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Abstract

American options are the most commonly traded financial derivatives in the market. Pric-
ing these options fairly, so as to avoid arbitrage, is of paramount importance. Closed
form solutions for American put options cannot be utilised in practice and so numerical
techniques are employed. This thesis looks at the work done by other researchers to find
an analytic solution to the American put option pricing problem and suggests a practical
method, that uses Monte Carlo simulation, to approximate the American put option price.
The theory behind option pricing is first discussed using a discrete model. Once the con-
cepts of arbitrage-free pricing and hedging have been dealt with, this model is extended
to a continuous-time setting. Martingale theory is introduced to put the option pricing
theory in a more formal framework. The construction of a hedging portfolio is discussed
in detail and it is shown how financial derivatives are priced according to a unique risk-
neutral probability measure. Black-Scholes model is discussed and utilised to find closed
form solutions to European style options. American options are discussed in detail and it
is shown that under certain conditions, American style options can be solved according to
closed form solutions. Various numerical techniques are presented to approximate the true
American put option price. Chief among these methods is the Richardson extrapolation on
a sequence of Bermudan options method that was developed by Geske and Johnson. This
model is extended to a Repeated-Richardson extrapolation technique. Finally, a Monte
Carlo simulation is used to approximate Bermudan put options. These values are then ex-
trapolated to approximate the price of an American put option. The use of extrapolation
techniques was hampered by the presence of non-uniform convergence of the Bermudan
put option sequence. When convergence was uniform, the approximations were accurate
up to a few cents difference.
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Chapter 1

Introduction

Derivative Securities are financial instruments that promise some payment on a future
date depending on the price movement of the underlying stock. An option is a type of
derivative security that gives the holder the right and not the obligation to exercise the
claim at maturity. The two most common forms of vanilla options are European and
American options.

European Options

A European call (put) option is an option that entitles the owner of the option to buy (sell)
a financial asset for a fixed price K, the strike price, at the expiry date of the contract.
The option holder may choose whether or not to exercise the option.

American Options

An American call (put) option is an option that entitles the owner of the option to buy
(sell) a financial asset for a fixed price K at any time up until the expiry date of the
contract. The option holder may choose whether or not to exercise the option.

1.1 Pricing American Put Options

European options are fairly easy to price since they can only be exercised at one point in
time, namely the expiration date. American options on the other hand can be exercised

1



1.1. PRICING AMERICAN PUT OPTIONS 2

at any point up to expiration. It is this ability to be exercised at any point that makes
American options more difficult to price than their European counterparts. It will be
shown that it is never optimal to exercise an American call option before expiration. As a
result an American and European call option for the same underlying stock with the same
strike price and expiration date are identical in value. The difficult task is trying to find
a price for the American put option. Because American options are the most commonly
traded options in the market, a solution to the pricing problem is of great importance.

The basic idea of risk-neutral pricing is dealt with in chapter 2. In order to develop the
ideas behind the pricing process a discrete-time model is set up. This is extended to a
continuous-time model in chapter 3 where geometric Brownian motion is used to model
the stock price process. The highly celebrated Black-Scholes model is set up in chapter
4. This model is used as the basis for trying to solve the American pricing problem. In
chapter 5 American options are discussed in detail as well as the conditions under which
early expiration is beneficial. Numerical methods are currently used to approximate the
true value of American put options. Geske and Johnson [10] developed a technique that
was modified by Chang, et al. [6] and uses Richardson extrapolation to solve the pricing
problem. The theory behind this technique is discussed in detail in chapter 6. A simple
Monte Carlo simulation is run to obtain estimates of the true values of American put
options.



Chapter 2

Discrete-Time Risk-Neutral
Valuation Model

In order to price a derivative claim on some underlying stock that expires at time t, t > 0,
we set up a simple binary model to track the movement of the stock price process. The
basic assumptions are that the stock can only be observed at two time points, namely 0
and t. Starting at time 0 the stock’s value can become one of two possible values at time t.
The derivative claim on this stock promises some payoff that depends on the value of the
stock at time t. The question that now arises is how much this derivative security should
be worth at time 0. An initial guess would be to determine the expected value of the payoff
of the claim under the market probability measure (discounting to bring the value back to
time 0). However, this would not be a fair estimate of the discounted price of the claim
because it may be possible for the holder to make a risk-free profit regardless of the stock’s
value. A situation in which a profit can be extracted with no risk is known as an arbitrage
opportunity. Since market forces move to eliminate arbitrages we need a model with no
arbitrage opportunities as a basic assumption.

Thus, in order to price a claim we construct a hedging portfolio that consists of units of the
underlying security and cash bonds. A hedging portfolio on a derivative security replicates
the payoff of the derivative for all possible values of the stock at expiration. In order to
avoid an arbitrage, the time-zero value of the derivative must be the same as the value
of the portfolio at time 0. If they were different, then buying the cheaper one and selling
the more expensive one would result in a risk free profit. It will be shown that if a claim
can be hedged, then the time-zero value of the claim is equal to the discounted expected
value of the payoff of the claim under a new probability measure. This new probability

3



2.1. PRICING STRATEGY USING A SIMPLE BINARY MODEL 4

measure is equivalent to the market measure and is known as the risk-neutral (or equivalent
martingale) probability measure. Even though we will use expectation to price derivative
claims, it is important to remember that hedging is the underlying mechanism that ensures
an arbitrage-free price.

The basic binary model assumed is very crude and so it will be extended to a multiperiod
binomial model. This model assumes that the stock process can be observed at a finite
number of time points and can be thought of as a number of binary trees strung together
with branches that recombine. By letting the number of observable time points increase
and the time between observations decrease, the continuous-time stock process model can
be constructed as the limit of the binomial model.

2.1 Pricing Strategy Using a Simple Binary Model

Consider a simple model where the price of a financial asset is observed at time 0 and at
time t and interest rates are zero. Furthermore, assume that the asset can only be in one
of two possible states at time t. Let the asset be priced as S0 at time 0 and as either Su or
Sd at time t (where Sd < S0 < Su). Let C be the time-0 value of a European call option
to purchase the asset at time t for strike price K. What is the value of C?

C can be calculated as follows:

If St is the value of the asset at time t then St = Su or St = Sd. If the option is exercised
then the holder of the option realises a payoff of St−K. The option will only be exercised
if St > K since the option holder will want to pay the cheapest price for the asset. Thus
the payoff will be 0 if St ≤ K.

Payoff = (St −K)+ = max(St −K, 0)

Now suppose that you are told that St = Su with probability p and St = Sd with probability
1−p. One might think that the fair value of C would simply be the expected payoff of the
option under the probability measure (p, 1 − p). This will be shown to be incorrect. The
reason for this is that taking such an expectation may result in an arbitrage opportunity.

Arbitrage Opportunity

An arbitrage opportunity is an opportunity to obtain a risk-free profit (Etheridge [9]). It
can be achieved by taking advantage of the price difference between identical or similar
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financial instruments in the market. Suppose St = $100, Su = $200, Sd = $50, p = 0.5,
r = 0 and K = $100. Let C be the value of a call option at time 0.

E[Payoff ] = E[(St −K)+]

= ($200− $100)+ × 0.5 + ($50− $100)+ × 0.5

= $100× 0.5

= $50

Thus if C = $50 then an arbitrage opportunity is available. To see this suppose that at
time 0 you borrow $50 from the bank and sell a call option for $50. You then have $100
which you use to buy one unit of stock. At this time you owe the bank $50. At time t if
the value of the security is $200 then the option is exercised and you sell the security for
$100. You then realise a profit of $50. If the value of the security is $50 then the option is
not exercised and you sell the security for $50. You use the $50 to repay your debt. Either
way no loss is incurred which means an arbitrage opportunity is present.

The reason for avoiding arbitrage opportunities in the pricing of our options is that market
forces move to eliminate such opportunities. If it is discovered that such an opportunity is
available then everyone will start enjoying these risk-free profits and the market will not
be in a state of equilibrium. The question now is how to price a financial derivative in
order to avoid an arbitrage opportunity? The answer is to construct a hedging portfolio
(also known as a replicating portfolio).

Present Value Analysis

In the previous examples it was assumed for the sake of simplicity that interest rates were
zero. We now need to incorporate interest rates into the model. We need a model for the
time value of money. If the value of a currency is 1 now then in t time units it will be
worth ert (where the constant r (r > 0) is the continuously compounded interest rate).

The Law of One Price

If the present value payoff of two investments are identical then either the investments have
the same cost or there is an arbitrage opportunity (Ross [16]). This is intuitive since if two
investments with the same payoff function differed in their initial cost then an arbitrage
could be obtained by buying the cheaper investment and selling the more expensive one.
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There is no risk because when the investments mature the respective payoffs will cancel
each other out. Thus our pricing problem is solved by constructing a hedging portfolio
that has the same payoff at each time step as the financial derivative we wish to price
(the portfolio consists of units of the underlying security and units of a cash bond). Now,
because an investment that perfectly mimics the payoff of our desired financial derivative
can be constructed, by the Law of One Price we know that the two financial instruments
must have the same present value cost.

Hedging Strategy

A portfolio is said to hedge, or replicate, a derivative claim if the value of the underlying
security coincides with the value of the derivative no matter what the value of the under-
lying asset (Kijima [12]). A claim C at expiration time T is attainable if it can be hedged,
i.e. if there is a portfolio with the same value as C at time T . A market is complete if
every claim is attainable. It will be shown that using a hedging strategy will result in a
probability measure under which the discounted expected payoff of the derivative claim
will be a fair price for the derivative security. There are basic assumptions that are taken
for granted when hedging a claim. These underlying assumptions are (Shreve [18]):

• Unlimited short selling of stock

• Unlimited borrowing of cash bonds

• Zero transaction costs

• Trading does not affect the market.

Consider a derivative security with time-zero value D0. In order to hedge the claim against
us, we construct a portfolio (φ, ω) at time 0, where φ is the number of units of the underlying
stock and ω is the number of units of the cash bond. Let V0 be the value of the portfolio at
time 0. Letting S0 and B0 be the time-zero values of the stock and cash bond respectively,
the value of the portfolio at time 0 is:

V0 = φS0 + ωB0

At time t the stock is valued as one of two possible stock prices, namely Su or Sd. A
derivative claim on the stock will deliver a payoff that is contingent on the value of the
stock (Baxter & Rennie [2]). Let f(Su) and f(Sd) be the payoff functions associated with
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the two possible stock values. In order to hedge our claim we set up the following two
equations:

f(Su) = φSu + ωB0e
rt

f(Sd) = φSd + ωB0e
rt

The portfolio must exactly replicate the payoff of the claim regardless of the movement
of the stock. Solving the two simultaneous equations we can determine the cost of the
portfolio.

φ =
f(Su)− f(Sd)

Su − Sd

ω =
e−rt

B0
(f(Su)− f(Su)− f(Sd)

Su − Sd
Su)

The time zero-value of the portfolio is:

V0 = φS0 + ωB0 =
f(Su)− f(Sd)

Su − Sd
S0 + e−rt(f(Su)− f(Su)− f(Sd)

Su − Sd
Su)

In order for the derivative security to have an arbitrage-free price, D0 = V0. Because the
two investments have the same payoff function for all values of the underlying stock, by
the Law of One Price they must have the same present value cost.

Hedging Portfolio Example

Using the call option example used earlier we will construct a portfolio that will have the
same present value payoff as the call option we are trying to price. In our previous example
consider selling the option and using the money to purchase φ stocks and ω cash bonds.
If there is not enough money to finance the portfolio then more will have to be borrowed
from the bank. In order to meet the claim against us we need to have

200φ + ω = 100 if St = 200

50φ + ω = 0 if St = 50

Solving for φ and ω results in φ = 2
3 and ω = −100

3 . Using the Law of One Price we can
conclude that the cost of the portfolio is identical to the cost of the option. The time-zero
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value of the portfolio is thus

100φ + ω = 100× 2
3

+ (−100
3

)

= 33.3.

This is the fair price of the option and will result in no arbitrage opportunities. The claim
was thus hedged by the replicating portfolio and is said to be attainable.

Risk-Neutral Probability Measure

Simply taking the present value of the expected payoff from a claim did not produce
a fair price for the claim. However, expectations will in fact be used to determine the
fair price of the claim. The market probability measure must be discarded in favour of
another equivalent probability measure that will be instrumental in constructing a hedging
portfolio. To demonstrate the validity of this approach, consider the hedging portfolio
discussed earlier. The time-zero value of the portfolio (and the derivative security) is:

V0 =
f(Su)− f(Sd)

Su − Sd
S0 + e−rt(f(Su)− f(Su)− f(Sd)

Su − Sd
Su)

Suppose Su = uS0 and Sd = dS0, where d < ert < u. Then

V0 =
f(Su)− f(Sd)

u− d
+ e−rt(f(Su)− f(Su)− f(Sd)

u− d
u)

=
f(Su)− f(Sd)

u− d
+ e−rt f(Su)u− f(Su)d− f(Su)u + f(Sd)u

u− d

= e−rt(
ertf(Su)− ertf(Sd)− f(Su)d + f(Sd)u

u− d
)

= e−rt(
ert − d

u− d
f(Su) +

u− ert

u− d
f(Sd))

Let q = ert−d
u−d . Then 1− q = u−ert

u−d . Thus q + 1− q = 1 and

d < ert < u ⇒ 0 < ert − d < u− d

⇒ 0 <
ert − d

u− d
< 1

⇒ 0 < q < 1

⇒ 0 < 1− q < 1
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Figure 2.1: Simple Binary Model

Therefore (q, 1 − q) satisfies the conditions of a probability measure and is known as the
risk neutral probability measure. The price of the derivative security at time 0 is

V0 = e−rt(qf(Su) + (1− q)f(Sd))

In other words, the discounted expected payoff of the derivative security under the risk-
neutral probability measure is the fair price of the derivative security. It must be noted
that it is because of our hedging strategy that this process works. The arbitrage free
price of a claim will now be expressed as an expectation under an equivalent probability
measure but it must be remembered that the hedging portfolio is the driving force behind
the solution to our pricing problem.

2.2 Pricing Strategy Using a Binomial Model

Before we assumed a very simple model where there were only two time periods and only
two possible values at which the security could be priced. We need to extend this model to
make it more realistic. In order to hedge a derivative security on such a simple model we
came up with a portfolio that consisted of two assets, namely the underlying security and
a cash bond. Two simultaneous equations were set up to hedge the claim. This resulted in
solving two equations with two unknown values. Now if we assume that the stock may be
priced as one of three possible values then it can be shown that three tradable assets are
required to hedge the derivative claim1. We run into problems as the number of possible
stock values increases as we need as many tradable assets as possible stock values. However,
this problem is easily overcome by using a binomial model that has recombinant branches.

1For more details see Etheridge [9]
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Figure 2.2: Binomial Tree

Multiperiod Binary Model and Multiperiod Binomial Model

We assume as before that we have two tradable assets, namely the cash bond and under-
lying stock. The same basic assumptions are still maintained as before. Let t = T

N . We
assume that the market is observable at times 0 < t < 2t < . . . < (N − 1)t < T . Now
over each time period [it, (i + 1)t] (i = 1, 2, . . . , N − 1) we use the simple binary model as
before. Thus after i periods there are 2i possible stock values. A much simpler model is
a multiperiod Binomial model. In this model, branches of the tree can recombine, and if
u, d and r remain constant then the risk-neutral probability measure will remain constant
on each upward branch and so the stock price is determined by a Binomial distribution
(Etheridge [9]).

Binomial Model Hedging Strategy

The same basic assumptions that were present in the simple binary model hold true in the
binomial case as well. A claim can be hedged with this model by constantly readjusting
our portfolio by buying and selling units of the security and cash bond at each time point.
The only constraint is that no additional funds may be introduced when buying or selling
these units. This is known as the Self-Financing Property.

Starting with the initial price S0, the stock price can become one of two values at the
time instance t, namely uS0 or dS0. Again, at 2t the stock price can only become one
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of two values (even though there are three different stock prices at 2t), but these values
depend on the time-t value of the stock. For example, if St = uS0 then either S2t = u2S0

or S2t = udS0. Carrying on in this fashion, the number of stock prices increases with the
number of time instances. However, dependent on the value of the stock at a given time
instance there will be only two possible values that the stock price can assume at the next
time instant. This idea is formalised later with the concept of a filtration in a filtered
probability space.

In order to hedge a claim on some underlying stock we work backwards. Consider a
binomial tree with N periods. By observing a node at time (N − 1)t that branches out
to two nodes at T , a portfolio (φ, ω) can be constructed in exactly the same way as for
the simple binary model. The value of this portfolio at time (N − 1)t is treated like the
new payoff function for the claim. Thus at each (N − 1)t node the value of the hedging
portfolio is calculated. Taking one step backwards a new portfolio is constructed exactly
the same as before. This process is repeated until the time-zero value of the portfolio is
determined. The stock and cash bond holdings of the portfolio at time nt, 0 ≤ n ≤ N − 1,
is:

φ =
f(uSnt)− f(dSnt)

uSnt − dSnt

ω =
e−rt

Bnt
(f(uSnt)−

f(uSnt)− f(dSnt)
u− d

u)

The portfolio is thus constantly adjusted at each time point. No new funds are introduced
into the portfolio. The portfolio is adjusted by buying and selling the units of the stock
and cash bond.

Binomial Model Risk-Neutral Probability Measure

Using the simple binary model we could price a derivative security by calculating its dis-
counted expected payoff with respect to a risk-neutral probability measure. The same can
be done with the binomial model. At each time point the value of the stock can increase
by u times the current value or decrease by d times the current value. Thus at each node of
the tree, the risk-neutral probability measure specifies an increase in the value of the stock
with probability q = ert−d

u−d and a decrease with probability 1− q. The probability that the
stock price follows a particular path through the tree is the product of the probabilities of
each branch taken multiplied by the number of paths that reach the particular stock price
(Baxter & Rennie [2]). For example, S2t = u2S0 with probability q2, S2t = udS0 with
probability 2q(1− q) and S2t = d2S0 with probability (1− q)2.
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The expectation of some claim on the final nodes of the tree can be expressed as the sum
of the final claim values weighted by the path probabilities that the values follow (Baxter
& Rennie [2]).

2.3 Filtered Probability Space and Discrete Parameter Mar-
tingales

The ultimate goal is to be able to price financial derivatives in a continuous framework.
The simple binary and binomial models were constructed in order to gain a greater under-
standing of the concept of risk-neutral (or arbitrage free) pricing. To formalise the work
done so far we need to discuss the idea of discrete parameter martingales. A martingale is
the mathematical equivalent of a fair game. We can also talk about supermartingales and
submartingales. A supermartingale (submartingale) is the mathematical equivalent of an
unfavourable (favourable) game. Previously, we priced a financial derivative by calculating
the discounted expected payoff of the claim under a risk-neutral probability measure. It
will be shown that this risk-neutral probability measure is the probability measure that
makes the discounted stock price a martingale. As a result, any claim on that stock will be
priced according to the same risk-neutral probability measure, i.e. the probability measure
is unique. It is stressed that the hedging portfolio process is the driving force behind this
pricing approach. It must be possible that every possible derivative claim can be hedged
in order for this martingale measure to be unique.

Filtered Probability Space

Consider the recombinant binomial tree discussed earlier. At each time point we can
determine the value of the derivative security and its hedging portfolio based on the value
of the underlying stock at that time point. The value of the stock depends on the upward
or downward movement of the stock process. For example, if the time-zero value of the
stock is 100, u = 2, d = 1

2 and the value of the stock at time point 2t is 100 then one of
two stock movements are possible. Either the stock value increased to 200 at time t and
then decreased to 100 at time 2t, or the stock first dropped in value to 50 at time t and
then increased to 100 at time 2t. This is the information that is known up to time 2t. We
need to formalise this concept of information up to a certain time point.
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Consider the probability space2 (Ω,Σ, P ). That is, consider the probability measure P that
specifies the probability for each A ∈ Σ as well as an increasing sequence of σ-algebras,
Σn ⊆ Σn+1 ⊆ · · · ⊆ Σ. Now, the collection of σ-algebras {Σn}n≥0 is called a filtration and
(Ω,Σ, {Σn}n≥0, P ) is called a filtered probability space (Etheridge [9]).

The σ-algebra Σn can be thought of as a way to contain all of the information of the stock
movement up to time point nt. To simplify notation it will be assumed that t = 1. A
real-valued random variable X is Σn-measurable if {x1 < X ≤ x2} ∈ Σn for all x1 < x2.
A stochastic process {Xn}n≥0 is adapted to the filtration if Xn is {Σn}n≥0-measurable for
each n. X is said to be integrable if E[| X |] < ∞. The stochastic process {X(t)} is
integrable if E[| X(t) |] < ∞ for all values of t (Kijima [12]).

Discrete Parameter Martingales

Let (Ω,Σ, {Σn}n≥0, P ) be a filtered probability space. The stochastic process {Xn}n≥0 is
a martingale with respect to the probability measure P and the filtration {Σn}n≥0 if

1. E[| Xn |] < ∞

2. E[Xn+1 | Σn] = Xn for all n ≥ 0

If E[Xn+1 | Σn] ≤ Xn (E[Xn+1 | Σn] ≥ Xn) for all n then {Xn}n≥0 is said to be a super-
martingale (submartingale) with respect to the probability measure P and the filtration
{Σn}n≥0.

A martingale has been described as the mathematical equivalent of a fair game. To see
this, consider {Xn}n≥0, the process that tracks the total winnings of some arbitrary game.
Thus, at time n, the total winnings are Xn. If the expected total winnings at time n + 1
(given that we know all the information up until time n) is simply the total winnings at
time n then {Xn}n≥0 is a martingale. In this fair game, the player is expected to break
even at every time point. For a supermartingale (submartingale) the player is expected to
make a loss (profit).

2See the appendix for definitions of measure spaces and probability spaces.
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Risk-Neutral (Martingale) Probability Measure

Now that the concept of a martingale has been established, we can proceed with trying to
solve the pricing problem. This is done by discarding the market probability measure in
favour of an equivalent risk-neutral probability measure.

Let P denote the market probability measure and let Q denote the risk-neutral probability
measure. The measures P and Q on the same probability space Ω are equivalent if for all
A ⊆ Ω

Q(A) = 0 ⇐⇒ P (A) = 0

Now we state and prove the following important result:

Under the risk-neutral probability measure, the discounted stock price process {e−rnSn} ,
where Sn is Σn-measurable, is a martingale.

Proof:

Recall that the probability of an upward (downward) stock movement is q = er−d
u−d (1− q =

u−er

u−d ).

EQ[e−r(n+1)Sn+1 | Σn] = e−r(n+1)(qu + (1− q)d)Sn

= e−r(n+1)(u(
er − d

u− d
) + d(

u− er

u− d
))Sn

= e−r(n+1)(
eru− erd

u− d
)Sn

= e−rn(
u− d

u− d
)Sn

= e−rnSn

The risk-neutral probability measure is also known as the martingale probability measure as
it is the probability measure under which the discounted stock price process is a martingale.

Tower Property of Conditional Expectations

Consider two σ-algebras Σj and Σk such that Σj ⊆ Σk. The tower property of conditional
expectations says that for any integrable random variable X:

E[E[X | Σk] | Σj ] = E[X | Σj ]
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Let {Xn}n≥0 be a (P, {Σn}n≥0)-martingale and let j < k. Then, using the tower property
it can be shown that:

E[Xj | Σk] = Xj

Risk-Neutral Value of Attainable Claim

Let Vn be the time n value of a derivative claim with payoff V at its expiry date T . In the
absence of arbitrage, the unique time n value of the derivative claim is:

Vn = e−r(T−n)EQ[V | Σn]

where the expectation is under the probability measure Q for which the discounted stock
price is a martingale. The time zero price of the claim is:

V0 = e−rT EQ[V | Σ0]

= e−rT EQ[V ]

It turns out that the discounted claim process {Ṽn}n≥0, where Ṽn = e−rnVn = e−rT EQ[V |
Σn], is also a (Q, {Σn}n≥0)-martingale. In fact, any hedgable claim on the underlying stock
will be a (Q, {Σn}n≥0)-martingale.

Prove that {Ṽn}n≥0, is also a (Q, {Σn}n≥0)-martingale:

Let Xn = EQ[V | Σn]. For j < k,

EQ[Xk | Σj ] = EQ[EQ[V | Σk] | Σj ]

= EQ[V | Σj ] (by the tower property)

= Xj

Therefore, {Xn}n≥0 is a (Q, {Σn}n≥0)-martingale. Now,

EQ[Ṽk | Σj ] = EQ[e−rke−r(T−k)EQ[V | Σk] | Σj ]

= e−rT EQ[Xk | Σj ]

= e−rT Xj

= Ṽj

Thus the discounted price process of a derivative claim is a (Q, {Σn}n≥0)-martingale and
this implies that the discounted hedging process is also a (Q, {Σn}n≥0)-martingale.
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Unique Martingale Measure

In a complete market every derivative claim is attainable, i.e. every claim can be hedged.
A complete market is one of our main assumptions and will result in a unique martingale
measure to price all financial derivatives on the same underlying stock. This result is now
proved:

The market is complete if and only if the martingale measure, Q, is unique.

Proof:

Suppose the market is complete and arbitrage free and let Q and Q̂ be two equivalent risk-
neutral probability measures. Because the market is complete, every claim is attainable.
Thus if V is the value of the claim at expiration, then the time zero price of the claim is
EQ[Ṽ ] under Q and EQ̂[Ṽ ] under Q̂, where Ṽ is the discounted value of V . By the Law of
One Price we have EQ[Ṽ ] = EQ̂[Ṽ ]. Since the interest rate is the same for both processes
we have: EQ[V ] = EQ̂[V ]. Therefore Q = Q̂.

Stopping Time

For a European derivative claim we know the expiration date of the claim and thus the
date at which the claim is exercised. For American derivatives, early exercise means that
the date at which exercising occurs is not known at time zero. Pricing these claims is more
difficult because the time at which exercising occurs is a random variable. In order to deal
with this complication the concept of stopping times needs to be discussed.

Given (Ω,Σ, {Σn}n≥0), a stopping time is defined as a random variable:

τ : Ω → Z+, where {τ ≤ n} ∈ Σn, for all n ≥ 0.

i.e. the event {τ ≤ n} depends only on the history of the process up to and including time
n. Thus by observing the movement of the stock process up until time n, we can determine
whether or not the event has occured. For example, the date at which an American option
is exercised is a stopping time. By observing the stock process up until time n we can
determine if the option has been exercised or not.

Optional Stopping Theorem

In order to successfully price American derivatives we need to combine the concepts of
martingales and stopping times. Let (Ω,Σ, {Σn}n≥0, P ) be a filtered probability space.



2.4. THE BINOMIAL REPRESENTATION THEOREM 17

If τ is a bounded stopping time and τ ≥ n, where n ≥ 0, then the Optional Stopping
Theorem3 says that:

E[Xτ | Σn] ≤ Xn if {Xn}n≥0 is a (P, {Σn}n≥0)− supermartingale

E[Xτ | Σn] ≥ Xn if {Xn}n≥0 is a (P, {Σn}n≥0)− submartingale

{Xn}n≥0 is a (P, {Σn}n≥0)-martingale if it is both a (P, {Σn}n≥0)-supermartingale and
(P, {Σn}n≥0)-submartingale, i.e.

E[Xτ | Σn] = Xn

Previsible Hedging Process

When pricing a derivative claim, arbitrage is avoided by constructing a hedging portfolio
that replicates the claim at each time point. Let [φn, ωn] be the amount of underlying
stock and cash bond in the hedging portfolio over the time interval [n− 1, n]. Recall that
the stock holding in the hedging portfolio was φn = f(uSn−1)−f(dSn−1)

uSn−1−dSn−1
. Thus φn is known

at time n− 1. Regardless of the stock movement at time n, the value of the stock holding
is known at time n − 1. Thus φn is Σn−1-measurable for all n ≥ 1. The process {φn}n≥1

is said to be {Σn}n≥0-previsible (or predictable), for a given filtration {Σn}n≥0.

2.4 The Binomial Representation Theorem

The Binomial Representation Theorem is the discrete counterpart to the Martingale Rep-
resentation Theorem which will be defined later. It is of great importance since it tells us
that we can express the discounted payoff of our derivative claim in terms of the discounted
value of the underlying security. It also shows that a hedging strategy exists and gives us
a way to determine the stock holdings in our replicating portfolio.

Let Q be the probability measure under which the discounted binomial price process,
{S̃n}n≥0 is a martingale and let {Ṽn}n≥0 be another Q-martingale with respect to the
filtration {Σn}n≥0. Then there is a {Σn}n≥0-previsible process {φn}n≥1 such that:

3See Etheridge [9] for a proof of this theorem.
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Ṽn = Ṽ0 +
n−1∑
j=0

φj+1(S̃j+1 − S̃j)

The above equation4 is the discrete form of a stochastic integral that will be discussed later.
The work done so far to replicate a claim (and hence price the claim) can be summarised
in three steps:

• Find a probability measure Q under which the discounted stock price is a martingale.

• Take the expected value, under the measure Q, of the discounted claim V at time T,
i.e. Ṽn = e−rnVn = EQ[e−rT V | Σn].

• Find a previsible process {φn}n≥1 such that Ṽn = Ṽ0 +
∑n−1

j=0 φj+1(S̃j+1 − S̃j) (or
4Ṽn = φn 4 S̃n).

Now that the key concepts of risk-neutral pricing have been established it is time to extend
this model to a continuous-time setting. The continuous model can be thought of as the
binomial model, except that there are infinitely many time points within the time interval
[0, T ] and the distance between these time points tends to zero. As a result, the range of
values for the stock price at any particular time point is infinite.

4For proof of the Binomial Representation Theorem see Etheridge [9].



Chapter 3

Continuous-Time Risk-Neutral
Valuation Model

The discrete-time models were used to gain a deeper understanding of the inner workings
of hedging and risk-neutral pricing. Now that this has been established a continuous-time
model will be used. Geometric Brownian motion is used as a model of the fluctuations of
stock prices. In order to study this model we need to use stochastic calculus. Similarly as
in the discrete model, we discard the market probability measure in favour of a new prob-
ability measure which results in discounted asset prices being martingales. This measure
is constructed using Girsanov’s Theorem. In order to construct the hedging portfolio the
Martingale Representation Theorem is employed.

3.1 Brownian Motion

Now that the concept of martingales has been developed, we are one step closer to formalis-
ing the continuous-time model for pricing financial derivatives in a risk-neutral framework.
Geometric Brownian motion is used as the continuous-time model for our pricing problem.
This section details Brownian motion and its properties, which will be instrumental in
setting up the Black-Scholes financial model. Brownian motion can be thought of as an
’infinitesimal’ random walk (Etheridge [9]). The concept of a simple random walk is first
discussed to give greater insight into the definition of Brownian motion.

19
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Simple Random Walk

Let ξj ∈ {−1, 1}, where P [ξj = 1] = p and P [ξj = −1] = 1 − p (p ∈ [0, 1]). {ξj}j≥0 are
independent, identically distributed random variables. Then the Markov process {Sn}n≥0,
where S0 = 0 and Sn =

∑n
j=1 ξj , is a simple random walk. −n ≤ Sn ≤ n, since Sn can

move at most n away from 0. Under what conditions will a random walk be a martingale?

−n ≤ Sn ≤ n ⇒ E[| Sn |] < ∞,

E[Sn+1 | Σn] = E[
n+1∑
j=1

ξj | Σn]

= E[Sn + ξn+1 | Σn]

= Sn + E[ξn+1 | Σn]

= Sn + E[ξn+1]

Now, E[ξn+1] = p − (1 − p) = 2p − 1. If p = 1
2 then E[ξn+1] = 0. Thus a simple random

walk will be a martingale if p = 1
2 . If p < 1

2 (p > 1
2) then the random walk will be a

supermartingale (submartingale).

If p = 1
2 , then:

E[Sn] = E[
n∑

j=1

ξj ]

=
n∑

j=1

E[ξj ]

=
n∑

j=1

(
1
2
− 1

2
)

= 0
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V ar(Sn) = E[S2
n]− 0

= E[(
n∑

j=1

ξj)2]

= E[
n∑

j=1

ξ2
j + 2

∑
j<k

ξjξk]

=
n∑

j=1

E[ξ2
j ] + 2

∑
j<k

E[ξjξk]

=
n∑

j=1

(
1
2

+
1
2
) + 2

∑
j<k

E[ξj ]E[ξk]

= n + 0

= n

cov(Sn, Sm) = E[SnSm]− E[Sn]E[Sm]

= E[SnSm]− 0

= E[E[SnSm] | Σn∧m]

= E[Sn∧mE[Sn∨m] | Σn∧m]

= E[Sn∧mSn∧m]

= E[S2
n∧m] = V ar(Sn∧m)

= n ∧m

Because {ξj}j≥0 are independent random variables it means that, for 0 = j0 ≤ j1 ≤
j2 ≤ · · · ≤ jn, {Sjk

− Sjk−1
, k ∈ [1, n]} are independent. Because {ξj}j≥0 are identically

distributed it means that, for j− i = l−k (0 ≤ i ≤ j ≤ k ≤ l), Sj−Si and Sl−Sk have the
same distribution. Thus {Sn}n≥0 has stationary and independent increments. The same
will be true for Brownian motion.

Definition of Brownian Motion

Now that the concept of a simple random walk has been discussed, we can now turn to
Brownian motion. A real-valued stochastic process {Wt}t≥0 is called a Brownian motion
if the following properties are satisfied:

• W0 = 0,
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• Wt is a continuous function of t ≥ 0,

• If 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn, then {Wtj −Wtj−1}j=0,...,n are independent, i.e. Brownian
motion has independent increments.

• For each s ≥ 0 and t > 0, Wt+s − Ws is normally distributed with mean zero and
variance σ2t. If σ2 = 1 then the process is known as standard Brownian motion.

Thus Brownian motion is characterised by having stationary and independent increments.
From now on all Brownian motion processes will be assumed to be standard Brownian
motion processes.

3.2 Continuous-Time Martingales

Discrete-time martingales have been already been discussed. The definition of continuous-
time martingales is very similar to its discrete counterpart and the same logic is used,
although now it is in a continuous sense.

Let Σ be a σ-algebra. {Σt}t≥0 is a continuous-time filtration if

• Σt ⊆ Σ, for all t

• Σs ⊆ Σt, for all s < t

Let (Ω,Σ, {Σt}t≥0, P ) be a filtered probability space. The stochastic process {Xt}t≥0 with
E[| Xt |] < ∞ is a supermartingale (submartingale) with respect to the probability measure
P and the filtration {Σt}t≥0 if it is adapted to the filtration {Σt}t≥0 and E[Xt | Σs] ≤ Xs

(E[Xt | Σs] ≥ Xs) for all t ≥ s.

{Xt}t≥0 will be a (P, {Σt}t≥0)-martingale if it is both a supermartingale and a submartin-
gale, i.e. E[Xt | Σs] = Xs for all t ≥ s.

Previsible (Predictable) Process

In the binomial model the stock holding in the hedging portfolio process was said to be
previsible or predictable. The same is true in the continuous sense. Let Σt− be the
σ−algebra generated by

⋃
s<t Σs. The stochastic process {Xt}t≥0 is {Σt}t≥0-previsible

(predictable) if Xt is Σt−-measurable for all t.
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Optional Stopping Theorem

The Optional Stopping Theorem can be extended to a continuous-time setting. To do this,
consider two bounded stopping times, τ1 and τ2, such that τ1 ≤ τ2. The continuous version
of the Optional Stopping Theorem says that if {Xt}t≥0 is right continuous with left limits
then:

E[Xτ2 | Στ1 ] ≤ Xτ1 a.s., if {Xt}t≥0 is a (P, {Σt}t≥0)− supermartingale

E[Xτ2 | Στ1 ] ≥ Xτ1 a.s., if {Xt}t≥0 is a (P, {Σt}t≥0)− submartingale

E[Xτ2 | Στ1 ] = Xτ1 a.s., if {Xt}t≥0 is a (P, {Σt}t≥0)−martingale

Further Properties of Standard Brownian Motion

These properties are stated without proof. Their justification comes from the idea that
Brownian motion is an ’infinitesimal’ random walk.

• E[Wt+s −Ws | {Wj}0≤j≤s] = 0

• cov(Ws,Wt) = s ∧ t

• {Wt}t≥0 is differentiable nowhere almost surely1

• {Wt}t≥0 is a (P, {Σt}t≥0)-martingale.

Proof of martingale property:

E[Wt | Σs] = E[Ws + (Wt −Ws) | Σs]

= Ws + E[(Wt −Ws) | Σs]

= Ws + 0

= Ws

Brownian motion itself is insufficient as a model to track the stock price movement. The
model that will be used is a function of Brownian motion, namely geometric Brownian
motion. The reason that this model is used will be justified later, but before we proceed
the concepts of stochastic calculus first need to be developed.

1P{{Wt}t≥0 is differentiable nowhere} = 1
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3.3 Stochastic Calculus

Since Brownian motion is differentiable nowhere almost surely, we cannot use normal dif-
ferential equations in setting up our pricing model. The reason for this is that a non-
differentiable function has nonzero quadratic variation. Stochastic calculus takes quadratic
variation into account when setting up stochastic differential equations. Brownian motion
will be shown to have nonzero quadratic variation. After this result has been obtained,
the Itô stochastic calculus is developed in order to study the continuous-time model that
is being used to solve the pricing problem.

Quadratic Variation

Let Π = {t0, t1, . . . , tn} be a partition of the interval [0, T ]. ‖ Π ‖= max
k=0,...,n−1(tk+1− tk) is

called the mesh of the partition.

The quadratic variation, [f ]t, of a function f(t) on the interval [0,T] is defined as

[f ]T =
lim

‖ Π ‖→ 0

n−1∑
k=0

| f(tk+1)− f(tk) |2

If f is differentiable then in each subinterval [tk, tk+1] there exists a point t∗k such that
f(tk+1)−f(tk) = f

′
(t∗k)(tk+1− tk) (by the Mean Value Theorem). Thus for a differentiable

function f :

lim
‖ Π ‖→ 0

n−1∑
k=0

| f(tk+1)− f(tk) |2 =
lim

‖ Π ‖→ 0

n−1∑
k=0

| f ′
(t∗k) |2 (tk+1 − tk)2

≤
lim

‖ Π ‖→ 0
‖ Π ‖

n−1∑
k=0

| f ′
(t∗k) |2 (tk+1 − tk)

=
lim

‖ Π ‖→ 0
‖ Π ‖

lim

‖ Π ‖→ 0

n−1∑
k=0

| f ′
(t∗k) |2 (tk+1 − tk)

=
lim

‖ Π ‖→ 0
‖ Π ‖

∫ T

0
| f ′

(t) |2 dt

= 0

Thus the quadratic variation of a differentiable function is 0.
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Quadratic Variation of a Brownian Motion Process

Brownian motion has a nonzero quadratic variation. This result is proved below:

Let {Wt}t≥0 denote a P-Brownian motion. Then [W ]T = T .

Proof:

The basis for this proof comes from Etheridge [9]. Let W (Π) =
∑n−1

k=0 | Wtk+1
−Wtk |2. It

must be shown that as ‖ Π ‖→ 0:

E[| W (Π)− T |2] → 0.

Letting ηtk =| Wtk+1
−Wtk |2 −(tk+1 − tk) we have:

| W (Π)− T |2 = |
n−1∑
k=0

| Wtk+1
−Wtk |

2 −T |2

= |
n−1∑
k=0

[| Wtk+1
−Wtk |

2 −(tk+1 − tk)] |2

=
n−1∑
k=0

η2
tk

+
∑
j<k

ηtjηtk

Since E[Wtk+1
−Wtk ] = 0 and V ar(Wtk+1

−Wtk) = tk+1 − tk we know that

E[(Wtk+1
−Wtk)2 − (tk+1 − tk)] = 0

Since Brownian motion has independent increments:

E[ηtjηtk ] = E[ηtj ]E[ηtk ]

= 0

E[η2
tk

] = E[(Wtk+1
−Wtk)4 − 2(Wtk+1

−Wtk)2(tk+1 − tk) + (tk+1 − tk)2]

= E[(Wtk+1
−Wtk)4]− 2(tk+1 − tk)2 + (tk+1 − tk)2

= E[(Wtk+1
−Wtk)4]− (tk+1 − tk)2

If X is a normally distributed random variable with mean 0 and variance σ2, then

E[X4] = 3σ4
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Therefore:

E[η2
tk

] = 3(tk+1 − tk)2 − (tk+1 − tk)2

= 2(tk+1 − tk)2

Thus

E[| W (Π)− T |2] = 2
n−1∑
k=0

(tk+1 − tk)2

≤ 2
n−1∑
k=0

‖ Π ‖ (tk+1 − tk)

= 2 ‖ Π ‖ T

So E[| W (Π)− T |2] → 0 as ‖ Π ‖→ 0.

Therefore [W ]T = T =
∫ T
0 1dt.

Since Brownian motion has a nonzero quadratic variation then it cannot be a differentiable
function.

The Itô Stochastic Integral

Before discussing Itô’s formula, the Itô stochastic integral is first detailed. What makes
this integral suitable for our purpose is that we can integrate a {Σt}t≥0-previsible function
with respect to a non-differentiable function, namely Brownian motion.

Consider the Brownian motion {Wt}t≥0 with filtration {Σt}t≥0. We assume the following
properties:

• If s ≤ t then Σs ⊆ Σt,

• Wt is Σt-measurable for all t.

Consider the process f(t, ω), t ≥ 0, which is adapted to the filtration {Σt}t≥0 and is
square-integrable, i.e. E[

∫ T
0 f2(t, ω)dt] < ∞, for all T .
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The Itô integral2 I(t) is defined as:

I(t) =
∫ t

0
f(s,Ws)dWs

Properties of Itô Integral

Let f(t, ω) be any adapted, predictable function. Then the Itô integral: I(t) =
∫ t
0 f(s, ω)dWs

has the following properties (see Shreve [19] for verification):

• I(t) is {Σt}t≥0-measurable for all values of t,

• If I(t) =
∫ t
0 f(s, ω)dWs and J(t) =

∫ t
0 g(s, ω)dWs then I(t) ± J(t) =

∫ t
0 (f(s, ω) ±

g(s, ω))dWs and mI(t) =
∫ t
0 mf(s, ω)dWs for any constant m,

• I(t) is a (P, {Σt}t≥0)-martingale,

• I(t) is a continuous function,

• Itô Isometry: E[(
∫ t
0 f(s, ω)dWs)2] =

∫ t
0 E[f(s, ω)2]ds.

• [I]t =
∫ t
0 f(s, ω)2ds (dI(t)dI(t) = f(t, ω)2dt)

Example

Consider integrating the Brownian motion {Wt}t≥0 with respect to itself:

∫ T

0
WsdWs =

lim
‖ Π ‖→ 0

n−1∑
j=0

Wtj (Wtj+1 −Wtj ),

2The construction of the Itô integral is similar to the construction of the Lebesgue integral and is
discussed in the appendix.
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T = [W ]T =
lim

‖ Π ‖→ 0

n−1∑
j=0

(Wtj+1 −Wtj )
2

=
lim

‖ Π ‖→ 0

n−1∑
j=0

{(W 2
tj+1 −W 2

tj )− 2Wtj (Wtj+1 −Wtj )}

=
lim

‖ Π ‖→ 0
(W 2

T −W 2
0 )− 2

lim
‖ Π ‖→ 0

n−1∑
j=0

Wtj (Wtj+1 −Wtj )}

= W 2
T −W 2

0 − 2
∫ t

0
WsdWs

⇒ 2
∫ T

0
WsdWs = W 2

T −W 2
0 − T

⇒
∫ T

0
WsdWs =

1
2
W 2

T −
1
2
T

If f is differentiable with f(0) = 0 then:∫ T

0
f(s)df(s) =

∫ T

0
f(s)f

′
(s)ds =

1
2
f2(s) |T0 =

1
2
f2(T )

Thus, for non-differentiable Brownian motion we have an extra term, namely −1
2T . This

is because Brownian motion has nonzero quadratic variation.

Because the Itô integral is a martingale we have E[
∫ T
0 WsdWs] = 0 ⇒ E[12W 2

T ] = 1
2T . This

verifies that WT is normally distributed with mean 0 and variance T .

Stochastic Differential Equations

Let f(x) be a differentiable function. If Wt is differentiable then using the chain rule we
have that: d

dtf(Wt) = f
′
(Wt)W

′
t .

In differential form we have

df(Wt) = f
′
(Wt)W

′
t dt = f

′
(Wt)dWt

Since Brownian motion is not a differentiable function we cannot use this expression. The
correct formula is:

df(Wt) = f
′
(Wt)dWt +

1
2
f
′′
(Wt)dt

This equation is the differential form of Itô’s formula which is discussed below.
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Itô’s Formula

Consider the function f(t, x), where x ∈ R and t ≥ 0 such that ∂f
∂t , ∂f

∂x and ∂2f
∂x2 exist and

are continuous. Then Ito’s stochastic chain rule formula says that

f(t, Wt)− f(0,W0) =
∫ t

0

∂f

∂x
(s,Ws)dWs +

∫ t

0

∂f

∂s
(s,Ws)ds +

1
2

∫ t

0

∂2f

∂x2
(s,Ws)ds

In differential form we have: df(t, Wt) = f
′
(t, Wt)dWt + ḟ(t, Wt)dt + 1

2f
′′
(t, Wt)dt

(where ḟ(t, Wt) = ∂f
∂t (t, Wt), f

′
(t, Wt) = ∂f

∂x (t, Wt) and f
′′
(t, Wt) = ∂2f

∂x2 (t, Wt)).

Justification and Proof of Itô’s Formula

Using Taylor’s Theorem on f(t, x) we get:

f(t +4t, Wt+4t)− f(t, Wt) = 4tḟ(t, Wt) + O(4t2) + (Wt+4t −Wt)f
′
(t, Wt)

+
1
2!

(Wt+4t −Wt)2f
′′
(t, Wt) + . . .

If Wt were replaced by a differentiable function Xt then 1
2!(Xt+4t−Xt)2f

′′
(t, Xt) would be

replaced by O(4t2). This term cannot be ignored since E[(Wt+4t−Wt)2] = 4t (Etheridge
[9]). Thus it is reasonable to expect that the differential equation for f(t, x) is:

df(t, Wt) = ḟ(t, Wt)dt + f
′
(t, Wt)dWt +

1
2
f
′′
(t, Wt)dt

Proof of Itô’s formula:

The basis for this proof comes from Etheridge [9]. Let Π = {t0 = 0, t1, . . . , tn = t} be a
partition of the interval [0, t].Then:

f(t, Wt)− f(0,W0) =
n−1∑
j=0

(f(tj+1,Wtj+1)− f(tj ,Wtj ))
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Using Taylor’s Theorem on each interval we get:

f(t, Wt)− f(0,W0) =
n−1∑
j=0

ḟ(tj ,Wtj )(tj+1 − tj)

+
n−1∑
j=0

f
′
(tj ,Wtj )(Wtj+1 −Wtj )

+
1
2

n−1∑
j=0

f
′′
(ηj ,Wηj )(Wtj+1 −Wtj )

2

where ηj ∈ [tj , tj+1]. Letting εj = f
′′
(ηj ,Wηj )− f

′′
(tj ,Wtj ) we get:

1
2

n−1∑
j=0

f
′′
(ηj ,Wηj )(Wtj+1 −Wtj )

2 =
1
2

n−1∑
j=0

(f
′′
(tj ,Wtj ) + εj)(Wtj+1 −Wtj )

2

As ‖ Π ‖→ 0, εj → 0. It can be shown that E[|
∑n−1

j=0 f
′′
(tj ,Wtj )(Wtj+1 − Wtj )

2 −∑n−1
j=0 f

′′
(tj ,Wtj )(tj+1 − tj) |2] → 0 as ‖ Π ‖→ 0 (Etheridge [9]). Thus as ‖ Π ‖→ 0

n−1∑
j=0

ḟ(tj ,Wtj )(tj+1 − tj) →
∫ t

0

∂f

∂s
(s,Ws)ds

n−1∑
j=0

f
′
(tj ,Wtj )(Wtj+1 −Wtj ) →

∫ t

0

∂f

∂x
(s,Ws)dWs

1
2

n−1∑
j=0

f
′′
(ηj ,Wηj )(Wtj+1 −Wtj )

2 → 1
2

∫ t

0

∂2f

∂x2
(s,Ws)ds

Thus: f(t, Wt)− f(0,W0) =
∫ t
0

∂f
∂x (s,Ws)dWs +

∫ t
0

∂f
∂s (s,Ws)ds + 1

2

∫ t
0

∂2f
∂x2 (s,Ws)ds

Stochastic Differential Equation

Let Xt = f(t, Wt). Applying Itô’s formula,

dXt = [ḟ(t, Wt) +
1
2
f
′′
(t, Wt)]dt + f

′
(t, Wt)dWt

= µ(t, Xt)dt + σ(t, Xt)dWt
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This is known as a stochastic differential equation for {Xt}t≥0, where µ(t, x) and σ(t, x)
are deterministic functions on R× R+.

3.4 Geometric Brownian Motion

Brownian motion by itself is insufficient as a model of the movement of stock prices for
many reasons. For example, stock prices cannot fall below zero, which is allowed by a
Brownian motion model. Another important reason is that Brownian motion has normally
distributed increments, which is not a fair reflection on a price change. To illustrate this
point suppose that there are two financial securities that are valued at $100 and $10
respectively at time t. At time t + s, both increase in value by $10. The first security
increased by 10% while the second increased by 100%. It is unreasonable to suggest that
the distribution of the change in the two values is the same. By looking at a function of
Brownian motion we can overcome this problem.

Let {Wt}t≥0 be a standard P -Brownian Motion and let ν and σ > 0 be constants. Geo-
metric Brownian motion is defined as

St = S0exp(νt + σWt)

Applying Itô’s formula:

dSt = σStdWt + (ν +
1
2
σ2)Stdt

This equation is called the stochastic differential equation for St. Let µ = ν + 1
2σ2. µ is

known as the drift and σ is known as the volatility of the process. This model is used to
track stock movement as it only allows non-negative values of the stock as well as making
the price changes lognormally distributed. This means that the ratio of price changes is
taken into account. This is a more realistic way to compare price changes between different
financial securities. The following result shows that, for a given probability measure P , a
geometric Brownian motion process is a martingale if and only if the drift parameter is
zero:

The geometric Brownian motion process is a (P, {Σt}t≥0)-martingale if and only if µ = 0.
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Proof:

dSt = σStdWt + µStdt

⇒ St − S0 =
∫ t

0
σSsdWs +

∫ t

0
µSsds

Assume µ = 0. Then:

St − S0 =
∫ t

0
σSsdWs

Because St is a function of Brownian motion it is continuous and is adapted to the filtration.
An adapted and continuous function is predictable (Etheridge [9]). Thus

∫ t
0 σSsdWs is an

Itô integral and must therefore be a (P, {Σt}t≥0)-martingale.

Conversely, assume that {St}t≥0 is a (P, {Σt}t≥0)-martingale. Then St−S0−
∫ t
0 σSsdWs =∫ t

0 µSsds is a martingale since the difference of two (P, {Σt}t≥0)-martingales is a (P, {Σt}t≥0)-
martingale. Thus:

E[St − S0 −
∫ t

0
σSsdWs] = 0

⇒ E[
∫ t

0
µSsds] = 0

⇒
∫ t

0
µE[Ss]ds = 0

Since St > 0 for all values of t, ⇒ E[St] > 0 for all t. Therefore µ = 0.

Remark

Thus if the drift parameter is zero then the geometric Brownian motion process, {St}t≥0 is
a (P, {Σt}t≥0)-martingale. If P is the market probability measure then it is very unlikely
that {St}t≥0 is a martingale. {St}t≥0 will only be a martingale when the drift parameter is
zero. Recall that calculating the discounted expected payoff of a financial claim under the
market measure did not yield an arbitrage-free price. We found an equivalent probability
measure that made the discounted stock price a martingale. Using this probability measure
we successfully priced the claim to avoid arbitrage. This martingale measure will then result
in a zero drift. Girsanov’s Theorem guarantees the existence of the martingale measure
and it will be shown how this measure results in a zero drift parameter in the next section.
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3.5 Constructing the Martingale Measure and Hedging Port-
folio Process

It is now possible to construct a probability measure that will result in the discounted
underlying stock price being a martingale. This is achieved by Girsanov’s Theorem. With
this measure the value of any financial claim on the underlying stock can be determined.
Furthermore, the existence of a hedging portfolio is guaranteed by the Martingale Repre-
sentation Theorem.

The Radon-Nikodym Derivative

Recall the binomial model with market measure P . If the value of the underlying stock
was Sn at time n, then, at time n + 1, it would be worth uSn with probability p, and
dSn with probability 1 − p. In order to price the claim we discarded P in favour of Q,
the risk-neutral probability measure. Thus the stock would make an upward movement
with probability q = er−d

u−d and a downward movement with probability 1− q = u−er

u−d . The
question that arises is how the two probability measures are related. The answer is that
Q is simply a weighted version of P . To see this consider {Sn}0≤n≤N . Let N∗ denote the
total number of upward movements of the stock price process. The probability of the stock
movement under P is pN∗

(1− p)N−N∗ . The probability of the stock movement under Q is
qN∗

(1− q)N−N∗ . Let

Z = (
q

p
)N∗

(
1− q

1− p
)N−N∗

Then the probability of the stock movement under Q is Z[pN∗
(1−p)N−N∗

]. This weighting
value Z is known as the Radon-Nikodym derivative of Q with respect to P . This can be
extended to the continuous setting. The formal definition is stated below (Shreve [19]).

Consider two probability measures P and Q on a measurable space (Ω,Σ) such that for
every A ∈ Σ satisfying P (A) = 0 we also have Q(A) = 0. Then there exists a nonegative
random variable Z such that:

Q(A) =
∫

A
ZdP, ∀A ∈ Σ

Z is the Radon-Nikodym derivative of Q with respect to P . Thus, starting with a proba-
bility measure P on a measurable space (Ω,Σ) we can construct an equivalent probability
measure that will result in the discounted underlying stock price being a martingale. Pric-
ing a derivative claim on the underlying stock is then a simple matter of taking the present
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value of the expectation of the payoff of the claim under the new martingale measure. The
construction of the new martingale measure is a direct application of Girsanov’s Theorem.

Girsanov’s Theorem

Let {Wt}t≥0 be a Brownian Motion on (Ω,Σ, {Σt}t≥0, P ) and let {θt}t≥0 be a {Σt}t≥0-
adapted process such that E[exp{1

2

∫ T
0 θ2

t dt}] < ∞. Define:

Z(t) = exp{−
∫ t

0
θsdWs −

1
2

∫ t

0
θ2
sds},

Q(A) =
∫

A
Z(T )dP, ∀A ∈ Σ,

WQ
t = Wt +

∫ t

0
θsds.

Then under the new probability measure Q, the process {WQ
t }t≥0 is a standard Brownian

motion3. The following properties can be observed:

• Z(T ) is the Radon-Nikodym derivative of Q with respect to P . Now, Z(t) is a
P -martingale.

Proof:

dZ(t) = −1
2
θ2
t Z(t)dt− θtZ(t)dWt +

1
2
θ2
t Z(t)dWtdWt

= −1
2
θ2
t Z(t)dt− θtZ(t)dWt +

1
2
θ2
t Z(t)dt

= −θtZ(t)dWt

• Z(0) = e0 = 1. Since Z(t) is a P -martingale ⇒ EP [Z(t)] = Z(0) = 1 for all
nonnegative values of t. Now, Q(Ω) =

∫
Ω Z(T )dP = EP [Z(T )] = 1. So Q is indeed

a probability measure.

• Let X be a random variable. Then EQ[X] = EP [Z(T )X].

• If X is Σt-measurable (0 ≤ t ≤ T ), then EQ[X] = EP [Z(t)X].
3For a proof of this theorem see Etheridge [9]
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Proof:

EQ[X] = EP [Z(T )X]

= EP [EP [Z(T )X | Σt]] (by the tower property)

= EP [XEP [Z(T ) | Σt]] (since X is Σt −measurable)

= EP [XZ(t)] (since Z(T ) is a P −martingale)

Bayes’ Rule

Another interesting property that will be useful later is Bayes’ Rule:

If Σt-measurable random variable X with 0 ≤ s ≤ t ≤ T , then

EQ[X | Σs] =
1

Z(s)
EP [XZ(t) | Σs]

Proof:

1
Z(s)E

P [XZ(t) | Σs] is clearly Σs-measurable. Thus

1
Z(s)

EP [XZ(t) | Σs] = EQ[
1

Z(s)
EP [XZ(t) | Σs] | Σs]

= EP [Z(s)
1

Z(s)
EP [XZ(t) | Σs] | Σs]

= EP [XZ(t) | Σs] (by the tower property)

= EQ[X | Σs] (since X is Σs −measurable)

Equivalent Measures

Recall that the measures P and Q on the same probability space Ω are equivalent if for all
A ∈ Σ then Q(A) = 0 ⇐⇒ P (A) = 0. Now,

The probability measures P and Q defined in Girsanov’s Theorem are equivalent:

Proof:

Assume that P (A) = 0. Then
∫
A Z(T )dP = 0. Since Q(A) =

∫
A Z(T )dP , ∀A ∈ Σ it is

true that Q(A) = 0.

Conversely, assume that Q(A) = 0. Then
∫
A

1
Z(T )dQ = 0. Since P (A) =

∫
A

1
Z(T )dQ,

∀A ∈ Σ it is true that P (A) = 0.
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Hedging Portfolio and Martingale Measure

Now that the martingale probability measure has been constructed we can price a financial
derivative. In order to price a claim against us we need to construct a hedging portfolio that
exactly replicates the payoff of the claim. Now, provided such a hedging portfolio exists,
it will be shown that the construction of the portfolio will result in the discounted stock
price process and the discounted portfolio process being martingales under the martingale
measure.

Recall that if Xt = f(t, Wt) then dXt = µ(t, Xt)dt + σ(t, Xt)dWt is the stochastic differ-
ential representation of Xt. We defined the stock price as:

dSt = µStdt + σStdWt

with drift µ and volatility σ. Let r be the continuously compounded interest rate.

Consider a derivative security that has payoff V at expiration time T . To hedge the claim
against us we construct a portfolio [φt, ωt] that consists of units of the underlying stock
and riskless cash bond. Let Vt be the value of the portfolio at time t (We are assuming that
a hedging portfolio actually exists. We will show later that this is a valid assumption).
At time t we buy φt units of the stock which is worth St. The remainder is invested in a
riskless cash bond. Thus

Vt = φtSt + [Vt − φtSt]

Now taking a tiny time-step forward the portfolio is worth:

Vt+4t = φtSt+4t + (1 + r(4t))[Vt − φtSt]

Thus:

dVt = φtdSt + r[Vt − φtSt]dt

= rVtdt + φt[dSt − rStdt]

= rVtdt + φt[µStdt + σStdWt − rStdt]

= rVtdt + φt[(µ− r)Stdt + σStdWt]

= rVtdt + φtσSt[
µ− r

σ
dt + dWt]
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Let S̃t = e−rtSt, Ṽt = e−rtVt and θt = µ−r
σ . Therefore:

dS̃t = −re−rtStdt + e−rtdSt

= [−rS̃tdt + e−rtdSt]

= [−rS̃tdt + µS̃tdt + σS̃tdWt]

= σS̃t[θtdt + dWt]

dṼt = −re−rtVtdt + e−rtdVt

= [−rṼtdt + e−rtdVt]

= [−rṼtdt + rṼtdt + φtσS̃t[θtdt + dWt]]

= φtσS̃t[θtdt + dWt]

= φtdS̃t

Using Girsanov’s Theorem, let WQ
t = Wt +

∫ t
0 θsds, where Q(A) =

∫
A Z(T )dP , ∀A ∈ Σ,

and Z(t) = exp{−
∫ t
0 θsdWs − 1

2

∫ t
0 θ2

sds}.

Then:
dWQ

t = dWt + θtdt

Therefore:

dS̃t = σS̃tdWQ
t

dṼt = φtσS̃tdWQ
t

Thus, under Q, {S̃t}t≥0 and {Ṽt}t≥0 are martingales. So, assuming a hedging portfolio
actually exists it has been shown that a martingale measure is a probability measure that
is equivalent to the market measure P and results in the discounted asset prices being
martingales (Shreve [19]). The time zero value of the claim will be equal to the value
of the hedging portfolio at time zero, i.e. V0. This value is equivalent to the discounted
expected payoff of the claim under the risk-neutral probability measure Q. Thus:

V0 = EQ[e−rT VT ]

= EQ[e−rT V ]
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European Call Option Example

Suppose V = (ST − K)+. If a portfolio that successfully hedges the claim exists then
V0 = EQ[ṼT ] = EQ[e−rT V ] = EQ[e−rT (ST − K)+]. The question that now arises is
whether a hedging portfolio actually does exist. This is shown to be a valid assumption as
a result of the Martingale Representation Theorem.

The Market Price of Risk

θ = µ−r
σ is known as the market price of risk (Etheridge [9]). It is also known as the Sharpe

ratio. If µ is the rate of growth of the risky asset, r is the rate of growth of the riskless cash
bond and σ is a measure of the risk of the asset, then the market price of risk is the excess
rate of return per unit of risk. It is also the change in drift in the underlying Brownian
motion when the market measure is replaced by the martingale measure.

3.6 The Martingale Representation Theorem

While it is very convenient to price the value of a claim as an expectation with respect to an
equivalent martingale measure, this argument is irrelevant if a hedging strategy cannot be
constructed. The market must be complete so that all claims are attainable. Fortunately a
hedging strategy does exist and can be proved as a result of the Martingale Representation
Theorem.

Let {Wt}t≥0 be a P -Brownian Motion with natural filtration {Σt}t≥0 and let {Xt}t≥0

be a square-integrable (P, {Σt}t≥0)-martingale, i.e. EP [| Xt |2< ∞], ∀t > 0. Then the
Martingale Representation Theorem says that there is an adapted process {θt}t≥0 such
that:

Xt = X0 +
∫ t

0
θsdWs, a.s. (dXt = θtdWt)

In other words, a square-integrable martingale can always be expressed in terms of a
standard Brownian motion.

Existence of Hedging Portfolio

Assuming the same information as before let Vt represent the value of a hedging portfolio
at time t. We want to choose V0 and φt, 0 ≤ t ≤ T , such that VT = V (where V is the
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payoff of the claim at expiration time T ). Define Yt = EQ[e−rT V | Σt]. Now Yt is clearly
a Q-martingale. By the Martingale Representation Theorem there is an adapted process
{θt}t≥0 such that:

Yt = Y0 +
∫ t

0
θsdWQ

s , 0 ≤ t ≤ T

Setting V0 = Y0 = EQ[e−rT V ] and θs = φsσS̃s we have:

Yt = V0 +
∫ t

0
φsσS̃sdWQ

s = Ṽt

(Recall, dṼt = φtσS̃tdWQ
t ⇒ Ṽt = V0 +

∫ t
0 φsσS̃sdWQ

s ). Thus

Ṽt = Yt = EQ[e−rT V | Σt], 0 ≤ t ≤ T

⇒ ṼT = EQ[e−rT V | ΣT ]

= e−rT V (since e−rT V is ΣT −measurable)

⇒ e−rT VT = e−rT V

⇒ VT = V

So, a hedging portfolio exists but the Martingale Representation Theorem does not produce
an explicit expression for the portfolio (Shreve [19]). A solution to our pricing problem
is obtained by constructing a replicating portfolio that hedges the derivative claim we are
trying to price. By hedging the claim we are avoiding arbitrage opportunities. With hedg-
ing in mind, the price of the derivative claim has been shown to be the discounted expected
payoff of the claim with respect to the risk-neutral (martingale) probability measure.

Thus, in order to find the risk-neutral price for a derivative security, three important steps
must be taken to replicate the payoff of the claim and ultimately give the arbitrage-free
price.

• Find a probability measure Q, equivalent to the market measure P , under which the
discounted security price process {S̃t}t≥0 is a martingale.

• Form the process Ṽt = EQ[e−rT V | Σt].

• Find a predictable process {φt}t≥0 such that dṼt = φtdS̃t

Now that the basic tools for pricing derivative securities have been discussed we can proceed
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with the Black-Scholes model. This model will form the basis for the solution to the
American put option pricing formula.



Chapter 4

The Black-Scholes Model

The Black-Scholes model is one of the most important contributions to the field of math-
ematical finance. In this section the highly celebrated Black-Scholes partial differential
equation will be derived. The basis for the proof comes from Shreve [19]. Black and Sc-
holes derived their partial differential equation twice and in a completely different manner
to the methods presented here. For further insight into their groundbreaking work see
Black and Scholes [3]. As before it is assumed that there are only two tradable assets in
the market, namely the underlying security and the cash bond. Using geometric Brownian
motion as the model for the stock price movement, the risk-neutral price of a derivative
security on the underlying stock must satisfy the Black-Scholes partial differential equa-
tion. It will be shown that the stock holding in the hedging portfolio can be expressed as
the partial derivative of the derivative security with respect to the stock price. With the
methods developed, closed form solutions of a European put option and a European call
option will be derived to demonstrate the effectiveness of the model.

4.1 Basic Assumptions of Black-Scholes Model

To price a claim under this model we need to make some basic assumptions in order to
make the mathematics bearable. Once the model has been set up, the restrictions can be
relaxed to make the model more realistic. These assumptions are:

• The stock price process {St}t≥0 pays no dividends and follows a geometric Brownian
motion with constant drift µ and volatility σ, i.e. dSt = µStdt + σStdWt.

41
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• There are no arbitrage opportunities.

• The borrowing and lending of cash occurs at a constant risk-free interest rate (no
bid-offer spread).

• There are no transaction costs.

• There is no risk of default on a derivative security.

It is assumed that the underlying stock pays no dividends to shareholders. This complica-
tion can be dealt with by adapting the derivative price process to a process with underlying
stock that pays no dividends (Ross [16]).

Assuming that the interest rate is constant is a greatly simplifying assumption. We could
define the interest rate as an adapted process {r(t) : t ∈ [0, T ]} but this complication
could make us lose sight of the main goal of trying to price an American put option.
Term-structure models deal with these interest rate processes (Shreve [19]).

4.2 Feynman-Kac Theorem

The Black-Scholes partial differential equation is a special case of the Feynman-Kac Theo-
rem1. Define {Xt}t≥0 such that dXt = µ(t, Xt)dt+σ(t, Xt)dWt, 0 ≤ t ≤ T , where {Wt}t≥0

is a standard P -Brownian Motion. Now, assume the following for function F :

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1
2
σ2(t, x)

∂2F

∂x2
(t, x) = 0 , 0 ≤ t ≤ T

F (T, x) = h(x)

If
∫ T
0 E[(σ(t, Xt)∂F

∂x (t, Xt))2]ds < ∞ then the Feynman-Kac Theorem says that:

F (t, x) = EP [h(XT ) | Xt = x].

4.3 Black-Scholes Partial Differential Equation

Let V (t, x) be the discounted value of a derivative security at time t if St = x. In order
for V (t, x) to be the risk-neutral valuation of the derivative security at time t, the Black-

1See Kijima [12] for details regarding the Feynman-Kac Theorem.
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Scholes partial differential equation must be satisfied:

∂V

∂t
(t, x) + rx

∂V

∂x
(t, x) +

1
2
σ2x2 ∂2V

∂x2
(t, x)− rV (t, x) = 0 , 0 ≤ t ≤ T.

We can adapt the Feynman-Kac Theorem for our purposes by considering the terminal
condition F (T, x) as the payoff of our derivative claim and F (t, x) as the value of the
derivative at time t. By adjusting for interest rates the Black-Scholes partial differential
equation can be formed under the risk-neutral probability measure Q. Thus, if this equation
is shown to be zero then the value of the derivative security is simply the discounted
expected payoff of the claim under Q.

Derivation of Black-Scholes Partial Differential Equation

The stock price process {St}t≥0 satisfies the differential equation:

dSt = µStdt + σStdWt

The solution to this equation is St = S0exp(νt + σWt) where ν = µ − 1
2σ2. Consider the

discounted stock price process, {S̃t}t≥0, where S̃t = e−rtSt. Now,

dS̃t = −rS̃tdt + e−rtdSt

= −rS̃tdt + e−rt(µStdt + σStdWt)

= −rS̃tdt + µS̃tdt + σS̃tdWt

= S̃t((µ− r)dt + σdWt)

If we let WQ
t = Wt + (µ−r)

σ t, then dWQ
t = dWt + (µ−r)

σ dt. Therefore,

dS̃t = σS̃tdWQ
t

By Girsanov’s Theorem we know that {WQ
t }t≥0 is a standard Brownian motion under the

probability measure Q and {S̃t}t≥0 is a Q-martingale (The Radon-Nikadym derivative of
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Q with respect to P is Z(t) = exp{−θdWt − 1
2θ2dt}, where θ = (µ−r)

σ ).

dS̃t = σS̃tdWQ
t

⇒ d(e−rtSt) = e−rtσStdWQ
t

⇒ −re−rtStdt + e−rtdSt = e−rtσStdWQ
t

⇒ −rStdt + dSt = σStdWQ
t

⇒ dSt = rStdt + σStdWQ
t

⇒ St = S0exp((r − 1
2
σ2)t + σWQ

t )

Under the market measure P , St = S0exp(νt + σWt). Under the martingale measure Q,
St = S0exp((r − 1

2σ2)t + σWQ
t ). The volatility σ is unaffected when changing probability

measures. It is only the drift that is affected.

Define F (t, St) = EQ[h(ST ) | Σt], where h(ST ) is the payoff function for the derivative
security. So, for 0 ≤ s ≤ t ≤ T ,

EQ[F (t, St) | Σs] = EQ[EQ[h(ST ) | Σt] | Σs]

= EQ[h(ST ) | Σs] (by the tower property)

= F (s, Ss)

Therefore F (t, St) is a Q-martingale. Using Itô’s formula on F (t, St) we get:

dF (t, St) =
∂F

∂t
(t, St)dt +

∂F

∂x
(t, St)dSt +

1
2

∂2F

∂x2
(t, St)dStdSt

=
∂F

∂t
(t, St)dt +

∂F

∂x
(t, St)(rStdt + σStdWQ

t ) +
1
2

∂2F

∂x2
(t, St)(rStdt + σStdWQ

t )2

=
∂F

∂t
(t, St)dt + rSt

∂F

∂x
(t, St)dt + σSt

∂F

∂x
(t, St)dWQ

t +
1
2
σ2S2

t

∂2F

∂x2
(t, St)dt

= [
∂F

∂t
(t, St) + rSt

∂F

∂x
(t, St) +

1
2
σ2S2

t

∂2F

∂x2
(t, St)]dt + σSt

∂F

∂x
(t, St)dWQ

t

Since F (t, St) is a Q-martingale this implies:

∂F

∂t
(t, x) + rx

∂F

∂x
(t, x) +

1
2
σ2x2 ∂2F

∂x2
(t, x) = 0, 0 ≤ t ≤ T, x ≥ 0

Applying Itô’s formula to V (t, x) = e−r(T−t)F (t, x) yields the Black-Scholes partial differ-
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ential equation.

F (t, x) = er(T−t)V (t, x)
∂F

∂t
(t, x) = −rer(T−t)V (t, x) + er(T−t) ∂V

∂t
(t, x)

∂F

∂x
(t, x) = er(T−t) ∂V

∂x
(t, x)

∂2F

∂x2
(t, x) = er(T−t) ∂

2V

∂x2
(t, x)

Thus:

−rer(T−t)V (t, x) + er(T−t) ∂V

∂t
(t, x) + rxer(T−t) ∂V

∂x
(t, x) +

1
2
σ2x2er(T−t) ∂

2V

∂x2
(t, x) = 0

⇒ −rV (t, x) +
∂V

∂t
(t, x) + rx

∂V

∂x
(t, x) +

1
2
σ2x2 ∂2V

∂x2
(t, x) = 0.

Alternate Derivation of Black-Scholes Partial Differential Equation

Since it is the existence of a hedging strategy that ensures that the price of a derivative
security is arbitrage free, it makes sense that the hedging portfolio process can be used
to verify the Black-Scholes partial differential equation. Recall that we can construct a
portfolio [φt, ωt] that consists of units of the underlying stock and riskless cash bond. Let
Vt be the value of the portfolio at time t. Then Vt satisfies the differential equation:

dVt = φtdSt + r[Vt − φtSt]dt

Now,

dVt = φt(µStdt + σStdWt) + r(Vt − φtSt)dt

= [rVt + (µ− r)φtSt]dt + φtσStdWt
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Let the derivative security have a payoff function h(ST ) at time T . Let V (t, x) be the value
of this derivative security at time t if St = x. Using Itô’s Formula:

dV (t, St) =
∂V

∂t
(t, St)dt +

∂V

∂x
(t, St)dSt +

1
2

∂2V

∂x2
(t, St)dStdSt

=
∂V

∂t
(t, St)dt +

∂V

∂x
(t, St)(µStdt + σStdWt) +

1
2

∂2V

∂x2
(t, St)σ2S2

t dt

= [
∂V

∂t
(t, St) +

∂V

∂x
(t, St)µSt +

1
2

∂2V

∂x2
(t, St)σ2S2

t ]dt +
∂V

∂x
(t, St)σStdWt

In order for our hedging strategy to replicate the claim we need Vt = V (t, St) for all t.
Thus,

φtσSt =
∂V

∂x
(t, St)σSt,

rVt + (µ− r)φtSt =
∂V

∂t
(t, St) +

∂V

∂x
(t, St)µSt +

1
2

∂2V

∂x2
(t, St)σ2S2

t

⇒ φt =
∂V

∂x
(t, St)

⇒ rV (t, St) + (µ− r)
∂V

∂x
(t, St)St =

∂V

∂t
(t, St) +

∂V

∂x
(t, St)µSt +

1
2

∂2V

∂x2
(t, St)σ2S2

t

⇒ rSt
∂V

∂x
(t, St) +

∂V

∂t
(t, St)− rV (t, St) +

1
2

∂2V

∂x2
(t, St)σ2S2

t = 0

Thus V (t, x) is the solution to the partial differential equation rx∂V
∂x (t, x) + ∂V

∂t (t, x) −
rV (t, x) + 1

2
∂2V
∂x2 (t, x)σ2x2 = 0 that satisfies the condition V (T, x) = h(x). To hedge the

claim an investor starting with an initial wealth of V0 must rebalance his portfolio to
hold ∂V

∂x (t, St) units of stock at each time interval t. Then Vt = V (t, St) for all t and
VT = V (T, St) = h(ST ) (Shreve [19]).

The value of the stock holding was shown to be:

φt =
∂V

∂x
(t, St)

This makes sense because in the discrete model the stock holding was equal to the ratio
of the change in the value of the derivative security to the change in the value of the
stock price over each time step. Since the continuous model can be thought of as having
infinitesimal time steps, the stock holding should be the partial derivative of the value of
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the claim with respect to the stock price.

4.4 Pricing European Options Using Black-Scholes Formula

Now that the Black-Scholes partial differential equation has been derived, the solution
to the pricing problem for European options can be solved with an explicit closed form
solution. The derivation of this solution can be found in Etheridge [9]. The value at time
t of a European option with payoff at maturity of h(ST ) is V (t, St) where:

V (t, x) = e−r(T−t)

∫ ∞

−∞
h(xexp((r − 1

2
σ2)(T − t) + σy

√
T − t))

exp(−y2/2)√
2π

dy

Proof:

Recall that ST = Stexp((r − 1
2σ2)(T − t) + σ(WQ

T −WQ
t ). Then

V (t, St) = EQ[e−r(T−t)h(ST ) | Σt]

= EQ[e−r(T−t)h(Stexp((r − 1
2
σ2)(T − t) + σ(WQ

T −WQ
t )) | Σt]

(We know that WQ
T − WQ

t is a normally distributed random variable with mean 0 and
variance T − t).

V (t, St) =
∫ ∞

−∞
e−r(T−t)h(Stexp((r − 1

2
σ2)(T − t) + σx)

1√
2π(T − t)

exp(−x2/2(T − t))dx

= e−r(T−t)

∫ ∞

−∞
h(Stexp((r − 1

2
σ2)(T − t) + σy

√
T − t))

exp(−y2/2)√
2π

dy

(Letting x = y
√

T − t ⇒ dx = dy
√

T − t).

European Put Option

We are one step closer to pricing an American put option. A closed form solution to a
European put option can be obtained using the Black-Scholes formula developed above.
For a European put option with strike price K that matures at time T we have:

V (t, x) = Ke−r(T−t)Φ(−ω + σ
√

T − t)− xΦ(−ω),
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where ω = log(x/K)+(r+ 1
2
σ2)(T−t)

σ
√

T−t
and Φ(x) =

∫ x
−∞

1√
2π

exp(−y2/2)dy.

Proof:

For a European put with strike price K, h(x) = (K − x)+ = max {K − x, 0}

V (t, x) = e−r(T−t)

∫ ∞

−∞
h(xexp((r − 1

2
σ2)(T − t) + σy

√
T − t))

exp(−y2/2)√
2π

dy

= e−r(T−t)

∫ ∞

−∞
max

{
K − xexp((r − 1

2
σ2)(T − t) + σy

√
T − t), 0

}
exp(−y2/2)√

2π
dy

If e−r(T−t)[K − xexp((r − 1
2σ2)(T − t) + σy

√
T − t)] > 0 then:

⇒ Ke−r(T−t) > xexp(−1
2
σ2(T − t) + σy

√
T − t)

⇒ K

x
e−r(T−t) > exp(−1

2
σ2(T − t) + σy

√
T − t)

⇒ log
K

x
− r(T − t) > −1

2
σ2(T − t) + σy

√
T − t

⇒ log
K

x
> (r − 1

2
σ2)(T − t) + σy

√
T − t

⇒ − log
x

K
− (r − 1

2
σ2)(T − t) > σy

√
T − t

⇒ y <
− log x

K − (r − 1
2σ2)(T − t)

σ
√

T − t
= y∗
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Therefore,

V (t, x) = e−r(T−t)

∫ y∗

−∞
[K − xexp((r − 1

2
σ2)(T − t) + σy

√
T − t)]

exp(−y2/2)√
2π

dy

= Ke−r(T−t)

∫ y∗

−∞

exp(−y2/2)√
2π

dy

−
∫ y∗

−∞
xexp(−1

2
σ2(T − t) + σy

√
T − t)

exp(−y2/2)√
2π

dy

= Ke−r(T−t)

∫ y∗

−∞

exp(−y2/2)√
2π

dy

−
∫ y∗

−∞

1√
2π

xexp(−1
2
σ2(T − t) + σy

√
T − t− y2/2)dy

= Ke−r(T−t)Φ(
log K

x − (r − 1
2σ2)(T − t)

σ
√

T − t
)

−x

∫ y∗

−∞

1√
2π

exp(−1
2
σ2(T − t) + σy

√
T − t− y2/2)dy

= Ke−r(T−t)Φ(−ω + σ
√

T − t)

−x

∫ y∗

−∞

1√
2π

exp(−1
2
(y − σ

√
T − t)2)dy

= Ke−r(T−t)Φ(−ω + σ
√

T − t)

−x

∫ y∗−σ
√

T−t

−∞

1√
2π

exp(−z2/2)dz

= Ke−r(T−t)Φ(−ω + σ
√

T − t)− xΦ(y∗ − σ
√

T − t)

= Ke−r(T−t)Φ(−ω + σ
√

T − t)− xΦ(−ω + σ
√

T − t− σ
√

T − t)

= Ke−r(T−t)Φ(−ω + σ
√

T − t)− xΦ(−ω)

There is only one unknown parameter that is needed to solve this formula, namely the
volatility σ. The rest of the parameters are known beforehand. This is also the case for
the hedging portfolio. One way to estimate this parameter is to invert the Black-Scholes
formula and determine the implied volatility for this derivative security.

Satisfying the Black-Scholes Partial Differential Equation

The stock holding in the replicating portfolio was shown to be:

φt =
∂V

∂x
(t, St)
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This partial derivative is known as the delta of the derivative security. This quantity
belongs to a set of partial derivatives known as the Greeks. The Greeks measure the
sensitivity of derivative securities with respect to parameter changes. Two other examples
are the gamma (∂2V

∂x2 (t, x)) and the theta (∂V
∂t (t, x)). The delta measures the sensitivity

with respect to a change in the underlying stock price, the gamma measures the rate of
change of the delta, and the theta measures the sensitivity with respect to a change in
time.

Now, under the Black-Scholes model, the risk-neutral valuation of a European option must
satisfy the Black-Scholes partial differential equation. By calculating the following Greeks,
we can verify if the formula does indeed satisfy the Black-Scholes partial differential equa-
tion. These formulas are derived in the appendix.

delta =
∂V

∂x
(t, x)

= −Φ(−ω)

gamma =
∂2V

∂x2
(t, x)

=
e−ω2/2

σx
√

2π(T − t)

theta =
∂V

∂t
(t, x)

= Kre−r(T−t)Φ(−ω + σ
√

T − t)− σxe−ω2/2

2
√

2π(T − t)

Therefore:

rx
∂V

∂x
+

∂V

∂t
− rV +

1
2

∂2V

∂x2
σ2x2 = −rxΦ(−ω) + Kre−r(T−t)Φ(−ω + σ

√
T − t)

− σxe−ω2/2

2
√

2π(T − t)
− rKe−r(T−t)Φ(−ω + σ

√
T − t)

+rxΦ(−ω) +
1
2
σ2x2 e−ω2/2

σx
√

2π(T − t)

= − σxe−ω2/2

2
√

2π(T − t)
+

1
2
σ2x2 e−ω2/2

σx
√

2π(T − t)

= − σxe−ω2/2

2
√

2π(T − t)
+

σxe−ω2/2

2
√

2π(T − t)
= 0
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So, the risk-neutral European put option formula satisfies the Black-Scholes partial differ-
ential equation.

European Call Option

For a European call option with strike price K that matures at time T we have:

V (t, x) = xΦ(ω)−Ke−r(T−t)Φ(ω − σ
√

T − t),

where ω = log(x/K)+(r+ 1
2
σ2)(T−t)

σ
√

T−t
and Φ(x) =

∫ x
−∞

1√
2π

exp(−y2/2)dy.

The solution of the European call option is similar to the solution of the European put
option and can be found in Etheridge [9]. This solution can also be shown to satisfy the
Black-Scholes partial differential equation.

Because European options can only be exercised at maturity it is a straightforward matter
to price them using the Black-Scholes model. American options, on the other hand, prove
to be a greater challenge due to their ability to be exercised at any point up to and including
maturity. In fact, closed form solutions exist for only a few American options. Certain
American options can only be solved via numerical methods.



Chapter 5

American Options

American-style options are the most commonly traded options in the market. It is therefore
very important to be able to price these options so that arbitrage is avoided. It will be
shown that it is always optimal to exercise an American call option at expiration. As a
result American call options are equivalent in value to their European counterparts and
can be priced using Black-Scholes call option formula. The American put option is much
harder to price due to the fact that an optimal exercise time may occur before expiration.
It is only under certain conditions that the price of an American put option can be solved
with a closed form solution. The perpetual American put option, which has no expiration
date, can be solved as a solution to a free boundary problem. Geske and Johnson [10]
showed that a closed form solution can be obtained by using a compound option pricing
approach. However, their formula is impossible to determine practically and numerical
methods must be employed to approximate the actual value.

Let Γ[0,T ] be the set of all possible stopping times up to and including time T . In this case
a stopping time is a time at which the option is exercised. Let {St}t≥0 be a Q-martingale.
The time-zero value of an American option with payoff f(St) (0 ≤ t ≤ T ) is:

sup
τ ∈ Γ[0,T ]

EQ[e−rτf(Sτ ) | Σ0]

5.1 American Call Options

What distinguishes American options from European options is that American options
can be exercised at any time up to the expiration time. As a result pricing these options

52
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appears to be more difficult than before. It can be shown that it is only optimal to exercise
an American call option at the expiration date. This implies that American and European
call options with the same strike price and expiration date are equivalent and are priced
according to Black-Scholes risk-neutral pricing formula for European call options. In order
to prove that the optimal exercise date of an American call option is at expiration we
must first define Jensen’s Inequality and show that a convex function of a martingale is a
submartingale. The result is then straightforward to prove.

Jensen’s Inequality for Conditional Expectations

If f : R → R is a convex function, Σ is a σ − algebra and X is a real-valued random
variable, such that E[| f(X) |] < ∞, then:

E[f(X) | Σ] ≥ f(E[X | Σ])

Proof: (See Shreve [19] for details)

We can express a convex function as a maximum over linear functions, i.e. f(x) = max
h≤f h(x),

where h(x) is linear. Since h(x) is linear it can be expressed as h(x) = mx + c. Therefore,

E[f(X) | Σ] ≥ E[mX + c | Σ]

= mE[X | Σ] + c

= h(E[X | Σ])

⇒ E[f(X) | Σ] ≥ max
h ≤ f

h(E[X | Σ])

⇒ E[f(X) | Σ] ≥ f(E[X | Σ])

Lemma

If {Xt}t≥0 is a P -martingale and f : R → R is a convex function then {f(Xt)}t≥0 is a
P -submartingale.

Proof:
EP [f(Xt) | Σs] ≥ f(EP [Xt | Σs]) = f(Xs)
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Optimal Exercise Time for an American Derivative Security

Consider an American derivative security with convex payoff function f : [0,∞) → R
where f(0) = 0. The value of this security at time zero is the same as that of a European
derivative security with payoff function f(ST ).

Proof:

Let Γ[0,T ] be the set of all possible stopping times up to and including time T . Let
{e−rtSt}t≥0 be a Q-martingale. It must be shown that:

sup
τ ∈ Γ[0,T ]

EQ[e−rτf(ST )] = EQ[e−rT f(ST )]

A function f(x) is convex if for all x and y and 0 < λ < 1,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

(See Ross [16] for details). Thus, letting y = 0, we have f(λx) ≤ λf(x) + (1 − λ)f(0) =
λf(x). Therefore for s < t,

f(e−r(t−s)St) ≤ e−r(t−s)f(St), (since 0 < e−r(t−s) < 1)

⇒ EQ[e−rtf(St) | Σs] = e−rsEQ[e−r(t−s)f(St) | Σs]

≥ e−rsEQ[f(e−r(t−s)St) | Σs] (since f is convex)

≥ e−rsf(EQ[ers(e−rtSt) | Σs]) (by Jensen′s Inequality)

= e−rsf(erse−rsSs) (since {e−rtSt}t≥0 is a Q−martingale)

= e−rsf(Ss)

Thus, {e−rtf(St)}t≥0 is a Q-submartingale. Let τ be a stopping time (0 ≤ τ ≤ T ). By the
Optional Stopping Theorem1 we have:

e−rτf(Sτ ) ≤ EQ[e−rT f(ST ) | Στ ]

⇒ EQ[e−rτf(Sτ )] ≤ EQ[EQ[e−rT f(ST ) | Στ ]]

= EQ[e−rT f(ST )] (by the tower property)

⇒ sup
τ ∈ Γ[0,T ]

EQ[e−rτf(Sτ )] ≤ EQ[e−rT f(ST )]

1See the definition of the continuous Optional Stopping Theorem described earlier, where τ1 = τ and
τ2 = T .
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Figure 5.1: American Call Option Payoff Function

The payoff function, f(St) = (St −K)+, is a convex function of St and is plotted as the
thick dark line.

Since T is a stopping time (an in the money derivative security will definitely be exercised
at T if it has not been exercised up until that point) we have that:

sup
τ ∈ Γ[0,T ]

EQ[e−rτf(Sτ )] ≥ EQ[e−rT f(ST )]

Therefore, by combining the two inequalities we can conclude that:

sup
τ ∈ Γ[0,T ]

EQ[e−rτg(ST )] = EQ[e−rT g(ST )].

Optimal Exercise Time for an American Call Option

The above theorem says that for an American derivative security with a convex payoff
function that is equal to zero when the stock price is zero, the expiration time is the
optimal point at which to exercise .

For an American call option with strike price K, f(St) = (St − K)+. Clearly f(0) = 0.
From the plot of the payoff function it is clear that (St −K)+ is a convex function of St.
f(St) is equal to 0 if St < K. This is because the option will not be exercised unless the
strike price is less than the underlying stock price. Recall that options give the holder the
right and not the obligation to exercise. Now, provided 0 < λ < 1, then for any x and y it
is true that f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Thus, for an American call option, the time-zero risk-neutral value of the option is equal
to:

EQ[e−rT (ST −K)+]

5.2 American Put Options

For an American put option with strike price K, f(St) = (K−St)+. (K−St)+ is a convex
function of St but f(0) = K > 0. Thus, the above argument is not valid for American
put options since it is not true that f(e−r(t−s)St) ≤ e−r(t−s)f(St), which destroys the
submartingale property of {e−rtf(St)}t≥0. As a result the optimal exercise time may be
before expiration and so pricing this put option is more complicated than its European
counterpart.

The time zero value of an American put option, V (0, S0) is:

V (0, S0) =
sup

τ ∈ Γ[0,T ]
EQ[e−rτ (K − Sτ )+ | Σ0]

Remarks

Because f(x) = (K − x)+ is a non-increasing function of x, it means that for x1 < x2,
f(x1) ≥ f(x2).

0 < λ < 1 ⇒ λx < x

⇒ f(λx) ≥ f(x)

f(x) ≥ λf(x) ⇒ f(λx) ≥ λf(x)

If the continuous interest rate r = 0 then {e−rtf(St)}t≥0 is indeed a submartingale (since
f(e0St) = e0f(St)) and results in the value of an American put option having an optimal
exercise time at expiration. Thus, for zero interest rates, the value of an American put
option is the same as that of the Black-Scholes valuation of a European put option.

Properties of American Put Options

Let V (t, x) be the time-t value of an American put option with strike price K, expiration
time T and riskless interest rate r. The payoff function (K − x)+ is a decreasing function
of x, for 0 ≤ x < ∞ . Early exercise of the put option occurs at time t when its intrinsic
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value, (K − St)+, is greater than the value of the put when not exercised. As the value of
the underlying security decreases the intrinsic value of the put increases. There is a critical
stock price S∗t at which the intrinsic value of the put option will be greater than the value
of the put option if not exercised. Any values under this stock price will yield the same
result. Therefore, there exists a critical stock price 0 ≤ S∗t < ∞ such that:

For 0 ≤ x ≤ S∗t and 0 ≤ t ≤ T :

• V (t, x) = (K − x)

• ∂V
∂t (t, x) + rx∂V

∂x (t, x) + 1
2σ2x2 ∂2V

∂x2 (t, x)− rV (t, x) < 0

The above inequality is true since for V (t, x) = (K − x):

∂V

∂t
(t, x) + rx

∂V

∂x
(t, x) +

1
2
σ2x2 ∂2V

∂x2
(t, x)− rV (t, x) = −rx + 0− r(K − x)

= −rK

< 0

For S∗t < x < ∞ and 0 ≤ t ≤ T :

• V (t, x) > (K − x)+

• ∂V
∂t (t, x) + rx∂V

∂x (t, x) + 1
2σ2x2 ∂2V

∂x2 (t, x)− rV (t, x) = 0

At the critical stock price boundary x = S∗t the following conditions must be met:

• V (t, S∗t ) = (K − S∗t )

• ∂V
∂x (t, S∗t ) = −1

The terminal condition must also be satisfied: V (T, ST ) = (K − ST )+

Remarks

∂V
∂x (t, S∗t ) = −1 since V (t, S∗t ) = (K − S∗t ).

When S∗t < x < ∞ , the option will not be exercised early. The pricing formula must
satisfy the Black-Scholes partial differential equation since the option price will be a Q-
martingale. However, when 0 ≤ x ≤ S∗t , the option will be exercised early. The option
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price is thus a Q−supermartingale at this stage. Recall that a supermartingale is the
mathematical equivalent of an unfavourable game. The change in the value of the option
price when not exercised must result in a decrease and therefore ∂V

∂t (t, x) + rx∂V
∂x (t, x) +

1
2σ2x2 ∂2V

∂x2 (t, x)− rV (t, x) < 0.

Supermartingale Property of American Put Options

It has been claimed that the American put option process is a supermartingale under the
martingale measure Q. To justify this claim we first assume the binomial model that was
discussed earlier.

Assuming the binomial model used previously, let Q be the martingale measure which
makes the discounted stock price {S̃n}0≤n≤N a martingale. Let Ṽn be the discounted value
of an American put option with strike price K at the nth time step. The payoff at the nth

time step is (K − Sn)+. Let Z̃n be the discounted payoff (intrinsic value) at the nth time
step.

Now, {Ṽn}0≤n≤N is the smallest supermartingale (under Q) that dominates {Z̃n}0≤n≤N .

Proof:

The value of the put option is equal to the maximum of the put’s intrinsic value and the
value of the put when not exercised. Now, for 0 ≤ n ≤ N :

Ṽn−1 = max{Z̃n−1, E
Q[Ṽn | Σn−1]},

Since an in the money put will be exercised at expiration time N it is true that ṼN = Z̃N .
For 0 ≤ n ≤ N :

Ṽn−1 ≥ EQ[Ṽn | Σn−1]

Therefore {Ṽn}0≤n≤N is a supermartingale. Let {Ũn}0≤n≤N be a supermartingale such
that Ũn ≥ Z̃n, 0 ≤ n ≤ N . Therefore:

ŨN ≥ ṼN

Assume Ũn ≥ Ṽn. We want to show that Ũn−1 ≥ Ṽn−1.

Ũn−1 ≥ EQ[Ũn | Σn−1] ≥ EQ[Ṽn | Σn−1]
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Then:
Ũn−1 ≥ max{Z̃n−1, E

Q[Ṽn | Σn−1]} = Ṽn−1

Using backwards induction the result is obtained (Etheridge [9]).

Remark

It can be shown that if {Ṽn}n≥0 is a (Q, {Σn}n≥0)-supermartingale then there is a pre-
visible, non-decreasing process {Ãn}n≥0 that results in the process {Ṽn + Ãn}n≥0 being a
(Q, {Σn}n≥0)-martingale (See Etheridge [9] for proof of this statement). If Ã0 = 0 then
the process {Ãn}n≥0 is unique.

Let X̃n = Ṽn + Ãn. Then {X̃n}n≥0 is a (Q, {Σn}n≥0)-martingale. The option is exercised
at the first time j when Ãj+1 6= 0.

If Ãj+1 = 0 then Ṽj = EQ[Ṽj+1 | Σj ] since Ṽj+1 = X̃j+1 (which is a Q-martingale). It
is better to hold onto the option as it is worth more than if it were to be exercised. If
Ãj+1 6= 0 then Ṽj = Z̃j . At this point, exercising the option is better than holding it.

American Put Option Example

To demonstrate the supermartingale property of the American put option process consider
the following example.

Let n = 2, S0 = 100, u = 2, d = 1
2 , K = 100 and r = 1

4 . Letting p = 1+r−d
u−d and q = 1− p

we have p = q = 1
2 . Thus

V2(400) = (100− 400)+ = 0

V2(100) = (100− 100)+ = 0

V2(25) = (100− 25)+ = 75

V1(200) = max{4
5
[
1
2
(0) +

1
2
(0)], (100− 200)+} = max{0, 0} = 0

V1(50) = max{4
5
[
1
2
(0) +

1
2
(75)], (100− 50)+} = max{30, 50} = 50

V0(100) = max{4
5
[
1
2
(0) +

1
2
(50)], (100− 100)+} = max{20, 0} = 20

Let us try and hedge this option using the hedging strategy used earlier. Starting with
initial wealth V0 = 20, we need to determine the stock holding process for our portfolio.
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Therefore,

0 = V1(uS0) = φ0(uS0) + (1 + r)(V0 − φ0S0)

= φ0(200) +
5
4
(20− φ0(100))

= φ0(75) + 25

⇒ φ0 = −1
3

50 = V1(dS0) = φ0(dS0) + (1 + r)(V0 − φ0S0)

= φ0(50) +
5
4
(20− φ0(100))

= φ0(−75) + 25

⇒ φ0 = −1
3

0 = V2(duS0) = φ1(dS0)(duS0) + (1 + r)(V1(dS0)− φ1(dS0)(dS0))

= φ1(dS0)(100) +
5
4
(50− φ1(dS0)(50))

= φ1(dS0)(37.5) + 62.5

⇒ φ1(dS0) = −1
2
3

75 = V2(d2S0) = φ1(dS0)(d
2S0) + (1 + r)(V1(dS0)− φ1(dS0)(dS0))

= φ1(dS0)(25) +
5
4
(50− φ1(dS0)(50))

= φ1(dS0)(−37.5) + 62.5

⇒ φ1(dS0) = −1
3

What went wrong? If we had been hedging a European put option then the value of
V1(dS0) = 30 and this would result in φ1(dS0) = −1 in both cases. When the stock is
valued as 50 then it is optimal to exercise the put. If exercised then the payoff is 50. Now
if the put is not exercised then the value of the option is 30. Thus in order to hedge the
option the difference of 20 must be consumed.

Recall that for a European derivative security, the value of the hedging portfolio process
[φj , ωj ] at time j + 1 was:

Vj+1 = φjSj + (1 + r)(Vj − φjSj)

For an American style option, the hedging formula needs to be adjusted for the amount
consumed at every time point. Let Aj be the difference that must be consumed. Then the
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American put option hedging portfolio at time j + 1 is worth:

Vj+1 = φjSj + (1 + r)((Vj −Aj)− φjSj)

5.3 Perpetual American Put Options

Getting back to the continuous-time model, closed form solutions for American put op-
tions only exist if the option satisfies certain conditions. One such condition is having no
expiration time, i.e. T → ∞. This type of option is known as a perpetual American put
option.

Consider an American put option that does not expire. The option holder can exercise
the put option at any time t, 0 ≤ t < ∞. Because the time to expiration is infinite, the
value of the put option is a function of x alone, i.e. V (t, x) = V (x) and for the exercise
boundary we have S∗t = L, for all t > 0 and some constant L (Etheridge [9]).

The value of a perpetual American put option2 V (x) is:

V (x) = {
(K − x) if 0 ≤ x ≤ L

(K − L)( x
L)−2rσ−2

if L < x < ∞

where L = 2rσ−2K
1+2rσ−2 . This solution is subject to the following boundary conditions:

• V (L) = (K − L)

• lim
x↓L

dV (x)
dx = −1

• lim
x→∞V (x) = 0

For 0 ≤ x ≤ L:

rx
dV (x)

dx
+

1
2
σ2x2 d2V (x)

dx2
− rV (x) = −rx + 0− r(K − x)

= −rK

< 0
2For an explicit proof of this solution see the appendix.
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For L < x < ∞:

rx
dV (x)

dx
+

1
2
σ2x2 d2V (x)

dx2
− rV (x) = rx[

−2rσ−2

L
(K − L)(

x

L
)−2rσ−2−1]

+
1
2
σ2x2[

(−2rσ−2)(−2rσ−2 − 1)
L2

(K − L)(
x

L
)−2rσ−2−2]

−r(K − L)(
x

L
)−2rσ−2

= (K − L)(
x

L
)−2rσ−2

[−2r2σ−2

+
1
2
σ2(−2rσ−2)(−2rσ−2 − 1)− r]

= (K − L)(
x

L
)−2rσ−2

(−2r2σ−2 + r(2rσ−2 + 1)− r)

= (K − L)(
x

L
)−2rσ−2

(−2r2σ−2 + 2r2σ−2 + r − r)

= (K − L)(
x

L
)−2rσ−2

(0)

= 0

The Linear Complementarity Problem

The free boundary problem can also be expressed as follows:

Let BSV (x) = rxdV (x)
dx + 1

2σ2x2 d2V (x)
dx2 − rV (x).

Then

BSV (x)(V (x)− (K − x)+) = 0

subject to the conditions,

BSV (x) ≤ 0

V (x)− (K − x)+ ≥ 0

One of the above two inequalities will be an equality for all x ∈ R, x 6= L.
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Figure 5.2: Linear Complementarity

The solution to the perpetual American put option is plotted against the underlying stock
price x = St. If the value of the underlying stock is below the critical stock price L, then
the option is exercised and is worth (K − x). The intrinsic value of the option is worth
more than the value of the option if not exercised. However, when the underlying stock is
worth more than L then the option is more valuable if it is not exercised. The option is
thus worth (K − L)( x

L)−2rσ−2 .

Hedging Portfolio

In the binomial model, the hedging portfolio had to be adjusted for the difference consumed
when the option was not exercised. When the difference is zero then the option will not be
exercised. As soon as this difference becomes nonzero, the put option process becomes a
supermartingale and early exercise is optimal. The hedging portfolio process is very similar
in the continuous-time setting. Consider the portfolio process [φt, ωt]. Let Vt be the value
of the portfolio at time t. Then Vt satisfies the differential equation:

dVt = φtdSt + r[Vt − φtSt]dt−Atdt,

where At is the rate at which the difference is consumed. Thus:

d(e−rtVt) = −re−rtVtdt + e−rtdVt

= −re−rtVtdt + e−rt(φtdSt + r[Vt − φtSt]dt−Atdt)

= e−rtφt(rStdt + σStdWQ
t )− re−rtφtStdt− e−rtAtdt

= −e−rtAtdt + e−rtφtσStdWQ
t
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Using Itô’s Formula on Vt = V (t, St):

dV (t, St) =
∂V

∂t
(t, St)dt +

∂V

∂x
(t, St)dSt +

1
2

∂2V

∂x2
(t, St)dStdSt

=
∂V

∂t
(t, St)dt +

∂V

∂x
(t, St)(rStdt + σStdWQ

t ) +
1
2

∂2V

∂x2
(t, St)σ2S2

t dt

= [
∂V

∂t
(t, St) +

∂V

∂x
(t, St)rSt +

1
2

∂2V

∂x2
(t, St)σ2S2

t ]dt +
∂V

∂x
(t, St)σStdWQ

t

⇒ d(e−rtV (t, St)) = −re−rtV (t, St)dt + e−rtdV (t, St)

= −re−rtV (t, St)dt + e−rt(
∂V

∂t
(t, St) +

∂V

∂x
(t, St)rSt +

1
2

∂2V

∂x2
(t, St)σ2S2

t )dt

+e−rt ∂V

∂x
(t, St)σStdWQ

t

= e−rt(
∂V

∂t
(t, St) + rSt

∂V

∂x
(t, St) +

1
2
σ2S2

t

∂2V

∂x2
(t, St)− rV (t, St))dt

+e−rt ∂V

∂x
(t, St)σStdWQ

t

Comparing the two differential equations we have:

e−rtφtσSt = e−rt ∂V

∂x
(t, St)σSt

⇒ φt =
∂V

∂x
(t, St)

−e−rtAt = e−rt(
∂V

∂t
(t, St) + rSt

∂V

∂x
(t, St) +

1
2
σ2S2

t

∂2V

∂x2
(t, St)− rV (t, St))

⇒ At = −(
∂V

∂t
(t, St) + rSt

∂V

∂x
(t, St) +

1
2
σ2S2

t

∂2V

∂x2
(t, St)− rV (t, St))

Since the Black-Scholes partial differential equation is equal to −rK if St ≤ S∗t , and 0
otherwise, it is therefore true that

At = rK1{St≤S∗t }

The stock holding in the hedging portfolio is once again equal to the partial derivative of the



5.4. GESKE-JOHNSON ANALYTIC FORMULA FOR AMERICAN PUT
OPTIONS 65

option price with respect to the underlying stock price. If St ≤ S∗t then V (St) = (K − St)
and φt = −1. By investing K in a cash bond and selling one share of stock short, the put
option can be hedged. The amount that can be consumed is equal to the interest from the
cash bond, i.e. rK.

5.4 Geske-Johnson Analytic Formula for American Put Op-
tions

Geske and Johnson [10] showed that under the Black-Scholes conditions, namely perfect
markets, constant interest rate and volatility parameters as well as using geometric Brown-
ian motion to track the movement of the stock price, an analytic solution to the American
put problem exists and it satisfies Black-Scholes partial differential equation:

∂P

∂t
(t, x) + rx

∂P

∂x
(t, x) +

1
2
σ2x2 ∂2P

∂x2
(t, x)− rP (t, x) = 0 , 0 ≤ t ≤ T

The American put option can be exercised at any point up until maturity. It is optimal to
exercise the put if the payoff from exercising is greater than the value of the put if it is not
exercised. This means that the American put option must satisfy the following condition:

P (t, St) ≥ (St −K)+ , 0 ≤ t ≤ T

By treating each opportunity to exercise as a discrete event then an analytic formula is
derived by letting the number of discrete exercise points go to infinity. Suppose that the
put can be exercised at time dt, 2dt, 3dt, etc. At the first point of exercise, the put will
be exercised if the payoff from exercising is at least as great as the value of the put if not
exercised. Since the payoff is equal to the strike price minus the stock price and the strike
price is fixed, the put will be exercised when the stock falls below a certain critical value.
Let Sdtbe the critical stock price at the time point dt. The discounted payoff is integrated
over all stock prices less than Sdt. Thus a univariate normal integral is the result. At 2dt,
the put is exercised if it was not exercised previously and if the stock price at that time is
below the critical stock price S2dt. A bivariate normal integral is obtained. The process
carries on indefinitely and at each time a multivariate normal integral of a higher dimension
is obtained. By combining all these integrals we obtain the Geske-Johnson analytic formula
(Geske & Johnson [10]):

P = Kω2 − S0ω1
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where P is the American put value, K is the strike price, S0 is the time zero value of the
underlying stock and:

ω1 = {Φ1(−d1(Sdt, dt)) + Φ2(d1(Sdt, dt),−d1(S2dt, 2dt);−ρ12)

+Φ3(d1(Sdt, dt), d1(S2dt, 2dt),−d1(S3dt, 3dt); ρ12,−ρ13,−ρ23) + . . .}

ω2 = {e−rdtΦ1(−d2(Sdt, dt)) + e−r2dtΦ2(d2(Sdt, dt),−d2(S2dt, 2dt);−ρ12)

+e−r3dtΦ3(d2(Sdt, dt), d2(S2dt, 2dt),−d2(S3dt, 3dt); ρ12,−ρ13,−ρ23) + . . .}

d1(y, t) =
ln(S0/y) + (r + 1

2σ2)t
σ
√

t

d2(y, t) = d1(y, t)− σ
√

t

Φ1(x) is a standard cumulative univariate normal distribution function.

Φj(x1, x2, . . . , xj ; ρ12, ρ13, . . . , ρj−1,j) is a cumulative multivariate normal distribution func-
tion of dimension j, (where j > 1).

For the standard Brownian motions {Wt1}t1≥0 and {Wt2}t2≥0, where t2 > t1 > 0, recall
that:

Corr(Wt1 ,Wt2) =
cov(Wt1 ,Wt2)√

V ar(Wt1)V ar(Wt2)

=
t1 ∧ t2√

t1t2

=
√

t1
t2
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Thus:

ρij = Corr(Widt,Wjdt)

=

√
i

j

⇒ ρ12 =

√
1
2

ρ13 =

√
1
3

ρ23 =

√
2
3

The correlation coefficient is negative when the correlation is between the time instant
when exercising occurs and the previous times when exercising does not occur. This is
because exercising occurs when the stock price falls below the critical exercise price. At
the previous instants, the stock price was above the critical price and was not exercised.
The correlation is positive when it is between the time instants at which exercising did
not occur since at each of these time instants the stock price was above the critical stock
value.

While the Geske-Johnson analytic formula solves the American put option problem, it
cannot be implemented in a practical sense. As a result, numerical methods need to be
implemented to approximate the solution. This can be done by thinking of the American
put option as the limit of a sequence of put options with an increasing number of exercise
opportunities. Then, by calculating a few of the put options in the sequence, we can
extrapolate to the limit of the sequence .
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Table 5.1: Comparison of American Put Option Prices

r S K σ T P (1) P (An) P (Num)
0.125 1 1 0.5 1 0.1327 0.1476 0.148
0.08 1 1 0.4 1 0.117 0.1258 0.126
0.045 1 1 0.3 1 0.0959 0.1005 0.101
0.02 1 1 0.2 1 0.0694 0.0712 0.071
0.005 1 1 0.1 1 0.0373 0.0377 0.038
0.09 1 1 0.3 1 0.0761 0.0859 0.086
0.04 1 1 0.2 1 0.06 0.064 0.064
0.01 1 1 0.1 1 0.0349 0.0357 0.036
0.08 1 1 0.2 1 0.0442 0.0525 0.053
0.02 1 1 0.1 1 0.0304 0.0322 0.033
0.12 1 1 0.2 1 0.0317 0.0439 0.044
0.03 1 1 0.1 1 0.0263 0.0292 0.03

The values in this table are taken from Table 1 of Geske and Johnson [10]. The values
in the first four columns are for the risk-free interest rate r, the initial stock price S, the
strike price K and the expiration time T . P (1) contains the European put option values.
P (An) contains the analytic American put option values that are obtained by solving the
equation P = Kω2− Sω1. P (Num) are numerical values obtained from Parkinson [15] as
a benchmark to compare with the analytic values.



Chapter 6

Numerical Methods for Valuing
American Put Options

Thus far, under the Black-Scholes market economy, the arbitrage-free prices of European
options and American call options can be determined with a closed form solution. The
difficulty has been in trying to establish a risk-neutral valuation of an American put option.
While Geske and Johnson [10] managed to determine a solution using a compound option
pricing approach, their formula is unable to be determined for practical purposes. However,
numerical methods that involve the calculation of a series of Bermudan-style options can
be used in conjunction with a Richardson Extrapolation technique to yield an accurate
approximation of the desired American put option price. The number of Bermudan puts
necessary to determine an approximation for the American put option with a desired level
of accuracy can be determined by what is known as the Repeated-Richardson Extrapolation
technique. Other methods available combine the Binomial model with the Black-Scholes
pricing formula and a two-point Richardson extrapolation. Using a spreadsheet, Monte
Carlo simulation can be combined with Richardson Extrapolation to yield a fairly accurate
approximation.

6.1 Bermudan Options

A Bermudan option is an option that may only be exercised at one of a discrete number
of time points. The European put option is a Bermudan put option that has only one
exercise time, i.e. at maturity time T . Let P (j) be the value of a Bermudan put that can
only be exercised at times ti, i = 1, 2, ..., j, where 0 ≤ t1 ≤ t2 ≤ .... ≤ tj−1 ≤ tj = T .

69
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Recall that for an American put option, P (0, S0), with strike price K and maturity T we
have the formula (Egloff, et al. [8]):

P (0, S0) =
sup

τ ∈ Γ[0,T ]
EQ[e−rτ (K − Sτ )+ | Σ0]

For a Bermudan option with a finite number of exercise points we have the formula:

P (j) =
sup

τ ∈ Γ(0,t1,··· ,tj=T )
EQ[e−rτ (K − Sτ )+ | Σ0],

where Γ(0,t1,··· ,tj=T ) is the discrete set of all (0, t1, · · · , tj = T )-stopping times up to and
including time T . We can price these options by using the compound option approach
of Geske and Johnson [10] and can arrive at an explicit solution. For example, consider
P (2), the value of a Bermudan put option with strike price K that can only be exercised
at time t1 or at time T , where t1 < T . At time t1, the option will be exercised if the payoff
from exercising is as least as great as the value of the put if not exercised. This means
that there is a critical stock value, St1 , which results in early exercise. If the value of the
underlying stock is below St1 then the put is exercised. P (2) is priced as the discounted
expected value of all future cash flows (Geske & Johnson [10]). The discounted payoff is
integrated over all stock prices less than St1 . At time T the option will only be exercised
if the stock price is less than ST , the critical stock price at time T , and if the option has
not already been exercised. Thus we have the formula:

P (2) = [Ke−rt1Φ1(−d2(St1 , t1))− S0Φ1(−d1(St1 , t1))]

+[Ke−rT Φ2(d2(St1 , t1),−d2(ST , T );−
√

1
2
)

−S0Φ2(d1(St1 , t1),−d1(ST , T );−
√

1
2
)]

Pricing P (1) requires the solving of one integral. Pricing P (2) requires the solving of a
single and a double integral. Carrying on in this fashion it can be shown that pricing P (j)
requires the solving of j integrals, the jth integral being of dimension j.

6.2 The Geske-Johnson Formula

The risk-neutral value of an American put option is the limit of a sequence of Bermudan
put option values with the same strike price and maturity time, where the limit is with
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respect to an increasing number of exercise points, i.e.

P (0, S0) =
lim

j →∞
P (j) = P (∞)

Determining P (j) requires solving j integrals, the jth integral being of dimension j. Geske
and Johnson [10] used the method of Richardson Extrapolation1 in order to approximate
the limit. The exercise times for the options were assumed to be separated by arithmetic
time steps. For example, P (2) could only be exercised at times T

2 and T and P (3) could
only be exercised at times T

3 , 2T
3 and T , etc. This technique requires the values of only a

few Bermudan puts to approximate the limit. Their three-point extrapolation formula is:

P (∞) = P (3) +
7
2
(P (3)− P (2))− 1

2
(P (2)− P (1))

There are two main problems with this approach. Firstly, there is the possibility of non-
uniform convergence. For uniform convergence we require P (1) ≤ P (2) ≤ P (3). Accel-
eration techniques, such as Richardson Extrapolation, are best suited to approximating
uniformly convergent sequences. Problems arise when sequences with oscillatory conver-
gences are extrapolated. When the exercise times are separated by arithmetic time steps
it is possible that P (1) ≤ P (2) > P (3). An example is a deep-in-the-money put option
written on a low volatility, high-dividend paying stock going ex-dividend once during the
term of the option at time T

2 . There is a good chance that the option will be exercised at
that time, immediately after the stock goes ex-dividend. Because P (3) cannot be exercised
at that time we have the possibility that P (2) > P (3) (Omberg [14]).

Secondly, the number of Bermudan options needed in the extrapolation procedure to gain
the desired level of accuracy is difficult to determine (Chang, et al. [6]). There is always
the trade off between accuracy and efficiency. Including more options will increase the
accuracy but may be too computationally intensive (including P (4) in the extrapolation
results in the solving of a 4th dimensional integral).

Modifications to the Geske-Johnson Formula

In order to overcome the problem of non-uniform convergence, Omberg [14] suggested that
each successive Bermudan put option in the sequence must include the same exercise points
as the previous Bermudan put option. This will ensure that subsequent Bermudan put
options will be worth at least as much as previous put options. This can be obtained by

1For details on Richardson Extrapolation, see the appendix.
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having the exercise points separated by geometric time steps. The result is the sequence
P (1), P (2), P (4), P (8), ..., P (2j), etc. For example, P (4) can be exercised at times T

4 , T
2 ,

3T
4 and T . P (4) includes the exercise times of P(2) and thus P (2) ≤ P (4).

While the Geske-Johnson model uses arithmetic time steps to separate the exercise times,
there is no reason why the exercise points need to be equally spaced. Bunch and Johnson
[5] proposed that if the exercise points were chosen so as to maximise the value of the
Bermudan put options then fewer put options would be needed in the Richardson Ex-
trapolation procedure to maintain the desired accuracy. As a result of this maximizing
procedure the problem of non-uniform convergence is overcome.

Let

Pmax(j) =
max

0 ≤ t ≤ T
P (j)

Clearly we have Pmax(i) ≤ Pmax(j), for all 0 < i ≤ j. Pmax(1) = P (1) since an out-of-
the-money put would always have its exercise point at expiration (Bunch & Johnson [5]).
The two-point formula is:

P (∞) = Pmax(2)− P (1)

6.3 Modifications to the Binomial Method

Broadie and Detemple [4] suggest modifying the Binomial method by replacing the ’contin-
uation value’ at the last time step before option maturity with the Black Scholes formula.
This is known as the Binomial Black Scholes Method (BBS).

Another method is to combines the BBS method with two-point Richardson extrapolation
(Broadie & Detemple [4]). The idea behind this method is that the accuracy of the binomial
method increases as the number of time steps increases. Thus P (∞) = lim

n→∞Pn, where
Pn is the binomial value of an American put option using n time steps. However, the
Binomial method suffers from oscillatory convergence. Thus Richardson extrapolation
might not be satisfactory when applied to the binomial method. Fortunately, we can
apply Richardson extrapolation to the BBS method. Thus we compute Pm and Pn using
the BBS method, where m > n, and use two-point Richardson extrapolation to obtain the
final result of P (∞) = 2Pm−Pn. This is known as BBSR (Binomial Black Scholes Method
with Richardson Extrapolation).
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6.4 Repeated-Richardson Extrapolation

Suppose you want to determine the value of a function F (0), where F (0) = lim
h→0F (h). If

the approximations F (h) are available for h > 0 and the order of the approximations are
known then we can express

F (h) = F (0) + a1h
p1 + a2h

p2 + . . . + akh
pk + O(hpk+1),

where a1, a2, a3, etc. are unknown and p1 < p2 < p3 < . . .

Chang, et al. [6] proposed applying the numerical procedure known as the Aitken-Neville
Algorithm to approximate the value of F (0). The algorithm is as follows:

• Calculate F (h) using a decreasing sequence of time steps, hi, i = 1, 2, 3, . . .. The
result is the sequence of approximations F (h1), F (h2), . . .

• Set Ai,0 = F (hi) and Ai,m = Ai+1,m−1 + Ai+1,m−1−Ai,m−1

(
hi

hi+m
)p−1

, when pj = jp, j = 1, . . . k.

Ai,m is an m times Repeated-Richardson extrapolation approximation of F (0) using the
values, F (hi), F (hi+1), . . . , F (hi+m), where 0 < m ≤ k − 1. The diagram illustrates the
procedure.

A1,0 → A1,1 → A1,2 → A1,3

↗ ↗ ↗
A2,0 → A2,1 → A2,2

↗ ↗
A3,0 → A3,1

↗
A4,0

...

This procedure is applied to the Geske-Johnson formula by letting P (∞) = F (0), and
P (i) = F (hi) = Ai,0. In the appendix it is shown that for a two-point Richardson Extrap-
olation we have:

F (0)R = F (h2) +
F (h2)− F (h1)

(h1
h2

)p1 − 1

The Repeated-Richardson Extrapolation Procedure repeatedly extrapolates on two ap-
proximations for F (0) that were, themselves, extrapolations on two other approximations.
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For example, A1,1 approximates P (∞) by extrapolating P (1) and P (2). A2,1 approximates
P (∞) by extrapolating P (2) and P (3). Now, A1,2 approximates P (∞) by extrapolating
A1,1 and A2,1. Thus, using Arithmetic time steps we have h1 = T , h2 = T

2 , h3 = T
3 , etc.

The following results are obtained:

A1,1 = 2P (2)− P (1)
A2,1 = 3

2P (3)− 1
2P (2)

A1,2 = 9
2P (3)− 4P (2) + 1

2P (1)

It can be seen that A1,1 and A1,2 are equivalent to the Geske-Johnson two-point and
three-point Richardson Extrapolation approximation for P (∞) respectively. As before,
the problem of non-uniform convergence arises when arithmetic time steps are used in de-
termining the exercise times for the Bermudan puts. As with the modified Geske-Johnson
formula we introduce geometric time steps to eliminate the problem of non-uniform con-
vergence. Letting P (∞) = F (0), and P (2i−1) = Ai,0, i = 1, 2, . . ., the following results are
obtained:

A1,1 = 2P (2)− P (1)
A2,1 = 2P (4)− P (2)
A1,2 = 8

3P (4)− 2P (2) + 1
3P (1)

It can be seen that A1,1 and A1,2 are equivalent to the modified geometric time step Geske-
Johnson two-point and three-point Richardson Extrapolation approximation for P (∞)
respectively.
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Table 6.1: Comparison of American Put Option Prices

K σ T PR(1) PR(∞) PR(1, 2, 3) PR(1, 2, 4)
35 0.2 0.0833 0.0062 0.0062 0.0062 0.0062
35 0.2 0.3333 0.1999 0.2004 0.1999 0.1999
35 0.2 0.5833 0.417 0.4329 0.4326 0.4325
40 0.2 0.0833 0.8404 0.8523 0.8521 0.8522
40 0.2 0.3333 1.5222 1.5799 1.576 1.5772
40 0.2 0.5833 1.8813 1.9906 1.9827 1.9847
45 0.2 0.0833 4.8399 5 4.9969 4.9973
45 0.2 0.3333 4.7805 5.0884 5.1053 5.1027
45 0.2 0.5833 4.8402 5.2671 5.2893 5.285
35 0.3 0.0833 0.0771 0.0775 0.0772 0.0773
35 0.3 0.3333 0.6867 0.6976 0.6973 0.6972
35 0.3 0.5833 1.189 1.2199 1.2199 1.2197
40 0.3 0.0833 1.2991 1.3102 1.3103 1.3103
40 0.3 0.3333 2.4276 2.4827 2.4801 2.4811
40 0.3 0.5833 3.0636 3.1698 3.1628 3.1651
45 0.3 0.0833 4.9796 5.0598 5.0631 5.0623
45 0.3 0.3333 5.529 5.7058 5.7019 5.7017
45 0.3 0.5833 5.9725 6.2438 6.2368 6.2367
35 0.4 0.0833 0.2458 0.2467 0.2463 0.2464
35 0.4 0.3333 1.3298 1.3462 1.3461 1.3459
35 0.4 0.5833 2.1129 2.155 2.1553 2.155
40 0.4 0.0833 1.7579 1.7685 1.7688 1.7687
40 0.4 0.3333 3.3338 3.3877 3.3863 3.3869
40 0.4 0.5833 4.2475 4.3529 4.3475 4.3496
45 0.4 0.0833 5.2362 5.287 5.2848 5.2851
45 0.4 0.3333 6.3769 6.51 6.5015 6.5035
45 0.4 0.5833 7.1657 7.3832 7.3696 7.3726

The values in this table are taken from Table 2 of Chang, et al. [6]. The values in the
first three columns are for the strike price K, the volatility σ and the expiration time T .
The stock price and risk-free interest rate are 40 and 0.05 respectively. PR(1) contains
the European put option values. PR(∞) shows the BBSR approximations of American
put options with 10, 800 steps. The last two columns contain the values for the three point
Geske Johnson Richardson extrapolation approximation using arithmetic time steps and
geometric time steps.
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American Put Prediction Intervals Using Repeated-Richardson Extrap-
olation

Chang, et al. [6] showed that the advantage of using Repeated-Richardson extrapolation
is that the error bounds of the American put approximation can be determined. Thus
two important questions are answered. Firstly, the accuracy of the approximation can be
determined. Secondly, the number of Bermudan put options needed to approximate the
American put option within a given accuracy can also be determined. This is done by
applying Schmidt’s inequality (Schmidt [17]).

Schmidt’s Inequality2:
| Ai,m+1 − F (0) |≤| Ai,m+1 −Ai,m |,

for sufficiently large i, and 0 < m ≤ k − 1.

Letting, F (0) = P (∞), the American put value, and Ai,m be the m-times Repeated-
Richardson extrapolation approximation of P (∞), using Schmidt’s inequality we know
that the error of the approximation will be at most | Ai,m+1−Ai,m |. Thus, for the desired
accuracy, ε, we can determine the smallest values of i and m such that | Ai,m+1−Ai,m |≤ ε.
If i∗ and m∗ are the smallest values of i and m respectively, such that | Ai,m+1−Ai,m |≤ ε

then the American put can be approximated with the desired accuracy by calculating
Ai∗,m∗+1. This requires m ∗+2 Bermudan puts with step sizes hi∗, hi∗+1, . . . , hi∗+m∗+1.

6.5 Monte Carlo Simulation with Richardson Extrapolation

In an attempt to quickly price a Bermudan put option, a Monte Carlo simulation was run
using Pop Tools (Hood [11]) in a simple spreadsheet. Four types of Bermudan options were
simulated:

• P (1), the value of a Bermudan put option which can only be exercised at expiration
time T (i.e. a European put option).

• P (2), the value of a Bermudan put option which can only be exercised at time points
T
2 and T .

• P (3), the value of a Bermudan put option which can only be exercised at time points
T
3 , 2T

3 and T .

2For a detailed proof of Schmidt’s Inequality, see Chang, et al. [6].
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• P (4), the value of a Bermudan put option which can only be exercised at time points
T
4 , T

2 , 3T
4 and T .

Monte Carlo Simulation

Monte Carlo simulation can be used to estimate the expected value of some random
variable X. This is done by generating a sequence of n independent random variables,
X1, X2,X3, . . . , Xn, with the same probability distribution as X and then determining X̄,
their arithmetic average. A simulation run occurs every time a new value is generated
(Ross [16]).

If µ = E[X] and σ2 = V ar(X) then:

• E[X̄] = 1
n

∑n
i=i E[Xi] = µ

• V ar(X̄) = V ar( 1
n

∑n
i=i Xi) = 1

n2

∑n
i=i V ar(Xi) = σ2

n

As a result of the central limit theorem, X̄ is approximately normally distributed with
mean µ and variance σ2

n for large values of n. Thus for large values of n, the variance will
be small and X̄ will be close to µ. As a result, X̄ will be a good estimator for µ. The
greater the value of n, the better the estimate will be.

Procedure for Simulating Bermudan Put Options

In order to perform a Monte Carlo simulation on P (j), a Bermudan put option with j

exercise time points, the following procedure was adopted:

• Generate j standard normal random variables (Z1, Z2, . . . , Zj) using the random
variable generator from Pop Tools (Hood [11]).

• Adjust for drift and volatility by multiplying random variables by standard deviation
σ
√

T
j and adding risk-neutral mean (r − 1

2σ2)T
j , i.e. Wi = (r − 1

2σ2)T
j + Ziσ

√
T
j ,

i = 1, . . . , j.

• Calculate stock prices at each exercise point, ST
j
, S 2T

j
, . . . S (j−1)T

j

, ST , with the fol-

lowing equation: S iT
j

= S (i−1)T
j

exp(Wi), i = 1, . . . , j, S0 = initial stock price. Thus

at each exercise point, if the put option is not exercised then the stock price at this
point is treated as the new initial stock price at the next exercise point.
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• At the first exercise point, the intrinsic value (K − ST
j
) is calculated. This value is

compared with the value of the put option if not exercised. To calculate the non-
exercise value, 1000 stock prices are generated in the same procedure as before. The
discounted average payoff for each of the thousand values is determined.

• If (K − ST
j
) is greater than the non-exercise value than the procedure stops. If not,

then the intrinsic value (K−S 2T
j

) is calculated and compared to the new non-exercise
value of the put option. This new non-exercise value is computed the same as before
by generating 1000 stock prices and determining the discounted average payoff for
each of the thousand values.

• The procedure carries on until the intrinsic value at an exercise point is greater than
the non-exercise value or until expiration when the put option will be exercised if it
is in the money. Thus j + 1000× j random variables are generated in total.

• Using Pop Tools (Hood [11]), a Monte Carlo simulation with 30000 iterations is
run on the stopping value of the option, discounted to time zero. The mean of the
simulation run is the approximation for the Bermudan put option.
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Table 6.2: Monte Carlo Simulation of Bermudan Put Options

K σ T P (1) P (2) P (3) P (4) P (1, 2) P (1, 2, 3) P (1, 2, 4) PR(∞)
35 0.2 0.0833 0.0055 0.0061 0.0064 0.0067 0.0068 0.0069 0.0073 0.0062
35 0.2 0.3333 0.1983 0.1918 0.1993 0.2028 0.1853 0.2286 0.2234 0.2004
35 0.2 0.5833 0.4082 0.4099 0.4184 0.4308 0.4117 0.447 0.465 0.4329
40 0.2 0.0833 0.8393 0.8246 0.8433 0.8465 0.8099 0.916 0.8877 0.8523
40 0.2 0.3333 1.506 1.5504 1.5491 1.5062 1.5948 1.5223 1.4178 1.5799
40 0.2 0.5833 1.8593 1.9079 1.9416 1.9271 1.9565 2.0351 1.9429 1.9906
45 0.2 0.0833 4.8468 4.9074 4.9334 4.9564 4.9679 4.9944 5.0181 5
45 0.2 0.3333 4.8056 4.9369 4.9898 4.9568 5.0682 5.1094 4.9463 5.0884
45 0.2 0.5833 4.8137 5.0692 5.126 5.0905 5.3248 5.1971 5.0406 5.2671
35 0.3 0.0833 0.0762 0.0751 0.0758 0.0779 0.0742 0.0785 0.0827 0.0775
35 0.3 0.3333 0.6928 0.6752 0.6738 0.6866 0.6575 0.6778 0.7116 0.6976
35 0.3 0.5833 1.1814 1.1842 1.209 1.1913 1.187 1.2944 1.2021 1.2199
40 0.3 0.0833 1.2961 1.2876 1.3072 1.2849 1.2791 1.38 1.2831 1.3102
40 0.3 0.3333 2.43 2.4385 2.4532 2.4354 2.447 2.5006 2.4273 2.4827
40 0.3 0.5833 3.0486 3.1174 3.0825 3.0866 3.1861 2.9259 3.0123 3.1698
45 0.3 0.0833 4.9784 5.0037 5.0112 5.0278 5.029 5.0249 5.0595 5.0598
45 0.3 0.3333 5.4758 5.6386 5.629 5.5543 5.8013 5.5141 5.3596 5.7058
45 0.3 0.5833 5.9222 6.1998 6.1067 6.0692 6.4774 5.642 5.7589 6.2438
35 0.4 0.0833 0.2447 0.2483 0.2468 0.2459 0.2519 0.2399 0.2406 0.2467
35 0.4 0.3333 1.3274 1.3512 1.3318 1.3452 1.3751 1.2518 1.3273 1.3462
35 0.4 0.5833 2.0933 2.1063 2.1221 2.1305 2.1194 2.1706 2.1676 2.155
40 0.4 0.0833 1.7501 1.7596 1.7551 1.7296 1.769 1.7346 1.6765 1.7685
40 0.4 0.3333 3.3311 3.3171 3.3336 3.3172 3.3031 3.3983 3.322 3.3877
40 0.4 0.5833 4.2408 4.3008 4.2845 4.2726 4.3608 4.1975 4.2055 4.3529
45 0.4 0.0833 5.2523 5.2805 5.2344 5.2222 5.3087 5.059 5.1157 5.287
45 0.4 0.3333 6.4468 6.4744 6.42 6.3621 6.502 6.2156 6.1657 6.51
45 0.4 0.5833 7.1613 7.2111 7.269 7.1904 7.2609 7.4469 7.1393 7.3832

The values in the first three columns are taken from Table 1 of Geske and Johnson [10].
These are values for the strike price K, the volatility σ and the expiration time T . The stock
price and risk-free interest rate are 40 and 0.05 respectively. The next four columns con-
tain the values of the Monte Carlo simulation of four Bermudan put options ranging from
P (1), a Bermudan put option with only one exercise time to P (4), a Bermudan put option
with 4 exercise times. The next three columns contain the values of the P (1, 2) (the two
point Richardson Extrapolation of P (1) and P (2)), P (1, 2, 3) (the three point Richardson
Extrapolation of P (1), P (2) and P (3)) and P (1, 2, 4) (the three point Richardson Extrapo-
lation of P (1), P (2) and P (4). PR(∞) shows the BBSR approximations of American put
options with 10, 800 steps taken from table 2 of Chang, et al. [6]. These values are used as
a benchmark to compare the extrapolated approximations.
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Table 6.3: Monte Carlo Simulation of Bermudan Put Options Continued

r σ P (1) P (2) P (3) P (4) P (1, 2) P (1, 2, 3) P (1, 2, 4) P (Num)
0.125 0.5 0.1333 0.1396 0.1438 0.1419 0.1459 0.1555 0.1438 0.148
0.08 0.4 0.1168 0.1213 0.1218 0.1215 0.1257 0.1216 0.1205 0.126
0.045 0.3 0.0966 0.0975 0.0983 0.0978 0.0983 0.1009 0.0981 0.101
0.02 0.2 0.0692 0.0696 0.0709 0.0704 0.0701 0.0751 0.0715 0.071
0.005 0.1 0.038 0.0369 0.0374 0.037 0.0358 0.0394 0.0375 0.038
0.09 0.3 0.0767 0.0815 0.0821 0.0823 0.0862 0.0822 0.0822 0.086
0.04 0.2 0.0607 0.0611 0.0622 0.0612 0.0615 0.0658 0.0617 0.064
0.01 0.1 0.0347 0.0347 0.0352 0.0348 0.0346 0.0371 0.035 0.036
0.08 0.2 0.0437 0.0486 0.0496 0.0496 0.0536 0.0506 0.05 0.053
0.02 0.1 0.0306 0.0311 0.0318 0.0313 0.0316 0.0339 0.0314 0.033
0.12 0.2 0.0321 0.0379 0.0396 0.0404 0.0436 0.0428 0.0427 0.044

The values in the first two columns are taken from Table 1 of Geske and Johnson [10].
This table is similar to the previous table except that interest rates are varied and the stock
price, strike price and time to expiration are equal to 1. P (Num) contains numerical values
from Parkinson [15]. These values are used as a benchmark to compare the extrapolated
approximations.

Results from Simulation

The purpose of the simulation was to quickly establish a value for an American put option
with minimal input. However, due to the nature of the procedure, problems associated with
non-uniform convergence arose. The estimation of the four Bermudan put options lacked
the precision necessary to successfully ensure that uniform convergence was achieved. Using
estimates to estimate the American put option resulted in a great deal of error creeping
into the procedure. As a result, applying the Richardson extrapolation procedures would
not always produce a valid solution to the pricing problem.

More advanced methods can be used to successfully price Bermudan and American put
options using Monte Carlo simulation3 . The point of the procedure was to quickly establish
a solution that is straightforward and relatively simple to implement. Thus, a spreadsheet
was chosen to implement the procedure. More advanced computer programs can be used
to help solve the pricing problem. For example, using the programming language C++ is
one of the most effective ways to price financial derivatives (Nhongo [13]).

3See Egloff, et al. [8] for a more involved analysis.



Chapter 7

Conclusion

The American put option pricing problem is solved analytically by calculating a sequence
of Bermudan option prices and extrapolating to the limit of the sequence (the American
put option price) using a Richardson extrapolation technique. The solution to the pricing
problem must be arbitrage free. Since the sequence of Bermudan puts that are constructed
must satisfy the Black-Scholes partial differential equation, the limit of the sequence must
also satisfy the Black-Scholes partial differential equation. Thus, the main assumption of
zero arbitrage is maintained with this approach.

Using Repeated-Richardson extrapolation to solve the pricing problem has the advantage
of being able to determine the number of Bermudan put options necessary to obtain a
desired accuracy. Pricing American options is thus the simple matter of determining the
extrapolation formula using the values of a few Bermudan put options. The key to making
this procedure more efficient is being able to price Bermudan options more accurately and
quickly.

7.1 Future Work

When applying a Richardson extrapolation technique on a sequence of Bermudan options,
the results will only be accurate when the sequence converges uniformly. This problem is
overcome by using geometric time steps. When estimating the Bermudan options them-
selves via a Monte Carlo simulation, the problem of non-uniform convergence arises once
more. The literature suggests that this problem can be overcome and Bermudan options
can be successfully priced using simulation techniques (Egloff, et al. [8]). Thus, future de-
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velopments in financial derivative simulation, especially with respect to Bermudan options,
can be investigated with the use of more dynamic computer programs.



Chapter 8

Appendix

8.1 Measure Spaces

A σ-algebra (or σ-field) is a collection of subsets of an arbitrary space with the properties
that the arbitrary space belong to the collection of subsets, and that the collection of
subsets are closed under countable unions and closed under complements (De Barra [7]).
This can be expressed more formally as follows:

Let Ω be a nonempty set. A collection Σ of subsets of Ω is called a σ-algebra in Ω if:

1. ∅ ∈ Σ;

2. if A ∈ Σ then the complement of A, Ac, is also in Σ;

3. if (An) is a sequence of sets in Σ, then
⋃∞

n=1 An ∈ Σ;

A measurable space is a pair (Ω,Σ), where Ω is a set and Σ is σ-algebra in Ω. The elements
of the σ-algebra are called measurable sets (Aggoun & Elliot [1]). To discuss measure
spaces, the concept of a measure needs to be defined. A measure is a generalization of the
concept of length (De Barra [7]).

Let (Ω,Σ) be a measurable space. A measure on (Ω,Σ) is a function µ : Σ → [0, 1] such
that

1. µ(∅) = 0;
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2. If (An) is a sequence of mutually disjoint sets in Σ then µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An).

A measure space is a triple (Ω,Σ, µ), where Ω is a set, Σ a σ-algebra in Ω and µ a measure
on Σ.

Probability Measure

Let (Ω,Σ, µ) be a measure space. if µ(Ω) = 1, then (Ω,Σ, µ) is called a probability space
and µ is called a probability measure (Aggoun & Elliot [1]).

8.2 Constructing the Itô Integral

Simple Function

The construction of the Itô integral mimics that of the Lebesgue integral. The first step
is to define the integral in terms of simple functions. the Itô integral is then equal to the
limit of a sequence of these simple functions.

Let f(s, ω) =
∑n

i=1 ai(ω)1Ii(s), where Ii = (si, si+1],
⋃n

i=1 Ii = (0, T ], Ii
⋂

Ij = {Ø} if
i 6= j and, for every i = 1, . . . , n, ai : Ω → R is a Σsi-measurable random variable with
E[a2

i (ω)] < ∞.

Define: ∫ t

0
f(s, ω)dWs =

∫
f(s, ω)1[0,t](s)dWs

Thus, ∫ t

0
f(s, ω)dWs =

n∑
i=1

ai(ω)1[0,t](si)(Wsi+1∧t −Wsi)

Lemma

Given a simple function f :

•
∫ t
0 f(s, ω)dWs is a continuous (P, {Σt}t≥0)-martingale,

• Itô Isometry: E[(
∫ t
0 f(s, ω)dWs)2] =

∫ t
0 E[f(s, ω)2]ds,

• E[
sup

t ≤ T
(
∫ t
0 f(s, ω)dWs)2] ≤ 4

∫ T
0 E[f(s, ω)2]ds.
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Proof of Itô Isometry:∫ t

0
f(s, ω)dWs =

n∑
i=1

ai(ω)1[0,t](si)(Wsi+1∧t −Wsi)

To simplify notation we assume:
∫ t
0 f(s, ω)dWs =

∑n
i=1 ai(ω)(Wsi+1 −Wsi)

E[(
∫ t

0
f(s, ω)dWs)2] = E[(

n∑
i=1

ai(ω)(Wsi+1 −Wsi))
2]

= E[
n∑

i=1

a2
i (ω)(Wsi+1 −Wsi)

2]

+2E[
∑
i<j

ai(ω)aj(ω)(Wsi+1 −Wsi)(Wsj+1 −Wsj )]

= E[E[
n∑

i=1

a2
i (ω)(Wsi+1 −Wsi)

2 | Σsj ]]

+2E[E[
∑
i<j

ai(ω)aj(ω)(Wsi+1 −Wsi)(Wsj+1 −Wsj ) | Σsj ]]

= E[
n∑

i=1

a2
i (ω)E[(Wsi+1 −Wsi)

2 | Σsi ]]

+2E[
∑
i<j

ai(ω)aj(ω)E[(Wsi+1 −Wsi)(Wsj+1 −Wsj ) | Σsj ]]

= E[
n∑

i=1

a2
i (ω)](si+1 − si)

+2E[
∑
i<j

ai(ω)aj(ω)(Wsi+1 −Wsi)E[(Wsj+1 −Wsj ) | Σsj ]]

=
n∑

i=1

E[a2
i (ω)](si+1 − si) + 0

=
∫ t

0
E[f(s, ω)2]ds

Itô Integral of a General Integrand

Let f be a function such that:

• f(t, ω) is {Σt}t≥0-measurable for 0 ≤ t ≤ T ,
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•
∫ T
0 E[f(s, ω)2]ds < ∞.

Let {fn}n≥1 be a sequence of simple functions and define:

∫ t

0
f(s, ω)dWs =

lim

n →∞

∫ t

0
fn(s, ω)dWs

The Itô integral is the limit of a sequence of integrals, each with simple functions as their
integrand.

8.3 The Greeks

The Greeks measure the sensitivity of derivative securities with respect to parameter
changes. Before calculating the delta, the gamma and the theta of a European put option,
the following two lemmas need to be derived:

Lemma

Consider the stock price process {St}0≤t≤T , where x = St, and interest rate r. Let Y be a
standard normal random variable with characteristic equation:

IY≤y∗ = {
1 if Y ≤ y∗

0 if Y > y∗

Then (with y∗ = − log x
K
−(r− 1

2
σ2)(T−t)

σ
√

T−t
):

e−r(T−t)E[IY≤y∗ST ] = xΦ(−ω)
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Proof:

e−r(T−t)E[IY≤y∗ST ] = e−r(T−t)

∫ y∗

−∞
xexp((r − 1

2
σ2)(T − t) + σy

√
T − t)

exp(−y2/2)√
2π

dy

=
∫ y∗

−∞

1√
2π

xexp(−1
2
σ2(T − t) + σy

√
T − t− y2/2))dy

= x

∫ y∗

−∞

1√
2π

exp(−1
2
(y − σ

√
T − t)2)dy

= x

∫ y∗−σ
√

T−t

−∞

1√
2π

exp(−z2/2)dz

= xΦ(y∗ − σ
√

T − t)

= xΦ(−ω)

Lemma

Assume the same conditions as above. Then:

e−r(T−t)E[IY≤y∗ST Y ] = x[− 1√
2π

e−ω2/2 + σ
√

T − tΦ(−ω)]

Proof:

e−r(T−t)E[IY≤y∗ST Y ] = e−r(T−t)

∫ y∗

−∞
yxexp((r − 1

2
σ2)(T − t) + σy

√
T − t)

exp(−y2/2)√
2π

dy

=
1√
2π

x

∫ y∗

−∞
yexp(−1

2
σ2(T − t) + σy

√
T − t− y2/2)dy

=
1√
2π

x

∫ y∗−σ
√

T−t

−∞
(z + σ

√
T − t)exp(−z2/2)dz

= x[
1√
2π

∫ −ω

−∞
zexp(−z2/2)dz +

σ
√

T − t√
2π

∫ −ω

−∞
exp(−z2/2)dz]

= x[− 1√
2π

e−ω2/2 + σ
√

T − tΦ(−ω)]
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The three Greeks can be calculated by applying the two lemmas derived above.

The Delta:

∂V

∂x
(t, x) = e−r(T−t) ∂

∂x
E[(K − ST )+]

= e−r(T−t)E[IY≤y∗
∂

∂x
(K − ST )]

= −e−r(T−t)E[IY≤y∗
ST

x
]

−1
x

e−r(T−t)E[IY≤y∗ST ]

= −Φ(−ω)

The Gamma:

∂2V

∂x2
(t, x) = − ∂

∂x
Φ(−ω)

= − 1√
2π

e−ω2/2 ∂(−ω)
∂x

=
1√
2π

e−ω2/2 1
xσ
√

T − t

=
e−ω2/2

σx
√

2π(T − t)

The Theta:
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∂V

∂t
(t, x) =

∂

∂t
e−r(T−t)E[IY≤y∗(K − ST )]

= E[IY≤y∗
∂

∂t
e−r(T−t)(K − ST )]

= E[IY≤y∗ [re−r(T−t)(K − ST )

+e−r(T−t) ∂

∂t
(K − xexp((r − 1

2
σ2)(T − t) + σY

√
T − t))]]

= E[IY≤y∗ [re−r(T−t)(K − ST )

+e−r(T−t)(−ST )(−r +
1
2
σ2 − σ

2
√

T − t
Y )]]

= E[IY≤y∗ [re−r(T−t)K + e−r(T−t)ST (−1
2
σ2 +

σ

2
√

T − t
Y )]]

= Kre−r(T−t)E[IY≤−ω+σ
√

T−t]−
σ2

2
e−r(T−t)E[IY≤y∗ST ]

+
σ

2
√

T − t
e−r(T−t)E[IY≤y∗ST Y ]

= Kre−r(T−t)Φ(−ω + σ
√

T − t)− σ2

2
xΦ(−ω)

+
σ

2
√

T − t
x[− 1√

2π
e−ω2/2 + σ

√
T − tΦ(−ω)]

= Kre−r(T−t)Φ(−ω + σ
√

T − t)− σxe−ω2/2

2
√

2π(T − t)

To calculate the Greeks for a European call option, see Ross [16].

8.4 Perpetual American Put Options

The value of a perpetual American put option V (x), with strike price K and riskless interest
rate r is:

V (x) = {
(K − x) if 0 ≤ x ≤ L

(K − L)( x
L)−2rσ−2

if L < x < ∞
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where L = 2rσ−2K
1+2rσ−2

Proof:

This proof comes from Shreve [19]. Let the stock price process {St}t≥0 satisfy the stochastic
differential equation:

dSt = rStdt + σStdWQ
t ,

where {WQ
t }t≥0 is a standard Brownian motion under the martingale measure Q.

Letting S0 = x and θ = r− 1
2
σ2

σ , then:

St = xexp{(r − 1
2
σ2)t + σWQ

t }

= xexp{σ[
r − 1

2σ2

σ
t + WQ

t ]}

= xexp{σ[θt + WQ
t ]}

Let L ∈ [0,K]. Then for all x ≥ L, define:

τ∗ = inf{t ≥ 0;St = L}

= inf{t ≥ 0; θt + WQ
t =

1
σ

log
L

x
}

= inf{t ≥ 0;−WQ
t = − 1

σ
log

L

x
+ θt}

Therefore,

V (L) = E[e−rτ∗(K − L)]

= (K − L)E[e−rτ∗ ]

proposition:

Let τ = inf{t ≥ 0;WQ
t = a + bt}. Then for η > 0, a > 0 and b > 0:

E[e−ητ ] = exp(−a(b +
√

b2 + 2η))

For proof of this statement see Etheridge [9].

Now, x > L ⇒ log L
x < 0. Thus − 1

σ log L
x > 0. {−WQ

t }t≥0 is also a standard Brownian
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motion under the martingale measure Q. Letting a = − 1
σ log L

x , b = θ and η = r then:

V (L) = (K − L)exp(
1
σ

log
L

x
(θ +

√
θ2 + 2r))

= (K − L)exp(
θ

σ
log

L

x
+

1
σ

log
L

x

√
θ2 + 2r))

= (K − L)(
L

x
)

θ
σ

+ 1
σ

√
θ2+2r)

= (K − L)(
x

L
)−

θ
σ
− 1

σ

√
θ2+2r)

− θ

σ
− 1

σ

√
θ2 + 2r = − r

σ2
+

1
2
− 1

σ

√
(
r − 1

2σ2

σ
)2 + 2r

= − r

σ2
+

1
2
− 1

σ

√
r2 − rσ2 + 1

4σ4

σ2
+ 2r

= − r

σ2
+

1
2
− 1

σ

√
r2 + rσ2 + 1

4σ4

σ2

= − r

σ2
+

1
2
− 1

σ

√
(
r + 1

2σ2

σ
)2

= − r

σ2
+

1
2
− (

r + 1
2σ2

σ2
)

= −2r

σ2

Thus,

V (x) = {
(K − x) if 0 ≤ x ≤ L

(K − L)( x
L)−2rσ−2

if L < x < ∞

For L < x < ∞ , V (x) = (K − L)( x
L)−2rσ−2

= Cx−2rσ−2 where C = (K − L)(L)2rσ−2 .
Since K, r, σ are fixed values, in order to maximise C, we determine the derivative of C
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with respect to L and equate it to zero.

0 =
∂C

∂L
= −(L)2rσ−2

+ 2rσ−2(K − L)(L)2rσ−2−1

= (L)2rσ−2
[−1 + 2rσ−2(K − L)L−1]

⇒ 0 = −1 + 2rσ−2(K − L)L−1

⇒ L = 2rσ−2(K − L)

⇒ L(1 + 2rσ−2) = 2rσ−2K

⇒ L =
2rσ−2K

(1 + 2rσ−2)

Now
dV (x)

dx
= {

−1 if 0 ≤ x ≤ L

−2rσ−2(K − L)(L)2rσ−2
(x)−2rσ−2−1 if L < x < ∞

Therefore,

lim
x ↓ L

dV (x)
dx

= −2rσ−2(K − L)(L)2rσ−2
(L)−2rσ−2−1

= −2rσ−2(K − L)
1
L

= −2rσ−2 K

(1 + 2rσ−2)
(1 + 2rσ−2)

2rσ−2K

= −1

8.5 Richardson Extrapolation

Suppose you want to determine the value of a function F (0), where F (0) = lim
h→0F (h). If

the approximations F (h) are available for h > 0 and the order of the approximations are
known then

F (h) = F (0) + a1h
p1 + a2h

p2 + . . . + akh
pk + O(hpk+1),

where a1, a2, a3, etc. are unknown and p1 < p2 < p3 < . . ..

Suppose p1 = p, p2 = 2p and F (h) = F (0) + a1h
p1 + a2h

p2 + O(hp3). We have three
unknown quantities, F (0), a1 and a2. let F (0)R be the Richardson approximation for
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F (0). We can solve for the three unknowns with the three equations:

F (h3) = F (0) + a1h
p1
3 + a2h

p2
3 + O(hp3)

F (h2) = F (0) + a1h
p1
2 + a2h

p2
2 + O(hp3)

F (h1) = F (0) + a1h
p1
1 + a2h

p2
1 + O(hp3)

Using matrix notation and dropping the higher order terms we get: 1 hp1
3 hp2

3

1 hp1
2 hp2

2

1 hp1
1 hp2

1

∣∣∣∣∣∣∣
F (h3)
F (h2)
F (h1)

 ⇒

 1 hp1
3 hp2

3

0 hp1
3 − hp1

2 hp2
3 − hp2

2

0 hp1
2 − hp1

1 hp2
2 − hp2

1

∣∣∣∣∣∣∣
F (h3)

F (h3)− F (h2)
F (h2)− F (h1)



⇒


1 hp1

3 hp2
3

0 1 h
p2
3 −h

p2
2

h
p1
3 −h

p1
2

0 1 h
p2
2 −h

p2
1

h
p1
2 −h

p1
1

∣∣∣∣∣∣∣∣∣
F (h3)

F (h3)−F (h2)

h
p1
3 −h

p1
2

F (h2)−F (h1)

h
p1
2 −h

p1
1



⇒


1 hp1

3 hp2
3

0 1 h
p2
3 −h

p2
2

h
p1
3 −h

p1
2

0 0 h
p2
3 −h

p2
2

h
p1
3 −h

p1
2

− h
p2
2 −h

p2
1

h
p1
2 −h

p1
1

∣∣∣∣∣∣∣∣∣
F (h3)

F (h3)−F (h2)

h
p1
3 −h

p1
2

F (h3)−F (h2)

h
p1
3 −h

p1
2

− F (h2)−F (h1)

h
p1
2 −h

p1
1



⇒


1 hp1

3 hp2
3

0 1 h
p2
3 −h

p2
2

h
p1
3 −h

p1
2

0 0 1

∣∣∣∣∣∣∣∣
F (h3)

F (h3)−F (h2)

h
p1
3 −h

p1
2

(F (h3)−F (h2))(h
p1
2 −h

p1
1 )−(F (h2)−F (h1))(h

p1
3 −h

p1
2 )

(h
p2
3 −h

p2
2 )(h

p1
2 −h

p1
1 )−(h

p2
2 −h

p2
1 )(h

p1
3 −h

p1
2 )


Therefore,

a2 =
(F (h3)− F (h2))(h

p1
2 − hp1

1 )− (F (h2)− F (h1))(h
p1
3 − hp1

2 )
(hp2

3 − hp2
2 )(hp1

2 − hp1
1 )− (hp2

2 − hp2
1 )(hp1

3 − hp1
2 )
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a1 =
F (h3)− F (h2)

hp1
3 − hp1

2

−(
hp2

3 − hp2
2

hp1
3 − hp1

2

)
(F (h3)− F (h2))(h

p1
2 − hp1

1 )− (F (h2)− F (h1))(h
p1
3 − hp1

2 )
(hp2

3 − hp2
2 )(hp1

2 − hp1
1 )− (hp2

2 − hp2
1 )(hp1

3 − hp1
2 )

F (0)R = F (h3)− a1h
p1
3 − a2h

p2
3

= F (h3)−
hp1

3 (F (h3)− F (h2))
hp1

3 − hp1
2

+hp1
3 (

hp2
3 − hp2

2

hp1
3 − hp1

2

)
(F (h3)− F (h2))(h

p1
2 − hp1

1 )− (F (h2)− F (h1))(h
p1
3 − hp1

2 )
(hp2

3 − hp2
2 )(hp1

2 − hp1
1 )− (hp2

2 − hp2
1 )(hp1

3 − hp1
2 )

−hp2
3

(F (h3)− F (h2))(h
p1
2 − hp1

1 )− (F (h2)− F (h1))(h
p1
3 − hp1

2 )
(hp2

3 − hp2
2 )(hp1

2 − hp1
1 )− (hp2

2 − hp2
1 )(hp1

3 − hp1
2 )

= F (h3) + (F (h3)− F (h2))(
hp1

3 (hp2
2 − hp2

1 )− hp2
3 (hp1

2 − hp1
1 )

(hp2
3 − hp2

2 )(hp1
2 − hp1

1 )− (hp2
2 − hp2

1 )(hp1
3 − hp1

2 )
)

−(F (h2)− F (h1))(
hp1

2 hp2
3 − hp2

2 hp1
3

(hp2
3 − hp2

2 )(hp1
2 − hp1

1 )− (hp2
2 − hp2

1 )(hp1
3 − hp1

2 )
)

Using Arithmetic Time Steps

Let P (1) = F (h1), P (2) = F (h2) and P (3) = F (h3). Then we have h1 = T , h2 = T
2 ,

h3 = T
3 .

The Taylor series of F (h) around F (0) is:

F (h) = F (0) + F
′
(0)h + F

′′
(0)h2+ terms of order three and higher.

Thus, we have p1 = 1 and p2 = 2. Therefore, the Geske and Johnson formula for an
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American put option is:

P (∞) = P (3) + (
1
3(1

4 − 1)− 1
9(1

2 − 1)
(1
9 −

1
4)(1

2 − 1)− (1
4 − 1)(1

3 −
1
2)

)(P (3)− P (2))

−(
(1
2)(1

9)− (1
4)(1

3)
(1
9 −

1
4)(1

2 − 1)− (1
4 − 1)(1

3 −
1
2)

)(P (2)− P (1))

= P (3) +
7
2
(P (3)− P (2))− 1

2
(P (2)− P (1))

=
9
2
P (3)− 4P (2) +

1
2
P (1)

If we only want to use two Bermudan style options in our extrapolation then we solve:

F (h1) = F (0) + a1h
p1
1 + O(hp2)

F (h2) = F (0) + a1h
p1
2 + O(hp2)

Thus,

hp1
1 F (h2)− hp1

2 F (h1) = F (0)R(hp1
1 − hp1

2 )

⇒ F (0)R =
hp1

1 F (h2)− hp1
2 F (h1)

(hp1
1 − hp1

2 )

=
(h1

h2
)p1F (h2)− F (h1)

(h1
h2

)p1 − 1

= F (h2) +
F (h2)− F (h1)

(h1
h2

)p1 − 1

Let P (1) = F (h1) and P (2) = F (h2). Then we have h1 = T , h2 = T
2 . Therefore (with

p1 = 1),

P (∞) = 2P (2)− P (1)
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Using Geometric Time Steps

Let P (1) = F (h1), P (2) = F (h2) P (4) = F (h4). Then we have h1 = T , h2 = T
2 , h4 = T

4 .
Therefore, the Modified Geske and Johnson formula for an American put option is:

P (∞) = P (4) +
5
3
(P (4)− P (2))− 1

3
(P (2)− P (1))

=
8
3
P (3)− 2P (2) +

1
3
P (1)
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