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ABSTRACT 

In this thesis , we are concerned with various aspects of fuzzy ideals of commutative 

rings. The central theorem is that of primary decomposition of a fuzzy ideal as an 

intersection of fuzzy primary ideals in a co=utative Noetherian ring. We establish 
the existence and the two uniqueness theorems of primary decomposition of any fuzzy 

ideal with membership value 1 at the zero element. In proving this central result, we 

build up the necessary tools such as fuzzy primary ideals and the related concept 

of fuzzy maximal ideals, fuzzy prime ideals and fuzzy radicals . Another approach 
explores various characterizations of fuzzy ideals, namely, generation and level cuts of 

fuzzy ideals , relation between fuzzy ideals, congruences and quotient fuzzy rings. We 

also tie up several authors' seemingly different definitions of fuzzy prime, primary, 

semiprimary and fuzzy radicals available in the literature and show some of their 

equivalences and implications, providing counter-examples where certain implications 

fail. 

Key-words: fuzzy ideal, fuzzy prime ideal, fuzzy primary ideal fuzzy maximal ideal, 

fuzzy radical and fuzzy primary decomposition. 

AMS (1992) Subject classification: 

Primary : 04A 72, 13A15 

Secondary: 03E72, 13A99 . 
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PREFACE 

In the theory of commutative rings, every principal ideal domain is a unique fac­

torization domain. Usually, the proof is based on elements of the ring rather than 

subsets. By viewing the same proof at the level of ideals, we get the well-known 
theorem of primary decomposition in a commutative Noetherian ring viz [Bar 1], 

[Sha l],[Bur 1]. Since an elementary theory of fuzzy ideals is already developed, we 

consider in this thesis, the question of decomposing a fuzzy ideal in a commutative 

Noetherian ring into a finite intersection of fuzzy primary ideals. Thus we are led 

to define and study notions such as prime, primary, radical, maximal and irreducible 

ideals in fuzzy set theory of rings. Some authors have already made a beginning in 

this area. 

The aim of this thesis is two-fold. One is to collect the available literature and 
tie up various authors' seemingly different theorems and definitions and show their 

equivalences and implications, providing counter-examples where certain implications 

fail. The second aim is to prove the analogues of the existence and the two uniqueness 

theorems of primary decomposition in a commutative Noetherian ring. As far as we 
know, the results are merely stated without proofs in the literature [Mal 4, 3.21, 3.22, 

3.25, 3.26]. The proofs given in this thesis are our own [5.1.7, 5.1.8, 5.2.4] and they 

complement the existing literature. We now give detailed description of the contents 

of the thesis. 

Chapter 1 introduces basic results in commutative rings and fuzzy set theory. 

In section 1.1 we first provide definitions of important specialised ideals and state 

main theorems in the crisp case which we fuzzify in the thesis . In section 1.2, we 

fix the notation for fuzzy subsets and introduce various operations such as addition, 

composition, multiplication and residual. One important property which is required 

through out the thesis namely the Supremum property is clearly stated. 

We introduce the concept of fuzzy ideals in Chapter 2 and discuss the closure 

properties of fuzzy ideals under addition, multiplication and residual. A fuzzy ideal 

is defining its membership values at elements in the ring R characterized by the 

operations on fuzzy subsets in Proposition 2.2.3. Generation of fuzzy ideals and its 

generators are studied in section 2.3. Throughout this section, heavy use of the sup­

property is made. As in the crisp case, distinct fuzzy subsets may generate the same 

fuzzy ideal. But we proved that different generators of the same fuzzy ideal must have 

the same image. Section 2.4 introduces fuzzy congruence relations. Here we prove 

that there is a one-to-one correspondence between fuzzy ideals and fuzzy congruences 

onR. 
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Chapters 3 and 4 explore the fundamental ideas of fuzzy prime and fuzzy primary 

ideals respectively. We proved that both fuzzy prime and primary ideals are two­
valued fuzzy subsets and their base sets are prime and primary ideals respectively 

(the base set of flo is defined {r E R : flo(r) = flo(O)} ) and vice versa. In Chapter 3, 

we also discuss fuzzy radicals. If flo is a fuzzy ideal with flo(O) = 1 then the fuzzy nil­

radical is precisely the fuzzy prime radical of flo. Further, we introduce the weaker 
concept of fuzzy semiprime and derive some relationship between semi prime, prime 

and radical. If flo is a fuzzy primary ideal aild if v = ,fii is a fuzzy ideal, then flo is 
called v-primary. Section 4.2 deals with such v-primary ideals. 
This section develops results which we need in Chapter 5. We end Chapter 4, with a 

discussion on fuzzy maximal ideals giving some results analogues to the crisp case. 

Chapter 5 is central to the thesis. As mentioned in the Abstract, Chapters 3 and 4 

prepare the results needed for Chapter 5. In this Chapter, we first prove an existence 

theorem and the first uniqueness theorem of fuzzy primary decomposition. In section 

5.2, we associate a set of fuzzy prime ideals for a given primary decomposition of a 

fuzzy ideal. By using Zorn's Lemma, we arrive at the notion of fuzzy minimal prime 

ideal of a fuzzy ideal flo. We note that every fuzzy ideal flo has only finitely many fuzzy 

minimal prime ideals of flo. Also we prove in this section a second uniqueness theorem. 

The last section deals with irreducible ideals. We end this section with the important 

theorem that every fuzzy ideal flo with flo(O) = 1 in a commutative Noetherian ring 

can be decomposed as a finite intersection of fuzzy primary ideals. 

Throughout this thesis, acknowledgements to various authors are given where they 

are due, and as far as we know the following are our own results. 

Proposition 2.3.3, Proposition 2.3.4, Theorem 2.3.6, Proposition 2.3.7, Theorem 

2.3.11, Proposition 2.3.12(2), Proposition 2.3.13, Proposition 2.4.5, Theorem 2.4.6, 

Theorem 2.4.7, Theorem 2.4.8, Proposition 3.2.2, Proposition 3.2.4, Theorem 5.1.7, 

Proposition 5.1.8, Proposition 5.2.2, Proposition 5.2.3, and Theorem 5.2.4. 

Some of the counter-examples are also our own. 

v 



CHAPTER I 

INTRODUCTION 

§ 1.1 Basics in commutative rings. 

We collect some of the results of commutative rings which we study in the fuzzy­

set theoretic setting. Throughout the thesis, a ring will mean commutative ring with 

identity. We restrict ourself to this case since most of our results are valied only in 
commutative rings. 

Rings are denoted by R, R', S, etc. . and ideals are denoted by A, B, J, etc... If A 
is a non-empty subset of R, then by < A > we mean ideal generated by A in R. 

I.e. < A >= {Ei=lriai: ri E R,a; E A,n EN}. 

This is the smallest ideal of R containing A. 
We use the usual operations on ideals such as A + B, A n B, A u B, A 0 B, AB and 

A:B. 

Where 

A + B = {a + b: a E A, bE B}, 
A 0 B = {ab : a E A, bE B}, 

AB = {Ei=l riaib; : r; E R, ai E A, b; E B, n E N} and 
A: B = {r E R: rB ~ A}. 
In general, AU B and A 0 B are not ideals, but A + B, An B, AB and A : B are ideals 

of R. 

Every ideal J of R induces a congruence relation '~J 'on R defined by x ~ y if 

and only if x - y E J. Conversely every congruence relation ~ gives rise to an ideal 

of R given by J = {r E R : r ~ O} where 0 is the additive zero element of R. 
With each ideal A of R, we can associate the quotient ring Rj A consisting of the 

additive cosets {r + A: r E R}. 

We collect for the sake of completeness the definitions of some specialised ideals. 

(1) Prime ideal: An ideal A is a prime ideal if A c R and whenever a , b E R 

with ab E A, then either a E A or b E A, 
(2) Primary ideal: An ideal A is a primary ideal if A C R and whenever a, b E R 

with ab E A either a E A or bn E A for some n E 1'1, 
(3) Nil radical: Let A be an ideal of R. The Nil radical of A, vIA is defined as 

VA = {r E R: rn E A for some n EN}, 
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(4) Prime radical: The Intersection of all prime ideals of R containing the ideal 

A is called the prime radical of A and is denoted by r(A), 

(5) B -primary: Let A, B be ideals of R. A is said to be B -primary if A is 

primary and v'A = B, 
(6) Semiprime: An ideal A is called 3emiprime whenever r E R with rn E A, 

implies rEA for all n E N, 
(7) Semiprimary: An ideal A of R is called 3emiprimary if v'A is a prime ideal 

of R, 
(8) Maximal: An ideal A is called maximal ideal if A c R and there exists no 

ideal B such that A C B C R, 
(9) Irreducible: An ideal A is called irreducible ideal if A c R and A cannot be 

expressed as the intersection two ideals of R properly containing A. 

We now state some main theorems which we fuzzify in this thesis. 

(1) Let A and B be ideals of R, then 

(1) v'AB = vl(A n B) = v'A n VB, 
(2) vi( v'A) = v'A, 
(3) Ak ~ B for some kEN implies that v'A ~ VB, 
(4) A is semiprime if and only if v'A = A, 

(2) The intersection of all prime ideals of R which contain a given ideal A is 

precisely the nil radical of A, 
(3) Let M be the intersection of all maximal ideals of R, then 

(1) let A be an ideal of R, then A ~ M if and only if each element of the coset 

1 + A has an inverse in R, 
(2) x E M if and only if 1 - rx is invertible for each r E R, 

(3) the quotient ring R/M is semisimple, 

(4) Let I be an ideal of R. Then I is a primary ideal if and only if every zero 

divisor of the quotient ring R/ I is nilpotent, 

(5) If Ql, Q2,"., Qn is a finite set of primary ideals of R, all of them having 

the same associated prime ideal P, then Q = ni=l Qi is also primary, with 

.ftJ = P, 
(6) Let P and Q be ideals of R. Then Q is primary for P if and only if 

(1) Q ~ P ~ .ftJ, 
(2) if ab E Q and a ~ Q, then b E P, 

(7) Every proper ideal of R possesses at least one minimal prime ideal, 

(8) Let Q be an ideal R such that .ftJ = M is a maximal ideal of R. Then Q is 

a primary ( in fact M-primary ) ideal of R. Consequently, all positive powers 
Mn (n E N) of maximal ideal Mare M-primary, 

(9) Let A be a decomposable ideal of R, and let 

A = Ql n Q2 n ... n Qn with VQi = Pi for i = 1,2, ... ,n 
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be a reduced primary decomposition of A. Let P be a prime ideal of R. Then 

the following are equivalent: 

(1) P = Pi for some i with 1 ~ i ~ n; 

(2) there exists a E R such that (A: a) is P-primary; 

(3) there exists a E R such that V(A: a) = P, 
(10) (The First Uniqueness Theorem) 

Let A be a decomposable ideal of R, and let 

A = Ql n Q2 n ... n Qn with VQi = Pi for i = 1,2, ... , n 

and 

A=Q~nQ~n···nQ~ with ~=P: fori=I,2, ... ,nl 

be two reduced primary decompositions of A. Then n = n l
, and we have 

(ll) (The Second Uniqueness Theorem) 

Let A be a decomposable ideal of R. Let 

A = Ql n Q2 n ... Qn with VQ; = Pi for i = 1,2, ... n 

and 

A = Q~ n Q~ n ... n Q~ with ~ = Pi for i = 1,2, ... , n 

be two reduced primary decompositions of A. Then, for each i with 1 ~ i S; n 

for which Pi is a minimal prime ideal belonging to A, we have 

(12) Let A be a proper ideal in a commutative Noetherian ring R. Then A has a 

primary decomposition. 

§ 1.2 Fuzzy subsets and their basic properties. 

The concept of a fuzzy subset I-' [Zad 1) of a non-empty subset R involves degree 

of membership, measured by a real number between 0 and 1, of an element of R to 1-'. 

Thus we can represent I-' as a function I-' : R --; [ from R to [ the unit interval, 1-'( x ) 
is the degree to which x belongs to I-' for x E R. The set [R denotes set of all fuzzy 

subsets of R. Elements of [R are usually denoted by lower case Greek letters 1-', v, A,w 

etc .... We identify every crisp subset J of R with the characteristic function XJ. Thus 

2R c [R. There are two important properties which we use repeatedly throughout 
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the thesis. We state them here. 

(1) The Supremum property (sup-property) is defined as follows: A fuzzy subset 

J.L of R is said to have the sup-property if for every non-empty subset A of R 
the supremum of {J.L( a) : a E A} is attained at a point of A. 
i.e. there exists an ao E A such that J.L(ao) = supJ.L(a). 

aEA 
For example, all finite-valued fuzzy subsets or fuzzy subsets with decreasing 
sequence of membership values have the sup-property, 

(2) Let f : R ---> R' be a mapping. A fuzzy subset J.L of R is said to be 
f -invariant if for all x, y E R 

f(x) = f(y) implies J.L(x) = J.L(Y)· 

We now associate various crisp subsets of R with a given fuzzy subset J.L of R. 

(1) Supp J.L = {r E R: J.L(r) > O}, supp J.L standing for the support of J.L, 

(2) J.LI = {r E R: J.L(r) ~ t}, for 0 ~ t ~ 1. /11 is called the t-level subset 
(or t-level cut) of J.L, 

(3) /11 = {r E R: J.L(x) > t}, for 0 ~ t < 1. /11 is called the strong t-level subset 
(or strong t-level cut) of /1, 

(4) If R is a ring, /10 = {r E R: /1(r) = /1(0)}. /10 is called the base set of /1 . 

We remark that in (4), the reader should not confuse /10 with the 0- level subset 

of /1. Which is also denoted by J.Lo. But this O-level subset of /1 which is the whole of 

R and is never used. So whenever the notation /10 appears , it only refers to the base 

set of /1 in this thesis. 

/1 is contained in v, denoted by /1 ~ v, means the point- wise ordering. 

i.e Ax) ~ v(x) for all x E R. 

Further a fuzzy point r I is defined as 

rl(x)={~ if x = r 

if x I- r 

Let A be a non-empty indexing set. Then 

( /\ /1i) (x) = inf{/1i(x): i E A} 
iEA 

= 1\ (/1i(X)) 
iEA 
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and 

(V Ji-i) (x) = SUp{Ji-i(X) : i E A} 
iEA 

= V (Ji-i(X». 
iEA 

The following facts describe the effect of level subset and strong level subset on 

taking arbitrary union and intersection as definedm above. 

(2) UiEA(Ji-i)' <;::: (ViEA Ji-i)" equality holds if A is finite, 

Remark. If R is a ring and Ji- ::; II in IR it does not necessarily follow that Ji-o <;::: 110. 

We introduce the following definition of fuzzy subsets under mappings. 

Definition 1.2.1[Mal 6,4.1). 
Let f : R --> R' be a map and Ji-, Ji-' be fuzzy subsets of Rand R' respectively. Then 

the fuzzy subset f(Ji-) of R' is defined as 

{

SUP Ji-(x) 
f(x)=y 

f(Ji- )(y) = 0 

and 

The above is known as " fuzzy extension principle. " 

In the following Proposition we collect some results without proof for later use. 

Proposition 1.2.2. 
Let f : R --+ R' , g : R' --> R" be maps and A be an indexing set, then 

(1) If Ji-::; II, then f(Ji-)::; f(lI) for all Ji-, II, E IR, 
(2) If Ji-' ::; 11', then f - 1 (Ji-') ::; f- 1 (II') for all Ji-', II' E IR', 

(3) f(l-l (Ji-'» ::; Ji-' for all Ji-' E I R', equality holds if f surjective, 

(4) f- 1 (I(Ji-» 2 Ji- for all Ji- E IR , equality holds if f is injective, 

(5) f(Ji-)::; II if and only if Ji-::; f-1(1I) for all Ji- E IR,II E IR', 

(6) f(ViEA Ji-i) = ViEA f(Ji-i), Ji-i E IR, 
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(7) fU\iEA fJ.i) .,:; I\;EA f(fJ.;), fJ.i E JR, 
(8) f-I(ViEAfJ.D = ViEAf-I(fJ.D,fJ.: E JR', 

(9) f- I(l\iEA fJ.D = l\iEA f-I(fJ.;),fJ.: E JR', 
(10) g(J(fJ.)) = 9 0 f(fJ.) for all fJ. E JR, 
(11) f-l(g-I(fJ.')) = (g 0 J) - I(fJ.') for all /1' E JR', 

(12) f(fJ.t) .,:; (J(fJ.))t for all fJ. E JR, t E [0,1]' equality holds if fJ. has the sup­
property, 

(13) f-I(fJ.D = (J-I(fJ.'))t for all fJ.' E JR' . 

We provide some basic properties of supremum and infimum which are used later. 

Proposition 1.2.3. 

(1) Let fJ., v E JR and A, B be subsets of R. Then 

sup(/1(x) /\ vex)) .,:; SUpfJ.(x) /\ supv(x) 
xER xER xER 

and 
SUpfJ.(x) /\ sUpfJ.(y) = sup fJ.(x) /\ fJ.(y), 
xEA yEB xEA 

yEB 

(2) Let A, B be two subsets of the unit interval J. Then 

sup A /\ sup B = sup x /\ Y 
xEA 
yEB 

and 
inf A V inf B = inf x V y. 

xEA 
yEB 

We now extend the operations of addition( +), composition( 0), multiplication(.) 

and residual(:) on R to JR. 

Let fJ. , v,).. E JR and X,Y E R. 

(1) (fJ.+v)(x) = sup fJ.(XI)/\V(X2), 
X=Xl+X2 

(2) (fJ. 0 v)(x) = sup fJ.(xd /\ V(X2), 
X=XIX2 

(3) (fJ.v)(x) = sup 1\?[fJ.(Xi) /\ V(Yi)] , 
X=E?=l Xi?/i 

(4) /1 n (x) = sup M=II\?=I fJ.(Xki) , 
x=E~=l Xkl Xk2 ",Xkn 

(5) (-fJ.)(x) = fJ.(-x) for all x E R, 

(6) (fJ.: v)(x) = sup{A(x) :).. 0 v.,:; fJ.} for all x E R. 
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For later use, we collect some properties of the above operations. 

Proposition 1.2.4. 
Let fl., v, w E [R. 

(1) fl. + v = v + fl. , fl. 0 v = v 0 fl. and fl.V = Vfl., 
(2) -( -fl.) = fl. and if fl. ::; v then -fl. ::; -v, 
(3) fl.+ (v+w) = (fl. + v) +w, 
(4) fl.o (v+w)::; (fl. 0 v) + (fl. ow). 

We provide proofs of the result similar to the above Proposition in Chapter 2. 

Proposition 1.2.5. 

Let f : R ---t R' be an epimorphiJm from a ring R to R' and fl. , v E [R and fl.', v' E 
[R'. 

(1) f(fl.) 0 f(v) ::; f(fl. 0 v), 
(2) f- I (fl.') 0 f- I (v') ::; f- I (fl.' 0 v') . 

Proof· 
We prove only (2) and refer to the Chapter 2, Proposition[ 2.2.10J for the proof of 

(1). 

= (f-l' 0 v')f(x) 

= rl(f-l' 0 v')(x). 
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CHAPTER II 

FUZZY IDEALS AND RELATIONS 

In the following two sections we fuzzify the concept of subrings and ideals and 

prove that the operations on fuzzy ideals namely sum, product, infimum and residual 
are closed. 

§ 2.1 Fuzzy subrings . 

The usual definition for a subring of R can be expressed in terms of its characteristic 

function as follows: 

A non-empty subset S of R is subring if and only if 

for all x,y E R 
Xs(x - y) :::: Xs(x) II Xs(y) 

and 

Xs(xy) :::: Xs(x) II Xs(y). 

The basic idea behind the fuzzification of these concept is simply to replace the 

characteristic function by a fuzzy subset I'- : R --+ I. We therefore provide the 

following Definition for a fuzzy subring. 

Definition 2.1.1. [Muk 2] 

A fuzzy subset I'- : R --+ I is called a fuzzy subring of R iffor all x, y E R 

I'-(x - y) :::: J.L(x) III'-(Y) 

and 

1'-( xy) :::: 1'-( x) II J.L(Y) . 

We prove some properties of fuzzy subrings and its images under a homomorphism 

in the following Proposition: 

Proposition 2.1.2. 

Let I'- and 1'-' be fuzzy subrings of Rand R' respectively and let f : R --+ R' be a 
homomorphism. Then 

(1) "Ix, y E R, I'-(xy - yx) :::: I'-(x) II I'-(Y) , 

(2) 1'-(0) = sUPI'-(x) , where 0 is the zero element of R , 
xER 

(3) VxER, l'-(x)=I'-(-x), 
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(4) f(p.)(O) = supf(p.)(y) = supp.(x) = p.(0) provided f is an epimorphism, 
yER' xER 

(5) f-l(p.')(O) = supf-l(p.')(x) = supp.'(y) = p.'(O). 
xER yER' 

Proof. 
(1), (2), and (3) are straightforward. For part (4),we have 

f(p.)(y) = sup p.(x)::; supp.(x) for all y E R'. 
f(x)=y xER 

Hence 
supf(p.)(y) ::; supp.(x) 
yER' xER 

l.e. f(p. )(0) ::; p.(0). To show the converse, let x E R. Then there exists y E R' such 

that f( x) = y. Since f(p.) is a fuzzy subring, 

2: f(p. )(y) = sup p.( x) 
f(x}=y 

2: p.(x) for all x E R 

and hence f(p.)(O) 2: supp.(x) = p.(0). 
xER 

(5) can be proved similarly. 

Proposition 2.1.3. 

o 

A fuzzy subset p. of R is fuzzy sub ring if and only if all of its level subsets are sub rings 

of R. 

Proof is straightforward. 

§ 2.2 Fuzzy ideals . 

As in the Definition[2.l.1]' we can fuzzify the concept of an ideal of R as follows. 

Definition 2.2.1. 

A fuzzy subset p. of R is called fuzzy ideal of R 
if'v'x,yER 

and 

F( R) denotes the set of all fuzzy ideals of R. 

9 



Example 2.2.2. 

Let R = (Z6, +, .) and define a fuzzy subset I-' : Z6 ---+ I by 

then it easy to check that I-' is a fuzzy ideal of R. 

In the following proposi tion, we characterize a fuzzy ideal in terms of the operations 

on fuzzy subsets. 

Proposition 2.2.3[Liu 2, 3.1). 

A fuzzy subset f.l of R is fuzzy ideal if and only if 

(1) f.l = -1-' , 

(2) I-' + f.l ~ 1-', 
(3) XR 0 f.l ~ f.l and I-' 0 XR ~ 1-'. 

Proof. 

Let I-' be a fuzzy ideal of R. We only prove (2) . The rest is straightforward. 

Let x E R then 
(I-' + f.l)( x) = sup 1-'( Xl) A 1-'( X2) 

X=2:1 +X2 

sup I-'(XI) A 1-'( -X2) 
X=2:1+ X 2 

< sup I-'(XI - (-X2» 
X=2:1 + X 2 

Conversely, let (1),(2),(3) hold for a fuzzy subset f.l of R. Let x, y E R then 

f.l(X - y) :::: (I-' + I-')(x - y) 

sup 1-'( Xl) A I-'(YI) 
x-y=:q+Yl 
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= sup XR(Xl) /\ J.!(Yl) 
XY=X1Yl 

Similarly, by considering J.! :::: J.! 0 XR we can show J.!(xy) :::: J.!(x). 

Thus J.!(xy) :::: J.!(x) V J.!(Y). 

Remark 1. 

o 

A non-constant fuzzy subset J.! of R is a fuzzy ideal if and only if all of its level subsets 

are ideals of R. 

(~) Obvious. 

( <=) Let x, y E R and t = J.!( x) /\ J.!(Y) then J.!( x) :::: t and J.!(Y) :::: t which implies 

x, y E J.!t. So J.!(x-y) :::: t = J.!(x)/\J.!(Y). Let now t = J.!(x ); then x E J.!t . Since J.!t is a ideal of R 

xy E J.!t and hence J.!(xy) :::: /-L(x), similarly J.!(xy) :::: J.!(Y)· Thus J.!(xy) :::: J.!(x) V J.!(Y). 

Remark ErMal 5, E.7 Bho 9, E.E}. 
For later use, we collect some easy results which are consequences of the definition 

[2.2.1]. 

If J.! is a fuzzy ideal of R, then 

(1) For any t, s E Im(J.!), J.!t = J.!. if and only if t = s, 

(2) If J.!(x) < J.!(Y), then J.!(x - y) = J.!(x) = J.!(Y - x), 

(3) If J.!(x - y) = J.!(O), then J.!(x) = J.!(y), 
(4) 'In E N J.!(1)::; J.!(x) ::; J.!n(xn) ::; J.!(xn) . 

The following Corollary can be checked easily. 

Corollary 2.2.4. 

I is an ideal of R if and only if the characteristic function XI of I is a fuzzy ideal of 

R. 

Proposition 2.2.5. 

If J.!, v are fuzzy ideals of R, then J.! + v, J.!v, J.! /\ v and J.! : v are also fuzzy ideals of R. 

Proof· 
Let X,y E R then 

(J.! + v)(x - y) = sup J.!(x') /\ v(y'). 
x-y=xJ+y' 
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But 

(" + v)( X) II (" + v )(y) = sup ,,(Xl) II V( X2) II SUp "(YI) II V(Y2) 

< 

x=x1 +X2 Y=Yl +V2 

sup ,,(Xl) II "(Yl) II V(X2) II V(Y2) 
Y=Yl +V2 
X=X1+ X 2 

sup 
X - Y=XI-Yl 

+X2-Y2 

< SUp ,,(X') II V(y') 
x-y=x'+y' 

= (" + V)(X - y) . 

We now consider 

(" + V)(xy) = sup ,,(x') II V(y') 
xy=x'+y' 

and 
(,,+v)(X)= sup ,,(xI) lI v(yJ) 

X=Xl+Vl 

< sup ,,(XlY) II V(YlY) 
XY=XIV+Vl Y 

< sup ,,(x') II V(Y') 
xy=x'+y' 

= (" + v)(xy). 

Similarly, (" + v)( xy) ~ (" + v )(y) 

The proof of "V is almost same as in the proof of " + v. It is easy to see that JI. II v 

is a fuzzy ideal of R. 

Let us now prove" : v is fuzzy ideal of R. 

Let x,Y E R then 

(" : v)(x - y) = sup{w(x - y) : wE F(R), vow:::; ,,} and 

('" : v )(x) II (" : v )(y) = sup{w(x) : w E F(R), vow:::; ,,} II sup{w'(y) : WI E F(R), v 0 WI :::; JI.} 

= sup{w(x) II w'(y) : w,w' E F(R), (v ow) V (v 0 w') :::; ,,}. 
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Now, we have 

{w,w' E F(R): (vow)V(v ow')::; J.L} ~ {w,w' E F(R): vo(w+w')::; J.L} 

Since if w, w' are in F( R) such that (v 0 w) V (v 0 w') ::; J.L , then 

v 0 (w + w') ::; (v 0 w) + (v 0 w') by the Proposition[1.2.4,4] 

::; J.L + J.L ::; J.L. 

Hence 

(J.L : v)(x) A (J.L : v)(y) ::; Sup{w(x) AW'(y) : w,w' E F(R), v 0 (w + w') ::; J.L} 

::; Sup{(w +w' )(x - y) : w,w' E F(R), v 0 (w +w') ::; J.L} 

::; (J.L : v)(x - y). 

To show the other condition, 

(J.L: v)(xy) = Sup{w(xy) : wE F(R),(v ow)::; J.L} 

~ Sup{w(x): wE F(R) ,(v ow)::; J.L} 

= (J.L : v)(x). 

Similarly, we can show (J.L : v)(xy) ~ (J.L : v)(Y)j , thus J.L : v is a fuzzy ideal of R. 

We now give an example to show J.L V v and J.L 0 v need not be fuzzy ideals. 

Example 2.2.6. 

Define fuzzy ideals J.L, v: (Z12, +12, 012) --+ I by 

J.L(O) = J.L( 4) = J.L(S) = 0.9 and zero elsewhere 

and 

v(O) = v(6) = O.S and zero elsewhere. 

then 

(J.L V v)(6 + 4) = J.L(10) V v(lO) = 0 

(J.L V v)(6) = O,S,(J.L V v)(4) = 0.9 

hence (J.L V v)(6 + 4) t. (J.L V v)(6) A (J.L V v)(4). 
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Example 2.2.7. 

Let R be the ring R[X1,X2,X3,X4],I = RX1 + RX2 and J = RX3 + RX4. Then the 
characteristic functions XI and Xl are fuzzy ideals of R . Since Xl X4 - X2X3 rf. {xy : 

X E f,y E J} XI 0 Xl(X1X4 - X2X3) = 0 but XI 0 Xl(X1X4) /\ XI 0 Xl(X2X3) = l. 
Hence XI 0 Xl is not fuzzy ideal. 

The following proposition deals with addition, multiplication, composition and 

infimum operations on fuzzy ideals. 

Proposition 2.2.8. 

Let f.l, v, w be fuzzy idea/J of R , then 

(1) f.l 0 v ::; f.l /\ v and f.lV = vf.l, 

(2) If f.l ::; v, then f.lW ::; VW, 

(3) XRf.l = f.l, 

(4) For all k,r E N f.lkf.lr = f.lHr and (f.lkf = f.lkr, 

(5) If f.l(0) = v(O) = w(O) = 1, then f.l::; f.l + V,f.l(v + w) = f.lV + f.lW and 

(f.l /\ v)(f.l + v) ::; f.lV, 

(6) If f.l + v = XR, then f.l /\ v = /-LV. 

Proof. 

(1) and (2) are obvious. (3) Clearly XRf.l ::; f.l . Let X E R then XRf.l(X) = XRf.l(lx) ~ 

XR(l) /\ f.l(x) = f.l(x). 

(4). Proof is by induction on r. When r = 1 

/-L k f.l1 = sup /\;=1 f.lk(X1i) /\ f.l(X2i) 
x=Ef XliX2i 

sup /\;=1 
x=Ef Xli X 2i 

sup /\~lf.l(Zli) /\ f.l(Z2i) /\ ..... /\ f.l(Z(H1)i) 
X=E?=l Z1j Z2i··.· · z (lc+l)i 
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Suppose Jlk+r(x) = JlkJlr(x). We now consider 

Jlk+r+l(x) = (Jlk+rJlI)(x) 

= (JlkJlr)JlI(x) 

= Jlk(Jlr JlI )(x) 

= Jlk(Jlr+I)(x) 

= JlkJlr+l(x). 

Similarly, we can show that (Jlk)" = Jl kr . 

(5). Let x E R then 

(Jl + v)(x) = (Jl + v)(x + 0) ~ Jl(x) /I v(O) 

= Jl(x) for all x E R. 

Consider 

Jl(V +w)(x) = sup /If Jl(Xli) /I (v +W)(X2i) 
z=Ef=l Xli X 2i 

- sup /If Jl(Xli) /I sup V(Yli) /lW(Y2;) 
x=Ef=l XliX2i X2i=Yti+V2i 

sup /lfJl(xl;) /I V(Yli) /I W(Y2;) 
x=Ef=l XliX2i 

X2i=Yli+V2i 

sup /If Jl(XI;) /I V(Yli) /I W(Y2i) 
x=Ef=l XliYl; + Ef=l XliY2i 

< sup sup /If' Jl(Sli) /I V(tl;) /I sup /If' Jl(m2i) /I w(n2i) 
X=Xl+X2 xl=Ef!l Slitl; x2=Ef:!1 m2in2j 

sup (Jlv)(xd /I (JlW)(X2) 
X=Xl +X2 

= (JlV + JlW)(X). 

On the other hand, we have v ::; v + W which implies JlV ::; Jl(v + w).Similarly , 

JlW ::; Jl(v + w). Hence JlV + JlW ::; Jl(v + w) thus JlV + JlW = Jl(v + w). 

For the last part, 

(Jl /I v)(Jl + v) = (Jl /I II)Jl + (Jl /I v)v 

::; VJl + JlV 

::; JlV. 
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(6). By the above part, 

I-' II v = (I-' IIv)X R = (I-' IIv )(1-' + v) 

50 I-'v. 

Thus I-'V = I-' II v. 

Next we look at the residual operations on fuzzy ideals. 

Proposition 2.2.9[Liu 2]. 
Let 1-', v,w,), E F(R), then 

(1) 1-': I-' = XR, I-' 50 1-': v, (I-': v)v 50 I-' and (I-': v)w = 1-': vw, 

(2) If I-' 50 v, then I-' : w 50 v : wand w : v 50 w : 1-', 

(3) If VI, V2, ... ,Vn are fuzzy ideals of R such that Jl(O) = VI (0) = ... = vn(O) = 1, 
then 

I-' : (VI + V2 + ... + vn) = 11:'=1 (I-' : Vi), 

(4) If Vi, i E A ( A is an indexing set) are non-constant fuzzy ideals of R, then 

C.II Vi) : I-' 50 .11 (Vi: 1-'), equality holds if A is finite 1M al 4, 2.10j. 
tEA tEA 

Proof. 

(1) Since for all V E F(R) I-' 0 V 50 1-', 1-': I-' = XR. 

Since Jl 0 V 50 I-' we have Jl 50 I-' : v. 
LetxER 

(I-' : v)v(x) = sup IIf (I-' : V)(Xli) IIV(X2i) 
x=Ef=l Xli X 2i 

sup IIf 
x=Ef=l Xli X2i 

sup ),(Xli) IIV(X2i) 
11 0 >'$", 

sup IIf ),(Xli) IIv(X2i) 
1/0).$1' 

x=L:r=l Xli X 2i 

< sup IIf ), 0 V(XliX2i) 
VO).~I' 

x=Ef=l XU X 2i 

< sup IIf I-'(XliX2i) 
x=L:f=l Xli X 2i 
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We claim that 

{>.: A E :F(R),w 0 A::::; p.: lI} = {>.: A E :F(R),lIW 0 A::::; p.}. 

Let A E :F(R) such that lIW 0 A ::::; p. then II 0 W>. ::::; P. [refer 2.3.12(3)J which 

implies W 0 >. ::::; WA ::::; P. : lI. 
To show the converse part, let A E :F( R) such that W 0 A ::::; p. : II and x E R 

then 

(lIW 0 A)(X) = sup lIW(Xl) td(X2) 
X=Xt X 2 

- sup I\i lI(Yli) 1\ W(Y2i) 1\ A(X2) 
X=X1 X 2 

Xt=Ef:=tYliY2i 

< sup 

< 

-

-

< 

X=Xt X 2 

Xt=Ef .. tYliY2i 

sup 
X=XP:2 

Xt=Ef=:lYliY2i 

sup 
x=Ef== l Yl i Y2i X2 

sup 
x=Ef=l Yli Y2i X2 

IIOA' 5.1' 

sup 
x=Ef=t Yli Y2i X2 

vo).' 5.1' 

< sup 

::::; p.(x). 

I\P 
1 lI(Yli)(P. : lI)(Y2i X2) 

I\P 
1 lI(Yli) 1\ sup A'(Y2i X2) 

110)'/ 5: IJ 

I\P 
1 lI(Yli) 1\ >.'(Y2iX2) 

I\P 
1 II 0 >.'(YliY2iX2) 

Thus lIW 0 A ::::; p.. Hence 

Sup{ A( x) : A E :F( R), W 0 A ::::; p. : lI} = Sup{>.( x) : A E :F( R), lIW 0 A ::::; p.}. 

x.e. (p.: lI) : W = P. : lIW. 

(2) Obvious. 
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(3) Since Vi ::; VI + 1'2 + ... + Vn for all i = 1,2, ... , n, J.': Vi ::; J.' : (VI + 1'2 + 

... + vn) for all i = 1,2, ... , n and hence 1\:'=1 (J.' : Vi) ::; J.'(VI + 1'2 + ... + vn). 
To show the converse. let x E R then 

J.' : (VI + 1'2 + ... + vn)(x) = sup >.(x) 
(V1 +Y2+· ··+Vn)o>":5.1l 

::; sup >.(x) for all i = 1,2, ... , n. 
lIjo).'5Jl 

= (J.' : Vi)(X) for all i = 1, 2, ... , n 

hence J.l. : (VI +1'2+" +vn)(x) ::; 1\~1 (J.l. : Vi)(X), thus J.' : (VI +1'2+" ·+Vn) = 

1\:'=1 (J.' : Vi). 
(4) Obvious. 

o 

Corollary 2.2.10[Bho 4, 4.2, 4.3]. 

Let f : R ---t R' be a homomorphism and J.', J.l.' be fuzzy ideals of Rand R' respectively 

then 

(1) if f is epimorphism then f(J.') is fuzzy ideal of R, 

(2) f- 1 (J.l.') is fuzzy ideal of R', 

(3) if J.' is f-invariant then f-I(f(J.')) = J.'" 

Hence if f epimorphism then one can easily establish a one-to-one correspondence 

between the set of all f-invariant fuzzy ideals of R and set of all fuzzy ideals of R', 

Proposition 2.2.11. 

Let f : R ---t R' be an epimorphism and J.' , V be fuzzy ideals of Rand J.", v' be fuzzy 

ideals of R' then 

and 
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Proof. 

Let y E R' then 

f(fl)f(v)(y) = sup 
y=Ef=l Yli1/2i 

- sup Af 
y=Ef=l 1/1i 1/2i 

- sup Af 
y=Ef=l 1/1i 1/'li 

< sup Af 
y=Ef=lYliYli ; 

< sup 
y=Ef=11/1i1/2i 

sup 
y=Ef=11/1il/2i 

sup fl(Xli) A sup V(X2i) 
XliE/-l(Yli) XliE/-l(y:zd 

sup fl(Xli) A V(X2i) 
Xli Er' (Yli) 
XliE/- 1(Y2i) 

sup flV (XliX2i) 
Xl i X:zi E/- 1 (1/1 illli) 

sup flV(X) 
xEf-'(YliY") 

S f(flV )(y) since f(flV) is a fuzzy ideal. 

We can prove the rest part by using the same technique as in the proof above. 

o 
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§ 2.3 Fuzzy ideal generators. 

In [Swa 1], U.M.Swamy and K.L.N.Swamy and in [Zah 3] M.M.Zahedi introduced 

the notion of a fuzzy ideal generated by a fuzzy subset. In this section we study how 

the generating ideal and its generators behave over some crisp subsets of R. From the 
fact that the intersection of an ar bi trary collection of fuzzy ideals is a fuzzy ideal we 

give a definition for a fuzzy generating ideal as follows: 

Definition 2.3.1. 

Let J1. be a non-constant fuzzy ideal of R. Then the intersection of all fuzzy ideals of 

R containing J1. is called a fuzzy ideal generated by J1. and is denoted by < J1. >. 

Throughout this section ~e consider fuzzy subsets and fuzzy ideals with the sup­

property, unless otherwise stated. We can express the ideal < M > generated by a 

non-empty subset M in terms of the characteristic function as follows. 

X<M>(X) = sup A? XM(Xi). 
x=Ei=l Tj:t'i 

Hence we have the following Proposition. 

Proposition 2.3 .2. 

Let J1. be a non-constant fuzzy subset of R and v : R --> I be a fuzzy subset of R 
defined by 

v(X) = sup A? J1.(Xi). 
x=Ei=l rj Xi 

Then v is a fuzzy ideal of R and v =< J1. > . 

Proof. 

Let x,y E R then 

v(x)Av(y)= sup A?IJ1.(Xi)A sup A?'J1.(Yj) 
x=E~!l SiXj y=E7~1 tj 1/j 

sup A?l A?' J1.(Xi) A J1.(Yj) 
x=E7:!lsi X i 

y=E;~l tj 1/i 

< sup A? J1.(Zi) 
x-y= Ei= l TjZj 

= v(x - y) 
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and 
vex) = sup I\~ J.L(Xi) 

x=Ei=l rjXj 

< sup I\~ J.L(Xi) 
xy=E'_l(lITi)Zi 

< sup I\~ J.L(Zi) 
xy=E'=1 aj zi 

= v(xy) . 

Similarly, we can show that v(y) ~ v(xy). Thus v is a fuzzy ideal. Since x = xl, we 

have J.L( x) ~ v( x) for all x E R, hence J.L ~ v . 
Let w be any fuzzy ideal of R such that J.L ~ w. Then for all x E R of the form 

x = Ei=lTiXi 

w(x) 2: I\~W(Xi) 2: 1\~J.L(Xi) . 

Since it is true for all x = ~::"l TiXi 

w(X) 2: sup I\~ J.L(Xi) = vex). 
x=E':a l r, Xi 

Thus v ~ w; hence v is the smallest fuzzy ideal containing J.L, i.e. v =< J.L > . 

Proposition 2.3.3. 

Let J.L be a non·con3tant fuzzy 3ub3et of R, then 

v(O) = supv(x) = SUpJ.L(x) 
.ER .ER 

and 

< J.Lt >= Vt for all t E [0, lJ 

where v =< J.L >. 

Proof. 

Since J.L ~ v SUPJ.L(x) ~ supv(x) . 
• ER .ER 

Let y E R be of the form y = ~i=lTiXi' Then 

sUpJ.L(X) 2: J.L(Xi) 2: 1\~J.L(Xi) ' 
.ER 

Since it is true for all y = ~i=l T;Xi 

sUpJ.L(x) 2: sup I\~ J.L(Xi) = v(y) . 
zER 1I=E'=1 rp::j 
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Hence sup ~(x) 2: v(y) for all y E R. Therefore 
.ER 

sup~(x) 2: supv(x) = v(O) . 
• ER .ER 

Let t E [O,lJ; then clearly ~t <; Vt. So < ~t > C Vt, since Vt is an ideal of R. On 

the other hand, if x E Vt then vex) 2: t; so sup I\r ~(Xi) 2: t. Since ~ has the 
x=E i:::::l 1 rjX; 

sup-property, for some x = Ei=lrixi, I\r~(Xi) 2: t which implies Xi E p.t for all 
i = 1,2, ... n. So x E< p.t > . 

o 

By considering different level subsets of ~, we inductively define crisp subsets 

Ao , AI, ... , An, .. . as follows 

Ao = {x E R: p.(x) = supp.(r)} 
rER 

and 

An = {x E R : p.(x) = sup ~(r)} for all n = 1,2, ... 
reR,u~-l.A1I 

In the following Proposition, we prove that these subsets are mutually disjoint; 

further we prove that p. and v have the same supremum value considered over some 

chosen crisp subsets. These results are not true if p. does not have the sup-property. 

Theorem 2.3.4. 

Let the family {Ad kEN of crisp subsets of R be defined as above. Then 

(1) Ai n Aj = 0 for i of j, 

(2) sup V(x) = sup ~(x), 
xER'<U~-l.Ak> xER, <u~-l.AlI> 

(3) If < u~ Ak > " < U~-I Ak >"1- 0, 
u~-IAk > 

then/or all x E< u~ Ak > " < 

Vex) = sup vCr) = sup p.(r) . 
rER ...... <u~-l.A.c> rER ..... U~-l A .. 

Proo/. 

(1) Suppose there exists x such that x E Ai 1\ Ak for i of j , say i > j. Then 

~(x) = sup p.(r) = sup p.(r) . 
rER,u~-l Ak rER,u~-l All 
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Since tJ- has the sup-property 

which implies r1 if- Ak for all k = 0,1, ... , i - 1, hence 

tJ-(r1) < sup tJ-(r). 
rER'U~-2 .Ak 

Since i > j, i - 2 2: j - 1, we have 

tJ-(rt} = sup tJ-(r) 2: sup tJ-(r) 
rER ..... ut-1.Ak rER'U~-2 A.c 

which is a contradiction. Thus the result follows. 

(2) By the Proposition 4.3.3 , the result is true for n = 0. 

Let n 2: 1. Since tJ- :::; v 

sup tJ-(r) :::; sup v(r). 
rER ...... <u~-l.Ak> rER,<u~-l.Ak> 

To prove the other way, for all r E R, < U~-l Ak >, 
such that r = B;=l SiXi Xio ~< U~-l Ak > for some io with 1:::; io :::; 

p. So, 

AitJ-(Xi) :::; tJ-( Xio) :::; sup tJ-(r). 
rER,<u~-l.Ak> 

Since it is true for all r = B;=l SiXi 

v(r) = sup Ai tJ-( Xi) :::; sup tJ-(r) 
r=Ef=l tJjXj rER ...... <U~-l .Ak > 

and hence 

sup v(r) :::; sup tJ-(r). 
TER,<u~-l.A'\: > rER,<u~-l..Ak> 

(3) When n = 0, let r E< AD > . Then r is of the form r = B;=l SiX;, 
Xi E AD for all i = 1,2, ... ,po So we have 

hence 

which implies 

tJ-(Xi) = suptJ-(x) for all i = 1,2, ... ,p 
xER 

AitJ-(X;) = suPtJ-(x) 
xER 

v(r) = sup Ai tJ-(Xi) = suPtJ-(x) = supv(x). 
r=Ef=l rjXj xER xER 
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When n 2: 1, let r E< UO' Ak > '- < U~-I Ak > such that r = E;=I SiXi then 

Xi. 1- U~-I Ak and Xi. E An for some io with 1 ::; io ::; p. 

Since Xi E UO'Ak for all i = 1,2, ... ,p 

/l(Xi) 2: /l(Xi . ) for all i = 1,2, ... ,p . 

So 

Afl"(Xi) = I"(Xi. ) = sup I"(x) 
xER, u?::-llAk 

Since the above equality is true for all such r = E;=I SiXi 

v(r) = sup Ai /lex;) = sup I"(x) 
r==Er=l "iXj xER,u~ - l.AA: 

thus 
sup I"(x) = v(r)::; sup vex) 

xER ...... U~ - lAk xER, <u~-l.Ak> 

sup I"(x) 
xER, <u~-l.Ak> 

< sup I"(x) , 
xER, u~ - l.Ak 

o 

Remark. 

[2.3.4 , (3)] will fail if < uO' Ak > '- < U~-I Ak >= 0. The following example 

illustrates the fact . 

Example 2.3.5. 

Define a fuzzy subset I" : 2:6 ---> I by 

/leO) = 1, 1"(1) = 0.7, 1"(2) = 0.9, 1"(3) = 0.6, 1"(4) = 0.8 and 1"(5) = 0.6. 

Then the fuzzy ideal v generated by I" is 

v(O) = 1, v(2) = v( 4) = 0.9 and v(l) = v(3) = v(5) = 0.7 

and 

AD = {OJ, Al = {2}, A2 = {4}, A3 = {I} and A4 = {3, 5} 

which implies 
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hence we have 

sup lI(r) =0.7# sup J.L(r) =0.8 
rEZe ...... <.AouAl > rEZe ...... .AouA l 

and 
sup lI(r) = 0.9 # sup J.L(r). 

rE~ ...... AouA! rEZe ...... A ouA 1 

We now prove that the converse of Proposition[2.3.4J is also true under a certain 

condition. 

Theorem 2.3.6. 

Let the family {Ad kEN be defined as earlier and < U~Ak > '- < U~-lAk > be a 

non- empty set. Then 

if lI(x)= sup lI(r), xE<U~Ak>'-<U~-lAk> for all n = 0,1,2, .... 
rER ........ <u~-l.Ak> 

Proof. 

Let us prove first for n = O. i.e. for the case < U~-l Ak >= 0. Let lI(x) = supll(r). 
rER 

Suppose x ¢< Ao >j then for all x such that x = Ef=l rixi, Xio ¢< Ao > for some io 

with 1 ~ io ~ p. So J.L(Xio) < supJ.L(r), and hence 1\1J.L(xi) ~ J.L(Xio) < supJ.L(r).Since 
rER rER 

it is true for all such x = Ef=l rixi and J.L has sup-property 

lI(X) = sup I\r J.L(Xi) < supJ.L(r) = sUPll(r) 
x=Ef::::;:l rixi rER rER 

which is a contradiction. 

We now consider for n 2: 1. Let lI(x) = sup lI(r). 
rER ....... <u~-lAA:> 

Suppose x ¢< Uii Ak > '- < U~-l Ak >, then there are two cases: 

Case 1. 

Suppose x E< u~-j Ak > . Then x is of the form x = Ef=lrixi, where ri E R, 
Xi E U~-l Ak and p ~ n -1. Hence we have sup J.L(r) ~ sup J.L(r) < 

rER,<u~-l.Ak> rER,u~-lA.c 

J.L(Xi) for all i = 1,2 ... ,po By Proposition [2.3.4J, sup lI(r) < J.L(Xi) for all i = 
rER,<u~-l.Ak> 

1,2, ... ,po 

i.e. lI(x) < J.L(Xi) for all i = 1,2 ... ,po 

So lI(x) < I\rJ.L(Xi). But 

lI(X) = sup 
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This is a contradiction. 

Case 2. 

Suppose x f/:.< ug Ak > . Then for all x such that x = El=l riXi, Xio f/:.. ug Ak for some io 

with 1 ::; io ::; t, therefore /\ iJl(Xi) ::; Jl(Xio) < sup Jl(r). Since it is true 
rER,u~-lA.c 

for all x of the form x = El=l rixi and Jl has a sup-property, 

II(X) = sup /\( Jl(Xi) < sup Jl(r). 
x:;:::E~=l rj Xi rER,U~ -1 Ak 

Thus 

II(X) = sup lI(r) < sup Jl(r) 
rER,<u~-l.Ak> rER,u~-l.AA: 

which is a contradiction by Proposition[2.3.4 (2)]. 

o 

Remark. 
V.N.Dixit et al. [Dix2,4.2] defined a fuzzy subring generated by a fuzzy subset Jl by 

our Theorems 2.3.4(3) and 2.3.6. 

The above proposition turns out be false if Jl does not have the sup-property. 

Example 2.3.7. 
We define a fuzzy subset Jl : Z --t I of a ring (Z, +,.) by 

r/2 

Jl(x) = 1 ~/2 - (1/3)lxl 

then supJl(r) = 1/2 and Ao = {2}. 
rEZ 

if x = 2 

if x is odd 

if x is even , x # 2 

We now consider the following combinations and their corresponding membership 

values: 

Hence 

3 = 1.3 + ( -0).2 

= 1.5 + (-1).2 

= 1.7 + ( -2).2 

= La + (-k).2 

Jl(3) /\ Jl(2) = 1/2 - (1/3)3 

Jl(5) /\ Jl(2) = 1/2 - (1/3)5 

Jl(7) /\ Jl(2) = 1/2 - (1/3)7 

Jl(a) /\ Jl(2) = 1/2 - (1/3)'. 

sup Jl(a) /\ Jl(2) = 1/2. 
3=1..+{-k).2 
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Since for all x E Z , /1-(x) ~ 1/2 and v(3) = sup 1\1/1-(xi), v(3) = 1/2 
3=E?=1 rjXj 

but 3 ~< Ao >, it is clear that /1- does not have the sup-property. 

In the following section, we consider fuzzy ideals jl, v generated by two distinct 

fuzzy subsets /1- and v respectively. As in the crisp case, distinct fuzzy subsets may 

generate the same fuzzy ideal; but we prove here that these fuzzy subsets coincide 

on a suitably chosen mutually disjoint collection of subsets of R. From this we are 

able to conclude that different generators of the same fuzzy ideal must have the same 

image. Thus the image of generator is an invariant for the fuzzy ideal. 

Proposition 2.3.8. 

Let /1-, v be fuzzy subsets of R. 

(1) If /1- ~ v, then jl ~ v, 
(2) If /1- = v, then jl = v. 

The proof is straightforward. 

Generally the converse of the above two results are not true. The examples follow. 

Example 2.3.9. 

In the ring (Z4' +, 0), we define two fuzzy subsets /1-, v :---+ I by 

/1-(0) = /1-(1) = 0, /1-(2) = 1/2, /1-(3) = 1/3 

and 

v(O) = v(l) = 0, v(2) = 1/3, v(3) = 3/4. 

Then 

jl(O) = jl(2) = 1/2, jl(l) = jl(3) = 1/3 

and 

v(O) = vel) = v(2) = v(3) = 3/4 

hence jl < v, but clearly /1- i v. 

Example 2.3.10. 

Define /1-, v : Z4 ----+ I by 

/1-(0) = /1-(1) = 0, /1-(2) = 1/3, /1-(3) = 3/4 

and 

v(O) = v(3) = 0, v(2) = 1/3, vel) = 3/4. 

Then 
jl(X)=v(X) forallx=0,1,2,3 but/1-f=v. 

We have seen that jl = v does not necessarily imply /1-(x) = vex) Vx E R, but we 

prove in the following /1-(x) = v(y) Vx E Ak, Y E A~ under a certain condition. 
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Theorem 2.3.11-

Let fL, v be di3tinct fuzzy subsets of R such that Ji = v. 
If < UO'Ak > " < U~-l Ak > and < uO'A~ > " < U~-l A~ > are non.empty sets, 
then 

fL(X) = v(y) for all x E An,y E A~ and < U~Ak >=< u~A > for all n = 0,1, ... , . 

Proof· 
This proof is by induction on k. 

Let x E Ao, y E Ati then by Theorem[2.3.4], 

fL(X) = supfL(r) = supJi(r) = supv(r) = supv(r) = v(y). 
rER ~R ~R ~R 

i.e. Vx E Ao,y E A~ fL(X) = v(y). 

Let x E Ao then by Theorem[2.3.4] 

Ji(X) = supJi(r) = supv(r) = v(x ) 
rER rER 

from which follows that x E< Ati >. So < Ao >~< Ati > . Similarly, we can show 

< Ati >~< Ao > . Thus < Ao >=< Ati > . Hence the result is true for n = O. 
Suppose the result is true for n - 1. 

i.e. Vx E A n- l , y E A~_l fL(X) = v(y) and < U~-l Ak >=< U~-l A> . 

Let x E An, y E A~ then by Theorem[2.3.4], 

fL(X) = sup fL(r) = sup Ji(r) = sup v(r) = v(y). 
rER ...... U~-l.Ak rER,<U~-lAA: > rER,<U~-lAk> 

~.e. Vx E An,y E A~ fL(X) = v(y) . 

To show the last part, let x E< UO' Ak > . Then two cases arise. 

case 1. 
This is the simpler case. Suppose x E< U~-l Ak > j then by induction x E< U~-l AI, > 
,and hence x E< UO'Ak > . 

case 2. 

Suppose x rt< U~-l Ak >j then x E< UO' Ak > " < U~-l Ak >.By Theorem[2.3.4] , we 
have 

Ji(X) = sup Ji(r) = sup v(r) = v(x). 
rER ..... <u~-lAk> rER,<U~-tAk> 

Which implies by Theorem[2.3.6], x E< UO'Ak > . So < U(jAk >~< U(jAi: > . 

Similarly, reversing the role of Ak and Aj" we get the reverse inclusion. 
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o 

Remark 1. 

By Theorem[2.3.4J, {An} and {A~} are two distinct partitions of R and this gives 
rise to an equivalence relation on R. For each n i.e. for each equivalence class J.l and 

v have the same membership values. Thus both J.l and v must have the same image. 

It should be noted that Im(J.l) = Im(v) does not imply J.l = v. 

Remark 2. 
We define a function f : R --+ R by using the Axiom of Choice as follows: Let x E R. 
Then there exists a unique n EN such that x E An. Since {A~ : n E N} is a non-empty 

collection of non-empty subsets, by the Axiom of Choice there exists a choice function 

1lI such that for each n E N, llI(n) E A~. We therefore define a map f : R --+ R by 

f(x) = llI(n). Hence v 0 f(x) = v(llI(n)) = J.l(x) by Theorem[2.3.11]' i.e. v 0 f = J.l. 

Remark S. 

A relation ,~ 'on IR, defined by J.l ~ v if and only if < J.l >=< v > , is easily checked 

to be an equivalence relation on IR. Thus all fuzzy subsets in any equivalence class 

with respect to ,~ 'have the same image. 

In the following Proposition we collect some results pertaining to union, product 

and composition of fuzzy ideals . 

Proposition 2.3.12[Liu 1,3.1]. 

(1) If J.l,V,J.lQ(OI. E I) are fuzzy idealJ of R, then 

(a) J.lV =< J.l 0 v >, 
(b) If J.l(O) = v(O) = 1, then J.l + v =< J.l V v>, 

(c) < V J.lQ > v =< V J.lQV >, 
QEI QEI 

(2) If J.l, v are fuzzy subJetJ of R , then < J.lV >=< J.l >< v >, 
(3) Let J.l, v, w be fuzzy ideals of R then 

vw :'S J.l if and only if vow:'S J.l, 

(4) Let xr,Y. be any fuzzy pointJ of R , then < Xr 0 Y. >=< Xr > 0 < y. >. 

Proof. 

(1) (a) By the definitions of composition and product, we have J.l 0 v :'S J.lV. Since 

J.lV is a fuzzy ideal and < J.l 0 v > is the smallest fuzzy ideal containing J.l 0 v, 

< J.l 0 v > :'S J.lV . To show the converse part, let w be any fuzzy ideal of R 

such that < J.l 0 v > :'S w then J.l 0 v :'S w. Let x E R then 

J.lv(x) = sup II~ J.l(Xi) II V(Yi) :'S sup II~ (J.l 0 V)(XiYi) :'S w(x). 
X=E?=l XiYi x=Ef=l XiYi 
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Hence /.LV :::; w thus /.LV :::; < /.L 0 v > . 

(b) Since /.L(O) = v(O) = 1 by the Proposition[2.2.8,5], /.L :::; /.L + v and v :::; 

/.L + v. So /.L V v :::; /.L + v which follows that < /.L V v > :::; /.L + v. 

Let w be any fuzzy ideal of R such that < /.L V v >:::; w then 

(/.L + v)(x) = sup /.L(Y) II v(z):::; sup w(y) IIw(z):::; w(x) 
x=y+z %=y+% 

hence the result follows . 

(c) For each a E I /.LaV :::;< VaEI/.La > v. 

So VaEI(/.LaV) :::; < VaEI/.La > v, thus < VaEI/.LaV >:::; < VaEI/.La > v. 

Let w be any fuzzy ideal of R such that < VaEI/.LaV >:::; w then Va E I /.Lav:::; 

w. 
Let x E R then 

< VaEI/.La > v(x) = sup lin 
1 sup IIi (V aEI /.La )(Yij) II v( Zi) 

x=E?:::l Y;Zi Yi=Ef=l rj Yii 

- SUp lin 
1 VaEI SUp IIf (/.La(Yij) II V(Zi)) 

x=Ei=lYiZi Yi=Ef=l rj Yij 

< SUp lin VaEI SUp IIi (/.LaV)(YijZi) 1 
x=Ei=l YiZj Yi=Ef=l rj Vij 

< SUp lin 
1 VaEI SUp IIi w(rjYijZi) 

x=E'=lYiZi 9,=E7=1 rj Vii 

< SUp lin 
1 VaEIW(YiZi) :::; w(x) . 

x=Ei=lYiZi 

Hence < VaEI/.La > V:::; w. 

(2) Since /.L :::; < /.L > and v < < v >, we have /.LV < < /.L >< v > . So 

< /.LV > :::; < /.L >< v > . 

For the converse part, let w be any fuzzy ideal of R such that < /.Lv>:::; w and 
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x E R. Then 

<~><v>(x)= sup I\~ sup I\f' ~(Xij) 1\ sup I\f' V(Yik) 
x=Ei=l x,y, Xi=r:j~l rj Xij Yi=E:;"l skYi .. 

- sup I\~ sup I\f' I\f' (~( Xij) 1\ V(Yik)) 
x=Ei.l XiYi :q=Ej:'l rj Xij 

Yi=E:~l ""ya 

< sup I\n 
1 sup I\f' I\f' ~V(XijYik) 

X=E?::zlXiYi 

< sup I\~ 
x=Ei=t XiV, 

~ w(x). 

xi=Ej!.trjXij 

Yi=E:~l SIcYilc 

sup 
xi=Ej!.l rj Xij 

Yi=E~~l Sic Yilt: 

W(XiYi) 

Hence < ~ >< v > ~ < ~V >, thus < ~ >< v >=< ~V > . 

(3) Straightforward. 

(4) 
< Xr 0 Y. > =< (XY)rA. > 

=< xy >rAs 

= ( < x >< Y > )rAs 

=< x >r 0 < Y >s 

=< Xr > 0 < Y. > . 

In the following Proposition we prove some effects of homomorphisms on a fuzzy 

generating ideal. 

Proposition 2.3.13. 
Let f : R --> R' be a homomorphism and ~,~' be fuzzy ideals of Rand R' respectively 

then 

(1) If f is an epimorphism ,then < f(~) >= f( < ~ » 
(2) < f-l(~') >= f-1 < ~' > 

Proof· 

(1) Since ~ ~< ~ > and f( < ~ » is a fuzzy ideal, 
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Let Y E R' then 

f«jJ.»(Y)= sup <jJ. > (x) 
XE/-l (y) 

- sup sup /\~ jJ.(Xi) 
xE/- 1 (y) z=E?_ l ri%j 

sup /\~ jJ.( Xi) 
Ei"l rj2;iEf- 1(y) 

sup /\~ jJ.(Xi) 
y=E?~l /(r;)/(x;) 

- sup sup /\~ jJ.(Xi) 
y=E?=l I( rj )Yi y;=/(x;) 

< sup /\~ sup jJ.(Xi) 
y=E?=l!(riYi) x;E/-1(y;) 

sup /\~ f(jJ. )(Yi) 
y=Ei=l!(rdVi 

< sup /\~ f(jJ. )(y;) 
y=E?=l"i!li 

=< f(jJ.) > (y). 

Hence the result follows. 

(2) Straightforward. 
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§ 2.4 Fuzzy equivalence and congruence relations of R. 

Fuzzy equivalence and congruence relations are defined and studied on groups in 

[Mak 1] , [Nob 1]. Here we extend the same concepts in a ring- theoretical situation. 

We establish that there is a one-to-one correspondence between the set of all fuzzy 

ideals of R and the set of all fuzzy congruence relations on R. From these ideas; we 

define a fuzzy quotient ring with respect to a given fuzzy congruence relation. 

Definition 2.4.1. 

A function a : R x R --+ I is called a fuzzy relation on R. 

If\t'x E R a(x,x) = 1, then we say a is fuzzy reflexive, 

If \t'x, y E R a(x, y) = a(y, x), then we say a is fuzzy Jymmetric, 

If \t'x, y E R a(x, y) 2:: sup [a(x, z) II a(z, y)] , then we say a is fuzzy tranJitive . 
zER 

A fuzzy relation on R is a fuzzy equivalence if a is fuzzy reflexive, symmetric and 

transitive. 

Let FR be the set of all fuzzy relations on R. We define three operations on FR 
which are addition, multiplication and composition as follows: 

Let a,fJ E FR and (x,y) E R x R then 

(1) 

(a + fJ)(x, y) = sup [a(xl, Yl) II fJ(X2, Y2)], 
(x,Y)=(Xl+X'lIYl +Y2) 

(2) 

(afJ)(x,y) = sup [a(xl,Yl)lIfJ(x2,Y2)], 
(x ,Y )=( x,x, ,Y' Y,) 

(3) 

(a 0 fJ)(x , y) = sup [a(x, z) II fJ(z, V)]. 
zER 

The following can be readily checked: 

(1) a is a fuzzy transitive if and only if a 2:: a 0 a, 

(2) If a is a fuzzy equivalence relation, then'" 0 a = a and for each t E [0,1] the 

level subsets at = {(x,y) E RXR: ",(x,y) 2:: t} is a crisp equivalence relation 

on R. 
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Definition 2.4.2. 

A fuzzy equivalence relation on R is called a fuzzy congruence relation if 

V(x,y)ERxR,rER 

a(x+r,y+r)~a(x,y) and 

a(xr,yr) ~ a(x,y). 

In the following Proposition we characterize the fuzzy congruence relation in terms 

of the operations addition and multiplication. 

Proposition 2.4.3. 
A fuzzy equivalence relation a on R is a fuzzy congruence if and only if 

a ~ a + a and a ~ aa. 

Proof. 

The sufficient part is obvious. To prove the necessary part, 

let (x, y) E R x R, then 

aa(x , y) = sup [a(xl,Yl) i\ a(x2,Y2)] 
(x ,Y )=( Xl X2,YI Y2) 

< sup [a(xlx2, Y1X2 ) i\ a(Ylx2, Y1Y2)] 
(x ,Y )=( X 1X 2,Yl Y2) 

< sup a(xlx2,Y1Y2) 
(x IY )=( xl X2,Vl Y2) 

=a(x,y). 

Thus aa :S a , similarly we can have a + a :S a. 

The following Proposition can be easily proved. 

Proposition 2.4.4. 

o 

A relation S on R is an equivalence relation (congruence) if and only if the charac­

teristic function Xs is a fuzzy equivalence (congruence) relation on R. 

It is easy to check that a fuzzy equivalence relation a on R is a congruence if and 

only if a is a fuzzy subring of R x R. 
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Proposition 2.4.5. 

Let a be a fuzzy congruence relation on R then for all x, y, r E R 

(1) a(r + x, r + y) = a(x , y), 
(2) If r is a unit, then a(rx, ry) = a(x, y), 

(3) a(x, y) = a( -x, -y). 

Proof. 

(1) By the Definition [2.4.2] , a(x + r,y + r) :::: a(x,y) and for the converse, 

a(x, y) = a(x + r - r, y + r - r) :::: a(x + r, y + r). 
(2) Follows by the same technique as in (1). 
(3) a( -x, -y) = a( -lx, -ly) :::: a(x, y). Since it is true for all (x, y) E R x R, we 

have a( -x, -y) = a(x, y). 

o 
We now prove in the following Proposition that for a given fuzzy congruence re­

lation a, there exists a unique fuzzy ideal J1. of R. In other words fuzzy congruence 

relations can be characterized in terms of fuzzy ideals. 

Theorem 2.4.6. 

Let a be a fuzzy congruence relation on R, then there exists a unique fuzzy ideal J1. of 

R such that a(x, y) = J1.(x - y). 

Proof. 
Define a fuzzy subset J1. : R --> I by 

Let x,y E R then 

J1.(x) = a(x, 0) for all x E R . 

J1.(x - y) = a(x - y, 0) 

::::(Q+Q)(x-y,O) 

:::: a(x, 0) /I a( - y, 0) 

= Q(x,O) /I a(y,O) 

= J1.( x) /I J1.(y). 

J1.(xy) = Q(xy, 0) :::: aQ(xy, 0) 

:::: a(x, 0) /I a(y, y) 

= a(x, 0) = J1.(x). 

Similarly, we can show J1.( xy) :::: J1.(y)j so J1.( xy) :::: J1.( x) V J1.(y). Hence J1. is a fuzzy ideal 

of R. 
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Further 

J1-(x - y) = a(x - y, 0) = CJi(x - y + y, 0 + y) by the Proposition 2.4.5 

= a(x,y) 

and J1-(0) = 1. It is easy to check the uniqueness part. 

D 

The converse of the above Proposition is also true. i.e. every fuzzy ideal determines 

a fuzzy congruence relation on R, as shown below. 

Theorem 2.4.7. 
Let J1- be a fuzzy ideal of R with J1-(0) = 1. Then the fuzzy relation 
Ct : R x R -t I defined by a( x, y) = J1-( x - y) is a fuzzy congruence relation on R. 

Proof. 

Let X,y E R then 

CJi(x, x) = J1-(x - x) = J1-(0) = 1. 

a(x, y) = J1-(x - y) = J.l( -(x - y)) = J1-(Y - x) = a(y, x). 

sup [a(x, z) /\ Ct(z, y)] = sup [J1-(x - z) /\ J1-(z - y)] 
<ER <ER 

::; SUpJ1-( x - y) 
zER 

= J1-(x - y) = CJi(x, y). 

Thus Ct is a fuzzy equivalence relation on R. 
Now consider 

CJi(r + x, r + y) = J1-(r + x - (r + y)) = J1-(x - y) = CJi(x, y) 

CJi(rx , ry) = J1-(rx - ry) ~ J1-(x - y) = CJi(x,y) 

hence Ct is a fuzzy congruence relation on R. 

Remark 1. 

If 01, f3 are two fuzzy congruence relations on R, then Ct 0 f3 = f3 0 Ct. 
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Let (x,y) E R x R then 

aofJ(x , y) = sup[a(x,z)i\fJ(z,y)] 
zER 

= sup[a(x-z,O)i\fJ(O,y -z)] 
zER 

= sup [fJ(x, x + y - z) i\ a(x + y - z, y)] 
zER 

sup [fJ(x,x + y - z) i\ a(x + y - z,y)] 
_+y-zER 

=f3oa(x,y) . 

Remark 2. 

If p, v are two fuzzy, ideals of R then al' 0 av = al'+v where aI" av and al'+v are 
fuzzy congruences relations induced by p , v and p + v respectively. 

Let (x,y) E R x R then 

al' 0 av(x , y) = sup [al'(x, z) i\ av(z, y)] 
zER 

= sup [p(x - z) i\ v(z - y)] 
zER 

= sup p(a)i\v(b) 
a=x-z 
b=z-y 

sup p(a)i\v(b) 
a+b=x-y 

= (p + v)(x - y) 

Let a be a fuzzy congruence relation on R, then the level subset at, 

tEl m( a) gives rise to an equivalence relation on R. Thus the ring R can be divided 

into disjoint equivalence classes with respect to the equivalence relation at. Let us 

denote at[r] the equivalence class corresponding to r, r E R, i.e. adr] = {x E R : 
a(x,r) 2 t}. 
Now we define a fuzzy subset Pr : R ---> I by 

J.lr(x) = a(r,x) 
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and let Ria = {fLr : r E R}. 

Theorem 2.4.8. 
Let a be a fuzzy congruence relation on R then 

(1) a(r,s) = 0 if and only if fLr II fl. = 0, 

(2) V fLr = XR, 
rER 

(3) a(r, s) = 1 if and only if fLr = fl. if and only if adr] = ads]. 

Proof. 

(1) Since a is fuzzy transitive 

SUPfLr(Z) II fL.(z) = supa(r,z) II a(z,s) ::; a(r,s) = 0, 
zER zER 

hence fLr(Z) II fL.(Z) = 0 for all z E R, which implies fLr II fl. = O. For the 

converse part, 

0= SUPfLr(Z) II fL.(Z) = supa(r, z) II a(z, s) ;::: a(r, s) II a(s, s) = a(r, s), 
zER zER 

thus a(r,s) = O. 

(2) Straightforward. 

(3) Suppose a(r,s) = 1 then 

fLr(X) = a(r,x);::: supa(r,z) II a(z,x);::: a(r,s) II a(s,x) = a(s,x) = fL.(X). 
zER 

Hence fLr ;::: fl.· Similarly we can show fl. ;::: fLr· 
Conversely suppose fLr = fl. then for all z E R, a( r, z) = a( s, z)j so a(r, s) ;::: 
supa(r,z) lIa(z,s) = supa(r,z) = 1. 
zER zER 

We now prove the rest of (3). Let fLr = fl. and x E a,[r] then a(s, x) = 

fl. (x) = fLr(x) = a(r,x);::: tj so x E a,[s]. Similarly we can show the converse 

part and hence a,[r] = ads]. Now, suppose a,[r] = ads]. Let t = fLr(X) = 

a(r,x), then x E adr]; so x E a,[s], hence fl. (x) = a(s,x) ;::: t. i.e.fL.(x);::: 
fLr(X). Similarly fLr(X) ;::: {l.(x). Hence the result follows. 

o 

We define two operations, sum and multiplication on Ria as follows: 

fLr + fl. = fLr+. and fLrfL. = fLr. 

38 



, 
We show below that these operations are well-defined. If I"r = I"r1 and I"s = I"Sl' then 

I"r+s(x) = Oi(r + s,x) = Oi(r, x - s) = Oi(rl'x - s) 

= Oi(rl - x,-s) = Oi(S,X - rl) = Oi(SI'X - rlJ 

= Oi(rl +SI,X) = I"r1+S1(X) 

and since Oi(r,rl) = Oi(S,SJ) = 1, Oi(rs,rlsl) = 1, 

I"rs(x) = Oi(rs,x):::: Oi(rs,rlsJ) /\ Oi(rlsl,x) = I"r1S,(X). 

Similarly, I"r1s, (x) :::: I"rs(X) for all x E R thus I"rs = I"r1 S, 

Furthermore it can be easily checked that the set R/Oi together with the above two 

operations forms a ring with zero element 1"0, where 0 is the zero element of the ring 

R. This ring R/Oi is called the quotient ring of R induced by the fuzzy congruence 
relation 01 on R. 

It is interesting to note that V.N.Dixit, et al [Dix 2,5.2] and H.V.Kumbhojker and 

M.S.Bapat[Bho 4,3] defined a fuzzy coset of a fuzzy ideal I" by (x + I")(r) = I"(x - r). 
If I" is a fuzzy ideal induced by 01 according to the Theorem [2.4.6], then we have 

(x + I")(r) = I"(x - r) = Oi(x,r) = I"r(x) for all r E R i.eVx E R, (x + 1") = I"z. 
Hence the collection of all fuzzy cosets of 1" , denoted by R/ I" forms a ring under 

suitably defined binary operations on R/I"' It is easy to check that R/ 01 ~ R/I". 

Since for each r E R there exists a fuzzy subset I"r of R in RlOi, we define a map 

aa : R --t Ria by aa(r) = I"r. It is obvious that aa is a homomorphism. We call it 

the natural homomorphism induced by the congruence relation 01. 

Corollary 2.4.9. 

If I" is a fuzzy ideal of R, then R/ 1"0 ~ R/I"' 

Proposition 2.4.10. 

Let f : R --t R' be a homomorphism and 1",1"' be fuzzy ideals of Rand R' respectively 

such that 1"(0) = 1"'(0) = 1 and f(/,) $ 1"" Then there exists a homomorphism 

J : R/ I" --t R' II"' such that a;. 0 f = J 0 a I' where a I' : R --t R/ I" is a natural 
homomorphism obtained by 1". 
In other words, the diagram 

R f R' 

j 
--'-->1 RII"' 

commutes. 

Proof· 
Define J : RI I" --t R' /1"' by 

J(x + 1") = f(x) + 1"'. 
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If x + p = y + p, then px = pg, hence by the Theorem[2.4.8,3] Oil'(x, y) = 1. 

OiI',(f(x),J(y» = p'(f(x) - fey»~ 

= P'(f(x - y» 

= rl(p'(x - y» 

~ p( x - y) by the hypothesis 

= Oil'(x, y) = 1. 

So Oil"(f(x), fey»~ = 1. Hence by the same Theorem[2.4.8,3] Pf(x) = Pf(y)i therefore 

1 is well-defined. 

a!', 0 f(x) = al"(f(x» = f(x) + p' = /(x + p) = /(al'(x» = 1 0 al'(x). 

Moreover, it is easy to see that if f is surjective then so is f. 

Corollary 2.4.11. 

If f : R --> R' i.! an epimorphism and p, p' are fu zzy ideal.! of Rand R' respectively 

such that p = f- I (p'), then R ip "" R' I p'. 

Proof. 
By Proposition[1.2.2,3] f(p) = f(f-I (p'» = p' so by above Proposition 

f: Rip --> Rip' is epimorphism. If f( x) + p' = fey) + p', then by the Theo­

rem[2.4.8,3] Oil',(f(x),f(y» = 1 which implies that p'(f(x - y» = 1. 

Hence p(x - y) = f- I p'(x - y) = 1 so x + p = y + p. Thus 1 is injective. 

o 

Let f : R --> R' be a homomorphism. We define fuzzy kernel of f as FKerf = 

f-I(XO') where 0' is the zero element of R'. If x E Kerf, then f(x) = 0' so 

Xo,(f(x» = 1, if x 1:. Ker f, then f(x) # 0' so Xo,(f(x» = O. Hence FKerf = XKer f 

and FKera I' = Xl'o' 

Corollary 2.4.12. 

If f : R --> R' is an epimorphism, then RI FKer f ~ R'. 

Proof. 

Since FKerf = f-I(Xo'), by the Corollary[2.4.11] RI FKerf ~ R'/Xo'. But we have 

R' / XO' = {r' + X O' : r' E R'} which is isomorphic to R'. 

Corollary 2.4.13. 

Let f : R --> R' be a homomorphism and p be a fuzzy ideal of R then f-I(f(p» = 

p+ FKerf. 

40 



Proof. 

Let x E R. 

Corollary 2.4.14. 

(Ji. + FKerf)(x) = sup Ji.(X1) /\ FKer!(x2) 
X=Xl+X2 

sup Ji.(xt) 
X=Xl +X2 
X2EXKu! 

sup Ji.(xt) 
1«)=/«1) 

= f(Ji.)(J(x)) 

= r 1(J(Ji.))(x). 

If Ji., II are fuzzy ideals of R .such that Ji. :s II, then R/ II ~ (R/ Ji.)/ a I' (II). 

Proof. 

o 

Let a I' : R --; R/ Ji. be the natural homomorphism. Then FKerO'l' = XI'O and by the 

above Corollary a;l(al'(II)) = 11+ FKeral' = II + XI'O = II since XI'O :s Ji. :s II. By the 

Corollary[2.4.11J R/II ~ (R/ Ji.)/al' (II). 

o 

Corollary 2.4.15[Muk 1J. 
A ring R is regular if and only if for any fuzzy ideals Ji., II of R Ji. /\ II = Ji.1I. 

Proof. 

We defined 

Ji.1I(X) = sup /\~ Ji.(Xi) /\ II(Yi). 
x=Ei=l XiYi 

Since R is regular, there exists an a E R such that x = xaXj , therefore Ji.1I(X) ~ 

,,(xa) /\ II(X) ~ Ji.(x) /\ II(X) = (Ji. /\ II)(X). Thus Ji.1I = Ji. /\ II. For the converse part, 

suppose A, B be any two ideals of R then clearly AB <;; A n B . Let x E A n B 

then XAXB(X) = XA /\ XB(X) = 1 = sup XA(Xi) /\ XB(Yi). Hence for some 
x=Ei=l XiYi 

Xi E A,Yi E B,x = ~i=lXiYi' So x E AB. Thus An B = AB. 

o 

Corollary 2.4.16. 

A ring R is regular if and only if every fuzzy ideal of R is idempotent. 
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Proof. 

We prove only the sufficient part. Let 1-', v be any fuzzy ideals of R then 

sup (I-' 1\ v)( Xi) 1\ (I-' 1\ v )(Yi) 
x=Ei=l XiYi 

< sup I-'(Xi) 1\ V(Yi) 
x=E?=l Xi1Ji 

Hence I-' 1\ v = I-'v. 

o 
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CHAPTER III 

FUZZY PRIME, RADICAL AND SEMIPRIME IDEALS 

In this section we develop some properties of fuzzy prime ideals. In particular, 

the image of a fuzzy prime ideal is a two element set. Conversely if for a fuzzy ideal 

J1. with Im(J1.) = {1, t}, 0 S; t < 1 and the base set J1.o a crisp prime ideal, then 

J1. is a fuzzy prime ideal. Fuzzy point characterisation of a prime ideal is given in 
Proposition[3.1.8]. Various Definitions offuzzy prime ideals available in the literature 

are studied and the relationships between these are considered. 

§ 3.1 Fuzzy prime ideals'. 

Definition 3.1.1 [Muk 1]. 

A fuzzy ideal J1. of R is called a fuzzy prime ideal of R 

iffor any fuzzy ideals v,w of R 

vow S; J1. implies either v S; J1. or w S; J1.. 

Some authors use the product operation instead of composition in the above Defi­

nition. But it does not really a matter since we proved in Proposition[2.3.12,3] that 

vow S; J1. if and only if vw S; J1.. In the following Proposition we prove some important 

properties of a fuzzy prime ideal which are basic consequences of the above Definition. 

Theorem 3.1.2 [Mall, 2.1]. 
Let J1. be a non-conJtant fuzzy prime ideal of R then 

(1) Im(J1.) = {l,t}, 0 S; t < 1 and J1.(O) = 1, 

(2) J1.o = {x E R: J1.(x) = J1.(O) = 1} iJ a prime ideal of R. 

Proof. 

(1) Let x, y E R with 0 S; J1.(x) < 1,0 S; J1.(y) < 1. 

In the following discussion, x and yare kept fixed . 

Define v, J1. : R --> I by 

vCr) = { ~ if r E< x > 
otherwise 

and 

w(r) = J1.(x) for all r E R. 
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Then it is obvious that v, ware fuzzy ideals of R, and also for all r, S E 

R vCr) 1\ w(s) :::; fL(rs), since if vCr) = 0 then vCr) 1\ w(s) = 0 :::; fL(rS), 
and if vCr) = 1 then r = rIX for some rl E R and vCr) 1\ w(s) = w(s) = 
fleX) :::; fL(rIXS) = fL(rs). Hence supv(r)l\w(s) :::; fL(t) from which follows that 

t=r" 
vow:::; fl. Since fL is a fuzzy prime ideal of R either v :::; fL or W :::; fl. But 

v( x) = 1 > fL( x) and hence W :::; fl. Therefore w(y) = fL( x) :::; fL(Y). Similarly 

we can prove that fL(Y) :::; fleX). Thus fleX) = fL(Y), hence IIm(fL)1 = 2. 

Suppose fL(O) < 1. Since fL in non-constant, there exists an a E R such that 

flea) < fL(O). 
Define the fuzzy ideals v, W : R --+ I by 

v(r) = {
I if r E flo 

o otherwise 

and 

w(r) = fL(O) for all r E R. 

For all r, s E R, v(r) 1\ w(s) :::; fL(rs) since if v(r) = 1, then vCr) 1\ w(s) = 

w(s) = fL(O) = fL(r) = fL(rs), and if v(r) = 0 then clearly vCr) 1\ w(s) = 0 :::; 
fL(rs) . So, vow:::; fl. But v(O) = 1 > fL(O) and w(a) = fL(O) > flea). Hence we 

have vow:::; fL, v i fL and w i fl. This is a contradiction, thus fL(O) = 1 and 
Im(fL) = {I, t} for some t E [0,1). 

(2) Let I, J be any ideals of R such that I J ~ flo, then XI 1\ XJ = XIJ :::; X"o :::; fl. 
Since fL is a fuzzy prime ideal, either XI :::; fL or XJ :::; fL, which implies I ~ flo 
or J ~ flo. Hence flo is a prime ideal of R. 

o 

The converse of the above Proposition is also true as we show below. 

Theorem 3.1.3[Mal 1, 2.3). 

Let fL be a fuzzy ideal of R such that Im(fL) = {I, t}, 0:::; t < 1 and flo a Prime 
ideal of R, then fL is a fuzzy prime ideal. 

Proof. 
Let v, w be fuzzy ideals of R with vow:::; fl. Suppose v i fL and w i fL then there exist 

x, y E R such that vex) > flex) and w(y) > fL(Y). Hence it is obvious that x rt flo and 

Y rt flo. Since flo is a proper prime ideal of R, there exists r E R such that xry rt flo. 
So fleX) = fL(y) = fL(xry) = t. But v 0 w(xry) :::: vex) 1\ w(ry) :::: vex) 1\ w(y) > 
fL( x) 1\ fL(y) = t = fL( xry) which is a contradiction to fact that vow :::; fl. So either 

v :::; fL or w :::; fl· 
o 

It is easy to check that if fL is a fuzzy prime ideal of R then all of its level subsets 

are prime ideals of R, but the converse is not true. 
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Example 3.1.4. 

Define a fuzzy ideal I-' : Z --+ I by I-'(x) = 0.9 if x E< 2 > and I-'(x) = 0 otherwise. 
Then clearly all of its level subsets are prime ideals of Z but I-' is not a fuzzy prime 

ideal since 1-'(0) '" 1. 

Corollary 3.1.5. 

Let I be a non-empty subset of R, then XI is a fuzzy prime ideal of R if and only if 

I is a prime ideal of R . 

Corollary 3.1.6. 

Every non-constant fuzzy ideal of R with 1-'(0) = 1 is prime if and only if R is a field. 

Proof. (<=) 
Let x E R,- {O} then I-'(x) .- I-'(Ix) ~ 1-'(1) = l-'(xx-1) ~ I-'(x,. i .eAx) = 1-'(1) for 

all x E R '- 0 from which follows that Im(l-') = {I,I-'(I)} and 1-'0 = {O} is a prime 

ideal of R. Hence I-' is a fuzzy prime ideal of R. The converse is straightforward. 

o 

In general, the intersection of two fuzzy prime ideals need not be fuzzy prime. The 

same example as in the crisp case will fit here. 

Proposition 3.1.7. 

Let 1-', v be fuzzy ideals of R then I-' II v is a fuzzy prime ideal if and only if either 

11 ::; I-' or I-' ::; v. 

The proof is omitted since I-'v ::; I-' II v. 

Proposition 3.1.8[Dix 1, 4.1]. 

If {l-'diEI is a chain of fuzzy prim e ideals of R, then /\ I-' i and V I-'i are fuzzy prime 
iEI iEi 

ideals of R . 

Proof. 

Since for all i E I, l-'i(O) = 1 we have (V l-'i)(O) = 1. Since {(l-'i)O}iEI is a chain, 
iEI 

.U (l-'i)O is a prime ideal of R. Let v, w be fuzzy ideals of R such that vow ::; V I-'i. 
lEI iEI 

Suppose v i V l-' i ,W i V I-'i, then there exist x, y E R such that vex) > (V I-'i) (x) 
iEI iEI iEI 

and w(y) > (V l1-i) (y) which implies x, y rf- (V I-'i) ,so x, y rf- U (l-'i)O . Since 
iEI iEI 0 lEI 

i~/l-'i)O is prime ideal, xy rf- i~/l-'i)O . Therefore l-'i(X) = l-'i(Y) = l-' i(XY) = t i for 

all i E I. Hence (V I-'i) (x) = (V I-'i) (y) = (V I-'i) (xy) = sup ti, implying 
iEI iEI iEI iEI 
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v 0 W(xy) ;::: v(X) /\ W(y) > (v J1.i) (xy), which is a contradiction. Thus the result 
iEI 

follows. It is easy to show that /\ J1.i is a fuzzy prime ideal of R. 
iEI 

o 

We now turn our attention to the equivalence of different definitions available in 

the literature for a fuzzy prime ideal. 

Proposition 3.1.9[Bho 1, 3]. 

Let J1. be a fuzzy ideal of R. Then 

(1) J1. is a non-constant fuzzy prime ideal if and only if for all fuzzy points Xc> y.; r, S E 

[0,1]' Xr 0 y. E J1. implies either Xr E J1. or y. E J1., 

(2) If J1. is fuzzy prime ideal, then for all x, y E R, either J1.(xy) = J1.(x) or J1.(xy) = 

J1.(y), 
(3) If J1. is a fuzzy prim~ ideal of R, then for all x, y E R, J1.(xy) = J1.(0) implies 

either J1.(x) = J1.(0) or J1.(y) = J1.(0) . 

Proof. 

(1) Let J1. be a non-constant fuzzy prime ideal and Xc> y. be fuzzy points with 

Xr 0 Y. E J.l then < Xr 0 y. >::; J.l. Hence by Proposition[2.3.12,4] 

< Xr > 0 < y. >::; J.l hence either < Xr >::; J.l or < y. >::; J.l. Thus either 
Xr E J1. or y. E J.l. To show the converse part, let v, w be fuzzy ideals of R such 

that vow::; J.l. Suppose v i J1. and w i J.l then there exist x, y E R such that 

v(x) > J.l(x) and w(y) > J1.(y). Hence Xv(z) It J.l and Yw(y) It J.l, but 

J.l(xy);::: (v ow)(xy) 

;::: v(x) /\ w(y) 

= (xY)(v(z)"w(y»(xy) 

= (xv(z) 0 Yw(y») (xy) 

~.e. Xv(z)oYw(y) E J1.. So either Xv(z) E J.l or Yw(y) E J.l, which is a contradiction. 

(2) Suppose J.l is a fuzzy prime ideal of R. Then by Theorem[3.1.2]' Im(J.l) = {I, t}, 

for some t E [0,1) and J.lo is a prime ideal of R. Let x, y E R. If xy E J.lo, then 

either x E J1.o or Y E J.lo. Hence either J.l(xy) = J.l(x) or J.l(y). If xy It J.lo, then 

J.l(xy) = t ;::: J.l(x) /I J.l(y). If J.l(x) = 1 and J.l(y) = 1, then t ;::: 1, which is a 
contradiction. Therefore either J1.(x) = t or J.l(y) = t. Thus either J.l(xy) = J.l(x) 

or J.l(y). 

(3) Straightforward. 

o 

Remark. 

The converse of the parts (2),(3) in the above Proposition are not true in general: 
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Example 3.1.10. 

1. Define a fuzzy ideal p. : Z ---+ I by 

f 0.9 

p.(x) = 1 ~.7 
if x = 0 

for all x E< 2 > ,{O} 

for all x E Z, < 2 > . 

Then clearly for all x, y E Z, either p.(xy) = p.(x) or p.(y); but p. is not a fuzzy prime 

ideal since p.( 0) # 1. 

2. Define a fuzzy ideal p. : Z ---+ I by 

P.(X)={~.7 
• 0 

if x = 0 

for all x E< 4 > ,{O} 

for all x E Z, < 4 > . 

Then for all x, y E Z, p.(xy) = p.(0) implies either p.(x) = p.(0) or p.(y) = p.(0); but 

p.(2.2) = p.(4) = 0.7 and p.(2) # p.(4). This shows that converse of [3.1.9, (3)} is not 

true in general. 

Remark. 
It is interesting to note that (2),(3) in the above Proposition serve as definitions for 

a fuzzy prime ideal in Yue[Zha 1, 2.3J and H.V.Kumbhojkar[Bho 1, 4.1] respectively. 

Since a fuzzy prime ideal can take only two distinct values and one of these is 1, one 

cannot say this definition really fuzzifies the notion of prime ideals. It would be more 

appropriate if we take the condition (2) in Proposition[3.1.9} as a definition for a fuzzy 

prime ideal. But unfortunately there are not many results that one can obtain from 

such a definition. However one can develop the notion of fuzzy primary, semiprimary, 

primary decomposition and irreducibility under the weak definition as proposed in 

[3.1.1}. This is exactly what we find in papers by Kumar[Dixl}, [Kum I}, [Kum 5}, 

Malik and Mordeson[Mal I}, [Mal 2), [Mal 3}, [Mal 4]. The weak definition was used 
extensively in their work. 

It can be easily checked that if p. is a fuzzy ideal of Rand f : R ---+ I is a 

homomorphism, then p. is f- invariant if and only if p. is constant on Kerf and equal 

to p.( 0) on Kerf since 0 E Kerf. 

Proposition 3.1.11. 

Let f : R ---+ R' be a epimorphism and p. be a f-invariant fuzzy prime ideal of R 
then f(p.) is a fuzzy prime ideal of R'. 

Proof· 
Let p. be a fuzzy prime ideal of R then by Theorem[3.1.2}, Im(p.) = {I, t} for some 

t E [0, 1) and p'o is prime ideal of R. Since p. is f - invariant, Ker f ~ p'o hence f(p.o) 
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is a prime ideal of R'. Let y E R'. If y E f(J1.o) , then there exists x' E J1.o such that 

f(x') = y. So f(J1.)(Y) = sup J1.(x) ~ J1.(x') = 1, hence f(J1.)(Y) = 1. Ify If- f(J1.o), then 
!(x)=y 

for all x E R such that f(x) = y,x If- J1.o. So J1.(x) = t. It follows from.the definition of 

f(J1.) that f(J1.)(Y) = t. Thus we have Imf(J1.) = {I, t}, t E [0,1) and f(J1.o) = (J(J1.»o 
is a prime ideal of R'. By Theorem[3.1.3], f(J1.) is a fuzzy prime ideal of R'. 

o 

The following Proposition can be proved by a similar kind of argument as in the 
Proposition above. 

Proposition 3.1.12. 

Let f : R --; I be a homomorphism and p.' be a fuzzy prime ideal of R' then f- I (J1.') 

is a fuzzy prime ideal of R. 

Remark. 
If f is an epimorphism and J1. is f-invariant, then by Proposition[1.2.2, 3,4]' f-I(J(J1.» = 
J1. and f(J-I (J1.'» = J1.' which leads us to the conclusion that J1. is a fuzzy prime ideal of 

R if and only if f(J1.) is fuzzy prime ideal of R', and J1.' is fuzzy prime ideal of R' if and 

only if f- I (J1.') is fuzzy prime ideal of R . Thus there is a one-to-one correspondence 
between the set of all f-invariant fuzzy prime ideals of R and the set of all fuzzy 

prime ideals of R'. 

Proposition 3.1.13. 

Let J1. be a fuzzy ideal of R. For all x, y E R, either J1.( xy) = J1.( x) or J1.(y) if and 
only if every level subset J1.t is a prime ideal of R. 

Proof. 

The necessary part is straightforward. For the sufficient part, suppose J1.t is a prime 

ideal for all t E Im(J1.). Let X,y E R , then if J1.(xy) = J1.(1) either J1.(x) = J1.(I) or 

J1.(y) = J1.(1), since J1.(I) S; J1.(r) for all r E R. If J1.(xy) = t for some t E (J1.(I),I], 
then xy E J1.t, which implies either x E J1.t or y E J1.t. So J1.(x) ~ t = J1.(xy) or 

J1.(y) ~ t = J1.( xy) . Thus the result follows . 

o 

It should be noted that the above Proposition is not true for a fuzzy prime ideal 

defined as in [3.1.1]. 

Proposition 3.1.14. 

Let J1. be a non-constant fuzzy ideal of a PID R with J1.(0) = 1 and J1.o 'f {O}. Then for 
all x, y E R, either J1.(xy) = J1.(x) or J1.(y) if and only if J1.(xy) = J1.(0) implies either 

J1.(x) = J1.(O) or J1.(y) = J1.(O). 

Proof. 

Suppose for all x, y E R, J1.(xy) = J1.(O) implies either p.(x) = J1.(O) or J1.(y) = p.(O). 
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Then J.lo is a prime ideal of R. Since J.lo =I {O}, J.lo =I Rand R is PID, J.lo is a maximal 
ideal of R. Since J.I is non-constant there exists r E R such that J.I(r) = t =I J.I(O). If 

J.lt =I R, then J.lo <;; J.lt which is a contradiction to the maximality of J.lo. So J.lt = R, 
hence Im(J.I) = {I, t}. By Theorem[3.1.3] J.I is a fuzzy prime ideal and thus the result 

follows by Proposition[3.1.9,(3)]. The converse part is straightforward. 

Proposition 3.1.15. 

Let J.I be a fuzzy ideal of R. Then 

(1) If J.I-is a fuzzy prime ideal, then RiaI' is an integral domain, 

(2) If R is Noetherian (Artinian) ring, then so is RiaI" 

Proof. 

o 

(1) By Corollary[2.4.9] RI J.lo ~ RiaI" It is clear that if J.I is fuzzy prime, then 

RI J.lo is an integral domain, hence so is RiaI" 
(2) The proof is straightforward since (70. : R --+ RiaI' is a homomorphism and 

any homomorphic image of a Noetherian (Artinian) ring is also Noetherian 

(Artinian) ring. 

o 

Remark. 

In[Dix 1 4.8] V.N.Dixit et al. it is stated that the converse of part (1) in the above 

Proposition is true, but we disprove that it is not true in general as follows : 

Let R denote the ring Z[x, y]. Define a fuzzy ideal J.I : R --+ I by 

\ 

0.9 

J.I(f) = 0.8 

0.7 

if f E< x> 

if fE < x,xy>,,<x > 

otherwise. 

Then J.lo = {f E R : J.I(f) = J.I(O)} =< x > is a prime ideal of R. It follows that 

the quotient ring RI J.lo is an integral domain. By Corollary[2.4.9], RiaI' ::: RI J.lo and 

hence RiaI' is an integral domain. But it obvious that J.I is not a fuzzy prime ideal 

by Theorem[3.1.2] since J.I(O) =11 and IIm(J.I) I > 2. 
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§ 3.2 R-fuzzy prime subsets. 

Since Definition[3.1.1] fails to fuzzify the concept of a prime ideal as we mentioned 
earlier, we make an attempt to allow f' to take more than two value~. We introduce 
a new terminology: R- fuzzy prime subset of R and prove that the fuzzy ideal 

generated by R-fuzzy prime subset is a fuzzy prime ideal. Hopefully the concept of 

R-fuzzy prime subset can be extended furthermore. 

Definition 3.2.1. 

A fuzzy subset f' is called an R-fuzzy prime subset of R if for any fuzzy subsets v, w 

of R 

<vw>:::;<f'> implies either <v>:::;<f'> or <w>:::;<f'>. 

Proposition 3.2.2. 

A fuzzy subset f' is an R-fuzzy prime subset if and only if < f' > is a fuzzy prime 

ideal. 

Proof. 

For the necessary part, let v, w be fuzzy ideals such that vw :::; < f' > . It follows that 

< vw > :::; < f' > . Hence by the definition either v =< v > :::; < f' > or 

w =< w > :::; < f' > . Thus < f' > is a fuzzy prime ideal. To prove the sufficient part, 

let v,w be fuzzy subsets of R such that < vw >:::;< f' > . By Proposition[2.3.12(2)] 

< v >< w > :::; < f' > So either < v > :::; < f' > or < w > :::; < f' > . Thus the result 
follows. 

o 

The following example illustrates the fact that R-fuzzy prime subset f' can have 

more than two values but the fuzzy prime ideal generated by f' takes two values. 

Example 3.2.3. 

Define f' : Zs --+ I by 

f'(0) = 0.5, f'(I) = 0.4,f'(2) = 1,f'(3) = 0.7,f'(4) = f'(5) = 0.3 and f'(6) = f'(7) = 0 

then 

< f' > (0) =< f' > (2) =< f' > (4) =< f' > (6) = 1 

and < f' > (1) =< f' > (3) =< f' > (5) =< f' > (7) = 0.7. 

Hence < f' >0= {O, 2, 4, 6} is a prime ideal of Zs and Im( < f' » = {I, 0.7}. So < f' > 

is a fuzzy prime ideal, and hence f' is Zs-fuzzy prime subset. 
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Proposition 3.2.4. 

(1 ) 

(2) 

(3) 

Let x E R . Then x iJ a prime element if and only if X{.} iJ a~ R- fuzzy prime 

subset of R, 

If p. is an R-fuzzy prime subset of R, then supp.(x) = 1, 
.eR 

Every fuzzy JubJet p. of R with supp.(x) = 1 and < p. > non-conJtant is an 
.eR 

R-fuzzy prime JubJet if and only if R is a field. 

(1) ,(2) are straightforward and (3)is an immediate consequence ofProposition[3.1.6] 
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§ 3.3 Fuzzy radicals. 

In this section, we deal with two different kinds of radicals known as nil radicals 
and prime radical. For a fuzzy ideal J.l, we prove equivalent characterisations of fuzzy 

radicals ...(ii in terms of fuzzy points, fuzzy ideals and values of J.l(x n). Secondly we 

show if J.l is a fuzzy ideal then so is ...(ii. Further we prove some fuzzy analogues of 
well-known results in the crisp case. The effect of homomorphisms on fuzzy radicals 

is also discussed in this section. 

Definition 3.3.1. 

Let J.l be a fuzzy ideal of R. The fuzzy nil radical , denoted by ...(ii is defined as 

...(ii(x) = sup{t E Im(J.l) : x E ...(ii.t}. 

In the following Proposition we give other characterizations of a fuzzy nil radical. 

Theorem 3.3.2. 

Let J.l be a fuzzy ideal of R then 

...(ii(x) = sup{J.l(xn
) : n > O} 

= sup{t: t E [0, 1],3n E N such that J.l(x n) 2: t} 

= sup{rt : r E R, t E [0,1], 3n EN such that Crtt ::; J.l} 

= sup{ v : v is fuzzy ideal of R ,3n E N such that vn ::; J.l}. 

Proof. 

For x E R, let vex) = sup{J.l(xn
) : n > O} and ...(ii(x) = s. If for some n E N, 

r = JL( xn) > s, then x E $, which implies ...(ii( x) = sup{ t E I m(J.l) : x E ...(iit} 2: r, 
i.e. s 2: r . This is a contradiction and hence for all n EN J.l(xn)::; s. Thus for all 

x E R v(x)::; ...(ii(x). Now suppose vex) < JiI(x). Since (JiI)(x) = sup{t E Im(J.l): 
x E ...(iit}' there exists m E Im(J.l) such that x E JiIm and vex) < m ::; (...(ii)(x). 
Hence there exists an integer nj such that J.l(x n1 ) 2: m. So vex) 2: J.l(x n1 ) 2: m, which 

is a contradiction. Thus v( x) = JiI( x) for all x E R. The second characterization is 

an immediate consequence of the definition. 

For the third, let rt E 'D = {rt : t E [0,1], 3n E N such that (rtt ::; J.l}. Then 

J.l(rn) 2: t since (rt)n = (rn)t, implying JiI(r) = sup{J.l(rn
): n > O} 2: J.l(rn) 2: t . So 

rt E ...(ii, and hence sup'D ::; ...(ii. On the other hand, let x E R then 

...(ii(x) = sup{J.l(x n
) : n > O} 

= sup{XI'(xn)(X): n > O} 

::; sup{rt(x): r E R,t E [0, 1], 3n E N such that Crtt::; J.l} 

= sup'D(x). 

52 



Hence ..[ii ~ SUp 'D. 
For the last part, let £ = {II : v is a fuzzy ideal of R ,3n E f\I such that lin ~ Jl}. 
Then it is is easy to check that..[ii = sup'D ~ sup£. Let v E £ then vex) ~ IIn(Xn) ~ 
Jl(x n) ~ ..[ii(X). SO v ~..[ii. Hence sup £ ~..[ii. Thus the result follows. 

o 

Remark. 
(..[ii)(x) = sup{Jl(xn) : n > O} is the definition of a radical according to [Bho 1,7.1]. 

Proposition 3.3.3. 

If jJ is a fuzzy ideal of R, then so is ..[ii. 

Proof· 

Let x,y E R then 

(..[ii)(x + y) = sup{jJ((x + y)n): n > O} 

= sup{jJ((x + yr): n > O} V sup{Jl((x + y)2n+l): n > O} 

We now consider 

jJ((x + y )2n) = jJ(~~,!!o ern) X2n- r yr) 

_ ((271) 2n (271) 2n-1 1 (211) n n (271) n-1 ,,+1 (271) 2") -jJ x + x y + ... + x y + x y + ... + y o I 11 71 + 1 271 

~ Jl(X n) /I Jl(yn). 

Similarly we can show that jJ((x + y)2n+l) ~ jJ(xn) /I jJ(yn) . Hence 

(..[ii)(x + y) ~ sup{jJ(xn) /I jJ(yn): n > O} 

= sup{jJ(xn) : n > O} /I sup{Jl(yn) : n > O} 

= (..[ii)( x) /I (..[ii)(y). 

Since Jl(x) = jJ(-x), jJ(xn) = jJ((-xt) for all n > 0, it follows that (..[ii)(-x) = 

sup{Jl((-x)n) : n > O} = sup{Jl(xn) : n > O} = (..[ii)(x). Furthermore 

(..[ii)(xy) = sup{jJ((xyt): n > O} 

~ sup{jJ(xn) : n > O} 

= (..[ii)(x) . 
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Similarly, (,fii)(xy) ~ (,fii)(y). So (,fii)(xy) ~ (,fii)(x) V (,fii)(y), hence the result 

follows. 

Proposition 3.3.4. 

Let Ji be a fuzzy ideal of Rand t E (0, 1]. Then 

(1) ,fiit <;;; (,fii)t, equality holdJ if Ji haJ the Jup-property, 
(2) ,fiit = (,fii)t, where Jit = {x E R: Ji(x) > t}. 

Proof. 

o 

(1) Let x E ,fiit; then for some no > 0, xno E Jit. Hence Ji(x no ) ~ t . But 

(,fii)(x) = sup{Ji(xn) : n > O} ~ Ji(x no ) ~ t, which implies x E (,fii)t. So 

,fiit <;;; (,fii)t. We now suppose that Ji the has sup-property. Let x E (,fii)t, 
then (,fii)(x) = sup{JL(xn) : n > O} ~ t. It follows by the sup-property, for 

some no> 0, JL(x no ) ~ t, and hence x E 0JLt). Thus (,fii)t = 0Jit) . 
(2) By the same argument as in (1), we can show ,fiit <;;; (,fii)t. To show the 

converse part, let x E (,fii)t. Then (,fii)(x) = sup{JL(x n) : n > O} > t. If for 

all n > 0, Ji(xn):s t, then sup{JL(xn) : n > O} :S t, which is not true. So for 

some no> 0, Ji(x no ) > t and hence x E ,fiit . 

o 

The following example illustrates that the level subsets (,fii)t and ,fiit may not 

be identical in general. 

Example 3.3.5. 

Let JL : Z --t I be a fuzzy ideal by 

1 if x = 0 

Ji(x)=fn/(n+1) if XE<pn>"<pn+l> 

1 0 if x ~< p > 
where p is a prime number. 

Since for all n > 0, pn E< pn > " < pn+l >, JL(pn) = n/(n + 1) for all n = 
1,2,3, .... Hence (,fii)(p) = sup{JL(pn): n > O} = sup{n/(n + 1) : n > O} = 1. So 

P E (,fiik But for all n = 1,2, ... JL(pn) = n/(n + 1) < 1, which implies pn ~ Jil 

for all n > O. Therefore p ~ ,fiil' Thus (,fii)l =I ,fiil' 

Proposition 3.3.6. 

If JL iJ a fuzzy prime ideal of R, then ,fii = JL . 

Proof. 
By Proposition[3.1.9] Vx E R JL(xn) = JL(x) for all n > 0, and hence by Proposi­

tion[3.3.2j ,,fii(x) = sup{Ji(xn
) : n > O} = Ji(x) . 
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o 

In the following section we define a fuzzy prime radical and prove the relation 

between fuzzy nil and prime radicals . 

Definition 3.3.7. 
Let fL be a fuzzy ideal of Rand P be the set of all fuzzy prime ideals of R containing 

fL. Then the fuzzy prime radical r(fL) of R is defined by 

r(fL) = /\{v: v E Pl. 

Proposition 3.3.8[Mal 2, 3.5]. 

Let fL be a fuzzy ideal of R,. then in general ..fii ::; r(fL)· 

Proof. 

Let v be a fuzzy prime ideal of R such that fL ::; v. Then ..fii ::; y'Ji = v. Hence 

..fii::; r(fL)· 

The following example shows that ..fii =f r(fL) in general. 

Example 3.3.9. 

Define a fuzzy ideal fL : Z --t I by 

{ 
1/2 

fLeX) = 0 
if x = 0 

if x =f 0 

o 

Then (..fii)(0) = SUp{fL(on) : n > O} = 1/2 and (..fii)(x) = 0 for all x =f O. Since 

v(O) = 1 for all fuzzy prime ideals of R, r(fL )(0) = 1\ {v(O) : v E P} = I, and hence 

(..fii) =f r(fL) 

Theorem 3.3.10. 

Let fL be a fuzzy ideal with fL(O) = 1. Then ..fii = r(fL) · 

Proof. 

By Proposition[3.3.8j ..fii ::; T(fL)· To prove the converse, suppose ..fii < T(fL). Then 

there exists a in R such that ..fii(a) < r(fL)(a). Let ..fii(a) = t, then a ¢= (..fii)t. By 
Proposition[3.3.4j a I/. ..fiit. Since ..fiit = n{p : P is a prime ideal of R ,fLt <;;; P}, 
there exists a prime ideal P of R such that fL t <;;; P and a ¢= P. Define a fuzzy prime 

ideal v : R --t I by 

vex) = { : 
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Then only the following two cases arise. 

Case 1. x E P. Then J.L(x) ::; vex). 

Case 2. x rt P. Then x rt J.L t
, hence J.L(x) ::; t = vex). In either case J.L ::; v. By the 

definition of a fuzzy prime radical of J.L, r(J.L)::; v. So fo( a) < r(J.L)( a) ::; v( a) = t = 
fo( a) which is a contradiction. Hence the result follows. 

o 

Remark. 

In the above Proposition, if J.LCO) -I 1 then fot may not be an ideal of R. This 

observation was overlooked in [Mal 9]; in particular Theorem[3.10] of [Mal 9]is not 

true as it stands. And also in [Mal 9, 3.9] Malik and Mordeson proved fo = r(J.L) 
provided J.L has the sup-property. But we prove the same without the sup-property. 

The following Proposition can be proved easily. 

Proposition 3.3.11. 

Let J.L be a fuzzy ideal of R with the sup-property. Then Im(fo) ~ Im(J.L). 

Example 3.3.12. 

In general, I m( fo) need not be a subset of I m(J.L) if J.L does not have the sup-property. 

Define a fuzzy ideal J.L : Z --+ I by 

J.L(x) = f 0~/4 - (1/2t i:f : :: 2n > " < 2n +1 > for all n = 1,2, ... 

1 if x ~ < 2 >. 
Then 
fo(2) = sup{J.L(2n

) : n > O)} 

= sup{3/4 - (1/2t : n > O} 

= 3/4. 

since2n E<2n >-<2n +1 > for all n=I,2, ... 

So 3/4 E Im(fo), but J.L(x) -13/4 for all x E Z hence 3/4 rt Im(J.L). 

The following example illustrates that even if J.L has sup-property in general I m( fo) S; 
Im(J.L ). 

Example 3 .3.13. 

Define a fuzzy ideal J.L : Zs --+ I by 

J.L(O) = 1,J.L(2) = J.L(6) = 0.7,J.L(4) = 0.9 and J.L(1) = J.L(3) = J.L(5) = J.L(7) = 0.5. 

Then Im(J.L) = {1,0.9,0.7,0.5} and J.L has the sup-property. We have fo(O) -
fo(2) = y1i( 4) = y1i(6) = 1 since 23 = 42 = 63 = 0 and fo(l) = fo(3) -
fo(5) = y1i(7) = 0.5. Hence Im(fo) = {1,0.5} S; Im(J.L), i.e. Im(fo) need not be 
equal to I m(J.L) even if J.L has the sup-property. 
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Proposition 3.3.14. 

Let J.l be an ideal of R, then X.Jj = ,;xl. 

The above Proposition is straightforward. 

Proposition 3.3.15[Mal 3, 4.5]. 

Let J.l, II be fuzzy idealJ of R then 

(1) ,fiL(0) = J.l(0), 

(2) J.l::;,fiL, 
(3) 0.,fiL) = ,fiL, 
(4) If J.l ::; II, then ,fiL::; yIv, 

(5) 0.J.l II II ) = ,fiL II yIv, 
(6) If J.l(0) = 11(0) = 1, then 0.J.l 0 II) = ,fiL lIyIv, 

(7) If Im(J.l) = {I, t}, t~en fm(,fiL) = {I, t}, 

(8) If J.l iJ conJtant, then ,fiL iJ conJtant, 

(9) If lin ::; J.l , then II ::; ,fiL, fOT all n E N. 

Proof· 

(1),(2),(4), (8) and (9) are straightforward. 

(3) Let x E R then 

(0.Vil))(x) = sup{(VJl)(xn): n > O} 

(5) Let x E R then 

= sup{sup{J.l((xn)m): m > O} : n > O} 

= sup{J.l(xmn ) : m > 0, n > O} 

= sup{J.l(x k
) : k > O} 

= (Vil)(x) for all x E R. 

0.J.lII II)(X) = sUp{(J.lIIII)(Xn) : n > O} 

= sup{J.l(xn) 1\ II(Xn) : n > O} 

= sup{J.l(xn
) : n > O} II SUp{II(Xn) : n > O} 

= (Vil)(x) II (yIv)(x) - (Villlylv)(x). 

(6) Since J.l 0 II ::; J.l II II, 0.J.l 0 II) ::; 0.J.l II II ) = ,fiL II yIv. Let w be a fuzzy prime 

ideal of R such that J.l 0 II ::; w. Then ei ther J.l ::; w or II ::; w, and hence J.lIIII ::; w. So 

0.J.l II II) ::; 0.J.l 0 II) thus 0.J.l 0 II) = 0.J.l II II) . Hence one can easily see that for 

each n E N, ..j(J.ln) = ,fiL. 

(7) Let x E R. If x E ,fiLa, then xn E J.lo for some n E N. So J.l(x n) = 1, hence 

(Vil)(x) 2: J.l(x n) = 1 from which follows (Vil)(x) = 1. If x f/. Vila, then for all 
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n> 0, x" if- J-Lo. So J-L(x") = t for all n > 0, and hence (fo)(x) = sup{J-L(x") : n > 
D} = t. Thus Im(fo) = {I,t}. 

o 

The converse of part (8) in the above Proposition is not true. The example follows: 

Example 3.3.16. 

Let R be the ring ( {O, 2, 4, 6}, +8,08) and define a fuzzy ideal J-L : R --+ I by 

J.L(D) = 1, J-L(2) = J-L( 4) = J-L(6) = 0.9. 

Then 

fo(D) = y/7(2) = fo( 4) = y/7(6) = l. 

Hence Im(fo) = {I} and ~m(J-L) = {I,D.9}. 

Effects of homomorphism on fuzzy radicals are stated and studied in the following 

Propositions. 

Proposition 3.3.17. 
If f: R --+ R' iJ an epimorphiJm and J-L iJ a fuzzy ideal of R, then f(fo) S; ';(f(J-L)). 
Further, if J.L iJ f-invariant then f(fo) = ';(f(J.L)). 

Proof. 
Let Y E R'j then f-l(y) is a non-empty subset since f is an epimorphism. We now 

consider 
f(vfl)(y) = sup{y/7(x) : x E rl(y)} 

= sup{sup{J-L(x") : n > D} : x E rl(y)} 

= sup{sup{J-L(x") : x E rl(y)} : n > O} 

S; sup{sup{J-L(x") : x" E rl(y")} : n > D} 

S; sup{sup{J-L(z) : Z E rl(y")} : n > O} 

= sup{J(J.L)(Y") : n > O} 

= ';(f(J.L))(Y) . 

Hence f(fo) S; yTJ(J-L)) . 
Since f-l(y) is non-empty, there exists Xo in f-l(y) . Let x E f - l(yn) then f(x~) = 
f(x) which implies J-L(x~) = J.L(x) i.e. for all x E f-I(yn), J.L(x) = J-L(x(j). If x E 

f-I(y), then f(x n) = f(x(j). Hence J.L(x n) = Ji(xo). Thus we have 

0.f(J-L))(y) = sup{f(J-L)(yn) : n > O} 

= sup{sup{J-L(x) : x E rl(yn)} : n > D} 

= sup{J-L(x(j) : n > O} 

= y/7(xo) 
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and 
f(..fii)(y) = sup{..fii(x): x E rl(y)} 

hence f(..fii) = y'(f(J.l)). 

= SUp{SUp{J.l(Xn) : n > O} : x E rl(y)} 

= SUp{SUp{J.l(Xn) : x E rl(y)} : n > O} 

= SUp{J.l(X~) : n > O} 

= ..fii(XO) 

o 

The last part of the above Proposition also holds if J.l is constant on Kerf instead 

of J.l f-invariant. 

Proposition 3.3.18. 

If f : R --> R' is a homomorphism and J.l' is a fuzzy ideal of R', then f- I (,fji) = 

y'(f-1(J.l ' )). 

Proof. 

Let x E R then 

rl(,fji)(x) = ,fji(f(x)) 

= sup{J.l'((f(x))n) : n > O} 

= sup{rl(J.l' )(xn) : n > O} 

= y'(rl(J.l'))(x) for all x E R. 

§ 3.4 Fuzzy semiprime ideals. 

o 

In [Dix 2],[Kum 2], [Bho 2J and [Zah 1J the concept of fuzzy semi prime ideals 

was introduced and studied. We prove the equivalence of different definitions for a 

fuzzy semi prime ideal and some relations between fuzzy semi prime, prime and radical. 

Finally we end this section by considering the effect of a homomorphism on fuzzy 

semiprime ideals. 

Theorem 3.4.1. 

The following are equivalent for a fuzzy ideal J.l of R. 

(1) For any fuzzy ideal v of R, v n ::; J.l implies v ::; J.l, where n E !Ii, 

(2) For any fuzzy ideal v of R, v2
::; J.l implies v ::; J.l, 

(3) VxER,nE!Ii, J.l(xn)=J.l(x), 
(4) "Ix E R, J.l(x2) = J.l(x). 
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Proof. 

(1) ~(2) is obvious. 

(2)~(1) 

The Proof is by induction and the result is true for n = 2. Suppose it is true for 
n = k. Let Vk+l :<=::: fl. If k is odd, then vk+l = V(k+l)/2 v (k+ 1)/2 :<=::: fl . Since vk+1/2 

is a fuzzy ideal, Vk+ 1/2 
:<=::: /' and hence v :<=::: /' by our supposition. If k is even, then 

vk+2 ~ vk+l :<=::: /', i .e.v(k+2)/2 v (k+2)/2:<=::: /', so Vk+ 2/ 2 :<=::: /' and hence v ~ fl. 

(3)~( 4) Straightforward. 

(4)~(3) 

Suppose /,(xk) = /'(x) . If k is an odd integer, then /,(x k+ 1) = /,(xk+l/2 Xk+l/2) and 

(k + 1)/2 < k. So /,(xk+l) = /,(x k+ 1/2) = /'(x) . If k is even then k + 1 is odd. By the 
above /,(xk+2) = /'(x) :::: /,(Xk+l) :::: /'(x), hence /,(X k+ 1) = /'(x) . Thus the result is 

true for n = k + 1. 

(2) ~ (4) 
Let x E Rand /,(x2) = t , then x 2 E /'" Since /', is an ideal, < x 2 >~ /',. We define a 
fuzzy ideal v of R by 

v(r)={~ if r E< x > 
otherwise. 

Then if r r/:.< x 2 > for all 7' = rlr2 , either rl r/:.< x > or r2 r/:.< x > . So v 2(r) = 
sup v(rl) /\ v(r2) = 0 and if r E< x2 >, then there exists S E R such that r = sx2 = 

r = rl r2 

S.sx and sx,x E< x> . So 1/2(r) = t and hence 1/2 
:<=::: fl. By hypothesis I/:<=::: /', which 

implies that t = I/(x) ~ /'(x) ~ /,(x2) = t . Thus /,(x2) = /'(x) . 

(4) ~(2) 
Let 1/ be a fuzzy ideal of R such that 1/2 

:<=::: /' , then I/(x) :<=::: 1/
2(X2) :<=::: /,(x2) = /'(x) by 

Remark 2 after Proposition[2.2.3J. 

o 

In the above Proposition, conditions (1), (2) and (4) were given as the definition 
for a fuzzy semiprime ideal by the authors Dixit et al.[Dix 2J, M.M.Zahedi[Zah 1J and 

H.V.Kumbhojkar and M.S.Bapat[Bho 2J respectively. 

Definition 3.4.2. 

We say that a fuzzy ideal /' of R is fuzzy semiprime if /' satisfies any of the four 
conditions in Theorem[3.4.1 J. 

Proposition 3.4.3. 

A fuzzy ideal/, of R is semiprime if and only if each of its level subsets is a semiprime 

ideal of R. 
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Proof. 

(<= ) Let x E Rand fL(X 2
) = t. Then x 2 E fLt hence x E fLt since fLt is a semiprime 

ideal of R. It follows that fL( x) ;::: t = fL( x2
) ;::: fL( x) and hence fL( x 2 ) = fL( x) . 

o 

Corollary 3.4.4. 

An ideal J of R is semiprime if and only if XJ is a fuzzy Jemiprime ideal of R. 

It is easy to see that every fuzzy prime ideal is fuzzy semi prime, but the converse 

is not true. The same example as in the crisp case will fit in the fuzzy situation. 

Proposition 3.4.5. 

Let fL be a fuzzy ideal of R, then 

(1) fL is fuzzy semiprime if and only if .jji = fL , 

(2) .jji is a fuzzy semiprime ideal, 

(3) The intersection of fuzzy Jemiprime ideals is fuzzy semiprime , 

(4) If fL is fuzzy semiprime and fL(O) = 1, then fL is the intersection of fuzzy prime 

ideals of R. 

Proof. 

(1) If fL is a fuzzy semiprime, then by Theorem[3.4.1], for alln E N fL(X n ) = flex). 

By Theorem[3.3.2], .jji = fl . Conversely suppose that .jji = fl. Then .jji(x) = 

SUp{fL(Xn
): n > O} ;::: fL(X n );::: flex) = (.jji)(x) for all n E N, from which follows that 

for all n E N, fL(X n ) = fleX) . Thus fL is fuzzy semiprime. 

(2) is straightforward from (3) of Proposition[3.3.15]. 

(3) and (4) are also straightforward. 

Proposition 3.4.6. 

o 

Let f : R --> R' be an epimorphism and fL be a fuzzy semiprime ideal such that fL is 

constant on Kerf. Then f(fL) is a fuzzy Jemiprime ideal of R' . 

Proof· 
Let y E R', then there exists x E R such that f(x) = y. Hence we have 

sup fL(Xo) 
J(xo)=J(x 2 ) 

= fL(X 2
) 

=fL(x) 

= f(fL)(f(X» 

since fL is constant on Kerf 

since fL is constant on Kerf 
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o 

Proposition 3.4.7. 

Let f : R --t R' be a homomorphism and 1-" be a semiprime fuzzy iaeal of R'. Then 

f- 1(I-") is a fuzzy semiprime ideal of R. 

The proof is straightforward. 

We recall that a ring R is regular if for every x E R there exists an element r E R 

such that x = xrx. 

Proposition 3.4.8. 

A ring R is regular if and only if every fuzzy ideal of R is semiprime. 

Proof. 

(=» Let v be a fuzzy ideal of R such that v 2 ::; 1-'. Then by Proposition[2.4.16], v 2 = v 

and hence v ::; j.t. 

(~) Let x E R, then (X<z»2 = X<z», since X<Z2> is a fuzzy semiprime X<z> ::; 
X<Z2>. But we have X<Z2> ::; X<z> . So X<z2> = X<z>, hence x E< x 2 >, which 
implies there exists r E R such that x = rx2 = xrx . Thus R is regular. 

o 
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CHAPTER IV 

FUZZY PRIMARY, SEMIPRIMARY AND MAXIMAL IDEALS 

§ 4.1 Fuzzy primary ideals. 

In the crisp case, primary ideal is a generalization of prime ideal. We fuzzify the 

same idea here. Series of Propositions describe different relationship between fuzzy 

prime and fuzzy primary. Also fuzzy primary ideals have been dealt with in terms of 

fuzzy points and level subsets. Several examples have been provided where certain 

converse implications are not true. Definitions of fuzzy primary ideals given by other 

authors [Zah 1], [Bho 1] have been stated and we proved their equivalences. 

Definition 4.1.1[Kum 1, 4.1]. 

A fuzzy ideal p of R is called fuzzy primary if for any fuzzy ideals v, w of R 

vw :-:; p implies either v :-:; p or w :-:; JIi. 

Remark 1. 
The above Definition can also be stated as follows 

vw :-:; p implies either w :-:; p or v :-:; JIi since vw = wv in a commutative ring. 

Remark 2. 
Let a E Rand p be a fuzzy ideal of R such that p(l) < pea) then JIi(l) < /-I(a) . 

Let p(l) < /-I(a) for some a E R then by Theorem[3.3.2] JIi(l) = sup{p(ln) : n > 
O} = /-1(1) < pea). 

Theorem 4.1.2. 

If /-I is a non-constant fuzzy primary ideal of R then Im(p) = {I, t} for some t E [0,1) 
and J.to is a primary ideal of R. 

Proof. 

First let us show /-1(0) = 1. Suppose p(O) = n < 1, JIi(l) = sand p(l) = m then by 

the Remark 2, m :-:; s < n < 1. Let u be a number in (0,1] such that n < u :-:; 1. We 

now define fuzzy ideals v, w : R --> I by 

and 

vex) = {: 
if x E po 

otherwise 

w(x)=n forallxER. 
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If x E p'o, then vw(x) ::; w(x) = n = p.(x) and if x if- p'o then vw(x) ::; vex) A 
w(x) = mAn = m = p.(I) ::; p.(x). Hence vw ~ p. but v(O) = u > n = p.(0) and 
w(l) = n > s = fo(I). It follows that vip. and w i fo which is a contradiction to 

the fact that p. is fuzzy primary. Thus p.(0) = 1. Since p. is non-constant IIm(p.)1 2: 2. 
Suppose IIm(p.)1 2: 3 then there exists x E R such that p.(x) = I and m < I < 1. By 

the Remark 2, s < I. We define fuzzy ideals Vj,Wj : R ---> I by 

if r E P.' 

otherwise 

and 
Wj(x) = I for all x E R. 

Then it is easy to check that VjWj ~ p.. But Vj(x) = 1 > I = p.(x) and wj(l) = 

I> s = ..,IiI(I), hence Vj i 'p. and Wj i fo. This is a contradiction. Thus for some 

t E [0,1), Im(p.) = {I, t}. To show P.o is primary, let A, B be ideals of R such that 

AB ~ p.o. Then we can easily see that XAXB ::; p., which implies either XA ::; P. or 

XB ::; ..,IiI, and hence either A ~ p'o or B ~ (..,IiI)o = ..,IiIo ' Thus the result follows. 
o 

Corollary 4.1.3. 

If p. iJ a fuzzy primary ideal of R, then all of itJ level JubutJ are primary idealJ of R. 

Proof. 

Let x, y E R, t E [0,1] and xy E p.t. Then X~%>X~y> ::; p.. Since p. is a fuzzy primary 

ideal, either X~%> ::; P. or X~y> ::; fo. Where 

if Y E< x > 
if y if-< x > . 

Hence either x E p.t or Y E (..,IiI)t = V(p.)t by Proposition[3.3.4]. So either x E p.t or 

yn E p.t for some n E N. 

o 

The following example illustrates that the converse of the above Corollary is not 

true. 

Example 4.1.4. 

Define fuzzy ideals p., v, w : Z ---> I by 

{ 

3/4 

p.(x) = ~/2 

if x E< 4 > 
if x E< 2 > '- < 4 > 

otherwise, 
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and 

Then 

v(X) = { ~ 

W(X) = 3/4 

{ 

3/4 
vi\w(x)= 0 

So vw ~ v i\ W ~ J1.. But we have 

{ 
3/4 

,fit(x) = 0 

if x E< 4 > 
otherwise, 

for all x E Z. 

if x E< 4 > 

otherwise. 

if x E< 2 > 

otherwise. 

Hence v(O) = 1 > J1.(0) and w(l) = 3/4 > ,fit(1) = 0 i.e.v 10 J1. and wi ,fit, thus J1. 
is not fuzzy primary but all level subsets < 4 >, < 2 > are primary ideals of Z. 

Theorem 4.1.5. 

If J1. iJ a fuzzy ideal of R Juch that Im(J1.) = {l,t} for some t E [0,1) and J1.o IS a 
primary ideal of R, then J1. is fuzzy primary ideal of R. 

Proof. 
Let v, W be any fuzzy ideals of R such that vw ~ J1.. Suppose v 10 J1. and W 10 ,fit; then 

there exist x,y E R such that v(x) > J1.(x) and w(y) > ,fit(y). Hence J1.(x) oj 1 

and ,fit(y) oj 1, so J1.(x) = ,fit(y) = t,v(x) > t and w(y) > t . It follows that 

vw(xy) ?: v(x) 1\ w(y) > t. Since x if- J1.o, Y if- ,fito and Po is primary ideal, xy if- po, 

hence p(xy) = t < vw(xy) which is a contradiction. Thus the result follows. 

o 

Corollary 4.1.6. 

An ideal J of R iJ primary if and only if XJ is fuzzy primary. 

Remark. 
The intersection of fuzzy primary ideals needs not be a fuzzy primary ideal. The same 

example in the crisp case will site in fuzzy setting as well. 

We now turn our attention to the relationship between fuzzy prime and fuzzy 

primary ideals of R. 

Proposition 4.1.7. 

If p is fuzzy primary, then ,fit is fuzzy prime. 

Proof. 

Since p is fuzzy primary, by Theoreem[4.1.2]' Im(p) - {I, t} for some t E [0,1) 
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and j10 is a primary ideal of R. Then by Proposition[3.3.15(7)] and Proposition[3.3.4] 

Im(..fii) = {l,t} and (..fii)o = ..fiio is a prime ideal of R . Hence by Theorem[3.1.3], 
..fii is a fuzzy prime ideal of R. 

o 

We give an example here to show that the converse of the above Proposition is not 

true. 

Example 4.1.8. 

Define a fuzzy ideal j1 : Z --+ I by 

j1(x) = f ~/2 
11/3 

if x E< 4 > 

if x E< 2 > " < 4 > 
otherwise. 

Let x E R. If x E< 2 >, then xn E< 4 > for some n > 0, so j1(xn) = 1 and hence 

..fii(x) = sup{j1(xn) : n > O} = 1. If x rf-< 2 >, then xn rf-< 2 > for all n > 0 and 

hence ..fii(x) = 1/3. It follows that Im(..fii) = {I, 1/3} and (..fii)o =< 2 > is a prime 
ideal of Z. By Theorem[3.1.3]' ..fii is a fuzzy prime ideal and it is easy to see that j1 

is not a fuzzy primary ideal. 

Proposition 4.1.9. 

If j1 is a fuzzy primary ideal, then the quotient ring R/ j1 has the property that every 

zero divisor in R/ j1 is nilpotent. 

Proof. 

Since j1 is a fuzzy primary ideal, j10 is a primary ideal of R. So every zero divisor in 

R/ j10 is nilpotent. By Corollary[2.4.9], R/ j10 ~ R/ j1. Thus the result follows. 

o 

The example[4.1.8] shows that the converse of the above Proposition is not true in 

general. 

If J is a prime ideal, then In, n > 1 need not be a primary ideal in the crisp case. 

So one cannot expect that if j1 is a fuzzy prime ideal then j1 n, n > 1 is a fuzzy primary 

ideal. But it is true under a certain condition. 

Proposition 4.1.10. 

Let j1 be a fuzzy prime ideal of R then j1n, n ~ 1 is fuzzy primary if and only if (j1n)o 

is a primary ideal of R. 

Proof. 

Suppose j1 is fuzzy prime, then Im(j1) = {I, t} for some t E [0,1). We have 

j1n(O) = sup i\f i\~I-'(Xjk) ~ 1-'(0) = 1 
0=:£:=1 Xu Xk2 " ' X'=o 
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hence J.!n(o) = 1. Since for each j, k either J.!(xjd = 1 or t, J.!n(x) is either 1 or 

t. i.e. Im(J.!n) = {1, t} and also by hypothesis (J.!n)o is a primary ideal. So by, 

Theorem[4.1.5] J.! n is fuzzy primary. 

o 

We now turn to the equivalence of different definitions for a fuzzy primary ideal of 

R. 

Proposition 4.1.11. 

Let J.! be a non-constant fuzzy ideal of R then 

(1) J.! is fuzzy primary if and only if for any fuzzy points Xr, y. of R, xrY. E J.! 

implies either Xr E J.! or y~ E J.! for some n :2: 1, 

(2) If J.! is fuzzy primary, then for each x,y E Reither J.!(xy) = J.!(x) or J.!(xy) = 

J.!(yn) for some n :2: ~, 
(3) If J.! is fuzzy primary then for each x, y E R, J.!(xy) = J.!(O) implies either 

J.!(x) = J.!(O) or J.!(yn) = J.!(O) for some n:2: 1. 

Proof. 

(1) Let Xc, y. be any fuzzy points of R such that xrY. E J.I . Then either Xr E J.! or 

y. E Vfi. Since J.! is fuzzy primary, Im(J.!) = {1, t} for some t E [0, 1); hence 

by Proposition[3.3.15,7] 

Vfi(X) = e if X E Vfio 

otherwise. 

If y E Vfio' then yn E J.!o for some n :2: 1. So J.!(yn) = 1 > s and hence y~ E J.!. 

If y ~ Vfio then y ~ J.!o so J.!(Y) = Vfi(y) :2: s, hence y. E J.!. Thus either 
Xr E J.! or y~ E J.! for some n :2: 1. Conversely suppose for any fuzzy points 

Xr, y. xrY. E J.! implies either Xr E J.! or y~ E J.! for some n :2: 1. It is enough 
to show that I m(J.!) = {1, t} for some t E [0, 1) and J.!o is a primary ideal of 

R. Suppose J.!(O) < 1. Since J.! is non-constant there exists x E R - {O} such 

that J.!(x) < J.!(O) < 1. It follows that XI'(O)OI = 01'(0) E J.!, but xl'(O) ~ J.! and 
01 = 01 ~ J.! for all n E N. This is a contradiction to the supposition. To prove 

Im(J.!) = {l, t}, we have seen in the Remark 2 (e) after Proposition[2.2.3] 

that J.!(1) ::; J.!(x) for all x E R. Let t = J.!(x) of J.!(O) = 1 i .eAx) < J.I(O). 

Then x I11'(z) = xl'(z) E J.!. Hence either XI E J.! or l~(z) = 11'(z) E J.! for 
some n :2: 1. Since J.!(x) < 1, ll'(z) E J.!, i.e. J.!(x) ::; J.!(1) and hence J.!(x) = 
J.!(1), so Im(J.!) = {1, t} for some t E [0, t). The fact that J.!o is primary is 

straightforward. 

(2) Suppose J.! is fuzzy primary and let x, y E R . If xy E J.!o then either X E J.!o 

or yn E J.!o for some n :2: 1 since J.!o is a primary ideal of R, and hence 
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either !"(xy) = !"(x) or I-'(y"). If xy if. 1-'0 then I-'(xy) = t ~ I-'(x) A I-'(y) since 
Im(l-') = {I, t} for some t E [0 , 1), which implies either I-'(x) = tor I-'(Y) = t 
i.e. either I-'(xy) = I-'(x) or I-'(Y)' 

(3) Follows in a straightforward manner from (2). 

o 

Remark. 

We noted that the conditions (1),(2) were respectively given by Zahedi [Zah 1, 3.1J 

and Kumbhojkar and Bapat[Bho 1, 5.4J as definitions for a fuzzy primary ideal. 

The example in [3.1.lOJ is enough to show that the converse of (2) in Proposi­

tion[4.1.11J is not true. The converse of (3) in Proposition[4.1.11J is also not true in 

general: 

Example 4.1.12. 

Define a fuzzy ideal I-' : Z --+ I by 

*l{a if x = 0 

if x E< 6 > ,{O} 

otherwise. 

It is easy to check that for all x, y E Z if I-'(xy) = 1-'(0) then either I-'(x) = 1-'(0) or 

I-'(Y") = 1-'(0) for some n ~ 1. But 1-'(2.3) = 0.8, 1-'(2) f. 0.8 and 1-'(3") f. 0.8 for all 

n~1. 

The following Proposition leads us to define the notion of fuzzy v-primary ideal. 

Theorem 4.1.13. 
Let 1-', v be non-constant fuzzy ideals of R then I-' is a fuzzy primary ideal and v = fo 
if and only if I-' :::; v :::; fo and if WI, W2 are fuzzy ideals of R such that WIW2 :::; I-' then 

either WI :::; !" or W2 :::; v. 

Proof. 

We prove only the sufficient condition. Let WI ,W2 be fuzzy ideals such that WI W 2 :::; 1-', 

then either WI :::; I-' or W2 :::; v, hence either WI ::; I-' or W2 :::; fo. Thus I-' is a 

fuzzy primary ideal.By Theorem[4.1.2j, Im(l-') = {1, t} for some t E [0,1), hence by 

Proposition[3.3.15,7j, fo(x) = 1 if x E foo and fo(x) = t if x if. foo' Let x E R 
if x if. foo' Then fo( x) = t = 1-'( x) since x if. 1-'0 · Since I-' :::; v :::; fo we have 
fo(x) = v(x). If x E foo' then let n be the least positive integer such that x" E 1-'0. 

If n = 1, then x E Vo since v(O) = fo(O) = 1-'(0) , 1-'0 I:::; Vo· If n > 1 then < x >1:::; foo' 
< X"-I >1= 1-'0 and < x" >1:::; 1-'0 which implies that .:I:'<xn- 1>.:I:'<x> = .:I:'<x n> ::; I-' and 

.:I:'<xn-1> i 1-'. Hence by the supposition .:I:'<x> ::; v, so x E vo, i.e. x E foo implies 

x E Vo. So fo(x) = fo(O) = v(O) = v(x). 
o 
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Proposition 4.1.14. 

If p. = l\aEA Va is an intersection of fuzzy primary ideals, then P.o is an intersection 

of primary ideals, jIm(p.)j $ jAj + 1 and p.(0) = 1. 

Proof. 

Suppose p. = l\aEA Va, where Va are fuzzy primary ideals. Then p'o = l\aEA(va )O, 
and for each 01 E A, (va)o is primary ideal of R . Since VOl E A, jlm(va)j = 2 

and va(O) = 1, we have j{v,,(x) : 01 E A,va(x) # 1,x E R}j $ jAj and hence 

jIm(p.)j $ jAj + 1 and p.(0) = 1. 

o 

Corollary 4.1.15. 

Let J be an ideal of R. If J is an intersection of primary ideals of R then for all 

k E [0,1), AJ. is an intersection of fuzzy primary ideals of R where 

if x E J 

if x rt. J. 

In the following Propositions we look at the effect of a homomorphism on a fuzzy 

primary ideal. 

Proposition 4.1.16. 

Let f : R ---t R' be an epimorphism and p. be an f -invariant fuzzy primary ideal of 

R. Then f(p.) is a fuzzy primary ideal of R'. 

Proof. 

Let v,w be fuzzy ideals of R' such that vw $ f(p.) . Then by Proposition[2.2.1O] 
f-I(V)f-l(w) $ f-I(vw) $ f-I(f(p.)) = p.. Since p. is fuzzy primary, either 

f-I(v) $ p. or f-I(W) $,,(ii. Hence by Proposition[3.3.17], V $ f(p.) orw $ f(,,(ii) = 

.JJ(p. ). 

o 

Proposition 4.1.17. 

Let f : R ---t R' be a homomorphism and p.' be a fuzzy primary ideal of R'. Then 

f-I (p.') is a fuzzy primary ideal of R . 

The proof is similar to the Proof of Proposition[4.1.16]. 

Remark. 

Let f : R ---t R' be an epimorphism, p. be an f-invariant fuzzy ideal and p.' be fuzzy 

ideal of R'. Then by [Proposition[1.2.2] f(f-I(p.')) = p.' and f-I(f(p.)) = P. and hence 

we can come to the following conclusions. 

(1) p.' is fuzzy primary if and only if f-I (p.') is fuzzy primary, 

(2) p. is fuzzy primary if and only if f(p.) is fuzzy primary. 
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Thus there is a one-to-one correspondence between the set of all f-invariant fuzzy 

primary ideals of R and the set of all fuzzy primary ideals of R'. 

§ 4.2 Fuzzy /I-primary ideals. 

If it so happens that for a fuzzy primary ideal J.L, the radical of J.L ,,(ii = /I, then we 

call J.L, a fuzzy /I-primary ideal. If ,,(ii is fuzzy prime then J.L is called fuzzy semi primary. 

This section deals with such cases, Vue [Zah 1] discussed these ideas in 1988. We point 

out some deficiencies in his approach. 

Definition 4.2.1. 

Let J.L, /I be fuzzy ideals of R. We say that J.L is /I-pnmary if J.L is a fuzzy primary 

ideal and /I = ,,(ii. 

We prove the following Proposition for later use in Chapter 5 

Theorem 4.2.2. 

Let J.LI, J.L2,··· J.Ln, /I ,W be fuzzy ideals of R . 

(1) If for each i = 1,2, ... n, J.Li is /I-primary, then so is I\?=I J.Li, 

(2) If the intersection I\?=I J.Li is fuzzy /I-primary and w 10 /I, then I\?=I J.Li : w is 
fuzzy /I-primary. 

Proof· 

(1) By Proposition[2.2.5], I\?=I J.Li is a fuzzy ideal of R . Let /II, /12 be fuzzy ideals 

such that /11/12 :5 I\?=I J.Li; then /11/12 :5 J.Li for all i = 1,2 .. . , n. Since each J.Li 

is fuzzy primary, for each i = 1,2 . .. , n either /II :5 J.Li or /12 :5 ,,(iij' If /II :5 J.Li 

for all i = 1,2 ... n, then /II :5 I\?=I J.Li· If /II 10 J.Lio for some io such that 1 :5 
io :5 n, then /12 :5 ,,(iija' Since A=IJ.Lj = I\~=I ,,(iij = I\?=I /I = /I = ,,(iijo' 

we have /12 :5 A=I J.Li· Thus I\?=I J.Li is fuzzy /I-primary. 

(2) By Proposition[2.2.9], (I\?=I J.Li : w)w :5 I\?=I J.Li :5 /I. Since /I is fuzzy prime 

and w 10 /I, I\?=I J.Li : w ~ /I. By the same Proposition[2.2.9], /I = A=IJ.Li ~ 
J( I\?=I J.Li : w) i.e. I\?=I J.Li : w ~ /I ~ J( I\~=I J.Li : w) . Now, let /II, /12 be 
fuzzy ideals of R such that /11/12 :5 l\i=1 J.Li : w, then /11/12 0 W :5 I\?=I J.Lj. It fol­

lows that /II (/l2W) :5 I\~=I J.Li· Since I\?=I J.Li is /I-primary by Theorem[4.1.13]' 

either /II ~ I\?=I J.Li or /l2W ~ /I. Since /I is fuzzy prime and w 10 /I we have 

/12 :5 /I, i.e. either /II :5 I\?=I J.Li : w or /12 :5 /I. Hence by Theorem[4.1.13]' 

I\
n . . 
i=1 J.Li : w IS /I-pnmary. 

o 
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Proposition 4.2.3. 

Let /1 be v-fuzzy primary ideal of Rand Xn y. r, S E [0,1] be fuzzy points. If xrY, E /1 

and Xr ¢ v, then y. E /1. 

Proof. 

Suppose xrY. E /1, then < Xr >< y. >=< xrY. >~ /1. Since R is a commutative ring, 

we can rewrite this as < Y.Xr >~ /1, and hence either < y. >~ /1 or < Xr >~ ..(ii. 

Since Xr ¢ v =..(ii, < Y. >~ /1 . So Ys E /1. 
o 

According to Yue[Zah 1], a fuzzy ideal /1 is fuzzy prime iffor all x, y E R, /1(xy) = 

/leO) implies either /1( x) = /1(0) or /l(Y) = /1(0); and /1 is fuzzy primary if /1( xy) = /1(0), 

then either /lex) = /1(0) or /1(yn) = /leO) for some n ~ 1. He defined fuzzy v-primary 

ideal in terms of the following Proposition. 

Proposition 4.2.4[Zah 1, 3.1]. 

Let v be a fuzzy ideal of Rand /1 be a fuzzy primary ideal of R such that x E Vo if 
and only if xn E /10 for some n ~ 1. Then 

(1) /1 is a fuzzy prime ideal of R, 

(2) /10 <:::; Vo, 

(3) If /10 <:::; Wo for any fuzzy prime ideal w of R then Vo <:::; woo 

Remark. 

Let /1 be a fuzzy primary ideal of R and v be a fuzzy prime ideal as defined in the 

above Proposition. Then according to Yue[Zah 1] /1 is a fuzzy v-primary ideal of R . 
One can easily check that Definition[4.2.1] implies Yue's Definition but the converse 

implication is not true in general. The following example illustrates this. 

Example 4 .2.5. 

Define the fuzzy ideals /1 , v : :£:6 --t I by 

v(O) = v(2) = v( 4) = 1, v(l) = v(3) = v(5) = O.S. 

Then clearly /1 is fuzzy primary and v is fuzzy prime according to Yue, and also x E Vo 

if and only if xn E /10 for some n ~ 1. But ..(ii f v since ..(ii(0) = 0.9 f v(O) = 1. 

Hence we can conclude that Yue's definition for fuzzy v-primary is a more general 

definition than others but there are not many results developed with this definition 

for further study in primary, primary decomposition, irreducible, etc. 

In this section we define and study the concept of fuzzy semiprimary ideal. Consider 

the following: 
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We proved in Proposition[4.1.7] that if J1. is fuzzy primary then the radical of J1.,..(ii, 

is fuzzy prime and the example[4.1.8] shows that the converse turns out to be false. 

Hence 

Definition 4.2.6. 

Let J1. be a fuzzy ideal of R. We say that J1. is fuzzy semiprimary if..(ii is fuzzy prime 

ideal of R. 

It is clear that every fuzzy primary ideal is fuzzy semi primary and the same example 

[4.1.8] serves as an example to show that the converse not true. 

Proposition 4.2.7. 

Let J be an ideal of Rand k E [0,1], then the fuzzy ideal AJ. is fuzzy semiprimary if 
and only if J is a primary i~eal of R. 

The proof is straightforward. 

Proposition 4.2.8. 

If J1. is a fuzzy semiprimary ideal then all of its level subsets are semiprimary ideal.! 

of R . 

Proof. 
The result is obvious if J1. is a constant fuzzy ideal. Otherwise, since ..(ii is fuzzy prime 

we have Im(..(ii) = {I, t} for some t E [0,1). It follows that there are only two level 

subset ..(iit = Rand ..(iio which are semi primary ideals of R. 

o 

The following example shows that if all level subsets of a fuzzy ideal J1. are semipri­

mary, J1. need not be fuzzy semi primary. 

Example 4.2.9. 

Define a fuzzy ideal J1. : Z --+ I by 

( 

0.9 if x E< 4 > 

J1.( x) = 0.8 if x E < 2 > " < 4 > 
0.7 otherwise 

Then its level subsets < 4 >, < 2 >, Z are all semiprimary ideals of Z but ..(ii is not 

a fuzzy prime ideal since ..(ii(0) # 1 (i.e.) J1. is not fuzzy semiprimary. 

As in the previous Chapter, we now look at the effect of a homomorphism on fuzzy 

semiprimary ideals of R. 

72 



Proposition 4.2.10. 

Let f : R ~ R' be a homomorphism. 

(1) If f is an epimorphism and Jl. a f-invariant fuzzy semiprimary ideal of R then 

f(Jl.) is fuzzy semiprimary ideal of R', 
(2) If Jl.' is a fuzzy semiprimary ideal of R' then f- I (Jl.') is a fu zzy semiprimary 

ideal of R. 

Proof· 

(1) Let VI,V2 be any fuzzy ideals of R such that VlV2 ::; -/1(Jl.) = f(fo) by the 
Proposition[3.3.17j then 

r l (VI)J-I(V2)::; r l (VIV2) by the Proposition[2.2.11j 

::; rl(J(fo» 

= .Jr\f(Jl.» by the Proposition[3.3.18j 

=fo· 

Since fo is fuzzy prime, either f-l(vI) ::; fo or f- I (V2) ::; fo· SO VI ::; 
f(fo) = ..jJ(Jl.) or V2 ::; f(fo) = ..jJ(Jl.) and hence ..jJ(Jl.) is a fuzzy prime. 
Thus f(Jl.) is fuzzy semi primary. 

(2) can be proved in a similar way as in (1). 

o 

Hence there is a one-to-one correspondence between the set of all f -invariant fuzzy 

semi primary ideals of R and the set of all fuzzy semi primary ideals of R', where f is 

epimorphism. 

§ 4.3 Fuzzy maximal ideals. 

In the crisp case, we say that an ideal M of R is a maximal if M is maximal element 

in the set of all proper ideals of R under inclusion. Swamy and Swamy 

[Swa 1 j fuzzified the above concept as follows: A fuzzy ideal Jl. is a fuzzy maximal 

ideal of R if Jl. is a maximal element in the set of all non-constant fuzzy ideals of R 
under the pointwise partial ordering. But Malik and Mordeson [Mal 3, 3.2 j gave a 

slightly different but more general definition. We take up the study of these concepts 

in this section. 

Definition 4.3.1. 

Let Jl. be a non-constant fuzzy ideal of R. Then Jl. is said to be fuzzy maximal if for 

any fuzzy ideal'; of R, Jl.::; v implies either Jl.o = Vo or v = X R . 
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Theorem 4.3.2. 

Let Ji be a fuzzy maximal ideal of R, then Im(Ji) = {I, t} for some t E [0,1) and Jio 
is a maximal ideal of R. 

Proof. 

Let us prove first Ji(O) = 1; Suppose Ji(O) f 1 then we can find atE (0,1) such that 

Ji(O) < t < 1. We now define a fuzzy ideal v of R by vex) = t for all x E R. Since 

'Ix E R, Ji(x)::; Ji(O), we have Ji ::; v and further Jio f Vo and v f XR. It is a 
contradiction to the maximality of Ji. Hence Ji(O) = 1. Next we prove Im(Ji) = {I, t} . 
Let t E Im(Ji) such that 0 ::; t < 1 then Jio £: Jit. Let w be a fuzzy ideal of R such that 

w(x) = 1 if x E Jit and w(x) = t if x rt Jit. Then it can be easily checked that Ji ::; w. 
Since Ji is fuzzy maximal either Jio = Wo or w = XR, but Wo = Jit ;> Jio so W = XR 

which implies Wo = R = Jit. Hence for any t E Im(Ji) with 0 ::; t < 1, Jit = R. Thus 
Im(Ji) = {I, t} for some t E [0,1). To prove the last part, since Ji is fuzzy maximal, 

1'0 f R. Let J be an ideal of R such that Jio ~ J. Define a fuzzy ideal v' of R by 

v'(x) = 1 if x E J and v'(x) = s if x r/: J for some t < s < 1. Then it is clear that 

fl ::; v'. By the maximality of Ji either Jio = vh or v' = XR . Hence Jio = vh, then 

flo = J since vh = J and if v' = XR, then J = vh = R. Thus Jio is a maximal ideal of 
R. 

o 

Theorem 4.3.3[Mal 3, 3.7]. 

Let Ji be a fuzzy ideal of R. If Jio is a maximal ideal of Rand Ji(O) = 1 then Ji is a 
fuzzy maximal ideal of R. 

Proof. 

We first show that the image, Im(Ji) = {I, t} for some t E [0,1). Since Jio is a maximal 

ideal Jio f R. So there exists x E R such that Ji(x) < Ji(O). Hence Ji has at least two 

distinct values. Let t E Im(Ji) such that 0::; t < 1, then Jio £: Jit . By the maximality 

of Jio, Jit = R. Hence I m(Ji) = {I, t}. We now let v b~ any fuzzy ideal of R such 

that Ji ::; v. Then yeO) = 1 and flo ~ Yo· Since Jio is maximal, either Jio - Vo or 

Vo = R i.e. either Jio = Vo or v = X R . Thus the result follows. 

o 

One can easily check that if Ji is a maximal element in the set of all non-constant 

fuzzy ideals of R under the pointwise partial ordering, then Ji is a fuzzy maximal 

ideal, but the converse turns out to be false. 

Example 4.3.4. 
Define the fuzzy ideals Ji, v : Z ~ I by 

Ji(X) = { ~/2 
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and 

v(x) = { 1 
3/4 

if x E< 2 > 

otherwise. 

Since Im(p.) = {1,1/2} and P.o =< 2 > is a maximal ideal of Z, p. is fuzzy maximal 
ideal of Z and p. :S v, i.e. p. is not a maximal element in the set of all non-constant 

fuzzy ideals of Z. Thus every fuzzy maximal ideal in the sense of Swamy and Swamy 

is a fuzzy maximal ideal according to [4.3.1J, but not vice versa. 

Remark. 

In fact,the converse is true in a complete lattice with the infinite meet distributive 

law under a certain condition namely the existence of a dual atom [Swa 1, 3.1J. Let 

p. : R -+ L be a fuzzy maximal ideal of R. Then we have Im(p.) = {I, t} for 

some t E [0, 1) and p'o is a maximal ideal of R. If t is a dual atom of L then p. is 

a maximal element in the set of all non-constant fuzzy ideals of R. Suppose v is a 

non-constant fuzzy ideal of R such that p. :::; v, then P.o ~ Vo. Since p'o is a maximal 

ideal and v'" Xn we have P.o = Vo and hence Vx E P.o, p.(x) = v(x). If x ~ P.o, then 

t = p.(x):::; v(x) < 1. Since t is a dual atom, t = v(x). Thus p. = v. 

Corollary 4.3.5. 

Every fuzzy maximal ideal of R iJ a fuzzy prime ideal. 

Proposition 4.3.6. 

Let p. be a non-conJtant fuzzy ideal of R. Then there exiJtJ a fuzzy maximal ideal v 

of R JUch that p. ~ v. 

Proof. 

Since p. is non-constant there exists x E R such that p.(x) < p.(0) . Let t E [0,1) such 

that p.(x) < t < p.(0), then p., is a proper ideal of R. So there is a maximal ideal M of 

R containing p.,. We define a fuzzy ideal v of R by v( x) = 1 if x E M and v( x) = t if 

x If. M. Then by Theorem[4.3.3J, v is a fuzzy maximal ideal and it is clear that p. :::; v. 

o 

In the following Proposition, we characterize fuzzy a maximal ideal in terms of its 

membership values. 

Proposition 4.3.7[Kum 6J. 

Let p. be a fuzzy ideal of R. Then p. iJ fuzzy maximal if and only if p.(0) = 1, p.(l) < 
p.(0) and whenever p.(x) < p.(0) for Jome x E R, p.(1 - rx) = p.(0) for Jome r E R. 

Proof. 
Suppose p. is a fuzzy maximal ideal. Then by Proposition[4.3.2J, Im(p.) = {I, t} for 

some t E [0,1) and P.o is a maximal ideal. Since Vx E R, p.(1) ~ p.(x), we have 
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1'(1) < 1'(0). Let x E R such that I'(x) < 1'(0); then x rt- 1'0. Since 1'0 is maximal 

1'0+ < x >= R. Hence there exists r E R such that 1 = y + rx for some y E 1'0. So 

1'(1 - rx) = I'(y) = 1'(0). Conversely suppose I' satisfies the three hypotheses. It is 

enough to show that 1'0 is a maximal ideal of R. Let M be an ideal of R such that 

1'0 S;; M. Then there exists x E M such that x rt- 1'0 . Hence 1'(1- rx) = 1'(0) for some 

r E R, so 1 - rx E 1'0 . It follows that 1 EM and hence M = R. 
o 

Theorem 4.3.8[Kum 3, 2.6,2.10,2.12). 

Let w be the intersection of all fuzzy maximal ideals of R then the following results 

are true. 

(1) If I' is any non-constant fuzzy ideal such that I' ~ w, then x + 1 is invertible 

for each x E 1'0, 

(2) x E R is invertible if and only if Wx is invertible, where Wx is defined in just 

before Theorem{2.4-8}, 

(3) The ring R/w is semisimple . 

Proof. 

(1) Suppose there exists x E 1'0 such that x + 1 is not invertible then there is a 

maximal ideal M of R containing x + 1. We now define a fuzzy ideal II : R ---> I 
by 

II(Y) = { ~ if y E M 

if y rt- M, where 0 ~ t < 1'(0). 

Then by Theorem[4.3.3.]' II is a fuzzy maximal ideal. Hence t < 1'(0) = I'(x) ~ 

w(x) ~ II(X) which implies II(X) = 1 i.e. x E M. But x + 1 E M, so 1 EM 

which is a contradiction. Thus the result follows. 

(2) Let x E R be invertible; then there exists y E R such that xy = 1. It is 

easy to check that WxWy = WI and hence Wx is invertible, conversely suppose 

Wx is invertible. Then there exists y E R such that WxWy = wxy = WI' By 
Theorem[2.4.8]' w(xy - 1) = w(O) = 1. Let M be a any maximal ideal of R 

and we define a fuzzy ideal II of R by 

II(X) = C if x E M 

if x rt- M , where t E [0, 1). 

Then by Theorem[4.3.3]' II is a fuzzy maximal ideal of R. So 1 = w(xy -1) ~ 

lI(xy - 1) and hence lI(xy - 1) = 1. Therefore xy - 1 E M. It follows x rt- M 
for all maximal ideals M of R. By Corollary[Sha 1, 3.11] x is invertible. 

(3) It is enough to show that the Jacobson radical of R/w is zero, i.e. the Jacobson 

radical of R/w = {wo}. Let Wx be any element in the Jacobson radical of R/w. 
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Then w. must be in all maximal ideals of R/w , hence WI - WrW. must not 

be in any maximal ideal of R/w for all r E R . By Corollary[Sha 1, 3.11] 

WI - WrW. is invertible. So for some y E R, WI-rrWy = w(l-rr)y = WI. By 

Proposition[2.4.8], w((1- rx)y -1) = w(O) = 1. It follows that for each fuzzy 

maximal ideal v of R, v((1 - rx)y - 1) = 1. Hence for each maximal ideal M 

of R, (1 - rx)y - 1 E M, which implies (1- rx)y I/:. M for all maximal ideals 
M of R. By Corollary[Sha 1,3.11], (1- rx)y is invertible, implying (1- rx) is 

invertible. By Lemma[Sha 1, 3.17], x E M for all maximal ideals of R. Hence 

v(x) = v(O) for every fuzzy maximal ideal v. Since W is the intersection of all 

fuzzy maximal ideals w(x) = w(O), which implies w. = Woo 

o 

We now prove some relations between fuzzy maximal and primary ideals of R. 

Proposition 4.3.9. 

Let p. be a fuzzy ideal of R with Im(p.) = {1, t} for some t E [0,1). If"fiI is fuzzy 
maximal then p. is a fuzzy primary ideal of R. 

Proof· 
Since Im(J.L) = {1, t}, by Proposition[3.3.15,7] 

"fiI(x) = { ~ if x E "fiIo 

otherwise. 

Since "fiIo is maximal, J.Lo is primary ideal of R . Hence by Theorem[4.1.5]' p. is a fuzzy 

primary ideal of R. 
o 

Proposition 4.3.10. 

If J.L is a fuzzy maximal ideal of R then /-Ln is a /-L-primary ideal for all n E N. 

Proof. 
Since p. is fuzzy maximal, by Theorem[4.3.3], Im(p.) = {1, t} for some t E [0, t) and 
J.Lo a is maximal ideal of R . Let x E R. We defined /-Ln as 

p.n(x) = sup 1\:=II\~IP.(Xki). 
x=E:=t X.l:l X.l:2 ... X1'" 

If x E (J.Ln)o = (/-Lo)n, then x is of the form x = E:=IxklXk2'" Xkn where Xki E /-Lo for 

all i = 1,2, ... ,no Hence J.Ln(x) 2: 1\:=I/-L(XkI)/-L(Xk2) ... /-L(Xkn) = 1, so /-Ln(x) = 1. If 
x I/:. (p.n)o, then for each x = E:=I XkIXk2 ... Xkn there exists io such that 1 ~ io ~ n 
and Xi, I/:. J.Lo which implies p.n(x) = t . So we have 

if x E (p.n)o 

otherwise . 
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Since J.lo is maximal, by Proposition[Sha 1,4.9]' (J.lo)n is a J.lo-primary ideal of R for 

all n EN, i.e. 0J.ln)o = J.lo. But by Proposition[3.3.15,7] we have 

P(x) = {~ if x E Vii; = J.lo 

otherwise 

and hence Viin = p.. Thus the result follows. 

Corollary 4.3.11[Dix 1, 5.2]. 

Let J.l be a fuzzy ideal of R. If J.l is a fuzzy maximal ideal then R/ J.l is a field. 

Proof is straightforward since J.lo is maximal ideal and R/ J.lo ~ R/ J.l. 

Remark. 

o 

In[Dix I, 5.2] V.N.Dixit et al. stated that the converse of the above Corollary is also 

true, but we provide a counter-example to disprove it . 

Example 4.3.12. 

Let R be the ring F[x, y]. We define a fuzzy ideal p. : R --> I by 

{ 

0.9 
p.(f) = 0.8 

if f E< x,y,2 > 
otherwise. 

Then J.lo is a maximal ideal [Bar 1, pg 125]. So R/ J.lo is field and hence R/ J.l is field. 

But J.l is not a fuzzy maximal ideal since J.l(0) f. l. 

Proposition 4.3.13[Kum 6, 3.20). 

Let J.l, J.l' be distinct fuzzy maximal ideals of R such that Im(J.l) - Im(J.l'). Then 

J.lJ.l' = J.l /\ p.'. 

Proof. 

Since p., p.' are maximal by Theorem[4.3.2]' Im(p.) = {1,t} = Im(p.') for some t E 

[0,1) and J.lo, J.l~ are distinct maximal ideals of R. Hence we have 

(p. /\ p.')(x) = { ~ 

We now prove that 

J.lJL'(x) = { ~ 

if x E J.lo n J.l~ 
otherwise. 

if 
, 

x E JLoJLo 

otherwise. 

Let x E R. If x E J.lOJL~, then x is of the form x = E~=lxklXk2' where Xkl E P.O,Xk2 E , 
p.o· 

JLJL'(x) = sup /\~ JL(Ykd /\ JL'(Yk2) ~ /\rJL(Xkl) /\ JL'(Xk2) = 1 
x=E1:=lYkl Yk2 
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hence f.Lf1!(x) = 1. If x 1:- f.Lof.L~, then for each x = Ek=lYklYk2 either Ykol 1:- f.Lo or 
Yko2 1:- f.L~ for some ko with 1 ~ ko ~ n. SO f.Lf.LI(X) = t. Since f.Lo and f.L~ are maximal 

ideals of R, f.Lof.L~ = f.Lo n f.L~, hence f.Lf.L1 = f.L /I f.L1 . 

o 

In the following Proposition, we consider the effect of homomorphisms on fuzzy 
maximal ideals 

Proposition 4.3.14. 

Let f : R -4 R' be a homomorphism, f.L and f.L1 be fuzzy maximal ideals of Rand R' 

respectively then 

(1) If f is an epimorphism and f.L is f-invariant, then f(f.L) is a fuzzy maximal 

ideal of R', 

(2) f-l(f.LI) is a fuzzy maximal ideal of R. 

Proof. 

(1) Let y E R', then f(f.L)(Y) = sup f.L(x). Since f.Lo is maximal and kerf ~ f.Lo, 
f(x)=y 

f(f.Lo) is a maximal ideal of R'. If Y E f(f.Lo) then there exists x E f.Lo such 

that f(x) = y, therefore f(f.L)(Y) = 1. If Y 1:- f(f.Lo) then for all x E R such 

that f(x) = Y, x 1:- f.Lo, hence f.L(x) = t , t E [0,1). So f(f.L)(x) = t, i.e. 

Imf(f.L) = {I, t}, and then the result follows. 

(2) Proof is similar to (1) . 

o 
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CHAPTER V 

FUZZY PRIMARY DECOMPOSITION AND 

FUZZY IRREDUCIBLE IDEALS 

§ 5.1 Fuzzy primary decompositions. 

This section deals with fuzzy primary decompositions of a fuzzy ideal. The fuzzy 
case is dealt with by looking at the primary decomposition of the base set J1.0. In 

Theorem[5.1.7]' we prove an analogue in the fuzzy setting to an important result in 

the crisp case which leads us to the First Uniqueness Theorem for fuzzy primary 

decomposition. 

Definition 5.1.1[Mal 4, 3.8]. 
Let J1. be a fuzzy ideal of R. A fuzzy primary decompo3ition or repre3entation of J1. 

means that J1. is an intersection of finitely many fuzzy primary ideals Vi of R 

i.e. JL = 1\7=1 Vi · 

This primary decomposition is called irredundant or reduced if for i = 1,2, ... , n 

"7=1 Vj i Vi and ,jV/s are all distinct. 
j;li 

Example 5.1.2. 

Let F be a field and R = F[x, y] be the ring of polynomials in x and y over F. Define 

the fuzzy ideals J1., Vk, Vz of R by 

and 

{

I if fE<x 3 ,xy> 

J1.(f) = 2/3 otherwise, 

vd= {
I if f E< x 3,xy,yk > 

2/3 otherwise 

{

I if f E< x > 
vz(f) = . 

2/3 otherWIse. 

Then J1. = Vk 1\ Vz is a reduced primary decomposition of J1. for each k = 3,4, .... 
Hence the fuzzy reduced primary decomposition for a given fuzzy ideal needs not be 

umque. 

The next Proposition illustrates a method of extracting a reduced primary decom­

position from a given primary decomposition. 

80 



Proposition 5.1.3. 

Let fL be a fuzzy ideal of R. If fL has a fuzzy primary decomposition then fL has a 

reduced fuzzy primary decomposition. 

Proof· 

Let fL = /\7=1 Vi be a fuzzy primary decomposition of R. Firstly if for some ViI, Vi2, . . . Vim E 
{VI, .. . vn}, Vvil = Vvi2 = ... Vvim then take vl = /\'(;.1 Vii· By Proposition[4.2.2,1], 
vl is a fuzzy primary ideal. Hence fL = /\;=1 vl, 1::; p ::; n and all ~ are distinct. 

Secondly we discard v; if v; ~ /\j= 2 vi and then consider the remaining V~ , vL ... , V~; 

at the kth stage, discard vk if vk ~ /\~=I vi. By contuining in this way, we get a stage 
j# 

after which we have fL = /\ r=1 vl, 1 ::; q ::; p and for all i = 1, 2, ... ,q, V' -i. /\q v'" 
• f:.- J=1 J 

#i 
Hence fL = /\J=I vi, 1 ::; q ::; p is a fuzzy reduced primary decomposition of fL. 

o 

Theorem 5.1.4. 

Let fL be a fuzzy ideal of R. If fL has a fuzzy primary decomposition, then fLo has a 

primary decomposition. Further if the primary decomposition of fLo is reduced, then 

the fuzzy primary decomposition of fL is reduced. 

Proof. 

Let fL = /\7=1 Vi be a fuzzy primary decomposition of fL then fLo = (/\7=1 Vi)o = 
n~I(Vi)O. Since each Vi is fuzzy primary, by Theorem[4.1.2]' (Vi)O is a primary ideal 

of R for all i = 1,2, ... , n . Hence fLo == ni=1 (Vi)O is a primary decomposition of fLo. 

Suppose fLo = ni=I(Vi)O is reduced and for some i, Vi ~ /\j=1 Vj. Then 
#i 

(Vi)O 2 (/\7=1 Vj) = ni,=1 (Vj)o since Vj(O) = 1 for ~l i = 1,2, ... n. This is a 
#i 0 1'1" 

contradiction to the fact that fLo = ni=1 (v;)o is a reduced primary decomposition. 

Thus the result follows . 

o 

In general we believe that fL need not have a fuzzy primary decomposition even 

if fLo has a primary decomposition; but we do not have an example. However, we 

have an example to support the reduced case, i.e. if fL has a reduced fuzzy primary 

decomposition it does not necessarily imply fLo has one. 

Example 5.1.5. 

Let R denote the ring defined in example[5.1.2]. Define the fuzzy ideals 
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J.L, VI, V2 : R ---> I by 

and 

{

I if fE<x 3,xy> 

J.L(x) = 3/4 if f E< x3,xy,y3 >" < x 3,xy > 

1/4 otherwise 

Vl(X) =.{ 31/4 
if 

otherwise 

if f E< x3,xy,y3 > 

otherwise. 

Then it is easy to check that J.L = VI 1\ V2 and VI, V2 are fuzzy primary ideals of R. 
Since VI i V2, V2 i VI and Vvl # Vv2' J.L = VI 1\ V2 is a fuzzy reduced primary 
decomposition. But J.Lo = (Vl)O 1\ (V2)0 and (111)0 ~ (V2)0 and hence J.Lo = (v)o n (V2)0 
is not a reduced primary decomposition. 

Proposition 5.1.6. 

Every finite valued fuzzy ideal with J.L(O) = 1 has a fuzzy primary decomposition if and 
only if every ideal of R has a primary decomposition. 

Proof. 

Let J be an ideal of R, then the characteristic function XJ is a fuzzy ideal of R 

with XJ(O) = 1, so it has a fuzzy primary decomposition by the hypothesis. By 

Theorem[5.1.4]' J has a primary decomposition. 

For the sufficient part, let J.L be any fuzzy ideal such that Im(J.L) = {to, t l , ... , t n} and 

tn < t n- l < ... < to = J.L(O) then J.Lto C J.Ltl C ... C J.Lt". For each i = 1,2, ... , n 

define a fuzzy ideal IIi : R ---> I by 

Vi(X) = {I 
ti 

if x E J.Lt;_l 

otherwise. 

Let x E Rand J.L(x) = tk, 1::; k ::; n then x E J.Lt; for all i ~ k and x ~ J.Li 

for all i < k. Hence Vi(X) = 1 for all i ~ k + 1 and Vi(X) = ti for all i ::; k. 

Therefore /\7=1 Vi(X) = tk = J.L(x). Thus J.L = /\7=1 Vi and since J.L is a fuzzy ideal 
for each i = 0,1,2, . .. ,n, J.Lt; is an ideal of R. By the hypothesis J.Lti has a primary 

decomposition (say) n;;'~IJik. Hence it is easy to check that Vi+l = n;;'~l>'~" for all 
i = 0,1,2, ... , n - 1. Since each Jik is a primary ideal by Proposition[4.1.5], >.~ .. is a 

fuzzy primary ideal of R implying that J.L has a fuzzy primary decomposition, where 
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Theorem 5.1.7. 

Let J.L be a fuzzy ideal of Rand J.L = 1\7=1 Vi be a reduced fuzzy primary decomposition 
of J.L. Let w be a fuzzy prime ideal of R. Then the following are equivalent. 

(1) w = Vvi for some i with 1 ~ i ~ n, 
(2) there exists a fuzzy ideal>' of R such that>. i J.L and (J.L : >.) is a w-fuzzy 

primary ideal, 

(3) there exists a fuzzy ideal>' of R such that>. i J.L and ..j(J.L : ,X) = w. 

Proof. 

(1)*(2) Let w be a fuzzy ideal of R such that w = Vvi for some i with 1 ::; i ~ n. 

Since J.L = 1\';=1 Vj is reduced, 1\7=1 Vj i Vi, which implies there exists Xi E R such 
j#i 

that 1\ ~ VJ'(Xi) > Vi(Xi). Let t = 1\ ~ VJ'(Xi) and define a fuzzy ideal >. : R --+ I 
J=I J=I 

by 
j¢i j¢i 

>.(X)={~ if x E< Xi > 

otherwise. 

Since J.L(Xi) = 1\';=1 Vj(Xi) = Vi(Xi) < I\j=1 Vj(Xi) = >'(Xi), >. i J.L and clearly 
j#i 

>. ~ I\j=l Vj; hence>. i Vi and>' ::; Vj for all j = 1,2, ... , n with j ~ i. Fur-
j#i 

ther let V be a fuzzy ideal of R such that V ~ Vi : >. then >. 0 V ::; vi. Since 

>. i Vi and Vi is a fuzzy primary ideal, V ~ Vvi and Vi : >. ::; Vvi' By Proposi­

tion[2.2.9( 4)], Vi ~ Vi : >. ~ Vvi from which follows that Vvi = ..j(Vi : >.). Since 
for each j ~ i, >.::; Vj by Proposition[2.2.9,2],vj : >. = XR . Therefore by the same 

Proposition[2.2.9,3], (J.L : >.) = (1\';=1 Vj : >.) = 1\';=1 (Vj : >.) = (Vi: >.) and hence 

..j(J.L : >.) = Vvi = W. 

(2)*(3) Straightforward. 

(3)*(1) Suppose there exists a fuzzy ideal>' of R such that>. i J.L and 

..j(J.L : >.) = w. Then w = V1\7=1 (Vj : >.) = 1\';=1 ..j(Vj : >.) by Proposition[3.3.15,5], 

hence w ~ ..j(Vj : >.) for all j = 1,2, ... , n. Since>. i J.L there exists i with 1 ::; i ::; n 

such that>. i Vi. If >. i Vi for some i with 1 ~ i ~ 1 then by Proposition[2.2.9,1], 

>. 0 (Vi: >.) ~ Vi and Vi is fuzzy primary, so we have Vi : >. ::; Vvi hence w ~ Vvi and 

..j(Vi : >.) = Vvi' If >. ~ Vi for some i with 1 ~ i ::; n then by Proposotion[2.2.9,1],Vi : 

>. = XR from which follows that ..j(Vi : >.) = X R. Therefore ..j(J.L : >.) = 1\'j=1 ..j(Vj : 

>.) = 1\'j=1 Vvj = w for some m ~ n. Hence VvIVv2'" Vvm ~ w, and since w is 
fuzzy prime, Vvi ::; w for some i ~ m. Thus w = Vvi for some i with 1 ::; i ::; n. 

o 
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Proposition 5.1.8 (The First Uniqueness Theorem for Fuzzy Primary De­

composition. ). 

Let p. be a fuzzy ideal of R and let p. = /\7=1 Vi with foi = Wi for i = 1,2, ... , nand 

p. = /\~I vi with fo: = wi for i = 1,2, ... , m be fuzzy primary decompositions of p.. 

Then n = m and {Wl,W2, ... ,wn } = {w~,w~, ... ,w~}. 

Proof. 

By Theorem[5.1.7]' there exists a fuzzy ideal oX of R such that oX i p. and V'(y 
oX) = Wi for all i = 1,2, . .. , n, and hence by applying Theorem[5.1. 7] to the second 

decomposition there exists j with 1 ::; j ::; m such that Wi = wj. Since it is true for 

each i = 1,2, ... , n we get n ::; m and {WI ,W2, ... wn } ~ {wI ,w~, ... w:,.}. By reversing 

the roles of Wi and wj we have m ::; n and {wI ,w~, ... w:,.} ~ {WI,W2, . . . wn }. Thus 
the result follows. 

o 

The above Proposition gives rise to the following: 

Definition 5.1.9. 

Let p. be a fuzzy ideal of Rand p. = /\7=1 Vi be a reduced fuzzy primary decomposition 

of R with foi = Wi for all i = 1,2, ... ,n. Then the n-element set {WI,W2, ... ,Wn } 

which is independent of the choice of the reduced primary decomposition of p., is 

called the set of associated fuzzy prime ideals of p., and we denote this set as assR(p.). 

§ 5.2 Associated and minimal fuzzy prime ideals of p.. 

In the last section we have derived a finite collection of fuzzy prime ideals associated 

with a given decomposition of a fuzzy ideal. In this section we introduce and study a 

partial ordering in the set of fuzzy prime ideals of a given fuzzy ideal. This gives rise to 

the notion of fuzzy minimal prime ideal. Using this we prove the Second Uniqueness 

Theorem. 

Definition 5.2.1. 

Let p. be a fuzzy ideal of R. A fuzzy prime ideal v of R is called a fuzzy prime ideal 

of p. if P. ::; v and p'o ~ Vo· 

Proposition 5.2.2. 

Every fuzzy ideal p. of R has at least a fuzzy prime ideal of p., 
i.e. for a given fuzzy ideal p. of R there exists a fuzzy prime ideal v of R such that 

p. ::; v and 1'0 ~ Vo· 

Proof. 

Let J.l be a non-constant fuzzy ideal of R then IIm(p.)1 ~ 2. 
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Case 1. 

Suppose IIm(I')1 = 2, then for all x E R, 1'0, I'(x) = t of 1'(0) and I't = R for some 
t E [0,1). Since 1'0 is a proper ideal of R, there exists a prime ideal P of R which 

contains 1'0. We define a fuzzy ideal v : R ----; I by 

v(x) = { ~ if x E P 

if x ric P 

then v is a fuzzy prime ideal of R such I' ::; v and 1'0 ~ Vo. 

Case 2. 

Suppose IIm(I')1 > 2, then there exists x E R such that I'(x) = t < 1'(0) and I't of R. 
Hence there exists a prime ideal P with I't ~ P. We now define a fuzzy prime ideal of 

I' as in the Case 1. So, in any case there is a fuzzy prime ideal of R such that I' ::; v 

and 1'0 ~ Vo· 

o 

Remark 1. 

For a given fuzzy ideal I' of R we define a set A as 

A = {v : v is a fuzzy prime ideal of I'}. 

Then by the above Proposition, A of 0. We define a relation ~ on A by 

then (A,~) is a partially ordered set. Let 13 be a non-empty chain in A and let 

v' = 1\ v. By Proposition[3.1.7], v'is a fuzzy prime ideal of R such that I' ::; v' and 
vEB 

1'0 ~ vh· Hence v'is an upper bound for 13. By Zorn's Lemma, the partially ordered 

set (A,~) has a maximal element (say) w. In other words if there exists a fuzzy prime 

ideal v of I' with v ::; w then v = w . This fuzzy prime ideal w is called a fuzzy minimal 

prime ideal of I' . 

Remark 2. 

For later use we prove that for a given fuzzy ideal I' and a fuzzy prime ideal w of 1', 

there is fuzzy minimal prime ideal>' of I' such that>. ::; w. Let 

Aw = {v : v is fuzzy prime ideal of I' and v ::; w}. 

Then clearly Aw of 0 and (Aw,~) is a partially ordered set. By a similar sort of 

argument as in Remark 1 above, we can show that Aw has a maximal element. Let 

>. be the maximal element of Aw. We claim that >. is the fuzzy minimal prime ideal 

of I' such that>. ::; w. Let v be a fuzzy prime ideal of I' such that v ::; >., then since 

I' ::; v ::; >. ::; w, v E Aw. Therefore v = >.. Thus >. is a fuzzy minimal prime ideal of 

I' such that >. ::; w . 

Summerizing the above, we get the following: 
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Proposition 5.2.3. 

Let p. be a fuzzy decomposable ideal of Rand W be any fuzzy prime ideal of R. Then W is 

a fuzzy minimal prime ideal of p. if and only ifw is a maximal element of (assR(p.), ~). 

Proof. 

Let p. = I\~=I Vi, Vvi = Wi be a reduced fuzzy primary decomposition of p. and let 

W be a fuzzy minimal prime ideal of p.. Then W = ..;w 2': .,fii = I\':=. I Wi 2': WIW2 . •. W n . 

Since Wi is fuzzy prime for some i with 1 :::: i :::: n, W 2': Wi. Hence by the minimality 

of W we have W = Wi E aSSR(/l). It is easy to check that for each Wi E assR(p.), if 

Wi :::: W then Wi = w, thus W is a maximal element of assR(p.). 
Conversely suppose W is a maximal element of ass R(P.) . Then W is a fuzzy prime ideal 

such that p. :::: w. By Remark 2 above there is a fuzzy minimal prime ideal >. of p. such 

that>.:::: w. Since>. = VI. 2':.,fii 2': WIW2 ... wn , Wi:::: >.:::: W for some Wi E aSSR(p.). It 
follows that W = >. = Wi , hence W is a fuzzy minimal prime ideal of p. . 

D 

Remark. 

All fuzzy minimal prime ideals of p. belong to assR(p.) , and hence p. has only finitely 

many fuzzy minimal prime ideals of p. since assR(p.) is a finite set. By Remark 2 

and the Proposition above for any fuzzy prime ideal v of p., there exists a fuzzy ideal 

W E assR(p.) such that W :::: v. 

Theorem 5.2.4(The Second Uniqueness Theorem for Fuzzy Primary De­

composition). 

Let p. be a fuzzy ideal of R and let p. = I\~=I Vi with Vvi = Wi, P. = I\~=I V: with 

.;v; = Wi, i = 1,2, . .. n, be reduced fuzzy primary decompositions of p.. Then if Wi> 

1 :::: j :::: n is a fuzzy minimal prime ideal of p., then Vj = vj. 

Remark. 

Since every non-constant fuzzy ideal p. of R has a fuzzy, minimal prime ideal of p., 

assR(p.) has at least one fuzzy minimal prime ideal of p.. But not necessarily all 

Wi E ass R (Il) are fuzzy minimal prime ideals of p. . 

Proof. 

If n = 1 then p. = VI = vi. Suppose n > 1. Let Wi, 1 :::: i :::: n be a fuzzy 

minimal prime ideal of p.. Then Wi i. 1\ n Wj since if Wi 2': I\~ Wj, then Wi 2': 
)=1 )=1 
j~i #i 

WIW2 .. . Wi-IWi+I ... wn . Since Wi is fuzzy prime, Wi 2': Wj for some j with 1 :::: j < 
n,j '" i and Wi'" Wj. It is a 

contradicition to the fact that Wi is a fuzzy minimal prime ideal of p.. Therefore there 

exists Xi E R such that Wi (Xi) < 1\7=1 Wj(Xi). Let t = 1\7= 1 Wj(Xi), then Xi E (Wj)' 
#i #i 

for all j = 1,2, ... , n with j '" i. This implies x7 i E (Vj), for some non-negative 
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integer nj,j = 1,2, ... , n with j =I i. Let no E N be such that no:::: max {nj : j = 

1,2, ... ,n,j =I i}. Then xi' E (Vj)' for allj = 1,2, ... ,n withj =I i. We now define 
a fuzzy ideal v : R -> I by 

Vex) = {~ if 

if 

x E< x~, > • 
d n, 

x ",< Xi >. 

It is easy to check that v ~ Vj for all j = 1,2, ... n with j =I i, which implies that 

(Vj: v) = Xn for allj = 1,2, . .. ,n withj =I i. lfx?' E (Wi), then Xi E (Wi), since (Wi)' 

is a prime ideal of R . Hence Wi(Xi) :::: t = "j=1 Wj(Xi), which is a contradiction. So 
j;>!i 

x?' ~ (Wi),. Therefore v i wi. We now claim that (Vi: V) = Vi. Clearly Vi ~ (Vi: V). 

Let A be a fuzzy ideal of R such that A ~ (Vi: V). Then AOV ~ Vi by Proposition[2.2.9J . 

Since Vi is fuzzy primary and v i VVi = Wi , we have A ~ Vi, and hence Vi : V ~ Vi . 

So (Vi: V) = Vi. We consider (J1.: v) = (1\'j=1 Vj : v) = 1\'j=I(Vj : v) = (Vi: V) = Vi. 

Similarly if J1. = 1\'j=1 vj, then by choosing sufficiently large no, we will have (J1. : v) = 
, Th . - , vi' us VI - Vi ' 

o 

Corollary 5.2.5. 

Let J1. = 1\7=1 Vi be a reduced fuzzy primary decomposition with VVi = Wi for i = 
1,2, ... ,no Then J1. has a finite set of fuzzy minimal prime ideals {Wl,W2,'" ,wm }, 

1 ~ m ~ n of J1. such that ..fii = 1\'(;,,1 Wi· 

Proof· 

The first part is obvious. Clearly ..fii ~ 1\'(;,,1 Wi. For the converse part, let W be any 

fuzzy ideal such that W ~ 1\'(;,,1 Wi. Then W ~ Wi for all i = 1,2, ... , m. Suppose Wj 

is not a maximal element in (assn(/-t), ~), then there exists a maximal element Wi, 

1 ~ i ~ m in (assn(J1.),~) such that Wi ~ Wj. Hence W ~ Wj for all j = 1,2, ... , nand 

so W ~ 1\7=1 Wi = ..fii. Thus ..fii = 1\'(;,,1 Wi· 
o 

Proposition 5.2.6. 

Let J1. = I\~=I Vi be a fuzzy primary decomposition of J1. with VVi = Wi for i = 
1,2, ... ,n, and J1.o = ni=1 (Vi)O be a reduced primary decomposition of J1.0· If vIC Vj)o = 
(Wj)o is a minimal prime ideal of J1.0 , then Wj is a fuzzy minimal prime ideal of J1.. 

Proof. 

Suppose (Wj)o is a minimal prime ideal of J1.0. Let W be any fuzzy prime ideal of J1. 

then 1\~=1 Wi ~ W. Hence Wi ~ W for some 1 ~ i ~ n. If W ~ Wj, then Wi ~ W ~ Wj 

which implies (Wi)O ~ (Wj)o, This is a contradiction to the fact that J1.0 = ni=l(Vi)O 
is reduced. Hence there exists no fuzzy prime ideal of J1. which is contained in Wj. 

Therefore Wj is a fuzzy minimal prime ideal of J1.. 
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o 

Remark. 

By the example [5.1.2] Vk, V2 are fuzzy minimal prime ideals of p.. But 

(Wk)O =< x, y > is not a minimal prime ideal of p.o =< X3, xy > . Hence the converse 

of the above Proposition turns out to be false in general . 

Proposition 5.2.8. 

Let p. = 1\ ~1 Vi be a reduced fuzzy primary decompo$ition. Then I m(p.) = Uf=1 I m( Vi). 

Proof. 

Clearly Im(p.) ~ Uf=1 Im(vi). Now we shall prove for each i with 1 SiS n there 

exists Xi E R" (Vi)O such that P.(Xi) = Vi(Xi). Suppose there exists i with 1 SiS n 

such that for all x E R" (Vi)O, p.(x) =1= Vi(X). Since p.(x) = 1\7=lvi(x) there exists 

j,1 S j S n such that Vj(x) < Vi(X). Hence for all x E R" (Vi)O p.(x) = 1\;=1 vAx). 
j#i 

If x E (Vi)O, then Vi(X) = 1; so p.(x) = 1\ ~ Vj(x). It follows that p. = 1\ ~ Vj )=1 )=1 
j#i j#i 

which is a contradiction to the hypothesis. Thus for each i = 1,2, ... ,n there exists 

Xi E R" (Vi)O such that P.(Xi) = Vi(Xi). Let t E Uf=1 Im(vi) . Then t E Im(vi) for 
some i, 1 SiS n. So there is x E R such that Vi(X) = t. If t = 1 then t E Im(p.). If 
t =1= 1 then x E R" (Vi)O. But we proved that there exists Xi E R " (Vi)O such that 

P.(Xi) = Vi(Xi). Since jlm(vi)j = 2, Vi(X) = Vi(Xi). Hence P.(Xi) = Vi(Xi) = Vi(X) = t, 
implying t E Im(p.). 

o 

§ 5.3.Fuzzy irreducible ideals. 

In this section we study the fuzzy irreducibility of a fuzzy ideal and prove some 

relations between fuzzy prime, semi primary and irreduc!ble ideals. We first prove 
that every fuzzy ideal in a Noetherian ring can be written as a finite intersection of 

fuzzy irreducible ideals, where the fuzzy ideal takes only two values. From this, we 

prove the existence of such a decomposition in the general case. 

Definition 5.3.1[Kum 4, 3.1]. 

Let p. be a fuzzy ideal of R . We say that p. is fuzzy irreducible if /1. cannot be expressed 

as the intersection of two fuzzy ideals of R properly containing p.; otherwise p. is called 

reducible. 

Thus p. is fuzzy irreducible if and only if whenever p. = VI II V2 with VI, V2 fuzzy ideals 

of R, then either p. = VI or p. = V2. 

We prove a useful result in the following Proposition. 
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Theorem 5.3.2. 

Let f.1. be a non-constant fuzzy ideal of R. Then f.1. is fuzzy irreducible if and only if 

I m(f.1.) = {I, t} for some t E [0, 1) and Jlo is an irreducible ideal of R. 

Proof. 

Suppose Jl is a fuzzy irreducible ideal. Let us prove first that f.1.(0) = 1. Assume 

f.1.(0) = 8 < 1. Since f.1. is non-constant, f.1.. is a proper ideal of R. We define two fuzzy 

ideals VI, V2 : R --> I by 

and 

if x E Jl. 

otherwise 

V2(X) = 8 for all x E R. 

If x E f.1.. then VI(X) II V2(X) = 8 = f.1.(x) , if x 1:. Jl. then VI(X) II V2(X) = Jl(x). So 

f.1. = VI II V2 and clearly f.1. < VI , Jl < V2 which is contradiction to the supposition. 

Hence Jl(O) = 1. Suppose IIm(Jl)1 ~ 3, then there exists s, t E (0,1), s > t such that 

11. C f.1.t C R. We now define the fuzzy subsets WI, W2 : R --> I by 

WI(X) = {~(X) if x E f.1.t 

if' x 1:. f.1.t 

"'(0) ~ C(o) 
if x E Jl. 

if x E Jlt , f.1.. 

if x E R, Jlt· 

Then clearly WI is a fuzzy ideal of R such that f.1. < WI . Since (W2 )t' = f.1.t' for all t' with 

t < t' < 1 we can show that all level subsets of W2 are ideals of R. So W2 is a fuzzy 
ideal of R. It can be easily seen that Jl < W2. Further f.1. = WI II W2. To show this let 

x E R. If x E Jl. then WI (x) II W2 (x) = 1 = Jl( x). If x E f.1.t' f.1.. then WI (x) II W2 (x) = 
111f.1.(x) = f.1.(x), and if x E R, f.1.t then WI(X) IIw2(x) = f.1.(x) II t = f.1.(x). Hence we get 

a contradiction to the fact that Jl is fuzzy irreducible. Th'us Im(Jl) = {I, t} for some 

t E [0, 1). To prove the last part, assume f.1.o is reducible. Then f.1.o can be expressed as 

the intersection of two ideals of R properly containing Jlo (say) Jlo = h n J2, Jlo C J I 

and Jlo C J2. Define the fuzzy ideals >'1, >'2 : R --> I by 

A,(O) {-

if x E f.1.o 

if x E J I , Jlo 

if x E R , J I 

and 

A,(O) ~ E' 
if x E f.1.o 

if x E h ' Jlo 

if x E R , h 
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where t < t' < 1. Then it is easy to check that Ji. = AI 1\ A2, Ji. < AI and Ji. < A2 which 

is a contradiction to the irreducibility of Ji.. Thus Ji.o is an irreducible ideal of R. 
Conversely suppose I m(Ji.) = {1, t} for some t E [0, 1), and Ji.o is an irreducible 

ideal of R. Assume that Ji. is not irreducible, then Ji. = VI 1\ V2 for some fuzzy ideals 

with Ji. < VI and Ji. < V2. Hence there exist x, y E R such that Ji.( x) < VI (x) and 

Ji.(y) < V2(Y)· It follows that X,y i Ji.o. If x = y then Ji.(x) < (VI 1\ V2)(X) which is 
a contradiction. So x "# y, implying Ji.o C< Ji.o, x > and Ji.o C< Ji.o, y >, and hence 

Ji.o C < Ji.o, x > n < Ji.o, Y > . Let z E< Ji.o, x > n < Ji.o, Y > . Then z = m+rx = n+sy 
for some m,n E Ji.o and r,s E R. Therefore Ji.(m - n) = Ji.(-rx + sy) = 1. Hence 

vl(-rx + sy) = v2(-rx + sy) = 1. By Remark 2 (3) in §2.2 ,vl(rx) = Vl(SY) and 

v2(rx) = V2(SY). But vl(rx) ~ VI(X) > Ji.(x) = t, and similarly v2(rx) > t. So 

!l(rx) > t, i.e. rx E Ji.o, therefore z E Ji.o. Thus we have Ji.o =< Ji.o,X > n < Ji.o,y > 
with Ji.o C < Ji.o, x > and Ji.o C < Ji.D, Y > which is a contradiction to the irreducibility 
of Ji.D. ' 

o 

Remark. 

The Proof of [Kum 4,3.2(ii)] is restricted to the case IIm(Ji.)1 = 3. His proof does not 

work if IIm(Ji.)1 > 3. 

Corollary 5.3.3. 

Let I be an ideal of R. Then I is an irreducible ideal if and only if XI .s a fuzzy 

irreducible ideal of R. 

Corollary 5.3.4. 

If Ji. is a fuzzy prime ideal of R then Ji. is fuzzy irreducible. 

Proof. 

By Theorem[3.1.2]' Im(Ji.) = {1, t} for some t E [0, 1) and Ji.D is a prime ideal of R. 
Hence Ji.D is an irreducible ideal. Thus Ji. is fuzzy irreducible. 

o 

Corollary 5.3.5. 

If Ji. is both a fuzzy semiprimary and irreducible ideal, then Ji. is fuzzy prime ideal of 

R. 

Proof. 

This is an immediate consequence of the fact that every ideal which is both semipri­

mary and irreducible in a commutative ring with identity, is prime. 

o 
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Corollary 5.3.6. 
If J1. iJ a fuzzy irreducible ideal of a Noetherian ring R then J1. iJ fuzzy primary. 

The proof is straightforward since every irreducible ideal in a Noetherian ring is a 

primary ideal. 

In the following Proposition we provide an analogue of the well- known result,namely, 
'every ideal in a Noetherian ring is a finite intersection of irreducible ideals of R 'in 

the fuzzy case. 

Proposition 5.3.7. 

Let J1. be a fuzzy ideal of a Noetherian ring with Im(J1.) = {I, t}, for Jome t E [0,1). 
Then J1. can be expreJJed aJ a finite interJection of fuzzy irreducible idealJ of R. 

Proof. 

Suppose J1.o = nf=1 J i , Ji irreducible ideals of R. Define the fuzzy ideals V1, V2, ..• , Vn : 

R --> I by 

Vi(X)={~ if x E 1; 

if x rt 1;. 

Then by Theorem[5.3.2], for each i = 1,2, ... , n, Vi is a fuzzy irreducible ideal of R 
and it is easy to check that J1. = /\7=1 Vi 

o 

Remark. 

Suppose J1. is any fuzzy ideal of a Noetherian ring. It is easily seen by the ascending 

chain condition, that the I m(/l) must be a finite set. By arguments similar to 5.1.6, 

we conclude that J1. can be expressed as a finite intersection of fuzzy ideals, each with 

two membership values. Now we can apply the above Proposition[5.3.7] to get the 

following existence Theorem. 

Theorem 5.3.8(Existence Theorem ). 

Every fuzzy ideal J1. with J1.(0) = 1 in a Noetherian ring R can be decompoud aJ a 

finite interJection of fuzzy primary idealJ in R . 

We now discuss the effect of homomorphisms on fuzzy irreducible ideals. 

Proposition 5.3.9. 

Let f : R --> R' be an epimorphiJm and J1. be a f-invariant fuzzy irreducible ideal of 

R then f(J1.) iJ fuzzy irreducible ideal of R' . 

Proof. 

Suppose f(J1. ) is reducible. Then there exist two fuzzy ideals vL v~ of R' such that 

f(J1.) = vi 1\ v~ and f(J1.) < vi, f(J1.) < v~ . Since J1. is f -invariant by Proposition[1.2.2] 
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J1. = r l (J(J1.)) = f-I(II; /I liD = f-I(IID /I f-I(IID and J1. < f- I (IID,J1. < rl(II~) 
which is a contradiction to the irreducibility of J1. . 

o 

Proposition 5.3.10. 

Let f : R ~ R' be a homomorphism, R be a Boolean ring and J1.' be a fuzzy irreducible 
ideal of R'. Then f-I (J1.') is fuzzy irreducible ideal of R. 

The proof is straightforward by Proposition[1.2.2j. 
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