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ABSTRACT 
 
 

The present study adopted a “field-laboratory-field” approach in the assessment of the 

efficacy of ergonomics interventions specific to two selected tasks evaluated in a South 

African automotive industry.   

 
Initial field testing was conducted in an Eastern Cape (South Africa) automotive plant 

where high risk areas were identified during walkthrough ergonomics surveys in 

conjunction with interaction with operators.  Temporal factors and working postures of 12 

industrial workers were recorded and observed, while physiological and perceptual 

responses were assessed.  Two priority areas were focused upon for analysis, namely the 

Paintshop and Bodyshop with the former identified as being the more taxing of the two 

tasks.  Responses of 30 students participating in rigourously controlled laboratory 

simulations were subsequently collected while completing the two tasks, namely the 

Paintshop Trolley Transfer (PTT) and Car Door Carriage (CDC) for participants.  Working 

postures, kinematic, physiological and perceptual responses were assessed pre- and 

post-intervention.  Following the laboratory experimentation a basic re-evaluation was 

conducted at the plant to assess whether the proposed changes had a positive effect on 

working postures, physiological and perceptual responses.   

 

The results of the preliminary field investigation revealed a prevalence of awkward 

working postures and excessive manual work in both areas.  Laboratory experimentation 

revealed a notable reduction in task demands pre- versus post-intervention.  The PTT 

mean lean angle for two-handed pre-intervention pulling observations of 23.7° (±3.51) 

was reduced to 13.9° (±2.21) post-intervention.  Low back disorder (LBD) risk was 

reduced during the two-handed pull intervention (from 36.8% ±8.03 to 21.7% ±5.31). A 

significant decrement in heart rate responses from 103 bt.min-1 (±11.62) to 93 bt.min-1 

(±11.77) was recorded during the two-handed symmetrical pushing intervention.  The 

electromyography (EMG) responses for one-handed pushing and pulling pre-intervention 
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showed the highest levels of muscular activity in the right medial deltoid due to an 

awkward and asymmetrical posture.   

 

CDC responses demonstrated that minor changes in the storage height of the door 

resulted in a significant reduction in sagittal flexion from 28.0° (±4.78) to 20.7° (±5.65).  

Predictions of average probability of LBD risk were significantly reduced from 50.3% 

(±5.91) to 39.8% (±5.10) for post-intervention car door lifting.  In addition, the greatest 

reduction in EMG activity as a %MVC was achieved during sub-task ii (reduced from 35.1 

to 13.7% and 30.5 to 13.9% for left and right erector spinae respectively) which was 

associated with the introduction of the transfer trolley for the door transfer phase of the 

CDC.   

 

Re-evaluation in the automotive plant revealed that the most notable change has been 

the implementation of automated ride on trolleys in the Paintshop.  The Bodyshop area 

has also been modified to allow more effective job rotation and the step into the storage 

bin has been reduced via a “low-cost” stepping platform.  Mean heart rate recordings were 

reduced from 94 (±9.77) bt.min-1 to 81 (±3.72) bt.min-1 in the Paintshop.  Overall the 

results demonstrate the effect of “low-cost” interventions in reducing the physical stresses 

placed on workers in the automotive industry where much of the work is still done 

manually.   
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CHAPTER ONE 

INTRODUCTION 

 
 
BACKGROUND TO THE STUDY 
 

Ergonomics, as an applied science, has a significant role to play in improving working 

conditions and productivity in Industrially Developing Countries (IDCs).  Scott (1993) 

stated that each developing country has its own unique infrastructure and social 

circumstances, together with a specific labour force which merits specific research, 

detailed assessment and subsequent ergonomic intervention.  It has been argued that 

people living in IDCs account for approximately 75% of the world’s working population, 

and as O’Neill (2000) pointed out, the majority of these people still gain their livelihoods 

from rural pursuits, despite the increasing trend of urban migration.  There is a large 

rural population within South African industry, with a significant number of semi-skilled 

people working in production areas where a mix of manual labour and highly advanced 

technology is evident.   

 

Ergonomists practising in IDCs frequently identify sub-optimal working environments 

that place the operator at high risk (Shahnavaz, 1987; Kogi et al., 1998; Scott, 2001; 

Renz and Scott, 2004; Scott and Christie, 2004).  There is a need for input from trained 

personnel in improving many IDC working environments where poor work practice and 

low productivity are commonplace.   Although the focus is on the work situation, the 

many extraneous problems associated with IDCs, such as poverty, chronic ill-health, 

increased physical and mental stress, leading to high absenteeism and turnover, all 

contribute to an increased likelihood of accidents and occupational diseases 

(Shahnavaz, 1987; O’Neill, 2000; Scott, 2001). The consequences of menial living and 

poor working conditions, and the resultant poor productivity are far reaching.  The 

economies of many IDCs are underdeveloped, resulting in a “cumulative negative 

spiral” (Scott, 2001).  It has been argued by Scott et al. (2003) that one of the best ways 
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to reverse the spiral is to provide ergonomics input at relevant levels and ensure that 

the role of the human operator is considered when evaluating working areas.   

 

Manual Materials Handling (MMH) tasks continue to predominate in IDCs (Charteris and 

Scott, 2001) and universally these have long been recognised as a major contributor to 

the occurrence of health complaints (Chaffin, 1987; Mital et al., 1997; Marras, 2000).  

Heavy physical demands place the human operator under undue physical stress and 

increase the likelihood of the onset of work-related musculoskeletal disorders (WMSDs).  

This in turn results in an increase in suffering of the operator, and cost to the company 

concerned.  There exists an urgent need to investigate the incompatibility between the 

human operator and the physically demanding tasks so many workers in developing 

areas are required to do.  The focus of the present project was specifically on manual 

activities of operators in the automotive industry.   

 

The South African automotive industry currently employs approximately 37 800 people 

in seven major manufacturing plants across the country (National Association of 

Automobile Manufacturers of South Africa (NAAMSA, 2006).  The industry has 

experienced tremendous growth as a result of foreign investment and the opening up of 

new export markets post-1994.  NAAMSA (2006) reported that capital expenditure 

(CAPEX) for this sector increased from R1.50 billion in 2000 to a projected R8.41 billion 

in 2006.  International investment has facilitated the rapid development of automotive 

plants with various assembly lines being completely restructured.  Export output has 

also increased significantly since 1995.  According to figures released by NAAMSA 

(2006), total passenger car exports have risen from 8 976 (1995) to 195 400 units 

(2006).  It is projected that this value will continue to rise to 200 000 units by 2007.  This 

sector has potential for further growth through the Motor Industry Development Plan 

(MIDP), which was launched in September 1995 and was aimed at the development of 

an internationally competitive automotive industry (Department of Trade and Industry, 

2002).  The MIDP has proved to be highly successful and will subsequently be 

extended to 2012 (NAAMSA, 2006).           
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Despite the increased monetary investment little evidence is available within these 

industries to suggest that assembly areas of these new plants have been designed and 

constructed with much thought of the “human factor”.  Numerous work-related hazards 

are clearly identifiable when walkthrough surveys are conducted by ergonomists.     

These surveys are a useful way of identifying risk in the workplace, and have particular 

value in IDCs where working conditions are often sub-optimal, as they identify the 

incompatibility evidenced between operator capabilities and excessive task demands 

imposed within the industry. Regretfully, ergonomics interventions in South Africa tend 

to be reactive rather than proactive and this trend is nowhere more apparent than in the 

automotive industry.  Scott (1998) argued that ergonomists working in IDCs need to 

create an awareness of the theoretical principles, practical applications and benefits of 

ergonomics, in order to establish an “ergonomics ethos” and thus ensure that accepted 

principles are put into practice within industry.  Ergonomics facilitation teams need to be 

formalised within these industries and sound principles adhered to in the design and 

application of interventions. 

 

Although the South African automotive industry has focused on driver ergonomics in the 

design of vehicle units, it has placed little emphasis on adherence to sound ergonomics 

principles in the planning and implementation of the manufacturing and assembly 

processes.  The operators working on assembly lines are thus frequently required to 

work in sub-optimal conditions, thereby increasing the likelihood of injury and reduced 

work efficiency.  Hägg et al. (1997), reporting on the situation in well established areas, 

have identified that poor working postures and extensive MMH are prevalent in the 

automotive assembly line process; this is supported by Carey and Gallwey (1998), who 

commented that many assembly line tasks force the operator to adopt poor gross body 

postures, and to maintain these for the duration of the task.  These excessive physical 

stresses, which are placed on the worker operating under these conditions, are 

universally recognised as being a major contributor to WMSDs (Häkkänen et al., 1997).    

Pulling and pushing, carrying, lifting and lowering tasks are all evidenced in the 

automotive industry and usually involve working with awkwardly shaped objects such as 
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doors, dashboards and even complete vehicle frameworks, which require manipulation 

at the extremes of joint range of motion (ROM).   

 

The ratio of task demands to worker capacity has been shown to influence the 

occurrence of potential undesirable outcomes such as fatigue, discomfort and injury 

(Ayoub and Mital, 1989; Mital et al., 1997; Dempsey, 1998; Marras, 2000).  Tasks 

involving repetitive motions, high force application and vibration are common within the 

South African automotive industry (James, 2002a; James and Todd, 2003; James and 

Scott, 2006).    The present study aimed to simulate high risk tasks identified in an 

automotive industrial setting within a controlled laboratory environment in order to 

conduct in-depth analyses of the tasks.   Interventions were then developed aimed at 

minimising the risk to the worker in situ.  The assessment of the viability of proposed 

interventions within the automotive plants was conducted.  Where possible “low-cost” 

interventions were subsequently implemented in selected assembly areas with the 

prime objective being to reduce the physical demands placed on the worker and to 

improve worker efficiency.  Furthermore, this study aimed to facilitate the evaluation of 

interventions through follow-up work conducted within the selected industry.   

 

Scott (2001) argued that all role players should be encouraged to become involved, not 

only in identifying problem areas, but also in discussions of possible solutions.  All 

problem areas and possible solutions were discussed with managers and workers, who 

were encouraged to provide feedback on the proposed changes, and a participatory 

process was established.  This process arose out of the critical need to establish 

formalised ergonomics teams within the South African automotive industry, as identified 

by James (2002b).  Members of the “Ergonomics Facilitation Team” established at GM 

included management, Safety, Health and Environment (SHE) officials and 

representatives of the workforce from selected areas of the assembly plant.  The 

Facilitation team was subsequently invited to attend ergonomics awareness sessions 

conducted at the plant and provided with relevant materials and information.       
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STATEMENT OF THE PROBLEM 
 

As the automotive sector is one of the leading manufacturing sectors in South Africa 

there is a crucial need to consider the role of the human operator in the manufacture of 

the vehicle unit, particularly with regards to the Paintshop and Bodyshop Closure Line 

areas.  These process lines still require a high proportion of manual labour and the 

working postures adopted to execute the required manual tasks increase the likelihood 

of the onset of WMSDs.   There is a clear need to identify major problem areas and for 

effective intervention strategies aimed at improving worker efficiency and safety, 

together with an increase in productivity within the automotive sector.   

 

Two isolated work tasks were selected for laboratory investigation based on field 

observations.  The automotive Paintshop work process involves the pushing and pulling 

of vehicle units on a “skid” transfer trolley platform during the working shift.  The 

problems associated with these extreme loads (in excess of 600kg for some models) 

differentially tax the musculoskeletal system of the operator making this an essential 

area for further investigation.  The Bodyshop areas require the handling of awkward 

vehicle panels, for example the front and rear doors, at the extreme limits of the 

workers’ ROM.  The basic work-cycle required places substantial stress on the 

musculoskeletal system of the workers and warrants biomechanical analyses of working 

posture and force output requirements.  The two independent tasks selected will be 

dealt with separately throughout the present study in considering the assessment of 

current work demands.   

 

As limited research appears to have been carried out in the automotive industry, 

particularly in South Africa, it was deemed essential to conduct a holistic analysis of 

worker responses to physically demanding tasks in both the Paintshop (Task 1) and 

Bodyshop (Task 2) areas, and within a more rigorously controlled laboratory simulation 

of selected tasks.   
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RESEARCH HYPOTHESIS 
 

The general research hypothesis is the same for both automotive tasks simulated under 

laboratory conditions to assess the Human responses pre- and post-intervention.  It is 

hypothesised that the redesign of each of the two independent tasks in the laboratory 

will reduce the demands placed on the individual completing the specific task under 

investigation and decrease the biomechanical, physiological and perceptual responses 

of the worker.  Responses collected during the pushing and pulling simulations of the 

Paintshop Trolley Transfer (PTT, Task 1) using the industrial Lumbar Motion Monitor 

(iLMM) are expected to demonstrate that kinematic stresses are considerably reduced 

post-intervention.  Similarly, the Car Door Carriage (CDC, Task 2) simulation responses 

are expected to show that redesign has appreciably altered task demands by reducing 

the required ROM, twisting velocity and lateral velocities during task completion.   

 

Physiological demands are also expected to decrease post-intervention for each of the 

two tasks, with changes being evidenced in heart rate and electromyography (EMG) 

responses.  Working heart rates are expected to be notably lower following changes to 

the simulated worksite, thereby suggesting an overall decrease in predicted energy 

expenditure (EE) in the laboratory.     

 

Modifications to the two separate tasks in the laboratory simulations are also expected 

to alter the participants’ perceptions of the job, evidenced through changing Ratings of 

Perceived Exertion (RPE) and Body Discomfort (BD) ratings.  Participants are expected 

to rate perceived exertion significantly lower following alterations to the worksite.  Body 

discomfort is also expected to show decrements post-intervention, with participants 

rating fewer areas, and the level of discomfort reduced when compared with the current 

task demands.   
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STATISTICAL HYPOTHESES 
 

The mathematical hypotheses for both the PTT (Task 1) and CDC (Task 2) are stated 

as the Null (Ho) and Alternative (Ha) hypotheses for laboratory simulation Human 

responses pre- and post-intervention.  These hypotheses were framed as follows: 

 

1.) Spinal kinematic responses are equal pre- and post-intervention  

 

Ho: µ ROM; TV; LV (Pre) = µ ROM; TV; LV (Post) 

Ha: µ ROM; TV; LV (Pre) ≠ µ ROM; TV; LV (Post) 

 

Where:   ROM = Range of Motion (°)  
   TV  =  Twisting Velocity (°.s-1) 
   LV  =  Lateral Velocity (°.s-1) 
 
2.) Physiological responses are equal pre- and post-intervention 

 

Ho: µ HR; EMG (Pre) = µ HR; EMG (Post) 

Ha: µ HR; EMG (Pre) ≠ µ HR; EMG (Post) 

 

 Where:   HR  = Heart Rate Responses 
EMG  =  Electromyographic Activity 

 

3.) Psychophysical responses are the same pre- and post-intervention 

 

 Ho: µ RPE; BD (Pre) = µ RPE; BD (Post) 

Ha: µ RPE; BD (Pre) ≠ µ RPE; BD (Post) 

 

Where:   RPE  =  Rating of Perceived Exertion 
  BD  = Body Discomfort Rating 
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DELIMITATIONS 
 

The present study was delimited to the assessment of two distinct industrial tasks that 

were independently evaluated in the field and then separately simulated under 

laboratory conditions.  The laboratory simulation of the PTT (Task 1) was divided into 

six sub-tasks, while the CDC (Task 2) was broken up into three sub-tasks.  

 

The field sample consisted of Paintshop and Bodyshop workers with varied levels of 

practical work experience, with a range of one to 15 years.  The field investigation was 

delimited to the responses of 12 male workers from the GM Struandale Plant, aged 

between 22 and 51 years.  Field workers had no history of musculoskeletal disorders 

and were free from any serious injury (by self report) at the time of the study. 

 

The participants in the laboratory experimentation were volunteer adult males.  The 

study was delimited to the responses of 30 male subjects from Rhodes University, aged 

between 18 and 23 years. None of the participants had previous experience working in 

an automotive industry or completing MMH tasks.  Laboratory participants had no 

history of musculoskeletal disorders and were free from injury (by self report) at the time 

of participation in the study. 

 

The experimental procedures were confined to a laboratory environment.  The influence 

of environmental factors such as temperature extremes (which could play a significant 

role when considering South African working conditions) were thus minimised by a light 

and heat controlled environment. 

 

The holistic analysis of Human responses was conducted as part of both the field and 

laboratory investigations of the present study.  Physical, psychophysical and 

organisational aspects were considered in assessing current workplace demands.  

Physical parameters evaluated included Human responses to biomechanical and 

physiological stresses.  Psychophysical responses were also evaluated based on the 

perceptual ratings of both the workers and laboratory participants.  Organisational 
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analysis specifically focused on the industrial context where logistical changes to the 

workplace and work methods were carefully evaluated.   

 
LIMITATIONS 
 

The automotive worker and laboratory samples used in the present study were samples 

of convenience.  The laboratory sample selected was not necessarily representative of 

the South African workforce.  These factors therefore limited the reliability and 

reproducibility of the results to other populations other than the laboratory sample 

investigated, especially the automotive industry workforce. 

 

Participants completing the laboratory simulations had no previous experience in 

completing manual tasks within the automotive industry.  No work hardening or training 

programmes were completed prior to laboratory testing, therefore the present level of 

training could have influenced the responses to the manual work required in the 

laboratory sessions.   

 

Psychological factors are known to influence the performance of test subjects.  The 

motivation of test subjects was a factor which could have affected the results obtained 

for the MMH task assessments both in situ and in the laboratory sessions.   No extrinsic 

rewards were offered, although comprehensive feedback was given to all subjects 

where possible.   

 

Clinical history is a further significant factor in terms of both the field workers and 

student cohort particularly in the laboratory experimentation, although every attempt 

was made to ensure that the subjects were free from injury.  There is a possibility that 

subjects could have been experiencing, but not reporting, some muscle strain before 

the testing commenced.  This factor was beyond the control of the researcher in the 

present study.    
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Despite the period of habituation and the familiarisation trials given to each participant, it 

is possible that some subjects were still not comfortable with the equipment and 

procedures when recorded test bouts were completed.  However, the potential impact of 

this limitation was minimised during the laboratory familiarisation where participants 

were shown video footage of the two independent industrial tasks and allowed to 

practice each of the simulations according to the techniques observed.           
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CHAPTER TWO 

REVIEW OF LITERATURE 

 

INTRODUCTION 

 

The South African automotive industry still exhibits a prevalence of manual labour 

despite an increase in the levels of plant automation in this sector.  The work-related 

demands placed on the human operator as a result of manual tasks are frequently 

excessive.  Mital et al. (1997) stated that the ability of individuals to perform manual 

activities is frequently exceeded, resulting in chronic or acute injuries.  The sub-optimal 

working conditions so typical of many industries in developing countries generally, and 

specifically the automotive industry, contribute to the onset of physical fatigue, which in 

turn will influence the physical and cognitive ability of the workers, ultimately resulting in 

below par performance efficiency.  Kumar (2001) argued that humans are neither 

anatomically adapted to withstand the physical stresses nor are they mentally suited to 

endure the psychological stresses of the modern working environment.  Operators are 

subjected to increasing mental and physical workloads in the automotive sector.  The 

mental workloads have shown a dramatic increase with the greater utilisation of 

advanced technology.   

 

The advances in manufacturing processes are evident when ergonomics surveys are 

conducted in various manufacturing environments (James, 2002a; Dempsey and 

Mathiassen, 2006).  However, despite increased capital investment reported by the 

National Association of Automobile Manufacturers of South Africa (NAAMSA) between 

1995 and 2006, little evidence is available within automotive industries to suggest that 

development of new assembly lines has been done with Ergonomics input or guidance.  

Dempsey (1998) argued that although automation and other technologies have reduced 

the need for manual labour in some working situations, particularly advanced industrial 

settings, there is still generally a widespread need for the manual handling of objects 

somewhere on the production or manufacturing line.  Consequently, numerous 
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hazardous situations are clearly identifiable when evaluations are completed by 

ergonomists.  These workplace evaluations are a useful way of identifying problem 

areas in the workplace and have particular value in IDCs where working conditions are 

often sub-optimal (Shahnavaz, 1996; Scott and Shahnavaz, 1997), as they identify the 

incompatibility between operator capabilities and excessive task demands imposed 

within the industry.  Regardless of the undeniable increase in cognitive requirements, 

the physical workloads relating to manual labour remain the major focus of this 

research.  

 

Manual Materials Handling (MMH) tasks place physical stresses on the human operator 

that are manifested as strains on the musculoskeletal and cardiovascular systems 

(Dempsey, 1998; Kumar, 2001; James and Todd, 2003; James, 2005).  It would appear 

that risk identification of workplace hazards relating to MMH, poor working postures and 

vibration has been largely neglected in the South African automotive industry.  Various 

companies have attempted to establish basic health and safety teams that complete the 

role of assessing basic risks in the workplace; however, there remains a need to 

establish experts with a sound understanding of ergonomics principles to deal with task 

analyses and risk identification.  It is important that all MMH tasks occurring in the 

production system are considered, not only those representing “hazardous” loads 

(Dempsey and Mathiassen, 2006).  This is particularly relevant to the South African 

automotive industry where MMH tasks are widespread and the reporting of work-related 

musculoskeletal disorders (WMSDs) prevalent.  Kumar (2001) stated that all risk factors 

for musculoskeletal injury can be placed in one or more of the following categories:  

genetic, morphological, biomechanical, physiological and psychological.  The genetic 

and morphological characteristics are unique to each operator and cannot be altered.  

However, equipping key personnel with the required level of training to identify potential 

biomechanical and physiological risk factors should be given priority in the automotive 

industry.  Early identification of high risk areas on the assembly lines will assist in 

minimising the incompatibility between the worker capabilities and the job requirements 

(Shoaf et al., 2000), and will assist in the reduction of injury and WMSDs.      
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ERGONOMICS IN INDUSTRIALLY DEVELOPING COUNTRIES (IDCs) 

 

IDC industries continue to experience the need for practical application of ergonomics 

(Shahnavaz, 1996; Scott and Christie, 2004; James and Scott, 2006; Scott and Renz, 

2006).  Working conditions are sub-optimal to poor in many instances and frequently 

result in high levels of absenteeism and injury in the IDC workplace.  Scott (1998) stated 

that ergonomists working in IDCs need to create an awareness of the applications and 

benefits of ergonomics, and to ensure that accepted principles are put into practice 

within industry.  Ergonomists working in IDCs such as South Africa are faced with a 

number of challenges in attempting to implement interventions based on sound 

ergonomics principles which will decrease the task demands placed on the human 

operator.  Urlings et al. (1990) put forward the following possible reasons for the lack of 

implementation of interventions:  attitudes of employees towards intervention strategies, 

resistance to change by managers and a lack of skills to apply changes.  Although 

developing industries do provide ergonomists with substantial challenges, the long-term 

benefits have been shown to be far reaching with the benefits outweighing the costs 

(Hendrick, 1996; Scott et al., 2003).   

 

Although there has been a significant increase in the interest in, and commitment to, 

ergonomics in IDCs, managers frequently have so many problems to deal with that they 

perceive that they cannot afford the time nor the money for ergonomics                  

(Scott et al., 2003).  The need therefore exists to focus on low cost or “no-cost” 

interventions in IDCs.  Scott et al. (2003) proposed that initial ergonomics input in an 

IDC must be at a micro-level and must be of immediate effect in the workplace.  In 

contrast to Industrially Advanced Countries (IACs), where the benefits of ergonomics 

have been well documented, intervention strategies in IDCs need to focus on reducing 

excessive physical and cognitive loads, while at the same time taking into consideration 

extreme environmental conditions, particularly in South Africa. 
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Important Considerations Relevant to Industries in IDCs 
 

Physical Work Loads 

 

The economies of most IDCs are not strong and many of the labourers are under-

nourished, not physically robust and often in a poor state of health (Scott, 1999;      

Scott et al., 2003).  Despite these concerns, industries in IDCs continue to rely on 

heavy manual labour and furthermore, the labour force may often be regarded as 

expendable (O’Neill, 2000).  Many operators are forced to work under sub-optimal 

conditions and the load factor is often neglected when task analyses are conducted in 

situ.  Lifting of heavy loads is still commonplace, particularly in the automotive industry, 

and this augments the likelihood of WMSDs.   

 

Shahnavaz (1987) argued that the outcome of heavy lifts, static work and harmful MMH 

is an increased incidence of accidents and a decrease in productivity.  IDC industries 

typically exhibit a number of these indicators of sub-optimal working conditions and poor 

work design, and Dempsey (1998) stated that the ratio of task demands to worker 

capacity influences the occurrence of potential undesirable outcomes such as fatigue, 

discomfort and injury.   

 

Cognitive Loads 

 

Many of the stresses related to the completion of manufacturing tasks are now being 

attributed to the increase in cognitive workloads associated with increased task 

complexity.  Shoaf et al. (2000) argued that the concept of a work hazard has been 

expanded to include non-physical hazards, specifically psychosocial, work organisation, 

disordered logistics and mental demands.  Investment in new vehicle models and more 

automated assembly lines has brought about substantial change in the South African 

context and the cognitive demands placed on the operator have increased due to the 

use of more advanced technology.  Dempsey and Mathiassen (2006) argued that 

ergonomics faces the challenge of developing work assessment tools that allow 
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production stakeholders to integrate ergonomics into the continuous redesign of 

production, support and supply chains.  Ergonomists conducting work in refurbished 

plants need to be aware of the changing focus of operations and ensure that the 

workers are sufficiently educated and trained to complete the redesigned tasks.      

Scott et al. (2003) stated that due to the dynamic nature of any work site, changes and 

inconsistencies will occur.  In many instances the lack of conformity in work 

performance results from a lack of basic understanding of task requirements and a 

disregard of operator capabilities in redesign of the automotive work cycle.  Shahnavaz 

(1996) emphasised the importance of providing appropriate education and training 

programmes that consider the specific conditions of IDCs and are adjusted to their 

needs and resources.  The increased cognitive demands placed on the operator must 

be considered in general task evaluations, as this will have a substantial impact on the 

task-operator interaction.   

 

Environmental Conditions 

 

The South African automotive sector is affected by the general environmental 

conditions, which in turn will affect the work environment.  High temperatures, excessive 

noise, poor lighting, vibration and air pollution are some of the key concerns.  Heat 

stress is known to cause discomfort, a feeling of fatigue which leads to reduced work-

rate, increased accident rates, carelessness and increased irritability (Ayoub and Mital, 

1989).  A study by Snook and Ciriello (1974) demonstrated that lifting, pushing and 

carrying ability declined significantly when temperature increased from 17.2 to 27°C.  

These figures are of particular relevance in the South African context where 

environmental extremes are frequently experienced.  It was not uncommon to record 

temperatures in excess of 27°C in the IDC automotive industries assessed in the 

present study, and high temperatures in the Bodyshop and Paintshop are of prime 

concern due to the physical nature of the tasks completed in these areas of the 

automotive plants. 
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THE AUTOMOTIVE INDUSTRY IN SOUTH AFRICA 
 

Growth and Development in the South African Automotive Sector 

 

The automotive industry in South Africa is highly organised and has experienced major 

growth as a result of foreign investment and enhanced access to financially lucrative 

export markets.  Employment and production capacity have grown over the past five 

years with potential for further rapid expansion (National Association of Automobile 

Manufacturers of South Africa (NAAMSA, 2006).  Global partnerships have facilitated 

the reconstruction of many automotive plants with various assembly lines being 

completely revamped.  Over the last eight years export output has risen substantially 

(NAAMSA, 2006).   

 

The Motor Industry Development Programme (MIDP) was developed with a number of 

key objectives in mind, including:  the provision of high quality and affordable vehicles 

and components to the domestic and international market, the provision of sustainable 

employment through increased production, and the economic growth of the country by 

increasing production and achieving an improved trade balance.  Increased volumes 

and higher levels of employment have already seen many of these objectives reached 

in this sector.  A recent decision was taken to extend the MIDP until 2012 (NAAMSA, 

2002).  The automotive industry is widely regarded as a South African success story in 

the development of international supply networks.       

 

Ergonomics in the South African Automotive Industry:  The Current Situation 

 

Assessments of the current level of knowledge of ergonomics within the South African 

automotive industry identified a limited understanding of the discipline amongst key role 

players (James, 2002b).  A growing number of industries conduct basic walkthrough 

surveys, but follow-up investigations are limited.  Insufficient time and resources are 

spent on implementing intervention strategies aimed at improving the working 

environment for the human operator.  Personnel are frequently inadequately equipped 
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to identify high risk tasks and do not have the required level of training to ensure that 

changes are adopted.      

 

A survey of current employee perceptions towards ergonomics was conducted in four 

independent automotive plants in South Africa (James, 2002b).  Respondents were 

randomly selected from diverse areas of these industries, including employees from the 

“shop-floor” to those at a senior managerial level.  This survey aimed to compare the 

present ergonomics initiatives to established safety standards utilised by these plants.  

Key findings revealed the following:  in contrast to safety, ergonomics facilitation teams 

were not established within these automotive plants; respondents all rated current 

ergonomics initiatives as average to poor; and personnel highlighted the need to 

formalise “Ergonomics Facilitation Teams” thereby encompassing greater managerial 

involvement.  It should be noted that although respondents felt that automotive plants 

adequately dealt with safety issues, they did perceive the need for a greater emphasis 

to be placed on regulations and the adherence to basic industry standards with regards 

to working practice (James, 2002b). 

 

Automotive plants in South Africa are a challenging mix of “state-of-the-art” technology 

in some areas and a predominance of MMH in the older areas of the plant (James and 

Todd, 2003).  Many areas of the automotive assembly process are in dire need of 

design inputs based on sound ergonomics principles.  James and Scott (2006) reported 

that minor workplace design changes and interventions have frequently been proposed 

within the automotive sector, but many manual work problems still remain.  There is still 

clearly a need to focus on risk identification and to facilitate the development of 

ergonomics teams within these plants.  The South African automotive industry highlights 

a specific need for ensuring that participation is encouraged from the workforce to allow 

operators to understand the reasons for changes in working methods before the 

implementation process commences.    
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MANUAL MATERIALS HANDLING (MMH) 
 

MMH tasks are varied in nature and include lifting, lowering, pushing, pulling, carrying, 

loading and unloading of objects in an industrial setting (Snook et al., 1970;             

Mital et al., 1997; Bridger, 2003; Dempsey, 2003).  Many of the objects moved are of an 

awkward size and shape, and therefore necessitate the worker to adopt poor gross 

body posture.  Excessive physical demands are placed on the human operator under 

these conditions and are frequently shown to be a major contributor to WMSDs 

(Häkkänen et al., 1997; Ferguson and Marras, 1997; Marras et al., 2006).    Dempsey 

(1998) stated that MMH tasks are present in many service and manufacturing 

industries, and are a significant source of compensable injuries. There are a number of 

concerns relating to heavy manual work as the mass of the load being lifted is 

transferred to the spinal column in the form of compression, shear and torsional forces 

(Mital et al., 1997; Marras et al., 2003).  The prevalence of low back disorders (LBD) 

and work-related upper limb disorders (WRULDs) thus demand a more detailed focus in 

the present study. 

 

Types of Activities Observed in the South African Automotive Industry 
 

Despite mechanisation and automation, manual work continues to be common in 

industrial settings, particularly in developing areas (Kumar, 1995; Dempsey, 1998;                  

Scott et al., 2003).  Dempsey (2003) stated that MMH continues to represent a major 

loss source in the workplace, resulting in a need for research and practice to address 

the design and evaluation of MMH exposures.  The automotive manufacturing process 

requires the completion of a number of specific manual tasks.  James and Todd (2003) 

observed that operators frequently adopt sub-optimal working postures during the 

completion of tasks along the automotive assembly line process.  Lifting, carrying and 

lowering of vehicle panels are probably the most commonly used manual activities in 

the Bodyshop environment.  Engine assembly lines require the operator to lift, carry and 

place heavy engine components, including crankshafts, without mechanical assistance.  

The Paintshop areas require frequent skid or trolley pushing and pulling, which taxes 
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the operators working in this particular area of the manufacturing process.  The trim and 

assembly line also place a significant amount of strain on the worker as many of the 

tasks are repetitive in nature and require awkward postures to be adopted. 

 

Lifting and Lowering 

 

Lifting from industrial storage bins is frequently observed in the automotive Bodyshop 

and Trim Line assembly areas.  Ferguson et al. (2002) stated that different lifting 

techniques may influence the risk of LBD.  Asymmetrical lifting and associated postural 

changes therefore affect the biomechanical responses of the operator and could 

precipitate the onset of WMSDs.  They further argue that guidelines for design of these 

containers and lifting styles have not been widely researched and require the attention 

of ergonomists working in this area.  The storage of panels and parts is one area that 

requires further investigation when considering the automotive sector.  Figure 1 

illustrates how a Bodyshop operator is required to lift a vehicle panel from a storage bin 

using a free-style lifting technique and carry the panel to the welding “jig”.   

 

 

 

 
Figure 1:
  

 

A Bodyshop operator is required to lift and carry a body panel 
from an industrial storage bin in a South African automotive 
industry.  
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Work conducted by McKean and Potvin (2001) assessed the effects of a simulated 

industrial storage bin (similar to the container in Figure 1) on lifting and lowering posture 

and trunk extensor muscle activity.  The findings of this study are of particular relevance 

to the automotive industry, as many of the Bodyshop and Trim Line tasks require a lift 

constrained by a physical barrier.  In many cases the operator is required to stoop and 

stretch into the storage bin during the execution of the working cycle.  McKean and 

Potvin (2001) concluded that there were a number of factors which suggest that poorly 

designed industrial storage bins could increase the risk of injury when lifting or lowering 

loads.  These risk factors included an increase in peak trunk flexion, which resulted in 

the surface of the lumbar intervertebral discs (IVDs) becoming more vertical, thereby 

increasing the shear force acting on the IVDs with significantly greater 

electromyographic (EMG) activity being registered in the erector spinae during 

constrained lifting. 

 

Dempsey (2003) evaluated findings associated with lifting and lowering tasks as part of 

an epidemiological study investigating the relationship between lower back workers’ 

compensation claims and physical demands of lifting and lowering tasks.  This research 

highlighted the importance of the load of the object being moved during lifting and 

lowering tasks.  In addition, vertical range data showed that there are a number of lifting 

and lowering scenarios where lift and subsequent lowering takes place outside the 

desired vertical range for both the origin and destination of the MMH task.  Of all the 

factors considered during the assessment of lifting and lowering, Dempsey (2003) 

argued that load emerges as perhaps the most important factor for consideration in the 

investigation of LBD causality. 

 

Lifting and maneuvering of objects takes place from palletised storage bins in many 

automotive work settings.  The location of the pallet and consequent origin of the lift has 

a significant effect on torso kinematics during lifting tasks (Jorgenson et al., 2004).  

Researchers have sought to provide guidelines on safe pallet location, and NIOSH 

(1991) suggested that the pallet should be orientated in a 90° position to the lifting 

origin.  Findings from research completed by Jorgenson et al. (2004) demonstrated a 
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notable increase in biomechanical loading when participants were required to step and 

reach a simulated load.  The Bodyshop areas require a similar step and reach during 

the lifting of car door panels and subsequent increases in spinal loading were therefore 

expected.  Although the pallet orientation was found to be an important consideration, 

Jorgenson et al. (2004) argued that keeping the load closer to the workers’ lift origin 

would appear to be more important than ensuring a 90° pallet orientation.  This is an 

important consideration in the evaluation of sub-optimal lifting or lowering task layouts 

as is commonly observed in the South African automotive industry.       

 

Carrying 

 

Load carriage is commonplace among humans in all walks of life (Scott and Ramabhai, 

2000).  In the manufacturing sector load carriage may require the operator to lift and 

carry a part of a high mass over a considerable distance.  Observations in the South 

African automotive industry demonstrated that current task demands are frequently 

excessive and working postures particularly poor during load carriage (James and 

Scott, 2006).  Bridger (2003) stated that carrying increased the load on the body in two 

ways.  Firstly, the increased load results in an increase in the physiological cost of 

walking by elevating the overall load placed on the muscles of the legs.  Secondly, the 

method by which the load is held, or attached to the body, can be an additional source 

of postural stress.  The carriage of vehicle panels and parts is frequently seen in the 

South African automotive assembly environment.  Operators are required to physically 

manipulate awkwardly shaped panels and parts, thereby placing excessive strain on the 

musculoskeletal system.  Kroemer and Grandjean (1997) argued that handling loads 

often involves a good deal of static and dynamic effort, enough to be classified as 

“heavy work”.   

 

Figure 2 highlights the posture adopted by the human operator while carrying a car door 

on the Bodyshop Closure Line of a South African automotive industry.  It is therefore not 

only appropriate for the Ergonomist to consider the load of the vehicle panel, but also 

the size and shape of the panel moved during load carriage.  Research has suggested 
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that loads should be positioned as close to the body as possible in order to minimise 

energy expenditure (EE) while carrying (Mital et al., 1997; Bridger, 2003).  If an object is 

carried further away from the body static contraction will result in order to stabilise the 

worker during the completion of the normal gait pattern.  The result during sustained 

carrying will be local muscle discomfort and fatigue due to the worker adopting an 

inappropriate carrying technique (Bridger, 2003).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: 

 
A Bodyshop operator manually lifts a car door on the 
closure line. 

 
 

Scott and Walraven (1990) reported that while the literature is replete with research 

done on manual work in vast areas of developed countries, very little appears to have 

been reported on the South African situation, and it is evident that limited work has been 

carried out aimed at assessing the impact of task demands on worker efficiency in the 

automotive sector.  Operators are frequently required to complete highly demanding 

tasks increasing the risk of personal injury. Selected tasks observed in the automotive 

sector, for example the door carry, therefore necessitate additional research in 

determining the likelihood of injury or increased reporting of muscular discomfort.  The 

door carriage task is one of the more physically demanding due to the load, size and 

shape of the part being moved and was thus focused upon in the present study. 
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Pushing and Pulling 

 

The indisputable evidence in the literature that lifting and carrying are major sources of 

work-related injury has led to a much greater use of manual handling devices (MHD) 

more recently (Haslam et al., 2002).  The frequency of pushing and pulling tasks has 

therefore increased, and Baril-Gingras and Lortie (1995) have argued that manual work 

activities frequently require the operator to exert repetitive, submaximal forces.  The 

design of working areas and the nature of these push-pull tasks have resulted in 

Hoozemans et al. (1998) reporting that 9 - 20% of the injury claims for low back pain 

were associated with pushing and pulling activities.  Earlier work carried out by Snook 

(1978) stated that the evaluation of the majority of pushing and pulling work is aimed 

primarily at the assessment of the initial forces exerted to accelerate the object, and the 

quantification of the sustained forces exerted to keep the object moving at 

approximately the same velocity during the completion of the push-pull task.  Following 

the collection of field responses, maximum acceptable forces should be 

psychophysically determined to correspond to the actual work situation for pushing and 

pulling activities (Snook and Ciriello, 1991; Mital et al., 1997).   

 

It is universally acknowledged that many over-exertion injuries occur due to pushing and 

pulling in industry (Lee et al., 1991; De Looze et al., 2000; Todd, 2005).  The execution 

of pushing and/or pulling tasks in the automotive industry requires the worker to move 

heavy and awkward vehicle frames on a frequent basis during the standard 8-hour 

working shift.   The high forces required in many of these push and pull tasks 

necessitate the operators to take up working postures which result in the centre of mass 

(CM) being located at the extreme limits or even beyond their support base (BS), which 

in turn significantly increases the likelihood of slip, trip and fall (S,T and F) accidents 

(James and Todd, 2003).  Figure 3 illustrates the posture adopted by an operator in the 

Paintshop of a South African automotive industry during task completion.  The operator 

is clearly subjected to a high risk task in this occupational setting and is likely to injure 

himself as a result of either fatigue due to repetitive movements or a slip-trip accident 

(James and Todd, 2003; Todd et al., 2004). 
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Figure 3: The pulling of a vehicle frame on a trolley platform.  

 

Work conducted by James and Todd (2003) assessed the impact of pushing and pulling 

tasks on the human operator working in an IDC automotive industry.  This study 

revealed that there were substantial differences in the maintenance of the roller systems 

on which the vehicles were being moved, thereby increasing the resistance of the 

support base and subsequent force output required on the part of the worker. 

Furthermore the operator was required to push and pull the vehicles over uneven 

surfaces, increasing the likelihood of tripping.  Haslam et al. (2002) stated that slipping 

is more likely when pushing or pulling than with unencumbered gait owing to higher 

shear forces between feet and floor.  Research conducted by Manning (1983) provided 

a number of possible causes for increased occurrence of S, T and F incidents, 

including:  slipping off a step, rung or platform; a trip over a projecting rung or step; 

unintentional stepping off the underfoot surface and loss of balance from careless or 

rapid movement.  These potential hazards are commonplace in the automotive industry.  

Furthermore, Laursen and Schibye (2002) argued that the type of surface significantly 

affected the magnitude of push and pull forces, both in the initial and sustained phases 

of the task.    
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The mass of the object being moved by pushing or pulling is an essential consideration 

for the ergonomist.  The trolley platforms used in many South African Paintshops 

require the worker to move substantial loads of 190kg to 600kg under conditions that 

are frequently sub-optimal.  In similar situations Hoozemans et al. (2004) report that the 

loading of the low back and the upper extremity have largely been the focus of research 

in this area. De Looze et al. (2000) proposed that pulling has been associated with a 

greater increase in the net moment at the low back than pushing.  Compressive and 

shear forces as a result of push-pull tasks have also been widely researched            

(Lee et al., 1991; Resnick and Chaffin, 1995; Lavender et al., 1998), with the 

compressive forces acting on the low back during pulling generally being reported to be 

higher than those associated with pushing.  Hoozemans et al. (2004) provided two 

possible explanations for greater compressive forces associated with pulling.    Firstly, 

the net moments at the low back have been reported to be higher during the completion 

of a pulling task.  Secondly, most studies erroneously utilise a simplified “single muscle 

model” where net moments are the result of activity of either one back or one abdominal 

muscle.  Pulling would therefore result in higher compressive forces because the lever 

arm of the trunk flexors in these models is much larger than the lever arm of the trunk 

extensors (Andres and Chaffin, 1991; Lee et al., 1991; Gagnon et al., 1992).   

 

Hoozemans et al. (2004) assessed the mechanical loading of the low back and 

shoulder while pushing and pulling loads ranging from 85 to 320kg.  Initial exerted 

forces were found to be the highest measured during the laboratory tasks evaluated.  

The initial forces were also relatively highly correlated with the initial and maximum low 

back net moments.  They found lower correlations between exerted forces and 

mechanical load at the low back and shoulder during the sustained pushing or pulling 

actions.  This research provided two possible reasons for the lower levels of association 

between mechanical loading and sustained force measurement.  Firstly, they argued 

that the direction of the force exerted with respect to the joints being used will play a 

significant role in mechanical loading and should be taken into account                       

(De Looze et al., 2000).  Secondly, that posture and movement patterns largely 

determined the mechanical load compared to the exerted forces.                   
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Hoozemans et al. (2004) cautioned that a number of task-related effects are present 

during pushing and pulling, and that forces exerted during either the initial or sustained 

phases should not be used as the critical indicator for mechanical loading.  

Consideration of the posture adopted, movement pattern, friction from the working 

surface and design of the trolley or cart are equally important in decreasing task 

demands (James and Todd, 2003; Hoozemans et al., 2004).            

 

Lee et al. (1991) contend that cart or hand-truck pushing and pulling are common 

dynamic tasks in industrial settings and the worker needs to ensure that control over the 

device is maintained to minimise the risk of accidental operation.  However, dynamic 

pushing and pulling require different working postures and will differentially tax the 

musculoskeletal system (James and Todd, 2003).  The handle height of the trolley or 

cart has been shown to be important, as a higher pushing or pulling point will result in a 

decrease in the net moment at the low back (Hoozemans et al. 2004).  The ergonomist 

must therefore carefully assess the nature of task demands, and Lee et al. (1991) 

caution that static pushing or pulling research must not be inappropriately applied to 

dynamic pushing and pulling tasks.  The push-pull tasks observed in the South African 

automotive industry were included in the present study.  The nature of task completion 

and hazards to the operator were evaluated in situ and the relevant sub-tasks then 

simulated in the laboratory setting. 

 
Todd (2005) reviewed the current trends in pushing and pulling research and he pointed 

out that although a great deal of research has focused on static pushing and pulling 

there is still a need to assess dynamic activities, particularly in IDCs.  He argued that 

the application of findings based on static isometric efforts has limited applicability when 

considering freestyle cart or trolley pushing or pulling.  A major area that has been 

identified for further research involves physiological responses to dynamic pushing and 

pulling.  Todd (2005) therefore suggested that there is a need to focus on heart rate and 

EMG responses in order to derive applicable predictions of energy expenditure specific 

to dynamic activities. 
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Factors to Consider when Assessing MMH Tasks 
 

Manual handling has been shown to be highly prevalent and instrumental in creating a 

number of complex problems for workers in IACs and IDCs (Dempsey, 1999; Scott and 

Christie, 2004).  Engine assembly and Bodyshop areas of the automotive manufacturing 

process are of prime concern, as many tasks are completed under sub-optimal working 

conditions (James, 2002a; James and Todd, 2003; James and Scott, 2006).  The key 

research in this area has focused largely upon the load, task frequency and work shift 

duration.  In addition, vertical and horizontal measurements have been widely 

considered during the evaluation of MMH (Marras et al., 1993; Davis and Marras, 2003; 

Dempsey, 2003).     

 

Load 

 

Load is of prime importance when evaluating any manual task in IDC industry.  A load is 

generally characterised by its shape, size and mass (Mital et al., 1997).  Heavy and 

awkward objects are regularly lifted in a number of areas of automotive plants, 

particularly the Bodyshop, and are evidenced in the form of large vehicle panels or parts 

(James, 2002c; James and Scott, 2006).  IDC industries frequently require operators to 

manually lift loads in excess of 50kg, thereby predisposing the operator to WMSDs.  

Work carried out by Snook (1978) demonstrated that an operator was three times more 

susceptible to low back injury when lifting loads that were not deemed to be acceptable 

to the industrial population.  In an attempt to regulate loads lifted in industry, the 

National Institute for Occupational Safety and Health (NIOSH) developed a number of 

basic guidelines for manual work (NIOSH, 1981; Waters et al., 1993).  Waters et al. 

(1993) completed the revision of the NIOSH (1981) equations in response to criticism 

from various researchers and practitioners.  Ciriello and Snook (1983) argued that the 

size of the object, distance carried, height and frequency are significant variables to 

consider when establishing guidelines for maximal acceptable lift (MAL).   
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Nicholson (1989) argued that load limits can broadly be defined under two general 

categories, namely “acceptable limits”, derived from what a worker is willing to handle, 

and “safe limits”, based on biomechanical and/or physiological criteria which are 

considered potentially dangerous to exceed.  Genaidy et al. (1998) stated that one of 

the work practices most frequently taught to employees is to estimate the heaviness of 

the load before it is handled.  The practical application of an acceptable-limit model in 

an IDC industry is a complex process, as the level of operator education is not always 

necessarily adequate to ensure a high level of understanding relevant to task criteria.  

Furthermore, actual classification of a “heavy” load has provided researchers with a 

number of questions.  Genaidy et al. (1998) stated that limited information can be found 

in the Ergonomics literature about what a person perceives to be a heavy load.  Results 

from work conducted by Marras et al. (1993) indicated that moment differences were 

driven by loads rather than moment arms.  Furthermore, when comparing the work of 

Marras et al. (1993) and Waters et al. (1999), findings show that load remains the most 

important factor in the development of LBD due to increased spinal loading.  Clearly 

increased load will play a significant role in both workplace fatigue and subsequent LBD 

in instances where lifting/lowering, carrying and pushing/pulling manual tasks 

predominate (Dempsey, 2003). 

 

Davis and Marras (2003) assessed the relative contributions of biomechanics, 

psychosocial factors, and individual risk considerations in the development of spinal 

loading.  Findings from this study demonstrated that load weight remains the major 

contributor to spinal compression, while individual characteristics accounted for the 

majority of anteroposterior shear variability (Davis and Marras, 2003).  Perhaps most 

importantly this study demonstrated that the load placement is one of the largest 

influencing factors on resultant spinal loads.  Load placement is a unique stressor, in 

that it has both biomechanical and psychosocial components (Davis and Marras, 2003).           
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Frequency 

 

Frequency of handling is an important task characteristic which influences an operator’s 

capability to perform MMH activities (Marras et al., 2006).  High frequency of task 

completion decreases the MMH capacity of the worker, particularly when considering 

the entire working shift, and Mital and Manivasagan (1983) concluded that task 

frequency had a significant effect on the maximum acceptable mass of the lift 

evaluated.   

 

Increases in product demand within the South African automotive industry have resulted 

in higher working frequencies as assembly plants aim to meet higher production goals 

(NAAMSA, 2006).  Increased task completion frequency has necessitated that the mass 

of the load moved be reduced to ensure that the operator is not excessively taxed 

during the working shift.  Khalil et al. (1985) reported that for a given MMH task, the 

maximum load of lift acceptable to an individual decreases non-linearly with an increase 

in frequency.  The ergonomist working in this sector therefore needs to carefully 

scrutinise the task requirements and ensure that the demands placed on the human 

operator are not excessive when the complete lifting situation is considered.   

 

Previous studies have largely focused on lift frequency-related increases in heart rate, 

oxygen consumption and energy expenditure (Garg, 1989).  The assessment of spinal 

loading provides a further method of evaluating the role of frequency in MMH.      

Marras et al. (2006) have shown in a recent study that the response of an individual to 

lift frequency will largely determine the work efficiency of the work cohort.  The primary 

objective of this research was to determine how spinal loading changes in response to 

lifting frequency exposure, load lifted and the duration of the lifting task.  The 

comparison of spinal responses of novice and experienced manual handlers also 

provides a useful base of comparison for the present study due the inexperience in 

manual labour of the laboratory sample.  Findings from the   Marras et al. (2006) 

research demonstrated a number of interesting findings with respect to the effects of 

lifting frequency and role participant experience on spinal loading.  Marras et al. (2006) 
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found that experienced MMH workers had increased spinal loading at lower lifting 

frequencies, while novice lifters had higher loading at higher frequencies, and propose 

that increases in lifting frequency resulted in an increase in spinal loading due to higher 

levels of coactivity, particularly when participants are not experienced in MMH.   

 

Duration 

 

Scott (1999) stated that due to poor income and living conditions, many people working 

in IDCs may work arduously long hours, often more than eight hours per day. Together 

with the duration of the work shift, it is also necessary to consider the duration of the 

task which will affect the successful completion of the task, and Mital et al. (1997) 

argued that the duration of performance is an important consideration in designing an 

MMH job.  An increase in task duration will increase the overall level of energy 

expenditure during the everyday work shift, and the metabolic energy expenditure level 

that can be maintained over time decreases with an increase in the task duration 

(Ayoub and Mital, 1989).  The physical demands of a manual task should therefore be 

reduced as the task duration increases.  A noteworthy difference between IACs and 

IDCs relates to the regulation and enforcement of legislation specific to an eight hour 

working shift.  In IDCs it is not uncommon for members of the workforce to complete 

shift cycles in excess of 10 hours per day (Scott, 1999).  

 

The duration of a working shift will have a notable influence on biomechanical, 

physiological and perceptual responses of the worker.  Marras et al. (2006) evaluated 

biomechanical loading during an eight hour shift and found that compression in the 

spine was greatest during the first two hours of the work bout.  There was also a 4% 

increase in compression at the end of the working shift.  EMG analyses showed that 

higher spinal loads occurred later in the day due to increases in muscle coactivity.   
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Low Back Disorders (LBD)  

 

Cumulative low back loads are receiving widespread attention as a method of 

identifying jobs and individuals who are at high risk of developing LBD in the workplace 

(Callaghan et al., 2005).  Physical loading on the lower back in the place of work, in 

particular high peak forces and poor trunk postures and movements, have been 

presented as contributors of the reporting of LBD in various industries                  

(Marras et al., 1993; Marras et al., 1995; McGill, 1996; Norman et al., 1998; Davis and 

Marras, 2003).  Work conducted by Marras et al. (1999) suggested that LBD continue to 

be the most common musculoskeletal problem.  These high levels of reporting of 

particular concern to ergonomists working in IDCs where manual work predominates. 

Many leading ergonomists are concerned that the problem associated with manual work 

related injuries will not be resolved easily, and the costs associated with these injuries 

continue to rise (Ferguson et al., 1992; Dempsey, 1998; 1999; Davis and Marras, 

2003).  

 

McGill (2004) argued that research into factors relevant to LBD indicates that too little 

loading is detrimental to the individual as is too much loading. He points out that 

individuals who are predominantly sedentary and not required to load their spine or 

muscular system may in fact be equally at risk in the workplace with regards to LBD.   In 

contrast, the experience of the workforce in physically demanding manual jobs is an 

important consideration when considering the likelihood of LBD.  Recent work 

completed by Marras et al. (2006) aimed to determine how spine loading changes in 

response to lift frequency exposure, weight lifted and lift duration over an entire shift.  

Furthermore, this study aimed to assess whether differences exist between the 

responses of novice and experienced manual materials handlers.  The results from this 

research demonstrated that experienced participants had on average 13% less 

compressive load on their spines compared to novices completing the same lifting 

tasks.  Marras et al. (2006) further argued that it was not lifting frequency alone, but 

frequency and moment in combination that influences spinal compression.  Of particular 

relevance to IDC industry is the finding that experienced workers are most likely to be 
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used to lifting at greater frequencies and have optimised their muscle recruitment 

patterns so that they minimise cocontration and the subsequent loading               

(Marras et al., 2006).  Workers therefore need to be trained in appropriate lifting 

techniques and clearly advised on the most appropriate methods for sub-task 

completion.   

 
A key challenge to researchers investigating LBD is deriving feasible guidelines or limits 

that have applicability in the workplace.  McGill (2004) has suggested that advances in 

the prevention of occupationally related LBD will require further evidence justifying the 

various terms needed for a robust and valid biomechanical model.  Automotive industry 

SHE officials frequently request guidelines for safe lifting limits and find the revised 

NIOSH model (Waters et al., 1993) to be complex and limited in its workplace 

application (Visser, 2004; Khumalo, 2004).  Future models aimed at assessing the risk 

specific to LBD should include terms for load magnitude and mode, repetition and 

duration, together with consideration of age and gender, previous tissue damage and 

the benefits of rest periods (McGill, 2004).  In IDCs there appears to be a need for 

simplistic guidelines which are easily applied, and useful in proactive prevention of LBD.  

Another limitation of predictive models is individual differences in spinal responses 

(Campbell-Kyureghyan et al., 2005).  The spine is not a rigid body, but rather a multi-

joint structure that will vary substantially in shape from person to person; she purports 

that the load distribution and resultant spinal motion will consequently vary substantially 

based on individual differences. 

 

Ferguson et al. (2005) previously suggested that one of the best predictors of LBD is 

previous history.  Many workers return to the workplace with very simple lifting 

guidelines and in the case of IDCs only nominal restrictions on what load may be lifted 

during the working shift.  Additionally, while physical loading may be limited, working 

posture and origin of lift are not restricted (Ferguson et al., 2005).  Many individuals in 

the workplace therefore place themselves at great risk of re-injuring themselves due to 

the working posture they adopt.  The point of origin of the lift is not strictly controlled and 

in many instances the lifting action requires an extreme horizontal reach, particularly in 
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the case of palletised loads.  Marras et al. (2004) concluded that spine loading is 

greater in participants with LBD compared to asymptomatic individuals when performing 

similar lifting tasks.  Interestingly their study demonstrated that counterclockwise lifting 

yielded much greater spine loading than clockwise lifts.  The authors contend that the 

differences in spine loading between groups with LBD and asymptomatic groups 

appears to be related to differences in muscle coactivation and possibly to perceived 

individual needs for system stability (Marras et. al., 2004).  In the case of inexperienced 

manual handlers, the EMG pattern is expected to differ substantially due to perceptions 

of task demands and perceived need for stability.  McGill et al. (2003) stated that the 

amount of muscle activation needed to ensure sufficient stability depends on the task 

being completed, stating that for daily living activities very modest levels of abdominal 

wall coactivation is usually adequate to complete a simple, light weight lift.  In contrast, 

workplace lifting tasks where loads in excess of 20kg are moved will frequently require 

higher levels of muscle coactivation to allow the individual to reach an acceptable level 

of stability.  A basic understanding of muscle coactivation is useful during the 

assessment of manual handling tasks, but McGill (2004) cautioned that spine stability, 

or the strategy to ensure that the spine does not experience instability, depends solely 

on the motion and motor patterns chosen by the individual.     

 

In addition to increased trunk muscle coactivation, fatigue failure of the lumbar spine will 

have a marked effect on the prevalence and reporting of LBD.  Gallagher et al. (2006) 

suggested that the magnitude and distribution of loads on structural components of the 

lumbar spine vary considerably.   Some of the key factors for consideration include the 

posture adopted, the size of vertebral bodies, the degree of disc degeneration, and the 

magnitude of the shear and compression forces imposed on the spine.  Results from 

this study suggested that prediction of specific failure modes for older lumbar motion 

segments may be possible given the knowledge of the specimen size, disc 

degeneration status, degree of flexion and spine loading characteristics           

(Gallagher et al., 2006).  Findings from this research have important application in the 

workplace where older workers are required to complete physically taxing manual work 
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and may be returning to work after an injury.  Higher incidence of LBD is to be expected 

in instances where the workforce and the task demands are incompatible.         

 

A major concern facing ergonomists working in the automotive industry relates to the 

current level of training and understanding of risk of LBD in this sector.  Marras (2000) 

identified a key concern when stating that control of risk in the workplace requires 

knowledge beyond simple identification of key factors.  It requires a much deeper 

understanding of how risk of LBD occurs at the workplace.  While selected personnel 

may be equipped to identify high risk tasks, the need for input from an ergonomist in 

redesigning of a particular workstation to minimise risk should be given priority.  In many 

IDCs the risk of LBD is misunderstood, underestimated and underreported.  Dealing 

with the potential pitfalls of manual work will require a focused, long-term approach that 

goes beyond the “quick fix” and leads to substantially greater improvements in 

workplace conditions (Dempsey and Mathiassen, 2006).  

 
Assessment of MMH Tasks 
 

The use of manual labour is widespread in the automotive industry despite significant 

workplace changes and the increasing use of advanced technologies in the sector.  

Internationally, MMH has been the focus of extensive critical review and clinical studies 

aimed at establishing criteria to be used to assess and subsequently intervene in 

instances where manual handling poses major risks to the worker (Dempsey, 1998; 

Ciriello et al., 1999; Marras, 2000; Davis and Marras, 2003).   

 

These approaches can be sub-divided into four principle areas as follows:  the role of 

epidemiology, the biomechanical, the physiological, and the psychophysical.  In most 

instances suitable guidelines developed for MMH tasks cannot be formulated from a 

single factor, but require an integrated, holistic approach.  Consequently it has been 

proposed that MMH models should be formulated on the basis of multiple criteria 

(Charteris et al., 1976; Dempsey, 1999).  There is a need for both basic and applied 

research to enhance the methodologies for aggregating multiple-component MMH tasks 

and MMH criteria (Dempsey, 1999).  
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The Epidemiological Approach 

 

NIOSH (1981) defined epidemiology as a science which identifies the incidence, 

distribution and potential control of injury or illness related to a specific population.  The 

basic emphasis of epidemiology is on groups of workers rather than on the individual 

operator (Mital et al., 1997).  Dempsey (1998) suggested that the role of epidemiology 

in the development of MMH criteria was threefold:  determining/verifying the aetiological 

significance of a given variable; verifying the validity of a given criterion by establishing 

the relationship between a specific variable and the probability of injury or disability; and 

providing guidance in the development of a criterion through consideration of previously 

determined relationships between a given variable and selected outcome measures. 

However, the direct utility of epidemiological models has been questioned in a number 

of instances due to the high levels of specificity of this approach to the assessment of 

MMH activities (Mital et al., 1997).   

 

Ayoub et al. (1997) argued that a critical research need in the area of MMH is the 

epidemiological comparison and validation of criteria based on different approaches.  

Work conducted by Marras et al. (1995) aimed to merge existing epidemiological 

models with biomechanical mechanisms in assessing risk factors related to MMH task 

completion.  In this research over 400 jobs across 48 industries were compared in order 

to measure in situ trunk kinetics and kinematics.  The magnitude of trunk lateral velocity, 

twisting velocity and sagittal angle, as well as lifting frequency and load moment were 

positively related to jobs which were historically classified as low, medium or high risk 

for the development of low back pain (Marras et al., 1995).  While this research does 

have a number of limitations, it is widely regarded as a significant attempt to merge the 

epidemiological and biomechanical approaches in research and practical terms.  One of 

the major obstacles facing ergonomists assessing manual work is that the 

epidemiological evidence supporting a link between risk factors and injury is either 

unavailable or the data support only a qualitative link (Mital et al., 1997).                

Kuiper et al. (1999) argued that in spite of the common belief that MMH activities are 
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associated with the high incidence of industrial injuries, particularly to the lower back 

region, conclusive evidence has still eluded ergonomists.  It is therefore critical that the 

epidemiological models developed be carefully scrutinised and not looked at in isolation 

when assessing manual tasks.      

 

The Biomechanical Approach 

 

The biomechanical approach aims to ensure that tasks are designed in such a way as 

not to exceed the capacity of the musculoskeletal system (Dempsey, 1998). Various 

approaches have been utilised to assess the biomechanical demands placed on the 

human operator.  Andersson (1985) has argued that two biomechanical-based 

approaches have been widely used to establish safe practices for manual work.  The 

first approach has been to assess the interaction between the operator and the task.  

The researcher is thereby able to determine whether the physical characteristics of the 

worker are morphologically suited to safely endure the physical demands of the task.  A 

number of rating scales and safe practices guidelines have been developed using this 

paradigm.  Chaffin et al. (1978) developed the job strength rating (JSR), while       

Ayoub et al. (1978) developed basic guidelines based on the job severity index (JSI).   

 

The second approach is to make use of compression limits and maximal joint torques, 

which are reportedly the most commonly used for biomechanical assessments of MMH 

tasks (Dempsey, 1998).  There are a number of force-related biomechanical models 

which have been developed to assess the response of the musculoskeletal system to 

mechanical stresses (Ayoub and Mital, 1989).  The biomechanical model essentially 

requires the human musculoskeletal system to be treated as a system of links and joints 

(Mital et al., 1997).  Differences in approach to this particular paradigm have been 

largely related to the classification of the number of links assessed and the technique 

used for analysis.  Mital et al. (1997) argued that two or three dimensional techniques 

could be used to assess the mechanical stresses the human body is subjected to during 

completion of MMH tasks.  One of the principle concerns with regards the use of 

compression and force-related biomechanical methods relates to the deficiencies in 
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data utilised to formulate these criteria.  Compression limits have largely been 

formulated based on cadaver responses.  Dempsey (1998) questioned whether the in 

vivo spine responds to compression in the same manner as the experimentally-

prepared in vitro spine.  

 

Ayoub and Mital (1989) stated that a variety of models have been developed to evaluate 

industrial MMH tasks, manual lifting in particular.  The validation and applicability of 

models has resulted in an ongoing debate in various research articles                      

(Mital et al., 1997; Dempsey, 1998).  For example, NIOSH (1981) recommended design 

standards for lifting tasks using an allowable limit of approximately 3 400 N of 

compressive force at the L5/S1 articulation.  Several studies have more recently 

suggested much higher values could be observed during reasonably safe lifting (Kumar 

and Mital, 1992; Mital et al., 1997).  Following extensive research, Mital et al. (1997) 

suggested that compression forces of approximately 3 930 N could be tolerated by most 

males and 2 689 N by most female operators.  The major caution is that compression 

strength should not be used a sole design criterion.  Manual tasks involve a complex 

interaction between the worker and the object being moved.  A typical complication of 

the manual handling process relates to asymmetrical lifting (Mital and Kromodihardjo, 

1986).  Asymmetrical lifts have been shown to be relatively more hazardous than 

symmetrical lifts in various studies due to the additional torsional stress on the spine 

(Davis and Marras, 2003; Marras et al., 2006). 

One of the major advances in understanding trunk motion characteristics has been 

achieved through the utilisation of the lumbar motion monitor (LMM) developed by the 

Biodynamics Laboratory at the Ohio State University (OSU).  Various studies have been 

conducted to assess the accuracy and reliability of the LMM when measuring changes 

in position, velocity and acceleration (Marras et al., 1992; Gill and Callaghan, 1996).  To 

ensure accuracy and sensitivity of the LMM, the unit was validated by using a video-

based motion analysis system in research conducted by Marras et al. (1992). Their 

research showed high correlations and significance levels (r>0.95, p<0.0001) for 

sagittal, lateral and twisting planes of motion.  Gill and Callaghan (1996) concluded that 
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the LMM is suitable for use in clinical and research settings when assessing range of 

motion (ROM) and changes in velocity.  The LMM is essentially an exoskeleton of the 

spine in the form of a tri-axial electrogoniometer that measures the instantaneous three-

dimensional position, velocity and acceleration of the spine (Marras et al., 1997; Davis 

and Marras, 2003).   

The LMM has been widely used to assess current workplace demands and calculate a 

risk prediction.  The LBD risk model was developed in the Biodynamics Laboratory 

(Marras et al., 1997) following an in vivo study undertaken to determine quantitatively 

whether dynamic trunk motions, in combination with workplace and environmental 

factors, may better describe the risk of LDB in repetitive MMH.  A cross-section of 

industrial jobs was assessed with jobs divided into low- and high risk of LBD.  By 

averaging moment, frequency of lift, sagittal flexion, twisting velocity and lateral velocity, 

the LBD risk model is able to predict the probability of high risk group membership for 

any repetitive job (Marras et al., 1997).   

Use of the LMM and associated LBD risk model has a number of advantages when 

adopting a biomechanical approach to the evaluation of manual work.  Data from the 

LMM are collected instantaneously and resulting calculations of the injury risk are 

determined irrespective of the investigator’s view of the work (Marras et al., 1997).  In 

addition, the LMM allows for the comparison of MMH jobs with a database covering a 

wide range of manual work.  The probability model enables quantitative assessment of 

each sub-task within a job and the LDB risk model may assist in the ergonomic 

intervention process (Marras et al., 1997).  The LBD risk model therefore provides a 

useful tool for use in pre- and post-intervention investigations, as was the case in the 

present study.  Furthermore, the LMM has been used in conjunction with an EMG-

assisted biomechanical modelling (Granata and Marras, 1993; Davis and Marras, 2003; 

Marras et al., 1999; 2006) to assess the relationship between muscular activity and 

trunk motions.  Despite advances in methods and loading predictions, the 

biomechanical approach would appear to have limited applicability when used in 

isolation (Dempsey, 1999).  Incorporating the evaluation of physiological and 
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psychophysical parameters appears to be the preferred approach (Dempsey, 1999; 

Lehman and McGill, 2001; Marras et al., 2006).  

The Physiological Approach 

 

Mital et al. (1997) stated that when a worker engages in a physical task a number of 

physiological responses are affected.  These include metabolic energy cost, heart rate, 

blood pressure, blood lactate and ventilation volume.  Designing tasks to ensure that 

the physiological response of the body will be within acceptable limits is the primary 

goal of the physiological approach (Dempsey, 1998; 1999).   The level of acceptable EE 

is dependent upon the duration of the task, as EE and task duration are inversely 

related (Dempsey, 1999).  This is of particular relevance in IDCs where extended 

working shifts and poorly scheduled work are common place (Scott, 1999).     

 

Datta et al. (1983) argued that maintaining a stable, acceptable physiological output 

should reduce the onset of worker fatigue over the working shift.  The setting of energy 

expenditure limits and utility of regression models are the two key areas developed to 

assess work-related activities.  There are some concerns for the researcher adopting 

physiological methods.  Mital et al. (1997) identified two problems associated with the 

design of physiologically-based criteria:  specifying the upper limit of oxygen 

consumption as a percentage of aerobic capacity that can be sustained without undue 

fatigue, and deciding on what kind of aerobic capacity should be used to express the 

percentage.  There are a number of other limitations to the utility of physiological 

models.  Leamon (1994) stated that little association exists between cardiovascular 

capacity and incidence of low back pain.  Low back pain has been shown to be more 

likely to result from cumulative load, and the establishment of manual handling 

guidelines based on whole body physiological responses should possibly be re-

evaluated.  Dempsey (1999) concurred with these findings and stated that the use of 

physiological measures may be limited, as the ability to differentiate LBD risk is highly 

limited.  Of the current methods used, Dempsey (1999) suggested that oxygen 

consumption is the most common measure used to estimate EE.   
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Despite the acknowledged limitations of selected criteria used in the evaluation of the 

cost of manual work, a few researchers continue to use physiological methods.  

Physiological methods remain of particular importance in IDCs due to the vast number 

of rural work settings which pose unique challenges (Scott et al., 2003; O’Neill, 2005).  

Physiological demands frequently exceed operator capabilities, with many people 

carrying loads well in excess of 30kg on their heads, shoulders and backs for long 

distances (O’Neill, 2005).  Scott and Christie (2004) argued that physiological 

responses are influenced by the working environment, the individual and the activity.  In 

IDCs the loads lifted are commonly excessive and necessitate poor working postures.  

In an attempt to address the problem of excessive work loads, ergonomists in South 

Africa are increasingly involved in analysis of the imbalance between worker capabilities 

and task requirements (Scott and Christie, 2004).  Compounding the problem of heavy 

manual work, is the poor nutritional and health status of the majority of the working 

population in IDCs (Renz and Scott, 2004).  In situ physiological assessments are more 

difficult to control than those conducted in a laboratory (Renz and Scott, 2004; Scott and 

Christie, 2004), consequently, limited research has been conducted in situ to predict 

workplace EE.   

 

Central to the drive for productivity improvement is the challenge of finding an 

acceptable work rate for a given job (Bridger, 2003).  Extreme whole-body motions such 

as required for lifting actions increase the demand for blood to transport oxygen to the 

working muscles (Capadaglio et al., 1997; Renz and Scott, 2004).  Of the physiological 

methods used to monitor human responses, the most frequently assessed variable in 

the field is probably heart rate (Scott and Christie, 2004).  Heart rate may be recorded 

using relatively inexpensive equipment which is principally non-invasive.  Various 

classification tables and matrixes have been developed to assess heart rate responses 

in the laboratory and field (Sanders and McCormick, 1993; Bridger, 2003).  Renz and 

Scott (2004) demonstrated that a simple manual handling task involving lifting and 

lowering may elicit a mean heart rate response in excess of 135 bt.min-1.  The 

classification matrix developed by Sanders and McCormick (1993) suggests that a 
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workload that results in heart rate responses between 125 and 150 bt.min-1 is classified 

as ‘heavy’.  Setting acceptable heart rate limits is a potential area of use for moderating 

the physiological cost of work.  Further applications of heart rate data have been widely 

researched (Capadaglio et al., 1997; Renz and Scott, 2004; Scott and Christie, 2004; 

Scott and Renz, 2006).  In research conducted on forestry workers in South Africa 

(Scott and Christie, 2004), their study demonstrated that the use of a regression 

equations to predict maximal oxygen consumption (VO2max) from heart rate is an 

acceptable means of estimating energy expenditure of manual labourers where 

scientific expertise and equipment are not readily available.   

 

Electromyography (EMG) is used by ergonomists to detect workspace and task factors 

that cause unnecessary or rapid muscular fatigue (Bridger, 2003).  Lehman and McGill 

(2001) stated that the use of EMG and EMG modelling to evaluate current or predicted 

workplace demands is widespread.  Various researchers have used EMG modelling to 

assess muscular activity in the agonist and antagonist muscle groups during MMH 

(Marras and Granata, 1995; 1997; Davis et al., 1998; Jorgenson et al., 2004).  The 

Biodynamics Laboratory at the OSU has completed extensive studies using an EMG-

assisted biomechanical model (Marras and Granata, 1995; Marras et al., 1999;      

Chany et al., 2006).  Findings specific to EMG-assisted modelling are utilised in 

conjunction with spine loading variables and trunk kinematic responses for each 

participant to determine both the physiological and biomechanical loading during a 

given task (Granata and Marras, 1995).   The model employs EMG and kinematic input 

to determine the dynamic, relative muscle force vectors of the ten, modelled, trunk 

muscles following the work of Schultz and Anderson (1981).  The trunk muscles probed 

include the right and left latissimus dorsi, erector spinae, rectus abdominus, internal 

abdominal obliques, and external abdominal obliques (Marras and Granata, 1995; 

Granata and Marras, 1995).  The EMG-assisted model has a major benefit in that it can 

provide an insight into the effects of motion induced, muscle coactivation on spinal 

loading (Granata and Marras, 1995).  Marras and Granata (1995) concluded that the 

EMG model may be used to investigate the etiology of LBD and reduce the risk of 

occupational injury.  
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Torso working posture has a major influence on force generation and muscle 

recruitment patterns (Marras et al., 1998).  Trunk muscle activity has been shown to 

vary according to the working posture adopted and the asymmetry of task completion 

(Marras et al., 1998).  Muscle activity will vary according to a standing or flexed trunk 

position, and McGill (1991) argued that EMG activity of the trunk muscles have 

described significant muscle coactivity during twisting while standing.  Under upright 

trunk twisting conditions, twisting torque is generated easily and efficiently with the 

assistance of the oblique and latissimus dorsi muscles (Marras et al., 1998).  However, 

when the trunk is flexed the activity of the erector spinae muscles increases while the 

external oblique activity decreases.   These findings have important application in the 

present study where asymmetrical working postures were simulated for both the 

Paintshop and Bodyshop tasks.   

 

The Psychophysical Approach 

 

Psychophysical assessment of subjective discomfort is often used as a short-term 

response to biomechanical stress in order to provide guidance to the ergonomist during 

workstation design and evaluation (Lin and Radwin, 1998).  Various psychophysical 

methods have been successfully used to establish maximum acceptable workloads in 

repetitive lifting tasks (Legg, 1981; Nicholson and Legg, 1986, Karwowski et al., 1992).  

Workers are required to make a personalised assessment of task demands of a 

particular MMH job and the information gained has been utilised extensively to design 

and redesign MMH jobs in a variety of industries for over three decades (Ayoub and 

Dempsey, 1999).   

 

Gamberale et al. (1987) argued that one way to prevent injuries resulting from manual 

handling of materials is to apply restrictions on how much an operator should be 

permitted to lift.  Ergonomists adopting the psychophysical approach are thus required 

to ensure that operators are adequately trained to evaluate current and future task 

demands in their work areas.  Nicholson and Legg (1986) referred to the design of 
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working tasks based on the psychophysical approach being concerned with what a 

worker will do rather than what they can do.   

 

There are numerous psychophysical design databases available for various MMH tasks 

(Ayoub and Dempsey, 1999), which frequently require a high level of worker 

understanding of self-pacing and self-regulation in the workplace.   Mital et al. (1997) 

stated that the psychophysical approach to MMH job design requires individuals to 

adjust either the handling frequency, mass of the load or the force exerted on the object 

being handled according to their perception of physical strain.  The primary goal of the 

psychophysical approach is to design tasks that are “acceptable” to the majority of 

workers performing a task (Dempsey, 1998).  Workers have access to a task-specific 

database which allows them to select a load, force or frequency for a particular activity.  

One of the major concerns related to the data utilised by these databases is the short 

periods of time (20 – 25 min) over which much of the data have been collected.  Data 

collected in shorter trials are acceptable for low frequency tasks, but do not apply for 

moderate to high frequency tasks (Mital, 1983); and Marras et al. (2006) demonstrated 

that spinal loading does not respond in a consistent or expected manner over the eight 

hour working shift.  Guidelines based on shorter duration manual handling would 

therefore appear to be extremely limited in workplace application. There is also a major 

concern that data and methods employed in IACs are not necessarily guaranteed to 

work in IDCs, where the profile of the workforce is substantially different. 

 

Snook (1985) evaluated the advantages and disadvantages of the psychophysical 

approach.  The advantages included the following:  a realistic simulation of actual task 

demands is completed, testing does not require a “steady state” as per physiological 

research designs, studies produce reproducible results; and a high level of association 

is observed between demanding tasks that have been subjectively rated and operator 

reports of low back pain.  Although the approach relies on a high level of task 

understanding on the part of the operator, it would appear to be very useful in setting 

realistic working levels using the worker as the “expert”.  Snook (1985) also highlighted 

a number of disadvantages of the approach:  the subjective nature of the reports can be 
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a source of concern and criticism; the results obtained may vary substantially depending 

upon the frequency component of the workload, and psychophysics does not appear to 

be sensitive to dynamic activities which include bending and twisting.  Mital et al. (1997) 

reported that the psychophysical approach, using the worker to subjectively evaluate 

the task demands, results in the safest working environment.  The practical applicability 

of the psychophysical approach is not as simple in an IDC country, as the level of 

complexity of the task and level of education of the operator are not always matched.  It 

is therefore up to the ergonomist to critically evaluate the working situation and utilise 

the most effective approach for the given industrial setting.   

 

Ayoub and Dempsey (1999) suggested that one of the major needs in psychophysical 

research relates to the need for epidemiological field verification of psychophysical data.  

Many of the databases are in need of updating with recent quantitative analysis of 

industrial tasks demands for a variety of industries.  Although the psychophysical 

approach does have disadvantages, Ayoub and Dempsey (1999) argued that the 

approach has been useful in reducing the mismatch between the operator and the task 

in many instances.  In IDCs there is a still a great deal of potential for the utilisation of 

the psychophysical approach due to the sub-optimal task demands regularly observed.  

The key challenge will be to modify the psychophysical approach to the level of 

understanding of the workforce, particularly in those automotive industry sectors that do 

not have a highly educated workforce. 

 

PSYCHOPHYSICAL RESPONSES 
 

Each human operator responds in a unique manner to the task requirements of a given 

workplace.  Understanding the importance of the perceptual responses of the “human 

factor” in the Man-machine interface is thus a major focus for the ergonomist.  

Increased demands and pace of manufacturing have resulted in a growing interest in 

the perceptions of operators towards their physical workload (Borg, 1982).  

Psychological factors have been shown to exert significant influences on the efficiency 

of performance of the worker required to complete manual tasks. 
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A number of methods have been developed to aid the evaluation of workers’ perceptual 

responses.  Borg’s (1971) Rating of Perceived Exertion (RPE) scale and Corlett and 

Bishop’s (1976) Body Discomfort Scale (BDS) are two of the most widely used.  These 

scales provide a subjective evaluation of the perceived demands and discomfort 

associated with the task under investigation, and have been widely used to ensure that 

the incompatibility between the operator and the task is minimised.  Mital et al. (1997) 

argued that an operator who can quantify the physical demands of a given task is less 

likely to exceed their personal threshold during MMH task completion.     

 

Ratings of Perceived Exertion (RPE) 

 

In order to quantify the responses of either the worker or the laboratory participant, Borg 

(1971) proposed the Rating of Perceived Exertion (RPE) scale.  Borg’s 6-20 RPE scale 

was used in the present study (See Appendix A).  Borg (1982) argued that it was 

essential for scientists to develop methods to quantify subjective symptoms and 

evaluate how they related to objective findings. The Borg rating scale has been widely 

used in MMH risk assessment (Straker et al.,1997; Dawes et al., 2005).  The Borg RPE 

scale used in the present study consisted of both verbal anchors and numbers for rating 

purposes.  Dawes et al. (2005) suggested that the RPE scale may be used effectively 

to quantify perceived exertion in instances where physiological loading increases during 

work or exercise.  The RPE scale may also be used to assess perceived exertion using 

‘Central’ and ‘Local’ ratings.  ‘Central’ RPE requires the participant to rate perception 

based on cardiovascular response, while ‘Local’ ratings are used to evaluate localised 

exertion, for example, in the back or arms (Christie and Scott, 2005).   

 

Gamberale (1985) stated that the perception of exertion during physical work not only 

has psychological validity, but it also reflects real conditions such as the interplay 

between the requirements of the task and the capacity of the human operator.  Where 

workers are frequently required to lift or carry heavy loads, or to work under trying 

conditions, the psychological make-up of the operator needs to be adequately matched 
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to the demands of the task.  Perceived exertion thus has an important application in an 

occupational setting (Noble, 1982; Dawes et al., 2005).  Setting acceptable workplace 

limits for exertion and pain may be one of the most useful applications of RPE.         

Garg et al. (2006) argued that fatigue is not a voluntary response, and consequently 

what remains of importance is to establish what levels of perceived exertion and pain 

are acceptable and/or “safe” in the workplace.   

 

Carton and Rhodes (1985) provided a critical assessment of the factors that influence 

RPE.  This review outlined the physiological basis, non-physiological factors and effects 

of work on RPE.   RPE has been shown to be highly correlated with heart rate (HR) in 

numerous studies (Stamford, 1976; Mihevic, 1983).   Differential use of RPE has 

resulted in the use of the scale to allow participants to rate both Central and Local RPE 

in field or laboratory research.   It has been argued that local factors are responsible for 

the most intense sensory stimulus, irrespective of the size of the muscle mass recruited 

(Pandolf and Noble, 1973).  Recent work carried out by Wang et al. (2000) used the 

RPE scale to assess the effect of handle angle on whole-body and wrist ratings 

following a change in container design.  As expected, lower RPE ratings were recorded 

during trials where the working posture was suitable for container based work and the 

handle angle was closer to the neutral position.      

 

Some of the factors to consider when using the RPE scale relate to the following:  time 

of day; effects of sleep deprivation; the age and sex of the worker; nature of the test 

being completed, the duration of the testing protocol; and the impact of the working or 

testing environment (Carton and Rhodes, 1985).  The use of the RPE scale in situ 

needs to be utilised with caution, as it is imperative that the operator is clear on the 

requirements for the rating of exertion.  Garg et al. (2006) recently assessed fatigue, 

RPE and EMG associated with short-cycle overhead work in an automotive assembly 

plant.  This evaluation of overhead work demonstrated that hand-tool weight, posture 

and work duration had a significant influence on RPE, fatigue and pain                     

(Garg et al., 2006).  RPE values were the highest recorded, thereby demonstrating that 
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operator perceptions may be a useful indicator of subjective workplace upper extremity 

joint loading.  

 
Body Discomfort Map and Rating Scale (BDS) 
 

The Body Discomfort Map and Rating Scale (BDS) are adopted from the work of Corlett 

and Bishop (1976).  The BDS is a subjective tool used to assess the discomfort of an 

individual in the laboratory or working environment.  The body map is divided up into 27 

segments so that the subject can identify the site(s) of discomfort and rate the intensity 

on the rating scale (See Appendix B).  Cameron (1996) stated that in laboratory 

settings, studies using discomfort scales have been designed to increase our 

understanding of factors that affect the performance of tasks which occur in many 

different work environments.  The research of Straker and co-workers (1997) 

demonstrated that discomfort ratings were significantly higher for tasks that required the 

operator to adopt an awkward working posture.  Furthermore, high frequency tasks 

were rated greater in discomfort than the same tasks performed at lower frequency, 

presumably due to the onset of muscle fatigue more rapidly during the more rapid task 

completion.  High levels of discomfort during task completion are often an indicator of 

risk in the workplace due primarily to the onset of fatigue or excessive task demands 

(Straker et al., 1997). 

 

Discomfort is primarily associated with the perception of pain, and that pain is 

associated with the working posture utilised, and with the effort expended (Cameron, 

1996).  Heavy physical work will increase the levels of reporting body discomfort 

(Corlett, 1990).  Based on detailed observation of working practices (James, 2002a; 

James and Scott, 2006), existing rest schedules used in the automotive sector may not 

be sufficient to allow adequate recovery from mild to extreme body discomfort 

associated with poor working postures and sub-optimal task design.  To this end Corlett 

(1990) argued that body part discomfort data should be collected at regular intervals 

during the working shift when used in situ.  He further suggested that recovery from 

static work is usually slow and may in all likelihood not be achieved in a short rest 
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break.  It remains critical for each plant using intervention strategies based on sound 

ergonomics principles to assess the current task demands and to be guided by the 

subjective discomfort responses of the workforce while minimising the likelihood of 

inadequate rest periods. 

 

Workplace Injuries and WMSDs related to MMH 
 

General Overview 

 

Injuries associated with MMH are widely acknowledged as a being a substantial 

problem, the reduction of which is a major challenge for ergonomists                    

(Straker et al., 1996).  Marras et al. (1999) stated that the accurate identification of high 

risk jobs is the first step in developing an effective control programme.  IDC workplaces 

put the operator at high risk of injury due to sub-optimal working conditions and high 

levels of physically demanding work.  The guiding principle of human performance 

improvement is to balance work demands with worker abilities and needs to maximise 

performance measures (Shoaf et al., 2000).  Despite a realisation that WMSDs are a 

major concern, both in terms of human and monetary cost, Marras (2004) stated that 

research still has a long way to go before there is enough knowledge to eradicate these 

disorders from the workplace.   

 

Kumar (2001) contended that workplace musculoskeletal injuries are broadly divisible 

under two categories:  idiopathic and traumatic.  The idiopathic injuries cannot be 

assigned to a specific work-related incident, and could well be confounded by other 

task-based factors.  In contrast, the traumatic injuries can usually be related to a 

particular event or action in the work process.  There are a number of risk factors which 

require attention when considering the South African automotive industry.  Kumar, 

(2001) proposed that risk factors can be assigned to one of four principle groups 

associated with the worker as follows:  genetic, morphological, psychological and 

biomechanical.  The interplay between these factors will play an important role in 

determining the risk in any given industrial setting while Marras (2000) listed the 
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following risk factors in the workplace:  heavy physical work; lifting and forceful 

movements; bending and twisting; whole-body vibration; and static working postures.  

Many of these risk factors are frequently witnessed in the South African automotive 

industry.  A further potential risk factor identified over the past decade is that of 

psychosocial concerns (Marras, 2000).  Operators working in the automotive sector are 

subjected to escalating demands due to increases in production targets within a 

changing political environment.  The psychosocial factor is therefore of great importance 

when considering an IDC setting, such as South Africa.   

 

The increasing disability of musculoskeletal problems and associated cost in IACs has 

resulted in a call for effective preventative strategies (Viikari-Juntura, 1997).  There is a 

need for research focusing on WMSDs due to the vast scale of this international 

problem.  For example, in the United Kingdom 12.3 million working days are lost each 

year due to WMSDs (Whysall et al., 2004).  The future trends in the area of WMSD 

research would appear to indicate the desperate need for a holistic approach to the 

problem (Dempsey, 1998; Marras, 2004).  The assessment of WMSDs may be best 

achieved through well-designed epidemiological studies with quantitative assessment of 

physical exposures and unbiased measurement of exposure-responses relationships for 

various industries (Viikari-Juntura, 1997).   Many researchers have previously attempted 

to address selected elements of workplace disorder causality with very limited success.  

The development of a conceptual, integrated approach to guide the investigation of 

WMSDs is a major challenge that requires a clear research focus (Marras et al., 1999; 

Marras 2004).  A single factored approach will provide an indicator of basic risk 

exposure, but may ultimately result in oversights of critical risk factors in the workplace, 

which may increase the prevalence of WMSDs.   

 

Work-Related Upper Limb Disorders (WRULDs) 

 
Work-related upper limb disorders (WRULDs) remain a problem in the workplace in 

both developing and developed areas (Huisstede et al., 2006).  The significant 

incompatibility between the operators’ capabilities and the task requirements in IDCs 
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results in increased workplace risk.  Poor working postures as the result of poorly 

designed workstations are often leading indicators of WRULD likelihood.  One of the 

major concerns with respect to WRULD reporting and control relates to the lack of 

standardised measures and associated assessment criteria (Buckle and Devereux, 

2002).  The current level of understanding is inconsistent with a lack of standard 

procedures and lack of expertise for the diagnosis of WRULDs.  From the information 

which is currently available for the European Union, the most common areas for 

WRULDs are the shoulders followed by the wrists/hands and finally the elbows (Buckle 

and Devereux, 2002).  In addition, Muggleton et al. (1999) reported that WRULDs rank 

second to back complaints in the United Kingdom.  In the South African industrial 

setting there remains a substantial amount of work to be done on the establishment of 

understandable statistical reporting with regards to WRULDs.      

 

There exists a clear need to assess the upper limb postures adopted by a number of 

operators in the automotive assembly process due to the handling of awkwardly shaped 

vehicle parts, panels and tools.  Risk factors for upper limb disorders are poorly 

understood due to a lack of large, robust cohort studies that include clearly defined 

health outcomes and objectively measured work exposures (Garg et al., 2006).  

Colombini (1998) argued that the four main risk factors to consider when assessing the 

upper extremity and likelihood of WRULDs are:  repetitiveness (and associated 

frequency); force application; awkward working posture and movements; and the lack of 

overall recovery time during the work cycle.  These concerns are verified by in situ 

analyses of the South African automotive environment, where risks to the worker are 

clearly evident, particularly in the Bodyshop and Trim Lines.  The presence of a 

repetitive lifting task for the upper extremity can be defined as the consecutive activity, 

lasting at least one hour, in which the operator carries out work cycles similar to each 

other and of relatively brief duration (Colombini, 1998; Muggleton et al., 1999; Buckle 

and Devereux, 2002).  Spot-welding and hand-gun operation are industry-specific 

examples of upper extremity dominated tasks that increase the likelihood of WRULDs.  

Repetitive carriage of vehicle panels, for example car doors, may also lead to increased 

reporting of upper limb problems.  Upper limb pain may arise from discrete pathological 
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conditions, such as adhesive capsulitis, rotator cuff tendonitis, lateral epicondylitis and 

tenosynovitis, or as part of non-specific regional pain syndromes (Palmer et al., 1998).     

 
Muggleton et al. (1999) stated that there are a range of factors which are known to or 

thought to contribute to WRULDs, both occupationally-related and non-occupational.  

Among the key broad categories, these authors listed load-related; posture-related; and 

environmental factors as being contributors to upper limb problems.  Upper-extremity 

dominated tasks, such as vehicle parts carriage, spot-welding and hand screw gun 

operation, can be observed in all South African automotive industries.  Tool use 

primarily requires consideration of the force, posture and time components of the task 

(Kadefors and Sperling, 1998).  Seth et al. (1999) suggested that cumulative trauma 

disorders (CTDs) typically affect the operator required to carry out tasks dominated by 

use of the upper extremities.  Many of the common problems are related to the poor 

working postures adopted in situ.  Seth et al. (1999) cautioned that working postures 

adopted in the manufacturing process are important as awkward movements increase 

the rate and likelihood of localised and general fatigue.  This is particularly relevant to 

the car door carriage area of the Bodyshop where awkward postures and carriage of 

heavy loads predominantly using the upper extremity are commonplace. 

 

Posture-related factors are frequently the most commonly cited risk factors for 

cumulative trauma disorders of the upper limb (Armstrong, 1996;                       

Muggleton et al., 1999; Gallagher, 2005; Garg et al., 2006).   The common activities of 

lifting or lowering, carrying, and pushing or pulling necessitate predominant use of the 

upper limb in moving a load from point-to-point.  Wrist flexion/extension, radial/ulnar 

deviation, elbow movement and shoulder movement are key areas for consideration in 

the assessment of upper limb work actions.  Working with the arms raised poses a 

number of problems in the workplace (Muggleton et al., 1999; Garg et al., 2006), and 

may lead to discomfort if not eliminated during the evaluation and redesign of workplace 

logistics.  Palmer et al. (1998) reported that shoulder pain is often manifested in the 

deltoid region and will be felt during resisted active movements.  Both the Paintshop 

and Bodyshop areas evaluated in the present study raised concern for the workers due 
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to the task demands.  These areas clearly require redesign aimed at eliminating the 

high risk of WRULDs currently prevailing in the automotive plant.               

 
LABORATORY AND IN SITU EVALUATIONS 
 

Current Trends 

 

There is a growing debate in ergonomics about the relative advantages and 

disadvantages of laboratory and field investigations (Scott and Christie, 2004).  

Laboratory based research in ergonomics is abundant, with various studies conducted 

to assess biomechanical, physiological, psychosocial and epidemiological 

consequences of human work.  The rigorous control of laboratory experimentation 

allows for more accurate information with respect to identifying the incompatibilities 

between the task and the human operator, where conditions can be more easily 

controlled than when working in the field (Scott and Christie, 2004; Renz and Scott, 

2004; James and Scott, 2006).  However, laboratory test results do have a number of 

limitations when considering “real world” applications where extraneous variables may 

have a substantial impact on this interaction between the two key components (Renz 

and Scott, 2004).  The relevance and potential application of findings of laboratory work 

needs to be carefully considered before use in situ.  Laboratory based findings are not 

always directly applicable due to the complexities of the workplace, where a number of 

external factors, for example, environmental extremes, noise and inconsistent work 

patterns, may affect work performance (Scott and Christie, 2004).   

 

Furthermore, Scott and Renz (2006) argued that artificial reconstruction of a work 

situation within the sterile environs of a laboratory renders the relevance of the findings 

to “real world” situations highly questionable.      
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The Need for Laboratory and Field Work in IDCs 

 

Researchers have argued that the main drawback with field work is the lack of control 

over experimental circumstances (Oborne, 1995).  However, previous studies have 

highlighted the importance of practical application of laboratory findings in the field 

(Zalk, 2001; Scott and Christie, 2004; James and Scott, 2006).  Ergonomics is after all 

an applied science, and while rigorous work-related research conducted in laboratories 

is essential for the advancement of the discipline, unless more attempts are made to 

link laboratory and field work, the good theoretical work being conducted in the 

laboratory remains esoteric and in the main not applied in industry (Scott and Christie, 

2004).  In addition, Scott and Renz (2006) argued for the need to integrate laboratory 

and field research in the discipline of ergonomics.  Consequently, the field evaluation of 

automotive tasks should allow for the identification of key problem areas within this 

sector (James, 2002a; c).  The automotive industry in South Africa, which is currently in 

a very strong growth phase spurred by foreign investment and the MIDP, is in desperate 

need of the application of basic ergonomics in situ.  The need for practical application of 

basic interventions is unquestioned, hence the great need for further “field-laboratory-

field” studies (James and Scott, 2006; Scott and Renz, 2006).   

 
CONCLUSIONS  
 

The Potential Role of Participatory Ergonomics (PE) in IDCs 

Participatory ergonomics (PE) has been suggested as an effective intervention strategy 

to simultaneously address risk factors in the workplace (Theberge et al., 2006).  The 

development of PE programmes within IDC industry has potential for rapid expansion.  

Wilson (1994) stated that the requirements that any organisation might have for 

ergonomics input are many and varied. Simply implementing an ergonomics 

intervention strategy without looking at the overall needs of the organisation would be 

detrimental.  There exists a need to focus on the “human factor” and at the same time 

assess the role of company management in the programme.  In South Africa this is still 
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largely misunderstood and only one of the major automotive organisations currently 

employs an ergonomist (James and Scott, 2006). 

   

A programme specifically aimed at meeting the needs of IDC industry is therefore 

required as a starting point for planning ergonomics intervention strategies.  According 

to Wilson (1994) there are three aspects which are required in the implementation of a 

successful ergonomics programme.  Firstly, the ergonomics programme should not be 

seen as a cost, but as a vital component of the value adding activities of the company.  

Secondly, the company must be able to accept participative culture and utilise 

participative techniques.  The third aspect is that ergonomics-related problems must not 

be seen purely in engineering terms.  Many South African industries currently approach 

ergonomics purely from the engineering perspective, and this has led to various 

problems for the end user. 

 

The participatory approach has been shown to be most successful in ensuring a change 

in workplace behaviour (Scott, 1997; Kogi et al., 1998; Theberge et al., 2006).  In the 

South African automotive industry there appears to be a specific need to ensure that the 

participatory approach is adopted to allow operators to understand the reasons for 

change before the implementation process commences.    

 

Ergonomics Facilitation Teams 

 

Scott (2001) argued that all role players should be encouraged to become part of the 

process of implementing ergonomics via participation in a “Facilitation Team”.  

Assessments of the automotive working environment by Fredriksson et al. (2001) 

demonstrated that the manner in which changes are implemented has an impact on the 

success of ergonomics interventions.  This research suggests that manufacturing plants 

should pay greater attention to psychosocial aspects when workplace changes are 

planned and implemented.  This consideration is of vital importance in IDCs, such as 

South Africa, where psychosocial factors are a major influencing factor in determining 

the approach of an individual towards an intervention.  Many employees in the 
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automotive industry have only a very basic level of education, and the level of 

complexity of awareness sessions and reading materials has to be considered within 

that framework.     

 

The current trend in the automotive industry highlights a reactive rather than proactive 

response to immediate and obvious problems, with little attention given to establishing a 

production line running on sound ergonomics principles.  Establishing effective 

Ergonomics Facilitation Teams in these manufacturing plants is one area which could 

assist in the reversal of this trend.  There is a need to increase the frequency of 

ergonomics surveys conducted to assess the Man-machine interface.  Ergonomics 

workshops need to be conducted to train employees in hazard identification.  Training 

needs to highlight the necessity to be proactive in dealing with potential work-related 

hazards.  The process of implementing ergonomics needs to be participatory and 

involve “co-operative, co-responsibility” (Scott, 1996) on the part of the key personnel. 
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CHAPTER THREE 

METHOD 

 
INTRODUCTION 
 
The South African automotive industry is comprised of a number of component 

industries and seven manufacturing plants.  Visits to a cross-section of plants were 

completed during the initial phase of the present study.  These visits assisted in the 

identification of work-related hazards currently affecting the overall health, safety and 

efficiency of the human operator working in this sector.  Laboratory simulations were 

then conducted following the in situ identification of high risk tasks.  In the automotive 

industry there are a number of manual handling tasks which require urgent assessment 

of the compatibility, or lack thereof between the industrial worker and the job 

requirements.   These assessments were completed in a manner that allowed for the 

effective quantification of specific task demands taking into consideration the 

biophysical, physiological and perceptual demands placed on the workforce in order to 

take a holistic integrated approach to the assessment of human responses as proposed 

by Charteris et al. (1976). 

Following a general observation period and feasibility studies conducted in various 

manufacturing plants throughout South Africa, the General Motors plant (GM, 

Struandale in the Eastern Cape) was selected as the focus for further investigation.  

Detailed field assessments were then completed prior to the laboratory testing sessions 

which served to familiarise the researcher with the general set-up of manufacturing 

operations, sub-tasks completed, current workflow, work methods and the workers 

themselves. It also aided in identifying high risk tasks that would require investigation 

and were in need of ergonomics intervention. Interviews and strategy meetings were 

conducted with personnel from GM Struandale Plant Engineering and the Safety, Health 

and Environment (SHE) sections, who answered questions regarding organisational 

issues, such as current working shifts, production demands, worker incentives, and 

future plans and expansion in the GM Struandale plant. Thereafter, basic 

measurements of workspace dimensions, task requirements, plus the workers’ 
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demographic and anthropometric characteristics, heart rate, activity count and 

perceptual responses were recorded in situ in order to identify and prioritise problem 

sub-tasks identified in the Paintshop and Bodyshop areas.  

FIELD OBSERVATION 
 
Field Task 1: Paintshop Area 
 

The GM Paintshop exhibits a high prevalence of pushing and pulling activities with 

heavy vehicle frames being moved during the course of the working shift.  These tasks 

require the worker to complete one and two-handed pushing or pulling actions to move 

the units on transfer trolleys in this area of the assembly plant (see Appendix B for an 

example of an in situ task analysis sheet).  Figure 4 a to d highlight the four principle 

actions identified during the field investigation.  

  
 
 
 
 

 
 
 
 
 

a One-handed Pull b Two-handed Pull 
 
 
 
 
 

 
 
 
 
 
 

c One-handed Push d Two-handed Push 
 
Figure 4 a, b, c and d:  

 
Paintshop workers complete selected sub-tasks 
required during the working shift.  
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The in situ push-pull evaluation aimed to assess the pull and push forces required to 

complete a series of sub-tasks (see Figure 4 a to d) in the Paintshop. In situ analyses 

were conducted to assess both the forces required to move skid units (a metal platform 

that carries the vehicle unit) onto a “trolley-based” platform, and then onto a “roller-

based” conveyor line. Push-pull forces were assessed using a Chatillon™ Hand-Held 

Dynamometer (Model CSD 500) following a standardised protocol. Repeated measures 

were recorded for three different models of vehicles in the Paintshop (see Figure 5).  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
 
Figure 5 a and b: In situ force evaluation using the Chatillon™ Hand-Held 

Dynamometer (Model CSD 500) in the GM Paintshop (a) and 
the laboratory simulation of the Paintshop two-handed pushing 
action (b). 

  
James and Todd (2003) reported that push-pull evaluations demonstrated that a change 

in the model of vehicle moved differentially taxed the operators working in this area. The 

heaviest model placed significant strain on the worker, requiring them to work at 95% of 

their maximal whole-body pull force, while the push forces were determined at 78% of 

maximal push force. Furthermore, the awkward postures required by the operator while 
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pushing and pulling increased the likelihood of musculoskeletal injuries (MSI), and of 

slip, trip and fall (S, T and F) incidents.  Based on the research conducted by James 

and Todd (2003), the measurement of push-pull forces was completed in the field 

during follow-up work for the present study.  Force requirements were evaluated for 

three different vehicle units with the “worst-case” model used to determine the force 

output required during the laboratory pushing and pulling simulations.  The value 

assigned for the laboratory testing was 20kg.f (mean value recorded), which was 

determined to be representative of the output required during the movement of the skid 

in the Paintshop during the sub-task pushing or pulling the heaviest model. 

 

Field Task 2:  Bodyshop (Closure Line) Area   
 

The automotive Bodyshop is an area which is characterised by high noise and 

temperature levels (particularly in the hot summer months) due to the welding 

operations that take place in this confined area.  A large amount of manual work is still 

completed on the Closure Lines of South African automotive plants.  The manual 

activities include the carriage of car doors, which are heavy, awkwardly shaped and 

difficult to manoeuvre.  The incidence of MSI as a result of load carriage is high in these 

areas, particularly in the form of upper extremity injuries.  In addition the majority of the 

work-related incidents in the Bodyshop relate to some form of hand or finger injury due 

to the sharp edges of the vehicle frames carried on the Bodyshop Closure Line (Visser, 

2004 and Khumalo, 2004).   Figure 6 a, b, c and d highlight the principle working sub-

tasks identified during the field investigation in the Closure Line area of the plant.  The 

focus of the present study was the door lift, carry and placement sub-tasks.  Additional 

sub-tasks in this area were completed with the assistance of mechanical hoisting 

devices (MHDs), and therefore did not require substantial physical effort on the part of 

the worker.  The primary concerns relating to the current Bodyshop task demands were 

identified as follows:  the step into and out of the storage bin to collect the required door; 

the sharpness of the metal edges of the doors; the space confinement placed on the 

operators due to the “protective curtains” and overhead jigs in the Closure Line; and the 
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physical load carriage requirements of completing a working shift carrying doors with a 

mass of up to 20kg (front doors). 

 

PILOT RESEARCH 

Preceding the laboratory experimentation phase, preliminary and pilot studies based on 

the initial field evaluations in the GM plant, were conducted in the Ergonomics 

Laboratories of the Department of Human Kinetics and Ergonomics at Rhodes 

University. These initial simulations of the selected automotive tasks served to refine the 

testing protocol and establish the suitability of the equipment to be used and the 

a   Lifts the car door from the crate 
 

b    Twists and carries door from  
      the crate on the Closure Line 

 
c   Carries the door from storage 
     approximately 3 to 5m 

d     Places the door on the  
       hoisting jig 
 

Figure 6 a, b, c and d: Bodyshop operators complete the lifting, carrying 
and placing manual tasks on the Closure Line of the 
GM Struandale plant. 
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variables measured. The main focus during these pilot studies was determining the set-

up and duration for the two experimental conditions used to simulate the Paintshop 

(Task 1) and Bodyshop (Task 2) activities.   

Four male subjects participated as volunteers during the pilot testing.  Testing was 

conducted in two laboratory areas set up to simulate the push-pull of the car frames, 

and car door carry conditions respectively.  Firstly, the push-pull task was assessed to 

ensure that the method was feasible for testing a large group of participants.  Initially a 

value representing the highest peak force was to be used for the PTT simulation.  

However, the peak forces collected during the field evaluation were highly variable 

(range 18.5 to 45.7kg.f) due to factors including the position of the skid unit, the 

maintenance of the tracks, and the positioning of the worker during the pushing or 

pulling of the unit.  Consequently the load was standardised at 20kg.f based on the 

current workplace demands.  The distances simulated in the laboratory were also 

standardised to in situ measurements for each of the push-pull sub-tasks.    During the 

pilot work it was established that three repetitions per sub-task (18 repetitions 

completed in total) would be sufficient to ensure that the participant was able to 

complete the task efficiently, but without undue fatigue.  The RPE scale (Borg, 1971) 

was used originally in the push-pull pilot evaluation, but upon due consideration it was 

felt that the scale would not offer an accurate reflection of the ratings of exertion due to 

the short time duration of the testing.  The RPE scale was therefore substituted with a 

Body Contribution Map and Rating Scale (adapted from Corlett and Bishop, 1976; see 

Appendix C).  This scale allowed participants to make perceptual ratings of the areas of 

greatest contribution during the push-pull tasks, and thereby identify the areas of the 

body which they felt were the most significant contributors during the pushing or pulling 

efforts in the PTT laboratory simulation.  The Body Contribution Map and Rating Scale 

were developed in the Department of Human Kinetics and Ergonomics at Rhodes 

University during isometric and isokinetic pushing and pulling research                 

(James et al., 2005).  The Body Contribution Rating Scale required participants to rate 

the perceived contribution of a specific body area, and then rate the effort from 1 – 10, 

with 10 representing maximal muscular contribution.  The Body Contribution Map and 
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Rating Scale were shown to be a useful indicator of the key areas of muscular 

involvement during this research.  James et al. (2005) argued that the Body 

Contribution Map and Rating Scale may be used as a perceptual indicator of the areas 

that are most likely to be excessively strained in the event of physically taxing pushing 

and pulling activities in laboratory and industrial settings. 

 

The car door carriage simulation involved a detailed pilot test assessing the feasibility of 

the pre- and post-intervention methodologies.  The pre-intervention testing was used to 

evaluate the work cycle time and carriage distance specifications as per the field 

investigation.  The wooden storage bin (supplied by GM) was also placed at the 

measured height to ensure that the step in was the same as the current field 

requirements.  In an attempt to simulate the constricted working space of the Bodyshop, 

a barrier was placed in the laboratory and a demarcated walking path placed on the 

floor during the pilot phase of testing.  The post-intervention pilot work required a 

detailed assessment of the feasibility of the transfer trolley designed and constructed in 

the Department of Human Kinetics and Ergonomics.  The pre- versus post-intervention 

comparisons were sought through the maintenance of a work cycle consisting of one 

door carry every 30s.  This was established through moderate paced pushing of the 

trolley and a clear method of task completion on the part of the participant.  The post-

intervention trolley push was clearly verbalised and practised for each pilot subject, as 

testing revealed that the completion of the intervention task required methodical and 

moderate paced work.  The full kinematic, EMG, heart rate and perceptual responses 

for the pilot testing will be clarified in Chapter Four.     

EXPERIMENTAL DESIGN  

Laboratory experimentation of the selected industrial working operations included two 

independent experimental tasks (1 and 2) for both the push-pull of the vehicle frame 

and car door carriage tasks.  The existing industrial scenario was simulated during 

Condition A (pre-intervention), while Condition B (post-intervention) assessed the effect 

of the proposed ergonomics intervention following the identification of the major problem 

areas for each of the two independent tasks. 



 
 

63 

Task 1:  Paintshop Trolley Transfer (PTT) 

The laboratory set-up was based on the data collected within the automotive industry. 

The Paintshop simulation (Task 1) was set up to allow for the assessment of the four 

activities observed in this area of the plant and the two proposed interventions.  The 

PTT tasks included the assessments outlined in Table I.   

Table I:  Basic set-up of laboratory Task 1:  PTT assessment.  
  (n = 30) 
 

Action Pre-Intervention (Condition A) Post-Intervention (Condition B) 

Pushing i. One-handed (20kg.f)  

Simulating an 
asymmetrical push 

with one hand 

ii. Two-handed 
(20kg.f) 

Simulating an 
asymmetrical push 

with two hands 

iii. Two-handed Intervention (20kg.f) 

Simulating a symmetrical push with two 
hands proposed for pushing the front of 

the vehicle unit 

Pulling i. One-handed (20kg.f) 

Simulating an 
asymmetrical pull with 

one hand 

ii. Two-handed 
(20kg.f) 

Simulating a 
symmetrical pull with 
excessive lean using 

two hands  

iii. Two-handed Intervention (20kg.f) 

Simulating a symmetrical pull with two 
hands on a simple rope used as an 

intervention 

The same working heights for pushing and pulling and peak force outputs measured in 

the GM Struandale Paintshop during the fieldwork phase were used in the laboratory 

push-pull experimentation.  Testing order was randomised during the laboratory phase 

with participants alternating between the pushing or pulling conditions at the start of 

testing.   

Task 2:  Car Door Carriage (CDC) 

The Bodyshop Closure Line simulation (Task 2) required the laboratory participants to 

complete the Corsa (Gamma) door lift, carry and place as observed in the Bodyshop 

Closure Line area of the assembly process.  The wooden storage crate, vehicle doors 

and door ‘‘jig’’ dimensions were provided by General Motors (GM Struandale Plant, Port 

Elizabeth) to allow for accurate simulation in the laboratory.  During Task 2 (Condition 
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A:  pre-intervention) participants were required to cover the same carrying distance as 

measured in situ and work at the same pace as recorded in the Closure Line.  The 

doors carried were identical to those moved in the plant.  Theoretical prediction models, 

including the Ohio State University (OSU) low back disorder (LBD) risk model 

(BIOMEC®Inc., 2002), 3-D Static Strength Prediction Programme (3D SSPP, University 

of Michigan Center for Ergonomics, Version 4.3.7), and LIFTRISK (Department of 

Human Kinetics and Ergonomics, Version 3) were also used in the development of the 

intervention strategies. 

The set-up for Condition B (post-intervention) testing involved the movement of the 

vehicle door on a handling device in the form of a door transfer trolley designed in the 

Department of Human Kinetics and Ergonomics.  Figure 7 highlights the changes to the 

working task proposed under post-intervention conditions. 

 

 

 

 

 

 

 

 
Figure 7:
   

 

 
Laboratory set-up for the lift, carry and placement of the car door 
showing proposed post-intervention changes.  
(Task 2:  CDC, Condition B) 

 

Lowered “crate” minimising the step in and out for 
the operator working in the Closure Line 

Two door transfer trolley-jig designed and built in the 
Department of Human Kinetics and Ergonomics  

Barrier removed to simulate 
unrestricted Closure Line area 
with adequate working space 
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The volunteers were required to complete a second testing bout which entailed the 

following changes:  the horizontal reach factor (H-factor), which is a measure of the 

distance of the hands away from the mid-point of the ankles (Waters et al., 1993), was 

decreased from 900mm (medium reach) to 450mm (close reach), the height was 

lowered to pallet level (150mm) to allow for an easy step up and into the industrial 

storage bin, and the physical carriage of the door over 6.50m was replaced by a 

wheeled transfer trolley push.  The work cycle time was kept constant in order to ensure 

that the industrial workers would still complete the task in the given time. 

The two door transfer trolley was designed and built in the Department of Human 

Kinetics and Ergonomics using “low-cost” materials and provided with easy-moving 

wheels (supplied by GM) to allow for simple movement and ease of transferring the 

door from the storage bin to the welding jig.  The trolley handles were fitted with non-slip 

grip and jigs were provided for both the front and rear doors on the transfer trolley.  The 

reach factor was minimised by placing the trolley in close proximity to the simulated 

crate.  The crate was also placed at pallet height (150mm) to eliminate the need for a 

large step in and out as was the case for the observed method of task completion in the 

field.   

Table II:  Basic set-up of laboratory Task 2: CDC assessment. 
  (n = 30) 

 
CDC Pre-

Intervention 
(Condition A) 

i. Step into bin, lift door 
and step out 

 
Simulating the current 

door lifting 
requirements from the 

raised storage bin in the 
Bodyshop 

ii. Turn and carry the 
door past a simulated 

obstruction 
 

Simulating the confined 
working area in the 

Bodyshop 

iii. Turn and place the door 
on the simulated jig 

 
Simulating asymmetrical 

placement of the car door on 
the spot welding jig as 

observed in the Bodyshop 

CDC Post-
Intervention 

(Condition B) 

i. Step into storage bin, 
lift door and step out 

 
Simulating a pallet level 
lift of the car door in the 

Bodyshop 

ii. Turn and place the 
door on transfer trolley 
and push along “line” 

 
Simulating an 

alternative method of 
moving the door in the 

Bodyshop 

iii. Turn and place the door 
on the simulated jig 

 
Simulating a closer 

placement of the door in the 
Bodyshop from a convenient 
height on the transfer trolley 

in the Bodyshop 
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Tracking of physiological responses was again continuous during the experiment, 

whereas iLMM and EMG results were obtained at selected times during the task (min3, 

min6 and min9). RPE ratings were obtained from participants for Central and Local 

(alternating between back and arms) responses on a regular basis (Central every 

minute and Local alternating every second minute).  The body discomfort map and 

rating scale was used to record any areas of discomfort or pain at the end of the 10min 

experimentation.    

PARTICIPANT CHARACTERISTICS 

Field testing and laboratory experimentation was conducted with two different groups of 

participants involved in the independent testing protocols. Although no medical 

examination was conducted, the automotive industry operators claimed to be free of 

injury or illness on the day of testing in the automotive manufacturing plant.  

Operators were required to wear Polar™ heart rate monitors to obtain ‘reference’ and 

‘working’ heart rates.  While RT3 accelerometers (Stayhealthy Inc., Monrovia, CA) were 

used to assess the activity count and caloric output of the automotive industry workers, 

and these data were then used to predict the current energy expenditure (EE) of the 

Paintshop and Bodyshop workforce.    The RT3 measures acceleration in the anterior-

posterior (x), mediolateral (y), and vertical (z) axis and summarises that information as a 

vector magnitude (Stayhealthy Inc., 2004).  The vector is calculated as the square root 

of the sum of the squared accelerations for each direction. Activity counts are then 

derived for each direction. Thereafter, activity calories per minute were calculated using 

the following prediction formula: [(activity counts/10) x (body mass x 1.692)]/10,000 

(Stayhealthy Inc., 2004).  Activity calories were subsequently converted to kilojoules per 

minute (kJ.min-1) using the multiplication factor of 4.2 (Stayhealthy Inc., 2004) and then 

extrapolated to kJ per hour and kJ per shift.     

For the laboratory experimentation, male students between the ages of 18 and 23 years 

volunteered to participate. The following basic and anthropometric data were recorded: 

age, stature, body mass, acromial height, stylion height, trochanteric height, grip 

strength and back strength (see Table III).  No medical examination was conducted, but 
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the participants reported no history of low back pain or current musculoskeletal 

discomfort that could put them at risk or present any limitations to the study.  

Table III:  Basic demographic and anthropometric data of industry workers (n=12) 
and laboratory participants (n=30). 

 

 Industry Workers Laboratory Participants 

 Mean SD CV Mean SD CV 

Age (yr) 32.42 9.51 29.34 20.40 1.22 5.98 

Experience (yr) 6.54 4.57 69.88 - - - 

Body Mass (kg) 73.75 12.60 17.08 77.82 8.17 10.50 

Stature (mm) 1737 55.18 3.18 1804 44.53 2.47 

Body Mass Index (BMI) 24.39 3.55 14.56 23.88 2.02 8.47 

Acromiale Height (mm) 1411 60.61 4.29 1420 41.27 2.91 

Stylion Height (mm) 812 36.76 4.53 825 32.15 3.90 

Trochanteric Height (mm) 814 31.01 3.81 867 25.34 2.92 

Span (mm) - - - 1794 61.51 3.43 

Back Strength (kg.f) 90.25 25.31 28.04 135.40 30.13 22.26 

Grip Strength:  Dominant (kg.f) 45.33 6.98 15.41 53.67 9.54 17.77 

Grip Strength:  Non-Dominant  (kg.f) 45.50 5.95 13.07 52.47 9.38 17.88 

 
BMI = Body Mass (kg) / Stature2 (m);  
SD = standard deviation;  
CV = coefficient of variation (%). 
 
ETHICAL CONSIDERATIONS 
 
Informed Consent 

Industrial workers and student laboratory participants were provided with detailed 

information relating to the nature of the research. In the case of the automotive 

operators this was verbally translated into Afrikaans (when required), and verbal and 

written consent were given. Student volunteers for the laboratory experiments gave their 

verbal and written consent to the research protocol (see Appendix A).  The research 
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protocol was approved by the Rhodes University Ethics Committee prior to the 

commencement of field and laboratory investigation. 

Privacy and Anonymity of Results 
 

All participants were guaranteed the privacy and anonymity of results at all stages 

during the present investigation.  A simple data coding system was used to ensure that 

responses were not traceable to the workers and students.  The name field was merely 

used for record purposes and participants were informed that the respective sets of data 

would be held on file for statistical analyses and future research related work.   

 
EQUIPMENT AND EXPERIMENTAL TREATMENTS 
 

Mirka et al. (2000) strongly recommended that the identification of high risk sub-tasks in 

industrial settings requires advanced assessment tools, particularly in occupations with 

highly variable biomechanical demands. In order to complete a detailed task analysis, 

dynamometry and telemetric heart rate monitoring equipment were utilised; however, 

tape measures, response counters and stopwatches were also used during the field 

investigation phase of the present study.  Scott and Renz (2006) suggested that 

problems identified in situ should be rigorously analysed within a controlled laboratory 

setting and appropriate intervention strategies proposed and implemented back in the 

field, more often than not with minor or even substantial modifications where necessary, 

and then reassessed to ensure that these interventions have indeed contributed to 

improving working conditions. 

 
ANTHROPOMETRIC PROCEDURES AND METHODS  

The following section describes the anthropometric variables deemed necessary for the 

current project.  A good understanding of anthropometric measurements allows for the 

design of equipment or tools to suit the human operator; for example, acromiale or 

shoulder height is an important measure in determining the position of fixtures and 

controls in the workplace (Oborne, 1995).  Basic anthropometric data for participants 

are presented in Table III, Page 67. 
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Body Mass 

The body mass of the automotive industry workers was measured to the nearest 0.5 kg 

using a portable Seca scale. Mass values for laboratory participants were measured to 

the nearest 0.1 kg using a Toledo Scale which was calibrated prior to use. Operators 

were weighed wearing their GM issue work clothing, whereas the laboratory participants 

wore light comfortable clothing.  

 
Stature 
 

Stature (mm) of the industrial workers was obtained using a tape measure. Laboratory 

subjects were measured using a Harpenden stadiometer. All subjects were required to 

stand upright and barefoot with their heels against the tape measure secured on a wall 

in the plant or the stadiometer in the laboratory, and the head erect with the subject 

looking ahead. Stature was measured from the floor to the vertex in the mid-sagittal 

plane. 

All anthropometric height measurements were recorded using a functional 

anthropometer.   

Acromiale Height 

Acromiale height (mm) was measured from the floor surface to the most lateral point on 

the superior surface of the acromion process, with the subject standing erect and the 

upper limbs pendent.   

Stylion Height 

Stylion height (mm) was measured using the styloid process as the anatomical 

reference point.  The most distal part of the styloid process of the radius of the arm was 

measured with the arm relaxed and pendent. 

Trochanteric Height 

Trochanteric height (mm) was recorded via the palpation and measurement of the most 

superior point of the greater trochanter of the femur.  As this point is not easily located, 
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participants were required to adduct the lower extremity to allow the researcher to 

locate the anatomical landmark.   

Following the location of the correct anatomical area the participants returned to the 

standing erect position and the reading for trochanteric height was recorded.   

Span (Laboratory Testing Only) 
 

During the laboratory familiarisation sessions the recording of the measure of span was 

completed for all volunteers.  Pheasant (1996) defined span as the maximum horizontal 

distance between the fingertips when both arms are stretched out sideways.   

 

The measurement of span allows for practical application in determining the lateral 

reach of the participant.  The measure of span was used to assess the percentile of 

maximal lateral reach that the subject was required to work at while completing the car 

door carriage task.  Figure 8 shows the recording of span on a male subject during 

familiarisation in the laboratory. 

 
 

 

 

Figure 8:   Span measurement in the familiarisation session. 
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PHYSICAL PARAMETERS 
 
Strength Assessment – Isometric Dynamometry  

Strength is an important factor in determining the readiness of a working cohort for 

manual tasks. In the case of the automotive industry where operators are required to 

move vehicle frames and carry car doors, grip strength and back strength 

measurements were deemed to be essential. Grip strength recordings were taken using 

the Smedley Spring hand grip dynamometer (Vacumed, Ventura, CA).  For back 

strength responses the Takeikiki (Kogyo Co. Ltd.) back and leg strength dynamometer 

was utilised. 

Two recordings of grip strength were obtained for each worker (dominant and non-

dominant hands) in order to ensure a maximum reading. Standardised procedures for 

measuring grip strength included adjusting the hand grip dynamometer for grip width. 

Then, standing erect in a comfortable position, with the dynamometer held first in the 

dominant hand and then the non-dominant hand for two trials above the point of the 

vertex, the dynamometer was gripped as forcefully as possible with the arm smoothly 

moving anterior-inferiorly. The maximum reading was then recorded in kg.f for each 

participant in the field and in the laboratory testing.  

Back strength measurements required participants to sit on the ground with their legs 

fully extended and the feet pushing against the base of the back strength dynamometer 

placed against the wall. Participants were required to pull the dynamometer handle as 

forcefully as possible, using only the back muscles to exert the force (recorded in kg.f). 

The seated method of measuring back strength was chosen over the upright torso lifting 

strength test position in order to avoid the possibility of injury to the back musculature 

for both sets of participants. 

Spinal Kinematics – Industrial Lumbar Motion Monitor (iLMM) 

The Biodynamics Laboratory at the Ohio State University (OSU) developed the 

ChattecxTM Lumbar Motion Monitor (LMM), which was designed to identify, monitor and 

document the vertebral column’s three-dimensional motion experienced by the dynamic 
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spine during manual work. The exoskeleton is modelled after the human spine, 

containing a number of T-sections (20 for the small unit and 26 for the large unit), which 

are connected via wires, similar to human skeletal vertebrae being connected via 

ligaments. The work of Marras et al. (1992) clarified that the wires lead to four 

potentiometers at the base of the unit, which change voltage as the wires are twisted 

and/or stretched, enabling assessment of the trunk during flexion, extension, lateral 

bending and twisting motions. LMM signals are sampled at 60Hz by the unit and 

transmitted via an umbilical cable to an analog-to-digital (A/D) converter.  Data are then 

stored on a portable laptop computer for detailed analyses.   

Various studies have been conducted to assess the accuracy and reliability of the LMM 

when measuring changes in position, velocity and acceleration (Marras et al., 1992; Gill 

and Callaghan, 1996).  After extensive testing Gill and Callaghan (1996) concluded that 

the LMM is suitable for use in clinical and research settings when assessing range of 

motion (ROM) and changes in velocity.  The present study utilised the recently updated 

industrial Lumbar Motion Monitor (iLMM, BIOMEC®Inc.).  

Prior to fitting the iLMM on participants for Tasks 1 or 2, calibration was carried out with 

the exoskeletal unit lying in the carry case. Following the zero-check calibration the 

iLMM was secured to the volunteers using the supplied body harnesses; two semi-rigid 

plates were strapped over the lumbosacral region of the pelvis and around the thorax at 

the level of the scapulas’ inferior angles. Displacement measurements relevant to the 

human spine were taken in relation to the position of the pelvis using the iLMM.  

Participants were required to stand motionless in a comfortable stance, so that the unit 

could be zeroed according to their spinal curvature. Following the zeroing of the iLMM, 

the task under investigation commenced. 

Prediction Models 
 
Ohio State University (OSU) Low Back Disorder (LBD) Risk Model 

The Biodynamics Laboratory at the Ohio State University (OSU) developed the LBD risk 

model (Ballet™2.0, BIOMEC®Inc., 2002).  The LBD risk model allows quantitative 
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assessment of working tasks based on the analyses of workplace and trunk motion 

data.  The LBD risk model was used in the present study to quantify the LBD risk 

associated with each of the laboratory sub-tasks simulating Paintshop and Bodyshop 

work practices.  

3D Static Strength Prediction Programme™ (3D SSPP) 
 

The University of Michigan developed the 3D SSPP (Version 4.3.7, Regents of the 

University of Michigan, 2004).  The strength prediction model is based on and algorithm 

from the work of Chaffin and Andersson (1984).  The inverse kinematics algorithm was 

developed from research on the preferred postures of individuals manipulating loads 

with known hand positions (3D SSPP Manual, 2004).  The 3D SSPP was used in the 

present study to assess simulated job design as an evaluation tool pre- versus post-

intervention.  It should be noted that the developers of the programme suggest that the 

3D SSPP should not be used as the sole determinant of worker strength performance or 

job design based on that performance (3D SSPP Manual, 2004). 

 
Strength and Movement Efficiency – Enraf-Nonius EN-TreeM System 
 

The Enraf-Nonius EN-TreeM system is a Windows-linked stack-weight isoinertial 

machine which can be used to assess the ROM and strength in testing and 

rehabilitation settings (Enraf-Nonius B.V., 2004).  The EN-TreeM system works on a 

single or double wire pulley which is connected to a weight stack system. Various 

movement patterns may be executed by the upper- and lower limbs when using the EN-

TreeM system. For the purpose of the present study, the EN-TreeM system was used to 

provide a standardised load to be moved by the participants in the laboratory during 

pushing and pulling.  The pre-selected load of 20kg.f was selected based on the 

industrial work observation in the GM plant.  An example of the Enraf-Nonius EN-TreeM 

printout has been included in Appendix D illustrating the average force output (N) 

recorded for a typical participant in the PTT laboratory simulation.  The EN-TreeM 

software was utilised to ensure that the participant maintained the same effort level 

consistency (ELC) during the experimentation bout.  Post-test analyses allowed for the 
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quantification of average force versus time to ensure ELC in the range of 90 to 110N 

during the pushing and pulling simulations (highlighted in the example included in 

Appendix D).  Each of the trials was monitored to ensure that participants were not 

excessively under- or over-taxing themselves during the PTT simulation.   

 

Pushing Action Pulling Action 

a One-handed pushing 

   

b One-handed pulling 

 

c Two-handed pushing 

 

d Two-handed pulling 

e Two-handed push intervention 

 

f Two-handed pull intervention  

 

Figure 9 a, b, c, d, e and f: EN-TreeM set-up for pushing and pulling 
simulation.  
(Task 1:  PTT, Conditions A and B) 
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The EN-TreeM pulley system was set up to restrict the participants to complete the 

laboratory tasks over the same distances observed for the initial push or pull in the GM 

Paintshop.  The pushing or pulling tasks infrequently require sustained force exertion on 

the part of the operator, with the present study simulating the initial push or pull to 

overcome the inertia of the simulated load (representative of the skid).   

 

Participants completed three repetitions for each of the six sub-tasks (with a total of 18 

repetitions completed during the session), as shown in Figure 9 a to f.  Randomised 

selection of the pushing or pulling sub-tasks was used at the start of each laboratory 

testing session.     

 
PHYSIOLOGICAL PARAMETERS 
 
Electromyography - Mega EMG System 
 

The Mega ME3000P Electromyography (EMG) system was used to record muscular 

activity in the lower back and upper extremity for the PTT (Task 1), and CDC (Task 2).  

The ME3000P system is a portable, small microcomputer which functions as a 

collection and recording unit with independent storage capability. The system measures 

electrical activity by means of recording electrodes applied directly to the skin over 

superficial muscles.  EMG data are registered using state-of-the-art amplification 

technology in which the amplifier is connected directly to the grounding electrode. This 

effectively eliminates movement and environmental noise artifacts (MegaWin 2.1 

Software Manual, Mega Electronics, Ltd., 2003). Muscle activity is collected by a bipolar 

configuration and the data may be stored on a SRAM card or can be downloaded to a 

computer via an interface. 

 

The following protocol was used for recordings completed with the Mega EMG system 

(following guidelines from the MegaWin 2.1 Software Manual, Mega Electronics, Ltd., 

2003):   

1)   The “belly” of the muscle to be tested was marked (use a measuring tape to 
obtain the midpoint of the muscle). 
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2) The skin area was shaved and cleaned (using an alcohol swab) in the area 
where the electrodes were to be placed. 

 
3) The two electrodes were placed equal distance apart over the midpoint of the 

muscle. 
 
4) The ground electrode was placed on a bony surface in close proximity and 

attached to the ME3000P data logger. 
 

Surface electrodes were applied to the muscles used to record EMG activity in the lower 

back and upper extremity and the specific positions for sensing and ground placements 

are shown in Figures 10 a to d. 

 

a b 

c d 
 

 
Figure 10 a, b, c and d:   

 
Medial deltoid (a: left and b: right) and erector spinae (c: left 
and d: right) EMG electrode placement positions used for 
the PTT (medial deltoid and erector spinae) and CDC 
(erector spinae) simulations.  
(From MegaWin 2.1 Software Manual, 2003) 
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EMG muscular activity in the erector spinae trunk muscle group has been widely used 

to predict the muscle activity and biomechanical loading of the lower back            

(Nielsen et al., 1998; Davis and Marras, 2000), and erector spinae EMG activity was 

measured for both laboratory tasks (Conditions A and B).  The assessment of EMG 

activity in the deltoid muscles during pushing and pulling has not been extensively 

researched.  In order to add to the understanding of EMG responses while using either 

one or two hands to complete a pushing or pulling task, the medial heads of the left and 

right deltoids were selected as the focus muscle group during Condition A (PTT).  The 

medial heads of the deltoids were selected primarily in an attempt to quantify the 

decrement in single muscle loading achieved through a change from an asymmetrical to 

a symmetrical pushing or pulling action, as these one-handed methods of task 

completion were identified as involving the highest risk to the operator currently working 

in the GM Paintshop.     

Polar™ Heart Rate Monitors:  Field and Laboratory Testing  

Polar™ Accurex Plus heart rate monitors were used to gain a measure of cardiac strain 

experienced in both the field and laboratory testing. The Polar™ Coded Transmitter, 

which measures the heart’s electrical activity, was fitted around the participant’s chest 

with a standard heart monitoring strap at the level of the inferior border of the pectoralis 

muscles and in line with the left ventricle situated slightly to the left of the mid-centre of 

the chest. The Polar™ wristwatch, which acts a receiver, was set to record heart rate 

responses at 15s intervals during the GM plant field testing sessions and laboratory pilot 

studies.  

Prior to the commencement of the experimentation, a relatively reliable resting heart 

rate was recorded and used as a ‘reference’ heart rate, because of the unpredictability 

of heart rate responses due to anticipation, apprehension, movement, changes in 

breathing patterns and speech, amongst others. The automotive industry workers were 

not familiar with heart rate monitoring technology, and a general apprehension of being 

‘tested’ could have distorted resting heart rates. A familiarisation period was therefore 

arranged during which the experimenter explained the technology to the operators, 
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fitted them with the monitors and then allowed them to complete their normal working 

cycle while wearing the heart rate monitors for a duration of approximately two hours in 

the Paintshop or Bodyshop areas. 

RT3 Accelerometers:  Field Testing  

The RT3 tri-axial accelerometer (Stayhealthy Inc., Monrovia, CA) is designed as an 

activity recording and measurement system for varied research applications. The unit 

consists of a small reader and was worn on the waist of a subject. It continuously tracks 

activity through the use of piezo-electric accelerometer technology, which records 

motion in three dimensions and provides tri-axial vector data in activity units, metabolic 

equivalent units (METs) or kilocalories (Stayhealthy Inc., 2004).  The RT3 units were 

attached to the belts or clothing of the workers on the posterior side of the body at the 

waist level (see page 66, Chapter 3).  Before the field collection began age, body mass 

and stature were loaded onto the RT3 unit. 

PSYCHOPHYSICAL PARAMETERS 
 
Ratings of Perceived Exertion (RPE):  Field and Laboratory Testing 

The Ratings of Perceived Exertion scale developed by Borg (1971) is one of the most 

widely used psychophysical rating scales when assessing the perception of strain 

experienced by workers or laboratory participants. The scale, which ranges from a value 

of 6 for basal level of activity to 20 for maximal exertion, was presented and explained in 

detail to all industrial workers and subjects (Appendix C).  

The RPE scale was used in the field to record ratings of Central exertion and Local 

exertion of the upper and lower extremities. All industrial workers were literate and had 

a reasonable English vocabulary and were therefore presented with an English version 

of Borg’s scale, which they used to identify their individualised RPE.  RPE ratings were 

taken every 15min during the 2h work observation sessions.  Operators were asked to 

give their RPE ratings for Central exertion followed by ratings of Local exertion. 

Laboratory use of the RPE scale was limited to the CDC experimentation due to the 

short duration of the PTT testing.  The CDC Central ratings were recorded every minute 
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for 10min and Local ratings alternated between recordings for the back and arms every 

alternate even minute (min2, 4, 6, 8 and 10).  Participants were required to clearly 

verbalise responses during the completion of the task and requested not to allow the 

RPE recording to interfere with the work cycle.  

Body Discomfort Map and Rating Scale (BDS):  Field and Laboratory Testing 

Corlett and Bishop (1976) developed the Body Discomfort Map. Although the original 

Body Discomfort Map only provides a posterior view of 12 body parts, an adapted 

version including anterior and posterior views, 27 body parts and a 10-point intensity 

rating scale ranging from 1 for minimal discomfort to 10 for maximal discomfort was 

presented to the subjects (see Appendix C). Again, the purpose of the Body Discomfort 

map and its rating scale was explained in detail to all participants.  Body discomfort 

ratings were recorded after the 1st and 2nd hours in situ.  Industrial workers were 

required to rate the area of greatest discomfort and level of intensity.  They were then 

asked to report any additional areas of discomfort and again rate the intensity of that 

discomfort.  Laboratory participants were required to rate the three areas of greatest 

discomfort following the PTT and CDC tasks. 

Body Contribution Map and Rating Scale:  Laboratory Testing 
 

The Body Contribution Map and Rating Scale (adapted from Corlett and Bishop, 1976) 

was used to assess the perceptual responses of participants to the PTT tasks.  

Participants were asked to rate the areas of the body which they felt contributed the 

most to each of the specific pushing or pulling actions required for the PTT simulation.  

For example, during the two-handed pushing task, participants were required to 

consider the contribution of the upper extremities (and other body regions) during the 

pushing action.  The body contribution map was not used during the field testing in the 

Paintshop at the GM plant.         
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LABORATORY TREATMENTS 
 

Laboratory experimentation was conducted in two Ergonomics Laboratories in the 

Department of Human Kinetics and Ergonomics at Rhodes University. Thirty male 

volunteers participated in this research project and each subject was required to 

participate in three sessions. 

 
Session 1: Introduction and Familiarisation 

The introductory laboratory session involved explaining the procedures to the student 

volunteers verbally and in writing. Participants were also afforded sufficient time to raise 

any queries they might have had relating the experimental protocol. Subjects were then 

requested to sign an informed consent form before participating in the study.  Thereafter 

basic and anthropometric data were collected, which included age, stature, body mass, 

acromiale height, stylion height, trochanteric height, back strength, and dominant and 

non-dominant grip strength. The workplace parameters obtained in the industry were 

used to set up a similar workstation in the laboratory to simulate the selected task.  The 

familiarisation session aimed to place participants at ease and minimise any responses 

brought about by pre-experimental anxiety and anticipation, rather than the laboratory 

treatments.  Participants were then familiarised with the simulated Paintshop and 

Bodyshop work tasks, as well as the testing instrumentation which would be used in 

both laboratory areas.   Due to the work inexperience of the student cohort, a brief video 

taken during the field observation was shown during the familiarisation session.  The 

video contained footage of the automotive Paintshop and Bodyshop areas showing the 

two simulated tasks independently.  This allowed participants to observe the actual 

methods used in the workplace and also allowed for clarification of the rationale behind 

the set-up of a restricted workspace in the laboratory.  Digital still photographs were 

also shown demonstrating the current methods of task completion and highlighting the 

major problem areas identified during fieldwork.  A brief habituation session, which 

involved fitting the subjects with the Polar™ heart rate monitor and the iLMM harnesses, 

allowed the subjects to familiarise themselves with the equipment and the tasks they 

would be required to perform.  
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Sessions 2 and 3: Experimentation 

The experimental sessions (Sessions 2 and 3) required the completion of the two 

simulated automotive tasks (for both pre- and post-intervention). Randomised testing 

was used in assigning the volunteers to either the pre- or post-intervention experimental 

tasks at the commencement of testing.   

Task 1:  Paintshop Trolley Transfer (PTT) Simulation 

The Paintshop pre-intervention simulations (Condition A) required that participants 

complete simulations for one and two-handed asymmetrical pushing, and one-handed 

asymmetrical and two-handed symmetrical pulling tasks (with an excessive lean).  The 

load selected of 20kg.f was the same for all testing conditions as this value represented 

the sustained force output required of the worker during the fieldwork observation.  The 

experimental setup was aimed at simulating the current mean workplace demands 

(approximately 20kg.f) as closely as possible.  Work methods evaluated during the 

laboratory testing were thus aimed at eliminating unsafe work practices through the 

provision of guidelines that proposed symmetrical working postures where the operator 

was working in the position of the greatest strength and lowest likelihood of MSIs and S, 

T and F accidents. The skid unit could not be installed in the laboratory and this 

limitation must be considered when recommendations are made based on the push-pull 

laboratory findings.  EMG electrodes were placed in the pre-selected positions (left and 

right erector spinae and left and right medial deltoid) and the unit readied for collection. 

The basic protocol used for both pre- and post-intervention testing is summarised in 

Table IV.   
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Table IV: Task 1 PTT protocol followed for laboratory testing on volunteer male  
participants.  
(n = 30) 
 

 
Action 

 
Trial 

Force Output 
Required (kg.f) 

Number of 
Repetitions 

i. One-handed  

(asymmetrical ) 

20 3 

ii. Two-handed  

(asymmetrical) 

20 3 

Pushing 

iii.  Two-handed Intervention 

(symmetrical) 

20 3 

i. One-handed  

(asymmetrical) 

20 3 

ii. Two-handed  

(symmetrical) 

20 3 

Pulling 

iii. Two-handed Intervention 

(symmetrical) 

20 3 

 

Each participant was required to complete a total of six trials and 18 repetitions during 

the laboratory push-pull evaluation.  Adequate rest was provided to ensure that the 

participants were not cumulatively fatigued as a result of the force output required 

during testing.  Figure 11 demonstrates the experimental and EMG electrode set-up for 

the pushing and pulling assessments.  For the purposes of simulating the load the 

Enraf-Nonius Entree-M weight stack system was used.  Heart rate responses were 

recorded throughout the experiment, whereas LMM and EMG data were obtained at 

pre-determined stages at min3, 6 and 9 during the trials of the task. Participants were 

asked to rate their ‘Central’ and ‘Local’ RPE on completion of the three trials for pushing 

or pulling pre- and post-intervention.  Participants were shown the Body Discomfort Map 

and Rating Scale at the end of the laboratory testing session and asked to rate any 

areas of discomfort experienced.  
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Figure 11: 
 

Participant setup and electrode placement on the medial 
deltoid (left and right) and erector spinae (left and right). 
(Task 1:  PTT)  

 

The post-intervention testing was completed utilising the preferred action established in 

the pilot phase of the present study, namely two-handed pushing and pulling (both 

symmetrical).  Figure 12 illustrates the participant set-up for pulling and pushing post-

intervention.  The two-handed pulling action places the operator in a symmetrical 

position, so minimising the likelihood of twisting the spine.  A rope pulling system was 

used as an intervention as per field observation of the operators’ “low-cost” method 

currently in use in the GM plant.     

Similarly, two-handed pushing allows the worker to complete a more symmetrical 

pushing action which does not differentially tax the musculoskeletal system.  Mean force 

requirements for the two-handed push were also shown to be consistently lower in the 

fieldwork Paintshop force evaluation, with mean values observed ranging from 4.9 to 

8.5kg.f depending on the vehicle unit moved.   
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a 

 

 
 
 
 

 
 

b 
 

 

 
Figure 12 a and b: 

 
Participant set-up for the two-handed pull 
symmetrical intervention and two-handed push 
symmetrical intervention. 
(Task 1:  PTT, Condition B) 

 
 
 
Task 2:  Car Door Carriage (CDC) Bodyshop Simulation 

The Bodyshop simulation evaluated the carriage of vehicle doors from an industrial 

storage bin (both supplied by the GM plant) to a trolley jig constructed in the 

Department of Human Kinetics and Ergonomics.  Manual lifting and carry distances   
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(H-factors, 900mm; V-factors, 1100mm and carriage, 6.5m) and temporal factors (30s 

per work cycle) were kept consistent with those observed in the GM plant during the 

field investigation (see Appendix B for field set-up and task observation sheets).   

Prior to the pre- or post-intervention lifting, carrying and placing operation, each subject 

was fitted with the Polar™ heart rate monitor and a “reference” recording taken.  The 

harness fitting and calibration of the iLMM was completed for each volunteer’s natural 

spinal curvature while they were standing in a relaxed upright posture.  EMG electrodes 

were placed in the pre-selected positions (left and right erector spinae) and the unit 

readied for collection.  Once the subject had been re-familiarised with the CDC they 

completed the required work task for a period of 10 min.  Participants were instructed to 

return to a demarcated lifting area where they lifted the next car door.  EMG and iLMM 

data were recorded for trials at pre-determined times under both testing conditions 

(min3, 6 and 9).  A rest period of at least 20 minutes was required between pre- and 

post-intervention conditions enabling the participant to recover and to allow the heart 

rate response to return to reference levels.  Table V shows the testing set-up used for 

the CDC simulation for both the pre- and post-intervention testing protocols. 

Table V: Task 2 CDC protocol followed for laboratory testing on volunteer male 
participants.   
(n = 30) 

 
CDC Pre-Intervention (Condition A) Task Description 

Sub-task i Step into storage bin, lift door and step out 

Sub-task ii Turn and carry the door past a simulated obstruction in 

the laboratory 

Sub-task iii Turn and place the door on the simulated jig 

CDC Post-Intervention (Condition B) Task Description 

Sub-task i Step into storage bin, lift door and step out 

Sub-task ii Turn and place the door on transfer trolley and push 

along “line” 

Sub-task iii Turn and place the door on the simulated jig 
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The research design, which utilised a pre-test / post-test set-up, allowed for the 

evaluation of the effectiveness of the proposed ergonomics interventions before 

implementation in the automotive assembly plant. Laboratory-based findings were 

discussed with the operators and GM management to develop interventions most 

suitable to the Struandale plant. These adapted interventions were then presented to 

GM Plant Engineering and Safety, Health and Environment (SHE) management 

together with the results of the laboratory experimentation. Once the interventions had 

been put into practice and the workers had enough time to get accustomed to the 

changes, a re-evaluation of the operators’ physical and psychophysical responses to 

the Paintshop and Bodyshop tasks were conducted after a period of six months. 

STATISTICAL ANALYSIS 

Experimental data were transferred to the STATISTICA (Version 7.0, StatSoft®) 

statistical software package. Basic descriptive statistical analyses were completed on all 

relevant variables, providing general information regarding the sample’s responses (see 

Appendix D for example).  

The statistical matrix for each of the two independent tasks is set out in the sections that 

follow.  Task 1 (PTT) included six sub-tasks (three pushing and three pulling) which 

were divided into pre- and post-intervention conditions (A and B).  Task 2 (CDC) 

included three sub-tasks divided into pre- and post-intervention conditions (A and B).  

Statistical analyses (t-tests and ANOVA, p≤0.05) were carried out for each of the three 

statistical hypotheses presented in Chapter One (see p7).     

 
Task 1:  PTT Statistical Analyses 
 

Spinal kinematics (Hypothesis 1), physiological responses (Hypothesis 2) and 

psychophysical ratings responses (Hypothesis 3) were compared pre- and post-

intervention by means of related t-tests and one-way ANOVA (where appropriate).  
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Pushing 

Pre-Intervention (Condition A) i.  One-handed Pushing ii. Two-handed Pushing 

 

Post-Intervention (Condition B) 

 

iii.  Two-handed Pushing Intervention 

 

Pulling 

Pre-Intervention (Condition A) i.  One-handed Pulling ii. Two-handed Pulling 

 

Post-Intervention (Condition B) 

 

iii.  Two-handed Pulling Intervention 

 
 
Task 2:  CDC Statistical Analyses 
 

Spinal kinematics (Hypothesis 1), physiological responses (Hypothesis 2) and 

psychophysical ratings (Hypothesis 3) were compared pre- and post-intervention by 

means of related t-tests.   

 

CDC 

Pre-Intervention (Condition A) i. Lift ii.  Carry iii. Place 

Post-Intervention (Condition B) i. Lift ii. Trolley Push iii. Place 
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CHAPTER FOUR 

FIELD FINDINGS, EXPERIMENTAL RESULTS AND DISCUSSION 

 
 
INTRODUCTION 
 

Automotive assembly plants frequently necessitate taxing physical labour during the 

completion of basic manufacturing tasks.  In order to assess the current task demands 

placed on the operator, visits to a cross-section of original equipment manufacturers 

were completed.  Work-related hazards currently affecting the overall efficiency of the 

human operator working in the automotive sector were identified and quantified using 

varied methods, including video, digital photographic analyses, physiological monitoring 

and perceptual rating scales.  Specific laboratory simulations of selected tasks were 

completed following the in situ investigation, and detailed laboratory assessments 

allowed for the effective quantification of task demands, taking into consideration the 

biophysical, physiological and perceptual responses of the operator, and the 

effectiveness of intervention strategies. 

The General Motors (Struandale) plant was selected as the focus operation for the field 

observation and follow-up study.  Detailed field assessments were completed prior to 

the laboratory testing sessions, which served to familiarise the researcher with the 

general set-up of operations.  Renz and Scott (2004) suggested that while most manual 

tasks display a combination of potential problem factors which need to be considered in 

conjunction with their environmental and organisational context, interventions may have 

to be restricted to combating the most severe factors. Wide-ranging factors influencing 

workplace variability were directly considered during the field observation in both the 

Paintshop and Bodyshop at the GM plant, for as Allread et al. (2000) reported, 

variability in work completion depends upon experience, physical differences between 

operators or individual preferences for how the work is performed.   
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FIELD OBSERVATIONS 
 
Field Task 1:  Paintshop Area   
 

Recent research has suggested that pushing and pulling actions are common in a range 

of workplaces (Kumar, 1995; van der Beek et al., 1999) and similarly the GM Paintshop 

exhibits a high prevalence of push-pull sub-tasks with heavy vehicle frames manually 

moved on skid platforms during the course of the work cycle.  Workers are required to 

complete one and two-handed pushing or pulling to move the units on transfer trolleys 

in this area of the plant (see Figure 4, p57).  Field observations focused on a number of 

key areas, including recording of workspace dimensions, current task requirements, 

plus the workers’ anthropometric characteristics, physiological and perceptual 

responses.  Basic task observation sheets were used to assess the current workflow 

and divide the job into a series of sub-tasks (see Appendix B for an example from the 

Paintshop).  Operators in this area were required to work on various models of car 

frames, with the heaviest (“worst-case”) selected for evaluation in the laboratory.   

 
Field Task 2:  Bodyshop (Closure Line) Area 
 

The automotive Bodyshop is an area that is characterised by high noise and 

temperature levels (particularly in the hot summer months in South Africa) due to the 

welding operations that take place in this confined area.  A large amount of manual 

work is still completed on the Bodyshop Closure Lines of the GM plant.  The manual 

activities include the carriage of car doors, boot lids and bonnets, which are all heavy 

and awkward to manoeuvre.  The laboratory simulation for the Bodyshop Closure Line 

tasks was aimed at identifying the current demands placed on the operators as a result 

of the manual handling of the door, and then evaluating the proposed ergonomics 

intervention strategies developed to decrease the current workload.   

 

Workplace Environmental Factors 

It is well documented that the environmental conditions experienced in the workplace 

will have a distinct impact on the physical and cognitive responses of the operator, and  
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Snook and Ciriello (1974) reported that operator ability to complete manual work 

declines significantly when temperatures increase up to and beyond 27°C.  Table VI 

shows that it was not uncommon to have temperatures in the region of 27°C in the GM 

plant, and in mid-summer they often exceed 30°C.  The mean noise levels in both focus 

areas exceeded the 85 dB(A) limit set by the South African Occupational Health and 

Safety Act (OHS Act, 1993).  In accordance with the OHS Act (1993), clear 

demarcations of noise zones were evident in the relevant areas of the plant.  However, 

despite the availability and provision of adequate personal protective equipment (PPE) 

in the form of hearing protection, PPE usage was not uniformly enforced, particularly in 

the Bodyshop. 

  

Table VI: Workplace ambient temperature and noise levels in the Paintshop and 
Bodyshop areas of the GM plant. 

 
 Plant Area: Time of Day: 

Paintshop 10.30 11.30 12.30* 

Ambient Temperature (°C) 26.5 27.3 28.6 
Noise Level (dB(A)) 85.8 86.7 85.8 
Bodyshop Closure Line 12.30 13.30 14.30* 

Ambient Temperature (°C) 26.1 27.1 26.3 
Noise Level (dB(A)) 92.6 96.1 89.2 

 
* Working cycle times vary due to varied rest breaks in the Paintshop  

and Bodyshop areas; hence a time overlap was not possible 
 

 
Observations of Selected Tasks 
 

Time-motion observations were conducted to assess the current work demands in the 

two areas evaluated.  Priority areas and associated high risk sub-tasks were identified 

based on the observation.  The Paintshop Trolley Transfer (PTT) push-pull, and the 

Bodyshop Car Door Carriage (CDC) were identified as the highest risk tasks requiring 

prioritisation of ergonomics intervention.  Laboratory interventions were subsequently 

developed in an attempt to minimise the workplace risk to the automotive workers. 

 
The Paintshop sub-tasks identified were subdivided into five main categories as follows:  

one-handed push, two-handed push, one-handed pull, two-handed pull and pulling the 
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skid to a stop (shift time 7.5h).  Each of these sub-tasks was then observed and an 

average work cycle time for the complete transfer of the vehicle frame of 50s was 

recorded for the six operators working in this area.  The most prevalent actions were the 

one-handed push and pull operations.  All operators made use of these methods during 

the shift, whereas certain operators were not required to pull the skid to a stop or use a 

two-handed push or pull action.  The estimated time for each of the five sub-tasks 

ranged from 3 to 15s, depending on the distance of push or pull along the Paintshop 

line.  The longest one-handed pulling effort was recorded as 15s where the operator 

moved the skid along the line and then pulled it further along the track transfer line.   

 
The Bodyshop sub-tasks identified included lifting, carrying and placing of the car door 

onto the jig on the Closure Line (shift time 7.5h).  The mean work cycle time in this area 

was 29s with a range of 25 to 42s observed on the line.  The mean time required for the 

lifting of the door from the bin was 15s, while carrying the door required approximately 

12s, and finally the placement of the door took 2 to 3s to ensure that the door was 

correctly placed on the jig.  The temporal recordings from the field were subsequently 

used to establish a laboratory test cycle of 30s.   

 
FIELD BIOPHYSICAL PARAMETERS 
 
Paintshop Push-Pull Force Evaluation 

It was evident that pushing and pulling tasks were prevalent in the automotive plant, 

particularly in the Paintshop area.  In order to quantify the current task demands placed 

on workers, isometric pushing and pulling forces were measured using the Chatillon™ 

hand-held dynamometer during testing at the GM plant.  Repeated measures were 

collected for three vehicle models and the effort level consistency requirement set in the 

93 to 107% range (see Table VII).  Effort level consistency was calculated following 

Charteris and James (2000) using the following formula:  ELC % = (Trial X/Trial Y) x 

100. 
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Table VII: Pushing and pulling forces measured in the Paintshop of the GM plant. 

 
Pulling Forces Trial 1 Trial 2 Trial 3 Effort Level Consistency (ELC%) * 

Model A Mean Peak Mean  Peak Mean Peak 
T1 vs. 

T2 T2 vs. T3 T1 vs. T3 

One-handed 8.2 16.7 9.5 21.1 8.0 19.7 86.32 118.75 102.50 

Two-handed 11.1 17.2 8.5 17.0 8.6 18.8 130.59 98.84 129.07 

Model B   

One-handed 6.1 16.6 4.8 10.8 4.8 12.0 127.08 100.00 127.08 

Two-handed 8.8 15.0 7.1 18.1 6.8 16.3 123.94 104.41 129.41 

Model C   

One-handed 12.1 21.0 10.5 18.2 12.3 21.7 115.24 85.37 98.37 

Two-handed 13.6 20.1 14.0 23.6 12.7 21.2 97.14 110.23 107.08 

Pushing Forces  

Model A Mean Peak Mean  Peak Mean Peak 
T1 vs. 

T2 T2 vs. T3 T1 vs. T3 

Two-handed 5.0 15.7 4.4 12.5 5.3 15.2 113.64 83.02 94.34 

One-handed 5.6 11.0 4.8 10.6 5.3 8.8 116.67 90.57 105.66 

Model B   

One-handed 6.3 10.4 7.6 12.0 6.3 12.3 82.89 120.63 100.00 

Two-handed 5.4 13.8 4.7 14.6 5.0 16.3 114.89 94.00 108.00 

Model C   

One-handed 9.9 20.5 10.3 21.7 10.8 22.0 96.12 95.37 91.67 

Two-handed 7.0 17.9 7.5 19.7 11.1 22.3 93.33 67.57 63.06 
 
* Effort Level Consistency (ELC) based on Charteris and James (2000).   

 
Note: Figures in bold indicate the highest ELC recorded during the field investigation. 
 ELC was set in the range from 93-107% during the force evaluations. 

The Paintshop personnel supplied the masses and dimensions of all vehicle units 

evaluated in the field.  The current worst-case scenario, vehicle Model C (600kg) was 

shown to be considerably heavier than the two other units.  Force output requirements 

were subsequently highest for moving this unit on the skid.  Peak initial forces required 

to move the skid ranged from 18.2 to 21.7kg.f for the one-handed pull, and values for 

the two-handed pull ranged from 20.1 to 23.6kg.f.  A similar range of values were 

recorded for the pushing tasks.  The one-handed push range was 20.5 to 22.0kg.f and 

the two-handed push range from 17.9 to 22.3kg.f for vehicle Model C.      

Certain one- and two-handed push-pull tasks were consequently selected for detailed 

laboratory investigation.  Based on the findings of the field hand-held dynamometry 

force evaluation, the laboratory simulations of pushing and pulling were standardised at 

20kg efforts for the six simulation trials.  The 20kg output requirement was deemed to 

be representative of the current task demands; however, it is important to note that the 
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skid unit does not always move smoothly on the roller system and is dependent on the 

state of the wheels of the skid and the tracks in the Paintshop.  There are instances 

where much higher forces may be required to overcome the moment of inertia 

requirements of the sub-task under investigation, as James and Todd (2003) found that 

values may well exceed 40kg.f if the operator was required to bring the skid unit to a 

stop once it has started to move.  Previous research conducted by James and Todd 

(2003; 2004) demonstrated that push-pull tasks were identified as posing a high-level of 

risk to the operator.  In a number of field observations conducted on experienced 

operators the force requirements may tax them to a level equivalent to 95% of their 

maximal strength potential (James and Todd, 2003).   

Working Postures in the Paintshop 
 

The GM Paintshop had a predominance of pulling and/or pushing heavy and awkwardly 

shaped vehicle frames on a frequent basis during the work shift. The high forces 

required in many of these pull and push tasks necessitated that the operators adopt 

working postures which resulted in the centre of mass (CM) being located at the 

extreme limits of their base of support (BS).   It is well known that the height of the CM 

from the ground will influence stability (Haslam et al., 2002; James and Todd, 2003), 

and due to the height of the vehicle units from the factory floor, workers were unable to 

adopt a working posture that was likely to ensure optimal stability. 

 

A combination of the working posture, floor surface and load requirements resulted in 

the workers not only being unable to exert maximal force, but also substantially 

increased instability and the likelihood of slipping or tripping in the workplace (James 

and Todd, 2003; Todd et al., 2004). The awkward posture demonstrated in Figure 13 

further exposed the workers to higher levels of discomfort and the likelihood of 

cumulative WMSDs.  In investigating potential intervention strategies based on 

Paintshop operations, one-handed pulling was identified as a major concern, while two-

handed symmetrical pushing was identified as providing the most suitable working 

posture for production of the required force to move the skid unit. 
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Figure 13: 

 
Working posture showing pulling with centre of mass 
(CM) outside the base of support (BS) in the 
Paintshop at the GM Plant.  

 
Working Postures in the Bodyshop (Closure Line) 

Due to restricted space and the placement of storage bins close to the welding line, the 

doors are lifted from a raised bin (Figure 14a) and then carried to the side (Figure 14b).  

The analyses of Bodyshop working postures demonstrated that the current task 

demands place the operator in a twisted position with the door carried at shoulder 

height or above when carrying the door from the bin to the jig for final placement.   

a b 

Figure 14 a and b: Working posture showing lifting position (a) and carriage (b) 
of the door in the restrictive Bodyshop Closure Line.  

 

CM 

BS 
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Basic intervention strategies were sought which allowed the worker to minimise the step 

into the storage bin and the amount of time spent in a twisted and asymmetrical posture 

while carrying the door, as these factors were identified as involving the greatest risk to 

the worker.  Workers completing the lift, carry and placement of the car door worked on 

one side of the Closure Line for the entire shift (either right or left sided carrying).  The 

working posture during the door carriage therefore differentially taxes the 

musculoskeletal system of the operators working in the Bodyshop.   

FIELD PHYSIOLOGICAL VARIABLES 
 
Heart Rate Responses 
 

Workplace MMH task requirements place physical stresses on the operator, which 

strain the cardiovascular system (Dempsey, 1998; Kumar, 2001).  Mean heart rate 

values recorded during the fieldwork observation were 93.5 (±9.77) bt.min-1 for the 

Paintshop, and 89.7 (±13.98) bt.min-1 for the Bodyshop workers.  Figure 15 

demonstrates that mean heart rate responses were higher in the Paintshop in five of the 

sampling periods, but the highest heart rate was recorded in the Bodyshop area, with a 

range from 80 to 115 bt.min-1 in the Paintshop, and between 70 and 124 bt.min-1 in the 

Bodyshop area.   

 

Unrelated t-Tests revealed a significant difference (p ≤ 0.05) between the Paintshop and 

Bodyshop operators’ ‘working’ heart rate responses during minute 75 (the first collection 

period of the second hour).  This atypically lower mean heart rate response may be 

explained by considering the rest schedule used in the Bodyshop Closure Line.  During 

selected periods of the shift, workers are permitted to take unscheduled rest breaks 

(usually taken after approximately 60min), and the result was a significantly lower mean 

heart rate for the Bodyshop workers.  No other statistically significant differences were 

observed between Paintshop and Bodyshop heart rate recordings.    
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Figure 15: Heart rate responses recorded in the GM Struandale Paintshop and 
Bodyshop Areas.  
(n=6 in Bodyshop and n=6 in Paintshop) 

 
* denotes significant difference (p ≤ 0.05) between Paintshop and  

Bodyshop responses.  
 
 

According to accepted guidelines established by Sanders and McCormick (1993), both 

sets of heart rate responses would suggest that the current tasks did not place 

excessive demands on the cardiovascular system when using heart rate responses as a 

guideline.  Research has suggested that the maintenance of acceptable physiological 

output, as observed in the Paintshop and Bodyshop areas, should reduce the onset of 

worker fatigue or extreme discomfort over the working shift (Datta et al., 1983; Renz 

and Scott, 2004).  However, it is argued that low-cost interventions will further reduce 

the physiological strain placed on the operator in the automotive plant. 

 
Activity Count:  RT3 Accelerometers  

The RT3 tri-axial accelerometer (Stayhealthy Inc., Monrovia, CA) is designed as an 

activity recording and measurement system for varied research applications. The RT3 
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units were attached to the belts or clothing of the workers on the posterior side of the 

body at the waist level.  Calculated activity calories were converted to kilojoules per 

minute using the method described in Chapter 3 (see page 66).   

Table VIII: Derived energy expenditure predictions from RT3 Accelerometer data collected 
in the GM Paintshop and Bodyshop areas. 

 

Area kJ.min-1 kJ.h kJ.shift 

Paintshop 12.3 (1.60) * 736.5 (95.97) * 5 523.7 (719.81) * 

Bodyshop 10.7 (1.34) 642.9 (80.24) 4 822.0 (601.81) 

(Means with standard deviations in brackets) 

* denotes significant difference (p ≤ 0.05) between Paintshop and Bodyshop 
responses. 

The energy expenditure predictions calculated in the Paintshop showed a significantly 

higher metabolic cost (p ≤ 0.05) over a minute, hour and the full shift compared to 

Bodyshop values.  These findings are reflective of the different work rate of the two 

jobs.  The activity levels in the Bodyshop area are in large part self-paced, and 

additionally the line is occasionally subject to production slow downs and unit backlogs.  

The operators in the Bodyshop are thus afforded more informal rest breaks than is the 

case for the operators working the Paintshop, particularly at the track transfer line.   

FIELD PSYCHOPHYSICAL RESPONSES 
 
Ratings of Perceived Exertion (RPE) 
 

Ratings of Perceived Exertion (RPE) provide a useful perceptual indication of operator 

perceptions of current working demands.  Central ratings were recorded to gain an 

understanding of the perceived demands placed on the cardiovascular system while 

carrying out the Paintshop and Bodyshop sub-tasks. Care was taken to ensure that 

workers were familiar with the purpose of the scale and ratings were clearly specified for 

Central and Local exertion. 

 
Significant differences were observed during minutes 15, 75, 90 and 105 for Central 

RPE ratings for industry workers.  It is worthwhile noting from Figure 16 that the 
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perceptions of exertion are higher for Bodyshop workers after the first 45min, indicating 

that despite recording lower mean working heart rates in the Bodyshop, the manual 

labour requirements were perceived to be more demanding while carrying car doors in 

the Bodyshop than is the case for completing the Paintshop trolley push-pull tasks.  

 

 
 

 
Figure 16: 

 
Central RPE ratings for Paintshop and Bodyshop workers in the GM 
plant.  
(n=6 in Bodyshop and n=6 in Paintshop) 

 
* denotes significant difference (p ≤ 0.05) between Paintshop and 
Bodyshop responses.  

 
 

Paintshop RPE ratings did not alter much over the two hours, indicating that workers 

maintained a comfortable working pace and did not perceive the task demands to be 

unduly excessive.  Job familiarity may be a possible reason for this finding, as the 

workers in the Paintshop had longer mean work experience (7yr) than the Bodyshop 

workers assessed. 

 

It is well accepted that the perception of exertion has an important application in any 

occupational setting, particularly during the evaluation of physically demanding tasks, 
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and Figure 17 shows the responses for RPE specific to Local exertion (focusing on the 

back and arms) during the field observation.  Responses in the Bodyshop show an 

expected trend, with ratings increasing steadily from min 15 to min 60 of observation as 

the operators become more fatigued due to the accumulative effect of carrying an 

awkward shaped door.  Workers on the Closure Line had just been given the 

opportunity to rest and RPE responses were subsequently lower than those in the 

Paintshop by the end of min 75.  In contrast, Local RPE scores show a steady increase 

up to min 60 and then tend to stabilise during the second hour of collection.   

      

 

 

 
Figure 17: Local RPE ratings for Paintshop and Bodyshop Workers in the GM 

plant.  
(n=6 in Bodyshop and n=6 in Paintshop)  

 
 

Statistical analyses of localised ratings revealed no statistically significant differences 

between Paintshop and Bodyshop perceived exertion (p ≤ 0.05).  Paintshop operators 

reported a higher level of perceived exertion than Bodyshop workers in five of the 

collection periods.  Workers in this area reported greater upper extremity exertion due to 

the pushing and pulling of heavy vehicle frames.  In the latter periods of the work shift 
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(min 90 and min 105) Bodyshop workers rated exertion higher for the back region due 

to the asymmetrical carriage.  Local ratings of perceived exertion were generally higher 

than Central ratings, indicating greater muscular stress than cardiovascular strain in 

both areas of the GM plant.     

 
Body Discomfort Map and Rating Scale (BDS) 
 

The BDS is a subjective tool used to assess the discomfort of an individual in the 

laboratory or working environment, and reports of high levels of discomfort experienced 

during the shift are often an indicator of higher levels of risk in the workplace. The body 

discomfort ratings shown in Figure 18 indicate that the major area of perceived body 

discomfort was 11 posterior (the lower back region).  Greatest body discomfort was 

reported in this region by 6 of 12 operators during both the first and second hours.  The 

mean intensity of discomfort experience in this area was 5.5 (± 1.93) on the 10-point 

rating scale during the first hour, and went up nominally to 5.8 (± 1.71) during the 

second hour.   

 

Other areas where discomfort was experienced were the biceps (6 and 7 anterior), 

shoulders (3 and 4 posterior) and thigh regions (19 and 20 anterior) for the Paintshop 

sub-tasks, due to the push-pull tasks that require substantial effort from the upper 

extremities to overcome the inertia of the vehicle unit.  A few of the workers also 

experienced discomfort in the lower extremities due largely to the current design of the 

transfer trolley.  The trolley is pulled towards the operator and requires careful 

maintenance of balance to prevent serious injury in the event of the trolley running out 

of control.  The lower extremities are frequently used to stop the load once the unit is in 

motion, which results in potential limb injury. 
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Lower Back 

(Mean Rating: 5.5 ± 1.93) 

11 Posterior  
Lower Back 

(Mean Rating: 5.8 ± 1.78) 

 2nd area:  
Paintshop 

19 and 20 Anterior  
Right and Left Quadriceps 

17 and 18 Anterior 
Right and Left Hands 

 
 2nd area:  

Bodyshop 
21 and 22 Anterior  

Right and Left Knees 
 

4 Anterior  
Left Shoulder 

 

 
Figure 18: Body discomfort experienced at the end of the 1st and 2nd hours during field 

observation in the GM plant.  
 

The carriage of the car door requires manual handling, predominantly using the strength 

output of the upper extremities.   However, the lower extremities were also taxed due to 

the requirement of walking with the load before placement on the jig for spot-welding.  

The strain experienced by the workers is reflected in the ratings in the Bodyshop, which 

demonstrated that discomfort was experienced in the knees (21 and 22 anterior), the 

shoulders (3 and 4 posterior) and the gluteal region (12 posterior).  Statistically 

significant differences in body discomfort were recorded during the second hour of field 

observation.  Paintshop workers rated discomfort levels significantly higher than 

Bodyshop colleagues.  This finding may be explained by considering that task 

demands, quantified by heart rate, EE values and Local RPE, were higher for the 

pushing and pulling of the vehicle frames than for car door carriage.    
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PILOT TEST FINDINGS  

Preceding the laboratory experimentation phase, preliminary and pilot studies, based on 

the initial field evaluations in the GM plant, were conducted in the Ergonomics 

Laboratories of the Department of Human Kinetics and Ergonomics at Rhodes 

University. Four male volunteers participated in the pilot testing.    

Temporal, Dimensional and Working Posture Analyses 

The temporal, dimensional and working postures required for the pilot testing were 

assessed, and the starting positions adjusted according to the factors observed in the 

GM plant.  The PTT simulation pilot session highlighted the importance of 

standardisation of the starting foot position in the dynamic push-pull evaluation.  Clear 

foot positioning demarcations were placed on the laboratory floor, as shown in Figure 

19, and a familiarisation session was conducted to enable participants to move with as 

natural a gait pattern as possible while pushing or pulling the simulated load.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19:  Pilot testing of the one-handed pulling simulation in the 
laboratory with the clear starting demarcations. 
  

 

 

Foot positioning demarcations 

One-handed pulling posture simulation 
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The simulated sub-task which placed the greatest restriction on mobility was the two-

handed push due to the experimental set-up, and the distance of the push was 

subsequently shortened from the originally proposed 3m to 1.5m to more accurately 

simulate the pushing action at the front of the skid unit.   

 

The CDC laboratory simulation required a temporal adjustment during the trolley 

pushing phase (post-intervention) to allow for comparisons to be made between pre- 

and post-intervention methods.  Initially both the front and rear doors were used; 

however, after extensive pilot work, it was decided that participants would only be 

required to lift the front door (mass of 21kg) in order to standardise the task according to 

the in situ work cycle time recorded (30s).      

    

With the introduction of the door trolley the participants were required to place the door 

onto the trolley, push the trolley the required 6.5m, and then lift the door off the unit to 

place the door on the jig.  While the need to carry the door had been eliminated, the 

door did need to be placed on, and lifted off, the trolley and this resulted in increasing 

the pace during the post-intervention phase in the laboratory in order to meet the field 

work cycle time.   

 
Biophysical and Physiological Parameters 

Pilot testing served to modify the work pattern so as to synchronise the collection of 

experimental data from the industrial Lumbar Motion Monitor (iLMM) with input from the 

Mega ME3000P electromyography (EMG) system.  The PTT testing sessions allowed 

for real-time sampling using the EMG system as the use of the ‘hard wired’ method, 

where the EMG recording unit is plugged directly into the computer for synchronized 

data collection, was shown to be feasible.  In contrast, the CDC tasks required the use 

of the Mega EMG data logging system due to equipment restrictions.  EMG data were 

later downloaded and assessed using the Mega software package.  Consequently, 

recordings of iLMM and EMG data were limited to minutes 3, 6 and 9 for the purposes 

of comparison of kinematic and muscular loading during the CDC pre- and post-testing.     
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Pilot heart rate recordings (mean 109.5 ±0.71 bt.min-1) indicated that no responses 

exceeded those observed during the field investigation in the Paintshop and Bodyshop 

areas.  The simulated physiological demands were therefore deemed to be acceptable 

for the laboratory experimentation phase.  The pulling and pushing load of 20kg.f was 

also evaluated during pilot testing.  All participants indicated that the load was 

acceptable for all six sub-tasks and the simulated trolley loading was thus deemed to be 

acceptable for use during the laboratory experimental phase of the present study. 

LABORATORY RESEARCH RESULTS 
 

Laboratory experimentation on the selected industrial working operations included two 

experimental conditions for the push-pull of the vehicle frame (Task 1), and car door 

carriage (Task 2): simulations conducted included the existing industrial scenario pre-

intervention (Condition A), and the post-intervention (Condition B) evaluation conducted 

to assess the effect of the ergonomics intervention proposed.     

 
TASK 1:  PAINTSHOP TROLLEY TRANSFER (PTT) SIMULATION 
 
BIOPHYSICAL PARAMETERS  
 
Working Posture Analyses 
 
The one- and two-handed push-pull tasks required participants to adopt awkward 

working postures pre-intervention, which were sub-optimal for various reasons.  Figure 

20a to d demonstrates how the pulling tasks differentially physically tax the 

musculoskeletal system depending on the method of sub-task completion.  Figure 20a 

shows the working posture observed in the GM Paintshop during pulling with two hands.  

Selected examples of the two-handed pull simulation pre-intervention are shown in 

Figure 20b and c, with participants leaning excessively as per the workplace 

observation, and in contrast the post-intervention two-handed pull (Figure 20d) 

illustrates a more balanced and controlled working posture.      
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a B 

c D 
 
Figure 20 a,b,c and d:   Pulling working postures observed in the workplace (a), 

and simulated during laboratory experimentation (b-d).  
 

Note:  yellow line illustrates the angle of lean from the vertical. 
 

Figure 20a, b and c demonstrates that current working postures increases the risk of 

trips and falls, particularly when the floor is uneven as is the case on site and, in the 

longer term, WMSDs.    

 
The mean lean angles recorded during two-handed pulling are shown in Table IX, 

where an angle of 23.7° (±3.51) was recorded for two-handed pre-intervention pulling, 

which was significantly reduced post-intervention to 13.9° (±2.21). 

   
Table IX: Mean lean angles recorded from the vertical for two-handed pulling 

pre- and post-intervention. 
   

Pulling Lean Angle Range 

Pre-Intervention 23.7 (3.51) 18.5 to 30.5 

Post-Intervention 13.9 (2.21) 9.7 to 16.9 

(Means with standard deviations in brackets, shaded area post-intervention) 
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Pulling using one hand excessively loads the shoulder, elbow and wrist joints of the 

dominant upper limb.  Figure 21a and b illustrates the sub-optimal postures required to 

move the load in the laboratory, and it is evident that the dominant shoulder joint is 

particularly taxed.  The working posture adopted will also significantly influence the 

spinal kinematics and physiological responses of the participant, as will be 

demonstrated in later sections.  

 

 

 

a b 
 
Figure 21 a and b:   Typical one-handed pulling working postures observed 

during laboratory experimentation. 
  

                                          Note:  yellow line illustrates the angle of asymmetry from the vertical. 

 

The one-handed pulling action placed the right arm in abduction and the mean angle of 

asymmetry (taken from the vertical to the right acromial process as shown in Figure 21a 

and b) was 25.1° (±3.98).  The one-handed pulling posture is clearly unfavourable for 

pulling heavy loads, as the upper limb musculature and articulations of the pulling arm 

are differentially taxed.  It is argued that the one-handed pulling action must be 

eliminated, hence the proposal of a two-handed intervention in the automotive 

workplace.   

 

The integration of the 3D SSPP and ErgoImager software programmes facilitates 

postural and force predictions based on laboratory observations.  Figure 22a and b 

demonstrate the one- and two-handed simulations derived from the 3D SSPP for pre- 

and post-intervention pulling, and estimated forces from this programme.  The one-

handed pulling evaluation specific to the right shoulder joint results in only 54% of 
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population being capable of executing the 20kg.f pulling effort pre-intervention.  Only 

60% of the population were considered capable of completing the trial using one hand 

based on the 3D SSPP prediction for the elbow (Figure 22a).  The 3D calculation of low 

back compression was estimated at 1 806N during the uni-lateral pull, and this finding 

together with iLMM responses which follow indicated that the action was sub-optimal. 

  
a 
 
 
 

 

b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 a and b:   3D SSPP simulation for PTT pulling laboratory 
experimentation pre- (a) and post-intervention (b).  
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Figure 22b demonstrates the clear benefits of the intervention pulling action as the 

percentage of the population capable of completing the modified sub-task when 

considering the shoulder joint complex was 99%.  The minor postural modification thus 

reduced the estimated musculoskeletal stresses specific to the upper limbs, and 

similarly the elbow value was improved from 60 to a predicted 100% post-intervention.  

The centre of pressure (CP) in relation to BS was unacceptable pre-intervention, but 

was suitably modified to allow for an acceptable level of balance during the symmetrical 

two-handed pull, which also reduced the compression by 55% to 986N post-

intervention. 

 

Findings from the present study concur with Lee et al. (1991), who argued that extreme 

push-pull tasks result in frequent over-exertion injuries.  Excessively heavy, poorly 

designed and awkwardly shaped skids used in the present study increased the force 

output required of the workers in the Paintshop.  In addition, working postures 

evidenced for pulling tasks have been shown to pose a considerable risk to the 

workforce due to the configuration of the transfer trolley, excessive lean, and the 

increased likelihood of slips and falls associated with these tasks.  In order to eliminate 

the excessive use of the one-handed asymmetrical pulling action at the side of the 

vehicle frame, a two-handed symmetrical pull with an extended attachment was 

recommended.  Symmetrical pulling with two hands was shown to reduce 

hyperextension post-intervention and place the workers in a position with considerably 

more control over their working postures, and consequently over the skid movement on 

the vehicle transfer line.   

 

The current pushing methods predominantly in use in the Paintshop are awkward, 

restricted and asymmetrical, which places a large amount of strain on the dominant side 

(the right hand side was used for the purposes of laboratory experimentation).  The uni-

lateral pushing actions frequently take place above acromial height thus exacerbating 

the forces in the shoulder joint and often induce an excessive forward lean.  The 

pushing intervention was thus devised to minimise unbalanced actions and encourage 
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operators to use both hands in pushing the unit during the related sub-tasks in the 

Paintshop, where force and awkward posture are the major areas of concern. 

 

Both one- and two-handed pushing is used in the workplace to overcome the mass of 

the vehicle frame resting on the transfer trolley.  Figure 23a highlights the one-handed 

pushing simulation set-up used during laboratory experimentation. Similarly, the two-

handed asymmetrical method (Figure 23b) was widely regarded by participants as 

entailing an awkward pushing action.  The asymmetrical loading of the left shoulder was 

deemed to be particularly uncomfortable (guiding the simulated pushing action as the 

top hand) as the subject was required to place the left upper extremity in a sub-optimal 

position for force production, but this was necessary in the workplace to guide the 

vehicle unit once on the tracks of the transfer line.  In contrast to the pre-intervention 

pushing actions, post-intervention pushing was balanced, controlled and equally split 

the load and subsequent force between the left and right sides.    

 

  a b 
  

Figure 23 a and b:   Pushing working postures simulated during pre-intervention 
laboratory experimentation.  

 

 

3D SSPP analyses of selected pushing tasks demonstrated that the asymmetrical 

pushing postures for one- handed pushing pre-intervention differentially tax the upper 

limbs as illustrated in Figure 24a.  Post-intervention analysis of the symmetrical push is 

shown in Figure 24b.  
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a 

 

 

b 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24 a and b:   3D SSPP simulation for PTT pushing laboratory 

experimentation pre- (a) and post-intervention (b).  
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During the one-handed pushing trials the torso was in a twisted position resulting in only 

17% of the population being capable of the simulated pushing action (Figure 24a).  The 

CP was also rated as critical pre-intervention indicating that a minor stumble would 

result in a fall during the unbalanced pushing action.  The location of the CP outside the 

BS is of particular concern in the workplace where a loss of balance will result in injury 

to the operator in the Paintshop.   

 

Figure 24b demonstrates that the introduction of an even pushing action distributed the 

load between the left and right hand sides thereby reducing the twisting (percentage 

capable was improved from 17 to 99%), and stresses placed on the rotator cuff of the 

dominant limb.  The 3D low back compression showed a significant reduction from        

1 835N to 421N post-intervention indicating a low level of compressive forces well 

below the acceptable working limit.  The CP balance was improved from critical to 

acceptable post-intervention with participants commenting on a perception of greater 

control over the simulated load in the laboratory experimentation phase after 

modifications were made to the pushing action.         

 

Current working practices in the Paintshop place the human operator at risk of 

developing overuse injuries of the upper limbs, for as Hoozemans et al. (2004) argued, 

the force required to overcome a heavy load should be shared between the left and 

right hand sides of the body in order to reduce the risks of WRULDs.  Based on the 

findings of the present study it is argued that in the workplace the even allocation of the 

load through a two-handed pushing action at the front of the skid will reduce the 

musculoskeletal stresses on the body and result in the vehicle frame moving away from 

the employee, which will in turn reduce the risk of foot run-over, and when properly 

controlled, reduce the probability of slips and falls.   
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Spinal Kinematics – Industrial Lumbar Motion Monitor (iLMM) 
 

Table X demonstrates changes observed in one-handed, two-handed and two-handed 

intervention pulling and pushing kinematic responses as recorded using the iLMM.  

Lumbar motion analysis primarily focused on the twisting velocity, sagittal flexion and 

lateral velocity recorded during the push-pull trials.    

 
 
Table X: Twisting velocity, sagittal flexion and lateral velocity during the PTT pulling  

and pushing trials.  

 

Pulling One-handed  Two-handed  Two-handed  Intervention 

Ave Twisting Velocity (°.s
-1

) 5.6 (1.57) 1.1 (0.84) 1.4 (0.72)  ^ 

Max Sagittal Flexion (°) 11.7 (5.15) 4.4 (2.72) 3.4 (1.96)  ^ 

Max Lateral Velocity (°.s
-1

) 24.0 (7.63) 13.1 (5.67) 15.0 (6.27) * 

Pushing One-handed Two-handed Two-handed Intervention 

Ave Twisting Velocity (°.s
-1

) 4.6 (2.78) 3.6 (2.19) 2.8 (1.84)  ^ 

Max Sagittal Flexion  (°) 3.7 (2.47) 3.8 (2.76)               3.9 (2.30)  

Max Lateral Velocity (°.s
-1

) 22.3 (6.66) 22.3 (7.40) 18.8 (6.02) ^ 

(Means with standard deviations in brackets, shaded area post-intervention) 
 

 
* denotes significant difference (p ≤ 0.05) between pre- and post-

intervention responses one and two-handed intervention pulling only. 
 

^ denotes significant difference (p ≤ 0.05) between pre- and post-
intervention responses for one, two and two-handed intervention 
responses. 

 

 

Besides the high force requirements there is also evidence of a twisted posture during 

the one-handed pulling task, and it is argued that the current push-pull techniques 

increase the likelihood of slipping and tripping incidents supporting the findings of       

De Looze et al. (2000), Haslam et al. (2002) and Todd et al. (2004), who argued that 

poor trolley design and visual obstruction result in increased push-pull risks. Statistical 

analyses (one-way ANOVA) showed a significant reduction in average twisting velocity 

between the pre-intervention one-handed and two-handed post-intervention pulling 
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data.  This finding was expected due to the reduction in asymmetry of the two-handed 

pulling method.  While there was no difference between the two-handed pre- and post-

intervention pulling, participants preferred the intervention to the current two-handed pull 

observed in situ, as it provided a more comfortable working posture by eliminating the 

excessive lean during the skid pulling.   

 

Maximal sagittal flexion was significantly reduced (by 71%) as a result of the adapted 

pulling style, and operators are less likely to lose their balance during the two-handed 

pull intervention, and will have greater control over the skid unit in the “real-world” 

setting.  A significant difference in maximum lateral velocity indicated that the lateral 

bend was effectively reduced by 9°.s-1 with the two-handed pull.  Participants were able 

to work with a balanced posture and commented on a greater level of control over the 

simulated load.  The use of the extended rope had the effect of reducing the 

musculoskeletal effort required to maintain balance, and combined with the changes in 

working posture, reduced the potential risks of WMSDs, slipping and injuries due to skid 

rollovers. 

 

No significant differences were observed between pushing methods used for maximal 

sagittal flexion, which was less than five degrees in all three methods (see Table X). 

However, maximal lateral velocity showed a significant decrease (16%) during the post-

intervention two-handed push, and the mean twisting of the spine was significantly 

reduced for pushing post-intervention.  Figure 25 demonstrates a typical example of the 

iLMM trial data collected during the PTT evaluation of one-, two- and two-handed 

intervention pushing trials with a specific focus on the twisting responses of a laboratory 

participant.   
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  Key:   

 Trial 1 One-handed pushing 

 Trial 4 Two-handed pushing 

 Trial 8 Two-handed pushing Intervention 

 
Figure 25:     

 
iLMM twist trial data for a typical participant during PTT laboratory 
testing of pushing. 
   

Average twisting velocity for the one-handed push was reduced from 7.2 to 2.0°.s-1 for 

this participant post-intervention.  Lateral velocity demonstrated a significant difference 

during the two-handed pushing post-intervention (reduced from 20.1 to 15.5°.s-1).   

It is argued that these findings were due to the considerable change in working posture, 

equal distribution of the load between the left and right hand sides, and in turn a 

reduction in the force requirements for the dominant limb.  The proposed symmetrical 
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pushing action is therefore shown to be a significant contributor to improving working 

posture and reducing the spinal twisting required of the individual, together with less 

physical strain being placed on the shoulder, elbow and wrist joints when evenly 

distributing the force output required to move the heavy load.  The reduction in spinal 

motion was also coupled with a reduction in physiological loading, as demonstrated by 

the heart rate and EMG analysis sections which follow.   

The Ohio State University (OSU) LBD Risk Model enables quantitative assessment of 

each task within a job, and Marras et al. (1997) suggested that the LDB risk model may 

assist in the ergonomic intervention process.  LBD risks were calculated for each of the 

six testing conditions in the PTT simulation using the OSU Risk Model.  Figure 26 

highlights an example from the OSU Risk Model for one-handed pulling, where the 

probability of LDB risk was 37%.  

 

 

 

 
Figure 26: OSU Risk Model graphic for a typical participant during PTT 

laboratory testing of one-handed pulling.  
 

 

Predictions for LBD risk were 36.8% (±8.03) for one-handed pulling simulating the pull 

at the side of the transfer trolley.   Lower risk percentages were predicted for two-
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handed pulling (22.8%, ±5.49), and the two-handed pulling intervention (21.7%, ±5.31).  

Statistical analyses of predicted LDB risk showed a significant difference between one-

handed pulling and the two-handed pulling intervention risk of LBD probability.  The 

maximum moment (Nm) remains constant during the pushing and pulling tasks as the 

loading and associated force output requirements do not change.  The load constant of 

20kg thus has a considerable effect on the loading and motions of the spine during the 

pulling actions.   

 

The decrease in anticipated risk for two-handed pulling demonstrated in Figure 27 is 

achieved through a reduction in average twisting velocity, acceptable maximal lateral 

velocity and minimal sagittal flexion post-intervention. 

 

 

Figure 27: OSU Risk Model graphic for a typical participant during PTT 
laboratory testing of two-handed pulling intervention. 
  

 

The intervention reduced the risk specific to twisting velocity from 45% to 7%, indicating 

a drop from ‘moderate’ to ‘very low’ risk according to the classification proposed by 

Marras et al. (2000).  Due to the balanced, upright posture, lower levels of sagittal 
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flexion were elicited during the pulling action and the probability of high risk group 

categorisation is considerably reduced from 25% to only 1% post-intervention.  The 

summated risk during the two-handed pulling was reduced from 37% to only 20% post-

intervention.    

 

LBD risk for one-handed pushing was estimated at 38.2% (±4.03), and two-handed 

pushing LBD risk also exhibited a higher level of risk than the intervention at 33.8% 

(±6.73).  The symmetrical two-handed pushing intervention resulted in a considerable 

reduction in predicted low back risk (21.9%, ±4.53).  In addition, the two-handed 

symmetrical pushing intervention is considered preferable due to the balanced 

distribution of force output achieved in the upper limbs, a reduction in twisting position, 

velocity and acceleration, and lower predicted L5-S1 compressive forces in the spine.  

In similar research assessing the efficacy of pushing and pulling activities,     

Hoozemans et al. (2004) compared pushing and pulling actions, and demonstrated that 

predicted spinal compressive forces at L5-S1 were significantly lower when pushing 

with two hands when compared to pulling with one or two hands at hip height.  Pushing 

in the range from iliac to below acromial height would appear to result in less 

compressive force on the L5-S1 region of the lower back, which would, according to 

Hoozemans et al. (2004), assist in the minimisation of high risk.  Furthermore, the 

pushing action has been shown to allow the workers to use their body masses to move 

the load with less physical exertion and lower risk of slipping over the side of the skid 

unit than is the case for the current one-handed push (James and Todd, 2004; Todd, 

2005).       

 

Although potential risk of LBD may not be as prevalent during pushing and pulling as is 

the case for excessive manual lifting, Marras (2000) suggested that there is evidence 

linking any forceful movements, awkward posture and heavy physical work to WMSDs.  

Many authors have reported on physical loading on the lower back in the place of work, 

in particular high peak forces and poor trunk postures and movements have been 

presented as contributors of the reporting of LBD (Marras et al., 1995; McGill, 1996; 

Davis and Marras, 2003).  In the present project the lower back risk categorisation 
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based on the work of Marras et al. (2000) is only placed at ‘moderate’ during pushing 

and pulling simulations pre-intervention.  Nonetheless LBD risk remains a potential 

concern to the Paintshop workforce given the excessive physical requirements of the 

pre-intervention push-pull tasks.   

 

The analyses of the responses to the PTT tasks clearly demonstrate several upper limb 

related risk factors which need to be controlled in the workplace, including awkward 

postures, uni-lateral push-pull actions, high force requirements, excessive joint loading 

and repetitive motions.  It is therefore argued that based on consideration of biophysical 

parameters, the work actions specifically taxing only the dominant limb, such as the 

one-handed pulling or pushing tasks, necessitate immediate workplace interventions.    

 
PHYSIOLOGICAL VARIABLES 

 
While much of the research in MMH has focused primarily on the musculoskeletal 

stresses placed on the human body, it is important to get some measure of the 

cardiovascular responses of manual labourers, particularly in IDCs where so many of 

the workers suffer from poor nutrition and health associated problems.  

 
Heart Rate Responses 
 

Heart rate is a useful indicator of work output requirements and may be monitored via 

simple telemetric devices in the field or laboratory (Scott and Christie, 2004; Renz and 

Scott, 2004; James and Scott, 2006).  Of all six conditions evaluated, the highest mean 

working heart rate (102.9 ± 11.62 bt.min-1) was recorded for the two-handed push.  The 

working posture during this trial was extremely awkward, with the left hand raised above 

the right hand to simulate the pushing action observed in the GM Paintshop.  Figure 28 

reveals that the lowest mean heart rate data were recorded for pulling during the 

simulated symmetrical manoeuvre of the load during the post-intervention testing 

phase.    



 
 

119

80

85

90

95

100

105

110

115

120

One hand pull Two handed pull Two handed pull
Intervention

One hand push Two handed push Two handed push
Intervention

Condition

H
e

a
rt

 R
a

te
 (

b
t.

m
in

- 1
)

Pulling Pushing

*
*

*
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Physiological responses reflected via heart rate recordings during 
PTT laboratory testing.  
(n=30)  

 
* denotes significant difference (p ≤ 0.05) between                                           

pre- and post-intervention heart rate responses. 

 

Although there was a significant difference between the one-handed pull and two-

handed pulling intervention (a reduction from 96.0 to 90.4bt.min-1), no difference was 

observed between the two-handed pull (pre-intervention with an excessive lean, see 

Figure 21c) and two-handed intervention (see Figure 21d).  This was not unexpected 

due to the similar method of completing the two sub-tasks.  However, the two-handed 

pull with the extended rope, did reduce the extreme backward lean (from 23.7° ±3.51 to 

13.9° ±2.21), which will ultimately minimise the likelihood of slipping and falling 

accidents, and reduce the risk of trolley rollover injuries, thus concurring with the 

findings of Haslam et al. (2002) and James and Todd (2003; 2006), who argued for the 

maintenance of an upright, balanced working stance.  In addition, subjective ratings 

showed that the participants felt more stable during the pulling intervention, thus making 

this the preferable method when considering the skid pulling action. 
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A significant drop was observed between the one-handed (98.9 ±12.61 bt.min-1) and 

two-handed pushing (102.9 ±11.62 bt.min-1) when compared to the proposed 

intervention (92.5 ±11.77 bt.min-1).  Participants were clearly less taxed during the two-

handed symmetrical pushing, and the subjective preference for this method of task 

completion was also noted amongst participants.  It is argued that asymmetrical and 

cramped working postures, as well as unequal load distribution required during the one- 

and two-handed push pre-intervention clearly influenced physiological responses 

reflected through increases in heart rate. 

 

These findings are similar to those of Renz and Scott (2004) and Scott and Christie 

(2004), whose “field-laboratory-field” investigations demonstrated the practical benefits 

of simple interventions on reducing the physiological strain on the work cohort reflected 

via a decrement in heart rate responses.  Laboratory PTT heart rate responses were 

reduced by 10.4 bt.min-1 and 5.6 bt.min-1 for the two-handed pushing and pulling 

interventions respectively.  According to the categorisation matrix proposed by Renz 

and Scott (2004), the average working heart rates (92.5 bt.min-1 for the two-handed 

push and 90.4 bt.min-1 for the two-handed pull) will result in ‘low risk’ and should be 

maintainable over a 7.5h working shift at the GM plant.   

 
Electromyography - Mega EMG System 

A four channel Mega ME3000P Electromyography (EMG) system was used to trace 

muscular activity in the medial deltoid (left and right) and erector spinae (left and right) 

for the PTT simulation (Task 1).   

As the working postures for pushing or pulling activities pre-intervention were identified 

as being the most problematic due to uneven loading of the musculoskeletal system, 

the quantification of muscular activity in the medial deltoid was deemed essential in 

order to measure the potential reductions in this activity achieved as a result of simple 

workplace changes.   
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Figure 29: 

 
Medial deltoid muscle activity reflected in the EMG recordings during PTT 
laboratory testing. 
(n=30) 

 
*  denotes significant difference (p ≤ 0.05) between one-handed, two-handed and 

two-handed Intervention pushing or pulling EMG responses. 

Figure 29 reveals that averaged and maximal EMG for the right medial deltoid were 

significantly reduced during post-intervention pulling.  The intervention conditions clearly 

showed the benefits of a symmetrical pulling posture as the averaged medial deltoid 

activity was reduced from 100.1 to 11.8µV for pulling post-intervention.  The two-handed 

pulling intervention elicited the lowest levels of muscular activity in the shoulder joint 

complex of all six PTT trials, indicating that the upright pulling action had the effect of 

evenly distributing the upper limb muscular load, as demonstrated by EMG responses.   

The maximal left and right medial deltoid activity was recorded during the one and two-

handed pushing (pre-intervention) sub-task data, with significant differences observed 

for both the averaged and peak activity between the original two-handed push and the 

proposed intervention (reduced from 148.1 to 55.3µV for two-handed trials).  The 



 
 

122

averaged EMG data shows that the left and right medial deltoids were excessively taxed 

during pre-intervention pushing, which, coupled with unsafe working postures, results in 

a considerably higher level of risk to the participant.  Post-intervention pushing 

demonstrated the impact of balanced loading of the medial deltoids with an averaged 

EMG activity of 55.3 and 58.4µV in left and right shoulders respectively. 

EMG activity in the lower back was assessed for the left and right erector spinae.  

Various researchers have argued that it is necessary to look at the muscular activity as 

a percentage of maximum voluntary contraction (MVC), particularly for the left and right 

erector spinae muscles (Lehman and McGill, 2001; Garg et al., 2006;                     

Marras et al., 2006).  Prior to the commencement of the laboratory experimentation, 

maximal values were recorded during MVC for the left (467.8µV ± 139.20) and right 

erector spinae (465.6µV ± 147.20).  These showed no statistically significant difference 

between left and right erector spinae activity.  Table XI highlights the specific mean 

values for pushing and pulling as a percentage of MVC for PTT simulation.   

 
Table XI: Averaged EMG activity (µV) for erector spinae as a percentage of MVC during 

pulling and pushing. 
 

One-handed  
Pulling 

Two-handed  
pulling 

Two-handed 
pulling 

Intervention 
One-handed  

pushing 
Two-handed  

pushing 

Two-handed 
pushing 

Intervention 

Left Right Left Right Left Right Left Right Left Right Left Right 
7.6 

(3.81) 
6.4 

(4.76) 
7.9 

(6.10) 
7.3 

(5.41) 
8.0 

(4.18) 
7.0 

(3.13) 
11.2 

(8.38) 
8.3 * 
(4.72) 

14.0 * 
(9.81) 

9.0  
(5.89) 

11.5 
(5.80) 

11.0 
(6.05) 

 
(Means with standard deviations in brackets, shaded area post-intervention) 
 
* denotes significant difference (p ≤ 0.05) between pre- and 

post-intervention EMG responses. 

 

EMG reported as %MVC demonstrated no statistically significant differences for pulling 

activities.  One-handed pulling showed the lowest mean for the right erector spinae 

(6.4%).  This response may be explained by considering the one-handed pulling action 

which placed a considerably greater strain on the right upper limb.  The right erector 

spinae were least taxed during this activity, but a concomitant increase in muscle 

activity was observed in the right medial deltoid (as shown in Figure 29).  The two-
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handed pulling posture resulted in balanced loading of the left and right erector spinae, 

which was expected due to the symmetrical pulling actions pre- and post-intervention.  

Despite the excessive lean pre-intervention the loading of the back musculature was not 

increased, instead greater muscle activity was recorded in the shoulder joint complex as 

demonstrated in the left and right medial deltoid.  It is argued that participants increased 

the muscular output of the upper limbs, rather than the back, in order to overcome the 

simulated load, resulting in only a nominal change in erector spinae activation.    

Statistically significant differences were observed between two-handed pushing pre- 

and post-intervention for the left erector spinae, where a reduction in loading resulted in 

a decrement from 14.0% to 11.5% post-intervention.  However, the right erector spinae 

showed an increase in loading as a percentage of MVC from 8.3% (one-handed 

pushing) to 11.0% in the post-intervention test as the subjects were less reliant on the 

upper extremity for force production.  Similarly the two-handed push pre-intervention 

elicited a lower EMG activity as a %MVC of 9.0%.  All erector spinae loading levels are 

acceptable in terms of manual work when compared to other examples of EMG-based 

research, such as the work of Marras et al. (1998).   

It may be argued that the post-intervention pulling and pushing conditions were more 

suitable for a number of reasons, but most importantly because of the symmetrical and 

controlled working posture they facilitated.  Physiologically the responses of the 

participants also indicated much lower levels of cardiovascular and muscular loading, 

with reductions in both heart rate and EMG activity in the shoulder joint complex post-

intervention. 

PSYCHOPHYSICAL RESPONSES 
 
Body Contribution:  PTT Pulling  
 
Table XII shows the responses for the pulling tasks (one-, two- and two-handed 

intervention) recorded during the present study, and these revealed that the participants 

rated the right upper limb as the major contributor to the one-handed pulling effort.  The 

level of contribution was rated at 4.5 (± 1.5).  Subjective responses are a useful 
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indicator of operator preference, and the participants commented on the difficulty of 

completing a one-handed pull of a 20 kg using a single limb.  The second area rated 

was the right bicep due to the force output requirement of the three repetitions of one-

handed pulling (mean rating:  3.6 ± 1.3).  The two-handed pulling (pre-intervention) trials 

required the participants to accentuate the backward lean, and as a result the area 

regarded as being the major contributor to the two-handed pulling repetitions was the 

lower back region, with a mean rating of 3.8 (± 1.4) for this sub-task.  Interestingly, the 

quadriceps areas (19 and 20 anterior) were rated as the second area of notable 

contribution by 23% of the participants (mean rating:  3.0 ± 1.4).  This finding indicates 

that participants perceive the lower extremity to be a substantial contributor to the two-

handed pulling action. 

 
Table XII: Body contribution areas and ratings for the pulling trials. 

 
 Trial Contribution Area  

Identified 
% of Participants 

Rating Area 
Rating  

(Max 10) 

Greatest 
contribution 

3 
Anterior (right shoulder) 

 
43% 

4.5 (1.5) 
33.40% 

One-handed pulling 

2nd area 6 
Anterior (right bicep) 

 
27% 

3.6 (1.3) 
36.03% 

Greatest 
contribution 

11 
Posterior (lower back) 

 
37% 

3.8 (1.4) 
36.17% 

Two-handed pulling 

2nd area 19 and 20 
Anterior (quadriceps) 

 
23% 

3.0 (1.4) 
46.28% 

Greatest 
contribution 

23 and 24 
Posterior (calves) 

 
23% 

3.9 (1.6) 
41.16% 

Two-handed pulling 
Intervention 

2nd area 19 and 20 
Anterior (quadriceps) 

 
20% 

2.9 (1.2) 
41.71% 

 
(Means with standard deviations in brackets, % = coefficient of variation, 
shaded area post-intervention). 

 

Using the extended rope attachment (the post-intervention method for the two-handed 

pull) required the participant to adopt a balanced, more upright posture, while moving 

the simulated load, and resulted in 23% of participants indicating that regions 23 and 24 

Posterior (calves) were the greatest contributor to the pulling efforts post-intervention 

(mean rating:  3.9 ±1.6).  It is clear the intervention strategy transferred the emphasis of 

muscular effort from the more gracile upper extremities to the more robust musculature 

of the lower extremities.  Given the relative strength of the lower extremity in contrast to, 

for example, the shoulder joint complex, it would be advisable for the operators in the 
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Paintshop area to pull using a symmetrical posture and minimise the joint loading of the 

upper extremity rather than use the one-handed pulling action as observed in situ, for as    

Huisstede et al. (2006) suggested, WRULDs remain a problem in the workplace where 

poor postures are widespread.  Educating the workforce at GM in appropriate pulling or 

pushing methods was thus prioritised as a focus for the post-intervention application of 

the laboratory based findings for the present study.      

 
Body Contribution:  PTT Pushing  

The mean ratings recorded using the body contribution map and rating scale for 

pushing are presented in Table XIII.  The body areas associated with the one-handed 

pushing, that is the right bicep and right shoulder, were rated most frequently due 

primarily to the working posture required for the push and the reliance on the upper 

extremity to overcome the initial mass of the load.  With the two-handed pushing the left 

triceps and right bicep were the major contributors to the pushing action, as the pushing 

action was completed slightly ahead of the body to simulate musculoskeletal loading as 

observed in the automotive plant.   

Table XIII: Body contribution areas and ratings for the pushing trials. 

 
 Trial Contribution Area  

Identified 
% of Participants 

Rating Area 
Rating  

(Max 10) 

Greatest 
contribution 

6  
Anterior (right bicep) 

 
33% 

4.7 (1.6) 
32.79% 

One-handed 
pushing 

2nd area 3  
Anterior (right shoulder) 

 
23% 

3.9 (1.3) 
32.44% 

Greatest 
contribution 

7 
Posterior (left triceps) 

 
23% 

4.5 (1.5) 
32.63% 

Two-handed 
pushing 

2nd area 6  
Anterior (right bicep) 

 
23% 

3.8 (1.5) 
40.32% 

Greatest 
contribution 

6  
Anterior (right bicep) 

 
20% 

4.0 (1.7) 
43.55% 

Two-handed 
pushing 

Intervention 2nd area 19 and 20  
Anterior (quadriceps) 

 
13% 

3.0 (1.3) 
44.59% 

 
(Means with standard deviations in brackets, % = coefficient of variation, 
shaded area post-intervention) 

 



 
 

126

Body Discomfort:  PTT Pulling and Pushing  

Areas and ratings of body discomfort are shown in Figure 30, which also provides an 

indication of the percentage of the sample identifying discomfort in the area under 

consideration.  Greatest discomfort in both the pushing and pulling simulation activities 

was experienced in area 11 (posterior, lower back), which was singled out by 33% of 

participants.  The mean rating of 4.8 (± 1.8) indicates that the levels of discomfort were 

moderate and most participants were able to complete the sub-tasks without undue 

discomfort.  The second and third areas of discomfort were the anterior right and left 

shoulders respectively.  Only 13% of participants rated right shoulder discomfort (mean 

rating: 4.2 ± 1.6), while for the left shoulder 10% of the sample experienced mild 

discomfort (mean rating: 3.0 ± 1.6).  

Key: Rating Area: % of Participants Rating Discomfort in Area 

 

Greatest Discomfort 11 Posterior (Lower Back) 
(Mean Rating: 4.8 SD 1.8) 

 
33% 

 

2nd area 3 Anterior (Right Shoulder) 
(Mean Rating: 4.2 SD 1.6) 

 
13% 

 

3rd area 4 Anterior (Left Shoulder) 
(Mean Rating: 3.0 SD 1.6) 

 
10% 

 

 
Figure 30: Body discomfort ratings (top three areas) recorded following the 

completion of the PTT (Task 1:  Condition A).  
(n=30)  
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The comparison of body discomfort ratings recorded in the laboratory to those of the 

workers in situ shown in Figure 18 reveal a similar perception of body discomfort 

between experienced operators and naïve laboratory participants, with the lower back 

being the most frequently rated area.  The mean intensity of discomfort experienced 

was 5.5 (± 1.9) during the first hour, and increased 5.8 (±1.7) during the second hour of 

in situ observation.  The laboratory mean rating was 4.8 (±1.7) for the same region 

although the period of experimentation was notably shorter in duration.   

 

The lower extremities were more frequently rated in the field when compared to the 

laboratory, which may well be explained by considering the sampling time in the field 

(over a 2h duration) as opposed to the laboratory where participants were completing a 

rigorously controlled experiment where the aim was to minimise the effects of fatigue on 

responses.     

 
SUMMARY 
 
Task 1:  Paintshop Trolley Transfer (PTT) Simulation 
 

‘Dynamic pushing and pulling’ is an area which requires further research in order to 

advance the level of understanding of the effects of task demands on the 

musculoskeletal system, and the incidence of S, T and F accidents (Jansen et al., 2002; 

Todd, 2005).  Asymmetrical pushing has been shown to be the most demanding in 

terms of the upper extremity, with the rotator cuff particularly being taxed during the 

one-handed pulling, one-handed pushing and two-handed pushing, and the present 

study has highlighted the importance of symmetrical pushing or pulling in order to 

change spinal kinematics, physiological responses and perceptual ratings of those 

involved in such actions.  It has been proposed that pushing or pulling with one hand 

places considerably more loading stresses on the dominant upper limb completing the 

given activity with the results collected sustaining the arguments of Colombini (1998), 

Muggleton et al. (1999), and Buckle and Devereux (2002), who suggested that 

repetitive, awkward work will increase the likelihood of problems associated with upper 

limb work. 
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The intervention strategies proposed here suggest that the demands placed on the 

operator in the field will be reduced if the working methods are altered and sub-optimal 

working postures eliminated.  The evidence for this is provided by reductions in levels of 

spinal motion, particularly in reductions of the twisting action evidenced in the one-

handed pulling sub-task.  Secondly, the physiological responses were reduced with the 

introduction of modified pushing and pulling methods as reflected in the lower ‘working’ 

heart rate and EMG responses.   

 

Perceptual responses also indicated the benefits of the proposed interventions where 

participants were required to rate their preferred method of task completion.  The 

majority of participants (90%) rated the intervention strategies as their preferred method 

of pushing or pulling task completion.  The exceptions to this were individuals who 

desired greater flexibility in the two-handed pulling trials, and in fact preferred the 

exaggerated leaning posture during the completion of this sub-task.  Although the angle 

of lean could be controlled in the laboratory, a potential concern when considering the 

application of the extended rope or skid attachment in the field, where the surface is 

uneven and there are tracks which have to be stepped over, is that operators will revert 

back to an extreme lean and thereby increase their level of risk if this is not properly 

controlled.  The education of the workforce in the Paintshop as to the preferable working 

methods is therefore regarded as essential during the implementation of the intervention 

in situ. 

 

Task 2:  Car Door Carriage (CDC) Bodyshop Simulation 

The Bodyshop Closure Line simulation (Task 2) required the completion of the GM 

Corsa (Gamma) vehicle model door lift, carry and place as observed in the Bodyshop 

area of the assembly process.  Participants were required to cover the same carrying 

distance as measured in situ and work at the same pace as recorded in the plant for the 

pre-intervention car door carriage (CDC).  Post-intervention treatments assessed an 

alternative method of task completion, that is the use of a simple, low-cost trolley.   
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BIOPHYSICAL PARAMETERS  

 
Working Posture Analyses 

The vast range of kinematic responses for the CDC sub-tasks required consideration of 

the working postures adopted by the participants, therefore postural analyses were 

conducted on pre- and post-intervention lifting (sub-task i), pre-intervention carrying or 

post-intervention trolley pushing (sub-task ii) and pre- and post-intervention car door 

placement (sub-task iii).  The benefits of the post-intervention strategy are 

demonstrated in the figures that follow, where typical examples have been selected to 

illustrate the key changes in working posture achieved by applying the intervention 

strategy for the CDC lifting phase of laboratory experimentation.   

Uncomfortable working posture has been shown to be a major contributor to workplace 

discomfort (Marras, 2000), and any sagittal motion from the vertical, such as lifting a 

door from a large industrial storage bin as observed in the Bodyshop, will significantly 

increase the moments and shearing forces acting on the lumbar spine.  The intervention 

strategy aimed to reduce the spinal motions by making minor adjustments to the lifting 

height, work organisation, storage bin space, and consequently the working posture 

required of the operator during sub-task i. 

No restrictions were placed on the lifting style selected by laboratory participants.  

However, coupling points for the left and right hands were clearly demarcated on the car 

door, which resulted in a similar level of hand asymmetry at the point of origin of the lift. 

Figure 31 shows the contrasting lifting styles selected pre- and post-intervention for sub-

task i.  The lifting styles adopted in the lift have been classified into ‘squat’, ‘semi-squat’ 

and ‘stoop’ for the purposes of categorisation.   

Given the storage position of the door in the bin, there were very few participants who 

adopted a ‘semi-squat’ or ‘stoop’ lift.  The majority of participants (80%) adopted a 

‘squat’ lift in the pre-intervention phase.   
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Pre-Intervention Post-Intervention 

  

a ‘Squat’ lift b Reduced ‘squat’ lift 

  

c ‘Semi-squat’ lift d Reduced ‘semi-squat’ lift 
  

e ‘Stoop’ lift f Reduced ‘stoop’ lift 
 
Figure 31 a, b, c, d, e and f:   

 

 
Working postures selected while lifting the car 
door pre- and post-intervention in the laboratory. 
 

Pre- versus post-intervention postural analyses highlighted a reduction in sagittal flexion 

in the proposed ergonomics intervention lifting trials.  In addition, the elimination of the 

step up and into the bin resulted in a notable reduction in the overall level of anticipated 

risk to the operator.  Stepping into the modified bin required a smaller step to lift the 

door from a raised pallet (150mm).  It is argued that this minor alteration with the bin 
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would reduce the loading of the musculoskeletal system, risk of tripping, product 

damage, and also the work cycle time.    

Field evaluation of door carrying showed that workers used one hand, carried the door 

above the head, and lifted the door on the edges with poor coupling.  The simulated 

working posture used in the laboratory during sub-task ii (carriage or trolley push) varied 

substantially pre- and post-intervention.  The carriage of the door (pre-intervention) and 

the trolley push are demonstrated in Figure 32.   

  

a b 
 
Figure 32 a and b: Working posture adopted while transferring the car door pre- 

(a) and post-intervention (b) in the laboratory. 
  

 

The twisting and lateral bending of the spine were identified as high risk factors during 

field work and were prioritised for further investigation in the laboratory.  Twisting was 

particularly prevalent when the worker was required to rapidly move the upper body to 

the left or right hand sides while carrying the door in order to miss obstacles such as jigs 

and other operators due to the workplace congestion on the Closure Line.  Pre-

intervention carriage of the car door in the laboratory was therefore asymmetrical, with 

Poor coupling for 
door carriage 

Asymmetrical 
shoulder posture 

Balanced, 
symmetrical 
shoulder posture 
post-intervention 
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the right hand positioned above acromial level, and the left hand placed in the 

predefined lifting coupling, as shown in Figure 32a.  The mean angle of asymmetry 

between the left and the right shoulders was 21.3° (±3.28) (see Appendix D).  In 

contrast the introduction of a transfer trolley resulted in a balanced, symmetrical posture 

and eliminated the need to physically carry the 21kg door, as demonstrated in Figure 

32b.  Findings for the present study concur with Ciriello (2004), who suggested that a 

well-designed trolley or cart could be used to move heavy loads with forces that are 

acceptable to the majority of the workforce, thereby reducing the loading of the 

musculoskeletal system.     

 

The maximal lateral reach or span that each participant was required to work at while 

completing the carry was 1 794mm (±61.51), which was calculated to be at the 67th 

percentile for the group.  As Pheasant (1996) proposed that ideally the percentile of 

lateral reach should not exceed 50% of maximal span to maintain an acceptable 

working posture which will not differentially tax the upper limbs, it is clear that the span 

necessitated for carrying the door pre-intervention was well in excess of this guideline. 

 

3D SSPP postural analyses and force predictions were carried out for pre- and post-

intervention car door transfer sub-tasks.  The key findings from this theoretical 

prediction package are demonstrated in Figure 33a and b.  The primary articulations of 

concern during the pre-intervention vehicle part carriage were the shoulder and torso.  

The elevated positioning of the right hand during the door carriage phase resulted in 

undesirable loading of the shoulder joint complex (only 44% of the population capable) 

which together with higher twisting responses recorded by the iLMM result in a high-risk 

classification, and in addition placed the CP of the participant in the unacceptable 

category.  Twisting of the torso resulted in a predicted 46% of the population being able 

to complete the door carriage task pre-intervention.  Predicted 3D low back 

compression was 3 589N during the initial sub-task where the laboratory participant was 

required to manually carry the vehicle part on the simulated line.                 
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a 

 
 
b   

 
Figure 33 a and b: 3D SSPP simulation for CDC laboratory experimentation pre- 

(a) and post-intervention (b). 
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Figure 33b illustrates the post-intervention trolley pushing action modeled using the 3D 

SSPP programme.  The introduction of the transfer unit resulted in an even pushing 

posture notably reducing the uni-lateral loading of the right shoulder following the 

intervention.  The percentage of the population capable when considering the shoulder 

joint was subsequently increased from 44% to 99% post-intervention.  The awkward 

posture in the original door carriage was also eliminated with the torso percentage 

capable increasing from 46% to 99% when participants used the door trolley.  The 

trolley pushing posture positioned the participant with an acceptable CP balance 

following the work modification.  The CP was located within the BS during the transfer 

trolley push thereby decreasing the risk of stumbling while moving the door.  It is further 

argued that the vision of the worker will not be obstructed during the trolley push as is 

the case during the manual door carriage evidenced in the Bodyshop field observation.   

 

The most notable reduction post-intervention was in the predicted 3D low back 

compression which was reduced from 3 589N to 514N when the door was moved using 

the transfer trolley.  The cumulative load on the lower back will therefore be 

considerably reduced during the working shift where up to 70 doors or more are 

manually carried on the Closure Line.  

 

Working posture analyses for sub-task ii (trolley push) indicated that there was a 

notable reduction in the main risk factors proposed by Buckle and Devereux (2002) for 

WRULDs, including reductions in awkward posture and force output.  Bridger (2003) 

argued that eliminating sub-optimal carriage will reduce postural stress and 

physiological cost of load carriage.  In situ application of the trolley will therefore result 

in a considerable decrease in physiological cost and increase the working efficiency and 

rest periods available to the workforce. 

The placement of the door (sub-task iii) was comparable pre- and post-intervention.  

The position of the jig and the placement height were deemed to be acceptable and 

changes were not proposed to the present Closure Line design, hence working postures 

were similar pre- and post-intervention. 
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Spinal Kinematics – Industrial Lumbar Motion Monitor (iLMM) 

From observations (digital recordings) in the field it was noted that lifting, carrying and 

placing of the car door differentially loaded the spine of the operator and rigorous 

analysis of the participants in the laboratory confirmed these findings.  The literature is 

replete with information to support the fact that changes in position, velocity and 

acceleration increase the likelihood of low back injury in the workplace (Marras, 2000; 

Ferguson et al., 2002).  The iLMM provides a useful tool for the evaluation of lifting, 

carrying and placement spinal ROM.  The telemetric iLMM unit was well suited to the 

assessment of the CDC sub-tasks, and the lifting sub-task in particular is comparable to 

previous investigations such as the work of Ferguson et al. (2002).   

Table XIV shows the changes in position recorded during the CDC lifting (sub-task i). 

Table XIV: Changes in position during the lifting (sub-task i) CDC trials.  

  

Position (°)  
Sub-task i Lateral Sagittal Twist 

Pre-Intervention -8.2 
   (4.84) 

Min     -18.2 
Max        4.3 

28.0 
   (4.78) 

Min    16.8 
Max   36.7 

5.8 
  (3.49) 

Min       0.4 
Max    15.5 

Post-Intervention -8.1 
   (4.48) 

Min     -15.9 
Max       0.2 

20.7* 
  (5.65) 

Min   12.3 
Max  29.5 

2.6* 
  (3.32) 

Min     -4.3 
Max      9.2 

  
(Means with standard deviations in brackets, shaded area post-intervention)) 
 
*  denotes significant difference (p≤0.05) between pre- and post-intervention responses. 

 

 

The storage of the car door in the bin necessitated an average level of sagittal flexion of 

28.0° (± 4.78) for the pre-intervention lift.  The lifting posture adopted clearly influenced 

the level of sagittal flexion during the CDC lift.  A range of 16.8° to 36.7° was observed 

for the pre-intervention phase, depending largely on whether a ‘stoop’, ‘semi-squat’ or 

‘squat’ lift was chosen as the preferred lifting style.  Minor changes in the storage height 

of the door, where it was raised by 150mm in the bin, resulted in a significant reduction 
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in sagittal flexion post-intervention (20.7° ± 5.65), as the participants did not feel the 

need to move into a deep ‘squat’ or ‘stoop’ lift from the modified position (as shown in 

Figure 31, p130).   

 

Another important finding was that the mean twisting position was significantly reduced 

post-intervention, where participants were able to turn without restriction due to the 

change in storage where the side of the bin was removed.  This small change in the 

industrial storage bin resulted in a decrease in mean twist position from 5.8° to 2.6° in 

the CDC experimentation.  Although this was not a substantial change, coupled with the 

reduction in forward bend this modification reduced not only compressive forces on the 

spine but also shearing and torsional forces, which are a critical factor in lifting activities, 

for as Marras (2000) pointed out, the spine is less tolerant of shearing forces.  A further 

benefit of the post-intervention lifting condition was the removal of the ‘step-in’ and 

‘step-out’ of the bin, which was identified as a major risk in the GM Bodyshop.  James 

and Todd (2004) have reported that trips and falls are more likely in areas where the 

operator is required to move from a higher to a lower level in a confined space, and the 

result of this adjustment to the crate was a reduction in twist and maintenance of an 

acceptable lateral bend (mean lateral bend to the left -8.1, ±4.02) post-intervention.   

 

Figure 34 a and b demonstrate a typical example of the iLMM trial data collected during 

the CDC evaluation of pre- (a) and post-intervention (b) lifting trials with a specific focus 

on sagittal responses.  Maximal sagittal flexion was reduced from 34.0° to 17.8° in this 

specific example.  In addition, the original work cycle time to step into the bin, lift and 

step out of the crate was approximately 8s, and the intervention work cycle time was 

reduced to 4s post-intervention due to the appropriate placement of the door and 

elimination of the step into and out of the storage bin.  Although the printouts are only of 

one subject, they do clearly demonstrate that sagittal flexion, velocity and acceleration 

were reduced as a result of the intervention strategy, which in turn must decrease the 

overall level of risk to the participant.  
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a  

 

 

 

 

 

 

 

 

 

 

 

 
b  

 
Figure 34 a and b:   iLMM sagittal trial data for a typical participant       

during CDC sub-task i pre- (a) and post-intervention (b).  
 

 

The University of Michigan 3D SSPP is used to predict static strength requirements and 

is useful in heavy MMH tasks which are performed slowly.  Predictions based on rapid 

motions will have lower levels of reliability (3D SSPP Manual, 2004).  The 3D SSPP 

Step out of bin Step into bin 

Door lift 

Step into bin Door lift Step out of bin 



 
 

138

programme was used to assess the three primary lifting methods observed in the 

present study, namely ‘squat’, ‘semi-squat’ and ‘stoop’.  Predicted low back 

compression values for sub-task i (CDC pre-intervention) were 5 340N for the ‘squat’,   

4 832N for the ‘semi-squat’, and 5 242N for the ‘stoop’ lift.  These calculations were 

based on hand loads of 110N (left) and 100N (right) while lifting the front car door.  The 

minor changes in posture while lifting the door resulted in reductions to 3 523N 

(‘reduced stoop’), 3 351N (‘reduced semi-squat’) and 3692N (‘reduced squat’).  All lifting 

tasks showed a notable reduction in predicted low back compression post-intervention 

based on the 3D SSPP predictions.     

 

The OSU LBD risk model (Marras et al., 1997) averages moment, frequency of lift, 

sagittal flexion, twisting velocity and lateral velocity to predict the probability of high risk 

group membership for any recurring task.  OSU risk model values were calculated 

based on each of the lifting trials (sub-task i) completed by the laboratory participants 

pre- and post-intervention.  Predictions of average probability of LBD risk were 50.3% 

(±5.91) for pre-intervention and were significantly reduced to 39.8% (±5.10) for post-

intervention lifting.  Simple changes in the current working requirements and posture 

thus resulted in a reduction in LBD risk of 10.5% in the post-intervention phase.  This 

finding is of particular relevance to the automotive sector generally as it assists in the 

quantification of high risk group probability and justifies the proposed workplace 

changes.   

 

The carriage of the door (sub-task ii) on the Closure Line was identified as a major 

concern due to awkwardness of the door, space restrictions and potential hand injuries 

resulting from sharp edges, particularly to the left hand of the worker.  The intervention 

strategy therefore aimed to eliminate the manual carriage of the door through the use of 

a transfer trolley which, once on the plant floor, could be used to move more than one 

door at a time.  Table XV shows the changes in spinal acceleration observed during the 

carriage and trolley push experimentation.  Significant reductions in lateral, sagittal and 

twisting acceleration were observed post-intervention.      
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Table XV: Changes in acceleration during the carrying or trolley push phase (sub-task ii) 
of CDC trials. 

  

Acceleration (°.s-2)  
Sub-task ii Lateral Sagittal Twist 

Pre-Intervention  
(Door Carry) 

49.2 
  (17.32) 

Min   27.5 
Max  94.3 

34.0 
  (18.57) 

Min   9.7 
Max   54.8 

12.8 
    (7.72) 

Min      3.3 
Max   36.2 

Post-Intervention 
(Trolley Push) 

33.6* 
(20.16) 

Min   10.8 
Max  68.7 

23.7* 
(10.98) 

Min    10.5 
Max   50.6 

7.3* 
(3.02) 

Min      2.2 
Max    29.1 

 
(Means with standard deviations in brackets, shaded area post-intervention) 
  

* denotes significant difference (p≤0.05) between pre- and post-intervention responses. 

 

The method currently used in the Bodyshop results in the operator twisting (either to the 

left or right, depending on the side of the line, see Figure 14, p94) while carrying the 

door to the jig.  The trolley eliminates a high level of the twisting of the spine which will 

subsequently reduce the risk of injury.  It was not only twisting acceleration that was 

reduced, but also the twisting position, where the mean recorded pre-intervention was 

to the right at 17.1° (± 4.26), while post-intervention the trolley placed the participant in a 

symmetrical position for pushing the trolley with a mean twisting position to the right of 

0.9° (± 3.36).   

 

This marks a reduction in twisting which had previously been identified as a major 

contributor to rendering the spine vulnerable to the compression and shearing forces 

acting on it (Marras and Mirka, 1989).  Marras and Mirka (1990) suggested that during 

twisting actions, such as carrying the door asymmetrically in the present study, 

muscular control shifts from the collectively larger erector spinae muscles to the 

latissimus dorsi and the external and internal oblique muscles of the trunk, ultimately 

affecting strength, force exertion capabilities and motor control.  The elimination of the 

load carriage phase in the CDC sub-tasks will play a significant role in reducing the 

loading of the musculoskeletal system.  Velocity measures showed no significant 

differences pre- and post-intervention, which was expected due to the participants being 
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required to move at as natural a pace as possible with a normal gait pattern along the 

simulated line during the carriage or trolley push. 

 

The final placement of the car door (sub-task iii) was comparable for the pre- and post-

intervention sub-tasks, as the placement on the jig could not be fundamentally changed 

due to the current work requirements in the Closure Line.  Velocity and acceleration 

were not significantly reduced post-intervention. The only statistically significant change 

was measured in twisting position where the mean twist was reduced from 4.7° (± 4.27) 

to 0.6° (± 2.17), which may be attributed to the request for participants to step and turn 

from the trolley (post-intervention), as opposed to twist as was the case for the pre-

intervention final placement of the door.         

 

The analyses of changes in spinal kinematics for the CDC show a number of reductions 

in spinal motions post-intervention.   Statistical analyses focused on the sagittal and 

rotational kinematic variables as they relate to the three sub-tasks (lift, carry and place).  

Twisting was significantly reduced as a result of the use of the transfer trolley, which 

has an added benefit to the company and employee as more doors may be moved with 

less physical effort.      

 
PHYSIOLOGICAL VARIABLES 
 
Heart Rate Responses 

Tasks which require whole-body motions such as heavy lifting increase the demand for 

blood to transport oxygen to the working muscles (Renz and Scott, 2004) and the 

carriage of the car door was a whole-body activity, with participants awkwardly carrying 

21kg door. The laboratory participants were required to adhere to a strictly controlled 

pacing schedule and complete the three sub-tasks in 30s with the aid of the transfer 

trolley.  As the time taken to load the door-frame onto the trolley and then remove it 

after pushing it for 6.5m was longer in duration, the pace of the walk while pushing the 

trolley was increased, which had the effect of elevating heart rates.  Statistical analyses 

via related t-Tests showed an overall significant difference between the pre- and post-

intervention heart rate responses.  The mean working heart rates recorded during the 
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10 minutes of door carriage were 119 bt.min-1 (±16.53), and 125 bt.min-1 (±15.85) during 

the trolley push.  The work simulation had to retain the 30s cycle to control laboratory 

conditions while moving one door at a time, which resulted in an increase in pace, which 

in turn had an effect on heart rate.  Differences in heart rate responses were evident in 

the first eight minutes of testing; thereafter participants appeared to get into a sound 

working pattern, resulting in a controlled trolley push at an acceptable pace during the 

final two collection periods.            

Within the plant, the provision of the trolley will allow the operator to move more than 

one door at a time and reduce the overall working cycle time.  It is therefore expected 

that the in situ physiological cost of the task will be substantially reduced by moving 

either two or four doors at a time in the Bodyshop.   

Electromyography - Mega EMG System 
 

EMG data were recorded for the left and right erector spinae muscles of the lower back 

(see p76) for the Bodyshop CDC simulation (Task 2).  In order to assess the maximal 

EMG activity recorded in the left and right erector spinae muscles, MVC measures were 

recorded at the commencement of the CDC session.  The MVC values recorded 

showed no statistically significant difference between left and right erector spinae, with 

the mean values being 377.6µV (± 109.37) for the left and 380.2µV (± 114.97) for the 

right, and maximal values being 467.8µV (± 139.20) and right as 465.6µV (± 147.20).  

Measured MVC values were subsequently used to express EMG activity during min3, 6, 

and 9 as a percentage of maximal recordings.  Statistical analysis of the complete task 

of lift, carry/trolley push and placement showed a significant difference between pre- 

and post-intervention levels of mean erector spinae activity as a percentage of MVC.  

The key finding with regards to EMG analysis was that the introduction of the trolley 

notably reduced the overall levels of muscular activity recorded during the post-

intervention CDC, particularly during the trolley push phase.  Figure 35 graphs the 

changes in EMG responses as a percentage of MVC pre- versus post-intervention 

during the CDC.  
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Figure 35: 

 
EMG responses (reported as % of MVC) recorded during 
CDC laboratory testing.  
(n=30) 

* denotes significant difference (p ≤ 0.05) between pre- and post-CDC EMG 

responses. 

Sub-task i (car door lifting) showed that no difference in EMG activity was evident post-

intervention for both the left and right erector spinae due in principle to the same load 

requirements (21kg lifted) during the lift from the simulated storage bin.  Findings in the 

present study are similar to the work of McKean and Potvin (2001), which assessed the 

effects of a simulated industrial storage bin (similar to the container in Figure 1, p19) on 

lifting and lowering posture and trunk extensor muscle activity.  In many cases the 

operator is required to ‘stoop’ and ‘reach’ into the storage bin during the execution of the 

working cycle thereby increasing trunk muscle activity.  Mean EMG recordings 

illustrated in Figure 35 are higher when lifting is constricted through poor bin design and 

sub-optimal placement of the object during the pre-intervention lift.  

Statistical analyses of the carrying and trolley push (sub-task ii) showed a significant 

difference between pre- and post-intervention levels of left and right erector spinae 

EMG activity as a percentage of MVC.  The considerably lower mean levels of muscular 
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activity (reduced from 35.1% to 13.7% for the left erector spinae) were associated with 

the introduction of the transfer trolley for the carriage phase of the CDC (sub-task ii).  

During the pre-intervention carry the majority of the load was taken by the right shoulder 

joint and left elbow and wrist joints, resulting in a greater loading in the left erector 

spinae.  EMG activities for right erector spinae of 30.5% of MVC were lower than those 

observed for the left during the pre-intervention, and there was a significant reduction to 

14% post-intervention.  It is argued that the introduction of the transfer trolley not only 

improved the working posture and reduced the twist and lateral bending of the spine 

during the manual door carry, but also reduced the level of asymmetry with both left and 

right erector spinae evenly taxed.  The trolley will therefore result in a notable 

decrement in workplace loading when applied in situ and the reduction in manual 

carriage will result in less fatigue to the worker over the 7.5hr shift. 

The placement of the car door (sub-task iii) showed no difference between left and right 

erector spinae EMG.  This was expected as no major changes to the current jig and 

work cycle were possible post-intervention.  EMG reported as a %MVC was in the 

range of 24.1% (pre-intervention) to 25.5% (post-intervention) during the placement 

sub-task.  Although EMG showed no notable reduction, twisting of the spine was 

reduced post-intervention as a result of a request for participants to step and turn with 

the car door.  Minor changes to the placement of the door may thus elicit a reduction in 

twisting in the workplace, thus highlighting the need to advise operators on the most 

acceptable working methods for use on the Closure Line.               

PSYCHOPHYSICAL RESPONSES 
 

RPE and BDS ratings were collected during laboratory testing to evaluate the perceived 

task demands, and both Local (arms and back) and Central (cardiovascular) ratings 

were recorded to gain an understanding of the perceived demands placed on the 

musculoskeletal and cardiovascular door carriage activity.   
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Ratings of Perceived Exertion (RPE) 
 

Figure 36 illustrates a steady increase in Central RPE, with both pre- and post-

intervention responses showing a significant difference between initial (min2) and final 

ratings (during min8 and min10) thereby reflecting increasing perceived effort over time.  

Physical door carriage and an increased working pace were thus shown to have a 

similar incremental effect on RPE over the 10 minute testing bout.  
 

   

 

 

 
Figure 36: Central RPE ratings for laboratory participants during the CDC.  

(n=30) 
 
*  denotes significant difference (p≤0.05) between Central RPE.  

 

No differences were observed between manual door carriage and the trolley 

intervention despite the increase in pace and heart rate, indicating that participants 

clearly did not perceive the need to walk faster as they pushed the trolley to be more 

taxing than carrying the door.  In fact the participants commented on a preference for an 

increase in working pace using the transfer trolley over the manual carriage of the car 

doors.  This is of particular value to the industry, as there is a strong likelihood that the 

introduction of a trolley system could be used to increase the work productivity and 

working pace, while decreasing the overall physical demands placed on the worker thus 

reducing the cumulative effects of fatigue over a 7.5h working shift in situ. 
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Although the Local RPE score for the back showed no significant differences, pre- and 

post-intervention, the Local RPE specific to the upper limbs, shown in Figure 37, clearly 

illustrates a significant reduction in the perception of effort required of the upper limbs 

due to the participant not having to carry the door 6.5m.    
 

 
Figure 37: Local RPE ratings for laboratory participants for the arms during the CDC.  

(n=30) 
 
*  denotes significant difference (p≤0.05) between pre- and post-intervention     

responses.  
 

Notable differences were observed between pre- and post-intervention Local RPE 

ratings during min 4, min 8 and min 10 (for arms).  Findings in the present study concur 

with recent work carried out by Wang et al. (2000), which highlighted significant 

differences at the local, rather than at the central level, when considering industrial 

tasks. 

 

Local RPE for the back was perceived to be ‘somewhat’ hard as a result of the physical 

effort required when lifting and placing the door, but the introduction of the transfer 

trolley demonstrated the benefits of the elimination of the door carry sub-task (lasting up 

to 10 seconds) with significantly lower RPE scores recorded for the upper extremity 

where the perception of effort was notably reduced post-intervention.         
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Body Discomfort:  CDC Pre-Intervention  
 

The BDS (Corlett and Bishop, 1976) was used to enable participants to identify the area 

of greatest discomfort, followed by second and third areas, and in addition they were 

required to rate the intensity of that discomfort on the rating scale (1 to 10). 

Key Rating Area % of Participants Rating Discomfort 
in Area 

 

Greatest 
Discomfort 

11 Posterior  
Lower Back 

(Mean Rating: 4.8 ±1.78) 

 
17% 

 

2nd area 6 and 7 Anterior  
Right and Left Biceps 

(Mean Rating: 4.2 ±1.62) 

 
23% 

 

3rd area 3 Anterior  
Right Shoulder 

(Mean Rating: 3.0 ±1.58) 

 
10% 

 
Figure 38:    Body discomfort ratings recorded following the completion of the CDC 

pre-intervention (Condition A).  
 

Similar to the responses for the PTT task, the CDC ratings of body discomfort both pre- 

and post-intervention were highest for the lower back region, with a pre-intervention 

mean rating of 4.8 (±1.78).  In addition the mean ratings for the second and third areas 

are presented in Figure 38.  As the working posture adopted to lift the door from the bin 

requires extensive upper extremity activity in order to lift the load, the right and left 

biceps were the regarded as being the areas experiencing the second greatest 

discomfort.  The right shoulder was also rated as an area experiencing discomfort due 

to the lifting action with the right arm elevated to carry and place the door, and follow a 
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similar trend to Straker et al. (1997), who demonstrated that discomfort ratings were 

significantly higher for tasks that required the operator to adopt an awkward working 

posture.   

 
Body Discomfort:  CDC Post-Intervention  
 
Although there were minor modifications to the lifting action, the greatest change was in 

the elimination of carrying the door.  While the lower back discomfort was still the 

highest rated area of discomfort (mean: 4.7 ± 0.52), other reported areas of discomfort 

are highlighted in Figure 39, which illustrates that the additional areas identified were 

the right bicep, right and left shoulders.  The participants thus experienced some 

discomfort during the lifting operation.   
 

 
Figure 39:    

 
Body discomfort ratings recorded following the completion of 
the CDC post-intervention (Condition B). 

 

 

Although the ratings of discomfort were only moderate in the laboratory, care should be 

taken if extrapolating these results of 10 minutes of laboratory work to a 7.5h shift.  As 

 
 

Key Rating Area % of Participants Rating Discomfort 
in Area 

 Greatest 
Discomfort 

11 Posterior  
Lower Back 

(Mean Rating: 4.7 ± 0.52) 

20% 

 2nd area 7 Anterior  
Left Bicep 

(Mean Rating: 4.6  ± 1.21) 

 
27% 

 3rd area 3 and 4 Anterior  
Right and Left Shoulder 
(Mean Rating: 4.0 ± 1.41) 

 
7% 
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Corlett (1990) reported, heavy physical work will increase the levels of body discomfort 

experienced, and based on detailed observation of working practices (James, 2002c; 

James and Scott, 2006), existing rest schedules used in the automotive sector may not 

be sufficient to allow adequate recovery from mild to extreme body discomfort 

associated with poor working postures and sub-optimal task design.  In such cases 

Corlett (1990) suggested that recovery from static work is usually slow and may in all 

likelihood not be achieved in a short rest break.  It remains critical for each plant using 

intervention strategies based on sound ergonomics principles to assess the current task 

demands and to be guided by objective measured spinal kinematics, and the subjective 

discomfort responses of the workforce. 

 
SUMMARY 
 
Task 2:  Car Door Carriage (CDC) Bodyshop Simulation  
 

The CDC simulation consisted of three distinct sub-tasks, namely the lift, carry and 

placement of the door.  The lift (sub-task i) was adjusted with a reduction of the height 

to step in and out of the bin.  A minor change to the door storage height and removal of 

the side of the crate reduced the sagittal flexion in the spine and assisted in reducing 

the twist required to step out of the storage bin.  In the Bodyshop area, the door 

carriage was identified as a high risk task, hence a transfer trolley device was built in-

house and piloted using the two-door framework.  A number of factors were taken into 

consideration when designing the transfer trolley.  In accordance with the guidelines set 

by Jung et al. (2005), the requirements of the task, the working environment, operator 

preferences, design considerations and usability of the trolley were all taken into 

account in the present study.  It may be argued that the post-intervention CDC sub-

tasks were more suitable for a number of reasons, but most importantly because of the 

change from an asymmetrical door carry to a symmetrical trolley push that they elicited, 

for as Bridger (2003) suggested, workplace changes incorporating manual handling 

devices may decrease musculoskeletal strain and the physiological cost of walking by 

reducing the load placed on the muscles of the upper and lower extremities.   
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The benefits of the intervention strategies included a reduction in musculoskeletal stress 

achieved through a reduction in sagittal ROM, reduction in twisting position and 

decrease in lateral, sagittal and twisting velocities.  Physiologically the responses of the 

participants also indicated lower levels of muscular loading with significant decrements 

in averaged EMG activity as a %MVC post-intervention for left and right erector spinae.  

Heart rate responses were not lower post-intervention as a result of the maintenance of 

the 30s work cycle, but are expected to be reduced in situ with the introduction of a two 

or four-door trolley.  Perceived exertion indicated a reduction in ratings at a Local rather 

than at a Central level.  The introduction of the trolley was deemed to reduce the 

loading of the arms, particularly during sub-task ii, with participants unanimously 

preferring the trolley to the manual door carriage in the laboratory.  However, based on 

perceptual findings, the loading of the lower back remains an area that requires further 

consideration, as RPE scores and body discomfort ratings were not significantly lower 

post-intervention.  It is clear that participants still consider the physical lifting and 

placement of the door to be demanding sub-tasks.            

 

ESTIMATION OF PRACTICAL WORKPLACE BENEFITS 

 
Findings from the present study revealed that statistically significant changes were 

achieved with minor alterations in working methods proposed for automotive Paintshop 

and Bodyshop tasks.  While the changes in post-intervention responses of participants 

in the laboratory were small, but effective, when considering that data was only 

collected over a 10 minute testing bout, it is argued that the proposed interventions 

have great potential for reducing the cumulative loads placed on the workers’ 

musculoskeletal and cardiovascular systems due to the improved balanced and upright 

working posture and the reduction in the pace of work.   

 

In an attempt to quantify the potential workplace benefits of the proposed basic 

ergonomics interventions over time, two diagrammatic assessments have been 

conceptualised.  The assumptions for the potential benefit analyses for the PTT and 

CDC were based upon the following:  a 7.5h shift; a five-day production week; and a 
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minimum of 48 production weeks per annum.  In addition, the PTT benefit analysis 

assumes that the Paintshop worker completes the push-pull transfer of 70 units per shift 

with a minimum of two pushing or pulling actions for each sub-task for a total output of 

20kg.f.  The current force output required of each worker in the Paintshop amounts to 

2 000kg.f over a skid transfer distance of approximately 1km per shift.  Figure 40 shows 

the potential benefits of the PTT intervention applied to the push-pull task. 
 

 

Figure 40:   PTT intervention analysis based on push-pull force and 
distance measurements.  

 

The proposed reduction in asymmetrical one- and two-handed pushing and pulling 

activities in the Paintshop will reduce cumulative joint loading by 480 000kg.f and 

decrease the movement distance and associated energy cost of these potentially 

hazardous tasks by 240km per worker per annum.   

 

The potential benefits of the basic CDC trolley intervention are no less pronounced than 

for the PTT.  CDC laboratory findings support the proposed introduction of the trolley 

with significant changes recorded post-intervention with the transfer unit eliminating the 

asymmetrical working posture during manual door carriage, reducing the stresses on 

the musculoskeletal system, and notably reducing the perception of effort specific to the 

upper limbs.      
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The CDC benefits analysis utilises the door mass (21kg) and the recorded distance of 

carriage (6.5m) from the GM Bodyshop Closure Line.  Figure 41 reveals that the 

provision of a door transfer trolley will assist in eliminating the manual carriage of 1.47t 

over an estimated distance of 0.46km per shift per worker (based on 70 doors lifted per 

7.5h shift).         

          

 
Figure 41:   CDC intervention analysis based on car door mass and 

carriage distance measurements.  
 
The provision of a door transfer trolley on the Closure Line will eliminate 352.8t of 

manual door carriage over a distance of 109.2km per annum per worker. Extrapolation 

of these benefits from one worker to all 12 operators currently completing the manual 

handling of vehicle parts in the Bodyshop will result in a cumulative reduction of 4 233.6t 

over 1 310.4km eliminated per year.   

 

The findings from the present study are specific to push-pull and door carriage tasks in 

the GM Paintshop and Bodyshop, where the benefits of successful ergonomics 

intervention are pronounced.  It is argued that if minor changes in two specific work 

areas are able to reduce musculoskeletal stresses, physiological cost and potential 

hazards with “low-cost” interventions, that changes in working practices aimed at the 

minimisation of asymmetrical push-pull activities and manual work across all seven 

South African automotive plants have great potential to reduce the incidence of WMSDs 

for the entire industry on an annual basis.  As Sen (1984), Scott (1996; 1997) and    
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Kogi et al. (1998) have argued, the application of small workplace changes in IDCs 

have the potential to make a profound impact in the workplace. 

 

FIELD RE-EVALUATION RESULTS 

 
Re-evaluation of Field Task 1:  Paintshop Area   
 

The Paintshop at the GM Struandale plant has been extensively modified following the 

suggested interventions, which were based on the rationale of Shoaf et al. (2000), who 

argued that the main guiding principle to improving human work performance should be 

to balance the task demands with the capabilities of the human operator.  Figure 42 

demonstrates the redesigned working area in the Paintshop with the operator riding on 

the transfer unit.  Manual transfer trolleys have been removed from the Paintshop area 

resulting in an elimination of most sub-optimal working practices in this area.  A further 

change that has assisted in the change process has been the automation of the roller 

bed systems, which have been a long-term concern in the GM Paintshop.   

 

 

Figure 42:   Automated transfer trolley used in the Paintshop post-
intervention.  

Reassessments were conducted on three workers in this area (mean age 34yr ±10.84).  

Operators interviewed during the re-evaluation unanimously preferred the automated 

units to the manual transfer trolleys, where the predominant reason given for the 
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preference was the elimination of the manual one and two-handed pulling actions which 

were used pre-intervention.  

 

Time-motion observations were conducted in order to assess the work requirements 

and these demonstrated that only occasional pushing at the front of the unit was 

required in the rare instances when the roller beds were not moving the vehicle unit as 

required.  The estimated work cycle time was recorded as 35s, demonstrating a notable 

reduction in duration and pace of work in this area (50s pre-intervention).   

 
Working Posture 
 

In contrast to the pre-intervention observations where the work demands were 

excessive, and working postures were poor and potentially hazardous, the post-

intervention observation clearly demonstrated the benefits of effective ergonomics 

intervention in the workplace by eliminating awkward postures and improving conditions 

in the Paintshop.    

 

Re-evaluation of Field Task 2:  Bodyshop (Closure Line) Area 

The work tasks required in the Bodyshop area proved to be more difficult to alter given 

the confined space on the Closure Line and the supply of the doors in a specific storage 

bin from an international supplier.  The proposed trolley is still under consideration, with 

potential design changes mooted for the transfer unit to incorporate the door carriage 

while minimising the likelihood of damage to the doors on the Closure Line.  However, a 

notable change on the Closure Line has come in the form of job rotation, which not only 

reduced musculoskeletal stresses, but also decreased the pace of work.  The four 

workers (mean age 31.8yr ±5.62) interviewed in the Bodyshop noted that the 

implementation of an effective job rotation cycle had reduced their physical loading and 

resulted in lower levels of discomfort at the end of the 7.5h shift. 
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Working Posture 

 

Following the provision of proposed interventions, the GM “Ergonomics Facilitation 

Team” discussed the potential solutions and evaluated the feasibility of each 

recommendation.  A number of changes have subsequently been made in the 

Bodyshop, which have resulted in less demanding job requirements.  Most notably the 

step into the bin (see Figure 43a) has been reduced through the provision of a low-cost 

step (300mm) in an attempt to minimise the likelihood of tripping while lifting the door 

out.  Workers have also been educated in appropriate lifting techniques, which have 

resulted in a major reduction in the twisting action while carrying the door from the bin to 

the welding jig.  The placement of the bins further back from the line has allowed more 

space for carriage of the door.  Furthermore, the distance of carriage has been 

significantly reduced from 6.5m to approximately 2.5m in the Bodyshop.  This logistical 

change in the distance of carriage along with the implementation of job rotation, has 

made a notable difference to operator perceptions of work demands, where the workers 

interviewed remarked that the changes had reduced the overall levels of discomfort 

experienced. 

 

     

a b c 

Figure 43 a, b and c: Reduced “step-in” (a), symmetrical lifting (b) and reduced 
“step-out” (c) of the bin in the Bodyshop post-intervention.   
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Figure 43b demonstrates that the vertical placement of the doors in the storage bin 

results in a more balanced manipulation of the door and less stooped lifting, as was the 

case in the pre-intervention observations.  The step out of the bin is now a controlled 

movement, which reduces the chance of slipping or falling off the modified step.  Non-

slip material has been used to construct the step platform, which also reduces the 

potential problems associated with wet safety footwear.   

 
FIELD RE-EVALUATION PHYSIOLOGICAL VARIABLES 
 
Heart Rate Responses 

Workplace MMH tasks place the operator under differential physiological strain during 

the working shift.  In general the re-evaluation of heart rate responses in both areas 

demonstrated reductions in recordings pre- versus post-intervention, while the 

intervention of automation in the Paintshop resulted in a significant reduction in heart 

rate recordings in this area of the plant.  Heart rates ranged from 80 to 115 bt.min-1 in 

the Paintshop pre-intervention, and between 75 and 90 bt.min-1 post-intervention.  

Automation of the trolley system has significantly reduced the physiological loading of 

the operator with a reduction in the mean heart rate response from 94 (±9.77) bt.min-1 to 

81 (±3.72) bt.min-1 post-intervention.  In addition, harmful working postures such as the 

one-handed pulling have been eliminated, creating a major improvement in working 

postures, thus minimising the chances of musculoskeletal stress. 

Changes in physiological responses in the Bodyshop were not as pronounced as those 

in the Paintshop.  Mean heart rate responses recorded were not significantly reduced 

on the Closure Line (mean 90 bt.min-1 pre-intervention and mean 88 bt.min-1 post-

intervention), as the work pace was similar pre- versus post-intervention.  However, the 

benefits specific to this area were more particularly noted in the areas of postural 

analysis, where much of the bending and twisting had been eliminated, thus reducing 

the likelihood of musculoskeletal injuries, and once the door trolley is introduced it is 

anticipated that the working pace will decrease and stresses on the cardiovascular 

system will be reduced. 
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FIELD RE-EVALUATION PSYCHOPHYSICAL RESPONSES 
 
Ratings of Perceived Exertion (RPE) 
 
Perceived exertion ratings were collected every 30min during the re-evaluation in the 

field.  Table XVI highlights the mean Central and Local RPE ratings recorded pre- 

versus post-intervention at selected time intervals in the GM Struandale plant. 

 
Table XVI: Changes in RPE pre- versus post-intervention in the Paintshop area.  

  
Central RPE  Local RPE (Arms and Back)  

Min30 Min60 Min90 Min120 Min30 Min60 Min90 Min120 

Pre- 

Intervention 

11.0 
(1.22) 

11.6 
(1.14) 

11.0 
(1.10) 

11.0 
(1.26) 

12.2 
(3.27) 

13.0 
(2.45) 

12.3 
(2.45) 

13.0  
(1.67) 

Post-

Intervention 

7.3 * 
 (0.56) 

8.0 * 
 (1.00) 

8.7 * 
(0.58) 

8.8 * 
(0.58) 

7.7 *  
(0.58) 

7.7 * 
(0.58) 

8.0 * 
(1.00) 

8.3 * 
(0.58) 

 
(Means with standard deviations in brackets, shaded area post-intervention) 

*   denotes significant difference (p ≤ 0.05) between pre- and post-intervention responses. 

 

Analyses of RPE ratings showed a significant reduction in Central and Local ratings pre- 

versus post-intervention during all periods.  The substantial changes in working 

methods resulted in the workers evaluated in the Paintshop rating the tasks as “very 

light” given the use of the automated ride-on trolley in this section of the plant.  Whereas 

the arms and back were rated “somewhat hard” pre-intervention, the post-intervention 

ratings are “light” due to the elimination of the “worst-case” pushing and pulling in this 

area.   

 

Despite there being no difference in heart rate findings in the Bodyshop, their perception 

of effort showed a nominal reduction in Central ratings, and a significant drop in the 

perception of exertion in the upper limbs and back, as shown in Table XVII.   

 
Table XVII: Changes in RPE pre- versus post-intervention in the Bodyshop area.  

  
Central RPE  Local RPE (Arms and Back)  

Min30 Min60 Min90 Min120 Min30 Min60 Min90 Min120 

Pre- 
Intervention 

11.0 
(1.90) 

12.3 
(2.34) 

12.8 
(2.56) 

12.7 
(2.58) 

11.3 
(1.63) 

13.3 
(2.63) 

12.8 
(2.56) 

12.8 
(2.56) 

Post-
Intervention 

10.7 
(1.71) 

11.0 
(1.63) 

11.5 
(1.00) 

11.8 
(1.89) 

9.5 * 
(2.78) 

9.75 * 
(2.77) 

10.5 * 
(3.26) 

11.3 * 
(3.28) 

 
(Means with standard deviations in brackets, shaded area post-intervention) 

*   denotes significant difference (p ≤ 0.05) between pre- and post-intervention responses. 
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This finding may be explained by the reduction in carriage distances and the 

introduction of job rotation in the Bodyshop post-intervention.   

 
Body Discomfort Map and Rating Scale 
 
The area most frequently rated post-intervention was once again the lower back (region 

11) on the BDS in both areas of the plant.  Ratings of body discomfort by Paintshop and 

Bodyshop workers confirmed a notable reduction in operator perception of intensity of 

discomfort from 5.5 (± 1.93) on the 10-point rating scale of the BDS during the first hour 

which was reduced to 3.3 (± 0.76) post-intervention, and in the second hour from 5.8   

(± 1.71) to 3.4 (± 0.79).   
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

INTRODUCTION 
 

The present study assessed the demands that two specific manual tasks placed on 

selected operators in a South African automotive plant.  Work-related hazards affecting 

the overall efficiency of the human operator were identified and prioritised for further 

investigation, and were then simulated in a rigorously controlled laboratory setting.  

Scott and Christie (2004) reported on the benefits of laboratory research, but cautioned 

that practical application of interventions is the key to ensuring that improvements are 

experienced within the specific workplace.  In this situation the focus was on an 

international automotive industry in South Africa, a country which is recognised as a 

developing region.  The findings of this study are thus best considered within the scope 

of IDC industry, where simple, “low-cost” solutions are vital to improving working 

conditions for the indigenous workforce. 

 

The South African automotive industry exhibits a combination of simple and advanced 

working methods (James, 2002a; James and Todd, 2003; James and Scott, 2006).  The 

consequence is that interventions based on “low-cost” changes are highly specific to 

selected manual work areas.  The changes proposed were shown to be essential in the 

case of the GM automotive plant, in which small modifications were able to elicit 

substantial improvements in operator safety and overall work productivity.   

 

Furthermore, an increasing awareness of basic ergonomic knowledge and the 

establishment of an “Ergonomics Facilitation Team” were desired outcomes of this 

research, as little or no understanding of ergonomics have previously been reported in 

the automotive industry (James, 2002b, Khumalo, 2004; Visser, 2004).  Basic training 

and awareness sessions were considered essential at a number of original equipment 

manufacturers in South Africa.   
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SUMMARY OF PROCEDURES 
  
A “field-laboratory-field” approach was utilised in the present study.  Sub-tasks were 

selected in the automotive plant based on “worst-case” prioritisation.  The field push-pull 

evaluation aimed to assess the forces required to complete a series of sub-tasks used 

in the moving of vehicle frames in the automotive Paintshop. In situ analyses were 

conducted on a sample of six Paintshop operators to assess temporal factors of the 

task, as well as basic biophysical, physiological and perceptual responses of the 

workers.  The forces required to move skid units onto a trolley-based platform, and then 

onto a roller-based conveyor line were quantified. Push-pull forces were collected using 

a Chatillon™ Hand Held Dynamometer.  Heart rate responses were recorded using 

Polar™ monitors, activity counts with the RT3 tri-axial accelerometer, and perceptual 

responses using Borg’s Ratings of Perceived Exertion (RPE) and Corlett and Bishop’s 

Body Discomfort Map and Rating Scale (BDS) following a standardised protocol.  

The Bodyshop evaluation assessed the car door lift, carry and placement sub-tasks 

completed by six Closure Line workers.  Additional sub-tasks in this area were 

completed with the assistance of mechanical hoisting devices.   The primary concerns 

relating to the current Bodyshop tasks were identified as follows:  the step up and into 

the storage bin to collect the door and then stepping down and out of the bin; the 

sharpness of the metal edges of the doors; the space confinement placed on operators 

due to the protective curtains and overhead jigs in the Bodyshop Closure Line; and the 

physical load carriage requirements of completing a working shift carrying front doors 

with a mass of 21kg. 

Following the field assessment, laboratory experimentation of the selected industrial 

working operations was conducted for Task 1 – Paintshop Trolley Transfer (PTT) and 

Task 2 – Car Door Carriage (CDC), with Condition A simulating the existing industrial 

scenario (pre-intervention) and Condition B (post-intervention) conducted to assess the 

effect of the basic ergonomics interventions proposed.  The laboratory cohort consisted 

of 30 student participants with no history of manual work experience. Although no 

medical examination was deemed necessary, the participants claimed to be free of 
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injury or illness on the days of testing in the laboratory.  Testing was conducted on two 

separate days for each of the laboratory conditions.    

A field re-evaluation was conducted in the Paintshop and Bodyshop areas as per the 

initial field investigation.  The selected workplace changes adopted by the automotive 

industry were assessed in an attempt to quantify the reduction in risk (evaluated by 

means of follow-up work observations, time-motion analyses, monitoring of heart rate 

responses and recording of perceptual responses).  The recently installed automated 

ride-on transfer trolleys (Paintshop) and work organisational changes (Bodyshop) were 

evaluated in the follow-up phase. 

 
SUMMARY OF RESULTS 
 
Evaluation of Field Tasks  
 

The original workplace study included detailed job analyses in two areas of the GM 

plant.  The largest unit manually moved in the Paintshop, vehicle Model C, was shown 

to be considerably heavier than the other units evaluated, and force outputs were 

considerably higher when moving Model C on the skid.  Peak initial forces ranged from 

18.2 to 21.7kg.f for the one-handed pull, and values for the two-handed pull ranged from 

20.1 to 23.6kg.f.  A similar range of values was recorded for the pushing tasks with the 

one-handed push range being 20.5 to 22.0kg.f and the two-handed push range being 

17.9 to 22.3kg.f.  Poor workplace design and large awkwardly shaped vehicle frames, 

coupled with high force requirements in many of the pulling and pushing tasks resulted 

in the operators needing to adopt extremely awkward working postures.   

 

Similar analysis of Bodyshop working postures demonstrated that the installation of 

doors required a hazardous step into the storage bin, and furthermore the carriage of 

the door forced the operator in a twisted position when moving to the jig for final 

placement.   
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Heart rate responses were recorded for two hours while the workers went about their 

repetitive jobs.  The average working heart rates recorded during the initial fieldwork 

observation were higher at 94 bt.min-1 (±9.77) for the Paintshop workers, than the       

90 bt.min-1 (±13.98) recorded for the Bodyshop workers.  Heart rates recorded ranged 

from 80 to 115 bt.min-1 in the Paintshop, with a greater range and higher maximum (70 

and 124 bt.min-1) in the Bodyshop area.   

Energy expenditure predictions calculated for the tasks in the Paintshop                        

(5 527.3kJ.shift) were statistically higher than those of the workers in the Bodyshop area 

(4 822.0kJ.shift).  It should be noted that activities in the Bodyshop are predominantly 

self-paced, and in addition the Closure Line is occasionally subject to production down-

time or vehicle backlogs, hence the operators are able to take more informal rest 

breaks.  These lower activity levels are also reflected in the lower mean working heart 

rates recorded in the Bodyshop.  However, despite the lower physiological costs, the 

workers perceived the door carry to be more demanding than in the case of completing 

the trolley push-pull tasks. Significant differences in Central RPE were observed for 

most of the two hours, and were only higher for Paintshop workers towards the end of 

the shift.  The greatest body discomfort reported by both groups was in the lower back 

region, with a moderate intensity of 5.5 to 5.8 over the two hours of data collection.  

Laboratory Simulation  
 
Task 1:  Paintshop Trolley Transfer (PTT)  
 

PTT laboratory experimentation confirmed that the existing working posture used for 

two-handed pulling increases the risk of slips and falls, primarily as a result of the centre 

of mass being outside the base of support, and in the longer term, work-related upper 

limb disorders. In contrast, the method proposed with a simple change to the pulling 

attachment (in the form of a lengthened rope) eliminated a significant amount of risk.  

The mean lean angle recorded from the vertical position for the two-handed pre-

intervention pulling was 23.7° (±3.51), which was reduced to 13.9° (±2.21) post-

intervention.  Although the lengthening of the pulling rope did significantly reduce the 

angle of lean, an alternative method was proposed by the company, namely that the 
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transfer trolleys could be automated to eliminate the awkward working postures and the 

need to walk backwards altogether.   

 

Spinal kinematic responses showed a significant reduction in average twisting velocity 

between the one-handed and two-handed pulling post-intervention due to the improved 

symmetry of the two-handed pulling method.  Participants preferred the intervention to 

the current two-handed pull observed in situ as it provided a more comfortable working 

posture and eliminated the excessive lean during the skid pulling.  In addition the 

maximal backward lean was significantly reduced as a result of the adapted pulling 

style, and maximum lateral velocity decreased from one-handed to two-handed pulling.  

It was evident that the operators had better control over the skid unit as they were able 

to work with a balanced posture and did not require additional effort to maintain balance 

with the simulated load moving in their direction, thus supporting the argument of        

De Looze et al. (2000), who proposed that force output and maintenance of stability is 

dependent on the direction of the pushing or pulling effort.   

 

Predicted average probabilities of low back disorder risk using the OSU Risk Model 

were calculated for pre- and post-intervention pushing and pulling.  Highest LBD risks 

were 36.8% (±8.03) for one-handed pulling and 38.2% (±4.03) for the one-handed push.  

The risk of low back problems was significantly reduced during the interventions to the 

two-handed pull (21.7% ±5.31) and the two-handed push (21.9% ±4.53).  Statistical 

analyses also showed a significant reduction between one-handed pulling and pushing, 

and the proposed two-handed pulling and pushing interventions.   

 

The highest mean working heart rate (103 bt.min-1 ±11.62) was recorded for the two-

handed asymmetrical push.  The pushing posture during this trial was awkward and 

particularly uncomfortable, with the left hand raised above the right hand to replicate the 

pushing action observed in the field.  A notable decrement in heart rate response to    

93 bt.min-1 (±11.77) was recorded during the symmetrical two-handed pushing 

intervention.  A statistically significant reduction was also observed between the one-

handed and two-handed push data when compared to the proposed intervention 
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strategy.  Participants were clearly less taxed during the two-handed pushing 

intervention, and a subjective preference for this method of task completion was also 

reported by the laboratory participants. 

Highest averaged EMG activity data was recorded during the two-handed pushing trials 

specifically for the left and right medial deltoids (mean 148.1 and 126.4µV  respectively) 

due to the asymmetrical posture adopted by the participant, which in turn led to a 

significantly lower level of right erector spinae EMG (38.9µV).  While the positioning of 

the left hand above the right in these trials resulted in reduced back muscle loading on 

the right hand side, it noticeably increased the loading on the left and right medial 

deltoid region.  The introduction of symmetrical two-handed pushing resulted in a 

balanced distribution of the muscular activity between the left and right hand medial 

deltoids and erector spinae (reduced to a mean of 55.3 and 58.4µV from 148.1 and 

126.4µV in the medial deltoids).   

Pre-intervention PTT tasks were asymmetrical and demonstrated the effects of an 

awkward working posture, twisted and bent spine, uneven joint, muscle and 

cardiovascular loading and an overall lack of subject stability.  The change to a 

symmetrical working posture elicited a notable improvement in stability, even 

distribution of the load between the left and right hand sides of the musculoskeletal 

system, and reduced the spinal and cardiovascular load post-intervention. 

Task 2:  Car Door Carriage (CDC) Bodyshop  
 

CDC experimentation (Task 2) demonstrated that the storage of the car door in the bin 

necessitated an average level of sagittal flexion of 28.0° (±4.78) for the pre-intervention 

lift.  Minor changes in the storage height of the door resulted in a significant reduction in 

sagittal flexion post-intervention to 20.7° (±5.65).  The lifting style utilised noticeably 

influenced the level of sagittal flexion during the CDC lift (sub-task i).  A range of 16.8° 

to 36.7° was observed for the pre-intervention phase, depending largely on whether a 

‘stoop’, ‘semi-squat’ or ‘squat’ lift was chosen as the preferred lifting style.  This range 

was subsequently reduced under Condition B where no ‘squat’ lifts were observed.  
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Post-intervention lifting was modified to eliminate the excessive step into and out of the 

industrial storage bin.  The risk of tripping while stepping into, and falling while stepping 

out of the bin were minimised during the post-intervention lifting phase.     

 

Predictions of average probability of LBD risk were 50.3% (±5.91) for pre-intervention 

and 39.8% (±5.10) for post-intervention lifting.  Simple changes in the current working 

requirements and posture thus resulted in a reduction of the probability of lower spinal 

problems to 10.5% in the post-intervention phase.   

 

Analyses of EMG responses showed a significant reduction between pre- and post-

intervention levels of mean erector spinae activity as a percentage of MVC for the 

combined lift, carry and placement of the door. The greatest reduction was associated 

with the introduction of the transfer trolley for the carriage phase of the CDC (sub-task ii) 

where statistically significant differences were observed between left and right erector 

spinae EMG as a %MVC pre- versus post-intervention (EMG as a %MVC reduced from 

35.1 to 13.7% and 30.5 to 13.9% for left and right erector spinae respectively).  No 

statistical differences in EMG activity (%MVC) were apparent during the car door lift 

from the simulated storage bin or during the final placement of the car door.  Both of 

these sub-tasks retained the same fundamental requirements, namely a lift of a 21kg 

front door (sub-task i) and placement of the vehicle part on a simulated jig (sub-task iii).   

 

The provision of the trolley was perceived to be of significant benefit to the participants 

in the laboratory experimentation.  Reduced body discomfort ratings under Condition B 

suggested that there was adequate corroboration to propose that interventions should 

be applied in the field.   

 

 

Re-evaluation of Field Tasks 
 

The field re-evaluation was conducted in the modified Paintshop and Bodyshop areas at 

the GM Struandale plant.   The most notable change in the GM workplace has been the 
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implementation of automated ride-on trolleys in the Paintshop.  Workers interviewed 

during the re-evaluation collectively preferred the automated units to the manual 

transfer trolleys due to the elimination of the manual pulling and pushing actions.  The 

workplace changes implemented have substantially reduced the postural stresses 

placed on the workforce and reduced the risk of MSI to the Paintshop workers.   

 

Changes in the Bodyshop area have been more difficult to implement due to workplace 

logistics.  Four workers were observed on the Closure Line.  The step into the bin has 

been significantly reduced and job rotation has been more tightly controlled in an effort 

to reduce the musculoskeletal loading of the operators.  Workers now alternate the door 

lifting operation, and revised rest break schedules are deemed to be beneficial by the 

staff interviewed.  GM Struandale engineering personnel are presently working on a 

four-door transfer trolley, which will minimise physical load carriage and reduce the 

pace of work in the Bodyshop.   

 

Heart rate recordings ranged from 80 to 115 bt.min-1 in the Paintshop pre-intervention, 

and between 75 and 90 bt.min-1 post-intervention, indicating a significant difference 

between the pre- and post-intervention ‘working’ heart rate responses during all 

collection periods.  The musculoskeletal demands were similar pre- versus post-

intervention in the Bodyshop Closure Line and no notable decrement in heart rate 

responses was noted.  However, a reduction in perceived exertion and body discomfort 

was reported. 

 

Analyses of RPE ratings showed a significant reduction in Central and Local ratings pre- 

versus post-intervention during all periods in the Paintshop.  Most operators rated the 

revised task demands as ‘very light’ to ‘light’.  Bodyshop workers rated the current task 

demands numerically lower for both Central and Local RPE post-intervention.  Body 

discomfort ratings showed a mean reduction in the intensity of discomfort during the first 

hour from 5.5 (± 1.93) to 3.3 (± 0.76), while in the final hour discomfort intensity was 

reduced from 5.8 (± 1.71) to 3.4 (± 0.79) post-intervention.  The area most frequently 

rated post-intervention was once again the lower back on the BDS (region 11).   
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STATISTICAL HYPOTHESES 

 
The significant reduction in virtually all variables selected for analysis pre- versus post-

intervention results in a general rejection of the null hypotheses, which are discussed in 

more detail. 

 

Hypothesis 1:  Spinal Kinematic Responses  
 

The first hypothesis focused on laboratory spinal kinematic responses using the 

industrial Lumbar Motion Monitor.   

 

(a) The results of the PTT (Task 1) force rejection of the null hypothesis as kinematic 

responses (ROM, twisting velocity and lateral velocity) decreased significantly during 

symmetrical post-intervention two-handed pulling and pushing respectively.    

 

(b) The null hypothesis is rejected for spinal kinematic responses during the CDC 

simulations (Task 2) as findings demonstrated a significant reduction in ROM, spinal 

twisting and lateral velocity post-intervention.     

 
Hypothesis 2:  Physiological Responses 
 

The second hypothesis focused on physiological responses and was sub-divided into 

heart rate responses (HR) and EMG activity (EMG).  The null hypothesis that was 

tested was that there would be no change in the cardiovascular responses and 

muscular activity during the two experimental tasks (PTT or CDC) for each condition 

(pre- or post-intervention).  

  

(a) Hypothesis 2 is rejected in the case of the PTT tasks as both HR and EMG 

responses were significantly reduced for two-handed pushing and pulling due to the 

introduction of symmetrical, controlled and balanced pushing and pulling actions 

post-intervention.     
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(b) The null hypothesis is rejected for cardiovascular responses during the CDC as HR 

responses showed a significant increase during the post-intervention testing, 

arguably due to the maintenance of the current work cycle time of 30s as observed 

in the Bodyshop Closure Line in situ.  It is argued that the working heart rate will be 

maintained at an acceptable level in the workplace through the introduction of a two- 

or four-door transfer trolley, which will reduce the level of the cardiovascular load 

during the shift. 

  

(c) The null hypothesis for EMG activity during the CDC is rejected due to a significant 

reduction in muscular loading in the post-intervention condition.  EMG reported as 

%MVC was significantly reduced in the left and right erector spinae over the entire 

10 minutes of experimentation.  In addition statistically significant differences were 

observed in EMG %MVC during sub-task ii (door carry/trolley push).    

 

Hypothesis 3:  Psychophysical Responses 
 

The final hypothesis dealt with perceptual responses to Ratings of Perceived Exertion 

(RPE) and Body Discomfort Rating (BD) of laboratory participants during the two 

laboratory tasks. 

 

(a) The PTT demonstrated no significant differences for BD ratings pre- versus post-

intervention and the null hypothesis is therefore tentatively retained.   

 

(b) Hypothesis 3 is rejected for Local RPE ratings for the CDC where arm specific 

ratings showed a significant reduction in perceived effort due to the introduction of 

the transfer trolley.  However, the null hypothesis is tentatively retained for Central 

RPE as no significant difference was observed.   

 

(c) The null hypothesis is tentatively retained for BD ratings for the CDC as no 

statistically significant changes were observed for these psychophysical ratings.      
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CONCLUSIONS  
 
It has been argued that manual tasks require considerable effort on the part of the 

human operator and frequently result in excessive strain of the musculoskeletal and 

cardiovascular systems (Dempsey, 1998).  The automotive workers in the present study 

had been subjected to sub-optimal working operations under demanding conditions in a 

hot and noisy working environment.  Many of the workplace tasks required awkward 

working postures, which placed substantial musculoskeletal stress on the operator, as 

well as placing them at high risk of slipping and tripping.  Work rest schedules and job 

rotation were poorly controlled, resulting in cumulative fatigue of the workforce over the 

duration of the 7.5h working shift at the GM Struandale plant.   

 

IDC industry continues to experience the need for realistic use of “low-cost, no-cost” 

ergonomics (Shahnavaz, 1996; Scott and Christie, 2004).  The primary objective of the 

present study was thus to provide the automotive industry with simple interventions 

which would require limited expense in order to bring about notable changes in the 

workplace.  The Paintshop interventions aimed to reduce the pulling actions, which 

required awkward postures on the part of the worker.  Two-handed pushing from the 

side was changed to the front of the unit, with the worker being in a more balanced 

position and the load moving away from him.  The automotive plant has exceeded the 

basic intervention proposed in this area with the provision of automated transfer units, 

which completely eliminated the need to push or pull the units.  The workplace 

modifications have resulted in notably lower levels of biophysical and physiological 

loading, while perceptual responses of the workers in situ highlight a major change in 

their perceptions of the job. 

 

Changes to workplace logistics were prioritised for the Bodyshop Closure Line due to 

the oppressive and cramped working conditions observed during the original field 

investigation.  Interventions proposed included low-cost workplace logistical changes in 

the form of a door transfer trolley, revised bin storage and increasing workplace space 

by moving the bins and the protective curtains in this area.  Changes implemented in 
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this area included the use of a step platform for a reduction in the step in to, and out of 

the industrial storage bin.  The bins have been moved much closer to the jigs (carriage 

reduced from 6.5 to 2.5m) and slightly back from the working area to allow more space 

for the workers carrying the door.  The protective curtains have also been trimmed to 

allow for airflow through the Closure Line without increasing the likelihood of the welding 

sparks and fumes escaping to other areas of the GM plant. 

 

In addition, job rotation was suggested to the GM staff tasked with the implementation 

of workplace changes.  This change was considered particularly relevant in the 

Bodyshop where manual work still dominates.  All these minor changes in working 

practices should make a significant contribution to reducing the physical loading of the 

workforce. 

 
RECOMMENDATIONS 

 
The application of ergonomics in an IDC such as South Africa is dependent on directed 

research being conducted in situ on manual labourers who are still required to move 

excessive loads while adopting awkward working postures under sub-optimal working 

conditions.  To this end the following recommendations are made in an attempt to 

highlight the steps required to facilitate this process: 

 

- Field research needs to be conducted on a variety of manual labourers in IDCs within 

their actual working environments.  Responses need to encompass a holistic 

assessment of biophysical, physiological and perceptual measures, as workers need 

to be assessed rather than data collected on a student cohort with limited experience 

in manual activities, for as Scott and Renz (2006) suggested, responses of a student 

sample differ considerably to a sample of work-hardened manual handlers.    

 

- Additional laboratory simulations of high risk automotive manual handling tasks are 

proposed.  Detailed analysis of EMG responses specific to automotive jobs would 
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facilitate a greater understanding of muscle recruitment patterns and activity levels, 

specifically in the upper limbs and lower back.  

   

- The South African automotive industry, given the resources available, needs to be far 

more proactive in the application of ergonomics planning and interventions in the 

workplace.  Manufacturing plants need to be tasked with the establishment of 

ergonomics working groups or ‘facilitation teams’, who must provide detailed input 

during preparation and implementation of any workplace improvements or changes. 

 

- Given the size of each automotive plant it is not unrealistic to suggest that an 

ergonomist should be appointed to oversee workplace interventions and assist in the 

workplace organisation for each production concern in South Africa.  Trained 

ergonomists are part of the multi-disciplinary teams of all multinational automotive 

organisations and the same appointments need to be made in advancing IDC 

industries.   

 

- The changes proposed in the present study have focused primarily on the micro-

ergonomics approach; however, the automotive industry has potential to be far more 

proactive in the application of basic interventions based on ergonomics principles in 

the workplace.  The utility of a macro-micro approach (Scott et al., 2003) is thus 

proposed for the automotive industry, which has great potential to be the forerunner 

in the utilisation of applied ergonomics in South Africa.  Examples of changes to 

these two tasks could be used as examples for other work areas where manual 

labour still predominates.    

 

- To augment the process, the automotive plants in South Africa need to more 

precisely document ‘best practices’ and quantify the cost-benefit accounting of 

ergonomics interventions applied in the workplace.  With this approach the 

automotive industry will continue to lead the growth in the South African 

manufacturing sector. 
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Informed Consent Form 
 

Department of Human Kinetics and Ergonomics 
SUBJECT CONSENT FORM 

 

I,                                                        , having been fully informed of the research 
entitled: 

Field and Laboratory Analyses of Manual Tasks  

in the South African Automotive Industry  

(Jonathan P. James) 

do hereby give my consent to act as a subject in the above named research. 
      
I am fully aware of the procedures involved as well as the potential risks and benefits attendant 

to my participation as explained to me verbally and in writing.  In agreeing to participate in this 

research, I waive any legal recourse against the researchers or Rhodes University, from any 

and all claims resulting from personal injuries sustained.   

 

This waiver shall be binding upon my heirs and personal representatives.  I realise that it is 

necessary for me to promptly report to the researchers any signs or symptoms indicating any 

abnormality or distress.  I am aware that I may withdraw my consent and may withdraw from 

participation in the research at any time.  I am aware that my anonymity will be protected at all 

times, and agree that the information collected may be used and published for statistical or 

scientific purposes. 

      

I have read the information sheet accompanying this form and understand it.  Any 
questions which may have occurred to me have been answered to my satisfaction. 

 
   

(PRINT NAME) SUBJECT (SIGNED) (DATE) 

   

(PRINT NAME)  
PERSON ADMINISTERING INFORMED 
CONSENT 

(SIGNED) (DATE) 

   

(PRINT NAME) WITNESS (SIGNED) (DATE) 
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Letter of Information 
 

FIELD AND LABORATORY ANALYSES OF MANUAL TASKS 
IN THE SOUTH AFRICAN AUTOMOTIVE INDUSTRY 

(Jonathan P James) 

 
Dear Potential Participant 
                                       
Thank you for volunteering to be a participant in this PhD Research Project.  You will be part of 

a group who will have a number of basic measurements taken during working shifts in the 

Paintshop or Closure Line. 

     

The testing will take place in the GM Struandale Plant and will be supervised by a senior 

academic.  You will be required to perform your usual working tasks as normally as possible, 

including taking breaks if you so wish.  The testing session will involve the collection of the 

following data: age, years of experience, stature, body mass, shoulder height, leg length, wrist 

height, left and right grip strength and back strength.  In order to assess the physical demands 

of your working tasks you will be required to wear a heart rate monitor and accelerometer for 

two hours of your standard working shift.  In order to get a better understanding of your 

perceptions of work demands we will also be using a rating of perceived exertion (RPE) scale 

and body discomfort scale.  You will be asked to rate how hard you feel your heart and your 

muscles are working at 15 minute intervals during the working shift.  We will be asking you to 

identify any body discomfort after the end of the 1st and 2nd hours of testing. 

 

The research team will be making use of video and digital camera equipment to record some of 

the sub-tasks in your area.  None of this material will be made available for public viewing, but 

will be used to see exactly how the job is done so that we can repeat the action in the laboratory 

for research purposes.  Your anonymity will be guaranteed in the use of all video and 

photographic material. 

 

You are free to stop or leave the study at any time, should you wish.  No financial remuneration 

will be provided for participation in this study.   

 

Jonathan James (PhD Student) 
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Appendix B:  Data Collection 
 
 

 
Participant Data Sheets 
 
Work Observation Sheets 



 
 

191

Participant Data Sheets 
 

Field Investigation (GM) 

Demographic and Anthropometric Data 

Participant Code:  

Name (Record Purposes Only):  

Age:  

Years of Experience:  

Stature (mm):  

Body Mass (kg):  

Acromiale Height (mm):  

Stylion Height (mm):  

Trochanteric Height (mm):  

 

Strength Data 

Grip and Back Strength  

Measure: Trial 1 Trial 2 

Grip: Right   

Grip:  Left   

Back   
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Participant Data Sheets:  Laboratory Investigation  

Demographic and Anthropometric Data 

Participant Code:  

Name (Record Purposes Only):  

Age:  

Years of Experience:  

Stature (mm):  

Body Mass (kg):  

Acromiale Height (mm):  

Stylion Height (mm):  

Trochanteric Height (mm):  

Body Fat %:  

 

Strength Data 

Grip and Back Strength  

Measure: Trial 1 Trial 2 Trial 3 

Grip: Right    

Grip:  Left    

Back    

 

Pushing and Pulling Strength 

 
Measure: 

Trial 1 
Peak 

Trial 1 
Mean 

Trial 2 
Peak  

Trial 2 
Mean 

Push     

Pull     
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Work Observation Sheets  
 

GM Struandale TASK OBSERVATION 

Area:  Paintshop 

Worker Code:  

Task Description: 

Unit Moved:  

  

Unit Moved:  

  

Unit Moved:  

  

Sub-task Identified: 

Push: Single Hand Push: Double Hand Pull: Single Hand Pull: Double Hand Trolley ride on 
   

 
 
 
 
 

 
 
 
 
 

 

 

Estimated Time: Estimated Time: Estimated Time: Estimated Time: Estimated Time: 

Overall Work Cycle Time:  

 
 

    

General Comments (Any obstructions or ST&F hazards): 
 

 
WORKER RESPONSES 
Heart Rate Responses: 

15 
minutes 

30 
minutes 

45 
minutes 

60 
minutes 

75 
minutes 

90 
minutes 

105 
minutes 

120 
minutes 

 
 

       

 
Comments on additional heart rate recordings: 
 

 



 
 

194

RPE: 
Central (Cardiovascular) 
15 
minutes 

30 
minutes 

45 
minutes 

60 
minutes 

75 
minutes 

90 
minutes 

105 
minutes 

120 
minutes 

 
 

       

 
 
Local (Musculoskeletal) 
15 
minutes 

30 
minutes 

45 
minutes 

60 
minutes 

75 
minutes 

90 
minutes 

105 
minutes 

120 
minutes 

 
 

       

 
Body Discomfort: 

Taken after: Area (Greatest Discomfort) Intensity Other areas of discomfort Intensity 

1st Hour    

 

 

 

2nd Hour    
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Appendix C: Psychophysical Rating Scales 
 

 
Rating of Perceived Exertion (RPE) Scale 
 
Body Discomfort Map and Rating Scale (BDS) 
 
Body Contribution Map and Rating Scale 
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Rating of Perceived Exertion (RPE) Scale 

 
 

 
Rating of Perceived Exertion 

 
6 
 
7 
 
8 
 
9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 

 
(Borg, 1971) 

 
 
 

VERY, VERY LIGHT 
 
 
 

VERY LIGHT 
 
 
 

FAIRLY LIGHT 
 
 
 

SOMEWHAT HARD 
 
 
 

HARD 
 
 
 

VERY HARD 
 
 
 

VERY, VERY HARD 

 
 
(Adapted from: Borg G (1971).  The Perception of Physical Work.  In: 
Shephard RJ (Ed.)  Frontiers of Fitness, Springfield, Illinois: C Thomas). 
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Body Discomfort Map and Rating Scale (BDS) 
 

 
  

 
 
 
 
 
 
 

(Adapted from:  Corlett EN and Bishop RP (1976).  A technique for assessing postural 
discomfort.  Ergonomics, 19(2):  175-182). 

Minimum Intensity Maximum Intensity 
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Body Contribution Map and Rating Scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Adapted from:  Corlett EN and Bishop RP (1976).  A technique for assessing postural 
discomfort.  Ergonomics, 19(2):  175-182. 
 
(From:  James J, Cripwell A and Furney S (2005).  Pushing vs. Pulling Strength: Effect of 
Handle Height and Practical Ergonomics Applications.  In:  Thatcher A, James J and Todd A 
(Eds.).  CD-ROM Proceedings of CybErg’2005:  The Fourth International Cyberspace 
Conference on Ergonomics 2005.  The International Ergonomics Association Press, 
University of the Witwatersrand, Johannesburg, South Africa). 

BODY CONTRIBUTION MAP AND RATING SCALE 

Greatest contribution Smallest contribution 
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Appendix D: Summary Reports 
 

 
Heart Rate Printouts 
 
Accelerometer Printout 
 
Printout from Enraf-Nonius EN-TreeM System 
 
Example of Postural Analyses 
 
Printout from Statistical Package 
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2 5 0 2 5 0

2 2 5 2 2 5

2 0 0 2 0 0

1 7 5 1 7 5

1 5 0 1 5 0

1 2 5 1 2 5

1 0 0 1 0 0

7 5 7 5

5 0 5 0

2 5 2 5

0
0 :0 0 :0 0 0 :0 5 :0 0 0 :1 0 : 0 0 0 :1 5 :0 0 0 :2 0 :0 0

HR [b p m ] HR [b p m ]

T im e
9 4  b p m

T i m e : 0 : 1 4 : 0 0     
H R:  8 2  b p m        

2 5 0 2 5 0

2 2 5 2 2 5

2 0 0 2 0 0

1 7 5 1 7 5

1 5 0 1 5 0

1 2 5 1 2 5

1 0 0 1 0 0

7 5 7 5

5 0 5 0

2 5 2 5

0
0 :0 0 :0 0 0 :0 2 :0 0 0 :0 4 :0 0 0 :0 6 :0 0 0 :0 8 : 0 0 0 :1 0 :0 0

HR [b p m ] HR [b p m ]

T i m e
9 6  b p m

T i m e :  0 : 0 0 : 0 0     
H R :  8 0  b p m        

Heart Rate Printouts  
 

 
Example heart rate printout from the PTT laboratory testing 

 

 
Example heart rate printout from the CDC laboratory testing 
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Accelerometer Printout 
 
User ID 007        
User Height 180 cm       
User Weight 72.2 Kg       
User Age 32        
User Gender 0 Male       
User AMR 1.3242  Calories per Minute      
Test Info:         
Notes         
Activity Data:         
Download Time 06/30/2004 21:17:58       
Start Time 06/29/2004 23:25:00       
Format 3 XYZ 1 Minute      
Number 
Readings 1312        

Entry Date Time 
Total 

Calories 
Activity 
Calories VM ActCntsX ActCntsY ActCntsZ 

63 06/30/2004 00:27:00 2.6424 1.3182 490.33 391 270 121 

64 06/30/2004 00:28:00 1.3888 0.0646 23.937 19 14 4 

65 06/30/2004 00:29:00 2.0828 0.7586 281.61 192 159 131 

66 06/30/2004 00:30:00 1.4614 0.1372 51 34 34 17 

67 06/30/2004 00:31:00 2.2927 0.9685 359.79 193 224 205 

68 06/30/2004 00:32:00 5.0422 3.718 1381.9 982 690 685 

69 06/30/2004 00:33:00 1.335 0.0108 4.243 3 3 0 

70 06/30/2004 00:34:00 3.8208 2.4966 927.57 625 509 459 

71 06/30/2004 00:35:00 2.9303 1.6061 597.1 380 357 291 

72 06/30/2004 00:36:00 2.2873 0.9631 357.82 199 244 170 

73 06/30/2004 00:37:00 1.6901 0.3659 135.6 59 115 41 

74 06/30/2004 00:38:00 1.9645 0.6403 238.44 168 135 102 

75 06/30/2004 00:39:00 1.7116 0.3874 144.37 77 108 57 

76 06/30/2004 00:40:00 1.5878 0.2636 98.346 34 80 46 

77 06/30/2004 00:41:00 2.0129 0.6887 256.26 167 148 126 

78 06/30/2004 00:42:00 2.1098 0.7856 291.8 165 189 149 

79 06/30/2004 00:43:00 1.6578 0.3336 124.28 57 64 90 

80 06/30/2004 00:44:00 1.7304 0.4062 151.4 114 81 58 

81 06/30/2004 00:45:00 1.5367 0.2125 78.873 29 66 32 

82 06/30/2004 00:46:00 1.8649 0.5407 200.72 85 124 133 

83 06/30/2004 00:47:00 2.1716 0.8474 314.66 192 159 192 

84 06/30/2004 00:48:00 1.456 0.1318 49.346 25 17 39 

85 06/30/2004 00:49:00 1.4856 0.1614 60.042 41 30 32 

86 06/30/2004 00:50:00 1.6094 0.2852 105.89 69 76 26 

87 06/30/2004 00:51:00 2.1609 0.8367 310.92 152 202 181 

88 06/30/2004 00:52:00 2.4514 1.1272 419.17 299 241 168 

89 06/30/2004 00:53:00 2.6182 1.294 480.93 293 260 279 

90 06/30/2004 00:54:00 4.1086 2.7844 1035.2 600 596 597 

91 06/30/2004 00:55:00 1.8757 0.5515 205.36 145 89 115 

92 06/30/2004 00:56:00 3.5114 2.1872 812.79 576 425 385 
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Printout from Enraf-Nonius EN-TreeM System  
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Example of Postural Analyses  
 
Pulling postural analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Door carriage postural analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of Postural Analysis: 
 

Landmarks (Rt side): 
Lateral Malleolus of Ankle 

Iliac marker 
Acromiale 

 
Eyes horizontal level 

Lean angle between vertical from 
line contact point through Rt ankle 

landmark to acromiale 
In this example:  lean angle = 27.1° 

Example of Postural Analysis: 
 

 Landmarks: 
Acromiale (Lt and Rt) 

 
Angle of asymmetry between 
Lt and Rt acromial processes 

  
In this example:   
angle = 21.6° 
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Printout from Statistical Package  
 
 
Results from the STATISTICA (Version 7.0, StatSoft®) Programme 

 
T-test for Dependent Samples (Spreadsheet1) Marked differences are significant at p < .05000 

 Mean Std.Dv. N Diff. Std.Dv. t df p 

1 Hand Pull 96.03333 14.25019       
2 Handed INT 90.40000 13.63970 30 5.633333 5.423342 5.689303 29 0.000004 

 

T-test for Dependent Samples (Spreadsheet1) Marked differences are significant at p < .05000 

 Mean Std.Dv. N Diff. Std.Dv. t df p 

2 Handed Pull 90.40000 12.13601       
2 Handed INT 90.40000 13.63970 30 0.00 5.044628 0.00 29 1.000000 

 

T-test for Dependent Samples (Spreadsheet1) Marked differences are significant at p < .05000 

 Mean Std.Dv. N Diff. Std.Dv. t df p 

1 Hand Pull 96.03333 14.25019       
2 Handed Pull 90.40000 12.13601 30 5.633333 6.332638 4.872383 29 0.000036 
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