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Abstract 

 

White steenbras Lithognathus lithognathus (Pisces: Sparidae) has been a major target 

species of numerous fisheries in South Africa, since the late 19th century. Historically, it contributed 

substantially to annual catches in commercial net fisheries, and became dominant in recreational 

shore catches in the latter half of the 20th century. However, overexploitation in both sectors 

resulted in severe declines in abundance. The ultimate collapse of the stock by the end of the last 

century, and the failure of traditional management measures to protect the species indicate that a 

new management approach for this species is necessary. 

The species was identified as a priority for research, management and conservation in a 

National Linefish Status Report. Despite knowledge on aspects of its biology and life history, little is 

known about juvenile habitat use patterns, home range dynamics and movement behaviour in 

estuaries. Similarly, the movement and migration of larger juveniles and adults in the marine 

environment are poorly understood. Furthermore, there is a complete lack of information on its 

genetic stock structure. Such information is essential for effective management of a fishery species. 

This thesis aimed to address the gaps in the understating of white steenbras movement patterns and 

genetic stock structure, and provide an assessment of its current conservation status. The study 

adopted a multidisciplinary approach, incorporating a range of methods and drawing on available 

information, including published literature, unpublished reports and data from long-term monitoring 

programmes. 

Acoustic telemetry, conducted in a range of estuaries, showed high site fidelity, restricted 

area use, small home ranges relative to the size of the estuary, and a high level of residency within 

estuaries at the early juvenile life stage. Behaviour within estuaries was dominated by station-

keeping, superimposed by a strong diel behaviour, presumably based on feeding and/or predator 

avoidance, with individuals entering the shallow littoral zone at night to feed, and seeking refuge in 

the deeper channel areas during the daytime. Conventional dart tagging and recapture data from 

four ongoing, long-term coastal fish tagging projects, spread throughout the distribution of this 

species, indicated high levels of residency in the surf zone at the late juvenile and sub-adult life 

stages. Consequently, juvenile and sub-adult white steenbras are vulnerable to localised depletion, 

although they can be effectively protected by suitably positioned estuarine protected areas (EPAs) 

and marine protected areas (MPAs), respectively.  
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It has been hypothesized that adult white steenbras undertake large-scale coastal 

migrations between summer aggregation areas and winter spawning grounds. The scale of observed 

coastal movements was correlated with fish size (and age), with larger fish undertaking considerably 

longer-distance coastal movements than smaller individuals, supporting this hypothesis. Given the 

migratory behaviour of adults, and indications that limited spawning habitat exists, MPAs designed 

to protect white steenbras during the adult life stage should encompass all known spawning 

aggregation sites. The fishery is plagued by problems such as low compliance and low enforcement 

capacity, and alternative management measures, such as seasonal closure, need to be evaluated.  

Despite considerable conventional dart tagging effort around the coastline (5 782 fish 

tagged) with 292 recaptures there remains a lack of empirical evidence of fish migrating long 

distances (> 600 km) between aggregation and spawning areas. This uncertainty in the level of 

connectivity among coastal regions was addressed using mitochondrial DNA sequencing and 

genotyping of microsatellite repeat loci in the nuclear genome, which showed no evidence of major 

geographic barriers to gene flow in this species. Samples collected throughout the white steenbras 

core distribution showed high genetic diversity, low genetic differentiation and no evidence of 

isolation by distance or localised spawning. 

Although historically dominant in several fisheries, analysis of long-term commercial and 

recreational catch data for white steenbras indicated considerable declines and ultimately stock 

collapse. Improved catch-per-unit-effort in two large MPAs subsequent to closure confirmed that 

MPAs can be effective for the protection of white steenbras. However, the current MPA network 

encompasses a low proportion of sandy shoreline, for which white steenbras exhibits an affinity. 

Many MPAs do not prohibit recreational shore angling, which currently accounts for the greatest 

proportion of the total annual catch. Furthermore, EPAs within the juvenile distribution protect a 

negligible proportion of the total available surface area of estuaries – habitat on which white 

steenbras is wholly dependent. 

Despite some evidence of recent increases in abundance in estuaries and the surf zone in 

certain areas, white steenbras meets the criteria for “Endangered” on the IUCN Red List of 

Threatened Species, and for “Protected species” status on the National Environmental Management: 

Biodiversity Act of South Africa. The species requires improved management, with consideration for 

its life-history style, estuarine dependency, surf zone residency, predictable spawning migrations 

and its poor conservation status. The multidisciplinary approach provides valuable information 

towards an improved scientific basis for the management of white steenbras and a framework for 

research that can be adopted for other overexploited, estuarine-associated coastal fishery species. 
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Chapter 1

General introduction 
 

“The long, slender, well-proportioned and speedy steenbras appeals strongly to the tidal-

river angler and fills the rock angler’s imagination with envy of the unrivalled sport his 

comrade can enjoy. It is a firm-fleshed food fish as well as a splendid fighter, and with these 

attributes it is much sought for in localities where it abounds” 

Biden (1948; 246) 

 

1.1 The linefishery in South Africa 

Increases in human population size, dependency on marine resources and technological 

advancements in fishing gear have resulted in steady increases in global fishing pressure over the 

last century. Consequently, more than half of the world’s fish stocks are fully exploited and almost a 

third overexploited or depleted (FAO 2010). In South Africa, archaeological records provide evidence 

of a long history of the harvesting of marine fish by “line” and “spear”. The first documenting of 

catch records started in the 17th century with the arrival of the Dutch seafarers at the Cape, and by 

the middle of the 20th century recreational and commercial fisheries had become increasingly 

important. The linefishery, defined by “the capture of fish with a hook and line” (Götz et al. 2008), 

and those species regarded as linefish (captured from shore or by boat, using rod or handline) are of 

considerable social, economic and recreational value. Despite the lack of more recent information, 

McGrath et al. (1997) indicated that by 1996 the South African linefishery provided employment for 

at least 131 500 people, had over 412 000 recreational and 3 100 commercial participants, and had 

an estimated annual value of ZAR 2 167 million. 

 

The advent of trailable ski-boats in the 1940s and the construction of numerous small-boat harbours 

along the coast witnessed a rapid expansion in recreational and commercial fisheries (Penney 1991). 

This was followed by the development of the off-road vehicle in the 1960s, which facilitated beach 

driving and increased participation in coastal areas previously accessible only on foot. The 

consequent increase in fishing effort resulted in stock declines of numerous species, which called for 

stricter regulations, such as access, effort and catch restrictions (Hutton and Pitcher 1998). However, 

inefficient regulations coupled with increased fishing pressure resulted in overexploitation and the 

collapse of most linefish stocks. Consequently, in 2000, the South African linefishery was declared to 

be in a state of emergency (Government Gazette No. 21949, December 2000). 



Chapter 1 – General introduction  

 

2 

 

1.2 White steenbras Lithognathus lithognathus 

The “steenbras” to which Biden (1948) referred was initially described as Pagellus lithognathus 

(Sparidae, Cuvier 1830), which was later split into two species, namely the white steenbras 

Lithognathus lithognathus and the west coast steenbras Lithognathus aureti (Smith and Smith 1986). 

The white steenbras L. lithognathus forms the subject of the current study, and is one of South 

Africa’s most sought after and threatened coastal fishery species. The species is endemic to South 

African waters, with a narrow inshore distribution ranging from the Orange River (at the Namibian 

border) in the west to KwaZulu-Natal in the east (Smith and Smith 1986) (Figure 1.1).  

 

 

Figure 1.1: White steenbras distribution map, showing the narrow inshore distributional range (blue) 

from the Orange River in the west to KwaZulu-Natal in the east and the core distribution (red) from 

north of Cape Columbine in the west to the Mbashe Estuary in the east. Different coastal regions 

mentioned in the text are also presented 
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Bennett1 (1993a) suggested that the white steenbras stock is distributed between the Orange River 

and the Mbashe Estuary (Eastern Cape Province), which represents approximately 2 200 km of 

coastline, and Lamberth and Mann (2000) suggested that the core distribution of the stock is from 

just north of Cape Columbine in the west, to the Mbashe Estuary in the east. Juvenile white 

steenbras have an obligatory estuarine-dependent nursery phase (Wallace et al. 1984a), although 

they are believed to use estuaries only between the Berg Estuary in the west and the Great Kei 

Estuary in the east (Bennett 1993b), and are rarely found in Transkei and KwaZulu-Natal estuaries 

(Begg 1984, Harrison and Whitfield 1995) (Figure 1.1).  

 

1.2.1 White steenbras life-history based on available literature 

1. White steenbras is a slow-growing and long-lived rudimentary hermaphrodite, reaching 50% 

sexual maturity at approximately 650 mm total length (TL) in both sexes, equating to roughly 

600 mm fork length (FL) and an age of about 6 years (Bennett 1993b). This species attains an 

approximate maximum size and weight of 1.5 m and 30 kg, respectively, and lives for 25-30 

years (van der Elst 1993, Bennett 1993b). 

2. Early juvenile white steenbras recruit into estuaries between about 18 and 50 mm TL. The size 

at recruitment tends to increase and the timing of recruitment occurs later in the year in 

estuaries further west along the coastline (Beckley 1984, Bennett 1989, Whitfield and Kok 

1992). Juveniles are dependent on estuaries for the first year after recruitment, until a size of 

about 150 mm TL, i.e. ± 130 mm FL (Beckley 1984, Bennett 1993b).    

3. Fish larger than 130 mm FL are thought to leave estuarine nursery areas and move to subtidal 

marine habitats, where they inhabit shallow nearshore sandy and mixed sand and rock areas 

(Bennett 1993a). White steenbras larger than this size were common in commercial beach-

seine catches in False Bay (Bennett 1993b) and fish between 160 and 240 mm FL were recorded 

in relatively high numbers in the surf zone of Algoa Bay, on the south east coast (Lasiak 1982).  

4. Late juveniles (< 500 mm FL) show high levels of residency within the surf zone (Bennett 1993b, 

Attwood and Bennett 1995a, Cowley 1999), and exhibit a shallow inshore distribution (< 10m), 

with no fish under this size captured deeper than 10 m in the beach or purse seine fisheries in 

False Bay (Bennett 1993b), or in 10 to 50 m depths during a comprehensive inshore small-mesh 

trawl survey along the south and south east coasts (Wallace et al. 1984b). 

5. Larger fish (500 – 600 mm FL) move to deeper areas (Bennett 1993b) and begin to undertake 

larger-scale coastal movements, although some individuals remain resident (Attwood and 

Bennett 1995a). 

                                                
1 The cited work was published by BA Bennett, who has no relation with this PhD candidate 
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6. There is circumstantial evidence of an annual adult (> 600 mm FL) spawning migration from the 

Western Cape Province to the Transkei in autumn (Bennett 1993a, b, Lamberth et al. 1994). 

Seine net catches from False Bay showed strong seasonal variation in the abundance of mature 

white steenbras; high from late spring to early autumn (October to April), peaking in summer 

(Bennett 1993a), with an almost complete absence during winter and early spring (June to 

September) (Lamberth et al. 1995). During the summer months, the gonads of mature 

individuals captured in False Bay are not well-developed (Penney 1991). Bennett (1993b) 

recorded gonads of white steenbras along the south west and south coasts in the early recovery 

stage from September to March, with active/ripe and ripe stages being the most common from 

April to July, while fish captured in the Transkei in August were all ripe-and-running, partially 

spawned or spent. This suggests that white steenbras aggregate in False Bay during the summer 

and autumn months, possibly using the area for feeding (Penney 1991), and migrate to the 

southern Transkei coast in winter, where spawning is believed to take place over marine fluvial 

mudbanks deposited off the estuaries in that region (Bennett 1993b, Hutchings et al. 2002a).  

7. Eggs and larvae undergo a pelagic larval stage of up to three months, during which time they are 

passively transported in a south westerly direction along the coast, allowing dispersal to 

estuaries further west (Hutchings et al. 2002a). 

8. Sub-adult and adult white steenbras appear to make use of permanently open estuaries (Marais 

1983, Bennett et al. 1985, Bennett 1993b), although these visits are generally infrequent and the 

level of dependence on estuaries at these life stages remains unclear. 

 

1.2.2 The fishery for white steenbras 

White steenbras has been highly prized by shore-fishers since before the formal keeping of catch 

records, and is still heavily targeted in recreational shore- and spear-fisheries throughout its range 

(Brouwer et al. 1997). The species is also commonly caught in the recreational and subsistence 

fisheries in numerous south east, south and south west coast estuaries (Pradervand and Baird 2002; 

King 2005). Historically, white steenbras also formed an important component of the commercial 

beach-seine and purse seine fisheries in the Western Cape Province (Lamberth et al. 1994). Beach-

seine nets are deployed from small rowing boats paddled from the shore, and hauled ashore by 

hand, while purse seine nets are deployed from larger, motorised vessels, which operate away from 

the shoreline. Until the mid 1990s, the commercial beach-seine fishery accounted for approximately 

20 mt annually (reaching 100 mt in some years) and the recreational shore-fishery some 35 000 fish 

(accurate estimate of mass not available), while for a short period prior to 1982 the commercial 

purse seine fishery in False Bay caught up to 300 mt in some years (Bennett 1993a).  
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Overexploitation in the recreational and commercial sectors resulted in a steady population decline 

and reductions in catch-per-unit-effort (CPUE) over the past five decades (Bennett 1993a, b, 

Lamberth et al. 1994, Brouwer et al. 1997, Lamberth and Mann 2000, Pradervand and Baird 2002). 

Management interventions, including maximum daily bag and minimum size limits for recreational 

anglers and increasingly stringent catch and gear restrictions for commercial fishers (Penney 1991, 

Bennett 1993a) have failed to prevent overexploitation. Despite such interventions, the spawner 

biomass per recruit (SB/R) ratio of white steenbras was estimated at 6% of pristine (Bennett 1993a), 

with the stock considered collapsed (Griffiths et al. 1999). A commercial ban was imposed on white 

steenbras in 1995 although the commercial beach-seine fishery in False Bay was allowed an overall 

annual catch exemption of 20 mt. Abuse of this exemption resulted in its withdrawal and a complete 

ban from 2001 (SJ Lamberth, Department of Agriculture, Forestry and Fisheries, pers. comm.). 

Meanwhile, participation in the recreational sector remains uncapped. 

 

A major contributing factor to the failure of historical management measures for white steenbras, 

and other linefish species, is a lack of empirical knowledge on their movement patterns, habitat use 

and genetic stock structure, which are essential for effective management of a fishery species. 

Aspects of the biology (Mehl 1973, Bennett 1993b), feeding (Wooldridge and Bailey 1982, Harris and 

Cook 1995), reproduction (Bennett 1993b), growth (Mehl 1973, Bennett 1993b), recruitment 

(Whitfield and Kok 1992, James et al. 2007a) and physiology (Mehl 1973, Whitfield et al. 1981, Du 

Preez et al. 1986, Harris and Probyn 1996) of white steenbras have been well-documented. 

However, despite being identified as a top priority in South Africa (van der Elst and Adkin 1991), 

research focussing on the movement and residency of this species was restricted to a preliminary 

assessment of coastal movement using conventional dart tagging (Cowley 1999), and no study has 

focussed on the movement patterns of white steenbras in estuarine environments. 

 

1.3 Advancements in fisheries research and management in South Africa 

As a result of increased fishing effort and the consequent declines in the stocks of white steenbras 

and numerous other South African linefish species in the latter part of the 20th century, it became 

obvious that improvements were required in fisheries management. Slowly fisheries research began 

to focus on those aspects of the biology and ecology of different species that were deemed (at that 

time) important for management. An extensive linefish research programme was launched, 

spanning roughly two decades (1970 to 1990), that included biological studies on many important 

linefish species. These studies focussed largely on age-based stock assessments to provide biological 

reference points for management, as well as reproductive and feeding ecology (Palmer et al. 2008).  
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In addition, a Linefish Management Protocol (LMP) was implemented in the South African linefishery 

in 1999 to provide a standardised method for assessing the status of linefish stocks, predominantly 

through the use of per-recruit analyses and age-structured production modelling. The LMP required 

that an operational management plan (OMP) be developed for each species, in which the species-

specific type of data, type of stock assessment analysis, biological reference points and relevant 

management actions would all be specified a priori (Griffiths et al. 1999).  

 

The second edition of the Southern African Marine Linefish Status Reports was published in 2000 

(Mann 2000), and detailed the available ecological and fishery information obtained by the end of 

the last century for most of the important species, as well as stock assessment results for those 

species for which stock assessments had been conducted. While this period of research represents 

“one giant leap for man[agement]”, what became apparent from this summary was that there were 

a number of gaps in the knowledge of the life-histories of many species. Common to most species 

was a lack of empirical data on their movement patterns. While biological and ecological studies on 

white steenbras had provided some evidence on which to base a proposed theory of migration, 

which Bennett (1993b) suggested was largely circumstantial, there is a lack of information on habitat 

use, residency, habitat connectivity, estuarine dependence and longshore dispersal. Secondly, there 

is a lack of understanding of spatial stock delineation, with no information on genetic stock 

structure. The paucity of this kind of information is common to most local fishery species, and 

information regarding stock structure has typically been based on morphological or other, similar, 

comparisons, for example the study on silver kob Argyrosomus inodorus by Griffiths (1997b). 

 

It followed then, that the next phase of fisheries research in South Africa placed emphasis on 

movement studies, mainly through conventional dart tagging. A national marine linefish tagging 

project was initiated in 1984 and run by the Oceanographic Research Institute (ORI), which recruited 

the services of volunteer recreational anglers around the South African coastline to tag a range of 

species. There was also the establishment of the De Hoop and Tsitsikamma Marine Protected Area 

(MPA) inshore fish tagging programmes, and later the Greater Addo Elephant National Park 

proposed MPA coastal fish tagging programme, which were initiated, respectively, by BA Bennett 

(formerly University of Cape Town) in 1984, by the Rhodes University Department of Ichthyology and 

Fisheries Science in 1995, and by Dr PD Cowley (South African Institute for Aquatic Biodiversity) in 

2005. Through these programmes, detailed studies on the coastal movements of a range of linefish 

species have been conducted, for example carpenter Argyrozona argyrozona (Brouwer et al. 2003) 

and galjoen Dichistius capensis (Attwood and Cowley 2005). 
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Later, technological advancements made available new tools to study fish movement patterns, 

including acoustic telemetry. This technique was quick to attract research interest, initiating a new 

phase of fisheries research in the country. Acoustic telemetry was successfully used in South Africa 

to determine movement patterns of spotted grunter Pomadasys commersonnii in the Great Fish 

(Næsje et al. 2007, Childs et al. 2008b) and East Kleinemonde (Kerwath et al. 2005) estuaries, dusky 

kob Argyrosomus japonicus in the Great Fish Estuary (Cowley et al. 2008) and white stumpnose 

Rhabdosargus globiceps (Attwood et al. 2007, Kerwath et al. 2008) and elf Pomatomus saltatrix in 

the Langebaan Lagoon (Hedger et al. 2010). 

 

More recently, the genetic stock structure of fishery species in South Africa has also received 

considerable attention, and a number of important fishery species have been assessed, for example 

the shallow-water and deep-water hakes, Merluccius capensis and M. paradoxus (von der Heyden et 

al. 2007) and red roman Chrysoblephus laticeps (Teske et al. 2010).  

 

1.3.1 Why study movement? 

Overexploitation of fish stocks, particularly those of coastal and estuarine-dependent species, 

necessitates conservation actions, which require an understanding of the movement behaviour and 

area use patterns of the target species. However, at present, information on recruitment, movement 

patterns, residency and estuarine dependence for many species is lacking (Bellquist et al. 2008). This 

is particularly true in South Africa, as little is known about the movements and behavioural ecology 

of numerous important estuarine-dependent fishery species, including white steenbras (van der Elst 

and Adkin 1991).  

 

Movement behaviour is dependent on how resources are utilised, and how the animal is affected by 

the environment and by inter- and intra-specific interactions (Anderson et al. 2008, Pépin et al. 

2008). Movements of individuals can also affect community structure and population dynamics 

(Jones 2005) and facilitate genetic mixing (Turchin 1988). Therefore, understanding movement and 

area use patterns can improve our understanding of the species ecology (Meyer et al. 2000), as well 

as provide important information on the mechanisms responsible for observed coastal population 

structure and genetic stock structure (Able and Grothues 2007a). 

 

Studies assessing home range and area use allow assessment of the value of different environments 

and habitat types to the population or species (Jones 2005), and provide insight into the ways in 

which the different resources are utilised (Hartill et al. 2003). In so doing, understanding area use 
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and home range dynamics can help to identify areas of high importance or habitats critical to 

particular life stages (Abecasis et al. 2009), which may contribute disproportionately to adult 

recruitment (Beck et al. 2001), such as the value of the estuarine environment as a nursery for 

estuarine-dependent species (Able and Grothues 2007a). This can also help to identify the 

characteristics that make the habitat or environment suitable (Vasconcelos et al. 2010), making it 

possible to quantify the contribution of such environments to the overall fitness of the population or 

species, as well as predict the potential effects of degradation to such habitats.  

 

By analysing the relationships between environmental processes and both movement patterns and 

habitat utilisation, it is possible to understand the physical and biological factors that drive 

movement and determine habitat utilisation (Nathan et al. 2008, Sackett et al. 2008, Sakabe and Lyle 

2010). It then becomes possible to predict the population’s responses to changes in these factors 

(Ault et al. 2003, Meynecke et al. 2008), and the potential effects that environmental perturbations 

and changes in resource structure and ecosystem function may have on the population’s movement, 

fitness and (ultimately) survival (Garshelis 2000 in Simcharoen et al. 2008, Hindell et al. 2008).   

 

Understanding movement patterns and estuarine residency, and the effects of environmental 

factors and environmental changes on aspects such as area use patterns and habitat utilisation, is 

essential for developing appropriate management strategies, both for the species and its habitat 

(Hooge et al. 1999, Parsons et al. 2003, Taylor et al. 2006). The potential effectiveness of protected 

areas is often unknown, due to a lack of knowledge on species home range sizes and locations, 

movement patterns and habitat utilisation (Lembo et al. 2002, Attwood and Cowley 2005). 

Knowledge on the movement patterns of a population of individuals relative to protected area or 

reserve boundaries is, therefore, essential, to understand the potential effectiveness of such 

management measures (Attwood et al. 2007), and to assist with their design (Jones 2005). It is also 

important to determine movement patterns and spatial requirements at critical life stages, such as 

the juvenile nursery phase, to understand the importance of different areas, and the potential 

effectiveness of protective measures in these areas (Egli and Babcock 2004, Jones 2005). Successful 

fisheries management, therefore, requires empirical knowledge on fish movements and migrations 

(Kerwath et al. 2005), particularly of coastal migrant and estuarine-dependent species that are of 

social, ecological or economic value, or conservation concern (Able and Grothues 2007a). 

 

It is believed that white steenbras is dependent on estuaries for at least the first year of its life 

(Wallace et al. 1984a, Bennett 1993b), but there has been little work in this regard and there is little 
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understanding of how they use estuaries, their home range dynamics within estuaries, and whether 

they move between estuaries and the marine environment, or between neighbouring estuaries. 

Such dependence on estuaries makes them vulnerable to overexploitation and habitat degradation; 

therefore, an understanding of spatial and temporal area use within estuaries, foraging areas and 

times and the factors affecting their distribution and area use within estuaries is essential for making 

management decisions to protect both the species and its environment. Understanding movement 

patterns in the marine coastal zone is equally important, as this will determine the potential 

effectiveness of marine reserves. 

 

Information on movement needs to be qualified by being placed in a broader ecological context, 

which requires integration with abiotic and biotic environmental data, to understand the 

environmental factors influencing or driving movement, at the different spatial and temporal scales. 

This can be augmented with physiological and behavioural-state data (e.g. feeding, spawning 

migrations etc.), relative to the spatial scales under study, to provide a comprehensive 

understanding of the movement ecology of the species (Nathan et al. 2008). The terminology of 

different movement styles, station-keeping, foraging, ranging and migration, follows definitions 

proposed by Dingle (1996). 

 

1.3.2 Why study genetic stock structure? 

Conservation biology strives to ensure population viability and, in the face of overexploitation, this 

has become a priority also for fisheries management (Hallerman et al. 2003). Overexploitation is 

likely to affect geographically isolated populations in an inconsistent manner, and on different scales 

(Hauser and Ward 1998). Therefore, effective management of a fishery species such as white 

steenbras and maintenance of its genetic integrity require a comprehensive understanding of the 

genetic stock structure and stock delineation, to ensure the successful identification of discrete 

stocks within the population (Ward 2000), so that each distinct stock or population can be suitably 

managed (Teske et al. 2010). Ultimately, the evolutionary potential of a species is determined by its 

genetic variability (Lippe et al. 2006); therefore, the ability to detect reductions in genetic variability 

as a result of overexploitation is essential. 

 

Genetic analysis of stock structure can provide useful information on reproductive isolation and the 

level of population mixing (Shaklee and Bentzen 1998). Understanding stock structure can provide 

insight into the mechanisms driving divergence among populations and the roles of migration (gene 

flow) and random genetic drift in this process (Arnaud et al. 2001, Wakeley 2005). Such information 
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can assist with the design of optimal management measures, for the conservation and protection of 

the species (Gold and Turner 2002). In South Africa, phylogeographic research has been used to 

evaluate the potential effectiveness of the current marine protected area (MPA) network; however, 

much additional work is still needed in this regard (von der Heyden 2009, Teske et al. 2011). 

 

Population genetics studies can provide insight into reproductive patterns, historical population 

demography, dispersal patterns and connectivity of populations (Arnaud et al. 2001, Feral 2002, 

Gold and Turner 2002, Wakeley 2005). Such information is essential in order to understand and 

predict how habitat fragmentation and climate change might affect dispersal and gene flow 

(Nicastro et al. 2008). To this end, genetic studies can complement movement studies well, such as 

those based on conventional tagging or acoustic telemetry (Waples 1998).  

 

Furthermore, movement patterns of a species, through larval dispersal, post-settlement movements 

and spawning migrations, can play a major role in defining the levels of stock mixing or isolation, 

which in turn define the genetic stock structure. Therefore, movement patterns and genetic stock 

structure should be assessed simultaneously, rather than in isolation. Understanding in one 

component could shed light on the other, thus together providing a more comprehensive 

interpretation of results (Waldman 1999).  

 

In order to completely understand movement of a species, the lifetime track needs to be broken 

down into a series of functional units, representing different life-history stages. Each of these stages 

can then be assessed at a suitable spatial and temporal resolution (Nathan et al. 2008). Thus, the 

lifetime track can ultimately be described and analysed as a multi-tiered process, from small-scale 

movements at the early juvenile phase, to greater, exploratory movements as a late juvenile/sub-

adult, and finally to large-scale adult spawning migrations (in species where this is the pattern). In a 

similar manner, the life-history of the species can be assessed in a three-tiered approach, looking 

first at the movement of individual fish, termed the ‘Lagrangian’ approach (Turchin 1998) within 

individual ecosystems, such as estuaries, then at dispersal patterns at the population level, termed 

the ‘Eulerian’ approach (Turchin 1998), such as small-scale coastal movements, and then finally at 

the species level by assessing the level of mixing among populations and geographical regions, which 

can be successfully achieved through analyses at the molecular level. This thesis adopted such an 

approach to assessing the movement patterns and genetic stock structure of the white steenbras 

(Figure 1.2).  
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Figure 1.2: Schematic representation of analysis of the lifetime track, with appropriate scales at 

which analyses of the different functional units are addressed in this study 

 

1.4 Coastal oceanography off South Africa  

In order to fully understand the distribution, movement and stock structure of a species, it is 

important to understand the oceanographic processes operating in the region. Oceanographic 

features, such as current pathways, upwelling intensities and water temperatures, can play a major 

role in the distribution of both propagules (eggs, larvae, juveniles and adults) and genetic diversity 

(Grant and Bowen 1998). On the east and southeast coasts of South Africa, the primary 

oceanographic feature is the Agulhas Current, a typical well-defined south westerly flowing western 

boundary current. In this region, the Agulhas Current flows close inshore, with the inshore edge 

roughly following the 200-m isobath at the continental shelf break (Lutjeharms 1998) (Figure 1.3). 

Eggs and larvae of numerous marine organisms use this south westerly movement to assist 

dispersal, although it is suggested that most fish eggs and larvae remain inshore of the current core 

(Griffiths and Wilke 2002). Along the south east coast, the continental shelf diverges from the 

coastline, forcing the Agulhas Current further offshore. In the region of divergence, the 

oceanography can be quite complex, exhibiting cold-water eddies, intrusion onto the shelf (which 

may transport eggs and larvae onto the shelf at this point) or offshore meanders (which may 

transport eggs and larvae great distances offshore) (Hutchings et al. 2002a). West of this, the 

Agulhas Current continues to follow the continental shelf break, which begins to deepen, until it 

reaches the tip of the Agulhas Bank, at which point the current retroflects and moves offshore, 

where once again propagules may be transported further offshore (Hutchings et al. 2002a). 

Although the Agulhas Current has a strong influence on the continental shelf (Goschen and 

Schumann 1988), wind becomes the most dominant driving force in this area (McQuaid and Phillips 

2000) and, as a result, water movement is bi-directional and strongly influenced by prevailing wind 
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direction (Attwood et al. 2002). While bottom waters on the Agulhas Bank tend to move in a net 

westerly direction (Hutchings et al. 2002a), surface waters tend to move in a net easterly direction, 

which may facilitate propagule transport in both directions. 

 

 

Figure 1.3: Schematic representation of the major oceanographic features along the east, south and 

west coasts of South Africa 

 

Based on these features, it may be expected that eggs and larvae spawned along the South African 

east coast (KwaZulu-Natal or Transkei) would have high rates of dispersal south westwards along the 

coastline until the Agulhas Bank. However, these propagules may have considerably lower 

probability of being transported to inshore nursery areas and estuaries further west along the 

coastline. As such, lower genetic diversity may be expected in coastal localities further west.   
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The eastern part of the Agulhas Bank inshore is characterised by regular intrusions of a ridge of cold 

upwelled water, which moves close inshore during the summer months. Currents tend to circulate 

around this cold water ridge in a clockwise direction (Hutchings et al. 2002a), which may facilitate 

the transport of eggs and larvae in a westerly, then inshore direction, promoting retention on the 

Agulhas Bank and recruitment to nursery areas further west. 

 

The direction of water flow on the shelf is also largely influenced by south westerly swell (Martin and 

Flemming 1986) and coastal trapped waves (Tilney et al. 1996). As a result, there is often an inshore 

counter current moving eastward along the south east coast (Schumann et al. 1982). Counter 

currents running in a north easterly direction, occurring inshore of the Agulhas Current core 

(Lutjeharms 2004), can facilitate egg and larval dispersal in a north easterly direction (Schumann 

1987). However, once these currents reach the area between East London and the Mbashe Estuary, 

the narrowing of the continental shelf and the proximity of the Agulhas Current close inshore (within 

1 km at times) may act as a mechanical barrier to the further flow of these counter currents. 

Therefore, it is unlikely that propagules will be transported further up the coast in a north easterly 

direction, and eggs and larvae spawned along the Transkei or south east coasts are unlikely to recruit 

to nursery areas further east. 

 

On the west coast of South Africa, the dominant oceanographic feature is the northerly-flowing 

Benguela Current. Here, wind can have a profound effect on water movement, generally driving the 

surface waters offshore, creating an extensive region of upwelling (Shillington 1986). At times, there 

can be a strong jet of water moving from the western Agulhas Bank to Cape Columbine, which can 

facilitate the transport of propagules westwards around Cape Point and up the west coast (Largier et 

al. 1992). There is also evidence of a counter-current flowing inshore along the west coast, which 

may facilitate the return movement of propagules (including sub-adults and adults of some species) 

from the west coast south eastwards and past Cape Point (Boyd et al. 1992). These oceanographic 

features along the east, south and west coasts of South Africa can have a major influence on the 

movement patterns, dispersal potential and genetic diversity of marine species. 

 

1.5 Motivation and approach for the current study 

White steenbras was identified as a top priority species for research, conservation and management 

in South Africa (Lamberth and Mann 2000). Stock assessments and the investigation of nursery 

areas, residency, movement patterns and stock distribution were identified as research priorities to 

ensure the development of an effective management plan for this species (van der Elst and Adkin 
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1991, Lamberth and Joubert 1999). White steenbras is an important recreational and subsistence 

species, and was (until 2001) an important commercial species. However, there are broad gaps in 

the information regarding movement, habitat use, estuarine dependency and genetic stock structure 

of the species.  

 

1.5.1 Aim and objectives 

The overall aim of this study was to determine and describe the area use, estuarine dependency, 

coastal movement behaviour, genetic diversity and stock status of the white steenbras, in South 

Africa. Specific objectives were to:  

 

 Determine habitat utilization, home range dynamics and movement patterns of juvenile 

white steenbras within temporarily open/closed and permanently open estuaries, and 

between the estuaries and the marine environment, using acoustic telemetry;  

 Determine coastal residency, longshore movement patterns and dispersal of sub-adult and 

adult white steenbras in the marine environment, using conventional dart tagging and 

acoustic telemetry; 

 Assess the spatial (population) genetic diversity of white steenbras across its distributional 

range, to provide information on genetic stock structure, using mitochondrial DNA and 

nuclear microsatellite DNA analyses; 

 Assess the current status of the white steenbras stock from all available fishery and fishery-

independent catch data to illustrate trends in catch, effort and catch-per-unit-effort (CPUE) 

over the past c50 years; 

 Assess the current status of white steenbras protection and conservation.  

 

1.5.2 Thesis structure 

Setting the scene 

Chapter 1 – General introduction: This chapter provides background information on white steenbras, 

and fisheries management and research in South Africa, as well as the motivation for the study. 

 

Chapter 2 – Research approach: This chapter assessed and explained the methods chosen to answer 

the key questions necessary to fill the gaps in the current knowledge of white steenbras life-history. 

The advantages and disadvantages of each of the chosen techniques were discussed, as well as their 

application to the current objectives. 
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The research chapters of this thesis are grouped into three research themes, focussing on 

Movement, Genetic stock structure and Conservation. The themes and the associated chapters are 

outlined in Figure 1.4, and will be described in the following chapter. 

 

 

 

Figure 1.4: Flow diagram of thesis structure, defining the research themes and the thesis chapters 
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Theme A – MOVEMENT 

Chapter 3 – Estuarine area use and home range: Movement patterns, area use patterns, home range 

dynamics and estuarine dependency were assessed and described, and critical habitats identified for 

juvenile white steenbras in a range of estuaries, through the use of acoustic telemetry.  

 

Chapter 4 – Temporal and rhythmic movements in estuaries: This chapter identified the 

environmental rhythms underlying observed cyclical movement patterns of white steenbras in 

different estuaries, and explored the main environmental rhythms in detail.  

 

Chapter 5 – Factors affecting distribution within estuaries: This chapter assessed the environmental 

variables that influence the movement of juvenile white steenbras in estuaries, as described in the 

previous two chapters.  

 

Chapter 6 – Coastal movements: Surf zone residency and longshore movement patterns of late 

juvenile, sub-adult and adult white steenbras in the marine environment were described, using 

conventional dart tagging at a range of spatial scales, and acoustic telemetry conducted in the 

marine environment.  

 

Theme B – GENETIC STRUCTURE 

Chapter 7 – Genetic stock structure: This chapter assessed the genetic stock structure of white 

steenbras throughout its distribution, to support the findings of the movement studies, and 

provided information on the level of mixing between areas and movements at the coastal level, 

using mitochondrial and microsatellite genetic analyses.  

 

Theme C – CONSERVATION 

Chapter 8 – Fishery and management implications: This chapter assessed trends in catch, effort, 

targeting and CPUE of white steenbras, over the past c50 years, in relation to management 

interventions for the species.  

 

Chapter 9 – Conservation status: The current status of white steenbras protection within estuarine 

and marine protected areas, and the availability of suitable habitat in estuaries and the inshore 

marine environment were assessed, as well as the status of white steenbras conservation, relative to 

national and international criteria. 
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Conclusions 

Chapter 10 – General discussion: The thesis concludes with the key findings from the different 

chapters to describe movement patterns at different life stages, genetic stock structure and the 

conservation status of the white steenbras. By incorporating multiple techniques to answer the key 

ecological, conservation and management questions and thereby fill the gaps in the current 

knowledge of white steenbras, it is hoped that this project will provide an improved scientific basis 

for the management of this species. 
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Chapter 2 

Research approach

 

2.1 Introduction 

There are numerous methods and tools available to study the ecology of a species. Many of these 

are specific to terrestrial or aquatic environments, and generally each method is suitable for 

answering questions specific to certain aspects of a species’ ecology or life-history. As this study 

focuses on providing information on the movement patterns, area utilisation, estuarine dependency, 

coastal dispersal patterns, genetic stock structure and stock status of a coastal fishery species, a 

suite of suitable methods was required.  

 

The study adopted a multi-faceted approach, incorporating conventional dart tagging and acoustic 

telemetry to assess movement patterns, area utilisation and residency in estuaries and the marine 

environment, and genetic analyses to provide information on genetic stock structure, to fill the gaps 

in the knowledge of white steenbras life-history. The study also incorporated available fishery-

dependent and fishery-independent catch data to determine the current stock, protection and 

conservation status and management needs for this overexploited fishery species. 

 

The methods adopted in this study have been successfully applied to numerous coastal fishery 

species in South Africa, but mostly in isolation; for example, conventional dart tagging and recapture 

on Dichistius capensis (Attwood and Cowley 2005), acoustic telemetry on Pomadasys commersonnii 

(Childs et al. 2008b), mitochondrial and microsatellite DNA analyses on red roman Chrysoblephus 

laticeps (Teske et al. 2010), and an assimilation of catch data to identify trends in the catches of the 

soupfin shark Galeorhinus galeus (McCord 2005). However, the employment of multiple 

complementary techniques in conjunction has been advocated by numerous fisheries researchers 

and ecologists (e.g. Lembo et al. 2002, Lyons and Lucas 2002, Jadot et al. 2006, Meynecke et al. 

2008, Johnson et al. 2009, Simpfendorfer et al. 2010), to provide a more holistic view. Furthermore, 

geneticists advocate the incorporation of ecological information into population genetics studies to 

assist with the interpretation of molecular analysis results (Ovenden 1990, Waples 1998).  

 

There are numerous examples in the literature of studies that have employed multiple techniques, 

commonly similar in principle, to answer ecological and conservation questions. Conventional 

external dart tagging has been used in conjunction with acoustic telemetry in a number of studies; 
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for example, external dart tagging and passive acoustic telemetry were used to determine home 

range and residency of Diplodus sargus and Diplodus vulgaris in the Ria Formosa Lagoon, Portugal 

(Abecasis et al. 2009). External dart tagging and manual acoustic tracking were used to assess 

habitat utilisation of the white goatfish Mulloides flavolineatus in Kaneohe Bay, Oahu, Hawaii 

(Holland et al. 1993). External dart tagging, passive acoustic telemetry and manual acoustic 

telemetry were used to determine movements and habitat use of white trevally Pseudocaranx 

dentex in the Faial Channel, Azores Islands, to assist with the design of marine reserves (Afonso et al. 

2009). External dart tagging, internal PIT tagging and passive acoustic telemetry were employed to 

assess the fidelity of common snook Centropomus undecimalis to coastal spawning grounds in 

Charlotte Harbour, Florida, and the Gulf of Mexico (Adams et al. 2009). The use of complementary 

techniques has returned more robust results and increased the value of each of these studies. 

 

Some studies, although considerably fewer, have employed techniques from across a range of 

research disciplines, for a more comprehensive understanding of a species’ ecology. For example, 

manual acoustic telemetry was used in conjunction with mobile echosounding surveys to determine 

distribution and movements of common bream Abramis brama in the River Trent, England (Lyons 

and Lucas 2002). Manual acoustic telemetry and animal-borne videography were used to assess 

habitat usage of tiger sharks Galeocerdo cuvier in Shark Bay, Western Australia (Heithaus et al. 

2002). Passive acoustic telemetry, manual acoustic telemetry and direct observation on SCUBA were 

used to determine activity patterns, home range sizes and habitat utilisation of salema Sarpa salpa 

in Calvi and Achiarina Bays, Corsica, Mediterranean Sea (Jadot et al. 2006). Internal PIT tagging, 

digital underwater videography and recreational angling catch data were integrated to determine 

movements of Acanthopagrus australis, Lutjanus russelli, Pomadasys kaaken and Mugil cephalus 

within an intertidal mangrove creek in Burrum River Estuary, Queensland, Australia (Meynecke et al. 

2008). Manual acoustic telemetry and commercial fishery data were combined to determine nursery 

habitats of juvenile thresher sharks Alopias vulpinus in the Southern California Bight (Cartamil et al. 

2010). Passive acoustic telemetry, satellite telemetry and stable isotope analysis were combined to 

assess movements, macro-scale habitat use and trophic ecology of blacktip reef sharks Carcharhinus 

melanopterus at Palmyra Atoll, in the Central Pacific (Papastamatiou et al. 2010).  

 

Depending on the species, geographic location and the selected methods, such multi-disciplinary 

studies are likely to incur considerable costs. However, the combined power of integrating results 

from numerous disciplines can contribute substantially to improved management (Waldman 1999), 

and considerably increase the value of the research, which has led to a move towards such studies.  



Chapter 2 – Research approach  

 

20 
 

2.2 Research methods 

This thesis adopted a multidisciplinary approach by employing four broad complementary research 

techniques to address specific objectives: 

 

i. Conventional dart tagging for the assessment of longshore coastal movements; 

ii. Acoustic telemetry for the assessment of estuarine and marine residency and area use 

patterns; 

iii. Genetic analyses for the assessment of genetic stock structure; and 

iv. Assimilation of current and historical fishery-dependent and fishery-independent catch 

data for the assessment of the stock and conservation status of white steenbras. 

 

The aim of this chapter is to provide an overview of these methods and show how they have been 

applied in the current study, to address specific key questions.  

 

2.2.1 Conventional dart tagging 

Until the early 1960s, information on the movement of fishes was obtained largely through plastic 

external dart- and anchor-type tagging studies, involving hook-and-line fishing. Dart and anchor tags 

are small, economical and easy to apply (Zeller and Russ 2000), making this a simple, cost-effective 

method to quantify residency, dispersal rates and migrations (Cartamil et al. 2003, Kerwath et al. 

2005). The low cost of these tags and the simple equipment required for their application allows 

high numbers of individuals to be tagged, and has resulted in their widespread use in many studies, 

covering a range of species. For example, in South Africa, conventional dart tagging has been 

successfully used to determine the dispersal and residency of red roman (Kerwath et al. 2007a), 

galjoen Dichistius capensis (Attwood 2003, Attwood and Cowley 2005), adult carpenter Argyrozona 

argyrozona (Brouwer et al. 2003) and dusky kob Argyrosomus japonicus (Griffiths and Attwood 

2005), and to assess the suitability of a marine protected area for the protection of blacktail Diplodus 

sargus, zebra Diplodus cervinus hottentotus, bronze bream Pachymetopon grande and galjoen 

(Cowley et al. 2002). Conventional dart tagging was also used in a preliminary investigation into the 

coastal dispersal of white steenbras (Cowley 1999). Globally, dart tagging has been applied to the 

study of a range of fish species, e.g. Sebastes chrysomelas (Hallacher 1984), S. caurinus, S. maliger 

and S. auriculatus (Matthews 1990a), Acanthopagrus berda (Sheaves et al. 1999) and Epinephelus 

striatus (Bolden 2000). The method provides valuable data on species range and dispersal patterns 

and is still widely used. 
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The disadvantage of this technique is that the information obtained is restricted to the locations of 

the fish at the times of capture and recapture. Little information can be gained regarding the actual 

distance or path travelled between the two positions, or the speed at which the fish moved 

(Matthews 1990a, Zeller 1997). The result is that the information is limited to one release location, 

and usually only a single recapture location (Zeller 1999), meaning that high numbers of recaptures 

are required to detect persistent trends (Attwood and Cowley 2005). Furthermore, although 

multiple recaptures are sometimes made, most tagged fish are never recaptured, as recapture rates 

are generally as low as 5 to 10% for many species, e.g. 5% for adult carpenter (Brouwer et al. 2003), 

4.3 – 12% for galjoen (Attwood and Cowley 2005) and 7.1% for dusky kob (Griffiths and Attwood 

2005). This means that high numbers of fish must be tagged before a useful number of recaptures 

can be expected. To compound this problem, certain species are prone to high rates of tag loss 

(Zeller and Russ 2000). While detailed information, such as fine-scale movements, habitat utilisation 

or activity patterns can only be speculated from external dart tagging (Cartamil et al. 2003, Egli and 

Babcock 2004), the technique is simple and cheap to apply and can provide useful information on 

dispersal and residency.  

 

Application of conventional dart tagging in this study 

In this study, conventional dart tagging data for white steenbras were extracted from four ongoing 

long-term coastal fish tagging programmes. Two of these are based on research angling conducted 

within well-established no-take MPAs, and one in a proposed MPA currently open to shore and boat 

angling. Their locations along the south west coast, south coast and south east coast are evenly 

distributed within the core distribution of white steenbras. The fourth programme operates at the 

National level, spanning the entire South African coastline. Tagging and recapture data obtained 

from these studies were used to determine the level of coastal residency and the scale of longshore 

movements, and to test the effects of geographic location, seasonality, fish size (age) and time at 

liberty on observed residency and movement patterns. The key research questions were: 

 

1. What are the longshore dispersal patterns of late juvenile, sub-adult and adult white 

steenbras in the marine environment, and do mature adults exhibit an annual spawning 

migration? 

2. What is the level of residency of sub-adult and adult white steenbras within a large coastal 

embayment, and do sub-adult and adult white steenbras make use of estuaries? 
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2.2.2 Acoustic telemetry 

Over the past five decades, biotelemetry has been successfully used on a range of animals to provide 

information on spatial utilisation and movement patterns. This information is necessary for 

management and conservation purposes, particularly in the design and implementation of reserve 

areas (Meyer et al. 2000, Parsons et al. 2003, Attwood and Cowley 2005, Taylor et al. 2006). 

Technological advancements in telemetry equipment over the years have allowed the remote and 

accurate positioning of individual animals in real-time. Transmitters have become smaller and 

lighter, with longer battery lives, allowing researchers to study smaller animals, such as rodents, 

birds and juvenile fish. 

 

There are three broad platforms for telemetry; radio, acoustic and satellite. Radio telemetry is based 

on the transmission of radio waves emitted by a radio transmitter, attached to the study animal, and 

the reception of these radio waves by a receiver operated by the researcher. Radio telemetry is 

useful for tracking terrestrial or avian animals, as well as freshwater aquatic animals. However, radio 

telemetry cannot be used in marine or estuarine aquatic environments, due to the high attenuation 

of radio waves caused by the high conductivity associated with the dissolved salts (ions) in seawater 

(Shroyer and Logsdon 2009), and was consequently not suitable for the current study. 

 

Acoustic telemetry differs from radio telemetry, in that signals are transmitted through sound 

(acoustic) waves. Such sound energy relies on the dense medium of the aquatic environment for its 

transmission, and, unlike radio waves, is not subject to rapid signal attenuation in saline aquatic 

environments. Therefore, acoustic telemetry provides a useful means for tracking animals in both 

freshwater and saline environments. 

 

Satellite telemetry provides a simple and useful, albeit more expensive, tool for tracking terrestrial 

animals and large marine vertebrates, such as cetaceans, and pelagic sharks (Zerbini et al. 2006). 

However, the transmitting unit is required to make regular direct contact with the satellite, which is 

not possible for aquatic species that do not break the surface of the water, such as many fishes. The 

larger size of satellite tags also increases the minimum size of fish that can be tagged. Studies on the 

movements of estuarine and coastal fishes are therefore more suited to using acoustic telemetry. 

For the remainder of the thesis, the term telemetry will refer to acoustic telemetry. 

 

Acoustic telemetry has been used increasingly since the early 1960s, and can provide information on 

migration, movement, habitat utilization, activity patterns, home range use and homing ability of 
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fishes (Hart and Summerfelt 1975, Giacalone et al. 2005). Such information is essential for estuarine 

and marine management decisions, for understanding the effects of habitat alteration or 

degradation, habitat loss and environmental change on the species (Garshelis 2000, in Simcharoen 

et al. 2008), and for the effective design of any reserve where the protection of the species is 

envisaged (Spedicato et al. 2005). 

 

By employing an array of automated stationary acoustic receivers in conjunction with active tracking 

of individual fish with a mobile receiver, acoustic telemetry can be implemented in such a way as to 

provide both continuous long-term data on area use and high resolution data on fine-scale 

movements of an individual (Hart and Summerfelt 1975, Giacalone et al. 2005, Heupel et al. 2006). 

Telemetry has been used to identify cyclic movement patterns in animals, which had previously been 

limited mainly to direct visual observation (Colton and Alevizon 1983). Telemetry can also be used to 

provide information over a range of temporal and spatial scales (Hartill et al. 2003), and results from 

telemetry studies conducted at different spatial and temporal scales can be combined to provide an 

understanding of the life-history of a species (Heupel and Simpfendorfer 2002). Telemetry, 

therefore, has the ability to provide complete information on the movement, home range and site 

fidelity of an individual fish, making it superior to conventional tag-recapture, as it can provide more 

data per individual (Brown and Orians 1970, Zeller and Russ 1998).  

 

There are numerous advantages of acoustic telemetry over other methods of assessing movement 

of coastal fishery species. The technique is less labour-intensive than some other methods, such as 

large-scale netting programmes, and the non-destructive nature and complete lack of impact on the 

environment make the technique particularly useful in reserves and in areas of high conservation 

value, such as estuaries (Hartill et al. 2003). As the term describes, telemetry involves the remote 

study of animal movements, allowing animals to be studied in their natural environments (Lagardere 

et al. 1990, Arendt et al. 2001). The technique is, thus, free of the effects of observer presence.  

 

Area use and movements can be overlaid onto habitat maps, to identify critical habitats and 

important areas, such as those used for feeding or shelter (Hartill et al. 2003). Telemetry also allows 

the remote recording of environmental and physiological variables, either through manual tracking 

and recording environmental variables in situ, or by equipping fish with transmitters that are able to 

record environmental or physiological data, such as water or fish temperature (Summerfelt and 

Smith 1990). By relating movement patterns to environmental data, the effects of different 

environmental variables on movement patterns and area use can be determined (Hartill et al. 2003).  
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Passive acoustic tracking 

Passive acoustic tracking can be described as the remote monitoring of individuals through an array 

of stationary automated acoustic data-logging receivers. These receivers are programmed to receive 

and record the unique acoustic signals transmitted by individual transmitters, and record the date 

and time that each signal is received. This passive form of telemetry requires initial deployment of 

receivers and acoustic tagging and release of the study animals. Data collection is then automated, 

except for the planned retrieval and uploading of the data stored on each receiver, to a personal 

computer.  

 

Due to the little field time required, the technique is not labour intensive. Data can thus be collected 

continuously, over long periods, and in unsafe or adverse environmental conditions, such as during 

rough seas or river flooding, as well as at night (Zeller and Russ 1998, Heupel et al. 2006). The 

permanent presence of the stationary receivers makes them particularly suited to determining site 

fidelity and long-term survivorship (Bellquist et al. 2008), as well as identifying cyclical movement 

patterns, such as tidal, diel or seasonal movement patterns (Heupel et al. 2006, Hedger et al. 2010b). 

Passive tracking has, therefore, been suggested to be more robust than the high-resolution data 

collected over short periods through manual tracking (Heupel et al. 2006). Passive telemetry can also 

be conducted in such a way as to determine movements among or between different environments, 

such as between a river and its estuary (Hindell et al. 2008), or between an estuary and the marine 

environment (Childs et al. 2008b), which can be used to determine proportions of time spent in 

different environments, as well as the timings of the onset and return of large-scale migrations.  

 

Unlike manual tracking, the completely remote nature of passive telemetry means that the 

behaviour of the study animals is not affected by the presence of a tracking vessel, and passive 

receivers allow the tracking of multiple individuals simultaneously, allowing direct comparison and 

providing information on individual behaviour (Heupel et al. 2006, Hedger et al. 2010b).  

 

The disadvantage of passive tracking is that stationary receivers have an omni-directional detection 

range, and provide no information on the distance of the transmitter-equipped fish from the 

receiver. This means that high-resolution positional information on an individual fish cannot be 

obtained using an array of independent stationary receivers. This can only be achieved through the 

employment of a linked array, in which the position of a fish can be triangulated based on the 

variable time taken for the signal to travel to receivers at variable distance from the fish, or through 

manual tracking with a mobile receiver (Heupel et al. 2006). Linked arrays require additional 
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technology and incur additional cost, and will not be discussed further in this thesis (see Heupel et 

al. 2006 for additional information). Furthermore, passive tracking relies on the fish remaining 

within the detection range of the receiver array (Simpfendorfer et al. 2002). 

 

Manual acoustic tracking 

Manual acoustic tracking differs from passive tracking in that it involves the active tracking of an 

individual, using a mobile receiver operated from a small vessel. The receiver hydrophone is able to 

determine the direction of a signal transmission, the strength of which (under adjustable reception 

gain) acts as an index of distance from the receiver. The tracker is thus able to actively follow and 

periodically locate an individual fish, at which time accurate positions can be recorded. From these 

positions, the home range size, shape and location of the animal can be estimated. 

 

By tracking the fish closely from a vessel, the researcher can obtain accurate, high resolution 

positional information, and real-time, fine-scale temporal and spatial movement data on an 

individual fish, which cannot be achieved through passive tracking. This also allows in situ recording 

of environmental data, such as ambient water temperature, water depth and habitat type, which 

can provide insight into environmental factors affecting movements and assist with identification of 

critical habitats (Nathan et al. 2008, Abecasis et al. 2009). The fact that the researcher is able to 

follow the track of the fish means that the fish can be tracked beyond the boundaries of a stationary 

receiver array. 

 

Manual tracking can provide information on behaviour, movement or displacement efficiency, inter- 

and intra-specific interactions and home range dynamics (Parsons et al. 2003), and provide an 

understanding of area and habitat use patterns, which is vital for informing management decisions 

for individual species and for conserving critical habitats (i.e. estuaries) in which they live (Hooge et 

al. 1999, Parsons et al. 2003, Humston et al. 2005, Taylor et al. 2006). 

 

There are, however, a number of drawbacks to this technique. Manual tracking requires more 

resources than passive tracking, in the form of skilled personnel and some sort of vessel, and is 

highly labour-intensive. The technique requires long hours in the field, therefore limiting the feasible 

duration of data collection. Therefore, manual tracking cannot provide the long-term continuous 

data that can be obtained through passive tracking (Hedger et al. 2010a). Furthermore, the 

researcher and vessel cannot be in two places at once and, consequently, can only follow one 

individual, particularly if individual fish follow different trajectories.  
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There are multiple methods for estimating home range size, shape and location from manual 

tracking data, each of which has associated advantages and disadvantages, and specific applications 

(see Anderson 1982 and Boulanger and White 1990 for reviews), and “there is clearly no method 

that is universally acceptable” (Norton and Henley 1987). Furthermore, many of these estimators, 

such as the minimum convex polygon (Southwood 1966, in Anderson 1982), are designed for 

analyses of terrestrial animal home ranges (Brown et al. 2010), and are not suited to use in bounded 

aquatic or serpentine environments, such as many of the estuaries along the South African coast. 

 

Complementary use of passive and manual tracking 

The advantages and disadvantages of passive and manual tracking suggest that a combination of the 

two techniques should be used, to provide long-term, lower resolution area use and residency data, 

and short-term, high-resolution positional data (Lembo et al. 2002, Afonso et al. 2009). Examples of 

where passive telemetry has been used in conjunction with manual tracking, to assess movements in 

a range of environments, are common. 

 

In the estuarine environment, passive and manual acoustic telemetry were used to assess estuarine 

space use of spotted grunter in the Great Fish Estuary, South Africa (Childs et al. 2008b), and to 

assess tidal and diel movements of leopard sharks Triakis semifasciata in Elkhorn Slough, California, 

USA (Carlisle and Starr 2010). The two techniques were used to assess diel and seasonal activity 

patterns of sixgill sharks Hexanchus griseus in Puget Sound and Elliot Bay, USA (Andrews et al. 2009), 

and to determine fine-scale movements and habitat use of smalltooth sawfish Pristes pectinata in 

south west Florida and the Florida Keys (Simpfendorfer et al. 2010). In the marine environment, 

passive and manual tracking were used to examine fine-scale movements of white sharks 

Carcharodon carcharias in Mossel Bay, South Africa (Johnson et al. 2009), to determine diel 

movement and habitat utilisation of salema Sarpa salpa in Calvi and Achiarina Bays in Corsica, 

Mediterranean Sea (Jadot et al. 2006), and to determine estuarine-marine movements of summer 

flounder Paralichthys dentatus on the continental shelf of the Mid-Atlantic Bight (Sackett et al. 

2007). 

 

Application of acoustic telemetry in this study 

Acoustic telemetry was used to assess the movements of juvenile white steenbras in four estuaries 

differing in estuary type, size and flow regime. Passive tracking was conducted in all four estuaries to 

provide long-term, continuous high resolution data on area use, residency and site fidelity within the 

estuarine environment. Passive tracking was also used to determine the level of dependency of 
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juveniles on estuaries, by assessing the extent, timing and duration of movements between 

estuarine and marine environments. Manual tracking was conducted in three of the four estuaries, 

and was used to provide high-resolution data, to determine the home range sizes and locations of 

juveniles within these estuaries, and complement the data obtained through passive tracking. Data 

collected through passive and manual tracking were used to identify cyclical patterns in estuarine 

movements, as well as the environmental factors that affect movement and distribution. The key 

research questions were: 

 

1. What are the movement patterns, habitat use and home range sizes of white steenbras in a 

small temporarily open/closed estuary? 

2. What are the movement patterns, habitat use and home range sizes of white steenbras in 

permanently open estuaries? 

3. Are juvenile white steenbras entirely dependent on estuaries, according to Whitfield’s (1994) 

IIa categorisation2? 

4. What are the extent, timing and duration of juvenile white steenbras movements between 

the estuarine and marine environments, and between estuaries? 

5. How do natural rhythmic cycles influence the estuarine movements of white steenbras? 

6. How do cyclical movement patterns differ among estuaries of different type? 

7. Which environmental variables affect the movement or position of white steenbras within 

estuaries? 

 

It has been suggested that researchers combine acoustic tracking, to provide detailed information 

on movement, and conventional dart tagging of a high number of individuals to supplement this 

with movement and dispersal information (Zeller and Russ 1998). The current study employed 

acoustic telemetry to assess the movement patterns of juvenile white steenbras within a range of 

estuaries. Conventional dart tagging was then used to assess residency and dispersal within the 

coastal zone in the post-estuarine life stages. Passive tracking was used to complement the 

conventional dart tagging in the marine environment, and provide higher resolution data on coastal 

residency and short-scale movements. The telemetry studies were also used to determine the level 

of connectivity between marine and estuarine environments, and thus provide information on the 

level of estuarine dependence at different life stages. 

 

                                                
2
 Category IIa: euryhaline marine species which usually breed at sea, with juveniles dependent on estuaries as 

nursery areas (Whitfield 1994) 
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2.2.3 Genetic analysis  

In the past, stock identification was largely achieved through comparisons of phenotypic 

characteristics, such as growth rate, maximum age, length-weight relationships, size at 50% sexual 

maturity and condition factor (Griffiths et al. 2002, Palma and Andrade 2002, Richardson et al. 

2011). However, these markers are not genetic markers, and are not as sensitive in identifying 

discrete stocks as genetic markers that are used more commonly today.  

 

Genetic markers are more sensitive for identifying stock structure than phenotypic characteristics, 

offering more suitable techniques for studying population genetics, to provide necessary 

information on long-term dispersal and reproductive patterns of populations (Arnaud et al. 2001, 

Feral 2002, Gold and Turner 2002, Wakeley 2005). Genetic markers can also provide information on 

evolutionary history of the population or species (Avise et al. 1987). Understanding genetic stock 

structure within and among populations can reveal current and historical population demography, 

and the factors (physical processes or individual behaviour) that influence the level of mixing, and 

thus help to identify the mechanisms driving and barriers preventing gene flow within or among 

populations (Avise 1998, Gold and Turner 2002). Frequently used genetic analysis techniques in 

stock determination studies are enzyme-based allozyme electrophoresis, mitochondrial DNA 

sequencing and analysis of microsatellite (nuclear) markers (Schlötterer 2004).  

 

Allozyme electrophoresis is an analytical technique that examines variation among protein-coding 

genes that control much of cell metabolism. Allozymes are genetically different forms of an enzyme 

that are encoded at the same locus (May 2003). Allozymes are co-dominant Mendelian characters 

that have been proven to be informative nuclear genetic markers for monitoring the segregation or 

inheritance of a single gene (May 2003). They have simple and easy application, large quantities of 

data can be produced quickly and this technique is more cost-effective than other genetic markers 

(Begg and Waldman 1999, Carvalho and Hauser 1998, Park and Moran 1994, Shaklee and Bentzen 

1998, Ward 2000). For these reasons, initially, the majority of genetic studies since the 1970s used 

allozyme electrophoresis (e.g. Arculeo et al. 2003, Bargelloni et al. 2003, 2005, Verspoor et al. 2005, 

González-Wangüemert et al. 2006). 

 

There are, however, disadvantages to this technique. Only structural DNA is involved, representing 

less than 1% of the nuclear genome, and some allozymes may be under selection, making them 

unsuitable for the study of some of the fundamental processes in population genetics. The average 

heterozygosity for polymorphic loci and the number of variable loci are generally lower than for 
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other genetic markers (May 2003, Hauser and Seeb 2008). Furthermore, the process requires frozen 

or fresh sample material, which may be difficult or impossible to obtain.  

 

While allozyme electrophoresis remains in use today and still provides useful information, it is used 

less frequently, with there being a present shift towards the use of mitochondrial and microsatellite 

markers (Liu and Cordes 2004). Mitochondrial markers are genes within the mitochondrial genome, 

while microsatellite markers are found within the nuclear genome. Owing to their different positions 

within the cell, the two genomes are inherited differently. As a result, the genetic markers based on 

the two genomes differ in their evolutionary process, and thus exhibit advantages and disadvantages 

for different applications. 

 

Mitochondrial DNA sequencing 

A powerful method of detecting genetic variability within or among populations is through the direct 

comparison of sequences of homologous DNA fragments obtained from individuals within each 

group. Mitochondrial DNA (mtDNA) is particularly suitable for such sequence comparison analyses 

because of the considerably higher rate of mutation of the mitochondrial genome compared to the 

nuclear genome (Campbell et al. 1999). Variations in the mitochondrial nucleotide sequence may be 

caused by nucleotide base substitutions (transitions or transversions), length variations (insertions 

or deletions of single or multiple nucleotides) or sequence rearrangement (chromosomal 

rearrangements that affect long sequences of DNA) (Moritz et al. 1987). Mitochondrial DNA evolves 

more simply than nuclear DNA, as there are fewer mechanisms of variation within mtDNA evolution 

(Moritz et al. 1987). It has rare or no recombination, rapid sequence evolution, high copy number, 

maternal inheritance, and is not inherited in a Mendelian way. 

 

Due to strictly maternal inheritance, and under the assumptions of mutation-drift equilibrium and 

equal male and female dispersal, the effective mtDNA population size is expected to be one quarter 

that of nuclear DNA (Moritz et al. 1987), which would allow the detection of population subdivision 

more easily (Lee et al. 1995). The considerable variation among individuals within and between 

populations makes mtDNA an effective marker for studying population structure (Moritz et al. 1987). 

 

Because allele frequencies of mtDNA are influenced by stochastic processes it is possible to track 

past population changes (Wilson et al. 1985, Moritz et al. 1987, Lee et al. 1995, Hare 2001). 

Mitochondrial markers are therefore used in molecular ecology, and the study of evolutionary and 

conservation genetics to determine population demography and evolutionary history (Avise et al. 
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1987). Analysing historical relationships of alleles in a geographic context (phylogeography) enables 

the inference of patterns of gene flow among geographically separated populations (Avise et al. 

1987, Hare 2001). In most species, mtDNA has a higher mutation rate than single copy nuclear DNA, 

providing high-resolution analysis of recent evolutionary events (Ferris and Berg 1987, Birky et al. 

1989, Wilson et al. 1985, Shaklee and Bentzen 1998, Waples 1998). The advantages of mtDNA have 

resulted in its widespread use, particularly within the Sparidae (e.g. Ostellari et al. 1996, Orrell et al. 

2002, Orrell and Carpenter 2004, Domingues et al. 2007, Ponce et al. 2008). Most studies on South 

African marine organisms have used mtDNA sequence data (e.g. Matthee et al. 2007, Teske et al. 

2007, von der Heyden et al. 2010, Zardi et al. 2011).  

 

However, in some cases mtDNA may not be sufficiently sensitive to detect genetic structuring of 

populations, and in these circumstances microsatellites in the nuclear genome provide a better tool 

(Lundy et al. 2000). Furthermore, genetic analyses based on a single locus (i.e. the analysis of a single 

gene as is usually the case with mtDNA) are less informative than those based on multi-locus 

comparisons (Felsenstein 2006). 

 

Microsatellite markers 

The use of microsatellite genetic markers in population genetics (including fisheries research) is 

increasing rapidly (Hauser and Seeb 2008). Microsatellite markers are short tandem repeated 

genetic sequences, usually two to six base pairs in length and repeated 10 to 100 times (Campbell et 

al. 1999), and found throughout the nuclear genome (Goldstein and Pollock 1997). These genetic 

markers are co-dominant, inherited in a Mendelian way with biparental inheritance, and are 

normally selectively neutral (Moore et al. 1991, Garcia de Leon et al. 1997, Goldstein and Pollock 

1997, Gold and Turner 2002). Genetic differentiation is determined by the variation in repeat unit 

length among locus-specific allele pairs within different individuals (Goldstein and Pollock 1997). 

 

Nuclear DNA may evolve through a number of mechanisms, such as polymerase slippage, where 

polymerase miscopies repeated units (Levinson and Gutman 1987), and slipped-strand mispairing 

during replication (Hancock et al. 1999). As a result, the rates of mutation of the nuclear genome 

and microsatellite repeat sequences within the genome are relatively high, which allows for a high 

level of variation among alleles at a given locus (Teske et al. 2011). Furthermore, the abundance of 

microsatellites in living organisms is high (Bhargava and Fuentes 2010), allowing comparisons of 

genetic variability at multiple discrete loci. Microsatellites have high reproducibility, amplification 

requires little genetic material and the allele scoring process is simple (Moore et al. 1991, Garcia de 
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Leon et al. 1997, Goldstein and Pollock 1997). These characteristics make microsatellites an ideal 

marker for fine-scale stock structure investigations in population genetics studies (O’Connell and 

Wright 1997, Carvalho and Hauser 1998, Shaklee and Bentzen 1998, Ward 2000). 

 

Microsatellite markers are more sensitive, and thus more suitable for detecting subtle population 

structure than mtDNA and protein polymorphisms (allozymes), particularly in high gene flow species 

(Waples 1998). Due to the high mutation rate of microsatellite markers, they allow the study of 

recent genetic patterns, e.g. those driven by fishing pressure or climate change, and provide more 

information on gene flow (Teske et al. 2011). Microsatellite markers are thus useful for studying 

closely related populations (Takezaki and Nei 1996), and have been used for population studies on 

numerous fish species, for example to investigate genetic variability and population genetics of 

gilthead seabream Sparus auratus from the Atlantic Ocean and Mediterranean Sea (De Innocentiis et 

al. 2004), to identify population structure of turbot Scophthalmus maximus between the Baltic Sea 

and the North Sea (Nielsen et al. 2004), to identify existence of isolation-by-distance in pike Esox 

lucius (Laikre et al. 2005), and to identify spatial and temporal population structure in European 

flounder Platichthys flesus (Hemmer-Hansen et al. 2007). However, despite their obvious suitability, 

microsatellites have been used little in South African marine phylogeography (Teske et al. 2011). 

 

The disadvantage of microsatellite markers is the expense and time required to isolate the repeat 

units and design primers for the amplification of these regions (Mueller and Wolfenbarger 1999), 

although once developed they are easily maintained and cost-effective (Bhargava and Fuentes 

2010).  

 

Mitochondrial DNA sequencing and microsatellite analysis in conjunction 

While mitochondrial and microsatellite markers are the most suitable for population genetic studies, 

there are nonetheless disadvantages to each of these techniques. Populations in mutation-drift 

equilibrium with equal male and female dispersal are expected to have four times the degree of 

divergence in mtDNA than nuclear DNA, because of maternal inheritance (Hare 2001, Gold and 

Turner 2002). Thus, genetic drift in the mitochondrial genome may produce higher genetic 

differentiation (Birky et al. 1989), making mtDNA markers more sensitive for detecting large-scale 

geographic differences, genetic bottlenecks and phylogeographic breaks (Wilson et al. 1985, Teske 

et al. 2011). Conversely, microsatellite markers have been successful in the identification of subtle 

population structure, when mtDNA has failed (Waples 1998, Gold and Turner 2002, Stockley et al. 

2005). Mitochondrial and nuclear genomes are not physically connected, meaning that they may 
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evolve differently and may be subject to influence by different processes (Lemaire et al. 2005). 

Therefore, the employment of mitochondrial and microsatellite markers in conjunction, to provide 

information on past genetic structure and current population structure (Wilson et al. 1985, Gold and 

Turner 2002), may be the most informative approach to assessing intraspecific genetic variability 

(Lemaire et al. 2005), particularly where weak genetic structure is suspected (Machado-Schiaffino et 

al. 2009).  

 

Population genetics studies utilising a mitochondrial gene marker in conjunction with microsatellite 

markers have been conducted on numerous fish species, for example the silverside fish Odontesthes 

argentinensis in the south west Atlantic (Beheregaray and Sunnucks 2001), the striped sea bream 

Lithognathus mormyrus in the Mediterranean Sea and eastern Atlantic Ocean (Sala-Bozano et al. 

2009), and red roman in South Africa (Teske et al. 2010). 

 

Application of genetic analyses in this study 

Molecular analyses were conducted on juvenile and adult samples collected from eight different 

coastal localities, to assess the spatial genetic stock structure of white steenbras throughout its 

distribution, and provide information on the level of genetic mixing between areas to support the 

findings of the movement studies. Mitochondrial DNA and microsatellite analyses were used in 

conjunction, in a phylogeographic approach to infer demographic history and contemporary 

population genetic structure over the species’ distribution range, and assess whether population 

declines are reflected by reductions in genetic diversity. The key research questions were: 

 

1. What is the spatial genetic variability of white steenbras? 

2. Does white steenbras exist as a single stock, or is there evidence of multiple genetic stocks? 

 

2.2.4 Assimilation of catch and other fishery-related data 

There are numerous methods available for assessing the status of fish stocks and determining the 

effects of fishing on fishery resources. Data for such assessments are usually collected from the 

fishery (fishery-dependent data) or through controlled research surveys (fishery-independent data) 

(Samoilys and Gribble 1997).  

 

Fishery-dependent data  

Fishery-dependent data are related directly to the fishery, and may be collected for recreational, 

commercial or subsistence sectors. These data can be collected by the fishery, and are therefore 
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cheap and can be collected for a long time-series (Penney et al. 1999). Such surveys provide 

information on catch, effort, gear types, fishing patterns and locations of fishing grounds, which are 

important for understanding the impacts of fishing on the stocks (Die 1997). The National Marine 

Linefish System (NMLS) was developed in South Africa from 1983 to 1985, by the Oceanographic 

Research Institute and the former Sea Fisheries Research Institute, to provide a database of catch 

and effort data from the fisheries (commercial and recreational) that target linefish (van der Elst and 

Penney 1995). The NMLS, regarded as the largest geo-referenced species database globally 

(McIntyre 2010), contains data resulting from voluntary recreational catch card returns, compulsory 

commercial catch returns, and competition angling data as well as from access point and roving creel 

surveys (Mann et al. 1997).  

 

Commercial fishery data can be obtained from catch returns (Crawford and Crous 1982, Penney et 

al. 1999), which have been a compulsory requirement in most commercial fisheries in South Africa 

since 1976 (Lamberth 1996). However, such fishery-dependent data are limited to certain times and 

areas of operation, and many fisheries target specific groups of species (Penney et al. 1999) or areas 

of higher density (Saville 1977) and may, therefore, provide data that are not representative of a 

population or a species as a whole (Die 1997). Due to the nature of the fish processing onboard 

fishing vessels, catch data are commonly pooled by genus or family, or other groupings, such as the 

grouping of certain species of the family Sparidae into “redfishes” (Crawford and Crous 1982), 

making individual species assessments difficult or impossible. Furthermore, catch data are based on 

that recorded by the industry and may be inaccurate or untrustworthy (Lamberth et al. 1994).  

 

Recreational fishery data can be collected through roving creel surveys (e.g. Brouwer et al. 1997, 

Mann et al. 2003), access point surveys (Brouwer and Buxton 2002, Fennessy et al. 2003), daily catch 

cards (Hanekom et al. 1997, Penney et al. 1999), and telephonic or postal surveys (Mann et al. 1997, 

McGrath et al. 1997). Roving creel surveys are suitable for collection of shore-based catch and effort 

data, and allow high numbers of respondents to be intercepted, but rely on reports of individual 

anglers (Brouwer et al. 1997). Access point surveys, suitable for assessment of skiboat catches, are 

inexpensive and allow measuring and accurate species identification, but provide no record of 

discarded catch (Brouwer and Buxton 2002). Catch cards are inexpensive and can provide large 

datasets, but are often inadequately completed and the accuracy of the catch data and species 

identification are unknown (Hanekom et al. 1997). Fishery-dependent data are also not available for 

protected areas, therefore preventing the possibility of comparison between protected and 

exploited areas (La Mesa and Vacchi 1999).  
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Despite the disadvantages described, the low cost and ease of collection, the possibility of collecting 

long series of data and the high number of participants involved make fishery-dependent data a 

valuable tool for the assessment of fish stock status. However, to overcome these drawbacks, and to 

provide some form of calibration of catch rates, fishery-dependent data can be complemented with 

fishery-independent data, recorded during research or long-term monitoring programmes.  

 

Fishery-independent data  

Fishery-independent surveys are more accurate, more representative and more reliable, as the data 

are recorded by researchers or rangers, and fish that are caught can be accurately identified and 

measured (Attwood 2002). Furthermore, research sampling can be conducted in protected areas. A 

review of methods is beyond the scope of the current thesis, and this section will be restricted to 

research angling, as applied to the current study. 

 

Research angling is commonly used in recreational and commercial fishery assessments to provide 

an index of abundance (Bannerot and Austin 1983), and is effective for use in long-term monitoring 

(Millar and Willis 1999, Attwood 2003). Research-based catch-per-unit-effort (CPUE) data provide an 

empirical means for monitoring temporal variability, particularly for assessment of the effects of 

fishing on fish populations, and assessment of the effectiveness of marine reserves, and have 

therefore been used in numerous such programmes (Bennett and Attwood 1993, Underwood 1991, 

Edgar and Barrett 1997, Zeller and Russ 1998, Millar and Willis 1999, Cowley et al. 2002). As hook-

and-line angling is both species and size selective, fishing surveys are suggested to provide non-

representative estimates of species composition and length-frequency distributions (Perrow et al. 

1996, Willis et al. 2000). However, fishing can provide a good representation of the species and 

length-frequency distributions of fishes available to the fishery, i.e. “fish of harvestable size” (Zeller 

and Russ 2000).  

 

As an index, CPUE assumes constant catchability of individuals (Arreguin-Sanchez 1996). Buxton and 

Allen (1989) caution researchers that line fishing fails the assumption of equal catchability, as this 

may vary according to the level of fishing pressure or because of density-dependent competition for 

food, particularly in areas of high fish density (Millar and Willis 1999). When captured, fish are 

subjected to stress and possible injury or incidental mortality as a result of barotrauma injuries or 

damage to the gills or viscera that may be caused by complete hook ingestion (Willis et al. 2000). 

However, hook-and-line fishing is relatively inexpensive, requires simple equipment and less skilled 
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personnel, and a large sample size can be easily achieved. Importantly, the method allows 

comparisons among studies that have used this technique (Perrow et al. 1996).  

 

Fishery-independent and fishery-dependent data in conjunction 

Numerous studies have employed either fishery-independent or fishery-dependent catch data for 

assessing a fish stock, or trends in its abundance. Bennett (1993a) presented recreational and 

commercial fishery-dependent catch data for white steenbras, up to 1992. Attwood (2003) adopted 

a novel approach to assess the impacts of fishing on the stock of galjoen, in South Africa, based on 

relatively long-term (13-year) fishery-independent CPUE and conventional tag-recovery data. 

However, a combination of the two data sources would provide a more robust assessment, although 

few such studies have been conducted and these are mainly focussed on offshore species. McCord 

(2005) assessed trends in the catch and CPUE of soupfin sharks Galeorhinus galeus in South Africa, 

from fishery-dependent and -independent longline and handline data, although this assessment was 

based largely on short-term datasets (3 to 5 years). An assessment of longer-term (16 years) data 

was conducted by Pecquerie et al. (2004) on 15 pelagic and demersal fishery species off the South 

African south and west coasts, based on commercial trawls, research trawls and hydroacoustic 

surveys, aimed at providing spatial density classification for each species, for incorporation into 

stock assessment models.  

 

Stock assessment methods 

The Linefish Management Protocol in South Africa requires that linefish stocks be assessed using 

conventional stock production or age-structured models (Griffiths et al. 1999), based largely on 

fishery-dependent data. Such analyses have been applied to a number of species; for example, red 

roman and dageraad Chrysoblephus cristiceps (Buxton 1992), white steenbras (Bennett 1993a), 

panga Pterogymnus laniarius (Booth 2000) and stonebream Neoscorpis lithophilus (Mann et al. 

2002). However, in many cases, suitable data are not available on which to base such models (Potts 

et al. 2008), the growth rate of the species has not yet been determined or validated, or the 

mortality rate has not been determined. Spatial variation in population structure and abundance 

within the stock range may also complicate such modelling procedures or bias results (Attwood 

2003). In such cases, the stock status can be assessed by elucidating trends in catch and CPUE 

(Honey et al. 2010). Analysis of trends in fishery-dependent and -independent catch data is simpler 

and more cost effective than obtaining the required data for stock assessment based on production 

models (Attwood 2003). 
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Application of historical catch and fishery-related data in this study 

Available commercial and recreational fishery catch data were analysed, to identify trends in catch, 

effort, targeting and CPUE of white steenbras, over the past c50 years, in relation to historical 

management regulations for the species. These data were obtained from published roving creel and 

access point surveys, commercial catch returns, private catch logs and the NMLS, and supplemented 

by fishery-independent data collected through long-term ecological research programmes, both in 

estuaries and the marine environment. The key research questions were: 

 

1. What is the current status of the white steenbras stock? 

2. What are the trends in catch, effort and CPUE in the recreational and commercial fisheries? 

3. Have historical and current management regulations been effective in protecting white 

steenbras during different stages of its life history? 

 

Furthermore, by drawing from the movement, genetics and stock status components of this study, 

and from the literature, the current status of white steenbras conservation along the South African 

coastline was assessed. The current level of protection offered to white steenbras within estuarine 

and marine protected areas, and the availability of suitable habitat in estuaries and the inshore 

marine environment were also assessed, to assist in the identification of suitable management 

measures, for corrective management of the species. The key research questions were: 

 

1. Are white steenbras and its critical habitats suitably protected? 

2. What is the current status of white steenbras conservation, relative to national and 

international criteria? 

3. What future management measures would be most suitable for the white steenbras? 

 

 

 

 

 



 

 

Chapter 3

Estuarine area use and home range 

 

3.1 Introduction 

Understanding movement behaviour of a fish species is central to understanding its ecology. This 

requires information on movement patterns within key habitats and during different life stages 

throughout the animal’s life history. Estuaries provide essential nursery habitats for numerous fish 

species, by offering shelter, protection from marine predators and a rich supply of food during the 

juvenile life stage (Bennett and Branch 1990). In so doing, estuaries form important components in 

the life-histories of many estuarine-dependent coastal fish species, and contribute substantially to 

coastal fish populations (Baird et al. 1996, Lamberth and Turpie 2003).  

 

In South Africa, many of the species that depend on estuaries, such as dusky kob Argyrosomus 

japonicus, leervis Lichia amia and white steenbras Lithognathus lithognathus (Whitfield 1983), are 

fishery species of commercial or recreational value. A comprehensive understanding of the 

movement patterns, home range dynamics and habitat use of estuarine-dependent fish species 

within the estuarine environment is essential for effective conservation and the formulation of 

management decisions regarding such species (Egli and Babcock 2004, Whitfield and Cowley 2010). 

Despite this need, information pertaining to estuarine movement patterns, habitat use and 

dependency of many estuarine-associated fishery species is lacking (Cowley and Whitfield 2001). In 

recent years, however, the movement patterns of fishes in South African estuaries have received 

some attention, through the use of acoustic telemetry, for example spotted grunter Pomadasys 

commersonnii in the Great Fish (Næsje et al. 2007, Childs et al. 2008b) and East Kleinemonde 

(Kerwath et al. 2005) estuaries, and dusky kob in the Great Fish Estuary (Cowley et al. 2008). 

However, movement behaviour of one of South Africa’s most threatened coastal fishery species, 

white steenbras, has been the focus of little attention.  

 

White steenbras is classified as a category IIa3 species (Whitfield 1994), meaning that the species has 

an obligatory estuarine-dependent juvenile phase. It has even been suggested that if denied access 

to estuaries as juveniles, the species may become extinct (Wallace et al. 1984a). The range of 

estuaries within which juvenile white steenbras are found is also limited, as a result of the restricted 

                                                
3 Euryhaline marine species which usually breed at sea: juveniles dependent on estuaries as nursery areas 
(Whitfield 1994) 
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geographical range of the stock, from the Orange River mouth in the west to the Mbashe Estuary in 

the east (Bennett 1993a). Juveniles use estuaries predominantly from the Berg Estuary in the west to 

the Great Kei Estuary in the east (Bennett 1993b), and are found in low numbers in estuaries further 

west (Lamberth et al. 2008) or further east (Begg 1984, Harrison and Whitfield 1995). 

 

According to Day’s (1980) definition, there are 259 systems along the South African coastline that 

function as estuaries. However, only 117 occur approximately within the distributional range of 

juvenile white steenbras. According to Whitfield’s (1992) classification, the majority (70%, n = 82) of 

these 117 estuaries are classified as temporarily open/closed estuaries (Reddering and Rust 1990), 

although other estuary types, such as freshwater-deprived and freshwater-dominated permanently 

open estuaries are also present (Whitfield 2000). These different estuary types differ widely in 

physico-chemical and biological characteristics. Therefore, to fully understand the movement 

patterns of an estuarine species and the implications of estuarine dependency it is important to 

understand how movements and area use patterns change from one estuary type to another.  

 

Research investigations are therefore essential, to provide information on movement patterns, 

distribution and habitat use (Able and Hales 1997). Movement studies can also assist in elucidating 

the role of different habitats in the life history of a species (Egli and Babcock 2004), thereby helping 

to identify ecologically important areas (Able and Grothues 2007a). Such information enhances the 

understanding of the species’ ecology, and is essential for identifying suitable management 

measures for species of fishery importance, such as determining the potential effectiveness of 

estuarine or marine protected areas (Jones 2005). 

 

3.1.1 Aims and objectives 

The aims of this chapter were to determine and compare home range characteristics and area use 

patterns of juvenile white steenbras in a range of estuary types. Specific objectives were as follows: 

 

i. Conduct a preliminary assessment of estuarine movement patterns of juvenile white 

steenbras; 

ii. Determine distribution, area use and home range size and location in a temporarily 

open/closed estuary; 

iii. Determine distribution, area use and home range size and location in two permanently 

open estuaries; and 

iv. Compare area use and home ranges among the different estuaries.  
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3.2 Methods and materials 

3.2.1 Telemetry study design 

Acoustic telemetry studies were conducted in four warm-temperate estuaries along the Eastern 

Cape coastline of South Africa, including the medium-sized permanently open freshwater-dominated 

Great Fish Estuary, the small temporarily open/closed East Kleinemonde Estuary, the large 

permanently open freshwater-deprived Kariega Estuary and the large permanently open freshwater-

dominated Sundays Estuary (Figure 3.1).  

 

 

Figure 3.1: Map of the general study area showing the locations of the four estuaries in which the 

white steenbras acoustic telemetry studies were conducted, and the nearby estuaries. The inset 

shows the Eastern Cape Province and the position of the general study area along the coastline  

 

The scientific approach adopted during the telemetry study in each estuary differed, according to 

the specific objectives being addressed. Consequently, the acoustic transmitters implanted into fish 

during each estuary also differed in size, battery life and pulse frequency (Table 3.1).  

 

The first study was conducted in the permanently open Great Fish Estuary (Figure 3.1), from 

September to October 2003. This estuary is a medium-sized, channel-like system with uniform 

bathymetry, providing a simple estuary in which to conduct a preliminary acoustic telemetry study. 

This preliminary study provided the first assessment of juvenile white steenbras area use, residency 

and home range size and location within in an estuary, and the results assisted in the design of the 

subsequent studies in the other estuaries. This study focussed on assessing area use of small 

individuals, so small transmitters with short battery lives were used. Furthermore, the random 

nominal delay between transmitter signals was short (5 to 15 s), to allow for manual tracking. 
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The second study was conducted in the small, temporarily open/closed East Kleinemonde Estuary 

(Figure 3.1), from February to September 2008. Biological and physiological components of this 

estuary have been well documented (inter alia Badenhorst 1988, Cowley and Whitfield 2001, Teske 

and Wooldridge 2001, Smakhtin 2004, Whitfield et al. 2008). This estuary is predominantly closed to 

the sea, which provided the opportunity to assess home range dynamics and area use, whilst 

excluding the tidal influence and the associated fluctuations in salinity and temperature. The closed 

mouth also provided a safe environment in which to undertake night-time, boat-based manual 

tracking. This study was aimed at assessing long term area use patterns as well as home range 

dynamics. As such, two groups of fish were equipped with transmitters of different specifications, 

each to meet different objectives. The assessment of long-term area use required transmitters with 

a longer battery life. Ten individuals were equipped with “long-period” transmitters, with a nominal 

delay of 60 to 180 s. The assessment of home range dynamics required manual tracking and, thus, 

transmitters with a shorter nominal delay. It was felt that a nominal delay of 20 to 60 s was suitable 

for manual tracking in this system, due to the closed mouth, lack of current, and weak thermocline 

and halocline, but would still provide sufficient battery life for assessing area use. Six individuals 

were tagged with these “short-period” transmitters (Table 3.1). This represented the first long-term 

(eight months) telemetry study on white steenbras, and used both manual and passive acoustic 

telemetry. 

 

The third and fourth studies were conducted in the freshwater-deprived Kariega Estuary from March 

2009 to February 2010, and the freshwater-dominated Sundays Estuary from March to November 

2010, respectively (Figure 3.1). Both estuaries are permanently open to the sea, but differ 

considerably in their freshwater input. The aims of these two studies were to assess distribution and 

area use within permanently open estuaries, and provide insight into the environmental variables 

influencing white steenbras movement within estuaries, which will be addressed in Chapter 5. These 

two studies were aimed at collecting long-term data; therefore transmitter size had to be increased, 

to allow for greater battery life. The Kariega Estuary is characterised by large shallow sandbanks near 

the mouth and above the road bridge (Figure 3.2), where it was not possible to position acoustic 

receivers, as they would have been exposed during the low tide. As such, it would be possible for 

fish to enter these shallow areas on the high tide, without being detected.  
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Figure 3.2: Kariega Estuary main sandbank at a) high and b) low spring tides 

 

Therefore, manual tracking was conducted to confirm whether fish absent from the moored receiver 

array at high tide had moved onto the shallow sandbanks. As the main aim of this study was to 

assess area use and tidal influence on movement, the transmitters had to be suitable for both 

manual tracking and long-term area use assessment by means of stationary receivers. Coded 

transmitters with a nominal delay of 15 to 30 s were thus selected for this study. The study 

conducted in the Sundays Estuary aimed to assess long-term area use and temporal movement 

patterns. As manual tracking was not required, a nominal signal delay of 20 to 60 s was selected, to 

allow for a longer battery life. The specifications of the acoustic transmitters used in each estuary 

are presented in Table 3.1. 

 

Table 3.1: Specifications of coded transmitters surgically implanted into white steenbras in the Great 

Fish, East Kleinemonde, Kariega and Sundays estuaries. Battery life (days) was that expected by the 

manufacturer (THELMA BIOTEL, Trondheim, Norway or VEMCO, Halifax, Canada). The delay was the 

random nominal delay between signal transmissions. All transmitters emitted signals on a frequency 

of 69 kHz 

Estuary n Model Make 
Length 
(mm) 

Diameter 
(mm) 

Weight in 
water (g) 

Battery 
life (d) 

Delay 
(s) 

Great Fish 10 MP-7 THELMA 18.0 7.3 1.2 14 5 - 15 

East Kleinemonde 10 V7-4L-R64K VEMCO 20.5 7.0 0.8 230 60 - 180 

East Kleinemonde 6 V7-4L-R04K VEMCO 20.5 7.0 0.8 100 20 - 60 

Kariega 10 MP-9-SHORT THELMA 23.0 9.0 2.2 140 15 - 30 

Sundays 15 V9-2L- R04K VEMCO 29.0 9.0 2.9 206 20 - 60 
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3.2.2 Study areas 

Each of the study estuaries was divided into mouth region and lower, middle and upper reaches, 

based on current speed, sediment and salinity divisions as suggested by McLusky (1989) and Cowley 

and Whitfield (2001). Salinity was classified in each region according to the Venice system: 

oligohaline (0.5 – 4.9), mesohaline (5.0 – 17.9), polyhaline (18.0 – 29.9) or euhaline (30.0 – 39.9). 

 

Great Fish Estuary 

The Great Fish (Figure 3.3) is a permanently open, freshwater-dominated estuary with a mean 

annual runoff (MAR) of approximately 479 x 106 m3 (Grange and Allanson 1995), fed by a catchment 

of 29 937 km2 (Grange et al. 2000). The narrow channel-like estuary is approximately 12 km long, 30 

to 100 m wide, has a mean depth of 1.9 m (Harrison 2004) and approximate surface area of  

1 360 000 m2.  

 

Figure 3.3: Map of the Great Fish Estuary study area, showing the positions of the eight stationary 

acoustic receivers (numbered black dots) and approximate boundaries and salinity categories of the 

different estuary reaches  

 

The estuary receives water from the Orange River, through the Orange-Fish River inter-basin 

transfer (IBT) scheme and, as a result, exhibits high nutrient and phytoplankton production levels 
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(Whitfield et al. 1994). The estuary is highly turbid (Whitfield 1994, Grange et al. 2000), exceeding 

200 FTU during the current study. There is a moderate axial and strong vertical salinity gradient 

(Table 3.2) and values recorded during this study were similar to those reported by Whitfield (1994). 

The temperature range, 13 to 21°C in the lower reaches (Allanson and Read 1987) and 11 to 26°C in 

the upper reaches (Whitfield 1994), reflects the warm-temperate biogeographical region of the 

South African coastline within which the estuary enters the sea, at 33°30’S; 27°08’E (Whitfield et al. 

1994). Environmental variables were recorded daily from 29 September to 17 October 2003, at eight 

fixed stations that corresponded with the location of each stationary data-logging acoustic receiver 

(Table 3.2). 

 

Table 3.2: Summary of mean (± SD) surface (S) and bottom (B) environmental variables recorded 

daily at each stationary acoustic receiver in the Great Fish Estuary (29 September to 17 October 

2003) 

Station Salinity Water temp (°C) Turbidity (FTU) 
Current speed 

(m.s-1) 
Depth (m) 

1 
S 20.8 (± 8.8) 18.0 (± 1.0) 17.6 (± 6.5) 0.38 (± 0.18) 1.28 

(± 0.28) B 29.2 (± 6.3) 17.1 (± 0.7) 19.3 (± 10.3) 0.14 (± 0.09) 

2 
S 14.1 (± 4.6) 18.8 (± 1.1) 26.5 (± 9.1) 0.33 (± 0.18) 2.75 

(± 0.32) B 31.4 (± 2.9) 17.1 (± 0.6) 61.8 (± 43.1) 0.10 (± 0.18) 

3 
S 10.4 (± 4.9) 19.7 (± 0.8) 33.3 (± 15.2) 0.28 (± 0.17) 1.49 

(± 0.26) B 27.8 (± 4.5) 17.9 (± 0.7) 50.5 (± 27.4) 0.10 (± 0.10) 

4 
S 7.6 (± 4.3) 20.3 (± 0.9) 48.7 (± 29.4) 0.30 (± 0.17) 0.90 

(± 0.20) B 16.0 (± 11.5) 19.1 (± 1.3) 56.2 (± 27.2) 0.10 (± 0.11) 

5 
S 4.6 (± 3.2) 20.5 (± 1.0) 68.1 (± 48.2) 0.35 (± 0.18) 2.38 

(± 0.23) B 26.8 (± 7.0) 18.1 (± 0.8) 80.3 (± 59.6) 0.04 (± 0.04) 

6 
S 2.7 (± 2.5) 21.1 (± 0.7) 82.6 (± 47.6) 0.35 (± 0.15) 1.89 

(± 0.31) B 13.7 (± 12.5) 19.8 (± 1.5) 94.6 (± 65.2) 0.12 (± 0.09) 

7 
S 2.8 (± 3.7) 21.6 (± 0.9) 114.6 (± 48.2) 0.24 (± 0.13) 4.78 

(± 0.70) B 7.0 (± 6.6) 20.7 (± 0.9) 167.8 (± 67.5) 0.06 (± 0.12) 

8 
S 0.0 (± 0.0) 21.8 (± 0.8) 121.8 (± 38.4) 0.13 (± 0.07) 4.43 

(± 0.70) B 0.4 (± 0.9) 21.4 (± 1.0) 154.9 (± 42.9) 0.10 (± 0.09) 

 

Variables recorded included surface and bottom salinity (Atago handheld refractometer), 

temperature (°C, digital thermometer), turbidity (FTU, Hanna 93703 turbidity meter) and current 

speed (m.s-1, Höntzsch Flowtherm current meter), as well as depth (m, graduated weighted rope). 

Bottom water was sampled using a Van Dorn-type water sampler, from approximately 0.3 m above 

the substrate to avoid disturbing the sediment.  
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East Kleinemonde Estuary 

The East Kleinemonde (Figure 3.4) is a small temporarily open/closed estuary fed by a catchment of 

46.3 km2 with an estimated MAR of 2 x 106 m3 (Badenhorst 1988), and enters the sea at 33°32΄S; 

27°03΄E. The estuary is approximately 3.5 km in length, with a surface area of approximately 307 600 

m2 when at maximum capacity and 205 000 m2 at its lowest state (Whitfield et al. 2008). 

 

 

Figure 3.4: The East Kleinemonde Estuary showing the different estuarine reaches, locations of 

shallow sand and sand/mud flats, tagging localities for fish tagged with long-period (A) and short-

period (B) transmitters, and positions of the six stationary acoustic receivers (numbered black dots) 

 

The estuary is relatively narrow, with a maximum width of approximately 220 m, occurring above 

the road bridge. Due to regular long periods of mouth closure, the estuary has been referred to as an 

intermittently open system (Bell et al. 2001, Cowley et al. 2001). During this study, the estuary 

mouth remained closed for most of the eight-month period (12 February to 18 September 2008). 

However, a single open mouth phase, lasting only one day, occurred at the beginning of September 

2008 as a result of overwash associated with an exceptionally rough sea event. Temperature loggers 

(VEMCO, Halifax, Canada, model Minilog8-TR) were attached to the moorings of two data-logging 

acoustic receivers, receiver 1 (2.5 m deep) and receiver 6 (0.5 m deep), to record the axial 

temperature gradient between the mouth and upper reaches, respectively. Two additional 

temperature loggers, one attached to a buoy at the surface near receiver 2 and one at the base of 
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the bridge pylon (Figure 3.4), in the deepest part of the estuary (4.5 m deep), were positioned to 

record temperature trends in the potentially warmest and coolest depth strata of the estuary, 

respectively, throughout the study period (Figure 3.5).  

 

 

Figure 3.5: Mean daily temperatures (± SD) recorded at the temperature loggers positioned a) in the 

mouth region, b) in the upper reaches, c) at the substrate and d) at the surface, in the East 

Kleinemonde Estuary  

 

There was little vertical or horizontal temperature stratification during the study period, with similar 

trends (based on hourly recordings) recorded at all four loggers (Figure 3.5). However, a distinct 

seasonal variation in temperature was observed during the study period with a maximum 

temperature of 29.9°C recorded during summer (January) at the upper temperature logger and a 

minimum of 10.9°C recorded in winter (July) at the mouth temperature logger (Figure 3.5). Salinity 

could not be recorded on an hourly basis, as was done for temperature; however, surface and 

bottom salinity recordings taken at each positional fix (n = 153 fixes) during manual tracking differed 

by only 0.5 (±1.0), indicating a weak or often absent halocline. 
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Kariega Estuary 

The Kariega Estuary (Figure 3.6) is a medium-sized, permanently open estuary that is tidal to 

approximately 17 km from the mouth and enters the sea at 33°41ʹ S; 26°44ʹ E (Grange et al. 2000). 

The estuary is supplied by a small catchment (688 km2), has a low MAR (15 х 106 m3) and is 

characterised by a series of impoundments and excessive water abstraction, resulting in severe 

freshwater deprivation (Grange and Allanson 1995). Mean annual flow from 1985 to 2010 was 4.75 х 

106 m3 (± 8.48 x 106 m3) (DWAF 2011). As a result, the estuary is marine-dominated, with deposition 

of marine sand up to 3.5 km from the mouth. The ratio of tidal prism volume to river volume is 

106:1, further highlighting the low freshwater inflow.  

 

 

Figure 3.6: The Kariega Estuary showing positions of the stationary acoustic receivers (numbered 

black dots), temperature/pressure data loggers (white triangles), the tagging site and the different 

estuarine reaches. The dark grey section represents the large intertidal sandbank, and the diamond 

in the mouth represents station 1 for recording of environmental data  
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As a result of this low inflow, turbidity throughout the system seldom exceeds 10 NTU. The most 

striking feature is the presence of a reverse salinity gradient, with salinity values in the upper 

reaches remaining as high as 45. Environmental data were recorded every third day from 26 March 

to 5 June 2009 (every manual tracking day), at five locations within the Kariega Estuary; at the 

mouth and at receivers 1, 7, 11 and 15 (Figure 3.6). Environmental variables recorded included 

surface and bottom recordings for salinity (Extech RF20 refractometer), water temperature and 

turbidity, as well as surface current speed (rate of movement of a neutrally buoyant object to drift 2 

m) and direction, water depth and secchi depth (Table 3.3). Four temperature/pressure data loggers 

(VEMCO, model Minilog8-TDR) were positioned at the same receivers (1, 7, 11 and 15), to record 

hourly temperatures and water depths. 

 

Table 3.3: Summary of mean (± SD) surface (S) and bottom (B) environmental variables recorded 

daily at each station in the Kariega Estuary, during the study period (26 March to 5 June 2009) 

Station 
(Receiver) 

Salinity 
Water temp 

(°C) 
Turbidity 

(FTU) 
Current speed 

(m.s-1) 
Depth (m) 

1 
(Mouth) 

S 37.8 (± 0.8) 16.7 (± 1.5) 4.0 (± 1.2) 0.48 (± 0.24) 2.22 
(± 0.37) 

 
B 38.1 (± 0.8) 16.7 (± 1.5) 4.5 (± 1.7)  

2 
(Rec 1) 

S 37.9 (± 0.6) 17.0 (± 1.6) 4.5 (± 1.4) 0.38 (± 0.16) 2.24 
(± 0.34) 

 B 38.2 (± 0.4) 17.1 (± 1.6) 4.7 (± 1.6)  

3 
(Rec 7) 

S 38.1 (± 0.9) 18.5 (± 2.3) 4.4 (± 1.0) 0.13 (± 0.09) 2.71 
(± 0.38) 

 B 38.3 (± 0.8) 18.4 (± 2.5) 6.2 (± 1.7)  

4 
(Rec 11) 

S 40.9 (± 1.4) 19.7 (± 3.2) 4.9 (± 1.9) 0.12 (± 0.07) 2.52 
(± 0.34) 

 B 41.8 (± 1.1) 19.5 (± 3.0) 8.4 (± 3.1)  

5 
(Rec 15) 

S 43.5 (± 1.5) 19.7 (± 3.4) 5.3 (± 1.8) 0.08 (± 0.05) 2.3 
(± 0.28) 

 B 44.3 (± 0.8) 19.7 (± 3.2) 8.1 (± 2.4)  

 

 

Sundays Estuary 

The Sundays Estuary (Figure 3.7) is a channel-like system, approximately 21 km in length, which 

enters Algoa Bay at 33°43ʹ S; 25°51ʹ E (Beckley 1984). The system is characterised by a lack of 

sandflats, mudflats and salt marches, and has few submerged aquatic macrophytes. The estuary is 

supplied by a large catchment (20 729 km2) with a mean annual rainfall of 323 mm (Harrison and 

Whitfield 1990), has a high MAR of 200 х 106 m3 (Perry 1983 in MacKay and Schumann 1990) and is 

subject to periodic flooding and high levels of freshwater inflow (Wooldridge and Bailey 1982). Mean 

annual flow volume from 1985 to 2010 was 107.87 х 106 m3 (± 22.40 106 m3) (DWAF 2011). A 

horizontal salinity gradient is present, with salinity increasing from the upper reaches to the mouth 
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(Harrison and Whitfield 1990), and a strong vertical salinity gradient is present as a result of 

saltwater intrusion (Wooldridge and Bailey 1982).  

 

 

Figure 3.7: The Sundays Estuary showing positions of the stationary acoustic receivers (numbered 

black dots), temperature/pressure data loggers (white triangles), tagging sites and the different 

estuarine reaches  

 

Environmental data in the Sundays Estuary were collected on an ad hoc basis from March 2008 to 

November 2010 (Table 3.4). Five temperature/pressure data loggers (VEMCO), positioned on 

receivers 1, 6, 12, 15 and 16, recorded hourly water temperatures and water depths. 
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Table 3.4: Summary of mean (± SD) surface (S) and bottom (B) environmental variables recorded at 

fixed stations in the Sundays Estuary, over an extended period (March 2008 to November 2010)  

Station 
(Receiver) 

Salinity 
Water temp 

(°C) 
Turbidity (FTU) 

Current speed 
(m.s

-1
) 

Depth 
(m) 

1 
(Rec 1) 

S 31.2 (± 7.0) 19.4 (± 3.4) 9.8 (± 7.9) 0.27 (± 0.15) 1.76 
(± 0.27) B 34.2 (± 4.6) 19.3 (± 3.1) 9.0 (± 9.0)  

2 
(Rec 3) 

S 26.3 (± 9.2) 19.9 (± 4.0) 11.4 (± 9.6) 0.31 (± 0.11) 4.18 
(± 0.70) B 34.3 (± 3.7) 19.4 (± 3.6) 19.0 (± 10.7)  

3 
(Rec 5) 

S 18.5 (± 8.6) 20.8 (± 4.3) 10.5 (± 7.5) 0.23 (± 0.08) 2.32 
(± 0.38) B 28.8 (± 6.4) 20.1 (± 3.6) 47.3 (± 39.4)  

4 
(Rec 7) 

S 17.4 (± 5.7) 20.9 (± 4.3) 9.5 (± 6.4) 0.22 (± 0.11) 2.43 
(± 0.50) B 29.8 (± 1.5) 20.1 (± 3.2) 36.7 (± 32.3)  

5 
(Rec 9) 

S 13.9 (± 9.4) 20.9 (± 4.4) 12.8 (± 11.2) 0.14 (± 0.11) 2.11 
(± 0.37) B 24.7 (± 5.4) 20.1 (± 4.1) 29.1 (± 28.2)  

6 
(Rec 11) 

S 11.8 (± 6.9) 20.3 (± 4.3) 12.7 (± 11.4) 0.19 (± 0.17) 2.20 
(± 0.44) B 22.0 (± 3.6) 20.2 (± 3.6) 20.6 (± 13.5)  

7 
(Rec 13) 

S 6.8 (± 4.9) 20.3 (± 4.4) 14.1 (± 14.0) 0.17 (± 0.11) 1.54 
(± 0.30) B 13.4 (± 8.8) 20.3 (± 3.7) 25.5 (± 19.6)  

8 
(Rec 15) 

S 9.0 (± 12.9) 20.0 (± 4.5) 13.0 (± 11.3) 0.16 (± 0.11) 1.88 
(± 0.36) B 9.7 (± 9.2) 20.2 (± 3.7) 26.7 (± 23.3)  

9 
(Rec 16) 

S 1.8 (± 1.0) 19.7 (± 4.5) 21.2 (± 24.4) 0.14 (± 0.06) 1.71 
(± 0.27) B 2.2 (± 1.2) 19.7 (± 4.2) 33.0 (± 27.2)  

 

 

3.2.3 Fish capture and transmitter implantation 

White steenbras in the Great Fish Estuary were captured opportunistically while sampling for a 

different species during a separate study. The presence of these individuals, associated with a small 

patch of sand deposited in the upper reaches after a flood event in May 2003 (Childs et al. 2008a), 

provided an opportunity to investigate home range size and area use patterns of juvenile white 

steenbras in an estuary, for the first time. However, to prevent possible bias associated with 

sampling highly resident individuals in one section of an estuary, in the subsequent studies in the 

East Kleinemonde, Kariega and Sundays estuaries, attempts were made to capture and tag white 

steenbras throughout each system, by netting from the upper reaches to the mouth, However, in all 

three estuaries, white steenbras could only be captured in the lower reaches. All fish were captured 

using a seine net (50 m × 2 m, 15-mm bar mesh), deployed from a small boat, and held in situ in a 

75-L perforated container until surgery.  
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Fish were anaesthetised in a 25-L container, filled with estuary water containing 2-phenoxyethanol 

at a concentration of 0.3 ml/L. Once anaesthetized, each fish was measured to the nearest 

millimetre fork length (FL) and total length (TL), and placed ventral side up in a V-shaped wooden 

trough, lined with foam and a wet, super-absorbent cloth (Cowley et al. 2008). An incision of 

approximately 12 to 15 mm in length (minimum required for the transmitter) was made slightly 

lateral of the ventral midline of the fish, approximately 20 mm anterior to the anus (Kerwath 2005). 

Each transmitter was sterilised in alcohol and allowed to air dry before insertion into the peritoneal 

cavity, after which the incision was closed with two independent sutures (3/0 PermaHand suede, 

Johnson and Johnson). Opposing tissue layers were aligned, and held together by hand while the 

suture was tied. The fish was then placed in a 75-L ‘recovery’ bath filled with fresh estuary water and 

allowed to recover. After resuming an upright swimming position, it was released. During the 

surgery process the gills were continuously flushed with fresh estuary water to supply dissolved 

oxygen, maintain body temperature and remove metabolic waste (Johnson 2000). To prevent 

contamination of the open wound, all surgical tools were cleaned in alcohol prior to surgery. Fish in 

an excited state were not tagged, as oxygen debt can increase during surgery, which may result in 

post-surgery mortality from lactic acidosis (Summerfelt and Smith 1990). All fish were released at 

their site of capture. 

 

Ten white steenbras (± 1.5 years old), ranging from 154 to 184 mm FL (mean = 170 ± 8 mm), (Table 

3.5) were captured in the Great Fish Estuary, on 29 and 30 September 2003, and equipped with 

individually coded MP-7 acoustic transmitters. Mean surgery duration (time out of anaesthetic until 

time into recovery) was 3 min 22 s (± 16 s). Ten white steenbras (± 2.5 years old), ranging from 238 

to 302 mm FL (mean = 262 ± 21 mm), were captured in the lower reaches of the East Kleinemonde 

Estuary (Figure 3.4) on 12 February 2008, approximately 30 m above the road bridge, and tagged 

with long-period V7 transmitters, and six fish (± 2.5 years old), ranging from 235 to 266 mm FL 

(mean = 253 ± 14 mm), were captured in the mouth region and tagged with short-period V7 

transmitters. Mean surgery duration was 3 min 44 s (± 55 s). Ten white steenbras (± 2.5 – 3.5 years 

old), ranging from 215 to 379 mm FL (mean = 278 ± 51 mm) were captured in the Kariega Estuary on 

5 March 2009, approximately 1.5 km from the mouth (Figure 3.6). Fish were surgically equipped with 

MP-9 transmitters. Mean surgery duration was 2 min 57 s (± 21 s). Fifteen juvenile white steenbras 

(± 2.5 - 3 years old), ranging from 208 - 315 mm FL (mean = 238 ± 28 mm), were captured in the 

Sundays Estuary from 7 to 9 March 2010, between 2 km and 5 km from the mouth (Figure 3.7). 

These fish were tagged with V9 acoustic transmitters. Mean surgery duration was 3 min 1 s (± 21 s). 

Details of transmitter implantation for all fish are presented in Table 3.5.  
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Table 3.5: Capture and transmitter implantation details for white steenbras tagged in the Great Fish 

(GFR), East Kleinemonde (EKM), Kariega (KAR) and Sundays (SUN) estuaries 

Estuary Fish ID Capture date FL (mm) TL (mm) Surgery duration (mm:ss) Transmitter type 

GFR 73 29-09-2003 174 184 02:30 MP-7 (5 – 15) 

GFR 77 29-09-2003 178 197 04:34 MP-7 (5 – 15) 

GFR 79 30-09-2003 171 199 02:51 MP-7 (5 – 15) 

GFR 82 30-09-2003 154 192 03:34 MP-7 (5 – 15) 

GFR 83 29-09-2003 168 186 03:22 MP-7 (5 – 15) 

GFR 84 29-09-2003 167 181 03:05 MP-7 (5 – 15) 

GFR 86 30-09-2003 171 186 03:50 MP-7 (5 – 15) 

GFR 87 30-09-2003 170 187 03:06 MP-7 (5 – 15) 

GFR 88 29-09-2003 166 190 03:01 MP-7 (5 – 15) 

GFR 92 29-09-2003 184 172 03:48 MP-7 (5 – 15) 

EKM 3759 12-02-2008 291 325 05:15 V7 (60 – 180) 

EKM 3760 12-02-2008 302 341 05:22 V7 (60 – 180) 

EKM 3761 12-02-2008 274 309 03:57 V7 (60 – 180) 

EKM 3762 12-02-2008 267 300 05:06 V7 (60 – 180) 

EKM 3764 12-02-2008 254 284 03:28 V7 (60 – 180) 

EKM 3765 12-02-2008 247 276 04:06 V7 (60 – 180) 

EKM 3766 12-02-2008 238 266 04:15 V7 (60 – 180) 

EKM 3768 12-02-2008 247 280 03:25 V7 (60 – 180) 

EKM 3769 12-02-2008 255 288 03:21 V7 (60 – 180) 

EKM 3770 12-02-2008 247 278 03:00 V7 (60 – 180) 

EKM 2001 12-02-2008 247 278 02:25 V7 (20 – 60) 

EKM 2002 12-02-2008 235 267 02:56 V7 (20 – 60) 

EKM 2003 12-02-2008 266 300 03:05 V7 (20 – 60) 

EKM 2004 12-02-2008 265 299 02:57 V7 (20 – 60) 

EKM 2005 12-02-2008 240 272 04:12 V7 (20 – 60) 

EKM 2006 12-02-2008 262 293 02:51 V7 (20 – 60) 

KAR 2036 05-03-2009 379 428 02:40 MP-9 (15 – 30) 

KAR 2037 05-03-2009 307 337 02:44 MP-9 (15 – 30) 

KAR 2038 05-03-2009 268 304 03:11 MP-9 (15 – 30) 

KAR 2039 05-03-2009 244 273 03:17 MP-9 (15 – 30) 

KAR 2040 05-03-2009 215 242 03:40 MP-9 (15 – 30) 

KAR 2041 05-03-2009 227 256 02:30 MP-9 (15 – 30) 

KAR 2042 05-03-2009 318 363 03:04 MP-9 (15 – 30) 

KAR 2043 05-03-2009 234 262 02:44 MP-9 (15 – 30) 

KAR 2044 05-03-2009 302 351 02:56 MP-9 (15 – 30) 

KAR 2045 05-03-2009 284 319 02:43 MP-9 (15 – 30) 

SUN 64989 07-03-2010 236 267 03:20 V9 (20 – 60) 

SUN 64990 08-03-2010 224 253 02:30 V9 (20 – 60) 

SUN 64991 08-03-2010 208 233 03:00 V9 (20 – 60) 

SUN 64992 08-03-2010 208 233 03:12 V9 (20 – 60) 

SUN 64993 08-03-2010 315 356 02:55 V9 (20 – 60) 

SUN 64994 08-03-2010 256 278 03:17 V9 (20 – 60) 

SUN 64995 08-03-2010 236 264 02:54 V9 (20 – 60) 

SUN 64996 08-03-2010 277 310 03:30 V9 (20 – 60) 

SUN 64997 08-03-2010 208 233 03:07 V9 (20 – 60) 

SUN 64998 08-03-2010 223 248 03:21 V9 (20 – 60) 

SUN 64999 08-03-2010 235 260 03:03 V9 (20 – 60) 

SUN 65000 08-03-2010 235 262 03:24 V9 (20 – 60) 

SUN 65001 09-03-2010 235 266 02:44 V9 (20 – 60) 

SUN 65002 09-03-2010 232 262 02:33 V9 (20 – 60) 

SUN 65003 09-03-2010 245 274 02:23 V9 (20 – 60) 
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3.2.4 Acoustic telemetry 

Passive tracking 

To provide information on long-term area use, the positions of the tagged fish were passively 

monitored by an array of stationary automated data-logging acoustic receivers (models VR2 and 

VR2W, VEMCO, Nova Scotia, Canada) positioned throughout each estuary, spanning the mouth 

region and lower, middle and upper reaches (Figures 3.3, 3.4, 3.6, 3.7). When a fish entered the 

detection range of a receiver, the signal of the transmitter was detected by the receiver, and the 

unique transmitter code and the time and date were recorded. Each receiver was secured in a PVC 

pipe embedded in a 40-kg concrete mooring block (Figure 3.8). Receivers and PVC housings were 

coated with anti-fouling paint and deployed prior to capture of the fish. The receivers were 

strategically positioned, in areas of non-complex topography to avoid reduction of signal range due 

to ‘shadowing’ by solid obstacles (Egli and Babcock 2004, Kerwath 2005). Arrays of eight and six 

receivers were used in the Great Fish and East Kleinemonde estuaries, respectively, while 16 

receivers were used in each of the Kariega and Sundays estuaries.  

 

 

Figure 3.8: Mooring system used to secure stationary receivers in the study areas showing a) VR2W 

data-logging acoustic receiver, b) receiver and mooring block before deployment and c) diver 

retrieving receiver from mooring block 

 

The range over which transmitter signals are detected can be affected by submerged vegetation, 

bottom topography, water flow (Giacalone et al. 2005), propagation effects, ambient noise, 

temperature and salinity discontinuities, and suspended particulate matter (Stasko and Pincock 

1977, Lepage et al. 2005). Detection range decreases with increased ambient noise produced by 

heavy rains, breaking waves and strong wind, and the associated entrapment of air bubbles in the 

water (Lembo et al. 2002). As a result of the variability in detection ranges in different environments, 

each telemetry study was preceded by in situ range testing trials (Giacalone et al. 2005). An acoustic 
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transmitter, attached to a weighted line, was deployed at a range of distances from each receiver, to 

determine the maximum detection range. Detection ranges varied among and within estuaries, 

depending on the environmental conditions, such as tidal phase and wind speed (Childs et al. 

2008b). Maximum detection ranges of 110 to 610 m, 50 to 340 m, 110 to 350 m and 250 to 500 m, 

were observed at individual receivers in the Great Fish, East Kleinemonde, Kariega and Sundays 

estuaries, respectively. 

 

Passive tracking was continuous throughout each study period: September to October 2003 in the 

Great Fish Estuary, February to September 2008 in the East Kleinemonde Estuary, March 2009 to 

February 2010 in the Kariega Estuary and March to November 2010 in the Sundays Estuary.  

 

Manual tracking 

Manual tracking was used to assess home range sizes and locations in the Great Fish, East 

Kleinemonde and Kariega estuaries. Tagged fish were manually tracked from a small boat, using a 

directional hydrophone (VH110, VEMCO), connected to a portable receiver (VR60 or VR100, 

VEMCO). Tracking during each session was conducted systematically, starting at the mouth of each 

estuary and ending once all active transmitters had been located. When a transmitter signal was 

detected, the hydrophone gain was reduced and the boat was manoeuvred in the direction of 

maximum signal strength, until equal in all directions at the lowest gain (i.e. 0 db), at which time a 

GPS positional fix (Garmin GPS12, ± 5 m accuracy) was recorded for that fish. The boat was then 

anchored over the recorded position, and environmental variables (air and water temperatures, 

salinity, turbidity, current speed, secchi depth and water depth) were measured. 

 

Manual tracking was conducted daily in the Great Fish Estuary, from 30 September to 12 October 

2003, during daylight hours (07:00 – 18:00). In the East Kleinemonde Estuary, the aim of the manual 

tracking was to identify whether home range location was affected by time of day. As such, three 

tracking sessions, night-time (after 20:00), dawn (05:00 – 09:00, to record crepuscular activity) and 

midday (12:00 – 15:00), were conducted on each tracking day, during which all fish with active 

transmitters were detected. Manual tracking in this estuary was conducted every third day, from 28 

February to 30 April 2008. Manual tracking was conducted in the Kariega Estuary to provide 

information on home range sizes and locations, and to confirm whether fish used the shallow 

sandbank area outside the range of the receiver array. Manual tracking was conducted every third 

day from 26 March to 5 June 2009, during daylight hours (07:00 – 18:00).  
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Manual tracking accuracy can be affected by the swimming speed and depth of the fish, pulse-

repetition rate of the transmitter and the experience of the tracker (Stasko and Pincock 1977). 

Therefore, prior to the initiation of this study, the precision and accuracy with which fish positions 

could be detected during manual tracking were assessed. A transmitter, attached to a weighted line, 

was deployed by an assistant at a number of positions throughout an estuary, and the location of 

each deployment was withheld from the manual tracker, to test the accuracy with which the 

position of the transmitter could be detected. The error in position estimation was less than 2 m on 

each occasion.  

 

3.2.5 Data Analysis 

Fish require up to 24 hours to overcome the imbalance in blood concentrations of calcium, 

magnesium, sodium and other electrolytes caused by a change in gill permeability as a result of 

adrenalin and cortisol, released as a response to the stress of handling and surgery (Kreiberg 2000). 

Mulcahy (2003) suggests that after release (post surgery) fish often remain at the release site, 

reluctant to leave. Lower et al. (2005) agree that behaviour after release may be affected by the 

surgery or capture process, and that behaviour recorded within 12 to 24 hours post-surgery should 

not be included in the results. Pickering et al. (1982) reported recovery times of brown trout in 

excess of a week, and suggested that results obtained within the first two weeks should be 

interpreted with caution. Robichaud and Rose (2002) delayed tracking of Atlantic cod for 15 days 

after release to avoid inclusion of “potentially abnormal behaviour after surgery”. Similarly, Masters 

et al. (2005) allowed 10 days before tracking pike, to avoid distortion of results, as a result of the 

tagging process. Zeller (1997) commenced manual tracking immediately after release, but the first 

24 hours were not included in his analysis. In the current study, data for the first 24 hours were 

excluded from analyses, to avoid irregular behaviour that may result as a response to the stress of 

handling and surgery (Kreiberg 2000).  

 

Area use 

The length of estuary used by each individual was determined as the distance between the upper- 

and lower-most stationary receivers on which it was detected. While this is a conservative estimate, 

as a fish may have moved slightly beyond the upper- or lower-most receiver on which it was 

detected, the short distances between reception ranges of adjacent receivers and the low variability 

in estimates suggest that the method provides a suitable estimate of the length of the estuary used 

by each individual. Lengths of estuary used in each of the study estuaries were compared using a 

Kruskal-Wallis ANOVA (after a Shapiro-Wilk test showed that data were not normally distributed;  
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p < 0.001). Mean length of estuary used was then plotted against estuary length using linear 

regression, to determine whether the length of estuary used was related to estuary size. Statistical 

analyses were conducted in Statistica 10.0 (StatSoft. Inc., USA).  

 

Area use was quantified by the proportion of time each fish spent in the vicinity of each receiver 

(Cowley et al. 2008). All time spent between consecutive detections at each receiver was summed, 

and allocated to that receiver. Similarly, time spent between consecutive detections at neighbouring 

receivers was divided, and half the time allocated to each of the respective receivers. The total time 

spent by each individual within the vicinity of each receiver was thus determined as the sum of a) 

the time between consecutive detections at a single receiver, and b) half the time between 

consecutive detections at neighbouring receivers.  

 

Absence periods 

Stationary receiver data from the Great Fish, Kariega and Sundays estuaries showed that some fish 

were absent from the array (undetected) for extended periods, being last recorded and again first 

recorded on receiver 1, in the mouth region of each system. Such absence periods, depending on 

duration, have been treated in previous studies as representing “sea trips”, where the fish was 

assumed to have left the estuary if absent from the array for a certain minimum period e.g. 24 h. 

However, the position of the lower-most receiver in each estuary in the current study differed, due 

to the physical differences among estuaries. Therefore, assumptions of these periods representing 

time out of the estuary (i.e. the duration of a sea trip) varied among systems. Consequently, for the 

estuarine area use analysis, such absence times were neither allocated to a sea trip, as this could not 

be confirmed, nor to receiver 1, as presence within the estuary could not be confirmed. Absence 

periods in excess of 24 hours were, therefore, allocated simply to “absence” time, presented in the 

relevant figures as receiver ‘0’.  

 

To provide an assessment of these absence periods, or sea trips, considering the varying distances 

between the mouth and lower-most receiver within each system, two different minimum absence 

period durations were defined. Childs et al. (2008b), working in the Great Fish Estuary, South Africa, 

considered a fish to have undertaken a sea trip, if it was not detected on the receiver closest to the 

mouth (receiver 1) for a duration of at least 6 h (approximating one tidal phase), during which time it 

was not detected on any other receiver in the system. Alternatively, Cowley et al. (2008), working in 

the same estuary, considered such absence periods as representing sea trips only if they exceeded 

24 h (representing one diel cycle). In this estuary, in the current study and those of Childs et al. 
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(2008) and Cowley et al. (2008), receiver 1 was approximately 0.4 km from the open mouth. 

However, in the Sundays Estuary, receiver 1 was 2.3 km from the mouth. This meant that fish could 

have left the detection range of receiver 1 by moving towards the mouth, but not necessarily have 

left the estuary. Two minimum absence durations, 6 h and 24 h, were thus used as criteria. 

 

Home range analysis  

Home range sizes and locations were determined using a geographic information system (GIS) in 

ArcView 3.3 (Environmental Systems Research Institute) with the Animal Movement Analysis 

Extension (Hooge and Eichenlaub 1997). Core (50% utilisation distribution, UD) and home range 

(95% UD) areas were calculated from manual tracking positional fixes, using the fixed kernel home 

range utilisation distribution method (Worton 1989). The core areas and home ranges of each fish in 

the East Kleinemonde Estuary were calculated using all positional fixes, as well as separately for each 

time-of-day category (i.e. dawn, midday and night-time). The view projection parameters for the 

analyses were set according to those required for the geographical location of the general study 

area, as follows: 

 

Projection: Transverse Mercator (projection to retain accurate size and shape of study area) 

Spheroid: WGS84 (standard spheroid for GIS analyses of the South African context) 

Central meridian: 26 or 27 (based on the study area, 26 to 27° E) 

Scale factor: 0.9996 (precision of area estimates within 180 km east and west of central 

meridian) 

False Easting: 500 000 (the value added to the easting value, i.e. distance east of the centre of 

the zone of study from a central meridian, to ensure a positive easting value) 

False Northing: 10 000 000 (value added to northing value, i.e. distance north of a reference 

latitude, based on the study area being in the Southern Hemisphere) 

 

Depth during manual tracking 

Depth data recorded during tracking sessions conducted in the East Kleinemonde Estuary at the 

three different times throughout each tracking day (dawn, midday, night-time) were compared for 

Fish 2002, 2003 and 2004, for each of which 42 positional fixes were made (three positions per day 

for 14 days). These comparisons were made using the Kruskal-Wallis ANOVA (as the Shapiro-Wilk 

test for normality showed that variables differed significantly from the normal distribution, p < 0.01 

in most cases). 
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3.3 Results 

In the Great Fish Estuary, numbers of positional fixes made during manual tracking (range 1 – 13) 

and detections logged on the stationary receivers (range 1 – 9 491) varied considerably among 

individuals (Table 3.6). Three fish (ID codes 73, 77 and 79) were detected infrequently during manual 

tracking and also produced few receiver detections, and were, therefore, excluded from all analyses. 

While Fish 87 was detected only seven times by the stationary receivers, it was located on 11 

manual tracking days, possibly because it spent most of its time between receivers (i.e. outside of 

their detection ranges). This fish was included in the manual tracking analysis but was excluded from 

the passive tracking analysis due to the low number of detections. 

 

In the East Kleinemonde Estuary, the total numbers of stationary receiver detections also varied 

among individuals (range 1 261 – 95 853), for fish tagged with both long- and short-period 

transmitters (Table 3.6). The number of positional fixes obtained for the six individuals manually 

tracked also varied. Transmitter 2006 remained in the same location throughout the study period 

and the use of an underwater receiver (VEMCO, model VUR), confirmed that the transmitter had 

been expelled and covered by sediment. This fish was excluded from all analyses. Data for home 

range analyses were obtained from the remaining five fish. Fish 2001 and Fish 2005 were last 

detected 20 and 37 days after tagging, respectively. Their absence from the estuary after these dates 

was confirmed by the subsequent data upload from the stationary receivers, which showed that 

neither fish had passed the uppermost receiver into the riverine environment. As the estuary mouth 

was closed during this period, these fish were assumed to have been removed from the system by 

avian predation or capture by anglers. Consequently, 12 and 15 positional fixes were made for Fish 

2001 and 2005, respectively, while 42 were made for each of Fish 2002, 2003 and 2004. For each of 

these three fish, 14 detections were made during morning, midday and night-time tracking sessions. 

 

In the Kariega Estuary, nine of the ten individuals were present in the system until at least 92 days 

post-tagging, representing the end of the manual tracking period, with up to 685 025 stationary 

receiver detections for a single fish (Table 3.6). Fish 2044 left the estuary through the open mouth, 

prior to manual tracking. However, this individual was detected 3 526 times on the stationary 

receivers, and was therefore included in the area use analyses.  

 

In the Sundays Estuary, the number of receiver detections was again highly variable (range 1 305 – 

178 813) (Table 3.6). Although Fish 64989 was only detected 1 305 times on the stationary receivers, 

it was present in the estuary for 103 days post-tagging, and was thus included in the analyses. 
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Table 3.6: Stationary receiver detections, manual tracking positional fixes and home range (95% UD) 

and core area (50% UD) sizes for white steenbras tracked in the Great Fish (GFR), East Kleinemonde 

(EKM, L/S = long-/short-period), Kariega (KAR) and Sundays (SUN) estuaries (*individuals excluded 

from passive tracking analyses, + individuals excluded from manual tracking analyses)  

Estuary Fish ID 
FL 

(mm) 
Receiver 

detections 
Days passively 

monitored 
Length of 

estuary used 
Positional 

fixes 
Home range 

size (m2) 
Core area 
size (m2) 

GFR 73 174 1 * - - 1 + - 
 

- 
 GFR 77 178 3 * - - 6 + - 

 
- 
 GFR 79 171 9 * - - 1 + - 

 
- 
 GFR 82 154 2 790 14 1 200 13 118 518 23 839 

GFR 83 168 556 13 - 
 

13 119 876 36 065 
GFR 84 167 2 858 15 3 800 13 122 992 23 374 

GFR 86 171 629 12 3 200 10 69 772 14 042 
GFR 87 170 7 * - - 11 81 357 8 152 
GFR 88 166 355 5 - 11 91 729 19 256 

GFR 92 184 9 491 13 4 600 13 77 551 9 028 
EKM 3759 L 291 8 231 202 1 400 - - - 
EKM 3760 L 302 31 345 269 2 800 - - - 

EKM 3761 L 274 12 573 270 1 980 - - - 
EKM 3762 L 267 70 274 232 1 980 - - - 
EKM 3764 L 254 30 408 270 1 980 - - - 
EKM 3765 L 247 11 825 262 1 980 - - - 

EKM 3766 L 238 1 261 9 850 - - - 
EKM 3768 L 247 69 293 175 2 800 - - - 
EKM 3769 L 255 48 938 262 1 980 - - - 

EKM 3770 L 247 59 867 247 2 800 - - - 
EKM 2001 S 247 28 736 29 1 980 12 48 142 10 670 
EKM 2002 S 235 95 853 122 1 980 42 47 282 9 286 
EKM 2003 S 266 41 443 84 1 980 42 70 711 8 693 

EKM 2004 S 265 32 957 96 1 400 42 83 870 6 684 
EKM 2005 S 240 30 836 42 440 15 26 917 10 311 
EKM 2006 S 262 - - - - - 

 
- 
 KAR 2036 379 82 388 120 4 440 15 44 964 8 496 

KAR 2037 307 404 174 351 11 290 15 115 748 18 759 
KAR 2038 268 440 089 331 5 900 14 66 110 8 163 
KAR 2039 244 45 938 132 520 14 70 853 10 251 

KAR 2040 215 161 961 187 2 330 15 80 194 9 407 
KAR 2041 227 685 025 342 2 330 15 62 551 13 423 
KAR 2042 318 422 721 355 4 440 15 136 457 25 771 

KAR 2043 234 320 220 191 520 14 81 738 11 883 
KAR 2044 302 3 526 6 4 440 - 

 
- 

 
- 
 KAR 2045 284 275 138 319 7 950 15 77 393 16 687 

SUN 64989 236 1 305 103 12 070 - - - 
SUN 64990 224 76 334 204 9 900 - - - 
SUN 64991 208 44 269 175 15 911 - - - 
SUN 64992 208 70 106 187 9 900 - - - 

SUN 64993 315 103 576 204 2 830 - - - 
SUN 64994 256 57 982 204 4 820 - - - 
SUN 64995 236 94 846 167 630 - - - 

SUN 64996 277 35 569 202 1 710 - - - 
SUN 64997 208 33 326 204 4 820 - - - 
SUN 64998 223 83 838 203 630 - - - 
SUN 64999 235 178 813 256 1 710 - - - 

SUN 65000 235 103 001 204 630 - - - 
SUN 65001 235 70 013 203 9 900 - - - 
SUN 65002 232 22 958 202 - - - - 

SUN 65003 245 154 947 203 3 780 - - - 
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3.3.1 Estuarine distribution and area use 

Length of estuary used 

Fish tagged in the Great Fish Estuary were detected on stationary receivers 1 to 7, located 0.4 km 

and 7.6 km from the mouth, respectively (Figure 3.3). Similarly, fish were manually located from 0.4 

km to 8.1 km from the mouth, providing agreement of results between methods. The length of 

estuary used by each individual in this estuary, recorded as the distance between lower- and 

uppermost positional fixes, ranged from 1 200 to 4 600 m (mean = 3 200 ± 1 451 m; n = 4), 

representing 10 to 38% of the estuary length. Fish 83 and 88 were excluded from this analysis, due 

to being detected on a single receiver. If Fish 92 (i.e. the only fish to undertake a large-scale 

excursion in this estuary) is excluded, mean length of estuary used decreases to 2 700 m (± 1 361 m), 

highlighting the restricted area use of the remaining individuals. Overall, 76% (n = 64) of all 

positional fixes were made within a 700-m stretch of the estuary, while 85% (n = 72) were made 

within a 2-km stretch, between 5.3 and 7.3 km from the mouth. The mean of individual proportions 

of positional fixes within this stretch of the estuary was equally high (mean = 85 ± 25%; n = 7).  

 

The lengths of estuary used by each individual in the East Kleinemonde Estuary ranged from 440 to  

2 800 m (mean = 1 888 ± 666 m, n = 15), representing 13 to 80% of estuary length. The individual 

mean distance between each positional fix and the capture location for the five fish manually 

tracked was 511 m (± 344 m) (range: 96 - 887 m), indicating fidelity to their capture locations. 

Ninety-five percent of detections for each fish were made within a mean distance of 1 100 m (± 690 

m), and 50 % within 530 m (± 350 m) of the closed mouth. The greatest distance a fish was detected 

from the mouth was 1 600 m, in the vicinity of receiver 4. Overall, less than 1% of time (determined 

from the passive tracking) was spent beyond this receiver. No fish were recorded in the upper 

reaches during the manual tracking sessions. 

 

The lengths of estuary used in the Kariega and Sundays estuaries ranged from 520 to 11 290 m 

(mean = 4 416 ± 3 350 m, n = 9) and 630 to 15 911 m (mean = 5 660 ± 4 993 m, n = 14), representing 

3 to 66% and 3 to 77% of estuary length, respectively. Fish 65002 in the Sundays Estuary was 

excluded from this analysis, as it was detected on a single receiver. Lengths of estuary used did not 

differ significantly between these two estuaries (t-test, p = 0.50). In the Kariega Estuary, fish were 

manually tracked from approximately 1 400 to 3 300 m from the mouth, between receivers 1 and 5. 

 

The minimum lengths of estuary used were similar, ranging from 440 to 1 200 m in the East 

Kleinemonde and Great Fish estuaries, respectively, and the median length of estuary used did not 
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differ significantly among estuaries (Kruskal-Wallis ANOVA, p = 0.091). However, mean length of 

estuary used increased with increasing estuary length, and a regression analysis showed a strong 

significant correlation between the two variables (p = 0.015, R2 = 0.970) (Figure 3.9).  

 

 

Figure 3.9: (a) Mean (±SD) length of estuary used (m, bars, left y-axis) plotted with estuary length (m, 

solid circles, right y-axis) in East Kleinemonde (EKM), Great Fish (GFR), Kariega (KAR) and Sundays 

(SUN) estuaries, and (b) regression plot of the two variables (p = 0.015, R2 = 0.970),  

 

Area use 

In the Great Fish Estuary, the fish exhibited high levels of site fidelity and occupied small areas within 

their estuarine nursery habitat throughout the study period (14 days). On average, fish spent the 

majority of their time in the vicinity of receiver 6 (Figure 3.10), which was closest to the tagging site. 

Two fish spent 100% and three fish at least 90% of their time in this area. The mean of 4.5% spent in 

the vicinity of receiver 1 was a result of Fish 92 spending more than 25% of its time in this area. Data 

from the stationary receivers indicated a rapid downstream movement of this fish nine days after 

tagging, after which it was regularly located within a new, similarly small area in the mouth region.  

 

 

Figure 3.10: Mean (± S.D.) time (%) spent in the vicinity of each receiver for all fish included in the 

passive tracking analyses (n = 6) for the Great Fish Estuary (receiver 0 represents absence time) 
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In the East Kleinemonde Estuary, mean time spent by all fish tagged with long-period transmitters 

was highest in the vicinities of receivers 3 and 4, in the lower to middle reaches, near the capture 

site (Figure 3.11 a). Similarly, mean time spent for all short-period transmitter fish was highest in the 

vicinity of their capture site, at Receiver 1 nearest the mouth, with a secondary peak at Receiver 3 in 

the lower reaches (Figure 3.11 b).  

 

 

Figure 3.11: Mean time (% ± SD) spent in the vicinity of each receiver for a) the ten long-period 

transmitter fish, and b) the five short-period transmitter fish  

 

In the Kariega and Sundays estuaries, the majority of time was spent in the lower reaches, with some 

activity in the mouth region and middle reaches. In the Kariega Estuary, the fish spent the majority 

of their time, on average, in the vicinity of receiver 3, approximately 1.9 km from the open mouth 

(Figure 3.12 a). In the Sundays Estuary, two peaks were observed, in the vicinities of receivers 2 and 

4, approximately 2.9 and 5.1 km from the mouth, respectively (Figure 3.12 b). Each peak, 

representative of a centre of activity, was frequented by different individuals (i.e. no fish exhibited 

peaks at both receivers). Small peaks at receivers 10 and 15 in the Sundays Estuary were the result 

of three individuals making use of the upper reaches of this system. Fish 64992 and 65001, spent 18 

and 58%, respectively, of their time between approximately 10 and 12.5 km from the mouth, while 

Fish 64991 extended its distribution beyond this area, where it spent more than 30% of its time in 

the vicinity of receiver 15 (roughly 16 km from the mouth). It also undertook numerous excursions to 

receiver 16, at the river-estuary interface. Two other individuals (Fish 64989 and 64990) made 

excursions as far as receiver 12, but spent very little time further than 7 km from the mouth. In 

contrast, only one individual (Fish 2037) was detected beyond receiver 7 in the Kariega Estuary (5.8 

km from the mouth), where it spent less than 1% of its time. In the Kariega Estuary, the combined 

time spent by all individuals beyond approximately 4 km from the mouth, was only 3% of the total 

time tracked.  
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Figure 3.12: Mean times (%) spent in the vicinities of each receiver, for white steenbras tagged in the 

a) Kariega (n = 10) and b) Sundays (n = 15) estuaries (receiver 0 represents absence time) 

 

Absence periods 

The numbers of absence periods, and the numbers of individuals undertaking such absence periods 

(long-term excursions from receiver 1) varied considerably among estuaries, and were dependent on 

whether the 6-h or 24-h minimum absence period duration was used (Tables 3.7 and 3.8) 

 

Table 3.7: Minimum, maximum, mean and total duration (d hh:mm:ss) of absence periods in excess 

of 6 h from receiver 1, for white steenbras from the Great Fish, Kariega and Sundays estuaries 

Estuary Fish ID 
No. 
trips 

Min 
duration 

Max 
duration 

Mean 
duration 

SD duration 
Total 

duration 
% of total 

time 

GFR 92 3 0 08:20:54 0 10:32:06 0 09:32:28 0 01:06:24 1 04:37:23 9.69 

         KAR 2038 1 0 13:20:03 0 13:20:03 0 13:20:03 - 0 13:20:03 0.17 

KAR 2041 3 0 12:23:02 0 16:03:51 0 13:50:55 0 01:57:06 1 17:32:44 0.51 

KAR 2042 5 0 06:06:00 0 07:17:23 0 06:41:35 0 00:33:22 1 09:27:57 0.39 

KAR 2043 2 0 09:10:15 0 10:14:58 0 09:42:36 0 00:45:46 0 19:25:13 0.43 

         SUN 64990 3 0 06:56:19 0 08:45:30 0 07:35:31 0 01:00:45 0 22:46:32 0.47 

SUN 64992 93 2 03:03:24 5 11:24:51 3 04:19:57 1 08:16:33 65 06:57:16 31.05 

SUN 64993 5 0 06:26:17 1 12:05:34 0 15:46:54 0 12:14:14 3 06:54:29 1.62 

SUN 64994 1 0 06:26:53 0 06:26:53 0 06:26:53 - 0 06:26:53 0.13 

SUN 64995 5 0 06:02:20 3 20:20:51 1 00:33:54 1 13:57:02 5 02:49:32 3.03 

SUN 64996 1 0 07:05:47 0 07:05:47 0 07:05:47 - 0 07:05:47 0.15 

SUN 64997 2 0 06:11:30 0 06:32:12 0 06:21:51 0 00:14:38 0 12:43:42 0.26 

SUN 64998 22 0 12:47:36 1 12:08:00 0 23:56:47 0 08:24:12 10 14:31:59 5.48 

SUN 64999 15 0 10:14:21 1 00:48:34 0 14:17:22 0 06:04:56 6 04:11:50 2.41 

SUN 65000 21 0 10:40:11 1 10:35:52 0 19:55:37 0 09:58:29 9 05:13:14 4.54 

SUN 65001 4 0 06:23:12 0 09:47:01 0 07:47:05 0 01:30:42 1 07:08:21 0.64 

SUN 65003 2 0 06:34:46 0 06:57:36 0 06:46:11 0 00:16:09 0 13:32:22 0.28 
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Using the 6-h minimum duration, 17 white steenbras undertook a total of 188 excursions, although 

50% of these (n = 93) were undertaken by a single individual. In total, Fish 92 was the only fish from 

the Great Fish Estuary to undertake such excursions, and the total time spent absent from receiver 1 

(for all excursions > 6 h) for this fish was almost 10% of the total time it was monitored. For fish 

64992, 64998 and 65000 in the Sundays Estuary, 31.0, 5.5 and 4.5%, respectively, of their total time 

tracked was allocated to absence time. For the remaining 13 fish undertaking such absence periods, 

the total absence time was considerably less (Table 3.7). There were considerably fewer absence 

periods exceeding 24 h (Table 3.8). These periods were limited to six individuals from the Sundays 

Estuary. The cumulative duration of all 14 such excursions of fish 64992 was over 29 days, almost 

15% of its total time tracked, although the proportions of absence time for the remaining fish were 

low. 

 

Table 3.8: Minimum, maximum, mean and total duration (d hh:mm:ss) of absence periods in excess 

of 24 h from receiver 1 (only observed in the Sundays Estuary) 

Fish ID 
No. 
trips 

Min 
duration 

Max 
duration 

Mean 
duration 

SD duration Total duration 
% of total 

time 

64992 14 1 00:26:40 5 11:24:51 2 01:54:06 1 03:45:52 29 02:37:20 14.37 

64993 1 1 12:05:34 1 12:05:34 1 12:05:34 - 1 12:05:34 0.74 

64995 1 3 20:20:51 3 20:20:51 3 20:20:51 - 3 20:20:51 2.28 

64998 4 1 00:18:18 1 12:08:00 1 03:31:37 0 05:44:42 4 14:06:28 2.26 

64999 1 1 00:48:34 1 00:48:34 1 00:48:34 - 1 00:48:34 0.40 

65000 2 1 00:26:41 1 10:35:52 1 05:31:17 0 07:10:45 2 11:02:33 1.21 

 

3.3.2 Home range size and location 

Mean home range size (95% UD) of the seven white steenbras tracked in the Great Fish Estuary was 

97 399 m2 (± 22 557 m2; range 69 772 – 122 992 m2; n = 7), while mean core area size (50% UD) was 

19 108 m2 (± 9 794 m2; range 8 151 – 36 065 m2; n = 7) (Table 3.6). Mean home range size was small 

relative to the size of the estuary (approx. 1 360 000 m2), and all home ranges were in close 

proximity to the capture/release site. Despite individual variability in home range size, home ranges 

of all individuals overlapped in a small section of the mesohaline to oligohaline region of the estuary, 

between approximately 5 and 7 km from the mouth (Figure 3.13).  
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Figure 3.13: Core areas (50% UD) and home ranges (95% UD) of seven white steenbras manually 

tracked in the Great Fish Estuary (black dots represent receivers, lighter coloured polygons in each 

figure represent 50% UD)  

 

Home ranges of the five white steenbras manually tracked in the East Kleinemonde Estuary ranged 

from 26 917 m2 to 83 870 m2 (mean = 55 385 ± 22 220 m2, while core areas ranged from 6 684 m2 to 

10 670 m2 (mean = 9 129 ± 1 578 m2) (Table 3.6). The home ranges of most fish extended from the 

mouth region to the lower or middle reaches. The home range of one fish (Fish 2005) was restricted 

to the mouth region. The location of core areas differed among individuals, but all five fish had at 

least one core area within the mouth region (Figure 3.14).  
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Figure 3.14: Core areas (50% UD) and home ranges (95% UD) of five white steenbras manually 

tracked in the East Kleinemonde Estuary (numbered black dots represent receivers, lighter coloured 

polygons in each figure represent 50% UD) 

 

Home ranges and core areas calculated separately for day, night and dawn (crepuscular) positional 

fixes, for each of the three fish with 42 positional fixes (Fish 2002, 2003 and 2004), provided 

evidence of diel variability in home range and core area locations (Table 3.9).  

 

Table 3.9: Core area (50% UD) and home range (95% UD) sizes (m2) for the five white steenbras 

tagged with short-period transmitters in the East Kleinemonde Estuary, based on manual tracking 

positional fixes. Separate 50% and 95% UDs for different times of day were not calculated for Fish 

2001 and 2005, due to the low numbers of positional fixes made for these two fish 

Fish ID 
Total 
fixes 

50% UD (m
2
)  95% UD (m

2
) 

All Daytime 
Night-
time 

Dawn All Daytime 
Night-
time 

Dawn 

2001 12 10 670 ... ... ... 48 142 ... ... ... 

2002 42 9 286 5 499 8 500 8 099 47 282 36 883 30 872 30 052 

2003 42 8 693 2 770 8 181 14 173 70 711 31 656 36 783 57 044 

2004 42 6 684 3 060 6 599 8 240 83 870 33 494 43 175 71 426 

2005 15 10 311 ... ... ... 26 917 ... ... ... 

          
Mean  9 129 3 776 7 760 10 171 55 384 34 011 36 943 52 841 

SD  1 578 1 499 1 018 3 467 22 220 2 652 6 153 21 005 
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Daytime home ranges for all three fish were fragmented. Daytime core areas were less fragmented 

and situated in the deeper channel area against the west bank, with at least one core area of each 

fish coinciding with a deep hole (± 4 to 5 m deep) under the road bridge (Figure 3.4). Night-time 

home ranges of the three fish were also all fragmented. Night-time core areas were almost 

exclusively located over the shallow sand area in the mouth region or the shallow sand/mud flats 

above the road bridge. Dawn home ranges were greater, and appeared more protracted, than day 

and night-time home ranges. For all fish, dawn home ranges were geographically located between 

night and day home range locations, providing the possible route between night and day areas 

(Figure 3.15). 

 

 

Figure 3.15: Night-time, dawn and midday home ranges (95% UD) and core areas (50% UD) for three 

fish (Fish 2002, Fish 2003 and Fish 2004, n = 14 positional fixes per fish per time period) manually 

tracked in the East Kleinemonde Estuary (lighter coloured polygons in each figure represent 50% 

UD). The lighter grey shaded areas indicates the shallow sand/mud area above the road bridge near 

receiver 3 and the shallow sand area at the closed mouth 
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Depths recorded at positional fixes made during different tracking sessions throughout the day in 

the East Kleinemonde Estuary were significantly different for two of the three individuals with 42 

positional fixes (Figure 3.16). For these two individuals, Fish 2003 and 2004, depths recorded during 

midday sessions were significantly greater than those recorded during dawn or night-time sessions 

(p < 0.001 in both cases). Dawn and night-time depths did not differ significantly for these two 

individuals. When positional fixes of all fish were grouped, daytime, dawn and night-time depths all 

differed significantly (p < 0.001) (Figure 3.16 d). 

 

 

Figure 3.16: Mean (±SD) depths (m) recorded during different tracking sessions throughout the day, 

for a) Fish 2002, b) Fish 2003, c) Fish 2004, and d) for all fish as a group (Kruskal-Wallis ANOVA p = 

0.546 (a), p < 0.001 (b – d)) 

 

Home ranges of the nine fish manually tracked in the Kariega Estuary were situated exclusively in the 

lower reaches, in close proximity to the capture location (Figure 3.17). Home ranges ranged in size 

from 44 964 m2 to 136 457 m2 (mean = 81 780 ± 27 960 m2), while core areas ranged from 8 160 m2 

to 25 770 m2 (mean = 13 649 ± 5 827 m2) (Table 3.6). Seven of these individuals were detected on at 

least one day on the large sandbank adjacent to receiver 3, when the water level allowed boat 

access, providing evidence that the shallow banks are utilised when they become inundated. 
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Figure 3.17: Core areas (50% UD) and home ranges (95% UD) of the nine white steenbras manually 

tracked in the Kariega Estuary (numbered black dots represent stationary receivers, lighter coloured 

polygons in each figure represent 50% UD, the dark grey shaded area represents the large intertidal 

sandbank near the mouth) 

 

3.4 Discussion 

The aim of this chapter was to describe area use patterns and home range characteristics of white 

steenbras, in a range of Eastern Cape estuaries, using acoustic telemetry. Both area use and home 

range were assessed in three estuaries; the medium-sized permanently open freshwater-dominated 

Great Fish, the small temporarily open/closed East Kleinemonde and the large permanently open 

freshwater-deprived Kariega Estuary. Area use patterns were also assessed in the large, permanently 

open freshwater-dominated Sundays Estuary. Fish tagged in each estuary showed similar 

distributional and area use patterns, with an apparent affinity for the sandy lower reaches.  
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As the study focused on juvenile white steenbras, (less than 380 mm FL), the maximum size of the 

acoustic transmitters used was constrained by the sizes of the fish monitored, and thus restricted 

the duration of the different study periods. The study in the Great Fish Estuary was a preliminary 

study, aimed at providing a first assessment of juvenile area use and home range characteristics in 

an estuary, and the fish monitored were small (154 – 184 mm FL), which limited the size of the 

transmitters used, and consequently the battery life. The results of this study were thus not 

intended to be nor are interpreted as a reflection of long-term area use or home range. The results 

did, however, provide evidence of capture site fidelity, which was taken into account in the sampling 

designs of the three subsequent studies. The fish monitored in the subsequent studies were larger 

(208 – 379 mm FL), allowing the use of larger transmitters, with longer battery lives.  

 

3.4.1 Estuarine distribution and area use 

Length of estuary used 

The lengths of estuary used by tagged individuals were fairly consistent in each estuary, with means 

of 3 200 (± 1 451 m), 1 888 (± 666 m), 4 416 (± 3 350 m) and 5 660 (± 4 993 m), in the Great Fish, East 

Kleinemonde, Kariega and Sundays estuaries, respectively. Most fish in each system utilised only a 

portion of each estuary; however, the mean length of estuary used was significantly correlated to 

the estuary length. Therefore, although the lengths of estuary used are small, relative to the lengths 

of each estuary available to the fish, the length of estuary used appears to increase as a function of 

estuary length, and there is evidence that they explore parts of the estuary outside of their home 

ranges. In the Kariega Estuary the result was slightly different, where it appeared that the upper limit 

of the white steenbras distribution was restricted, possibly by the physical conditions further from 

the mouth. Environmental factors affecting the observed movement and area use in these estuaries 

are addressed in Chapter 5.  

 

Although the lengths of estuary used did not differ significantly between the Kariega and Sundays 

estuaries, the maximum length of estuary used by an individual was considerably greater in the 

Sundays Estuary, and only a single individual ventured outside of the first third of the freshwater-

deprived Kariega Estuary. Five individuals ventured up the Sundays Estuary as far as 12 km from the 

mouth, further than any recorded movements in the Kariega Estuary, and one individual spent at 

least one third of its time (68 days) between 16 and 20 km from the mouth, where the salinity 

ranges between approximately 0 and 3, suggesting that there are few or no obstructions to the 

movement of white steenbras into the upper reaches of the Sundays Estuary. Considering that the 

substrate in the Sundays Estuary becomes predominantly mud about 4 km from the mouth, 
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substrate is unlikely a factor limiting up-estuary movement in the Kariega Estuary, indicating that the 

uppermost limit of white steenbras movement in this estuary is likely governed by another factor, 

such as salinity. It is also interesting to note that all the time spent by Fish 64991 between 15 and 20 

km from the mouth in the Sundays Estuary was from July to September, during which the water 

temperature in the upper reaches decreased to a minimum of 10.8°C, with a mean of 13.3 (± 0.8°C). 

Whitfield (1995) identified that most mass mortalities of fish in South African estuaries occurred 

with a combination of low salinity (< 3) and low temperatures (< 14°C). Bennett (1985) recorded 

white steenbras mortalities in the Bot Estuary, after prolonged periods of unusually low salinity (3), 

during which the temperature was approximately 16°C. Therefore, the excursions in the Sundays 

Estuary into conditions of potentially low suitability are unlikely to be random exploratory 

movements. Hindell et al. (2008) speculated that the use of riverine or low-salinity environments by 

estuarine fishes may be for parasite removal, or for feeding. Similarly, Cowley et al. (2008) suggested 

that dusky kob excursions into the freshwater region of the Great Fish Estuary may have been 

associated with attempts to rid the fish of parasites. This may also have been the case with the white 

steenbras in the Sundays Estuary. The fact that only one individual exhibited this behaviour suggests 

that such excursions are uncommon in white steenbras behaviour.  

 

Area use 

Fish tagged in the Great Fish Estuary spent the majority of their time in the mesohaline middle to 

oligohaline upper reaches of the estuary in the vicinity of receiver 6, which was closest to the tagging 

site. Netting for these fish was, however, not conducted elsewhere in this estuary; therefore, the 

observed area used by these fish may be biased by the distribution of the sampling effort. 

Consequently, the observed distribution in the middle to upper reaches may not reflect the general 

pattern for white steenbras within this system. The results were, however, suitable to provide 

evidence of high site fidelity and restricted area use. This high fidelity prompted a change in the 

sampling in the subsequent studies, to be designed in such a way as to avoid this bias. 

 

Despite sampling to catch white steenbras throughout each of the East Kleinemonde, Kariega and 

Sundays estuaries, the fish equipped with acoustic transmitters could only be caught (by seine net) 

in the lower reaches and mouth regions of each estuary. This result was reflected in the stationary 

receiver data from each estuary. In the East Kleinemonde Estuary, the majority of time was spent in 

the mouth region and lower reaches, with some time spent in the middle reaches, but very little in 

the upper reaches. The result was similar in the Sundays Estuary, although it was not possible to 

record the time spent in the mouth region due to the dynamic nature of the substrate preventing 
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the permanent mooring of acoustic receivers in this area. In the Kariega Estuary, most fish remained 

within the lower reaches, with very little time spent in the mouth region or middle reaches, and 

negligible time in the upper reaches. The fact that most of the tagged fish in all three estuaries spent 

the majority of their time in the lower reaches, suggests that juvenile white steenbras in estuaries 

have an affinity for the lower reaches of estuaries, usually dominated by sandy substrates. 

 

These results are confirmed by seine net catches made over a 15-year period (1996 to 2010) in the 

East Kleinemonde Estuary, which indicated a predominantly lower reaches/mouth region 

distribution of juvenile white steenbras (mean 165 mm FL) in this system (Whitfield AK, Cowley PD 

and James NC, unpublished data). A similar result was obtained by Marais (1981), for 2- to 3-year old 

fish in a gill-net survey of the Sundays Estuary, while Whitfield et al. (1994) found white steenbras to 

be most abundant in the middle to lower reaches of the Great Fish Estuary. This suggests that the 

observed behaviour and distributional patterns of the fish tagged in the current study were not 

biased by the sampling procedure, and that the results of the telemetry studies are representative of 

the populations within each estuary (Aebischer et al. 1993). Overall, juvenile white steenbras activity 

was predominantly in the lower reaches of these estuaries, associated with the sandy substrates, 

which signifies ecological importance of the resources within this area (Block and Brennan 1999 in 

Simcharoen et al. 2008). Thus, spatially, the lower reaches of these (and other) estuaries represent 

critical habitat for juvenile white steenbras utilising estuaries, during their nursery phase. A similar 

result was obtained by Kerwath et al. (2005), for spotted grunter acoustically tagged in the East 

Kleinemonde Estuary. These authors ascribed the observed result to the higher availability of prey in 

the lower reaches of this system. 

 

Similarly, Cowley and Whitfield (2001) attributed distribution of white steenbras in the lower 

reaches of the East Kleinemonde Estuary to the dominance of sand prawn Callianassa krausii (an 

important component in the diet of juvenile white steenbras between 150 and 400 mm, Mehl 1973), 

in the lower reaches. Forbes (1974) asserted that sand prawns are predominantly found in the sandy 

lower reaches of estuaries. This suggests that the distribution of white steenbras within this estuary 

may be driven indirectly by substrate type. The observed distribution of tagged white steenbras in 

the middle to upper reaches of the Great Fish Estuary may also be a response to substrate type, with 

these individuals opportunistically using a sandbank deposited in that area after a flood event (Childs 

et al. 2008a), which may have influenced the distribution of macroinvertebrate fauna in the area. 

However, it is likely that the general pattern of juvenile white steenbras distribution in the Great Fish 

Estuary is similar to that of the other three estuaries studied, with white steenbras more common 
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closer to the mouth and in the lower reaches, where sandy sediments persist, and sand prawns are 

likely to be more common. The movement of a single fish from the upper reaches to the mouth 

region may, therefore, represent the return of this fish to its long-term home range, after an 

opportunistic exploratory excursion to the upper reaches, where it became temporarily associated 

with the flood-deposited sandbank. 

 

Whitfield and Kok (1992) found highest numbers of white steenbras (1- to 2-year olds) in the middle 

to upper reaches of the Swartvlei and Knysna estuaries, while Harrison and Whitfield (1990) sampled 

0+ juveniles in plankton nets exclusively in the middle to upper reaches of the Sundays Estuary. The 

fact that these studies provide varying results suggests that distribution in estuaries may be driven 

by specific environmental characteristics within each system. It is also possible that the longitudinal 

distribution of juvenile white steenbras in estuaries may be influenced by fish size (or age), with a 

possible seaward ontogenetic shift in estuarine distribution from an early juvenile upper- to middle-

reaches phase to a juvenile lower-reaches phase. This notion is supported by the fact that fish 

tagged in the East Kleinemonde, Kariega and Sundays estuaries were larger (208 to 379 mm FL, i.e. 

2- to 3-year old fish) than those tagged in the Great Fish Estuary (154 to 184 mm FL).  

 

Although area use in the Kariega and Sundays estuaries was predominantly in the lower reaches of 

both systems, the actual distributions of area use differed noticeably between the two. In the 

Kariega Estuary, the fish centred their activity in a short stretch of estuary encompassing receiver 3, 

about 1.9 km from the mouth. This area consists of a deep channel of uniform depth, adjacent to a 

large intertidal sandbank, providing shallow feeding areas and deeper refugia. The only other large 

sandbank is closer to the sea, which is possibly less suitable for white steenbras. This sand bank 

remains shallow when inundated, and is subject to stronger currents, which keep marine sediments 

in suspension, contributing to the dynamic nature of the substrate in that area. Upstream of receiver 

3, a number of smaller sandbanks and mudbanks are present. However, the limited use of the 

middle reaches suggests that these areas are also not suitable for white steenbras. Noticeably, there 

was very little time spent up-estuary of receiver 7, about 5 km from the mouth, beyond which the 

salinity exceeds 40 and the substrate is comprised largely of mud. This is despite the successful 

colonisation by a potential prey species of the white steenbras, the bivalve Solen cylindraceus, in the 

middle reaches of the estuary, where densities can exceed 400.m-2 (Hodgson 1987).  

 

In the Sundays Estuary, there were two centres of activity, at receivers 2 and 4. The area around 

receiver 2 is characterised by extensive shallow banks, which are permanently submerged, and the 
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area around receiver 4 is characterised by an extensive shallow mudbank. The area between these 

two receivers, encompassing receiver 3, is characterised by steep banks and a deep channel (> 5 m 

depth), with an uneven substrate. This area is also a popular angling spot for dusky kob, a large 

predatory fish (personal observation). The relatively low proportion of activity here is therefore 

likely a result of the habitat and/or predator avoidance in an area less suitable for white steenbras. 

 

The resident nature of juvenile white steenbras within estuaries was confirmed at all four study 

sites. Most individuals in each estuary showed long-term residency within a particular area. The fact 

that these high use areas coincided with the respective sites of capture provides evidence of fidelity 

towards their capture site. This suggests that most fish were captured within their high use area, not 

during exploratory movements away from this area. Such residency has been observed in other 

sparids; for example, gilthead seabream Sparus aurata and two-banded and white seabreams 

Diplodus vulgaris and D. sargus (Abecasis and Erzini 2008, Abecasis et al. 2009) in the Formosa 

Coastal Lagoon, Portugal; and snapper Pagrus auratus in the Mahurangi Harbour Estuary, New 

Zealand (Hartill et al. 2003). The observation of resident behaviour across a range of species and 

aquatic habitat types, for example yellowbelly rockcod (Epinephelus marginatus) in the Ustica Island 

Marine Reserve, Italy (Lembo et al. 2002) and tigerfish (Hydrocynus brevis) in the River Niger, Mali, 

emphasizes the ecological advantage of such behaviour (Baras et al. 2002). Familiarity with a 

particular area could result in reduced predation risk and improved feeding efficiency (Eristhee and 

Oxenford 2001). Residency within estuarine environments highlights the ecological importance of 

these systems (Abecasis et al. 2009).  

 

3.4.2 Estuarine residency and sea trips 

The low number and generally short durations of absence periods for most individuals, in all three 

open estuaries, provide strong evidence of residency within and dependence on the estuarine 

environment, highlighting the importance of estuaries as nurseries during the juvenile life stage. No 

fish from the Great Fish or Kariega Estuaries exhibited absence periods exceeding a full 24-h cycle.  

 

The higher incidence of absence periods from receiver 1 in the Sundays Estuary was due to this 

receiver being further from the mouth than in the Great Fish or Kariega estuaries. Therefore fish in 

the Sundays Estuary were able to move further from receiver 1 (i.e. longer duration absence periods, 

which consequently increased the numbers of excursions exceeding 6 and 24 h), while still remaining 

within the estuary. In contrast, fish in the Great Fish and Kariega estuaries were not able to venture 

too far from receiver 1 towards the mouth without exiting the estuary. Therefore, absence periods 
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from receiver 1 in each estuary appear not to represent sea trips, but rather short-term excursions 

away from individual home ranges towards the open mouth. The results indicate a reluctance of 

white steenbras to leave the estuarine environment, at the sizes (ages) monitored in this study.  

 

Evidence to support this notion was provided by opportunistic manual tracking in the Sundays 

Estuary, between receiver 1 and the mouth. This was aimed at determining whether the tagged 

white steenbras were still present in the estuary (albeit below the receiver array) during what 

appeared to be absence periods from the array. On numerous occasions, individuals were shown 

from the receiver data to have been absent from the receiver array (from receiver 1) for periods 

exceeding 24 h, but were manually located in a false keel of the estuary close to receiver 1, which is 

partially separated from the main channel by a subtidal sand bank. As a result of the bathymetry in 

the area, fish within this arm of estuary were not detectable by the stationary receivers. This result 

showed that absence periods in the Sundays Estuary, of any duration, could not confidently be 

allocated to time at sea. Furthermore, even if all absence periods were treated as sea trips, the low 

proportion of time spent absent, by most individuals, suggests that sea trips are of little importance 

for juvenile white steenbras.  

 

Previous studies on white steenbras have indicated dependence on estuaries for the first year, up to 

± 130 mm FL (Beckley 1984, Bennett 1993b), after which individuals enter the marine environment 

(Lasiak 1982). However, the findings of the telemetry studies presented here, particularly in the 

Kariega and Sundays estuaries, revealed that white steenbras are dependent on estuaries for 

considerably longer periods, possibly even three or four years. Long-term residency within the 

estuarine environment, of similar duration, was also reported for red drum Sciaenops ocellatus and 

black drum Pogonias chromis (Sciaenidae) in eastern United States estuaries, with few fish 

undertaking marine excursions (Gold and Richardson 1998). In contrast, snapper were shown to 

undertake regular emigrations from the Mahurangi Harbour Estuary, New Zealand, into the marine 

environment, which the authors suggested was possibly attributable to foraging or spawning 

behaviour (Hartill et al. 2003). Spotted grunter, tagged in the Great Fish Estuary, South Africa, 

undertook frequent and long-duration excursions into the marine environment, which the authors 

attributed to a response to the onset of sexual maturity (Childs et al. 2008a). Similarly, certain 

juvenile dusky kob tagged in the Great Fish Estuary made frequent and long duration sea trips, with 

fish spending on average 13% of their time at sea (Cowley et al. 2008).  
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3.4.3 Home range size and location 

Home range parameters were quantified using manual tracking data obtained in three of the four 

study estuaries. In the East Kleinemonde Estuary, core areas (50% UD) were located predominantly 

in the mouth region and lower reaches, and in the Kariega Estuary all core areas were located in the 

lower reaches, highlighting the importance of the habitat in the lower reaches and mouth region of 

each estuary. This distribution is likely associated with the suitable habitat and distribution of prey 

items in the lower reaches (Cowley and Whitfield 2001). 

 

As with the lengths of estuary used, mean home range sizes were small relative to the respective 

surface area of each estuary, but increased in larger estuaries. Mean home range size (81 780 ± 27 

960 m2) observed in the Kariega Estuary was greater than that observed in the East Kleinemonde 

Estuary (55 385 ± 22 220 m2), but comparable to that in the permanently open Great Fish Estuary (97 

399 ± 22 557 m2). Such a result was expected, as the absolute area of suitable habitat is likely to be 

greater in the larger estuaries than the small intermittently open East Kleinemonde Estuary.  

 

In all three systems, there was a considerable amount of overlap among individual home ranges, 

which were confined to small areas within each system. Similarly, overlapping of home ranges within 

a confined area was observed for spotted grunter in the Great Fish (Childs et al. 2008a) and East 

Kleinemonde (O’ Connell 2008) estuaries. Utilisation of an established home range facilitates the 

learning of feeding and shelter locations (Chapman and Kramer 2000), thereby improving efficiency 

of feeding and reducing predation risk. The overlapping of home ranges of different individuals also 

provides evidence of a lack of territoriality (Parsons et al. 2003, Taylor et al. 2006). 

 

Manual tracking in the Kariega Estuary confirmed that most fish made use of the shallow sandbank 

adjacent to receivers 2 and 3, when submerged. Shallow sand and mud areas were also utilised 

extensively by juvenile white steenbras in the East Kleinemonde Estuary, potentially providing a rich 

source of burrowing macroinvertebrates (Whitfield 1998) and protection from predatory fishes 

(Vinagre et al. 2006).  

 

Diel shift in home range position 

Variability in the locations of daytime, dawn and night-time home ranges of those individuals 

manually tracked in the East Kleinemonde Estuary indicated a diel movement pattern. Manual 

tracking confirmed the night-time use of the shallow sand flats near the mouth and the mudflats 

adjacent to receiver 3, as well as the use of significantly deeper areas during the day. Dawn home 
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ranges were more protracted, possibly indicating more directed movement at this time of day (Kelly 

et al. 2007), as opposed to more spherical home ranges where an animal may be feeding or seeking 

shelter. Furthermore, for each of the three fish, the dawn home ranges were geographically located 

between night and day home ranges. Thus, observed dawn home ranges may represent transition 

areas, through which the fish follow a regular diel pattern of movement between night-time areas 

positioned almost exclusively within the shallow sand and mud areas, and daytime areas in the 

deeper channel. It is possible that these white steenbras were feeding in the shallow sand and mud 

areas at night, and utilising the deeper channel areas during the day, representing a shift between 

feeding and shelter areas (Taylor et al. 2006). The observed activity pattern is likely a trade-off 

between foraging behaviour and predator avoidance, to allow them to utilise the space and food 

resources most efficiently (McArthur and Pianka 1966, Andrews et al. 2009). Similarly, Holland et al. 

(1993) recorded crepuscular movements of white goatfish Mulloides flavolineatus along consistent 

routes between daytime schooling areas and night-time feeding grounds on shallow sand flats in 

Kaneohe Bay, Oahu, Hawaii. Such diel shifts in home range location are common among the 

Sparidae, for example snapper tracked in Mahurangi Harbour Estuary, New Zealand, were also 

shown to move from the main channel onto shallow banks at night (Hartill et al. 2003), and black 

bream Acanthopagrus butcheri in the Gippsland Lakes estuary network, Australia, moved from night-

time foraging areas to shelter in areas of woody debris during the day (Hindell et al. 2008).  

 

Entering the shallow areas at night may reduce the risk of predation by larger fishes, such as the 

dusky kob, which exhibits higher nocturnal and crepuscular activity levels than during the day (Taylor 

et al. 2006). Use of the shallow areas may not be possible during the day, as avian predation in the 

shallow areas may be too great a threat (Vinagre et al. 2006), particularly in the low turbidity 

conditions recorded during this study, with piscivorous birds contributing 70% of all bird numbers in 

the East Kleinemonde Estuary (Whitfield et al. 2008). Evidence to support this theory is provided by 

the considerably shallower mean depths (0.9 ± 0.5 m) at positional fixes made during daytime 

manual tracking in the Great Fish Estuary than the East Kleinemonde (2.3 ± 0.9 m) and Kariega (2.8 ± 

1.1) estuaries, where the extreme turbidity in the Great Fish Estuary may facilitate avoidance of 

piscivorous avian predation.  

 

3.4.4 Practical considerations 

Sampling within the Great Fish Estuary was conducted only in the middle to upper reaches in the 

vicinity of a sand bank deposited after a flood event. While exhibiting similar behaviour to the white 

steenbras in the other three estuaries monitored, these fish were predominantly found in the 
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middle to upper reaches, whereas fish from the other estuaries were found predominantly in the 

lower reaches and mouth region. It is possible that there were white steenbras resident within the 

lower reaches of the Great Fish Estuary at the time of the current study; however, the sampling 

design was not able to determine this. In the East Kleinemonde and Sundays estuaries, where not all 

fish were tagged at the same locality, fish showed fidelity to their respective capture sites. Sampling, 

for telemetry studies aimed at determining the general movement patterns representative of a 

species within an estuary, should thus be designed in such a way as to avoid this type of bias 

(Aebischer et al. 1993), by attempting to sample fish throughout the particular estuary (Sackett et al. 

2008). 

 

The evidence of diel behaviour and differences in the locations of night-time and daytime home 

ranges highlights the importance of tracking throughout the 24-hour cycle. Assessments of home 

range based solely on daytime manual tracking would have provided skewed and non-representative 

estimates of home range location (Lowry and Suthers 1998), suggesting dominance of deeper 

channel areas in the distribution of the species. Concluding that juvenile white steenbras make no 

use of the shallow mud and sand banks and that inundation of these areas with estuarine water may 

not be important to this species would be erroneous. Tracking during different periods of the day 

provided a different result, with individuals utilising shallow areas at night, possibly for foraging, and 

moving through dawn transition areas to deeper daytime home ranges. As such, it may be concluded 

that these shallow areas represent critical habitats for this species within intermittently open 

estuaries.  

 

Manual and passive acoustic telemetry techniques provided complementary results. Manual 

tracking provided high resolution positional data on home ranges showing distinct diel differences 

therein, while the stationary receivers provided continuous area use data and actual times of 

departure from and return to the receiver array. Similarly, the observed area use pattern 

determined by passive tracking closely reflects the spatial distribution of white steenbras as 

determined by regular netting over a 15-year period (Whitfield AK, Cowley PD and James NC, 

unpublished data). The distribution data obtained from the historical netting dataset, the detailed 

high-resolution home range data from manual tracking and the continuous long-term spatial use 

data provided by passive tracking highlight the complementary value of employing multiple 

techniques to answer key questions. Such an approach has been advocated by numerous authors 

(e.g. Lembo et al. 2002, Lyons and Lucas 2002, Jadot et al. 2006, Simpfendorfer et al. 2010).   
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3.5 Conclusions 

Previous studies have suggested that juvenile white steenbras are dependent on estuaries for the 

first year after recruitment, until a size of about 130 mm FL (Wallace et al. 1984a, Beckley 1984, 

Bennett 1993b), after which they move to the marine environment (Lasiak 1982). This means that 

successful recruitment into the spawning population requires each individual to spend at least the 

first year of its life within an estuary. However, Lamberth and Mann (2000) suggested that white 

steenbras may remain within the estuarine environment up to three years old, and James et al. 

(2007a) showed that white steenbras juveniles were resident in the intermittently open East 

Kleinemonde Estuary for up to 38 months after recruitment, despite the mouth opening on multiple 

occasions during this period. After this, they move to the marine environment, as food resources for 

fish of this size class become limiting in estuaries (Bennett 1993b). The results of this chapter have 

confirmed this dependence on estuaries, and suggest that certain individuals may remain within an 

estuary for up to three or four years. Thus, the juvenile estuarine nursery phase represents a 

bottleneck in the life history of white steenbras, during which time the species is highly vulnerable to 

threats associated with estuaries. 

 

Area use differed between the freshwater-deprived Kariega and freshwater-dominated Sundays 

estuaries. Environmental conditions differ considerably between the two systems, most notably as 

the Kariega exhibits a reverse salinity gradient, caused by a combination of a small catchment, low 

MAR and excessive water abstraction (Grange et al. 2000), which created a limit to the upper 

distribution of white steenbras within this estuary. Excessive water abstraction can lead to a 

reduction in the available habitat for fishes and invertebrates, thereby reducing available food and 

space resources (Grange et al. 2000). Effective conservation of estuarine species and habitats, 

therefore, requires suitable catchment management and water abstraction practices, without which 

estuaries may become sub-optimal habitats for these species. 

 

The results of this study showed that juvenile white steenbras use limited portions of each estuary, 

within which they showed high levels of long-term residency. High use areas were found 

predominantly in the lower reaches of each estuary, extending into the mouth region as well as the 

middle reaches. The diel home range shift in the East Kleinemonde Estuary highlighted the 

importance of the shallow littoral areas to juvenile white steenbras, most likely for feeding, while 

results from the permanently open estuaries identified the intertidal sand and mud banks as 

important areas. These shallow intertidal and littoral areas, as well as the lower reaches of estuaries 

should, therefore, be considered as critical habitats for juvenile white steenbras in estuaries, and 
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thus essential to the maintenance of coastal populations. Dependence on these critical habitats 

within estuaries further restricts the resources available to juvenile white steenbras. These critical 

habitats are subjected to severe threats, such as estuarine habitat degradation, excessive water 

abstraction, resource overexploitation and infrastructural development (Whitfield and Cowley 

2010). The lower reaches of estuaries also represent areas of intense human impacts (e.g. 

infrastructure, boating activity). High levels of residency, dependence on estuaries and occupation of 

small areas within the estuaries makes juvenile white steenbras vulnerable to localised depletion 

within estuaries, which could lead to growth overfishing if poorly managed, ultimately nullifying the 

effectiveness of estuaries as nursery areas (Cowley et al. 2008). Consequently, management or 

conservation intervention in estuaries should focus not only on the species, but also on protection of 

these critical habitats (Beck et al. 2001). As estuaries are already amongst the most threatened and 

degraded aquatic environments globally (Vasconcelos et al. 2007, Whitfield and Cowley 2010), their 

effective management is of critical importance to the biota dependent on them.  
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Chapter 4 

Temporal and rhythmic movements in estuaries

 

4.1 Introduction 

The position of an animal at any point in time is dependent on its movement trajectory. Such 

movements may be influenced by environmental factors, biotic interactions and the animal’s 

behaviour (e.g. feeding, spawning or refuge-seeking) (Nathan et al. 2008). These factors, as well as 

anthropogenic disturbances, change over time; thus, the area used by an animal in space is also 

likely to vary over time (Sackett et al. 2008). Consequently, it is insufficient to simply assess 

distribution, area utilisation or home range with a snapshot, as snapshots neglect any component of 

temporal variability (Turchin 1998). Studies aimed at determining area use patterns, movement 

patterns or home range dynamics of a species must, therefore, be conducted over temporal scales 

and resolutions that are suitable for that species and life stage, to allow detection of short- and long-

term patterns in the animal’s movements. Studies of insufficient duration may fail to detect 

movements over periods as long as seasons or may underestimate the spatial extent of movements 

(Parsons et al. 2003), while studies of low temporal resolution may sample at a frequency too low to 

detect short-period cycles, such as movements with diel periodicity (Taylor et al. 2006).  

 

Geophysical cycles are caused by the movement of the earth relative to the position of the sun, as 

well as the movement of the moon through its orbit of the earth (Morgan 2001, Chabot and Watson 

2010). The most prominent of these geophysical cycles are those associated with annual, synodic-

month (29.5 d), lunar-month (28.4 d), lunar-day (24.8 h), solar-day (24.0 h) and tidal-cycle (12.4 h) 

periodicities. These cycles can individually or collectively influence or even drive the movement and 

behaviour of terrestrial and aquatic organisms (Palmer 1973). The corollary to this is that the effects 

of the stronger environmental phenomena influencing the movement of an organism may be 

manifest as observable patterns in the organism’s behaviour, synchronised to the respective 

environmental cycle (Boehlert and Mundy 1988). These movement patterns occurring over 

periodicities associated with geophysical cycles may be endogenously controlled, by an internal 

biological clock, or may be exogenously controlled by direct response to the physical changes in the 

environment (Vinagre et al. 2006).  

 

The most studied of these cycles is undoubtedly the 24-h period of the light/dark solar-day cycle 

(Palmer 1973). Movements over circadian cycles have been well-documented for terrestrial animals 
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(e.g. Kreeger et al. 1996, Brillinger et al. 2004, Wittemyer et al. 2008, Polansky et al. 2010) and, to a 

lesser extent, in aquatic organisms mainly in the marine environment, for example American 

horseshoe crab Limulus polyphemus (Chabot and Watson 2010) and Hawaiian stingray Dasyatis lata 

(Cartamil et al. 2003). In addition to the diel cycle, coastal habitats (including estuaries that are 

predominantly open to the sea) are subjected to regular patterns of tidal inundation, which in turn 

cause measurable physical changes in estuarine conditions, e.g. water depth, temperature, salinity 

and turbidity. As a result of such physicochemical fluctuation, the biological rhythms underlying the 

behavioural patterns of organisms within estuaries are commonly influenced or driven by their 

environment (Wilcockson and Zhang 2008). Cyclical behavioural rhythms in estuarine invertebrates 

have received considerable research attention (e.g. Natarajan 1989, Holsman et al. 2006), while 

movements at periodicities associated with diel (Hartill et al. 2003), tidal (Næsje et al. in press), 

lunar-day (Morgan 2001), spring/neap (Vinagre et al. 2006), lunar (Gibson 1978), seasonal (Heupel 

and Simpfendorfer 2005) and annual (Reyier et al. 2010) cycles have also been reported for 

estuarine-associated fishes. By identifying the cyclical patterns in an animal’s behaviour it is possible 

to determine the environmental phenomena that drive, or at least influence, the animal’s 

movements.  

 

This chapter makes use of the passive acoustic receiver detection data that were presented in the 

previous chapter, to investigate trends in temporal and cyclical movement patterns of juvenile white 

steenbras in estuaries. The long-term nature of the studies conducted in the East Kleinemonde, 

Kariega and Sundays estuaries renders them suitable for the analysis of long-term temporal 

movement patterns, and investigation of the cyclical phenomena that influence both short- and 

long-term spatio-temporal movements. Data collected from the Great Fish Estuary were not 

considered due to the short and preliminary nature of that study. 

 

4.1.1 Aims and objectives 

The chapter aimed to assess the temporal and rhythmic movement patterns of white steenbras in 

the East Kleinemonde, Kariega and Sundays estuaries. The specific objectives were to: 

 

i. Determine whether area use patterns change seasonally; 

ii. Identify the periodicity of natural rhythms underlying cyclical movement patterns; 

iii. Further explore and describe the dominant cyclical patterns in detail; and 

iv. Identify and explain the variability in cyclical movement patterns in different estuaries.  
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4.2 Methods and materials 

4.2.1. Long-term area use patterns in estuaries 

Stationary receiver data for individual acoustic transmitters deployed in each of the four estuaries 

were used to estimate the mean monthly time spent by fish in the vicinity of each receiver, and the 

monthly proportions of fish with active transmitters that were detected on each receiver, to provide 

information on the seasonal changes in the ranges of estuarine movements. In the East Kleinemonde 

Estuary, the short-period transmitters (100-day battery life) were not active for sufficient duration to 

assess long-term area use. Thus, analysis in this estuary was limited to the fish equipped with long-

period transmitters, which were active for up to eight months. Fish 3766 was excluded from this 

analysis as it was detected for only 10 days before detections ceased. In the Kariega Estuary, Fish 

2044 was excluded from the analysis, as it left the system soon after tagging, while the transmitters 

in the remaining nine fish were active for up to 12 months. In the Sundays Estuary, all 15 fish were 

included in the analyses, with most transmitters active for up to seven months.  

 

4.2.2. Identification of cyclical rhythms  

Temporal movement patterns within the East Kleinemonde, Kariega and Sundays estuaries were 

identified using single series spectral (Fourier) analysis of the receiver data. Fourier analysis involves 

the decomposition of a time series of data (from the time domain), to produce a finite sum of cosine 

and sine (cyclical) functions of variable frequencies (i.e. a data series in the frequency domain). In 

the frequency data series, comprised of these cosine and sine functions, the period (time taken to 

complete one cycle) of each cosine and sine function is equal to the inverse of the frequency with 

which the cycle takes place (i.e. doubling the time required to complete a cycle will halve the 

frequency at which the cycles take place) (Heupel and Simpfendorfer 2005). The squares of the 

cosine and sine coefficients for each frequency are summed and fitted to the data based on least 

squares, providing a Fourier amplitude for each respective Fourier frequency (Diggle 1990). Peaks in 

Fourier amplitudes, presented in a periodogram of sums of squares of cosine and sine coefficients, 

indicate the frequencies most correlated with the data (Polansky et al. 2010), thereby identifying 

periods over which underlying cycles take place. For example, a peak in the periodogram value 

indicating a cycle period of 24 hours would represent movement over a diel cycle.  

 

Receiver detections for each individual made within the first 24 hours post surgery were excluded, 

as in the data analyses in the previous chapter, and data series were discontinued once the number 

of detections per day had decreased below 200 as this was assumed indicative of battery failure 

(Hartill et al. 2003). For the fish tagged with long-period transmitters in the East Kleinemonde 
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Estuary, this cut-off was made at 100 receiver detections per day, due to the comparatively longer 

nominal delay between signal transmissions (60 – 180 s). The receiver data for each fish were then 

binned into 15-minute bins, from which two metrics were calculated. The first metric was a measure 

of presence/absence within the receiver array, during each 15-minute period. This provided 

information on the probability of detecting the fish within each period, which was expected to 

decrease when the fish entered shallow sand or mudbank areas, such as the shallow littoral area 

above the road bridge in the East Kleinemonde Estuary, or over the shallow sandbank area adjacent 

to receivers 2 and 3 in the Kariega Estuary. Consequently, this metric could be used as a measure of 

a fish’s movement, between deep and shallow areas within the estuary (i.e. transverse movements, 

as opposed to axial movements). The second was a measure of the average receiver visited within 

each 15-minute period, where the receiver number acted as a proxy for its position along the axis of 

the estuary (i.e. if a fish visited receivers 2 and 3 within the 15 minutes, the average receiver location 

was 2.5) (Hartill et al. 2003). This provided two time series of data (one for each metric) for each 

fish, suitable for spectral (Fourier) analysis.  

 

Fourier transformation for spectral analysis is based on the Fast Fourier Transform described by 

Cooley and Tukey (1965). This analysis requires that each series has a sample size (i.e. the number of 

15-minute bins) equal to a power of 2 (e.g. 512, 1024 . . . 8 192, 16 384). Therefore, data series were 

truncated at the maximum number of bins that equalled a power of 2, and data bins in each series 

occurring beyond the last full power of 2 were excluded from the analyses. Two fish (Fish 2003 in the 

East Kleinemonde Estuary and Fish 64995 in the Sundays Estuary), however, had only slightly fewer 

data bins than the closest power of 2. Therefore, to avoid the loss of almost half of each of these 

data series through truncation to the next highest power of 2, these two data series were increased 

to the closest power of 2 through the process of zero-padding (Fish 2003 had 7 410 data bins padded 

to 8 192, Fish 64995 had 16 205 data bins padded to 16 384). Zero-padding refers to the addition of 

a number of data points (all of value zero) to the data series, to increase the sample size, effectively 

allowing an increase to the next greatest power of 2, to avoid data loss associated with data series 

truncation. This resulted in cleaner periodogram peaks than the truncated series in both cases, but 

had no effect on the result for either fish. A Hamming weighted moving average window (width m = 

5, Hamming weights: 0.036, 0.24, 0.45, 0.24, 0.036) was applied during spectral analyses, to smooth 

periodogram values, to decrease the effects of random fluctuations or spurious scatter therein, 

which often occur with Fast Fourier Transform (Chatfield 1980). All analyses were conducted in 

Statistica 10.0, using the single series spectral (Fourier) analysis function. Prior to analysis, all data 

series were transformed by subtraction of the mean, and each data series was reviewed, and those 
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exhibiting non-stationarity of the mean (i.e. long-term trends greater than the duration of the time 

series) were detrended prior to analyses.  

 

Fish for which there were fewer than 5 000 detections, or that were detected for fewer than 56 days 

(two full lunar cycles) were excluded from the Fourier analysis. These included three fish from the 

East Kleinemonde Estuary and one each from the Kariega and Sundays estuaries. For the 

presence/absence data series for Fish 64998, 64999 and 65000 from the Sundays Estuary, results of 

the Fourier analyses on the first 8 192 data bins are presented, as these produced considerably 

cleaner periodogram peaks than the truncated data series of 16 384 bins (used for average receiver 

location data series for these three fish), with no observable differences in the results. This was 

based on the suggestion of Shepard et al. (2006) that analysis of subsets of the data can help to 

distinguish shorter period frequencies from background (white) noise.  

 

Fourier analysis periodogram interpretation 

Periodograms are presented in the frequency domain, with x-axes expressed on a decreasing 

exponential scale, with the origin representing the number of bins in the data series. Peaks occurring 

at a frequency of zero, i.e. the origin of the x-axis, are likely caused by long-term cycles at periods 

greater than the duration of the data series (Heupel and Simpfendorfer 2005). These peaks were, 

therefore, ignored. In certain periodograms presented, the y-axes were re-scaled by decreasing the 

height of these excessively large zero-frequency peaks to that of the next highest (non-zero 

frequency) peak.  

 

The occurrence of multiple smaller peaks adjacent to a significant peak in a periodogram is termed 

spectral leakage. Spectral leakage refers to the phenomenon in which the variation (periodogram 

amplitude) at a single frequency is divided and split across multiple adjacent discrete frequencies, 

appearing as multiple lower amplitude peaks instead of a single large sharp peak (Diggle 1990), 

which commonly occurs when a strongly correlated frequency component is not an integer multiple 

of the sampling period (e.g. a frequency of 0.0104, representing a period of approximately 24.0 h). 

Such spectral leakage peaks are ignored. Similarly, in the frequency domain (i.e. a time series 

presented as a data series at different frequencies), each successive frequency in the series is a 

multiple of the sampling frequency being approximated. For example, if a spectral peak occurs at a 

frequency of x, representing 24.0 h, then it is possible that peaks may occur at frequencies that are 

integer multiples of x (i.e. 2x, 3x, 4x, representing 12.0, 8.0 and 6.0 h, respectively). Such peaks, 

known as spectral harmonics, as commonly observed in the periodograms of white steenbras 
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monitored in this study, should not be interpreted as indicative of the presence of distinct cyclical 

mechanisms at those frequencies (Diggle 1990); as such, these were ignored. Numerous peaks also 

occurred at periods associated with 2n 15-minute intervals, particularly 2 048, 4 096 or 8 192 

intervals, representing cycles of 512 h (21.3 d), 1 024 h (42.7 d) and 2 048 h (85.3 d), respectively, 

which have no geophysical or biological relevance. These peaks are likely harmonics of the zero-

frequency peak, or an artefact of the 2n power-scale of the frequency domain. 

 

4.2.3 Further exploration of observed rhythms 

Results from the Fourier analysis indicated that the two dominant rhythmic movements of white 

steenbras in the East Kleinemonde, Kariega and Sundays estuaries were diel and tidal cycles. These 

two rhythms were, therefore, further investigated to provide an understanding of how the 

movements of the tagged fish were related to each of these cycles. Owing to the absence of tidal 

influence, only diel movements were assessed for fish in the temporarily open/closed East 

Kleinemonde Estuary. Rhythmic tidal movements were assessed for fish tracked in the permanently 

open Kariega and Sundays estuaries, although diel movements were not assessed for these fish, as 

night-time positions of the fish in these estuaries was not determined using manual tracking.  

 

Diel movement patterns  

The manual tracking data from fish tagged in the East Kleinemonde Estuary (presented in Chapter 3) 

indicated that certain individuals made extensive use of the shallow sand/mudflats to the north west 

of receiver 3 at night. Although this area was outside of the detection range of the receiver array, 

the receiver presence/absence data were used to provide insight into the timing of these 

movements. The receiver detection data for each individual were scrutinised, to identify periods 

representing forays away from the receiver array, onto the shallow sand/mudflats. To be classified 

as a movement away from the array and onto the sand/mudflats, the duration of the absence period 

had to exceed six hours. Absence periods associated with departure from or return to receivers 

other than receivers 2 and 3 were not included and the fish had to leave the array and/or return to 

the array at receiver 3, to ensure that its movement had been onto the shallow flats. The mean 

times of departure from and return to the receiver array in this area (receivers 2 and 3) were 

determined for each individual, using circular statistics (Batschelet 1981). 

 

Because time data are of a cyclical nature, it was first necessary to convert times of departure from 

and arrival at the receiver array to degrees, with a 24-hour cycle being represented as a full circle 

(360°), and times being presented as angles (i.e. 15° representing 1 hour). Mean angles ( ), angular 
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deviations (s) and confidence limits were then calculated (see Appendix I for calculations) and 

converted from degrees back to time. The Rayleigh test for significance was used to test the null 

hypothesis that mean angles ( ), and thus mean times of departure from and arrival at the array, 

were not significantly different from random (significance criterion α = 0.05). Mean times of 

departure and arrival were calculated separately for each individual. Mean departure and arrival 

times were also calculated for all excursions undertaken by all individuals combined. Of the 16 fish 

tagged, 14 provided results suitable for such analysis of diel movement patterns. Fish 2006 expelled 

its transmitter soon after release, while Fish 2005 undertook no excursions from the receiver array. 

 

Tidal movement patterns  

Stationary receiver data were analysed to determine whether white steenbras in the permanently 

open Kariega and Sundays estuaries made movements synchronous with tidal water movements. 

Detection data for each individual white steenbras tagged in the two estuaries were scrutinised to 

identify any up-estuary or down-estuary movements that could be considered as ‘significant’ 

movements. These ‘significant’ movements were defined by the following criteria:  

 

i. The movement was unidirectional (i.e. either up-estuary or down-estuary, because when a 

fish changed direction, the movement was considered to have ended); 

ii. The duration of the movement did not exceed 6.2 hours (approximately one tidal phase, 

i.e. half the 12.4-h duration of one tidal cycle) (Note: unidirectional movements exceeding 

6.2 h were also considered, but only when a period of stationary behaviour in the vicinity 

of a single receiver was evident. These movements were split into two or more periods not 

exceeding 6.2 h); 

iii. The movement covered a minimum distance of 1 km between the detection range of the 

receivers where the movement was initiated and where it ended.  

 

In the Sundays Estuary, a movement was deemed ‘significant’ if the fish was detected on at least 

three sequential receivers within a 6.2-hour period. This required an up-estuary or down-estuary 

movement of at least 1 km, starting within the detection range of one receiver, moving through the 

detection range of an adjacent receiver and into that of a third receiver in sequence. The exception 

to this was movements between receivers 15 and 16, which were spaced approximately 5 km apart; 

as such, movements between these two receivers were considered ‘significant’. In the Kariega 

Estuary, ‘significant’ movements were not simple to define, as the receivers were not evenly spaced 

along the estuary. Movements among the first three receivers were not considered ‘significant’ due 
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to their close proximity. In contrast, movements between certain adjacent receivers spaced 

considerably further apart (receivers 6 – 7, 7 – 8, 9 – 10, 10 – 11, 12 – 13, 13 – 14, 15 – 16) were 

considered ‘significant’. All ‘significant’ movements were then compared to the tidal direction over 

the duration of the movement, to determine the proportions of movements made with or against 

the tide, or that spanned two tidal phases. 

 

4.3 Results 

4.3.1 Long-term patterns in area use  

In the East Kleinemonde Estuary, three of the nine fish analysed exhibited long-term station-keeping 

behaviour with little change in the proportions of time spent at each receiver over the eight-month 

study period. Two fish showed no clear pattern in their monthly area use. However, four individuals 

changed their movement patterns, exhibiting up-estuary shifts in their spatial extents of area used, 

with the onset of autumn (March to May). These fish also moved to and from the upper reaches of 

the estuary, while this behaviour had not previously been observed, and was not observed with the 

onset of spring (August and September). These movements were reflected in the mean monthly 

proportions of time spent at receivers further from the mouth, and the proportions of fish with 

active transmitters that were detected in the vicinities of these receivers (Figure 4.1).  

 

 

Figure 4.1: Bubble plot representation of a) the mean monthly proportions of time (%) spent and b) 

monthly proportions of individuals detected in the vicinity of each of the six stationary receivers 

from February to September in the East Kleinemonde Estuary, for all fish tagged with long-period 

transmitters (n = 9). The sizes of the circles are proportional to the magnitude in each case 

 

In the Kariega Estuary, four individuals exhibited station-keeping behaviour over the twelve-month 

study period, while four individuals exhibited up-estuary shifts in area use during the winter and 

spring months (July to November), which ceased with the onset of summer (December). The 

remaining individual showed no observable pattern. These movements were again reflected in the 
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mean monthly proportions of time spent at receivers further from the mouth, and the proportions 

of fish with active transmitters that were detected in the vicinities of these receivers (Figure 4.2). 

 

Figure 4.2: Bubble plot representation of a) the mean monthly proportions of time (%) spent and b) 

monthly proportions of individuals detected in the vicinity of each of the 16 stationary receivers 

from March to February in the Kariega Estuary (n = 9 fish). Receiver ‘0’ refers to absence time 

(periods absent from receiver 1 in excess of 24 h), and the sizes of the circles are proportional to the 

magnitude in each case 

 

Eight of the fifteen fish tagged in the Sundays Estuary exhibited station-keeping behaviour, while six 

exhibited up-estuary shifts in area use over the winter months (July to August) (Figure 4.3). One fish 

showed no observable pattern. 

 

Figure 4.3: Bubble plot representation of a) the mean monthly proportions of time (%) spent and b) 

monthly proportions of individuals detected, in the vicinity of each of the 16 stationary receivers 

from March to September in the Sundays Estuary (n = 15 fish). Receiver ‘0’ refers to absence time 

(periods absent from receiver 1 in excess of 24 h), and the sizes of the circles are proportional to the 

magnitude in each case  
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As the fish tagged in the Sundays Estuary were captured at two different locations (see Figure 3.7, 

Chapter 3), with fish exhibiting site fidelity, pooling individuals from the two groups may mask 

behavioural differences between them. As such, the results are presented separately for those fish 

captured in the vicinity of receiver 4 (upper group), and those captured in the vicinity of receiver 2 

(lower group) (Figure 4.4). Although the trends observed in both groups reflected those in the 

overall dataset (Figure 4.3), the gradual up-estuary shift from summer to winter was more apparent 

in the upper group (Figure 4.4 a, b).  

 

Figure 4.4: Bubble plot representation of a, c) the mean monthly proportions of time (%) spent and 

b, d) monthly proportions of individuals detected, in the vicinity of each of the sixteen stationary 

receivers in the Sundays Estuary, for the “upper group” of fish tagged in the vicinity of receiver 4 (n = 

6), and the “lower group” tagged in the vicinity of receiver 2 (n = 9). Receiver ‘0’ refers to absence 

time (periods absent from receiver 1 in excess of 24 h), and the sizes of the circles are proportional 

to the magnitude in each case  

 

4.3.2 Cyclical movement patterns 

Of the 41 fish monitored in the three estuaries, 35 provided data suitable for Fourier analysis. Of 

these 35 fish, five (Fish 3765 in the East Kleinemonde Estuary, Fish 2039 in the Kariega Estuary and 

Fish 64991, 64992, and 65002 in the Sundays Estuary) showed no trend in their average receiver 

location data series. The Fourier analyses yielded variable results among estuaries and individuals, as 

well as between the presence/absence and average receiver location metrics (Table 4.1). 
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Table 4.1: Results for spectral (Fourier) analysis of stationary receiver data, for white steenbras 

monitored in the East Kleinemonde (EKM; n = 12), Kariega (KAR; n = 9) and Sundays (SUN; n = 14) 

estuaries. The five different cycles observed in the data (D – diel, T – tidal, LD – lunar day, S/N – 

spring/neap, L – lunar month) are presented, showing the rank (1 – 5) of each cycle within the 

presence/absence and average receiver location data series of each fish. Dashes indicate cycles not 

detected in that data series 

Estuary Fish ID 
No. 15-min 

bins 

Presence/Absence  Average Receiver 

D T LD S/N L  D T LD S/N L 

EKM 2002 8 192 1 - - 2 -  2 - - 3 1 

EKM 2003 8 192 1 - - - -  1 - - - - 

EKM 2004 8 192 2 - - - 1  2 - - - 1 

EKM 3759 16 384 1 - - - -  1 - - - - 

EKM 3760 16 384 1 - - - -  1 - - - - 

EKM 3761 16 384 1 - - - -  1 - - - - 

EKM 3762 16 384 1 - - - -  1 - - - - 

EKM 3764 16 384 1 - - - -  1 - - - - 

EKM 3765 16 384 1 - 2 - -  - - - - - 

EKM 3768 16 384 1 - 2 - -  1 - - 2 - 

EKM 3769 16 384 1 - - - -  1 - - - - 

EKM 3770 16 384 1 - - - -  1 - 2 - - 

              
KAR 2036 8 192 1 - - - -  3 4 2 1 - 

KAR 2037 32 768 1 2 - - 3  3 4 - 1 2 

KAR 2038 16 384 1 2 - 3 -  1 3 2 - - 

KAR 2039 8 192 1 2 - - -  - - - - - 

KAR 2040 16 384 2 1 - - -  1 - - - 2 

KAR 2041 16 384 3 4 - 2 1  1 2 3 - - 

KAR 2042 32 768 2 1 - - -  1 2 - - - 

KAR 2043 8192 3 1 - 2 -  1 2 3 - - 

KAR 2045 16 384 1 - - - -  3 4 2 1 - 

              
SUN 64990 16 384 1 - 3 2 -  3 - 2 1 - 

SUN 64991 16 384 1 - - - -  - - - - - 

SUN 64992 16 384 1 3 - 2 -  - - - - - 

SUN 64993 16 384 1 - - - -  1 2 - - - 

SUN 64994 16 384 1 4 5 2 3  1 - - - 2 

SUN 64995 16 384 2 3 - 1 -  1 - - - - 

SUN 64996 8 192 1 4 2 3 -  1 3 - 2 - 

SUN 64997 16 384 1 2 - - -  3 - - 2 1 

SUN 64998 16 384 1 4 3 2 -  1 - - - - 

SUN 64999 16 384 1 4 2 3 -  1 2 - - - 

SUN 65000 16 384 1 5 2 3 4  1 - - - 2 

SUN 65001 16 384 1 2 - - -  2 - - 1 - 

SUN 65002 16 384 1 2 - - -  - - - - - 

SUN 65003 16 384 1 3 2 - -  1 - - - - 
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Cycles were observed, in both the presence/absence and average receiver location metrics, at 

periods of approximately 24.0 hours (diel cycle), 12.4 hours (tidal cycle), 24.8 hours (lunar day), 14.2 

days (spring/neap cycle) and 28.4 days (lunar cycle). The overriding period, observed in all 65 data 

series (presence/absence in 35 fish plus average receiver location in 30 fish), was ± 24.0 h (range 

23.7 to 24.3 h), representing the diel cycle. In 29 of the 35 presence/absence data series and 22 of 

the 30 average receiver time series, the diel peak was dominant.  

 

East Kleinemonde Estuary 

In the temporarily open/closed East Kleinemonde Estuary, there was an overwhelming dominance of 

the diel rhythm, being dominant in 20 of the 23 data series (Figures 4.5 and 4.6). Five individuals 

exhibited movement associated with lunar or spring/neap cycles, but none with the tidal cycle (Table 

4.1). Three fish (Fish 3765, 3768, 3770) showed secondary peaks related to the lunar day (± 24.8 h). 

 

Figure 4.5: Periodograms of the spectral (Fourier) analyses of the presence/absence data series for 

white steenbras from the East Kleinemonde Estuary (n = 12). Letters indicate cycles with which the 

respective peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – lunar 

month). Fish ID codes presented with * indicate periodograms with re-scaled y-axes 
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Figure 4.6: Periodograms of the spectral (Fourier) analyses of the average receiver location data 

series for white steenbras from the East Kleinemonde Estuary (n = 12). Letters indicate cycles with 

which the respective peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – 

lunar month). Fish ID codes presented with * indicate periodograms with re-scaled y-axes  

 

Kariega Estuary 

As the average receiver location metric assessed axial estuarine movements, it was expected that 

tidal-associated cycles would be more prevalent in average receiver location data series than in the 

presence/absence data series; however this did not occur in the Kariega or Sundays estuaries. In the 

Kariega Estuary, peaks at the tidal cycle (12.4 h) were observed; occurring in either one or both data 

series for most fish, and in some fish this was the dominant peak. However, the diel cycle remained 

the most prevalent rhythm (Figures 4.7 and 4.8). Interestingly, peaks associated with the lunar day 

(24.8 h) were common in the average receiver location data series of the Kariega Estuary fish, but 

were not observed in their presence/absence data series. Peaks occurring at lunar or spring/neap 

cycles were less common among the Kariega Estuary fish than diel or tidal peaks, although when 

they were present they were generally the dominant or secondary peak. 
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Figure 4.7: Periodograms of the spectral (Fourier) analyses of the presence/absence data series for 

white steenbras from the Kariega Estuary (n = 9). Letters indicate cycles with which the respective 

peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – lunar month). Fish ID 

codes presented with * indicate periodograms with re-scaled y-axes 

 
Figure 4.8: Periodograms of the spectral (Fourier) analyses of the average receiver location data 

series (Figure 4.8) for white steenbras from the Kariega Estuary (n = 9). Letters indicate cycles with 

which the respective peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – 

lunar month). Fish ID codes presented with * indicate periodograms with re-scaled y-axes  
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Sundays Estuary 

In the Sundays Estuary, the diel cycle was most prevalent and dominated 21 of the 25 data series. 

Although tidal cycle peaks (12.4 h) were common, they were always superseded by diel peaks, and 

were uncommon in the average receiver location time series. Movements associated with the lunar 

day (24.8 h) were also common in the presence/absence data series, but almost completely absent 

from the average receiver location data series (Figures 4.9 and 4.10). 

 

Figure 4.9: Periodograms of the spectral (Fourier) analyses of the presence/absence data series for 

white steenbras from the Sundays Estuary (n = 14). Letters indicate cycles with which the respective 

peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – lunar month). Fish ID 

codes presented with * indicate periodograms with re-scaled y-axes  
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Figure 4.10: Periodograms of the spectral (Fourier) analyses of the average receiver location data 

series for white steenbras from the Sundays Estuary (n = 13). Letters indicate cycles with which the 

respective peaks are associated (D – diel, T – tidal, LD – lunar day, S/N – spring/neap, L – lunar 

month). Fish ID codes presented with * indicate periodograms with re-scaled y-axes  

 

4.3.3 Further exploration of rhythmic movement patterns 

Diel movement patterns in the East Kleinemonde Estuary 

Mean times of departure and arrival associated with excursions (> 6 h) from the receiver array, in 

the vicinity of receivers 2 and 3 in the East Kleinemonde Estuary, varied among individuals. Three 

individuals tagged with long-period transmitters (Fish 3759, 3761, 3764) and one fish tagged with a 

short-period transmitter (Fish 2003) exhibited mean departure and arrival times significantly 

different from random (Figures 4.11 and 4.12, respectively).  
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Figure 4.11: Mean times of departure from and arrival at the receiver array, associated with 

excursions from the array (> 6 h), for a) Fish 3759, b) Fish 3761 and c) Fish 3764 in the East 

Kleinemonde Estuary. Dotted lines represent mean times ( t ), solid radials represent angular 

deviation (s), dashed radials represent upper and lower confidence limits and the solid line indicated 

by r is the mean vector length, representing an index of concentration of data points  
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Figure 4.12: Mean time of departure from and arrival at the receiver array, associated with 

excursions from the array (> 6 h), for Fish 2003 in the East Kleinemonde Estuary. Dotted lines 

represent mean times (t ), solid radials represent angular deviation (s), dashed radials represent 

upper and lower confidence limits and the solid line indicated by r is the mean vector length, 

representing an index of concentration of data points 

 

One individual (Fish 3769) tagged with a long period transmitter, exhibited a mean departure time 

significantly different, but a mean arrival time not significantly different from random (Figure 4.13). 

 

 

Figure 4.13: Mean time of departure from and arrival at the receiver array, associated with 

excursions from the array (> 6 h), for Fish 3769 in the East Kleinemonde Estuary. Dotted lines 

represent mean times (t ), solid radials represent angular deviation (s), dashed radials represent 

upper and lower confidence limits and the solid line indicated by r is the mean vector length, 

representing an index of concentration of data points 
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For these five individuals, mean times of departure and arrival were closely associated with daily 

times of sunset and sunrise, and showed little variability, ranging from 16:14 to 19:02 and 03:21 to 

07:33, respectively (Table 4.2), providing further evidence of the distinct diel movement pattern. 

 

Table 4.2: Mean departure and arrival times and associated angular deviations (hh:mm) for fish 

showing departure or arrival times significantly different from random (* refers to the number of 

observed excursions from the array exceeding 6 h) 

Fish 
* No. of 

excursions 
Departure 
mean time 

Angular 
deviation 

Departure 
p-value 

Arrival mean 
time 

Angular 
deviation 

Arrival p-
value 

2003 46 17:30 02:18 0.003 06:51 02:23 0.005 

3759 221 16:28 03:06 <0.001 07:33 03:04 <0.001 

3761 234 16:14 02:58 <0.001 06:58 03:07 <0.001 

3764 176 18:24 02:39 <0.001 06:12 02:45 0.001 

3769 33 19:02 02:30 0.030 03:21 02:46 0.132 

Overall 805 17:09 03:00 <0.001 06:35 03:08 <0.001 

 

When excursions undertaken by all individuals were analysed, the overall mean departure and 

arrival times were found to be significantly different from random (Figure 4.14). Furthermore, these 

overall mean departure (17:09) and arrival (06:35) times for all excursions by all fish fell within the 

ranges of the five individuals exhibiting mean times significantly different from random.  

 

Figure 4.14: Mean time of departure from and arrival at the receiver array, associated with all 

excursions from the array (> 6 h), by all fish tagged in the East Kleinemonde Estuary combined. 

Dotted lines represent mean times ( t ), solid radials represent angular deviation (s), dashed radials 

represent upper and lower confidence limits and the solid line indicated by r is the mean vector 

length, representing an index of concentration of data points 
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Tidal movements in the Kariega and Sundays estuaries 

Fish tagged in the Kariega and Sundays estuaries displayed two types of behaviour; (i) six fish 

exhibited station-keeping behaviour throughout the period during which they were detected on the 

stationary receivers, and (ii) nineteen fish undertook varying numbers of ‘significant’ movements 

(i.e. ‘significant’ unidirectional movements between stationary receivers) during the period of a 

single tidal phase (i.e. < 6.2 h). In the Kariega Estuary, two of the ten fish made no significant 

movements, and a further two fish made only two significant movements each. The remaining fish 

all made numerous movements (Table 4.3). In the Sundays Estuary, a similar pattern was observed, 

with four of the 15 fish making no significant movements, two making only one such movement, and 

the rest undertaking multiple significant movements (Table 4.4). Individual fish in the Kariega 

Estuary made considerably more movements than those in the Sundays Estuary, with individual 

maxima of 232 and 146 movements by fish in the Kariega and Sundays estuaries, respectively.  

 

Table 4.3: Summary of ‘significant’ estuarine movements made by the ten white steenbras tagged in 

the Kariega Estuary. The mean number of movements is based on all fish (n = 10), all other means 

are based only on fish that made significant movements (n = 8) 

Movements 
Up- 

estuary 
Down-
estuary 

Mean 
duration 

Spanning 
two tides 

With  
tide 

Against tide 

Fish ID n    n    %   n % (h:min)   n  %   n  %    n   % 

2036 103 52 50.5 51 49.5 01:42 23 22.3 66 64.1 14 13.6 

2037 219 110 50.2 109 49.8 02:45 38 22.2 116 67.8 5 2.9 

2038 122 59 48.4 63 51.6 01:31 22 18.6 74 62.7 21 17.8 

2039 0 - - - - - - - - - - - 

2040 2 1 50.0 1 50.0 02:19 0 0.0 1 50.0 1 50.0 

2041 2 1 50.0 1 50.0 02:00 0 0.0 1 50.0 1 50.0 

2042 232 116 50.0 116 50.0 02:10 38 19.4 151 77.0 6 3.1 

2043 0 - - - - - - - - - - - 

2044 14 7 50.0 7 50.0 02:43 4 28.6 10 71.4 0 0.0 

2045 102 50 49.0 52 51.0 02:36 29 28.4 59 57.8 14 13.7 

             
Mean 80 50 49.8 50 50.2 02:13 19 17.4 60 62.6 8 18.9 

SD 91 46 0.7 46 0.7 00:27 16 11.4 55 9.7 8 20.2 
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Table 4.4: Summary of ‘significant’ estuarine movements made by the 15 white steenbras tagged in 

the Sundays Estuary. The mean number of movements is based on all fish (n = 15), all other means 

are based only on fish that made significant movements (n = 11) 

Movements 
Up- 

estuary 
Down-
estuary 

Mean 
duration 

Spanning 
two tides 

With  
tide 

Against  
tide 

Fish ID n n    %   n % (h:min)   n  %   n  %    n   % 

64989 1 1 100.0 0 0.0 05:53 1 100.0 0 0.0 0 0.0 

64990 76 33 43.4 43 56.6 03:31 37 48.7 15 19.7 24 31.6 

64991 14 7 50.0 7 50.0 03:41 7 50.0 4 28.6 3 21.4 

64992 43 20 46.5 23 53.5 03:48 23 53.5 13 30.2 7 16.3 

64993 4 3 75.0 1 25.0 02:11 0 0.0 3 75.0 1 25.0 

64994 79 44 55.7 35 44.3 02:49 38 48.1 27 34.2 14 17.7 

64995 0 - - - - - - - - - - - 

64996 20 13 65.0 7 35.0 02:47 8 40.0 9 45.0 3 15.0 

64997 41 23 56.1 18 43.9 03:10 23 56.1 9 22.0 9 22.0 

64998 0 - - - - - - - - - - - 

64999 1 0 0.0 1 100.0 02:24 0 0.0 0 0.0 1 100.0 

65000 0 - - - - - - - - - - - 

65001 146 77 52.7 69 47.3 02:50 50 41.0 46 37.7 20 16.4 

65002 0 - - - - - - - - - - - 

65003 33 20 60.6 13 39.4 01:48 6 18.2 17 51.5 10 30.3 

             
Mean 31 22 55.0 20 45.0 03:10 18 41.4 13 31.3 8 26.9 

SD 42 23 24.1 22 24.1 01:05 18 28.2 14 21.8 8 25.7 

 

The total numbers of ‘significant’ movements made by each individual were averaged over the 

number of months for which each individual was detected. This provided a measure of the 

frequency with which each fish undertook ‘significant’ movements, to i) allow direct comparison 

among individuals and between estuaries, while removing any bias associated with individual 

tracking duration, and ii) determine whether such movements constituted an important contribution 

to behaviour at the individual level. In the Kariega Estuary, the individual average number of 

movements per month ranged from 0 to 84, with a mean of 16.8 (± 25.5), which equates to one 

significant movement approximately every two days, or every eight tidal phases. In the Sundays 

Estuary, the range was 0 to 22, with a mean of only 4.5 (± 6.2) movements per month. 

 

The directions of movements were classified as being made with the tide (i.e. up-estuary or down-

estuary on the incoming and outgoing tides, respectively), against the tide (up-estuary or down-

estuary on the outgoing and incoming tides, respectively) or as spanning two tides (i.e. had started 
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during one tidal phase and ended during the next tidal phase; by definition having moved with the 

tide and against the tide for some part of its movement). On average, the fish in the Kariega Estuary 

undertook 62.6% (± 9.7%) of their movements with the tide, with less than 20% of movements made 

either against the tide (18.9 ± 20.2%) or spanning two tidal phases (17.4 ± 11.4%). In contrast, the 

majority of movements in the Sundays Estuary spanned two tidal phases (41.4 ± 28.2%), while 31.3 

% (± 21.8%) were made with the tide, and 26.9% (± 25.7%) against the tide. Some fish in the Sundays 

Estuary undertook long unidirectional movements. Some of these movements spanned great 

distances, for example fish 65001 undertook multiple movements between receivers 1 and 11, 

spanning a distance of approximately 10 km, and fish 64991 made multiple movements between 

receivers 3 and 16, spanning a distance of approximately 18 km. The durations of most of these long-

distance movements exceeded 6.2 h, and spanned multiple changing tidal phases. In the Kariega 

Estuary, such long-duration movements were considerably less frequent. Here, the fish mainly 

utilised the area from receiver 1 to receiver 7, with few movements spanning distances of more than 

5 km.  

 

4.4 Discussion 

Snapshots of animals’ whereabouts are insufficient to fully understand their movement patterns, 

and how movement, distribution and area use change over time. This study assessed area use, 

movements and distribution of juvenile white steenbras over a range of temporal scales in a range of 

estuaries, and has provided a more comprehensive understanding of this species’ ecology. 

 

4.4.1 Long-term patterns in area use  

Analyses of mean monthly time spent in the vicinity of each receiver, and the monthly proportions 

of individuals with active transmitters that were detected on each, indicated an up-estuary shift in 

the area of utilisation for some individuals, with the onset of the winter months. These shifts were 

characterised by visits to parts of the estuary further from the mouth, and in many cases decreased 

time spent in areas closer to the mouth; although the winter and summer areas for individuals were 

rarely completely discrete. This behaviour was not observed for all individuals, with roughly equal 

proportions exhibiting the behavioural shift and long-term station-keeping behaviour. This trend was 

consistent among estuaries. The seasonal shift in area utilisation may be a result of seasonal changes 

in the physical environmental conditions, or may reflect a form of resource partitioning (Akin et al. 

2003). White steenbras cannot be sexed macroscopically, negating the possibility of assessing the 

effects of sex on long-term movements, and there appeared to be no relationship between fish size 

and whether they undertook such seasonal shifts in area use. 
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The observed result is in contrast to that reported by Lamberth et al. (2008), who showed that white 

steenbras distribution in the permanently open Breede and Olifants estuaries along the South 

African south west and west coasts, respectively, was closer to the mouths of these estuaries in 

winter. However, these authors speculated that prior to the current high levels of water abstraction 

from these two estuaries, the increased levels of freshwater inflow would have resulted in lower 

salinities within the upper and middle reaches, which would have restricted benthic 

macroinvertebrates, such as sand prawn Callianassa krausii and mud prawn Upogebia africana, to 

the lower reaches. As a result, benthic macroinvertebrate feeders, such as white steenbras, would 

have been present closer to the mouth of each estuary, under higher freshwater inflow conditions 

(Lamberth et al. 2008). The winter down-estuary shift in these two estuaries may, therefore, have 

been in response to the winter rainfall climate in the Western Cape Province (Lamberth et al. 2008).  

 

Harrison (2003) reported a positive correlation between white steenbras abundance in estuaries and 

salinity. The Eastern Cape Province experiences summer rainfall, which is likely to reduce salinity in 

the upper reaches of the estuaries within this Province, in the summer months, which in turn could 

restrict white steenbras to the lower or lower-to-middle reaches at this time of year. However, 

during the study periods in the Kariega Estuary (March 2009 to February 2010) and Sundays Estuary 

(March 2010 to November 2011), the volume of freshwater discharge into each estuary was 

elevated over the winter months, suggesting that freshwater inflow is not the driving factor of the 

up-estuary shifts observed in this study. 

 

Estuaries are characterised by seasonal changes in environmental conditions (Marshall and Elliot 

1998), the most obvious of which is temperature (e.g. see Figure 3.5, Chapter 3). Harrison (2003) 

reported a negative correlation between white steenbras abundance and estuarine water 

temperature, as well as dissolved oxygen concentration. Russell (1994) recorded mass mortalities of 

white steenbras in the Swartvlei and Wilderness Lakes system, along the South African south coast, 

as a result of excessively low concentrations of dissolved oxygen. The higher summer temperatures 

in the upper reaches of the three estuaries, which regularly exceed 20°C, and by inference the 

associated decreased dissolved oxygen levels, may act as a physiological obstruction to the upper 

limit of white steenbras movement during the summer months. Akin et al. (2003) reported a similar 

finding, showing strong spatial variation in fish and macrocrustacean species composition in the Mad 

Island Marsh Estuary, Texas, USA, during the summer months, as a result of combined high 

temperature and low dissolved oxygen, with particular influence on the estuarine-dependent 

species, which were found closer to the mouth during these conditions. 
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An environmentally-driven change could be expected to affect all or most individuals in the same 

way. The fact that roughly equal proportions of fish exhibited the seasonal shift in area use and the 

long-term station-keeping behaviours, despite seasonal changes in environmental conditions, 

suggests that environmental conditions are not the only factor influencing the seasonal behavioural 

change. Alternatively, the fact that the two behaviours were exhibited by roughly equal proportions 

of individuals, and that the behaviour in some of the “movers” was an up-estuary shift, rather than 

expansion of area used, suggests that the split in seasonal behaviours may be a form of resource 

partitioning among juvenile white steenbras, to decrease intraspecific competition (Matthews 

1990b, Akin et al. 2003).  

 

A home range contains a finite amount of energy as a resource, proportional to its area, with 

habitats of greater productivity resulting in smaller home ranges for a given species (Avenant and 

Nel 1998). Decreased solar energy is likely to cause lower primary productivity during winter, which 

may be detectable at lower trophic levels. Therefore, animals may be required to expand their home 

ranges during periods or seasons of lower productivity. The observed behaviour in white steenbras 

may, therefore, reflect seasonal variability in prey availability (Simcharoen et al. 2008). This could be 

tested by simultaneous examination of the distributions, home range sizes and condition factors of 

white steenbras and their predominant prey items, as well primary productivity levels at different 

depths in the water column, at regular intervals over a one-year period.  

  

4.4.2 Rhythmic movement patterns 

Results of the Fourier analyses indicated movement rhythms over diel (24.0 h), tidal (12.4), lunar-day 

(24.8 hours), spring-neap (14.2 days) and lunar month (28.4 days) cycles, associated with abiotic 

environmental cycles at their respective periodicities (Boehlert and Mundy 1988). However, the 

dominant rhythm underlying the observed periodicities in the movements of white steenbras from 

the East Kleinemonde, Kariega and Sundays estuaries was the diel cycle (i.e. circadian), with 

secondary 12.4-h tidal cycles (i.e. circatidal) in the permanently open Kariega and Sundays estuaries. 

A similar result was obtained by Hartill et al. (2003) for snapper Pagrus auratus, in the Mahurangi 

Harbour Estuary, New Zealand, in which the dominant rhythm was diel, followed by a secondary 

tidal peak occurring in fewer individuals. This may be a result of the presence of separate circadian 

and circatidal rhythms within individual fish (Wilcockson and Zhang 2008). Individual circadian and 

circatidal rhythms were further explored.  
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Diel movement 

A diel behavioural rhythm was observed for every fish, in all three estuaries studied. This agrees with 

the diel movement pattern identified through the use of circular statistics in the East Kleinemonde 

Estuary, where individual movements away from the stationary receiver array were associated with 

the daily sunset time and return to the array associated with sunrise. The results of the Fourier 

analyses and the circular statistics, from the stationary receiver data, also confirmed the cyclic 

variation in the locations of daytime and night-time home ranges observed in the East Kleinemonde 

Estuary through manual tracking (see Chapter 3), reinforcing that time of day plays a significant role 

in the distribution of individual juvenile white steenbras within estuaries. The fact that in all three 

estuaries the diel pattern in the Fourier analyses was the most dominant suggests that time of day is 

one of the most important factors influencing their movements.  

 

The strictly nocturnal presence of 1- to 2-year old white steenbras in the shallow littoral 

sand/mudflats in the East Kleinemonde Estuary above the road bridge was confirmed by Becker et 

al. (2011), using dual frequency identification sonar imagery. Juvenile snapper in the Mahurangi 

Harbour Estuary, New Zealand, followed a very similar pattern to that exhibited for white steenbras 

during the current study, with most individuals exhibiting a diel pattern of movement from the main 

channel areas where they spent the daylight hours, onto the surrounding shallow banks at night. 

These snapper were also resident in small areas, making diel movements over small spatial scales 

(Hartill et al. 2003). Diel changes in activity have also been observed in numerous other sparid 

species. White stumpnose Rhabdosargus globiceps in the Langebaan Lagoon, South Africa, were 

observed to be more active at dusk and at night-time than during the day (Attwood et al. 2007). 

Black bream Acanthopagrus butcheri in the Gippsland Lakes estuary network, Australia, were more 

active in foraging areas at night, and took shelter during the day (Hindell et al. 2008), while salema 

Sarpa salpa tracked in Calvi and Achiarina Bays in Corsica, in the Mediterranean Sea, were shown to 

be inactive at night, and became more mobile during the day (Jadot et al. 2006). Jadot et al. (2002) 

suggested that nocturnal and crepuscular activity is a mechanism for optimising foraging and 

reducing predation risk. Gilthead seabream Sparus aurata in the Ria Formosa Coastal Lagoon, 

Portugal, also showed diel movement behaviour, although some individuals exhibited nocturnal 

activity and others diurnal activity (Abecasis and Erzini 2008). 

 

The observed diel movement pattern for white steenbras in the East Kleinemonde Estuary was 

closely associated with sunset and sunrise times, suggesting that the behaviour was driven by light 

intensity. The change in light intensity during the crepuscular periods has been suggested to be the 
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cue to initiate foraging behaviour in certain pelagic fishes Andrews et al. (2009). Similarly, Jadot et al. 

(2002, 2006) recorded increased crepuscular activity of salema, in Calvi and Achiarina Bays in the 

Mediterranean Sea, during movements between daytime feeding and night-time resting home 

ranges. Light intensity-associated movements have been observed for numerous fish species, e.g. 

juvenile Atlantic cod Gadus morhus in Conception Bay, Newfoundland, USA (Clark and Green 1990), 

whitesaddle goatfish Parupeneus porphyreus in Kaneohe Bay, Hawaii (Meyer et al. 2000), California 

sheephead Semicossyphus pulcher around Santa Catalina Island, California, USA (Topping et al. 

2005), Hawaiian stingray Dasyatis lata, in Kanoehe Bay, Hawaii (Cartamil et al. 2003), and a range of 

Hawaiian reef fish species (Hobson 1972).  

 

Diel movement behaviour (identified through manual tracking data or excursions away from the 

stationary receiver array) was only exhibited by seven of the 15 fish tracked in the East Kleinemonde 

Estuary (although all of these fish exhibited diel cycles in their presence/absence and/or average 

receiver data series). This may be a result of certain individuals making insufficient diel position 

shifts to show significant movements, or that these animals made movements on a scale 

undetectable by the array within this system; however, it is consistent with other species that exhibit 

individual behavioural variation in movement patterns. Such intra-specific variability in movement 

behaviour has been described for numerous fishes, e.g. galjoen Dichistius capensis (Attwood and 

Bennett 1994), snapper (Hartill et al. 2003), spotted grunter Pomadasys commersonnii (Childs et al. 

2008a) and dusky kob Argyrosomus japonicus (Cowley et al. 2008), highlighting the importance of 

understanding movement behaviour at the individual level (Aebischer et al. 1993, Egli and Babcock 

2004, Codling 2008).  

 

Tidal-associated movement patterns 

The absence of tidal movement cycles (12.4 h) in the fish tagged in East Kleinemonde Estuary was to 

be expected, as this system remained closed and was not influenced by tidal exchange. According to 

Chabot and Watson (2010), circatidal rhythms are usually restricted to organisms inhabiting tidal 

environments. Tidal cycles were, however, detected in the fish from the permanently open Kariega 

and Sundays estuaries, and occurred in either one or both data series for most fish from these two 

systems.  

 

Palmer (1973) introduced the term ‘circalunadian’ (which Chabot and Watson 2010 more recently 

termed ‘circalunidian’), to describe the lunar day, representing the 24.8-h cycle required for the 

earth to complete one full rotation on its axis, relative to the moon’s position, encompassing two full 
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tidal cycles (12.4 h). He suggested that the two tidal cycles observed approximately each day in 

many organisms may in fact comprise a single bimodal circalunadian (24.8-h) cycle, rather than two 

separate tidal (12.4-h) oscillators. As such, cycles at 12.4 and 24.8 h are both tidal, and under the 

influence of the moon’s orbit of the earth. Based on Palmer’s (1973) explanations, it is proposed that 

the circalunadian peaks (24.8 h) identified in the closed East Kleinemonde Estuary, in the absence of 

tidal water movement or movement of fish at tidal (12.4 h) cycles, were in response to the level of 

moonlight, rather than the gravitational force of the moon or the direct physical effects associated 

with tidal fluctuation, which itself is driven by the lunar-day cycle (Morgan 2001).  

 

The greater prevalence of movements associated with circalunadian (24.8 h) and circatidal (12.4 h) 

cycles in the average receiver data series of the Kariega Estuary fish than in those of the fish from 

the Sundays Estuary, suggests that the tidal and lunar-day effects are of greater importance in the 

former. This is supported by the presence/absence data series, in which the 12.4-h tidal-associated 

movements in the Sundays Estuary fish were commonly only ranked third, fourth or fifth, whereas in 

the Kariega Estuary tidal movements were mainly dominant or secondary. This is most likely a result 

of the differences in bathymetry in the two systems. In the Sundays Estuary, most sandbanks remain 

submerged on most low tides, allowing fish to access the shallow areas at any time of the diel cycle, 

similar to that identified in the East Kleinemonde Estuary. However, in the Kariega Estuary, the main 

sandbank becomes exposed on the spring and neap low tides (see Figure 3.2, Chapter 3), restricting 

access to certain tidal states only. As a result, white steenbras in this estuary are forced into a 

behavioural pattern influenced both by tide and by time of day. Colton and Alevizon (1983) found a 

similar result for bonefish Albula vulpes at Grand Bahama Island, where the fish exhibited 

movements with the tide, although movement behaviours differed somewhat between two 

geographically proximal areas. The authors ascribed these differences to bottom topography, food 

distribution and predation.  

 

Movements associated with the spring/neap cycle were more common in the Sundays Estuary than 

the Kariega Estuary, particularly in the presence/absence data series. This may be due to the 

absolute depths occurring on the low tides across the spring/neap cycle. In the Kariega Estuary, the 

main sand bank area is exposed on all low tides, whereas in the Sundays Estuary, the main areas of 

sandbank become exposed only on spring low tides, which may affect these fish on a spring/neap 

periodicity. Lunar and spring-neap cycles were more prevalent in the average receiver location data 

series than the presence/absence data series, in both the Kariega and Sundays estuaries, suggesting 

that the lunar and spring/neap cycles had a greater influence on axial, than transverse movements. 
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This is likely a result of differences in the distance that marine conditions penetrate the estuary 

during different lunar phases (e.g. the distance that a salt wedge moves up the estuary would be 

greater on the spring high tide), thereby affecting the axial position of the fish (and thus the average 

receiver location) to a greater extent than the presence/absence of the fish. Such results suggest 

that changes in the mouth dynamics of an estuary may significantly influence the movement 

patterns of white steenbras, or at least the ability of the tidal and spring neap cycles to influence 

their movement, which may also be true for other species. This is evident in the Sundays Estuary, 

where the progressive deposition of silt in the mouth has resulted in decreased flow and scouring 

within the estuary. There is also evidence of higher tides (i.e. a greater estuary volume) during spring 

high and low tide phases, and lower tides (and a smaller estuary volume) during neap high and low 

phases, due to the time required for total water exchange on a spring high tide exceeding that 

allowed by the narrow and shallow estuary mouth (personal observation).  

 

Exploration of the effects of tide on the movement of white steenbras provided further evidence of 

multiple behavioural traits, with some individuals making frequent up- and down-estuary 

movements, while others showed strong station-keeping behaviour. This appears to be a common 

trend, highlighting both the occurrence of intraspecific variability in behaviour, and the long-term 

residency of the species. Interestingly, the individuals that exhibited strict station-keeping behaviour 

did not exhibit a winter shift in high-use area, suggesting that the fish follow either a resident 

behaviour, or one in which some exploration takes place, with little ‘switching’ between behaviours. 

 

The higher numbers of ‘significant’ movements (i.e. movements spanning at least 1 km between 

detection ranges of the start and end receivers) amongst the Kariega fish were not simply an artefact 

of a longer study period in this estuary, as evidenced by the higher monthly average number of 

movements per fish in this system. There may be two explanations for this. Firstly, the fish in the 

Kariega Estuary may simply be undertaking more movements, possibly in order to feed more 

efficiently. Secondly, the more frequent occurrence of these movements in the Kariega Estuary may 

not be due to variable frequencies of movement, but rather due to the movements within this 

system being of generally shorter duration, therefore allowing more movements to meet the 

“maximum 6.2-h duration” criterion. The results of the tidal analyses support both theories. Firstly, 

the greater prevalence of tidal-associated movements in the Kariega Estuary fish, indicated by the 

Fourier analysis, suggested that the tidal influence on this system is greater than on the Sundays 

Estuary, with the regular tidal exposure and inundation cycles of the main sandbank and feeding 

areas driving a tidal-associated movement pattern in fish in the Kariega Estuary. Secondly, the fish in 
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the lower reaches of the Kariega Estuary, where the majority of time was spent, were exposed to 

considerably higher current speeds than those in the lower reaches of the Sundays Estuary (see 

Tables 3.3 and 3.4, Chapter 3). Fish in the Kariega Estuary may, therefore, be forced to complete any 

extensive movements within a tidal phase, to avoid having to move against the stronger currents.  

 

Further evidence to support this notion is provided by the high proportions of movements in the 

Kariega Estuary that were made in the direction of the tidal movement, compared to those made 

against the tide. The high proportions of movements within the Sundays Estuary made spanning two 

tidal phases, and the lower proportions of movements made with the tidal movement further 

indicate the lesser effect of the tide in this system. Furthermore, many of the ‘significant’ 

movements in the Sundays Estuary were made in the middle and upper reaches, where current 

speeds were considerably lower than in the lower reaches of the estuary. The results, therefore, 

suggest that in areas of high current speed, the white steenbras undertake shorter duration 

movements that are completed within a single tidal phase, allowing movements with the tide. White 

steenbras in the Heuningnes Estuary were observed to shift their position up and down the estuary 

with the direction of tidal flow (Mehl 1973). This type of behaviour may be an adaptation to 

fluctuating environmental conditions, with tidal-associated movement decreasing the magnitude of 

the fluctuations. Movement with the tide also allows an animal to explore a greater area of 

estuarine habitat, with reduced energy consumption (Almeida 1996), with the most common driving 

reasons behind tidal movements being feeding and predator avoidance (Vinagre et al. 2006). Such 

behaviour is common among estuarine-associated fishes. Snapper were observed to make small-

scale movements with the tide in Mahurangi Harbour Estuary, New Zealand (Hartill et al. 2003), and 

black bream Acanthopagrus butcheri exhibited movements of direction and magnitude correlated to 

the direction and magnitude of the tidal change in Little Swanport Estuary, Tasmania, Australia 

(Sakabe and Lyle 2010). Childs et al. (2008a) recorded tidal-associated movements of spotted 

grunter in the Great Fish Estuary, South Africa. In the same estuary, Næsje et al. (in press) recorded 

tidal-associated movement in dusky kob, although these fish alternated between tidal-associated 

movement patterns and station-keeping behaviour, a strategy which the authors attributed to 

optimising feeding. 

 

Despite the high number of movements undertaken, particularly in the Kariega Estuary, and the 

presence of tidal cycles detected by the Fourier analyses, the low average numbers of movements 

made per month in each estuary (approximately one movement per eight tidal phases and 24 tidal 

phases in the Kariega and Sundays estuaries, respectively), suggests that extensive up- and down-
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estuary movements do not comprise a critical component of the behaviour of juvenile white 

steenbras in these two estuaries. Alternatively the energetic costs or predation risks associated with 

such movements may outweigh the benefits. Station-keeping behaviour may be expected for a 

species that feeds on sedentary organisms, as is the case with white steenbras (Mehl 1973, Bennett 

1993b). What then, is the cause of the observed tidal cycles in the Fourier analyses? This may be 

best explained by the Fourier analysis results themselves. As the average receiver location metric 

was aimed at identifying axial estuarine movements, it was expected that tidal influence would be 

greater on that metric than on the presence/absence metric. The fact that this was not observed 

suggests that white steenbras distribution along the length of the estuary is influenced less by axial 

tidal water movement, and more by the changes in depth and associated cycles of exposure and 

inundation. Tidal influence, therefore, appears to manifest as transverse (movements between 

shallow banks and channels), rather than axial, changes in position, as shown by the night-time 

home ranges in the shallow areas of the East Kleinemonde Estuary, and the high tide use of the 

intertidal sandbanks in the Kariega Estuary.  

 

It appears, then, that the prevalent behaviour is that of station-keeping, exhibited by some 

individuals all the time and by others most of the time. Most fish exhibited only small-scale 

movements between shallow sandbanks and deeper channel areas, associated with tidal inundation 

cycles. It also appears that when white steenbras do undertake movements, particularly in areas of 

high current speed, such as in the lower reaches of the Kariega Estuary, they are generally in the 

direction of the tidal movement, while in areas of lower current speeds movements are less strictly 

associated with the tides. However, the occurrence of movements, even of low frequency, against 

the direction of the tidal movement suggests that the fish are capable of moving against the tide 

when necessary. 

 

4.5 Conclusions 

The apparent winter upriver shift in the high-use areas of some individuals, and the strong diel 

behaviour identified through the circular statistics analysis highlight the fact that movement, area 

use and distribution are temporally dynamic, emphasizing the importance of long-term data 

collection and the collection of data at multiple temporal scales (Nathan et al. 2008). Single series 

spectral (Fourier) analysis, using the Fast Fourier Transform, allowed for the identification of cyclical 

rhythms in the movements of white steenbras in estuaries, thereby providing a basis for further, 

more in-depth environmental analyses. The tool is thus useful for exploratory analyses and 

identification of movement rhythms in estuarine fishes.  
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Diel movement was found to be the dominant cyclical pattern, followed by tidal-associated 

movement that was exhibited by fewer individuals. The diel pattern is created by fish moving into 

the shallow littoral zone at night to feed, and seeking refuge in the deeper channel areas during the 

daytime, although the possibility of daytime feeding cannot be discounted. This diel behavioural 

pattern is therefore hypothesised to be driven by both feeding and predator avoidance. The extent 

to which these two factors drive the observed diel movement pattern in white steenbras could be 

directly assessed through simultaneous tracking of the positions, movement patterns and cyclical 

patterns of white steenbras and the major predatory fishes within an estuary, to quantify predator-

prey interactions; as well as a diel analysis of stomach contents or telemetric assessment of 

physiological state, to describe feeding patterns. 

 

A behavioural pattern was identified in the permanently open Kariega Estuary, which is 

characterised by extensive intertidal sandbanks, in which movements onto the shallow banks were 

driven by both the diel cycle and cycles of tidal inundation. In the Sundays Estuary, which is 

characterised by subtidal sandbanks, tidal behaviour was considerably less prevalent, with fish able 

to utilise the banks following a diel rhythm, at any tidal state. However, despite the relatively 

frequent occurrence of tidal-associated movements, the spatial extent of these movements was 

small, in the order of one to two kilometres.  

 

The observation of individual variability in the cyclic movement patterns of juvenile white steenbras, 

as observed in their patterns of area use and home range (see Chapter 3), highlights the importance 

of studying movement at the individual level (Able and Grothues 2007b, Codling 2008). Similarly, the 

variability in results among estuaries of different type highlights the importance of management of 

estuaries as individual units.  

 

The types of environmental processes observed to influence the movements of juvenile white 

steenbras in estuaries, such as the diel cycle and tidal inundation cycles, and possibly the seasonal 

changes in water temperature, suggest that the factors influencing movement patterns of white 

steenbras in estuaries work in a complex synergistic manner (Marshall and Elliot 1998). Negative 

anthropogenic effects on the estuarine habitat and influences on these environmental processes 

may cause complex repercussions for species utilising these habitats. Therefore, estuaries should be 

managed in such a way as to ensure the maintenance of ecosystem functioning and the natural 

range of dynamic states (Whitfield and Bruton 1989, Bennett 1993b). 
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Chapter 5 

Factors affecting distribution in estuaries 

 

5.1 Introduction 

Estuaries are highly dynamic environments, within which physical conditions, such as salinity, 

temperature, current speed and turbidity (among others), may fluctuate substantially (Whitfield 

1990). Such fluctuations are often of high magnitude and can be acute, both spatially and 

temporally, and may have considerable effects on the distribution and movements of species 

utilising estuaries (Cyrus and Blaber 1987, Whitfield 1998, Marshall and Elliot 1998, Sackett et al. 

2008). It is therefore important to understand which environmental variables influence the 

distribution and area use of fishes within estuaries, the extent to which each variable is influential 

and the mechanism underlying each. The previous chapter identified strong diel cycles in the 

movement of juvenile white steenbras in the East Kleinemonde, Kariega and Sundays estuaries and, 

to a lesser extent, tidal cycles in the latter two (permanently open) estuaries. However, despite 

these patterns, the fish exhibited predominantly station-keeping behaviour. This suggests an ability 

to tolerate fluctuating environmental conditions, particularly with the fish being resident in the 

lower reaches of estuaries where environmental fluctuations may be most pronounced. However, it 

was felt that it was still necessary to determine whether prevailing environmental conditions 

affected the distributions of the fish within these estuaries.  

 

Acoustic telemetry has been used extensively to study the distribution and movements of fishes in 

estuaries. Numerous such studies have provided evidence of variability among individual fish; for 

example, snapper Pagrus auratus (Hartill et al. 2003), spotted grunter Pomadasys commersonnii 

(Childs et al. 2008a) and dusky kob Argyrosomus japonicus (Cowley et al. 2008). However, 

intraspecific variability in movement behaviour among estuaries of different type has rarely been 

assessed. Estuaries differ in physiological and hydrodynamic conditions, such as mouth state, 

bathymetry and tidal prism, geographic location, climatic conditions (such as mean annual rainfall), 

and biotic characteristics, such as the presence of submerged macrophyte beds, the density of 

benthic invertebrates and presence or absence of large predators, which collectively define how that 

individual system functions, and it is likely that no two estuaries function identically (Whitfield 1998). 

Consequently, it is intuitive that movement behaviour within a species would also differ in certain 

aspects among individual estuarine systems, or at least among different types of estuaries 

(Vasconcelos et al. 2010). Such inter-estuary variability would have considerable implications for 
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estuarine and fisheries management, and would mean that movement behaviour observed within 

one type of estuary should not simply be inferred for other estuarine systems, particularly those 

varying in characteristics such as estuary type, size, freshwater input and mouth state. Assessment 

within a range of geographically proximal estuaries of different type would provide a more 

comprehensive understanding of the factors that influence the distribution and area use of a species 

within estuaries (Vasconcelos et al. 2010). The range of estuarine conditions observed in the four 

estuaries in which telemetry studies were conducted (see Chapter 3) provided a unique opportunity 

to assess factors affecting movement within estuaries, and a comparative assessment of the 

movement patterns of a single species across estuary types. 

 

5.1.1 Aims and objectives 

The aim of this chapter was to assess the environmental variables driving the observed distribution 

and area use patterns of white steenbras in the Great Fish, East Kleinemonde, Kariega and Sundays 

estuaries, using acoustic telemetry data and environmental data. The specific objectives were to: 

 

i. Assess the effect of substrate type on the white steenbras distribution in each estuary; and 

ii. Assess the effects of different environmental variables on distribution in each estuary. 

 

5.2 Methods and materials 

Passive acoustic telemetry data (presented in Chapter 3) and environmental data were used to 

assess the effects of different environmental variables on the distribution of the tracked fish in the 

different estuaries. Three analyses were conducted; the first was an assessment of whether certain 

substrate types were used disproportionately more than others, the second was an assessment of 

whether the different environmental variables recorded at positional fixes for each fish (during 

manual tracking) showed deviation from an expected random distribution, and the third was a 

comparison of environmental data recorded at fish positional fixes (during manual tracking) and 

those recorded at fixed stations within each estuary. Due to logistical constraints, manual tracking 

could not be conducted in the Sundays Estuary, and fixed stations for recording environmental data 

could not be conducted in the East Kleinemonde or Sundays Estuary. 

 

5.2.1 Substrate type 

The effect of substrate type on the distribution and area use of white steenbras was assessed in the 

East Kleinemonde, Kariega and Sundays estuaries by determining the proportions of time spent by 

each individual in areas of different substrate type, relative to the proportions of each substrate 
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available at the landscape level (i.e. the study estuary). The Great Fish Estuary was not considered 

due to the short study duration. Aebischer et al. (1993) estimated habitat use as the proportion of 

detections made within each substrate type. However, as individuals are expected to minimise their 

time spent out of optimal resource areas (Fauchald and Tveraa 2006), it was felt that the proportions 

of time spent in areas of each substrate type would better reflect the contribution of each substrate 

type to the animal’s fitness, than absolute numbers of detections (Block and Brennan 1999 in 

Simcharoen et al 2008). In order to determine the proportions of each substrate available, each 

estuary was divided into a sand zone, a transition zone of mixed sand and mud, and a mud zone. 

Divisions were based on assessments of estuarine species distributions (Cowley and Whitfield 2001, 

Wooldridge and Bezuidenhout 2007) and visual assessment of substrate type. Sand zones were 

defined by clean, coarse-grained sand sediments and mud zones by fine-grained silt. Areas 

comprising both coarse- and fine-grained sediments were classified as zones of mixed sand and mud. 

 

Using Chi-square contingency tables, the proportions of time spent by each individual in the vicinity 

of receivers positioned in areas of sand, mud or mixed sand and mud substrate were compared to 

the overall proportions of these substrate types available in each estuary, to determine whether 

time spent associated with certain substrate types was significantly disproportionately greater than 

others (Katnik and Wielgus 2005). Then, to determine which substrate type was responsible for 

significant Chi-square values at the individual level, the “affinity” of each fish for each substrate type 

was estimated using a modified approach to the ‘Habitat Affinity Index’ (HAI) described by Monaco 

et al. (1998). HAI values were calculated for each of the three substrate types, for each individual, as 

follows: 

HAIhabitat = (p – r)/r , if p ≤ r, or 

HAIhabitat = (p – r)/(1 – r); if p ≥ r, 

 

where p was calculated as the proportion of time spent by each fish over each substrate type, and r 

was determined as the proportion of each substrate available within each estuary. The HAI produces 

values ranging from -1, indicating no time spent over that substrate, to +1, indicating exclusive use 

of that substrate. Positive HAI values indicate affinity for that substrate type, while negative values 

indicate avoidance (Monaco et al. 1998). 

 

East Kleinemonde Estuary 

Wooldridge and Bezuidenhout (2007) identified two different invertebrate communities within the 

East Kleinemonde Estuary; those species associated with sandy substrates, occurring predominantly 
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between the mouth and the bridge (approximately 800 m), and those associated with mud substrate 

occurring predominantly up-estuary of the bridge. The fact that sand prawns Callianassa krausii are 

found in abundance in the latter region (Terörde 2005) suggested an area of sand/mud transition 

up-estuary of the bridge (approximately 500 m), including the shallow littoral zone against the north 

west bank. The mud zone in this system was deemed to start at the end of this shallow littoral area 

(see Figure 3.4, Chapter 3), approximately 1.3 km from the mouth.  

 

Kariega Estuary 

Visual assessment of the substrate in the Kariega Estuary confirmed the presence of sandy substrate 

to approximately 2.6 km from the mouth, up-estuary of which the sand becomes mixed with riverine 

mud (see Figure 3.6, Chapter 3). Grange et al. (2000) suggested that, as a result of low freshwater 

input into this estuary, marine sediments are deposited up to approximately 3.5 km from the open 

mouth. Beyond this, mud rapidly becomes the dominant substrate type, and this point (3.5 km from 

the mouth) was taken as the upper limit of the mixed substrate zone.  

 

Sundays Estuary 

Owing to the considerably greater volume of freshwater inflow, deposition of marine sediments in 

the Sundays Estuary is restricted to approximately 1.5 km from the mouth (Swart 1986). However, 

there is considerable deposition of aeolian dune sand, resulting in a broad transition zone of mixed 

substrate, where the western bank of the estuary, up to approximately 4.0 km from the mouth, is 

comprised of sandy substrate, while the eastern bank becomes predominantly mud after about 2.5 

km from the mouth. The sand zone of this estuary was thus deemed to comprise the area from the 

mouth to 2.5 km, the transition zone comprised the area between 2.5 and 4.0 km, and the mud zone 

comprised the area beyond 4 km from the mouth. 

 

5.2.2 Physico-chemical environment at fish positional fixes 

Environmental data recorded at positional fixes for each fish whilst manual tracking in the Great 

Fish, East Kleinemonde and Kariega estuaries (see Chapter 3), included bottom salinity, bottom 

water temperature, bottom turbidity, current speed and water depth. Each variable was binned into 

suitable categories, depending on the particular variable. The probability that the contribution of 

each bin was significantly different from the median contribution was assessed by means of a two-

tailed binomial test, conducted in the R statistical package (R Development Core Team 2010), with a 

Bonferroni adjustment to reduce the likelihood of a type I error (Childs et al. 2008b).  
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5.2.3 Fish positions in relation to the physico-chemical environment at fixed stations 

In addition to the environmental data recorded at positional fixes, the same variables were recorded 

at a number of fixed stations in each of the studied estuaries, on each manual tracking day (see 

Chapter 3, Figures 3.3 and 3.6). Data were compared by means of the Kruskal-Wallis ANOVA, due to 

non-normality (Shapiro-Wilk p < 0.010 in most cases). Comparisons were made between each fixed 

station and each individual fish, as well as among each fixed station and all fish combined, within 

each estuary. This analysis was conducted on environmental data collected at fish positional fixes 

and at the fixed stations in the Great Fish and Kariega estuaries. The East Kleinemonde was excluded 

from this analysis, as fixed-station environmental data were not recorded. All analyses were 

conducted in Statistica 10.0.  

 

5.3 Results 

5.3.1 Substrate type 

Assuming a random distribution of fish relative to substrate type, proportions of time spent in each 

substrate zone would be expected to reflect the proportions of each substrate available. Within the 

East Kleinemonde, Kariega and Sundays estuaries, the proportions of total estuarine area comprising 

each substrate differed considerably, although in all three estuaries the dominant substrate type 

was mud (Table 5.1). In the East Kleinemonde Estuary, the proportions of sand and mixed substrates 

were similar, and only slightly less than that comprised of mud, while in the Kariega and Sundays 

estuaries mud comprised approximately 75% and 55%, respectively, of available habitat.  

 

Table 5.1: Total surface area (m2) of each estuary, and proportions (m2 and %) of each estuary 

comprised of sand, mixed sand and mud, or mud 

Estuary 
Total area  Sand area Mixed area Mud area 

(m2) (m2) (%) (m2) (%) (m2) (%) 

East Kleinemonde 298 200 85 880 28.8 99 600 33.4 112 720 37.8 

Kariega 1 577 180 313 100 19.9 106 200 6.7 1 157 880 73.4 

Sundays 1 757 650 573 280 32.6 223 990 12.7 960 380 54.6 

 

The proportions of time spent in areas of different substrate type were significantly different to the 

proportions of substrate type available in their respective estuaries, for all 39 white steenbras 

tracked in the East Kleinemonde, Kariega and Sundays estuaries (Table 5.2). The HAI showed that 12 

individuals (30.8%) spent disproportionately more time over sand substrate, and 10 individuals 

(25.6%) spent disproportionately more time over mud substrate, while 17 individuals (43.6%) spent 

disproportionately more time over mixed sand and mud (Table 5.2).  
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Table 5.2: Proportions of time (%) spent over sand, mixed sand and mud, and mud substrates, Chi-

square values and level of significance (* = significant at 5%, ** = significant at 1% level), and 

dominant substrate (+) based on the HAI, for individual white steenbras in the East Kleinemonde 

(EKM, S,L = short- and long-period transmitters, respectively), Kariega (KAR) and Sundays (SUN, A,B = 

fish captured in vicinity of receivers 4 and 2, respectively) estuaries  

Estuary Fish ID Sand (%) Mixed (%) Mud (%) Chi-square Sand Mixed Mud 

EKM 2001
 S

 59.4 28.2 12.4 50.5 ** +   
EKM 2002 S 74.9 24.6 0.6 112.7 ** +   
EKM 2003

 S
 36.7 62.3 1.0 62.9 **  +  

EKM 2004 S 32.4 62.5 5.1 54.1 **  +  
EKM 2005 S 100.0 0.0 0.0 247.2 ** +   
EKM 3759 L 5.6 93.1 1.3 160.4 **  +  
EKM 3760

 L
 9.6 42.6 47.8 18.1 **   + 

EKM 3761 L 6.9 91.7 1.3 153.8 **  +  
EKM 3762

 L
 51.9 19.3 28.8 26.6 ** +   

EKM 3764 L 7.1 91.5 1.4 152.4 **  +  
EKM 3765

 L
 3.3 20.2 76.5 67.3 **   + 

EKM 3766 L 35.5 64.5 0.0 68.3 **  +  
EKM 3768 L 3.5 19.6 76.9 68.2 **   + 
EKM 3769 L 4.9 41.4 53.8 28.6 **   + 
EKM 3770 L 4.6 8.9 86.5 100.9 **   + 
EKM Mean 29.1 44.7 26.2 7.4 *  +  
EKM Mean S 60.7 35.5 3.8 66.0 ** +   
EKM Mean L 13.3 49.3 37.4 15.9 **  +  
KAR 2036 61.3 30.7 8.1 229.4 ** +   

   
 

   
   

KAR 2037 52.4 37.6 10.0 249.6 ** +   
KAR 2038 50.8 46.0 3.2 344.5 **  +  
KAR 2039 100.0 0.0 0.0 403.7 ** +   
KAR 2040 99.7 0.3 0.0 400.8 ** +   
KAR 2041 99.7 0.3 0.0 400.7 ** +   
KAR 2042 43.4 56.1 0.6 461.3 **  +  
KAR 2043 100.0 0.0 0.0 403.7 ** +   
KAR 2045 93.4 6.2 0.5 344.7 ** +   
KAR Mean 77.8 19.7 2.5 262.8 ** +   

   
 

   
   

SUN 64989
 A

 1.5 50.9 47.6 144.9 **  +  
SUN 64990 A  3.4 3.7 92.9 59.5 **   + 
SUN 64991 A 0.0 0.1 99.9 82.5 **   + 
SUN 64992 B 55.8 18.7 25.5 34.8 ** +   
SUN 64993

 B
 29.4 70.4 0.1 315.9 **  +  

SUN 64994 B 7.3 85.8 6.9 480.5 **  +  
SUN 64995 B 34.8 65.2 0.0 270.9 **  +  
SUN 64996 B 3.5 96.5 0.0 630.8 **  +  
SUN 64997

 B
 5.4 50.6 44.1 137.1 **  +  

SUN 64998 B 39.6 60.4 0.0 234.3 **  +  
SUN 64999 B 45.1 54.9 0.0 198.9 **  +  
SUN 65000 B 34.8 65.2 0.0 270.6 **  +  
SUN 65001

 A
 5.3 10.9 83.8 38.7 **   + 

SUN 65002 A 0.0 0.0 100.0 83.0 **   + 
SUN 65003

 A
 3.0 2.0 95.0 65.7 **   + 

SUN Mean 17.5 42.5 40.0 80.4 **  +  
SUN Mean

 A
 2.2 11.3 86.5 47.2 **   + 

SUN Mean B 27.9 63.8 8.3 244.6 **  +  
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In the East Kleinemonde Estuary, the site at which fish were captured and tagged influenced the 

results. Fish tagged in the mouth region spent on average disproportionately more time in areas of 

sandy substrate (p < 0.001), while those tagged above the bridge spent on average 

disproportionately more time in areas of mixed substrate (p < 0.001). The mean of time spent by all 

fish in the East Kleinemonde Estuary was also greatest over mixed substrate (p = 0.025). In the 

Kariega Estuary, time spent by most individuals and the mean time across all fish was 

disproportionately greater over sandy substrate (p < 0.001), which reflected the capture site 

substrate for all tagged fish. In the Sundays Estuary, the mean proportions of time were 

disproportionately greater over mixed substrate, reflecting the pattern exhibited by most individuals 

in this estuary (p < 0.001). Here, the capture site again influenced the results. The majority of fish 

captured in the vicinity of receiver 4 spent disproportionately more time in areas of muddy 

substrate, while those captured in the vicinity of receiver 2 spent disproportionately more time over 

mixed substrate (p < 0.001 in both cases).  

 

5.3.2 Physico-chemical environment at fish positional fixes 

Environmental variables recorded at positional fixes for each fish during manual tracking in the Great 

Fish, East Kleinemonde and Kariega estuaries indicated that white steenbras are able to tolerate a 

range of environmental conditions (Table 5.3).  

 

Table 5.3: Environmental variables recorded at positional fixes during manual tracking in the Great 

Fish (GFR), East Kleinemonde (EKM) and Kariega (KAR) estuaries, showing mean (± SD) values, with 

ranges for each presented below the means (S = surface, B = bottom) 

Estuary 
(S/B) 

Salinity 
Temperature 

(ºC) 
Current speed 

(m.s
-1

) 
Turbidity (FTU) Depth (m) 

GFR 

S 5.6 (± 5.2) 21.3 (± 1.1) 0.29 (±0.16) 78.8 (±49.0) 

0.92 (± 0.5) 
0.3 – 3.5 

S 0.0 – 25.0 18.0 – 23.3 0.03 – 0.66 19.3 – 206.0 

B 9.6 (± 8.2) 20.6 (± 1.3) 0.15 (± 0.10) 87.2 (± 47.7) 

B 0.0 – 30.0 17.5 – 23.3 0.01 – 0.42 2.7 – 211.0 

EKM 

S 27.0 (± 1.1) 22.6 (± 2.6) - - 

1.74 (± 0.86) 
0.46 – 4.09 

S 19.0 – 29.0 14.9 – 27.4 - - 

B 27.5 (± 0.9) 22.1 (± 2.7) - - 

B 26.0 – 30.0 14.6 – 27.3 - - 

KAR 

S 37.7 (± 0.7) 17.6 (± 2.0) 0.27 (± 0.12) 4.6 (± 1.7) 

2.75 (± 1.07) 
0.37 – 6.75 

S 36.0 – 39.0 14.0 – 21.5 0.08 – 0.54 1.8 – 11.0 

B 38.0 (± 0.7) 17.6 (± 2.0) - 4.6 (± 1.5) 

B 36.0 – 40.0 13.5 – 21.5 - 2.3 – 12.0 
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Salinity 

Bottom salinities recorded at positional fixes for each fish during manual tracking differed widely 

among estuaries (Figure 5.1). In the Great Fish Estuary, significantly more positional fixes were made 

at salinities from 0 to 5 (two-tailed binomial tests), although values up to 30 were recorded. There 

were significantly fewer positional fixes made at salinities greater than 25, despite salinity reaching 

36 in parts of the estuary, during the study. In the East Kleinemonde Estuary, salinity recorded at fish 

positional fixes ranged from 26 to 34, although significantly more positional fixes were made from > 

26 to 30, and significantly fewer at salinities outside of this range. In the Kariega Estuary, salinity in 

parts of the estuary reached 46, as a result of the reverse salinity gradient; although significantly 

more (85%) positional fixes were made in the salinity range of 36 to 38, and none at salinities 

exceeding 40. 

 

Temperature 

The ranges of bottom temperatures recorded at fish positional fixes were similar within each estuary 

(Figure 5.1). In the Great Fish Estuary, there were significantly more positional fixes made in the 

range > 18 to 22°C, and significantly fewer at temperatures of 18°C or less. Similarly, in the East 

Kleinemonde Estuary, there were significantly fewer positional fixes made at temperatures of 18°C 

or less, and the range > 22 to 26°C contributed significantly more positional fixes, while 

temperatures above this were significantly under-represented. In the Kariega Estuary, significantly 

fewer positional fixes were made below 14°C, or above 22°C, with most falling in the range > 16 to 

18°C. 

 

Turbidity 

As a result of the differences in estuary type and conditions, the turbidity values recorded at 

positional fixes differed considerably between the Great Fish and Kariega Estuaries (Figure 5.1). 

However, in both estuaries, fish were found most often at lower bottom turbidities. In the Great Fish 

Estuary, where turbidity recorded at the fixed stations ranged from 3.7 to 273 FTU, significantly 

fewer positional fixes were made above 200 FTU, while the range 40.1 to 80 FTU contributed a 

significantly greater proportion of positional fixes. Despite fixed station turbidity reaching a 

maximum of only 14 FTU in the Kariega Estuary, significantly more positional fixes were made at 

lower turbidity classes (2.0 – 6.0 FTU). Turbidity data were not recorded in the East Kleinemonde 

Estuary. 
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Figure 5.1: Frequency distributions (% of positional fixes) of bottom salinity, bottom temperature °C, 

bottom turbidity FTU, current speed (m.s-1, Great Fish = bottom current, Kariega = surface current) 

and depth (m) recorded at all fish positional fixes made during manual tracking in the Great Fish, 

East Kleinemonde and Kariega estuaries. X-axis values represent upper limit of each bin. Categories 

represented with * indicate significantly higher contributions, and those with ** significantly lower 

contributions than the median for all bins (two-tailed binomial test, with Bonferroni adjustment)  
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Current speed 

Current speed was measured near the substrate in the Great Fish Estuary. However, due to 

instrument failure, this current meter could not be used in the Kariega Estuary, and current was 

measured only at the surface (see Methods and materials, Chapter 3). In both estuaries, significantly 

more positional fixes were made in the lower current speed categories, 0.0 to 0.2 m.s-1 in the Great 

Fish Estuary and 0.21 to 0.4 m.s-1 in the Kariega Estuary, while the higher current speeds, exceeding 

0.4 m.s-1, contributed significantly lower proportions of positional fixes (Figure 5.1). Current speed 

was not applicable in the East Kleinemonde Estuary, as the estuary mouth remained closed during 

the manual tracking period of the study. 

 

Depth 

In the Great Fish Estuary, the shallow depth category > 0.5 to 1.0 m contributed significantly more to 

the total number of positional fixes (approximately 60%), while depths greater than approximately 

3.5 m contributed significantly fewer (Figure 5.1). In the East Kleinemonde Estuary, two separate 

depth classes contributed significantly greater proportions of positional fixes (> 0.5 to 1.0 and > 1.5 

to 2.0 m), while significantly fewer positional fixes were made at depths 0.5 m or less, or greater 

than 3.5 m. In the Kariega Estuary, significantly more positional fixes were made in the depth range 

of > 2.0 to 4.0 m, while depths greater than 4.5 m contributed significantly fewer.  

 

5.3.3 Fish positions in relation to the physico-chemical environment at fixed stations 

Great Fish Estuary  

Environmental variables recorded at positional fixes in the Great Fish Estuary were most similar to 

those recorded at fixed station 6, in the vicinity of receiver 6, which represented a high use area for 

the white steenbras tracked in this estuary (see Chapter 3). In this estuary, fixed station salinity 

remained relatively similar from stations 1 to 5 (Figure 5.2a), beyond which salinity decreased 

rapidly. Bottom salinities recorded at positional fixes were significantly lower than those recorded at 

stations 1 to 5, but not significantly different to those at stations 6 or 7 (Table 5.4). Salinities 

recorded for all fish combined were also significantly lower than stations 1 to 5, and significantly 

higher than at station 8 (Figure 5.2a). The exception was station 4, where recorded salinities were 

not significantly different to stations 6 or 7, or to those recorded for each fish or all fish combined.  

 

Bottom water temperature followed the opposite trend to salinity, with recordings relatively similar 

from receiver 1 to 5 (although temperatures at station 4 were again more similar to those at station 

6), beyond which an increasing trend was observed. Temperatures recorded at fish positional fixes 
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were not significantly different from those recorded at stations 6 to 8, in the middle to upper 

reaches (Figure 5.2b). Individual fish, and all fish combined, were located in significantly higher 

temperatures than those recorded at stations 1 to 5 (Table 5.4).  

 

Bottom turbidities recorded at stations 1 to 5 were significantly lower than at stations 7 and 8. Four 

fish in the Great Fish Estuary were found in significantly higher turbidity conditions than those 

recorded at receiver 1, while one fish (Fish 92) was located in significantly lower turbidities than 

those recorded at stations 7 and 8. Bottom turbidities recorded for all fish combined reflected both 

these patterns, being significantly higher than turbidities recorded at station 1, and significantly 

lower than at stations 7 and 8 (Figure 5.2c). There were few significant differences between bottom 

turbidities recorded for individual fish and those recorded at stations 2 to 6 (Table 5.4). 

 

There were few significant differences in current speeds, whether recorded at fixed stations or at 

individual fish positional fixes, although the current speeds recorded at receiver 5 were significantly 

lower than those recorded at positional fixes for all fish combined (Figure 5.2d). Only one current 

speed was recorded at station 7, due to the depth exceeding that suitable for the current meter.  

 

 

Figure 5.2: Mean (±SD) a) bottom salinity, b) bottom temperature (°C), c) bottom turbidity (FTU), d) 

bottom current (m.s-1) and e) depth (m) values recorded at the eight fixed stations, and at positional 

fixes for all fish combined (Fish), in the Great Fish Estuary. Solid black means represent stations 

significantly different to those recorded at fish positional fixes (p < 0.01 in all cases)  

1 2 3 4 5 6 7 8 Fish

Station/Group

0

10

20

30

40

Sa
lin

ity

a

1 2 3 4 5 6 7 8 Fish

Station/Group

16

18

20

22

24

Te
m

pe
ra

tu
re

 (°
C

)

b

1 2 3 4 5 6 7 8 Fish

Station/Group

0.0

0.1

0.2

0.3

C
ur

re
nt

 s
pe

ed
 (m

.s
-1

) d

1 2 3 4 5 6 7 8 Fish

Station/Group

0

40

80

120

160

200

240

280

Tu
rb

id
ity

 (F
TU

)

c



Chapter 5 – Factors affecting distribution in estuaries 

 

122 
 

Table 5.4: Post-hoc pairwise comparisons of mean ranks from the Kruskal-Wallis ANOVA (p-values, 

ns = not significant), between environmental variables recorded at fixed stations, and those 

recorded at positional fixes made for each fish and for all fish combined, in the Great Fish Estuary 

(comparisons between stations are not presented) 

Fish ID Fish 82 Fish 83 Fish 84 Fish 86 Fish 87 Fish 88 Fish 92 All fish 

Bottom salinity (Kruskal-Wallis ANOVA p < 0.001) 
    Station 1 ns 0.006 < 0.001 0.011 < 0.001 0.022 ns < 0.001 

Station 2 ns < 0.001 < 0.001 0.001 < 0.001 0.002 0.036 < 0.001 
Station 3 ns 0.018 0.002 0.028 < 0.001 ns ns < 0.001 
Station 4 ns ns ns ns ns ns ns ns 
Station 5 ns 0.041 0.004 ns 0.002 ns ns < 0.001 
Station 6 ns ns ns ns ns ns ns ns 
Station 7 ns ns ns ns ns ns ns ns 
Station 8 0.039 ns ns ns ns ns ns 0.030 
Bottom temperature (Kruskal-Wallis ANOVA p < 0.001) 

   
Station 1 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.031 < 0.001 
Station 2 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.034 < 0.001 
Station 3 ns 0.005 0.001 0.005 < 0.001 0.008 ns < 0.001 
Station 4 ns ns ns ns ns ns ns ns 
Station 5 ns 0.014 0.003 0.012 0.002 0.021 ns < 0.001 
Station 6 ns ns ns ns ns ns ns ns 
Station 7 ns ns ns ns ns ns ns ns 
Station 8 ns ns ns ns ns ns ns ns 
Bottom turbidity (Kruskal-Wallis ANOVA p < 0.001) 

    
Station 1 ns 0.004 < 0.001 ns < 0.001 0.003 ns < 0.001 
Station 2 ns ns ns ns ns ns ns ns 
Station 3 ns ns ns ns 0.017 ns ns ns 
Station 4 ns ns ns ns ns ns ns ns 
Station 5 ns ns ns ns ns ns ns ns 
Station 6 ns ns ns ns ns ns ns ns 
Station 7 ns ns ns ns ns ns 0.002 0.020 
Station 8 ns ns ns ns ns ns 0.002 0.024 
Bottom current speed (Kruskal-Wallis ANOVA p = 0.016) 

   
Station 1 ns ns ns ns ns ns ns ns 
Station 2 ns ns ns ns ns ns ns ns 
Station 3 ns ns ns ns ns ns ns ns 
Station 4 ns ns ns ns ns ns ns ns 
Station 5 ns ns ns ns 0.039 ns ns 0.009 
Station 6 ns ns ns ns ns ns ns ns 
Station 7 ns ns ns ns ns ns ns ns 
Station 8 ns ns ns ns ns ns ns ns 

 

 

Kariega Estuary 

Environmental variables recorded at the five fixed stations in the Kariega Estuary fluctuated widely 

throughout the estuary (Figure 5.3). Spatial trends were observed in salinity, temperature and 

turbidity, which increased, and current speed, which decreased, beyond station 2. Data recorded at 

fish positional fixes in this estuary generally reflected conditions intermediate of those recorded at 

stations 2 and 3, which represented the high use area within this estuary (see Chapter 3).  
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Figure 5.3: Mean (±SD) a) bottom salinity, b) bottom temperature (°C), c) bottom turbidity (FTU), d) 

surface current (m.s-1) and e) depth (m) values recorded at the five fixed stations, and at positional 

fixes for all fish combined (Fish), in the Kariega Estuary. Solid black means represent stations 

significantly different to those recorded at fish positional fixes (p < 0.01 in all cases)  
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There were no significant differences between bottom water temperatures recorded for each 
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Positional fixes for most individuals were made in significantly lower bottom turbidities than those 
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for all fish combined and those recorded at stations 3, 4 and 5 (Figure 5.3c, Table 5.5).  
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Stations 1 and 2 exhibited significantly stronger surface currents than stations 3 to 5 (Figure 5.3d). 

Surface current speeds recorded at positional fixes for each individual fish were significantly higher 

than at receiver 5, with no significant differences from any other stations (Table 5.5). For all fish 

combined, currents recorded at positional fixes were significantly higher than those recorded at 

stations 3 to 5, but not significantly different to those at stations 1 and 2.  

 

Table 5.5: Post-hoc pairwise comparisons of mean ranks from the Kruskal-Wallis ANOVA (p-values, 

ns = not significant), between environmental variables recorded at fixed stations, and those 

recorded at positional fixes, for each individual fish and for all fish combined, in the Kariega Estuary 

(comparisons between stations are not presented) 

Fish ID 
Fish 
2036 

Fish 
2037 

Fish 
2038 

Fish 
2039 

Fish 
2040 

Fish 
2041 

Fish 
2042 

Fish 
2043 

Fish 
2045 

All fish 

Bottom salinity (Kruskal-Wallis ANOVA p < 0.001) 
    Station 1 ns ns ns ns ns ns ns ns ns ns 

Station 2 ns ns ns ns ns ns ns ns ns ns 

Station 3 ns ns ns ns ns ns ns ns ns ns 

Station 4 < 0.001 0.012 < 0.001 < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Station 5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Bottom temperature (Kruskal-Wallis ANOVA p = 0.094) 
    

Station 1 ns ns ns ns ns ns ns ns ns ns 

Station 2 ns ns ns ns ns ns ns ns ns ns 

Station 3 ns ns ns ns ns ns ns ns ns ns 

Station 4 ns ns ns ns ns ns ns ns ns ns 

Station 5 ns ns ns ns ns ns ns ns ns ns 

Bottom turbidity (Kruskal-Wallis ANOVA p < 0.001) 
    

Station 1 ns ns ns ns ns ns ns ns ns ns 

Station 2 ns ns ns ns ns ns ns ns ns ns 

Station 3 ns ns ns ns ns ns ns ns ns 0.012 

Station 4 0.024 0.002 0.043 ns 0.037 0.002 0.003 ns 0.022 < 0.001 

Station 5 0.040 0.003 ns ns ns 0.003 0.006 ns 0.036 < 0.001 

Surface current speed (Kruskal-Wallis ANOVA p < 0.001) 
    

Station 1 ns ns ns ns ns ns ns ns ns ns 

Station 2 ns ns ns ns ns ns ns ns ns ns 

Station 3 ns ns ns ns ns ns ns ns ns 0.002 

Station 4 ns ns ns ns ns 0.029 ns ns ns < 0.001 

Station 5 0.002 0.007 0.038 0.027 0.014 < 0.001 0.004 0.003 0.005 < 0.001 
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5.4 Discussion 

5.4.1 Substrate 

In a hierarchically-structured habitat, such as an estuary, it is expected that an animal would move in 

such a way as to minimise the probability of leaving a more optimal patch or habitat type to enter 

one that is less optimal or unfavourable (Fauchald and Tveraa 2006). However, within an estuary, 

particularly those with predominantly sand and mud substrates, a distinct division between 

substrates is unlikely, and two substrates are likely to meet in an area of transition comprising a 

mixture of both (Dalrymple and Choi 2007). It can also be expected that the extent and position of 

such mixed substrate transition areas vary considerably among estuaries, affected by factors such as 

freshwater inflow, flooding, estuary mouth status, marine sediment deposition, longshore sediment 

transport or aeolian sand deposition.  

 

Similarly, estuarine organisms are unlikely to have abrupt distribution limits, and are likely to show 

gradual changes in density from one substrate type to another. Disproportional use, however, of one 

substrate type by most individuals over another substrate type, relative to the proportions of each 

substrate available at the landscape level, would indicate affinity for, and some ecological benefit of, 

that substrate type to their overall fitness (Monaco et al. 1998, Block and Brennan 1999 in 

Simcharoen et al. 2008). The key question is does each individual allocate the time it spends over 

each substrate type in proportion to the availability of that substrate, and if not which is the most 

dominant substrate used, and why?  

 

The majority of individuals spent disproportionately more time over mixed substrate, than areas of 

homogenous sand or mud, although there was considerable individual variability in the substrate 

predominantly used. This was influenced by the habitat at the capture site, with most fish (59%) 

spending disproportionately more time in the substrate type associated with their capture site, 

which was to be expected, due to the high level of site fidelity shown by white steenbras in all three 

estuaries (see Chapter 3). This suggests that substrate type is not the primary environmental factor 

directly affecting the distribution of these fish in estuaries. Common to all estuaries was that 

distribution was associated with areas of shallow sandbanks or mudbanks, or shallow littoral areas 

of mixed sand and mud. As these shallow banks support high densities of macrobenthic 

invertebrates (Wooldridge and Bailey 1982), it is more likely that the observed distributions are 

proximately driven by availability of prey organisms, which in turn is likely driven by substrate type. 
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Estuaries provide an important source of food and shelter for juvenile fishes (Bennett and Branch 

1990). At the juvenile life stage, food availability and predator avoidance are the most important 

factors affecting survival; therefore, it may be expected that prey availability is one of the most 

important factors influencing distribution (McArthur and Pianka 1966, Fretwell and Lucas 1970), and 

thus affecting the distribution of juvenile fishes within estuaries (Sheppard et al. 2011). A 

component of availability is accessibility, and individuals are likely to associate with areas where 

prey organisms are more easily accessible (de Villiers et al. 1999). This may be related to the size of 

the fish, the size of the prey organisms and whether the prey organisms are epibenthic or infaunal. It 

is also likely that the diversity of prey organisms is higher in the transition zone of mixed substrate 

type (Teske and Wooldridge 2001), where the distributions of sand- and mud-associated species 

overlap, such as sand prawn and mud prawn Upogebia africana, providing a greater variety of prey 

organisms. Therefore, white steenbras would possibly obtain little benefit by favouring either sand 

or mud over the other, unless prey availability differed considerably between these substrate types.  

 

The higher proportion (33%) of individuals in the Sundays Estuary, than in the East Kleinemonde 

(27%) or Kariega estuaries (0%), that spent significantly more time in the section of estuary 

comprised predominantly of muddy substrate may be related to higher densities of suitable prey 

items in this area. The start of the mud zone in this estuary is characterised by gently sloping muddy 

estuary banks and high densities of mud prawn (personal observation). Such an interaction between 

predator and prey species could be tested by simultaneously assessing the distributions of the 

predator, in this case white steenbras, and their predominant prey items, relative to the different 

substrate types available, to identify the factors driving the observed fish distribution. 

 

In contrast, the East Kleinemonde Estuary is characterised by an absence of mud prawn, due to the 

closed mouth, as mud prawn have an obligatory marine larval phase (Wooldridge and Loubser 

1996). However, in this estuary, there is an abundance of sand prawn in the zone of mixed sand and 

mud (Terörde 2005), providing an important food source in this zone. Although sand prawn densities 

are highest in the lower reaches of this estuary (Terörde 2005), the proportions of individuals in this 

estuary predominantly associated with the three substrate zones were roughly equal. This may be 

an indication that prey items of suitable size are more dense or readily available in the softer 

sediments of the mixed substrate zone, than in the harder, coarser sediments of the sand zone. This 

may be an important factor for smaller fish, and would provide further support for the notion of an 

ontogenetic down-estuary shift in white steenbras distribution, as proposed in Chapter 3. 
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In the Kariega Estuary, all fish spent disproportionately more time in areas of sandy substrate, 

indicating an affinity for sand in this estuary. The sandbank adjacent to the high use area, therefore, 

provides an important source of invertebrate prey items. The low use of the middle reaches of this 

estuary, despite this area supporting high densities of a potential prey source, the bivalve Solen 

cylindraceus (Hodgson 1987), suggests that some physico-chemical barrier exists further up this 

estuary. Therefore, the affinity for sandy substrates may be influenced by environmental conditions 

in other parts of the estuary, particularly the hypersaline conditions in the middle and upper 

reaches. The Sundays Estuary, in contrast, is characterised by a gradual salinity gradient, decreasing 

from the mouth, thereby allowing the movement of white steenbras further up this estuary than in 

the Kariega Estuary. This inter-estuary variability in distribution indicates that distribution within 

estuaries relative to substrate type is also affected by other environmental variables. Overall, it 

appears that the distribution of white steenbras relative to substrate type, within the different 

estuaries studied, is determined largely by biotic (mainly prey availability) and abiotic factors specific 

to each estuary, with no over-riding dominance of a single substrate type.  

 

The distributions of spotted grunter in the East Kleinemonde Estuary (O’Connell 2008) and of 

juvenile dusky kob (Griffiths 1997a) and spotted grunter (Childs et al. 2008a) in the Great Fish 

Estuary were similarly attributed to prey availability and density. Vasconcelos et al. (2010) found the 

macrozoobenthos to be an important factor affecting the distribution of fishes within estuaries in 

Portugal. Cowley et al. (2008) suggested that estuarine-associated fishes that prey on non-mobile 

benthic organisms are likely to exhibit resident behaviour, as has been observed for white steenbras, 

and that the distribution of these species is likely centred around areas of optimal prey availability. 

 

5.4.2 Environmental variables influencing distribution  

The wide ranges of salinity (0 - 40), temperature (13.5 to 27.4 °C), current speed (0 to 0.66 m.s-1) and 

turbidity (1.8 to 211 FTU) recorded at positional fixes, in the different estuaries, provide evidence 

that white steenbras is able to tolerate a wide range of environmental conditions, as described by 

Whitfield (1998). The ranges observed were influenced by the different types of estuary studied. In 

the three permanently open estuaries, white steenbras exhibited predominantly station-keeping 

behaviour, and where tidal-associated movements were observed these were on a small spatial 

scale (see Chapter 3), confirming their tolerance to widely and rapidly fluctuating environmental 

conditions. Despite this tolerance, there was evidence that the distribution of fish within the 

different estuaries was significantly non-random in relation to certain environmental conditions. 
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Salinity 

Salinity is suggested to be one of the primary environmental variables influencing fish distributions 

in estuaries, due to the species-specific physiological limitations to its tolerance (Whitfield 1983, 

Vasconcelos et al. 2010). Juvenile white steenbras are good osmoregulators, with a wide salinity 

tolerance range (> 0 to 35, Whitfield et al. 1981, Whitfield 1998). Salinities recorded during manual 

tracking in the Great Fish (0 - 30, mean 9.6 ± 8.2) and Kariega (36 – 40, mean 38.0 ± 0.7) estuaries 

reflected those of the fixed stations in the upper and lower reaches, respectively, which was 

expected due to the fish using small home ranges within each estuary (see Chapter 3). However, the 

ranges used were markedly different between the two estuaries, due to the vastly different salinity 

regimes in the two systems. In estuaries exhibiting overlapping salinity ranges, it would be expected 

that fish would have been predominantly found within the same range of salinities in both estuaries. 

However, even where recorded salinity ranges did overlap, i.e. those in the East Kleinemonde and 

Great Fish estuaries, the salinity ranges within which most fish were located did not overlap at all. 

The results suggest that salinity is not the primary environmental variable driving white steenbras 

distribution, at least in the latter two estuaries. 

 

In the Great Fish Estuary, white steenbras were consistently located in the oligohaline upper 

reaches, where the salinity was significantly lower than at stations closer to the mouth. Mehl (1973) 

recorded adverse physiological stress responses in white steenbras after being transferred from 

estuary water to freshwater, including cessation of feeding, increased haematocrit levels, 

subepidermal haemorrhaging and mortality, and Bennett (1985) recorded white steenbras 

mortalities in the Bot Estuary, after prolonged periods of unusually low salinity (3), and 

predominantly low temperature (16°C). Furthermore, Harrison and Whitfield (2006) found that 

relative abundances of white steenbras in estuaries were positively correlated with salinity, 

suggesting that white steenbras distribution would be expected to be associated with higher salinity 

levels. These results suggest that the use of the upper reaches in the Great Fish Estuary is not a 

response to optimal salinity, but rather some other more favourable environmental condition 

associated with this area. However, the species has been observed to tolerate prolonged low salinity 

conditions (Mehl 1973), and did not suffer mortalities during a flood event in the Sundays Estuary in 

January 1995, when numerous euryhaline marine, estuarine and freshwater species did (Whitfield 

and Paterson 1995). Tolerance of the low salinity conditions in the upper reaches of the Great Fish 

Estuary is likely facilitated by the artificially elevated conductivity levels as a result of the Orange-

Fish River interbasin transfer scheme (Whitfield et al. 1994). As a result, osmotic stress on euryhaline 

marine species may be reduced (Whitfield and Wood 2003), allowing increased penetration of such 
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species to the river-estuary interface and into the river beyond the tidal influence (James et al. 

2007b). Sediments in this estuary are washed out during flood events, but are replaced by sand 

deposited in the upper reaches and mud in the lower reaches during low flow conditions (Whitfield 

et al. 1994). The distribution in the upper reaches of this estuary was, therefore, likely influenced by 

the position of a large sandbank in the area, deposited after a flood event (Childs et al. 2008a), and 

benthic macrofauna that may have been associated with that sand bank.  

 

The low variability in salinities at which white steenbras were located in the East Kleinemonde 

Estuary is a reflection of the uniformity of the salinity regime of this small temporarily open/closed 

estuary, rather than a result of avoidance of higher or lower salinities.  

 

The physico-chemical environment of the Kariega Estuary differs considerably from those in the East 

Kleinemonde and Great Fish estuaries. Here, significantly lower salinities recorded during manual 

tracking than those recorded in the middle and upper reaches, and the restricted up-estuary 

movement (Chapter 3), suggest that the distribution of white steenbras in the Kariega estuary 

relative to salinity is not random. Mean salinity increased from 38.3 (± 0.8) at receiver 7, 

approximately 6 km from the mouth, to 41.8 (± 1.1) at receiver 11, 11 km from the mouth, and to 

44.2 (± 0.8) at receiver 15, 14.5 km from the mouth. As less than 1% of white steenbras activity was 

observed beyond receiver 7 (Chapter 3), it appears that the upper boundary of the white steenbras 

distribution in this estuary is limited by the hypersalinity in the middle to upper reaches. The 

salinities recorded in this area exceed the maximum salinity tolerance (35) reported for white 

steenbras (Whitfield 1998). Mehl (1973) recorded white steenbras in salinities reaching 50 in the 

Heuningnes Estuary, although in that estuary more suitable conditions may not have been available. 

 

Temperature 

Temperature has been identified as an important factor affecting the structuring of estuarine fish 

communities (Whitfield 1998, Marshall and Elliot 1998), and can be an important factor affecting the 

distribution and movement of fishes (Beitinger and Fitpatrick 1979). Temperature was found to be 

the primary abiotic factor influencing the movements of spotted grunter in the Great Fish Estuary, 

South Africa (Childs et al. 2008b). In the current study, bottom temperatures recorded at fish 

positional fixes in the Great Fish, East Kleinemonde and Kariega estuaries were similar, with a 

relatively high level of overlap among the ranges in which fish were commonly located; > 18 to 24°C, 

> 14 to 22°C and > 18 to 26°C in the three estuaries, respectively. Although these broad ranges 

overlapped, the modal peaks in each did not. In the Great Fish and East Kleinemonde estuaries, the 
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modal peaks were towards the higher temperatures in their respective ranges, suggesting that 

higher temperatures may be more suitable. Conversely, however, Harrison and Whitfield (2006) 

found the relative abundance of white steenbras in estuaries to be negatively correlated with 

temperature. In the Kariega Estuary, the modal peak was towards the lower end of the range 

recorded, and considerably lower than the modal peaks in the other two estuaries, reflecting the 

dominant marine influence in the lower reaches of the former. Furthermore, temperatures recorded 

for all individuals and all fish combined in the Kariega Estuary showed no significant differences to 

any of the five fixed stations. Overall, the results suggest that temperature was not the dominant 

factor affecting distribution or area use within these three studies.  

 

Turbidity 

In addition to factors such as temperature and salinity, turbidity has been observed to affect fish 

distribution in estuaries (e.g. Cyrus and Blaber 1987, Whitfield et al. 1994). Turbidity levels recorded 

at fish positional fixes in both the Great Fish and Kariega estuaries reflected those recorded in the 

middle and lower reaches of the two estuaries, respectively, although the ranges of turbidity 

recordings in the two estuaries did not overlap. These two estuaries are characterised by vastly 

different freshwater inflow levels, with the freshwater-dominated Great Fish Estuary generally highly 

turbid, while the freshwater-deprived Kariega Estuary generally exhibits particularly low turbidity 

levels. Significantly more positional fixes were made at low turbidities in the Great Fish Estuary (41 – 

80 FTU), suggesting that higher turbidities may be unfavourable. It is also possible that excessive 

turbidity limits the depth of photosynthesis (Day 1951), limiting primary production, and thus 

lowering benthic macrofaunal biomass in these areas. The fact that the highest turbidity recorded in 

the Kariega Estuary was lower than the lowest recorded in the Great Fish Estuary suggests that 

turbidity should have little influence in the Kariega Estuary, and that the significantly lower number 

of positional fixes at higher turbidities in the Kariega Estuary was a result of the fish not utilising the 

middle and upper reaches, again, likely a result of the hypersaline conditions in these areas. 

 

Current speed 

In the Great Fish and Kariega estuaries, the majority of positional fixes were made at current speeds 

below 0.4 m.s-1, while those at fixed stations in both estuaries reached 0.8 m.s-1. The significantly 

higher proportions of detections made at lower current speeds indicate that higher current speeds, 

as observed at fixed stations, may be less favourable for white steenbras. However, there were few 

significant differences between current speeds recorded for individual fish, and each station in the 
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Great Fish or Kariega estuaries. As such, it is unlikely that current speed is a factor driving the 

distribution of white steenbras in these estuaries.  

 

Depth 

The wide ranges of depth recorded at fish positional fixes, particularly in the Kariega Estuary, reflect 

the movements from the channel onto the shallow banks when the tide is sufficiently high. Fish in 

the Great Fish Estuary were located at considerably shallower depths than in the Kariega Estuary, 

and at daytime positional fixes in the East Kleinemonde Estuary. This reflects the use of the shallow 

sand bank in the upper reaches of the Great Fish Estuary. It is possible that turbidity plays a role in 

the avoidance of visual predators, and that in the more turbid Great Fish Estuary, the fish are able to 

utilise shallower areas, due to decreased possibility of avian predation, than in the less turbid East 

Kleinemonde and Kariega estuaries. The bimodal distribution of depths recorded during manual 

tracking in the East Kleinemonde Estuary reflects the diel differences in depth usage, recorded 

during daytime and night-time tracking sessions.  

 

5.5 Conclusions 

Environmental variables, such as temperature, turbidity and salinity have been shown to influence 

the movements and distribution of fishes in estuaries (e.g. Beitinger and Fitzpatrick 1979, Cyrus and 

Blaber 1987, Whitfield 1998, Marshall and Elliot 1998, Sackett et al. 2007). However, most variables 

analysed during the current study apparently fell within favourable ranges for white steenbras over 

large portions of the estuaries, and were shown to have little or no effect on the distribution of the 

species within these estuaries, with the species adapted to widely variable conditions.  

 

Although it appeared that salinity was not a largely influential factor in the distribution of white 

steenbras within the different estuaries, hypersalinity appeared to act as a barrier to the upper limit 

of the distribution in the Kariega Estuary. Temperature had little effect on the distribution of white 

steenbras in most estuaries, although it is possible that the lower temperatures recorded at the 

mouth of the Great Fish Estuary influenced the lower distribution of white steenbras within this 

system. Similarly, high turbidity appeared to limit the upper distribution of white steenbras in the 

Great Fish Estuary, but had no apparent influence on distribution in the other estuaries. Turbidity 

may play a role in the depth that white steenbras can safely use, while still avoiding avian predation, 

while current speed appeared to have little effect on the longitudinal distribution of white 

steenbras, although the dominance of the lower current speed bins suggests that white steenbras 

may move closer to the edges of the estuary during periods of strong flow, where currents speeds 
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are likely to be reduced (Day 1951). Depth appeared not to restrict the distribution of the tagged fish 

in any of the estuaries studied, although depth utilised was strongly influenced by time of day, and 

individuals appeared to enter shallower areas in the more turbid Great Fish Estuary.  

 

The individual variability observed in affinity for different substrate types suggests that the 

distribution of juvenile white steenbras in estuaries is not directly driven by substrate type. The 

variability among estuaries suggests that the effect of substrate type is an indirect effect, driven by 

differential environmental characteristics within the different estuaries. It is likely that the observed 

distribution of white steenbras in these estuaries is driven more by prey availability and the 

distribution of prey items (Cowley and Whitfield 2001), and thereby indirectly by substrate type, 

which has a direct influence on the diversity of benthic invertebrate taxa (Teske and Wooldridge 

2001, Wooldridge and Bezuidenhout 2007), and the accessibility of prey items (de Villiers et al. 

1999). The diversity and density of prey associated with each substrate type are likely to vary 

considerably among estuaries, based on differences in abiotic characteristics, such as 

hydrodynamics, mouth state, estuary size and freshwater inflow. The overall disproportional use of 

mixed substrates is likely a strategy to optimise access to prey resources, and distributions coinciding 

with optimal prey availability (Cowley et al. 2008). 

 

Considerable variability in distribution and the environmental variables influencing distribution was 

observed among estuaries of different type. Although this provides evidence of wide tolerance 

ranges of white steenbras to numerous environmental variables, this highlights the drawbacks of 

extrapolating results from one estuary to another, particularly among estuaries of different scale or 

type (Turpie et al. 2004, Vasconcelos et al. 2010). Inter-estuary variability in fish behaviour and space 

use patterns, as well as other factors, such as ichthyofaunal community composition and ecological 

functioning suggest that estuaries should be managed as individual units (Griffiths 2001). 
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Chapter 6 

Coastal movements

 

6.1 Introduction 

Successful management and conservation of important fishery species require empirical knowledge 

on movement and migration (Kerwath et al. 2005), particularly for estuarine-dependent coastal 

species that are of social, ecological or economic value, or conservation concern (Able and Grothues 

2007a). However, information on recruitment, movement patterns, residency and estuarine 

dependence for many coastal fishery species, both in South Africa and globally is lacking (van der Elst 

and Adkin 1991, Bellquist et al. 2008). The frequency and geographic scale of individual movements 

among coastal regions can affect community structure and population dynamics (Jones 2005), as 

well as the level of genetic mixing (Turchin 1998). Therefore, understanding movement and area use 

patterns can provide essential information on the species’ ecology (Meyer et al. 2000) and help to 

identify the mechanisms responsible for observed coastal population structure and genetic stock 

structure (Able and Grothues 2007a). Movement behaviour can also determine the effectiveness of 

management measures aimed at the protection of a species (Attwood et al. 2007). 

 

The collapsed status of the white steenbras stock (Lamberth and Mann 2000) has resulted in part 

from ineffective management regulations. Conventional catch restrictions, such as daily bag and 

minimum size limits have failed to protect the species, meaning that alternative management 

measures are necessary. Marine protected areas (MPAs) have been advocated by numerous authors 

for the improved protection of coastal fish species (Roberts and Polunin 1991, Buxton 1993, 

Attwood and Bennett 1995a, Roberts 1998, Hilborn et al. 2004, Mann et al. 2006), and were 

identified as a management option to facilitate the recovery of overexploited and collapsed linefish 

species in South Africa (Griffiths et al. 1999). However, the effectiveness of individual MPAs has 

rarely been quantified, largely due to a lack of knowledge on the movement patterns of the species 

targeted for protection (Lembo et al. 2002, Attwood and Cowley 2005). The potential suitability of 

MPAs for the protection and rehabilitation of the white steenbras stock(s) remains unknown.  

 

Cowley (1999) reported on a preliminary investigation into the movement of white steenbras tagged 

with conventional dart tags and recaptured in a long-term research programme in the Tsitsikamma 

National Park MPA, from 1995 to 1999. The study found that the majority of white steenbras 

recaptured were resident, although some larger individuals exhibited considerably greater 
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movements. Coastal residency would indicate that MPAs could be effective for this species (Cowley 

1999), while large-scale migratory behaviour (if this is the case) would suggest otherwise. 

 

Based on seasonal catch data and gonad development in different coastal regions, Bennett (1993b) 

proposed that white steenbras undertake an annual spawning migration from May to June from a 

summer aggregation period in the Western Cape Province to the vicinity of the southern Transkei, 

where spawning takes place in July and August. However, this is largely speculative and has not been 

confirmed. Therefore, in order to determine the potential suitability of MPAs, so that appropriate 

management measures can be implemented to ensure adequate protection of white steenbras at all 

life stages and during spawning aggregations, an understanding was required of the level of 

residency and the frequency and spatial extent of dispersal and large-scale migrations in this species.  

 

6.1.1 Research approach and data sources 

Two commonly used methods for assessing movement of fishes are conventional dart tagging and 

acoustic telemetry. The advantages and disadvantages of each, and the merits of employing these 

two techniques in conjunction are addressed in Chapter 2.  

 

Conventional dart tagging 

Conventional dart tagging has been successfully used to assess movements of a range of coastal fish 

species, for example black sea bass Centropristis striata in Great Bay Estuary, New Jersey, USA (Able 

and Hales 1997), Nassau grouper Epinephelus striatus in the central Bahamas (Bolden 2000), and 

galjoen Dichistius capensis in South Africa (Attwood and Cowley 2005). The strength of this 

technique is in the low cost and ease of application, allowing high numbers of fish to be tagged. 

Long-term research-based fish tagging programmes and the widespread and high-effort nature of 

the recreational shore fishery in South Africa provide a good platform for the tagging and recapture 

of high numbers of fish of a range of species.  

 

Passive acoustic telemetry 

Passive acoustic tracking has also been used to assess coastal movements of numerous fishery 

species, such as kelp bass Paralabrax clathratus at Santa Catalina Island, California, USA (Lowe et al. 

2003) and red roman Chrysoblephus laticeps in South Africa (Kerwath et al. 2007a). Passive 

telemetry allows the automated long-term and potentially continuous collection of fish movement 

data, such as long-term residency and seasonal movement patterns (Heupel et al. 2006, Hedger et 

al. 2010b), and can provide information on movements between different environments (Childs et 
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al. 2008a). Acoustic telemetry can provide information in a number of ways. For example, data may 

be obtained on presence and absence of individuals, such as daytime presence and night-time 

absence, indicating a diel movement pattern, as observed for juvenile white steenbras in estuaries 

(see Chapter 3). Telemetry data can also provide information on the periodicity of movements, such 

as those associated with the tides, or information on high use areas, such as essential habitats within 

estuaries. However, telemetry can also act in the same way as conventional tagging, by providing 

“recapture-type” data, at specific localities. This type of “recapture” effort that is provided by an 

array of passive receivers is continuous and is not restricted to times when anglers are fishing, 

allowing continuous data collection over long periods. By employing an array of stationary receivers 

in the inshore zone along the shoreline of a large coastal embayment, it was possible to assess 

coastal residency and small-scale coastal movements within the bay, to complement the findings of 

the conventional tagging analysis.  

 

Based on the strengths of the two techniques, acoustic telemetry and conventional dart tagging 

used in conjunction would provide a more robust assessment (Zeller and Russ 1998), and a number 

of studies have done this (e.g. Taylor et al. 2006, Abecasis et al. 2009, Afonso et al. 2009). This 

chapter employed conventional dart tagging to assess the level of residency and the rate of dispersal 

in the coastal zone for white steenbras at late juvenile, sub-adult and adult life stages, in conjunction 

with passive acoustic tracking to provide continuous “recapture” effort, in order to assess 

movements and residency within a large coastal embayment, and movements between estuarine 

and marine environments.  

 

6.1.2 Aims and objectives 

The overall aim of this chapter was to assess the coastal movement patterns of white steenbras, and 

dispersal from selected key localities. Specific objectives were to: 

 

i. Describe coastal movements using data collected from four dedicated long-term 

conventional dart tagging programmes; 

ii. Evaluate the effects of (a) geographic location, (b) coastal habitat, (c) fish length (age), (d) 

time at liberty, (e) density, and (f) seasonality, on movement patterns; and 

iii. Describe short-term movements of sub-adult and adult individuals within a coastal 

embayment and into nearby estuaries using acoustic telemetry. 
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6.2 Methods and materials 

6.2.1 Conventional dart tagging  

Conventional dart tagging and recapture data for assessment of coastal dispersal patterns of white 

steenbras were obtained from four ongoing long-term shore-based coastal fish monitoring 

programmes, conducted at different spatial scales; the De Hoop Marine Protected Area inshore fish 

tagging programme, the Tsitsikamma National Park and proposed Greater Addo Elephant National 

Park coastal fish tagging programmes, as well as the Oceanographic Research Institute’s National 

Tagging Project. Two of these programmes are centred within well-established MPAs, and a third 

programme is conducted within a proposed MPA, each with the aim of assessing residency within 

and dispersal from the specific MPA (Figure 6.1).  

 

 

Figure 6.1: Study areas of A) the ORI National Tagging Project that spans the entire South African 

coastline, and the three research-based tagging programmes; B) De Hoop MPA, C) Tsitsikamma 

National Park (TNP) MPA, and D) proposed Greater Addo Elephant National Park (GAENP) MPA  
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The three MPA-based programmes are roughly evenly spaced within the species’ core distribution, 

and the ORI project spans the entire distribution of the species, providing a dataset that was 

representative of movements throughout its distributional range. The widespread operation along 

most of the coastline and the high level of effort exerted in the South African shore fishery provided 

a high level of recapture effort. Tagging and recapture data in the De Hoop, Tsitsikamma and 

proposed GAENP MPAs, were recorded by researchers, allowing for trustworthy and accurate 

position recording, fish measurement and species identification (Attwood and Cowley 2005). The 

long-term nature of the programmes, particularly in the De Hoop MPA and the ORI project, spanning 

more than 25 years, allowed for assessment of movement patterns over the long-term, providing 

more representative information on the species life history. These data, therefore, provided a long-

term, high quality, robust and reliable dataset, on which to base the analyses of coastal movement 

patterns. 

 

De Hoop MPA tagging programme 

The De Hoop MPA inshore fish tagging programme was initiated in 1984, one year prior to 

proclamation of the MPA, by Dr Colin Attwood (then of Marine and Coastal Management, currently 

University of Cape Town), aimed at the study of galjoen Dichistius capensis. The programme is 

focussed on two areas within the De Hoop MPA, namely Koppie Alleen and Lekkerwater, each 

approximately 3.4 km long, and separated by a distance of 11 km (Attwood 2003) (Figure 6.1). 

Because recreational angling within the MPA is not permitted, recaptures inside the MPA were 

restricted to the two research fishing areas, and a third area (Noetsie), situated approximately 9 km 

east of Lekkerwater, where additional research angling had been conducted for collection of 

biological samples. The study began with monthly four- to five-day tagging fieldtrips to Koppie 

Alleen, but was subsequently changed to alternate trips between Koppie Alleen and Lekkerwater 

from 1987 to 1995, after which it was reduced to three trips per site per year (Attwood and Cowley 

2005). The programme administration was later taken over by Ms Lieze Swart in 2008 (Department 

of Environmental Affairs), and is ongoing. The shoreline in the two areas consists mainly of sandy 

beaches and interspersed patchy wave-cut aeolianite rock platforms, and is exposed to high energy 

wave action. The patchy reefs are all shallow and, due to the wind- and wave-driven dynamic nature 

of the surf zone in the area, are regularly covered and uncovered by shifting sand (Attwood 2003). 

All angling is conducted by experienced anglers. The De Hoop tagging data are submitted to ORI, for 

inclusion in the ORI project database, from which data for the current study were extracted (Maggs 

and Bullen 2010). 
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Tsitsikamma MPA tagging programme 

The Tsitsikamma National Park coastal fish tagging programme was initiated to determine the level 

of residency of important fishery species within, and the level of dispersal from, the MPA, and to 

assess catch-per-unit-effort (CPUE) within the MPA over the long term. The programme was initiated 

in 1995 by researchers from the Department of Ichthyology and Fisheries Science (Rhodes 

University) and taken over and administered by Dr Paul Cowley (South African Institute for Aquatic 

Biodiversity) from 1996 to 2010, and subsequently by Dr Warren Potts (Rhodes University). The 

programme initially comprised six five-day field trips annually, which was decreased to four trips 

annually from 1997 until 2005. From 2006 until 2010, there were two trips annually (summer and 

winter), but this was increased again to quarterly trips in 2011. The study area includes 

approximately 5 km of coastline towards the western end of the Tsitsikamma MPA, between the 

Bloukrans and Klip estuaries (Figure 6.1). The coastline at Tsitsikamma is dominated by steeply 

shelving, exposed cliffs (Tilney et al. 1996). The shoreline is rugged, consisting of steep, rocky ridges, 

which extend into the subtidal, with some small “pocket” sandy beach areas and numerous sand-

filled gulleys (Hanekom et al. 1989, Attwood and Cowley 2005), and is exposed to strong wave action 

(Cowley et al. 2002). All angling and tagging is conducted by experienced research anglers who have 

been trained to handle and tag fish. Angling in the Tsitsikamma MPA took place throughout the 5-km 

tagging zone (zone 1), allowing recaptures anywhere within this stretch of coastline. For the period 

1998 to 2000, angling was also conducted in a second zone to the west of the Lottering Estuary, in 

close proximity to zone 1 (Figure 6.1). In addition, recreational angling was permitted within a 3-km 

stretch of the Tsitsikamma MPA, adjacent to the rest camp at Storms River in the centre of the MPA 

(Hanekom et al. 1997), until 2000 when this area was closed to angling.  

 

Proposed Greater Addo Elephant National Park MPA tagging programme 

The proposed Greater Addo Elephant National Park (GAENP) MPA coastal fish tagging programme is 

an ongoing programme, established in 2005 by Dr Paul Cowley, of the South African Institute for 

Aquatic Biodiversity. The programme is aimed at the assessment of the coastal residency and 

dispersal patterns of important coastal fishery species, and is focussed on the Woody Cape area of 

coastline towards the eastern end of Algoa Bay, and falls within the footprint of the proposed 

GAENP MPA. The programme is comprised of bimonthly two- to three-day research angling field 

trips, to a section of shoreline extending approximately 30 km along the coastline (Figure 6.1). The 

subtidal habitat is predominantly sand, with some areas of mixed sand and rock, and sandstone 

reefs. Unlike angling in the De Hoop MPA, tagging and recapture effort were exerted across a wide 

area, allowing recaptures to be made at a range of distances from the tagging site. Angling and 
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tagging are conducted by experienced anglers. Although the area falls within the proposed GAENP 

MPA, recreational angling is still permitted, allowing recaptures to be made by recreational anglers 

outside of dedicated tagging field trip periods.  

 

Oceanographic Research Institute National Tagging Project 

The Oceanographic Research Institute’s (ORI) National Tagging Project (ORI project) is an ongoing 

nationwide programme that was initiated in 1984, and is administered by the South African 

Association for Marine Biological Research. The programme differs from the De Hoop, Tsitsikamma 

and proposed GAENP MPA programmes, in that all fishing and tagging are conducted by member 

volunteers from around the South African coastline, who participate as a hobby during recreational 

angling. Recaptures are also frequently reported by even by non-member recreational anglers. The 

high numbers of ORI members and participants in the South African recreational fishery allows for 

high numbers of fish, from a wide range of species, to be tagged and recaptured, and the nature of 

the programme and the recreational fishery allow for geographically widespread angling effort for 

tagging and recapture. As such, recaptures of fish tagged in this programme can be made at almost 

any point along the coastline (Figure 6.1). Thus, the programme differs from the previous three 

programmes, as it assesses general coastal movement patterns, rather than dispersal from a central 

tagging point. A data report detailing all white steenbras tagged and recaptured in the ORI project 

(Maggs and Bullen 2010) was complied specifically for the current study.  

 

Dart tagging  

The fish handling and dart tagging procedures in the proposed GAENP, Tsitsikamma and De Hoop 

tagging programmes were consistent. Captured fish were placed on a wet PVC vinyl measuring 

stretcher, measured to the nearest mm fork length (FL) and/or total length (TL), and tagged with a 

uniquely numbered plastic dart tag (Type A: 114 mm × 1.6  mm Ø, or Type B: 89 mm × 1.6 mm Ø, 

Hallprint, Australia). Tags were inserted according to the guidelines of Attwood (1998). Tags were 

inserted into the dorsal musculature of the fish, with a sharp hollow applicator, ensuring that the tag 

is firmly anchored behind a dorsal vertebral spine (Cowley et al. 2002). Fish tagged during these 

programmes were released at their capture localities. Tagging of fish as part of the ORI project is 

conducted by the members of the public (recreational anglers). Although guidelines for the correct 

handling and tagging of fish are provided, the standardisation of the tagging and handling process 

cannot be guaranteed, and is likely not the case. However, the comparable recapture rates of most 

fish and the high numbers of tagged fish that are recaptured in this programme suggest that this is a 

suitable and reliable method to provide a large sample size.  
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Dart tagging data analysis  

Recapture distances 

Tagging and recapture localities for the De Hoop MPA and ORI project are based on a series of 1-km 

“coastal localities” between the Mozambique border in the east, and the Namibia border in the 

west, as defined in the ORI project (van der Elst and Penney 1995). Each locality is numbered, 

according to its distance, in kilometres, from the northern Mozambique border, and each capture 

and recapture event is allocated to one of these coastal localities. However, there are only 772 

coastal localities defined in the ORI project database. Therefore, not every 1-km stretch of coastline 

is uniquely defined. Consequently, it is possible that two localities (although consecutive “defined” 

localities) may be separated by a distance greater than 1 km, in which case a fish captured or 

recaptured at a position between localities will be allocated to the nearest locality defined on the 

database. This results in a potential decrease in the resolution and accuracy of the data (Attwood 

and Cowley 2005). Of the 771 distances between neighbouring localities, the greatest distance is 53 

km. However, 98% of the distances between neighbouring defined localities are less than 20 km, 

92% less than 10 km, and 80% are 5 km or less. The modal distance is 1 km, and the median distance 

is 2 km, suggesting that error in position estimation is rarely more than 1 or 2 km, sufficiently low for 

studying longshore movement patterns and migrations. Distances between capture and recapture 

locations in the De Hoop MPA and ORI project are thus calculated as the distances between coastal 

localities. Tagging and recapture positions of fish tagged in the Tsitsikamma and proposed GAENP 

MPAs were recorded using GPS accuracy, and distances between capture and recapture events were 

calculated as the distance along the coastline between the two positions. 

 

Effect of coastal region on the level of dispersal 

The coastline within the distribution range of white steenbras was divided into seven coastal regions 

(1 – West Coast, 2 – Cape Agulhas, 3 – Mossel Bay, 4 – Tsitsikamma, 5 – Algoa Bay, 6 – Transkei, 7 – 

KwaZulu-Natal) (Figure 6.2). These regions were defined based on geographical landmarks, such as 

capes, or political boundaries that would historically have affected the distribution of recreational 

shore fishing, such as the boundaries of the Transkei region. The proportions of fish in each region 

that were recaptured within the respective tagging region or that dispersed to the other coastal 

regions were calculated, to determine the level of dispersal and residency on a regional scale. This 

analysis was limited to the ORI project data, due to its widespread nature.  
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Figure 6.2: Map of the South African coastline, showing the different coastal regions (and lengths, 

km) as defined in the analyses, from the West Coast to KwaZulu-Natal  

 

Effect of time at liberty on distance moved 

The distances between capture and recapture locations for fish in each study were statistically 

compared to the times at liberty between the two events for each fish, using linear regression 

(Statistica  version 10), to determine whether the distance between tag and recapture localities was 

a function of time at liberty. 

 

Effect of size (age) at recapture on distance moved 

Recapture distances for all fish measured at the time of recapture were compared to the size (and 

age) of the fish, using linear regression, to determine whether fish size (or age) influenced the scale 

of movements undertaken. For this analysis, fork lengths were converted to ages, by means of an 

age-length equation (Mehl 1973), where:  

  0.22
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1 ln

years age 















 

 

Juvenile fish were defined as those less than 450 mm FL, based on the suggested size at first 

attainment of sexual maturity of 390 mm standard length (Day 1981 in Whitfield 1990) and about 

450 mm FL (Bennett 1993b). Sub-adult fish were defined as those between 450 and 600 mm FL and 

adult fish as those greater than 600 mm FL (Bennett 1993b).  
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Effect of habitat on distance moved 

The effect of habitat type on observed recaptures was assessed, by comparing recapture rates and 

distances, between studies with varying shoreline habitat. Data for this analysis were drawn from 

the Tsitsikamma MPA and proposed GAENP MPA programmes only, as these provide accurate 

information on the habitat and accurate position-recording at each capture and recapture site. 

 

Firstly, the proportions of recaptures made in areas of rocky, sandy or mixed (sand and rock) 

habitats were calculated, based on habitat recorded at the time of recapture. The proportions of the 

three habitats available within each area were estimated from coastal habitat type, based on Harris 

et al. (2011). Secondly, an assessment of habitat type was conducted, based on the ‘Habitat Affinity 

Index’ (HAI) described by Monaco et al. (1998) (as presented in Chapter 5 for estuarine substrate 

type affinity). This analysis was used to compare the proportions of white steenbras captured in 

each of the three habitats, to those available within each study area. HAI values were calculated for 

each of the three substrate types, within the two study areas, as follows: 

 

HAI = (p – r)/r , if p ≤ r, or 

HAI = (p – r)/(1 – r); if p ≥ r, 

 

where p was calculated as the proportion of fish that were captured over each habitat, and r was 

determined as the proportion of each habitat available within the study area. Positive HAI values 

indicate affinity for that habitat, while negative values indicate avoidance (Monaco et al. 1998). 

 

The frequency distributions of recapture distances of fish tagged in the Tsitsikamma MPA and 

proposed GAENP MPA programmes were then compared, to determine whether habitat type 

influenced recorded recapture distances. 

 

Effect of fish density on the level of dispersal and recapture distance 

The effect of density on dispersal and recapture distance was assessed in the De Hoop, Tsitsikamma 

and proposed GAENP MPA tagging programmes, by comparison with white steenbras CPUE (as a 

proxy for density) obtained during shore angling in the respective MPA. 
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Effect of season on recapture location 

The effect of seasonality on movements was assessed in two ways. Firstly, monthly proportions (%) 

of recaptures made in each of the coastal regions (1 – West Coast, 2 – Cape Agulhas, 3 – Mossel Bay, 

4 – Tsitsikamma, 5 – Algoa Bay, 6 – Transkei, 7 – KwaZulu-Natal, Figure 6.2) were calculated, to 

detect possible trends in the proportions of recaptures that would support the theory of a winter 

migration (after Bennett 1993b). Secondly, the monthly proportions of movements that were made 

in each direction from the tagging site (i.e. east or west) and the proportion that remained resident 

were determined. Attwood and Cowley (2005) suggested that assessment of seasonal movements 

should be based on short times at liberty, to detect seasonal effects. Therefore, recaptures of fish 

that were at liberty for less than three months (Attwood and Cowley 2005) were extracted for this 

analysis. 

 

6.2.2 Acoustic telemetry 

As a complement to the conventional dart tagging studies, an acoustic telemetry study was designed 

and implemented, to provide continuous monitoring effort to assess coastal residency and small-

scale movements of white steenbras in a coastal embayment. An array of 11 acoustic receivers 

(Vemco, models VR2 and VR2W) was positioned throughout Algoa Bay, in the Eastern Cape Province, 

including inside the Coega and Port Elizabeth harbours (Figure 6.3). Receivers were positioned in 

such a way as to detect residency of the acoustically tagged fish in the vicinity of the tagging site at 

Woody Cape, within the proposed GAENP MPA, as well as potential movements into and out of 

Algoa Bay. An additional receiver was positioned approximately 2 km offshore of the Kowie Estuary, 

to the east of Algoa Bay, in an area well known for white steenbras, to detect potential eastward 

movements from Algoa Bay.  

 

An additional aim of the telemetry study was to determine the level of connectivity between marine 

and estuarine environments, and thus provide information on the level of estuarine dependence of 

late juvenile to large adult life stages. To achieve this, acoustic receivers were positioned in pairs 

within the mouths of eight permanently open estuaries (Great Fish Estuary in the east to the 

Kromme Estuary in the west) that either enter, or are adjacent to Algoa Bay (Figure 6.3). These 

estuaries spanned a greater length of coastline (approximately 300 km) than the marine receiver 

array, and thus had the potential to provide additional information on longshore coastal 

movements. 
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Figure 6.3: Map of the general study area for the telemetry study conducted in Algoa Bay, showing 

a) the array of acoustic receivers positioned in the eight permanently open estuaries within the 

study area, and b) the array of acoustic receivers positioned in the marine environment  

 

Fifteen white steenbras ranging from 401 to 623 mm FL (mean = 497 ± 60 mm) were captured by 

hook and line from December 2008 to February 2009 (Table 6.1). Most were sub-adult fish (450 – 

600 mm FL), with one fish considered as late juvenile (< 450 mm FL) and two as adult fish (> 600 mm 

FL). The fish were surgically equipped with Thelma MP-13 acoustic transmitters (diameter 13 mm, 

length 31 mm, weight 11.4 g in air and 7.3 g in water, estimated battery life 781 days) with a random 

nominal delay of 30 to 90 seconds between transmissions, according to the methods described in 

Chapter 3. Two additional adult fish, of 830 and 960 mm FL, were captured in July and October 2010, 

respectively, and surgically equipped with Vemco V16-4L acoustic transmitters (diameter 16 mm, 

length 68 mm, weight 25 g in air and 11 g in water, estimated battery life 1 248 days), with a random 

nominal delay of 50 to 130 s. All transmitters transmitted at a frequency of 69 kHz.  
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Table 6.1: Capture, surgery and transmitter details for the white steenbras surgically equipped with 

acoustic transmitters in the Woody Cape study area in the proposed GAENP MPA 

Fish ID Capture date FL (mm) TL (mm) 
Surgery duration 

(mm:ss) 
Transmitter type 

2019 03-12-08 462 515 07:02 Thelma MP-13 (30 – 90s) 

2020 03-12-08 455 510 04:37 Thelma MP-13 (30 – 90s) 

2021 03-12-08 460 514 04:23 Thelma MP-13 (30 – 90s) 

2022 04-12-08 512 573 06:16 Thelma MP-13 (30 – 90s) 

2025 04-12-08 459 518 03:36 Thelma MP-13 (30 – 90s) 

2023 06-12-08 401 458 03:21 Thelma MP-13 (30 – 90s) 

2024 06-12-08 459 517 05:16 Thelma MP-13 (30 – 90s) 

2026 06-12-08 482 541 03:38 Thelma MP-13 (30 – 90s) 

2027 07-12-08 499 557 04:50 Thelma MP-13 (30 – 90s) 

2028 14-02-09 527 592 02:56 Thelma MP-13 (30 – 90s) 

2029 14-02-09 606 685 02:02 Thelma MP-13 (30 – 90s) 

2030 14-02-09 493 556 03:43 Thelma MP-13 (30 – 90s) 

2031 14-02-09 460 519 04:43 Thelma MP-13 (30 – 90s) 

2032 14-02-09 554 613 02:43 Thelma MP-13 (30 – 90s) 

2033 14-02-09 623 708 04:06 Thelma MP-13 (30 – 90s) 

65062 31-07-10 960 1042 02:30 Vemco V16-4L (50 – 130s) 

65069 02-10-10 830 890 07:40 Vemco V16-4L (50 – 130s) 

 

6.3 Results 

6.3.1 Conventional dart tagging 

At the time of analysis, 5 775 white steenbras had been tagged with conventional dart tags, of which 

292 (5.1%) were recaptured. Most of the fish (n = 3 355) were tagged in the ORI project, while 1 551 

were tagged in the De Hoop MPA, 388 in the Tsitsikamma MPA and 481 in the Woody Cape area of 

the proposed GAENP MPA research programmes (Table 6.2).  

 

Table 6.2: Numbers of white steenbras tagged and recaptured in the De Hoop, Tsitsikamma, 

proposed GAENP and ORI tagging programmes (excludes fish recaptured on multiple occasions) 

Tagging 
programme 

No. tagged 
Recaptures Distance travelled (km) Days at liberty 

No. % Mean Min Max Mean Min Max 

De Hoop 1 551 86 5.5 33.5 0.0 620 327 2 1 660 

Tsitsikamma 388 24 6.3 38.0 0.0 460 351 0 1 660 

GAENP 481 23 4.8 29.7 0.1 205 307 10 721 

ORI project 3 362 159 4.7 45.1 0.0 554 261 0 2 262 

Total 5 782 292 5.1 39.9 0.0 620 292 0 2 262 
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Recaptures were made from Cape Point to KwaZulu-Natal, spanning most of the core distribution of 

the species. Recapture rates were similar in all studies, ranging from 4.7 to 6.3%, excluding multiple 

recaptures. Ten fish in total were recaptured twice, while one of these was recaptured three times. 

 

De Hoop MPA recaptures  

The majority (85%) of the 86 recaptures emanating from this tagging programme was made within 

the De Hoop MPA, with 72% of fish being recaptured within their respective tagging zone (Figure 

6.4). Thirty-six fish were tagged and recaptured at Lekkerwater in the centre of the MPA, and 26 at 

Koppie Alleen, with two individuals at each site having been recaptured twice (all four fish 

recaptured both times at their tagging site). Only four individuals moved between tagging sites, two 

in each direction. Eleven fish moved 9 km east from Lekkerwater, and one moved 20 km east from 

Koppie Alleen, to Noetsie, remaining within the MPA. Only 13 fish (15%) were recaptured outside of 

the MPA, at distances ranging from 31 to 620 km from the respective tagging site (Figure 6.4). False 

Bay (336 km) and Algoa Bay (620 km) represented the furthest recapture areas west and east of the 

MPA, respectively. 

 

 

Figure 6.4: Movements of 86 recaptured white steenbras from the De Hoop tagging programme. 

Arrows connect tagging and recapture locations 
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Tsitsikamma MPA recaptures 

Fifteen of the 24 recaptures (62.5%) were made within the Tsitsikamma MPA, 14 of which were 

recaptured within 1 km of the tagging site, and one at Storms River, approximately 30 km east of the 

tagging zone. Two of these fish were recaptured twice, with both recaptures for each fish taking 

place at the tagging site. A third fish was recaptured once at its tagging locality, but recaptured a 

second time 1 km east of its tagging site. Four individuals (16.7%) moved west to Nature’s Valley, to 

a sandy beach outside of the MPA adjacent to the Groot Estuary (west), representing distances 

between 6 and 10 km. One of these fish was recaptured twice at Nature’s Valley. The remaining five 

recaptures (20.8%) were made outside the MPA, at distances ranging from 25 km to 460 km from 

the tagging site. The greatest movements west and east were to Plettenberg Bay (25 km) and East 

London (460 km), respectively (Figure 6.5).  

 

 

Figure 6.5: Movements of 24 recaptured white steenbras from the Tsitsikamm tagging programme. 

Arrows connect tagging and recapture locations, red arrows indicate individuals recaptured multiple 

times 
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Greater Addo Elephant National Park MPA recaptures 

Of the 481 white steenbras tagged in the proposed GAENP MPA tagging programme, 23 were 

subsequently recaptured (4.8% recapture rate). Nineteen recaptures (82.6%) were made within the 

footprint of the proposed GAENP (Figure 6.6), with recapture distances in this area ranging from 

0.05 to 29 km (mean distance = 5.1 ± 7.8 km), and seven fish being recaptured within 1 km of their 

respective tagging site. Only four individuals were recaptured outside of the proposed MPA, with 

maximum displacements of 205 km west to Oyster Bay, and 180 km east to East London (Figure 6.6). 

 

 

Figure 6.6: Movements of 23 recaptured white steenbras from the GAENP tagging programme. 

Arrows connect tagging and recapture locations 

 

ORI project recaptures 

By the end of 2010, 3 355 white steenbras had been tagged from the Berg Estuary in the west to 

Scottburgh in the east, of which 159 (4.7%) were recaptured (Figure 6.7). Recaptures were made 

from False Bay in the west, to Umgeni Estuary, near Durban, in the east, spanning approximately 

1 700 km of coastline. Most recaptures (102, 64.2%) were made at the site of capture (i.e. 0 – 1 km 

displacement). These recaptures were made from False Bay, to Qora Estuary near Mazeppa Bay. 

Nine fish (5.7%) were recaptured between 1 and 10 km from the tagging site, while 28 (17.6%) and 
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20 (12.6%) fish, respectively, were captured between 10 and 100 km, and more than 100 km, from 

the tagging locality (Figure 6.7). Four fish were recaptured twice, and one fish three times, with all 

recaptures made at the tagging site.  

 

 

Figure 6.7: Movements of 159 recaptured white steenbras from the ORI tagging programme. Arrows 

connect tagging and recapture locations 
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Large-scale movements (> 100 km) were recorded in the Western Cape (n = 7) and Eastern Cape (n = 

10) provinces, of up to 529 and 554 km, respectively. There was also evidence of connectivity among 

different coastal regions, between False Bay (south west coast) and the Tsitsikamma region (south 

coast), between the Tsitsikamma region and the Algoa Bay and Transkei coastal regions (south east 

coast), and between the Eastern Cape Province and KwaZulu-Natal. However, there were no long 

distance displacements recorded crossing between the Eastern and Western Cape provinces, and no 

evidence of individuals moving between False Bay, known to be a summer aggregation area, and the 

vicinity of the white steenbras spawning grounds in the Transkei (Bennett 1993b) (Figure 6.7).  

 

Recapture distances and direction of movement 

The frequency distributions of distances moved (i.e. the distance between tagging and recapture 

localities) from each tagging programme were similar, particularly in the Tsitsikamma, De Hoop and 

ORI programmes. In these three studies, the majority of recaptures (ranging from 58 to 68%) were 

made within 1 km of the tagging sites, with very few recaptures made between 1 and 5 km from the 

tagging sites. The results from the GAENP showed relatively fewer individuals recaptured within 1 

km, when compared to the other three studies, and relatively more individuals recaptured from > 1 

to 5 km from the tagging site (Figure 6.8).  

 

 

Figure 6.8: Frequency distributions of distances moved (km, values represent upper limit of distance 

bins), for fish tagged in the a) De Hoop, b) Tsitsikamma, c) GAENP and d) ORI tagging programmes 

1 5 10 50 100 1000

Distance moved (km)

0

20

40

60

80

Fr
eq

ue
nc

y 
(%

)

1 5 10 50 100 1000

Distance moved (km)

0

20

40

60

80

Fr
eq

ue
nc

y 
(%

)

1 5 10 50 100 1000

Distance moved (km)

0

20

40

60

80

Fr
eq

ue
nc

y 
(%

)

1 5 10 50 100 1000

Distance moved (km)

0

20

40

60

80

Fr
eq

ue
nc

y 
(%

)

a b

c d



Chapter 6 – Coastal movements  

 

151 
 

It is likely that the proportions of recaptures falling into the two lowest recapture distance bins  

(i.e. 0 to 1 km and > 1 to 5 km) would be influenced by the differences in both the habitat and the 

resolution at which tagging and recapture localities were recorded, in the different tagging 

programmes. The frequency distributions of recaptures in the four programmes were thus 

compared graphically, in two ways; i) with the 0 to 1 km and > 1 to 5 km recapture distance bins 

presented separately (Figure 6.9 a) and ii) with the number of distance bins reduced so that 

recapture distances from 0 to 1 km were included in the 0 to 5km bin (Figure 6.9 b). Data are 

similarly presented for all fish (n = 292) (Figure 6.9 c and d). 

 

 

Figure 6.9: Frequency distributions of distances moved (km) for fish from each tagging programme, 

showing 0 to 1 km and > 1 to 5 km recapture distances a) separately and b) combined; as well as for 

all fish recaptured (n = 292) showing the two distance bins a) separately and d) combined 

 

This confirmed that observed variability among tagging programmes was predominantly a result of 

the proportions of shorter distances moved, with recapture frequencies in the ‘reduced-bins’ 

distributions showing remarkable similarity among the four programmes. The majority of recaptures 

in all four programmes were made within 5 km of the tagging site. Dispersal from the tagging site 

was recorded for fewer individuals, although some individuals made large-scale movements, up to 

620 km, and the frequency and magnitude of these movements were greater in an eastward 

direction from the tagging site (Figure 6.10).  
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Figure 6.10: Frequency (%) distribution of distances moved (n = 292), including direction of 

movement along the coast. Negative and positive values represent westward and eastward 

movements, respectively, and values represent the upper limits of the distance bins 

 

Effect of coastal region on fish size and the level of dispersal 

Size of fish at tagging  

The length frequency distributions (%) of the fish that were measured at the time of tagging in the 

ORI project (n = 2 615) were similar in each coastal region, although the proportions of larger fish (> 

600 mm FL) were higher in the Transkei coastal region (Figure 6.11a). The mean sizes of fish tagged 

in the ORI project in each of the coastal regions were also similar, although the mean size appeared 

to be higher towards the West Coast and Transkei coastal regions (Figure 6.11b). 

 

 

Figure 6.11: Lengths of fish (mm FL) that were measured at the time of tagging in the ORI project 

(n = 2 615), showing a) length frequency (%) distribution by coastal region, and b) mean size (± SD) 

by region (WC – West Coast, CA – Cape Agulhas, MB – Mossel Bay, TNP – Tsitsikamma, AB – Algoa 

Bay, TKE – Transkei, KZN – KwaZulu-Natal) 
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Effect of coastal region on levels of dispersal and residency 

The high proportions of fish tagged in the ORI project in each coastal region that were recaptured 

within the tagging region provided strong evidence of residency on a regional scale. None of the 

white steenbras tagged along the west coast was recaptured, and no recaptures from elsewhere 

were made in this region. Similarly, no white steenbras tagged along the KwaZulu-Natal coast were 

recaptured. At least 85% of fish tagged in the Cape Agulhas, Mossel Bay, Tsitsikamma and Algoa Bay 

regions were recaptured within their tagging region (Figure 6.12). Fish tagged in the Transkei region 

showed the greatest proportion of “dispersal”, although this was based on three recaptures only. 

 

 

Figure 6.12: The regional distribution (%) of all recaptures (n = 292) from all four tagging 

programmes, for fish tagged in the different coastal regions (WC – West Coast, CA – Cape Agulhas, 

MB – Mossel Bay, TNP – Tsitsikamma, AB – Algoa Bay, TKE – Transkei, KZN – KwaZulu-Natal). There 

were no recaptures of fish tagged along the west coast 
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The mean distance moved by fish recaptured within each region increased sharply from west to 

east, although only three fish each were recaptured in the Transkei and KwaZulu-Natal (Figure 6.13). 

 

Figure 6.13: Mean (± SD) distance moved (km) for all fish recaptured (n = 292) from all four tagging 

programmes, by coastal region (CA – Cape Agulhas, MB – Mossel Bay, TNP – Tsitsikamma, AB – Algoa 

Bay, TKE – Transkei, KZN – KwaZulu-Natal). West Coast was excluded as there were no recaptures 

made in this area. Sample sizes are presented above each plot  

 

Effect of fish size (and age) on distance moved 

Of the 292 white steenbras recaptured, 207 (254 to 900 mm FL) were reliably measured at the time 

of recapture. Most of these in each of the four programmes (64 to 90%) and overall (78%) were 

juveniles or sub-adults, smaller than the size at which 50% sexual maturity is attained (± 600 mm FL) 

(Figure 6.14). 

 

Figure 6.14: Fork length (mm) for fish measured at the time of recapture, for a) each study, and b) all 

studies combined (n = 207). The arrow indicates approximate size at sexual maturity 

 

Fish having moved greater distances were characterised by greater minimum and mean sizes (mm 

FL) and ages at the time of recapture (Table 6.3). Distances moved also differed significantly among 

size classes (Kruskal-Wallis ANOVA, p < 0.001) (Figure 6.15). Sub-adult (> 450 to 600 mm FL) and 

adult (> 600 mm FL) fish undertook significantly greater movements than juveniles (≤ 450 mm FL) (p 

< 0.001). Distances moved by the two largest size classes were not significantly different (p > 0.500). 
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Table 6.3: Mean (±SD) fork lengths (mm) and length ranges, and mean (±SD) ages (years) and age 

ranges of white steenbras recaptured within various distance bins (n = 207) 

Distance moved  
Number 

measured 
Mean (±SD) size 

(mm FL) 
Size range 
(mm FL) 

Mean (±SD) 
age (years) 

Age range 
(years) 

0 – 1 km 140 430 (± 132) 254 – 840 4.4 (± 1.7) 2.4 – 10.8 

>1 – 10 km 28 518 (± 154) 282 – 865 5.6 (± 2.2) 2.7 – 11.3 

>10 – 100 km 22 534 (± 128) 347 – 837 5.7 (± 1.8) 3.3 – 10.7 

>100 km 17 668 (± 167) 410 – 900 7.9 (± 2.9) 4.0 – 12.2 

 

 

Figure 6.15: Mean (±SD) distance moved (km), by size class (mm FL), for all fish measured at 

recapture in all programmes (n = 207). Different letters (a, b) indicate significantly different size 

classes 

 

Linear regression showed a weak but significant positive correlation between distance moved (km) 

and (i) fish length (mm FL) (R2 = 0.148, p < 0.001), and (ii) age (years, estimated from recapture FL) 

(R2 = 0.170, p < 0.001), for all fish measured at the time of recapture (n = 207) (Figure 6.16). This 

trend was also observed for the De Hoop, Tsitsikamma and ORI datasets separately (p < 0.001 in all 

cases, data not presented). 

 

Figure 6.16: Linear regression of distance moved (km) against a) size (mm FL) at recapture, and b) 

age (years) estimated from FL, for all fish measured at the time of recapture (n = 207) 

 

< 450 450 - 600 > 600

Fork length (mm) at recapture

0

50

100

150

200

250

300

D
is

ta
nc

e 
m

ov
ed

 (k
m

)

a

b
b

0 200 400 600 800

Fork length at recapture (mm)

0

200

400

600

D
is

ta
nc

e 
m

ov
ed

 (k
m

)

y   = 0.2458x – 85.1764
R2 = 0.148
p   < 0.001 

0 2 4 6 8 10 12

Age at recapture (years)

0

200

400

600

D
is

ta
nc

e 
m

ov
ed

 (k
m

)

y   = 18.8507x – 63.0742
R2 = 0.170
p   < 0.001 

a b



Chapter 6 – Coastal movements  

 

156 
 

Effect of time at liberty on distance moved 

Times at liberty between tagging and recapture ranged widely (Figure 6.17), with some fish 

recaptured on the same day as being tagged (in the Tsitsikamma MPA and ORI project), and ranging 

up to 2 262 days (ORI project). The mean times at liberty were, however, similar among 

programmes, ranging from 261 to 351 days. When time at liberty for all fish recaptured (n = 292) 

was graphed against distance moved, with easterly displacements presented as positive distances 

and westerly displacements presented as negative distances, no clear trend was evident, with a large 

proportion of recaptures made at zero displacement, up to 1 293 days after tagging (Figure 6.18).  

 

Figure 6.17: Time at liberty (days) for all fish recaptured (n = 292), expressed as a) a frequency (%) 

distribution, and b) as mean days at liberty (± SD) by coastal region (CA – Cape Agulhas, MB – Mossel 

Bay, TNP – Tsitsikamma, AB – Algoa Bay, TKE – Transkei, KZN – KwaZulu-Natal). West coast is 

excluded as there were no recaptures made in this area  

 

However, linear regression showed a significant, although weak (R2 = 0.0886, p < 0.001), positive 

correlation between distance moved and the number of days at liberty for all fish (Figure 6.18). 

 

Figure 6.18: Time at liberty (days) graphed against recapture distance (km) for all fish (n = 292) 

presented in the form of a) a scattergram (positive distances represent easterly displacements and 

negative distances represent westerly displacements), and b) a linear regression analysis of 

recapture distance against time at liberty (days) 
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Effect of habitat on distance moved 

From 1995 to 2008, 457 white steenbras were captured in the two fishing zones in the Tsitsikamma 

(TNP) MPA, and the substrate at the capture site was recorded for 415. Despite the substrate in this 

study site being predominantly mixed sand and rock (52%) and rock (41%), with small patches of 

sandy substrate interspersed among rock, the majority of these white steenbras were captured over 

sandy substrates (40%) or substrates of mixed sand and rock (33%), with 27% caught in rocky 

habitat. From 2005 to 2011, 560 white steenbras were captured as part of the long-term monitoring 

programme in the proposed GAENP MPA, of which 94% were captured over sandy substrate, with 

the rest caught along shores of mixed sand and rock. This study area is dominated by sandy 

shoreline (90%), with some mixed sand and rock (8%), and negligible rock. The HAI values indicated 

an affinity for sandy habitats in both study areas (TNP: 0.35, GAENP: 0.34), and negative HAI values 

indicative of avoidance of rocky habitats (TNP: - 0.32, GAENP: - 0.3) and habitats of mixed sand and 

rock (TNP: - 0.37, GAENP: - 0.74).  

 

In the proposed GAENP MPA, the proportion of white steenbras recaptured within 1 km of the 

tagging site was considerably less than that in the Tsitsikamma MPA, although the proportion was 

considerably higher for fish recaptured > 1 km to 5 km away, in the former study (Figure 6.8). When 

these two distance bins are combined (Figure 6.9), the two datasets indicate remarkably similar 

behaviour. Therefore, it appears that the habitat in the Tsitsikamma MPA restricted the frequency of 

small-scale movements between 1 km and 5 km. 

 

Effect of fish density on distance moved 

The mean (± SD) distances moved by fish tagged in the proposed GAENP, Tsitsikamma and De Hoop 

MPAs were 29.7 km (± 58.7), 38.0 km (± 101.0) and 33.5 km (± 111.4), respectively. Using CPUE as a 

proxy for density, the corresponding values were 16.6 fish.100 angler hours-1, 3.19 fish.100 angler 

hours-1 and 3.14 fish.100 angler hours-1, respectively (see Chapter 8). Graphical representation of 

these estimates showed no relationship between CPUE and the mean distance moved (Figure 

6.19a). The recapture rates were also unrelated to CPUE (Figure 6.19b), with recapture rates of 4.8%, 

5.5% and 6.3%, in the proposed GAENP, De Hoop and Tsitsikamma MPAs, respectively.  

 

Proportions of fish recaptured at different distances from the tagging sites were similar (Figures 6.8 

and 6.9), although fewer fish in the proposed GAENP MPA were recaptured within 1 km, and no fish 

in the De Hoop and Tsitsikamma MPAs were recaptured between 1 and 5 km from the tagging site. 

CPUE in the proposed GAENP MPA of 16.6 fish.100 angler hours-1, was considerably higher than in 
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the De Hoop (3.19 fish.100 angler hours-1) and Tsitsikamma (3.14 fish.100 angler hours-1) MPAs, 

indicating a possible relationship between CPUE (density) and the proportions of fish either 

remaining within 1 km of a particular location, or moving to locations > 1 to 5 km away (Figure 6.19 c 

and d). 

 

 

Figure 6.19: Comparative CPUE (fish.100 angler hours-1) and a) mean recapture distance (km), b) 

recapture rate (%), c) proportions (%) of recaptures made from 0 to 1 km from the tagging site, and 

d) proportions (%) of recaptures made > 1 to 5 km from the tagging site. The sample units (n = 3) in 

all comparisons are the individual tagging programmes (GAENP – Greater Addo Elephant National 

Park MPA, DEH – De Hoop MPA, TNP – Tsitsikamma MPA) 

 

Effect of seasonality on recapture location 

Monthly proportions (%) of recaptures made in each of the coastal regions (1 – West Coast, 2 – Cape 

Agulhas, 3 – Mossel Bay, 4 – Tsitsikamma, 5 – Algoa Bay, 6 – Transkei, 7 – KwaZulu-Natal) showed no 

obvious seasonal trends (Figure 6.20), although peaks in certain areas could be identified. There was 

a broad peak (spanning six months) in recaptures made in the Cape Agulhas region, from late winter 

to early summer (July to December), although there was an anomalous modal peak in May. The 

Mossel Bay region exhibited a large peak in December, and a lower broad peak from April to June, 

and the Tsitsikamma region showed a similar bimodal trend, with a peak from April to June and a 

second from September to December. The Algoa Bay region showed a single broad peak, from 
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October to February. Only three recaptures each were made in the Transkei and KwaZulu-Natal 

regions; these were made from April to June, and in September and December, respectively.  

 

 

Figure 6.20: Monthly proportions (%) of recaptures made in different regions (CA – Cape Agulhas, 

MB – Mossel Bay, TNP – Tsitsikamma, AB – Algoa Bay, TKE – Transkei, KZN – KwaZulu-Natal) 

 

Monthly proportions of movement directions for fish at liberty for up to three months are presented 

in Figure 6.21, for all years combined. From January to April the proportional directions of 

movements were similar. However, from March to June the proportions of recaptures made of fish 

that had moved westward decreased, while the proportions of fish recaptured further east of their 

tagging sites remained high. All recaptures made in July represented fish that had remained 

resident. From August to November, the majority of recaptured fish had moved in a westerly 

direction, until December, when the proportions of eastward movements had again increased, 

reflecting that of January. 
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Figure 6.21: Monthly proportions of recaptures for fish at liberty for up to three months (n = 91), for 

fish that moved westward (negative proportions), eastward (positive proportions) or remained 

stationary 

 

6.3.2 Acoustic telemetry  

Seven of the 17 white steenbras (41%) surgically equipped with acoustic transmitters in the marine 

environment were subsequently detected, some on multiple occasions (maximum = 5), either on the 

marine receiver array (2 fish), on a harbour receiver (3 fish), on an estuarine receiver (3 fish), or 

through being recaptured in the surf zone by recreational anglers (2 fish), or a combination of these 

(3 fish). Most of the movements were detected within Algoa Bay, but four individuals also made long 

distance movements and were recorded outside of the bay (Figure 6.22).  

 

Fish 2020 (455 mm FL) was acoustically tagged at Woody Cape on 3 December 2008 and 

subsequently recaptured in the surf zone by a recreational shore angler in East London, 

approximately 180 km east of the tagging site, 31 days later. Although this fish was not detected on 

any receivers in the array, the recorded movement between tagging and recapture localities was 

included in the conventional dart tagging dataset of the proposed GAENP MPA programme.  

 

Fish 65069 (830 mm FL) was tagged on 2 October 2010. The fish was detected for a short period, 181 

days later, on a receiver positioned inshore of Bird Island at a depth of 25 m, approximately 13 km 

offshore from the tagging site. 

 

Fish 2024 (459 mm FL) was tagged on 6 December 2008 and detected 346 days later (November 

2009) on the receiver inside the Coega Harbour, approximately 50 km west of the tagging locality. A 

total of 97 detections was made during the 2 hours spent in the vicinity of this receiver. 
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Figure 6.22: Movements of seven white steenbras tagged with acoustic transmitters at Woody Cape, 

in the proposed GAENP MPA 

 

Fish 65062 (960 mm FL), tagged on 31 July 2010, was detected ten days later in the Coega Harbour, 

approximately 50 km west of the tagging locality. Four detections were made, within approximately 

half an hour, before the fish moved out of receiver range. The fish was detected four days later by 

the receiver positioned off Cape Recife, at the western point of Algoa Bay, approximately 80 km 

west of the tagging site. The fish was detected on this receiver intermittently for a period of 68 days, 

during which time 1 264 detections were made. During the same period, the fish was also detected 

on a nearby receiver deployed as part of an unrelated study on elasmobranchs in Algoa Bay, on 

which 47 detections were made. The mean time between periods of detection at each of these two 

receivers, which are approximately 6 km apart, was 20 hours and 25 minutes (range 2 hours 24 

minutes – 4 days 7 hours). With the exception of a single detection made at approximately 01:00, all 
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detections on this additional receiver were made between 08:00 and 18:00. Conversely, with the 

exception of a single detection made at approximately 10:00, all detections on the Cape Recife 

receiver were made between 17:00 and 07:00.  

 

Fish 2022 (512 mm FL) was tagged on 4 December 2008 and detected 178 days later in the Great 

Fish Estuary, approximately 100 km east of the tagging locality. The fish entered the estuary in the 

late afternoon, and left at first light the following morning. 

 

Fish 2028 (527 mm FL) was tagged on 14 February 2009 and detected 155 days later in the Sundays 

Estuary. This represented a movement of at least 30 km west along the coastline, and this fish 

ventured approximately 12 km upriver from the mouth (this estuary had 16 receivers deployed at 

the time, for the estuarine telemetry study). This fish also entered the estuary in the late afternoon, 

and left in the early hours of the morning. This fish was detected approximately 20 km further west 

almost four months later (November 2009) in the Coega Harbour. The sequence of detections 

suggests two separate overnight visits, separated by 8 days, with the fish entering the harbour in the 

late afternoon on both occasions. However, it is also possible that the fish entered the harbour and 

moved deep into the harbour, with the apparent absence period representing a movement beyond 

the range of the receiver, within the harbour. The fish was then detected 476 days later, in the 

Gamtoos Estuary, 150 km west of the tagging site, representing the greatest movement west, and 

the second longest movement overall. The fish remained in the estuary for less than three hours 

(around midnight), during which time 113 detections were made, before leaving the estuary. The 

fish was subsequently detected in the Gamtoos Estuary again, 90 days later. The fish again entered 

and departed at night, although during this second visit it moved at least 3 km up the estuary, where 

it remained for four days before leaving. 

 

Fish 2032 (554 mm FL), tagged on 14 February 2009, was detected in the Sundays Estuary, 30 km 

west of the tagging site, in June 2009, 113 days after being tagged. This fish also covered the 30 km 

coastal stretch, but only ventured about 2 km up the estuary from the mouth. The fish entered early 

afternoon and left a few hours later. This fish was recaptured by a recreational shore angler 508 

days after being tagged, in the surf zone approximately 80 km west of the Sundays Estuary, outside 

of Algoa Bay. 
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6.4 Discussion 

Research-based tagging and monitoring programmes within three MPAs allowed for the collection of 

trusted, accurate high resolution movement and dispersal data from three localities spanning the 

core distribution of white steenbras. In addition, the nationwide ORI project provided a high number 

of recaptures to support the findings of the three research-based programmes. Conventional dart 

tagging and recapture studies require a high number of fish to be tagged, in order that sufficient 

tagged fish are recaptured to detect persistent trends (Attwood and Cowley 2005). The widespread 

distribution of tagged and recaptured fish, the long-term nature of the tagging programmes, and the 

capture and tagging of 5 782 white steenbras, with 292 recaptures, allowed for a thorough 

assessment of white steenbras coastal movements. Despite differences in the numbers of fish 

tagged and recaptured, the different programmes yielded similar results. The overall recapture rate 

of 5.1% was similar to shore-angling recapture rates of tagging studies conducted on other coastal 

fish species in South Africa (e.g. Brouwer et al. 2003, Attwood and Cowley 2005).  

 

The lower rate of recapture reporting and the greater (fishery) effort outside of protected areas, 

when compared to research angling within, have the potential to bias the proportions of recaptures 

made outside of protected areas negatively and positively, respectively. Attwood and Cowley (2005) 

accounted for this by incorporating a correction factor into the estimation of recapture rates for 

galjoen Dichistius capensis captured outside of the De Hoop and Tsitsikamma MPAs. However, in the 

current study, the close agreement in the recapture rates and frequency distributions of recapture 

distances obtained from the three research programmes with those in the ORI project, based 

outside of MPAs, suggested that application of a (subjective) correction factor was not necessary.  

  

The recapture distances of fish tagged in each of the four studies were in close agreement, providing 

a high level of confidence in the results. The majority of recaptures in all four programmes were 

made within 5 km of the tagging location (most within 1 km), providing strong evidence of resident 

behaviour in all study areas. It would appear that the dominant behaviour in the coastal zone is 

residency, although a number of fish undertook large-scale coastal movements between tagging and 

recapture events. This agrees with the results obtained by Cowley (1999) in the Tsitsikamma MPA 

from 1995 to 1999. 

 

The multiple detection events for the fish tagged with acoustic transmitters, combined with angler 

recaptures, provided considerably more data per individual than the recaptures of fish tagged with 

conventional dart tags, highlighting the value of acoustic telemetry to complement conventional 
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tagging programmes. The “time at liberty” between detections/recaptures ranged from four days to 

508 days, at an average of 165 days (± 172). Furthermore, “recaptures” made by the acoustic 

receivers allowed the fish to continue moving after recapture, whereas most recaptures of dart 

tagged fish made by recreational anglers resulted in mortality, and the consequent prevention of 

any further data collection. This fact was evident in the telemetry results presented, with three of 

the detected fish having been detected/recaptured on more than one occasion, with multiple 

detections on each occasion. One fish (Fish 2028) was detected on four separate occasions, before 

being recaptured in the recreational shore fishery. 

 

The array of passive acoustic receivers spanning Algoa Bay and the adjacent estuaries made it 

possible to collect movement data on the acoustically-tagged fish well beyond the study area in the 

proposed GAENP MPA, and based on the spatial scale of the estuarine and marine receiver arrays it 

was possible to assess coastal movements and residency on a scale of tens to hundreds of 

kilometres. Fish detected by the acoustic receivers appeared to exhibit a similar type of behaviour to 

the dart-tagged fish that were recaptured, with a proportion being detected within the bay up to 

almost a year after tagging, and some undertaking large-scale coastal movements out of the bay.  

 

6.4.1 Conventional dart tagging 

Resident behaviour and small-scale movements 

Overall, the dominant behaviour was residency, with 61% of fish recaptured within 1 km of their 

respective tagging site. Times at liberty for fish remaining resident ranged from 0 to 1 293 days, 

providing evidence of long-term phylopatric behaviour. The fact that those individuals recaptured on 

multiple occasions were generally recaptured at the initial tagging site, or at a previous recapture 

location, further highlights the long-term nature of this residency. In the ORI project, recaptures 

made at the tagging locality occurred along most of the white steenbras core distribution, indicating 

that this behaviour is consistent throughout its range and not restricted to certain areas (Figure 6.7 

a). This was confirmed by the similarly high levels of residency within each of the seven coastal 

regions, with low levels of dispersal between regions. The observed similarity in results suggests that 

the coastal region in which the fish are tagged has little effect on the movements of this species. 

 

Residency is one of the most common behaviours in fishes (Attwood 2002) and is prevalent among 

other local sparids, for example 90% of adult carpenter Argyrozona argyrozona recaptures were 

made in the same location within the Tsitsikamma MPA (Brouwer et al. 2003), and 96 to 100% of the 

recaptures of blacktail Diplodus sargus, zebra Diplodus cervinus hottentotus and bronze bream 
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Pachymetopon aeneum were made within a short section of coastline within the Tsitsikamma MPA 

(Cowley et al. 2002). Red roman exhibited a high level of residency within the Goukamma and 

Tsitsikamma MPAs (Kerwath et al. 2007b), with at least 85% recaptured within 500 m of the tagging 

site in both areas. Similarly, juvenile white musselcracker Sparodon durbanensis showed a high level 

of residency within the De Hoop and Tsitsikamma MPAs with almost 100% of recaptures made 

within 1 km of the tagging sites (Watt-Pringle 2009). The ecological advantages of resident behaviour 

include familiarity with food resources and increased foraging efficiency, knowledge of locations of 

refugia, and immunity against local diseases (Eristhee and Oxenford 2001, Attwood 2002), which 

ultimately enhance the success of the population (Harden Jones 1968).  

 

The results of the DE Hoop, Tsitsikamma and ORI tagging programmes were in close agreement, with 

at least 58% of fish in each study recaptured within 1 km of the respective tagging site. Only 4% of 

recaptures in the ORI programme were made between 1 and 5 km from the tagging site and none in 

the De Hoop or Tsitsikamma programmes in this range. Although it was not possible, nor intended, 

to estimate reliable home ranges for the recaptured white steenbras, the high proportion of 

recaptures made within 1 km on either side of the tagging location suggests that home ranges of 

most fish are unlikely to span more than about 2 km of coastline.  

 

The proportions of recaptures made in the proposed GAENP MPA within 1 km and from > 1 km to 5 

km were almost equal. The discrepancy among tagging programmes in the proportions of recaptures 

made within these categories is likely a consequence of the distribution of angling effort, the 

resolution of position recording and the distribution of habitat types within each study site. In the De 

Hoop MPA, all recaptures made within the tagging sites were allocated to the respective 1-km ORI 

coastal locality codes (either Koppie Alleen or Lekkerwater). Therefore, within-site movements 

(maximum 3 km) would have been recorded as 0 to 1 km displacements, and because angling within 

the MPA was restricted to the two tagging sites, separated by 11 km, it was not possible for 

recaptures to be made at distances between 1 and 11 km from either tagging site (except for 9 km 

east from Lekkerwater to Noetsie), which explains the lack of recaptures within this range in De 

Hoop MPA. In the ORI tagging programme, release and recapture positions are recorded at a similar 

resolution to the De Hoop MPA tagging programme; therefore, it is likely that in the event of a fish 

having been recaptured at a position along the coast for which there is no defined ORI locality code, 

that the nearest locality was allocated. This may mask short distance movements, between 1 and 5 

km, underestimating the size of the ‘home range’ area used (Attwood and Cowley 2005). In the 

proposed GAENP MPA tagging programme, tagging effort is more widespread, and angling effort 
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may be exerted at any point along the approximately 30-km study area. Furthermore, tagging and 

recapture positions in this and the Tsitsikamma programmes were recorded with GPS accuracy, 

rather than simply allocating the recapture position to a coastal locality, as in the ORI tagging 

programme, allowing recaptures to be recorded accurately at any distance (within the study area) 

from the tagging locality.   

 

Large-scale movements 

Although the dominant behaviour appeared to be residency (0 to 1 km, 62%), there were some 

individuals in each tagging programme that were recaptured at considerable distance from their 

tagging sites. Overall, 11% of fish were recaptured more than 100 km from their tagging site 

providing evidence of large-scale migrations, up to 620 km, and mixing among coastal regions. In 

total, 15% moved more than 5 km west, and 19% more than 5 km east. 

 

However, of the 13 recaptures made of fish tagged in the ORI project in the Eastern Cape Province, 

which did not remain resident, only one fish moved westwards, with the rest moving to a position 

further east along the coastline. Similarly, large-scale movements undertaken by adult white 

musselcracker were also predominantly in an eastward direction (Watt-Pringle 2009). Brouwer 

(2002) provided evidence of red steenbras Petrus rupestris undertaking easterly spawning 

migrations from the Agulhas Bank with the onset of sexual maturity, but suggested that these were 

one-way movements, and that return migrations were unlikely. Therefore, the predominantly 

eastward movements of the recaptured white steenbras may be consistent with the onset of 

migratory behaviour towards the spawning grounds in the Transkei (Bennett 1993b).  

 

It is interesting to note that no recaptures of white steenbras, tagged in any study, were made west 

of Cape Point, and a handful of recaptures were made as far east as KwaZulu-Natal. The recaptures 

in KwaZulu-Natal are surprising, as this is outside of the species’ core distribution (Lamberth and 

Mann 2000). However, the low number of recaptures within KwaZulu-Natal, despite the high 

recreational shore angling effort in this province (Brouwer et al. 1997), confirms the low abundance 

of white steenbras in this region. Although recreational shore angling effort along the west coast is 

considerably lower than that in KwaZulu-Natal (Brouwer et al. 1997), the lack of recaptures along 

the west coast suggests that there may be little ecological benefit for white steenbras to migrate to 

the west coast, or to return to the west coast after having migrated eastwards.  
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White steenbras are recorded along the west coast, although there are few estuaries within this 

region to support juvenile populations. Furthermore, water temperatures along the west coast are 

predominantly low (≤ 15°C) (Christensen 1980). Attwood and Cowley (2005) suggested that the 

infrequent occurrence of galjoen in the upwelling area between South Africa and Namibia is caused 

by the low survivorship of the eggs of this species at such low temperatures. This may also be true 

for white steenbras. Based on historical catches, it is also possible that the low numbers of white 

steenbras recorded along the west coast are an artefact of overfishing, rather than environmental 

conditions (SJ Lamberth, DAFF, pers. comm.). 

 

The low frequency of occurrence of white steenbras along the west coast has been confirmed by a 

number of studies. The species was absent from two seine net studies of the fish community within 

the Langebaan Lagoon (Whitfield et al. 1989, Clark 2007). Bennett (1993a) reported declining white 

steenbras catches in the beach-seine fishery along the west coast between Cape Point and Cape 

Columbine from 1983 to 1991, and Hutchings et al. (1999) recorded zero white steenbras in 

experimental marine and estuarine gill-net catches along the west coast, between Cape Point and 

the Olifants River Mouth, from 1997 to 1999. White steenbras also did not feature in shore-angler 

catches along the west coast, in an extensive survey of the South African recreational shore fishery 

(Brouwer et al. 1997). However, environmental conditions along the west coast can result in 

sporadic recruitment and nodal fish distributions, which are often not reflected in such surveys, and 

white steenbras catches in the legal gill-net fisheries in estuaries such as the Berg are often 

underreported (SJ Lamberth, DAFF, pers. comm.). Therefore, it is possible that white steenbras are 

present in greater numbers along the west coast than these surveys suggest.  

 

Effect of coastal region on fish size and level of dispersal 

Size frequency distributions of fish tagged in the ORI project were similar among coastal regions 

throughout the white steenbras distribution, although the proportions of larger fish (> 600 mm FL) 

were greater in the Transkei catch. There was a trend of larger fish, on average, tagged along the 

West Coast and Transkei regions, with lower mean sizes tagged in regions in between. This supports 

the notion of adult aggregation areas in the south Western Cape and Transkei, but also reflects the 

greater abundance of nursery areas (estuaries and associated coastal zone) in between. However, 

the proportions of fish tagged within each region that were recaptured within the same region were 

similar (88 to 96% in all but the Transkei region), suggesting that the coastal region had little effect 

on resident behaviour. The lower proportion of fish that were tagged and recaptured within the 

Transkei region was as a result of the low sample size of fish tagged in this region (n = 3). 
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Effect of fish size (and age) on distance moved 

The high level of residency in the surf zone of fish up to about 500 mm FL, and the considerably 

longer-distance movements of larger fish agreed with the findings of Bennett (1993b). This author 

suggested that white steenbras are resident in shoals, ranging within restricted sections of sandy 

and mixed sand and rock shoreline until sexual maturity is reached, after which they extend their 

range into deeper waters and begin to undertake large-scale migrations. This would explain the 

offshore movement of Fish 65069, tagged at 830 mm FL (± 10 years old), to Bird Island, and that of 

Fish 65062, tagged at 960 mm FL (± 14 years old) to an area off Cape Recife peninsula, to depths 

between approximately 12 and 25 m. Similar patterns were observed for two other local sparids. 

Red steenbras exhibit residency in shallower water (in this case < 50 m) as juveniles, and move into 

deeper areas (> 50 m) with the onset of sexual maturity (Smale 1988), and carpenter Argyrozona 

argyrozona exhibit an increase in depth as a function of fish size (Griffiths and Wilke 2002).  

 

These results confirm the change in behaviour with the onset of sexual maturity, and that the 

behaviour of white steenbras in the coastal zone is largely determined by the size (or age) of the fish, 

with larger fish exhibiting a considerably greater scale of coastal movements than smaller 

individuals. Such ontogenetic shifts from residency to migratory behaviour have been documented 

in other coastal sparids in South Africa, such as red steenbras (Smale 1988, Brouwer 2002), and 

white musselcracker (Watt-Pringle 2009), and are generally indicative of adult spawning migrations. 

Bennett (1993b) proposed that adult white steenbras undertake annual spawning migrations, 

between a summer aggregation along the west and south west coasts and winter spawning grounds 

in the Transkei, along the east coast, but simultaneously cautioned that the results were speculative. 

The increased level of dispersal and the extent of coastal movements made by the larger fish 

recaptured in the dart tagging programmes presented in the current study support this notion. 

 

Numerous South African linefish species adopt a life history approach that includes an annual 

migration up the east coast to spawn in the Transkei or KwaZulu-Natal (Hutchings et al. 2002a). 

Juvenile red steenbras are resident, while adults undertake spawning migrations to the Transkei 

area, with spawning taking place in late winter, although there is also evidence of a spawning stock 

off the south coast of South Africa (Smale 1988, Brouwer 2002). White musselcracker also exhibit 

residency as juveniles, and undertake spawning migrations up the east coast as adults (Watt-Pringle 

2009). Shad Pomatomus saltatrix appear to migrate up the east coast to KwaZulu-Natal to spawn 

during spring, after which return migrations to coastal areas further south west are observed (van 

der Elst 1976), and adult geelbek Atractoscion aequidens migrate from western and southern Cape 
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waters to KwaZulu-Natal, following the annual Sardinops sagax “sardine run”, where spawning also 

takes place in spring (Griffiths and Hecht 1995). The warmer waters of the Transkei and KwaZulu-

Natal enhance the growth rates of the eggs and larvae, and the movement eastwards allows the 

eggs and larvae to drift south west along the coastline (Griffiths and Wilke 2002). This is particularly 

advantageous for estuarine-dependent species, such as white steenbras and leervis Lichia amia, as 

spawning further up the east coast allows recruitment into estuaries along the south east and south 

coasts, which are more dense than in areas further west (Bennett 1993b). This pattern of eastward 

migration up the South African east coast to spawn thus appears to be the most successful strategy 

in this environment, and the ecological advantage is indicated by the high number of South African 

linefish species exhibiting this life history style (Hutchings et al. 2002a). 

 

Is there evidence for a spawning migration in white steenbras? 

The results from the current study support Bennett’s (1993b) migration theory to a certain degree, 

as the larger individuals showed a greater tendency to migrate, and undertook larger movements, 

on average. Also, a large proportion of recaptures was made east of the tagging site, with most of 

these fish roughly the size at which sexual maturity is attained. The mean distance moved by fish 

recaptured within each of the different coastal regions increased substantially from west to east, 

until a maximum in the Transkei, indicating that individuals recaptured in the Transkei had migrated 

considerable distances eastwards.  

 

Based on Bennett’s (1993b) proposed spawning migration, and considering that more than 1 500 

white steenbras larger than 500 mm FL have been tagged along the coastline, if a large proportion of 

the adult stock was migrating annually between the summer and winter aggregation areas, it would 

be expected that the recapture information would confirm the connectivity between the south west 

coast summer aggregation area and the Transkei winter spawning grounds. However, despite 70 

recaptures of fish of this size, widespread within the white steenbras core distribution, with time at 

liberty of up to 1 653 days, this was not the case. 

 

Although the level of dispersal among regions was low, large-scale movements recorded in the 

different tagging programmes confirmed the connectivity among coastal regions for the larger fish. 

Long-distance movements of fish tagged in the De Hoop MPA provided evidence of connectivity 

between De Hoop MPA and False Bay to the west, and Plettenberg Bay to the east, spanning most of 

the Western Cape Province. Long-distance recaptures also confirmed connectivity between the 

Tsitsikamma MPA and the Transkei, spanning the entire coastline of the Eastern Cape Province. 
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However, evidence of connectivity between the Western and Eastern Cape provinces by means of 

long-distance movements, was restricted to just two individuals, both tagged in the De Hoop MPA. 

This is particularly evident in the recaptures made in the ORI programme, where no large-scale 

movements between these provinces were recorded, with movements appearing to represent two 

separate areas of movement (Figure 6.7 c). These results posed a number of questions.  

 

1. Do all mature fish migrate to Transkei to spawn? The movements of an adult fish tagged with an 

acoustic transmitter (Fish 65062) provide some interesting insight. This fish was the largest of the 17 

white steenbras acoustically tagged (960 mm FL), and substantially larger than the size at 50% sexual 

maturity. This fish was detected in Coega Harbour, 50 km west of the tagging site, ten days after 

tagging and then at Cape Recife, approximately 30 km from the Coega Harbour, four days later, 

where it remained resident for more than two months. This was surprising, as the period of 

residency within Algoa Bay spanned the period from late July to late October, coinciding with the 

spawning season (Bennett 1993b). While the possibility that the effects of the tagging process 

prevented this fish from migrating to spawn in the subsequent spawning season cannot be 

discounted entirely, the evidence suggests that not all mature fish aggregate in the Transkei during 

the spawning season. Watt-Pringle (2009) reported that not all adult white musselcracker migrate to 

spawn along the east coast, and that localised spawning was observed in other parts of its 

distribution range. Garratt (1988) advocated that pelagic spawning predatory linefish species in 

South Africa adopt one of three reproductive strategies; that in which the entire breeding stock 

migrates to the Transkei or KwaZulu-Natal to spawn (such as shad), that in which a portion of the 

breeding stock migrates while the rest remains in Eastern and Western Cape waters and spawns 

locally (such as yellowtail Seriola lalandi and blue hottentot Pachymetopon aeneum), and that in 

which the breeding adults do not migrate but spawn under favourable conditions (such as santer 

Cheimerius nufar). In light of this, the following question can be posed. 

 

2. Does spawning take place in Algoa Bay, and/or elsewhere along the coastline? The sizes at which 

juvenile white steenbras recruit into estuaries along the South African coastline can be used to 

address this question. Early juvenile recruits tend to increase in size from east to west along the 

coastline, with recruits recorded from 20 to 30 mm TL in the Sundays Estuary on the south east coast 

(Beckley 1984), up to 40 mm TL in the Knysna Estuary on the south coast (Whitfield and Kok 1992), 

and 18 to 50 mm TL in the Kleinmond Estuary on the south west coast (Bennett 1989). The period of 

peak recruitment is also later annually in estuaries further west, with recruitment peaking in August 

and September along the south east coast (Beckley 1984), September and October along the south 
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coast (Whitfield and Kok 1992), and October to November along the south west coast (Bennett 

1989). The results suggest that white steenbras recruits within each cohort are spawned over the 

same period, in the same area, supporting the notion of a single spawning region (Transkei) and 

season (July to October). Based on this result, another question can be posed. 

 

3. Do all mature fish spawn every year? Commercial beach-seine catches made in False Bay, in the 

Western Cape Province, from 1991 to 1992, indicated a strong seasonal occurrence of adult white 

steenbras, with low numbers caught in winter, supporting the proposed migration away from the 

Western Cape Province in the winter months (Bennett 1993b). The monthly proportions of adults 

captured and tagged in the ORI project provided further support. However, adult white steenbras 

are not completely absent from the Western Cape Province in winter, and histological examination 

showed that the gonads of those adults that were captured had minimal development or had been 

reabsorbed (Lamberth et al. 1995). This result provides evidence that not all white steenbras capable 

of maturing spawn (or migrate) every year.  

 

The low number of individuals having moved between the Western Cape and Eastern Cape 

provinces, and the evidence indicating that not all white steenbras migrate to the Transkei or spawn 

every year, suggest that further assessment of the connectivity of coastal populations is required. 

 

Individual variability 

There was considerable individual variability in the distances travelled by fish of the larger size 

classes, with some (up to 840 mm FL) showing zero displacement. This may be partly caused by the 

adult white steenbras that remain in False Bay during the winter months (Lamberth et al. 1995). 

Intra-specific variability in behaviour is common among fishes (Dingle 1996) and may be caused by 

numerous factors, such as social factors, genetic variability or environmental conditions (Attwood 

2002). Sex-specific movement patterns have been reported in fishes (e.g. Barrett 1995), although it 

is not possible to sex white steenbras macroscopically, and considering the congruence in growth 

rates and size at 50% sexual maturity between the two sexes (Bennett 1993a), and that they are 

broadcast spawners it is unlikely that sex would have affected the observed movement patterns. 

 

Secondly, this may reflect the high variability in the size or age at which white steenbras mature, 

with a wide maturation window from 490 mm to 900 mm TL (approximately 450 to 820 mm FL) 

(Bennett 1993b), or about five to eight years (Attwood and Bennett 1995a); although, this does not 

explain the large acoustically-tagged adult fish remaining within Algoa Bay over the spawning period.  
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Thirdly, this may be indicative of behavioural polymorphism, with some fish undertaking large-scale 

migrations and others exhibiting resident behaviour. Such behaviour has been observed in other 

coastal fishes in South Africa, such as red steenbras, red stumpnose Chrysoblephus gibbiceps, santer 

(Griffiths and Wilke 2002) and dusky kob (Griffiths and Attwood 2005). Similar results were also 

observed in other areas; for example, painted comber Serranus scriba in Palma Bay Marine Reserve, 

Mallorca Island, Medirranean Sea (March et al. 2010), and barred sand bass Paralabrax nebulifer in 

Catalina Marine Life Reserve, Santa Catalina Island, California (Mason and Lowe 2010). Griffiths and 

Wilke (2002) provide a summary of a wide range of species from different families exhibiting such a 

split, with different proportions of zero-displacement and longer-distance recaptures. These authors 

ascribe such a pattern to one of two possibilities: either behavioural or genetic polymorphism within 

the population or occupation of home ranges by individual fish, with all or most fish undertaking 

small-scale exploratory movements. Similarly, Attwood and Cowley (2005) present two possible 

movement behaviour models for galjoen; polymorphism and a “tourist” model, under which an 

individual fish may exhibit residency at one of a few home ranges and nomadic movements among 

these, at different times, dictated by environmental conditions. The similarity in results obtained in 

tagging studies at different localities discounts the possibility of behavioural polymorphisms. Genetic 

analyses presented in the following chapter suggest that genetic polymorphism is unlikely, although 

this was not specifically addressed.  

 

The fact that certain individuals recaptured on multiple occasions showed variable movement 

patterns in subsequent intervals at liberty (i.e. one recapture of zero displacement and one of a 

significant movement), suggests that individual sub-adult white steenbras are resident in the coastal 

zone within a familiar home range, with most or all individuals undertaking infrequent small- to 

medium-scale movements outside of this home range (which may appear as multiple behavioural 

traits), with the low proportion of “non-residents” reflecting the low frequency and consequently 

low probability of capturing or recapturing a fish while undertaking a coastal movement outside of 

its home range. Such behaviour would allow individuals to remain resident until sexually mature, 

therefore reaching a suitable size to withstand the stresses of undertaking large migrations 

(Hutchings et al. 2002a). It is also possible that larger individuals undertake regular longshore 

movements, but that these movements are further offshore, where the fish are not accessible to 

capture in the shore fishery, consequently resulting in lower recapture rates, and greater variability 

in distances of recorded movements. 
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Finally, the most simple explanation is that adult fish may exhibit fidelity to a home range area, 

albeit on as broad a scale as a particular coastal embayment, to which they return (i.e. homing 

behaviour) after migrating to spawn. Homing to certain areas after spawning is well-documented in 

fishes (e.g. Carlson and Haight 1972, Spedicato et al. 2005), and is not discounted in this case. 

 

Effect of habitat and fish density on dispersal 

The affinity of white steenbras for sandy substrate and the predominance of rocky shoreline and 

non-contiguous patches of sandy substrate in the Tsitsikamma MPA have forced the white steenbras 

into small areas, in which they show a high level of residency for extended periods. This was 

reflected in the vast majority of fish in this MPA that were recaptured within 1 km of the tagging 

site. In contrast, the proposed GAENP MPA study area is characterised by a large expanse of 

contiguous sandy shoreline, with some patches of mixed sand and rock. Here, white steenbras are 

not restricted to small areas, allowing increased home range size and small-scale displacements, and 

decreased likelihood of being recaptured at the tagging locality. As a result, the proportions of white 

steenbras recaptured in the proposed GAENP MPA programme up to 1 km and those recaptured 

from 1 to 5 km were similar. Therefore, habitat has affected the results observed in these two MPAs, 

and is likely to play a major role in the distribution and behaviour of this species. The effect of 

habitat on the frequency of short-distance (< 5 km) movements suggests a level of behavioural 

plasticity (Attwood 2002).  

 

The Ideal Free Distribution theory (Fretwell and Lucas 1970) suggests animals will adjust their 

distribution according to the availability of and competition for food resources in a way that allows 

equitable ‘fitness’ for all individuals. Krebs et al. (1973) suggested that populations may exhibit 

higher levels of residency when density and thus competition are low, but that aggressive behaviour 

and migration may increase under high density conditions. Two main goals of MPA establishment 

are to increase fish density within the MPA and increase density of fishes in adjacent areas through 

density-dependent spill-over (Sale et al. 2005). Based on this, it is expected that (at least for some 

species) local density would influence the proportion of individuals that remain resident and the 

level of dispersal (Kramer and Chapman 1999). Such an effect may manifest as a higher proportion 

of individuals recaptured away from the tagging site, in areas of higher density (Attwood and Cowley 

2005). Two questions may be asked to determine whether density-dependence is at play.  

 

Firstly, did higher density result in higher mean displacement of recaptured fish? Results from the De 

Hoop, Tsitsikamma and proposed GAENP MPAs suggested not. Despite substantially higher CPUE in 
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the GAENP MPA, than in either the De Hoop or Tsitsikamma MPAs, the mean distances moved in 

each study were similar, and each was characterised by high variability. This suggests that present 

density has not had an observable effect on the level of dispersal in these three MPAs. Furthermore, 

the similarity in observed movements between the MPA-based research projects and the ORI 

project based in open access areas suggests that dispersal rates in these MPAs are similar to those in 

open areas.  

 

Secondly, did higher densities result in higher frequencies of small-scale movements? The 

proportions of recaptures made within 5 km of the tagging sites in each of the three MPAs were 

similar. However, differences were observed in the proportions of fish having moved 0 to 1 km and 1 

to 5 km among the three MPAs, suggesting that higher densities in the proposed GAENP MPA may 

have increased the tendency of white steenbras to undertake small-scale movements away from 

their home range. As white steenbras tend to shoal in the inshore environment, higher densities 

may result in localised prey resource depletion, and the consequent need to forage over greater 

areas. Similarly, the lower proportion of recaptures made from 5 to 10 km in the ORI project, than in 

the three MPA-based projects, suggests that higher densities within the MPAs may be driving 

movements in the order of 5 to 10 km, although these may be confounded by higher mean sizes 

(and thus greater tendency to migrate) of fish recaptured in the De Hoop (519 ± 168 mm FL) and 

proposed GAENP (471 ± 102 mm FL) MPAs, than those that were tagged in the ORI project (437 ± 

141 mm FL). It is also likely that the differences between the proposed GAENP MPA and the De Hoop 

MPA and ORI project, in terms of the proportions of small-scale movements, result from the lower 

resolution of position-recording in the latter two programmes (Attwood and Cowley 2005).  

 

Based on these results, there is little evidence that density is driving dispersal of white steenbras, 

although higher densities may influence the level of short-distance movements. Is this mechanism 

likely to result in spill-over of white steenbras from MPAs into adjacent fishery areas? This is unlikely, 

based on the scale of these movements. A similar conclusion was drawn for galjoen, suggesting that 

MPAs will provide little improvement to the catches of either species in adjacent fished areas 

(Attwood and Cowley 2005), at least not at the current densities in MPAs.  

 

Effect of time at liberty on distance moved 

Attwood and Cowley (2005) predicted that when movement patterns in a species conform to a 

diffusion-type process, it can be expected that the proportion of recaptures made at the tagging site 

would decrease over time. Under this model, it is expected that the distance between tagging and 
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recapture localities would be related to time at liberty. However, in the De Hoop, Tsitsikamma and 

GAENP tagging programmes, this was not the case, with zero-displacement recaptures made up to 

1 293 days at liberty, and the maximum distance moved (620 km), recorded for two fish after just 87 

and 208 days at liberty. However, distances moved were positively and significantly correlated with 

time at liberty, for all fish recaptured. This correlation was weak (R2 = 0.0886), and may be explained 

by three factors. Firstly, the frequency distribution of times at liberty was skewed towards shorter 

durations, as the number of recaptures decreased with increasing time at liberty (as in most tagging 

studies). This, combined with the high proportion of zero-displacement recaptures, would have 

skewed the correlation towards high numbers of recaptures with zero displacement and low times 

at liberty. Secondly, the majority of recaptured fish were juveniles and sub-adults, which exhibited 

higher levels of residency than adults. Thirdly, the greater the time at liberty, the more the fish 

would have grown, and thus the greater the likelihood of a fish reaching the size at which migratory 

behaviour begins, with recapture distance dependent on the size of fish at recapture, rather than 

time at liberty. Thus, it can be concluded that the observed pattern of movement in white steenbras 

does not conform to a diffusion process (Griffiths and Wilke 2002), and is driven by the size or age of 

the fish, and the onset of sexual maturity (Bennett 1993b), rather than the time at liberty. 

Interestingly, the mean times at liberty appeared to be lower for fish tagged in the Mossel Bay and 

KwaZulu-Natal regions, and may reflect the level of shore fishing effort (Brouwer et al. 1997), and 

thus vulnerability to capture within these regions. Furthermore, the mean time at liberty for fish > 

600 mm FL at the time of tagging was 275 days (± 302 d), with 70% of recaptures made within one 

year of tagging, suggesting that white steenbras are highly vulnerable to capture soon after reaching 

maturity. 

 

Effect of seasonality on recapture location  

The four seasons relate closely to the spawning period of white steenbras, with a perceived 

migration occurring in the late autumn and early winter months (May to June), with spawning 

believed to take place in the Transkei in the winter months (July and August) (Bennett 1993b). Catch 

data suggest a return migration to the south west coast during spring, where they aggregate, 

probably for feeding (Penney 1991), over the summer months (Bennett 1993b). Therefore, peak 

periods of recaptures in each location were assessed to determine whether these agreed with 

expected peaks in different areas associated with the migration.  

 

Monthly proportions of recaptures made in the different regions of coastline, as defined for this 

chapter (Figure 6.2), showed no obvious seasonality. However it was possible to tease the trends 
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from the data in the different regions. Based on Bennett’s (1993b) proposed spawning migration, 

increased proportions of recaptures were expected along the south west coast in the austral 

summer months, along the Transkei coast in winter and bimodal peaks between these two regions in 

autumn and spring.  

 

The broad peak in recaptures in the Cape Agulhas region from September to December is consistent 

with a post-spawning summer aggregation in this region. Peaks in the proportions of recaptures 

from April to June in the Mossel Bay and Tsitsikamma regions reflect the eastward migration from 

the south west coast towards the Transkei in the late autumn and early winter months. The almost 

complete lack of recaptures in the Transkei provides little credibility to any conclusion drawn for this 

area, although the three recaptures in this area were made from April to August. It is possible that 

white steenbras may not feed during the spawning aggregation, in which case the number of 

recaptures would be expected to be low. In the Algoa Bay region, to the west of the Transkei, there 

was a notable peak over the period October to December, which may be indicative of the return 

migration in this region in spring to summer. The fact that there was no increase in the proportions 

of recaptures in autumn or winter, to indicate increased activity in this region at that time of year, 

suggests that the eastward migration may be further offshore than the westward return migration. 

The Tsitsikamma and Mossel Bay regions also exhibited peaks from October to December, and in 

December, respectively, which coincide with the return migration over spring, into summer. 

 

The monthly proportions of fish that were recaptured either further west or further east of their 

tagging sites within three months of tagging, also followed this trend, with decreasing westward 

movements and high proportions of eastward movements from March to June, which is consistent 

with the autumn/winter migration towards the Transkei coast. The greater proportions of westward 

movements from August to November reflect the return migration to the south west coast.  

 

Overall, the analysis of seasonality provided support for the spawning migration proposed by 

Bennett (1993b). However, the number of recaptures is highly dependent an angling effort, which is 

likely to vary considerably, both seasonally and spatially. Furthermore, the number of recaptures of 

fish greater than the size at which 50% sexual maturity is attained was low. Therefore, an improved 

understanding of seasonal patterns in movement will require a greater number of recaptures, 

particularly in the Transkei region, and of adult fish, or an alternative method will be necessary, such 

as long-term passive acoustic telemetry. 
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6.4.2 Acoustic telemetry 

The movement of Fish 2024, from the tagging site at Woody Cape (in the proposed GAENP MPA) to 

Coega Harbour, represents a moderate movement (± 30 km) made over a relatively long period (282 

days). The movement of this fish (459 mm FL at tagging) at this spatial scale agrees with the 

conventional tagging results for sub-adult white steenbras (450 – 600 mm FL), and is possibly 

representative of nomadic movements at this size class, and a degree of residency within Algoa Bay. 

 

The apparent resident behaviour from October 2010 to April 2011 of the larger Fish 65069, 

measuring 830 mm FL at tagging and thus expected to participate in spawning migrations, may be 

further evidence of residency within Algoa Bay. This fish may have returned from a 2010 spawning 

migration, and remained resident between tagging and the offshore detection, prior to the 2011 

migration. It is also possible that this individual did not undertake a spawning migration, but 

remained resident until detection approximately 13 km away at Bird Island, with the offshore 

movement to Bird Island representing the offshore movement associated with the onset of sexual 

maturity (Bennett 1993b, Attwood and Bennett 1995a). 

 

Fish 65062 was detected in Coega Harbour and then at Cape Recife, just 14 days after tagging, 

having travelled at least 80 km, after which it remained resident within Algoa Bay over the spawning 

season. During this period, the fish exhibited a distinct diel behavioural pattern, reflecting that of the 

juveniles in estuaries (see Chapter 4), and that of adults in the nearshore zone in False Bay (SJ 

Lamberth, DAFF, pers. comm.). The fish followed a regular pattern of movement, coinciding with two 

nearby receivers (± 6 km apart). The Cape Recife receiver (Figure 6.22) was positioned at a depth of 

approximately 20 m, in an area of sandy substrate, while the additional receiver was positioned at a 

depth of approximately 12 m, in a sand patch amongst shallow reef, in an area known to have a high 

density of ragged tooth sharks Carcharias taurus (Smale 2002). This area has also been shown to 

exhibit high densities of sand prawn Callianassa kraussi and C. gilchristi at depths between about 6 

m and 13 m (Cockroft and Tomalin 1987), which forms an important part of the diet of marine white 

steenbras > 400 mm TL (Bennett 1993b). It is, therefore, proposed that the diel pattern was related 

to feeding in the shallow sandy area among the reef during the day, where the food resource was 

more dense, and moving away from this sand/reef area at night to avoid predation. 

 

The movement of Fish 2020 to East London, representing approximately 180 km, provides evidence 

of larger-scale movements at this life stage. This movement was greater than the mean movement 

(26 km) of conventionally dart-tagged fish between 400 and 500 mm FL, given the size of the fish at 
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the time of tagging (455 mm FL). This fish covered the 180 km in no more than 31 days, indicative of 

a directed movement. However, the fish was considerably smaller than the size at 50% sexual 

maturity (600 mm FL), suggesting that this movement was not related to a spawning migration. 

 

In contrast, the movement of Fish 2032 from the tagging site at Woody Cape to the Sundays Estuary, 

and subsequently to Maitlands Beach to the west of Algoa Bay was likely associated with the onset 

of sexual maturity. This fish was tagged at 554 mm FL, and finally recaptured at a point 

approximately 80 km west, 621 days after being tagged. While the fish was not measured at the time 

of recapture, it had almost certainly reached sexual maturity during its 20 months at liberty. 

Similarly, the movements of Fish 2028, from Woody Cape to the Sundays Estuary and then Coega 

Harbour (± 50 km) made over almost a year (346 days), suggested residency within the bay, and 

nomadic small- to medium-scale movements (in the order of tens of kilometres). This fish had most 

likely reached maturity by the time it was detected in the Gamtoos Estuary, having been tagged 857 

days earlier, at 527 mm FL. Therefore, this fish represented movements on a scale consistent with 

sub-adult white steenbras (450 – 600 mm FL) that were tagged with conventional dart tags, and 

larger-scale movements consistent with those of conventionally-tagged adults (> 600 mm FL). 

 

It is possible that the movement of Fish 2022, detected 100 km east of the tagging site, in the Great 

Fish Estuary, was also related to the onset of sexual maturity. This fish was tagged at 512 mm FL and 

detected in the Great Fish Estuary 178 days later. Therefore, this fish may also have reached sexual 

maturity during this period at liberty, with the fish migrating east in June, in time for the July/August 

spawning season (Bennett 1993b). 

 

The movements of individuals from the Woody Cape area in the proposed GAENP MPA into the 

Sundays Estuary and Coega Harbour, without detections on the inshore receivers, suggest that these 

movements were made close inshore (surf zone) along the coastline, outside of the detection ranges 

of the receivers moored at depths between 20 and 30m in the nearshore zone. Bennett (1993b) 

suggested that white steenbras (roughly 130 – 550 mm FL) in False Bay were confined almost 

entirely to the surf zone, while a comprehensive inshore small-mesh trawl survey conducted along 

the South African south and south east coasts produced no white steenbras of this size range deeper 

than 10 m (Wallace et al. 1984b). Unfortunately, due to the highly dynamic substrate and poor 

receiver detection range in the surf zone, caused by the strong wave action, it was not possible to 

position a receiver closer inshore.  
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Three of the seven fish detected after tagging were, at some point, detected on receivers positioned 

within an estuary. Similarly, three individuals were detected on the receiver within the Coega 

Harbour. Although these estuarine and harbour visits (n = 9) were recorded for multiple individuals, 

all were for short periods. Eight of these movements comprised no more than a single overnight 

stay, with one visit constituting four days. While this provides evidence that sub-adult and adult 

white steenbras do make use of estuaries, and other sheltered environments, it appears that after 

having left their estuarine nursery habitats, late juvenile, sub-adult and adult white steenbras lose 

their dependence on estuarine environments. Cowley et al. (2008) and Hindell et al. (2008) 

suggested that directed movements of estuarine-associated fishes from the marine environment 

back into estuarine/riverine areas typically with reduced salinities may be an attempt to rid 

themselves of marine parasites. The movement of Fish 2028 into the Sundays Estuary, as far as 12 

km from the mouth, may also have been for the purpose of removing parasites. Anecdotal evidence 

also suggests that white steenbras enter estuaries as adults during periods of extreme cold sea 

conditions. Although the low number of such detections precluded any statistical investigation, 

environmental factors (including wind speed and direction, swell size, the presence of coastal 

trapped waves, water temperature and rainfall) were assessed for anomalous oceanographic or 

environmental conditions, which may have effected these movements into estuaries. However, 

there were no such anomalies associated with these dates (WS Goschen, South African 

Environmental Observation Network, pers. comm.). Considerably greater numbers of detections will 

be required before such questions can be answered. 

 

While the general behaviour reflected in the telemetry results was long-term residency within the 

bay, with some larger scale movements, the possibility cannot be excluded that tagged fish moved 

beyond the boundaries of the receiver array, without detection. Evidence for this was provided by 

Fish 2020 recaptured by a recreational shore angler in East London, 180 km away, without detection 

on a receiver. It is also possible that other individuals entered estuaries outside of the range of 

estuaries monitored in the current study, or were recaptured by recreational anglers, but were not 

reported. The latter is unlikely, as all transmitters were marked with contact details and the word 

“Reward”. 

 

The fact that most fish were last detected well before the end of the expected battery life of the 

transmitter may be a result of most fish having left the bay. Considering that the smallest fish was 

401 mm FL at the time of tagging (approximately four years old), by the end of the expected battery 
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lives of the smaller transmitters (781 days) it is likely that most individuals had reached sexual 

maturity (approximately 6 years), and could have begun undertaking spawning migrations.  

 

6.4.3 Practical considerations 

The agreement in results between the conventional tagging and acoustic telemetry studies 

highlights the value of employing these two techniques in conjunction. The high proportion of 

individuals detected on multiple occasions in Algoa Bay confirms the suitability of acoustic telemetry 

for assessing coastal residency and movements. The fact that recapture rates of white steenbras in 

the different studies, and overall, were consistent with those from other species of coastal fishes, 

suggests that conventional dart tagging is a suitable method for assessing the movement patterns of 

this species.  

 

Tagging programmes involving recreational anglers may draw criticism, due to the potential for poor 

reporting rates, poor handling and tagging of captured fish, and potentially higher mortality rates. 

There is currently a high level of under-reporting of recaptures outside of MPAs, of fish tagged as 

part of the research programmes within MPAs (Lamberth 1996, Attwood and Cowley 2005). This 

could be evaluated through a study comparing current reporting rates to those reported for tags 

offering a reward. However, the under-reporting of illegally-recaptured fish within MPAs may be 

similarly high. Furthermore, the consistency of recapture rates among the De Hoop, GAENP and ORI 

tagging programmes, and the remarkable consistency in the frequency distributions of recapture 

distances among studies, suggests that the under-reporting of white steenbras recaptures is 

insufficient to grossly affect the results. Furthermore, the close agreement of results suggests that 

the handling of tagged fishes in the ORI tagging programme, by recreational anglers, does not induce 

a greater mortality rate than in the other two studies. It may also be argued that the distribution of 

recaptures is dependent on the distribution of effort within the recreational fishery (Griffiths and 

Wilke 2002). However, the widespread recaptures made throughout the area between Cape Point 

and the Transkei suggests that this is not the case. The lack of recaptures along the west coast 

(within the species’ distribution) is more likely an artefact of low CPUE in this region (Sauer and 

Erasmus 1996). What does appear to be a problem, with recaptures made by recreational anglers, is 

the inaccurate recording of the lengths of fish at the time of recapture. This problem is exacerbated 

by the fact that many recaptures are made by recreational anglers who are not participants in the 

tagging programme, and thus, are not aware of what information to record in the event of 

recapturing a fish, or how to record it accurately. 
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6.5 Conclusions 

The overall aim of this chapter was to describe the coastal movements of white steenbras, using all 

available conventional tagging data and a dedicated acoustic telemetry study. There was a strong 

size effect, with juveniles remaining resident in small areas, sub-adults undertaking small-scale 

coastal movements and most adult fish undertaking large migrations. Residency and small-scale 

movements suggest that at the juvenile and sub-adult life stages, white steenbras is vulnerable to 

localised depletion, but simultaneously could be successfully protected by means of MPAs. This 

should be considered in the management of the species to ensure that sufficient area of suitable 

habitat for the species is protected. The results highlight the importance of incorporating spatial 

data into stock status assessments for the management of coastal linefish species (Attwood 2002). 

 

The majority of recaptured fish were juvenile or sub-adult fish, and considering their higher level of 

residency, would have skewed the overall level of residency. The nature of the habitat (i.e. 

contiguous sand or sandy patches interspersed among rock), as well as seasonality, influenced the 

scale of movements, in terms of small-scale movements (≤ 5 km displacements) and direction, 

respectively. White steenbras density and time at liberty had little influence on the level of dispersal.  

 

Despite the information gained through the conventional tagging and acoustic telemetry studies, 

there is still a lack of empirical evidence of movement of white steenbras between their aggregation 

area in False Bay, and the spawning area along the Transkei coast, as advocated by Bennett (1993b). 

This lack of empirical evidence of movement between these two areas poses the questions of what 

the scale of coastal migrations might be and what the spatial scale of regional population-level 

mixing may be, suggesting that further assessments of movement and stock structure are required.  

 

A long-term assessment of white steenbras coastal movements and migrations will be conducted at 

the national level, as part of the Ocean Tracking Network (OTN) programme. This is an international 

programme, focussing on large-scale marine animal migrations. In South Africa, large-scale 

movements will be assessed through an extensive array of acoustic receivers positioned at 

ecologically important points along the South African coastline. This programme has been initiated, 

and a number of fishes have already been equipped with acoustic transmitters. The possibility of 

stock segregation as a result of this apparent lack of regional connectivity is best addressed at the 

molecular level. The stock structure of the species and the level of population mixing are addressed 

in the following chapter, using genetic analyses. 
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Chapter 7

Genetic stock structure 

 

7.1 Introduction 

Understanding movement is central to understanding a species’ ecology (Meyer et al. 2000). 

However, for many coastal fishery species, movement is not well understood. The results of the 

previous four chapters have provided important information on the movements of white steenbras 

in its juvenile, sub-adult and adult life stages, as well as some of the factors that influence its 

movement. However, despite the conventional tagging and recapture of a high number of white 

steenbras, some of which moved considerable distances between capture and recapture locations, 

there is still no empirical evidence of individuals moving between their summer aggregation area in 

False Bay, and their winter spawning grounds along the Transkei coast, representing their perceived 

spawning migration. Furthermore, movement studies cannot provide information on the 

consequences of dispersal at the molecular level (Waples 1998). A suitable approach to assessing 

movements and connectivity at this level is through the study of population genetics, which can 

provide valuable information on spatial delineation of genetic stock structure (von der Heyden 

2009), and concomitantly on the magnitude and spatial extent of gene flow and connectivity among 

populations or geographic localities (Waples 1998).  

 

Information on genetic stock structure is a pivotal component in the understanding of a species’ 

ecology and essential for its effective management (Balloux and Lugon-Moulin 2002). However, such 

information is lacking for numerous important fishery species, in South Africa and elsewhere, 

including for white steenbras. Informing management decisions for a species such as white 

steenbras requires a robust understanding of genetic structure and stock delineation, to ensure that 

each distinct stock or population is suitably managed (Teske et al. 2010).  

 

Before being able to identify the stock structure of a species, we need to understand what a genetic 

‘stock’ represents. Numerous definitions have been used, such as “groups of fish of one species that 

interbreed and hence share a common gene pool” (Milton and Shaklee 1987: 728), or “a group of 

organisms whose demographic/genetic trajectory is largely independent from other such groups” 

(Waples 1998: 438). Ovenden (1990) and Begg and Waldman (1999) assert that stock delineation 

should consider the geographic limits of a group of fish, and characteristics such as self-recruitment, 
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interbreeding and similarity in life history characteristics. For the purposes of the current study, the 

term stock refers to non-interbreeding, geographically-distinct populations of the same species.  

 

Adopting a phylogeographic approach can provide insight into whether a species exists as a single 

stock, or as multiple genetic stocks – a factor that has serious implications for management. 

Disregarding stock structure can lead to ineffective fisheries management and loss of genetic 

diversity (Smith et al. 1991, Begg and Waldman 1999). Genetic data can also provide baseline 

measures of historical intraspecific biodiversity against which the effects of exploitation can be 

measured. This can, in turn, inform management decisions. Understanding population structure and 

connectivity is also essential for predicting responses to environmental disturbances and the 

potential effects of climate change on population structure and species distribution (Nicastro et al. 

2008, Zardi et al. 2011), which can lead to more effective management (Waples 1998). By linking life 

history patterns with oceanographic processes, it is also possible to identify the environmental 

factors that influence the level of connectivity among geographic regions and their effects on the 

resultant population structure (Teske et al. 2011). 

 

7.1.1 Gene flow and genetic diversity 

Within the marine environment, it has traditionally been assumed that there is a relative lack of 

geographic barriers to migration and dispersal (Billington 2003), when compared to freshwater and 

terrestrial environments. In addition, life history characteristics that are common among marine 

species, such as high rates of dispersal during long pelagic egg and larval phases and adult migration, 

are expected to maintain low levels of intra-specific genetic differentiation (Grant and Bowen 1998). 

Therefore, marine species have typically been expected to show high levels of gene flow and low 

genetic differentiation (Waples 1998).  

 

In the South African marine context, population genetics studies have been conducted on a range of 

organisms. Teske et al. (2010) assessed the level of genetic differentiation in red roman 

Chrysoblephus laticeps (Sparidae), and found that despite its sedentary reef-dwelling behaviour, it 

exists as a single well-mixed stock, exhibiting genetic homogeneity along the eastern and southern 

coasts. Similar results were found for another sparid, Cape stumpnose Rhabdosargus holubi, with a 

well-mixed population spanning a similar area (Oosthuizen 2006). Spotted grunter Pomadasys 

commersonnii (Haemulidae) was also found to exist as a single well-mixed population (Klopper 

2005). A similar, but possibly unexpected, result was observed for a small, rock pool-associated 

gobiid, Caffrogobius caffer. The adults of this species appear to move only on small scales, yet this 
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species was found to exhibit genetic homogeneity throughout its range from False Bay to east of 

East London (Neethling et al. 2008). This low level of genetic differentiation has also been identified 

in some marine invertebrates. The squid Loligo reynaudii was shown to exhibit genetic homogeneity 

along the South African south and east coasts, despite distinct spawning aggregations (Shaw et al. 

2010). The south coast lobster Palinurus gilchristi was also observed to exhibit a high level of gene 

flow and low spatial genetic differentiation (Tolley et al. 2005), as was the South African abalone 

Haliotis midae (Evans et al. 2004). Therefore, there are numerous marine species along the South 

African coast that conform to this expected high level of gene flow.  

 

The suggested spawning migration of white steenbras (Bennett 1993b), the dispersal capabilities of 

the adults documented in the previous chapter and by earlier studies, the exhibition of broadcast 

spawning and the dispersal of eggs and larvae by means of coastal oceanographic features 

(Hutchings et al. 2002a) suggest that white steenbras should exhibit similarly low levels of spatial 

genetic differentiation. Therefore, it was expected that analyses of the genetic structure within 

white steenbras would provide evidence of a single, well-mixed population. 

 

Marine species, however, do not always exhibit large, genetically homogenous populations (Hauser 

and Carvalho 2008), and examples exist of species exhibiting strong genetic differentiation along the 

South African coastline. The brown mussel Perna perna exhibits two geographically separated and 

genetically distinct lineages (Zardi et al. 2011). The estuarine mud prawn Upogebia africana was 

shown to exist in two genetically distinct, yet slightly geographically overlapping lineages, despite a 

marine larval phase, during which it may be expected to disperse relatively great distances (Teske et 

al. 2006). The caridean shrimp Palaemon peringueyi is characterised by active and passive dispersal 

capabilities; yet this species was found to exist in three distinguishable genetic clades, coinciding 

with the biogeographical provinces (Teske et al. 2007). Similarly, morphometric comparisons, catch 

data, tagging studies, spatial variability in growth rates and reproductive biology, and the presence 

of multiple nursery and spawning grounds showed that silver kob Argyrosomus inodorus, is present 

in a number of discrete stocks along the South African coastline (Griffiths 1997b), although this has 

not been substantiated by genetic analysis. These results show that there is substantial variability 

among taxa in terms of their levels of gene flow and population mixing.  

 

This is particularly evident in the case of two closely related hake species Merluccius capensis and  

M. paradoxus. These two species occupy partly overlapping distributions along the South African 

and Namibian coastlines; however, M. capensis exhibited genetic homogeneity while M. paradoxus 



Chapter 7 – Genetic stock structure  

 

185 

 

showed significant spatial genetic differentiation based on mitochondrial DNA (mtDNA) sequence 

data (von der Heyden et al. 2007). The highly variable results observed among taxa and closely 

related species within the South African marine environment highlight the fact that spatial genetic 

structure cannot simply be inferred from closely related species, or from predictions based on 

biology or life history, and must be assessed on a species by species basis (Teske et al. 2010).  

 

7.1.2 Aim and objectives 

The aim of this chapter was to assess the genetic stock structure of white steenbras, to determine 

whether the species exists as a single stock or multiple stocks. Specific objectives were to: 

 

i. Identify the level and distribution of genetic diversity of white steenbras along the South 

African coastline; 

ii. Test the null hypothesis that white steenbras exists as a single intermixing stock; 

iii. Determine the level of genetic differentiation among stocks, and identify the barriers to 

gene flow, if multiple stocks are identified; 

iv. Determine whether genetic divergence is related to geographic distance among sampling 

localities, by testing the null hypothesis that there is no significant relationship between 

genetic difference and geographic distance; and 

v. Provide information on genetic diversity of juveniles and adults, and of the two life stages 

combined, and test the null hypothesis that there is no significant genetic differentiation 

between juvenile and adult white steenbras.  

 

Numerous authors have advocated the use of multiple genetic markers, to elucidate more clearly 

the genetic polymorphism within a species (Aris-Brosou and Excoffier 1996, Waples 1998, Gompert 

et al. 2006), as different gene regions exhibit independent evolutionary histories (Kaouèche et al. 

2011). This chapter thus incorporated both mitochondrial DNA (mtDNA) sequencing and genotyping 

of microsatellite repeat loci in the nuclear genome to provide the information necessary to answer 

the key questions.  

 

The mitochondrial genome is a circular molecule, comprising between 14 000 and 26 000 nucleotide 

base pairs in different fish taxa, and is made up of a number of different gene regions. Within the 

mitochondrial genome, the non-protein coding control region shows considerable variation among 

individuals among and within populations, and exhibits a relatively high mutation rate (Billington 

2003). These characteristics make the control region a particularly useful region for population 
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genetics studies, resulting in its widespread use in studies of marine fishes (e.g. von der Heyden et 

al. 2007, Liu et al. 2010), including multiple studies on sparid species (e.g. Bargelloni et al. 2005, 

Domingues et al. 2007, Teske et al. 2010). For these reasons, the control region was chosen for the 

current study, to infer population structure and demographic history of white steenbras.  

 

Microsatellite loci are sections of the nuclear genome, containing multiple repeat motifs of short 

nucleotide sequences. These repeat motifs may be di-, tri-, tetra-, penta- or hexanucleotide 

sequence repeats. Each of these segments containing multiple repeats constitutes a single locus, 

with variable numbers of repeats at a given locus representing different alleles (Goldstein and 

Pollock 1997). Nuclear DNA is diploid, and a locus may be homozygous (i.e. having inherited the 

same allele from both parents), or heterozygous (i.e. having inherited different alleles from each 

parent). Polymorphic loci (i.e. those represented by multiple alleles) provide a means for comparing 

genetic differentiation among individuals and populations. Multiple polymorphic loci may be 

identified within a single species (Bhargava and Fuentes 2010), allowing a more robust assessment 

of genetic differentiation. Microsatellites have been widely used for population genetics studies on 

marine fishes, and have been used to assess genetic differentiation in numerous sparid species, for 

example gilthead sea bream Sparus auratus (De Innocentiis et al. 2004) and striped sea bream 

Lithognathus mormyrus (Sala-Bozano et al. 2009).  

 

The merits of assessing both mtDNA and microsatellite variation in conjunction are discussed in 

Chapter 2. Complementary employment of these two genetic markers can provide an understanding 

of both historical population demography and contemporary population structure (Lemaire et al. 

2005, Perez-Ruzafa et al. 2006). 

 

7.2 Methods and materials 

7.2.1 Sample collection 

Genetic samples were collected from eight discrete sites along the South African coastline, 

representing the white steenbras core distribution (Figure 7.1). Attempts were made to collect at 

least 25 juveniles (< 350 mm FL) and 25 adults (> 600 mm FL) from each locality, although this was 

not always possible. Due to its life history, white steenbras juveniles are uncommon west of False 

Bay and east of East London (Harrison 2003), with these two areas representing the western- and 

eastern-most juvenile samples, respectively. Due to low capture rates, only 17 adults could be 

sampled in the East London area, and insufficient in the region of the East Kleinemonde Estuary to 

constitute a suitable sample of adults in this region.  
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Figure 7.1: Sampling localities for juvenile (J) and adult (A) white steenbras; numbers in parentheses 

represent sample sizes from each locality (LBN = Langebaan Lagoon, FBY = False Bay, DEH = De Hoop 

MPA, BRE = Breede Estuary, SWA = Swartvlei Estuary, KNY = Knysna, SUN = Sundays Estuary, WCP = 

Woody Cape, EKM = East Kleinemonde Estuary, ELN = East London, TKE = Transkei) 

  

For analyses among coastal regions, adult and juvenile samples were grouped as follows: False Bay 

adults and juveniles; De Hoop MPA and Breede Estuary; Knysna and Swartvlei Estuary; Woody Cape 

and Sundays Estuary; and East London adults and juveniles. Juvenile samples were collected from 

estuaries, while adult samples were collected in the marine environment, except Knysna adults that 

were predominantly captured within the Knysna Estuary. Genetic material was collected in the form 

of a 10- to 20-mm pectoral fin clipping, and stored in individually labelled vials containing ethanol 

(99%). Fish captured outside of the fishery were returned unharmed after sampling.  

 

7.2.2 DNA extraction 

A sub-sample of fin tissue was taken from each individual (approximately 5 mm × 5 mm). Genetic 

material was extracted using the commercially available Wizard® Genomic DNA Purification Kit 

(Promega, USA), following the manufacturer’s instructions (Appendix II). Extracted products were 

stored at 4°C until gel electrophoresis or further mtDNA or microsatellite processing. Extraction 
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success was determined by subjecting 5 μl of the final extracted product to electrophoresis through 

2% agarose gel containing ethidium bromide with 1XTBE buffer, at 100 V for 25 minutes. The gel 

products were viewed and photographed on an ultraviolet (UV) transilluminator. 

 

7.2.3 Mitochondrial DNA methods 

Primer selection 

 A fragment of the control region from each extracted DNA product was amplified, using standard 

polymerase chain reaction (PCR) amplification techniques (Saiki et al. 1988). This technique requires 

short sequences of nucleotides (primers) that match conserved regions on either side of the region 

to be amplified, and through the process of repetitive denaturing of the double-stranded DNA, 

annealing of the primers to each complementary strand and synthesis of new double strands, the 

number of copies of the target sequence can be exponentially increased (Campbell et al. 1999). 

Before the target sequence could be successfully amplified, a number of primer pairs, designed for 

related species (Table 7.1), were tested for PCR amplification of the white steenbras control region, 

in order to identify a suitable primer pair. 

 

Table 7.1: Forward (F) and reverse (R) primers tested for PCR amplification of the white steenbras 

control region 

Primer name F/R Sequence Source 

LPRO-F F 5’ - AAC TCT CAC CCC TAG CTC CCA AAG - 3’ Summerer et al. (2001) 

TDK-D R 5’ - CCT GAA GTA GGA ACC AGA TG - 3’ Lee et al. (1995) 

ChrysoCytbF F 5’ - GCA GCA GCA YTA GCA GAG AAC - 3’ Teske et al. (2010) 

Sparid12SR1 R 5’ - TGC TSR CGG RGC TTT TTA GGG - 3’ Teske et al. (2010) 

PT F 5’ - CTT ACT ATC AAC TCC CAA AGC - 3’ Jean et al. (1995) 

PU R 5’ - GGG CAT TCT CAC GGG GAT GCG - 3’ Jean et al. (1995) 

 

Universal mitochondrial control region primers LPRO-F and TDK-D (Summerer et al. 2001, Lee et al. 

1995) failed to amplify the white steenbras control region, while sequences produced from the 

products amplified with ChrysoCytbF and Sparid12SR1, designed for red roman (Sparidae, Teske et 

al. 2010), were poor. Primers PT and PU, designed for the black sea bream Acanthopagrus schlegelii 

(Sparidae, Jean et al. 1995), produced a clean amplification product for the white steenbras control 

region and long (> 700 nucleotide bases), clean sequences of high quality. The primers PT (forward) 

and PU (reverse) were thus selected for this study. 
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PCR amplification 

All PCR reactions were conducted in 50 μl solutions, containing 1X buffer, 3 mM MgCl2, 0.2 μM of 

each primer, 0.8 mM dNTPs, 0.5 units of DNA Super-Therm Taq Polymerase (Southern Cross 

Biotechnology, South Africa), and 5 μl of extracted DNA template, made up to the final volume with 

distilled water. The PCR cycling profile comprised an initial denaturation step at 94°C for 3 minutes, 

followed by 35 cycles of denaturation at 94°C for 50 seconds, annealing at 56°C for 40 seconds and 

extension at 72°C for 90 seconds, followed by a final extension step at 72°C for 7 minutes, and hold 

at 16°C. Amplification was conducted on an Eppendorf Mastercycler thermal cycler (Eppendorf, 

Germany) or a Hybaid Multiblock system PCR thermal cycler (ThermoScientific). Amplification 

success was determined using gel electrophoresis as conducted for extracted DNA. 

 

Sequencing 

Amplified products were sent to a commercial sequencing facility (Macrogen Inc., Korea) for PCR 

purification and sequencing. However, approximately 10% of the PCR products were purified and 

cycle sequenced prior to being sent for commercial sequencing (Appendix III). Purification was done 

using the QIAquick PCR Purification Kit (Qiagen, Germany), and cycle sequencing with the BigDye® 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, USA), following the manufacturer’s 

instructions. 

 

7.2.4 Microsatellite methods 

PCR amplification 

The microsatellite markers used in this study were identified by Reid et al. (submitted). These 

authors successfully amplified 15 polymorphic loci in white steenbras, of which nine were isolated 

from white steenbras, and six through cross-species amplification from three related sparids: four 

from the hottentot seabream Pachymetopon blochii, one from the red roman (Clat11 from Teske et 

al. 2009), and one from the black spot seabream Pagellus bogaraveo (Pb-OVI-D106 from Piňera et al. 

2006). These 15 markers were initially included in the current study (Table 7.2). Fourteen of the 

markers were tetranucleotide repeats, and one (LLtr004) was a trinucleotide repeat. 

 

Amplification of microsatellite loci was conducted using the Quantitect® Multiplex PCR Kit (QIAGEN®). 

For this technique, the forward primers in each primer pair were fluorescently labelled with different 

colours (Applied Biosystems) to distinguish alleles at the different loci, allowing the simultaneous 

amplification of multiple loci in a single ‘multiplex’ reaction, thereby saving substantial time and cost 

and providing consistent amplification across loci. Where two loci were characterised by non-
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overlapping allele size ranges, it was possible to fluorescently label the forward primers of both with 

the same colour, and combine the two in a single PCR reaction with primers of other colours. In this 

way, it was possible to amplify all 15 loci for each sample in three multiplex PCR reactions (Reid et al. 

submitted) (Table 7.2). 

 

Table 7.2: Multiplexes 1, 2 and 3, showing the microsatellite loci included in each, the colour with 

which the forward primer of each was fluorescently labelled and the allele size range of each locus 

 

Fluorescent 
Colour 

   
Allele size (number of nucleotide bases): 

   

100 120 140 160 180 200 220 240 260 280 300 320 340 360 

M
u

ltip
le

x 1 

Blue (6-FAM)  
 

PBt007 
 

LLt005 
      

Green (VIC) 
     

LLt006 
   

PB106 
 

Yellow (NED) 
              

Red (PET) 
  

LLt014 
  

LLt011 
     

M
u

ltip
lex 2 

Blue (6-FAM)  
    

LLt007 
        

Green (VIC) 
   

PBt018 
 

CL011 
      

Yellow (NED) 
     

LLt024 
     

Red (PET) 
    

LLtr004 
       

M
u

ltip
lex 3 

Blue (6-FAM)  
     

LLt020 
    

Green (VIC) 
 

PBt013 
  

LLt002 
    

Yellow (NED) 
              

Red (PET) 
   

PBt003 
      

 

All reactions were conducted in 10 μl solutions, in 96-well plates. Each reaction contained 5 μl of 

Quantitect Multiplex PCR Master Mix®, 0.5 μl of diluted DNA template (0.1X), 0.2 pmol of each 

forward and reverse primer in that multiplex, and made up to the final volume with Quantitect 

Multiplex deionised water. PCR reactions were conducted in a GeneAmp® 2720 Thermal Cycler or 

PCR System 9700 (Applied Biosystems). The PCR cycling profile comprised an initial polymerase 

activation step at 95°C for 15 minutes, then 50 cycles of annealing at 94°C for 60 seconds and 

extension at 60°C for 90 seconds, followed by a 4°C hold. Amplification success was tested by 

running 4 μl of each PCR product on a 3% agarose gel in TAE buffer, at 110 V for 20 minutes. Gels 

included GelRedTM Acid Stain (Biotium). Gel products were viewed and photographed on a UV 

transilluminator. 
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GeneScan analysis 

Successful PCR products were prepared for GeneScan, by adding 0.1 μl of PCR product from each 

sample, to 10 μl of formamide containing GeneScanTM 500 LIZTM Size Standard (Applied Biosystems). 

Samples were denatured at 95°C for 3 minutes, before GeneScan analysis on an ABI Prism 3100 

Genetic Analyzer (Applied Biosystems). The Genetic Analyzer separates the negatively charged 

particles by size, and fragment lengths are measured by laser recording of relative fluorescence units 

(RFUs), emitted in relative concentrations by the fluorescently-labelled primers. A synthetic/virtual 

gel image and an electropherogram were then produced for each sample, indicating allele peaks in 

base pair lengths according to RFU levels, representing allele sizes for each locus in that multiplex.  

 

7.2.5 Mitochondrial DNA data analysis 

Raw mtDNA sequences were cleaned and edited in Chromas Lite version 2.01 (Technelysium Pty 

Ltd), and aligned manually in Seqman ProTM (DNASTAR®). A final sequence alignment was produced 

in Clustal X (Larkin et al. 2007), which agreed with the manual alignment. Aligned sequences were 

imported into DnaSP version 5 (Librado and Rozas 2009) for analyses and output to other analysis 

software. Analyses in this chapter (for both mtDNA and microsatellites) were grouped by analysis 

approach, starting with simple descriptive statistics and genetic diversity estimates, followed by 

comparative analyses of genetic differentiation, then sample clustering-type analyses and finally 

analyses that incorporate geographic sampling locality information. 

 

Sample grouping 

One of the aims of this chapter was to assess the level of white steenbras spatial genetic diversity 

around the South African coastline, as well as among juveniles and among adults. As such, a priori 

delineation of populations was defined by both age class and by geographic locality. In order to 

avoid potential masking of genetic differentiation at the geographic locality level by possible 

differences between juvenile and adult age classes, certain analyses were conducted on two 

different sample groupings. The first grouping comprised eight locality groups (Figure 7.1), five of 

which contained juvenile and adult samples, pooled on the basis that they originated from the same 

section of coastline (exact tests for differentiation showed no significant differences among or 

between juvenile and adult populations, see results). However, as juveniles were sampled from 

estuaries, and adults from the nearby surf zone (or, in the case of Knysna adults, from a nearby 

estuary), it was felt that it was also necessary to treat juvenile and adult populations (within each of 

the five regions from which both age classes were sourced) as separate groups. This constituted a 

total of 13 populations (six juvenile and seven adult), representing eight localities. 
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Genetic diversity  

Three indices of genetic diversity were calculated for each group at the locality and population 

levels: the number of polymorphic or segregating sites (S), haplotype diversity (h) and nucleotide 

diversity (π). The number of polymorphic sites represents the number of variable nucleotide 

positions within the DNA sequence, recorded within each group. Haplotype diversity (also termed 

gene diversity or allele diversity) is the probability that two individuals drawn at random from a 

population would have different haplotypes (Billington 2003). This is a measure of the relative 

frequency of each haplotype in the population (Nei 1978). Nucleotide diversity is a measure of the 

mean proportion of nucleotide differences between pairs of randomly chosen haplotypes within the 

population (calculated as the number of nucleotide differences between haplotypes, divided by the 

number of nucleotide bases in the sequence) (Nei and Tajima 1981). This index represents the 

probability that individual homologous nucleotides from two randomly drawn haplotypes within a 

population will be different (Nei and Tajima 1981), by considering both the frequency of haplotypes 

in the population and the divergence among them (Billington 2003). Diversity indices were 

calculated in DnaSP version 5. 

 

Haplotype network 

Each individual haplotype is unique in its nucleotide sequence, and reflects the mutations that 

distinguish it from other, similar haplotypes. Thus, haplotypes can be arranged according to their 

similarity to other haplotypes and, by considering their geographic source, can be used to partition 

population structure (Posada and Crandall 2001). A median-joining (MJ) haplotype network was 

created in the Network software version 4.6.0.0 (Fluxus Technology Ltd), to illustrate schematically 

the relationships among haplotypes. A minimum spanning (MS) network was first created, which 

simply connects all haplotypes without inferring additional nodes, or creating cycles in the event of 

ambiguous relationships (Bandelt et al. 1999). The MS network is then expanded to create the MJ 

network by adding additional nodes (which represent either extant unsampled haplotypes or extinct 

ancestral haplotypes), using a parsimony criterion (Posada and Crandall 2001). However, due to the 

complexity of the additional relationships in the MJ network, the MS network is presented. 

 

Tests for selective neutrality 

Selection acting on a gene under study can lead to misinterpretation of the population demography 

(Ballard and Whitlock 2004), and falsely indicate the presence of genetic structure. Therefore, genes 

should be tested for neutrality before making inferences about population genetic structure (Ford 

2002). Numerous tests have been developed to test for the presence of selection. While some genes 
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within the mitochondrial genome are under selection (MacRae and Anderson 1988), the 

mitochondrial control region is a non-coding region of the mitochondrial genome (Ballard and 

Whitlock 2004), and is therefore assumed to be selectively neutral (Fu 1997, Liu et al. 2010). 

However, it has been suggested that selection may indirectly act on a neutral locus by virtue of it 

being linked to a locus under natural selection (Tajima 1989, Fu 1997). Linked selection to 

deleterious mutations is termed background selection, resulting in loss of mutations, whereas linked 

selection to advantageous mutations is termed genetic hitch-hiking (Fu 1997). Owing to the 

possibility of linked selection, tests for selective neutrality have been incorporated into studies of 

the control region. Because evolution in populations may be affected by numerous natural forces, a 

single test is unlikely to provide information on all these forces, therefore the employment of 

multiple tests in conjunction is recommended (Fu 1997). Four analyses were conducted to test for 

selective neutrality of the region under study.  

 

The first test was the Ewens-Watterson homozygosity test, based on the infinite-alleles model 

(Wright 1931, Kimura and Crow 1964) and Ewens’ (1972) theory of neutral alleles, in which the sum 

of haplotype frequencies (F) can be used to represent the distribution of selectively neutral 

haplotype frequencies (Watterson 1978). The infinite-alleles model assumes that a mutation can 

occur at any nucleotide position, thus mutation to any other haplotype has equal probability 

(Balloux and Lugon-Moulin 2002). The significance of the test is determined as the probability of 

observing random samples with equal or lower F-values than that observed (Excoffier and Lischer 

2009). 

 

The second test was that described by Tajima (1989), which is based on the infinite sites model 

(which assumes all new mutations occur at a new nucleotide position) and assumes that there is no 

recombination in the gene region under study. From the number of polymorphic sites (S) and the 

average number of nucleotide differences (π), two population mutation rate parameters (S and π) 

can be calculated, which are incorporated into the computation of Tajima’s (1989) D-statistic. Under 

neutral evolution, the two parameter estimates should be in close agreement, and the resulting D-

statistic should be close to zero. However, in the event of selection on the gene, population non-

stationarity or heterogeneity of mutation rates among nucleotide sites, the D-statistic may depart 

from zero (Fu 1997). A coalescent simulation algorithm is then implemented (after Hudson 1990), 

under the assumption of selective neutrality, to generate random samples, from which the 

proportion of simulated D-statistics that are equal to or less than that observed represents the level 

of significance (Excoffier and Lischer 2009). 
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The third test was that of Fu (1997), also calculated under the infinite-site model and the assumption 

of no recombination. The test statistic FS is computed for S’, which is defined as the probability of a 

random sample of haplotypes having the same or greater number of alleles than observed in the 

test population (Fu 1997). The significance of this test is determined as the proportion of multiple 

random FS statistics, generated under the null hypothesis of selective neutrality using a coalescent 

algorithm (from Hudson 1990), that are equal to or less than the observed FS value (Excoffier and 

Lischer 2009). Fu (1997) calculated that for FS, unlike other neutrality tests, the critical point at the 

5% level of significance corresponds to the lower 2nd percentile of the distribution, meaning that 

significance at the 5% level actually corresponds to a greater than 5% probability. Therefore, for the 

FS test, the statistic should be considered significant at the 5% level, if the p-value falls below 0.02, 

not 0.05 (Fu 1997, Excoffier and Lischer 2009). All the above neutrality tests were conducted in 

Arlequin version 3.5 (Excoffier and Lischer 2009). 

 

The fourth test was that of the parameters D* and F*, proposed by Fu and Li (1993), which are 

suggested to be more powerful tests for neutrality than Tajima’s (1989) D (Fu and Li 1993, Fu 1997). 

Mutations occurring in the internal branches of a genealogy represent old mutations, whereas those 

in the external branches represent more recent mutations. In the presence of purifying or negative 

selection, deleterious alleles are present in low numbers, therefore an excess of mutations is 

expected in external branches (i.e. more recent or new mutations) (Fu and Li 1993). Similarly, an 

excess of mutations in the external branches is expected if an advantageous allele has recently 

become fixed in the population. Conversely, under balancing selection a deficiency in mutations in 

external branches is expected. Therefore, comparison of the observed numbers of mutations in 

external and internal branches with expected numbers in each can be used to test for selective 

neutrality. The parameters D* and F* described by Fu and Li (1993) provide such comparisons. These 

indices are also believed to be the most powerful for detecting the presence of background 

selection, although Fu’s FS is more powerful in the presence of genetic hitch-hiking (Fu 1997). Fu and 

Li’s test was conducted in DnaSP version 5. 

 

Population size history by mismatch distribution 

The frequency distribution of the observed number of nucleotide differences between all pairs of 

haplotypes in the sample is termed the mismatch distribution. While this may be a simplistic 

measure of genetic variability, the shape of the mismatch distribution for samples drawn from a 

contemporary population can provide insight into the history of that population, reflecting events 

such as population expansions or declines (Rogers and Harpending 1992). The model is based on 
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quantitative measures of divergence between all pairs of haplotypes and assumes a random 

nucleotide substitution process and equal mutation rates for all nucleotide positions. Under the 

assumption of population equilibrium, a multimodal mismatch distribution is expected (Excoffier and 

Lischer 2009). Reductions in population size would be expected to exhibit an L-shaped frequency 

distribution (skewed to the right), while population expansion events would manifest as unimodal 

distributions (Rogers and Harpending 1992). Assuming a demographic expansion model (population 

size increase), certain parameters of the expansion are estimated, including the mutation 

parameters 0 (prior to expansion) and 1 (after the expansion event), and the time since the 

expansion event () in scaled coalescent units, based on the mean and variance of the observed 

mismatch distribution (Excoffier and Lischer 2009). The significance of the mismatch test is then 

determined based on the sum of squared deviations (SSD) between the parameters of the observed 

and expected distributions, under the null hypothesis that the estimated parameters are the true 

parameters, and where the probability is determined as the proportion of SSD values from a number 

of simulated sets of parameters (n = 1 000 in this case) that are larger than or equal to that observed 

(Excoffier and Lischer 2009). The analysis was also run under the assumption of a spatial expansion 

model (population geographic range increase), following a similar method. 

  

Harpending’s (1994) raggedness index (r) was also calculated, as a measure of the smoothness of the 

mismatch distribution, and of the goodness-of-fit to the model of population expansion. The index is 

dependent on the maximum number of observed nucleotide differences between haplotypes, and 

the frequencies of the mismatch classes (Excoffier and Lischer 2009). The significance of the test is 

determined as the proportion of simulated SSD values greater than or equal to that observed, as for 

the mismatch model (n = 1 000 simulations). Mismatch distributions and Harpending’s r were 

computed in Arlequin version 3.5. 

 

From the mismatch distribution, it is possible to estimate the time since the most recent common 

ancestor of the observed haplotypes, and thus the time since the start of a population expansion 

(Slatkin and Hudson 1991). The time since expansion (T) was calculated as T = /2u (Rogers and 

Harpending 1992) (where  is expansion time in scaled coalescent units, and 2u = estimated 

population mutation rate μ × number of nucleotide bases in analysed sequence × generation time). 

Population mutation rates for fish mitochondrial control regions have been estimated at between 

3.6% (Donaldson and Wilson 1999, Centropomidae) and 11% (McMillan and Palumbi 1997, teleosts 

in general) per nucleotide site per million years, while Bargelloni et al. (2003) estimated a mutation 

rate for sparids of approximately 10%. Time since expansion was calculated using all three mutation 
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rates. The sequenced mtDNA for the current study included 720 bases, and the generation time of 

6.0 years was used, based on the age at 50% sexual maturity (Bennett 1993b).  

 

Analysis of molecular variance 

Analysis of Molecular Variance (AMOVA, Excoffier et al. 1992) was used to estimate indices of 

genetic structure at different hierarchical levels, based on nucleotide sequence differences of 

observed haplotypes, and their frequencies. The different levels of assessment were defined in this 

analysis as among geographic localities (n = 8 localities, Figure 7.1), among populations within 

localities (5 of 8 geographic localities had two populations – East London, Woody Cape/Sundays, 

Knysna/Swartvlei, Breede/De Hoop, False Bay), and within individual populations, i.e. inter-individual 

(n = 13 separate populations). AMOVA was also used to test for genetic differences between juvenile 

and adult populations. Hierarchical levels included among groups (n = 2 groups: juvenile and adult), 

among populations within groups (n = 7 adult populations, n = 6 juvenile populations) and within 

populations (n = 13 populations). A matrix of Euclidean squared distances between haplotypes was 

created from nucleotide sequence differences, the covariance of which was assessed at the different 

levels of genetic structure using a non-parametric permutation procedure (Excoffier and Lischer 

2009). At each level, 10 000 permutations were conducted, to test the significance of covariance 

components and fixation indices. AMOVA analyses were conducted in Arlequin version 3.5. 

 

Population differentiation 

Exact probability tests of population differentiation were conducted to test the null hypothesis of no 

genetic differentiation (Raymond and Rousset 1995) between groups, at both the locality and 

population levels. Using this test, it is possible to test for non-random distribution of individuals 

between pairs of groups. This test extends the 2 × 2 contingency table of Fisher’s exact test to an R × 

C (rows × columns) contingency table of groups × haplotypes. Using a Markov chain technique, 

values in randomly selected cells are then adjusted to create different table states whilst keeping 

row and column totals constant, with the Markov chain following a random walk, “visiting” all 

possible contingency tables. The significance of the test is determined as the proportion of tables 

visited that have an equal or lower probability than the observed table (Raymond and Rousset 

1995). The significance criterion (α) was set at 0.05. A total of 100 000 steps were conducted in the 

Markov chain, with 10 000 dememorisation steps. These tests were conducted in Arlequin version 

3.5. The exact test provides only a qualitative test of pairwise differences; therefore, Raymond and 

Rousset (1995) suggest that this test does not eliminate the need to calculate pairwise fixation 

indices (FST) among groups, which can provide quantitative comparisons.  
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Pairwise population comparisons (FST) 

Magnitudes of genetic differentiation were assessed between localities and between populations by 

pairwise comparisons of haplotype frequencies. Genetic differences are presented as pairwise 

fixation indices (FST, Wright 1951), with FST corresponding to the variance among haplotype 

frequencies within the pair of samples, standardised by the mean haplotype frequency among all 

localities/populations (Weir 1996), calculated under the infinite-alleles model (Wright 1931, Kimura 

and Crow 1964). The significance of each observed pairwise FST value was calculated by permutation 

(10 000 permutations) of the haplotypes between groups and determined as the proportion of 

permutations that provide an FST value equal to or greater than that observed. Analyses were 

conducted in Arlequin version 3.5.  

 

Isolation by distance 

In a species exhibiting average dispersal distances per generation that are on smaller scales than the 

species distribution range, it might be expected that genetic differentiation between geographic 

localities would increase with distance (Dupanloup et al. 2002), as the probability of gene flow 

decreases – a pattern known as isolation by distance (Slatkin 1993). A Mantel test (Mantel 1967) was 

used to test for a correlation between pairwise genetic differences and geographic distances 

between locality groups. A matrix of pairwise FST values, calculated between localities, was created 

and correlated with a similarly constructed matrix of geographic distances (km). Rows and columns 

of one matrix were then permuted (10 000 times) while the other matrix was kept constant. The 

significance of the test was determined by the proportion of permuted correlation coefficients (R) 

equal to or greater than the R observed. The analysis was conducted in Arlequin version 3.5. 

 

Spatial analysis of molecular variance 

Spatial genetic variability was further investigated at the locality level, using SAMOVA version 1 

(Spatial Analysis of Molecular Variance, Dupanloup et al. 2002). SAMOVA is an adaptation of the 

AMOVA (Excoffier et al. 1992) that considers the geographic positions (latitude and longitude 

coordinates) of localities, and uses a simulated annealing procedure to delineate the sampling 

localities into groups that provide the greatest among group variability. The analysis randomly 

allocated the eight localities to K groups (K is user-defined), and variance components were 

calculated at the among groups, among localities within groups and within localities levels. One 

locality was then drawn randomly from one of the groups and allocated to another, and the AMOVA 

variance components were recalculated. This step was repeated 10 000 times, and to ensure that 

the result was not biased by the initial grouping, the entire process was repeated 100 times. The 
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best grouping of localities was then taken as that which produced the greatest index of variance 

among groups of localities (FCT) (Dupanloup et al. 2002). The analysis requires more than one group, 

and at least one group with more than one locality; therefore, six analyses were run, with K ranging 

from 2 to 7 (i.e. 1 < K < 8). SAMOVA attempts to group geographically adjacent localities, although 

this is not always the case (particularly when there is low genetic differentiation among populations 

within groups). In such cases the grouping may not be biologically meaningful (Neethling et al. 

2008).  

 

7.2.6 Microsatellite DNA analysis 

Data processing 

The raw data files (containing electropherograms of allele peaks) created by the GeneScan software 

were manually scored in the programme GeneMarker version 1.95 (SoftGenetics® LLC), which 

identified the most likely alleles at each locus based on peaks in RFUs. Alleles were checked and 

scored by accepting the true alleles and removing any spurious peaks or those associated with 

fluorescent “pull-up” from other dye colours. Once all loci for each sample had been successfully 

scored, the respective alleles at each locus for each individual were exported to a matrix of paired 

allele sizes. Four individuals with missing data for more than three loci were removed prior to 

further analyses. 

 

Genetic diversity 

Indices of genetic diversity were calculated for each microsatellite locus, and for the eight sampling 

localities. The numbers of microsatellite alleles recovered at each sampling locality were averaged 

across all loci, as a measure of genetic diversity for each locality. Mean allelic richness was also 

calculated for each locus across all localities, as well as for each locality across all loci, in the 

programme FSTAT 2.9.3 (Goudet 1995, 2001). Observed and expected heterozygosities (proportions 

of heterozygous genotypes) were calculated for each locus across all sampling localities, as well as 

for each locus within each locality, in Arlequin 3.5.  

 

Hardy-Weinberg Equilibrium 

An exact test was conducted, to test for departure of the observed allele frequencies at each locus 

from Hardy-Weinberg Equilibrium (HWE). Departure from HWE can indicate that at least one of the 

assumptions of HWE (random mating, selective neutrality, and lack of genetic structure) have been 

violated (Weir 1996, Hallerman et al. 2003). The test uses a modified Markov chain procedure (with 

100 000 steps in the Markov chain and 10 000 dememorisation steps) (Guo and Thompson 1992), 
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similar to that described for the population differentiation exact test. The significance of the test is 

determined as the proportion of contingency tables visited that have an equal or lower probability 

than the observed table. Tests were conducted in Arlequin 3.5. 

 

Linkage disequilibrium 

Linkage disequilibrium tests were conducted between pairs of loci across all sampling localities, as 

well as between pairs of loci within each locality separately, to test for significant non-random 

association of alleles at different loci. This test is based on a likelihood ratio test, which compares 

the likelihood of the observed haplotype frequencies under the hypothesis of linkage equilibrium 

(i.e. no association between loci, calculated as the product of allele frequencies) against those under 

the hypothesis of linkage disequilibrium (i.e. association between loci, estimated using an 

Expectation-Maximisation (EM) algorithm) (Slatkin and Excoffier 1996). Significance of the observed 

likelihood ratio was tested by computing the null distribution of the ratio under the hypothesis of 

linkage equilibrium, through 16 000 permutations of alleles between individuals at a single locus, 

and recalculating the likelihood ratio statistic each time (Excoffier and Lischer 2009). The number of 

initial conditions from which the EM was started was set at 5. This test makes the assumption of 

HWE, deviation from which may produce a significant likelihood ratio statistic (Excoffier and Lischer 

2009). Standard Bonferroni corrections were applied because of multiple statistical tests (Rice 1989). 

 

Population differentiation 

Exact probability tests were conducted to test the null hypothesis of no genetic differentiation 

(Raymond and Rousset 1995) between groups, at both the locality and population levels, as for the 

mtDNA. This test was also used as an a priori test to determine whether different populations in 

each sampling area showed significant genetic differentiation, or whether juvenile and adult samples 

within one locality could be pooled and subsequently analysed as a single population (i.e. locality 

group). Comparisons were made among all thirteen populations separately, among the eight 

sampling localities (see Figure 7.1 for sampling sites) and between juveniles and adults (the latter 

was based on the 13 populations grouped into one adult and one juvenile group).  

 

Pairwise population comparisons (RST) 

Genetic differences in the microsatellite data were quantified by pairwise comparisons of allele 

frequencies for each pair of localities (n = 8) and populations (n = 13). The analyses proceeded in a 

similar fashion to that described for the mtDNA analysis, but were based on the calculation of 

Slatkin’s (1995) RST, which is analogous to FST but assumes the stepwise mutation model, in which 
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every mutation will create a new allele by adding or deleting a microsatellite repeat (Kimura and 

Ohta 1978). The mutation of microsatellites is assumed to follow this model more closely than the 

infinite-alleles model (Balloux and Lugon-Moulin 2002). The significance of each observed pairwise 

RST value was calculated as described for FST. 

 

Analysis of molecular variance 

Genetic variability in the microsatellite data was analysed by AMOVA (Excoffier et al. 1992), which 

assessed differences in allele frequencies at different hierarchical levels. The analysis proceeded in a 

similar manner, and at the same grouping levels, as described for the mtDNA, but was run under the 

stepwise mutation model (Ohta and Kimura 1973), which considers the actual sizes of alleles, as 

opposed simply to allele frequencies (Excoffier and Lischer 2009). Furthermore, because 

microsatellite DNA is diploid, AMOVA is able to assess variability at a fourth level, within individuals. 

AMOVA was also used to test for genetic differences between juvenile and adult populations, as 

described for the mtDNA analysis. 

 

Relatedness 

Genetic variability was further analysed by estimating the level of relatedness between pairs of 

individuals (based on allele frequencies), defined as the “average frequency that two homologous 

alleles, one sampled from each individual, are identical by descent” (Ritland 2000: 1196). Pairwise 

comparisons of all individuals from the global sample were calculated using three methods-of-

moments relatedness estimators (those of Queller and Goodnight 1989, Ritland 1996 and Lynch and 

Ritland 1999), implemented in the Genalex software package version 6 (Peakall and Smouse 2006). 

Variances in estimates of pairwise relatedness were calculated within each of the eight sampling 

localities, and compared among localities by non-parametric Kruskal-Wallis ANOVA (performed in 

Statistica 10), based on recommendations by Ritland (2000). Mean within-locality relatedness 

estimates were also calculated for each locality, and statistically compared to overall relatedness 

within the global sample, using a permutation procedure. Significance of the estimate for each 

locality was determined as the probability of the observed mean being greater than that estimated 

by 9 999 permutations (Peakall and Smouse 2006).  

 

Population assignment 

An assignment test was run to assign each individual in the global sample to one of the eight original 

sampling localities, based on the individual’s genotype and the allele frequencies of each sampling 

population (juveniles and adults pooled within each) (Paetkau et al. 1995, 1997). The likelihood that 
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an individual was from a certain source population was determined as the estimated frequency of its 

specific genotype at each locus in the respective source population (Banks and Eichert 1999). For 

each individual, this was estimated across all loci, as the log of the product of the estimated 

probabilities at each locus (Peakall and Smouse 2006). The individual was then assigned to the 

population for which the maximum likelihood for that individual was observed (Waser and Strobeck 

1998). The analysis was run in Genalex, adopting the “leave one out” approach, in which the 

individual being assigned was excluded from the allele frequency estimation of its original sampling 

population. This is done to remove the potential bias created by one population having the 

individual’s genotype already present (Waser and Strobeck 1998). The analysis was also run in 

Arlequin, which does not adopt this approach, and allele frequencies in each population were simply 

calculated from the observed allele frequencies of all original members (Excoffier and Lischer 2009). 

 

Factorial correspondence analysis  

Factorial correspondence analysis (FCA) is a multivariate distance-based clustering method, which 

can be used to spatially explore variability among samples in a multivariate dataset (Seldin et al. 

2006). The technique differs slightly in approach from the more commonly used principal 

components analysis (PCA), in that FCA explores multiple contingency tables (created from tables of 

allele frequencies), to create a correspondence matrix. Each population can then be treated as a 

group of individual points in an ordination space that has as many dimensions as there are alleles at 

each locus (Seldin et al. 2006). The FCA determines a deviation vector (in terms of magnitude and 

direction) defining how each individual deviates from the centre of the ordination space, which is 

determined as the centre of the coordinates of all individuals. The analysis then decomposes these 

individual deviation vectors into three dimensions, which can be presented spatially (graphically), as 

a set of deviations from the expected overall values (Seldin et al. 2006). This creates a three-

dimensional ordination space, in which individuals influenced by similar factors would display similar 

divergences. The FCA analysis was run for four groupings, to spatially represent the variation in 

microsatellite allele frequencies of individuals from the eight sampling localities, the 13 populations, 

and separately for adults and juveniles, in the programme Genetix 4.05.2 (Belkhir et al. 1996 - 2004). 

 

Structure analysis 

A Bayesian model-based clustering method, implemented in the programme Structure 2.3.3 

(Pritchard et al. 2000), was used to infer population structure from observed multilocus 

microsatellite genotypes in the global sample. The analysis uses a Markov chain Monte Carlo method 

to probabilistically assign individuals exhibiting similar genotypes to one or more of a hypothetical 
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number of discrete putative populations (K), which is user-defined, but in reality is unknown. The 

term “population” in this sense does not refer to the 13 sampling populations described, but rather 

to hypothetical groups of individuals. The analysis assumes that each individual has drawn some 

proportion of its genotype from ancestors in each of the K populations and attempts to assign 

individuals to one or more populations, based on allele frequencies, in such a way that HW and 

linkage equilibrium are maintained (Pritchard et al. 2000). The analysis incorporated the 

assumptions of two models available in the Structure software. The first was the admixture ancestry 

model, which allows for mixed ancestry, and the second was the correlated allele frequencies model, 

which assumes that each of the K populations has undergone independent drift from a common 

hypothetical ancestral population, thereby expecting that allele frequencies may be similar among 

populations (Falush et al. 2003). These two models were selected based on the results of the 

previous analyses, and the null hypothesis that white steenbras is present as a single well-mixed 

population, in which allele frequencies are expected to be similar among geographic localities. Two 

separate analyses were run, the first with no prior information on the locality from which each 

individual was sampled, and the second including the locality information (n = 8 localities).  

 

Values of K tested in the present study ranged from K = 1, representing a single well-mixed 

population, to K = 8, representing the eight sampling localities. For each value of K, 20 iterations 

were conducted, from which the mean log probability that the observed set of genotypes in the 

global sample was drawn from the K populations was estimated. Each iteration consisted of 100 000 

burnin steps, and an additional 100 000 steps in the Markov chain. The mean probabilities were 

compared among values of K, by means of a Kruskal-Wallis ANOVA, to determine whether there 

were significant differences. Tukey’s post hoc test was used to identify the sources of the variability. 

The most probable number of real populations present was taken as the value of K that maximised 

the log probability (Falush et al. 2003), and accounted for the greatest variability in the data 

(Pritchard et al. 2010).  

 

Isolation by distance 

To test for isolation by distance (Slatkin 1993) in the microsatellite data, a Mantel test (Mantel 1967) 

was performed in Arlequin version 3.5. A matrix of pairwise FST values was created. These FST values 

were then adjusted to Slatkin’s linearised genetic distance, which is calculated as FST/(1 - FST), taking 

negative FST values to be zero (Slatkin 1995). The analysis then proceeded in the same way as 

described for the mtDNA. 
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Spatial autocorrelation  

Spatial autocorrelation analysis (Smouse and Peakall 1999) was used to test whether genotypes 

sampled from populations in close proximity were genetically more similar than those further apart. 

This analysis treated all loci per individual as one combined genotype, which had the effect of 

decreasing stochastic allele-to-allele and locus-to-locus noise. First, a covariance matrix of Euclidean 

squared distances was created from pairwise genetic distances between individuals. Similar 

(reduced) correlation matrices were also created for all pairs of individuals sampled within a certain 

distance class from each other, and were correlated against the overall correlation matrix (Smouse 

and Peakall 1999). Significance testing for autocorrelation at each distance class was determined 

using a permutation procedure, by permuting the individuals randomly within the initial correlation 

matrix, 9 999 times. Any distance classes showing mean autocorrelation coefficients (R) outside of 

the confidence interval obtained (higher or lower) can be deemed to exhibit significant spatial 

genetic structure (i.e. a two-tailed test). The significance of the assessment for positive (i.e. a one-

tailed test) spatial autocorrelation at a distance class was determined as the probability of observing 

a higher correlation coefficient than that obtained from the 9 999 permutations. Secondly, a 

confidence interval was calculated for the observed correlation coefficient at each distance class, 

using 1 000 bootstrap trials. If the bootstrap confidence interval did not straddle the null distribution 

(R = 0), positive spatial autocorrelation at that distance was inferred (Peakall and Smouse 2006).  

 

Assessments were conducted at the locality level (n = 8 localities) and population level (n = 13 

populations), and for juveniles (n = 6 populations) and adults (n = 7 populations) separately. For this 

assessment, three different distance classes were used. In the first analysis distance classes of 100 

km were used, based on the minimum distance between sampling localities. The second 

categorisation of distances was based on logical geographical divisions between sampling localities, 

i.e. between localities separated by long stretches of coastline. The third analysis was run with 

distance classes defined in such a way that the numbers of pairs of populations within each distance 

class were equal. 
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7.3 Results 

7.3.1 Mitochondrial DNA  

Mitochondrial control region sequences were successfully generated for 307 white steenbras, and 

could be confidently read for 720 nucleotide bases (709 when gaps were excluded). These 307 

individuals comprised 174 haplotypes including gaps, and 169 haplotypes when gaps were excluded, 

and a total of 143 polymorphic sites were recorded (Table 7.3). Diversity indices, S, h and π, were 

fairly consistent among localities and populations. Haplotype diversity in all groups and populations, 

as well as overall, was high (range: 0.960 – 1.000), as a result of the high numbers of haplotypes 

observed. Nucleotide diversity in all localities and populations, as well as overall, was also relatively 

high (range: 0.009 - 0.013, or 0.9 – 1.3%).  

 

Table 7.3: Genetic diversity indices calculated from 720-base pair mtDNA control region sequences 

for 307 individuals (n = 8 localities/13 populations), showing numbers of sequences (N), polymorphic 

sites (S), haplotypes (H), private haplotypes (P) and mean number of nucleotide differences between 

sequences (k), as well as haplotype (h) and nucleotide (π) diversities (TKE, EKM and LBN represent 

locality and populations levels, as they are represented by juveniles or adults only) 

 Locality/ 
Population 

N S H P k  h π 

Lo
ca

lit
y 

ELN 40 73 29 20 8.831 0.979 0.013 

WCP/SUN 50 68 37 17 8.543 0.980 0.012 

KNY/SWA 47 61 40 18 7.067 0.988 0.010 

BRE/DEH 44 64 35 21 7.734 0.979 0.011 

FBY 55 71 47 27 6.692 0.985 0.009 

 TKE A 25 51 23 8 9.193 0.993 0.013 

 EKM J 25 53 24 11 9.090 0.997 0.013 

 LBN A 21 48 18 10 9.152 0.990 0.013 

   
   

   
   

   
   

   
   

   
   

   
   

 P
o

p
ul

at
io

n
 

ELN A 15 36 12 5 8.114 0.971 0.012 

ELN J 25 63 22 13 9.363 0.987 0.013 

WCP A 25 53 20 6 9.010 0.980 0.013 

SUN J 25 47 21 10 8.240 0.987 0.012 

KNY A 25 47 22 9 6.937 0.987 0.010 

SWA J 22 45 21 8 7.351 0.996 0.010 

BRE J 21 42 18 9 7.476 0.986 0.011 

DEH A 23 52 19 11 8.150 0.960 0.011 

FBY A 30 50 25 18 6.143 0.996 0.009 

FBY J 25 51 25 8 7.397 1.000 0.010 

 Overall 307 143 169 - 8.036 0.985 0.011 
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Haplotype network 

The minimum spanning haplotype network (Figure 7.2) indicated the presence of a few common 

haplotypes, and a high number of rare haplotypes. Haplotypes 1 (28 individuals) and 2 (15 

individuals), separated by six mutations, were the most common and were represented by seven 

and six of the geographic localities, respectively. Haplotype 1 formed the centre of a star-like 

topology, from which numerous haplotypes branched, and which was well represented by all eight 

sampling localities. Haplotype 2 formed the centre of a small, second cluster (indicated by the 

dashed polygon), in which all eight sampling localities were also represented. A long external branch 

extended from the main clade (represented by the solid polygon) including haplotypes differing by 

up to 17 mutations, although within this clade all eight geographic localities were again represented. 

The network indicated little association between haplotype genealogy and geographic location. 

 

 

Figure 7.2: Minimum spanning network of 174 haplotypes identified from 307 mitochondrial control 

region sequences, from eight geographic localities (locality sample sizes represented in parentheses, 

colours indicate sampling localities). Common haplotypes 1 and 2 are labelled and sizes of circles are 

proportional to haplotype frequencies. Intermediate nodes represent unsampled extant haplotypes 

or ancestral haplotypes and branches indicate one mutational step, with additional steps indicated 

by the number of transverse bars (×14 indicates a branch with 14 mutational steps)  
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Tests for selective neutrality 

Watterson’s F-statistic was close to the expected F, for every locality and population, with no 

significant departures from neutrality. Conversely, Tajima’s D was negative for all localities and 

populations, and showed significant departure from neutrality for most individual localities, and 

significant departure overall at the locality level. Fu’s FS values were negative and departed 

significantly from neutrality (at α = 0.02) for all localities and most populations, and overall at both 

levels. Seven of the eight localities and 11 of the 13 populations showed non-significant D* and F* 

values, although overall both values departed significantly from neutrality at both levels. The results 

of the four analyses were, therefore, not in agreement (Table 7.4). 

 

Table neutrality 7.4: Tests for selective neutrality, conducted on 720-base pair mitochondrial control 

region sequences, for the eight localities and 13 populations (n = 307 individuals, ns = not significant, 

significant values are highlighted in bold)  

Group Watterson’s Tajima’s Fu's Fu and Li’s 

 
F p D p FS p D* p F* p 

Locality   
    

    

TKE 0.043 1.000 -1.27 0.100 -15.64 0.000 -2.09 ns -2.16 ns 

ELN 0.043 0.714 -1.75 0.018 -14.05 0.000 -2.29 ns -2.50 ns 

EKM 0.043 1.000 -1.43 0.068 -15.49 0.000 -1.70 ns -1.89 ns 

WCP/SUN 0.040 0.963 -1.55 0.039 -21.48 0.000 -2.05 ns -2.23 ns 

KNY/SWA 0.033 0.996 -1.74 0.023 -25.05 0.000 -2.61 < 0.05 -2.75 < 0.05 

BRE/DEH 0.041 0.997 -1.67 0.030 -24.69 0.000 -2.04 ns -2.27 ns 

FBY 0.033 1.000 -2.03 0.007 -25.10 0.000 -2.04 ns -2.27 ns 

LBN 0.052 1.000 -1.33 0.072 -11.17 0.000 -1.56 ns -1.72 ns 

Overall 0.041 0.959 -1.60 0.045 -19.08 0.000 -4.64 < 0.02 -3.96 < 0.05 

Population   
    

    

TKE A 0.057 0.883 -1.27 0.092 -15.64 0.000 -2.09 ns -2.16 ns 

ELN A 0.081 1.000 -1.22 0.101 -2.66 0.095 -1.12 ns -1.32 ns 

ELN J 0.043 1.000 -1.69 0.022 -12.45 0.001 -1.79 ns -2.06 ns 

EKM J 0.093 0.505 -1.43 0.050 -15.49 0.000 -1.70 ns -1.89 ns 

WCP A 0.046 0.891 -1.39 0.062 -7.02 0.009 -1.69 ns -1.87 ns 

SUN J 0.067 1.000 -1.37 0.083 -9.49 0.001 -1.10 ns -1.38 ns 

KNY A N.A. N.A. -1.75 0.024 -13.58 0.000 -2.88 < 0.05 -2.98 < 0.05 

SWA J 0.053 0.980 -1.59 0.031 -14.46 0.000 -2.05 ns -2.23 ns 

BRE J 0.052 1.000 -1.42 0.070 -10.31 0.000 -1.22 ns -1.50 ns 

DEH A 0.053 0.492 -1.63 0.043 -7.74 0.008 -2.14 ns -2.32 ns 

FBY A 0.043 1.000 -1.97 0.007 -16.87 0.000 -2.54 < 0.05 -2.77 < 0.05 

FBY J 0.050 1.000 -1.83 0.018 -21.91 0.000 -2.35 ns -2.57 ns 

LBN A 0.059 0.734 -1.33 0.068 -11.17 0.001 -1.56 ns -1.72 ns 

Overall - - -1.53 0.052 -12.22 0.009 -4.64 < 0.05 -3.96 < 0.05 
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Population size history by mismatch distribution 

The expected mismatch distributions calculated under the demographic expansion model 

(population size increase) and the spatial expansion model (geographic range increase) showed 

negligible difference, as did the upper and lower bounds around the expected distribution; 

therefore, the results presented are restricted to those of the demographic expansion model  

(mean = 8.15, variance = 24.05) (Figure 7.3).  

 

 

Figure 7.3: Observed (bars) and expected (line) mismatch distributions (under the sudden expansion 

model) of the frequency distribution of pairwise nucleotide differences between all pairs of 

haplotypes (mean = 8.15, variance = 24.05, n = 174 haplotypes, mismatch p = 0.506) 

 

The mismatch distribution was distinctly bimodal, which usually indicates a population at 

equilibrium (Rogers and Harpending 1992). The shape of the distribution, therefore, was not 

characteristic of a model of population expansion, which is expected to be unimodal. However, 

despite the bimodal nature of the distribution, the sum of squared deviations, i.e. the departure of 

the observed distribution from that expected under a population expansion, was not significant (SSD 

= 0.004, p = 0.506), meaning that the null hypothesis of a population expansion cannot be rejected. 

Harpending’s (1994) raggedness index r was low (0.005), usually associated with smoother, 

unimodal distributions (Excoffier and Lischer 2009), and the non-significance of this estimate (p = 

0.574) suggests a good fit of the observed data to the model of population expansion. Based on an 

estimated  of 3.35, and mutation rates of 3.6, 10 and 11% (Donaldson and Wilson 1999, Bargelloni 

et al. 2003, McMillan and Palumbi 1997), time since population expansion in white steenbras 

(rounded to nearest 100 years) was estimated at 21 500, 7 700 and 7 000 years, respectively.  
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Analysis of molecular variance 

The AMOVA provided estimates of differentiation, variance and associated significance for 

comparisons of genetic diversity at three hierarchical levels (among geographic localities, among 

populations within localities, and within populations), as well as the percentage contribution of each 

level to overall observed variation. The within populations level contributed certainly the greatest 

percentage of variation, while those among localities and among populations within localities were 

negligible (Table 7.5). Observed genetic differentiation within populations (p = 0.947) and among 

populations within localities did not differ significantly from the null distribution (p = 0.999). 

However, there was significant departure among localities from the null hypothesis of no significant 

genetic variation (p = 0.007), although the level of variation (FCT = 0.010) was low (Table 7.5).  

 

Table 7.5: AMOVA results, to determine the level of mtDNA genetic variance among geographic 

localities (n = 8), among populations within localities (n = 5 localities each represented by two 

populations) and among individuals within separate populations (n = 13)  

Source of variation 
Deg. of 

freedom 
Sum of 
squares 

Variance 
component 

Percent 
variation 

Fixation index p 

Among localities  7 28.12 0.0417 1.02 FCT   0.010 0.007 

Among populations  5 12.38 -0.0698 -1.71 FSC  -0.017 0.999 

Within populations  294 1205.36 4.0999 100.69 FST  -0.007 0.946 

Total 306 1245.86 4.0718  100.00  
 

 

AMOVA to test for differences among juvenile and adult populations showed no significant 

differences at any level, and low (negative) fixation indices (Table 7.6). This result reinforces the 

results of the previous analysis that most variation occurs within individual populations. 

 

Table 7.6: AMOVA results, to determine the level of mtDNA genetic variance between juvenile and 

adult groups (n = 2), among populations within the juvenile and adult groups (n = 5 localities each 

represented by two populations) and among individuals within separate populations (n = 13) 

Source of variation 
Deg. of 

freedom 
Sum of 
squares 

Variance 
component 

Percent 
variation 

Fixation index p 

Between groups  1 2.32 -0.0074 -0.18 FCT   -0.002 0.881 

Among populations  11 38.17 -0.0266 -0.66 FSC  -0.007 0.908 

Within populations  294 1205.36 4.0999 100.84 FST  -0.008 0.946 

Total 306 1245.86 4.0657  100.00  
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Population differentiation and pairwise population comparisons (FST)  

Locality level 

In order to further explore the genetic differentiation observed in the results of the AMOVA, exact 

tests of differentiation and pairwise population comparisons (based on FST) were conducted at the 

locality and population levels, to identify more accurately the groups contributing to the observed 

variability. At the locality level, 25 of the 28 pairwise comparisons showed no significant genetic 

differentiation, based on the exact tests (Table 7.7). Three significant pairwise comparisons were 

observed, those between East London and Breede/De Hoop (p = 0.041), between East London and 

Langebaan (p = 0.043), and between Langebaan and Woody Cape/Sundays (p = 0.040).  

 

Table 7.7: P-values for pairwise exact tests for genetic differentiation between localities (n = 8), 

based on 720-base pair mtDNA sequences (boldface values indicate significant differences) 

 TKE ELN EKM WCP/SUN KNY/SWA BRE/DEH FBY 

ELN 0.121 - - - - - - 

EKM 0.874 0.147 - - - - - 

WCP/SUN 0.479 0.434 0.245 - - - - 

KNY/SWA 0.547 0.292 0.715 0.652 - - - 

BRE/DEH 0.116 0.041 0.248 0.213 0.579 - - 

FBY 0.474 0.801 0.370 0.303 0.996 0.683 - 

LBN 0.674 0.043 1.000 0.040 0.767 0.530 0.653 

 

However, pairwise genetic comparisons based on FST showed no significant differentiation between 

pairs of localities and all FST values were low (Table 7.8). The highest FST values at the locality level 

were observed between False Bay and Transkei (0.015, p = 0.088), and between False Bay and 

Woody Cape/Sundays (0.015, p = 0.051) 

 

Table 7.8: Pairwise FST values (above diagonal) and associated p-values (below diagonal) between 

localities (n = 8 localities, no significant differences) 

  TKE ELN EKM WCP/SUN KNY/SWA BRE/DEH FBY LBN 

TKE 
 

-0.007 -0.012 -0.008 0.006 -0.002 0.015 -0.013 

ELN 0.651 
 

-0.015 -0.012 -0.002 -0.001 0.000 -0.007 

EKM 0.749 0.946 
 

-0.010 0.002 0.000 0.009 -0.015 

WCP/SUN 0.667 0.977 0.807 
 

0.003 0.002 0.015 -0.015 

KNY/SWA 0.227 0.540 0.337 0.274 
 

-0.001 -0.007 0.000 

BRE/DEH 0.443 0.455 0.400 0.286 0.428 
 

0.007 0.002 

FBY 0.088 0.393 0.144 0.051 0.872 0.145 
 

0.021 

LBN 0.703 0.614 0.792 0.899 0.381 0.336 0.052   
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Population level 

At the population level, there were 78 possible pairs of populations, of which only one showed 

significant differentiation, that between False Bay adults and Transkei adults (p = 0.035) (Table 7.9). 

Furthermore, pairwise genetic comparisons showed no significant differences between pairs of 

populations and all FST values were low (Table 7.10). The highest FST values at the population level 

were between False Bay adults and Woody Cape adults (0.024, p = 0.065), and between False Bay 

adults and Langebaan adults (0.025, p = 0.070). An exact test between juvenile and adult samples 

also showed no significant difference between groups (p = 0.644 ± 0.018).  

 

Table 7.9: P-values for pairwise exact tests for genetic differentiation between populations (n = 13), 

based on 720-base pair mtDNA sequences (boldface values indicate significant differences) 

 
TKE A ELN A ELN J EKM J WCP A SUN J KNY A SWA J BRE J DEH A FBY A FBY J 

ELN A 0.761 - - - - - - - - - - - 

ELN J 0.633 0.901 - - - - - - - - - - 

EKM J 0.878 0.518 0.828 - - - - - - - - - 

WCP A 0.734 0.598 0.813 0.655 - - - - - - - - 

SUN J 0.756 0.745 0.776 0.724 0.767 - - - - - - - 

KNY A 0.406 0.782 0.507 0.785 0.816 0.671 - - - - - - 

SWA J 0.962 0.842 0.882 0.950 0.680 0.865 0.932 - - - - - 

BRE J 0.596 0.128 0.677 0.584 0.435 0.606 0.538 0.363 - - - - 

DEH A 0.069 0.198 0.261 0.267 0.108 0.205 0.323 0.908 0.111 - - - 

FBY A 0.035 0.563 0.758 0.073 0.224 0.194 0.225 0.693 0.063 1.000 - - 

FBY J 0.996 0.944 0.964 0.970 0.842 0.643 0.991 1.000 0.799 0.178 0.169 - 

LBN A 0.675 0.371 0.558 1.000 0.246 0.206 0.675 1.000 0.576 0.864 0.338 1.000 

 

Table 7.10: Pairwise FST values (above diagonal) and associated p-values (below diagonal) between 

populations (n = 13 populations, no significant differences) 

  TKE A ELN A ELN J EKM J WCP A SUN J KNY A SWA J BRE J DEH A FBY A FBY J LBN A 

TKE A 
 

-0.021 -0.005 -0.012 -0.018 -0.007 0.006 -0.008 -0.006 -0.013 0.021 -0.002 -0.013 

ELN A 0.847 
 

-0.017 -0.032 -0.030 -0.034 -0.012 -0.026 -0.017 -0.015 0.004 -0.009 -0.023 

ELN J 0.553 0.837 
 

-0.012 -0.015 -0.013 -0.002 -0.011 -0.009 -0.007 0.006 -0.018 -0.004 

EKM J 0.744 0.995 0.806 
 

-0.017 -0.015 0.002 -0.013 -0.010 -0.006 0.008 0.002 -0.015 

WCP A 0.908 0.974 0.905 0.896 
 

-0.019 0.006 -0.014 -0.013 -0.010 0.024 0.000 -0.023 

SUN J 0.591 0.981 0.846 0.854 0.935 
 

-0.001 -0.020 -0.006 -0.005 0.010 -0.004 -0.018 

KNY A 0.257 0.661 0.481 0.360 0.269 0.418 
 

-0.018 -0.003 -0.005 -0.003 -0.023 0.000 

SWA J 0.599 0.932 0.783 0.800 0.771 0.933 0.917 
 

-0.019 -0.020 -0.013 -0.014 -0.013 

BRE J 0.521 0.722 0.704 0.685 0.719 0.529 0.502 0.895 
 

-0.024 0.000 0.000 -0.009 

DEH A 0.760 0.705 0.647 0.568 0.673 0.525 0.531 0.937 0.980 
 

0.002 -0.004 -0.003 

FBY A 0.078 0.330 0.237 0.220 0.065 0.178 0.523 0.873 0.411 0.342 
 

-0.006 0.025 

FBY J 0.459 0.645 0.966 0.368 0.427 0.517 0.997 0.868 0.410 0.490 0.625 
 

0.006 

LBN 0.707 0.840 0.492 0.800 0.953 0.850 0.394 0.712 0.577 0.422 0.070 0.265   
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Isolation by distance 

The isolation-by-distance analysis showed no association between pairwise genetic differentiation 

(pairwise FST values) and geographic distance between localities, and linear regression showed no 

significant correlation between variables (p = 0.393, R2 = 0.0005) (Figure 7.4).  

 

 

Figure 7.4: Scatterplot of pairwise FST values for the mtDNA data and geographic distance (km), to 

assess isolation by distance, at the locality level (n = 8 localities)  

  

Spatial analysis of molecular variance 

The SAMOVA analyses showed significant among groups variability (p < 0.05 in all cases), although 

similarly low FCT was observed for all K values, and variability at the among groups level contributed 

less than 2% to overall variability in each SAMOVA. FCT ranged from a minimum of 0.010 for K = 2 

groups of localities, increasing gradually to a maximum of 0.013 for K = 6 groups, after which it 

decreased for K = 7 groups. For the K = 6 grouping (i.e. maximum among groups variability), four 

localities were represented as individual groups, while the East Kleinemonde and East London 

localities were grouped, and the Woody Cape/Sundays and Langebaan localities were grouped, 

despite the latter two localities being geographically separated by three other (ungrouped) localities 

(Figure 7.5). For K = 2 to 5, the False Bay and Knysna/Swartvlei localities were grouped, and for K = 2 

to 6, Woody Cape/Sundays and Langebaan localities were grouped. The groupings had little 

biological meaning. 
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Figure 7.5: Grouping of sampling localities for K = 6 groups, as determined by SAMOVA as the 

grouping representing maximum among groups variability 

 

Synthesis of mitochondrial DNA results 

In order to relate the observed results to biological meaning more simply, certain parameters were 

plotted in a way that they could provide more information and facilitate biological interpretation 

(Figure 7.6). 

 

Haplotype diversity (h) represents an index of genetic diversity, which has been shown in some 

species to decrease with distance from the spawning locality as haplotypes are lost due to larval-

phase mortality or due to individuals not dispersing to the edge of the range (Matthee et al. 2007). 

However, h remained high throughout the white steenbras core distribution (Figure 7.6a), even in 

the localities furthest from the suggested spawning area in the Transkei (Bennett 1993b). Similarly, it 

may be expected that the number of private haplotypes (those found exclusively within a single 

sampling locality) would decrease with distance from the spawning site, although again this was not 

the case for white steenbras (Figure 7.6b).  

 

Under complete panmixia, it is expected that haplotype frequencies within each locality would be 

consistent, while in the case of geographically-isolated populations or a geographic barrier to gene 

flow one might expect different regions not to share the same common haplotypes. The most 

common haplotype (haplotype 1) was present in samples from Langebaan to East London (Figure 

7.6c), throughout most of the range of the study, providing evidence of historical gene flow among 

geographic regions. Similarly, although its contribution decreased considerably west of Knysna, the 

second most common haplotype (haplotype 2) was present from Transkei as far west as False Bay.  
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To further illustrate the level of gene flow, the pairwise FST values between the western-most 

(Langebaan) and eastern-most (Transkei) localities and all other localities are presented (Figure 

7.6d), to determine whether the most distant localities exhibited greater genetic differentiation as a 

result of edge effects (Johannesson and André 2006). Langebaan (black bars) was most different to 

its neighbouring locality, False Bay, and showed very low differentiation with all other localities. The 

greatest genetic differentiation between Transkei (grey bars) and other localities was also with False 

Bay, while Transkei and Langebaan, at the two geographic extremes showed a negative pairwise FST 

(as with most other pairwise values), indicating negligible genetic differentiation. 

 

 

Figure 7.6: Summary of selected genetic analysis parameters recorded for each geographic locality, 

to facilitate interpretation of results: a) haplotype diversity (h), b) proportion of sequences in each 

locality representing private haplotypes, c) proportions of sequences in each locality representing 

the two most common haplotypes (haplotypes 1 and 2), and d) pairwise FST values recorded 

between the western-most (Langebaan, LBN) and eastern-most (Transkei, TKE) localities and each of 

the other localities, with the dotted line representing FST = 0.0; (for localities with juvenile and adult 

samples the two age classes were pooled; DEH represents Breede Estuary/De Hoop MPA, KNY 

represents Knysna/Swartvlei Estuary, and WCP represents Woody Cape/Sundays Estuary 
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7.3.2 Microsatellite DNA  

Genetic diversity, Hardy-Weinberg Equilibrium and linkage disequilibrium 

Initially 15 microsatellite markers were tested and preliminary analyses indicated that PBt007, 

LLt024 and PBt013 differed significantly from HWE and amplified poorly. These loci were thus 

excluded from further analyses, and are not discussed further. The mean number of microsatellite 

alleles (NA) recovered at each of the remaining 12 loci ranged from 4.00 (PBt018) to 15.74 (PBt003). 

Similarly, mean allelic richness (AR) at each locus ranged from 3.32 (PBt018) to 12.65 (PBt003). 

Observed heterozygosities (HO) were close to those expected (HE) under the HWE, for all loci except 

CL011 (HO = 0.48, HE = 0.65). This locus also produced the only high FIS estimate, indicating a 

heterozygote deficiency (Bahri-Sfar et al. 2000) and departure from HWE (Perez-Ruzafa et al. 2006) 

(Table 7.11). 

 

Table 7.11: Summary statistics for 12 microsatellite loci, showing total number of alleles per locus 

(N) observed in the global sample, mean (± SD) number of alleles (NA) and mean (± SD) allelic 

richness (AR) averaged across all eight localities, and observed and expected heterozygosities (HO and 

HE), inbreeding coefficient (FIS) and Hardy-Weinberg exact test p-value (HWE), for the global sample  

Locus N NA AR HO HE FIS HWE 

LLt005 6 5.00 (± 0.00) 4.82 (± 0.12) 0.66 0.70 0.07 0.55 

LLt006 14 9.88 (± 0.35) 8.72 (± 0.43) 0.82 0.87 0.06 0.08 

PB106 13 10.38 (± 0.92) 8.94 (± 0.59) 0.83 0.87 0.04 0.71 

LLt014 11 8.50 (± 0.93) 7.58 (± 0.37) 0.83 0.85 0.03 0.35 

LLt011 14 11.25 (± 1.49) 9.27 (± 0.74) 0.82 0.83 0.01 0.92 

LLt007 15 10.00 (± 1.51) 8.23 (± 0.59) 0.83 0.83 0.00 0.23 

PBt018 5 4.00 (± 0.76) 3.32 (± 0.42) 0.40 0.42 0.03 0.12 

CL011 6 5.00 (± 0.93) 4.33 (± 0.69) 0.48 0.65 0.27 0.00 

LLtr004 8 6.25 (± 0.46) 5.61 (± 0.26) 0.74 0.76 0.03 0.56 

LLt020 19 13.38 (± 1.69) 11.13 (± 0.86) 0.91 0.90 -0.01 0.27 

LLt002 14 11.50 (± 0.93) 9.95 (± 0.48) 0.89 0.88 -0.01 0.44 

PBt003 25 15.75 (± 2.76) 12.65 (± 0.84) 0.91 0.91 0.00 0.18 

 

Significant departure from HWE (p < 0.001) was observed overall for one locus only, CL011 (Table 

7.11). This locus also exhibited departure from HWE within five of the eight localities separately 

(data not presented). Locus LLt005 showed departure from HWE in two localities, loci LLt011, LLt007 

and LLt002 showed no departure from HWE, and the remaining eight loci each showed departure 

from HWE in one locality. After standard Bonferroni correction, departure from HWE was observed 

in three loci; PB106 in East London, LLt020 in East Kleinemonde and CL011 in the Woody 

Cape/Sundays and Breede/De Hoop localities.  
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Values of NA across all loci were lowest in Transkei and Langebaan, likely due to their lower sample 

sizes (Fritsch et al. 2007) (Table 7.12). Estimates of AR and FIS showed no trends among localities. 

Mean HO values (averaged across loci within each locality) were close to HE for all localities, although 

all were slightly reduced, reflecting the influence of the lower-than-expected HO of locus CL011. 

 

Table 7.12: Summary statistics for the eight localities (n = sample size per locality, NA, AR, HO and HE 

refer to mean number of alleles, mean allelic richness and observed and expected heterozygosities 

averaged across all 12 loci (± SD), FIS = inbreeding coefficient estimated across all 12 loci)  

Locality n NA AR HO HE FIS 

TKE 25 8.17 (± 2.89) 7.62 (± 2.66) 0.72 (± 0.20) 0.78 (± 0.17) 0.08 

ELN 41 9.42 (± 3.78) 7.96 (± 2.91) 0.79 (± 0.17) 0.80 (± 0.12) 0.01 

EKM 41 9.08 (± 3.40) 7.81 (± 2.76) 0.76 (± 0.17) 0.79 (± 0.14) 0.05 

WCP/SUN 48 10.00 (± 4.07) 8.15 (± 2.91) 0.76 (± 0.21) 0.79 (± 0.15) 0.05 

KNY/SWA 48 9.50 (± 3.87) 7.86 (± 2.78) 0.75 (± 0.18) 0.79 (± 0.16) 0.04 

BRE/DEH 47 9.67 (± 4.56) 7.98 (± 3.25) 0.77 (± 0.18) 0.79 (± 0.13) 0.02 

FBY 55 9.75 (± 4.16) 7.87 (± 2.98) 0.77 (± 0.13) 0.79 (± 0.14) 0.02 

LBN 25 8.33 (± 3.11) 7.80 (± 2.93) 0.72 (± 0.18) 0.78 (± 0.14) 0.08 

 

Linkage disequilibrium was observed in 99 of the 528 pairwise locus comparisons (8 localities × 66 

pairs), although only 10 remained significant after Bonferroni correction. These were observed in all 

localities except East Kleinemonde. Significant pairs were not consistent across localities and 

included all but three loci (CL011, LLtr004 and LLt020). In the global sample, 9 of the 66 pairwise 

comparisons showed significant linkage disequilibrium (Table 7.13), although only five remained 

significant after Bonferroni correction (two of which involved CL011). Therefore, no loci were 

excluded due to linkage disequilibrium; however, CL011 was excluded due to departure from HWE.  

 

Table 7.13: Tests for pairwise linkage disequilibrium, for all pairs of loci, across all eight localities 

(boldface values indicate significant differences) 

Locus Llt005 LLt006 PB106 LLt014 Llt011 LLt007 PBt018 CL011 LLtr004 LLt020 LLt002 

LLt006 0.429 
          PB106 0.000 0.649 

         LLt014 0.224 0.194 0.051 
        Llt011 0.000 0.183 0.000 0.734 

       LLt007 0.756 0.481 0.390 0.062 0.761 
      PBt018 0.877 0.281 0.633 0.976 0.222 0.591 

     CL011 0.159 0.204 0.757 0.583 0.444 0.047 0.000 
    LLtr004 0.306 0.766 0.343 0.845 0.045 0.106 0.222 0.931 

   LLt020 0.348 0.265 0.355 0.111 0.962 0.134 0.149 0.308 0.914 
  LLt002 0.323 0.207 0.447 0.884 0.745 0.164 0.318 0.533 0.650 0.001 

 PBt003 0.301 0.887 0.567 0.585 0.077 0.927 0.765 0.717 0.370 0.000 0.001 
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Population differentiation and population comparisons (RST) 

Population level 

Pairwise population exact tests revealed no significant differentiation between populations (Table 

7.14). Similarly, pairwise comparisons based on RST also revealed no significant differences between 

populations (Table 7.15). The highest RST value at the population level, observed between the 

Langebaan adults and the Swartvlei juveniles, was RST = 0.015 (p = 0.126). 

 

Table 7.14: P-values for pairwise population exact tests of genetic differentiation, based on 11 

microsatellite loci, between populations (n = 13, no significant differences)  

  TKE A ELN A ELN J EKM J WCP A SUN J KNY A SWA J BRE J DEH A FBY A FBY J 

ELN A 0.541 - - - - - - - - - - - 

ELN J 0.496 1.000 - - - - - - - - - - 

EKM J 0.261 0.586 0.535 - - - - - - - - - 

WCP A 0.475 1.000 1.000 0.513 - - - - - - - - 

SUN J 0.490 1.000 1.000 0.516 1.000 - - - - - - - 

KNY A 0.449 1.000 1.000 0.537 1.000 1.000 - - - - - - 

SWA J 0.490 1.000 1.000 0.533 1.000 1.000 1.000 - - - - - 

BRE J 0.482 1.000 1.000 0.522 1.000 1.000 1.000 1.000 - - - - 

DEH A 0.467 1.000 1.000 0.492 1.000 1.000 1.000 1.000 1.000 - - - 

FBY A 0.231 0.570 0.468 0.243 0.503 0.507 0.504 0.505 0.523 0.492 - - 

FBY J 0.503 1.000 1.000 0.547 1.000 1.000 1.000 1.000 1.000 1.000 0.503 - 

LBN A 0.485 1.000 1.000 0.502 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 

 

Table 7.15: Pairwise RST values (above diagonal) between populations (n = 13), based in 11 

microsatellite loci, and associated p-values (below diagonal, no significant differences) 

  TKE A ELN A ELN J EKM J WCP A SUN J KNY A SWA J BRE J DEH A FBY A FBY J LBN A 

TKE A   -0.001 -0.005 0.007 -0.015 -0.009 -0.006 -0.018 -0.016 -0.004 -0.011 -0.012 0.007 

ELN A 0.330 
 

-0.008 -0.007 -0.019 -0.007 -0.001 -0.007 -0.021 0.012 -0.012 -0.017 0.006 

ELN J 0.485 0.522 
 

-0.005 -0.015 -0.018 -0.004 0.003 0.000 0.004 -0.016 0.003 -0.017 

EKM J 0.226 0.575 0.590 
 

-0.010 0.009 0.004 0.008 -0.009 0.013 -0.008 -0.010 0.010 

WCP A 0.851 0.824 0.912 0.801 
 

-0.025 -0.016 -0.005 -0.005 -0.009 -0.019 -0.006 -0.024 

SUN J 0.583 0.462 0.907 0.205 0.979 
 

-0.013 -0.004 -0.014 -0.003 -0.006 0.002 -0.002 

KNY A 0.485 0.329 0.474 0.285 0.913 0.776 
 

0.006 0.004 -0.016 -0.006 0.001 -0.014 

SWA J 0.925 0.493 0.311 0.221 0.484 0.468 0.211 
 

-0.015 0.010 -0.010 -0.011 0.015 

BRE J 0.903 0.879 0.387 0.746 0.463 0.787 0.250 0.885 
 

0.005 -0.020 -0.014 0.000 

DEH A 0.427 0.172 0.306 0.168 0.643 0.419 0.908 0.173 0.244 
 

0.004 0.005 -0.005 

FBY A 0.717 0.631 0.928 0.740 0.975 0.542 0.505 0.700 0.986 0.249 
 

-0.015 0.001 

FBY J 0.728 0.757 0.298 0.796 0.471 0.270 0.291 0.749 0.843 0.219 0.914 
 

0.003 

LBN A 0.200 0.229 0.918 0.195 0.988 0.386 0.854 0.126 0.358 0.515 0.340 0.254   
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Locality level 

Pairwise population exact tests revealed no significant differentiation between juvenile and adult 

samples within each of the five localities represented by both (p > 0.50 for all five comparisons). 

Thus, juvenile and adult populations could be pooled within each sampling locality (Balloux and 

Lugon-Moulin 2002). At the locality level, with juvenile and adult samples within each locality 

pooled, there were no significant pairwise genetic differences (Table 7.16).  

 

Table 7.16: P-values for pairwise population exact tests of genetic differentiation, based on 11 

microsatellite loci, between localities (n = 8, no significant differences) 

 TKE ELN EKM WCP/SUN KNY/SWA BRE/DEH FBY 

ELN 0.497 - - - - - - 

EKM 0.264 0.529 - - - - - 

WCP/SUN 0.543 1.000 0.481 - - - - 

KNY/SWA 0.567 1.000 0.488 1.000 - - - 

BRE/DEH 0.568 1.000 0.508 1.000 1.000 - - 

FBY 0.331 0.485 0.242 0.465 0.483 0.512 - 

LBN 0.471 1.000 0.503 1.000 1.000 1.000 0.569 

 

Pairwise genetic comparisons based on RST also showed no significant differences between 

geographic localities (n = 8 localities), and all pairwise RST values were low, showing high genetic 

similarity. The highest RST value at the locality level (RST = 0.010, p = 0.192) was observed between 

East Kleinemonde and Langebaan (Table 7.17). 

 

Table 7.17: Pairwise RST values (above diagonal) between localities (n = 8), based in 11 microsatellite 

loci, and associated p-values (below diagonal, no significant differences)  

  TKE ELN EKM WCP/SUN KNY/SWA BRE/DEH FBY LBN 

TKE   -0.002 0.007 -0.006 -0.015 -0.013 -0.007 0.007 

ELN 0.407 
 

-0.004 -0.007 -0.001 -0.001 -0.004 -0.008 

EKM 0.231 0.596 
 

0.005 0.003 -0.001 -0.005 0.010 

WCP/SUN 0.566 0.774 0.207 
 

-0.005 -0.003 0.002 -0.008 

KNY/SWA 0.965 0.419 0.243 0.643 
 

-0.007 -0.005 -0.002 

BRE/DEH 0.928 0.397 0.428 0.495 0.861 
 

-0.005 -0.005 

FBY 0.660 0.567 0.661 0.215 0.652 0.652 
 

0.005 

LBN 0.191 0.660 0.192 0.675 0.423 0.581 0.210   
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Analysis of molecular variance 

An AMOVA conducted on the microsatellite data showed no significant genetic variability at any of 

the four hierarchical levels tested (among geographic localities, among populations within localities, 

among individuals within populations or within individuals), with low levels of genetic differentiation 

at all levels, although most of the variation was observed within individuals (Table 7.18).  

 

Table 7.18: AMOVA results, to determine the level of microsatellite genetic variability among 

geographic localities (n = 8), among populations within localities (n = 5 localities each represented by 

2 populations), among individuals within populations (n = 13), and within individuals (n = 330)  

Source of variation 
Deg. of 

freedom 
Sum of 
squares 

Variance 
component 

Percent 
variation 

Fixation index p 

Among localities 7 20.487 -0.005 -0.160 FCT  -0.0016 0.852 

Among populations  5 16.837 0.001 0.020 FSC   0.0002 0.413 

Among individuals  317 1058.142 -0.017 -0.050 FIS  -0.0050 0.716 

Within individuals 330 1112.500 3.371 100.640 FIT  -0.0064 0.763 

Total 659 2410.391 3.350 
   

 

An AMOVA to test for differences among juvenile and adult populations also showed no significant 

differences at any level, and again most variation was observed within individuals (Table 7.19).  

 

Table 7.19: AMOVA results, to determine the level of microsatellite genetic variability between 

juvenile and adult groups (n = 2), among populations within the juvenile and adult groups (n = 6 

juvenile populations and 7 adult populations), among individuals within separate populations (n = 

13), and within individuals (n = 330) 

Source of variation 
Deg. of 

freedom 
Sum of 
squares 

Variance 
component 

Percent 
variation 

Fixation 
index 

P 

Between groups 1 3.262 0.001 0.020 FCT   0.0002 0.396 

Among populations  11 34.061 -0.005 -0.140 FSC  -0.0014 0.843 

Among individuals  317 1058.142 -0.017 -0.500 FIS  -0.0046 0.724 

Within individuals 330 1112.500 3.371 100.620 FIT  -0.0062 0.765 

Total 659 2410.391 3.350       
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Relatedness 

The relatedness analyses showed low pairwise relatedness between individuals within the global 

sample for all three indices, although relatedness coefficients in some comparisons reached maxima 

of 1.00, 0.50 and 0.83 for the Queller and Goodnight (1989), Ritland (1996) and Lynch and Ritland 

(1999) indices, respectively. Within each locality, mean pairwise estimates and associated variances 

were consistently low for all three indices (Table 7.20), and Kruskal-Wallis ANOVAs showed no 

significant differences among localities for the Ritland (1996) or Lynch and Ritland (1999) indices. 

Significant differences were, however, observed for the Queller and Goodnight (1989) index  

(p = 0.008). Tukey’s post hoc test indicated that False Bay exhibited significantly higher pairwise 

relatedness than East London (p = 0.003) and Breede/De Hoop (p = 0.017); although the mean 

relatedness for all groups was less than 0.01. None of the eight sampling localities showed overall 

within-locality relatedness coefficients significantly greater than the permuted means (Table 7.20).  

 

Table 7.20: Numbers of individuals per locality (n), numbers of within-population pairwise 

comparisons (NC), means and variances (σ2) of each of the relatedness indices, and the within-

population means and p-values for the eight sampling localities, based on 11 microsatellite loci  

   

Queller and 
Goodnight (1989) 

Ritland 
(1996) 

Lynch and 
Ritland (1999) 

Within- 
localities 

Locality n NC Mean σ2 Mean σ2 Mean σ2 Mean p 

TKE 25 300 0.009 0.027 -0.001 0.002 0.000 0.003 18.61 0.102 

ELN 41 820 -0.019 0.021 -0.002 0.002 -0.003 0.003 17.51 0.897 

EKM 41 820 -0.006 0.022 0.001 0.003 0.001 0.003 18.23 0.246 

WCP/SUN 48 1128 -0.009 0.021 -0.004 0.002 -0.004 0.002 18.08 0.395 

KNY/SWA 48 1128 -0.002 0.019 -0.003 0.001 -0.004 0.002 18.13 0.332 

BRE/DEH 47 1081 -0.014 0.021 -0.002 0.002 -0.002 0.002 17.76 0.747 

FBY 55 1485 0.005 0.020 -0.002 0.002 -0.002 0.003 17.69 0.825 

LBN 25 300 -0.001 0.022 -0.001 0.002 <0.001 0.003 18.65 0.082 

 

Population assignment 

The population assignment analysis showed no separation of individuals into discrete populations. 

All pairwise comparisons (n = 28 pairs) of the likelihood of assignment of individuals from each of 

two populations to one or the other population showed completely overlapping likelihoods, with the 

likelihoods of assignment to either population roughly even for all pairs of sampling localities (Figure 

7.7). In these plots, discrete populations would show separate distributions associated more strongly 

with opposite axes, while distribution along a diagonal taken through the origin indicates even 

likelihood of assignment to either population. 
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Figure 7.7: Pairwise likelihood assignment plots, created from the population assignment analysis, 

for the eight sampling localities (locality colours are consistent with those of the sampling localities 

in Figures 7.1 and 7.2). Each axis in each plot represents the likelihood of assignment to one of the 

two populations. Discrete populations would be distributed towards higher values on separate axes, 

while distribution along the diagonal indicates similar likelihood of assignment to either population 
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The population assignment analysis run in Genalex, using the “leave one out” approach, was unable 

to correctly assign most individuals to their original sampling localities, based on allele frequencies, 

which is expected when there are low levels of genetic differentiation (Waser and Strobeck 1998). 

No population had more than 20% of its original members assigned correctly, with a mean 

proportion of correct assignments across localities of only 10.0% (± 5.7%) (Figure 7.8a). In contrast, 

the population assignment analysis run in Arlequin, not adopting the “leave one out” approach, was 

able to successfully assign the majority of individuals to their original sampling localities  

(Figure 7.8b). For this analysis, the best assignment of original sampling locality members to the 

correct population was 80%, with a mean successful assignment across the eight sampling localities 

of 68.5% (± 9.4%).  

 

 

Figure 7.8: Proportions (%) of individuals sampled from each of the original sampling localities 

assigned (based on most likely allele frequencies) to each of the eight putative localities, a) adopting 

the “leave one out” approach as calculated in Genalex, and b) not adopting the “leave one out” 

approach as calculated in Arlequin  

 

Factorial correspondence analysis 

Factorial correspondence analysis was conducted on four different groupings of samples; eight 

sampling localities, thirteen populations, six juvenile populations and seven adult populations. In all 

four analyses there was no clustering or distinct separation of any of the groups. Results of the FCA 

conducted on the eight sampling localities, as well as the six juvenile populations are presented. 

These two groups were chosen as the overall aim of this chapter was to identify white steenbras 

genetic differentiation among coastal regions, and distinct clustering of juvenile genotypes 

associated with the geographical sampling locations would indicate spatial genetic structure. The 

results of the other two analyses showed similar results, and these are not presented. 
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The FCA showed no distinct separation of any of the eight localities (Figure 7.9a). Figure 7.9b shows 

an expansion of the centre of the ordination space, in which most of the samples were situated. The 

Transkei locality distribution was slightly offset along axes 2 (y-axis) and 3 (z-axis), while Langebaan 

and East Kleinemonde were slightly shifted to the left, and Breede/De Hoop to the right, along axis 1 

(x-axis), although most samples in these four groups overlapped with the majority of samples from 

the other localities.  

 

 

 

Figure 7.9: Factorial correspondence analysis of genotypes from the eight localities (juveniles and 

adults pooled within the five sites with both classes), based on allele frequencies of 11 microsatellite 

loci (the programme does not provide an option to edit colours, therefore locality colours do not 

match those of Figures 7.1 or 7.2) 
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The FCA ordination plot of the juvenile samples (represented by six populations) also showed no 

distinct separation of any of the groups (Figure 7.10a). Figure 7.10b shows an expansion of the 

centre of the ordination space, in which most of the samples were situated. In this analysis, the East 

Kleinemonde population showed a slightly shifted distribution along axis 1 (x-axis), when compared 

to the other groups. The Breede group separated out slightly along axes 2 (y-axis) and 3 (z-axis), 

while the False Bay genotypes showed a slight shift along axis 2 (y-axis), when compared to the 

other groups. Again, however, most genotypes from all groups overlapped in the centre of the 

ordination space, showing little spatial genetic differentiation among juvenile white steenbras. 

 

 

Figure 7.10: Factorial correspondence analysis of juvenile samples, based on allele frequencies of 11 

microsatellite loci (colour codes do not match those of Figure 7.9) 
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Structure analysis 

The Structure analysis was aimed at estimating the probability that the global sample was drawn 

from a number of putative populations (K), given the observed genotypes. The highest probability 

was observed for K = 1, in both analyses (without and with prior locality information, Figure 7.11), 

indicating that the overall sample (n = 330 juvenile and adult individuals from 8 sampling localities) is 

most likely representative of a single population. The results of the Kruskal-Wallis ANOVA showed 

that there were significant differences in probability estimates among K-values (p < 0.001). Tukey’s 

post hoc tests identified significant differences for the first analysis (no prior information) between K 

= 1 and K = 4 to 8, and for the second analysis (with prior information) between K = 1 and K = 3 to 8, 

but in neither case was the probability of K = 1 significantly different to the probability of K = 2. 

 

 

Figure 7.11: Mean (± SD) probability (negative log likelihood) of the data for each value of K (user-

defined numbers of putative populations), run with a) no prior information on sample localities, and 

b) including prior information on sample localities 

 

In addition, the Structure software outputs graphs displaying the estimated individual admixture 

proportions (i.e. proportions of an individual’s genome that are attributed to each of the K putative 

populations). These individual admixture proportions, for K = 1 to 8, were remarkably similar among 

the eight sampling localities, indicating similar probabilities for individuals in all sampling localities of 

coming from any of the K populations, which is expected when populations are not genetically 

discrete. Figure 7.12 represents these admixture proportions for each analysis (a – h represent 

analyses for K = 1 to 8, respectively), with each of the 330 individuals represented as a single 

multicoloured vertical line, with the proportions of each different colour representing the proportion 

of membership of that individual to each of the K putative populations. The figure also indicates that 

admixture proportions of individuals did not vary among the original sampling localities, which 

further indicates the similar likelihood of individuals within each locality of having been drawn from 

each of the K putative populations. 
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Figure 7.12: Plots of individual admixture proportions (q) from each of the putative populations for  

K = 1 to 8 (a - h), with each hypothetical population in each plot represented by a different colour. 

Each plot is comprised of 330 vertical lines, each representing one individual (x-axis), with individuals 

grouped by original sampling locality  
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Isolation by distance 

As with the mtDNA, the isolation-by-distance analysis of the microsatellite genotypes showed that 

there was no association between pairwise genetic differentiation (Slatkin’s 1995 linearised FST) and 

pairwise geographic distance (Figure 7.13), and linear regression showed no significant correlation 

between the two variables (p = 0.227, R2 = 0.022). 

 

 

Figure 7.13: Scatterplot of Slatkin’s (1995) linearised FST values for the microsatellite data, based on 

11 loci, plotted against geographic distance (km) to assess isolation by distance, at the locality level 

(n = 8 localities)  

 

Spatial autocorrelation  

Correlation coefficients (R) calculated for the different distance classes showed no spatial 

autocorrelation at any distance class, for analyses run at the locality level (n = 8 localities), 

population level (n = 13 populations), or for separate analyses of adults (n = 7 populations) or 

juveniles (n = 6 populations) (Figure 7.14, a – d). Similarly, the analyses with distance classes defined 

logically by large geographic breaks between sampling localities, and with distance classes defined to 

ensure equal sample sizes in each, showed no significant autocorrelation at any distance (Figure 

7.14, e and f). The non-significant probability of the estimated R at each distance class (p > 0.05 in all 

cases) being greater than that determined by permutation indicated no positive spatial 

autocorrelation in any distance class, in any of the six analyses. Bootstrap confidence intervals 

showed no departure from the null hypothesis of no positive spatial autocorrelation (R = 0), except 

in two cases. These were observed at the 340 to 440 km distance class in the analysis in which 

distance classes were defined based on logical geographic divisions (Figure 7.14e), and at the 267 to 

382 km distance class in the analysis with equal sample sizes in each class (Figure 7.14f). Significant 

negative spatial autocorrelation was also observed in the 120 to 200 km distance class in the analysis 

with logical distance classes (Figure 7.14e). 
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Figure 7.14: Spatial autocorrelation analyses for a) 8 localities, b) 13 populations, c) 7 adult 

populations, d) 6 juvenile populations, e) logical geographic delineation, and f) equal sample sizes in 

each distance class (note x-axes of d – f have different spatial scales). Red lines join estimated 

correlation coefficients (R, white markers) at each distance class. Dotted lines represent the 95% 

confidence interval around R, outside of which R would denote significant spatial autocorrelation 

(two-tailed). Bootstrap error bars around R that do not straddle R = 0 indicate deviation from the 

null hypothesis of no positive spatial autocorrelation, x-axis)  
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Synthesis of microsatellite results 

Selected microsatellite results were also plotted in such a way as to facilitate the transfer of 

statistical results to biological meaning. Expected heterozygosity (HE) indicated high levels of genetic 

diversity and showed remarkable similarity across all sampling localities, with negligible declines in 

the two edge populations (Figure 7.15a). The inbreeding coefficient (FIS) was low for all localities, 

showing low within-locality genetic similarity when compared to overall genetic similarity (Figure 

7.15b). The two highest FIS values were observed in Langebaan and Transkei, which (although at the 

two geographic extremes) were represented by the lowest sample sizes, while the lowest FIS was 

observed for False Bay, with the largest sample size. Most individuals were “mis-assigned” in the 

population assignment analysis (Figure 7.15c), with the maximum of 19% (in the East Kleinemonde 

locality) correctly assigned to their original sampling locality. In terms of pairwise RST values, Transkei 

(black bars) showed the greatest genetic differentiation to Langebaan (i.e. the two most distant 

localities), while Langebaan (black bars) showed the greatest differentiation to East Kleinemonde. All 

RST values were low, with no significant differences, and no geographic trend (Figure 7.15d). 

 

 

Figure 7.15: Summary of selected microsatellite analysis results recorded for each geographic 

locality; a) expected heterozygosity (HE), b) inbreeding coefficient (FIS), c) percentage of individuals 

correctly assigned to their original sampling localities, and d) pairwise RST values recorded between 

the western-most (LBN) and eastern-most (TKE) localities and each of the other localities, with the 

dotted line representing RST = 0.0. For localities with juvenile and adult samples the two age classes 

were pooled; DEH represents BRE/DEH, KNY represents KNY/SWA and WCP represents WCP/SUN 
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7.4 Discussion 

There is a general lack of information on the genetic stock structure of fish species in South African 

waters, and the white steenbras is no exception. There is also a lack of empirical evidence of the 

adult spawning migration. This chapter has combined mitochondrial and microsatellite DNA analyses 

to determine the genetic stock structure of the white steenbras, and provide further ecological 

information to augment that obtained through other techniques.  

 

7.4.1 Summary statistics, genetic diversity indices and historical population demography 

Genetic diversity 

Haplotype diversity was high in all localities, with no geographic trend. Nucleotide diversity was also 

consistent among localities and moderately high, indicating a high level of genetic diversity (Nei and 

Tajima 1981). Overall, haplotype and nucleotide diversity for the white steenbras control region fell 

within the range observed for other marine fishes (Grant and Bowen 1998) (Table 7.21).  

 

When compared to other South African sparids, genetic diversity was similar to that of the territorial 

reef-dwelling red roman (Teske et al. 2010), yet higher than that recorded for Cape stumpnose 

Rhabdosargus holubi (Oosthuizen 2006). The striped seabream Lithognathus mormyrus exhibited 

similar haplotype diversity but considerably higher nucleotide diversity (Sala-Bozano et al. 2009). In 

the Eastern Atlantic and Mediterranean Sea, the latter species exhibited lower haplotype diversity, 

but higher nucleotide diversity (Bargelloni et al. 2003) than white steenbras, indicative of relatively 

fewer haplotypes but greater genetic variability among them. When compared to sparids in other 

areas, white steenbras genetic diversity was similar to Spondyliosoma cantharus, but higher than 

Pagrus pagrus, Dentex dentex and Pagellus bogaraveo in the Eastern Atlantic and Mediterranean 

Sea (Bargelloni et al. 2003). The differences between white steenbras and these other species may 

be a result of differences in local oceanographic conditions and geological and climatic histories. 

 

Compared to other South African marine species, diversity indices were higher than those of the 

shallow- and deep-water hakes Merluccius capensis and M. paradoxus, respectively (von der Heyden 

et al. 2007), but remarkably similar to those obtained for banded goby (Gobiidae), a southern 

African endemic with low levels of adult movement (Neethling et al. 2008). The similarity of white 

steenbras with banded goby and the red roman in terms of genetic homogeneity across their ranges, 

despite vastly different life history strategies, is likely a result of dispersal during their long larval 

phases (Teske et al. 2010), suggesting that the distribution of genetic diversity is largely influenced 

by oceanographic conditions. 
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When compared to other estuarine-associated fishes, white steenbras genetic diversity was lower 

than that of the white seabream Diplodus sargus in the Northeast Atlantic and Mediterranean Sea 

(Domingues et al. 2007). The spotted grunter in South Africa (Klopper 2005) and Australian 

barramundi Lates calcarifer in Northern Australia (Chenoweth et al. 1998) exhibited lower haplotype 

diversity but higher nucleotide diversity than white steenbras, indicating greater variability among 

haplotypes. The higher nucleotide diversity observed in the spotted grunter is possibly due to the 

large population size occurring around the South African coastline, resulting in lower loss of genetic 

diversity due to drift, and the consequent accumulation of mutations over time (Klopper 2005), 

whereas the higher nucleotide diversity in Australian barramundi is caused by the strong spatial 

genetic structuring (Chenoweth et al. 1998). 

 

Table 7.21: Haplotype diversity (h) and nucleotide diversity (π) indices for population studies on 

selected fishes, based on mitochondrial control region sequencing 

Species h π Source 

Southern Africa 
   Lithognathus lithognathus 0.997 - 1.00 0.009 - 0.013 Current study 

Lithognathus mormyrus 0.967 0.051 Sala-Bozano et al. (2009) 

Chrysoblephus laticeps 1.0 0.005 – 0.011 Teske et al. 2010 

Caffrogobius caffer 0.965 0.0100 Neethling et al. (2008) 

Rhabdosargus holubi  0.89 – 0.96 0.0048 – 0.0064 Oosthuizen 2006 

Hippocampus capensis 0.46 - 0.84 0.0029 - 0.00461 Teske et al. (2003) 

Merluccius capensis  0.85 – 0.88 0.0057 – 0.0063 von der Heyden et al. (2007) 

Merluccius paradoxus 0.44 – 0.57 0.0011 – 0.0015 von der Heyden et al. (2007) 

Pomadasys commersonnii 0.968 – 0.987 0.021 – 0.023 Klopper (2005) 

Atlantic and Mediterranean Sea 
  Thunnus thynnus 0.986 0.0179 Boustany et al. (2008) 

Diplodus sargus 0.85 – 1.0 0.024 – 0.036 Domingues et al. (2007) 

Spondyliosoma cantharus 0.94 – 0.98 0.016 – 0.018 Bargelloni et al. (2003) 

Pagrus pagrus  0.35 – 0.53  0.003 – 0.006 Bargelloni et al. (2003) 

Dentex dentex  0.49 – 0.67 0.008 – 0.049 Bargelloni et al. (2003) 

Pagellus bogaraveo 0.069 – 0.52 0.0004 – 0.005 Bargelloni et al. (2003) 

Lithognathus mormyrus  0.62 – 0.90 0.012 – 0.017 Bargelloni et al. (2003) 

Pacific 
   Gadus macrocephalus 0.41 – 0.71 0.0002 – 0.0012 Liu et al. (2010) 

Lateolabrax maculatus  0.96 – 1.0 0.008 – 0.015 Liu et al. (2006) 

Lateolabrax japonicus 0.96 – 1.0 0.027 – 0.035 Liu et al. (2006) 

Australia 
   Lethrinus miniatus 0.610 – 0.980 0.004 – 0.200 van Herwerden et al. (2009) 

Lutjanus sebae   0.690 – 0.920 0.0032 – 0.0076 van Herwerden et al. (2009) 

Lutjanus carponotatus  0.658 – 0.881 0.003 – 0.013 Evans et al. (2010) 

Plectropomus maculatus  0.889 – 0.984 0.003 – 0.017 Evans et al. (2010) 

Lates calcarifer 0.763 – 0.933 0.0269 – 0.0598 Chenoweth et al. (1998) 
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Genetic diversity estimated using polymorphic microsatellite loci was high, for all localities and 

overall, as for the mtDNA. Of the 15 loci initially tested, four were excluded at different stages of the 

analyses. PBt007 and LLt024, isolated in Pachymetopon blochii and white steenbras, respectively 

(Reid et al. submitted), and PB106 isolated in Pagellus bogaraveo (Piňera et al. 2006) were excluded 

partway through the study due to poor amplification and departure from HWE. CL011, originally 

isolated in red roman (Teske et al. 2009), was later excluded due to departure from HWE. Therefore, 

it seems that for white steenbras, loci isolated from related species performed less successfully. For 

the remaining loci, observed heterozygosities (HO) matched those expected (HE). Genetic diversity, in 

terms of mean number of alleles, mean allelic richness and observed heterozygosity, was remarkably 

consistent among sampling localities, showing little evidence of spatial genetic variability. 

  

While HO is likely to vary widely, depending on the species (even within a species), the specific loci 

scored, the number of loci scored and the sample sizes obtained (Fritsch et al. 2007), those observed 

for white steenbras (0.72 – 0.79) were consistent with those of numerous other fishes, for example 

sea bass Dicentrarchus labrax (0.75 – 0.80, Fritsch et al. 2007), and Japanese eel Anguilla japonica 

(0.75 – 0.86, Han et al. 2010), and fell within the ranges of others, such as red snapper Epinephelus 

morio (0.49 – 0.92, Zatcoff et al. 2004) and coho salmon Oncorhynchus kisutch (0.55 – 0.91, Beacham 

et al. 1995). When compared to other sparids, white steenbras HO was higher than those observed 

for the white sea bream (0.31 to 0.51, Perez-Ruzafa et al. 2006), but similar to those observed for 

gilthead sea bream Sparus aurata (0.74 to 0.86, De Innocentiis et al. 2004) and striped sea bream 

(0.62 to 0.87, Sala-Bozano et al. 2009), in the western Mediterranean and Atlantic Ocean. However, 

HO (0.72 – 0.79), NA (8.17 – 10.0) and AR (7.72 – 8.15) in the different localities were all slightly lower 

than those estimated for red roman along the South African coastline (Teske et al. 2010) (HO: 0.78 – 

0.89, NA: 8.29 – 15.0, AR: 8.20 – 8.65).  

 

Population size and demographic history  

Climatic oscillations and major glaciations during the Pleistocene period are likely to have caused 

population expansion and decline events (Grant and Bowen 1998), which would have shaped the 

contemporary population structures of most extant species (Excoffier 2004). Grant and Bowen 

(1998) suggested that a combination of high haplotype diversity and relatively high nucleotide 

diversity (> 0.005) are indicative of secondary contact between previously differentiated allopatric 

lineages, or a long evolutionary history in a large stable population. Conversely, Neethling et al. 

(2008) suggested that nucleotide diversity of 0.010 is low, and combined with high haplotype 

diversity reflects a population expansion associated with low genetic differentiation.  
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Allopatric white steenbras populations are unlikely, given the high larval dispersal capability, and the 

migratory adult life stage. However, historical catch data from Namibia indicate catches beyond the 

northern limit of its published distribution range, the mouth of the Orange River (Smith and Smith 

1986). The possibility of a secondary spawning aggregation in this region has been suggested, but 

that overexploitation during the 20th century reduced this stock to non-viability (SJ Lamberth, DAFF, 

pers. comm.). However, pairwise genetic comparisons showed no evidence of genetic differentiation 

among localities, and all sampling localities were represented in the main clade and smaller clade of 

the haplotype network, suggesting that the presence of extant allopatric lineages is unlikely.  

 

Much about the demographic history of a population can be inferred from the shape of its mismatch 

distribution (Rogers and Harpending 1992). The bimodal shape of the white steenbras distribution 

closely reflected those simulated by Aris-Brosou and Excoffier (1996) for populations at stationarity 

and with homogeneity of mutation rates among nucleotide sites. However, Harpending’s (1994) 

raggedness index (0.005) was low, indicative of a historical population expansion (Excoffier and 

Lischer 2009), and not dissimilar to other South African marine species, spotted grunter (0.005), 

dusky kob Argyrosomus japonicus (0.001, Klopper 2005) and red roman (0.020, Forget 2007). 

Consistent with this was the non-significant departure of the observed distribution from that 

expected under population expansion. A similar non-significant bimodal distribution was observed 

for Japanese sea bass Lateolabrax japonicus, which the authors interpreted as population expansion 

(Liu et al. 2006). Therefore, the bimodal shape of the distribution may reflect historical population 

stationarity, with the larger left-hand peak indicating a more recent population expansion. The non-

significance of the departure from a unimodal distribution is likely a result of the magnitude of this 

peak, which could be interpreted as an L-shaped distribution and, therefore, population expansion 

after a decline event (Rogers and Harpending 1992). It appears, therefore, that the population 

exhibited a long period of stationarity, followed by a population decline and subsequent expansion. 

Historical population expansions have also been inferred from the mismatch distributions of other 

South African marine fishes; for example, Cape stumpnose (Oosthuizen 2006), shallow-water hake 

(von der Heyden et al. 2007), banded goby (Neethling et al. 2008) and red roman (Teske et al. 2010). 

The significant negative values of Tajima’s (1989) D and Fu’s (1997) FS provide further evidence of an 

expanding population (Tajima 1989, Aris-Brosou and Excoffier 1996).  

 

The notion of a post-decline expansion is supported by the haplotype network (Figure 7.2). The high 

frequencies of rare haplotypes, which are mutational derivatives of a few common haplotypes, has 

been observed in the mtDNA control regions of numerous fish species (Billington and Hebert 1991), 
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for example red snapper Lutjanus campechanus (Camper et al. 1993), red drum Sciaenops ocellatus 

(Gold et al. 1993), white seabream (Bargelloni et al. 2005) and shallow-water hake (von der Heyden 

et al. 2007). The star-like morphology of the main clade of the network and the high number of rare 

haplotypes (which represent new mutations) are indicative of a population expansion (Slatkin and 

Hudson 1991, Fu and Li 1993). There was also one long external branch, with up to 17 mutational 

steps. Fu and Li (1993) suggested that an excess of mutations in the external branches can indicate 

the presence of negative selection. However, selection is likely to result in low genetic diversity 

indices, such as those observed for Pacific cod Gadus macrocephalus (Liu et al. 2010), which were 

considerably lower than those observed for white steenbras (Table 7.21). A topology with a few 

common haplotypes and high numbers of rare haplotypes, and a long external branch with high 

numbers of mutations, was also observed for red roman (Teske et al. 2010). These authors proposed 

that the external branch may have been the result of a separate genetic lineage. The possibility of an 

extant second genetic lineage of white steenbras is unlikely, based on the migratory adult life stage 

and the restricted range of this species. However, this possibility cannot be discounted altogether 

(Grant and Bowen 1998, Teske et al. 2010). 

 

The estimated time since the start of the white steenbras population expansion, 21 500 to 7 000 

years before present, is consistent with values from other South African marine taxa, such as 14 800 

to 9 900 years for red roman (Forget 2007), 23 000 to 4 500 years for shallow-water hake (von der 

Heyden et al. 2007) and 11 400 to 4 600 years for deep-water hake (von der Heyden et al. 2010). 

Similarly, Tolley et al. (2005) estimated time since population expansion in south coast rock lobster 

at between 10 600 and 5 300 years. It must be noted here that time since population expansion was 

estimated based on , which is taken as the mode of the mismatch distribution (Rogers and 

Harpending 1992). Furthermore, these times are based on mutation rates inferred from other 

species, and that confidence limits around these estimates are broad. However, they still provide a 

realistic estimate of time since expansion. The agreement among taxa provides testimony to this. 

Other than the upper estimates of 21 500 years for white steenbras and 23 000 years for shallow-

water hake, most South African species cited here showed times since expansion approximately 

within the last 15 000 years. This roughly coincides with the glacial Holocene temperature increase 

of about 5.5°C (Sachs et al. 2001, von der Heyden et al. 2010). Expansions occurring within the last 

10 000 years would have occurred since the end of the last glaciation period (von der Heyden et al. 

2007). The concordance in South Africa, among a range of species (from crustaceans to teleosts), 

provides evidence that the population structures of marine organisms within this region have been 

shaped by similar biogeographical factors (Bremer et al. 2005), such as historical climatic conditions. 
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Tests for selective neutrality  

Although the mitochondrial control region is considered not to be subject to natural selection (Liu et 

al. 2010), tests for selective neutrality have been incorporated into studies of this gene region, as the 

control region may be affected through the process of linked selection (Tajima 1989, Fu 1997). These 

tests, however, are all based on certain assumptions, such as stationary populations, no migration, 

and homogeneity of mutation rates at different nucleotide sites (Tajima 1989, Fu and Li 1993, Aris-

Brosou and Excoffier et al. 1996, Fu 1997), many of which are unrealistic for natural populations 

(Excoffier et al. 1992). As such, neutrality tests are sensitive to violations of these assumptions (Aris-

Brosou and Excoffier 1996, Ford 2002) and, as a result, have largely become regarded in the 

literature more as tests for demographic population changes than for selective neutrality (Guinand 

et al. 2004, Neethling et al. 2008, van Herwerden et al. 2009).  

 

Overall, the four tests for neutrality provided inconsistent results. Wattersons’s F showed no 

evidence of selection on the gene region under study, at any level, while roughly half the 

populations and localities differed significantly from neutrality based on Tajima’s D, and Fu and Li’s 

D* and F* values for most localities and populations were not significant, thus failing to reject the 

null hypothesis of selective neutrality. Conversely, all estimates of Fu’s FS were significant with large 

negative values, usually indicative of natural selection (Fu 1997). Although significant estimates of 

Tajima’s D are expected in the presence of natural selection, Tajima (1989) cautioned that negative 

values could be indicative of a population expansion and Aris-Brosou and Excoffier (1996) showed 

that under sudden expansion of large magnitude, Tajima’s D can be expected to depart from 

neutrality. The non-significant estimates could also indicate the absence, or simultaneous presence 

of both population expansion and heterogeneity of mutation rates at different loci, which have 

opposing effects on Tajima’s D (Aris-Brosou and Excoffier 1996). The test described by Fu and Li 

(1993) is suggested to be among the most powerful for testing for selective neutrality, particularly in 

the presence of background selection (Fu 1997). Bertorelle and Slatkin (1995) suggested that the 

neutrality tests of Tajima (1989), Fu and Li (1993) and Fu (1997) may not be appropriate in the 

presence of heterogeneity of mutation rates, as they are based on the infinite sites model, which 

assumes homogeneity of mutation rates. Furthermore, Fu (1997) suggested that if the estimates of 

FS are significant, while those of D* and F* are not, the observed polymorphism is likely a result of 

population expansion, or possible genetic hitch-hiking. Therefore, the results of the four tests of 

selective neutrality are more likely an artefact of population expansion, than robust evidence against 

selective neutrality. Further insight could be provided by the use of additional genetic markers. 
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7.4.2 Comparative analyses of genetic differentiation  

Analysis of molecular variance 

AMOVA is designed to delineate the genetic variability in a global sample, and identify the level at 

which most variability occurs. In the mtDNA, the greatest source of variability was identified within 

populations (i.e. inter-individual variability), while in the microsatellite loci the greatest variability 

was recorded within individuals. For the mtDNA, significant genetic variance was identified among 

geographic localities, although the magnitude of this variance was negligible. Furthermore, the 

microsatellite loci showed low, non-significant genetic variance among localities, indicating low 

levels of genetic variability among geographic localities. 

 

The significant variability observed among geographic localities in the mtDNA, but not in the 

microsatellite loci, might reflect historical rather than contemporary divergence, as mtDNA has been 

shown to be more suited to assessment of historical population demography, while the latter are 

more suited to assessment of contemporary population structure (Zhang and Hewitt 2003). For 

example, microsatellites showed secondary contact and extensive inter-breeding among populations 

of striped sea bream (sand steenbras) along the South African east coast, for which mtDNA revealed 

deeply divergent lineages (Sala-Bozano et al. 2009). This highlights the value of employing a 

mitochondrial region and microsatellites to elucidate the patterns of gene flow and stock structure 

(Lemaire et al. 2005).  

 

The variance component at the among localities level is determined by the correlations between 

random haplotypes drawn from each locality and from the entire sample (Excoffier et al. 1992). In a 

global sample exhibiting high haplotype diversity and a high proportion of rare haplotypes, as in the 

current study, differences among localities might be expected (Excoffier et al. 1992). Although some 

rare haplotypes may be present at few localities, it is more likely that these simply represent alleles 

that are rare in the species, throughout its distribution. With 174 haplotypes identified and sample 

sizes ranging from 21 to 55, it was not possible for a single locality to be entirely representative of 

the haplotypes occurring within the global sample, suggesting that increased sample sizes would 

render more shared haplotypes among localities, and likely further reduce the already low levels of 

genetic differentiation. The lack of genetic divergence among localities is supported by the low 

pairwise FST values and the isolation-by-distance analysis. This suggests that the observed differences 

are more likely an artefact of a few quite different haplotypes in one or two populations than 

evidence of spatial genetic stock structure.  
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Genetic differentiation and pairwise population comparisons 

The level of gene flow in marine organisms is expected to be higher than in freshwater species, as a 

result of the potential lack of physical barriers to gene flow and characteristically larger population 

sizes of marine species (Grant and Bowen 1998, Billington 2003). Exact tests for differentiation in the 

mtDNA showed few significant pairwise comparisons at the locality and population levels, while no 

significant differences were observed in the microsatellite loci at either level. Furthermore, the low, 

non-significant FST and RST values confirm the lack of differentiation at locality and population levels. 

Negative FST and RST values were common. This can occur when genetic differences are smaller than 

the observed sampling error, and these values can be interpreted as zero, indicating no restriction to 

gene flow between groups (Waples 1998). Overall, the results indicate low genetic differentiation 

and high levels of gene flow in white steenbras throughout its core distribution (Waples 1998).  

 

Similar results were obtained for two other sparids and numerous other taxa along the South African 

coastline. Cape stumpnose and red roman showed similarly low differentiation between localities, 

and the authors concluded that there were no barriers to gene flow in either species (Oosthuizen 

2006, Teske et al. 2010). Von der Heyden et al. (2007) drew the same conclusions of panmixia in the 

shallow-water hake, as did Neethling et al. (2008) for banded goby. Spotted grunter, an estuarine-

dependent coastal migrant like white steenbras, also showed no significant genetic differentiation 

between coastal regions (Klopper 2005).  

 

In contrast, most marine invertebrates in South Africa, such as the abalone Haliotis midae (Evans et 

al. 2004), the estuarine mud prawn (Teske et al. 2006), and the brown mussel Perna perna (Nicastro 

et al. 2008, Zardi et al. 2011), as well as some fish species, such as the Knysna seahorse 

Hippocampus capensis (Teske et al. 2003) and the deep-water hake (von der Heyden et al. 2007), 

exhibited significant genetic differentiation among coastal regions at some point along the South 

African coastline. The results suggest that taxa characterised by low levels of adult dispersal 

generally show multiple genetically-distinct populations. Species with high adult dispersal 

capabilities generally showed higher levels of gene flow (as predicted by Avise et al. 1987), 

suggesting that dispersal at the adult life stage is an important mechanism maintaining gene flow. In 

some species, larval dispersal alone may be insufficient to maintain genetic homogeneity among 

coastal regions. The banded goby appears to be an exception, with high levels of gene flow despite 

low levels of adult dispersal; although this species is thought to have an extended pelagic larval 

phase, as well as high fecundity and strong post-flexion swimming ability (Neethling et al. 2008). 
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Relatedness 

In contrast to the differentiation tests, which provided a measure of the genetic differentiation 

between groups, the relatedness analyses estimated coefficients of relatedness relative to the global 

sample (Queller and Goodnight 1989). Overall, there was low intra-population relatedness and no 

locality was more closely related within than it was to the global sample, providing evidence of a low 

level of inbreeding within different coastal regions, confirming the lack of spatial genetic structure. 

Samples from all localities were, therefore, most likely drawn from a single stock (Lynch and Ritland 

1999).  

 

7.4.3 Clustering analyses (microsatellites)  

Factorial correspondence analysis 

In the four sets of groups analysed by FCA (results were only presented for eight sampling localities 

and for six juvenile populations), there was no evidence of one or more groups showing distinct 

separation from the rest. Furthermore, the distributions of the individuals along the axes of the FCA 

ordination, based on differences in allele frequencies, showed no obvious geographic trends in any 

of the four analyses, thereby providing evidence of a low level of spatial genetic structure and no 

isolation of populations.  

 

Population assignment 

The results of the population assignment analysis which adopted the “leave one out” approach 

differed considerably from the analysis that did not adopt this approach, indicating that the latter 

analysis is strongly biased. The results show that the decision whether to include or exclude each 

individual genotype from the population allele frequency calculations when assigning that individual 

has a major effect on the outcome. This is a result of the high number of unique genotypes, created 

by the combination of 11 loci, most of which are highly polymorphic (Waser and Strobeck 1998). 

When the individual allele frequencies were excluded during this process, the programme was 

largely unable to assign individuals to their original sampling localities. For all sampling populations, 

at least one member of the original sample was allocated to every other sampling population, and 

relatively evenly among localities. The exception was the original Transkei locality, from which no 

individuals were assigned to the East London or Langebaan populations. Knutsen et al. (2003, 2004) 

were able to successfully assign the majority of Atlantic cod Gadus morhua sampled from a range of 

localities in the Norwegian Skagerrak region to their original sampling localities, which showed 

significant genetic differentiation. A similar result was obtained for populations of black rockfish 

Sebastes melanops along the coasts of Oregon and Washington (Miller et al. 2005). While the 
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proportions of individuals assigned to each population from each of the original sampling localities 

varied among localities, the inability to correctly assign individuals to their sampling localities 

provides evidence of a lack of locality-specific alleles and/or allele frequencies, and a lack of spatial 

genetic divergence (Paetkau et al. 1995), which agrees with results from the relatedness analysis, 

and the low non-significant RST values. 

 

Structure analysis 

Pritchard et al. (2010) suggested that biologists attempting to elucidate the most likely possible 

number of populations (K) should be wary not to overestimate K. Rather, the lowest value of K that 

captures the major structure in the data should be accepted (one might in this instance make an 

analogy to Occam’s razor, or the approach of maximum parsimony used in other genetic methods). 

The Structure analysis indicated that the most likely number of actual populations from which the 

330 white steenbras were drawn, was one, indicating a single, well-mixed stock. The Structure 

analysis has been shown to successfully delineate divergent populations in species exhibiting 

significant pairwise differentiation, for example northern pike Esox lucius (Laikre et al. 2005), striped 

sea bream (Sala-Bozano et al. 2009) and the estuarine rainbow smelt Osmerus mordax (Bradbury et 

al. 2008), suggesting that the analysis is a reliable technique for identification of the presence of 

genetic stock structure.  

 

Under the admixture model, i.e. admixture of individuals between sampling localities (Pritchard et 

al. 2000), individuals are assumed to have equal probability of coming from each population, 

whereas, under the no admixture model, i.e. discrete populations, each individual is expected to 

have a greater probability of coming from one discrete population than the others. Therefore, based 

on the previous results indicating that there is a high level of gene flow and low genetic 

differentiation within white steenbras, it was expected that the estimated posterior probabilities of 

individuals should be roughly evenly distributed among each of the k populations. In most cases this 

was the observed result. Furthermore, the individual admixture proportions, for K = 2 to 8, were 

consistent among the original eight sampling localities, reflecting the similar proportions of 

individuals from each population assigned to each sampling locality in the population assignment 

analysis. A similar result was obtained for red roman sampled from five sites along the South African 

coastline, including an offshore sampling locality, with the highest probability observed when 

samples were assumed to be drawn from a single population (Teske et al. 2010). The results provide 

evidence that samples drawn from different coastal regions are not genetically divergent. 
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7.4.4 Relating genetic results to geographic location  

Spatial Analysis of Molecular Variance, isolation by distance and spatial autocorrelation 

SAMOVA, isolation by distance and spatial autocorrelation analyses assessed the spatial distribution 

of genetic differentiation. The SAMOVA grouped non-adjacent localities, having little biological 

meaning (Dupanloup et al. 2002). This is likely a result of the low genetic differentiation among 

localities, identified by the pairwise FST values, as the SAMOVA aims to identify maximally 

differentiated groups (Dupanloup et al. 2002). Therefore, the SAMOVA was unable to identify 

biologically meaningful groups with a greater variability than that observed in the overall sample.  

 

In contrast to SAMOVA, which seeks to identify abrupt genetic divergence, isolation-by-distance and 

spatial autocorrelation analyses are aimed at detecting genetic differentiation along a gradient. The 

analyses showed no showed no evidence of isolation by distance, or spatial autocorrelation, 

reflecting the low and non-significant pairwise FST and RST values observed at the locality and 

population levels. Han et al. (2010) found low genetic differentiation and no evidence of isolation by 

distance in the Japanese eel, which they attributed to adult migration and oceanic dispersal during a 

long pelagic larval phase. Similarly, Neethling et al. (2008) and Teske et al. (2010) found no isolation 

by distance in banded goby and red roman, respectively, and their SAMOVA analyses showed 

biologically meaningless groupings of non-adjacent sampling localities, confirming the lack of 

regional clustering of haplotypes. Results for all three species can be ascribed to high levels of gene 

flow and low genetic differentiation in species that are well-mixed throughout their ranges. 

 

Isolation by distance was identified in three estuarine-associated fishes with pelagic larval phases 

but low adult dispersal; Australian barramundi in Northwest Australia (Chenoweth et al. 1998), 

white sea bream in the Northeast Atlantic and Mediterranean (Domingues et al. 2007) and rainbow 

smelt on the east coast of Canada (Bradbury et al. 2008). In contrast, spotted grunter (Klopper 2005) 

and white steenbras in South Africa, which exhibit large-scale coastal migrations, showed no 

isolation by distance, highlighting the role that adult dispersal plays in maintaining gene flow. 

 

Overall, the spatial autocorrelation analyses conducted on the microsatellite genotypes showed little 

evidence of spatial autocorrelation, showing that individuals sampled from populations within close 

geographical proximity are not more closely related to those sampled at greater distances (Smouse 

and Peakall 1999), for the global sample or for juveniles and adults separately. There was, however, 

some evidence of positive spatial autocorrelation between 330 and 382 km. This distance represents 

the pairwise comparisons between Woody Cape/Sundays and Transkei, and Woody Cape/Sundays 
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and Knysna/Swartvlei, which showed pairwise RST = -0.006 and -0.005, respectively. The fact that 

both values were effectively zero, and that there were numerous pairs of geographically more 

proximate localities with greater RST (with evidence of significant negative spatial autocorrelation 

between 120 and 200 km), suggests that the observed positive spatial autocorrelation is an artefact 

of the low overall differentiation. The results are, therefore, not conclusive of positive spatial 

autocorrelation in the samples. There was also no evidence of spatial autocorrelation in the 

permutations tests, at any distance class, in any of the analyses.  

 

7.5 Conclusions 

Overall, the results of the different analyses for the mtDNA and microsatellite loci were in close 

agreement, providing evidence of a highly genetically diverse stock, which was confirmed by the 

AMOVAs as high levels of variability within and among individuals. There was no evidence that 

genetic diversity decreased with distance from the suggested spawning grounds, and negligible 

evidence of edge effects causing lower genetic diversity at the limits of the species’ core distribution.  

 

Reductions in genetic diversity as a result of overexploitation have been reported for certain marine 

fish species, for example the orange roughy Hoplostethus atlanticus (Smith et al. 1991) and New 

Zealand snapper Pagrus auratus (Hauser et al. 2002). It is also acknowledged that the fishery effects 

on genetic diversity may be delayed and, for white steenbras, there is no pre-exploitation baseline 

estimate of genetic diversity against which current estimates can be compared. However, the high 

genetic diversity recorded and its congruence with other marine species, as well as the lack of 

genetic differentiation between juvenile and adult samples suggest that overexploitation of white 

steenbras has not resulted in reduced genetic diversity in this species. Genetic material extracted 

from historic samples would be necessary to test this directly.  

 

Conventional dart tagging provided little evidence of white steenbras moving between the Eastern 

and Western Cape provinces (see Chapter 6). This posed the question of whether these areas were 

represented by separate stocks, with connectivity restricted by some physical barrier. Griffiths 

(1997a) and Griffiths et al. (2002) identified separate south coast and south east coast stocks of 

silver kob Argyrosomus inodorus and white stumpnose Rhabdosargus globiceps, respectively. 

Similarly, Griffiths and Wilke (2002) recorded a low level of exchange of carpenter Argyrozona 

argyrozona between Tsitsikamma and Mossel Bay. The similarity among species in the region 

separating distinct stocks suggests separation by a common oceanographic feature, such as the cold 

water ridge extending offshore from the coast between Tsitsikamma and Mossel Bay (Figure 1.3).  
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The low pairwise FST and RST values, the lack of geographic subdivisions in the haplotype network, the 

inference of a single population from the Structure analysis, the low FIS values for the microsatellite 

loci and the failure to correctly assign samples to their source populations confirm the lack of major 

barriers to gene flow among coastal regions in white steenbras. The lack of isolation by distance 

confirms the absence of a gradual genetic differentiation across the distribution range. It is likely 

that gene flow is maintained by adult spawning migrations and larval dispersal, with little post-

settlement migration. Therefore, the low number of recaptures of conventionally dart tagged white 

steenbras representing movements between the Eastern and Western Cape provinces (n = 2) is likely 

a result of the low proportion of adults recaptured. The observed results, and agreement between 

mtDNA and microsatellite loci, provide robust evidence of a single, well-mixed stock with high levels 

of gene flow. Numerous phylogeographic breaks have been observed for marine species in South 

Africa, such as Cape Point (Teske et al. 2011), Cape Agulhas (Evans et al. 2004, Teske et al. 2006, von 

der Heyden et al. 2008), between Knysna and Cape St Francis (Griffiths 1997b), between Kenton on 

Sea and Haga Haga (Zardi et al. 2011), and between Haga Haga and the Umkomazi Estuary (Teske et 

al. 2006). Therefore, gene flow in white steenbras among coastal regions is unaffected by the 

geographical or oceanic features that have been identified as barriers to gene flow in other South 

African marine species.  

 

The results of the genetic analyses cannot directly confirm that adult white steenbras undertake 

annual spawning migrations between False Bay and the Transkei, nor whether a single spawning 

event takes place. However, the genetic analyses have shown that white steenbras is present as a 

single genetic unit. The lack of genetic divergence along the coastline confirms the high levels of 

connectivity and gene flow throughout the core distribution of the species, and results of this 

chapter and previous chapters simultaneously oppose the idea of isolated spawning aggregations or 

discrete populations. The presence of a single, well-mixed stock can improve the resilience of the 

species and prevent localised extinction that may occur due to unfavourable environmental 

conditions or through anthropogenic impacts, through mechanisms such as larval dispersal and adult 

migration.  

 

Management considerations 

In the absence of morphological or meristic differences to delineate discrete stocks, white steenbras 

has always been managed as a single stock. There have, however, been differential commercial and 

recreational restrictions applied in different geographical areas, such as commercial harvesting in 

certain areas within the Western Cape Province only (until 2001, when the commercial exemption 
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for white steenbras was withdrawn and a complete commercial ban imposed). Based on the results 

of this chapter, white steenbras should be managed as a single stock. This is not, however, to say 

that management of white steenbras need not consider the genetic implications of these results, as 

excessive local harvest in one area, particularly areas of known aggregation, is likely to affect the 

entire stock, and concomitantly those dependent on the resource in other areas. Furthermore, the 

number of migrants per generation required to mask the signal of inherent stock structure is low, 

and the actual number of migrants per generation from one area may be insufficient to rebuild a 

depleted population in another (Hauser and Carvalho 2008). Corrective management will require 

assimilation of all available biological, ecological and social information pertaining to white 

steenbras, to effectively address the conservation needs of the species. 
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Chapter 8 

Fishery and management implications 

 

8.1 Introduction 

The persistence of a fishery species relies on active and effective management. Regulations should 

consider environmental and anthropogenic changes and, thus, be dynamic and adaptable in their 

interpretation and implementation. Effective management requires a comprehensive understanding 

of the life history of exploited species, as well as information on environmental and anthropogenic 

threats, factors affecting its life history, distribution, and movement behaviour, and an 

understanding of its exploitation (for example, the respective fisheries for a species). Thus, 

information on which to base management decisions should be drawn from all available sources. 

 

The commercial fisheries targeting “linefish” in South Africa have largely been managed through 

effort (input) restrictions, while the total control of effort in the recreational sector is not possible 

(Attwood and Farquhar 1999), and recreational fisheries are generally managed through catch 

(output) restrictions on individual anglers. However, as a result of overexploitation, the stocks of 

numerous linefish resources in South Africa have collapsed (Griffiths 2000). Technical improvements 

in fishing equipment, ineffective regulations, continually increasing recreational participation and 

inadequate enforcement of regulations have all contributed to the observed declines (Penney 1991, 

McGrath et al. 1997, Attwood and Farquhar 1999, Mann et al. 2003).  

 

A Linefish Management Protocol (LMP) was implemented in South Africa in 1999 to provide a 

standardised methodology for assessing the status of linefish stocks. The LMP required that an 

Operational Management Plan (OMP) be developed for each species, which would clearly define a 

priori the management objectives for the species, the type of stock assessment analysis to be 

conducted, the type of catch data to be used, and the relevant management actions to be taken, 

based on the outcomes of the analysis (Griffiths et al. 1999). The assessment techniques included 

single species per-recruit analyses, age-based production models and virtual population analysis. 

 

Van der Elst and Adkin (1991) stated that the stock of white steenbras was “sound”, meaning “no 

immediate concern; no negative trends evident”; “abundant species – not under pressure”. 

However, Bennett (1993a) conducted per-recruit analyses on white steenbras, based on competition 

shore catch data recorded up to 1991, and reported a spawner biomass per recruit (SB/R) of just 6% 
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of pristine. According to the guidelines of the LMP, stocks of species with SB/R < 25% should be 

considered as collapsed (Griffiths et al. 1999). Therefore, overexploitation had resulted in the 

collapse of the white steenbras stock, as early as 1991.  

 

The LMP recommends that stocks are reassessed every three to five years, suggesting that an 

updated assessment for white steenbras is long overdue. However, standard stock assessment 

techniques as prescribed in the LMP are not suitable for all species, particularly those targeted by 

multiple fisheries (Penney 1991), and for many linefish species suitable data are not available 

(Griffiths et al. 1999). Age-structured production modelling requires a reliable estimate of natural 

mortality, which may be difficult to obtain for many species (Attwood 2003), particularly those 

occurring in low densities. The lack of recent catch data from the commercial sector and the low 

numbers of white steenbras recorded during roving creel surveys of the recreational shore fishery 

precluded the possibility of using standard stock assessment techniques; therefore, an alternative 

approach was required. In such cases, suitable stock status indicators (for example CPUE relative to 

historic or protected area values) may be used (Griffiths et al. 1999).  

 

The aim of this chapter was to assess the current stock status of white steenbras, to provide baseline 

information necessary for the corrective management of the species. This was achieved by 

assimilating available historical and recent white steenbras catch and effort data, from fishery-

dependent and fishery-independent sources, and elucidating long-term trends in catch, effort and 

CPUE relative to historical management measures, in the fishery sectors targeting white steenbras.  

 

8.2 Linefish management in South Africa  

Initially fishing control measures in the recreational and commercial sectors were technical (e.g. 

government-dictated mesh sizes); however, open access to the resources resulted in overharvesting 

of stocks and it was recommended that participation be restricted, in order to ‘control’ the effort 

exerted on the resource. Access restrictions were introduced in the form of licences or permits, 

initially in the commercial sector but later in the recreational sector as well, without which one was 

denied legal access to the resource. These restrictions were governed by a series of Sea Fisheries 

Acts (Hutton and Pitcher 1998). The first legislation to protect South Africa’s living marine resources 

was that of the Sea Fisheries Act 1940, superseded by amended Acts in 1973 and 1988. These Acts 

were largely technical in nature, detailing institutional requirements, policies and responsibilities. In 

1985, a Linefish Management Framework was introduced (Government Gazette No. 9543, December 

1984), which included the first catch restrictions for numerous linefish species, aimed at providing 
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improved protection for those species showing stock declines (Griffiths 2000). Numerous additional 

regulatory measures were implemented over the years, including amendments to these regulations 

in response to stock declines, new restrictions such as closed seasons and the proclamation of a 

number of MPAs, all of which were aimed at decreasing effort in the respective fishery. The Marine 

Living Resources Act (MLRA, Government Gazette No. 18930) was promulgated in 1998 to provide 

for equitable access to and sustainable utilisation of living marine resources (Witbooi 2006), and 

detailed the processes for the allocation of permits and quotas, as well as the setting of catch and 

effort restrictions.  

 

The linefishery has many participants, including recreational anglers (shore or boat-based along the 

coasts and in estuaries), full-time commercial fishers (boat-based only), and subsistence fishers, 

complicating enforcement, management and collection of catch and effort data (Sauer et al. 1997). 

Certain linefish species also form important components of the commercial net fisheries, which has 

led to conflict among fishery sectors (Lamberth et al. 1997). The high number of access points and 

the wide operational range of the fisheries further complicate their management (Sauer et al. 2003). 

 

Governance in the recreational sector and the commercial linefishery is characterised by a series of 

catch restrictions imposed on licensed fishers, including minimum legal size and maximum daily bag 

limits, and effort restrictions, through area and seasonal closure. However, in the absence of suitable 

biological information, regulations specific to most species were based on perceived vulnerability, 

rather than on sound scientific evaluation, and many of these regulations failed to protect the target 

species (Griffiths 2000). White steenbras was also historically targeted in a number of commercial 

net fisheries, including the purse seine, gill-net and beach-seine fisheries. While the regulations 

differed broadly among fisheries, in terms of catch and effort restrictions, these fishers were also 

subjected to a range of management interventions, which became increasingly stringent over the 

years. Nets were first required to be licensed in 1975. A series of strict regulations was implemented 

in 1983, and again in 1990, including seasonal, area and effort restrictions, and minimum size limits 

for “angling” species. However, these and subsequent restrictions failed to arrest the declines in the 

stocks of most linefish species, and a commercial ban was imposed in 2001 on the harvest of white 

steenbras and other “angling” species (SJ Lamberth, DAFF, pers. comm.). Management regulations 

that pertained to recreational and commercial linefisheries, and commercial net fisheries, 

respectively, with some regulations specific to white steenbras, are presented in Tables 8.1 and 8.2. 

Few attempts have been made to assess the effectiveness of the management measures introduced 

for linefish species (Attwood 2003). 
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Table 8.1: Management regulations pertaining to the recreational fishery, with those specific to 

white steenbras marked with an asterisk (pppd = per person per day) 

Year Regulation Source 

1964 Proclamation of Tsitsikamma MPA Government Gazette No. 936 

1984 Implementation of linefish management framework Government Gazette No. 9543 

 - * Maximum daily bag limit set at 10 pppd Government Gazette No. 9543 

 * Minimum legal size limit set at 40 cm TL SJ Lamberth pers. comm. 

 Proclamation of De Hoop MPA Tunley 2009 

1992 * Maximum daily bag limit decreased to 5 pppd Attwood and Bennett (1995b) 

1996 * Minimum legal size increased to 60 cm TL Attwood and Farquhar (1999) 

1998 Marine Living Resources Act Government Gazette No. 18930 

2000 Proclamation of Dwesa-Cwebe MPA MLRA (1998) 

2002 * Maximum daily bag limit decreased to 1 pppd Sauer et al. (2003) 

 Ban on recreational use of vehicles in the coastal zone Government Gazette No. 22960 

2008 Proclamation of Stilbaai MPA including Goukou Estuary Government Gazette No. 31517 

2012 * Current restrictions: 1 pppd ≥ 60 cm TL  

 

Table 8.2: Management regulations pertaining to the commercial net fisheries  

Year Regulation Source 

<1969 Minimum beach-seine mesh size set at 44 mm Penney (1991) 

1974 Commercial beach-seines registered, limited to 121 nets in False Bay Penney (1991) 

1975 Licensing of commercial beach-seine nets and gill-nets Hutchings et al. (2002b) 

 
Beach-seine permits allocated for fewer areas Penney (1991) 

 
Permits granted to commercial netters only Penney (1991) 

1982 Permits restricted to 84 beach-seine nets in False Bay Penney (1991) 

 
Prohibition on catch of “angling” species by pelagic boats Penney (1991) 

 
Purse seine fishery prohibited in False Bay Penney (1991) 

1983 Seine netting at night prohibited Bennett (1993a) 

 
Winter closed season implemented in beach-seine fishery Bennett (1993a) 

 
Minimum size of 40 cm TL implemented for white steenbras  Bennett (1993a) 

 
75% reduction in beach-seine permits Bennett (1993a) 

 
Netting of angling species prohibited outside False Bay and Walker Bay Penney (1991) 

 
Permits restricted to 34 nets in False Bay  Penney (1991) 

1984 Closed season False Bay (May - October) Penney (1991) 

1988 Number of nets restricted to 29, net length to 275 m in False Bay Penney (1991) 

1989 Area closure of 1 km around Eerste Estuary (False Bay) Bennett (1992) 

1990 Limited seine net rope length to 200 m (W shore of False Bay) Bennett (1992) 

 
Limited seine net rope length to 400 m (N shore of False Bay) Bennett (1992) 

1992 Restricted commercial areas within False Bay  Bennett (1993b) 

1995 White steenbras  ban, but 20 mt exemption for beach-seine fishery SJ Lamberth pers. comm. 

2001 Commercial ban on “Russman” seine and certain “angling” species SJ Lamberth pers. comm. 

 
Linefish emergency, 20 mt white steenbras exemption withdrawn SJ Lamberth pers. comm.  
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8.3 Trends in catch, effort and catch-per-unit-effort by fishery sector  

Smith and Smith (1986) described the distribution of white steenbras from the Orange River in the 

west, to KwaZulu-Natal in the east, while Lamberth and Mann (2000) suggested that the core 

distribution is from north of Cape Columbine to the Mbashe Estuary, within which the majority of 

the stock occurs. However, white steenbras did not feature in shore-angler catches in a survey of the 

recreational shore fishery along the west coast of South Africa (Lamberth 1996), and Hutchings et al. 

(1999) recorded no white steenbras in experimental marine and estuarine gill-net catches along the 

west coast, between Cape Point and the Olifants Estuary from 1997 to 1999. It is possible that the 

core distribution has contracted, with few individuals making use of the west coast. However, recent 

reports suggest that catches along the Cape west coast have increased over the past couple of years 

(SJ Lamberth, DAFF, pers. comm.).  

 

8.3.1 Recreational shore fisheries  

The recreational shore fishery is one of the largest fisheries in South Africa, supporting an estimated 

380 000 participants in 1990 (Bennett 1991). McGrath et al. (1997) applied a 2% compound growth 

rate to an earlier estimate to reach an estimate of 412 000 participants by 1995, which, if 

extrapolated to 2012, would provide a current estimate of over 575 000 participants. While more 

recent estimates are not available, there is consensus among researchers and managers that 

participation in this fishery continues to increase. 

 

Numerous surveys have been conducted to assess the catch, effort, species composition and value 

of the shore fishery, in different parts of the coastline. While inconsistency in survey techniques, 

analyses and time periods, as well as different fisher behaviours (e.g. competitive vs. recreational) 

make these studies unsuitable for direct comparison (Bennett and Attwood 1993), the results 

nonetheless provide an opportunity to assess trends or major changes over the long term. The 

results of a number of these studies were used to determine the percentage numerical (and where 

possible gravimetrical) contribution of white steenbras to overall catch for the period, as well as the 

species rank relative to other teleosts, and where possible CPUE (fish.100 angler hours-1), for 

different sections of the South African coastline. Studies conducted in KwaZulu-Natal showed that 

white steenbras was absent from most catches in the commercial beach-seine fishery (Beckley and 

Fennessy 1996), the boat-based linefishery (Penney et al. 1999) and the recreational shore fishery 

(Maggs 2010), and where it was present in catches the contribution was negligible. The following 

analysis therefore focuses on the shoreline from the Orange River in the west, at the Namibia 

border, to the Mtamvuna Estuary, at the Transkei/KwaZulu-Natal border in the east.  
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Owing to changes in provincial boundaries and the numerous different coastal regions described in 

these studies, the naming of coastal regions has become rather complex. For the purpose of this 

chapter, four coastal sections are defined; the west coast ranges from the Orange River to Cape 

Point, the south west coast from Cape Point to the Breede Estuary (near the eastern boundary of De 

Hoop MPA), the south east coast spans the area between the Breede and Great Kei estuaries, and 

the Transkei coast encompasses the coastline within the boundaries of the former Transkei, from 

the Great Kei Estuary to the Mtamvuna Estuary at the KwaZulu-Natal border (Figure 8.1). 

 

 

Figure 8.1: Sections of coastline surveyed by the shore fishery surveys discussed (different colours 

indicate different survey areas), and localities mentioned in text, showing a) the four coastal 

sections, b) south west coast and part of the west coast, and c) south east coast 

 

A series of roving creel surveys was conducted in the 1990s, along the west coast (Sauer and 

Erasmus 1996), south west coast (Lamberth 1996), south east coast (Brouwer and Buxton 2002) and 

Transkei coast (Mann et al. 2003), to assess the shore fishery at the national level (Brouwer et al. 

1997) (Figure 8.1). Numerous localised studies have also been carried out over the years, assessing 

both recreational and competition shore anglers, and a number of research programmes have been 

conducted using experimental angling (mainly in MPAs). Data were drawn from these studies to 

complement the results of the roving creel surveys (Table 8.3). 
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Table 8.3: Survey locations, dates and number of fish caught (No.), CPUE (fish.100 angler hours-1), contribution (% no. and % kg) and species rank (relative 

to all teleosts) for white steenbras, for studies that assessed shore angling (research, recreational and competitive) along different regions of the South 

African coastline (WC = west coast, SWC = south west coast, SEC = south east coast, TKE = Transkei coast) 

Region Geographical range Dates Form  No. CPUE % (no.) % (kg) Rank Source 

WC Port Nolloth to Cape Point 1994 - 1996 Recreational - ±0.02 0.2 - - Sauer and Erasmus (1996) 
SWC False Bay 1938 - 1985 Competition 866 1.84 17.7 17.8 2 Bennett (1991) 

SWC False Bay and surrounds 1938 - 1985 Competition 4642 ±2.00 29.5 31.8 1 Bennett et al. (1994) 

SWC Cape Point to Arniston 1994 - 1996 Recreational 68 0.12 4.4 - 3 Lamberth (1996) 

SWC Cape Hangklip to Walker Bay 1995 - 1997 Recreational - - 8.0 - 3 Attwood and Farquhar (1999) 

SWC De Hoop MPA (Koppie Alleen) 1984 - 1985 Research 6 0.42 1.1 - 7 Bennett and Attwood (1991) 

SWC De  Hoop MPA (Koppie Alleen) 1988 - 1990 Research 50 2.63 1.4 - 3 Bennett and Attwood (1991) 

SWC De  Hoop MPA (Lekkerwater) 1988 - 1990 Research 273 8.56 4.1 - 3 Bennett and Attwood (1991) 

SWC De Hoop MPA  1984 - 1992 Research 531 4.68 2.4 - 3 Bennett and Attwood (1993) 

SWC De Hoop MPA 1987 - 2009 Research 1 486 3.19 3.3 - 5 CG Attwood, L Swart (unpubl.) 

SEC Stilbaai to Kei Mouth 1994 - 1996 Recreational 29 0.60 1.0 2.9 11 Brouwer and Buxton (2002) 

SEC Goukamma MPA 1993 - 2002 Recreational 142 0.41 2.1 3.2 7 Pradervand and Hiseman (2006) 

SEC Goukamma MPA 2008 - 2009 Recreational 1 <0.1 0.3 - 15 van Zyl (2011) 

SEC Robberg to TNP western boundary 2003/2004 Recreational 33 0.76 2.8 - 7 King (2005) 

SEC Robberg to Great Fish Estuary 1959 - 1982 Competition 787 - 3.9 3.9 - Coetzee et al. (1989) 

SEC Robberg to Great Fish Estuary 1978 - 1982 Competition 143 0.24 3.3 1.6 - Coetzee et al. (1989) 

SEC Robberg to Great Fish Estuary 1979 - 1982 Competition 131 0.53 2.0 1.2 - Coetzee et al. (1989) 

SEC Tsitsikamma MPA 1964 - 1965 Recreational 36 - 4.4 4.5 7 Hanekom et al. (1997) 

SEC Tsitsikamma MPA 1989 - 1991 Research 13 2.80 1.8 - - Hanekom et al. (1997) 

SEC Tsitsikamma MPA 1991 - 1995 Recreational 65 2.10 2.5 3.9 8 Hanekom et al. (1997) 

SEC Tsitsikamma MPA 1998 - 2005 Research 111 1.36 1.3 - 15 Götz et al. (2008) 

SEC Tsitsikamma MPA 1995 - 2009 Research 457 3.14 - 
 

- - PD Cowley (unpubl.) 

SEC Port Elizabeth (Cape Recife) 1985/1986 Recreational 13 0.28 1.0 2.0 10 Clarke and Buxton (1989) 

SEC Coega Harbour 2006 - 2007 Research 18 0.92 0.4 - 
 

13 Dicken 2010 

SEC Coega Harbour to Boknes 2006 - 2009 Recreational 48 1.29 7.9 - 2 R Chalmers (unpubl.) 

SEC Proposed GAENP MPA 2005 - 2011 Research 560 16.61 20.3 - 1 PD Cowley (unpubl.) 

SEC Great Fish Estuary to Kei Estuary 1982 - 1998 Competition 269 0.20 1.4 1.1 3 Pradervand and Govender (2003) 

TKE Kei Estuary to Mtamvuna Estuary 1997/1998 Recreational 4 0.18 0.6 <1 16 Mann et al. (2003) 

TKE Mbolompo Point to Mtamvuna Estuary 1977 - 2000 Competition 18 0.03 <0.1 <0.1 24 Pradervand (2004) 
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White steenbras has traditionally been considered as one of the most popular recreational shore-

angling species in South Africa, being targeted throughout its distributional range (Biden 1948, Mehl 

1973). Even following severe stock declines, this species was the target of 6% of all shore angling 

effort along the South African coastline, and constituted the third most targeted species along the 

south east (17% of anglers) and south west (9%) coasts, and fifth most targeted (4%) along the west 

coast (Sauer and Erasmus 1996, Brouwer et al. 1997).  

 

West coast 

The survey of the shore fishery along the west coast covered more than 900 km of coastline. The 

total harvest for the study area over the two-year period (1994 – 1996) was estimated at 74 798 

fishes. White steenbras was of little importance in the shore fishery over that period, contributing 

approximately 0.23% (Sauer and Erasmus 1996). The actual numbers of each species recorded were 

not provided by Sauer and Erasmus (1996); therefore, a crude estimate of white steenbras CPUE was 

determined by multiplying the percentage contribution of white steenbras to total catch by the 

overall CPUE for all species, which provided a rough estimate of 0.02 fish.100 angler hours-1. 

Furthermore, the species was only captured within one of the survey zones, approximately 50 km 

north of Table Bay, which spanned just one kilometre of shoreline. In the absence of additional 

literature on the shore fishery along the west coast, this study suggests that white steenbras is not 

important (or heavily overexploited) as a fishery species along this coastal region.  

 

South west coast 

White steenbras was a dominant component and constituted about 30% of shore-angling catches 

along the south west coast, from 1938 to 1990 (Bennett 1993a). The species also formed the third 

most common shore-caught species in False Bay from 1984 to 1992 (Lamberth and Bennett 1993), 

and was the fifth and second most dominant species, numerically and gravimetrically, respectively, 

captured along the south west coast from 1994 to 1996 (Brouwer et al. 1997). 

 

From 1938 to 1960, the species featured poorly in shore-angling catches within False Bay and along 

the Cape Peninsula (Bennett and Griffiths 1988). The poor catches prior to 1960 largely reflected the 

restricted distribution of competition angling within the region at this time. However, after 1960, 

competitive shore angling became more widespread and vehicle access to beaches along the False 

Bay north shore increased (Penney 1991), with anglers exerting more effort along the sandy and 

mixed sand and rock shores of False Bay, which resulted in a significant increase in the targeting and 

catch of shallow-water species, including white steenbras (Bennett 1991, Bennett 1993a). Shore-
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angling catches of white steenbras increased steadily until the mid 1970s, by which time the 

contribution of the species had increased from about 1% of competition shore angling catches to 

about 20% (Lamberth and Bennett 1993). A similar trend can be assumed for non-competition 

(purely recreational) shore anglers. Over roughly the same period (1959 to 1982), the mean mass of 

white steenbras caught in the recreational shore fishery in the then Cape Province (west, south west 

and south east coasts) increased from 1.8 kg to 3.0 kg (Coetzee et al. 1989), which was likely a result 

of angler distribution shifting to more suitable white steenbras habitat, where large shoals of mature 

fish became more accessible from the shore. Bennett (1993a) determined that the recreational 

shore fishery contributed approximately 75% by number and 50% by mass to the total annual catch 

of white steenbras in South Africa, and during the period 1985 to 1992, accounted for almost 60% 

numerically of the total white steenbras catch in False Bay (Lamberth et al. 1994). 

 

From 1976 to 1985, white steenbras constituted the second most common species in competition 

shore catches, contributing 18% by number and mass (Bennett 1991). However, despite its 

important contribution over this period, white steenbras CPUE declined by about 90% after 1975 

(Bennett 1991), from 6.0 fish.100 angler hours-1 in the 1970s to 2.3 fish.100 angler hours-1 by 1984, 

and to 0.7 fish.100 angler hours-1 in the 1990s (Bennett 1993a, Bennett et al. 1994, Lamberth 1996). 

Similarly, the contribution of white steenbras to annual angler catches by mass in the shore fishery 

of the south west coast decreased from approximately 30% in the 1960s, to 8% in the period 1990 to 

1991 and as little as 0.6% by 1994 to 1996 (Lamberth 1996). The observed decline reflects the 

general decline in abundance of the species, although the effect was likely elevated by a shift in 

targeting of competition anglers towards cartilaginous species, to gain more points (Taylor 1993). 

The cause and level of this decline will be further discussed in the Commercial net fisheries section.  

 

Shore angling from Cape Hangklip to Walker Bay, along the south west coast, was conducted at low 

levels of effort in the first part of the 20th century, rising to a peak by 1950 (Attwood and Farquhar 

1999). Catch records from the time of JDF Gilchrist (1897 – 1906), the state marine biologist, indicate 

sporadic large catches of white steenbras in the commercial linefishery in this region over this 

period, although it is suggested that these records may reflect line and net caught fish (SJ Lamberth, 

DAFF, pers. comm.). Data from the National Marine Linefish System showed that by the period 1987 

to 1997 white steenbras was absent from the commercial linefishery in this area altogether, 

providing further evidence for the decline of the species. In contrast, however, from 1995 to 1997, 

white steenbras was the third most common species caught in the recreational shore fishery in this 

area, constituting 8% of the total catch (Attwood and Farquhar 1999). 



Chapter 8 – Fishery and management implications  

 

252 
 

Towards the eastern end of the south west coast is the large, well-established De Hoop MPA, within 

which a long-term shore angling research programme has been conducted since 1984. Two sites that 

are situated within the current MPA boundaries were selected for inclusion in the study, prior to 

proclamation of the MPA in 1985. At the time the study was initiated, one site was heavily exploited 

by recreational shore anglers, while the other was considered to represent a pristine surf zone 

ichthyofaunal community, by virtue of its inaccessibility (Bennett and Attwood 1991). Research 

angling catches made from May 1984 to September 1985 at the exploited site produced a CPUE for 

white steenbras of 0.42 fish.100 angler hours-1, and it is reasonable to assume that this value was 

representative of exploited areas in that region of the coastline, outside of MPAs. However, in 

October 1985, the De Hoop MPA was proclaimed, encompassing 46 km of coastline, including both 

research fishing areas. After proclamation, white steenbras CPUE in the previously exploited area 

increased to 1.26 fish.100 angler hours-1 by 1988, and to 2.63 fish.100 angler hours-1 by 1990 

(Bennett and Attwood 1991). During the latter period (1988 to 1990), CPUE in the pristine area was 

recorded at 8.56 fish.100 angler hours-1 (Bennett and Attwood 1991), the second highest for white 

steenbras anywhere along the South African coastline. The results confirm the protection offered by 

the MPA to white steenbras resident within the surf zone.  

 

The shoreline of the De Hoop MPA, and likely most of the sandy and mixed sand and rock shoreline 

along this section of coastline, therefore, constitute important areas for white steenbras. The 

considerably lower CPUE recorded outside of this MPA, and the CPUE recorded in the exploited area 

prior to proclamation, suggest that white steenbras along this section of coastline have been heavily 

depleted. Furthermore, catches of white steenbras within the De Hoop MPA subsequently declined 

to between 3 and 4 fish.100 angler hours-1 by 2009 (Figure 8.2), which has been suggested to reflect 

the overall stock decline (Lamberth and Mann 2000).  

 

 

Figure 8.2: Trend in mean (±SD) monthly CPUE (fish.100 angler hours-1) recorded during research 

angling in the De Hoop MPA over the period 1987 to 2009 (CG Attwood, L Swart, unpublished data) 
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South east coast 

The south east coast, as defined for this analysis, encompasses two existing MPAs (Tsitsikamma and 

Goukamma), as well as the shoreline of the proposed Greater Addo Elephant National Park (GAENP) 

MPA, within which dedicated roving creel surveys or research angling have been conducted.  

 

The Tsitsikamma MPA is the oldest and largest of these, and historically had a short section that was 

open to recreational shore fishing. Observed CPUE of white steenbras from this open section (2.1 

fish.100 angler hours-1), from 1991 to 1995, was lower than that (2.8 fish.100 angler hours-1) 

recorded during experimental research angling in areas of the MPA that have been closed to 

recreational angling since proclamation in December 1964 (Hanekom et al. 1997). However, when 

compared to historical recreational shore catches made within the MPA in 1964 and 1965, the 

numerical percentage contribution of white steenbras to total catch had decreased from 4.4% to 

2.5% by the period 1991 to 1995 (Hanekom et al. 1997). Unfortunately, no effort data were recorded 

for these historical catches, and CPUE for white steenbras could not be compared among time 

periods. The results do, however, indicate that the closed areas of the TNP were providing some 

protection for white steenbras, but that recreational angling within the open section of the MPA, 

prior to closure, was responsible for a decline in white steenbras relative abundance over the years 

(Hanekom et al. 1997).  

 

A long-term research angling programme was initiated within the Tsitsikamma MPA in 1995 (Rhodes 

University Department of Ichthyology and Fisheries Science). Angling was conducted between the 

Klip and Bloukrans estuaries near the western boundary (fishing zone 1) of the MPA (see Figures 6.1 

and 6.5, Chapter 6), from 1995 to 2009, and in a second fishing zone at the mouth of the Lottering 

Estuary, in close proximity to fishing zone 1, over the period 1998 to 2000. Angling in the two zones 

produced a combined white steenbras CPUE of 3.14 fish.100 angler hours-1 (PD Cowley, unpublished 

data), which suggested that white steenbras abundance within the MPA had increased since that 

recorded from 1991 to 1995 (Hanekom et al. 1997). The trend in annual mean monthly CPUE of 

white steenbras recorded during the later study showed an initial increase until a peak of more than 

9 fish.100 angler hours-1 in 1997, although this was followed by a steady decline, reaching zero by 

2009 (Figure 8.3a). The catch data for the two fishing zones were separated; to determine whether 

the catches made over the short period at fishing zone 2 had influenced the overall CPUE recorded 

(Figure 8.3b). The results indicate that CPUE was considerably higher in fishing zone 2 (8.37 fish.100 

angler hours-1) than in fishing zone 1 (2.88 fish.100 angler hours-1); the latter being similar to that 

recorded in the closed areas from 1991 to 1995 (Hanekom et al. 1997). Despite the influence of zone 
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2 on the overall CPUE from 1998 to 2000, the peak in CPUE was observed in 1997, prior to the period 

of fishing in zone 2, and the decline in zone 1 after 1997 remains clear. Interestingly, the substrate in 

fishing zone 2 (which produced a higher CPUE for white steenbras than fishing zone 1) is 

predominantly sandy, whereas that in fishing zone 1 is predominantly of rock and mixed sand and 

rock, suggesting an affinity of white steenbras for areas of sandy substrate.  

 

 

Figure 8.3: Long-term catch data recorded during research angling in the Tsitsikamma MPA over the 

period 1995 to 2009, showing a) mean (±SD) monthly CPUE (fish.100 angler hours-1) for the two 

fishing zones combined, and b) mean monthly CPUE for the two fishing zones separately (PD Cowley, 

unpublished data) 

 

Part of this dataset, spanning the period 1998 to 2005 (i.e. after the peak in 1997), was published by 

Götz et al. (2008), exhibiting a CPUE for white steenbras (in fishing zone 1 only) of just 1.36 fish.100 

angler hours-1, which is lower even than that within the previously open section of the MPA, further 

highlighting the decline since 1997. This may be due to a number of causes. Firstly, the area is near 

the boundary of the MPA, and catches may be influenced by recreational angling occurring adjacent 

to the MPA, or this may be evidence of illegal exploitation occurring within the MPA. Alternatively, 

the lower CPUE of white steenbras during this later period may reflect the overall decline in white 

steenbras at the stock level (Lamberth and Mann 2000). This phenomenon was observed also in the 

De Hoop MPA. The result has sombre implications for the management of coastal fishes, if the level 

of stock decline is so severe that catches even within well-established MPAs have declined. 

 

The second MPA within this region is the Goukamma MPA, which is smaller than the TNP MPA (and 

the DE Hoop MPA on the south west coast), and remains open to recreational shore angling. 

Pradervand and Hiseman (2006) recorded a low CPUE for white steenbras of 0.41 fish.100 angler 

hours-1, from 1993 to 2002, although the species was the seventh most common teleost, 

contributing 2.1% and 3.2% to the total catch, by number and mass, respectively. This CPUE is similar 
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to that recorded in the De Hoop MPA, prior to proclamation, and is indicative of the depleted state 

of the fishery within the area. The high proportion of sand and mixed sand and rock shoreline 

suggests that the area is suitable for species such as white steenbras. However, the MPA remains 

open to recreational shore angling, and a recent roving creel survey conducted within the MPA from 

October 2008 to December 2009 recorded just one white steenbras, and a lower CPUE (<0.1 fish.100 

angler hours-1) (van Zyl 2011). The fact that white steenbras CPUE was significantly higher within 

closed areas of the TNP than open areas, and increased significantly after proclamation of the De 

Hoop MPA, suggests that the Goukamma MPA has the potential to afford white steenbras 

considerable protection, if shore angling is prohibited. 

 

As part of the national shore angling survey, a roving creel survey was conducted from 1994 to 1996, 

from Stilbaai to the Kei Estuary (Brouwer et al. 1997, Brouwer and Buxton 2002). During this survey, 

29 white steenbras were recorded, with a CPUE of approximately 0.6 fish.100 angler hours-1. This 

species contributed 1.4 and 2.9% to the total catch, by number and mass, respectively (Brouwer and 

Buxton 2002). Recreational shore catches of white steenbras made from 2003 to 2004, between the 

western boundary of the TNP MPA and the western side of the Robberg Peninsula, were similarly 

low, and showed considerably lower CPUE (0.76 fish.100 angler hours-1, King 2005) than those 

observed within the TNP MPA. These results provide further evidence of the protection offered by 

the larger, well-established MPAs. Shore catches made along the Port Elizabeth coastline, in 1985 

and 1986, were even lower than those reported by King (2005), with a CPUE of 0.28 fish.100 angler 

hours-1 (Clarke and Buxton 1989). The low CPUE recorded during this survey, however, may be a 

result of the predominantly rocky shores in the survey area, which are less suitable for white 

steenbras (Bennett 1993b).  

 

Competition shore angling data from the eastern part of the south east coast showed that white 

steenbras is generally not a large contributor in these catches. Coetzee et al. (1989) provided data 

on catch card returns made by individual anglers during shore-based angling competitions, between 

Robberg and the Great Fish Estuary, over a 24-year period (1959 – 1982). While no data were 

recorded for effort, the overall annual catch of white steenbras among these anglers and the 

percentage contributions (by number and mass) showed a general increasing trend from about 1967 

to 1977, after which catches declined (Figure 8.4). This trend reflects that of the recreational shore 

fishery within False Bay and along the south west coast over the same period. The increase until the 

mid 1970s is likely an artefact of improved vehicle access to beaches, and the consequent targeting 

of species associated with sandy shores. The decline in absolute catch (by number) after the peak in 
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1977 (Figure 8.4a) is possibly due to the competitive anglers shifting their effort towards 

elasmobranchs, as was observed elsewhere along the coast (Taylor 1993, Hanekom et al. 1997), or 

may be a result of general overexploitation in this area. The fact that the contribution of white 

steenbras to the total catch, both numerically and gravimetrically (Figure 8.4b), remained high 

despite the decrease in actual catch, suggests the latter is more likely; however, in the absence of 

effort data, such a statement cannot be made confidently. 

 

 

Figure 8.4: Shore angling catch data from individual catch card returns for competition angling from 

Robberg to the Great Fish Estuary, for the period 1959 to 1982 (after Coetzee et al. 1989). Dotted 

lines represent linear fits to the respective data, to show overall trends 

 

Competition shore angling data are presented for the same region (Robberg to Great Fish Estuary), 

for the annual competition known as “angling week”, for the years 1978 to 1982, in which teams of 

anglers fished for a set period of one week, in February each year (Coetzee et al. 1989). Estimates of 

CPUE were obtained from the estimated total effort and the numerical catch of white steenbras. 

Data are also presented for this area, for the period 1979 to 1982, from “postal competitions”, in 

which teams of anglers would fish for a single eight-hour period, and nine such competitions are 

held annually (Coetzee et al. 1989). Overall, white steenbras contributed 3.3% of total catch by 

number, with a CPUE of 0.24 fish.100 angler hours-1 in the angling week catches, and 2.0% by 

number with a CPUE of 0.53 fish.100 angler hours-1 in the postal competitions (Coetzee et al. 1989). 

Similarly, Pradervand and Govender (2003) recorded low CPUE (0.2 fish.100 angler hours-1) and a 

numerical contribution of only 1.4% to total catch in competition shore angling catches between the 

Great Fish and Great Kei Estuaries. These competition catches are somewhat lower than those 

obtained for white steenbras in the recreational shore fishery and research angling elsewhere along 

the south east coast (Table 8.3). The result is likely an artefact of competitive anglers targeting 

elasmobranchs to maximise competition points (Hanekom et al. 1997); however, it may also indicate 

lower abundance of white steenbras towards the eastern end of its distribution, due to 
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overexploitation or less optimal resources for this species, in this area. Interestingly, though, white 

steenbras constitutes the third most targeted species along the south east coast, being targeted by 

an estimated 11% of shore anglers (Brouwer et al. 1997). 

 

Research angling conducted from 2006 to 2007 in the Coega Harbour, in Algoa Bay, produced a 

higher CPUE for white steenbras (0.92 fish.100 angler hours-1) than other studies along the eastern 

part of the south east coast, particularly the competition catches reported by Coetzee et al. (1989), 

although the species contributed only 0.4% numerically to the total teleost catch (Dicken 2010). This 

low contribution reflects the high abundance of other fishes within the harbour, resulting from the 

shelter and potentially elevated food levels, when compared to the adjacent marine environment 

(Dicken 2010). The Coega Estuary flowing into the harbour also provides estuarine cues. The high 

proportion of white steenbras captured in the harbour (89%) below the size at 50% sexual maturity 

suggests the use of the harbour as a nursery area. Despite the low absolute number of white 

steenbras captured, the fact that angling is prohibited within the harbour suggests that this could 

function indirectly as a protected area for white steenbras and other coastal fish species. 

 

As with the Goukamma MPA, the proposed GAENP MPA in Algoa Bay has potential to provide 

protection for white steenbras in the surf zone. A roving creel survey conducted along the eastern 

shoreline of Algoa Bay, including the proposed GAENP MPA, from 2006 to 2009, recorded a CPUE of 

white steenbras of 1.29 fish.100 angler hours-1, constituting the second most common teleost 

recorded, and contributing 7.9% to the total catch (R Chalmers, unpublished data). The relatively 

high contribution of white steenbras to catches along this section of the coastline, and the positive 

results observed in the TNP and De Hoop MPAs, suggest that once proclaimed the GAENP MPA is 

likely to contribute significantly to the protection of white steenbras in the surf zone, if the area is 

closed to shore angling. Furthermore, the higher CPUE of white steenbras along the shoreline of the 

proposed GAENP MPA than during competition angling or recreational shore angling along other 

sections of the south east coast (Table 8.3) indicates a possible increase in the abundance of white 

steenbras in this area. 

 

The suggested increase in white steenbras abundance within this area is confirmed by shore angling 

as part of a long-term monitoring programme along the eastern shoreline of Algoa Bay (PD Cowley, 

unpublished data). Research angling, conducted approximately bimonthly, recorded an increasing 

trend in the CPUE of white steenbras from summer 2005 until early 2011, as well as the highest 

CPUE recorded for all studies discussed (16.6 fish.100 angler hours-1) (Figure 8.5).  
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Figure 8.5: Mean (±SD) daily CPUE (fish.100 angler hours-1) of white steenbras recorded a) by year, 

and b) by season, during research angling within the boundaries of the proposed GAENP MPA  

 

The observed increase in the CPUE of white steenbras over the seven-year period, and the greater 

CPUE than in other studies presented, may reflect an increase in abundance, caused by a decline in 

shore angling effort in the region, as a result of the ban on the use of vehicles in the coastal zone 

imposed in January 2002. This section of coastline is now accessible only on foot, with access points 

some distance from the shore. Therefore, the “beach driving ban” appears to have contributed to 

decreasing the overall shore angling effort within this region, and possibly other poorly accessible 

coastal regions; thereby indirectly contributing to increased abundance of white steenbras. The 

improved CPUE may be indicative, and provide the first evidence, of a recovery of the white 

steenbras stock, although this has not been observed in other coastal regions. The considerably 

higher CPUE recorded during research angling, than that recorded during the roving creel survey (R 

Chalmers, unpublished data), may also be evidence of under-reporting of catches, particularly fish 

that are smaller than the minimum legal size. 

 

Attwood (2003) suggested that carrying capacity can be affected by the patchiness of the habitat. 

Therefore, suitability of this section of coastline may also be due to the predominantly sandy 

shoreline, with some mixed sand and rock and very little rocky shoreline, as white steenbras exhibits 

an affinity for sandy shores (see Chapter 6). This suggests that MPAs incorporating a large 

proportion of sandy substrate may be more suitable for the species. 

 

Transkei coast 

White steenbras featured poorly in recreational shore angler catches along the Transkei coast, from 

1997 to 1998 (Mann et al. 2003), and in competition shore angling catches in the Transkei from 1977 

to 2000 (Pradervand 2004), suggesting that the abundance of white steenbras in the Transkei is 

lower than in coastal regions further west. Recorded CPUE for white steenbras in the Transkei during 
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these studies (0.18 and 0.03 fish.100 angler hours-1, respectively) are close to the lowest CPUE 

estimates recorded in all surveys included in the analysis.  

 

The shore fishery at the national level  

The results of the studies presented showed generally higher CPUE of white steenbras within MPAs. 

There was also a general decreasing trend in CPUE towards the ends of the white steenbras 

distribution, along the west and Transkei (east) coasts (Figure 8.6).  

 

According to Bennett (1993b), white steenbras undertake annual spawning migrations to the 

Transkei and south east coasts in late winter. Anecdotal evidence suggests that historically white 

steenbras were sporadically captured in high numbers along the southern Transkei coast over the 

spawning season. It is possible that the low CPUE estimates of white steenbras in these areas reflect 

the low density of juveniles and the low numbers of adults present outside of the spawning season, 

although considering the spawning aggregation, it was expected that shore catches of white 

steenbras during the survey and competition angling within the Transkei would have been higher. 

The low CPUE values observed may be a result of under-reporting of catches during the survey. 

Alternatively, as white steenbras is known as an early morning angling species, it is possible that 

anglers targeting white steenbras may not have been intercepted during the roving creel survey, 

which was restricted to daylight hours (Mann et al. 2003). However, this is unlikely the case with 

competition anglers, suggesting that the observation is a result of the general decline in white 

steenbras abundance, providing evidence of suppressed spawner stock levels. 

 

 

Figure 8.6: White steenbras CPUE (fish.100 angler hours-1), recorded or inferred, from shore fishery 

surveys along different regions of the South African coastline (WC = west coast, SWC = south west 

coast, SEC = south east coast, TKE = Transkei), from Port Nolloth in the west to the eastern boundary 

of the Transkei. Results are plotted in geographical order from west to east. Cross-hatches represent 

competition angling, and stippled samples represent research angling  
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In general, in areas where surveys have been conducted over extended or multiple periods, such as 

False Bay and the De Hoop, Tsitsikamma and Goukamma MPAs, the results provide evidence of 

declining CPUE of white steenbras over time. White steenbras CPUE recorded along the entire south 

east coast (Brouwer and Buxton 2002) and Goukamma coastline (Pradervand and Hiseman 2006) 

were similar to that recorded in the heavily exploited study area within the De Hoop MPA prior to 

proclamation (Bennett and Attwood 1991). This suggests that white steenbras along the south east 

coast and much of the south west coast has been severely overexploited, as a result of the high 

levels of angling effort.  

 

For the South African coastline (excluding the former Transkei and Ciskei coastlines), Brouwer et al. 

(1997) estimated total shore-angling effort of 3 238 921 angler days per year, for the period 1994 to 

1996. The greatest proportion of this effort was expended along the KwaZulu-Natal shoreline, which 

falls outside the core distribution of white steenbras and was not considered in the current analysis. 

Recreational shore-angling effort in False Bay alone, over the years 1991 and 1992, was estimated at 

987 690 angler days per year (at 6 hours per angler day) (Lamberth et al. 1994). This highlights the 

large contribution of the False Bay recreational shore fishery (by effort and catch) to that at the 

national level. Similarly, Brouwer and Buxton (2002) estimated annual recreational shore-angling 

effort at 903 186 angler days per year, from 1994 to 1996, along the south east coast shoreline. 

Brouwer et al. (1997) also estimated a total annual shore catch in excess of 4.5 million fish (almost 

3 000 mt), by 1996, of which the contribution of white steenbras was low. Based on data available at 

the time, Bennett (1993a) inferred a total recreational (including competition) shore angling catch of 

white steenbras by the late 1980s, across its distributional range, of approximately 28 000 fish 

annually (which equates to 0.62% of the estimated total annual shore angling catch). From 1994 to 

1996, Lamberth (1996) estimated a total recreational shore catch for the south west coast alone of 

39 000 white steenbras at 86 mt annually. The results highlight the impact that the recreational 

shore fishery has on white steenbras, and its contribution to the demise of the species.  

 

Is there evidence for stock recovery? 

In contrast to the results presented above, Figure 8.7 presents the comparative estimates of CPUE, 

recorded during some of the surveys previously described and those of an ongoing roving creel 

recreational shore fishery observer programme, started in 2010, along selected regions of the coast 

(Anchor Environmental Consultants, unpublished data). The data for the observer programme were 

not included in the original analysis, due to the short duration of data collection in most areas; 

however, the programme provides some new results and a useful comparison with previous surveys. 



Chapter 8 – Fishery and management implications  

 

261 
 

 

Figure 8.7: CPUE for white steenbras from the national shore fishery surveys for the south west and 

south east coasts (black bars) and other dedicated roving creel surveys (grey bars), compared with 

the recent (2010/2011) roving creel observer programme (blue bars; Anchor Environmental 

Consultants, unpublished data), and map showing the associated sections of shoreline surveyed  

 

Lamberth (1996) estimated white steenbras CPUE at 0.12 fish.100 angler hours-1 along the south 

west coast. The 2010/2011 survey of sections of the south west coast recorded considerably higher 

CPUE, with an overall white steenbras CPUE of 2.4 fish.100 angler hours-1 from Cape Hangklip to 

Cape Agulhas (Anchor Environmental Consultants, unpublished data). Along the south east coast, 

Brouwer and Buxton (2002) estimated white steenbras CPUE at 0.6 fish.100 angler hours-1, while 

CPUE from four areas in the 2010/2011 survey ranged from 1.8 to 3.6 fish.100 angler hours-1 (Figure 

8.7). The 2010/2011 survey also recorded considerably higher CPUE than those recorded in the 

Goukamma MPA (Pradervand and Hiseman 2006, van Zyl 2011), from Robberg to Tsitsikamma MPA 

(King 2005), and between the Great Fish and Great Kei estuaries (Pradervand and Govender 2003).   

 

The increased CPUE values recorded for 2010 and 2011, in all areas surveyed, provide evidence of 

increased abundance of white steenbras, since earlier surveys, particularly the national survey from 

1994 to 1996. The fisheries for white steenbras have undergone considerable changes over the past 

two decades, the greatest of which was the total ban on commercial exploitation in 2001. Most (80 

%) of the white steenbras recorded in this recent observer programme were juveniles, suggesting 

that the elevated CPUE resulted from improved recruitment. It is possible that the commercial ban 

in 1995 and the withdrawal of the 20 mt exemption in 2001 relieved sufficient exploitation pressure 
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on adult white steenbras, allowing for improved spawning success and consequently improved 

recruitment. While the overwhelming evidence from the last 100 years indicates severe white 

steenbras population declines, the above evidence together with high CPUE values in the proposed 

GAENP MPA are suggestive of some stock recovery. This positive trend appears to have resulted 

mainly from the ban on commercial harvesting, and the national ban on the use of vehicles in the 

coastal zone, which decreased accessibility to many coastal areas. Factors such as the minimum size 

increase to 60 cm TL, increased public awareness and favourable environmental conditions for 

spawning and recruitment may also have contributed (SJ Lamberth, DAFF, pers. comm.). 

 

8.3.2 Commercial net fisheries 

Commercial beach-seine fishery 

Historically, white steenbras formed an important component of the commercial beach-seine 

(including the sinking “Russman” seine), purse seine, and gill-net fisheries in South Africa (Penney 

1991, Bennett 1993b, Lamberth et al. 1997). White steenbras was traditionally one of three species, 

along with yellowtail Seriola lalandi and southern mullet (“harder”) Liza richardsonii, targeted by the 

commercial beach-seine fishery, along the west, south west and south east coasts (Lamberth et al. 

1994). Commercial beach-seine operations were permitted at 35 coastal sites, from Walvis Bay in 

Namibia to Port Elizabeth on the south east coast (Figure 8.8).  

 

 

Figure 8.8: Map indicating the 35 coastal areas designated for commercial beach-seine operations 
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Prior to 1960, the beach-seine fishery was responsible for the majority of the annual white steenbras 

harvest made along the South African coastline (Bennett 1993a). Although the contribution made by 

the recreational shore fishery to the total annual catch of white steenbras increased after 1960, the 

relative contribution of white steenbras to total beach-seine catches remained high. White 

steenbras was the third most dominant species captured in this fishery from 1977 to 1992 (Lamberth 

and Bennett 1993), and fourth most dominant in the early 1990s (Clark et al. 1994).  

 

Until 1982, the commercial beach-seine fishery was permitted to catch “angling” or “line” species, 

which included white steenbras, and annual catches of white steenbras averaged about 20 mt, with 

record catches reaching 40 to 50 mt and almost 100 mt in some years (Penney 1991, Bennett 

1993a). However, a ban was imposed on the catch of all angling species in the commercial beach-

seine fishery operating in all areas other than False Bay and Walker Bay, after 1982. This 

management intervention resulted in a marked decrease in the overall catch of white steenbras in 

this fishery, with annual white steenbras catches of about 3.4 mt after 1984 (Penney 1991).  

 

Prior to 1990, the commercial beach-seine fishery was responsible for approximately 25% of the 

total annual white steenbras catch by number, and about 50% by mass, along the South African 

coastline, with the remainder of the catch predominantly taken by recreational shore anglers 

(Bennett 1993a). Within False Bay, between 1985 and 1992, the beach-seine fishery was responsible 

for approximately 40% of the total catch of white steenbras (almost 14 000 fish reported for this 

period), with the remainder of the catch again largely taken by the recreational shore sector 

(Lamberth et al. 1994).  

 

Owing, largely, to its substantial contribution to the total catch made in the commercial beach-seine 

fishery, white steenbras abundance has declined over the last century. Mean annual reported 

catches in this fishery declined by 85% over this period, from 23 061 fish.year-1 during the time of 

Gilchrist (1897 to 1906), to 3 147 fish.year-1 during the period 1983 to 1991, with declines observed 

in all coastal regions (Figure 8.9) (Bennett 1993a). The numerical contribution of white steenbras to 

total beach-seine catches declined from approximately 3.77% at the turn of the last century, to 

0.57% in the period 1951 to 1968, 0.43% by the period 1977 to 1987, and to 0.19% by the period 

1983 to 1991 (Bennett 1993a). Declines in white steenbras catch were observed even between 1983 

and 1991 along the west coast, the south east coast and parts of False Bay (Bennett 1993a). While 

these declines in areas outside of False Bay are partly a result of a decrease in the targeting of white 

steenbras as a consequence of the ban on “angling” species outside of False Bay and Walker Bay, 
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they are likely exacerbated by the general trend of population decline experienced by the species 

over this period. It is evident that the commercial beach-seine fishery contributed substantially to 

the overall demise of the white steenbras stock (Bennett 1993b, Lamberth et al. 1994). 

 

 

Figure 8.9: Mean annual commercial beach-seine catches for the periods 1897 to 1906 (recorded by 

Gilchrist) for six regions of the South African coastline and respective catches for the same areas 

submitted in mandatory catch returns from 1983 to 1991 (after Bennett 1993a)  

 

Since 1974, it has been compulsory for the commercial beach-seine permit holders to submit 

monthly catch returns to the authorities (Penney 1991). This has made it easier to identify trends in 

harvesting of the different species in the commercial sector, than in recreational shore catches, 

which are limited to assessment by few dedicated surveys. The overall decline in the catches of 

white steenbras over the past five decades is illustrated in the series of Figures 8.10 to 8.13, 

representing beach-seine catches of white steenbras over different time periods. It appears that the 

overall decline can be partitioned into a number of phases, with different periods of decline 

associated with altered patterns of exploitation over the years, in the different sectors. Figure 8.10  

depicts the catch and CPUE of white steenbras, as well as the netting effort, exerted by a commercial 

operator along the northern shore of False Bay, as recorded in a personal catch log from 1950 to 

1968 (SJ Lamberth, unpublished data). The data show an increasing trend in the catch and CPUE 

(fish.haul-1) of white steenbras over the 1950s, but after 1963 annual catches declined rapidly. While 

the decline in total annual harvest may be a result of the reduced numbers of seine hauls in the later 

years (Figure 8.10b), this does not explain the decline in CPUE. However, this period coincided with 

the spatial expansion of shore angler distribution in False Bay more towards sandy shorelines, and 

the consequent rapid increase in shore angler catches of white steenbras. 
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Figure 8.10: Summary of 170 beach-seine hauls, including a) annual catch and b) both the CPUE 

(fish.haul-1) of white steenbras and the annual netting effort, made by a commercial permit holder 

along the north shore of False Bay from 1950 to 1968 (SJ Lamberth, unpublished data). The red 

trendlines represent the linear fits to the data (fitted to CPUE in figure b) 

 

The seine netting effort, as well as the frequency distribution of catches, mean monthly catch and 

total annual catch of white steenbras made by a second beach-seine operator from the north shore 

of False Bay, for the period 1975 to 1987, are presented in Figure 8.11.  

 

 

Figure 8.11: Summary of 3 471 beach-seine hauls, including a) the annual number of hauls (with and 

without white steenbras), b) the frequency distribution of white steenbras catches, c) mean monthly 

catch (±SD) and d) total annual catch of white steenbras, by a commercial beach-seine operator, 

from the north shore of False Bay for the period 1975 to 1987. The red trendlines in c and d 

represent the linear fits to the data 
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There was a high level of variability in the data, with a large proportion of hauls containing zero 

white steenbras, although hauls of up to 4 750 individuals were made. There was an initial increasing 

trend in the annual catch of white steenbras by this operator, which coincided with the period post 

1974, when competition shore anglers are suggested to have shifted their effort towards targeting 

elasmobranchs. It is possible that this shift away from teleost fishes provided some relief for the 

white steenbras within False Bay, although it is unlikely that this alone accounted for the observed 

increase in beach-seine catches. This period also coincided with the introduction of the trailable 

skiboat from KwaZulu-Natal to the south west coast, in the 1970s (Griffiths 2000). Further 

improvements in fishing equipment, including electronic navigational equipment and echo-

sounders, and the building of small-boat harbours, resulted in increased participation in the skiboat 

fishery around this time (Penney 1991, Griffiths 2000). This change in fisher behaviour may have 

alleviated pressure on inshore species, such as white steenbras, which are rarely caught off skiboats. 

 

The increased commercial beach-seine catches made over this period may also reflect natural 

fluctuation in the abundance of white steenbras within False Bay around this time, which led to the 

peak catches made in 1982 and 1983, in the commercial beach and purse seine fisheries (Penney 

1991). The sudden decline after 1982 reflects that of the total commercial beach-seine catch of 

white steenbras made at the national level, after a peak in 1982 of about 100 mt (Penney 1991). The 

decline is partly attributable to the vast changes in regulations after 1982, including a closed season, 

increased minimum size limits, restrictions on net length, a ban on night netting and a ban on the 

harvest of angling species outside of False Bay and Walker Bay (Bennett 1993a). However, the 

decline within False Bay is also largely attributable to the excessive hauls of white steenbras made by 

the purse seine fishery in the late 1970s and early 1980s. Purse seine catches increased in False Bay 

until the late 1970s, with the total catch exceeding 36 000 mt (Penney 1991), and almost 300 mt of 

white steenbras landed in 1982 (Bennett 1993a). This suggests that these “good” years had a 

substantial impact on the stocks of numerous species in False Bay, with purse seine catches 

contributing substantially to the observed declines in linefish catches in the 1980s. 

 

While the preceding datasets provide an indication of the demographic status of the white steenbras 

during these periods, they are each taken from a single operator, and are thus subject to potential 

bias. Data presented in Figure 8.12 were obtained from compulsory catch returns submitted by six 

permitted commercial beach-seine operators in False Bay, for the period 1983, at the time of the 

“angling” species ban outside of False Bay and Walker Bay, to 2002, just after the imposition of the 

commercial ban on the species, in 2001.  
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Figure 8.12: Commercial beach-seine catches of white steenbras in False Bay, in terms of mean CPUE 

(fish.haul-1, a – g), mean monthly catch by number (h – n) and total annual catch by number (o – u), 

from obligatory catch return data for six licensed operators, and the combined catch for the six 

operators (g, n, u), from 1983 to 2002. Red lines indicate linear trends in each dataset  
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There was considerable variability among operators, in terms of mean and total catch, with some 

operators exhibiting a fairly consistent level of CPUE over the years, and others having short-lived 

peaks in CPUE and total annual catch. However, most operators recorded peaks in annual catch in 

the late 1980s and early 1990s, after which catches of most declined relatively sharply, partly as a 

result of the initial ban, in 1995. Some operators recorded large annual catches after 1995, before 

the withdrawal of the 20 mt exemption in 2001. Catches of one operator, presented as Operator 2 in 

Figure 8.12, recorded what could be interpreted as an increasing trend in annual catch over this 

period, until a decline after 1994, except for a secondary peak in 2000.  

 

Variability in CPUE was also high within the catches of each operator, caused by the frequent zero 

hauls and sporadic large hauls of white steenbras, which complicates the determination of catch 

trends. Despite this variability, however, the overall trend of declining total catch and declining CPUE 

are common to most datasets. Overall, for these six operators combined, a peak in catch and CPUE 

of white steenbras was made in 1990 (Figure 8.12 g, n, u). Subsequently, the total annual catch 

increased until the ban in 1995, before decreasing until the withdrawal of the 20 mt exemption in 

2001; however, CPUE remained low after 1990. 

 

Commercial beach-seine catches at the national level 

To illustrate the decline in white steenbras abundance at the national level, the total and mean (±SD) 

annual catches (by mass) of white steenbras from 197 294 beach-seine hauls conducted by 867 

permit holders operating in 34 different coastal areas, for the period 1983 to 2002 (SJ Lamberth, 

unpublished data), are presented in Figure 8.13. Most of these data were recorded as mass, with a 

small proportion recorded as numbers. In order to include all records, those including numbers of 

white steenbras were converted to mass, by multiplying the numbers caught by an estimated mean 

individual mass of white steenbras in the fishery. A mean mass of 4.0 kg was used (SJ Lamberth, 

DAFF, pers. comm.), equating to approximately 690 mm TL. While the estimated masses have not 

been verified, the method is assumed to be accurate, and presented by Lamberth et al. (1994) for 

estimating numbers from data recorded as mass. These data were recorded from 34 coastal areas 

(Figure 8.8), from Lüderitz in Namibia to Port Elizabeth, on the south east coast. Data for the 

different permit holders within each area were pooled. Lamberth et al. (1994) suggested that the 

level of under-reporting of the catches of certain species in the catch return data, including white 

steenbras, was high. Therefore, the values presented here are likely underestimates. However, 

trends in catch data are fairly robust even when the level of under-reporting is high. It was assumed 

that the level of under-reporting was consistent both spatially and temporally, within this fishery. 
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In total, 228 mt of white steenbras were captured from 1983 to 2002. In terms of the spatial 

distribution of catches, the vast majority was landed in areas 18, 19 and 21, which are all within 

False Bay (Figure 8.8). A smaller, separate peak in catch was observed at area 8, which effectively 

includes the area from Cape Columbine northwards for about 60 km, and straddles the mouth of the 

Berg Estuary (as permit holders in areas 8, 9 and 10 operated in any of the three areas). While the 

dominance of the False Bay catches is largely a result of the ban on the harvest of angling species in 

the beach-seine fishery outside of False Bay in 1983, these results illustrate how catches within False 

Bay represent the majority of white steenbras caught in the beach-seine fishery.  

 

 

Figure 8.13: Beach-seine catches of white steenbras recorded at 34 permitted areas from Lüderitz 

(Namibia) to Port Elizabeth (south east coast), showing a) total catch, b) mean (±SD) annual catch by 

area, c) annual mean (±SD) catch, and d) total annual catch recorded across all areas (in mt), from 

197 294 beach-seine hauls conducted by 867 operators. The red trendlines in c and d represent the 

linear fits to annual mean catch and total annual catch, respectively, over the period 1983 to 2002 

 

White steenbras is believed to be endemic to South Africa (Smith and Smith 1986). Therefore, the 

negligible catches made at Lüderitz in Namibia (commercial beach-seine area 2) are to be expected, 

and could be interpreted as stragglers having made nomadic coastal movements further northwards 

than their endemic distribution would suggest. However, there are reports of white steenbras 

contributing to catches as far north as Walvis Bay, in Namibia, in permitted beach-seine area 1 

(Figure 8.8). This area was not included in the current analysis, as white steenbras recorded in this 
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area were largely misidentified west coast steenbras (Lithognathus aureti). While the majority of 

these are likely to be west coast steenbras, there is some evidence that white steenbras were 

historically abundant along the Namibian coastline, possibly as a separate spawning population, but 

that this stock may have been depleted altogether by severe overexploitation around the end of the 

19th century (SJ Lamberth, DAFF, pers. comm.).  

 

Mean and total annual catch pooled across areas showed an overall decline (Figure 8.13 c and d). 

The peak in total catch in 1983 (49.6 mt) coincided with the high catch made in the purse seine 

fishery in 1982, and is likely associated with a high abundance of white steenbras in False Bay at the 

time (Bennett 1993b). The subsequent decline is likely due to the substantial total harvest made in 

all sectors in the early 1980s. The secondary peak made in 1989 and 1990 followed a period of low 

catches and CPUE, and may be indicative of a slight recovery in white steenbras numbers since the 

effects of the harvest in the early 1980s. However, the peak was temporary and in the latter part of 

the 1990s, the total annual catch reached a 15-year low (0.11 mt), with the stock considered 

collapsed, and negligible catches of white steenbras recorded after the commercial ban in 2001.  

 

Commercial purse seine fishery 

The data for catches made by the commercial purse seine fishery in False Bay were poorly recorded 

(Bennett 1993a), making assessments of catch and the contribution of the fishery to the total annual 

catch of each species difficult. This fishery was largely concentrated outside of False Bay, until the 

collapse of their target species (west coast pilchard Sardinops sagax and chub mackerel Scomber 

japonicus) in the late 1960s. These fishers were then attracted to False Bay, due to high availability 

of pilchard in False Bay at the time (Penney 1991). The purse seine fishery in False Bay was 

responsible for sporadic catches of white steenbras in the late 1970s and early 1980s. However 

catch peaked in 1982 with a record catch of almost 300 mt of white steenbras (Bennett 1993a). As 

these were almost entirely adult white steenbras, these catches are likely to have contributed 

significantly to the decline of the species (Lamberth and Mann 2000). Purse seine fishing was 

subsequently banned from False Bay after 1982 (Penney 1991). 

 

Commercial gill-net fishery 

White steenbras formed approximately 3% of the bycatch in the combined gill-net and beach-seine 

fisheries along the south west and south east coasts (Cape Point to East London) prior to 1997 

(Lamberth et al. 1997). However, in 1998 and 1999, white steenbras were absent from monitored 

inshore and estuarine gill-net catches along the South African west coast (Hutchings and Lamberth 
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2002a). Furthermore, Hutchings and Lamberth (2002b) determined, based on surveys, catch returns 

and processing facility records, that the bycatch of white steenbras in the gill-net fishery along the 

west and south west coasts in the latter part of the 1990s, was negligible. Considering that the 

majority of white steenbras captured in the beach-seine fishery is taken within False Bay, and that 

the mean annual reported catches in the gill-net fishery in False Bay were shown to be only a 

fraction of those reported for the beach-seine fishery (Lamberth et al. 1997), it follows that the 

contribution by the commercial gill-net fishery to the annual catches of white steenbras was 

considerably lower than that of the beach-seine fishery.  

 

8.3.3 Boat-based linefisheries (recreational and commercial) 

White steenbras is typically an inshore coastal species that features poorly in the catches of 

recreational and commercial boat-based fisheries. Coetzee and Baird (1981) reported zero white 

steenbras captured by recreational boat anglers around the St Croix Island in Algoa Bay, from 

December 1975 to February 1978. White steenbras was the seventh most commonly captured 

species in the commercial line fishery in False Bay from 1984 to 1992, although this amounted to 

about 2% of the total catch (Lamberth and Bennett 1993). An assessment of the commercial line 

(skiboat) fishery from Stilbaai to the Kei Estuary from 1994 to 1996 returned just two white 

steenbras, at a daily catch rate of 0.002 white steenbras.angler-1.day-1 (Brouwer and Buxton 2002), 

and an assessment of the commercial and recreational boat fisheries in the Transkei from 1995 to 

1998 returned a single white steenbras (Fennessy et al. 1999). Prior to 2000, recreational and 

commercial boat-based linefisheries combined produced about 1 mt of white steenbras bycatch 

annually (Lamberth and Mann 2000), approximately 1.2% of that estimated to have been taken in 

the recreational shore fishery in 1996 (Lamberth 1996).  

 

8.3.4 Estuaries 

The spatial distribution of white steenbras in estuaries was determined as part of a national 

assessment of ichthyofaunal diversity in estuaries from 1993 to 1999 (Harrison 1998a, b, c, 1999a, b, 

2003, James and Harrison 2008, 2009, 2010a, b, 2011). This survey sampled 251 estuaries along the 

South African coastline, using both seine netting and gill-netting. White steenbras CPUE in the 

different estuaries, for both seine and gill-netting was highest in the centre of the species core 

distribution, defined as the area from the Berg Estuary to the Mbashe Estuary (Lamberth and Mann 

2000), and decreased towards the edges of this distribution (Figure 8.14). Beyond these boundaries, 

the catches of white steenbras were negligible. 
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Figure 8.14: Seine net CPUE (fish.haul-1) and gill-net CPUE (fish.gill-net set-1) of white steenbras made 

in 138 estuaries (names provided for every fifth estuary) within the species core distribution (after 

Harrison 1998a, b, c, 1999a, b, 2003, James and Harrison 2008, 2009, 2010a, b, 2011) 

 

Estuarine fisheries 

Estuarine fisheries constitute a large proportion of recreational and subsistence angling effort at the 

national level, and the recreational estuarine fishery is of high economic value (Lamberth and Turpie 

2003). Angling effort in estuaries has increased in recent years, as a result of the overall increase in 

fishery participation and the ban on “beach driving”, implemented in 2002 (MacKenzie 2005). This 

increased effort has contributed to further declines in fish stocks. Furthermore, recreational fishing 

effort is usually concentrated in the lower reaches of estuaries (Baird et al. 1996, Potts et al. 2005, 

Cowley et al. 2004, 2009), coinciding with the high use area of white steenbras (see Chapter 3).  

 

In the early part of the 20th century, white steenbras was the most abundant “angling” species 

captured during netting in the Swartkops Estuary, on the south east coast (Gilchrist 1918, in Baird et 

al. 1996). Prior to 1974, netting in this estuary indicated that white steenbras was still the most 

dominant angling species, although it was only second most common overall by mass, and fourth by 

number, but contributed more than double the number of another important angling species, 

spotted grunter Pomadasys commersonnii, (Grindley 1974, in Marais and Baird 1980). Over this 

period, white steenbras was also the dominant angling species in gill-net catches in the Breede and 

Bot estuaries (Ratte 1977a, b, in Marais and Baird 1980). In 1980, white steenbras CPUE in the 

Swartkops Estuary was 0.2 fish per 12-hour gill-net set, although by 1992 the species was absent 

from gill-net catches (Baird et al. 1996). In 1995, white steenbras was recorded as the eighth most 

common species in seine net catches in this estuary, contributing 1.7% by number, and third most 

common angling species, with just 11% of the catch of spotted grunter (James and Harrison 2010a). 
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Over the period 1972 to 1978, competition angler catches showed that white steenbras had been 

reduced to the second most dominant angling species in this estuary after spotted grunter, and 

comprised only a fraction of the catch of the latter (Marais and Baird 1980). During this period, white 

steenbras contributed 3.3% to total angler catches in the Swartkops Estuary (Marais and Baird 1980). 

By the period 1988 to 1993, the contribution of white steenbras to total angler catches had declined 

to 3.0 % (Baird et al. 1996), and to just 2.0% by the period 1996 to 1997, constituting only the fifth 

most common angling species (Pradervand and Baird 2002). 

 

In the nearby Sundays Estuary, from 1976 to 1979, white steenbras was recorded in gill-net catches 

as the 15th species overall by number, comprising less than 10% of the spotted grunter catch, at a 

CPUE of 0.1 fish per 12-hour gill-net set (Marais 1981). By 1980 to 1981, white steenbras had 

increased to seventh most dominant species in seine net catches in this estuary, and the dominant 

angling species, with catches exceeding those of spotted grunter (Beckley 1984), and by 1992 to 

1993, gill-net CPUE of white steenbras had doubled to 0.2 fish per 12-hour gill-net set (Baird et al. 

1996). However, by 1995, the species contributed 2.6% to overall seine net catches in the Sundays 

Estuary, constituting the eighth most common species overall and the third most common angling 

species, with a catch of approximately 70% of that recorded for spotted grunter (James and Harrison 

2010a). By the period 1996 to 1997, white steenbras was only the fifth most dominant angling 

species in the Sundays Estuary, and contributed just 0.7% of the total angler catch, at a CPUE of 0.14 

fish.100 angler hours-1 (Pradervand and Baird 2002). More recently, a roving creel survey, from 2007 

to 2008, recorded white steenbras as the fifth most common species by number, and third most 

common angling species, contributing 7.0% to the total angler catch, with a CPUE of 2.0 fish.100 

angler hours-1 (Cowley et al. 2009). Therefore, it appears that the contribution of white steenbras in 

the Sundays Estuary fishery has fluctuated over the past four decades, increasing initially, but 

subsequently declining. However, the improved angler catches in the period 2007 to 2008 over 

those recorded a decade earlier suggest a possible recovery in the abundance of white steenbras in 

the Sundays Estuary. This may be a result of anomalous catches within this estuary, or the effect of 

improved recruitment as a result of the ban on the commercial harvest of white steenbras, in 2001. 

 

Gill-netting, seine netting and angler catch data recorded at different times are not directly 

comparable, due to the variability in selectivity among gears (Marais and Baird 1980). As such, these 

data are presented simply to illustrate the temporal trends in the catch of white steenbras in the 

respective estuaries. The following sub-section provides the results of two long-term netting studies 

conducted in estuaries, to provide insight into the most recent trends in white steenbras abundance. 
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Long-term monitoring 

Long-term netting in two estuaries, the temporarily open/closed East Kleinemonde Estuary on the 

east coast, and the permanently open Berg Estuary on the west coast, indicate a possible recent 

increase in white steenbras abundance in estuaries (Figure 8.15). Annual mean CPUE (fish.haul-1), 

based on a total of 638 seine net hauls made during biannual seine netting in the East Kleinemonde 

Estuary from 1995 to 2010 (AK Whitfield, PD Cowley, NC James unpublished data) showed a 

decreasing trend from 1995 until 2002, followed by a general increase (Figure 8.15a). While the 

initial decreasing trend in CPUE may reflect years in which the estuary mouth remained 

predominantly closed (Figure 8.15b), the start of the increasing trend from 2002 coincides with the 

eventual withdrawal of the 20 mt white steenbras commercial catch exemption in False Bay, 

imposed in 2001. The increasing trend in CPUE likely reflects improved recruitment due to the 

protection afforded to adult white steenbras after 2001. Figure 8.15c shows the trends in CPUE 

recorded prior to 2001 and those recorded after 2001.  

 

 

Figure 8.15: Catch trends from a long-term netting study in the East Kleinemonde Estuary from 1995 

to 2010, showing a) mean (±SD) annual white steenbras CPUE (fish.haul-1), b) mean CPUE in relation 

to the percentage of days in each year during which the mouth of the estuary was open to the sea, 

and c) mean annual CPUE with linear fits to data collected prior to 2002 and those collected from 

2002 onwards; arrows indicate the withdrawal of the 20 mt commercial catch exemption. Graph d 

shows mean (±SD) CPUE (fish.haul-1) of white steenbras in the Berg Estuary for the periods 1992 to 

1996 and 2003 to 2007. Samples sizes indicate the number of net hauls (n)  
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In the Berg Estuary, research seine netting was conducted less regularly than in the East 

Kleinemonde Estuary, although 153 seine net hauls were made in the estuary from 1992 to 1996, 

and a further 190 hauls from 2003 to 2007 (K Hutchings, unpublished data). Mean CPUE recorded in 

the latter period was considerably higher than that recorded in the former (Figure 8.15d). The 

improved catches resulted from closure of the commercial gill-net fishery in this estuary in 2003 

(Hutchings et al. 2008). While these data indicate that white steenbras abundance has increased 

within this estuary, the results are of a preliminary nature, and should be treated as such. A roving 

creel survey over the period 2002 to 2004 produced just four white steenbras, which constituted 

approximately 0.1% of the total catch (Hutchings et al. 2008).  

 

8.3.5 Spearfishery 

There is anecdotal evidence to suggest that white steenbras are regularly targeted in the 

spearfishery, particularly in areas such as East London to Port Elizabeth, and False Bay; although little 

data exist for this fishery. A survey of the South African spear fishery from 1984 to 1995 indicated 

that white steenbras was not an important target species in this fishery (Mann et al. 1997). White 

steenbras also did not feature in a survey of the spearfishery from Cape Hangklip to Walker Bay, 

from 1995 to 1997 (Attwood and Farquhar 1999). Mann et al. (1997) estimated participation in the 

spearfishery to be approximately 7000 individuals, compared to the 412 000 estimated in the 

recreational shore fishery (McGrath et al. 1997). The number of white steenbras taken annually in 

the spearfishery is, therefore, likely to be negligible when compared to that taken by the 

recreational shore and previously the commercial beach-seine fisheries. 

 

8.4 Fisheries management measures  

8.4.1 Recreational fisheries 

Proclamation of the Tsitsikamma MPA in December 1964 was the first marine regulation to affect 

the recreational fishery directly, and resulted in decreased effort in the area. The Tsitsikamma MPA 

was shown to provide protection for white steenbras and numerous other species, with higher CPUE 

in the protected area than adjacent open areas (Hanekom et al. 1997, Cowley 1999). 

 

The linefish management framework introduced in South Africa in 1985 (Government Gazette No. 

9543) included the first catch restrictions for numerous linefish species, aimed at providing improved 

protection for those species showing stock declines (Griffiths 2000). The minimum legal size limit for 

white steenbras was initially set at 40 cm TL. While this may have decreased the recreational (and 

commercial) catches of white steenbras slightly, the size is well below the size at 50% sexual 
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maturity, thereby providing little protection against growth overfishing (Bennett 1993b). As part of 

the same set of regulations, the maximum daily bag limit was set at 10 per person per day (pppd), 

for all species (including white steenbras) not listed as “exploitable” or “protected”. However, 

Attwood and Bennett (1995b) estimated that this restriction decreased recreational catches of white 

steenbras by only 0.1%, as catches in excess of 10 white steenbras pppd were particularly 

infrequent. 

 

In addition to the linefish management framework, 1985 also saw the proclamation of the De Hoop 

MPA, for the protection of coastal fishes on the south west coast. Research angling showed 

significantly improved CPUE of white steenbras after proclamation (Bennett and Attwood 1991), 

showing that the MPA had contributed to the protection of white steenbras and providing evidence 

of the potential benefits of MPAs for this species. 

 

As a result of severe stock declines, the maximum daily bag limits for numerous species were revised 

in 1992, with that for “recreational” species, including white steenbras, being decreased to 5 pppd. 

However, Attwood and Bennett (1995b) estimated that this would reduce recreational catches of 

white steenbras by just 1.9%, thereby providing little additional protection for the species. 

 

Once again prompted by stock declines, such as the collapse of the white steenbras stock, minimum 

legal size limits for certain species were increased in 1996. The increase in the limit to 60 cm TL for 

white steenbras is likely to have decreased the recreational and commercial catches to a certain 

degree, particularly within the recreational shore fishery, in which the majority of white steenbras 

caught were smaller than this size (Bennett 1993b). However, this is still lower than the size at 50% 

sexual maturity (600 mm FL), meaning that most white steenbras still recruit to the fishery before 

they are able to spawn. 

 

In 2000, the Dwesa-Cwebe MPA in the Transkei was proclaimed. The location of this MPA in the 

vicinity of the white steenbras spawning grounds suggests that it would provide considerable 

protection during the spawning aggregation. However, there is anecdotal evidence to suggest a high 

level of illegal harvesting within this MPA. If enforcement within this MPA could be improved, this 

would provide protection for white steenbras at a particularly vulnerable life stage. 

 

The declared state of emergency in the South African linefishery, in 2000 (Government Gazette No. 

21949), once again prompted amendments to the regulations governing recreational anglers, with 
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the maximum daily bag limit for white steenbras being decreased to 1 pppd in 2002 (Sauer et al. 

2003). However, by this time, most of the “damage” to the stock had already been done, and 

recreational shore catches suggested that a bag limit of 1 pppd would be exceeded, and therefore 

come into effect, in just 2% of angler outings (Brouwer et al. 1997), thereby providing little 

protection for the species. 

 

A second, and particularly important, legislation was introduced in 2002, with the ban on the 

recreational use of vehicles in the coastal zone. This legislation prevented anglers from driving on 

the beaches, having the effect of limiting access to certain areas of coastline, thereby decreasing 

shore angler effort in these areas. The result is an increasing trend in white steenbras CPUE in 

certain ‘limited access’ areas (PD Cowley, unpublished data). This legislation is, therefore, one of the 

most effective management measures for white steenbras. 

 

Presently, white steenbras is managed by a maximum daily bag limit of 1 pppd and minimum size 

limit of 60 cm TL in the recreational and subsistence fisheries, although participation is unrestricted. 

These fisheries are characterised by poor law enforcement, as well as low compliance by the anglers, 

exemplified by the high proportions of white steenbras retained in estuarine fisheries that are below 

the minimum legal size (Bennett et al. 1994, Cowley et al. 2004, Potts et al. 2005). The poor status of 

the stock and the failed history of management pertaining to the recreational harvest of this species 

suggest that improved management measures are required, to facilitate stock recovery. 

 

8.4.2 Commercial fisheries 

Prior to 1969, the only regulation governing the commercial beach-seine fishery was a minimum 

mesh size of 44 mm, introduced to protect juvenile fishes (Penney 1991). From 1975 onwards, 

commercial beach-seine and gill-net operators were required to register their operations and licence 

their nets (Hutchings et al. 2002b). There was a drive at this time to decrease the effort in these 

fisheries, by limiting the legal area of operation and number of permits allocated (Penney 1991). 

However, by this time, the catches and CPUE of white steenbras had declined considerably, 

suggesting that the restrictions had been introduced too late. 

 

The peak catches of white steenbras made in the commercial purse seine and beach-seine fisheries, 

in the late 1970s and early 1980s, resulted in prohibition of purse seining within False Bay and 

prohibition of the commercial net harvest of “angling” species outside of False Bay and Walker Bay, 

after 1982 (Penney 1991). This undoubtedly decreased the effort and potential catch of white 
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steenbras in the purse seine and beach-seine fisheries, which had been responsible for a large 

proportion of the catch prior to 1982, and had contributed to the overall decline in the white 

steenbras stock (Bennett 1993a). However, once again, it is likely that the majority of the “damage” 

had already been done by this time. In addition to these major fishery regulations, the beach-seine 

fishery within False Bay was subjected to a number of more specific measures, including a winter 

closed season, prohibition on beach seining at night, minimum legal size limits for certain species 

and a considerable decrease in the number of permits allocated (Bennett 1993a). The minimum size 

limit is likely to have provided some protection for early juvenile white steenbras, although little 

protection against growth overfishing, as fish were still able to recruit into the fishery two to three 

years before attaining sexual maturity (Bennett 1993b). Similarly, the closed season was 

implemented over the winter months, when white steenbras was caught in considerably lower 

numbers in False Bay, and when adults were believed to undertake spawning migrations to the east 

coast (Bennett 1993a), thereby causing little reduction in the annual catches of white steenbras. 

Once again, the newly implemented measures were unlikely to provide a guarantee against growth 

or recruitment overfishing. 

 

A second suite of additional regulations pertaining to commercial beach-seine operations was 

implemented from 1988 to 1990 in False Bay. Firstly, certain additional areas within False Bay were 

closed to commercial netting, including a 1-km stretch of shoreline adjacent to the Eerste Estuary, 

which Bennett (1992) suggested was likely to have decreased commercial catches of white steenbras 

from the north shore of False Bay by as much as 75%, thereby providing considerable protection for 

the species. There was also the complete prohibition of the use of the sinking “Russman” seine net, 

which had always been restricted to the western shore of False Bay. White steenbras caught using 

this form of beach-seine net were almost exclusively adult fish, and these operators were 

responsible for a large proportion of the beach-seine catches of white steenbras over the years 

(Bennett 1993a). Therefore, the prohibition of these nets in 1990 undoubtedly decreased the fishery 

pressure on white steenbras, reducing the catches of white steenbras along the western shore of 

False Bay to almost nothing (Bennett 1992).  

 

The regular beach-seine fishery within False Bay was also subjected to new regulations at this time, 

with restrictions imposed on the maximum lengths of the nets, as well as the hauling ropes. The 

number of permits issued was also decreased, which is likely to have decreased effort to a certain 

degree, although permits that were not reissued were in many cases those of permit holders who 

had become inactive in the fishery (Penney 1991). Therefore, these measures implemented within 
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False Bay in 1990 were likely to have provided little additional benefit to white steenbras, 

considering the magnitude of the other regulations implemented around the same time. 

 

Bennett (1993a) estimated that the SB/R ratio for white steenbras had declined to just 6% of its 

pristine level, confirming that the stock had collapsed. This was despite the series of increasingly 

stringent regulations implemented in the different fisheries. Although the commercial net fisheries 

were still permitted to catch white steenbras after 1993, the poor status of the stock ultimately 

resulted in a commercial ban on the harvest of white steenbras, and other species, in the 

commercial net fisheries after 2001. This regulation should have had the effect of completely 

eliminating white steenbras harvest, other than in the recreational and subsistence fisheries, and 

therefore has probably contributed considerably to the conservation of the species. However, there 

is evidence that illegal catches of white steenbras were still made after this regulation, in both the 

commercial beach-seine and gill-net fisheries (Hutchings et al. 2002a). Furthermore, a reduction in 

total annual white steenbras catch of just 25% (by number) can be inferred from the commercial 

ban, while participation in the recreational fishery, responsible for the other 75% of the catch, 

remains unregulated. Despite some evidence of stock recovery, in the East Kleinemonde Estuary and 

the surf zone of the GAENP MPA, it remains to be seen whether these restrictions were 

implemented early enough to allow the stock to recover. However, the genetic analyses showed a 

high level of genetic diversity in white steenbras and a high level of mixing among coastal regions, 

suggesting a level of resilience within the species, despite the historical and current fisheries 

mortality. 

 

8.4.3 Additional management considerations 

Juvenile white steenbras showed high levels of residency within the study estuaries, with little 

evidence that these fish spent any time at sea. The results suggest that during the estuarine life 

stage white steenbras could be effectively protected by means of area closure. Estuarine protected 

areas would be simpler to enforce than the current daily bag and minimum size limits, and at the 

same time could protect multiple species. The identification and protection of selected estuaries 

that act as critical habitats for multiple species would be an effective management option. An 

Estuarine Management Framework has been established in South Africa, to provide guidelines for 

the development of estuary-specific management plans and zoning of no-take areas in estuaries. 

 

Sub-adult and adult white steenbras are almost exclusively marine, meaning that the vast majority of 

white steenbras in estuaries are juveniles, below the minimum legal size limit (60 cm TL). As such, an 
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alternative to the establishment of a few individual EPAs would be a complete ban on the harvesting 

of white steenbras within estuaries. If such a measure was enforced, this could protect the juveniles, 

with little negative impact on compliant estuarine fishers. Such a regulation would be simpler to 

implement than EPAs in multiple estuaries. However, as with the current minimum size and daily 

bag limits, such a species-specific measure may prove difficult to enforce. 

 

The high levels of residency exhibited by post-estuarine juveniles and sub-adults in the marine 

environment suggest that white steenbras could be effectively protected during these two life stages 

through a network of suitably positioned MPAs that are closed to shore angling (Cowley 1999). By 

modelling the potential effects of MPAs on the white steenbras stock, Attwood and Bennett (1995a) 

showed that MPAs would have little effect on yield per recruit (Y/R) but could significantly improve 

spawner biomass per recruit (SB/R), through the prevention of growth overfishing (Cowley 1999). 

This was confirmed by the high proportion of individuals recaptured in each tagging programme, 

within the respective MPA (see Chapter 6), and the improved CPUE of white steenbras in the De 

Hoop MPA after proclamation (Bennett and Attwood 1991, 1993). The corollary to this, however, is 

that juveniles and sub-adults are also likely to exhibit residency in areas outside of the protection of 

MPAs, making them susceptible to localised overexploitation (Lamberth and Prochazka 1994), 

particularly in stretches of coastline in close proximity to urban areas (Brouwer et al. 1997). This 

highlights the need for improved enforcement of existing regulations. 

 

The larger white steenbras showed a much lower level of residency, undertaking considerable 

movements, suggesting that adults are unlikely to benefit from MPA protection to the same degree 

as earlier life stages (Hutchings et al. 2002a). However, MPAs for mobile species can be effective if 

they protect essential habitat, such as spawning grounds (Afonso et al. 2009). Bennett (1993a) 

suggested that the establishment of MPAs in the Transkei area was unnecessary for the protection 

of white steenbras during the spawning season, as this represented a small proportion of the total 

annual white steenbras catch. However, individuals aggregating in this area over the spawning 

season are possibly the only spawning adults, and require protection to ensure that they are allowed 

to spawn before being captured. Therefore, the establishment of the Dwesa-Cwebe MPA has the 

potential to contribute considerably to the protection of the species, provided that illegal harvesting 

within the MPA is prevented. 

 

White steenbras exhibited seasonal catches in different areas, with increased catches in the south 

Western Cape during the summer months, and in the Transkei area during the winter months 
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(Bennett 1993a), and showed seasonal variation in the direction of movement between tagging and 

recapture events, indicative of an annual spawning migration. The predictable nature of this 

seasonal migration and the spatial concentration in a limited spawning area make these adults 

vulnerable to overexploitation at this life stage (Bennett 1993b). Marine protected areas are thus 

likely to offer less protection to migrating adults. A complementary management option at this life 

stage that takes into account the migratory behaviour is a closed season (Bennett 1993b, Hutchings 

et al. 2002a). Effective closed seasons have been implemented in South Africa for red steenbras, 

shad Pomatomus saltatrix and galjoen Dichistius capensis. A closed season was proposed for white 

steenbras as early as 1993 (Bennett 1993a), yet no such regulation was ever implemented. A 

strategically designed and well-enforced closed season spanning the known spawning aggregation 

period in the Transkei, from mid-July to the end of August, to protect adult white steenbras during 

the spawning season should be considered as a viable management option. In effect, the Dwesa-

Cwebe MPA should act as a seasonal closure for white steenbras, as they spawn in this area in late 

winter; although a closed season would also provide protection for individuals spawning outside of 

the MPA. It is envisaged that the Ocean Tracking Network (OTN) programme will return more 

detailed information in the forthcoming years, providing an improved understanding of the timing 

and extent of white steenbras spawning migrations, and the locations and spatial extent of spawning 

grounds. This information could then be used to modify and improve management regulations, such 

as extending or shifting the closed season, or identifying and proclaiming new MPAs. 
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Chapter 9

Conservation status 

 

9.1 Introduction 

Van der Elst and Adkin (1991) and Lamberth and Joubert (1999) identified white steenbras as a 

priority species for research, conservation and management in South Africa. The species was also 

identified as one of six flagship estuarine species (Endangered Wildlife Trust 2002), and a keystone 

zoobenthic predator “whose continued well-being is vital as a functional need of a whole 

community” (Whitfield and Cowley 2010). White steenbras was originally included in the Threatened 

and Protected Species List published in 2007 (Government Gazette No. 29657) under the category of 

“Protected species” (i.e. “Indigenous species of high conservation value or national importance that 

require national protection”), as defined in the National Environmental Management Biodiversity 

Act (NEMBA). Although later removed from the list, on the basis that it was already protected under 

the Marine Living Resources Act (MLRA), white steenbras meets certain IUCN (International Union 

for the Conservation of Nature) categories and criteria for threatened species, and remains a priority 

species for conservation.  

 

The failure of conventional management measures, such as minimum size and daily bag limits, to 

protect white steenbras and other South African linefish species (Bennett et al. 1994, Brouwer et al. 

1997, Griffiths 2000, Cowley et al. 2002) has brought about the need for alternative or 

complementary management measures to be used in conjunction with conventional measures, and 

the need to manage marine resources from an ecosystem perspective (Cochrane et al. 2004). As a 

result, fisheries managers in South Africa, and in numerous other countries, have turned to 

Ecosystem Based Management (EBM) and marine protected areas (MPAs) for the management and 

protection of fish stocks at the ecosystem level (Roberts and Polunin 1991, DeMartini 1993, Penney 

et al. 1999, Russ 2002). Pajak (2000) describes three broad domains that should be addressed in 

EBM approaches to resource management, to ensure sustainable resource utilisation; namely 

environmental (the resource and its environment), social (those using, impacting on or relying on the 

resource), and institutional (decision-makers, management authorities and associated legislation). 

 

The World Summit on Sustainable Development (WSSD) held in Johannesburg in 2002 encouraged 

states to implement the Ecosystem Approach to Fisheries (EAF), by 2010 (Turrell 2004). The EAF is a 

form of fisheries governance framework, which draws from conventional fisheries management and 
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EBM principles (FAO 2003, Garcia et al. 2003). The basis of EAF is the management of fishery 

resources with specific goals, to allow for the sustainable use of the resources and to meet the 

needs of the users, while maintaining the ecosystem complexity, interactions and processes 

necessary for conservation of proper ecosystem functioning (Garcia et al. 2003). This is particularly 

important for the management of fisheries where resource use takes place in fishery sectors at all 

socio-economic levels (i.e. subsistence, recreational and commercial sectors). In South Africa, a 

dedicated EAF Working Group oversees EAF progress and related issues (Shannon et al. 2006).  

 

Marine protected areas have been advocated by numerous fisheries biologists as a complementary 

tool to traditional management measures, and an important tool for the protection of coastal and 

marine resources (Buxton 1993, Roberts 1998, Hilborn et al. 2004, Mann et al. 2006). One of the 

main benefits of MPAs is their holistic nature, providing simultaneous protection for a range of fish 

and invertebrate species (Attwood and Bennett 1995a, Zeller et al. 2003). The numerous biological 

benefits of MPAs may include decreased fishing mortality (Russ 1991), enhancement of stocks within 

the MPA through direct protection (Bennett and Attwood 1991, Millar and Willis 1999), facilitation 

of recovery of depleted stocks (Beger et al. 2003), spillover of adults to adjacent fished areas 

(Bennett and Attwood 1991, Zeller et al. 2003), seeding of recruits into adjacent fisheries through 

larval dispersal (Tilney et al. 1996), increased biomass and size structure within the reserve (Buxton 

1987, Buxton and Smale 1989, Russ 1991, Roberts and Polunin 1991, Willis et al. 2000), increased 

reproductive capacity and protection of habitat (Gell and Roberts 2003). MPAs can also provide 

control or reference areas, against which exploited areas may be compared to assess the impacts of 

fishing or protection on population parameters (Griffiths and Wilke 2002, Hilborn et al. 2004). MPAs 

should not, however, be seen as “a panacea for fisheries management problems”, but rather as a 

complementary measure to conventional management tools, which can be used as part of a suite of 

management measures (Hilborn et al. 2004). Even after the establishment of an MPA, conventional 

management measures should remain in place in the adjacent exploited areas (Russ 2002). This is 

particularly important in situations where fishing effort becomes concentrated at the edges of an 

MPA. As such, MPAs and the EAF can provide possible solutions to the failure of conventional 

fisheries management in South Africa. However, the potential level of protection afforded by MPAs 

to individual species needs to be determined, and the effectiveness of few MPAs has been 

quantitatively assessed (Russ 2002, Zeller et al. 2003). Cowley et al. (2002) assessed the 

effectiveness of the Tsitsikamma MPA in the management of four coastal fishes in South Africa, and 

advocated that the role of MPAs in the management of other linefish species be assessed. 
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The South African Linefish Management Protocol (LMP), developed specifically for assessing the 

status of linefish stocks, defines a number of management actions to be taken in the event of stocks 

becoming overexploited or collapsed. These include minimum size and maximum daily bag limits, 

closed seasons and areas, and commercial and recreational moratoria (Griffiths et al. 1999). 

However, the LMP recommends single species production models and age-based stock assessments, 

which are not suitable for all species, and for many species suitable data or mortality estimates are 

lacking (Attwood 2003). Therefore, for certain species, alternative approaches are necessary.  

 

Although area protection (in the form of MPAs) is included as one form of management regulation in 

the LMP, several new initiatives adopting EBM principles have been developed. The National Spatial 

Biodiversity Assessment of South Africa 2004 (Turpie 2004) and the South African National Protected 

Area Expansion Strategy 2008 (NPAES 2008) highlight the need to expand the nation’s network of 

marine and estuarine protected areas. In addition, the National Biodiversity Assessment 2011 (Sink 

et al. 2011, van Niekerk and Turpie 2011) aimed to identify suitable marine and estuarine areas for 

additional protection, through the identification of critical habitats at the ecosystem level. Fisheries 

managers are increasingly adopting a habitat management approach in the management of fishery 

species to ensure the protection of important habitats (Monaco et al. 1998). A “habitat suitability 

index” (HSI) can be employed to assess the quality and suitability of available habitat for a species or 

community, to provide additional information for management (Brooks 1997, Brown et al. 2000).  

 

Following from these studies, this chapter includes a simple assessment at the species level to 

identify both critical habitats for white steenbras and areas potentially suitable for additional closure 

(i.e. where new protected areas could be established) for the protection of white steenbras and 

other estuarine-associated coastal fishes. This was achieved firstly by assessing the distribution of 

the species relative to existing protected areas, throughout its core distribution, by drawing on 

available literature and results from previous chapters. This information was then incorporated into 

a modified estuarine and coastal HSI-type assessment (Brown et al. 2000), which was used to 

identify actual and potential white steenbras hotspots, potential areas for protection and areas 

where the species is under severe threat. This also provided information on the level of protection 

offered to white steenbras and its habitat by current management regulations and the existing 

marine and estuarine protected area network. Secondly, by drawing from the literature and results 

from previous chapters, the status of the species was classified according to national and global 

conservation criteria. At the national level, the species was classified according to the NEMBA Act, 

and at the international level according to the IUCN Red List Categories and Criteria (IUCN 2001). 
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9.2 Protection status of white steenbras  

This section considers the spatial distribution of white steenbras, and the availability of suitable 

habitat (or at least the suitability of available habitat) to white steenbras at all life stages in both the 

marine and estuarine environments. The overall aim was to identify estuaries and sections of 

coastline of importance for white steenbras, and that could potentially serve as suitable areas for 

further legislative protection for the species. Specific objectives were to: 

 

i. Identify estuaries that are important to or suitable for white steenbras, 

ii. Determine the status of protection in estuaries within the white steenbras core distribution, 

iii. Relate important estuaries for white steenbras to current estuarine protection levels, 

iv. Determine the proportions of coastline within the white steenbras core distribution 

comprising different habitat types, 

v. Determine the proportions of coastline comprising different habitat types, which fall under 

different levels of MPA protection, 

vi. Identify sections of the coastline within the white steenbras core distribution that are 

important to or suitable for white steenbras, 

vii. Relate the important coastal sections for white steenbras to the locations and protection 

levels of different MPAs, and 

viii. Use this information to determine the current protection status of white steenbras. 

 

9.2.1 Analysis approach 

Data for the habitat suitability assessments were largely drawn from the Coastal Sensitivity Atlas of 

southern Africa (Jackson and Lipschitz 1984), a synopsis of available information of South African 

estuaries (Whitfield 2000), the National Spatial Biodiversity Assessment 2004 Marine Component 

(Lombard et al. 2004) and Estuary Component (Turpie 2004), the National Biodiversity Assessment 

2011 Marine Component (Sink et al. 2011) and Estuary Component (van Niekerk and Turpie 2011), 

and an assessment of habitat types along the South African coastline (Harris et al. 2011).  

 

The core distribution of white steenbras, for the purposes of this analysis, was taken as that 

described by Lamberth and Mann (2000), from just north of Cape Columbine in the west to the 

Mbashe Estuary in the east. The analysis focussed on this section of coastline (hereinafter referred 

to as the “survey area”), and included small buffer zones on either side, stretching north past Cape 

Columbine to the Berg Estuary, the northern-most estuary within which juvenile white steenbras are 

commonly found (Bennett 1993b), and eastwards of the Mbashe Estuary to the Mbhanyana Estuary, 
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at the eastern boundary of the Dwesa-Cwebe MPA (Figure 9.1). The coastal zone off the Mbashe 

Estuary and the surrounding areas are associated with the spawning grounds of white steenbras 

(Bennett 1993b, Hutchings et al. 2002a), yet competition shore angling catch data showed that 

white steenbras was uncommon east of this estuary, comprising less than 0.1% of catch by number 

(Pradervand 2004). This survey area represented a continuous shoreline of 1 870 km, excluding all 

islands.  

 

 

Figure 9.1: Map of the survey area (divided into 50-km coastal sections), spanning 1 870 km from the 

Berg Estuary in the west to the Mbhanyana Estuary in the east  

 

Estuaries 

The first analysis focussed on the estuaries within the survey area, as these ecosystems are essential 

nursery habitats for juvenile white steenbras (Wallace et al. 1984a, also see Chapter 3), and there is 

evidence that large (adult) white steenbras enter estuaries, although infrequently (Marais 1983, 

Bennett et al. 1985, Bennett 1993b), sometimes as a result of cold marine conditions (Hanekom et 

al. 1989). Proportions of each type of estuary, available surface area and indices of estuary health 

along this stretch of coastline are presented, as well the levels of protection afforded to the different 

estuaries. 

 

A scoring system was implemented to rank the suitability of each estuary, from the Berg Estuary in 

the west to the Mbhanyana Estuary in the east, in terms of its suitability for or potential value to 

white steenbras. This analysis included all estuaries included in Whitfield’s (2000) synopsis of 

available information on South African estuaries, which fall within the survey area (n = 138). Six 

criteria that are likely to affect the potential value of each estuary to white steenbras and one direct 

index of white steenbras density were included in the scoring system, with maximum scores per 

criterion ranging from 0 to 100 (Table 9.1). Characteristics likely to negatively impact the survival or 
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success within, or the recruitment into these estuaries were allocated lower scores, while those 

likely to benefit the species were allocated higher scores. In certain cases scores were allocated 

subjectively, e.g. fair = 50%, while for other criteria scores represented an index relative to all other 

estuaries. The aims were two-fold; firstly to determine the current protection status of estuaries 

most important to white steenbras, and secondly to identify estuaries that should be flagged as 

potentially suitable candidate estuaries for future protection, for the benefit of white steenbras.  

 

The first criterion was based on Whitfield’s (1992) classification of estuary types. Permanently open 

estuaries and estuarine bays were allocated scores of 100, as they are generally the largest estuaries 

and can, theoretically, support the largest populations (Maree et al. 2003). They are also 

permanently connected with the sea; thus recruitment into these estuaries can occur at any time. 

Temporarily open/closed estuaries and estuarine lakes were allocated a score of 75, as they offer 

important refuges for white steenbras, although the successful recruitment of white steenbras into 

these systems is dependent on timeous mouth opening (Whitfield and Bruton 1989). River mouth 

estuaries are permanently open systems, dominated by riverine characteristics, with little marine 

water penetration, and within the survey area are all small (Whitfield 1992). These systems are likely 

to be less suitable for white steenbras, although the species has been observed to use such 

estuaries; therefore, a score of 50 was allocated to river mouth estuaries. 

 

The second criterion was the open water surface area of the estuary (after Colloty 2000). This 

criterion proved complex to assess, due to large sizes of a handful of systems within the region. As 

such, the surface area of each system was initially expressed as a percentage of the largest estuary. 

However, this gave little weight to the smaller systems, and it was felt that transforming the values 

would be more suitable. Maree et al. (2003) suggested that log transformation provided an 

acceptable alternative. The high number of estuaries with less than one percent of the surface area 

of the largest estuary resulted in numerous negative log-transformed values. The percentage surface 

area of each estuary relative to that of the largest estuary was thus multiplied by a scaling factor of 

1000, before log-transformation, and each value was again expressed as a percentage of the value of 

the largest estuary. This provided an acceptable measure, which ranged from >0 to 100. 

 

The third, fourth and fifth criteria considered the health of the ecosystem. Criterion three was the 

estuarine condition, taken from Whitfield (2000), which represented the level of human disturbance. 

This was based on four categories; excellent, good, fair and poor, which were allocated scores of 

100, 90, 50 and 20, respectively, following Maree et al. (2003). Excellent refers to pristine estuaries 
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with negligible human impact, good refers to estuaries with low impact and no major anthropogenic 

disturbance, fair indicates degradation within the estuary or catchment with a moderate impact 

level, and poor reflects estuaries experiencing major ecological degradation (Whitfield 2000). The 

fourth and fifth criteria were the level of pollution within the estuary and the overall ecosystem 

threat status, taken from van Niekerk and Turpie (2011). The level of pollution (combining 

agricultural, domestic and industrial) was rated as low (scoring 100), medium (scoring 50) or high 

(scoring 20), with scores following a similar scale to estuarine condition. The ecosystem threat status 

was categorised as least threatened (scoring 100), vulnerable (scoring 75), endangered (scoring 50) 

or critically endangered (scoring 25). The lower scores allocated for endangered and critically 

endangered estuaries are due to their likelihood of ecosystem collapse, in which the future 

contribution to white steenbras (among other species) would be reduced or removed. 

 

The sixth criterion was an estimate of the level of fishing pressure on the estuary, as higher levels of 

fishing pressure are likely to result in higher levels of harvesting, with greater impact on the 

population within an estuary. Fishing effort data were taken from van Niekerk and Turpie (2011), 

and categorised as low, medium, high or very high, which scored 100, 75, 50 and 25, respectively. 

 

The seventh criterion was a direct index of suitability of each system for white steenbras, based on 

white steenbras abundance recorded in a national netting survey of all functional estuaries in South 

Africa (Harrison 1998a, b, c, 1999a, b, James and Harrison 2008, 2009, 2010a, b, 2011). The short-

term nature of this netting survey is acknowledged, and while it is possible that some values are not 

representative of long-term trends, this is the most comprehensive ichthyofaunal survey spanning all 

South African estuaries. The inclusion of white steenbras abundance is not a circular argument, as 

the analysis was aimed at drawing from all available information to identify actually and potentially 

suitable estuaries for the species, to determine whether white steenbras “hotspots” are adequately 

protected under the current levels of protection. Scores for this criterion were subject to a skewed 

distribution, similar to estuarine surface area (criterion 2), with a few estuaries having exponentially 

higher scores, and many estuaries having scores of zero or slightly greater than zero. However, 

unlike surface area, where even the smallest estuary had a positive value, the natural logarithm of a 

zero catch is mathematically undefined. Therefore, for this criterion, the score was simply taken as 

the abundance of white steenbras recorded during research netting operations, expressed as a 

percentage of the maximum recorded in other estuaries within the study region. The criteria and 

associated scoring system are presented in Table 9.1.  
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Table 9.1: Criteria for scoring estuaries in terms of potential suitability for white steenbras 

Criterion (and source) Category Score 

1. Estuary type Permanently open 100 
(Whitfield 1992) Estuarine bay 100 
(scoring based on Maree et al. 2003) Temporarily open/closed 75 

 
Estuarine lake 75 

 
River mouth 50 

      2. Estuary open water surface area (Ha) Natural logarithm of open water surface 
area of the estuary, relative to that of 
the largest estuary in the survey area 

(after Colloty 2000) 
(scoring based on Maree et al. 2003) 

      3. Estuarine condition Excellent 100 
(Whitfield 2000) Good 90 
(scoring based on Maree et al. 2003) Fair 50 

 
Poor 20 

      4. Pollution level Low 100 
(van Niekerk and Turpie 2011) Medium 50 

 
High 20 

      5. Ecosystem threat status Least threatened 100 
(van Niekerk and Turpie 2011) Vulnerable 75 

 
Endangered 50 

 
Critically endangered 25 

      6. Fishing effort Low 100 
(van Niekerk and Turpie 2011) Medium 75 

 
High 50 

 
Very high 25 

      7. Catch data for white steenbras Catches of white steenbras in the estuary 
relative to that in the estuary with the 

highest catch 
Harrison 1998a, b, c, 1999a, b 
James and Harrison 2008, 2009, 2010a, b, 2011 

   

After scores had been allocated to each estuary for each criterion, the different criterion scores were 

subjected to different weighting, based subjectively on their importance to white steenbras and 

weighted scores were summed across all criteria for each estuary. Weights for all criteria totalled 

1.0. Greater weighting was applied to estuarine surface area, fishing effort and white steenbras 

catch data (as these represent direct indices of available habitat, threat of removal and abundance), 

such that these each had double the weighting (0.2) of the other four criteria (0.1), which are likely 

to affect the species indirectly. Individual criteria were then sequentially removed from the analysis, 

to determine whether the overall observed variability (sum of squared differences between each 

estuarine score and the mean score) would increase with their removal. However, the removal of no 

individual criterion provided greater variability, therefore all criteria were included. 
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Coastal zone 

The second analysis involved quantitatively assessing the suitability of the coastal habitat within the 

white steenbras core distribution, as well as the proportions of coastline and different habitat type 

falling within different levels of marine living resource protection.   

 

White steenbras were shown to exhibit an affinity for sandy shores (see Chapter 8), and are most 

commonly captured from sandy shores in areas such as False Bay, the Transkei and Algoa Bay (Smith 

and Smith 1986, Bennett 1993b, PD Cowley unpublished data). Post-estuarine juveniles and sub-

adults exhibit residency in the surf zone (see Chapter 6), particularly of sandy beaches and mixed 

sand and rock shores (Bennett 1991), and are rarely found associated with rocky shores or subtidal 

reefs (Biden 1948, Bennett 1993b). Therefore, the sections of coastline comprising sandy shores, 

rocky shores or shores of mixed sand and rock within the white steenbras core distribution were 

identified, to provide an index of the potential suitability of different coastal sections for white 

steenbras. Coastal habitats were identified and digitised by Harris et al. (2011).  

 

The proportions of the survey area either falling within or outside of MPAs were also determined. As 

white steenbras has been shown to contribute little to overall catches in the boat-based linefisheries 

(Brouwer and Buxton 2002), this analysis mainly concerns the prohibition of shore angling. Marine 

protected areas were, therefore, further divided into sections of coastline in which shore angling is 

permitted (partial restriction), and those where shore angling is prohibited (full protection).  

 

The South African coastline was divided into 50-km sections (after Lombard et al. 2004). Coastal 

sections of 50 km were deemed suitable for the analysis, as this represents double the maximum 

displacement observed for juvenile white steenbras (<400 mm FL) and double the mean 

displacement of older juveniles (400 – 500 mm FL) in the coastal zone (see Chapter 6). The 

cumulative percentage contributions of sand and mixed sand and rock shores were calculated for 

each of the 38 50-km sections spanning the survey area (from the Berg Estuary to the eastern 

boundary of the Dwesa-Cwebe MPA), and these are also presented cartographically. 

 

A scoring system was then applied to the 50-km coastal sections, in a similar manner to that applied 

to the estuaries. This assessment incorporated four criteria likely to affect the abundance of or 

suitability for white steenbras in each coastal section. The first criterion was the average of the 

estuarine scores determined in the previous section, for all estuaries entering each coastal section. 

This was deemed an important factor, as Bennett et al. (1994) suggested that the ongoing 



Chapter 9 – Conservation status  

 

291 

 

degradation of estuaries is likely a contributing factor to the population decline in white steenbras. 

The second criterion was coastal habitat type, as described previously, which was calculated as the 

cumulative proportions of sandy and mixed sand and rock shoreline within each coastal section 

(after Harris et al. 2011).  

 

The two coastal sections associated with the Langebaan Lagoon initially scored poorly, as there are 

no estuaries entering the sea along this stretch of coastline, and the shoreline of this area was 

classified as “lagoon” (Harris et al. 2011). However, the lagoon itself provides a sheltered, productive 

environment, similar in certain ways to those provided by estuaries (van Niekerk and Turpie 2011). 

Therefore, for the coastal scoring analysis, the two coastal sections comprising the Langebaan 

Lagoon were subjectively allocated estuarine scores of 50 (i.e. half the possible maximum). Similarly, 

the substrate of the lagoon is predominantly sand and mud (Attwood et al. 2007), therefore, the 

shoreline of each of these two coastal sections was simply allocated a subjective score of 50% sandy 

and mixed shores combined. This improved the scores within these two coastal sections. 

 

The third criterion was the level of municipal and industrial wastewater discharge in different coastal 

sections. This was considered an important factor affecting the suitability of coastal habitat for white 

steenbras (Bennett 1991), as excessive pollution/wastewater discharge can result in severe anoxia 

within sandy substrate areas (Oelofse et al. 2004), which would directly impact macrobenthic 

invertebrates, such as the white mussel Donax serra, sand prawn Callianassa kraussi and three-spot 

swimming crab Ovalipes trimaculatus (Bennett 1993b), and thus, indirectly, white steenbras. 

Pollution could also act directly on white steenbras, either acting as a deterrent, causing 

physiological stress or infections, or causing mortality. White steenbras suffered mortalities after a 

raw sewage discharge in the Lourens Estuary, in False Bay (Cliff and Grindley 1982 in Harrison 

1998c). There are approximately 67 marine outfalls of municipal and industrial wastewater entering 

the South African marine and estuarine environments (DWAF 2004), and the volumes of wastewater 

emanating from these have increased considerably over the last decade (Sink et al. 2011). Data for 

this criterion were obtained from the Department of Water Affairs and Forestry’s operational policy 

for the disposal of terrestrial wastewater (DWAF 2004). Of these 67 outfalls, 36 enter estuaries or 

the marine environment within the survey area, cumulatively discharging in excess of 250 million m3 

annually (Table 9.2). The estimated cumulative daily volumes of wastewater discharged from each 

coastal section were determined, and scores were calculated for each as 100 minus the percentage 

of the maximum daily outfall for any coastal section. The coastal section with the maximum daily 

outfall volume therefore scored zero, while those with no outfall scored the maximum of 100. 
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Table 9.2: Estimated daily discharge volumes (m3) of wastewater from the 36 marine and estuarine 

outfalls entering the 38 50-km coastal sections from the Berg Estuary to the Dwesa-Cwebe MPA 

(data taken from DWAF 2004, Sink et al. 2011) 

 
Marine (>2 m deep) Surf zone Estuary Total volume 

Type Number Volume Number Volume Number Volume Number Volume 

Municipal 4 90 426 11 295 714 5 120 623 20 506 763 

Industrial 2 8 254 13 46 994 1 130 000 16 185 248 

Total 6 98 680 24 342 708 6 250 623 36 692 011 

 

The fourth criterion was the estimated level of shore-angling effort within each section. Data for this 

analysis were drawn from Sink et al. (2011), which were based on results of shore angling 

assessments conducted by Brouwer et al. (1997) and Mann et al. (2003). These data were estimated 

as the mean angling effort per 50-km coastal section, expressed as the number of anglers.km-1.day-1. 

As for the wastewater discharge score, the score for angling effort in each coastal section was 

calculated as 100 minus the percentage of the maximum effort for any coastal section. In this way, 

the coastal section with the highest score was that with the lowest effort, and vice versa. 

 

Values for each criterion were then weighted and summed across all criteria for each 50-km coastal 

section. Average estuarine score and habitat type were allocated weights of 0.35, while the levels of 

total wastewater discharge and fishing effort were allocated weights of 0.15. It was felt that the 

availability and condition of estuaries and coastal habitat type were likely the most important factors 

affecting white steenbras distribution or density in the coastal zone. Conversely, although pollution 

is likely to negatively affect coastal ecosystems, and angling results in direct reductions in density, 

the level of pollution currently caused by marine outfalls in South Africa is unlikely to cause 

ecosystem collapse or completely prevent white steenbras from utilising an area, and the level of 

fishing effort will not prevent new fish from entering an area. Individual criteria were then 

sequentially removed from the analysis and, as for the estuarine scoring system, the removal of no 

individual criterion provided greater variability, and all criteria were included. 

 

9.2.2 Analysis outcomes and interpretation 

Estuaries 

There are 259 estuaries along the South African coastline, although only 138 lie within the 1 870-km 

stretch of coastline considered in this analysis, from the Berg in west, to the Mbhanyana in the east.  

The density of estuaries, as well as estuarine condition (Whitfield 2000), showed a general increase 

from west to east along the coastline (Figure 9.2). 



Chapter 9 – Conservation status  

 

293 

 

 

Figure 9.2: Classification of the 138 estuaries from the Berg to the Mbhanyana, in the a) Western 

Cape Province and b) Eastern Cape Province, in terms of estuary type, open water surface area and 

estuary health, and their positions along the coast relative to existing and proposed MPAs 

 

The total open water surface area encompassed in these 138 estuaries is approximately 146 km2, 

which constitutes 29% of the total estuarine surface area available along the South African coastline. 

The majority of these estuaries were classified as temporarily open/closed (70.3%) or permanently 

open estuaries (21.3%), with just 5.1% comprising river mouth estuaries, according to Whitfield’s 

(1992) classification (Table 9.3). The region also includes four estuarine lakes and a single estuarine 

bay, which together comprise 38.5% of the total open water surface area of estuaries within the 

survey area. A total of 43 estuaries within the survey area either flow directly into an MPA or form 

the boundary of an MPA. Fish leaving these estuaries are thus afforded some protection. 

 

Table 9.3: Proportions of different estuary types (after Whitfield 1992) within the survey area of 

coastline, and those that enter MPAs directly or act as an MPA boundary, from the Berg Estuary in 

the west to the Mbhanyana Estuary in the east 

Estuary classification 
Estuaries in survey section Estuaries associated with MPAs 

Number % Number % 

Permanently open 29 21.0 5 11.6 
Estuarine bay 1 0.7 7 16.3 

Temporarily open/closed 97 70.3 31 72.1 

Estuarine lake 4 2.9 0 0.0 

River mouth 7 5.1 0 0.0 

Total 138 100.0 43 100.0 
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In terms of estuaries that are entirely protected through estuarine protected areas (EPAs) or 

partially protected through formal estuarine or catchment legislation, 35 of the 58 such estuaries in 

South Africa enter the sea within the white steenbras core distribution (Table 9.4).  

 

Table 9.4: Estuaries (n = 35) that enter the sea within the white steenbras core distribution, which 

are protected either partially or entirely (including one proposed EPA), through catchment or direct 

estuarine protection (* indicates estuaries that also enter or form the boundary of an MPA) 

Estuary Protected area Proportion protected No-take portion Source 

Diep Rietvlei NR Part Part 1 

*Wildevoëlvlei Table Mountain NP All  2 

*Krom Table Mountain NP All All 2 

Sand Sandvlei NR <10% (upper reaches)  2 

Heuningnes De Mond NR Part  1 

Breede Breede River Conservancy Temporal (night-ban) All (night only) 3 

*Goukou Stilbaai MPA Part Part 4 

Wilderness Wilderness Lakes NP Part  1 

Swartvlei Wilderness Lakes NP Part  1 

*Goukamma Goukamma NR Part  1 

Knysna Knysna NP Part  2 

Keurbooms Keurbooms River NR Part (upper reaches)  1 

Sout (oos) De Vasselot NP All   2 

*Groot (wes) Tsitsikamma NP All  All 2 

*Bloukrans Tsitsikamma NP All All 2 

*Lottering Tsitsikamma NP All All 2 

*Elandsbos Tsitsikamma NP All All 2 

*Storms Tsitsikamma NP All All 2 

*Elands Tsitsikamma NP All or most All 1 

*Groot (east) Tsitsikamma NP All or most All 1 

Tsitsikamma Huisklip NR Part (lower reaches)  2 

Seekoei Seekoei River NR Part (upper reaches)  1 

Gamtoos Gamtoos River Mouth NR Temporal (night-ban) (Voluntary) 1 

Van Stadens Van Stadens NR All  2 

*Sundays GAENP (Proposed) Part Part 5 

Gqutywa 
 

Most  1 

*Nahoon Nahoon NR Small part  2 

*Nyara Amathole MPA Part  1 

*Quko Amathole MPA All or most  1 

*Ngoma Dwesa-Cwebe MPA Most  1 

*Mendu Dwesa-Cwebe MPA Undefined as yet  2 

Mendwana  Dwesa-Cwebe MPA Undefined as yet  2 

*Mbashe Dwesa-Cwebe MPA Undefined as yet  2 

*Ku-Mpenzu Dwesa-Cwebe MPA Undefined as yet  2 

*Mbhanyana Dwesa-Cwebe MPA Undefined as yet  2 

NP = National Park, NR = Nature Reserve, MPA = Marine Protected Area 
Source: 1Whitfield and Cowley (2010), 2van Niekerk and Turpie (2011), 3Government Gazette No. 34596, 
4
Government Gazette No. 31516, 

5
Bezuidenhout et al. (2011) 
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Many of these estuaries are small river mouth systems flowing into the Tsitsikamma MPA, or 

temporarily open/closed estuaries flowing into the Dwesa-Cwebe MPA. Only eight of these estuaries 

are fully protected (i.e. no-take reserves), constituting a total surface area of 0.56 km2 (0.4% of the 

total available estuarine surface area). The Diep and Goukou estuaries are protected in part by no-

take zones. The Krom (east) and all seven estuaries flowing into the Tsitsikamma MPA are fully 

protected from fish harvesting (Whitfield and Cowley 2010, van Niekerk and Turpie 2011), but most 

occur along rocky shorelines. The Breede (Government Gazettes No. 34596) and Gamtoos estuaries 

are partially protected through the prohibition and voluntary prevention, respectively, of night-

fishing, and part of the Sundays Estuary is proposed to be a no-take zone (Bezuidenhout et al. 2011). 

Therefore, the current level of protection afforded to white steenbras in estuaries is poor. 

 

Estuarine scoring system  

Individual estuary scores showed considerable variability, and tended to increase from west to east 

along the coast (Figure 9.3). The lowest scoring estuaries were generally associated with urban 

centres. This was particularly obvious at Cape Town (Rietvlei to Sir Lowry’s Pass estuaries), Port 

Elizabeth (Baakens to Coega estuaries) and East London (Buffalo to Nahoon estuaries). Of the 16 

estuaries that enter the sea either along the west coast or into False Bay, 12 fell within the lowest 13 

ranked estuaries, suggesting that estuaries within this region are considerably less suitable for white 

steenbras, or are in a particularly poor condition, based on the scoring system applied. 

 

Figure 9.3: Estuary scores for all 138 estuaries (every fifth is labelled) from the Berg to Mbhanyana,  

 

The top 30 scoring estuaries are all situated east of Mossel Bay, and were all classified as least 

threatened (van Niekerk and Turpie 2011), under the ecosystem threat status criterion (Table 9.5). 

The surface areas of these estuaries ranged from 6 to 1 697 hectares and most were temporarily 

open/closed estuaries, with low fishing effort. The relative catch of white steenbras within these 

estuaries ranged from 0.0% (i.e. no white steenbras recorded) to 100.0% (i.e. the estuary with the 

greatest white steenbras catch). 
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Table 9.5: Estuary scores for the top 30 ranked estuaries, based on the estuarine scoring system 

(TOCE = temporarily open/closed estuary) 

Estuary (rank) Estuary type 
Area 
(ha) 

Pollution Health 
Fishing 
effort 

Threat 
status 

Relative 
catch 

Score 

1. Goukamma TOCE 46 L Good M Least 100.0 89.9 

2. Van Stadens TOCE 17 L Good L Least 89.5 89.4 

3. Kabeljous TOCE 72 M Good L Least 54.5 78.7 

4. Keurbooms Perm. open 311 L Good L Least 8.6 78.3 

5. Gqutywa TOCE 42 L Excellent L Least 18.2 77.9 

6. Qora Perm. open 53 L Excellent L Least 0.0 77.0 

7. Sout (east) Perm. open 6 L Excellent L Least 7.3 76.5 

8. Swartvlei Est. lake 1 697 L Good L Least 4.1 76.3 

9. Groot (west) TOCE 29 L Good L Least 15.0 75.0 

10. Kaaimans Perm. open 9 L Good L Least 7.3 74.9 

11. Bira TOCE 74 L Excellent L Least 0.5 74.9 

12. Mtati TOCE 50 L Excellent L Least 1.8 74.8 

13. Mgwalana TOCE 53 L Excellent L Least 1.4 74.8 

14.Kobonqaba Perm. open 37 L Good L Least 0.0 74.7 

15.Shixini Perm. open 25 L Good L Least 0.9 74.5 

16. Quko TOCE 43 L Excellent L Least 0.9 74.5 

17.Kiwane TOCE 34 L Excellent L Least 1.4 74.4 

18.Kasuka TOCE 23 L Excellent L Least 2.7 74.3 

19. Kwenxura TOCE 38 L Excellent L Least 0.0 74.2 

20. Nxaxo/Ngqusi TOCE 31 L Excellent L Least 0.5 74.1 

21. Cefane TOCE 33 L Excellent L Least 0.0 74.1 

22. Mendu TOCE 26 L Excellent L Least 0.0 73.9 

23. Ngqwara TOCE 22 L Excellent L Least 0.5 73.8 

24. Cebe TOCE 22 L Excellent L Least 0.0 73.7 

25. Gqunqe TOCE 22 L Excellent L Least 0.0 73.7 

26. Tsitsikamma TOCE 14 M Good L Least 36.8 73.7 

27. Goda TOCE 14 L Excellent L Least 1.4 73.6 

28. Ngoma/Kobule TOCE 13 L Excellent L Least 0.0 73.3 

29. Qolora TOCE 11 L Excellent L Least 0.0 73.1 

30. Nyara TOCE 11 L Excellent L Least 0.0 73.1 

 

The highest ranked estuary was the Goukamma Estuary, on the south coast. This estuary had low 

pollution, was in good condition (Whitfield 2000), had moderate fishing pressure (van Niekerk and 

Turpie 2011) and produced the highest catch of white steenbras of all estuaries in a national survey 

(James and Harrison 2008). In addition to the Goukamma Estuary, a further five of the top ten 

ranked estuaries are situated along the south coast, from the Kaaimans Estuary in the west to the 

Groot (west) estuary at the western boundary of the Tsitsikamma MPA, spanning just 128 km of 

coastline. Within this region are the Goukamma (ranked 1st), Keurbooms (4th), Sout (east) (7th), 

Swartvlei (8th), Groot (west) (9th) and Kaaimans (10th) estuaries (Figure 9.4).  
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Figure 9.4: Estuary ranks in terms of the estuarine scoring system, for the 138 estuaries from the 

Berg to the Mbhanyana, showing a) the survey area, b) the south and south east coasts, and c) the 

former Ciskei and Transkei coasts. Colours represent rank categories, with the 30 highest scoring 

estuaries presented in green, and the 48 lowest scoring estuaries presented in red 

 

The close proximity of these high-scoring estuaries (Figure 9.4b) suggests that the south coast 

provides a potentially important refuge for white steenbras. The area also encompasses the 

Goukamma and Robberg MPAs and borders the Tsitsikamma MPA. The Kaaimans, Groot (west) and 

Goukamma estuaries also exhibited high densities of white steenbras during a survey of selected 

South African estuaries (Turpie and Clark 2007) and recent (2011) research netting has confirmed 

high densities in the Groot (west) Estuary (MKS Smith, South African National Parks, pers. comm.). 

These estuaries can thus be flagged as important estuaries to white steenbras. The Swartvlei Estuary 

is particularly important, due to its large size, and should be identified as a priority for the 

conservation of white steenbras and other estuarine-associated coastal fishes. The Sout (east) 

Estuary scored highly, but due to its small size is unlikely to support a large community of fishes.  

 

The Kaaimans, Keurbooms and Sout (east) estuaries are not protected, and the Keurbooms Estuary 

enters the sea at the town of Plettenberg Bay and was recorded to have high recreational angling 

effort over holiday periods (King 2005). The Swartvlei Estuary falls within the Wilderness Lakes 

National Park (Whitfield and Cowley 2010); although it remains open to angling. The Goukamma 

Estuary enters the sea within the Goukamma MPA; however, both the MPA and estuary are open to 

recreational shore fishing. Consequently, closure of both the Goukamma Estuary and Goukamma 
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MPA to recreational angling would create a suitable combination of estuarine nursery area and post-

estuarine (sub-adult) surf zone refuges, for protection at different life stages.  

 

The second and third ranked estuaries, the Van Stadens and Kabeljous, enter the sea within St 

Francis Bay (Figure 9.4). These estuaries scored highly, based on the low angling effort and the high 

catches of white steenbras (van Niekerk and Turpie 2011, James and Harrison 2010a), and can thus 

be identified as potentially suitable estuaries for the protection of white steenbras, although neither 

is currently protected with no-take zones. These estuaries are in close proximity to the Gamtoos 

Estuary. While this estuary scored poorly, there is a drive by local users to prevent fishing in this 

estuary at night. Therefore, the section of coastline encompassing these three estuaries could 

potentially contribute to the conservation of white steenbras, if suitable restrictions were imposed 

on angling in parts of these estuaries, and if compliance with the regulations was improved.  

 

The Gqutywa and Qora estuaries along the east coast were ranked 5th and 6th (Figure 9.4). Both 

estuaries are small, although the Qora Estuary is permanently open, and both scored highly as a 

result of their excellent condition, low pollution and low fishing effort. The Gqutywa is one of a 

number of high-scoring small to medium-sized estuaries situated within the boundaries of the 

former Ciskei, between the Great Fish and Kei estuaries. Similarly, the Qora Estuary is situated along 

the coastline of the former Transkei, which also encompasses a number of high-scoring small to 

medium-sized estuaries. The high number of estuaries and comparatively small sizes (relative to the 

larger, permanently open systems), suggest that white steenbras, and other estuarine-associated 

fishes, within these estuaries would benefit more from maintenance of estuarine condition, through 

estuarine and catchment management, than from an EPA. Thus, local conservation authorities 

within each area should aim to maintain the high level of estuarine condition within these regions.  

 

The Breede Estuary, ranked just 33rd, is one of only three estuaries (all adjacent) west of Mossel Bay, 

including the Duiwenhoks and Klipdrifsfontein, which scored within the top 60 estuaries. The Breede 

Estuary, as well as the nearby Heuningnes Estuary, also produced good catches of white steenbras in 

a prioritisation survey of selected South African estuaries (Turpie and Clark 2007). The Heuningnes 

Estuary scored poorly in the estuary scoring system, although it is one of the largest estuaries in the 

survey area, and therefore likely to support large populations of estuarine-associated fishes. The 

Klipdrifsfontein Estuary enters the sea within the De Hoop MPA, although it is particularly small, 

offering little available habitat for fishes. Considering these facts, and their close proximity to the De 

Hoop MPA, it seems that the Breede, Duiwenhoks and Heuningnes estuaries are likely to be the 
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western-most estuarine refuges on the south coast contributing appreciably to the overall 

protection of white steenbras. While the Berg Estuary on the west coast scored poorly in the 

estuarine scoring system, evidence suggests that white steenbras recruitment into this estuary has 

improved considerably since the closure of the commercial gill-net fishery in 2003 (Hutchings et al. 

2008). As such, the management of these four estuaries and their catchments, and the enforcement 

of regulations within them should be seen as priorities for the relevant authorities. 

 

Alignment with national priority estuaries 

The Kaaimans, Goukamma, Sout (east), Groot (west) and Gqutywa estuaries were all identified as 

priorities for full protection (i.e. no-take EPA status), in a study aimed at meeting certain national 

conservation goals, such as the protection of 40% of the populations of exploited estuarine-

associated fish species (van Niekerk and Turpie 2011). Similarly, the Swartvlei, Keurbooms, Van 

Stadens and Qora estuaries were identified in the same analysis, as priorities for partial protection. 

The analysis at the national level also identified other estuaries for full protection that were 

identified in the current study as important for white steenbras, including inter alia the Heuningnes 

and Klipdrifsfontein estuaries. This suggests that the estuaries identified as important conservation 

estuaries for white steenbras are also important for other taxa, making them particularly suitable for 

protection. The dominance of smaller estuaries along the coastline, and the fact that most of the 

high-scoring estuaries were small, highlights the importance of these estuaries to fish populations. 

 

Maree et al. (2003) conducted a fish importance rating (FIR) exercise to identify estuaries important 

for estuarine-associated fishes. The results of the current study were generally not in agreement 

with those of Maree et al. (2003), with only two of the top 10 estuaries identified for white 

steenbras, Swartvlei (ranked 10th) and Qora (28th), scoring within the top 30 estuaries based on the 

FIR. The discrepancy is caused by the different criteria used in each study, including ichthyofaunal 

diversity and species richness in the FIR, which were not included in this single-species prioritisation 

exercise. Ultimately, single-species assessments are not the optimal mechanism for prioritising areas 

for protection. However, if priority estuaries can be identified for multiple individual species, it is 

possible to identify those that will potentially provide the most species with protection. 

 

Coastal zone 

Habitat type and level of protection 

The South African coastline is approximately 3 330 km, from the Namibian border in the west, to the 

Mozambique border in the east (Lombard et al. 2004), although for the purposes of this analysis only 
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the portion of coastline encompassing the white steenbras core distribution was considered. This 

represented approximately 1 870 km from the Berg Estuary to the eastern boundary of the Dwesa-

Cwebe MPA. This section of coastline is comprised of approximately 650 km (35%) of sandy beaches, 

530 km (28%) of mixed sand and rock and 580 km (31%) of rocky shores (Table 9.6). There is also a 

natural progression further westwards along the coastline to a greater proportion of rocky shoreline. 

Langebaan Lagoon is unlike the coastline in the rest of the survey area, and was considered a unique 

habitat, while the sections of coastline comprising harbour are excluded from subsequent analyses. 

 

Table 9.6: Proportions of different shoreline habitat constituting the 1 870-km stretch of coastline 

from the Berg Estuary to the eastern boundary of the Dwesa-Cwebe MPA 

Shoreline habitat Length (km) % 

Harbour 10.4 0.6 

Lagoon (Langebaan) 101.4 5.4 

Mixed shore 529.0 28.3 

Rocky shore 577.0 30.9 

Sandy shore 652.2 34.9 

Total 1870.0 100.0 

  

Within this stretch of coastline there are 13 existing MPAs and one proposed MPA. These vary 

considerably in their levels of protection, with certain MPAs governed by strict no-take policies, such 

as De Hoop MPA, and others allowing varying degrees of resource exploitation, such as Table 

Mountain MPA. While sandy shores are the dominant type of shoreline overall, when protection in 

MPAs is considered (at any level of protection), sandy shores become grossly under-represented, 

constituting only 117 km (6.3 %) of the total 1 870-km stretch of coastline. In contrast, rocky shores 

contribute less to the total shoreline in this area, but benefit considerably more from MPA 

protection, with 192 km (10.3%) of rocky shore being protected. In terms of fully protected shoreline 

(i.e. shore angling prohibited), sandy shores constitute only 65 km in total (roughly 3.5%). While 

white steenbras in the coastal zone show high levels of residency (see Chapter 6), these 65 km are 

non-contiguous, and spread across the 14 MPAs, suggesting that even resident individuals are 

unlikely to be completely protected. Langebaan Lagoon, encompassing the Langebaan MPA, is again 

an anomaly and while classified as a lagoon is understood to function as a marine bay (Turpie 2004). 

 

The 14 MPAs together encompass an impressive 461 km (almost 25%) of the survey shoreline (Table 

9.7), which exceeds the target of 20% suggested at The World Summit on Sustainable Development, 

in 2002 (Turrell 2004). However, within these MPAs, shore angling is permitted along almost half of 

the protected shoreline. Proportionately less of the inshore zone associated with this protected 
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shoreline is open to boat-based angling, although white steenbras is rarely captured outside of the 

shore fishery (Brouwer and Buxton 2002). This suggests that the MPAs within the white steenbras 

core distribution are likely to contribute less to the protection of nearshore species, such as white 

steenbras, than to those species with more offshore distributions. 

 

Table 9.7: Proportions (km and %) of different shoreline habitat included within the boundaries of 

current MPAs, or outside of MPAs (i.e. open access), along the 1 870-km survey area from the Berg 

Estuary to the eastern boundary of the Dwesa-Cwebe MPA 

Protection status Lagoon Sandy shore Mixed shore Rocky shore Total 

Total (km)  
km % km % km % km % km % 

Open access 45.5 2.4 535.2 28.8 432.9 23.3 384.8 20.7 1398.4 75.2 

Partial protection 17.5 0.9 51.3 2.8 52.4 2.8 79.8 4.3 200.9 10.8 

Full protection 38.5 2.1 65.7 3.5 43.7 2.3 112.4 6.0 260.2 14.0 

Total 101.4 5.5 652.2 35.1 529.0 28.4 577.0 31.0 1859.6 100.0 

 

The proportions of coastline within each MPA comprised of sand, mixed sand and rock, and rocky 

shoreline are presented in Table 9.8, and Figures 9.5 and 9.6, representing the Western Cape and 

Eastern Cape Provinces, respectively. The shoreline of the proposed Greater Addo Elephant National 

Park (GAENP) MPA is included to show the additional coastal habitat type that will be protected if 

the MPA is promulgated, increasing the total shoreline of the survey area within MPAs to 542 km. 

 

Table 9.8: Proportions (km and %) of sand, mixed sand and rock, and rocky shoreline within each 

MPA in the survey area, from the Berg Estuary to the eastern boundary of the Dwesa-Cwebe MPA 

Marine protected area 
Lagoon Sandy shores Mixed shores Rocky shores Total 

km % km % km % km % km 

Langebaan 55.9 100.0 0.0 0.0 0.0 0.0 0.0 0.0 55.9 

Sixteen Mile Beach 0.0 0.0 27.7 85.8 1.4 4.3 3.2 9.9 32.3 

Table Mountain 0.0 0.0 16.4 13.7 26.9 22.4 76.7 63.9 120.0 

Helderberg 0.0 0.0 5.6 100.0 0.0 0.0 0.0 0.0 5.6 

Betty’s Bay 0.0 0.0 1.5 15.2 3.4 33.5 5.2 51.3 10.1 

De Hoop 0.0 0.0 11.6 23.1 13.6 27.1 25.0 49.8 50.1 

Stilbaai 0.0 0.0 6.0 45.1 6.7 50.9 0.5 3.9 13.2 

Goukamma 0.0 0.0 18.6 78.6 4.7 19.9 0.4 1.6 23.7 

Robberg 0.0 0.0 5.0 38.7 0.1 0.9 7.8 60.4 13.0 

Tsitsikamma 0.0 0.0 1.8 3.2 4.1 7.5 48.5 89.3 54.4 

Sardinia Bay 0.0 0.0 3.9 36.6 1.9 17.9 4.9 45.5 10.7 

GAENP (proposed) 0.0 0.0 63.6 78.4 16.3 20.2 1.2 1.4 81.1 

Amathole 0.0 0.0 12.1 23.3 23.2 44.6 16.7 32.1 52.1 

Dwesa-Cwebe 0.0 0.0 6.7 33.6 10.0 50.0 3.3 16.4 20.0 

Total 55.9 10.3 180.6 33.3 112.4 20.7 193.3 35.7 542.2 
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Figure 9.5: Proportions of coastline within the survey section of the Western Cape Province, 

comprised of sand, rock or mixed sand and rock shoreline (habitat type from Harris et al. 2011), as 

well as the compositions of the shorelines within each of the MPAs along this stretch of coastline  

 

Figure 9.6: Proportions of coastline within the survey section of the Eastern Cape Province, 

comprised of sand, rock or mixed sand and rock shoreline (habitat type from Harris et al. 2011), as 

well as the compositions of the shorelines within each of the MPAs along this stretch of coastline  
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Coastal scoring system 

When assessing coastal habitat type for the suitability of white steenbras, the proportion of sandy 

shoreline was first determined. Only four of the 38 50-km coastal sections comprised more than 60% 

sand. These constituted two short sections of coastline, associated with St Francis Bay and Algoa 

Bay, and along the west coast (Figure 9.7a). When the proportion of mixed sand and rock was 

included, a further three sections of coastline were identified; along the former Ciskei coastline, the 

vicinity of Cape Agulhas/Arniston, and adjacent to the Berg Estuary (Figure 9.7b), in which the 

proportion of sand and mixed (sand/rock) shore combined was greater than 80%.  

 

 

Figure 9.7: Proportions of the 38 50-km coastal sections from the Berg Estuary in the west to the 

Dwesa-Cwebe MPA in the east, comprising a) sandy shores and b) sandy and mixed shores combined 

 

Mixed shores, such as those found within the De Hoop MPA, are often dynamic in nature, which 

Bennett and Attwood (1991) suggested maintains invertebrate communities in early successional 

stages and thus more readily accessible to invertebrate feeders. These mixed shores are considered 

useful habitat for white steenbras (Bennett 1993b), meaning that overall there is a relatively large 

proportion of suitable habitat within the white steenbras core distribution, when mixed sand and 

rock shores are included. However, sandy and mixed sand and rock shores combined that fell within 

the boundaries of MPAs encompassed a total of 11% of the 1 870-km stretch of coastline, indicating 

that little potentially favourable habitat for white steenbras within its core distribution is protected. 
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As with the estuarine scores, the coastal scores showed a general increase from west to east along 

the coast, from the Berg estuary to the Dwesa-Cwebe MPA (Figure 9.8). Coastal sections with the 

lowest scores were generally those without estuaries, including six coastal sections along the west 

coast, as well as a section of the coastline of Algoa Bay, within the proposed GAENP MPA. 

 

 

Figure 9.8: Scores for the 50-km coastal sections from the Berg estuary in the west, to Dwesa-Cwebe 

MPA in the east, based on the coastal scoring system. Labels refer to major landmarks or coastal 

areas that are associated with each 50-km coastal section 

 

The top 10 scoring coastal sections ranged geographically from Arniston (ranked 9th) in the west to 

the Dwesa-Cwebe MPA (ranked 6th) in the east (Table 9.9).  

 

Table 9.9: Individual criteria and overall coastal scores for the top 10 ranked 50-km coastal sections 

Coastal section rank 
Average 

estuarine 
score 

% Sand or 
mixed shore 

Wastewater 
discharge 
(m3.day-1) 

Shore angling effort 
(anglers.km-1.day-1) 

Coastal 
score 

1. St Francis Bay 71.2 100 0 0.21 89.3 

2. Former Ciskei 66.0 97 0 0.28 86.1 

3. Port Alfred 64.8 92 0 0.34 83.8 

4. Breede Estuary 71.9 77 0 0.16 81.6 

5. Goukamma 77.4 77 3 955 0.79 81.2 

6. Dwesa-Cwebe 70.1 79 0 0.80 79.6 

7. Transkei E 68.0 74 0 0.66 77.6 

8. Transkei W 72.5 67 0 0.40 77.6 

9. Arniston 55.6 93 0 1.55 77.0 

10. Mossel Bay 59.9 76 10 371 0.46 75.5 

 

The highest ranked coastal section was that situated along the shoreline of St Francis Bay, in the 

Eastern Cape Province (Figure 9.9). This section is comprised entirely of sandy and mixed shores, has 

low shore angling effort, no wastewater outfall and a high mean estuarine score. This coastal section 

includes the Van Stadens and Kabeljous estuaries, ranked second and third in the estuary scoring 
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analysis, and anecdotal evidence indicates that white steenbras are abundant in shore catches in this 

area. However, the area falls within an almost 600-km stretch of coastline, between the Tsitsikamma 

and Amathole MPAs, within which just 10 km of shoreline are protected (viz. the Sardinia Bay MPA). 

As the highest ranked coastal section, with two of the top three estuaries, the sandy shores of St 

Francis Bay, particularly from the Kabeljous to Van Stadens estuaries, represent an important area 

for white steenbras, and should be identified as a potential area for protection. A combination of 

estuarine and marine protected areas would create an all-inclusive conservation “unit” that could 

provide protection for white steenbras from early juvenile to sub-adult life stages. 

 

 

Figure 9.9: Individual scores for the 38 50-km coastal sections from the Berg Estuary in the west to 

the Dwesa-Cwebe MPA in the east, showing a) the overall coastal score for each section based on 

the coastal scoring system, and b) average estuarine score per section, based on the estuary scoring 

system (ellipses indicate areas of high scoring coastline, with numbers indicating their ranks)  

 

Three other high-scoring coastal regions were identified, within which two or more adjacent (or 

nearby) 50-km coastal sections scored highly (Figure 9.9, indicated by rank numbers and ellipses). A 

large, high-scoring stretch of coastline was identified to the east of Algoa Bay, encompassing the 

coastlines of the former Ciskei and Transkei. Within this region, there are six 50-km coastal sections, 

of which five were ranked within the top 10, including two from Port Alfred along the former Ciskei 

coast to East London (which itself was ranked 14th), and all three to the east of East London, up to 
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and including the eastern-most section included in the analysis. This region includes the Dwesa-

Cwebe MPA and all three zones of the Amathole MPA, five of the top 10 ranked coastal sections, and 

20 of the top 30 ranked estuaries. The area also includes the vicinity off the Mbashe Estuary, which 

is believed to represent the white steenbras spawning grounds. This area can, therefore, be 

identified as a second important coastal area for the conservation of white steenbras and should be 

managed accordingly, including prevention of illegal harvesting within MPAs, enforcement of fishery 

regulations, and maintenance of estuarine ecosystem functioning. 

 

The coastal sections of the Breede Estuary and Arniston, ranked fourth and ninth, are situated either 

side of the De Hoop MPA coastal section, which itself was ranked 13th. This area thus forms a third 

important region, encompassing two of the top 10 coastal sections and the De Hoop MPA, shown to 

have the second highest shore angling CPUE of white steenbras along the coastline (Bennett and 

Attwood 1991, and see Chapter 8), as well as the only three estuaries west of Mossel Bay that were 

ranked in the top 60 estuaries. This region, therefore, represents a third potentially important area 

for white steenbras, at both the juvenile estuarine and late juvenile/sub-adult surf zone life stages, 

and what is possibly the western-most section of coastline contributing to the protection of white 

steenbras at both life stages. This region could constitute a second all-inclusive conservation “unit” 

for white steenbras and other estuarine-associated coastal fishes, such as the St Francis Bay – Van 

Stadens – Kabeljous area.   

 

The Mossel Bay and Goukamma MPA coastal sections were also ranked within the top 10, and are 

separated by the Kaaimans Estuary coastal section, which was ranked 18th. This region, therefore, 

included two of the top 10 coastal sections, and three of the top 10 scoring estuaries (the Kaaimans, 

Swartvlei and Goukamma estuaries), as well as the Goukamma MPA. The area can thus be identified 

as a fourth area of importance for white steenbras, as well as other sandy beach-associated coastal 

fishes, and the relevant authorities should ensure that this section of coastline is effectively 

managed, to ensure compliance with fishery regulations. Protection afforded to coastal fishes in this 

region could be improved through the establishment of a new MPA within the Mossel Bay area, or 

prohibition of shore angling within the Goukamma MPA and no-take status for the Goukamma 

Estuary, which was ranked highest in the estuary scoring system. The combination of EPA and MPA 

would provide a third conservation “unit” for white steenbras, to provide protection at the juvenile 

estuarine life stage and the late juvenile and sub-adult surf zone life stages. 
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Alignment with national priority coastal areas 

A prioritisation exercise conducted along the coastline between Cape Point and the Dwesa-Cwebe 

MPA identified 19 priority areas for expansion of the current MPA network (Clark and Lombard 

2007). Some of these matched those identified in the current study. Small areas were identified near 

the mouth of the Duiwenhoks Estuary and between Mossel Bay and the Kaaimans Estuary, as well as 

the coastline encompassing the Swartvlei Estuary, adjacent to the existing Goukamma MPA, which 

would be particularly suited to protect white steenbras having used the Swartvlei and Goukamma 

estuaries as nursery areas. Sites were also identified at the western boundaries of the Tsitsikamma 

and Sardinia Bay MPAs, which could provide additional protection for fishes having used the high-

scoring Groot (west) and Sout (east) estuaries, and Van Stadens Estuary, respectively. Sites were also 

identified along the Ciskei coast, near the Gqutywa Estuary, and along the Transkei coast between 

the Amathole and Dwesa-Cwebe MPAs, near the high-scoring Qora Estuary. These sites could all 

provide additional protection for white steenbras associated with nearby, high-scoring estuaries, if 

the levels of protection included no-take zones. Clark and Lombard (2007) also identified the sandy 

shorelines on either side of the Goukamma MPA (encompassing the mouth of the Swartvlei Estuary), 

and the sandy shoreline of Mossel Bay encompassing the Hartenbos, Klein Brak and Groot Brak 

estuaries, as being important coastal areas for white steenbras. This agrees with the results of the 

current study, particularly with the emphasis on the Goukamma MPA as a centre for the protection 

of white steenbras. 

 

An area of the coastline that was not identified in either the coastal or estuary scoring systems in the 

current study, but which is known to be an important area for white steenbras, is False Bay (Bennett 

1993b). False Bay provides a large area of shallow inshore habitat and sandy and mixed sand and 

rock shoreline for late juvenile and sub-adult white steenbras, as well as a summer aggregation area 

for adult white steenbras after their perceived winter spawning migration to Transkei waters 

(Bennett 1993b). The Bay also offers deeper (15 to 30 m) sandy areas, which harbour dense shoals of 

large adult white steenbras. False Bay comprised two 50-km coastal sections in the analysis. While 

these both constituted about 50% sand and mixed sand and rock, the western shore of False Bay 

scored poorly due to the high level of wastewater discharge (DWAF 2004), and both sections scored 

poorly due to high levels of shore angling effort (Lamberth 1996, Brouwer et al. 1997, Sink et al. 

2011). The average estuarine scores for the two sections were also low due to poor health (Whitfield 

2000), and high levels of pollution, ecosystem threat status and fishing effort (van Niekerk and 

Turpie 2011). However, despite the low scores, False Bay remains an important aggregation area for 

white steenbras, and certain estuaries, such as the Zandvlei, act as viable nurseries for the species.   



Chapter 9 – Conservation status  

 

308 

 

Important habitats for white steenbras  

The two scoring systems identified four important coastal regions; Arniston to the Breede Estuary, 

Mossel Bay to Goukamma, St Francis Bay and the Transkei and Ciskei coastlines (Figure 9.9). These 

are potentially important areas for white steenbras for two reasons. Firstly, all four areas exhibited 

high coastal scores and high mean estuarine scores. This resulted from estuarine catches of white 

steenbras being highest in estuaries adjacent to long sections of sandy and mixed shores. Therefore, 

each area comprises suitable estuaries, to provide nurseries for early juvenile white steenbras, as 

well as suitable coastal habitat for post-estuarine juveniles and sub-adults. Managers should seek to 

ensure the maintenance of the ecosystem health and functioning in each of these areas.  

 

Secondly, most of these areas have high scoring estuaries in close proximity to an MPA. The De Hoop 

shoreline between Arniston and the Breede Estuary is characterised by the well-established De Hoop 

MPA, and the Ciskei and Transkei coastlines have the Amathole and Dwesa-Cwebe MPAs, although 

the Amathole MPA is open to shore angling. Similarly, the Mossel Bay to Goukamma area has the 

Goukamma MPA, although this is also open to shore angling. The no-take De Hoop and Dwesa-

Cwebe MPAs provide protection for white steenbras in the coastal zone, and this could also be 

achieved in the Goukamma and Amathole MPAs through closure to shore angling. The St Francis Bay 

shoreline is not afforded coastal protection, although the high estuarine and coastal scores suggest 

that this area could be of particular importance to both estuarine-phase and surf zone-phase white 

steenbras. The potential for closure of a section of this shoreline warrants further investigation. 

Additionally, the protection of certain estuaries within each of these regions would significantly 

improve the level of protection afforded to white steenbras. Estuarine protected areas with adjacent 

MPAs would provide valuable protection “units”, providing protection from the time of recruitment 

through to the onset of sexual maturity, when coastal migrations are initiated (Bennett 1993b). 

 

Juveniles have an obligatory estuarine-dependent nursery phase (Wallace et al. 1984a), and rarely 

use estuaries west of the Berg or east of the Great Kei (Bennett 1993b, Harrison and Whitfield 1995). 

Assuming that juveniles use only the 138 estuaries from the Berg to the Mbhanyana (as defined for 

the estuarine scoring system), the total available surface area at this life stage is only approximately 

146 km2. This is further restricted by their resident behaviour and limited area use within estuaries 

(Chapter 3). Recruitment of estuarine-dependent species into temporarily open/closed estuaries, 

which dominate the white steenbras core distribution, is reliant on the mouths of these estuaries 

opening at suitable times. This may be affected by annual periodicity in rainfall, artificial breaching at 

less suitable times and excess water abstraction (Whitfield and Kok 1992). The same is true for 
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estuarine lakes, which together with temporarily open/closed estuaries comprise 46% of available 

estuarine habitat for white steenbras. Failure of these systems to open at suitable times could 

significantly reduce white steenbras recruitment (Whitfield and Bruton 1989). Late maturity is an 

evolutionary adaptation that should allow white steenbras to cope with failed recruitment and 

extended periods of mouth closure. However, when environmental conditions that limit recruitment 

are compounded with overexploitation, the ecological consequences for such species may be dire. 

 

The distributional range of white steenbras for the purpose of this study was defined as the area 

from the Orange River in the west to the Mtamvuna Estuary in the east, at the boundary between 

the former Transkei and KwaZulu-Natal, spanning approximately 2 380 km of coastline. Furthermore, 

white steenbras are rarely found deeper than 25 m, with post-estuarine juveniles remaining 

shallower and even closer inshore (<10 m deep) (Bennett 1993b). Therefore, if a conservative 

maximum depth of 30 m is assumed for the species, the total available habitat within the white 

steenbras distribution range can be estimated as the area from the coastline to the 30 m depth 

contour, between the Orange River and the Mtamvuna Estuary, which equates to approximately 

6 600 km2. Furthermore, assuming the core distribution is from the Berg Estuary to the eastern end 

of the Dwesa-Cwebe MPA (as for the coastal scoring analysis), comprising 1 870 km of coastline, the 

total available habitat in the white steenbras core distribution from the shore to the 30 m depth 

contour is 5 050 km2, highlighting the restricted nature of the white steenbras distribution.  

 

The total surface area of the 14 MPAs (excluding island MPAs) encompassed within the white 

steenbras core distribution is 2 265 km2. However, within the region of suitable depth (i.e. between 

the coastline and the 30 m depth contour), the total surface area included in MPAs is just 820 km2, 

which represents 17% of the total habitat available to white steenbras within its core distribution.  

 

White steenbras are believed to migrate to the inshore waters of the Transkei coastline in late 

winter, where spawning takes place in the vicinity of the fluvial mixed mud and sandbanks deposited 

by certain estuaries in the region (Bennett 1993b, Hutchings et al. 2002b). The inshore area off the 

Mbashe Estuary is the only confirmed spawning area, and similar catchment and sediment 

characteristics are limited to the Mtata, Mzimvubu and Great Kei estuaries (van Niekerk and Turpie 

2011). The successful spawning of white steenbras in such areas, which may comprise less than 0.5 

km2 in total, is therefore highly vulnerable to both degradation of marine and associated estuarine 

habitats and overexploitation during aggregation in a limited area. Similarly, the sheltered sand 

habitat in False Bay offers an important yet restricted summer aggregation area for white steenbras. 
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9.2.3 Assessment of existing and proposed estuarine and marine protected areas 

Estuarine protection 

Currently, 35 estuaries within the white steenbras core distribution are protected to some degree, 

although in most protected estuaries angling is still permitted, offering little protection for fishery 

species. The fully protected Krom (east) and partially protected Diep estuaries, on the west and east 

coasts of the Cape Peninsula, respectively, fall outside of the region of estuaries predominantly used 

by white steenbras and produced zero catches of the species in a national estuarine ichthyofaunal 

survey (Harrison 1998b). Therefore, these small EPAs contribute little to white steenbras protection.  

 

The Breede Estuary, in close proximity to the De Hoop MPA, offers temporal protection through the 

prohibition of night-time fishing (Government Gazette No. 34596). There is also a drive to prevent 

night fishing in the Gamtoos Estuary, which enters the sea in St Francis Bay. While this provides only 

partial protection, considerable reductions in fishing effort are likely to result in both estuaries, 

which are potentially important by virtue of proximity to the De Hoop MPA, and abundance of white 

steenbras (James and Harrison 2010a), respectively. Protection offered by the Breede Estuary can 

potentially improve recruitment to the shoreline near the De Hoop MPA, meaning that these fish 

could be protected to some degree for large proportions of their juvenile and sub-adult life stages.  

 

The Goukou Estuary encompasses a no-take EPA and enters the Stilbaai MPA, which also has certain 

no-take zones. White steenbras was less common in seine net catches in this estuary than other 

estuaries, but was the third most dominant species, contributing 11.4% to the total catch (Harrison 

1999b). Although the no-take zone of the EPA starts 3 km from the mouth, leaving the lower reaches 

unprotected, white steenbras abundance is highest in the middle reaches of this estuary, which fall 

within the no-take zone of the EPA (SJ Lamberth, DAFF, unpublished data). As such, the Goukou 

Estuary and adjacent Stilbaai MPA could offer at least some protection to white steenbras. However, 

the estuary is small and ranked in the lower half in the estuary scoring analysis.  

 

Seven estuaries, from the Groot (west) to the Groot (east) are protected by virtue of their location 

within the Tsitsikamma Coastal National Park. Presence of white steenbras in these estuaries 

suggests that they provide some level of protection, and recent research netting has produced large 

catches of white steenbras in the Groot (west) Estuary (MKS Smith, SANParks, pers. comm.). 

However, these are predominantly small river mouths (Whitfield 1992) with little available habitat 

(0.5 km2 total) and occur along the rocky shoreline of the Tsitsikamma MPA; therefore, their 

combined contribution to the overall protection of white steenbras is probably low.  
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Five estuaries entering the Dwesa-Cwebe MPA, from the Ngoma in the west to the Mbhanyana in 

the east, are also afforded protection, due their locations within the MPA (Whitfield and Cowley 

2010). However, the proportions of each estuary to be protected have not yet been established (van 

Niekerk and Turpie 2011). As this area forms the spawning grounds for white steenbras (Bennett 

1993b), these estuaries are expected to be well-suited for the protection of post-larval white 

steenbras recruits. However, catches of white steenbras in Transkei estuaries were low (Harrison 

2003), suggesting that few white steenbras utilise the estuaries within the Dwesa-Cwebe MPA. 

 

As part of the proposed GAENP, a potential no-take zone has been identified within the Sundays 

Estuary (Bezuidenhout et al. 2011). While the delineation of the no-take area has not yet been 

established, if suitably positioned, this EPA could provide considerable protection for white 

steenbras, in an estuary shown to have high catches of the species (James and Harrison 2010a). The 

estuary scored poorly in the estuary scoring system, due to high levels of pollution and fishing effort 

and a critical ecosystem threat status (Whitfield 2000, van Niekerk and Turpie 2011). However, if the 

level of fishing effort can be reduced through the implementation of the EPA, and the levels of 

pollution and ecosystem threat can be reduced, the proposed Sundays Estuary EPA and adjacent 

proposed GAENP MPA, could contribute considerably to the protection of white steenbras during its 

estuarine and surf zone life stages. 

 

Marine protected areas 

The recently proclaimed Amathole MPA network in the Eastern Cape Province encompasses a total 

of approximately 35 km of sandy and mixed shores, spread across the three separate MPA sections. 

Although a roving creel survey recorded low catches of white steenbras in this region (Brouwer and 

Buxton 2002), the species was considered the third most targeted by recreational shore anglers in 

the Eastern Cape Province, and anecdotal evidence suggests that large catches of adult white 

steenbras are made in the vicinity of the Amathole MPA in late summer, presumably on their return 

migration from the Transkei coast. However, the combined 52.1 km of coastline spanning the three 

zones within this MPA are open to shore angling and spear fishing, suggesting that despite its 

considerable potential to protect white steenbras, in terms of its proximity to the white steenbras 

spawning grounds and its high proportion of sandy and mixed sand and rock shoreline, the Amathole 

MPA provides little protection, particularly for spawning or return-migration white steenbras. Within 

the three MPA zones comprising the Amathole MPA, are the mouths of 17 estuaries, while a further 

11 estuaries enter the sea between the different MPA zones. Estuarine netting data from Harrison 

(2003) showed that white steenbras utilised the estuaries between the Gonubie and Kei sections of 
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the Amathole MPA, although eastwards of this region the catches of white steenbras were 

negligible. These estuaries within the Amathole MPA therefore represent the eastern most estuaries 

of importance to white steenbras, and are likely the first estuaries into which young of the year 

recruit. As such, the MPA would be particularly suited to the protection of post-estuarine juveniles 

and adults that have used those 28 estuaries as nurseries. Despite this, none of the estuaries within 

this region are afforded even partial no-take status. Therefore, the Amathole MPA should be flagged 

as a potential MPA in which the possibility of upgrading the protection level to full closure should be 

further investigated, and estuaries (or parts thereof) should be assessed for their possible inclusion 

into appropriate EPAs.  

 

The Goukamma MPA is characterised mainly by sandy shores, with some mixed sand and rock. The 

MPA straddles the Goukamma Estuary and is in close proximity to the large Wilderness and 

Swartvlei estuarine lakes, as well as the Knysna estuarine bay. The nearby estuaries in this stretch of 

coastline scored highly in the estuarine scoring system. The MPA is therefore particularly well 

situated to provide protection for post-estuarine white steenbras that have used these estuaries as 

nursery areas. However, as with the Amathole MPA, recreational shore angling is permitted and 

effort is high (Pradervand and Hiseman 2006). Consequently, the MPA has been referred to as a 

“node of exploitation for surf zone fish” (van Zyl 2011), offering little protection for white steenbras. 

Results of the previous chapter showed that CPUE recorded in this MPA from 1993 to 2002 

(Pradervand and Hiseman 2006) was similar to that recorded in the vicinity of the De Hoop MPA 

prior to proclamation, after which the CPUE of white steenbras increased significantly (Bennett and 

Attwood 1991). The Goukamma MPA should, therefore, also be flagged as a potentially suitable 

MPA for which the level of protection could be increased to exclude shore angling, for the protection 

of sandy shore coastal fishes.  

 

The Langebaan Lagoon and associated MPA offer fishes some of the ecological advantages offered 

by estuaries, such as a sheltered environment and rich supply of food, although the lagoon functions 

as an extension of the marine environment and is classified as a marine bay (Whitfield 2005). There 

are sporadic catches of white steenbras within the lagoon (Anchor unpublished data), which appear 

to occur as a result of infrequent years of good recruitment (CG Attwood, UCT, pers. comm.), yet 

white steenbras was absent from two seine net studies of the fish community within the lagoon 

(Whitfield et al. 1989, Clark 2007). There are no estuaries flowing into the lagoon, and none within 

close proximity along the coastline. As a result, the lagoon itself functions as an important nursery 

area for certain fishes. Therefore, other than the Berg Estuary, which acts as a nursery for white 
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steenbras, the Langebaan Lagoon and MPA are likely the only refuge for juvenile white steenbras 

along the west coast. The MPA includes a no-take zone, which is likely to contribute to the 

protection of white steenbras in the lagoon in years when white steenbras are present. However, 

the low present-day catches of white steenbras in the lagoon, despite historical high catches (SJ 

Lamberth, pers. comm.), suggest that this MPA contributes little to overall white steenbras 

protection. There is also evidence of non-compliance with regulations (Tunley 2009), and angling 

effort within the permitted zone of the MPA is high. 

 

The Tsitsikamma MPA is one of the largest and oldest ‘no-take’ MPAs in South Africa (Cowley et al. 

2002). Catches of white steenbras were higher in the closed area of this MPA, than the area 

previously open to recreational shore fishing, suggesting that there is some protection offered to 

white steenbras (Hanekom et al. 1997). However, almost 90% of the coastline of this MPA is 

comprised of rocky shoreline, which is unfavourable habitat for white steenbras. Therefore, this 

large MPA is likely to provide less protective benefit for white steenbras, relative to its size, than 

other MPAs, such as De Hoop. 

 

Sixteen Mile Beach MPA on the west coast has the greatest stretch of sandy shoreline of all the 

MPAs within the study region (27.7 km). Furthermore, shore angling within this MPA is prohibited, 

making it well suited to the protection of inshore fish species. Lamberth and Mann (2000) suggested 

that the majority of the white steenbras stock is found between Cape Columbine and the Mbashe 

Estuary, although the species featured poorly in shore-angler catches along the west coast (Sauer 

and Erasmus 1996, Brouwer et al. 1997), and Hutchings et al. (1999) recorded zero white steenbras 

in experimental marine and estuarine gill-net catches along the west coast, between Cape Point and 

the Olifants River Mouth. Furthermore, the ORI tagging programme returned zero recaptures of 

tagged white steenbras along the west coast (see Chapter 6). The low abundance of white steenbras 

along the west coast is likely a result of historical overexploitation (SJ Lamberth, DAFF, pers. comm.). 

As such, Sixteen Mile Beach MPA probably provides little protection for the species. 

 

The close proximity of the Table Mountain MPA, particularly those restricted zones that are situated 

within False Bay, to the areas of known white steenbras aggregation, such as areas along the False 

Bay north and north western shores, suggest that this MPA could contribute to the overall 

protection of the species, particularly for adults during their summer aggregation. Protection within 

this area is of particular importance as the recreational shore fishery along the south west coast, and 

within False Bay in particular, contributed considerably to the overall demise of white steenbras 
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(Lamberth et al. 1994). While this MPA protects approximately 13.5 km of sandy and mixed sand and 

rock shoreline from shore angling, the majority of this protected habitat occurs on the west coast of 

the Cape Peninsula (i.e. outside of False Bay). Therefore, while it is possible that Table Mountain 

MPA (proclaimed in 2004) provides a refuge for at least some white steenbras, from the recreational 

shore fishery, this MPA is probably not contributing largely to the overall protection of this species. 

 

Conversely, closure of a short section of coastline in False Bay encompassing the Eerste Estuary, later 

incorporated into the Helderberg MPA, was suggested to have considerably reduced the catch of 

adult white steenbras from the north shore of False Bay (Bennett 1993a). Therefore, despite its 

small size (5.6 km of which all is sandy shoreline), the Helderberg MPA (proclaimed in 2000) is likely 

contributing to the protection of white steenbras, particularly in a hypothetical scenario of the 

commercial ban on white steenbras being lifted.  

 

Sardinia Bay MPA, situated just west of Algoa Bay, forms the only protected section of mainland 

shoreline between the Amathole and Tsitsikamma MPAs, which spans almost 600 km. The MPA is 

small, but includes 6 km of fully protected sandy and mixed sand and rock shoreline, along a section 

of coastline where white steenbras are caught in relatively high numbers (PD Cowley, South African 

Institute for Aquatic Biodiversity, pers. comm.), and may therefore contribute towards the 

protection of white steenbras within this area to some degree. 

 

The Stilbaai MPA on the south coast constitutes more than 7 km of fully protected sandy and mixed 

shoreline, within two no-take zones, situated either side of the mouth of the Goukou Estuary, which 

itself includes a no-take zone. While the MPA is small, it may contribute to the protection of white 

steenbras in that area, particularly those that enter the surf zone after having used the Goukou 

Estuary as a nursery. 

 

The De Hoop MPA is large, with at least 25 km (50%) of its shoreline comprising sandy or mixed 

shores. The MPA is well-established, with shore angling prohibited. White steenbras was within the 

top three species in terms of CPUE during research angling in this MPA, and showed a significant 

increase in CPUE after proclamation (Bennett and Attwood 1991). This MPA also produced the 

second highest CPUE of white steenbras of any coastal section surveyed (see Chapter 8). The De 

Hoop MPA is also within close proximity to the large permanently open Breede Estuary, and likely 

provides a refuge for post-estuarine juvenile white steenbras having used the Breede Estuary as a 

nursery. The De Hoop MPA thus contributes considerably to the protection of white steenbras. 



Chapter 9 – Conservation status  

 

315 

 

Almost 17 km of the 20-km shoreline within the Dwesa-Cwebe MPA is comprised of sandy or mixed 

shores. White steenbras are believed to spawn over the fluvial mudbanks deposited offshore of the 

Mbashe and other Transkei estuaries (Hutchings et al. 2002a). The Dwesa-Cwebe MPA, therefore, 

plays a vital role in protecting adult white steenbras during the spawning season, where they are 

particularly vulnerable due to the predictability of their aggregation and their close proximity 

inshore (Bennett 1993b). As such, this MPA could be flagged as an essential tool for the protection of 

white steenbras, and should be managed in such a way as to ensure compliance within its 

boundaries. However, anecdotal evidence suggests a high level of illegal angling within the MPA 

(Timmermans 2004). Most MPAs along the Transkei coastline (including those outside of the current 

survey area) are poorly patrolled, offering little protection for inshore fishes (Attwood et al. 1997, 

Mann et al. 2003). 

 

The coastline of the proposed GAENP MPA, in Algoa Bay, can be identified as a potentially important 

area for the protection of white steenbras. The area is characterised by high catches of white 

steenbras (PD Cowley, unpublished data), and telemetry results suggest that some mature white 

steenbras may remain within Algoa Bay over the spawning period (see Chapter 6). The area is also 

located along an almost 600-km stretch of coastline between the Dwesa-Cwebe and Tsitsikamma 

MPAs, within which shore angling is prohibited for just 10.7 km (Sardinia Bay MPA). The shoreline of 

the proposed MPA is comprised mainly of sand and mixed shores, and straddles the mouth of the 

Sundays Estuary, in which James and Harrison (2010a) recorded large seine net hauls of white 

steenbras, while the nearby Swartkops Estuary supported a large population of white steenbras in 

the 1900s (Gilchrist 1918, in Baird et al. 1996). As such, the proposed GAENP MPA will almost 

certainly be an important contributor to the future protection of white steenbras, if sufficient 

coastline within this MPA is closed to shore angling.    

 

Suitability of existing level of protection 

The results have shown that the current protected area network is inadequate for the protection of 

white steenbras. Insufficient estuarine habitat is entirely protected from angling and insufficient 

suitable marine habitat is included within no-take MPAs, suggesting that the current protected area 

network is providing less protection for white steenbras than may be hoped. However, combinations 

of estuarine and marine protected areas, such as those of the Goukamma Estuary and MPA, the 

Breede Estuary and De Hoop MPA, and possibly the Sundays Estuary and GAENP MPA have the 

potential to provide considerable protection for estuarine-associated coastal fishes. 
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Identification of suitable areas for additional protection (for white steenbras) should focus on 

sections of predominantly sandy and mixed shores, particularly those stretches of coastline in which 

the proportions of protected area are low, and aim to include areas where white steenbras are 

known to exist in high densities, preferably within close proximity to, or straddling, one or more 

estuaries. Such areas that are immediately apparent include 1) the long sandy beaches of St Francis 

Bay, in the vicinity of the Kabeljous, Gamtoos, Van Stadens and Maitlands estuaries, which showed 

high catches of white steenbras (James and Harrison 2010a), and 2) the sandy shoreline to the east 

of Mossel Bay, in the vicinity of the Hartenbos, Klein Brak and Groot Brak estuaries, which also 

showed considerable catches of white steenbras (James and Harrison 2008). Alternatively, increasing 

the protection level to prohibit shore angling and spear fishing in some of the more strategically 

positioned existing MPAs, such as Goukamma and Amathole MPAs, may be a simpler and financially 

less costly option to implement.  

 

Overall, it seems that De Hoop MPA contributes disproportionately to white steenbras protection, 

while the Dwesa-Cwebe MPA and potentially the proposed GAENP MPA (if shore angling is 

prohibited at least in some areas) are well positioned to contribute to the protection of this species. 

Conversely, MPAs such as Betty’s Bay, Goukamma, Robberg and Amathole, where recreational shore 

fishing and spear fishing are permitted, are currently contributing little to the overall protection of 

white steenbras, as the species is rarely captured in the boat-based fishery (Brouwer and Buxton 

2002). However, the Amathole and Goukamma MPAs are particularly well-suited for the protection 

of white steenbras, if the level of protection were increased to prevent shore angling.  

 

9.2.4 Additional management considerations 

The results indicate that the range of white steenbras is restricted by the availability of suitable 

habitat. It is possible that the total available area of suitable habitat for spawning adults amounts to 

no more than 0.5 km2 (van Niekerk and Turpie 2011). At the juvenile estuarine life stage the 

available habitat is limited to a maximum of 146 km2 of estuarine habitat, and at the sub-adult 

marine life stage the total available habitat within the core distribution is limited to just over 5 000 

km2. The proportion of marine habitat protected is low, while the proportion of estuarine habitat 

protected is negligible. Ultimately, the species is limited to a narrow belt of inshore habitat, with 

little protection, within which it is vulnerable to overexploitation and habitat degradation. 

 

The scoring analyses identified a number of potentially important areas for white steenbras, both in 

estuaries and the inshore marine environment. While much of this important habitat is not currently 
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protected, areas potentially suitable for the protection of white steenbras, through strategic 

estuarine and marine protected areas, have been identified. Closure of the Goukamma Estuary and 

MPA to fishing is likely to increase the abundance of white steenbras along the south coast. 

Similarly, the closure of the Amathole MPA to shore fishing would considerably improve the level of 

protection afforded to white steenbras, particularly considering the high number of estuaries in this 

region and the close proximity to the spawning grounds in the Transkei. The establishment of new 

no-take MPAs in St Francis Bay, in the vicinity of the high-scoring Van Stadens and Kabeljous 

estuaries, and in Mossel Bay, in the vicinity of the Hartenbos, Klein Brak and Groot Brak estuaries, 

which produced large catches of white steenbras (James and Harrison 2008), would also provide 

protection in areas shown to be important for the species, particularly considering the low levels of 

protection currently afforded to these areas. Such combinations of estuarine and associated marine 

protected areas, if carefully designed and suitably enforced, are likely to contribute significantly to 

the protection and rehabilitation of the overexploited white steenbras stock.  

 

At the same time, this would contribute to the South African National Protected Area Expansion 

Strategy (NPAES 2008), which aims to increase the proportion of coastline included within no-take 

MPAs by about 60 km by 2013, and by an additional 350 km by 2028. The latter is further broken 

down into an additional roughly 60 km of no-take shoreline within the Agulhas Bioregion (between 

Cape Point and the Mtamvuna Estuary) by 2028. This could be partly achieved through the 

proclamation of new MPAs, in areas such as St Francis Bay and Mossel Bay, or by increasing the 

protection level within existing controlled MPAs to no-take status, such as the Goukamma MPA and 

Amathole MPA, which would considerably improve the protection of white steenbras along the 

South African coastline. 

 

Ultimately, the level of protection afforded to fishes within estuarine and marine protected areas is 

dependent on the degree to which the protection prevents harvesting, and the level of enforcement 

of regulations. As the majority of white steenbras found in estuaries are juvenile fish below the legal 

size limit of 600 mm TL, these individuals should be protected in estuaries by virtue of their size, 

without further estuarine protective legislation required; although the low level of compliance in 

estuarine fisheries suggests that this is not the case (Cowley et al. 2004, Potts et al. 2005). 

Furthermore, striving to protect a target percentage of the coastline of a country is of little use, if 

some of the most threatened components of the fishery are afforded little protection within these 

protected areas. It is fair to assume that the suitability for and the level of protection offered by the 

existing MPAs is similar for other estuarine-dependent coastal fishes, such as the leervis Lichia amia. 
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9.3 National and international conservation categorisation 

A specialist review based on an expert group workshop in November 2004 proposed that white 

steenbras be included on the “Threatened and Protected Species” (TOPS) list4, as defined in the 

National Environmental Management Biodiversity Act (NEMBA5), under the category of “Protected 

Species6” based on its poor stock status and declines in abundance. The species was categorised as 

“Protected” in the TOPS list published in 2007, along with other fish species, such as the white shark 

Carcharodon carcharias, seventy-four Polysteganus undulosus, brindle bass Epinephelus lanceolatus, 

potato bass Epinephelus tukula and the coelacanth Latimeria chalumnae, all of which appear in the 

“Prohibited Species” list for recreational angling. White steenbras was later removed7 from the TOPS 

list on the basis that it was “already regulated under the Marine Living Resources Act (MLRA8)”. 

However, the Guiding notes for Comments9 regarding inclusion or removal of a species from the 

TOPS list states the following: 

 

“Marine mammals have not been included here but will automatically be listed in the 

CITES schedule. These animals are also protected under the Prince Edwards Islands Act 

and Marine Living Resource Act. Consideration should be given to the need for listing 

these animals also in the NEMBA schedules“.  

 

This suggests that a species may be simultaneously protected under the MLRA and the NEMBA 

schedules. Other fish species included in the TOPS list that are also protected under the MLRA were 

not delisted. The removal of white steenbras on the basis that it was “already regulated under the 

MLRA” was, therefore, unfounded. Protection under the MLRA does not negate the white steenbras’ 

need for national protection. Furthermore, the species was identified by the Endangered Wildlife 

Trust (Endangered Wildlife Trust 2002) as one of six estuarine flagship indicator species, highlighting 

its ecological importance and ‘threatened’ status. As a result of its current stock status, and the 

inclusion and subsequent removal from the NEMBA TOPS list, it was felt that classification of the 

species against both the NEMBA schedule at the national level, and internationally against the IUCN 

Red List Categories and Criteria (IUCN 2001) would be a worthy exercise. 

 

                                                
4
 List of critically endangered, endangered, vulnerable and protected species, published in Government Notice No. R150 of 

23 February 2007 (Government Gazette No. 29657) 
5 National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004) 
6
 Indigenous species of high conservation value or national importance that require national protection 

7 Reasons for publication of the amendments made on the National Environmental Management Biodiversity Act (Act 10 of 
2004): Threatened and Protected Species Regulations 
8
 Marine Living Resources Act, Act No. 18 of 1998 

9 Guiding Notes: Comments on proposed Threatened and Protected Species listings for National Environmental: 
Biodiversity Act, 2004 (Anon. 2004) 
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9.3.1 NEMBA listing 

The listing of a species as threatened or protected, according to the NEMBA requires “a definite 

need for protection”, based on any one of the following: 

 

“a) a legal obligation in accordance with CITES; or  

b) that the continued survival of the species is threatened; or  

c) the threat to continued survival of the species results from one or more of the restricted 

activities as defined in NEMBA“ 

 

Based on the literature and the results of the previous chapters, there is a definite need for 

protection of white steenbras, under points b and c above. The criteria met by white steenbras to 

justify its listing as a threatened or protected species under NEMBA, are based on the following 

considerations as outlined in the Act:  

 

a) “The need for protection should be demonstrable or at least strongly indicative on firm grounds”  

White steenbras catches (both commercial and recreational) have declined drastically over the past 

three to four decades (see Chapter 8), and particularly so over the period of the 1970s and 1980s 

(Bennett 1993a). Despite regular revisions of the commercial and recreational regulations governing 

the harvest of white steenbras, the stock of this species continues to decline. Spawner biomass per 

recruit (SB/R) of white steenbras was estimated at 6% of pristine by 1993 (Bennett 1993a), and by 

2000 the stock was considered collapsed (Lamberth and Mann 2000). 

 

b) “The need for protection should be of national importance and require national scope of 

application” 

The endemic white steenbras is heavily targeted by recreational anglers throughout its distributional 

range, from the Orange River to the Transkei, and until the commercial ban imposition in 2001, by 

commercial net fisheries in the Western Cape Province. Genetic data (see Chapter 7) showed that 

the species is characterised by mixing throughout this distributional range. As such, impacts at one 

end of the distribution have consequent impacts in other areas. The need for protection and 

management intervention is, therefore, applicable at the national level. Furthermore, not only is the 

species threatened by oversubscription in the respective fisheries, but low fine values, low rates of 

prosecution and practically insignificant consequences for illegal activity result in disregard for 

legislation (Cowley et al. 2004).  
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c) “Justifiability of the need for protection, based on legal obligation, level and nature of threat or 

Red Data status” 

There is no legal obligation to protect the species based on CITES listings, although trends in catch 

and CPUE, and the low spawner biomass per recruit (SB/R) ratio (Bennett 1993a), suggest that the 

continued survival of the species is threatened, and the threat to its continued survival results from 

one or more of the restricted activities as defined in the NEMBA: 

 

““restricted activity” –  

(a)  in relation to a specimen of a listed threatened or protected species, means –  

(i) hunting, catching, capturing or killing any living specimen of a listed threatened 

or protected species by any means, method or device whatsoever, including 

searching, pursuing, driving, lying in wait, luring, alluring, discharging a missile 

or injuring with intent to hunt, catch, capture or kill any such specimen;” 

 

d) “Resource value whether financial, cultural or other, coupled with extensive use regimes that may 

threaten the survival of the species or future value benefits derived from the resource” 

White steenbras is one of the most targeted species in the recreational shore fishery (Brouwer et al. 

1997), which was estimated to contribute ZAR 2 167 million annually to the combined gross 

geographic product of the coastal provinces of South Africa (McGrath et al. 1997). The species is also 

important in the recreational estuarine fishery (Pradervand and Baird 2002), which has an estimated 

annual value of ZAR 433 million (Lamberth and Turpie 2003), and is targeted by the recently 

formalised subsistence sector. As a result, the continued survival of the species is threatened. 

Already, the effects of overfishing have resulted in a ban on the commercial harvest of white 

steenbras, and the consequent loss of income from this species. 

 

e) “Listing should lead to a legal regime regulating restricting activities as defined in the act”  

Compliance with the minimum legal size limit of 60 cm TL is poor (Cowley et al. 2004) (suggesting 

that there is little protection for juvenile fish). Based on evidence of illegal harvesting activity in the 

Dwesa-Cwebe MPA (Timmermans 2004), which is geographically suitably positioned to protect the 

species during its spawning aggregation, adult spawners are not well protected by this area closure. 

Furthermore, angler catches of more than 1 fish per person per day (pppd) are achieved on only 2% 

of angler outings (Brouwer et al. 1997) (suggesting that the current daily bag limit of 1 pppd provides 

little protection for adult fish). Based on these findings, and the collapsed status of the species stock, 

the maximum legislation could include the total exclusion of white steenbras from recreational 
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harvesting, as has recently been proposed for red steenbras Petrus rupestris in South Africa 

(Government Gazette No. 34596). Based on the existence of a single stock (see Chapter 7), of which 

the adults aggregate in predictable spawning grounds, the minimum legislation to protect white 

steenbras should include a closed harvest season for this species spanning the spawning season, and 

improved enforcement within existing MPAs. Furthermore, recent catches of white steenbras, both 

in estuaries and the surf zone, provided evidence of increases in white steenbras abundance, which 

should be considered when formulating management decisions.  

 

f) “Enforcement of listing regulatory regimes should be practicable i.e. be readily interpreted by the 

general public and be implementable by enforcement agencies” 

Removal of white steenbras from the recreational/subsistence list would provide simpler 

enforcement than minimum legal size, maximum daily bag or area closure limits, as any white 

steenbras retained, regardless of size or location, would be deemed illegal. A closed season for the 

species, although more difficult to enforce, would be easily interpretable by the resource user. 

 

9.3.2 IUCN listing 

White steenbras was first classified according to IUCN Red List Categories and Criteria: Version 2.3 

(IUCN 1994) as “Lower risk: conservation dependent” (Skelton 1996), and therefore did not meet the 

criteria for Critically Endangered, Endangered or Vulnerable. However, this assessment is now 

outdated, new data have since become available and major changes have taken place in the fisheries 

for white steenbras since this assessment.  

 

For the purposes of the current study, white steenbras was classified according to the IUCN Red List 

Categories and Criteria: Version 3.1 (IUCN 2001). The categories of Critically Endangered, 

Endangered and Vulnerable are assessed by five overall criteria, A to E, as follows:  

 

A) Reductions in population size (recent trends in the number of mature individuals) 

B) Geographic range (extent of occurrence and/or area of occupancy) 

C) Population size dynamics (current number of mature fish and projected or current decline rate) 

D) Population size (minimum threshold number of mature individuals) 

E) Probability of extinction (quantitative analysis) 

 

Criteria C to E require estimates of the number of adults in the population, which are not available 

for white steenbras. The species was, therefore, categorised according to criteria A and B. 
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A. Reductions in population size 

i. Recreational competition angling showed a decline of almost 90% in CPUE, from approximately 

6 fish.100h-1 in 1968, to approximately 0.7 fish.100h-1 in 1990 (Bennett 1993a). 

ii. The south west coast shore fishery showed a decline in CPUE from approximately 2.29 

fish.100h-1 from 1971 - 1984 to approximately 0.9 fish.100h-1 from 1994 -1996 (Bennett et al. 

1994, Lamberth 1996). 

iii. White steenbras contributed approximately 30% to annual angler catches by mass along the 

south west coast shore fishery in the 1960s, approximately 8% in 1990-1991 and as little as 

0.6% by 1994-1996 (Lamberth 1996).  

iv. The beach-seine fishery showed a decline in mean annual reported catch from 23 061 fish.year-1 

in 1897- 1906, to 3 147 fish.year-1 by 1983 – 1991(Bennett 1993a).  

v. The SB/R ratio of white steenbras was estimated at 6% of pristine (Bennett 1993a), as early as 

1993. Therefore, according to the LMP, the stock is considered collapsed (Griffiths et al. 

1999). 

 

The results show that white steenbras stocks have declined significantly over the past 100 to 120 

years. In the 1980’s the purse-seine fishery in the Western Cape was responsible for annual catches 

of up to 300 mt. It is suggested that this period was largely responsible for the observed declines. It 

can, therefore, be assumed that the greatest decline has occurred within the past 30 years (i.e. 

approximately three “generations” as defined in the IUCN criteria (IUCN 2001). A conservative 

estimate of population decline could be 70%. As such, white steenbras would meet IUCN criterion A, 

sub-criterion 2 (b) in the Endangered category, based on the SB/R index of abundance: 

 

“2. An observed, estimated, inferred or suspected population size reduction of ≥ 50% over 

the last 10 years or three generations, whichever is the longer, where the reduction or 

its causes may not have ceased OR may not be understood OR may not be reversible, 

based on (and specifying) any of (a) to (e) under A1. 

a. An index of abundance appropriate to the taxon” 

 

The commercial beach-seine and recreational shore fisheries were each responsible for 

approximately 50% of the total annual catch of white steenbras by mass (Bennett 1993a). Although 

the legal commercial exploitation of this species has ceased, recreational exploitation continues. 
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B. Geographic range  

The method for calculating the “extent of occurrence” of a species, as defined in the IUCN 

Categories and Criteria (IUCN 2001), was not suitable for white steenbras, due to its continuous 

narrow inshore distribution. Therefore, the geographic range was determined as the available 

habitat within the distribution range of the species, including the area from the coastline to the 

species theoretical maximum depth of 30 m (Bennett 1993b), as estimated in the previous section. 

Within this range, between the coastline and the 30 m isobath, is an area of approximately 6 600 

km2, representing the maximum available habitat for white steenbras. Catch data suggest that, in 

reality, the distribution encompasses considerably less area than the available 6 600 km2.  

 

In addition, the juvenile distribution (as defined for the estuarine scoring system) was shown to span 

the area from the Berg Estuary to the Mbhanyana Estuary, encompassing 138 estuaries, with a total 

available surface area of approximately 146 km2. The fact that juvenile white steenbras have an 

obligatory estuarine-dependent nursery phase (Wallace et al. 1984a, and see Chapter 3) means that 

all white steenbras must use these approximately 146 km2 for at least some part of their lives, 

highlighting the severe bottleneck during the estuarine nursery phase. The bottleneck becomes 

further restricting, in that 73% of the 138 estuaries within their distribution are either temporarily 

open/closed estuaries or estuarine lakes, meaning that the mouths of these estuaries are not always 

open to allow recruitment of fishes. Based on these results, white steenbras meets IUCN criterion B, 

sub-criterion 1a, b(v) in the Vulnerable category: 

 

“1. Extent of occurrence estimated to be less than 20,000 km2, and estimates indicating at 

least two of a-c:  

a. Severely fragmented or known to exist at no more than 10 locations.  

b. Continuing decline, observed, inferred or projected, in any of the following:  

 (v) number of mature individuals” 

 

 

9.3.3 Summary of classifications 

White steenbras meets the considerations for inclusion in the Threatened or Protected Species Lists, 

under the NEMBA classification, and both the Endangered and Vulnerable categories of IUCN 

classification, based on different criteria (EN A2b; VU B1ab(v)), providing strong evidence that the 

species is in need of protection at the National level.  
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An IUCN assessment previously conducted for white steenbras was submitted to IUCN, although the 

authors still await a response. The IUCN classification, as presented in the current study, was 

submitted to the South African National Biodiversity Institute, for inclusion in the National 

Biodiversity Assessment (Sink et al. 2011), and will hopefully be considered in the future 

management decisions regarding white steenbras.  

 

9.4 Conclusion  

NEMBA and IUCN assessments are useful for linefish species, to provide relatively simple, objective 

and rapid assessments of conservation status, to assist with the prioritisation of species for 

management and conservation actions. Such assessments for linefish species require information on 

the species distributional range and area use, availability of suitable habitat, indices of stock status 

or abundance (e.g. S/BR), estimates of population size or trends in abundance, and estimates of 

exploitation levels in the different fisheries. Research programmes on other coastal fishes should 

aim to address these in order that suitable information is obtained on which to base management 

decisions. NEMBA and IUCN classifications of important linefish species could provide simple, yet 

valuable means to identify research and conservation priorities.  

 

The results of the previous chapter suggest that there is evidence of improved recruitment of white 

steenbras into estuaries and abundance appears to be improving in certain coastal areas. However, 

this should not be seen as a stock recovery, and white steenbras still meets certain criteria under the 

NEMBA Threatened and Protected Species List and the Vulnerable and Endangered categories of the 

IUCN Red List. As such, the species requires improved conservation and management.  

 

Despite the proclamation of a number of MPAs towards the end of the last century, the current MPA 

network is insufficient for the effective protection of white steenbras. Only 213 km of sandy and 

mixed sand and rock shoreline within the white steenbras distribution are included within MPA 

boundaries, and just 14% of the coastline within the species’ core distribution is closed to shore 

angling. In addition, illegal harvesting of white steenbras is known to occur within the Dwesa-Cwebe 

MPA, which is otherwise ideally situated for the protection of white steenbras during the spawning 

season. There is also a paucity of estuarine no-take zones within the species core distribution. 

Improved management measures for the effective conservation of white steenbras should include 

prevention of all illegal harvesting within MPAs, closure of additional coastal MPAs to shore angling, 

identification of suitable sandy shoreline areas for the proclamation of new no-take MPAs, and 

proclamation of no-take EPAs within the white steenbras core distribution. 
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Chapter 10 

General discussion

 

Effective management of coastal fishery resources is one of the greatest challenges facing marine 

conservation in South Africa (Attwood and Farquhar 1999). Management actions to ensure the 

persistence of exploited species require a comprehensive understanding of their biology, ecology, 

conservation status, threats and use of essential habitats (Whitfield and Cowley 2010). Furthermore, 

species associated with estuarine environments require management and conservation efforts in 

river catchments as well as in estuarine and marine environments (Lamberth and Turpie 2003).  

 

White steenbras has historically been one of South Africa’s most targeted coastal linefish species. 

Stock assessment based on per-recruit models showed that the stock of this species was already 

overexploited by 1993 (Bennett 1993a), although commercial and recreational harvesting was 

allowed to continue. White steenbras also has a history of failed management measures, with the 

stock finally deemed collapsed in 2000. Based on the dire need for improved management of white 

steenbras, and the lack of necessary ecological information on which to base corrective 

management decisions, it became obvious that a study addressing these management inefficiencies 

and gaps in the life history of this overexploited species was crucial. Such a study would require a 

comprehensive assessment of movements, area use and residency within estuaries, movements 

within the coastal zone (and between estuaries and the coastal zone), and an assessment of the 

stock delineation of the species. An updated assessment of the stock status, and the current level of 

protection afforded to the species, would also be necessary, to ensure that the failures of historical 

management measures could be identified and rectified. This thesis addressed these needs by 

adopting a multifaceted approach over multiple spatial and temporal scales.  

 

The primary aim of this thesis was to address the gaps in the current understanding of the white 

steenbras life history and supplement the knowledge on its ecology. The study incorporated 

conventional dart tagging and acoustic telemetry to assess movement in estuarine and marine 

environments, and molecular techniques to assess genetic stock structure. Evidence for the 

strengths of each method employed is provided by the number of studies having successfully used 

each technique, and for most techniques by the widespread nature of their use, in terms of different 

ecological environments. An additional component of the study was the assimilation of available 

fishery-dependent and fishery-independent catch data, to determine the current status of the stock 

and to assess the effectiveness of past and current management regulations (as the standard stock 
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assessment models recommended by the Linefish Management Protocol were not suitable). The 

study also incorporated a derived “conservation planning-, habitat suitability-type” scoring system to 

assess the level of protection currently afforded to the species and identify the necessary 

management actions should protection need to be improved. Finally the species was ranked against 

national and international conservation criteria to provide an objective standardised assessment of 

the species’ conservation status. By filling the knowledge gaps, the thesis has provided much-needed 

information upon which to base recommendations for corrective management of white steenbras. 

 

10.1 Movement 

Prior to this study, published information on white steenbras movement was limited to that inferred 

from catch data (Bennett 1993a), a preliminary conventional dart tagging study conducted in the 

Tsitsikamma MPA (Cowley 1999) and single recapture records from the ORI tagging project. Chapters 

3 to 5 provided a comprehensive assessment of juvenile white steenbras movement in a range of 

estuaries through the use of acoustic telemetry, and Chapter 6 assessed fine scale coastal residency, 

residency within a coastal embayment, longshore dispersal and movements between marine and 

estuarine environments, through a combination of conventional dart tagging and acoustic telemetry.  

 

10.1.1 Estuarine movement 

Acoustic telemetry has rapidly become a preferred tool for assessing movements of fishes in a range 

of environments, such as coral reefs (Chateau and Wantiez 2008), coastal embayments (Meyer et al. 

2000) and rivers (Lyons and Lucas 2002). Telemetry has also been extensively applied in estuaries to 

determine area use (Able and Grothues 2007b), residency (Abecasis and Erzini 2008), habitat 

utilization (Cowley et al. 2008), cyclical movement patterns (Hartill et al. 2003), home range 

dynamics (Taylor et al. 2006) and factors affecting movement (Childs et al. 2008b). However, most 

telemetry studies investigate only one or a few of these parameters. Furthermore, Vasconcelos et al. 

(2010) suggested that ecological studies should focus on multiple estuaries to obtain representative 

results, yet there are few examples in the literature of studies that have applied acoustic telemetry 

in multiple estuaries. Able and Grothues (2007b) aimed to provide a comprehensive assessment of 

the estuarine movements of striped bass Morone saxatilis, yet the study was based on a single 

estuary, despite the authors acknowledging inter-estuary variability in estuarine use in this species.  

Passive acoustic tracking is commonly used to assess area use and movement patterns of fishes 

within estuaries, for example snapper Pagrus auratus in the Mahurangi Harbour Estuary, New 

Zealand (Hartill et al. 2003), while manual tracking is used to assess home range size and location, 

for example mulloway Argyrosomus japonicus in the Georges River, Australia (Taylor et al. 2006). A 
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combination of manual and passive tracking is advocated for a more comprehensive result (Lembo 

et al. 2002, Afonso et al. 2009), although this is not always considered. Sackett et al. (2008) 

highlighted the lack of comprehensive studies on habitat use of economically or ecologically 

important fish species in estuaries, and combined manual and passive acoustic telemetry, over a 

range of temporal scales, to provide a more comprehensive assessment of the movement of 

summer flounder Paralichthys dentatus, although this study still only focussed on a single estuary.  

 

The implementation of acoustic telemetry in a range of estuaries in the current study, varying in 

estuary type, size and the level of freshwater inflow, allowed a comprehensive assessment of white 

steenbras movements in estuaries. The combination of manual acoustic tracking in three of the 

estuaries for short-term high-resolution data, and passive acoustic tracking in all four estuaries for 

long-term continuous data, in the current study, of more than 50 individuals, provided a more 

holistic approach and a powerful dataset for the assessment of home range size and location, 

residency, site fidelity, area use patterns, estuarine dependency, cyclical movement patterns, factors 

affecting distribution and the identification of essential habitat.  

 

Key findings 

Manual tracking revealed that home ranges within these estuaries were small, relative to the size of 

each estuary. Passive tracking results were consistent with those from manual tracking, with area 

use restricted to certain areas, mostly in the lower reaches, within which most fish were highly 

resident, often throughout the duration of the respective study (up to 12 months). This high level of 

residency within estuaries makes the white steenbras highly susceptible to localised depletion; 

although simultaneously means that the species could be effectively protected during the juvenile 

estuarine life stage through suitably positioned and enforced estuarine protected areas (EPAs). 

 

A strong diel movement pattern was identified, present in all individuals, as well as a secondary 

tidal-associated movement exhibited by fewer individuals. The diel pattern is driven by feeding and 

predator avoidance, with individuals entering the shallow littoral zone at night to feed, and seeking 

refuge in the deeper channel areas during the daytime. Shallow littoral sand and mudflats therefore 

represent critical habitats for the species. Losses to these habitats could pose a significant threat.  

 

Environmental variables recorded during tracking appeared to have little influence on the 

distribution of juvenile white steenbras within the different estuaries. This distribution is more likely 

driven by the distribution of benthic macroinvertebrate prey organisms and substrate type. 
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However, hypersalinity (as a result of low freshwater input and excessive freshwater abstraction) 

represented an obstruction to the movement of fish into the upper reaches of the Kariega Estuary. 

Estuaries and catchments need to be managed in such a way as to prevent excessive freshwater 

abstraction, to ensure that sufficient water reaches the estuary to meet its ecological demands. 

 

These studies confirmed that juveniles are resident in and dependent on estuaries for the first three 

or four years of their lives. The estuarine nursery phase, therefore, represents an ecological 

bottleneck in the life history of white steenbras, and estuaries should be considered (and managed) 

as critical to the persistence of this species. 

 

10.1.2 Coastal movement  

After having assessed movement during the estuarine life stage, the scale of the study was expanded 

to assess movements during the late juvenile, sub-adult and adult life stages, in the marine 

environment. Again, it was necessary to employ the best methods for answering the key questions. 

The simplicity and affordability of conventional dart tagging is evidenced by the number of studies 

that have used this method (e.g. Hilborn 1990, Able and Hales 1997, Cowley et al. 2002, Brouwer et 

al. 2003, Griffiths and Attwood 2005). Conventional dart tagging has returned valuable information 

on the residency and migratory patterns of certain species; for example, identification of discrete 

stocks of silver kob Argyrosomus inodorus in the Eastern Cape and Western Cape provinces of South 

Africa (Griffiths 1997b), as well as the identification of infrequent, large-scale migrations of the 

usually resident galjoen Dichistius capensis (Attwood and Cowley 2005). However, studies employing 

this technique have often been based on a single tagging locality, short-term sampling or low 

numbers of fish tagged/recaptured, for example the recapture of 13 red roman Chrysoblephus 

laticeps and one dageraad C. cristiceps in the Tsitsikamma MPA from 1985 to 1986 (Buxton and Allen 

1989). An exception to this is the study on the movements of galjoen (Attwood and Cowley 2005), 

based on long-term tagging data (up to fourteen years) from two MPAs and a private recreational 

catch log, boasting more than 25 000 tagged fish and more than 2 000 recaptures. Aside from the 

galjoen study, the tagging data presented in the current study represent one of few comprehensive 

conventional tagging studies on a single fish species throughout its core distributional range. 

 

The current study drew on data from four ongoing long-term coastal fish tagging programmes for 

the assessment of white steenbras coastal movements. Three of these studies are based in MPAs, 

where fishing and data-collection are conducted by researchers and anglers trained to handle, tag 

and accurately measure fish. The locations of the MPAs along the south west coast, south coast and 
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south east coast span most of the core distribution of white steenbras. These studies provided long-

term (in excess of 25 years in De Hoop), high-resolution, reliable data on residency and dispersal of 

the species. In addition, the Oceanographic Research Institute’s National Tagging Project (ORI 

project), which spans the entire South African coastline, and thus the entire white steenbras 

distribution, provided a fourth dataset, spanning 27 years. The long-term and widespread nature of 

the ORI project has resulted in high numbers of fish being tagged and recaptured. Combined, these 

programmes provided a robust dataset, with almost 6 000 white steenbras tagged and almost 300 

recaptured, at a range of localities, allowing a comprehensive assessment of movement. Few studies 

have been able to draw on such long-term and widespread datasets. This highlights the value of 

these long-term tagging programmes and their importance in providing data for studies such as this.  

 

Conventional dart tagging has been used in conjunction with acoustic telemetry to assess the 

movements of numerous fish species, for example Diplodus sargus and Diplodus vulgaris in the Ria 

Formosa Lagoon, Portugal (Abecasis et al. 2009), common snook Centropomus undecimalis in 

Charlotte Harbour, Florida, and the Gulf of Mexico (Adams et al. 2009) and white trevally 

Pseudocaranx dentex in the Faial Channel, Azores Islands (Afonso et al. 2009). The combination of 

the two techniques in the current study provided a more comprehensive assessment of coastal 

movements during late juvenile, sub-adult and adult life stages. 

 

Key findings 

The infrequent and short-duration visits to estuaries and harbours, recorded on the passive acoustic 

receivers, confirmed that after leaving the estuarine nursery environment, white steenbras lose their 

dependence on estuaries. The majority of recaptured fish exhibited residency, although some 

undertook larger-scale movements. The level of residency and the spatial scale of longshore 

migrations were dependent on fish size (age). Late juveniles (< 450 mm FL) were predominantly 

resident, with movements on the scale of hundreds of metres. Sub-adults (450 to 600 mm FL) 

showed greater magnitude movements, although most remained resident. This was confirmed by 

acoustic telemetry, which showed long-term residency of sub-adults within a coastal embayment. 

The high level of juvenile and sub-adult residency within the coastal zone makes white steenbras 

vulnerable to localised depletion, but simultaneously suggests that during these two life stages 

white steenbras could be successfully protected by means of nearshore and surf-zone MPAs.  

 

The scale of movements was affected by habitat type, with contiguous areas of open sand allowing 

small-scale movements (1 to 5 km), whereas movements were restricted to small sandy patches in 
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areas where non-contiguous patches of sand were scattered amongst rock. Therefore, MPAs for the 

protection of white steenbras should include considerable proportions of contiguous sandy habitat. 

Movements were little affected by white steenbras density, coastal region or time at liberty.  

 

The majority of adults (> 600 mm FL) undertook considerably greater movements, up to 600 km, and 

the level of residency declined substantially, indicative of adults participating in coastal migrations. 

The level of residency, scale and direction of longshore movements changed seasonally, supporting 

Bennett’s (1993b) notion of a spawning migration. The seasonal nature of the adult migratory 

behaviour suggests that protection by means of a closed season during the spawning period would 

be a suitable management measure. Further research using long-term acoustic telemetry will be 

able to provide information on the timing, duration, and spatial extent of the spawning migration.  

 

The almost complete absence of recorded movements between the Western and Eastern Cape 

provinces (as observed for silver kob Argyrosomus inodorus, Griffiths 1997b) suggested the 

possibility of multiple stocks. There is anecdotal evidence of historically high abundance and a 

possible west coast population of white steenbras, which was decimated by overfishing (SJ 

Lamberth, DAFF, pers. comm.). The limited coastal movement could also have been driven by the 

oceanography in the region, with the predominant inshore current moving westwards along the 

south west coast, and the inshore counter current moving predominantly eastwards along the south 

east coast. However, this was likely a result of the low proportion of adult fish recaptured. The 

possibility of multiple stocks was subsequently refuted through genetic analyses (Chapter 8).  

 

The life history style displayed by white steenbras conforms to Harden Jones’ (1968) classical 

“triangle” pattern. Spawning takes place in the warmer waters of the Transkei, and eggs and larvae 

disperse south-westwards along the coastline with the Agulhas Current. Recruitment takes place 

into estuarine nursery grounds, which provide a good source of food, shelter and protection from 

predators (Bennett and Branch 1990). Juveniles remain resident in estuaries for up to four years, 

before entering the surf-zone habitat. This shift may be a form of resource-partitioning as food may 

become limiting in estuaries for larger juveniles. Juveniles remain in the surf zone, which provides a 

rich source of epibenthic and infaunal prey items, until reaching sexual maturity, after which they 

too undertake annual migrations to the spawning grounds (Figure 10.1). This strategy is an ecological 

adaptation to maximise survival and fitness of the species by enhancing the growth rates of the eggs 

and larvae (Griffiths and Wilke 2002), and increasing dispersal of propagules to allow widespread 

recruitment into estuaries along the south east and south coasts (Hutchings et al. 2002a). 
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Figure 10.1: Schematic representation of the scale of movement patterns of white steenbras, from 

the early juvenile estuarine phase in A) open and B) temporarily open/closed estuaries, c) late 

juvenile and sub-adult surf zone phases, and d) adult migratory phase in the marine environment, 

assimilated from conventional tagging and acoustic telemetry data and results from the literature 
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10.2 Genetic stock structure 

The combination of four powerful long-term conventional dart tagging datasets and a passive 

telemetry study contributed significantly towards filling the gaps in the movement at sub-adult and 

adult life stages. Despite this, however, there was still a lack of empirical evidence connecting the 

summer aggregation area, along the south west coast, and the spawning grounds in the Transkei. 

This was addressed at a different scale, which focussed on connectivity among coastal regions at the 

species level, using genetic analyses. 

 

The ability to detect differentiation at the molecular level that cannot be detected using 

morphometric, meristic or other stock discrimination techniques, has resulted in a rapid increase in 

the number of population genetics studies on fishes in recent years. Population genetics studies 

commonly employ analysis of mitochondrial DNA (mtDNA) or nuclear microsatellites, and numerous 

studies (which is becoming the norm) have employed both, for example by Teske et al. (2011) to 

assess the genetic stock structure of the red roman, a coastal sparid, in South Africa. Numerous 

studies have made important genetic discoveries in fishery species, for example, based on mtDNA 

analysis, significant genetic divergence was identified between South African and Namibian stocks of 

the deep-water hake Merluccius paradoxus (von der Heyden et al. 2007), and based on 

microsatellite analyses, divergence was identified between Baltic Sea and North Sea stocks of turbot 

Scophthalmus maximus (Nielsen et al. 2004). 

 

The genetic component of this study represents the first genetic study on white steenbras. Again, it 

was important to incorporate the best techniques to answer the key questions. The analyses of 

mitochondrial and microsatellite DNA in conjunction provided the best techniques for detecting 

large-scale geographic differences or phylogeographic breaks (Teske et al. 2011), and subtle 

population structure (Waples 1998), respectively. Analyses of the genetic material from more than 

300 fish, including juveniles and adults, from eight coastal localities spanning the white steenbras 

core distribution and spanning the major geographic and oceanographic features shown to 

represent coastal phylogeographic breaks in other species, using mtDNA and 11 polymorphic 

microsatellite loci, provided a robust assessment. 

 

Key findings 

Overall, the observed results and agreement in results between the mitochondrial and nuclear 

genomes provided robust evidence of a single, well-mixed stock spanning all sample populations, 

from Langebaan Lagoon to the Transkei. There was no spatial genetic differentiation, no isolation by 
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distance, and no evidence of localised spawning. There was also no significant genetic differentiation 

between juvenile and adult samples. Despite evidence of barriers to gene flow in other marine 

organisms in South Africa, the lack of any clear geographic subdivisions confirms the high level of 

genetic mixing, indicating that there are few geographic or oceanographic barriers to gene flow in 

white steenbras. It was concluded that white steenbras exist as a single stock and should be 

managed as such. Owing to the lack of spatial genetic stock structure, overexploitation or habitat 

loss in one area could have repercussions throughout the species range, and this should be 

considered when making management decisions regarding this species. 

 

10.3 Stock, protection and conservation status 

The previous stock assessment of white steenbras (Bennett 1993a) is out-dated, and considering the 

increase in recreational shore fishing effort and other fishery-related changes since its publication it 

was felt that a reassessment was overdue. However, the standardised stock assessment techniques 

defined in the South African Linefish Management Protocol (Griffiths et al. 1999) are not suited to 

the available catch data for white steenbras. Therefore, an alternative method for assessing the 

status of this species was required. 

 

Chapter 8 drew from all sources of available white steenbras catch data, including peer-reviewed 

and grey literature, long-term and short-term fishery-dependent data for the fisheries targeting 

white steenbras (roving creel surveys, access point surveys, compulsory commercial catch returns, 

private catch logs, competition angling data), long-term fishery-independent data (shore-angling 

research programmes, estuarine netting programmes) and ichthyofaunal surveys, in estuarine and 

marine environments, conducted throughout the species’ core distribution, to elucidate trends in 

the catch, targeting and CPUE of white steenbras in the different fisheries and protected areas. Few 

studies have assimilated a dataset from such wide ranging sources, in a benign approach to assess 

the status of a fish stock. Attwood (2003) adopted a novel approach to assess the impacts of fishing 

on the stock of galjoen, in South Africa, based on fishery-independent CPUE and conventional tag-

recovery data, although this assessment did not include fishery-dependent data. Conversely, other 

studies have used population modelling or statistical techniques for the analysis of CPUE data from 

commercial fisheries (e.g. Campbell 2004), although these analyses neglect fishery-independent data 

and require additional data (such as mortality and catchability estimates) that are not available for 

many coastal fishery species. 
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Chapter 9 provided a comprehensive assessment of the protection and conservation status of white 

steenbras in estuaries and the marine environment, throughout its core distribution. Simpfendorfer 

et al. (2010) assessed the movement patterns and habitat use of smalltooth sawfish Pristes pectinata 

in south west Florida and the Florida Keys, to provide information for improved conservation 

planning for the species, although this assessment was limited to acoustic telemetry, and only a 

portion of the species’ distribution. The conservation analysis in this thesis drew on the results from 

the previous chapters, and the approaches of numerous initiatives, such as the National Spatial 

Biodiversity Assessment 2004 (Lombard et al. 2004, Turpie 2004), the National Biodiversity 

Assessment 2011 (Sink et al. 2011, van Niekerk and Turpie 2011), the National Protected Area 

Expansion Strategy (NPAES 2008) and a number of other studies (e.g. Maree et al. 2003, Turpie and 

Clark 2007), which were aimed at providing information on the status of individual species and 

habitats, to identify those that are threatened, and to identify suitable areas for protection. This 

analysis assessed the conservation status of white steenbras, and the availability of and protection 

afforded to suitable habitats for the species, in estuarine and marine environments, spanning the 

core distribution of the species, and the geographic range of estuaries used by the juveniles. 

 

Key findings 

The analysis of catch data identified severe declines in white steenbras catches made over the latter 

part of the 20th century, in the recreational and commercial sectors. The results confirmed that both 

sectors contributed to the overexploitation, with catches made in the recreational shore and 

commercial beach-seine and purse seine fisheries largely responsible for the stock collapse. 

 

The NEMBA and IUCN classifications provided rapid assessments of the conservation status of white 

steenbras, highlighting the need for improved management. The IUCN classification, as presented in 

the current study, was submitted to the South African National Biodiversity Institute, for inclusion in 

the National Biodiversity Assessment 2011 (Sink et al. 2011), and will hopefully be considered in the 

future management decisions regarding white steenbras. It was determined that white steenbras 

meets national level criteria for “Threatened or Protected Species”, according to criteria defined 

under the National Environmental Management Biodiversity Act, and the “Endangered” status at the 

international level, under the criteria of the IUCN Red List for Threatened Species.  

 

Traditional management measures, such as minimum sizes and maximum daily bag limits, have 

failed, largely as a result of a lack of their enforcement (Griffiths 2000). Insufficient sandy shoreline 

and shoreline of mixed sand and rock within the white steenbras core distribution are protected 
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within MPAs. Furthermore, insufficient shoreline within existing MPAs is closed to recreational shore 

angling, and EPAs within the core distribution protect negligible habitat. As such, few MPAs in the 

existing network provide effective protection for white steenbras. Management regulations 

governing the harvest of this species should, therefore, be revised, taking into account its 

“Endangered” status and “Threatened Species” listing. The study identified a number of potentially 

suitable areas (management units) for additional protection, encompassing coastal sections and 

associated estuaries that were ranked as having high value to white steenbras. 

 

Despite the failure of traditional management measures and the overexploitation and resultant 

stock collapse, the analysis of catch data provided some preliminary evidence of improved 

recruitment of white steenbras into estuaries and abundance appears to be increasing in certain 

coastal areas. While numerous factors, such as increased awareness and favourable environmental 

conditions, may have contributed to the recovery, it is most likely due to the series of restrictions 

pertaining to the commercial harvest of white steenbras during the 1990s, and the ban on the use of 

vehicles in the coastal zone in 2002. However, this should not be seen as a complete stock recovery. 

  

10.4 Conclusions 

The white steenbras is a slow-growing, late-maturing sparid, and thus particularly susceptible to 

overexploitation, and requires improved management. The different components of this thesis have 

addressed key ecological questions and contributed substantially towards filling the knowledge gaps 

in the ecology and life history of this species (Figure 10.2). Estuarine telemetry studies confirmed the 

high level of dependence on and limited area use within estuaries. Marine movement studies 

illustrated the high level of residency within the inshore marine environment at the late juvenile and 

sub-adult life stages as well as large-scale migrations at the adult life stage. Genetic analyses showed 

a lack of spatial genetic stock structure, and analyses of (and trends in) catch and CPUE highlighted 

the poor status of the stock. Considering the collapsed state of the stock, it was essential that the 

thesis address the necessary objectives (including assessment of the stock) in a completely benign 

manner, thus preventing project-related mortality. The thesis has, therefore, assessed each of 

Turchin’s (1998) functional units, addressing each at appropriate temporal and spatial scales, and 

reconstructed the life time track, to describe movements throughout the species’ life history (Figure 

10.2). This information should be used to assist with its management and allow for effective 

protection and stock rebuilding. Effective management to facilitate the recovery of the white 

steenbras stock will require a comprehensive management plan that provides appropriate 

protection throughout the different life stages (Bolden 2000).  
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Figure 10.2: Summary flow diagram of the research approach, research themes and key outcomes of the thesis 
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The highly resident nature of juveniles in estuaries renders them vulnerable to overexploitation in 

estuaries, making management and conservation of estuaries of paramount importance. Similarly, 

the tagging data provided evidence of late juvenile and sub-adult residency within the surf zone, 

highlighting the importance of suitable management to prevent localised depletion in this 

environment. Therefore, management measures and the design and location of estuarine and 

marine protected areas in South Africa should be optimised to include the requirements of all life 

history stages, including estuarine and adjacent coastal environments.  

 

This can be achieved through a combination of well-enforced catch (minimum size and daily bag 

limits) and effort (area and seasonal closure) restrictions that are realistic for the recreational (and 

subsistence) anglers (Griffiths 2000). The most suitable management measures appear to be 

protected area “units”, which should encompass EPAs within high-value estuaries and associated 

MPAs in the adjacent coastline. These would provide protection throughout the juvenile estuarine 

life stage and the late juvenile and sub-adult surf zone life stages. However, this will require 

increased proportions of suitable habitat to be protected within EPAs and MPAs, and the prevention 

of illegal harvesting within protected areas, particularly the Dwesa-Cwebe MPA, in the vicinity of the 

spawning grounds. A suitably-timed closed season in all areas prior to and during the winter 

aggregation period (mid-July to the end of August) would provide additional protection for the 

species, by ensuring that a proportion of adults are allowed to spawn before being captured. 

Continual monitoring of white steenbras estuarine recruitment and coastal abundance, as well as 

angler catches, is necessary, to identify trends therein, to assess the effectiveness of contemporary 

management regulations, such that regulations can be amended accordingly (whether stocks decline 

further or show improvement). 

 

Despite the information gained through the conventional tagging and acoustic telemetry studies, the 

migration patterns of adult white steenbras and the exact location and number of spawning grounds 

remain unknown. The genetic analyses showed that the species exists as a single well-mixed stock, 

with no localised spawning, which agrees with the sizes and times of estuarine recruitment, 

confirming that spawning occurs over a single season and likely in a single area, although the 

migration patterns and extent of the spawning grounds are still not confirmed. Furthermore, 

whether all mature white steenbras undertake spawning migrations and whether all mature 

individuals spawn every year also remain unknown. A large-scale acoustic telemetry study has 

recently been initiated (2011), which will make use of the nationwide array of acoustic receivers that 

has been deployed as part of the Ocean Tracking Network programme, to provide information on 
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the spatial extent, timing, route and depth of white steenbras adult migrations, and thus answer 

some of the final questions regarding the ecology of the species. 

 

The northern boundary of the white steenbras distribution is suggested to be the Orange River 

(Smith and Smith 1986), which forms the border between South Africa and Namibia, and the genetic 

analyses in the current study provided strong evidence of a single intermixing population. However, 

commercial beach-seine data from Namibia include records of white steenbras in the catches. These 

records may simply be a result of misidentification of the west coast steenbras L. aureti or possibly 

even the sand steenbras L. mormyrus (small fish only). Alternatively, the samples could represent an 

extension of the South African white steenbras L. lithognathus stock or a genetically-distinct 

allopatric L. lithognathus stock. Therefore, it is important that samples recorded as white steenbras 

in Namibia are genetically analysed, to provide information on the genetic stock of origin of these 

samples, to determine whether the “South African” and “Namibian” stocks need to be managed 

together, or separately, or whether these simply represent misidentifications. 

 

The failures of historical and current management measures have been identified, and valuable 

information is provided on which to base decisions for improved management of white steenbras, to 

facilitate the rehabilitation of the stock of this overexploited, once-prevalent coastal linefish. It is 

hoped that the results will have application beyond the study species, and that the project provides 

a framework for similar studies on other estuarine-associated coastal fishes, thereby contributing to 

the overall improvement of the South African linefish stocks. 
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Appendix I 

Because time data are of a cyclical nature, it was first necessary to convert times of departure from 

and arrival at the receiver array to degrees, with a 24-hour cycle being represented as a full circle 

(360°), and times being presented as angles (i.e. 15° representing 1 hour). Angles ( i ) were 

calculated from departure and arrival time values (ti) as follows: 

360
24


it

i
                  

Eq. 1. 

 

Then, because the arithmetic mean of a set of angles is not applicable, e.g. 270° = -90° (modulo 360°) 

(Batschelet 1981), angles were converted to vectors (v) with Cartesian coordinates (x, y), where  

 r,
x
yv 













                   Eq. 2, 

iix cos     {i = 1... n}                Eq. 3a, 

iiy sin     {i = 1... n}               Eq. 3b. 

and r is vector length, equal to one unit. Because individual time values are un-weighted (i.e. each 

vector ( ,r ) represents one time value only), for every individual time value r = 1 (i.e. for time 

converted to a full circle of 360°). This is termed the unit circle, which has a radius of one unit, and 

where each r is equal to one unit. 

 

Mean coordinates (x‾ , ӯ) for all time values {i = 1... n} were calculated separately for each individual 

as follows (Batschelet 1981): 

 n
n

x  cos...coscos
1

21 
              

Eq. 4a,  

 n
n

y  s in...s ins in
1

21 
             

Eq. 4b. 

Mean coordinate values were then converted to a mean angle ( ), as follows (Batschelet 1981): 

)( x/y  arctan    (for positive x‾ values)            Eq. 5a, 

)( x/y  arctan 180   (for negative x‾ values)            Eq. 5b, 

  90    (if x = 0 and y < 0)             Eq. 5c, 

  270    (if x = 0 and y > 0)             Eq. 5d, 

ed  undetermin   (if x = 0 and y = 0)             Eq. 5e. 
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When time values are converted to vectors ( ,r ) and averaged to produce a mean vector  

(m = ,r ), mean vector length (r) represents a measure of the concentration of values around the 

mean angle (i.e. r no longer has a unit value), and takes a value 0 ≤ r ≤ 1 unit), which is calculated as 

follows (Batschelet 1981): 

 

          2
1

2222
s incos

1
yx

n
r ii   

             
Eq. 6. 

 

The closer the time values (in degrees) are concentrated around the mean angle ( ), the closer r 

will be to 1 (i.e. the full radius of the unit circle), and the more dispersed the values are the more r 

will tend to 0. Variance around the mean angle ( ) is termed angular variance (s2), or angular 

deviation (s), and is calculated as follows (Batschelet 1981): 

 

   2
1

12
 180

r
π

s 



                 

Eq. 7. 

 

The Rayleigh test for significance was used to test the null hypothesis that mean angles ( ), and 

thus mean times of departure from and arrival at the array, were not significantly different from 

random (significance criterion α = 0.05). The null hypothesis was rejected where the test statistic z ≥ 

zα, where z is calculated as: 

 

2nrz                     Eq. 8, 

 

where n = sample size, r = mean vector length and zα was obtained from statistical tables (Batschelet 

1981). 

 

Confidence limits around mean estimates were calculated as   ± δ, where δ is measured in 

degrees, and calculated from charts provided in Batschelet (1981). Mean angles ( ), angular 

deviation (s) and confidence limits were then converted from degrees back to time using Eq. 1, by 

making time (t) the subject of the formula. 
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Appendix II 

DNA extraction 

Isolation of genetic material  

Genetic material was extracted using the commercially available Wizard® Genomic DNA Purification 

Kit (Promega, USA), following manufacturer’s instructions. A sub-sample was taken from each fish, 

and dried on a heat block at 55°C for 2 minutes to evaporate the storage ethanol. After drying, 600 

μl of a chilled solution containing 120 μl 0.5M EDTA and 500 μl Nuclei Lysis solution® were added, to 

lyse cells and nuclear membranes. Immediately after adding the EDTA/lysis solution, 15 μl of 

Proteinase K were added, to denature the DNAses (enzymes) that would otherwise degrade the DNA 

material, and the reagents were mixed by vortexing. Samples were then incubated on a heat block, 

for approximately 3 hours at 55°C, during which tubes were mixed by vortexing approximately every 

30 minutes. After incubation, 3 μl of RNase solution were added to the solution and the reagents 

were again mixed by inversion. Samples were further incubated in a water bath for approximately 25 

minutes at 37°C, after which they were allowed to cool at room temperature for 7 minutes. Once 

cooled, 200 μl of Protein Precipitation solution® were added and the samples were vortexed for 20 

seconds, and chilled in a freezer at -4°C for 13 minutes. 

 

Removal of cellular debris  

Samples were removed from the freezer and centrifuged for 7 minutes at 13 000 rpm, to precipitate 

the protein. The DNA-containing solution was then carefully pipetted into a 1.5-ml centrifuge tube 

containing 600 μl of chilled isopropanol, and the DNA material and isopropanol were gently mixed 

by inversion. The samples were again centrifuged, at 13 000 rpm for 3.5 minutes, and the 

supernatant was decanted, leaving behind a tight white DNA precipitate. 

 

Elution of purified DNA 

DNA was rinsed by adding 600 μl of room-temperature ethanol (70%) to each sample, and the DNA 

precipitate was gently freed from the sides of tube by inversion. The samples were centrifuged 

again, at 13 000 rpm for 2.5 minutes, to allow the DNA material to be rinsed with ethanol, which was 

thereafter aspirated using a pipette. Remaining ethanol was evaporated off, by drying the samples 

on a heat block at 55°C for 5 minutes with the lids open. DNA material was then rehydrated by 

adding 100 μl of DNA Rehydration Solution® followed by incubation for 1 hour at 65°C. Extracted 

products were stored at 4°C until gel electrophoresis or further processing.  

 

 



Appendices 

 

374 
 

Appendix III 

MtDNA PCR purification, cycle sequencing and sequencing 

PCR Purification 

PCR products were purified using the QIAquick PCR Purification Kit (QIAgen). Buffer PB (225 μl) was 

added to each PCR product (45 μl) and mixed. This solution was then pipetted into a 2-ml QIAquick 

spin column and centrifuged at 13300 rpm for 60 s, and the flow-through was discarded. Buffer PE 

(750 μl) was added, the sample was again centrifuged for 60 s and the flow-through discarded, to 

remove residual ethanol. The QIAqick spin column containing the DNA was placed into a clean 1.5-

ml centrifuge tube, 50 μl Buffer EB were added to the QIAquick membrane in the spin column, and 

the tube was centrifuged for 60 s. 

 

Cycle sequencing 

Purified products were cycle sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems). All reactions were conducted in 20-μl reaction volumes, containing 1 μl DNA 

template, 0.02mM forward primer (PT), 2 μl BigDye®, 1X buffer-dilution, and made up to volume 

with distilled water. The cycle sequencing profile consisted of 25 cycles of 96°C for 10 s, 50°C for 5 s, 

and 60°C for 4 minutes, and hold at 4°C. 

 

Precipitation of cycle-sequenced products 

Precipitation of cycle-sequenced products was done using an ethanol/sodium acetate procedure 

(Sambrook and Russell 2001). Solutions of 1 μl 3M sodium acetate (pH 4.6), 1 μl 0.25M EDTA (pH 8) 

and 50 μl ethanol (99%) were prepared, to which the cycle sequencing products were added, and 

mixed thoroughly. Tubes were then vortexed and left at room temperature for 15 minutes, to 

precipitate the extension products, and subsequently centrifuged at 13 300 rpm for 20 minutes and 

the supernatant was aspirated and discarded. Pellets were then rinsed with 250 μl ethanol (70%), 

and vortexed briefly. Tubes were then centrifuged for 13 300 rpm for 5 minutes, and the 

supernatant was again aspirated and discarded. The precipitated pellet was then dried at 60°C for 5 

minutes, and stored in the dark until sequencing.  

 

Sequencing 

Samples were sent to a commercial facility (Macrogen Inc., Korea) for sequencing on an ABI 3730 XL 

Automatic sequencer (Applied Biosystems). 

 

 


