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ABSTRACT 

The feasibility of capital projects in an uncertain world can be determined in 

several ways. One of these methods is real options valuation which arose from 

financial option valuation theory. On the other hand fuzzy set theory was 

developed as a mathematical framework to capture uncertainty in project 

management. The valuation of real options using fuzzy numbers represents 

an important refinement to determining capital projects' feasibility using the 

real options approach. 

The aim of this study is to determine whether the deferral of the decom­

missioning time (by a decade) of an electricity-generating nuclear plant in 

South Africa increases decommissioning costs. Using the fuzzy binomial ap­

proach, decommissioning costs increase when decommissioning is postponed 

by a decade whereas use of the fuzzy Black-Scholes approach yields the op­

posite result. A python code was developed to assist in the computation of 

fuzzy binomial trees required in our study and the results of the program are 

incorporated in this thesis. 

KEYWORDS: Fuzzy Sets, Real Options, Capital Project Valuation. 
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PREFACE 

The feasibility of capital projects in an uncertain world can be determined 

in several ways. One of these methods is real options valuation which arose 

from financial option valuation theory. Real options valuation consists of the 

determination of an option price using several methods such as the parametric 

approach of Black and Scholes[5], and the binomial approach of Cox, Ross 

and Rubinstein[18J. Both of the aforementioned methods use probability 

theory in their treatment of uncertainty, but fuzzy logic and fuzzy set theory 

can be used more effectively to treat. uncertainty or imprecise statements 

predicting future estimates than that of using probability theory [16J . 

Zadeh [55J introduced the word fuzzy as a formalization of uncertainty or 

vagueness in complex systems. Fuzzy set theory employs fuzzy numbers to 

quantify subjective fuzzy estimates. The valuation of real options using fuzzy 

numbers has been studied by numerous researchers such as Carlsson & Fuller 

[12], Collan, Carlsson & Majlender [17J and Liao & Ho [31J. 

The main aim of this study is to estimate the costs of deferring the decom­

missioning of an electricity-generating nuclear power plant which operates in 

South Africa. This will require the values of a real option to be estimated 

with the fuzzy mathematical approach. 

The organisation of the remainder of this study is as follows. In Chapter 

1, the necessary operations of fuzzy sets will be introduced, and we will 

then present ideas pertaining to fuzzy relations and fuzzy numbers. Chapter 

2 contains the discussion of real options theory and traditional valuation 

methods. Given that the real option valuation method is considered superior 
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to traditional capital project valuation methods, we explain these traditional 

methods first. The central theme of this study is treated in Chapter 3, which 

comprises the discussion of fuzzy set theoretic real option valuation methods. 

The fuzzy risk-neutral-approximation-based binomial models and the fuzzy 

Black-Scholes formula will be discussed in this chapter. Chapter 4 consists 

of the presentation of data and methods used in the study, and also the 

discussion of the results obtained. Chapter 5 contains a conclusion together 

with the discussion of future research prospects and topics. 

For ease of reference, in each chapter the numbers of all definitions and 

examples are assigned serially. For example, 1.3.1 refers to the first entity of 

the third section of the study's first chapter. 

xiv 



Chapter 1 

Fuzzy Set Theory 

Most of the traditional tools used for formal modeling, reasoning, and com­

puting are crisp, deterministic, and precise in character. Crisp means di­

chotomous, that is, yes-or-no or true-or-false type rather than more-or-less 

or somewhere-in-between type. We elaborate as follows: in traditional dual 

logic, for instance, a statement can either be true or false and nothing in 

between, nearly true or nearly false. Similarly, in set theory, an element can 

either belong to a set or not and in optimization a solution can be feasible 

or not [56]. In reality, certain of our knowledge is of a fuzzy nature, for in­

stance today is a cool day or this man is tall. This knowledge is amorphous, 

vague, imprecise, inexact, or possibilistic in nature. Due to the existence of 

the knowledge that has the afore mentioned nature, Zadeh [55] introduced 

fuzzy sets as an extension of classical set theory. The use of fuzzy sets en­

ables us to find solutions to many real-world problems. It assists systems to 

work efficiently with the inaccurate or inexact information and give expert 

opmlOns. 
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This chapter is organised in the following way. In Section 1.1, we introduce 

the concept of classical set theory whereas in Section 1.2 fuzzy sets will be 

defined together with the basic properties of fuzzy sets. Then in Section 1.3, 

we will discuss the difference between classical sets that are also known as 

crisp sets and Zadeh's (1965) fuzzy sets. In Section 1.4, we discuss the types 

of membership functions in a fuzzy set. The necessary operations of fuzzy 

sets will be introduced, and we will then present ideas pertaining to fuzzy 

relations and fuzzy numbers in Section 1.5 and 1.6, respectively. 

1.1 Classical Set Theory 

A collection of objects that are well defined is called a set. The objects in 

a set are called elements or members of the set [7] . Suppose that we let X 

be a non-empty fixed set called the Universal Discourse. For example, if we 

want to characterize students in the mathematics department according to 

the modules they are registered for, we will do so by enlisting their names 

and then our Universal Discourse would be the collection of students with 

the names in the mathematics department. From that collection of students 

we will have students who are registered for different modules, for instance 

the student who is doing second year would not do the same modules with 

the student who is registered for third year. 

In classical set theory, the membership of elements in a set is assessed in 

binary terms according to a bivalent condition: an element either belongs 

to or does not belong to the set. For instance, if A is a subset of X, we 

express it by saying every element of X either belongs to only A or does not 
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belong to A but not both. Using the aforementioned example, the collection 

of students would be X and the student registered for the third year modules 

would be represented by the subset A, then lastly the names of the students 

in A are the elements or members of our subset. Clearly, the students who 

are not part of the list of third year students do not belong to A. 

Chakraborty [13] states that the classical set theory enumerates elements of 

a set A = {ai, a2, a3,"', an}. where A is a subset of a universal set X. Then 

the set A can be represented by its characteristic function given by, for all 

XEX, 

if x = ai E A, 

if x Ii A. 

If !J.A(X) = 1 then we say x belongs to !J.A absolutely and if !J.A(X) = 0, we 

say x does not belong to !J.A absolutely. 

It can be observed that in classical set theory there are only two values that 

exist, those are 1 or ° which represent "true" or "false" respectively. Such 

sets are called crisp sets. 

Classical Set Theory Formulated in Terms of Membership func­

tions 

One way of defining a set A is in terms of its membership function !J.A (x), tak­

ing values in {a, I}. An element x belongs to set A if and only if !J.A(X) = 1. 

A characteristic function is a function from some universal set U to the bi­

nary set {0,1}. Using the characteristic function, we can define the following 

well-known operations for x E X: 
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Set Inclusion: 

Set Equality: 

Union: AU B 

A c B if and only if Vx E X 

/-LA(X) = 1 implies /-LB(X) = 1 

A = B if and only if Vx E X 

/-LA(X) = /-LB(X) 

/-LAUB(X) = max (/-LA (x), /-LB(X)) 

Intersection: A n B 

/-LAnB(X) = min (/-LA (x), /-LB(X)) 

Complement: 

1.2 Fuzzy Set Theory 

The extension of the classical set theory is a fuzzy set theory where elements 

have varying degrees of membership to allow modelling real-world problems. 
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The truth values that are used to represent the crisp sets are sometimes 

insufficient to describe the human reasoning. Human reasoning often uses 

vague predicates, individuals cannot be classified into two groups (either true 

or false). Fuzzy sets accommodate the values in between 0 (false) and 1 (true) 

to describe the human reasoning such as nearly true (0.9), nearly false (0.1). 

Fuzzy sets allow the elements to belong partially to a set. 

Definition 1.2.1 (Nguyen (j Walker (4l}) A fuzzy subset of a set X is simply 

a function from X -+ (O,l). 

From Definition l.2.1 we can simply say that a fuzzy set is any set that allows 

its elements to have degrees of membership. The function that describes the 

degrees of membership is called membership function, in the interval [O,lJ 

[13J. 

Definition 1.2.2 If X is a collection of objects denoted generically by x, then 

a fuzzy set A in X is a set of ordered pairs: 

A = {(x,/-LA(x))lx EX}, (1.1) 

/-LA (x) is called the membership value of x to /-LA . /-LA is called the membership 

function (generalized characteristic function). 

1.3 Crisp versus Fuzzy Sets 

Crisp sets are the ones that we have been using in most of our life. The 

most important rule that is used for these sets is that elements either belong 
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or do not belong to a set. Suppose that we want to classify objects based 

on their characteristics, then we normally use crisp sets. For example, we 

obviously know that a banana is a fruit so it will fall in the set of fruits. 

However , it becomes a challenge when we have to classify a tomato as a fruit 

or as a vegetable. There are several examples that can be given, e.g. when 

we need to classify tall people. It will not be easy to do that because the 

term tall can be interpreted in different ways. Crisp set theory is not capable 

of representing descriptions and classifications in many cases; In fact, crisp 

set does not provide adequate representation for most cases [13J. In classical 

logic there are words that have only two values, examples are true or false; 

yes or no; black or white and lastly start or stop. From these arguments, it 

is clear that we need to introduce fuzzy sets in the picture. 

Fuzzy sets are sets that possess vague boundaries, and the membership of x 

in A is a matter of the degree to which x is in A. In a fuzzy set, it is not 

necessary that x is a full member of the set. It can also be a partial member 

of the set. Fuzzy set.s differ from crisp set s in t.he sense that fuzzy sets can 

capture uncertainty and they can also represent conceptual entities such as 

far, cold and expensive. 

There are variables that describe crisp sets and fuzzy sets, they are called 

crisp and fuzzy variables respectively. The crisp variables represent the pre­

cise quantities only, whereas fuzzy variables represent the degree to which a 

quantity is possessed. The main difference between the two sets is that the 

crisp sets take either the value of 1 or 0 but the fuzzy sets can take any value 

between 0 and 1. It also follows that the crisp variable is measured with 

its uniform probability distribution but for fuzzy variable its membership 
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function is associated with its domain. 

From the table below we are able to depict t he main difference between the 

crisp and fuzzy sets. It has been shown that crisp sets have only 2 values, 1 

and 0, that represent fully in and fully out, respectively. On the other hand 

we have three different memberships to fuzzy sets that have been shown to 

possess different values. We notice that the values vary, such that they do 

not only have two truth values. However, the truth values are included in the 

fnzzy sets. Since {O, I} C [0,1]' every crisp subset is also a fuzzy subset as 

a special case. It is possible to have fuzzy subsets of X without any element 

having absolutely membership values ° and/or 1. Thus ° < J.1.A(X) < 1 is 

possible for all x EX. 

Crisp set Three-vnlue fuzzy set Four~value fuzzy set 

1 = fully in 1 = fully in 1 ~ fully in 

0.67 = more in than out 

0.5 = neither fully in nor out 

0.33 = more out than in 

o ~ fully out 0 ~ fully out o ~ fully out 

Six-value fuzzy set 

1 ~ fully in 

0.9 = mostly but not fully in 

0.6 = more or less in 

0.4 = more or less out 

0.1 = mostly but not fully out 

a = fully out 

Table 1.1: Crisp versus Fuzzy Sets 

Definition 1.3.1 (Dubois [21j) A fuzzy subset A of X is a collection of or­

dered pairs (x, J.1.A(X)) where x is an element of X and J.1.A(X) is a real number 

between 0 and 1 inclusive, with J.1.A (x) representing the degree of membership 

of x to the fuzzy set A . 

7 



Thus we get a function associated with a fuzzy subset given by: 

/.lA : X ---+ [0,1] (1.2) 

The subset of X consisting of those x E X for which /.lA(X) = 1 is called the 

core of /.lA. Similarly the subset of X consisting those x in X for which /.lA(X) 

= 0 is called the co-support. 

Further by support of /.lA we mean the subset of elements x E X for which 

/.lA(X) > O. 

Clearly core and co-support mayor may not be empty. If the core and the 

co-support are empty, then the fuzzy subset /.lA is truly fuzzy without any 

crisp pairs. 

On the other hand, the whole set can be the core of a fuzzy set 

/.lcore(X) = 1 for all x E X. 

Similarly, the whole set X may be the co-support of a fuzzy set 

/.lempty (x) = 0 for all x E X. 

Example 1.3.1 Suppose someone wants to describe the class of cars having 

the property of being expensive by considering BMW, Rolls Royce, Mercedes, 

Ferrari, Fiat, Honda and Renault. Some cars like Ferrari and Rolls Royce are 

definitely expensive and some like Fiat and Renault are cheaper in comparison 

and do not belong to the set of expensive cars. Using a fuzzy set, the fuzzy 

set of expensive cars can be described as: 

{(Ferrari, 1), (Rolls Royce, 1), (Mercedes, 0.8), ( BMW, 0.7), (Honda, 0.4), 

(Fiat, 0), (Renault, 0) }. 
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Obviously, Ferrari and Rolls Royce have membership values of 1 whereas 

BMW, which is cheaper, has a membership value of 0.7, Honda 0.4 and Fiat 

and Renault each having a membership value of O. 

1.4 Types of Membership Functions 

A membership function is a mathematical function which defines the degree 

of an element's membership in a fuzzy set. For a fuzzy set A : X -+ [0,1]' 

the function A is called the membership function, and the value J.tA(X) is 

called the degree of membership of x in the fuzzy set A [41]. 

The previous example about the expensive cars can be used to model the 

notion of "expensive" with a fuzzy set. For the following fuzzy set , the unit 

of measurement is in thousands of Rands: 

1 if 500 < x , 

J.t(x) = x - I50 
3sO if 150:::; x :::; 500, 

o if x < 150. 

It can be observed from the above equation that all the cars that worth more 

than R500 000 are expensive and their degree of membership is 1. The other 

cars that cost between R150 000 and R500 000 are cheaper than the other 

group that we just described, and their degrees of membership are between 

a and l. The last group of cars are cheap and worth less than R150 000 , 

therefore they are given a as their degree of membership. 
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The types of membership functions are: 

'" ., 

Figure 1.1: Gaussian distribution function 

Source: MATLAB & Simulink Webpage, 2012 

'1----- - -------
". 

". 

Figure 1.2: Sigmoid curve 

Source: MATLAB & Simulink Webpage, 2012 

1 

0.5 

o ~---------------o x 

Figure 1. 3: Singleton membership function 

Source: MATLAB & Simulink Webpage, 2012 
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Finite and Infinite Universal Space 

Universal set.s in general can be finit.e or infinite. Any universal set is finite 

if it. consists of a specific number of distinct. elements, that is, if in counting 

the different elements of the set , the counting can come to an end, else the 

set is infinite [13J. 

When X is a fi nite set {Xl, ' .. , Xn}, a fuzzy set on X is expressed succintly 

as 

In the infinite case we have: 

Operations on Fuzzy Sets 

A = r J.LA(X) 
Jx X 

Fuzzy sets also possess some theoretic operations like the classical set t heory. 

Let A and B be fuzzy sets defined in the universal discourse X. There are 

several operations and relations on fuzzy sets and we list some of them below. 

1. Inclusion 

The fuzzy set A is included in the fuzzy set B if and only if for every x in 

the set X we have J.LA(X) ::::: J.LB(X) . 

2. Equality 

A = B if and only if Vx E X J.LA(X) = J.LB(X), 
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3. Comparability 

Two fuzzy sets A and B are comparable if one is a subset of the other, or vice 

versa; that is J.lA C J.lB or J.lB C J.lA. Fuzzy sets are incomparable if J.lA % J.lB 

or J.lB % J.lA· 

4. Complement 

The membership function of the complement of fuzzy set A, is defined as 

J.l5t(x) = 1 - J.lA(X). 

5. Intersection 

The membership function of the intersection of two fuzzy sets A and B is 

defined in [56] as J.lAnB(X) = min(J.lA(x), J.lB(X)), 

6. Union 

The membership function of the union of two fuzzy sets A and B is defined 

in [56] as J.lAUB(X) = max(J.lA(x) , J.lB(X)), 

We now give three operations on fuzzy sets relating (in order) to inclusion, 

comparability and complementation as follows: 

Example 1.4.1 Suppose the fuzzy set J.lA represents the EXPENSIVE cars 

and the fuzzy set J.lB represents the VERY EXPENSIVE cars, then the in­

clusion operation can be represented by: 

J.lA(X) = {[I, 1], [2,0.8]' [3,0.7]' [4,0.4]' [5, 0.2]' [6,0.1]' [7,0], [8, OJ} 

J.lB(X) = {[I, 1], [2, 1], [3,0.9]' [4,0.6]' [5, 0.4], [6,0.3]' [7, 0.1]' [8, OJ} 

It can be observed that J.lA(X) ::; J.lB(X), 
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Example 1.4.2 Let /-LA = {[a, 1], [b, 1], [c, OJ} and /-LB = {[a, 1], [b, 1], [c, IJ}. 

Then /-LA is comparable to /-LB , since /-LA is a subset of /-LB, 

Example 1.4.3 The complement of the set of the EXPENSIVE cars can be 

expressed as: 

/-LA(X) = {[I, 1], [2, 0.8]' [3,0.7]' [4, 0.4]' [5,0.2]' [6,0.1], [7,0], [8, OJ} 

/-LA(X) = {[I, 0], [2, 0.2], [3, 0.3]' [4,0.6]' [5,0.8], [6, 0.9]' [7, 1], [8, IJ} 

Fuzzy Properties 

Let /-LA, /-LB and /-Lc be the fuzzy sets in the universal space X, then the 

following properties arc satisfied by the fuzzy sets: 

Identity: 

Idempotence: 

/-LA(X) U /-L0(X) = max (/-LA (x), /-L0(X)) = /-LA(X) 

/-LA (x) n /-L U(X) = min (/-LA (X ), /-L u(x)) = /-LA (x) 

Commutativity: 
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Associativity: 

= (J.LA(X) U J.LB(X)) U J.LC(X) 

J.LA(X) n (J.LB(X) n J.Lc(X)) = min{J.LA(X), J.LB(X), J.Lc(X)} 

= (J.LA(X) n J.LB(X)) n J.Lc(X) 

Distributivity: 

= max{min{J.LA(X), J.LB (X)} , min{J.LA(X), J.Lc(X)} 

= (J.LA(X) n J.LB(X)) U (J.LA(X) n J.Lc(X)) 

J.LA(X) U (J.LB(X) n J.LC(X)) = maX{J.LA(X) , min{J.LB(X), J.Lc(X)} 

= min{ maX{J.LA(X), J.LB(X)} , maX{J.LA (x), J.LC(X)} 

= (J.LA(X) U J.LB(X)) n (J.LA(X) U J.Lc(X)) 

1.5 Fuzzy Relations 

Crisp Relations 

Let A and B be two nonempty crisp sets in the universal spaces X and Y. 

The Cartesian product X x Y is defined as the set of all ordered pairs (x, y) 
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of clements where x is in X am! y is in Y. The Cartesian product is defined 

as X x Y = {(x,y) E X x Ylx E X,y E Y}. It should be noted that 

Xx Y -=l Yxx. 

Example 1.5.1 Let X = {al,a2,a3 } and Y = {bl ,b2} then X x Y will 

be represented as X x Y = {(ail bl ) , (ai, b2), (a2 , bd, (a2, b2), (a3, bl ) , (a3, b2)}. 

Suppose R is a subset of X x Y. 

if (x,y) E R, 

if (x,y) ~ R . 

This membership function maps X x Y to set {O, I} taking 1 on Rand 0 on 

outside of R. 

J.!n: X x Y -t {O, l} . 

Definition 1.5.1 Binary Relation: Let X and Y be two non-empty sets. 

R is a binary relation on X x Y if and only if R = {(x, y) lx E X , y E Y}. 

There are several ways of representing the binary relations, namely biparti­

graph, coordinate diagram, matrix and directed graph (Digraph). 

Below we have used matrix to represent the relations: 

R bl b2 b3 

al 1 0 0 

a2 0 1 0 

a3 1 0 1 

a4 0 0 1 
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Fuzzy Relations 

Fuzzy relations are very important because they describe interactions be­

tween variables [1]. Relations are used to compare the degree to which two 

variables or elements belong to a set . For example: 

• x is older than y 

• x is much larger than y 

• The product of x and Y is approximately 16 

(Ages) 

(Numbers) 

(Numbers) 

Fuzzy relations offer the capability to capture the uncertainty and vague­

ness in relations between sets and elements of a set [13]. A fuzzy relation 

represents the degree of presence or absence of association, interaction or 

interconnectedness between the elements of two or more sets [3]. 

Definition 1.5.2 (Chakraborty [13/) Let X and Y be two universe oj dis­

course. A Juzzy relation R (x, y) is a Juzzy set in the product space X x Y i.e., 

it is a Juzzy subset oj X x Y and is characterized by the membership Junction 

IlR(X, y). That is: 

R(x, y) = {(( x, y), IlR( X, y))I(x, y) E X x Y}. 

Example 1.5.2 The Juzzy relation onX = {XI,X2,X3} andY = {YI,Y2,Y3} 

is given by 

R = {((Xl, yd , 0) , ((Xl, Y2) , 0.1), ((X l, Y3), 0.2), 

((X2, yd , 0.7) , ((X2, Y2) , 0.2) , ((X2, Y3), 0.3), 

((X3, Yl), 1) , ((X3, Y2), 0.6), ((X3, Y3), 0.2)} 
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We can simply represent the above example in matrix form by 

R YI Y2 Y3 

Xl 0 0.1 0.2 

X2 0.7 0.2 0.3 

X3 1 0.6 0.2 

We notice that the main difference between the classical crisp relations and 

fuzzy relations is that crisp relation only focuses on the association of two or 

more elements in a dichotomous way, on the other hand fuzzy relation focus 

on the degree at which two or more are associated in the set. 

A fuzzy relation R is a mapping from the Cartesian space X x Y to the interval 

[0, 1], where the strength of the mapping is expressed by the membership 

function of the relation J.ln(x, y) 

J.ln : X x Y --+ [0,1]' 

Thus, the fuzzy relation R can be expressed as: 

R = {((x, V), J.ln(x, y)) IO ::; J.ln(x, y) ::; 1, X E X, Y E Y}. 

A fuzzy binary relation on X and Y is a fuzzy subset R on X x Y. Our 

interest in this section is in the case in which Y = X. Thus, by a fuzzy 

relation, we mean a fuzzy binary relation given by R : X x X --+ U [40]. 

Example 1.5.3 A binary fuzzy relation on U = {1 , 2, 3}, called "approxi­

mately equal" can be defined as 
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R(l, 1) = R(2,2) = R(3, 3) = 1 

R(1,2) = R(2, 1) = R(2, 3) = R(3, 2) = 0.8 

R(1 ,3) = R(3 , 1) = 0.3 

The membership function of R is given by 

1 if x = y, 

R(x, y) = 0.8 if Ix - yl = 1, 

0.3 if Ix - yl = 2. 

In matrix notation it can be l-epresented as 

R Yl Y2 Y3 

Xl 1 0.8 0.3 

X2 0.8 1 0.8 

X3 0.3 0.8 1 

Definit ion 1.5.3 The notation of the fuzzy relation on X x Y is R or R(x, 

y) and it is defined as the set 

R = {((x,y),JtR(x ,y))I(x,y) E X x Y,JtR(X ,y) E [0, I]}, 

where JtR(X, y) is a function of two variables called the membership function . 

18 



The three projections that are associated with fuzzy relations arc defined as 

follows: 

1) First Projection of R: 

R(I) = {(x ) , f.L~ )(x,y)} = {(( x) ,maxf.LR(x,y)) I(x, y) E X x Y}. 
y 

2) Second Projection of R: 

R(2) = {(Y),f.L~)(x,y)} = {((y), maxf.LR(x,y))I (x, y) E X x Y}. 
x 

3) Total Projection of R: 

RT = maxmax{f.LR(x,y)l(x,y) E X x Y}. 
x y 

Note that in all these three expressions maxy means max with respect to 

Y while x is considered fixed whereas maxx means max with respect to X 

while y is considered fixed. 

Example 1.5.4 An example of a fuzzy projection is the Fuzzy Relation R 

together with the First, Second and Total Projection of R is given by 

R YI Y2 Y3 Y4 R(! ) 

XI 0 0.1 0.2 0.5 0.5 

X2 0.7 0 2 0. 3 0.6 0.7 

X3 1 1 0. 2 0.8 1 

R(2) 1 1 0.3 0.8 
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From the given example our R(T) will be the combination of R(1) and R (2) as 

follows: 

R(l) = {0.5, 0.7, 1.0} 

R (2) = {1.0, 1.0,0.3, 0.8} . 

Operations on Fuzzy Relations 

Let Rand S be the fuzzy relations on X x Y. The following operations exist: 

1. Union of Relations 

V(X,Y)EXxY 

itnus(x, y) = max[itn(x, V), its(x, y)] 

= itn(x , y) V its(x, y) 

2. Intersection 

V(x,Y)E XxY 

itRns(x, y) = min[itn(x, V), its(x, y)] 

= itn(x, y) II its(x, y) 

3. Complement 

V(x,y) E X x Y 

it'R(x, y) = 1 - itn(x , y) 

4. Inverse relation 

V(x,y) E X x Y 
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J1il - J (Y,X ) = J1il(X,y), 

5. Composition: In order to define composit ion, the following definition is 

required: 

Definition 1.5.4 {Murali, (40j) Suppose Rand Q are two Juzzy relations on 

X. Then their composition, denoted by R 0 Q is defined as, Jor x, z E X 

(R 0 Q)(x, z) = V{R(x ,y) /\ Q(y , z)ly EX}, 

Example 1.5.5 Given the Juzzy sets Mil and Ms , we show the operations 

oj union, intersection, complement and inverse relation below: 

Mil Yl Y2 Y3 

Xl 0.3 O. 7 0.2 

X2 0.9 0.1 0·4 

X3 0.2 0.8 0.0 

Ms Yl Y2 Y3 

Xl 0.2 O. 7 0.5 

X2 0.8 0.0 1.0 

X3 0.6 O. 7 0.1 

Milns Yl Y2 Y3 

Xl 0.2 O. 7 0.2 

X2 0.8 0.0 0·4 

X3 0.2 O. 7 0.0 
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Mnus YI Y2 Y3 

Xl 0.3 O. 7 0.5 

X2 0.9 0.1 1.0 

X3 0.6 0.8 0.1 

Mn, YI Y2 Y3 

X l 0.7 0.3 08 

X2 0.1 0.9 0.6 

Xl 0.8 0.2 1.0 

Example 1.5 .6 Given the fuzzy sets Rand Q, we show the operation of 

composition relation below: 

R YI Y2 Y3 Y4 

Xl 0.3 0.7 0.2 0.2 

X2 0.9 0.1 0·4 0.8 

X3 0.2 0.8 0.0 0.6 

Q YI Y2 Y3 

X l O. 7 0.5 0.3 

X2 0.0 1.0 0.8 

X3 0.1 0.2 0.7 

X4 0.1 0.9 .06 
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RoQ YI Y2 Y3 

XI 0.3 0.3 0.7 

X2 0.7 0.8 0.6 

X3 0.2 0.8 0.8 

In particular if R = Q then (R 0 R) = V{R(x, y) 1\ R(y, z )}. If R 0 R = R 

then we say R is transitive i.e. R(x, z) = V{R(x , y ) 1\ R(y, z)ly E X}. 

Definition 1.5.5 A fuzzy relation R on X is said to be reflexive if R(x, x) 

= 1 for all x E X and said to be symmetric if R(x, y) = R(y, x) for all 

X,y E X. 

A fuzzy relation on U which is reflexive, symmetric and transitive is called 

a fuzzy equivalence relation on U or sometimes similarity relation on U. 

There is an extensive literature on both theoretical and practical aspects of 

the fuzzy equivalence relation. 

1.6 Fuzzy Numbers 

In order to discuss the fuzzy numbers, we recall the following. First, scalars 

are well-known or mathematically defined integers and real numbers. Second, 

intervals are numbers whose values are not known with certainty but about 

which bounds can be established. Finally, fuzzy numbers are numbers built 

on uncertainty for which, in addition to knowing a range of possible values, 
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one can say that some values are more plausible or "more possible" than 

others. We need to define a normal set and convex set in order to introduce 

fuzzy numbers. These sets are defined in the following way. 

Definition 1.6.1 If Y is a normal set containing X, then it must contain 

the conjugates of every element of X. 

Definition 1.6.2 A set Z in Rn is said to be convex if for each x, y E Z, 

the line segment AX + (1 - A)y for A E (0,1) belongs to Z. 

Panel (a) of Figure 1.1 depicts a convex set whereas a non-convex set with a 

line segment outside the set is depicted in Panel (b) of Figure 1.1. 

Definition 1.6.3 {Bansal (2j) A fuzzy set A, defined on the universal set of 

IR is said to be a fuzzy number if its membership function has the following 

characteristics: 

1. A is normal. 

2. A is convex. 

(a) Panel A (b) Panel B 

Figure 1.4: Convex and non-convex sets 
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3. There should be exactly one x E lR with membership function that is equal 

to one, f.1.A(X) = 1. 

4. The membership function /LA(X) , x E lR is at least piecewise continuous. 

Definition 1.6.4 (Gao (24}J A support of a fuzzy number A is an interval 

on lR denoted by 

suppA = {X If.1.A(X) ~ a,x E lR}, 

if its membership funct ion f.1.A(X) is continuous on real-valued and x is called 

a mean value of the fuzzy number, if and only if f.1.A(X) = 1. 

Operations on Fuzzy Numbers 

As we have learnt from classical set theory that to combine two things we 

need an operation between them, the same principle is practiced with fuzzy 

numbers. The principle that is applied in extending the classical operators 

(division, substraction) to their fuzzy counterparts, such that we can also 

handle intermediate degrees of membership is called the extension principle. 

Suppose we have two fuzzy numbers A and B, then the basic fuzzy arithmetics 

are: 

1. Fuzzy addition 

f.1.A EB B(X) = maxy ,zEIII{min{f.1.A(Y),f.1.B(Z)}ly + z = x} for all x E lR 

2. Fuzzy difference 

f.1.AeB(X) = maxy,zEnI{min{f.1.A(y),f.1.B(z)}ly - z = x} for all x E lR 

3. Fuzzy product 

f.1.A®B(X) = maxy ,zEnI{min{f.1.A(y),jI'B(z)}lyz = x} for all x E lR 
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4. Quotient of fuzzy numbers 

!J.A>B(X) = maXy,zElll{min{!J.A(Y), !J.B(z)}l~ = x, z of- O} for all x E IR 

Unlike other fuzzy arithmetics, the division operator has some restrictions. 

The denominator need not to be equal to zero, therefore from the above 

equation of quotient of fuzzy numbers we assume that 0 if- max(E) , where 

B is a divisors set. 

Types of Fuzzy Numbers 

There are different kinds of fuzzy numbers that exists namely Gaussian, tri­

angular, sine, bell shape, exponential , trapezoidal fuzzy numbers and so on. 

In our study we will only discuss triangular fuzzy numbers and trapezoidal 

fuzzy numbers. 

A fuzzy number A = (al> am, a2) is said to be a triangular fuzzy number 

(TFN) if its membership function is in this form: 

~ for a1 ::; x ::; am, 
am-al 

!J.A(X) = ..E..2..=!£... for am ::; x ::; a2, (1.3) 
a2-a m 

0 otherwise, 

where [a1' a2] is the supporting interval and the point am is the peak. 

In some applications there is a point am E (a1 ' a2) which is located in the 

middle of the supporting interval, i.e am = a'ta, [7]. Therefore substituting 

the value of am into Equation (1. 3) yields 
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Figure 1.5: Triangular Fuzzy Number 

Source: Bojadziev, 2007 

2 x-a, 
U2 - Ql 

for a < x < a, +a, 
1 - - 2 ) 

fLA(X) = 2 a2 - X 

Q2 - QI 
for a, +a, < X < a 2 - - 2, 

0 otherwise. 

Then Equation (1.4) is called a central triangular fuzzy number. 

(1.4) 

Equation 1.3 and Equation 1.4 are depicted in Figure 1.1 and 1.2, respec­

tively. 

A triangular fuzzy number is also known as linear fuzzy number, simply 

because of its linear type membership function that it possess; due to this 

characteristic TFN is widely used. Three important properties of the arith­

metic of the triangular fuzzy numbers are: 

1. The sum or difference of t riangular fuzzy numbers gives us a triangular 

fuzzy number. 
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Figure 1.6: Central Triangular Fuzzy Number 

Source: Bojadziev, 2007 

2. The product or quotient of triangular fuzzy numbers does not yield 

triangular fuzzy numbers. 

3. Max or min operations do not yield triangular fuzzy numbers. 

Alpha-cuts 

The classical set A"" called alpha-cut set, is the set of elements whose degree 

of membership in A is no less than a. It is defined as: 

Aa = {x E XIJ.tA(X) 2: a }, 

The classical set A*a is called strong alpha-cut set. It is defined as: 
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The alpha-cut operation is also applied at the fuzzy numbers. Consider two 

triangular fuzzy numbers k = (a, b, c) and S = (d, e, f) from which we 

obtain the following operations: 

k ffi S = (a + d, b + e, c + f) 

k e S = (a - f, b - e, c - d) 

Kc, = [( b - ala + a, (b - c)a + c] 

S'" = [(e - d)a + d, (e - f) a + f] 

Example 1.6.1 Considerthefollowing example of two triangular fuzzy num­

bers that are defined as fo llows: 

"!2 for -2 < x ::; 2, 

K (x) = 53" for 2 < x ::; 5, 

o otherwise. 

";1 for 1 < x ::; 3, 

S(x) = 5;" for 3 < x ::; 5, 

o otherwise. 

Then, their alpha-cuts are: 

K", = [4a - 2,5 - 3a] for a E (0, 1] 
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S'" = [2a + 1,5 - 2aJ for a E (O, l J 

(K", + S"') = [6a - 1, 10 - 5aJ for a E (0, 1J 

(K", - S"') = [6a - 7,4 - aJ for a E (0, 1J 

(K", * S"') = [-8a2 + 24a - 10, 6a2 
- 25a + 25J for a E (0,0.5J 

= [8a2 
- 2, 6a2 

- 25a + 25J for a E (0.5, 1J 

K", 4a - 2 5 - 3a 
(-) = [ , J for a E (0,0.5J 

S'" 20< + 1 20< + 1 
4a - 2 5 - 3a 

= [ , J for a E (0.5, 1J 
5-2a 2a+1 

The resulting fuzzy numbers are: 

xt l for - 1 < x :5. 5, 

(K", + S"')(x) = 105x for 5 < x :5. 10, 

o otherwise. 

xt7 for- 7 <x:5. - 1, 

(K", - Sa)(x) = 4 - x for -1 < x :5. 4, 

o otherwise. 

Definition 1.6.5 {Bansal (2J) A fuzzy set A = (a, b, c, d) is said to be a 

trapezoidal fuzzy number if its membership function is given by, where a :5. 

b:5.c:5.d 

x-a for a :5. x :5. b, b-a 

1 for b :5. x :5. C, 
/lA(X) = 

d-x 
d-c for c :5. x :5. d, 

(1.5) 

0 otherwise. 
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Figure 1.7: Trapezoidal FUzzy Number 

Source: Bojadziev, 2007 

Equation 1.5 is depicted in Figure 1.3. 

Definition 1.6.6 The equality oj two trapezoidaljuzzy numbers k = (a, b, c, d) 

and S = (e, j, g, h) exists ij all the elements are equal component-wise, i.e. a 

= e, b = j, c = g and d = h. 

The arithmetic operations for two trapezoidal fuzzy numbers k = (a, b, c, d) 

and S = (e,J, g , h) are: 

1. Fuzzy addition 

k ff! S = (a, b, c, d) ff! (e, j, g, h) = (a + e, b + j, c + g, d + h). 

2. Fuzzy subtraction 

k e S = (a, b, c, d) e (e , j, g, h) = (a - h, b - g, c - j, d - e). 

3. Fuzzy multiplication 

k <8> S = (a, b, c, d) <8> (e, j , g, h) ~ (ae , bj, cg, dh). 
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Chapter 2 

Real Options Theory 

In order to estimate the costs associated with deferring the decommissioning 

of the nuclear plant in question, the value of a real option must be determined. 

Real option valuation (ROV) is based on the observation that the possibilities 

financial options give their holders, resemble the possibilities to invest in 

real investments as well as those found within real investments [38]. ROV 

is intended to supplement, rather than replace, traditional capital project 

valuation methods. 

The methods that have been introduced when pricing financial options arc 

used when valuing real options. Since traditional capital project valuation 

methods were initially derived for use in pricing financial options, it is nec­

essary to consider the difference between real and financial options. As men­

tioned earlier, real options are related to financial options and this relation 

will be explained in Section 2.2 and Section 2.3 of this chapter. Note that 

the differences between real options and financial options are that "real" as-
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sets are considered in the case of the former and real options are "valued" 

whereas financial options are "priced" . In addition, real options can be used 

in valuing projects that have a long life-span (decades) but financial options ' 

life-spans are mostly restricted to periods lasting less than a year [43J . 

Given that the real option valuation method is considered superior to tra­

ditional capital project valuation methods we first explain these traditional 

methods (in Section 2.1) which include Net Present Value (NPV), Payback 

Period (PP), Accounting Rate of Return (ARR) and Internal Rate of Re­

turn (IRR) . The superioty of the real option approach compared to these 

traditional methods arises from the fact that it accommodates managerial 

flexibility and uncertainty. 

We will discuss the most common financial option pricing methods which are 

most often applied in the real options context. These methods include the 

Binomial option pricing model and the Black-Scholes model. 

2.1 Traditional Capital Project Valuation Meth­

ods 

We now briefly describe traditional capital project valuation methods. The 

Payback Period method assumes that every capital project must pay for 

itself at the end of a certain period of time. That capital should be obtained 

from additional earnings generated from the capital assets. When managers 

decide whether to invest in the project, the payback period should be less 

than the one specified by the management. This method is often used by 
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smaller companies, whereas larger companies would prefer to use the methods 

discussed below. 

The Accounting Rate of Return (ARR) mainly focuses on the returns 

or earnings from the investment over the whole life of the project. When 

management considers multiple projects, the ARR method is used to rank 

projects such that they choose the project yielding the greatest rate of return. 

One advantage of the ARR is that it can be easily understood and computed. 

Unlike the other valuation methods discussed above, the ARR is based on 

accounting numbers, rather than on cash flows which is considered to be a 

disadvantage [14]. 

Net Present Value (NPV) is the difference between the present value of 

a project's expected after-tax operating cash flows and the present value of 

its expected after-tax investment expenditures. 

Managers using this method must predict the cash flow profiles during the 

life of a project. After that they should discount the net cash flow profile 

using an appropriate rate of return [26]. It is useful to consider the NPV to 

be the present value of all cash flows: 

NPV= ~ NCFt 
20 (1+ k)" 

(2.1) 

where NCF, is Net Cash Flow! in period t where t = 1,2,3,···, n, n is the 

project's estimated life and k is the cost of capital. 

To apply Equation 2.1 , the cash flow of the project should be known at the 

beginning of the project and it is expected to remain constant until the end 

of the project. 

1 Cash inflows - Cash outflows. 
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If NPV is positive (negative), the project must be selected (rejected) because 

it will augment (deplete) a company's capital. NPV is the most commonly 

used method for investment appraisal; however it has some flaws that affect 

its accuracy. Firstly, it excludes the uncertainties that arise during the life of 

a project. It is well-known that the market conditions are sometimes volatile, 

thus affecting the profitability. Secondly, it omits the presence of decision­

makers or managers who are considered slow to react (if they do at all) to 

effect of uncertainty on the investment. For example, consider the estimated 

wage rates of the nuclear industry employees. Such employees may demand 

better wages. If such demands are accepted by managers, then the cash flow 

profile of that project would be affected. 

Example 2.1.1 Consider a capital project 's valuation. The research and 

development team of a nuclear company has developed a new nuclear power 

plant that can be used to generate electricity. Sales of the electricity generated 

from this nuclear power plant would be R600 000 per year. According to the 

plant manager, the existing production line will be modified at a cost of R400 

000. It has been estimated that the cost of producing electricity will be about 

R44 a 000 per year. Production is expected to occur for five years and the 

specialized equipment necessary for the project has an estimated salvage value 

of R60 000. The appropriate cost of capital is 15%. Using Equation 2.1 and 

the foregoing information we obtain: 

N PV = -400000 160000 160000 . . . 160000 220000 = R 6 0 
+ 1.15 + (1.15)2 + + (1.15)4 + (115)5 1 618 

The NPV for the nuclear power plant project is therefore R166 180. Manage­

ment will invest in this project because its NPV is positive. In other words, 
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the project will add value to the company. 

Internal rate of return (IRR) is similar to NPV in the sense that it also 

uses a decision rule. That is, if IRR is positive then the project is accepted 

and when it is negative the project is rejected. The only difference between 

IRR and NPV is the way we use the data. To calculate IRR, the NPV 

should be known and it should be equal to zero. If the NPV is not equal to 

zero, then it must be adjusted by using the discount rate. Should NPV be 

positive then discount rate applied must be greater until NPV becomes zero. 

Similarly, if it is negative, the rate of discount should be cut until NPV equals 

to zero. IRR and NPV are both discounted cash flow based methods and 

they do possess the same characteristics. While theoretically sound, there 

are unfortunately two major problems associated with the Discounted Cash 

Flow (DCF) based approaches. "First, the expected future cash flows that are 

estimated typically do not properly reflect the flexibility that exists in the 

investment and operation of the assets producing those cash flows. Second, 

the cash flows at different points in time typically require different discount 

rates to appropriately reflect their risk. Using an average or blended discount 

rate for all cash flows, as it is typically done, may lead to significant error in 

the valuation of cash flows" [50J. 

2.2 Financial Options 

In this section we will discuss financial options in order to understand the 

related concept of real options. 
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A standard European-style call (put) option on an underlying asset with 

price So confers its holder the right without the obligation to buy (sell) this 

asset on a specific date T at a specific price X called the exercise price where 

X E R+. 

Instead of holding such an option an economic agent can write (sell) it in 

what is referred to as an uncovered option trade. However, institutional 

rather retail traders do this given that the latter traders cannot maintain 

margin requirements. 

Note that an American-style option can be exercised at any time before its 

expiry, unlike the European-style option. 

Options would not exist if the future were known wi th certainty. In a risky 

environment, options remunerate the risk of an uncertain future [52]. Thus 

the reward for taking risk is the foundation of an option. Higham [27] states 

that options are extremely attractive to investors, both for speculation and 

hedging. 

There is a systematic way to determine how much they are worth, thus they 

can be bought and sold with some confidence. Intrinsic value is the difference 

obtained between the price of the underlying asset and the predetermined 

price which is also called strike or exercise price with the following scenarios 

being possible: 

• out-of-the-money: when the price of the underlying asset is greater 

than the exercise price . 

• at-the-money: when the price of the underlying asset is equal to the 

exercise price. 
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Close Strike Jan June Dec 

R446.49 R412 .72 R36.70 R46.90 R56.28 

R446.49 R450.24 R5.93 R20.19 R3l.89 

R446 .49 R487.76 R3.81 R7.51 R15.01 

Table 2.1: Values of Call Option 

• in-the-money: when the price of the underlying asset is smaller than 

the exercise price. 

An option price is influenced by the two components, namely the intrinsic 

value and time value. The intrinsic value depends on the relationship between 

exercise price and the value of the underlying asset. On the other hand, the 

time value of an option is a function of the underlying asset's volatility, or risk 

(u); the current level of interest rate (r); and the option's maturity, or time 

to expiration (T) [15J. The time value can be simply obtained by subtracting 

the intrinsic value from the option price. To understand the aforementioned 

concepts, consider Table 2.l. 

The salient facts deduced from Table 2.1 are as follows. First, the option 

is in the money when the strike price is R412.72 and that value is R33.77. 

The value can be obtained by calculating the difference between the close 

price and the strike price. Second, between January and December the price 

of the call option increases from R36.70 to R56.80. Thus, early exercise is 

sub-optimal if the option is American-style. Finally, greater strike prices are 

not associated with a significant increase of call option prices compared to 

the less strike prices. Notice that the value for the option at strike R412.72 

has decreased to R3.81 at the strike price of R487.76. 
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The parameters used to price options are as follows: 

Value of the underlying asset (So): the current price of an asset when 

the right of the option has been sold or bought. 

Exercise price (X) : pre-determined price on which the option contract is 

struck. 

Time to maturity (T): the predetermined time for exercising an option. 

Volatility a: is the degree of fluctuation (rate of change) in the price of the 

underlying asset and is expressed in terms of standard deviation [35]. 

Variable Call option value Put option value 

If the value of the underlying asset increases then Increase Decrease 

If exercise price is greater then Less Greater 

If the volatility is greater then Greater Greater 

If time to maturity is longer then Greater Less 

Call option payoff function (80 - X)+ 

Put option payoff fun ction (X - 80 )+ 

Table 2.2: Parameters for option valuation 

From Table 2.2, when the variables considered change, there are several ef­

fects. Suppose the state of the spot price or value of the underlying asset 

is increased then call option value will also increase but the put option 's 

value will decrease. The opposite of what happened before prevails when the 

exercise price increases in that call option value decreases. Waiting much 

longer before exercising an American call option increases the call option's 

value whereas the American put option's value decreases. The value of a 

call option increases with the risk-free interest rate, while the value of a put 
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option is an inverse function of the risk-free interest rate [52J. 

2.2.1 Financial Option Pricing Methods 

The price of a financial option can be obtained by the application of the 

techniques that appear on Table 2.3. 

Tech nique Specific Met hod P rominent Studies 

CJ~ form solution, usin~ Bl&ek-Schole5 and ot her simitar equat ions Black and Scholes [51, Merton [37J. 

Partial d if!'p.rf!nl ial "'IIUl.tions AnillyticII1 11PIlroximations 

Numerical methods (fl., linit~ tliffrrelK'!' method) 

Geske and John$Oll 1251. Bunch and Johnson [II ]. 

Brennan and Schwo\rtz lID]. 

Simulationi Monte C$rlo Boyle ill). Lonl\,ltaff and Schwam [321. 

Lanices 

Binomial 

Tli nomia l 

Muhinomilll 

Cox, Ross lind Ruhinijlein /18J. 

Pal'kinson [44), Boyle [8]. 

h:amrad I!.nd Ritchk~n [29J. 

Table 2.3 : Summary of financial option pricing methods 

Source: Enevoldse and Nordbaek, 2011 

Binomial Lattice Model Financial Option Applications 

There are single-step and mult i-steps binomial option pricing models , we 

will start first by discussing the simple single-step method. Suppose that t he 

underlying asset 's price (So) increases by an "up" factor 

u = er ../6i (2.2) 

where 8t is t he chosen time interval, or decreases by a "down" factor 

d = ~, 
u 

(2.3) 

then the designated prices will be Su and Sd respectively. The call option 's 

payoff when So increases is Cu = (Su - X )+ and when So decreases is Cd = 
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(Sd - X)+' Note that payoffs have been cxpresssed in the form max(a, 0) = 

a+ for some real-valued number a. 

The single period binomial tree representing these concepts is: 

c" = (8" - .X) ,. 

('0 
~ 

~ 

(a) Panel A (b) Panel B 

Figure 2.1: Simple Binomial Pricing Model 

Panel (a) and (b) depicts the movement of underlying asset and call 

option's value, respectively. 

Source: Clarke, 2000 

During two time periods (t = 0 and t = 1), which are equivalent to one step 

of a binomial tree we can derive the risk-neutral probabilities which are the 

probabilities on the set of outcomes of the experiment that result in all bets 

being fair [45]. The risk-neutral probability P,,(Pd ) represents the increase 

(decrease) in So to Su(Sd)' 

There are two types of interest rate compounding methods, namely, dis­

crete and continuous compounding. Risk-neutral probabilities are deduced 

by assuming that discrete compounding is represented by (1 + r) whereas 

continuous compounding is represented by er
. 
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The price of an option Co is determined by the following expression: 

(2.4) 

where r represents the risk-free interest rate, P u and P d are risk-neutral 

probabilities, which are: 
P

u 
= (1 + r) - d 

u-d 

P
d 

= (1 +r) - u 
d-u 

(2.5) 

(2.6) 

Thus, the present value of the call option would be deduced from the dis­

counted option values Clu and Cld with risk-neutral probabilities. 

Equation (2.5) and Equation (2.6) were derived by solving the following 

system of equations: 

To obtain the solutions, we need to apply Cramer's Rule by arranging the 

coefficients of the foregoing system in the following matrix: 

where the determinant of A is denoted by det(A) = ~~~. Then: 
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I d t(A ) - d-(l+r) Th Po _ det (A,) _ d- (l+r ) I+r _ d-(l+r ) 
W lere e 1 - l+r' US, U - det(A) - l+r . d- u - d- u 

and: 

h d t(A) (I+r)-u Th Po det(A,) _ (I+r)-u I+r _ (I+r) - u 
w ere e 2 = I+r' en d = det(A) - I+r . d-u - d- u . 

Note that the equivalent risk-neutral probabilities using continuous com­

pounding are 
er - d 

Pu = - --:-
u-d 

(2.7) 

(2.8) 

From Equations (2.4)-(2.6) we have observed that the jumping factors u and 

d play an important role in the value of the call option. Due to uncertainty 

of the underlying volatility, it is not trivial to estimate the values of these 

factors. 

To find the value of an opt ion we compute the values of the tree backward . 

The single period binomial model can be extended to consider multiple time 

periods. After n time periods, the call option's price will be 

(2.9) 

where the gross return is R = 1 + r, n is the number of periods in the binomial 

tree, k is the number of upward price movements and p is the risk-neutral 

probability. 
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Sdl-u 

Figure 2.2: Multi-Period Binomial Model 
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Suppose that we have a timeline of three years and we divide it equally, then 

our binomial tree will have three different times. To understand the binomial 

tree, we have depicted it in Figure 2.2. 

The diagram is divided into three steps, each step lasts for a year . From t 

= 0 at node So the value of an asset can either go up or down, if it goes 

down we will get a value that is influenced by probability d and it will be 

Sd' Similarly, if the value goes up by the probability u, then we will obtain 

the node which is Su' From S" there are again chances that the value of 

underlying asset might increase by u or decrease by d, then Su' and Sud will 

be obtained, respectively. We notice that from t = 2 the trees carry the 

special feature of recombining that cuts the number of computations. We 

can observe that node 5 can be obtained either when the value from node 2 

decreases or when the one from node 3 increases. 

Black-Scholes Model: Financial Option Applications 

Black-Scholes [5] and Merton [37] give closed-form solutions to models as­

signing a price to the European-style call option only. These solutions are 

equivalent to that yielded by the binomial model. The Black-Scholes Euro­

pean call option price is: 

(2 .10) 

where So is the value of the underlying asset , X is the exercise price, r is the 

risk-free interest rate, T is the time to maturity, (I is the volatility and N(d;) 
[In( §!x )+(r+ ',' )TJ and is the cumulative normal distribution. Note that d1 = ='""-'-'-''--'.r..;....:L-~ uVT 
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Black and Scholes [5J assume (according to Wilmott [54]) that So follows a 

lognormal random walk, r is a known function of time, no cash dividends 

are paid on the underlying, delta hedging is done continously, there are no 

transaction costs and there are no arbitrage opportunities. 

2.3 Real Options 

A real option can be defined in the same way as in Definition 2.2.1 except 

that a financial asset is replaced by a real asset and therefore the variables 

in Definition 2.2.1 are replaced by the capital project counterparts as will 

be discussed later. Managers of companies make decisions based on the cir­

cumstances at that moment or the consequences that might arise. Managers 

would prefer to take a decision that will benefit the company, by acting to 

counteract any uncertainty that may prevail during the life of a project. 

There are different options that management can take, namely option to 

wait , contract, expand, abandon, shut down, option to switch (e.g. outputs 

or inputs) and multiple interacting options. 

2.3.1 Basic Concepts 

Real option analysis is useful when a contingent investment decision exists; 

when there are lot of uncertainties and the best option would be to wait till 

more information has been found; when the value seems to be captured in 

possibilities for future growth options rather than current cash flow; if there is 

a large uncertainty that will lead to consideration of management flexibility. 
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Variable Value of real option 

Increase in the PV of the project Increase 

A higher investment cost Decrease 

A longer time to maturity Increase 

Increase in uncertainity (volatility of cash flows) Increase 

Increase in risk free rate Increase 

Increase in cash flow lost Decrease 

Table 2.4: The impact of changes in option variables on the option's value 

Source: Vishwanath, 2009 

Real option analysis is the only method that can be able to value investments 

in flexibility; and if during the life of the project there are updates and 

strategy corrections, the real options approach would be relevant [47]. 

If the owner decides to exercise that option then that simply means he has 

lost the option and gained an asset. The amount of an asset is called the 

strike price [19]. A real option's holder can, for a definite period, either 

decides for or against making an investment decision, without being obliged 

to do so initially [12]. For example, suppose a nuclear company has bought 

a design for building a plant. Then it has a right, without the obligation 

to employ the design by constructing the nuclear plant. If the management 

of that nuclear company decides to implement that design work, then it has 

gained an option that is not available to rival companies. In this example, 

the strike price would be the cost of building the plant. 
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2.3.2 Types of Real Options 

The different types of options discussed below are used depending on the 

scenario confronting decision-makers. 

Option to wait 

The option to wait, also called the option to defer , is embedded in virtu­

ally every project [30J. Decision-makers would prefer to wait if the market 

conditions at that moment are not favourable or they think that it is worth 

waiting to exercise the option mainly because at a later stage it will bring 

more income compared to if it can be exercised at that stage. Sometimes 

decision-makers are willing to wait knowing that the market conditions would 

stabilize at a later stage. Thus, the company's performance would barely be 

affected if they opt to wait. 

Option to abandon 

The decision to choose this option is normally introduced after valuation 

of the project where it has been realized that during the life of project the 

company will incur losses. Thus, income will be limited or they will waste 

money and time by continuing with the project. Market conditions would be 

declining severely in such circumstances. Due to such conditions, the com­

pany's cash flow would be affected; t herefore the project should be abandoned 

because it will be useless. 

Option to expand 

The choice to expand the project could be considered if decision-makers 

realise that the choice will assist them in increasing the company's market 

share. The expansion can happen in different ways. For example, a retailer 
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may expand the company by increasing the number of branches or they might 

use internet to advertise their products. Moreover, they can introduce online 

shopping. If the retailer has issued stock, the value of such stock would 

increase if the foregoing measures succeed in generating cash flow. 

Option to contract 

Due to information or data available, decision-makers may decide to choose 

an option to contract. The project will occur at t he specified time and end 

on a specific date thereby maximising profits as opposed to continuing with 

a loss-making project for a longer period of time. 

Option to switch 

Management might decide to use different inputs to produce the same output 

or they might even decide to use a different technique to produce that output. 

That might benefit the company financially or reduce the amount of time 

used to produce the output in question. Management might also opt to 

produce output in such a way that costs of production will decrease but the 

quality of output would remain the same. 

Multiple interacting options 

During the life of a project there might exist different options that can benefit 

the company financially. The combined value of such options is slight ly 

greater than value of each individual option [46] . This arises because multiple 

options introduce more managerial flexibility compared to single options. It 

is not always possible to combine other options. For example, the option 

to defer an investment would not be combined with the option to extend or 

expand the project [31]. 
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2.3.3 Real Option Valuation Methods 

Real options can be valued anologously to financial options, with financial 

option pricing methods discussed in Table 2.3. The most common real option 

valuation methods are the binomial model and Black-Scholes formula. The 

transition from financial options to real options which is equivalent to the 

transition from financial option pricing to real option valuation occurs via a 

change in variables as demonstrated in Table 2.5. 

Financial call option 

Underlying Share or asset, (So) 

Strike price Strike price, X 

Maturity Contract maturity, T 

Uncertainty Share price uncertain 

Volatility Stock price volatili ty, (J 

Discount rate Risk-free interest rate, r 

Real option to invest in a project 

Present value of future cash flows, (So) 

Capital investment/ Present v<.l.lue of expected costs, X 

Opportun ity expires, T 

Project \'alue uncertain 

Volatility of project's expected cash flows, (J 

Risk-free interest rate, r 

Dividend rate Continuous dividend rate, 6 Leakage in value, 0 

Table 2.5: Difference between a financial option and a real option 

Source: Luerman, 1998; Boden and Ahlen, 2007; and Crundwell, 2008 

2.3.4 Applications to Real Options Theory 

We demonstrate the concept of real option valuation with the example of the 

Binomial model and Black-Scholes model. In the following binomial example, 

we will demonstrate the option to abandon. The option to abandon is 

embedded in virtually every project. This option is especially valuable where 

the net present value (NPV) is marginal but there is a great potential for 

losses [30]. 
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Example 2.3.1 OB Company generates electricity. From those initiatives 

there is a project related to the solar power and they are not sure about 

whether to implement it. This uncertainity is due to, solar power representing 

one among several techniques to produce electricity. The discounted cash flow 

analysis for the market potential on solar power shows that the present value 

of the payoff discounted at an appropriate market would be R382 million. The 

management of OB company may implement the project or sell its intellectual 

property for R248 million (known as the salvage value). The annual volatility 

is calculated to be 35% and the continuous annual riskless interest rate over 

the next five years is 5%. From the above scenario, it can be deduced that S 

= R 382 million; X = R 248 million; T = 5 years; (J = 35%; r = 5% and 8t 

= 1. Using Equation 2.2, Equation 2.3 and Equation 2.7 2 , we can calculate 

u = e0 35v1 = 1.419; d = L~19 = 0.705 and Pu = e~:'l~~~o7~~5 = 0.485 . 

Starting with the last step of the tree (Figure 2.3) we observe that the expected 

asset value for node Su' is R2198 million. This value is much greater than 

the salvage value of R248 million and since we want to maximize our return 

we would not choose to abandon the project at that stage. 

We can also observe that at node Sd' the salvage value is greater than the 

expected asset value, now the decision that would be taken at this stage is to 

sell off the asset and abandon the project. 

At the penultimate step there are some changes that we notice. The expected 

assets values are calculated using the risk-neutral probability as weights and 

that gives us the discounted weighted average of potential future option values. 

If the salvage value is greater than the computed expected asset value, the 

2We multiplied the superscript attached to the Euler's e term by vIM. 
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2198 

1549 Su' 
/2198 

1091 Su4 1091 
/ 1549~ 

769 Su3 769 S,,4d 

/ 1091 ~ / 1091 
Sd2 Su3 d 

542 ~ 769 ~ 542 ~ 769 ~ 542 

382 /' Su "--- 382 /' Su
2
d "--- 382 /' Su

3
d

2 

/' 549 "--- /' 542 "--- /' 542 
So 269 Sud 269 Su2d2 269 
405~ /396 ~ /382~ 

Sd Sd2" 190 Su2d3 

310 ~ 190 ~ 298 ~ Sud
3 

/ 269 

134 ~ 248 ~ 134 

248 

Figure 2.3: Multi-Period Binomial Model for DB Company 

All numbers are expressed in R million, numbers appearing at the top are asset values and 
numbers appearing to the bottom in bold face are option values 

option to abandon would be exercised. 
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The next example consists of the Black-Scholes formula being applied to an 

option to defer. 

Example 2.3.2 (Valuing an Oil Reserve [20]) 

Consider an offshore oil property with an estimated oil reserve of 50 million 

barrels of oil, where the present value of the development cost is R12 per barrel 

and the development lag is two years. The finn. has the rights to exploit this 

reserve for the next twenty years and the marginal valur? per barrel of oil is 

R12 per barrel currently. Once developed, the net production revenue each 

year will be 5% of the value of the reserves. The riskless rate is 8% and the 

variance is 0.03. The value of the developed reserve discounted back using 

the length of the development lag at the dividend yield is W.~g,o = R544.22, 

which is the stock price (So). The present value of development cost is R12 

x 50 = R600 million. The time to expiration of the option (T) is 20 years 

and the dividend yield (0) is 5%. Therefore the value of the oil reserve will 

be Co = 544.22e(-0.05)(20) (0.8498) - 600e(- 0.08)(20) (0.6030) = R97.09 million 

where N(dd = 0.8498 and N(d2) = 0.6030 which are computed from d1 = 
[In( 54

6
4
0

.
0
22 )+(0.08-0.05+ O.~3 )201 ~ 

--- v'D.03\12o ' = 1.0359 and d2 = 1.0359 - v 0.03V2Q = 0.2613, 

respectively. 

If development starts today, the oil will be available for sale two years from 

3Rand price per barrel - Marginal cost per barrel. 
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now. The estimated opportunity cost of this delay is the lost production rev­

enue during the delay period !20j. 
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Chapter 3 

Fuzzy Set Theoretic Real 

Option Valuation Models 

In this chapter we discuss the fuzzy set theoretic real options valuation models 

in the following way. In Section 3.1 the fuzzy risk-neutral-approximation­

based binomial models will be discussed. In Section 3.2 the Black-Scholes 

formula will also be discussed. 

As we have already discussed in the previous chapter, the NPV approach 

assumes that a stable project exits. It only favours the projects that start 

and end at a predetermined time without having any contingencies. However, 

this is not always the case. There are some contingencies that exist during the 

life of the project. For example, decision-makers would not force to start the 

project if the market conditions are unfavourable. Decision-makers can take 

a decision to postpone the starting time of the project or abandon the project 

completely; or they can also expand or extend the project when the market 
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conditions are favorable. These flcxibilities in the project.s assist decision­

makers in minimizing risk and also maximising profits. For this reason the 

flexibilities that are embedded as real options in investment projects, should 

be included in valuation. 

3.1 Fuzzy Binomial Model 

To evaluate investment projects that are embedded, the fuzzy binomial ap­

proach has been introduced by Liao and Ho [31]. The total value of the 

project can be obtained from its expanded NPV. Fuzzy numbers are used to 

estimate the parameters when the expanded NPV is estimated. Thus, this 

expanded NPV is called fuzzy expanded NPV (FENPV). Note that Liao and 

Ho [31] define expanded NPV or strategic NPV as 

Expanded NPV = Static NPV + Value of option. 

Most of the cash flow models used for financial decision making involve some 

degree of uncertainty. If the are deficiencies in the quality or quantity of data 

required for decision-making, then the decision is made based on the expert's 

knowledge of financial information. Using fuzzy set theory to rationalize the 

uncertainty, triangular fuzzy numbers are often used to test knowledge of 

profitability indices. 

3.1.1 Triangular Fuzzy Numbers 

If the jumping factors can be written as ii = [u!, U2, U3] and d = [d!, d2 , d3], 

the risk-neutral probabilities can be expressed in terms of fuzzy numbers as 
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follows : 

Therefore, the above equation can be written as: 

{ 

P"i + Pdi = 1 
U' xP . djXPdj 1 1 U'+ _ l+"r l+r-

for i = 1,2,3, Its solution is: 

(l+r)-d; 
Pui = d' Ui - i 

(3,1) 

(l+r) - ui 
Pd; = d ' 

i - Ui 
(3 ,2) 

In most cases the risk-free interest rate r and the exercise price X are clearly 

stated, thus they are crisp values, The fuzzy option values Clu and Cld are 

expressed in terms of the fuzzified jumping factors u and Ii which yields the 

fuzzy call option price: 

(3 ,3) 
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3.1.2 Trapezoidal Fuzzy Numbers 

If the trapezoidal fuzzy numbers it = lUI, U2, U3, U4] and d = [dI , d2 , d3 , d4] are 

used to represent the jumping factors of the underlying asset the risk-neutral 

probabilities can be written as: 

where Fu = [Pul, Pu2,Pu3,Pu4 ] , Fd = [Pdl,Pd2,Pd3,Pd4]' Then the following 

equations arise: 

{ 

[Pul , P u2 , P u3 , P u4 ] EB [P dl, P d2 , P d3 , P d4] = [1, 1,1,1] 

[Ul,U2,U3,U4]®[Pu l,P u 2,P,,3,Pu 4] EB [dl ,d2 ,d3,d4]O[Pdl, Pd2, Pd3 ,Pd4] = [1 1 1 1] 
l+r l+r' ) ) 

Thus: 

{ 

Pui EB P di = 1 

Uj®P"j EB di0Pdi = 1 
l +r l+r 

for i = 1, 2, 3, 4. 

The risk-neutral probabilities are approximated by the following trapezoidal 

fuzzy number: 

p. = (1 + r - d4 1 + r - d3 1 + r - d2 1 + r - dl ) 

u d' d ' d' d ' U4 - 4 U3 - 3 U2 - 2 Ul - I 
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p = (Uj - (1 + T) U2 - (1 + T) U3 - (1 + T) U4 - (1 + T) ) 

d d' d' d' d ' Uj - j U2 - 2 U3 - 3 U4 - 4 

The call option price (CO) is computed with Equation 3.3, noting that Pu 

and Pd are trapezoidal. 

3.2 Fuzzy Black-Scholes Formula 

3.2.1 Triangular Fuzzy Numbers 

Nikookar et aI. , [42] introduced a real option rule in a fuzzy setting, where 

the present values of expected cash flows and expected costs are estimated by 

triangular fuzzy numbers. This method makes it possible for decision-makers 

to estimate the present values of expected cash flows by using the triangular 

possibility distribution of the form So = [SI, Sm, Sr] . 

From the above triangular possibility distribution, Sm represents the core 

of the triangular fuzzy number So which is the most possible value of the 

present value of expected cash flows, Sr and Sl represent the greatest and 

smallest values for the present values of expected cash flows, respectively. 

Similarly, expected costs can also be estimated by the triangular possibility 

distribution which are of the form X = [Xl, X m , Xr] . 

It is obvious that the core of the triangular fuzzy number X would be repre­

sented by Xm which is the most possible value of expected costs. The greatest 

and least for expected costs are represented by Xr and Xl respectively. 
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We shall consider the values that are influenced by the volatility of the cash 

inflow and riskless interest rate. To estimate them by the triangular pos­

sibility distribution, historic data is employed. Then, R = [rt, r m, rr],.5 = 

[(l, (m, (r ] and i7 = [(T/, (T m, (T r] . The variables r m, (m and (T m represent the 

most possible values of the discount rate, risk-adjusted discount rate and the 

volatility of cash inflows lie in the interval, respectively [42]. Similarly, the 

greatest values for discount rate, volatility of cash inflow, and risk-adjusted 

discount-rate are represented by r" (Tr and (r respectively. Lastly, the small­

est values for discount rate, volatility of cash inflow and risk-adjusted discount­

rate are represented by rl, (Tl and (l. 

In most cases, the exact values needed for capital budgeting are not known 

with certainty. There are many sources of uncertainty that exist in a capital 

project. Therefore, it is imperative to consider the following variables in 

valuing a capital project. The volatility i7 of capital project's cash inflows, 

the expected costs X of a capital project, the project's expected cash flows 

So and the discount rate R. The Black-Scholes formula that was extended 

by Merton [37] is: 

where 

(3.4) 

(3.5) 
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So and u(So) denotes the possibilistic mean value and variance of the present 

value of expected cash flows, respectively. X represents the possibilistic mean 

value of expected costs. 

Considering all forms of the triangular possibility distribution, the above 

ROV equation will be expanded and expressed as: 

Using the fuzzy arithmetic operations defined in Chapter 1, Equation 3.4, 

Equation 3.5 and Equation 3.6 yields: 

FROV = [sIN(d1) 0 e- 60T - x rN(d2) 0 e- R0T , smN(d1) 

0e-J0T -xmN(d2)0e-R0T, srN(d1)0e-J®T -xtN(d2)e-R0T], 

Note that: 

2 

(ln~ + rrT - (IT + ~)T 
(Jtn ], 

In order to find the maximum of the set {Co, C\, ... , CT } the elements of the 

set must be ranked. However, the function to order FROV which is defined 

as Ct* = [ct, em, c,.] is used [12]. The probabilistic decision rule for optimal in­

vestment is now generalized in a fuzzy setting. Where the maximum deferral 

time is T , make the investment (exercise the option) at time t* for 0 ::; t* ::; 

T , for which the option Ct· attains its maximum value [42]: 
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Then 

T _ ,_ T _ 
- _ '\' CSj _ '\' CSj '\' CSj 

S, = CSo + ~ - . - CSo + ~ - . = ~ _ ., 
j=! (1 + 0)1 j=! (1 + 0)1 j='+ ! (1 + 0)1 

where CSj denotes the expected (fuzzy) cash flow at time j , J is the risk­

adjusted discount rate (or required rate of return on the project). 

Nikookar et al., [42] have employed the following function to determine the 

expected fuzzy real option values {C1, Cm, ... , Cr} of triangular form: 

where Cr, Cm and C1 are the greatest, middle and least values of the fuzzy 

real option values. 

The flaws in this method are as follows. It is unclear how the greatest values 

(Sr) and least values (Sl) for the present value of expected cash flows are 

computed. The same problem prevails in the computation of the greatest 

value (iTr) and least value (iTd for volatility of cash inflow, it is not indicated 

how they are calculated. 

3.2.2 Trapezoidal Fuzzy Numbers 

It has not been easy to express the present value of the expected cash flow as 

a single number. The Waeno research project on giga-investments has shown 

that it is possible to estimate the present value expected of the cash flow as 

a trapezoidal possibility distribution of the form So = (SI, S2, a, fJ), [12]. The 

interval [S I, S2] represents the most possible values of the present value of 
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expected cash flows and that makes the interval the core of the trapezoidal 

fuzzy number. The upward and downward potential for the present value of 

the expected cash flows are expressed as (S2 + f3) and (Sl - a) respectively. 

Similarly, to estimate the value of expected costs the trapezoidal fuzzy num­

bers X = (Xl, X2, a', ,8') are used. The interval [X l, X2] represents the most 

possible values of expected costs and it is also a core of the trapezoidal 

number X. The upward and downward potential for expected costs are rep­

resented by (X2 + In and (Xl - c() respectively. 

Thus, the formula for calculating fuzzy real option values is 

(3.7) 

where 
[In(~ + (r - 0 + ~)T] 

dl = rm ' 
avT 

(3.8) 

and E(So) denotes the possibilistic mean value of the expected cash flows 

which is computed as SI!S, + il6<>' E(X) stands for the possibilistic mean 

value of expected costs which is computed as Xl!", + (3'6<>' and a(30 ) is 

the possibilistic variance of the present value expected cash flows which is 

computed as ./(,,-81)' + (82-,,)(<>+/3) + (<>+/3)' V 4 6 24 . 

The above equation for computing fuzzy real option values can be expressed 

as 

FRO V = (sl,s2,a,,8)e- OTN(dd - (xl,x2,a',,8')e- rTN(d2), (3.9) 

= (sle - oT N(dd - X2e-rT N(d2), S2e-oT N(dd - xle-rT N(d2), ae- oT N(dl ) + 
,8' e- rT N(d2), ,8e-OT N(dd + a'e- r1'N(d2)) . 
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Chapter 4 

Empirical Analysis 

Currently, ESKOM operates two electricity-generating nuclear reactors at 

Koeberg. The construction of Koeberg's reactors began in 1976 and Unit 

1 was synchronised to the grid in 1984, with Unit 2 following suit in 1985. 

The two units have a capacity of 900MW each and Koeberg's average annual 

production is 13 668GWh [23J. Both units were originally expected to operate 

for a period of forty years. This time-frame is now being reconsidered, with 

a view to defer it by a decade (decommissioning in 2035), given that the 

Reference Technical Plan (RTP) for Koeberg Spent Fuel Management and 

Disposal is revised from time to time. In the event of deferral , the total 

period of operation would be fifty years [22J. During the assigned time­

schedule , numerous uncertaint ies will affect total operating costs. 

The first form of uncertainty relates to the actual starting time for the dis­

posal of spent fuel. If ESKOM is "allowed" to change the time-schedule for 

implementation, t hen it should also be allowed to change the timing of the 
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related investments [48]. Thus, the change in time also affects the present 

value of costs. We assume that there exists flexibility regarding timing for 

the implementation of the deep disposal of spent fuel and hence flexibility 

regarding its investment timing. Second, uncertainties that are related to 

the RTP might arise from the unexpected problems such as the delay in the 

commencement of decommissioning. Finally, there might also be changes in 

labour and material costs due to the advancement of technology. 

It can generally be expected that uncertainities in cost increase with longer 

time frames and that uncertainties will decrease with increasing accuracy and 

refinement of input data [4] . We recall that in Chapter 2 the different types 

of real options were discussed. In this study, the option to defer is relevant 

because the decision alternatives are related to investment timing. 

The data and methods that are used in our study are presented in Section 

4.1. Then in Section 4.2, we present and explain the results obtained using 

the fuzzy binomial model and fuzzy Black-Scholes formula. 

4.1 Data and Methods 

Important historic and current qualitative and quantitative information about 

Koeberg's operations are concealed by Eskom's management. Thus, variables 

relevant to the models used in this study must be estimated. These variables 

include the number of casks of Spent FUel Assemblies (SFAs) produced an­

nually, the expected annual production of SFAs till the decommissioning of 

Koeberg, Koeberg 's expected cash flow and expected costs, the risk-free in­

terest rates and the value lost over the duration of the option. 
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Note that some data SFA annual production data for 2001 - 2011 period was 

contained in Eskom's annual reports. This data was inadequate because it 

omitted relevant observations that were required for our study. Thus, we em­

ployed linear interpolation to find the historic values from the commissioning 

of Koeberg up until the year 2000, the same method was used to forecast the 

SFA's annual production from 2012 to 2035. Linear interpolation has been 

used by Lumby [34J and other researchers in estimating the missing values 

in the valuation methods. 

We were not provided with the values of Koeberg's expected cash flow and 

expected costs. However, we referred to Morgan's [39J work about nuclear 

waste disposal and plant decommissioning costs. That enabled us to estimate 

the values of Koeberg's expected cash flows and expected costs. In [39J it 

is reported that the decommissioning cost for a nuclear power plant which 

operates for a minimum period of 40 years is $0.5 billion. A typical nuclear 

power plant generates about 20 metric tons of used fuel per year and the 

average utility company's contribution per metric ton of SFAs is $277 000. 

The fuzzy binomial valuation approach and FROV using the Black-Scholes 

formula that were discussed in Section 3.1.1 and 3.2.2 repectively, will be 

used to assess a proposal to defer Koeberg's Life of Plant Plan (LOPP) from 

forty years to fifty years. 

LO PP deferral from forty years to fifty years will cause changes in the pro­

duction of spent fuel, dry storage casks, disposal canisters, transport require­

ments and costs. After the final shutdown at Koeberg, Spent Fuel Manage­

ment and Disposal (SFMD) activities will occur [22J. 

The following assumptions are being considered in this project. The total 
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number of Koeberg spent fuel assemblies (SFAs) generated over fifty years 

LOPP and to be finally disposed of, will be 3903 . The mean of the SFAs is 

73.41 per year and the standard deviation is 19.34 SFAs. Thus, the coefficient 

of variation is 0.26. After Koeberg's shutdown, the wet storage facilities will 

continue to operate for some time because the last batch of Spent Fuel (SF) 

from the reactor cyles should be allowed to cool off and there should also be 

sufficient time to transfer all the SFAs to an interim dry storage facility [22]. 

It is also assumed that the method of disposal to be used will be directly 

in a suitable deep geological repository built within the boundaries of South 

Africa, there will be no other method that will be employed [22]. 

The NPV of the direct disposal option is estimated to be R1.336 billion 

and the future cost is R7.680 billion for the period of fifty years since the 

commissioning. These values were computed as part of a study concerning 

spent nuclear fuel management options for South Africa [51]. 

The value of flexibility stems from the uncertainity of SFA production, hence 

we have to forecast the future production of SFAs. In this case, the uncer­

tainty is characterized as possibility [31]. Thus, fuzzy numbers are intro­

duced. We will employ triangular fuzzy numbers to represent the coefficient 

of variation (CV) of predicting the future SFAs production via the volatility 

of the SFAs production. Based on what has been done in [31] we estimate 

the CV to have a variation of ±30% per year. Hence, the volatility of SFA 

production will be represented by the triangular fuzzy number j3 = [(1 - 0.3) x 

0.26, 0.26, (1 + 0.3) xO.26] = [0.182, 0.26, 0.338] . 

Using j3 , the jumping factors it and d are computed with the use of it = eP,fi 

and d = i, respectively; where T is the chosen time interval size expressed 
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in the same unit as p [31]. In this case, annual volatility estimates are used, 

therefore the value of Tis l. Thus, ii, = [1.19961494, l.29693007, 1.402140503] 

and d = [0.7131952881,0.7710515856,0 .8336013403]. 

From the given data, the binomial tree of project value can be constructed. 

Based on the studies done by Liao and Ho [31] the NPV of Rl.336 billion 

will be employed to start the binomial tree. 

Python code has been written to create the binomial tree of project value and 

the decision tree with the option to defer (see Appendix). One should note 

that in computing the decision tree, we follow Liao and Ho [31] in estimating: 

6, _ {.Pu I8i max(1f+, I - V+)} E9 {.Pd I8i max(1f- ,I - V-n 
0- (l+r) ( 4.1) 

where .Pu and Fd are computed using Equations 3.1 and 3.2 respectively, V+ 

and V- are the top and bottom decision nodes repectively, I represents the 

future costs of direct disposal and r is the annual discount rate. 

The existence of managerial flexibility introduces skewness in the possibilistic 

distribution, thus the actual distribution is skewed to the right. Following 

[31], the root value of the decision tree represents the FENPV of the project 

which is assumed to have the right-skew characteristic. The mean value 

is used to represent FENPV as a crisp value. Fnrthermore, the different 

FENPV's can be comparable using their mean values. The method of com­

puting FENPV that possesses a right-skew characteristic has been proposed 

by Liao and Ho [31] as 

E(F EN PV) = (1 - Alel + e2 + AC3 

2 
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where A is A:+RAR' AR and A£ are the right-part area and left-part area of the 

FENPV respectively. The premium of the option to defer is the difference 

of E(FENPV) computed using Equation 4.2 and the NPV of the project. 

Figure below depicts a FENPV with a right-skew distribution. 

AI I ~ , 
-~-c, .-: 

_x 
c, 

Figure 4.1: FENPV with right-skew distribution 

Source: Liao and Ho, (2010) 

The code required for assigning values to the options considered is supplied in, 

for instance when using the command "python Fuzzy _binomiaLtree_python 

_code_15%. py -£7 -1'5" the code will compute the values for binomial tree of 

project value up to 7 years and also the values for decision tree with the 

option to defer to start from the fifth year of the binomial tree of project 

value will be computed. The outputs of the above-mentioned command are 

presented in Figure 4.1 and 4.2. 
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To compute FROV we recall Equation 3.7 and Equation 3.8. In our case the 

variables of both Equation 3.7 and Equation 3.8 have the following meaning 

So is the present value of Koeberg's expected free cash flows (fuzzy), X is 

the present value of Koeberg's expected costs (fuzzy), E(So) is the possi­

bilistic mean value of the present value of expected cash flows (crisp), E(X) 

is the possibilistic mean value of expected costs (crisp), a is the possibilis­

t ic standard deviation of the present value of Koeberg's expected cash flows 

(crisp), T is the time to expiry of the real option (crisp), 6 is the value lost 

over the duration of the option (crisp) and r is the annualized continously 

compounded rate on a safe asset (crisp). 

Referring to the extension of Koeberg's LOPP, the related parameters are 

estimated as follows . After fifty years of commissioning Koeberg's expected 

cash flow (So) would be worth between R891 billions and R1603 .8 billions 

whereas the expected costs (X) are estimated to be worth between R6498 and 

R8447.4 billions. Using sensitivity analysis to assess the effect of uncertainty 

in forecasts, we will change some individual variables on a project's fuzzy real 

option value. The two variables to be changed are time (T), which will be 30, 

40 and 50 years and the risk-free interest rate (r) which will take the 10%, 

15% and 20% values. The value lost over the duration of the option (8) is 

set at 0.03 following Carlsson and Fuller [12J. It is not trivial to identify the 

values of a and {3, thus the parameters are estimated to be R338.58 billion. 

Similarly, the variables at and {3t are estimated to be R584.82 billion. 
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4.2 Results 

We considered different cases to compute the expected FENPV and the op­

tion premium. We choose three different possible discount rates that could 

be applied together with three different years to exercise the option to defer 

and the results of these scenarios are discussed below. The maximal values 

for E(FENPV) and option premium are obtained when decision making is 

made at the fortieth year with the 10% risk-free interest rate. On the other 

hand, it can be observed that when decision to defer is exercised at the thirti­

eth year with the 20% risk-free interest rate, the minimal values are obtained 

as it is presented in Table 4.1. In all three cases, we notice that the delay of 

years to exercise the option to defer increases the values of E(FENPV) and 

the option premium. In our case, it means that the delay in decommissioning 

the Koeberg's nuclear plant increases the value of the decommissioning costs. 

It is observed that the binomial tree reveals that project value fluctuates with 

production of SFAs. 

Attached on this thesis is the compact disc that contains the python codes 

and the binomial trees obtained. The python codes are similar, they only 

differ with the value of annual discount rate. The code used to compute the 

binomial trees with a 10% annual discount rate is labelled as "Fuzzy _binomial 

_tree_python_code_10%.py". The other python codes for 15% and 20% annual 

discount rates have been labelled in a similar way, except the changes in the 

value of annual discount rate. The outputs of the python codes are also 

embedded in the compact disc. We labelled them according to the different 

years and annual discount rates we considered in our study. For example, 
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the output of decision making at 30 years with a 15% annual discount rate 

is labelled as "Binomial back 30 years 15%.pdf'. 

Due to the limitations in the python code, the root value of the decision trees 

with a 10% and 15% discount rates were unrealistic. For an example using 

Equation 4.2 and the root value of the decision tree labelled "Binomial back 

40 years 10%.pdf' yielded an E(FENPV) of R95 687.99 billion. That is a 

very high value which is even greater than the gross domestic product (GDP) 

of South Africa. The gross domestic product at market prices during the 4th 

quarter of 2011 was R770 billion [49]. However, fuzzy Black-Scholes formula 

yields reasonable results which are illustrated in Table 4.5, Table 4.6 and 

Table 4.7. On the other hand, realistic results are obtained in the python 

code of fuzzy binomial approach when the percentage of annual discount rate 

is close to 20%. Thus, the values of E(FENPV) and option premium with 

10% and 15% cannot be accepted. However, the obtained root value of the 

decision tree when the annual discount rate is 20% is acceptable and the 

results are illustrated in Table 4. 1. 

Year E(FENPV) (R billion) Option Premium (R billion) 

30 years 365.7806 364.44463 

40 years 2947.964 2946.628 

Table 4.1: Fuzzy binomial approach using discount-rate (r) = 20% per year 

Using Equation 3.9 we obtain: 

FRO V = (R697.25 billion, R866.27 billion, R95.52 billion, R95.52 billion) 

I ( 1247.40) (0 003 (0.3816)2) 30 
Note that N(d1 ) = N( n 7ill7lJ \~~~6~vik 2 x) = N(1.1933) = 0.88357 
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and N(dz) = d1-uVT = - 0.89681 where u(So) = J(71!.8)2 + (712.8)~677.16) + (67~;6)2 = 

R476.00 billion, E(So) = 891+;603.8 + 338.58;33858 = R1247.40 billion and 

E(Xo) = 6498+~447.40 + 781.76;781.76 = R7472.70 billion. Then %~\~~i = 

0.3816 x 100 = 38.16%. 

The expected value of FROV is R781. 76 billion and its most possible values 

are bracketed by the interval [R697.25 billion, R866.27 billion]. 

The downward potential is R601.73 billion and the upward potential is R961.79 

billion. Thus, the maximal possible loss and gain in decommissioning the 

Koeberg nuclear plant 30 years after its commissioning would be R601. 73 

billion and R961. 79 billion, respectively. 

Year d1 N(dJ ) N(dz) 

30 years 1.1933 0.88357 -0.89681 

40 years 1.6251 0.9479 -0.78835 

50 years 1.9828 0.97628 -0.71552 

Table 4.2: Values of normal cumulative distribution with discount-rate (1) = 

10% per year 

Year dj N(dIl N(dz) 

30 years 1.9109 0.97136 -0.1792 

40 years 2.4538 0.99298 -0.04035 

50 years 2.9093 0.9981 0.2101 

Table 4.3: Values of normal cumulative distribution with discount-rate (1') = 

15% per year 
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Year 

30 years 2.6286 0.99569 0.53849 

40 years 3.2825 0.9995 0.86905 

50 years 3.8358 0.99994 -l.69838 

Table 4.4: Values of normal cumulative distribution with discount-rate {r} = 

20% per year 

The variables that change simultaneously with time and annual discount 

rates when computing FROV using Equation 3.9 are the normal cumulative 

distribution function. The values of this function appear in Table 4.2, Table 

4.3 and Table 4.4 and were used to calculate the fuzzy real option values that 

are presented in Table 4.5, Table 4.6 and Table 4.7, respectively. 

Year FROV (R bill EV (R bill MPV (R bill DP (R bill UP (R bill 

30 yea.rs [697.25, 866.27, 95.52, 95.52] 781.76 [697.25 , 866.27] 601.73 961.79 

40 years [376.36, 551.71 , 88.22, 88.22] 464.035 [376.36, 551.71] 288.14 639.93 

50 years [234.82, 380.70, 70.94, 70.94] 307.76 [234.82, 380.70] 163.88 451.64 

Table 4.5: FROV using discount-rate {r} = 10% per year 

Year FROV (R bill EV (R bill MPV (R bill DP (R bill UP (R bill 

30 years [368.70, 646.32, 132.55, 132.55] 507.51 [368 70, 646.32] 236.15 778.87 

40 years ]265.64,479.01, 101.32, 101.32] 372.325 [265.64, 479.01] 164.32 58033 

50 years [197.45, 356.42 , 75.47, 75.47] 276.94 [197.45, 356.42] 121.98 431.89 

Table 4.6: FROV using discount-rate {r} = 15% per year 

The Black-Scholes FROV values appear in Table 4.5, Table 4.6 and Table 4.7. 

The maximal value is obtained when the interest rate is set to be 10% and 
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Year FROV (R bill EV (R bill MPV (R bill DP (R bill UP (R bill 

30 years [349.42, 640.57, 137.84, 137.84] 494.995 [349.42, 64057] 211.58 778.41 

40 years [26577,480.92, 102.10, 102.10] 373.345 [26577, 480.92] 163.67 583.02 

50 years [199.45, 358.34, 75.50, 75.50] 278.90 [19945, 358.34] 123.95 433.84 

Table 4.7: FROV using discount-rate (r) = 20% per year 

the year of exercising the option is 30 years. The expected value of FROV is 

minimal when the risk-free interest rate is 15% during the fortieth year. We 

deduce from Table 4.5, Table 4.6 and Table 4.7 that the expected value of 

FROV decreases as the number of years and risk-free interest rate increases. 

Thus, deferral of decommissioning is valuable because FROV decreases as 

the number of years increases. Expected values of FROV when r is 15% and 

r is 20% are similar especially during the fortieth and fiftieth years. 

The two valuation methods used do not yield the same results and also 

behaves differently to the sensitivity analysis. However, we take note that 

the fuzzy real option value was computed using the trapezoidal fuzzy numbers 

whereas the triangular fuzzy numbers were used to compute fuzzy expanded 

net present value. 
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Chapter 5 

Conclusion 

We found that using the fuzzy triangular binomial approach, deferring the 

decommissioning time, increases the decommissioning costs, whereas use of 

fuzzy trapezoidal Black-Scholes formula yielded the opposite result. The 

traditional valuation methods are unable to capture the value of managerial 

flexibility or another alternatives that have an impact in estimating the value 

of a capital project. As a result, it is possible for a decision-maker who 

uses traditional valuation methods to reject or abandon the project that 

has a potential. However, valuation of real options take into account the 

managerial flexibilities and uncertainties that are embedded in the project 

and the entire value of an investment project can be revealed [31] . 

We only consider the annual SFA production as the source of uncertainty 

although multiple uncertainties may occur in a practical case and that is 

the limitation of our study. Results were based on estimates given lack of 

disclosure of information about relevant variables. It will be useful to obtain 
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more accurate information about Koeberg's operations and then estimate 

values using the binomial, trinomial and Black-Scholes formula considering 

both triangular and trapezoidal fuzzy numbers. Furthermore, the Koeberg's 

decommissioning costs can be estimated taking the multiple uncertainties 

or risks into consideration. These are some of the projects that one can 

undertake based on my present thesis, in future. 
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({u,) [il *max (age_values [k+1) !i 1 , l-aSre .. yalues [k+l1 til i) 
[k] [il ,l"age_y"lues [k] lil )) ) 

( 
+ (downtiJ *m'.IX 

.ag-e ... "yal~_e.a' ::::; tmp" .... ):1ge:...v.., values 
my . ...Print ( , 'In ' i 

-~=w' 'milir:, ~., 

.clean·~u 
try: 

os ~ remove { I 
OB .. .:t:ef(!.Qve.{ i 

b'$ .. remove { , 
os . remove ( , 
print l' ExLx;,.:J. 

except 08E'rro:r.:~ 

.. k), 'n', It, 

. dot ') 

. dot, 1 j 

.dct. .. p.ri.g< } 

. dot. fH'1.7 , ) 

print{iNc't. ,.1.11 ':::.}:" ([a. filet:- l.'1e~~e Y.:::;,un .. d i ) 

exit «()) 

if opts. reversc ... tree.J'gr" :> opts. 
my~p~t':Lnt (. :Tnput. -c.t:t-"./;;:r": 

t x: <:::(~ .£'J.~J~';'~ l , 

ela-e~ 

'J 

tree ~ forwaxd"",t:r,ee {opt,s, f'or'llJ$,:rd .. ~tree._ag'.t~+.1.J /J:+l to .account foz' :r:'ot:1t ,<,,1 t 
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/lY"r Grapbviz, write tbe output or the dwoaen yca~' .in ordeJ:: to sta.rt 
r·evers.i1.1g ·the t.ree 

for node in tree!opts.reverse ..... tree .. )age+l] , 
fuzzy_binamial_tree_reverse.write( 

graphvi.z_oode{nodei+': 'J 
reverae.J:;ree (opts. reverse .• tree .. "age+l. tree (opts. reverse .... cree" .. age+1J ) 

#+1 t() account tor root &1:. ;age 0 

fuzZ¥ • ..l;.inQ1llia.1_tree-.forward. write ( , ,} , ) 
;fuz:ty_bioomia,l_tree_reverse.write(· ).) 
fuzzy _binoll\ial_. tree _fcrwa.rd. close ( ) 
fuzZ¥_binomial_t:ree_reverse .. close () 

1fGener.ate theplottlr through Scwgl'e Cn..~rt 

if opts. Ui!h!U.oogle:..., chart' 
print (google_chart_warning) 
if opts.forward_tree_age " 15, 

getClraphviz (' Lm:z)r .... bi!lOmi.llI.l" .. tn;€ ..... f<}~"'ani.d.ol:') 
getGraphviz (, fuzzy _l:>itlo."lli.al._.tr.","_revflfrs" .der..') 

alse, 
print ('Tre.elJ too large for GQogl" "hIH't, to handle, ' ) 
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