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Abstract

In this thesis, we first obtain coincidence and common fixed point theorems for a pair

of generalized nonexpansive type mappings in a normed space. Then we discuss two

types of convergence theorems, namely, the convergence of Mann iteration procedures

and the convergence and stability of fixed points. In addition, we discuss the viscosity

approximations generated by (ψ, φ)-weakly contractive mappings and a sequence of

nonexpansive mappings and then establish Browder and Halpern type convergence

theorems on Banach spaces. With regard to iteration procedures, we obtain a result

on the convergence of Mann iteration for generalized nonexpansive type mappings in

a Banach space which satisfies Opial’s condition. And, in the case of stability of fixed

points, we obtain a number of stability results for the sequence of (ψ, φ)- weakly con-

tractive mappings and the sequence of their corresponding fixed points in metric and

2-metric spaces. We also present a generalization of Fraser and Nadler type stability

theorems in 2-metric spaces involving a sequence of metrics.
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Introduction

0.1 General Background

Many problems arising in different areas of mathematics, such as optimization, varia-

tional analysis and differential and integral equations, can be modeled by the equation

x = Tx,

where T is generally a nonlinear operator and x, an element of a topological space X.

The solutions to this equation are called fixed points of T and the theorems concerning

the existence and properties of fixed points are known as fixed point theorems. Such

theorems have broad applications in proving existence and uniqueness of solutions of

various functional equations.

If T is a contraction mapping defined on a complete metric space X, the Banach

fixed point theorem (also known as the contraction mapping theorem or contraction

mapping principle) establishes that T has a unique fixed point and for any x ∈ X, the

sequence of Picard iterates {T nx} strongly converges to the fixed point of T (recall

that T is a contraction if d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X and 0 ≤ k < 1). The

Banach fixed point theorem first appeared in explicit form in Banach’s [4] 1922 thesis.

Because of its importance and usefulness for mathematical theory, it has become a
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very popular tool to show the existence of solutions of nonlinear Volterra integral

equations, nonlinear integro-differential equations in Banach spaces, and to show the

convergence of algorithms in computational mathematics.

Generalizations of the above principle have been extensively investigated by many

authors (see [16], [30], [39], [71], [75]). An excellent reference in this context is due

to Rhoades [75] which presents a survey of 125 contractive conditions, out of which

25 have been found to be independent. Among these 25 conditions, one of the most

general conditions is due to Ćirić [16]. Subsequent developments in this direction

could be found in Kincses and Totic [44], Jachymski [36] and Collaco and Carvalho

E silva [17]. Further, from the application point of view, two notable generalizations

of the Banach contraction principle are the contractive mappings (mappings T satis-

fying the condition d(Tx, Ty) < d(x, y) for all x, y ∈ X, x 6= y) by Edelstein [21] and

nonexpansive mappings (mappings T satisfying the condition d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ X) by Browder [12]. These mappings have again found a wide range

of applications in the theory of monotone operators and variational inequalities (see

Deimling [18] and Zeidler [103, 104]). Other interesting generalizations include the

conditions by Rakotch [70] and Boyd and Wong [11] where the constant k is replaced

by a function k(x, y) by suitably defining the family of functions {k(x, y)} and an up-

per semicontinuous function φ respectively. The Boyd and Wong type mappings are

known as nonlinear contractions or φ-contractions. The minimum common property

for the above classes of mappings is that they are all continuous. For an excellent

discussion on metric fixed point theory, we refer to Goebel and Kirk [26] and Khamsi

and Kirk [40] among others.
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In 1972, Krasnoselskĩi et al. [45] introduced the notion of weakly contractive

mappings which includes the classical Banach contraction as a special case and is

closely related to the nonlinear contractions of Boyd and Wong [11]. Later on Alber

and Guerre-Delabriere [1] obtained certain fixed point theorems in Hilbert spaces for

weakly contractive mappings and acknowledged that their results were true at least

for uniformly smooth and uniformly convex Banach spaces(cf. [26]). Subsequently,

Rhoades [80] extended some of their results to complete metric spaces under less re-

strictive conditions and thus established that his results are still valid for arbitrary

Banach spaces. On the other hand, in 1976 Delbosco [19] initiated the study of con-

tractive conditions with the so called altering distance function ψ. In fact, Delbosco

[19] considered only the case in which ψ is a power function. Subsequently, his result

was extended by Skof [95] in 1977 and Khan et al. [41] in 1984. Recently, Dutta

and Choudhury [20] introduced the notion of (ψ, φ)- weakly contractive mappings

where ψ and φ are functions from positive reals into itself satisfying certain condi-

tions. They obtained a fixed point theorem for the above class of mappings, which in

turn generalizes the above results of Rhoades [80]. This class of mappings has been

further improved by Bose and Roychowdhury [10].

Fixed points have been used as a study tool to investigate the relationship be-

tween the convergence of sequences of mappings on a metric (resp. Banach) space

and the sequence of their fixed points. This area of research is called the stability

of fixed points and has many useful applications (cf. Istratescu and Istratescu [35]).

In this context, the first result was obtained by Bonsall [9] where he proved that the
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pointwise convergence of a sequence of contraction mappings {Tn} on a metric space

implies the convergence of their corresponding fixed points. In addition, the limit

mapping also turns out to be a contraction mapping. He also used his result success-

fully to obtain a solution of Cauchy’s initial value problem. For a related result, we

refer to Sonnenschein [96]. Subsequent results by Nadler Jr. [59] (see also Fraser and

Nadler [22]) and others address mainly the problem of replacing the completeness of

the space by the existence of fixed points and various relaxations on the contraction

constant. For related results in this direction using various contractive conditions on

different settings, we refer to [48, 61, 82, 90, 93, 94]. Diverse aspects of the stability

results appear in subjects such as data dependence of fixed points, approximation the-

ory, iteration methods for operator equations and techniques of proof in fixed point

theory among others (cf. Rus [82]).

Iterative construction of fixed points is an interesting area of nonlinear analysis.

In linear spaces, various iteration schemes have been successfully applied to fixed

point problems and also to obtain solutions of operator equations. In most of the

cases the contractive condition is strong enough, not only to guarantee the existence

of a unique fixed point, but also to obtain that fixed point by repeated iteration of the

function. The most commonly used iteration procedure to approximate fixed points

is the method of successive approximations (or Picard iteration), given by

xn+1 = Txn, n = 0, 1, 2, · · · and x0 ∈ X.

Since the Picard iteration may, in general, need not converge to a fixed point for

certain kinds of mappings such as nonexpansive mappings, other iteration procedures

were considered. In fact, a nonexpansive mapping need not have a fixed point (for



5

example, a translation mapping is a fixed point free nonexpansive mapping). As an

illustration, let us consider the following example of a nonexpansive mapping with

a fixed point and whose iteration does not converge to the fixed point in question.

Define Tx = 1 − x for all x ∈ [0, 1]. Then T is a nonexpansive self mapping of [0, 1]

with a unique fixed point at x =
1

2
, but if we choose our starting point at x = a,

x 6= 1
2
, then the repeated iteration yields {1− a, a, 1− a}, which clearly does not

converge to
1

2
(cf. Rhoades [77]). The sequence thus obtained does not converge to

any point of [0, 1].

Such considerations have compelled mathematicians to look for other types of it-

eration schemes, beyond the method of successive approximations, to construct and

locate fixed points for linear and nonlinear mappings. We feel that the motivating

factor behind the study of these methods were the summability methods(cf. Mann

[49] and Ishikawa [34]).

There is another notion of stability in fixed point theory which is related to the

stability of iteration procedures. Ostrowski [65] appears to be the first to discuss the

stability of iterative procedures on metric spaces. However, a formal definition of the

stability of general iterative procedures is due to Harder and Hicks [28, 29]. For an

excellent discussion on this topic, one may refer to Berinde [8], Jachymski [37], Osilike

[63, 64], Rhoades [78, 79] among others.
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0.2 The Present Thesis

It is known that common fixed point (and coincidence point) theorems are general-

izations of fixed point theorems. Over the past few decades, there have been a lot

of activity in fixed point theory and a number of authors took interest in general-

izing fixed point theorems to coincidence point theorems and common fixed point

theorems. Most of these results assume notions such as weak commutativity [83], R-

weakly commutativity [68] or R-subweakly commutativity [84]. In Chapter 1 of this

thesis, under the assumption of R-subweakly commutativity, we prove coincidence

and common fixed point theorems for a pair of generalized nonexpansive type map-

pings in a Normed space. We also establish the weak convergence of a sequence of

Mann iterates of a generalized nonexpansive type mapping in a Banach space which

satisfies Opial’s condition [62].

Fixed point theory for nonexpansive mappings has its origin in the existence theo-

rems of Browder(1965) and Halpern(1967) among others. These theorems have been

extended in several directions by many authors. For example, in 2000, Moudafi gen-

eralized the above results of Browder and Halpern in the direction of the so called

viscosity approximations generated by a contraction mapping and a nonexpansive

mapping. The viscosity approximation method (VAM) for solving nonlinear operator

equations has recently attracted much attention. The advantage of this method is

that one can find a particular solution to the associated problem, and in most cases

this particular solution solves some variational inequality. In Chapter 2, we discuss

the viscosity approximations generated by a (ψ, φ)-weakly contractive mapping and
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a sequence of nonexpansive mappings and prove that under certain appropriate con-

ditions, the iterative scheme defined by the VAM converges strongly to a unique fixed

point which solves some variational inequality.

In respect of the stability of fixed points, uniform convergence and pointwise con-

vergence play an important role. However, when the domain of definition of all map-

pings in question is neither the same space nor a unique nonempty subset of it, the

above notions do not work. This difficulty has recently been overcome by Barbet and

Nachi [5, 6] where some new notions of convergence called (G)-convergence and (H)-

convergence have been introduced and utilized to obtain stability results in a metric

space. These results have been further generalized by Mishra et al.[51, 52, 53, 55, 56]

in different settings. The above results generalize the earlier results of Bonsall [9]

and Nadler Jr. [59] among others. In Chapter 3, we consider a sequence {Tn} of

(ψ, φ)-weakly contractive mappings which are only defined on a subset Xn of the

metric space (X, d) and obtain stability results using the notions of (G)-convergence

and (H)-convergence.

In 1962, S. Gähler [23, 24, 25] introduced and studied the notion of 2-metric

spaces in a series of papers. The study of the Banach contraction on a 2-metric space

was initiated by Iseki et al.[33]. They [33] proved that a Banach contraction on a

bounded complete 2-metric space possesses a unique fixed point. The requirement of

boundedness of the space was dispensed with subsequently by Rhoades [76] and Lal

and Singh [46] independently. Many contractive type principles on 2-metric spaces

have been proved by Khan [42], Lal and Das [47], Sharma [86, 87, 88], Singh [89]
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and others. However, Hsiao [31] showed that all these contractivity conditions don’t

have a wide range of applications since they imply colinearity of the sequence of it-

erates starting with any point. To adress this infirmity, Aliouche and Simpson [2]

recently considered a 2-metric space that satisfies an additional quadratic axiom and

they assumed that the 2-metric defined on the space is globally bounded. With this

hypothesis on 2-metric and under appropriate compactness conditions, they proved

that a contractive mapping has either a fixed point or a fixed line. We would like

to note here that the objection raised by Hsiao has however, no bearing on stability

of fixed points if the existence of fixed point is assumed as suggested by Nadler Jr.

[59]. A number of stability results under pointwise and uniform convergence have

been studied in 2-metric spaces by many authors (see Rhoades [76], Singh [90] and

Singh and Ram [91, 92] for details). In Chapter 4, we generalize the above results

and prove stability of fixed points for (ψ, φ)-weakly contractive mappings under (G)-

convergence and (H)-convergence introduced by Barbet and Nachi [6] in a 2-metric

space setting.

In 1969, Fraser and Nadler [22] investigated stability of fixed points under point-

wise convergence for a sequence of contractive maps {Tn} in a metric space which also

involve a sequence of metrics. In addition, they demonstrated that under pointwise

convergence of the sequence of metrics, the sequence of fixed points does not converge

to the fixed point of the limit mapping of {Tn}. However, the above conclusion may

hold if the pointwise convergence of the sequence of metrics is replaced by uniform

convergence. In Chapter 5, motivated by Fraser and Nadler [22], Nachi [58] and

Mishra et al. [54], we obtain stability of fixed points for (ψ, φ)-weakly contractive



9

mappings in 2-metric spaces.

Definitions, theorems, corollaries and remarks are numbered per chapter and se-

quentially per section, for example, Definition 1.3.5 means the fifth definition of the

third section of Chapter 1.

To the best of our knowledge, the results stated below are our own major results

in this thesis:

Theorem 1.3.2, Theorem 1.3.4, Theorem 1.4.2, Theorem 2.3.1, Theorem 2.3.2,

Theorem 3.4.1, Theorem 3.4.2, Theorem 3.4.4, Theorem 3.5.1, Theorem 4.3.1, Theo-

rem 4.3.2, Theorem 4.3.4, Theorem 4.4.1, Theorem 5.3.1, Theorem 5.3.2 and Theorem

5.4.1.



Chapter 1

Some existence and convergence
theorems for nonexpansive type
mappings

1.1 Introduction

In this chapter some existence and convergence theorems for a class of nonexpansive

type mappings are obtained in a normed space. Specifically, in Section 1.3, we obtain

coincidence and common fixed point theorems while in Section 1.4, the weak con-

vergence of Mann iterations (cf. Mann [49]) to a common fixed point for the above

class of mappings is discussed. The results obtained herein generalize certain results

of Kim et al. [43], Rhoades and Temir [81] and Shahzad [85] among others.

The results of this chapter appear in International Journal of Analysis (2013), Art. ID 539723

10
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1.2 Preliminaries

In this section we review the basic definitions and well known properties on normed

spaces.

Definition 1.2.1. Let C be a nonempty subset of a normed space X. A mapping

T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ (1.2.1)

for all x, y ∈ C. Suppose S : C → C is another mapping on C. Then the mapping T

is said to be S-nonexpansive if

‖Tx− Ty‖ ≤ ‖Sx− Sy‖ (1.2.2)

for all x, y ∈ C.

The class of S-nonexpansive mappings is more general than nonexpansive mappings

(see for reference [43], [66] and [81]).

Now we extend the above notion of S-nonexpansive mappings to a more general

class of nonexpansive mappings.

Definition 1.2.2. Let X be a normed space, C a nonempty subset of X and S, T :

C → C. We say that T is a generalized S-nonexpansive type mapping if

‖Tx− Ty‖ ≤M(x, y) (1.2.3)

for all x, y ∈ C, where

M(x, y) = max

{
‖Sx− Sy‖, ‖Sx− Tx‖+ ‖Sy − Ty‖

2
,
‖Sx− Ty‖+ ‖Sy − Tx‖

2

}
.
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Further, T will be called a generalized nonexpansive type mappings if

‖Tx− Ty‖ ≤ m(x, y) (1.2.4)

for all x, y ∈ C, where

m(x, y) = max

{
‖x− y‖, ‖x− Tx‖+ ‖y − Ty‖

2
,
‖x− Ty‖+ ‖y − Tx‖

2

}
.

Let C be a nonempty subset of a normed space X and S, T : C → X. A point

z ∈ C is called a coincidence point of S and T if Sz = Tz and a common fixed point

if Sz = Tz = z.

Throughout this chapter, F (S) and F (T ) will denote the set of fixed points of S

and T respectively.

Definition 1.2.3. Let X be a normed space, C a nonempty subset of X and S, T :

C → C. The pair of mappings (S, T ) is called:

(i) commuting if TSx = STx for all x ∈ C.

(ii) weakly commuting (see [83]) if for all x ∈ C,

‖STx− TSx‖ ≤ ‖Sx− Tx‖.

(iii) R-weakly commuting (see [68]) if for all x ∈ C, there exists R > 0 such that

‖STx− TSx‖ ≤ R‖Sx− Tx‖.

The following example illustrates that weakly commuting mappings are R -weakly

commuting but the converse is not true in general.
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Example 1.2.1. [67] Let X = C = [1,∞) be endowed with the usual norm ‖x‖ = |x|.

Let S, T : C → C be mappings defined by

Sx = x2 and Tx = 2x− 1 for all x ∈ X.

Then

‖STx− TSx‖ = ‖2x2 − 4x+ 2‖ = 2|x2 − 2x+ 1|

and

‖Sx− Tx‖ = |x2 − 2x+ 1|.

Therefore ‖STx−TSx‖ = 2|x2−2x+1| = 2‖Sx−Tx‖ and the pair (S, T ) is R-weakly

commuting with R = 2 but not weakly commuting.

In general, Commuting ⇒ Weakly commuting ⇒ R-weakly commuting.

Definition 1.2.4. (cf. [43]). Let X be a normed space and C a nonempty subset

of X. The set C is called q-starshaped with q ∈ C, if for all x ∈ C, the segment

[q, x] = {(1− t)q + tx} joining q to x is contained in C, where 0 ≤ t ≤ 1.

Further, if C is a nonempty q-starshaped subset of a normed space X, then the

mapping S : C → C is said to be q-affine if

S (tx+ (1− t)q) = tSx+ (1− t)q

for all x ∈ C and 0 ≤ t ≤ 1.

Definition 1.2.5. (cf. [43]). Let X be a normed space, C a nonempty subset of X

and S, T : C → C such that F (S) 6= ∅. Suppose q ∈ F (S) and C is q-starshaped.

Then the pair of mappings (S, T ) is called R-subweakly commuting on C if for all

x ∈ C, there exists a real number R > 0 such that

‖STx− TSx‖ ≤ R dist(Sx, [q, Tx]),
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where dist(Sx, [q, Tx]) = inf{‖Sx− y‖ : y ∈ [q, Tx]}.

We note that R-subweakly commuting mappings are R-weakly commuting but

the converse is not true in general.

Example 1.2.2. Let X = R with the usual norm ‖x‖ = |x| and C = [0, 10]. Define

S, T : C → C by

Tx =
x+ 1

2
, Sx =

x

2
.

Then

‖TSx− STx‖ =

∣∣∣∣x+ 2

4
− x+ 1

4

∣∣∣∣ =
1

4

and

‖Tx− Sx‖ =

∣∣∣∣x+ 1

2
− x

2

∣∣∣∣ =
1

2
for all x ∈ C.

Therefore

‖TSx− STx‖ =
1

4
=

1

2

(
1

2

)
= R ‖Tx− Sx‖

holds for R =
1

2
and T and S are R-weakly commuting on C.

On the other hand, q = 0 ∈ F (S) and for all x ∈ C,

‖Sx− [Tx, q]‖ =

∣∣∣∣x2 −
[
x+ 1

2
, 0

]∣∣∣∣ = 0.

So, there does not exist any R > 0 such that for all x ∈ C,

‖TSx− STx‖ =
1

4
≤ R ‖Sx− [Tx, q]‖ = 0

holds. Thus T and S are not R-subweakly commuting on C.

Definition 1.2.6. Let C be a nonempty subset of a normed space X and T : C → C.

Let {xn} be a sequence in X. We denote the weak and strong convergence of {xn} to

x by xn ⇀ x and xn → x respectively. The mapping T is said to be demicontinuous

if {xn} is a sequence in X such that xn → x, then Txn ⇀ Tx.
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Definition 1.2.7. A Banach space X is said to satisfy the Opial’s condition (see

[62]), if whenever a sequence {xn} in X converges weakly to x ( xn ⇀ x), then

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf ‖xn − y‖

for all y ∈ X, y 6= x.

We note that the Lp spaces , p 6= 2 do not satisfy Opial’s condition while all lp

spaces (1 < p <∞) do (see for details Goebel and Kirk [26]).

1.3 Coincidence and Common fixed point Theo-

rems

The following common fixed point theorem is due to Shahzad [85, Theorem 2.1]. For

related results we refer to [3],[66], [73] and [84].

Theorem 1.3.1. Let (X, d) be a metric space and C a nonempty subset of X. Let

S, T : C → C be a pair of mappings such that

(i) T (C) ⊆ S(C);

(ii) d(Tx, Ty) ≤ kmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

d(Sx, Ty) + d(Sy, Tx)

2

}
,

k ∈ (0, 1);

(iii) the pair (S, T ) is R-weakly commuting on C.

If cl(T (C)) is complete and T is continuous, then F (S)∩F (T )∩C is a singleton.
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Now we obtain a more general version of the above theorem, where the continuity

condition on T has been dispensed with and the completeness of cl(T (C)) (the closure

of T (C)), has been replaced by the completeness of T (C).

Theorem 1.3.2. Let (X, d) be a metric space and C a nonempty subset of X. Let

S, T : C → C be a pair of mappings such that

(i) T (C) ⊆ S(C);

(ii) d(Tx, Ty) ≤ kmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

d(Sx, Ty) + d(Sy, Tx)

2

}
,

k ∈ (0, 1);

(iii) the pair (S, T ) is R-weakly commuting on C.

Then we have the following:

(a) F (S) ∩ F (T ) ∩ T (C) is a singleton if T (C) is complete.

(b) F (S) ∩ F (T ) ∩ S(C) is a singleton if S(C) is complete.

Proof. Pick x0 ∈ C. Since T (C) ⊆ S(C), we can construct a sequence {xn} in C such

that Sxn = Txn−1 for all n ∈ N. By (ii), we have

d(Sxn, Sxn+1) = d(Txn, Txn−1)

≤ kmax

{
d(Sxn, Sxn−1), d(Sxn, Txn), d(Sxn−1, Txn−1),

d(Sxn, Txn−1) + d(Sxn−1, Txn)

2

}
= kmax

{
d(Sxn, Sxn−1), d(Sxn, Sxn+1), d(Sxn−1, Sxn),

d(Sxn, Sxn) + d(Sxn−1, Sxn+1)

2

}
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= kmax

{
d(Sxn, Sxn−1), d(Sxn, Sxn+1), d(Sxn−1, Sxn),

d(Sxn−1, Sxn+1)

2

}
≤ kmax

{
d(Sxn, Sxn−1), d(Sxn, Sxn+1), d(Sxn−1, Sxn),

d(Sxn, Sxn+1)

}
= kmax {d(Sxn, Sxn−1), d(Sxn, Sxn+1)}

If

max {d(Sxn−1, Sxn), d(Sxn, Sxn+1)} = d(Sxn, Sxn+1)

then

d(Sxn, Sxn+1) ≤ kd(Sxn, Sxn+1)

a contradiction. Therefore we have

d(Sxn, Sxn+1) ≤ kd(Sxn−1, Sxn, ).

Since k < 1, {Sxn} is a Cauchy sequence in C (see[43] and [85]).

(a) Suppose that T (C) is complete. Then there exists a point z ∈ T (C) such that

Txn → z ∈ T (C). Thus, Sxn → z. Since z ∈ T (C) ⊆ S(C), there exists u ∈ C such

that z = Su. Again by (ii), we have

d(Tu, Txn) ≤ kmax

{
d(Su, Sxn), d(Su, Tu), d(Sxn, Txn),

d(Su, Txn) + d(Sxn, Tu)

2

}
.

Making n→∞, yields

d(Tu, Su) ≤ kmax

{
0, d(Su, Tu),

d(Su, Tu)

2

}
= kd(Su, Tu) < d(Su, Tu),
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a contradiction. Therefore d(Tu, Su) = 0 and Su = Tu = z.

Since the pair (S, T ) is R-weakly commuting on C, it follows that

d(STu, TSu) ≤ Rd(Su, Tu) = Rd(z, z) = 0.

Therefore d(STu, TSu) = 0 and Sz = Tz.

Again by (ii), we have

d(Tz, Txn) ≤ kmax

{
d(Sz, Sxn), d(Sz, Tz), d(Sxn, Txn),

d(Sz, Txn) + d(Sxn, T z)

2

}
Making n→∞, yields

d(Tz, z) ≤ kmax

{
d(Sz, z), d(Sz, Tz), d(z, z),

d(Sz, z) + d(z, Tz)

2

}
= kmax {d(Sz, z), 0, d(Sz, z)}

= kd(Sz, z) = kd(Tz, z),

which implies that z = Tz = Sz.

To prove the uniqueness of z, let us assume that z̃ is another common fixed point of

T and S.

ie., z̃ = T z̃ = Sz̃.

Hence

d(z, z̃) = d(Tz, T z̃) ≤ kmax

{
d(Sz, Sz̃), d(Sz, Tz), d(Sz̃, T z̃),

d(Sz, T z̃) + d(Sz̃, Tz)

2

}
≤ kmax

{
d(z, z̃), d(z, z), d(z̃, z̃),

d(z, z̃) + d(z̃, z)

2

}
≤ kmax

{
d(z, z̃), 0, 0, d(z, z̃)

}
= kd(z, z̃).
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Thus (1− k)d(z, z̃) ≤ 0.

Since k < 1, d(z, z̃) = 0, which implies z = z̃. Hence the unicity is proved.

Since z ∈ T (C), we conclude that F (S) ∩ F (T ) ∩ T (C) = {z}.

(b) Suppose S(C) is complete. Then Sxn → z for some z ∈ S(C) and there exist

u ∈ C such that z = Su. As in part (a), we can show that Sz = Tz = z. Thus

F (S) ∩ F (T ) ∩ S(C) = {z}.

Recently Kim et al. [43] obtained the following result for S-nonexpansive type

mappings in a normed space.

Theorem 1.3.3. Let C be a nonempty q-star shaped subset of a normed space X and

S, T : C → C two mappings satisfying the following conditions:

(i) the mapping T is S-nonexpansive and S is q-affine with q ∈ F (S);

(ii) T (C) ⊆ S(C)

(iii) the pair (S, T ) is R-subweakly commuting;

Suppose S(C) is compact. Then we have the following:

(a) There exists y ∈ S(C) such that Sy = Ty.

(b) If S or T is demicontinuous, then y ∈ F (S) ∩ F (T ).

We extend the above theorem for generalized S-nonexpansive type mappings. In

the sequel we will need the following Corollary 1.3.1 and Proposition 1.3.1.

Corollary 1.3.1. Let (X, d) be a metric space and C a nonempty subset of X. Let

S, T : C → C be a pair of mappings such that
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(i) T (C) ⊆ S(C);

(ii) d(Tx, Ty) ≤ kmax

{
d(Sx, Sy),

d(Sx, Tx) + d(Sy, Ty)

2
,
d(Sx, Ty) + d(Sy, Tx)

2

}
,

k ∈ (0, 1);

(iii) the pair (S, T ) is R-weakly commuting on C.

Then we have the following:

(a) F (S) ∩ F (T ) ∩ T (C) is a singleton if T (C) is complete.

(b) F (S) ∩ F (T ) ∩ S(C) is a singleton if S(C) is complete.

Proof. The proof can be obtained by replacing the condition

d(Tx, Ty) ≤ kmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

d(Sx, Ty) + d(Sy, Tx)

2

}
by

d(Tx, Ty) ≤ kmax

{
d(Sx, Sy),

d(Sx, Tx) + d(Sy, Ty)

2
,
d(Sx, Ty) + d(Sy, Tx)

2

}
in the proof of the Theorem 1.3.2.

Proposition 1.3.1. Let C be a nonempty q-star shaped subset of a normed space X

and S, T : C → C two mappings such that

(i) T is a generalized S-nonexpansive type mapping and S is q-affine with q ∈ F (S);

(ii) T (C) ⊆ S(C)

(iii) the pair (S, T ) is R-subweakly commuting;

(iv) S(C) is complete.
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Then there exist exactly one point xλ such that

xλ = Sxλ = (1− λ)q + λTxλ

for all λ ∈ (0, 1).

Proof. Define Tλ : C → C by Tλx = (1 − λ)q + λTx for all x ∈ C and for each

λ ∈ (0, 1).

Since (S, T ) is R-subweakly commuting and S is q-affine, we have

‖STλx− TλSx‖ = ‖[(1− λ)q + λSTx]− [(1− λ)q + λTSx]‖

= λ‖TSx− STx‖

≤ λR‖Sx− Tλx‖

for all x ∈ C. Thus, the pair (S, Tλ) is R- weakly commuting on C.

Also

‖Tλx− Tλy‖ = λ‖Tx− Ty‖

≤ λmax

{
‖Sx− Sy‖, ‖Sx− Tx‖+ ‖Sy − Ty‖

2
,
‖Sx− Ty‖+ ‖Sy − Tx‖

2

}
for all x, y ∈ C. For x ∈ C, we have Tx ∈ T (C) ⊆ S(C), ie, there exists a point

y ∈ C such that Tx = Sy ∈ S(C).

Observe that

Tλx = (1− λ)q + λTx = (1− λ)q + λSy ∈ S(C).

It follows that Tλ(C) ⊆ S(C) for all λ ∈ (0, 1). Now for each λ ∈ (0, 1), we conclude

that

(i)∗ Tλ(C) ⊆ S(C),
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(ii)∗ ‖Tλx−Tλy‖ ≤ λmax

{
‖Sx− Sy‖, ‖Sx− Tx‖+ ‖Sy − Ty‖

2
,
‖Sx− Ty‖+ ‖Sy − Tx‖

2

}
(iii)∗ S(C) is complete.

(iv)∗ (S, Tλ) is R-weakly commuting on C.

Therefore by Corollary 1.3.1, there exists exactly one point xλ ∈ S(C) such that

xλ = Sxλ = Tλxλ,

which implies that xλ = Sxλ = (1− λ)q + λTxλ.

Now we obtain a common fixed point theorem for generalized S -nonexpansive

type mappings.

Theorem 1.3.4. Let C be a nonempty subset of a normed space X. Let S, T : C → C

be two mappings satisfying conditions (i)− (iii) of Proposition 1.3.1. Suppose S(C)

is compact. Then we have the following:

(a) S and T have a coincidence point y ∈ S(C).

(b) If S or T is demicontinuous, then y ∈ F (S) ∩ F (T ).

Proof. Let {λn} be a sequence in (0, 1) such that λn → 1. By Proposition 1.3.1, there

exists exactly one point xλn ∈ S(C) such that

xλn = Sxλn = (1− λn)q + λnTxλn

for all n ∈ N.

Set xλn := yn. Since S(C) is compact, there exist a subsequence {ynj
} of {yn}

such that

lim
j→∞

Synj
= y ∈ S(C).
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Thus y = Su for some u ∈ C.

The assumption (ii) implies that {Tynj
} is bounded. It follows that

‖ynj
− Tynj

‖ = ‖(1− λnj
)q + λnj

Tynj
− Tynj

‖

= (1− λnj
)‖q − Tynj

‖ → 0 as j →∞

Thus lim
j→∞

Tynj
= lim

j→∞
ynj

= y. By the condition (1.2.3), we have

‖Tynj
− Tu‖ ≤ max

{
‖Synj

− Su‖,
‖Synj

− Tynj
‖+ ‖Su− Tu‖
2

,

‖Synj
− Tu‖+ ‖Su− Tynj

‖
2

}
= max

{
‖Synj

− y‖,
‖Synj

− Tynj
‖+ ‖y − Tu‖
2

,

‖Synj
− Tu‖+ ‖y − Tynj

‖
2

}
.

Making j →∞, we get

‖y − Tu‖ ≤ max

{
0,

1

2
‖y − Tu‖, 1

2
‖y − Tu‖

}
=

1

2
‖y − Tu‖,

a contradiction. Therefore ‖y − Tu‖ = 0 and Tu = y.

(a) Since the pair (S, T ) is R-subweakly commuting, we have

‖STu− TSu‖ ≤ R dist(Su, [Tu, q])

≤ R‖Su− [(1− λn)q + λnTu‖

which on taking the limit as n→∞ gives ‖STu− TSu‖ ≤ 0. Thus Sy = Ty.

(b) Suppose S is demicontinuous. Since lim
m→∞

xm = lim
m→∞

Sxm = y, it follows from the

demicontinuity of S that Sy = y.

But Sy = Ty. Thus we conclude that y ∈ F (S) ∩ F (T ).

Similarly we can prove that y ∈ F (S) ∩ F (T ) when T is demicontinuous.



24

The following example shows the generality of Theorem 1.3.4 over Theorem 1.3.3.

Example 1.3.1. Let X = R (set of reals) with norm ‖x‖ = |x| and C = [0, 4]. Define

S, T : C → C by

Tx =


1 if x ∈ {1, 3, 4},

2 if x = 2,

3
2

otherwise;

and Sx =



1 if x = 1,

4 if x ∈ {2, 3},

2 if x = 4,

1
2

otherwise.

For x = 2 and y = 3, we have

‖Tx− Ty‖ = 1 > 0 = ‖Sx− Sy‖,

and the condition (i) of Theorem 1.3.3 is not satisfied. Further, it can be easily

verified that S and T satisfy all the hypotheses of Theorem 1.3.4 and S1 = T1 = 1,

is a common fixed point of S and T .

1.4 Convergence of Mann iteration for a pair of

mappings

Recently, Rhoades and Temir [81] obtained the following theorem.

Theorem 1.4.1. Let X be a Banach space and C a closed convex subset of X which

satisfies the Opial’s condition. Let S, T : C → C be mappings such that

(i) T is S-nonexpansive;

(ii) S is nonexpansive.
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Suppose {kn} is a real sequence in (0, 1). Then the sequence of Mann iterates defined

for an arbitrary x0 ∈ C by

xn+1 = (1− kn)xn + knTxn, n ∈ {0} ∪ N

converges weakly to a common fixed point of S and T .

The following theorem extends Theorem 1.4.1 to generalized S -nonexpansive type

mappings.

Theorem 1.4.2. Let X be a Banach space and C a closed convex subset of X which

satisfies Opial’s condition. Let S, T : C → C be such that

(i) T is generalized S-nonexpansive type;

(ii) S is nonexpansive;

(iii) F (S) ∩ F (T ) 6= φ.

Suppose {kn} is a real sequence in (0, 1). Then the sequence of Mann iterates defined

for an arbitrary x0 ∈ C by

xn+1 = (1− kn)xn + knTxn, n ∈ {0} ∪ N

converges weakly to a common fixed point of S and T .

Proof. If F (S) ∩ F (T ) is singleton, then the proof is complete. Assume that F (S) ∩

F (T ) is not a singleton. Let z ∈ F (S) ∩ F (T ). Then

‖xn+1 − z‖ = ‖(1− kn)xn + knTxn − z‖

= ‖(1− kn)(xn − z) + kn(Txn − z)‖. (1.4.1)
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Since T is generalized S-nonexpansive type, we have

‖xn+1 − z‖ ≤ (1− kn)‖xn − z‖+ knM(xn, z). (1.4.2)

Now the following cases arise.

Case 1. M(xn, z) = ‖Sxn − Sz‖. Then

‖Txn − z‖ ≤ ‖Sxn − Sz‖.

Since S is nonexpansive on C, the above inequality reduces to

‖Txn − z‖ ≤ ‖xn − z‖.

Case 2. M(xn, z) =
‖Sxn − Txn‖+ ‖Sz − Tz‖

2
. Then

‖Txn − z‖ ≤
‖Sxn − Txn‖+ ‖Sz − Tz‖

2

=
‖Sxn − Txn‖

2

≤ ‖Sxn − z‖+ ‖z − Txn‖
2

=
‖Sxn − Sz‖+ ‖z − Txn‖

2
,

which implies that

‖Txn − z‖ ≤ ‖Sxn − Sz‖.

Nonexpansiveness of S on C implies

‖Txn − z‖ ≤ ‖xn − z‖.
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Case 3. M(xn, z) =
‖Sxn − Tz‖+ ‖Sz − Txn‖

2
. Then

‖Txn − z‖ ≤
‖Sxn − Tz‖+ ‖Sz − Txn‖

2

=
‖Sxn − Tz‖+ ‖Txn − z‖

2

=
‖Sxn − Sz‖+ ‖Txn − z‖

2
,

which implies that

‖Txn − z‖ ≤ ‖Sxn − Sz‖.

Again, since S is nonexpansive on C, it follows that

‖Txn − z‖ ≤ ‖xn − z‖.

Therefore in all the cases, we get

‖Txn − z‖ ≤ ‖xn − z‖. (1.4.3)

By (1.4.2) and (1.4.3), we get

‖xn+1 − z‖ ≤ (1− kn)‖xn − z‖+ kn‖xn − z‖

= ‖xn − z‖

Thus, for kn 6= 0, {‖xn−z‖} is a nonincreasing sequence. Hence, lim
n→∞
‖xn−z‖ exists.

Now we show that {xn} converges weakly to a common fixed point of S and T . Let

{xnk
} and {xmk

} be two subsequences of {xn} which converge weakly to z and z̃ in

F (S) ∩ F (T ) respectively. We will show that z = z̃. Suppose the contrary. Since X
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satisfies Opial’s condition and lim
n→∞
‖xn − z‖ exists, we get

lim
n→∞

‖xn − z‖ = lim
k→∞
‖xnk

− z‖ < lim
k→∞
‖xnk

− z̃‖

= lim
n→∞

‖xn − z̃‖ = lim
j→∞
‖xmj

− z̃‖

< lim
j→∞
‖xmj

− z‖ = lim
n→∞

‖xn − z‖,

a contradiction. Hence z = z̃.

Corollary 1.4.1. Theorem 1.4.1

Proof. It comes form Theorem 1.4.2, when M(x, y) = ‖Sx− Sy‖.

Corollary 1.4.2. Let X be a Banach space and C a closed convex subset of X which

satisfies Opial’s condition. Let T : C → C be generalized nonexpansive type mapping.

Suppose {kn} is a real sequence in (0, 1). Then the sequence of Mann iterates

defined for an arbitrary x0 ∈ C by

xn+1 = (1− kn)xn + knTxn, n ∈ {0} ∪ N

converges weakly to the fixed point of T .

Proof. It comes from Theorem 1.4.2, when S is an identity mapping on X.

Corollary 1.4.3. Let X be a Banach space and C a closed convex subset of X which

satisfies Opial’s condition. Let T : C → C be a nonexpansive mapping.

Suppose {kn} is a real sequence in (0, 1). Then the sequence of Mann iterates

defined for arbitrary x0 ∈ C defined

xn+1 = (1− kn)xn + knTxn, n ∈ {0} ∪ N

converges weakly to the fixed point of T .
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Proof. It comes from Corollary 1.4.2 when m(x, y) = ‖x− y‖.



Chapter 2

Viscosity approximations with
weakly contractive mappings

2.1 Introduction

In this chapter, we study viscosity approximations with (ψ, φ)- weakly contractive

mappings. We show that Browder and Halpern type convergence theorems imply

Moudafi’s viscosity approximations. Our results generalize a number of convergence

theorems including a strong convergence theorem of Song and Liu [97].

2.1.1 Some generalizations of contraction mappings

Definition 2.1.1. Let (X, d) be a metric space and T : X → X. Then T is called a

contraction mapping if there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) (2.1.1)

for all x, y ∈ X.

T : X → X is called nonlinear contraction [11, 14], if

d(Tx, Ty) ≤ α (d(x, y)) (2.1.2)

30
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for all x, y ∈ X. We note that α(0) = 0.

In 1968, Browder [14] proved that if α is right continuous and nondecreasing,

then T has a unique fixed point. Subsequently, this result was extended in 1969 by

Boyd and Wong [11], who observed that it sufficed to assume only the right- upper

semicontinuity of α. T : X → X is called weakly contractive [1, 80], if

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)) (2.1.3)

for all x,y ∈ X, where φ : [0,∞)→ [0,∞) is a continuous and nondecreasing function

such that φ(t) = 0 if and only if t = 0.

The above concept was initially introduced by Krasnoselskĩi et al. [45] where φ

was assumed as a continuous function and φ(0) = 0. Later on, condition(2.1.3) was

rediscovered in a Hilbert space by Alber and Guerre-Delabriere [1], who assumed

additionally that φ is nondecreasing. They proved that weakly contractive mappings

possess a unique fixed point in a Hilbert space. In 2001, Rhoades [80] extended the

above result of [1] to complete metric spaces. Clearly, this is a special form of the

Boyd-Wong [11] condition with α(t) = t− φ(t).

In this thesis, we shall use the following class of mappings satisfying the so called

(ψ, φ) condition (see for details [20, 10, 15]).

T : X → X is called (ψ, φ)-weakly contractive if

ψ (d(Tx, Ty)) ≤ ψ (d(x, y))− φ (d(x, y)) (2.1.4)

for all x, y ∈ X, where ψ, φ : [0,∞)→ [0,∞) are both continuous functions such that

ψ(t), φ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is non-increasing

and ψ is increasing(strictly).
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Remark 2.1.1. Recently Jachymski [38] observed that the theorem proved by Dutta

and Choudhury [20, Theorem 2.1] is equivalent to Browder’s [14] theorem, which

means that the two theorems deal with the same class of mappings. In particular,

if T satisfies (2.1.4), then there exists a continuous and nondecreasing function α :

R+ → R+ such that T is a nonlinear contraction, ie; (2.1.2) holds.

Remark 2.1.2. It is interesting to note that if one takes φ(t) = (1 − k)t, where

0 < k < 1 and ψ(t) = t, then (2.1.4) reduces to (2.1.1). The condition (2.1.3) can

be recovered easily by taking ψ(t) = t in (2.1.4). In fact, the weakly contractive

mappings are also closely related to nonlinear contraction. If φ(t) = t − α(t), then

(2.1.3) turns into (2.1.2). Again if α(t) = kt, then (2.1.2) reduces to (2.1.1). Therefore

(2.1.1)⇒ (2.1.2)⇒ (2.1.3)⇒ (2.1.4).

This shows the generality of (ψ, φ)- weakly contractive mappings over its counter

parts.

Now we provide an example of a (ψ, φ)-weakly contractive mapping on a metric

space which shows that the above implication is not reversible.

Example 2.1.1. [20] Let X = [0, 1] ∪ {2, 3, 4, · · · } and

d(x, y) =


|x− y|, if x, y ∈ [0, 1];x 6= y

x+ y, if at least one of x or y /∈ [0, 1] and x 6= y

0, if x = y.

Then (X, d) is a complete metric space[11].
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Let ψ : [0,∞)→ [0,∞) be defined as

ψ(t) =

 t, if 0 ≤ t ≤ 1

t2, if t > 1.

and φ : [0,∞)→ [0,∞) be defined as

φ(t) =


1
2
t2, if 0 ≤ t ≤ 1

1
2
, if t > 1.

Let T : X → X be defined as

T (x) =

 x− 1
2
x2, if 0 ≤ x ≤ 1

x− 1, if x ∈ {2, 3, · · · }.

It is seen that the condition(2.1.4) remains valid for ψ,φ and T constructed as above.

2.2 Preliminaries

In this section, we recall some basic definitions and strong convergence theorems for

nonexpansive mappings which will be used in the remaining section of the chapter.

Throughout this chapter, we assume that E is a Banach space over the real scalar

field.

Theorem 2.2.1. [20, Theorem 2.1]. Let X be a complete metric space and T : X →

X be a (ψ, φ)-weakly contractive mapping. Then T has a unique fixed point.

Definition 2.2.1. Let K be a nonempty subset of a Banach space E. In Chapter 1

we defined that T : K → K is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ K



34

Let E be a real Banach space with its dual space E∗ and K a nonempty closed

convex subset of E. Let 〈x, x∗〉 be the dual pairing between x ∈ E and x∗ ∈ E∗, and

J : E → 2E
∗

be the normalized duality mapping on E defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E.

E is said to be smooth or to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1.

Definition 2.2.2. [7]. Let K be a nonempty closed convex subset of a Banach

space E and C a nonempty subset of K. A retraction from K to C is a mapping

Q : K → C such that Qx = x for x ∈ C. A retraction Q from K to C is called sunny

if Q satisfies the property: Q(Qx + t(x−Qx)) = Qx for x ∈ K and t > 0 whenever

Qx+ t(x−Qx) ∈ K. A retraction Q from K to C is sunny nonexpansive if Q is both

sunny and nonexpansive.

The well known way to find the fixed point of a nonexpansive mapping T is to use

a contraction to approximate it (Browder [13]). More precisely, take t ∈ (0, 1) and

for x ∈ K define a contraction Tt : K → K by Ttx = tu + (1 − t)Tx, where u ∈ K

is fixed. Then by the Banach contraction principle, Tt has a unique fixed point xt in

K, that is,

xt = tu+ (1− t)Txt. (2.2.1)

Halpern [27], introduced the following explicit iteration scheme for a sequence {αn}

of real numbers in (0, 1) and an arbitrary u ∈ K:

x0 ∈ K, xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 0, (2.2.2)
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where T : K → K is a nonexpansive mapping.

In the case of T having a fixed point, Browder [13] (respectively, Halpern [27])

proved that {xt} (respectively, {xn}) converges strongly to the fixed point of T that

is nearest to u in a Hilbert space. These theorems have been extended in several

directions by many authors (cf. Reich [74] and Xu [100, 101]).

Theorem 2.2.2. [74]. Let K be a bounded closed convex subset of a uniformly smooth

Banach space E and T : K → K a nonexpansive mapping. Fix u ∈ K and define

a sequence {yk} in K by yk = (1 − k)Tyk + ku for k ∈ (0, 1). Then {yk} converges

strongly to Qu as k tends to +0, where Q is the unique sunny nonexpansive retraction

from K onto F (T ), where F (T ) = {x ∈ K : T (x) = x}.

Theorem 2.2.3. [100] . Let E,K, T,Q and u be as in Theorem 2.2.2. Define a

sequence {yn} in K by y1 ∈ K and yn+1 = (1−αn)Tyn +αnu for n ∈ N, where {αn}

is a real sequence in (0, 1) satisfying

(C1) lim
n→∞

αn = 0

(C2)
∑∞

n=1 αn =∞

(C3) lim
n→∞

αn
αn+1

= 1.

Then {yn} converges strongly to Qu.

In 2000, Moudafi [57] introduced the viscosity approximation method and proved

that in a real Hilbert space H, for a given x0 ∈ K ⊂ H, the sequence {xn} generated

by the algorithm

xn+1 = αnS(xn) + (1− αn)Txn, ∀n ≥ 0, (2.2.3)
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where S : K → K is a contraction mapping and {αn} ⊆ (0, 1) satisfying certain condi-

tions, converges strongly to the unique solution x̃ ∈ F (T ) of the following variational

inequality:

〈(I − S)x̃, x̃− x〉 ≥ 0, ∀x ∈ F (T ).

Moudafi in [57] generalized the results of Browder and Halpern for viscosity ap-

proximations. Subsequently, Xu [102] extended Moudafi’s results to the framework

of uniformly smooth Banach spaces. In 2007, Suzuki [98] replaced the contraction

mapping S in condition (2.2.3) by Meir-Keeler type contractions (cf.[50]) to find a

fixed point of a nonexpansive mapping T . Recently, Song and Liu [97] considered the

following viscosity approximations:

yn = αnSyn + (1− αn)Tnyn, n ∈ N (2.2.4)

xn+1 = αnSxn + (1− αn)Tnxn, n ∈ N, (2.2.5)

where S is a weakly contractive mapping and {Tn} a sequence of nonexpansive map-

pings.

In the next section, we extend the above viscosity approximations by Song and Liu

for a more general class of (ψ, φ)-weakly contractive mappings and establish strong

convergence theorems for a sequence of nonexpansive mappings.

2.3 Browder and Halpern type convergence results

Our main results are prefaced by the following lemmas.

Lemma 2.3.1. [72, 99]. Let K be a nonempty convex subset of a smooth Banach

space E and C a nonempty subset of K. Let J be the duality mapping from E into
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E∗, and Q : K → C a retraction. Then Q is both sunny and nonexpansive if and

only if the following holds:

〈x−Qx, J(y −Qx)〉 ≤ 0, (2.3.1)

for all x ∈ K and y ∈ C.

Lemma 2.3.2. [69, Page 302]. Let {an}∞n=1 satisfy the condition

an+1 ≤ ωan + σn, n ∈ N

where an ≥ 0, σn ≥ 0, lim
n→∞

σn = 0 and 0 ≤ ω < 1. Then lim
n→∞

an = 0.

Let {Tn} be a sequence of nonexpansive mappings with F =
⋂∞
n=0 F (Tn) 6= ∅ on

a closed convex subset K of a Banach space E and {αn} a sequence in (0, 1] with

lim
n→∞

αn = 0. (E,K, {Tn} , {αn}) is said to have Browder’s property if for each

u ∈ K, a sequence {yn} in K defined by

yn = (1− αn)Tnyn + αnu, (2.3.2)

for n ∈ N, converges strongly.

Let {αn} be a sequence in [0, 1] with lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞. Then (E,K, {Tn} , {αn})

is said to have Halpern’s property if for each u ∈ K, a sequence {yn} in K defined

by

yn+1 = (1− αn)Tnyn + αnu (2.3.3)

for n ∈ N, converges strongly.

Lemma 2.3.3. [98, Proposition 4]. Let (E,K, {Tn} , {αn}) have Browder’s property.

For each u ∈ K, put Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.3.2).

Then Q is a nonexpansive mapping on K.
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Lemma 2.3.4. [98, Proposition 5]. Let (E,K, {Tn} , {αn}) have Halpern’s property.

For each u ∈ K, put Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.3.3).

Then the following hold: (i) Qu does not depend on the initial point y1. (ii) Q is a

nonexpansive mapping on K.

First we prove the following:

Proposition 2.3.1. Let K be a convex subset of a smooth Banach space E. Let C be

a subset of K and Q a unique sunny nonexpansive retraction from K onto C. Suppose

S : K → K is a (ψ, φ)-weakly contractive mapping where ψ is strictly increasing and

convex and T : K → K a nonexpansive mapping. Then

(i) the composite mapping TS is a (ψ, φ)-weakly contractive on K;

(ii) for each t ∈ (0, 1), the mapping Tt = (1− t)T + tS is a (ψ, φ)-weakly contractive

mapping on K and xt is a unique solution of the fixed point equation:

xt = tSxt + (1− t)Txt; (2.3.4)

(iii) z = Q(Sz) if and only if z ∈ K is a unique solution of the variational inequality:

〈Sz − z, J(y − z)〉 ≤ 0, ∀y ∈ C. (2.3.5)

Proof. (i) For any x, y ∈ K, we have

‖TSx− TSy‖ ≤ ‖Sx− Sy‖.

Since ψ is strictly increasing and S is a (ψ, φ)-weakly contractive mapping, the above

inequality reduces to

ψ(‖TSx− TSy‖) ≤ ψ(‖Sx− Sy‖)

≤ ψ(‖x− y‖)− φ(‖x− y‖).
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So, TS is a (ψ, φ)-weakly contractive mapping.

(ii) For each fixed t ∈ (0, 1) and ϕ(s) = tφ(s), we have

‖Ttx− Tty‖ = ‖(tSx+ (1− t)Tx)− (tSy + (1− t)Ty)‖

≤ (1− t)‖Tx− Ty‖+ t‖Sx− Sy‖

≤ (1− t)‖x− y‖+ t‖Sx− Sy‖.

Since ψ is strictly increasing, the above inequality reduces to

ψ(‖Ttx− Tty‖) ≤ ψ((1− t)‖x− y‖+ t‖Sx− Sy‖).

Further, since ψ is convex, we have

ψ(‖Ttx− Tty‖) ≤ (1− t)ψ(‖x− y‖) + tψ(‖Sx− Sy‖)

≤ (1− t)ψ(‖x− y‖) + t[ψ(‖x− y‖)− φ(‖x− y‖)]

= ψ(‖x− y‖)− tφ(‖x− y‖)

= ψ(‖x− y‖)− ϕ(‖x− y‖).

Thus, Tt is a (ψ, φ)-weakly contractive mapping. By Theorem 2.2.1, it can be seen

that Tt has a unique fixed point xt in K.

(iii) By Theorem 2.2.1, there exists a unique element z ∈ K such that z = Q(Sz).

By Lemma 2.3.1, such a z ∈ C satisfies (2.3.5). Next we show that the variational

inequality (2.3.5) has a unique solution z. Assume p ∈ C is another solution of (2.3.5).

That is,

〈Sp− p, J(z − p)〉 ≤ 0 (2.3.6)

and

〈Sz − z, J(p− z)〉 ≤ 0 (2.3.7)
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Adding (2.3.6) and (2.3.7), we get

0 ≥ 〈p− z − (Sp− Sz), J(p− z)〉

= ‖p− z − (Sp− Sz)‖‖p− z‖

≥ ‖p− z‖2 − ‖Sp− Sz‖‖p− z‖

= ‖p− z‖[‖p− z‖ − ‖Sp− Sz‖],

which implies that

‖p− z‖ − ‖Sp− Sz‖ ≤ 0 or ‖p− z‖ ≤ ‖Sp− Sz‖.

Since ψ is strictly increasing and S is (ψ, φ)-weakly contractive, we have

ψ(‖p− z‖) ≤ ψ(‖Sp− Sz‖)

≤ ψ(‖p− z‖)− φ(‖p− z‖).

Therefore

φ(‖p− z‖) ≤ 0,

which implies that p = z.

First we discuss the Browder type convergence.

Theorem 2.3.1. Let (E,K, {Tn}, {αn}) have Browder’s property. For each u ∈ K,

let Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.2.1). Let S : K → K

be a (ψ, φ)-weakly contractive mapping where ψ is strictly increasing and convex and

φ is nonincreasing. Define {xn} in K by x1 ∈ K and

xn = αnSxn + (1− αn)Tnxn, n ∈ N.

Then {xn} converges strongly to the unique point z ∈ K satisfying Q(Sz) = z.
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Proof. We note that Proposition 2.3.1(ii) assures the existence and uniqueness of

{xn}. It follows from Proposition 2.3.1(i) and Lemma 2.3.3 that QS is a (ψ, φ)-

weakly contractive mapping on K. Then by Theorem 2.2.1, there exists the unique

element z ∈ K such that Q(Sz) = z. Define a sequence {yn} in K by

yn = αnSz + (1− αn)Tnyn, n ∈ N.

Then by the assumption, {yn} converges strongly to Q(Sz).

Now for every n ∈ N, we have

‖xn − yn‖ ≤ (1− αn)‖Tnxn − Tnyn‖+ αn‖Sxn − Sz‖

≤ (1− αn)‖xn − yn‖+ αn‖Sxn − Sz‖,

and

‖xn − yn‖ ≤ ‖Sxn − Sz‖.

Since ψ is strictly increasing, we have

ψ(‖xn − yn‖ ≤ ψ(‖Sxn − Sz‖)

≤ ψ(‖xn − z‖)− φ(‖xn − z‖)

≤ ψ(‖xn − yn‖+ ‖yn − z‖)− φ(‖xn − yn‖+ ‖yn − z‖).

Making n→∞, we obtain

lim
n→∞

ψ(‖xn − yn‖) ≤ lim
n→∞

ψ(‖xn − yn‖+ ‖yn − z‖)− lim
n→∞

φ(‖xn − yn‖+ ‖yn − z‖).

Since {yn} converges strongly to z, we have

lim
n→∞

ψ(‖xn − yn‖) ≤ lim
n→∞

ψ(‖xn − yn‖)− lim
n→∞

φ(‖xn − yn‖).
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Therefore

lim
n→∞

φ(‖xn − yn‖) ≤ 0.

This implies

lim
n→∞
‖xn − yn‖ = 0.

Hence

lim
n→∞

‖xn − z‖ ≤ lim
n→∞

(‖xn − yn‖+ ‖yn − z‖) = 0.

Consequently, {xn} converges strongly to z and the conclusion holds.

Now we have the following result by Song and Liu [97] as a special case of Theorem

2.3.1.

Corollary 2.3.1. [97, Theorem 3.1]. Let (E,K, {Tn}, {αn}) have Browder’s property.

For each u ∈ K, let Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.2.1).

Let S : K → K be a weakly contractive mapping. Define {xn} in K by

xn = αnSxn + (1− αn)Tnxn, n ∈ N.

Then {xn} converges strongly to the unique point z ∈ K satisfying Q(Sz) = z.

Proof. This comes from Theorem 2.3.1 when ψ(t) = t.

We now discuss Halpern type convergence.

Theorem 2.3.2. Let (E,K, {Tn}, {αn}) have Halpern’s property. For each u ∈ K,

let Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.2.2). Let S : K → K

be a (ψ, φ)-weakly contractive mapping where ψ is strictly increasing and convex and

φ is nonincreasing. Define {xn} in K by x1 ∈ K and

xn+1 = αnSxn + (1− αn)Tnxn, n ∈ N.

Then {xn} converges strongly to the unique point z ∈ K satisfying Q(Sz) = z.
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Proof. It follows from Proposition 2.3.1(i) and Lemma 2.3.4 that QS is a (ψ, φ)-

weakly contractive mapping on K. Then by Theorem 2.2.1, there exists a unique

element z ∈ K such that z = Q(Sz). Thus we may define a sequence {yn} in K by

yn+1 = αnSz + (1− αn)Tnyn, n = 0, 1, 2, · · ·

Then by the assumption, yn → Q(Sz) as n→∞. For every n, we have

‖xn+1 − yn+1‖ ≤ ‖αn(Sxn − Sz) + (1− αn)(Tnxn − Tnyn)‖.

Since ψ is strictly increasing, the above inequality reduces to

ψ(‖xn+1 − yn+1‖) ≤ αnψ(‖Sxn − Sz‖) + (1− αn)ψ(‖Tnxn − Tnyn‖)

≤ (1− αn)ψ(‖xn − yn‖) + αn[ψ(‖xn − z‖)− φ(‖xn − z‖)]

≤ (1− αn)ψ(‖xn − yn‖) + αnψ(‖xn − z‖).

Thus by Lemma 2.3.2 we get

lim
n→∞

ψ(‖xn − yn‖) = 0.

Since ψ is continuous,

lim
n→∞

‖xn − yn‖ = 0.

Hence

lim
n→∞

‖xn − z‖ ≤ lim
n→∞

‖xn − yn‖+ lim
n→∞

‖yn − z‖ = 0

Consequently, we obtain the strong convergence of {xn} to z = Q(Sz).

The following result by Song and Liu [97] can be obtained as a special case of

Theorem 2.3.2 when ψ(t) = t.
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Corollary 2.3.2. [97]. Let (E,K, {Tn}, {αn}) have Halpern’s property. For each

u ∈ K, let Qu = lim
n→∞

yn, where {yn} is a sequence in K defined by (2.2.2). Let

S : K → K be a weakly contractive mapping. Define {xn} in K by x1 ∈ K and

xn+1 = αnSxn + (1− αn)Tnxn, n ∈ N.

Then {xn} converges strongly to the unique point z ∈ K satisfying Q(Sz) = z.



Chapter 3

Stability of fixed points in metric
spaces

3.1 Introduction

In this chapter, stability results for the class of (ψ, φ)-weakly contractive mappings us-

ing some general notions of convergence called (G)-convergence and (H)-convergence

are proved in a metric space. We first present some preliminary notions and results

that are needed in the sequel.

3.2 Preliminaries

We begin this section by stating some definitions on mappings which are general-

izations of Banach contraction mapping principle and recalling certain notions of

general convergence due to Barbet and Nachi [6] in metric spaces. We then present

The results of this chapter appear in International Journal of Mathematical Analysis,
7(22)(2013), 1085-1096.
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the above mentioned notions of convergence for (ψ, φ)-weakly contractive mappings

in the setting of metric spaces.

3.2.1 Some general notions of convergence of type (G) and

(H)

Definition 3.2.1. [6] Let (X, d) be a metric space, {Xn}n∈N a family of nonempty

subsets of X and {Tn : Xn → X}n∈N a sequence of mappings. Then:

(i) T∞ is called a (G)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N satisfies

the property (G), where

(G) Gr(T∞) ⊂ lim inf Gr(Tn): ∀x ∈ X∞, ∃{xn}n∈N in
∏
n∈N

Xn such that

lim
n
d(xn, x) = 0 and lim

n
d(Tnxn, T∞x) = 0,

and Gr(T ) stands for the graph of T .

The following notion of (G−) convergence is weaker than (G)-convergence.

(ii) T∞ is called a (G−)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N satisfies

the property (G−), where

(G−) Gr(T∞) ⊂ lim supGr(Tn): ∀x ∈ X∞, ∃{xn}n∈N ∈
∏
n∈N

Xn, which has a

subsequence {xnj
} such that

lim
n
d(xnj

, x) = 0 and lim
n
d(Tnj

xnj
, T∞x) = 0.

(iii) T∞ is called an (H)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N sat-

isfies the property (H), where
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(H) If ∀{xn}n∈N ∈
∏
n∈N

Xn, ∃{yn}n∈N ⊂ X∞ such that

lim
n
d(xn, yn) = 0 and lim

n
d(Tnxn, T∞yn) = 0.

Remark 3.2.1. We note the following essential features of the above limits.

(i) pointwise convergence⇒ (G) - convergence. However, the above implication is not

reversible unless {Tn}n∈N is equicontinuous on a common domain of definition.

Example 3.2.1. [6] Consider the family {Tn : Xn → X}n∈N defined by Tnx =

nx

1 + nx
and T∞(x) = 1 for all x ∈ R+. Then the map T∞ is a (G)-limit of {Tn}

but pointwise convergence is not satisfied.

(ii) a (G)-limit need not be unique (see Example 3.2.2). However if Tn is a (ψ, φ)-

weakly contractive mapping for all n ∈ N, then it is unique (see Proposition

3.4.1).

Example 3.2.2. [6] Consider Xn = R(n ∈ N) and the sequence {Tn : R →

R}n∈N of mappings defined by Tnx =
nx

1 + nx
for all x ∈ R. Then T∞(x) = 1 for

all x ∈ R+, T∞(0) = 0. Clearly T∞ is a (G)-limit of {Tn}. Let T ′∞ : R → R be

defined by T ′∞(x) = T∞(x) if x 6= 0 and T ′∞(0) =
1

2
. Then T ′∞ is also a (G)-limit

of {Tn}, indeed the point x = 0 is the limit of the sequence {xn =
1

n
}n∈N such

that {Tnxn} converges to T ′∞(0).

(iii) an (H)-limit need not be unique.

(iv) when T∞ is continuous and the condition X∞ ⊂ lim inf Xn is satisfied, then the

following implications hold [6, Proposition 9]:

(H)⇒ (G)⇒ (G−).
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However, without the two restrictions above, we have the relationship.

(G)⇒ (G−), (H)⇒ (G−).

Further, a (G)-limit is not necessarily an (H)-limit.

Example 3.2.3. [6] Let {Tn : R+ → R}n∈N be defined by Tnx =
nx

1 + nx
and

T∞x = 1 for all x ∈ R+. Then T∞ is a (G)-limit of {Tn}. But the property (H)

is not satisfied, since for the null sequence {xn} we get |Tn0 − T∞yn| = 1 for

any sequence {yn} converging to 0.

(v) the interrelationship between the (H) convergence and uniform convergence is

captured in [6, Proposition 10].

3.3 Convergence and Stability of Fixed Points in

Metric Spaces

In this section, we first recall some fundamental results in stability of fixed points by

Bonsall [9] and Nadler Jr. [59] followed by their generalizations by Barbet and Nachi

[6] for sequences of mappings in variable domains.

Theorem 3.3.1. [9] Let (X, d) be a complete metric space and T and Tn(n = 1, 2, ...)

be contraction mappings of X into itself with the same Lipschitz constant 0 < k < 1,

and with fixed points u and un(n = 1, 2, ...), respectively. Suppose that lim
n
Tnx = Tx

for every x ∈ X. Then, lim
n
un = u.

We have the following remarks with respect to Theorem 3.3.1:
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(a) The condition that all the contraction mappings Tn(n = 1, 2, ...) have the same

Lipschitz constant k is too restrictive as one can easily see by the remarks and

examples given in Nadler Jr.[59].

(b) The assumption that T is a contraction mapping is superfluous as this follows

from the fact that Tn(n = 1, 2, ...) is a contraction and d is continuous.

(c) the completeness condition may be replaced by the assumption of the existence

of fixed points for the mappings T and Tn(n = 1, 2, ...). Because there exist

contraction mappings on spaces which are not complete and have a fixed point.

Under uniform convergence of the sequence {Tn} to T and retaining the essence

of (a), (b) and (c), the following stability result was obtained by Nadler Jr.[59].

Theorem 3.3.2. Let (X, d) be a metric space and Tn : X → X be a mapping with

at least one fixed point un, for each n = 1, 2, ... and let T : X → X be a contraction

mapping with fixed point u. If the sequence {Tn} converges uniformly to T , then the

sequence {un} converges to u.

The above theorems were generalized by Barbet and Nachi [6] using (G) and (H)-

convergence where a number of supporting results were also obtained to arrive at the

desired conclusions.

The following are the main stability results of Barbet and Nachi [6].

Theorem 3.3.3. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that, for all n ∈ N, Sn is a k-contraction from (Xn, d) into (X, d). If, for all

n ∈ N, xn is a fixed point of Sn then the sequence {xn}n∈N converges to x∞.
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Theorem 3.3.4. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (H) and

such that S∞ is a k∞-contraction. If, for any n ∈ N, xn is a fixed point of Sn then

the sequence {xn}n∈N converges to x∞.

3.4 Stability results under (G)- convergence

In this section, we present some stability results for a sequence of (ψ, φ)- weakly

contractive mappings satisfying the property (G).

First we prove the following Proposition which ensures a unique G-limit for the

sequence of mappings {Tn}.

Proposition 3.4.1. Let X be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a sequence of (ψ, φ)-weakly contractive mappings. If

T∞ : X∞ → X is a (G)-limit of {Tn}, then T∞ is unique.

Proof. Let T∞, T
∗
∞ : X∞ → X be two (G)- limits of the sequence {Tn}. Then for any

point x ∈ X∞, there exist two sequences {xn} and {yn} in
∏
n∈N

Xn converging to x

such that {Tnxn} and {Tnyn} converge to T∞x and T ∗∞x respectively. Thus

lim
n→∞

d(Tnxn, T∞x) = 0 and lim
n→∞

d(Tnyn, T
∗
∞x) = 0. (3.4.1)

Since {xn} and {yn} converge to x, we have

d(xn, yn) ≤ d(xn, x) + d(yn, x)→ 0 as n→∞. (3.4.2)

Further,

d(T∞x, T
∗
∞x) ≤ d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T

∗
∞x). (3.4.3)
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Since Tn is (ψ, φ)-weakly contractive for each n ∈ N,

ψ (d(Tnxn, Tnyn)) ≤ ψ (d(xn, yn))− φ (d(xn, yn)) ,

which implies that

ψ (d(Tnxn, Tnyn)) ≤ ψ (d(xn, yn)) .

As ψ is increasing, from the above inequality we have

d(Tnxn, Tnyn) ≤ d(xn, yn). (3.4.4)

From (3.4.3) and (3.4.4) we get,

d(T∞x, T
∗
∞x)) ≤ d(T∞x, Tnxn) + d(xn, yn) + d(Tnyn, T

∗
∞x).

Letting n→∞ and using (3.4.1) and (3.4.2), the above expression tends to zero and

we deduce that

T∞x = T ∗∞x.

The following result in [6, Proposition 1] follows directly from Proposition 3.4.1.

Corollary 3.4.1. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

X and {Tn : Xn → X}n∈N a sequence of k-contraction mappings. If T∞ : X∞ → X

is a (G)-limit of {Tn}, then T∞ is unique.

We now prove the following theorem which is our first stability result.

Theorem 3.4.1. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) such that
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for all n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping. If for all n ∈ N, xn is a

fixed point of Tn, then the sequence {xn}n∈N converges to x∞.

Proof. Let xn be a fixed point of Tn for each n ∈ N. Then, since the property (G)

holds and x∞ ∈ X∞, there exists a sequence {yn} in
∏
n∈N

Xn such that yn → x∞ and

Tnyn → T∞x∞. Therefore

ψ (d(xn, x∞)) = ψ (d(Tnxn, T∞x∞))

≤ ψ (d(Tnxn, Tnyn) + d(Tnyn, T∞x∞)) .

Taking the limit as n→∞ and using the continuity of ψ and φ, we obtain

lim
n→∞

ψ (d(xn, x∞)) ≤ lim
n→∞

ψ (d(Tnxn, Tnyn))

≤ lim
n→∞

[ψ (d(xn, yn))− φ (d(xn, yn))] (by condition (2.1.4))

≤ lim
n→∞

[ψ (d(xn, x∞) + d(yn, x∞))]− lim
n→∞

[φ (d(xn, x∞) + d(yn, x∞))]

= lim
n→∞

ψ (d(xn, x∞))− lim
n→∞

φ (d(xn, x∞)) .

Thus

lim
n→∞

φ (d(xn, x∞)) ≤ 0.

By the property of φ, we get lim
n→∞

d(xn, x∞) = 0. Hence the conclusion follows.

The following result in [6, Theorem 2] follows from the above theorem in view of

Remark 2.1.2.

Corollary 3.4.2. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) such that

for all n ∈ N, Tn is a k-contraction from Xn into X. If for all n ∈ N, xn is a fixed

point of Tn, then the sequence {xn}n∈N converges to x∞.
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When Xn = X for all n ∈ N, X is complete and ψ(t) = t, φ(t) = (1− k)t, for all

t > 0 and k ∈ (0, 1), then we get the following result of Bonsall [9, Theorem 2] as a

consequence of Theorem 3.4.1.

Corollary 3.4.3. Let X be a complete metric space, and {Tn : X → X} a family

of k-contraction mappings with Lipschitz constant k < 1 and such that the sequence

{Tn}n∈N converges pointwise to T∞. Then for all n ∈ N, Tn has a unique fixed point

xn and the sequence {xn}n∈N converges to x∞.

The following theorem proves the existence of a fixed point for a (G)-limit of a

sequence of (ψ, φ)-weakly contractive mappings.

Theorem 3.4.2. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) such that

for all n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping. Assume that for all n ∈ N,

xn is a fixed point of Tn. Then

T∞ admits a fixed point ⇔ {xn} converges and limxn ∈ X∞

⇔ {xn} admits a subsequence converging to a point of X∞.

Proof. The necessary part follows from Theorem 3.4.1. To prove the sufficiency, let

{xnj
} be a subsequence of {xn} such that lim

j
xnj

= x∞ ∈ X∞. By the property (G),

there exists a sequence {yn} in
∏
n∈N

Xn such that yn → x∞ and Tnyn → T∞x∞ as

n→∞. For any j ∈ N, we have

d(x∞, T∞x∞) ≤ d(x∞, xnj
) + d(Tnj

xnj
, Tnj

ynj
) + d(Tnj

ynj
, T∞x∞). (3.4.5)

By condition (2.1.4),

ψ
(
d(Tnj

xnj
, Tnj

ynj
)
)
≤ ψ

(
d(xnj

, ynj
)
)
− φ

(
d(xnj

, ynj
)
)

≤ ψ
(
d(xnj

, ynj
)
)
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which implies that

d(Tnj
xnj

, Tnj
ynj

) ≤ d(xnj
, ynj

).

Then, from (3.4.5),

d(x∞, T∞x∞) ≤ d(x∞, xnj
) + d(xnj

, ynj
) + d(Tnj

ynj
, T∞x∞)

≤ d(x∞, xnj
) + d(xnj

, x∞) + d(ynj
, x∞) + d(Tnj

ynj
, T∞x∞).

Now passing over to the limit as j →∞, we deduce that T∞x∞ = x∞.

Remark 3.4.1. Under the assumptions of Theorem3.4.2, and if,

1. lim inf Xn ⊂ X∞ (ie; the limit of any convergent sequence {zn} in
∏
n∈N

Xn is in

X∞), then T∞ admits a fixed point ⇔ {xn} converges.

2. lim supXn ⊂ X∞ (ie; the cluster point of any sequence {zn} in
∏
n∈N

Xn is in

X∞), then T∞ admits a fixed point ⇔ {xn} admits a convergent subsequence.

The following Proposition proves that the (G)- limit mapping T∞ : X∞ → X is a

(ψ, φ) weakly contraction if each mapping Tn : Xn → X is a (ψ, φ) weakly contraction.

Proposition 3.4.2. Let X be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that, for all n ∈ N, Tn is a (ψ, φ)- weakly contractive mapping. Then T∞ is

(ψ, φ)-weakly contractive.

Proof. Given two points x and y in X∞. By the property (G), there exist two se-

quences {xn} and {yn} in
∏
n∈N

Xn converging respectively to x and y such that the

sequences {Tnxn} and {Tnyn} converge respectively to T∞x and T∞y. For all n ∈ N,

by triangle inequality, we have

d(T∞x, T∞y) ≤ d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T∞y).
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Since ψ is increasing,

ψ (d(T∞x, T∞y)) ≤ ψ (d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T∞y)) .

Letting n→∞, and using the continuity of both ψ and φ we have,

ψ (d(T∞x, T∞y)) ≤ lim
n→∞

ψ (d(Tnxn, Tnyn))

≤ lim
n→∞

[ψ (d(xn, yn))− φ (d(xn, yn))]

= ψ (d(x, y))− φ (d(x, y)) ,

and the conclusion holds.

The following result in [6, Proposition 4] follows from Proposition 3.4.2.

Corollary 3.4.4. Let X be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying property (G) such that,

for all n ∈ N, Tn is a kn-contraction. Then T∞ is a k-contraction where {kn} is a

bounded (resp.convergent) sequence with k =: sup
n
kn (resp.lim

n
kn).

Under a compactness assumption, the existence of a fixed point of the (G)- limit

mapping can be obtained from the existence of fixed points of the (ψ, φ)-weakly

contractive mappings Tn.

Theorem 3.4.3. Let {Xn}n∈N be a family of nonempty subsets of a metric space

X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that, for all n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping. Assume that

lim supXn ⊂ X∞ and
⋃
n∈N

Xn is relatively compact. If for any n ∈ N, Tn admits

a fixed point xn, then the (G)-limit mapping T∞ admits a fixed point x∞ and the

sequence {xn}n∈N converges to x∞.
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Proof. Let xn be the fixed point of Tn for each n ∈ N. From the compactness

condition, there exists a convergent subsequence {xnj
} of {xn}. Now, by Remark

3.4.1, T∞ admits a fixed point x∞ and by Theorem 3.4.2, the sequence {xn} converges

to x∞.

As a consequence of Theorem 3.4.3 and Remark 3.4.1, we have the following result

in [6, Theorem7].

Corollary 3.4.5. Let {Xn}n∈N be a family of nonempty subsets of a metric space X

and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) such that

for all n ∈ N, Tn is a k-contraction. Assume that lim supXn ⊂ X∞ and
⋃
n∈N

Xn is

relatively compact. If for all n ∈ N, Tn admits a fixed point xn, then the (G)-limit

mapping T∞ admits a fixed point.

Now we present a stability result for (G−) convergence, which is weaker than

(G)-convergence, for a sequence of mappings {Tn}.

Theorem 3.4.4. Let {Xn}n∈N be a family of nonempty subsets of a metric space X

and {Tn : Xn → X}n∈N a family of (ψ, φ)-weakly contractive mappings satisfying the

property (G−). If for all n ∈ N, xn is a fixed point of Tn, then x∞ is a cluster point

of the sequence {xn}n∈N.

Proof. By the property (G−), there exists a sequence {yn} in
∏
n∈N

Xn which has a

subsequence {ynj
} such that ynj

→ x∞ and Tnj
ynj
→ T∞x∞ as j →∞. We have

d(xnj
, x∞) ≤ d(Tnj

xnj
, Tnj

ynj
) + d(Tnj

ynj
, T∞x∞),

which implies that

ψ
(
d(xnj

, x∞)
)
≤ ψ

(
d(Tnj

xnj
, Tnj

ynj
) + d(Tnj

ynj
, T∞x∞)

)
.
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Taking the limit as j →∞,

lim
j→∞

ψ
(
d(xnj

, x∞)
)
≤ lim

j→∞
ψ
(
d(Tnj

xnj
, Tnj

ynj
)
)
.

Since each mapping Tnj
is (ψ, φ)-weakly contractive and ψ is increasing, we have

lim
j→∞

ψ
(
d(xnj

, x∞)
)
≤ lim

j→∞

[
ψ
(
d(xnj

, ynj
)
)
− φ

(
d(xnj

, ynj
)
)]

≤ lim
j→∞

[
ψ
(
d(xnj

, x∞) + d(ynj
, x∞)

)
− φ

(
d(xnj

, x∞) + d(ynj
, x∞)

)]
= lim

j→∞
ψ
(
d(xnj

, x∞)
)
− lim

j→∞
φ
(
d(xnj

, x∞)
)
.

Hence,

lim
j→∞

φ
(
d(xnj

, x∞)
)

= 0.

Thus {xnj
} converges to x∞, the fixed point of T∞.

The following result in [6, Theorem 8] follows from Theorem 3.4.4.

Corollary 3.4.6. Let {Xn}n∈N a family of nonempty subsets of a metric space X

and let {Tn : Xn → X}n∈N a family of k-contraction mappings satisfying the property

(G−). If for all n ∈ N, xn is a fixed point of Tn, then x∞ is a cluster point of the

sequence {xn}n∈N.

3.5 Stability results under (H)- convergence

Now, we present another stability result using the (H)-convergence as follows which

is a generalization of uniform convergence.

Theorem 3.5.1. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

a metric space X and let {Tn : Xn → X}n∈N be a family of mappings satisfying the
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property (H) such that T∞ is a (ψ, φ)-weakly contractive mapping. If for all n ∈ N,

xn is a fixed point of Tn, then the sequence {xn}n∈N converges to x∞.

Proof. By property (H), there exists a sequence {yn} in X∞ such that d(xn, yn)→ 0

and d(Tnxn, T∞yn)→ 0. We have

d(xn, x∞) ≤ d(Tnxn, T∞yn) + d(T∞yn, T∞x∞).

Since ψ is increasing,

ψ (d(xn, x∞)) ≤ ψ (d(Tnxn, T∞yn) + d(T∞yn, T∞x∞)) .

Taking the limit as n→∞,

lim
n→∞

ψ (d(xn, x∞)) ≤ lim
n→∞

ψ (d(T∞yn, T∞x∞))

≤ lim
n→∞

[ψ (d(yn, x∞))− φ (d(yn, x∞))]

≤ lim
n→∞

[ψ(d(xn, yn) + d(xn, x∞)− φ(d(xn, yn) + d(xn, x∞))]

= lim
n→∞

ψ (d(xn, x∞))− lim
n→∞

φ (d(xn, x∞)) .

Thus

lim
n→∞

φ (d(xn, x∞)) = 0,

and hence the conclusion follows.

The following result in [6, Theorem 11] follows directly from the above theorem.

Corollary 3.5.1. Let X be a metric space, {Xn}n∈N a family of nonempty subsets of

a metric space X and let {Tn : Xn → X}n∈N be a family of mappings satisfying the

property (H) such that T∞ is a k- contraction. If for any n ∈ N, xn is a fixed point

of Tn, then the sequence {xn}n∈N converges to x∞.



Chapter 4

Stability results in 2-metric spaces

4.1 Introduction

In Chapter 3 we proved stability of fixed points using (G)- convergence and (H)-

convergence for (ψ, φ)-weakly contractive mappings in metric spaces . In this chapter

(Sections 4.2.4 and 4.3), we extend these results to 2-metric spaces. We note that

these results may be considered as significant in the sense that the 2-metric spaces

differ topologically from metric spaces in many ways (see Remark 4.2.1).

4.2 Preliminaries

S.Gähler introduced in the 1960’s the notion of 2-metric space[23, 24, 25]. Since then,

several mathematicians have been developing and introducing analogues in the setting

of 2- metric spaces. Regarding fixed point theorems, the first result in these spaces

was obtained by Iséki [32]. In this section we present the notion of 2-metric spaces

and some related properties of these spaces and extend the notion of (G)-convergence

and (H)-convergence to 2-metric spaces.
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4.2.1 2-Metric Spaces

The following notion of 2-metric spaces is due to Gähler [23].

Definition 4.2.1. Let X be a nonempty set. A real valued function ρ on X×X×X

is said to be a 2- metric on X if

(d1) for any two distinct elements x, y ∈ X there exists an element z ∈ X such that

ρ(x, y, z) 6= 0,

(d2) ρ(x, y, z) = 0 when at least two of x, y, z are equal,

(d3) ρ(x, y, z) = ρ(z, x, y) = ρ(y, z, x) for all x, y, z in X and

(d4) ρ(x, y, z) ≤ ρ(x, y, u) + ρ(x, u, z) + ρ(u, y, z) for all x, y, z, u in X (triangle area

inequality or simply TA-inequality).

The pair (X, ρ) is called a 2-metric space. It is easily seen that ρ is non-negative

and it abstracts the properties of the area function for euclidean triangles in the same

manner as a metric abstracts the properties of the length function. Thus geometrically

ρ(x, y, z) represents the area of a triangle formed by the points x, y and z in X.

4.2.2 Basic notions on 2-metric Spaces

We start this section with the following well known definitions:

Definition 4.2.2. Let {xn} be a sequence in a 2-metric space (X, ρ). Then:

(i) {xn} is said to be convergent with limit z ∈ X if

lim
n→∞

ρ(xn, z, a) = 0 for all a ∈ X.



61

Notice that if the sequence {xn} converges to z, then

lim
n→∞

ρ(xn, a, b) = ρ(z, a, b) for all a, b ∈ X.

(ii) {xn} is said to be Cauchy if

lim
m,n→∞

ρ(xm, xn, a) = 0 for all a ∈ X.

(iii) (X, ρ) is said to be complete if every Cauchy sequence in X is convergent.

Definition 4.2.3. A 2-metric space (X, ρ) is said to be bounded if there is a constant

K such that ρ(a, b, c) ≤ K for all a, b, c ∈ X.

Remark 4.2.1. The following remarks capture some distinct features of topological

properties of 2-metric spaces which differ from those of metric spaces.

(i) Given any metric space which consists of more than two points, there always

exists a 2-metric compatible with the topology of the space. But the converse is

not always true as one can find a 2-metric space which does not have a countable

basis associated with one of its arguments (see Gähler [23, page 123]).

(ii) It is known that a 2-metric ρ is continuous in any one of its arguments. Generally,

we cannot however assert the continuity of ρ in all three arguments. But if it is

continuous in any two arguments, then it is continuous in all the three arguments

(see Gähler [23, Theorem 20 and example on page 145]).

(iii) In a complete 2-metric space a convergent sequence need not be Cauchy.

Example 4.2.1. [60] Let X = {0, 1, 1
2
, 1
3
, ...}. Define ρ : X ×X ×X → [0,∞)

as

ρ(x, y, z) =

 1 if x, y, z are distinct and{ 1
n
, 1
n+1
} ⊂ {x, y, z} for some positive integer n

0 otherwise.
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Then (X, ρ) is a complete 2-metric space. The sequence { 1

n
} converges to 0,

but { 1

n
} is not Cauchy.

(iv) In a 2-metric space (X, ρ) every convergent sequence is Cauchy whenever ρ is

continuous. However, the converse need not be true.

Example 4.2.2. [60] Let X = {a}∪{an : n = 1, 2, ...}∪{b}∪{bn : n = 1, 2, ...}, where

a = (1, 0), b = (0, 0), an = (1 + 1
n
, 0) and bn = (0, 1

n
). Define ρ : X ×X ×X → [0,∞)

as

ρ(x, y, z) =


1 if {x, y, z} = {an, bn, a} or {an, bn, b} for some n ∈ N or

{an, bn, am} or {an, bn, bm} for some m,n ∈ N with m 6= n

∆ x y z otherwise,

where ∆ x y z is the area of the triangle formed by the points x, y and z. Then (X, ρ)

is a complete 2-metric space and every convergent sequence in it is Cauchy. But ρ is

not continuous on X, for {an} converges to a, {bn} converges to b and {ρ(an, bn, a)}

does not converge to zero.

Definition 4.2.4. Let (X, ρ) be a 2-metric space. A mapping T : X → X is called

a k-contraction (or simply contraction)(cf. [33], [46]) if there exists a k ∈ (0, 1) such

that:

ρ(Tx, Ty, a) ≤ kρ(x, y, a) for all x, y, a ∈ X. (4.2.1)

4.2.3 Some weakly contractive mappings in 2-metric spaces

In this section, we extend the weakly contractive conditions to 2-metric spaces.

Let (X, ρ) be a 2-metric space and T : X → X.
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T is called a nonlinear contraction if

ρ(Tx, Ty, a) ≤ α(ρ(x, y, a)) (4.2.2)

for all x, y ∈ X, where α : [0,∞) → [0,∞) is upper semicontinuous from the right

and α(t) < t for t > 0. We note that α(0) = 0.

T is called weakly contractive on X if

ρ(Tx, Ty, a) ≤ ρ(x, y, a)− φ(ρ(x, y, a)) (4.2.3)

for all x, y, a ∈ X, where φ : [0,∞) → [0,∞) is continuous and nondecreasing such

that φ(t) = 0 if and only if t = 0.

T is called (ψ, φ)- weakly contractive if

ψ(ρ(Tx, Ty, a)) ≤ ψ(ρ(x, y, a))− φ(ρ(x, y, a)) (4.2.4)

for all x, y ∈ X, where ψ, φ : [0,∞)→ [0,∞) are both continuous functions such that

ψ(t), φ(t) > 0 for t ∈ (0,∞) and ψ(0) = 0 = φ(0). In addition, φ is nonincreasing

and ψ is strictly increasing.

Remark 4.2.2. Notice that if one takes φ(t) = (1 − k)t, where 0 < k < 1, then

(4.2.3) reduces to (4.2.1). When ψ(t) = t, then condition (4.2.4) recovers condition

(4.2.3). If φ(t) = t− α(t), then (4.2.3) turns into (4.2.2). Therefore

(4.2.1)⇒ (4.2.2)⇒ (4.2.3)⇒ (4.2.4).

4.2.4 Some general notions of convergence of type(G) and

(H) in 2-metric spaces

We first recall the following notions of convergence from [52]. We note that these

notions are the extensions of corresponding notions introduced by Barbet and Nachi
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[6] in the setting of metric spaces.

Definition 4.2.5. Let (X, ρ) be a 2-metric space, {Xn}n∈N a sequence of non-empty

subsets of X and {Tn : Xn → X}n∈N a sequence of mappings. Then:

(i) T∞ is called a (G)-limit of sequence {Tn}n∈N, or equivalently {Tn}n∈N satisfies the

property (G), if the following condition hold:

(G) Gr(T∞) ⊂ lim inf Gr(Tn): for all x ∈ X∞, there exists a sequence {xn} in∏
n∈N

Xn such that for all a ∈ X,

lim
n
ρ(xn, x, a) = 0 and lim

n
ρ(Tnxn, T∞x, a) = 0,

and Gr(T ) stands for the graph of T .

(ii) T∞ is called a (G−)-limit of sequence {Tn}n∈N, or equivalently {Tn}n∈N satisfies

the property (G−), where

(G−) Gr(T∞) ⊂ lim supGr(Tn): for all z ∈ X∞, there exists a sequence {xn}

in
∏
n∈N

Xn and which has a subsequence {xnj
} such that

lim
j
ρ(xnj

, z, a) = 0 and lim
j
ρ(Tnj

xnj
, T∞z, a) = 0, for all a ∈ X.

(iii) T∞ is called an (H)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N sat-

isfies the property (H), where

(H) For all sequence {xn} in
∏
n∈N

Xn, there exists a sequence {yn} in X∞ such

that for all a ∈ X

lim
n
ρ(xn, yn, a) = 0 and lim

n
ρ(Tnxn, Tnyn, a) = 0.
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4.3 Stability under (G)-convergence

In this section, we present stability results under (G)-convergence for sequence of

(ψ, φ)-weakly contractive mappings in 2-metric spaces. These results are the exten-

sions of their counter parts which were obtained in Chapter 3 (Theorems 3.4.1, 3.4.2, 3.4.3

and 3.4.4).

Throughout, unless stated otherwise, X will denote a 2-metric space (X, ρ) with

ρ continuous.

The following theorem gives a sufficient condition for the existence of a unique

(G)-limit in a 2-metric space.

Proposition 4.3.1. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a sequence of (ψ, φ)-weakly contractive mappings. If

T∞ : X∞ → X is a (G)-limit of {Tn} , then T∞ is unique.

Proof. Assume that T∞ : X∞ → X and T ∗∞ : X∞ → X are (G)-limit mappings of

the sequence {Tn}. Hence for any point x ∈ X∞, there exist two sequences {xn} and

{yn} in Π
n∈N

Xn converging to x such that {Tnxn} and {Tnyn} converge to T∞ and T ∗∞

respectively. Therefore

lim
n→∞

ρ (Tnxn, T∞x, a) = 0, lim
n→∞

ρ ( Tnyn, T
∗
∞x, a) = 0 for all a ∈ X.

Since Tn is (ψ, φ)-weakly contractive for each n ∈ N,

ψ(ρ(Tnxn, Tnyn, a)) ≤ ψ(ρ(xn, yn, a))− φ(ρ(xn, yn, a))

which implies that

ψ(ρ(Tnxn, Tnyn, a)) ≤ ψ(ρ(xn, yn, a)).
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As ψ is increasing, from the above inequality we have

ρ(Tnxn, Tnyn, a) ≤ ρ(xn, yn, a). (4.3.1)

By the triangular area inequality and condition (4.3.1), for all n ∈ N and for any

a ∈ X, we have

ρ(T∞x, T
∗
∞x, a) ≤ ρ(T∞x, T

∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, a)

≤ ρ(T∞x, T
∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, Tnyn)

+ρ(Tnxn, Tnyn, a) + ρ(Tnyn, T
∗
∞x, a)

≤ ρ(T∞x, T
∗
∞x, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T

∗
∞x, Tnyn)

+ρ(xn, yn, a) + ρ(Tnyn, T
∗
∞x, a)→ 0 as n→∞.

Hence we deduce that lim
n→∞

ρ(T∞x, T
∗
∞x, a) = 0 and the unicity of the limit is estab-

lished.

When ψ(t) = t and φ(t) = (1−k)t and k ∈ (0, 1) in the above proposition, we get

the following result.

Corollary 4.3.1. [53, Proposition 2.2] Let X be a 2-metric space, {Xn}n∈N a fam-

ily of nonempty subsets of X and { Tn : Xn → X}n∈N a sequence of k-contraction

mappings. If T∞ : X∞ → X is a (G)-limit of {Tn}, then T∞ is unique.

When ψ(t) = t and φ(t) = t− α(t) in the above proposition, the following result

is obtained.

Corollary 4.3.2. Corollary 4.3.1 with k-contraction replaced by nonlinear contrac-

tion.
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The following theorem is our first stability result.

Theorem 4.3.1. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) such

that for all n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping where ψ is increasing

and φ is nonincreasing. If for all n ∈ N, xn is a fixed point of Tn then the sequence

{xn}n∈N converges to x∞.

Proof. Let xn be a fixed point of Tn for each n ∈ N. Since the property (G) holds

and x∞ ∈ X∞, there exists a sequence {yn} in Π
n∈N

Xn such that

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.

We have

ψ (ρ(xn, x∞, a)) = ψ (ρ(Tnxn, T∞x∞, a))

≤ ψ (ρ(Tnxn, T∞x∞, Tnyn) + ρ(Tnxn, Tnyn, a) + ρ(Tnyn, T∞x∞, a)) .

Making n → ∞ in the above inequality and using the continuity of ψ and φ, we

obtain

lim
n→∞

ψ (ρ(xn, x∞, a)) ≤ lim
n→∞

ψ (ρ(Tnxn, T∞x∞, Tnyn) + ρ(Tnxn, Tnyn, a) + ρ(Tnyn, T∞x∞, a))

= lim
n→∞

ψ (ρ(Tnxn, Tnyn, a))

≤ lim
n→∞

[ψ (ρ(xn, yn, a))− φ (ρ(xn, yn, a))]

≤ lim
n→∞

[ψ (ρ(xn, yn, x∞) + ρ(xn, x∞, a) + ρ(x∞, yn, a))

−φ (ρ(xn, yn, x∞) + ρ(xn, x∞, a) + ρ(x∞, yn, a))]

= lim
n→∞

ψ (ρ(xn, x∞, a))− lim
n→∞

φ (ρ(xn, x∞, a)) ,
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which implies that

lim
n→∞

φ (ρ(xn, x∞, a)) ≤ 0.

By the property of φ, we get lim
n→∞

ρ(xn, x∞, a) = 0 and hence the conclusion.

Corollary 4.3.3. [53, Theorem 2.3] Let X be a 2-metric space, {Xn}n∈N a family

of nonempty subsets of X and {Tn : Xn → X}n∈N a family of mappings satisfying the

property (G) such that, for all n ∈ N, Tn is a k-contraction. If for all n ∈ N, xn is a

fixed point of Tn then the sequence {xn}n∈N converges to x∞.

Proof. It comes from Theorem 4.3.1 when ψ(t) = t and φ(t) = (1 − k)t and k ∈

(0, 1).

The existence of a fixed point for a (G)-limit mapping is characterized by the

following result when it is a (ψ, φ)-weakly contractive mapping.

Theorem 4.3.2. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that for any n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping. Assume that, for

any n ∈ N, xn is a fixed point of Tn. Then

T∞ admits a fixed point ⇔ {xn} converges and limxn ∈ X∞

⇔ {xn} admits a subsequence converging to a point of X∞.

Proof. The necessary part is already proved in Theorem 4.3.1. To prove the suffi-

ciency, let {xnj
} be a subsequence of {xn} such that lim

j→∞
xnj

= x∞ ∈ X∞. By the

property (G), there exists a sequence {yn} in
∏
n∈N

Xn such that

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.
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Hence for any a ∈ X and n ∈ N, we have

ρ (x∞, T∞x∞, a) ≤ ρ(x∞, xnj
, a) + ρ

(
Tnj

xnj
, T∞x∞, a

)
+ ρ

(
x∞, T∞x∞, Tnj

xnj

)
≤ ρ(x∞, xnj

, a) + ρ
(
Tnj

xnj
, T∞x∞, Tnj

ynj

)
+ ρ

(
Tnj

xnj
, Tnj

ynj
, a
)

+ρ
(
Tnj

ynj
, T∞x∞, a

)
+ ρ

(
x∞, T∞x∞, Tnj

xnj

)
≤ ρ

(
x∞, xnj

, a
)

+ ρ
(
Tnj

xnj
, T∞x∞, Tnj

ynj

)
+ ρ

(
xnj

, ynj
, a
)

+

ρ
(
Tnj

ynj
, T∞x∞, a

)
+ ρ

(
x∞, T∞x∞, Tnj

xnj

)
by condition (4.3.1) .

The right hand side of the above expression tends to zero as j → ∞ and hence

T∞x∞ = x∞, proving that x∞ is a fixed point of T∞.

Corollary 4.3.4. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that for any n ∈ N, Tn is a nonlinear contraction. Assume that for any n ∈ N,

xn is a fixed point of Tn. Then

T∞ admits a fixed point ⇔ {xn} converges and limxn ∈ X∞

⇔ {xn} admits a subsequence converging to a point of X∞.

Remark 4.3.1. Under the assumptions of Theorem 4.3.2, and if

(i) lim inf Xn ⊂ X∞ (i.e. the limit of any convergent sequence {zn} in Π
n∈N

Xn is in

X∞), then

T∞ admits a fixed point ⇔{xn} converges.

(ii) lim supXn ⊂ X∞ (i.e. the cluster point of any sequence {zn} in Π
n∈N

Xn is in X∞)

then

T∞ admits a fixed point ⇔{xn} admits a convergent subsequence.
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The following proposition provides a sufficient condition under which a (G)-limit of

a sequence of (ψ, φ)-weakly contractive mappings is again (ψ, φ)-weakly contractive.

Proposition 4.3.2. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and { Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that for any n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping. Then T∞ is

(ψ, φ)-weakly contractive.

Proof. Given two points x and y in X∞, by the property (G) there exist two sequences

{xn} and {yn} in Π
n∈N

Xn converging respectively to x and y such that the sequences

{Tnxn} and {Tnyn} converge respectively to T∞x and T∞y. For any n ∈ N and a ∈ X,

ψ (ρ(T∞x, T∞y, a)) ≤ ψ (ρ(T∞x, T∞y, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T∞y, a))

≤ ψ (ρ(T∞x, T∞y, Tnxn) + ρ(T∞x, Tnxn, a) + ρ(Tnxn, T∞y, Tnyn)

+ρ (Tnxn, Tnyn, a) + ρ(Tnyn, T∞y, a)) .

Letting n→∞, and using the continuity of both ψ and φ we have

ψ (ρ(T∞x, T∞y, a)) ≤ lim
n→∞

ψ (ρ(Tnxn, Tnyn, a))

≤ lim
n→∞

[ψ (ρ(xn, yn, a))− φ (ρ(xn, yn, a))] .

Hence we conclude that ψ (ρ(T∞x, T∞y, a)) ≤ ψ (ρ(x, y, a))− φ (ρ(x, y, a)) .

Corollary 4.3.5. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that for any n ∈ N, Tn is a k-contraction from Xn to X. Then T∞ is a k-

contraction.
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Proof. This comes from Proposition 4.3.2 when ψ(t) = t and φ(t) = (1 − k)t and

k ∈ (0, 1).

Under a compactness assumption, the existence of a fixed point of the (G)-limit

mapping can be obtained from the existence of fixed points of the (ψ, φ)-weakly

contractive mappings Tn.

Theorem 4.3.3. Let {Xn}n∈N be a family of nonempty subsets of a 2-metric space

X and {Tn : Xn → X}n∈N a family of mappings satisfying the property (G) and such

that, for any n ∈ N, Tn is a (ψ, φ)-weakly contractive mapping where ψ is increasing

and φ is nonincreasing. Assume that lim supXn ⊂ X∞ and
⋃
n∈N

Xn is relatively com-

pact. If for any n ∈ N, Tn admits a fixed point xn, then the (G)-limit mapping T∞

admits a fixed point x∞ and the sequence {xn}n∈N converges to x∞.

Proof. Let xn be the fixed point of Tn for n ∈ N. From compactness condition, there

exists a convergent subsequence {xnj
} of {xn}. Now by Remark 4.3.1, T∞ admits a

fixed point x∞ and by Theorem 4.3.1, the sequence {xn} converges to x∞.

Corollary 4.3.6. [53, Theorem 2.10] Let {Xn}n∈N be a family of nonempty subsets

of a 2-metric space X and {Tn : Xn → X}n∈N a family of mappings satisfying the

property (G) and such that, for any n ∈ N, Tn is a k-contraction. Assume that

lim supXn ⊂ X∞ and
⋃
n∈N

Xn is relatively compact. If for any n ∈ N, Tn admits

a fixed point xn, then the (G)-limit mapping T∞ admits a fixed point x∞ and the

sequence {xn}n∈N converges to x∞.

Proof. This comes from Theorem 4.3.3, when ψ(t) = t and φ(t) = (1 − k)t and

k ∈ (0, 1).
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The following result establishes that a fixed point of a (G−)-limit mapping is a

cluster point of the sequence of fixed points associated with {Tn} .

Theorem 4.3.4. Let {Xn} be a family of nonempty subsets of a 2-metric space X

and {Tn : Xn → X}n∈N a family of (ψ, φ)-weakly contractive mappings satisfying the

property (G−), where ψ is increasing and φ is nonincreasing. If for any n ∈ N, xn is

a fixed point of Tn then x∞ is a cluster point of the sequence {xn}n∈N .

Proof. By the property (G−), there exists a sequence {yn} in Π
n∈N

Xn which has a

subsequence {ynj
} such that

lim
j→∞

ρ(ynj
, x∞, a) = 0 and lim

j→∞
ρ
(
Tnj

ynj
, T∞x∞, a

)
= 0 for all a ∈ X.

By the triangular area inequality, we have

ρ(xnj
, x∞, a) ≤ ρ(Tnj

xnj
, T∞x∞, Tnj

ynj
) + ρ(Tnj

xnj
, Tnj

ynj
, a) + ρ(Tnj

ynj
, T∞x∞, a).

Since ψ is increasing,

ψ
(
ρ(xnj

, x∞, a)
)
≤ ψ

(
ρ(Tnj

xnj
, T∞x∞, Tnj

ynj
) + ρ(Tnj

xnj
, Tnj

ynj
, a) + ρ(Tnj

ynj
, T∞x∞, a)

)
.

Since ψ is continuous, taking the limit as j →∞, we get

lim
j→∞

ψ
(
ρ(xnj

, x∞, a)
)
≤ lim

j→∞
ψ
(
ρ(Tnj

xnj
, Tnj

ynj
, a)
)

≤ lim
j→∞

[
ψ
(
ρ(xnj

, ynj
, a)
)
− φ

(
ρ(xnj

, ynj
, a)
)]

≤ lim
j→∞

[
ψ
(
ρ(xnj

, ynj
, x∞) + ρ(xnj

, x∞, a) + ρ(x∞, ynj
, a)
)

− φ
(
ρ(xnj

, ynj
, x∞) + ρ(xnj

, x∞, a) + ρ(x∞, ynj
, a)
)]

= lim
j→∞

ψ
(
ρ(xnj

, x∞, a)
)
− lim

j→∞
φ
(
ρ(xnj

, x∞, a)
)
.

Hence

lim
j→∞

φ
(
ρ(xnj

, x∞, a)
)
≤ 0.
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By the property of φ, we deduce that

lim
j→∞

ρ(xnj
, x∞, a) = 0.

Thus {xnj
} converges to x∞, the fixed point of T∞.

Corollary 4.3.7. [53, Theorem 2.12] Let {Xn} be a family of nonempty subsets

of a 2-metric space X and {Tn : Xn → X}n∈N a family of k-contraction mappings

satisfying the property (G−). If for any n ∈ N, xn is a fixed point of Tn, then x∞ is

a cluster point of the sequence {xn}n∈N.

Proof. This comes from Theorem 4.3.4, when ψ(t) = t and φ(t) = (1 − k)t and

k ∈ (0, 1).

4.4 Stability under (H)-convergence

The following theorem is our second stability result using the (H)-convergence in

2-metric spaces.

Theorem 4.4.1. Let X be a 2-metric space, {Xn}n∈ N a family of nonempty subsets

of X, {Tn : Xn → X}n∈N a family of mappings satisfying the property (H) and such

that T∞ is a (ψ, φ)-weakly contractive mapping. If for any n ∈ N, xn is a fixed point

of Tn then the sequence {xn}n∈N converges to x∞.

Proof. By the property (H), there exists a sequence {yn} inX∞ such that lim
n→∞

ρ(xn, yn, a) =

0 and lim
n→∞

ρ(Tnxn, T∞yn, a) = 0 for any a ∈ X. Hence for any a ∈ X,

ρ(xn, x∞, a) = ρ(Tnxn, T∞x∞, a)

≤ ρ(Tnxn, T∞yn, a) + ρ(T∞yn, T∞x∞, a) + ρ(Tnxn, T∞x∞, T∞yn).
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Since ψ is increasing,

ψ (ρ(xn, x∞, a)) ≤ ψ (ρ(Tnxn, T∞yn, a) + ρ(T∞yn, T∞x∞, a) + ρ(Tnxn, T∞x∞, T∞yn)) .

Taking the limit as n→∞,

lim
n→∞

ψ (ρ(xn, x∞, a)) ≤ lim
n→∞

ψ (ρ(T∞yn, T∞x∞, a))

≤ lim
n→∞

[ψ (ρ(yn, x∞, a))− φ (ρ(yn, x∞, a))]

≤ lim
n→∞

[ψ (ρ(yn, x∞, xn) + ρ(yn, xn, a) + ρ(xn, x∞, a))

− φ (ρ(yn, x∞, xn) + ρ(yn, xn, a) + ρ(xn, x∞, a))]

= lim
n→∞

ψ (ρ(xn, x∞, a))− lim
n→∞

φ (ρ(xn, x∞, a)) .

Thus

lim
n→∞

φ (ρ(xn, x∞, a)) ≤ 0.

By the property of φ, we deduce that

lim
n→∞

ρ(xn, x∞, a) = 0,

and the conclusion follows.

Corollary 4.4.1. [53, Theorem 3.4] Let X be a 2-metric space, {Xn}n∈ N a sequence

of nonempty subsets of X, {Tn : Xn → X}n∈N a sequence of mappings satisfying the

property (H) and such that T∞ is a k-contraction. If for any n ∈ N, xn is a fixed

point of Tn then the sequence {xn}n∈N converges to x∞.

Proof. This comes from Theorem 4.4.1, when ψ(t) = t and φ(t) = (1 − k)t and

k ∈ (0, 1).



Chapter 5

Stability of fixed points in 2-metric
spaces involving sequences of
metrics

5.1 Introduction

In Chapter 4, we proved the existence of a unique (G)- limit for a sequence of (ψ, φ)-

weakly contractive mappings in 2- metric spaces. We then extended the results of

Barbet and Nachi [6] on the stability of fixed points in metric space using (G) conver-

gence and (H) convergence to 2- metric spaces. In this chapter, we consider 2-metric

spaces involving sequences of metrics and obtain a number of stability results for the

class of (ψ, φ)-weakly contractive mappings. This chapter is based on the work of

Fraser and Nadler [22].

The results of this chapter appear in Advances in Fixed Point Theory, 3(2)(2013), 341-354.
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5.2 Preliminaries

The following classical results were obtained by Fraser and Nadler [22] in metric

spaces.

Theorem 5.2.1. [22, Theorem 2] Let (X, d) be a metric space and {dn}n∈N a sequence

of metrics on X converging uniformly to d, where each dn is equivalent to d. Let

{Tn : X → X}n∈N be a sequence of contractive mappings on (X, dn) converging

pointwise to a mapping T∞ : X → X. If for each n ∈ N, xn is a fixed point of Tn,

and if {xn}n∈N admits a subsequence converging to x∞, then x∞ is a fixed point of

T∞.

Theorem 5.2.2. [22, Theorem 3] Let (X, d) be a metric space and {dn}n∈N a sequence

of metrics on X converging uniformly to d. Let {Tn : X → X}n∈N be a sequence of

k−contraction mappings on (X, dn) converging pointwise to a mapping T∞ : X → X.

If for each n ∈ N, xn is a fixed point of Tn, then the sequence {xn}n∈N converges to

x∞.

We extend the above theorems to 2-metric spaces for a sequence of (ψ, φ)-weakly

contractive mappings satisfying the property (G).

Following Nachi [58](see also [54]), we have the following convergence properties

in 2-metric spaces.

Definition 5.2.1. Let (X, ρ) be a 2-metric space. {ρn}n∈N a sequence of 2-metrics on

X and {Xn}n∈N a family of nonempty subsets of X. Then {ρn}n∈N is said to satisfy

property:

(A) For all x ∈ X∞, a ∈ X and {xn}n∈N ∈ Π
n∈N

Xn, lim
n→∞

ρn(xn, x, a) = 0 ⇔

lim
n→∞

ρ(xn, x, a) = 0.
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(A0) For all x, a ∈ X, and {xn}n∈N ⊂ X, lim
n→∞

ρn(xn, x, a) = 0 ⇔ lim
n→∞

ρ(xn, x, a) =

0.

(B) For all sequences {xn}n∈N ∈ Π
n∈N

Xn, there exists a sequence {yn} in X∞ such

that lim
n→∞

ρn(xn, yn, a) = 0⇔ lim
n→∞

ρ(xn, yn, a) = 0 for all a ∈ X.

(B0) For all sequences {xn}n∈N ⊂ X and {yn}n∈N ⊂ X : lim
n→∞

ρn(xn, yn, a) = 0 ⇔

lim
n→∞

ρ(xn, yn, a) = 0.

5.3 (G)-convergence and sequences of metrics

In this section we present stability results for a sequence {Tn}n∈N of (ψ, φ)- weakly

contractive mappings in 2-metric spaces. We obtain the following analogue of Theo-

rem 5.2.1 to 2 -metric spaces for (ψ, φ)- weakly contractive mappings.

Theorem 5.3.1. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (A). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of (ψ, φ)-weakly contractive mappings on (Xn, ρn)

converging in the sense of (G) to a mapping T∞ : X∞ → X. If for each n ∈ N, xn is

a fixed point of Tn and if the sequence {xn}n∈N admits a subsequence converging to a

point x∞ ∈ X∞, then x∞ is a fixed point of T∞.

Proof. Let {xnj
} be a subsequence of {xn} converging to x∞ ∈ X∞. Then by the

property (G) there exists a sequence {yn} ∈ Π
n∈N

Xn such that:

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.

Therefore by the property (A),

lim
n→∞

ρn(yn, x∞, a) = 0 and lim
n→∞

ρn(Tnyn, T∞x∞, a) = 0.
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If we define a sequence {zn} such that

znj
= xnj

for all j ∈ N,

zn = yn if n 6= nj, for any j ∈ N.

Then lim
n→∞

ρ(zn, x∞, a) = 0 and so lim
n→∞

ρn(zn, x∞, a) = 0, by (A).

Now

ρ(zn, yn, a) ≤ ρ(zn, yn, x∞) + ρ(zn, x∞, a) + ρ(x∞, yn, a)→ 0 as n→∞,

and thus

lim
n→∞

ρn(zn, yn, a) = 0.

Further, we have

ρnj

(
Tnj

znj
, T∞x∞, a

)
≤ ρnj

(
Tnj

znj
, T∞x∞, Tnj

ynj

)
(5.3.1)

+ρnj

(
Tnj

znj
, Tnj

ynj
, a
)

+ ρnj

(
Tnj

ynj
, T∞x∞, a

)
.

Since Tnj
is a (ψ, φ)-weakly contractive mapping on (Xnj

, ρnj
) for each j ∈ N, we

have

ψ(ρnj
(Tnj

znj
, Tnj

ynj
, a)) ≤ ψ

(
ρnj

(znj
, ynj

, a)
)
− φ

(
ρnj

(znj
, ynj

, a)
)

≤ ψ
(
ρnj

(znj
, ynj

, a)
)
.

By the monotonicity of ψ, we obtain

ρnj
(Tnj

znj
, Tnj

ynj
, a) ≤ ρnj

(znj
, ynj

, a). (5.3.2)

From (5.3.1) and (5.3.2) we have

ρnj

(
Tnj

znj
, T∞x∞, a

)
≤ ρnj

(
Tnj

znj
, T∞x∞, Tnj

ynj
) + ρnj

(znj
, ynj

, a
)
+ρnj

(
Tnj

ynj
, T∞x∞, a

)
.
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On taking the limit as j →∞, we obtain

lim
j→∞

ρnj

(
Tnj

znj
, T∞x∞, a

)
= 0. (5.3.3)

Since Tnj
znj

= Tnj
xnj

= xnj
and xnj

converges to x∞ as j → ∞, (5.3.3) becomes

ρnj
(x∞, T∞x∞, a) = 0 for all a ∈ X. Hence T∞x∞ = x∞.

In view of Remark 4.2.2 in Chapter 4, we have the following results as a direct

consequence of Theorem 5.3.1.

Corollary 5.3.1. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (A). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of k-contraction mappings on (Xn, ρn) converging

in the sense of (G) to a mapping T∞ : X∞ → X. If for each n ∈ N, xn is a fixed

point of Tn and if the sequence {xn}n∈N admits a subsequence converging to a point

x∞ ∈ X∞, then x∞ is a fixed point of T∞.

Corollary 5.3.2. [54, Theorem 2.3] Corollary 5.3.1 with k-contraction replaced by

nonlinear contraction.

When Xn = X for all n ∈ N in Theorem 5.3.1, we have the following results:

Corollary 5.3.3. Let X be a 2-metric space and {ρn}n∈N, a sequence of 2-metrics on

X satisfying the property (A0). Let {Tn : X → X}n∈N be a sequence of (ψ, φ)-weakly

contractive mappings on (X, ρn) converging pointwise to a mapping T∞ : X → X.

If for each n ∈ N, xn is a fixed point of Tn and if the sequence {xn}n∈N admits a

subsequence converging to a point x∞ ∈ X, then x∞ is a fixed point of T∞.

Corollary 5.3.4. Corollary 5.3.3 with (ψ, φ)- weakly contractive mapping replaced by

k-contraction.
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The following theorem which is an extension of Theorem 5.2.2 to the context of

2- metric spaces is our first stability result in this chapter.

Theorem 5.3.2. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (A). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of (ψ, φ)-weakly contractive mappings on (Xn, ρn)

converging in the sense of (G) to a mapping T∞ : X∞ → X. If for each n ∈ N, xn is

a fixed point of Tn, then the sequence {xn}n∈N converges to x∞.

Proof. Let x∞ ∈ X∞ and by the property (G), there exists a sequence {yn} in Π
n∈N

Xn

such that

lim
n→∞

ρ(yn, x∞, a) = 0 and lim
n→∞

ρ(Tnyn, T∞x∞, a) = 0

for all a ∈ X. By the property (A), we deduce that

lim
n→∞

ρn(yn, x∞, a) = 0 and lim
n→∞

ρn(Tnyn, T∞x∞, a) = 0.

We have

ψ (ρn(xn, x∞, a)) = ψ (ρn(Tnxn, T∞x∞, a))

≤ ψ (ρn(Tnxn, T∞x∞, Tnyn) + ρn(Tnxn, Tnyn, a) + ρn(Tnyn, T∞x∞, a)) .

Making n→∞ in the above inequality, we obtain

lim
n→∞

ψ (ρn(xn, x∞, a)) ≤ lim
n→∞

ψ (ρn(Tnxn, T∞x∞, Tnyn) + ρn(Tnxn, Tnyn, a)

+ρn(Tnyn, T∞x∞, a))

= lim
n→∞

ψ (ρn(Tnxn, Tnyn, a))

≤ lim
n→∞

[ψ (ρn(xn, yn, a))− φ (ρn(xn, yn, a))]
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≤ lim
n→∞

ψ (ρn(xn, yn, x∞) + ρn(xn, x∞, a) + ρn(x∞, yn, a))

− lim
n→∞

φ (ρn(xn, yn, x∞) + ρn(xn, x∞, a) + ρn(x∞, yn, a))

= lim
n→∞

ψ (ρn(xn, x∞, a))− lim
n→∞

φ (ρn(xn, x∞, a)) .

Hence

lim
n→∞

φ (ρn(xn, x∞, a)) ≤ 0.

By the property of φ we get

lim
n→∞

ρn(xn, x∞, a) = 0

and the conclusion holds.

Corollary 5.3.5. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (A). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of k -contraction mappings on (Xn, ρn) converging

in the sense of (G) to a mapping T∞ : X∞ → X. If for each n ∈ N, xn is a fixed

point of Tn, then the sequence {xn}n∈N converges to x∞.

Corollary 5.3.6. [54, Theorem2.7] Corollary 5.3.5 with k-contraction replaced by

nonlinear contraction.

If Xn = X for all n ∈ N in Theorem 5.3.2, then we have the following results:

Corollary 5.3.7. Let X be a 2-metric space and {ρn}n∈N a sequence of 2-metrics on

X satisfying the property (A0). Let {Tn : X → X}n∈N be a sequence of (ψ, φ)-weakly

contractive mappings on (X, ρn) converging pointwise to a mapping T∞ : X → X. If

for each n ∈ N, xn is a fixed point of Tn, then the sequence {xn}n∈N converges to x∞.
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The following result can be compared with Theorem 5.2.2.

Corollary 5.3.8. Corollary 5.3.7 with (ψ, φ)- weakly contractive mapping replaced by

k-contraction.

5.4 (H)-convergence and sequences of metrics

The following theorem is our second stability result in this chapter using the (H)

-convergence in 2-metric spaces.

Theorem 5.4.1. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (B). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of mappings on (Xn, ρn) converging in the sense

of (H) to a (ψ, φ)-weakly contractive mapping T∞ : X∞ → X. If for each n ∈ N,

xn ∈ Xn is a fixed point of Tn, then the sequence {xn}n∈N converges to x∞.

Proof. By the property (H), there exists a sequence {yn} in X∞ such that

lim
n→∞

ρ(xn, yn, a) = 0 and lim
n→∞

ρ(Tnxn, T∞yn, a) = 0 for any a ∈ X.

Therefore using the property (B), we have

lim
n→∞

ρn(xn, yn, a) = 0 and lim
n→∞

ρn(Tnxn, T∞yn, a) = 0 for any a ∈ X.

By the triangular area inequality,

ψ (ρn(xn, x∞, a)) ≤ ψ (ρn(Tnxn, T∞x∞, T∞yn) + ρn(Tnxn, T∞yn, a) + ρn(T∞yn, T∞x∞, a)) .
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Taking the limit as n→∞,

lim
n→∞

ψ (ρn(xn, x∞, a)) ≤ lim
n→∞

ψ (ρn(T∞yn, T∞x∞, a))

≤ lim
n→∞

[ψ (ρn(yn, x∞, a))− φ (ρn(yn, x∞, a))]

≤ lim
n→∞

[ψ (ρn(yn, x∞, xn) + ρn(yn, xn, a) + ρn(xn, x∞, a))]

− lim
n→∞

[φ (ρn(yn, x∞, xn) + ρn(yn, xn, a) + ρn(xn, x∞, a))]

= lim
n→∞

[
ψ (ρn(xn, x∞, a))− lim

n→∞
φ (ρn(xn, x∞, a))

]
.

Hence

lim
n→∞

φ (ρn(xn, x∞, a)) = 0

and the conclusion follows.

Corollary 5.4.1. Let (X, ρ) be a 2-metric space and {ρn}n∈N a sequence of 2-metrics

on X satisfying the property (B). Let {Xn}n∈N be a family of nonempty subsets of X

and {Tn : Xn → Xn}n∈N a sequence of mappings on (Xn, ρn) converging in the sense

of (H) to a k-contraction mapping T∞ : X∞ → X. If for each n ∈ N, xn ∈ Xn is a

fixed point of Tn, then the sequence {xn}n∈N converges to x∞.

Corollary 5.4.2. [54, Theorem2.11] Corollary 5.4.1 with k-contraction replaced by

nonlinear contraction.

When Xn = X for all n ∈ N in Theorem 5.4.1 , we obtain the following result:

Corollary 5.4.3. Let X be a 2-metric space and {ρn}n∈N a sequence of 2-metrics on

X satisfying the property (B0). Let {Tn : X → X} be a sequence of mappings on

(X, ρn) converging uniformly to a (ψ, φ)- weakly contractive mapping T∞ : X → X.

If for each n ∈ N, xn is a fixed point of Tn then the sequence {xn}n∈N converges to

x∞.
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Corollary 5.4.4. Corollary 5.4.3 with (ψ, φ)- weakly contractive mapping replaced by

k-contraction.



Appendix

List of Published papers

1. Some existence and convergence theorems for nonexpansive type mappings, Inter-

national Journal of Analysis (2013), Art. ID 539723 (with S. N Mishra and

Rajendra Pant).

2. Sequences of (ψ, φ)-weakly contractive mappings and stability of fixed Points, In-

ternational Journal of Mathematical Analysis, 7(22)(2013), 1085-1096 (with S.

N Mishra and Rajendra Pant).

3. Some general convergence theorems on sequences of fixed points, Advances in Fixed

Point Theory, 3(2)(2013), 341-354 (with S. N Mishra and Rajendra Pant).
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[32] K. Iséki: Fixed point theorem in 2 -metric spaces, Math. Sem. Notes Kobe Univ.

3(1975), 133–136.
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spaces, Math. Sem. Notes Kôbe Univ. 7(1979), 291–295.

[88] A. K. Sharma: On generalized contractions in 2-metric spaces, Math. Sem.
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