzy Sets and
Systems, vol 16, 1985, ppl03-113.

[54J Sugeno, M., Murofushi, T., Mori, T., Tatematsu, T., Tanaka, J., Fuzzy Algo
rithmic Control of Model Car by oral ,!nstructions, in Fuzzy Sets and Systems,
vol 32, 1989, pp207-219.

[55J Takagi, H. and Lee, M.A., Integrating design stages of fuzzy systems using
Genetic Algorithms, FuzzIEEE 93, ppl-6.

[56J Tan, G., Hu, X., On designing Fuzzy Controllers using Genetic Algorithms,
IEEE International Conference on Fuzzy Systems, 1996, pp905-911.

[57J Tong, R.M., A Control Engineering Review of Fuzzy Systems, Automatica,
vol 3, 1977, pppp559-569.

[58J Tong, R M., Synthesis of fuzzy models for industrial processes-some recent
results, in Int. Journal General Systems, vol 4, 1978, ppI43-162.

[59J Von Altrock, C., Fuzzy Logic and Neurofuzzy Applications Explained, Pren
tice Hall, 1995, ppI845-1851.

BIBLIOGRAPHY 79

[60J Wang Li-Xin., Fuzzy systems are universal approximators, Proceedings ofthe
IEEE International Conference on Fuzzy Systems, San Diego, 1992, pp1163-
1169.

[61J Winston, W., Operations Research: Applications and Algorithms, Duxbury
Press, 1994.

[62J Winter, G., Periaux, J., Galan, M., Cuesta, P., Genetic Algorithms in Engi
neering and Computer Science, John Wiley and Sons, 1995

[63J Yager, R., Filev, D., Essentials of Fuzzy Modeling and Control, John Wiley
and Sons, 1994.

[64J Yoshinari, Y., Pedrycz, W., Hirota, K., Construction of fuzzy models through
clustering techniques., Fuzzy Sets and Systems, vol 54, 1993, ppI57-165.

[65J Zadeh, L.A., Fuzzy Sets, Information and Control, vol 8, 1965, pp338-353.

[66J Zadeh, L A, Outline of a new approach to the analysis of complex systems and
decision processes, IEEE Transactions on Systems, Man, and Cybernetics,
January 1973, pp28-44.

[67J Zadeh, L.A., Making computers think like people, IEEE Spectrum, Aug.
1984, pp26-32.

[68J Zadeh, L.A., The Calculus of fuzzy if-then rules, AI Expert, March 1992,
pp23-27.

[69J Zimmerman, H., Fuzzy Set Theory and its Applications, Boston: Kluwer
Academic Publishers, 1991.

Appendix A

l. We start by proving that a necessary condition for the function in 3.26 to
have a minimum is given by the formula in 3.27 :

Proof. Note that
n c

J(c) = :L 2)J.lik)W(dik)2
k=l i=l

has a trivial minimum at zero. To avoid this trivial minimum we modify the
function above to:

nee

i (c) = :L :L (J.lik) W (dik) 2 -). (1 - :L J.lik)
k=l i=l i=l

For a minimum we take the derivative of the modified objective function
and set it equal to zero:

8]' w-l 2() -8 = WJ.ljk d Vj,Xk -). = a and
J.ljk

(7.1)

8]' c

- = 1 - :L J.lik = a
8), k=l

(7.2)

Now from 3.32 get

J (7.3)

(7.4)

From 7.1 get:

c

1 = ~J.lik
i=l

{

c 1) 1
= ~ 1)'w-l using 7.2 hence

i=l (WdYk) w-l _

80

hence

1

Another necessary condition for a local minimum is

1
w-l

2. Next, 3.27 is proved below:

Proof. For a local minimum we need

Now

a n c

avo L Lf-LfJIIXj - vll1
2

l j=11=1

t, f-L0 a~i IIXj - Vi 112

~ IIUJ lim IIXj - (Vi + t~) 112 - IIXj - vi11 2. t E R . C E R m

~ ~lJ t-tO t " '"
j=l

81

(7.5)

(7.6)

,I

tf-L0 E~ ~ [((Xj - Vi) - t~f ((Xj - Vi) - t~) - (Xj - Vi)T (Xj - Vi)]
j=l

n w . -2t (Xj - Vi? ~T~ L f-L.. hm ----'--"----'--'-----'-
j=l lJ t-tO t

n

-2 L f-L0 (Xj ~Vi)T ~
j=l

Finally, get:

n

LILt (Xj - Vi)
j=l

which completes the proof.

82

o

I

Appendix B

The three tables in this appendix contain the results from the two simulation runs.
Table 8.1 shows the throughput of the SCP for different values of the window size
in the Static Window mechanism. Clearly the highest throughput occurred for a
window size of 20.

Tables 8.2 and 8.3 give the throughput for the different runs of the three
mechanisms for the two inputs:

83

84

Window Size Throughput
12 2684
14 2690
16 2685
18 2687
20 2690
22 2687
24 2689
26 2619
28 2454
30 2310
32 2177

Table 8.1: Optimizing Window Size for the Static Window

Firing Cycle Throughput
5 1822
10 1824
15 1815
20 1816
25 1815
30 1817
35 1819

Ta ble 8.2: Optimizing Firing Cycle

Run Static Window Adaptive Window Fuzzy Window
1 6803 6811 6814
2 6816 6803 680b
3 6802 6817 6801
4 6813 6825 6810
5 6818 6813 6800
6 6800 6805 6806
7 6801 6807 6811
8 6809 6815 6805
9 6814 6810 6814
10 6813 6807 6806

Average 6809 6811 6807
Std. Dev. 6,8 6,5 5,4
Conf. Int. 6804-6814 6806-6816 6803-6811

Table 8.3: Results for the three mechanisms for input 1

85

Run Static Window Adaptive Window Fuzzy Window
1 6840 6838 6841
2 6849 6850 6833
3 6833 6843 6833
4 6845 6836 6849
5 6833 6845 6849
6 6841 6834 6849
7 6835 6833 6841
8 6841 6857 6838
9 6837 6844 6841
10 6845 6851 6845

Average 6840 6843 6842
Std. Dev. 5,4 7,9 6,1
Conf. Int. 6836-6844 6837-6848 6838-6846

Table 8.4: Results for the three mechanisms for input ~2
I

Appendix C

This appendix contains copies of the software developed. The following programs
and graphs are included:

1. The simulation using the static window mechanism;

2. The simulation using the adaptive window mechanism;

3. The simulation using the fuzzy window;

4. The fuzzy controller;

5. The genetic algorithm;

6. A graph illustrating the variation o(arrival rates of packets at the SSP's

7. A graph illustrating the output from the simulation using the static window;

8. The final values of some of the variables for the above run of the simulation.

The graph in 9.2plots the number of packets processed by the SCP in every
second for the 25 seconds of the runtime of the simulation. The system perfor
mance is summarized by the following list and 9.1 of final values of variables.

se P throughput - 2277

Q length - 78

86

I

87

~r------'------.------.-------'-----.

40

35

30

25

15L------L------~-----J------~----~
o 5 10 15 20 25

Figure 9.1: Variation of arrivals for the sample input

"

SSP(I) SSP(2) SSP(3) SSP(4)
Q dropped '0 0 0 0
Req. queue 0 0 0 0
Ack. queue 0 0 0 0

Dropped 220 221 221 222
Outstanding 18 17 17 17

Number of Ack. Packets 561 562 562 561
State 0 0 0 0

Arrival time 25003 25013 25012 25021

Table 9.1: Final values of variables for the sample run above

100

98

96

94

92

90

88

86

84

82

80
0 5 10 15

" "

20

Figure 9,2: Processing of packets at the SCP

88

25
"

%network simulation with static window
for i=1:4

end

ebc (i) =0;
state(i)=O;
qa(i)=O;
qr(i)=O;
at(i)=O;
iat(i)=O;
count(i)=O;
qrtt(i)=O;
dropped(i)=O;
SSP(i) .qaat=[O 0];
SSP(i) .Qat=[];
SSP(i) .arr=[];
arrived(i)=O;
win(i)=20;
pack_off (i) =0;
out(i)=O;
SSP (i) . ttimes= [] ;
qatt(i)=O;
nap (i) =0;
arrival(i)=O;

Q= [] ;
Qlength=O;
eff=[];
SCP.eff=[] ;
Qtimer=[] ;
SCP.tt=O;
SCP off load=[];

- -
time=[];
qrmax=5;

for t=1:75000
% SSP's modules

SCP.state=O;
Qmax=lOO;

SCP.ebc=O;
SCP.counter=O;
Qdropped=O;
SCP.caps=O;

% module 1 - state control
for i=1:4

end

if ebc(i)==t
state(i)=O;

end

% module 2 - ack que arrivals
for i=1:4

if SSP(i) .qaat(l)==t
qa(i)=qa(i)+l;
l=find(SSP(i) .ttimes==SSP(i) .qaat(2));

89

end
end

SSP (i) . ttimes (1) = [];
out(i)=size(SSP(i) .ttimes,2);

%module 3 - ack que transmissions
for i=1:4

end

if qatt(i)==t
qa(i)=qa(i)-l;
nap(i)=nap(i)+l;

end

%module 4 - ack que processing
for i=1:4

end

if qa(i»O & state(i)==O
state(i)=l;
ebc(i)=t+3;
qatt(i)=t+3;

end

% module 5 - req que arrivals
for i=1:4

end

if at(i)==t

end

arrival (i)=arrival(i) + 1;
if qrmax > qr(i)

qr(i) = qr(i) + 1;
else

dropped (i) = dropped (i) + 1;
end

for i=1:4

if t==l
pps=35;

end

iat(i)=floor((1000/(pps+1))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end

90

J

end

" "

if t==at(i)

end

SSP (i) .arr(size(SSP(i) .arr,2)+1)=t;
if arrived(i)<pps

n=floor(t/10000) ;
m=floor((t-n*10000)/1000);
trem=n*10000+(m+1)*1000-t;

end

iat(i)=floor((trem/(pps-arrived(i)+l))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end

if rem(t,1000)==O
iat(i)=floor((1000/(pps+1))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end
arrived(i)=O;

end

% module 7 - request que transmissions
for i=1:4

end

if qrtt(i)==t & win(i) > out (i)
qr(i)=qr(i) - 1;
SSP (i) .Qat (size (SSP (i) .Qat, 2) +1) =t+10;
count(i)=count(i)+l;
SSP (i) . ttimes (size U?SP (i) . ttimes, 2) +1) =t;
out(i)=size(SSP(i) .ttimes,2);

elseif qrtt(i)==t & ~(win(i) > out (i))
qrtt(i) = qrtt(i) + 1;

end

% timeout check
if t>1200

for i=1:4
l=find (t-S'SP (i) . ttimes>1200) ;
if isempty(l)==O

for j=1:size(1,2)

91

SSP (i) . t time s (1 (j)) = [] i
end

end
out(i)=size(SSP(i) .ttimes,2) i

end
end

% module 8 - req que processing
for i=1:4

end

if state(i)==O & qr(i»O
state(i)=li
ebc(i)=t+7i
qrtt(i)=t+7i

end

% module 9 - SCP state control
if SCP.ebc==t

SCP.state=Oi
end

% module 10 - arrivals at SCP~
for i=1:4

end

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t
if size(Q,2)<Qmax

end

Q(size(Q,2)+1)=ii
Qtimer(size(Qtimer,2)+1)=t-10i

elseif size(Q,2)==Qmax
Qdropped=Qdropped+1i

end
SSP (i) . Qa t (1) = [] i

% module 11 - SCP transmission
if SCP.tt==t

end

SSP(Q(l)) .qaat(1)=t+10i
SSP(Q(l)) .qaat(2)=Qtimer(1)i
Q(l)=[]i
Qtimer(l)=[]i
SCP.counter=SCP.counter+1i

% module 12 - SCP processing
if SCP.state==O & size(Q,2»0

92

end

SCP.state=l;
% rand number generator
r=rand(l,l) ;
x=-log(r) ;
if x-floor(x)<.5
x=floor (x) ;
else
x=ceil (x) ;
end
SCP.ebc=t+10+x;
SCP.tt=t+10+x;

for j=1:75
time(j)=j;

end
if rem(t,1000)==0

Dropped(t/1000)=dropped(1) ;
dropped(l)=O;
Arrivals(t/1000)=arrival(1);
arrival(l)=O;

end

SCP off_load(t/1000)=sum(count);
count=zeros(1,4) ;
SCP_dropped(t/1000)=Qdropped;
Qdropped=O;

Qlength(t/1000)=size(Q,2) ;
SCP.caps(t/1000)=SCP.counter;
SCP.counter=O;
pps=round(35+5*rand(1,1)) ;

end
figure(l)
plot(time,SCP dropped) ;axis([O 75 0 50]) ;xlabel('tim~ in
seconds');ylabel('Dropped.at SCP');
figure (2)
plot (time, Dropped) ;axis([O 75 0 100]);xlabel('time in
seconds');ylabel('Dropped at SSP(l) ');
figure (3)
plot(time,SCP.caps) ;axis([0 75 80 100]) ;xlabel('time in
seconds') ;ylabel('Processed at SCP');
figure(4)
plot(time,Qlength);axis([O 75 60 100]);xlabel('time in
seconds');ylabel('Qlength');
figure(5)
plot(time,Arriva~s) ;axis([O 75 20 50]);xlabel('time in
seconds') ; ylabel (, Arrivals at SSP (1) , L;

93

E=sum(SCP.caps)*(l
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps))));
disp(['Static case :']);
disp ([' time=' num2str (t) ':']);
disp(['Dropped at SCP='num2str(sum(SCP dropped))]);
disp(['Dropped at SSP(1)='num2str(sum(Dropped))]);
disp(['Processed by SCP='num2str(sum(SCP.caps))]);
disp(['Arrivals at SSP(1)='num2str(sum(Arrivals))]);
disp(['Efficiency='num2str(E)]) ;

%network simulation with adaptive window
for i=1:4

ebc(i)=O;
state(i)=O;
qa(i)=O;
qr(i)=O;
at(i)=l;
count(i)=O;
qrtt(i)=O;
dropped(i)=O;

end

SSP (i) . qaa t= [0 0];
SSP(i) .Qat=[];
pack_off(i)=O;
win(i)=l;
out(i)=O;
SSP(i) .ttimes=[];
qatt(i)=O;
nopack(i)=l;
nap(i)=O;
c(i)=O;
arrival(i)=O;
arrived (i) =0;

Q= [] ;
Qlength=O;
winmin=l;
winmax=26;
Qtimer=[];
SCP.tt=O;
SCP off load=[]; - -
time= [] ;
qrmax=5;
cmax=4;

SCP.state=O;
Qmax=lOO;
eff= [] ;
SCP.eff=[] ;
SCP. ebc=O;
SCP.counter=O;

Qdropped=O;
SCP.caps=O;

94

for t=1:75000
% SSP's modules
% module 1 - state control
for i=1:4

end

if ebc(i)==t
state(i)=O;

end

% module 2 - ack que arrivals
for i=1:4

if SSP(i) .qaat(l)==t
qa(i)=qa(i)+l;
l=find(SSP(i) .ttimes==SSP(i) .qaat(2));
SSP (i) . ttimes (1) = [] ;
out(i)=size(SSP(i) .ttimes,2);
c(i)=c(i)+l;

end
end

if c(i»cmax

end

c(i)=O;
if win (i) <winmax

win(i)=win(i)+l;
end

%module 3 - ack que transmissions
for i=1:4

end

if qatt(i)==t
qa(i)=qa(i)-l;
nap(i)=nap(i)+l;

end

%module 4 - ack que proce~sing
for i=1:4

end

if qa(i»O & state(i)==O
state(i)=l;
ebc(i)=t+3;
qatt(i)=t+3;

end

% module 5 - req que arrivals
for i=1:4

if at(i)==t

if qrmax > qr(i)

95

.,

end
end

qr(i) = qr(i) + 1;
else

dropped(i) = dropped(i) + 1;
end

% module 6 - packet generator
for i=1:4

if t==l
pps=35;

end

iat(i)=floor((1000/(pps+1))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end

if t==at(i)
arrived(i)=arrived(i)+l;
if arrived(i)<pps

n=floor(t/10000) ;
m=floor((t-n*10000)/1000);
trem=n*10000+(m+1)*1000-t;
iat(i)=floor((trem/(pps-arrived(i)+l))*rand(l,l));
if iat(i)==O

end

end
end

at(i)=t+1;
else

at(i)=t+iat(i) ;
end

if rem(t,1000)==O

end

iat(i)=floor((1000/(pps+1))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end
arrived(i)=O;

% module 7 - request que transmissions
for i=1:4

96

"

if qrtt(i)==t & win(i) > out (i)
qr(i)=qr(i) - 1;
SSP(i) .Qat(size(SSP(i) .Qat,2)+1)=t+l0;
count(i)=count(i)+l;
SSP(i) .ttimes(size(SSP(i) .ttimes,2)+1)=t;
out(i)=size(SSP(i) .ttimes,2);

elseif qrtt(i)==t & ~(win(i) > out(i))
qrtt(i) = qrtt(i) + 1;

end
end

% timeout check
if t>1200

end

for i=1:4

end

l=find(t-SSP(i) .ttimes>1200);
if isempty(l)==O

end

for j=1:size(1,2)
SSP (i) . ttimes (1 (j)) = [J ;

end
if ~(win(i)==winmin)

win(i)=win(i)-l;
end

out(i)=size(SSP(i) .ttimes,2);

% module 8 - req que processing
for i=1:4

end

if state(i)==O & qr(i»O
state(i)=l;
ebc(i)=t+7;
qrtt(i)=t+7;

end

% module 9 - SCP state control
if SCP.ebc==t

SCP.state=O;
end

% module 10 - arrivals at SCP
for i=1:4

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t
if size(Q,2)<Qmax

Q(size(Q,2)+1)=i;
Qtimer(size(Qtimer,2)+1)=t-l0;

97

,

elseif size(Q,2)==Qmax
Qdropped=Qdropped+l;

end
SSP (i) .Qat (1) = [] ;

end
end

% module 11 - SCP transmission
if SCP.tt==t

end

SSP(Q(l)) .qaat(1)=t+l0;
SSP(Q(l)) .qaat(2)=Qtimer(1);
Q(l)=[];
Qtimer(l)=[] ;
SCP.counter=SCP.counter+l;

% module 12 - SCP processing
if SCP.state==O & size(Q,2»0

SCP.state=l;

end

% rand number generator
r=rand(l,l) ;
x=-log(r) ;
if x-floor(x)<.5
x=floor (x) ;
else
x=ceil (x) ;
end
SCP.ebc=t+l0+x;
SCP.tt=t+l0+x;

for j=l: 75
time(j)=j;

end
if rem(t,1000)==O

Dropped(t/l000)=dropped(1) ;
dropped (1) =0;
Arrivals(t/l000)=arrival(1);
arrival(l)=O;
SCP_off load(t/l000)=sum(count);
count=zeros(1,4) ;
SCP_dropped(t/l000)=Qdropped;
Qdropped=O;

Qlength(t/l0~)=size(Q,2) ;
SCP.caps(t/l000)=SCP.counter;
SCP.counter=O;

98

,I

pps=round(35+5*rand(1,1)) ;

end

end
figure(l)
plot(time,SCP_dropped);axis([O 75 0 50]);xlabel('time in
seconds') ;ylabel('Dropped at SCP');
figure(2)
plot (time, Dropped) ;axis([O 75 0 80]) ;xlabel('time in
seconds');ylabel('Dropped at SSP(l) ');
figure(3)
plot(time,SCP.caps) ;axis([O 75 80 100]) ;xlabel('time in
seconds') ;ylabel('Processed at SCP');
figure(4)
plot (time, Qlength) ;axis([O 75 0 100]) ;xlabel('time in
seconds');ylabel('Qlength');
figure(5)
plot (time,Arrivals) ;axis([O 75 0 80]);xlabel('time in
seconds');ylabel('Arrivals at SSP(l) ');
E=sum(SCP.caps) * (1-
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps)))) ;
disp(['Adaptive case: ']);
disp ([' time=' num2str (t) ':']);
disp(['Dropped at SCP='num2str(sum(SCP_dropped))]);
disp(['Dropped at SSP(1)='num2str(sum(Dropped))]);
disp(['Processed by SCP='num2str(sum(SCP.caps))]);
disp(['Arrivals at SSP(1)='num2str(sum(Arrivals))]);
disp(['Efficiency='num2str(E)]) ;

\
%network simulation with fuzzy window

for i=1:4
ebc(i)=O;
state(i)=O;
qa(i)=O;
qr(i)=O;
at(i)=l;
count(i)=O;
qrtt(i)=O;
dropped(i)=O;
SSP (i) . qaa t= [0 0];
SSP(i) .Qat=[];
SSP (i) . a r r= [] ;
pack_off (i)=O-;
win(i)=l;
out(i)=O;

99

"

end

rtdl(i)=O;
SSP(i) .ttimes=[];
qatt(i)=O;
nopack(i)=l;
nap(i)=O;
fuzzcount(i)=O;
arrival(i)=O;
arrived(i)=O;

Q= [] ;
Qlength=O;
Qtimer=[];
SCP.tt=O;
SCP off load=[];
time=[];
qrmax=5;
cmax=4 ;

for t=1:75000
% SSP's modules

SCP.state=O;
Qmax=lOO;
SCP.ebc=O;
SCP.counter=O;
Qdropped=O;
SCP.caps=O;
fuzzcountmax=lO;
E=O;

% module 1 - state control
for i=1:4

end

if ebc(i)==t
state(i)=O;

end

% module 2 - ack que arrivals
for i=1:4

end

if SSP (i) .qaat(l)==t
qa(i)=qa(i)+l;
l=find(SSP(i) .ttimes==SSP(i) .qaat(2));
SSP (i) . ttimes (1) = [] ;
out (i) =size (SSP (i) . ttimes, 2) ;
fuzzcount(i)=fuzzcount(i)+l;
if fuzzcount(i)==fuzzcountmax

end
end

fuzzcount(i)=O;
rtd(i)=t-SSP(i) .qaat(2);
win(i)=fuzzy7coaga(rtd(i)) ;

%module 3 - ack que transmissions
for i=1:4

if qatt(i)==t
qa(i)=qa(i)-l;

100

"

end

nap(i)=nap(i)+l;
end

%module 4 - ack que processing
for i=1:4

end

if qa(i»O & state(i)==O
state(i)=l;
ebc(i)=t+3;
qatt(i)=t+3;

end

% module 5 - req que arrivals
for i=1:4

end

if at(i)==t

end

arrival (i)=arrival(i) + 1;
if qrmax > qr(i)

qr(i) = qr(i) + 1;
else

dropped(i)
end

dropped(i) + 1;

% module 6 - packet generator
for i=1:4

if t==l
pps=35;

end

iat(i)=floor((1000/(pps+l))*rand(l,l));
if iat(i)==O

at(i)=t+l;
else

at(i)=t+iat(i) ;
end

if t==at(i)
arrived(i)=arrived(i)+l;
SSP(i) .arr(size(SSP(i) .arr,2)+1)=t;
if arrived(i)<pps

n=floor(t/l0000) ;
m=floor((t-n*10000)/1000);
trem=n*10000+(m+l)*1000-t;
iat(i)=floor((trem/(pps-arrived(i)+l))*rand(l,l));
if iat(i)==O

at(i)=t+l;

101

end

end
end

else
at(i)=t+iat(i) ;

end

if rem(t,1000)==O

end

iat(i)=floor((1000/(pps+1))*rand(l,l));
if iat(i)==O

at(i)=t+1;
else

at(i)=t+iat(i) ;
end
arrived(i)=O;

% module 7 - request que transmissions
for i=1:4

end

if qrtt(i)==t & win(i) > out (i)
qr(i)=qr(i) - 1;
SSP(i) .Qat(size(SSP(i) .Qat,2)+1)=t+10;
count(i)=count(i)+l;
SSP(i) .ttimes(size(SSP(i) .ttimes,2)+1)=t;
out(i)=size(SSP(i) .ttimes,2);

elseif qrtt(i)==t & ~(win(i) > out (i))
qrtt(i) = qrtt(i) + 1;

end

% timeout check
if t>1200

end

for i=1:4

end

l=find (t-Ssp (i) . ttimes>1200) ;
if isempty(l)==O .

for j=1:size(1,2)
SSP (i) . t time s (1 (j)) = [] ;

end
if ~(win(i)==winmin)

win(i)=win(i)-l;
end

end
out (i) =size (SSP (i) . ttimes, 2) ;

% module 8 - req que processing
for i=1:4

102

"

end

if state(i)==O & qr(i»O
state(i)=l;
ebc(i)=t+7;
qrtt(i)=t+7;

end

% module 9 - SCP state control
if SCP.ebc==t

SCP.state=O;
end

% module 10 - arrivals at SCP
for i=1:4

end

if size(SSP(i) .Qat,2»0 & SSP(i) .Qat(l)==t
if size(Q,2)<Qmax

end

Q(size(Q,2)+1)=i;
Qtimer(size(Qtimer,2)+1)=t-l0;

elseif size(Q,2)==Qmax
Qdropped=Qdropped+l;

end
SSP (i) . Qa t (1) = [] ;

% module 11 - SCP transmission
if SCP.tt==t

SSP(Q(l)) .qaat(1)=t+l0;
SSP(Q(l)) .qaat(2)=Qtimer(1);
Q(l)=[];

end

Qtimer(l)=[];
SCP.counter=SCP.counter+l;

% module 12 - SCP processing
if SCP.state==O & size(Q,2»0

SCP.state=l;
% rand number generator
r=rand(l,l) ;
x=-log(r) ;
if x-floor(x)<.5
x=floor(x) ;
else
x=ceil(x);
end

103

J

end

SCP.ebc=t+10+x;
SCP.tt=t+10+x;

for j=l: 75
time(j)=j;

end
if rem(t,lOOO)==O

Dropped(t/1000)=dropped(1) ;
dropped (1) =0;
Arrivals(t/1000)=arrival(1);
arrival(l)=O;

end
end

SCP off load(t/1000)=sum(count);
count=zeros(1,4) ;
SCP_dropped(t/1000)=Qdropped;
Qdropped=O;
Qlength(t/1000)=size(Q,2) ;
SCP.caps(t/1000)=SCP.counter;
SCP.counter=O;
pps=round(35+5*rand(1,1));

E=sum(SCP.caps) * (1-
(sum(SCP_dropped)/(sum(SCP_dropped)+sum(SCP.caps))));
figure(l)
plot(time,SCP_dropped);axis([O 75 0 50]);xlabel('time in
seconds') ;ylabel('Dropped at SCP');
figure (2)
plot (time, Dropped) ;axis([O 75 0 50]);xlabel('time in
seconds');ylabel('Dropped at SSP(l) ');
figure(3)
plot(time,SCP.caps);axis([O
seconds') ;ylabel('Processed
figure(4)

~
75 80 100]) ;xlabel('time
at SCP');

in
J

plot(time,Qlength);axis([O 75 80 100]);xlabel('time in
seconds') ;ylabel('Qlength');
figure (5)
plot (time,Arrivals) ;axis([O 75 40 60]) ;xlabel('time in
seconds');ylabel('Arrivals at SSP(l) f);
disp ([' time=' num2str (t) ':']);
disp(['Dropped at SCP='num2str(sum(SCP_dropped))]);
disp(['Dropped at SSP (1)='num2str (sum (Dropped))]);
disp(['Processed by SCP='num2str(sum(SCP.caps))]);
disp(['Arrivals at SSP(1)='num2str(sum(Arrivals))]);
disp(['Efficiency='num2str(E)]);

104

%fuzzy Controller
function ws=fuzzy7coaga(rtd)

a=1;b=4;c=6;d=8;e=12;f=14;g=15;h=20;ip=22;j=24;kp=26;1p=30;

x= s ym (, x') ;
f1=-(1/200)*rtd+1;
f2=(1/200)*rtd;
f3=-(1/200)*rtd+2;
f4=(1/200)*rtd-1;
f5=-(1/200)*rtd+3;

ip+5) ;
f6=(1/200)*rtd-2;

kp+5) ;
f7=-(1/200)*rtd+4;
f8=(1/200)*rtd-3;
f9=-(1/200)*rtd+5;
f10=(1/200)*rtd-4;
f11=-(1/200)*rtd+6;
f12=(1/200)*rtd-5;

gl=-(1/b)*x+1;
g2=(x-a)/(5-a) ;
g3=(d-x)/(d-5);
g4=(x-c)/(10-c) ;
g5=(f-x)/(f-10) ;
g6=(x-e)/(15-e) ;
g7=(h-x)/(h-15) ;
g8=(x-g)/(20-g) ;
g9=(j-x)/(j-20) ;
g10=(x-ip)/(25-ip) ;
gll=(lp-x)/(lp-25) ;
g12=(x-kp)/(30-kp) ;

if rtd>=O & rtd<200

y1_2=(-5*b)/(a-b-5) ;
y3_4=(d* (10-c)+c* (d-5))/(d-c+5);
y5_6=(f*(15-e)+e* (f-10))/(f-e+5);
y7_8=(h*(20-g)+g*(h-15))/(h-g+5);
y9 10=(j* (25-ip)+ip* (j-20))/(j-

y11 12=(lp*(30-kp)+kp*(lp-25))/(lp-

"

z2_10=f2*(25-ip)+ip;z3 10=f3* (25-ip)+ip;
z4 10=f4*(25-ip)+ip;zl_11=-f1*(lp-25)+lp;
z2 12=f2*(30-kp)+kp;zl 12=f1*(30-kp)+kp;z2 11=

f2*(lp-25)+lp;
if f1>=f2 & f2<=(y11_12-kp)/(30-kp)

ws=(int(g10*x,x,ip,z2_10)+int(f2*x,x,z2 10,z2_12)+
int(g12*x,x,z2_12,zl_12)+int(f1*x,x,zl_12,30))/(int(
g10,x,ip,~2 10)+int(f2,x,z2 10,z2 12)+int(g12,x,z2 1
2,zl 12)
+int(f1,x,zl12,30));

105

ws=round(double(ws));
elseif f1>(y11_12-kp)/(30-kp) & f2>(y11_12-kp)/(30-kp) S=I
int(g11*x,x,z2_11,y11_12)+int(g12*x,x,y11_12,z1_12)+int(f1*
x,x,z1_12,30))/(int(g10,x,ip,z2_10)+int(f2,x,z2_10,z2_11)+i
nt(g11,x,z2 11,y11 12)+int(g12,x,y11 12,z1 12)+int(f1,x,z1
12,30));

ws=round(double(ws)) ;
elseif f2>f1 & f1<=(y11 12-kp)/(30-kp)

ws=(int(g10*x,x,ip,z2_10)+int(f2*x,x,z2_10,z2 11)+int(g11*x
,x,z2_11,z1_11)+int(f1*x,x,z1_11,30))/(int(g10,x,ip,z2_10)+
int(f2,x,z2 10,z2 11)+int(g11,x,z2 11,z1 11)+int(f1,x,z1 11
,30)) ;

ws=round(double(ws)) ;
end

end

if rtd>=200 & rtd<400
z4_8=f4* (20-g)+g;z4 10=f4*(25-ip)+ip;z3 10=f3*(25-

ip)+ip;z3_11=-f3* (lp-25)+lp;
z4_9=-f4*(j-20)+j;z3_9=-f3*(j-20)+j;
if f3>=f4 & f4<=(y9 10-ip)i(25-ip)

ws=(int(g8*x,x,g,z4_8)+int(f4*x,x,z4_8,z4 10)+int(g10*x,x,z
4_10,z3_10)+int(f3*x,x,z3_10,z3_11)+int(g11*x,x,z3_11,Ip))/
(int(g8,x,g,z4_8)+int(f4,x,z4_8,z4_10)+int(g10,x,z4 10,z3 1
0)+int(f3,x,z3_10,z3_11)+int(gll,x,z3 11,lp));

ws=round(double(ws));
elseif f4>(y9 10-ip)/(25-ip) & f3>(y9 10-ip)/(25-ip)

ws=(int(g8*x,x,g,z4 8)+int(f4*x,x,z4 8,z4 9)+int(g9*x,x,z4
9,y9_10)+int(g10*x,x,y9_10,z3_10)+int(g11*x,x,z3_10,lP))/(1
nt(g8,x,g,z4_8)+int(f4,x,z4_8,z4_9)+int(g9,x,z4 9,y9~10)+in
t(g10,x,y9_10,z3_10)+int(g11,x,z3 10,lp));

ws=round(double(ws));
elseif f4>=f3 & f3<=(y9 10-ip)/(25-ip)

ws=(int(g8*x,x,g,z4 8)+int(f4*x,x,z4_8,z4_9)+int(g9*x,x,z4
9,z3_9)+int(f3*x,x,z3_9,z3_11)+int(gll*x,x,z3_11,lp))/(int(
g8,x,g,z4_8)+int(f4,x,z4_8,z4_9)+int(g9,x,z4 9,z3 9)+int(f3
,x,z39,z3_11)+int(g11,x,z3_11,lp));

ws=round(double(ws));
end

end

if rtd>=400 & rtd<600

106

z6_6=f6*(15-e)+e;z6_8=f6*(20-g)+g;z58=f5*(20-
g)+g;z5_9=-f5*(j-20)+j;

z6 7=-f6*(h-15)+h;z5 7=-f5*(h-15)+h;
if f5>=f6 & f6<=(y7 8-g)/(20-g)

ws=(int(g6*x,x,e,z6_6)+int(f6*x,x,z6_6,z6 8)+int(g8*x,x,z6
8,z5_8)+int(f5*x,x,z5_8,z5_9)+int(g9*x,x,z5_9,j))/(int(g6,x
,e,z6_6)+int(f6,x,z6_6,z6_8)+int(g8,x,z6 8,z5 8)+int(f5,x,z
5 8,z5 9)+int(g9,x,z5_9,j));

ws=round(double(ws));
elseif f6>(y7 8-g)/(20-g) & f5>(y7 8-g)/(20-g)

ws=(int(g6*x,x,e,z6_6)+int(f6*x,x,z6_6,z6_7)+int(g7*x,x,z6
7,y7_8)+int(g8*x,x,y7_8,z5_8)+int(f5*x,x,z5_8,z5_9)+int(g9*
x,x,z5_9,j))/(int(g6,x,e,z6_6)+int(f6,x,z6_6,z6_7)+int(g7,x
,z6_7,y7_8)+int(g8,x,y7 8,z5 8)+int(f5,x,z5 8,z5 9)+int(g9,
x,z59,j));

ws=round(double(ws));
elseif f5<=f6 & f5<=(y7 8-g)/(20-g)

ws=(int(g6*x,x,e,z6 6)+int(f6*x,x,z6_6,z6 7)+int(g7*x,x,z6
7,z5_7)+int(f5*x,x,z5_7,z5_9)~int(g9*x,x,z5_9,j))/(int(g6,x
,e,z6_6)+int(f6,x,z6_6,z6_7)+int(g7,x,z6 7,z5 7)+int(f5,x,z
5 7,z5 9)+int(g9,x,z5_9,j));

ws=round(double(ws)) ;
end

end

if rtd>=600 & rtd<800
z8_4=f8*(lO-c)+c;z8 5=-f8*(f-IO)+f;z7 6=f7*(15-

e)+e;z77=-f7*(h-15)+h;
z8_6=f8* (15-e)+e;z7_5=-f7* (f-IO)+f;
if f7> (y5 6-e) / (15-e) & f8> (y5 6-e) / (15-e)'

wS=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8_4,z8_5)+int(g5*x,x,z8
5,y5_6)+int(f6*x,x,y5_6,z7_6)+int(f7*x,x,z7_6,z7_7)+int(g7*
x,x,z7_7,h))/(int(g4,x,c,z8_4)+int(f8,x,z8_4,z8_5)+int(g5,x
,z8_5,y5_6)+int(f6,x,y5 6,z7 6)+int(f7,x,z7 6,z7 7)+int(g7,
x,z77,h));

ws=round(double(ws)) ;
elseif f7>=f8 & f8<=(y5 6-e)/(15-e)

ws=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8_4,z8 6)+int(g6*x,x,z8
6,z7 6)+int(f7*x,x,z7_6,z7 7)+int(g7*x,x,z7_7,h))/(int(g4,x
,c,z8_4)+int(f8,K,z8_4,z8_6)+int(g6,x,z8 6,z7 6)+int(f7,x,z
76,z7_7)+int(g7,x,z7_7,h));

ws=round(double(ws)) ;

107

elseif f8>f7 & f7<=(y5 6-e)/(15-e)

ws=(int(g4*x,x,c,z8_4)+int(f8*x,x,z8 4,z8 5)+int(g5*x,x,z8
5,z7_5)+int(f7*x,x,z7_5,z7_7)+int(g7*x,x,z7_7,h))/(int(g4,x
,c,z8_4)+int(f8,x,z8_4,z8_5)+int(g5,x,z8 5,z7 5)+int(f7,x,z
7 5,z7_7)+int(g7,x,z7_7,h));

ws=round(double(ws)) ;
end

end

if rtd>=800 & rtd<1000
z10 2=fl0*(5-a)+a;z10 3=-fl0*(d-5)+d;z9 4=f9*(10-

c)+c;z95=-f9*(f-l0)+f;
z10 4=fl0*(10-c)+c;z9 3=-f9*(d-5)+d; - -
if f9>(y3 4-c)/(10-c) & fl0>(y3 4-c)/(10-c)

ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10_2,z10_3)+int(g3*x,x
,z10_3,y3_4)+int(g4*x,x,y3_4,z9_4)+int(f9*x,x,z9_4,z9_5)+in
t(g5*x,x,z9_5,f))/(int(g2,x,a,z10_2)+int(fl0,x,z10_2,z1o_3)
+int(g3,x,z10_3,y3_4)+int(g4,x,y3 4,z9 4)+int(f9,x,z9 4,z9
5)+int(g5,x,z9_5,f));

ws=round(double(ws));
elseif f9>=fl0 & fl0<=(y3 4-c)/(10-c)

ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10 2,z10 4)+int(g4*x,x
,z10_4,z9_4)+int(f9*x,x,z9_4,z9_5)+int(g5*x/ x,z9_5,f))/(int
(g2,x,a,z10_2)+int(fl0,x,z10_2,z10_4)+int(g4,x,z10 4,z9 4)+
int(f9,x,z9_4,z9_5)+int(g5,x,z95,f));

ws=round(double(ws));
elseif fl0>f9 & f9<=(y3 4-c)/(10-c)

\
ws=(int(g2*x,x,a,z10_2)+int(fl0*x,x,z10_2,z10_3)+int(g3*x,x
,z10_3,z9_3)+int(f9*x,x,z9_3,z9_5)+int(g5*x,x,z9_5,f~)/(int

(g2,x,a,z10 2)+int(fl0,x,z10 2,z10 3)+int(g3,x,z10 3,z9 3)+
int(f9,x,z9=3,z9_5)+int(g5,x~z9 5,f));

end
end

ws=round(double(ws)) ;

if rtd>=1000 & rtd<=1200
z12 1=-b*(f12-1);zll 2=fl1*(5-a)+a;zll 3=-f11*(d-

5)+d;zll_1=-b*(fll-l) ;
z122=f12*(5-a)+a;
if fll>(yl 2-a)/(5-a) & f12>(yl 2-a)/(5-a)

ws=(int(f12*x,x,0,z12_1)+int(gl*x,x,z~2_1,yl_2)+inttg2*x,x,

yl 2,zll 2)+int(fll*x,x,zll 2,zll 3)+int(g3*x,x,zll 3,d))/(

108

int(f12,x,0,z12_1)+int(gl,x,z12_1,y1_2)+int(g2,x,y1 2,zll_2
)+int(f11,x,zll_2,zll_3)+int(g3,x,zll 3,d));

ws=round(double(ws)) ;
elseif f11<=f12 & f11<=(y1 2-a)/(5-a)

ws=(int(f12*x,x,0,z12_1)+int(gl*x,x,z12_1,zll 1)+int(f11*x,
x,zll_1,zll_3)+int(g3*x,x,zll_3,d))/(int(f12,x,0,z12_1)+int
(gl,x,z12 1,zll 1)+int(f11,x,zll 1,zll 3)+int(g3,x,zll 3,d)
) ;

ws=round(double(ws));
elseif f12<=f11 & f12<=(y1 2-a)/(5-a)

ws=(int(f12*x,x,0,z12_2)+int(g2*x,x,z12_2,zll 2)+int(f11*x,
x,zll_2,zll_3)+int(g3*x,x,zll_3,d))/(int(f12,x,0,z12_2)+int
(g2,x,z12 2,zll 2)+int(f11,x,zll 2,zll 3)+int(g3,x,zll 3,d)
) ;

ws=round(double(ws));
end

end

%Genetic Algorithm 2
global E choice q parameter
el sel=[10 10 4 2];
mut=[20 15 8 4];
cross=[20 15 8 4];
choose;
parameter1=choice;
for r=2:60

choose;
parameter1(r, :)=choice;
t=l; J

while t<r
if isequal (parameter1 (t, :),parameter1(r,:))==1

choose;
t=l;

else
t=t+1;

end
parameter1(r, :)=choice;

end
end
parameter=parameter1;
for q=1:60;

for s=1:3
netsimandfuzzwin22;

109

Eff 123(s)=E;
end
AveEff(q)=sum(Eff_123)/3;
parameterl(q,13)=AveEff(q) ;
parameter(q,13)=E;

end
minimum=find(parameter(:,13)==min(parameter(:,13)));
% Cycles
disp(['Generation 1 done']);
for v=1:4

el selection=[];
nat selection=[];
crossover=[];
mutation=[];

% Select sel(v) strings from parameter
% Elitist promotion (selection)
maximum=[];
while size(maximum,2)<el sel(v)

w= [] ;
w=find(parameter(:,13)==max(parameter(:,13))) ;
maximum=[maximum w'];
for ind=l:size(w,l)

parameter(w(ind),13)=O;
end

end
ind=O;
for ind=l:el sel(v)

el selection(ind, :)=parameter(maximum(ind),:);
end
if size (maximum,2»el_sel (v)

for ind=1:size(maximum,2)-el sel(v)
"

nat_selection (ind, :)=parameter(maximum(ind+el sel(v)),:);
end

end

%Choose more strings to complete nat_selection
if cross(v)+mut(v)-size(nat selection,l»O
maximum=[];
w= [] ;
while size(maximum,l)<cross(v)+mut(v)-size(nat selection,l)

w=find(parameter(:,13)==max(parameter(:,13))) ;
maximum=[maximum w'];
for ind=l:size(w,l)

parameter(w(ind),13)=O;
end

110

end
end
ind=O;
for ind=1:size(maximum,2)

nat selection(size(nat selection,l)+ind, :)=parameter(maximu
m (ind) , :) ;
end
if size(nat selection,l»cross(v)+mut(v)

for ind=l:size(parameterlprimel,l)-(cross(v)+mut(v))
nat selection(cross (v)+mut (v)+ind, :)=[];

end
end
parameter=[];

% Apply crossover and mutation to nat selection

%crossover operator

while size (crossover,l)<cross (v)
intl=round(l+(size(nat_selection,l)-l)*rand(l,l)) ;
int2=round(1+(size(nat selection,l)-l)*rand(l,l));
while isequal(int2,intl)==1

end

int2=round(1+(size(nat selection,l)-l)*rand(l,l));
end
crosspnt=round(2+9*rand(1,1)) ;
crossedl=nat_selection(intl, :);
crossed2=nat_selection(int2, :);
temp=crossedl(1,crosspt:13);
crossedl(1,crosspt:13)=crossed2(1,crosspt:13) ;
crossed2(1,crosspt:13)=temp;
vectl=find(parameterl(:,1:12)==crossedl(1,1:12)) ;
if vectl==[]

,I
crossover(size(crossover,l)+l, :)=crossedl(l, :);
parameterl(size(parameterl,l)+l, :)=crossedl(l, :);

end
vect2=find(parameterl(:,1:12)==crossed2(1,1:12));
if vect2== []

crossover(size(crossover,l)+l, :)=crossed2(1,:);
parameterl(size(parameterl,l)+l, :)=crossed2(1,:);

end

if size(crossover,l»cross(v)

end

for ind=l:size(crossl,l)-cross(v)
crossover (50+ind, :)=[];

end

III

% mutation operator
while size (mutate, l)<mut (v)

int3=round(1+(size(nat selection,l)-l)*rand(l,l));
mutpt=round(l+ll*rand(l,l));
mutate=nat_selection(int3,:) ;

end

if rem(mutpt+1,2)==O
min1= (floor (mutpt/2))*5;
max1=min1+2;

elseif rem(mutpt,2)==O
min1=floor((mutpt-1)/2)*5+3;
max1=min1+2;

end
if mutate (mutpt)==min1

mutate (mutpt)=min1+1;
elseif mutate (mutpt)==max1

mutate (mutpt)=max1-1;
else

mutval=round(rand(l,l));
if mutval==O

mutate (mutpt)=min1;
else

mutate (mutpt)=max1;
end

end
vect3=find(parameter1(:,l:12)==mutate) ;
if vect3==[]

mutation (size (mutation, 1)+1, :)=mutate;
parameter1(size(parameter1,l)+l, :)=mutate;

end

% Make new parameter

parameter=el selection;
ind=O;
for ind=l:size(crossover,l)

parameter (size (parameter, 1) +1, :)=crossover(ind, :);
end
ind=O;
for ind=l:size (mutation, 1)

parameter (size (parameter, 1) +1, :)=mutation(ind,:);
end

% Run controllers, record fitness values

for q=l:size(parameter,l)

112

J

for s=1:3
netsimandfuzzwin22;
Eff 123(s)=E;

end
AveEff(q)=sum(Eff 123)/3;
parameter(q,13)=AveEff(q);
parameter(q,13)=E;

end
disp([num2str(v)]);
end

maximum= [] ;
maximum=find(parameter(:,13)==max(parameter(:,13)));
disp(['optimal controller parameters
are'mat2str(parameter(maximum(1), :))]);

113

	swartz a m 2000-154-001
	swartz a m 2000-154-002

