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ABSTRACT 

Aspects of fuzzy vector spaces and fuzzy groups are investigated, including 

linear independence, basis, dimension, group order, finitely generated groups and 

cyclic groups. It was necessary to consider cardinality of fuzzy sets and related 

issues, which included a question of ways in which to define functions between fuzzy 

sets. 

Among the results proved, are the additivity property of dimension for fuzzy vector 

spaces, Lagrange's Theorem for fuzzy groups ( the existing version of this theorem 

does not take fuzziness into account at all ), a compactness property of finitely 

generated fuzzy groups and an extension of an earlier result on the order

homomorphisms. 

An open question is posed with regard to the existence of a basis for an arbitrary 

fuzzy vector space. 

AMS Classification: 03E72, 20K05, 20K99, 54A40, 15A03, 06B05, 04A05. 
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PREFACE 

In 1965 L. A. Zadeh introduced the concept of a fuzzy set in his paper [49J . 

Since set theory is the basis for all mathematical constructions, 

it would seem at first that much of mathematics can be generalised by the use of 

fuzzy sets . Consequently a large number of branches of mathematics were 

and are being "fuzzified". Fuzzy set theory has encountered a kind of explosion 

with regard to the number of different definitions that extend particular "crisp" 

concepts to fuzzy ones. The main reason for this is that for anyone particular 

crisp concept there are many different definitions extending it to the fuzzy situation. 

In the "fuzzy" literature there is also a number of inadequate definitions 

and results. To a large extent this work addresses some of these inadequacies, 

for instance the basis and the dimension of a fuzzy vector space and the order 

of a fuzzy group. In addition we consider and extend some of the results obtained 

by others. This includes the results on order-homomorphisms 

Approximately half of this thesis has been written up for publication in [27], [28J 

and [29J. Our membership grade lattice is totally ordered with the exception of 

the section dealing with order-homomorphisms, where it is assumed to be 

completely distributive. 

The seemingly diverse topics discussed in the thesis are unified on various levels e.g. 

i) Methodological unity: General formulae are applied in formulating concepts 

and definitions. For example the same idea is used in defining compactness 

in fuzzy topological spaces as is used in compactness of fuzzy groups. 

In fact it is very instructive to apply the same concept to different 

fields and to find that they work correctly in both. This, in fact, is 

a further evidence their validity. 
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ii) Relational unity: Definitions and results in one chapter are necessary 

for others. Clearly, we need a notion of cardinality to define the dimension 

of vector space and order of a group. Functions and morphisms are 

fundamental. Chapter 2 deals with some aspects of these. 

An exposition of each of the topics such as fuzzy cardinality, fuzzy groups and fuzzy 

vector spaces had to be sufficiently complete, and necessitated separate chapters. 

Naturally, we have also developed some of these topics further for their own sake. 

In Chapter 1, some basic definitions and results are recalled and established which 

are required later. This chapter also fixes the notation to be used throughout this 

thesis . In Chapter 2 we consider order-homomorphisms ( more particularly Erceg's 

functions between fuzzy sets introduced in [10J ), then generalise and simplify the 

result of G.-J. Wang [41J on the order-homomorphisms fuzzy point invariance 

under certain conditions. 

Chapter 3 deals with basic cardinality theory for fuzzy sets. We include 

a discussion on extending functions defined on crisp sets to ones on fuzzy sets, 

the relation between compactness and finiteness in fuzzy sets, and show how some 

cardinals for fuzzy sets can be obtained. In particular we use the definition of 

cardinality for fuzzy sets introduced by Blanchard [2J in the non-finite (fuzzy) 

case and display its various properties. Finally we give a new definition of 

cardinality, based on an observation that Blanchard's cardinals are like decreasing 

functions from the unit interval to a lattice as in Hutton's fuzzy unit interval [16J . 

We prove the additivity property for these cardinals and demonstrate their relation 

to Gottwald 's and Blanchard's cardinals. 
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In Chapter 4 we consider arbitrary fuzzy vector spaces from an algebraic point of 

view. The definition of a fuzzy vector space was given by Katsaras and Liu in [18]. 

We generalise linear independence, basis and dimension from crisp vector spaces 

to fuzzy vector spaces. The most important results presented here concern the 

existence of a basis for a fuzzy vector space under some condition on the lattice and 

the additivity property of dimension. There remain a number of unanswered 

questions. For instance, do all fuzzy vector spaces possess a basis? 

Chapter 5 deals with fuzzy groups. The concept of a fuzzy group was introduced by 

Rosenfeld in [38]. Since then various authors have given definition of various 

generalisations of concepts from group theory to fuzzy group theory. Some of these 

definitions and subsequent results are in our opinion inadequate. We put forward 

definitions of order, finitely generated fuzzy groups and cyclic fuzzy groups. 

The definition of order is a fuzzy cardinal rather than a crisp cardinal as given 

in [32]. The resultant Lagrange's Theorem for fuzzy groups is therefore a proper 

extension of this theorem from crisp groups. ( The existing Lagrange's Theorem for 

fuzzy groups states that if J.L is a subgroup of a fuzzy group v and J.L( e) = v( e) then 

the order of J.L divides order of v. This is simply the crisp Lagrange's Theorem.). 

We use a notion of compactness from fuzzy topology, namely that of Chadwick [3] 

and show that our definition of finitely generated fuzzy groups is equivalent 

to a fuzzy group being compact in the lattice of fuzzy groups. Finally we give 

a representation of cyclic fuzzy groups and prove that two cyclic fuzzy 

groups with the same order are strongly isomorphic, i.e. there exists a isomorphism 

f: supp(J.L) .... supp(v) such that f(J.L1 supp(J.L)) = VI supp(v) ' 
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1. PRELIMINARY DEFINITIONS AND RESULTS 

Denote by I the unit interval [0,1] ell!. 

1.1. FUZZY SETS 

Definition 1.1.1. ( L.A.Zadeh [49] ) 

A Fuzzy set IL is a function from some set X to I, i.e. IL : X .... I . 

We can find a short introduction to the theory offuzzy sets in [49} . 

Definition 1.1.2. ( iii,vi,vii L.A.Zadeh [49) , ix N.Blanchard [2} ) 

i) Denote by IX the set of all fuzzy sets on set X. 

ii) If A c X and a E (0,1] then define fuzzy set alA by alA(x)= { g ~!h~r~~e' 
In case A = {x} is a singleton we will write alx for al{x}' 

iii) If IL , v E IX then v is a subset of IL denoted v ~ IL 

if and only if for all x E X, v(x) ~ tL(x). 

iv) If IL E IX then we denote by 7'(IL) = { v E IX : v ~ IL} the power set of IL. 

Define 

and 

'P(IL) = { v E 7'(IL) : V x EX, v(x) = IL(X) or v(x) = 0 } 

E(IL) = { v E 7'(/-1) : V x EX, v(x) < /-I(X) or v(x) = 0 }. 

v) If IL E IX then we denote by P(IL) = { alx : a> 0 , x E X and alx ~ IL } 

the set of all fuzzy points in /-I . 

vi) 

Define P(IL) = p(/-I) n 'P(IL) and 1«/-1) = P(IL) n E(IL)· 

Note that P(IL) = { IL(x)lx : IL(X) > 0, x EX} 

and 1«IL) = { alx : IL(X) > a> 0, x EX} . 

If {IL'} ' EJ is a collection of subsets from IX then the union V /-I. E IX and 
I I iEJ I 



vii) 

viii) 

ix) 

x) 

xi) 

Notes: 
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the intersection II J1-; E IX of this collection is defined by: 
iEJ 1 . 

( V J1-;)(x) = sup J1-;(x) and (II J1-;)(x) =inf /1(x) respectively. 
iEJ 1 iEJ 1 iEJ 1 iEJ 

If p. E IX then the complement of p., p.' is defined by p.' (x) = 1 - p.(x). 

If C = { J1-; : X. -t I : i E J} then the product (II C ): II X. -t I 
1 1 iEJ 1 

is defined by (II C )(f) = inf {/1(f(i)): i E J} forfE XJ. 

If p. : X -t I and v : Y -t I then P.v : X Y -t I is defined by 

p.v(f) = inf { p.(f(y)) : v(y) > p.(f(y)), y E Y } for f EX Y . 

Two fuzzy sets p., v E IX are disjoint iff p. II v = ¢ = 1¢ = 01X . 

If p. E IX then the range Rp. of J!- is defined by RJ!- = { J!-(x) E I\ {O} : x EX}. 

a) 11.(J!-) is the set of all fuzzy points belonging to p. in the sense of [40] . 

b) p(J!-) is the set of all fuzzy points belonging to J!- in C.K.Wong [46] sense, 

We write 1 A instead of 11 A and reserve the letters p and q to denote fuzzy 

points, i.e. elements from p(1X)' The Greek letters J!- , v , W, (J, e , p ,), will 

denote fuzzy sets , i.e. elements from IX Finally a , (3 , f' 6 will be from 1. 

J.A. Goguen [13] has introduced the L-fuzzy sets. The L-fuzzy sets have 

membership values in a lattice L . For our needs we consider only totally ordered 

complete lattices with an order reversing involution', with the exception of 

Chapter 2. Denote by 0 and 1 the bottom and the top of L. The definition 1.1.2. is 

exactly the same for the L-fuzzy sets with the exception of E and 11.. In our notation 

we also indicate which lattice is used. If a E L\{O} then a is called an isolated 

element iff V { (3 E L : (3 < a } f. a . Denote by L _ the set of all the isolated elements 

in L. 
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For example: if L = {0,1} then L_ = {I} and if L = [0,1] then L_ = ¢ . 

Definition 1.1.3. 

Let L be a lattice as above ( totally ordered and complete) and J1, E LX. 

i) 1'(J1"L) = {v E LX: v ~ J1,} 

ii) 'Ji(J1"L) = { vEL X: If x EX, v(x) = J1,(x) or v(x) = 0 } 

iii) E(J1"L) = { vEL X: v ~ J1, and if J1,(x) ¢ L_ then v(x) < p.(x) or v(x) = 0 } 

iv) p(J1"L) = { alx : alx ~ J1" a E L\{O} and x EX} 

v) p(J1"L) = 'Ji(J1"L) n p(J1"L) . 

vi) Q(J1"L) = E(p"L) n p(J1"L) . 

In what follows we denote p(J1,,[O,I]) by p(J1,) ( e.t.c. ) . 

Definition 1.1.4. ( L.A.Zadeh [49] ) 

If J1,: X .... L is a fuzzy set and a E L then we denote by E~ and T~ 

the subsets J1,-l([a,l]) and p,-l(a) of X respectively. 

{ 

p,-l([a,l]) if a E t
Also we define Ha = 

J1, p,-l(( a,l]) otherwise 

E~ and H~ are called weak and strong a - cuts respectively. 

If eeL X then we extend the above notation to C as follows: 

Ee = { E~: vEe} and similarly for He and Te . 

We now show that Hf.): LX .... 1'(X,{O,I}) and Ef.): LX .... 1'(X,{O,l}) 

preserve some important basic set operations. Note that 1'(X,{O,I}) = 2X 

and that we can identify p(X,{O,I}) with X. That means that if x E X then 

the p in the definition of p(J1"L) in 1.1.3 (iv) becomes p = Ix which is identified with 

the crisp point x. Similar identification can be done with sets. 
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Proposition 1.1.5. 

Let C c LX, Ji. , vEL X and a E L then 

i) 

ii) 

Proof 

i) 

H~C = U { H~: Ji. E C } and E~C = n { E~: Ji. E C } . 

H a = H a n H a and E a = E a U E a 
Ji. II v Ji. v Ji. V v Ji. v 

¢=) {(VC)(X) ~ a if a E L _ } 

(VC)(x) > a otherwise 

¢=) { 3 Ji. E C such that Ji.(x) ~ a since a is isolated} 

3 Ji. E C such that JJ.(x) > a 

¢=) x E U { Ha : Ji. E C } 
Ji. . 

The other identity is well known. 

x E H~ II v 
¢=) { (J.! II v)(x) ~ a if a E L} 

(J.! IIV)(x) > a otherwise 

{ 

Ji.(x) ~ a and v(x) ~ a 

¢=) v(x) > a and J.!(x) > a 

¢=) x E H~ II v 

if a E L_ } 

otherwise 

The other identity is also well known. 
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Proposition 1.1.6. 

Let C = { Jl<. : X ..... 1 : i E J } and a E 1 then EII
a

C = II { Ea : i E J }. 
I I Jl<i 

Also Ha = Ha 
x Ha . Jl<XV Jl< v 

Proof 

f E E~C ~ (IIC)(f) ~ a ~ inf { Jl<j(f(i)) : i E J } ~ a 

~ ViE J , Jl<.(f(i)) ~ a ~ ViE J , f(i) E Ea ~ f E II {E a : i E J } 
I Jl<i Jl<i 

The other identity follows similarly. 

Proposition 1.1. 7. 

i) 

ii) 

iii) 

Proof 

If Jl< E LX then Jl< = V p(Jl<,1) = V p(Jl<,1) = V p(Jl<,1) = V Ji(Jl<,1) = V E(Jl<,1) . 
. X 
If Jl< E 1 then Jl< = V { alHa: a E 1\{O} } = V { alEa : a E 1\{O} }. 

Jl< Jl< 
If C c LX then p( V C , 1 ) = u { p( w,1) : w E C } 

If Jl< , v E 1'(Jl<,1) then p( Jl< II v , 1 ) = p(Jl<,1) n p( v,1) . 

i) The only non trivial result is the one involving P and E . 

Let x EX . If Jl«X) E 1_ then J1«x)lx E p(Jl<,1) so [ V p(Jl<,1) ](x) = J1«x) . 

If Jl«x) ~ L then V a < Jl«x) , alx E p(Jl<,1) . Since Jl«x) ~ L we must have 

V { a E 1 : a < Jl«x) } = Jl«x) . Thus [ V p(Jl<,1) ](x) = J1«x) . 

It is important to note that the modified definition of P is necessary. 

If we had p(Jl<,1) = { alx : a < Jl«x) , x EX} and Jl«x) was isolated then 

[ V p(Jl<,1) )(x) < Jl«x) . We proceed similarly for E . 

ii) The result for E~ is well known. 

The case Jl«x) = 0 is obvious, so let x E X and Jl«x) > O. 

If Jl«x) E L_ then x E HJl«x) and for all a> Jl«x) , x ~ Ha( ) 
Jl< Jl<x 

thus [ V { alHa: a E 1\{O} } ](x) = Jl«x) . 
Jl< 
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If p,(x) ¢ L_ then x ¢ Hp,(x) and for all Ct < p,(x) , x E HCt • But since 
~ ~ 

/1-(x) ¢ L_ we have V { CtEL: Ct < p,(x) } = p,(x) . This proves the result . 

Note that the modification to the definition of H(. ) was necessary for this 

result to hold. 

iii) Here we proceed similarly as in i) . 

We must point-out that Rodabaugh has proved 1.1.7.(ii) in [37], however our 

argument is much simpler. The symbols I1( ',' ) was defined as in Definition 

1.1.3 (iv) in order for the result 1.1.7. (i) to hold. 

Remark: We shall use the following convention: 

if ~ E LX and Ct E L then ~ ~ Ct if and ouly if ~(x) ~ Ct for all x E X. 

Similarly we define ~ > Ct. 

Definition 1.1.8. ( L.A.Zadeh [49] ) 

If ~ : X -+ L is a fuzzy set then we define: 

i) h(~) = sup{ ~(x) : x EX}, 

ii) supp(~) = { x EX: /1-(x) > 0 }. 

Symbols h(~) and supp(~) are called the height and the support 

of the fuzzy set ~ respecti vely. 

If ~ c LX then we extend i) and ii) to ~ as follows: 

i'l h(~)=inf{h(~):/1-E~}, 

ii I) supp(~) = n {supp(~): ~ E ~ }. 

Note that supp(~) = H~ . 
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We, now, introduce an idea which is going to become very 

important later in this work. 

Definition 1.1.9. 

A subset B, of a partially ordered set is said to be upper weU ordered 

if for all non empty subsets C ( B, sup C E C. 

Lower weU orderedness is defined dually. 

The following proposition is going to be used in Chapter 3, when dealing with 

fuzzy cardinals. 

Proposition 1.1.10 

Let X·and Y be partially ordered sets and f: X .... Y be a decreasing function. 

( f : X .... Y is decreasing if for all a,b E X with a ~ b, f( a) ~ f(b) . ) 

Then the image f(B) of a lower well ordered set B ( X is upper well ordered. 

Proof 

Let C ( f(B), C f 0 and D = B n f-l(C). Now, f(D) = f( B n f-1(C) ) = 

f(B) n C = C. Since B is lower well ordered and DeB, x = inf D ED. 

Now it follows from the fact that f(D) = C that f(x) E C. So, since f(x) E C = f(D), 

x = inf D E D and f is decreasing, it follows that f(x) = sup f(D). Thus sup C E C. 

In particular we are interested in upper well ordered subsets of the unit interval. 

Proposition 1.1.11. [27] 

A set B c [0,1] is upper well ordered if and only if B does not contain 

any increasing sequence. 
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The following result is an exercise 1eB in [45] . 

Proposition 1.1.12. 

All upper well ordered subsets of [0,1] are countable. 

Proof 

Suppose B C [0,1] is an uncountable upper well ordered set . 

Given a E B, let p(a) = sup{ C E B: c < a}. 

Since B is upper well ordered, p( a) < a. 

Clearly if a f- b, then ( p(a), a) n ( p(b) , b ) = 0. 

Indeed, if a < b, then a ~ p(b). 

We thus have an uncountable family of pairwise disjoint 

open intervals of [0,1]. This is impossible since [0,1] is second countable. 

Clearly we can construct B C [0,1] upper well ordered with an infinite number of 

decreasing limit points. For example consider: 

1 1 
B = { n + m : n, m E {2,3,4, ... }}. 
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1.2. FUZZY TOPOLOGICAL SPACE 

Definition 1.2.1. ( C.L.Chang [4] , J. A. Goguen [12] ) 

1 c LX is a L-fuzzy topology on X iff 1 satisfies the following: 

i) lX' ¢ E 1 . 

ii) HC is arbitrary sub collection from 1 then V C E 1 . 

iii) HC is finite sub collection from 1 then II C E 1. 

We call the triple (X , 1 , L) a L-fuzzy topological space. 

Note that Lowen'S [24] definition of a fuzzy topology requires in addition to above, 

all the constant fuzzy sets to be open. Lowen [24] works only with case where L = 1. 

Definition 1.2.2. ( C.L.Chang [4] ) 
. X 

Let (X ,1 , L) be a L-fuzzy topological space and vEL then define 

i) The closure cl(v) = II {aE l' : a~ v} where l' = { a : a' E 1} 

ii) The interior int(v) = V { wE 1 : w ~ v} 

It can be shown that [int(v)]' = cl(v') and [cl(v)l' = int(v') see Pu-Liu.[36] . 

In [3] Chadwick has given a characterisation of compactness in terms of open 

coverings for the case where L = [0,1]. The definition below corresponds to 

Chadwick's definition in case L = [0,1]. However, for our needs we extend that 

definition to non-[O,l] case. 
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Definition 1.2.3. ( c.f. Chadwick [3] ) 

Given (X , r , L) and J.L E LX then J.L is f-compact if and only if 

V 0< ELand C c r such that J.L' V ( V C ) ~ 0< we have 

==l V f3 E L, f3 < 0< 3 finite 7J c C such that J.L' V ( V 7J ) ~ f3 . 

==l 3 finite 7J c C such that J.L' V ( V 7J ) ~ a 
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2. ORDER-HOMOMORPHISMS 

In [49] Zadeh defines an image and a preimage of a fuzzy set under a crisp 

function as follows: 

Definition 2.1 ( Zadeh [49] ) 

If f: X ... Y and f./, E LX then f(f./,)(y) = sup { f./,(x) : x E f-I(y) } 

If II ELY then f-I(II)(x) = lI(f(x)) . 

We can find a rather complete investigation of the properties of these functions 

in [48]. In the literature there are various other proposals for functions between 

fuzzy sets. Some of them can be found in [35], [34] and [15]. First of all we are going 

to study functions between fuzzy sets as defined by Erceg [10]. This study is not 

going to be conducted for the case where L is totally ordered but for a more general 

lattice L. We are going to use a more general formulation of Erceg's functions, 

namely order-homomorphisms. We shall use the later name. Part of the results 

presented here can be found in the author's [28]. In essence a general result is 

established which leads to an extension and simplification of an earlier theorem by 

G.-J. Wang [41]. This result is required to draw conclusions about various 

other possible definitions of functions between fuzzy sets. 

Let L = (L, A, v, ') be a completely distributive complete lattice with an 

order reversing involution' , containing at least two elements. The bottom and the 

top elements of a lattice will be denoted by 0 and 1 respectively. The symbol II will 

be used to denote non-comparability between elements in any lattice. 

In what follows we assume that all lattices denoted by L, L1 and L2 are of the type 

defined above and where a sub-lattice is one which uses the same suprema and 

infima as in the lattice itself. 
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Definition 2.2 

A mapping F : 11 .... 12 is called an order-homomorphism [10,41,21J if F satisfies 

the following: 

(H1) F(O) = 0, 

(H2) F( V ILj ) = V F( ILj ), 

(H3) F-1( fJ/ ) = F-1( /1 ) I , 

where F-1 : 12 .... 11 is defined by 

(H4) F-1( /1) = V { A E 11 : F(A) ~ /1} . 

Remark 2.3 [41,21J Suppose F : 11 .... 12 is an order-homomorphism, 

/1 E 11 and v, Vi E 12 then, 

(Rl) 

(R2) 

(R3) 

(R4) 

(R5) 

F-1(F(/1)) ~ /1, 

F(F-1(v)) ~ v, 

F-l( V v. ) = V F-l(v.), 
1 1 

F-l( 1\ Vi ) = 1\ F-l(V), 

F-l(l) = 1, 

(R6) F-l(O) = O. 

We are interested in order-homomorphisms F : 11 .... 12 

where 11 = 1 X and 12 = 1 Y, in other words Erceg functions [10J. 

1emma 2.4 

If x E X, VI f. 0 and v2 f. 0 are two fuzzy sets in 1 Y such that 

supp(v1) n supp(v2) = 0 and F-l(V1)(x), F-l(V2)(x) > 0, 

then F-l(V1)(X) II F-1(V2)(x). 
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Proof. 

Let al = F-I(vI)(x) and a2 = F-I(v2)(x). Clearly a\, a2 > o. 
Suppose without loss of generality that al $ a2 then by (H2) we have, 

(*) F( a1lx) $ F( a2Ix). 

Clearly a1lx $ F-I(vl ) and a2lx $ F-I(V2). Thus by (H2) 

(**) F( a1lx) $ F(F-1( VI)) and F( a2lx) $ F(F-1( v2))· 

Using (R2) we obtain from (**), 

F( a1lx) $ VI and F( a2lx) $ v2· 

Since F-I(O) = 0, we have, 

o < F( a1lx) $ VI and 0 < F( a2lx) $ v2· 

Since supp(v1) n supp(v2) = 0 we must have F( allJ II F( a2Ix). 

This contradicts (*). 

Lemma 2.5 

For all y E supp(F(lx)) we have F -1(ly)(x) > o. 

Proof. 

Suppose y E supp(F(lx)) and F-1(ly)(x) = O. Clearly ly V ly' = 1. Thus we have 

1= F-I( I V I ' )(x) = F-1(1 )(x) V F-1(1 ')(x) = F-I(l ')(x). 
Y y Y Y Y 

Since Ix $ F-1(ly') it follows that F(lx) $ F(F-1(ly')) $ ly'. 

This contradicts the fact that y E supp(F(lx))· 

The following proposition gives us an insight into the structure of L from the 

behaviour of the order-homomorphism F. 
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Proposition 2.6 

If A = supp(F(lx)) then L contains a sub-lattice Ll isomorphic to the lattice 2A, 

such that the top and the bottom elements of Ll are the top and the bottom 

elements of L. ( We consider 2A as a lattice ordered by set inclusion and set 

complement as an order reversing involution. ) 

Proof. 

Let L1 = { F-l(I
B

)(x) : B c A } c L. We construct an isomorphism G : 2A .... L1 by 

letting G(B) = F-l(I
B

)(x). By (R3) and (R4), G preserves V and A. Since 10 = 0 

and F(lx) ~ lA we have that G(0) = F-l(O)(x) = 0 and G(A) = F-1(IA)(x) = 1. 

To see that G preserves' we use the fact that G(A) = F-l(IA)(x) = 1. Thus, 

G(B') = F-1( 1 A \B )(x) 

= F-1( 1 A A l Y\B )(x) 

= F-1( 1 A )(x) A F-l( 1~ )(x) 

= 1 A F-1
( IB' )(x) 

= F-1
( IB )(x)' 

= G(B)' . 

In order to prove that Gis 1-1 it is sufficient to show that for all Bl' B2 c A, 

with Bl f- B2, G(Bl) f- G(B2)· Suppose that B1, B2 c A, 

with Bl f- B2· Since Bl f- B2 then either Bl \B2 f- 0 or B2 \B1 f- 0. 

Assume that Bl \B2 f- 0, B2 \Bl f- 0 and Bl n B2 f- 0. Since Bl \B2 and B2 are 

non-empty subsets of A, for each y E Bl \B2' F-1(ly)(x) > 0 by Lemma 2.5. 

As F-1 is monotone, we have F-1(ly)(x) < F-1(lB1\B)(x) and thus 

F-1(lB1\B)(x) > O. Likewise F-1(lB)(x) > O. Since Bl \B2 and B2 are disjoint 

it follows by Lemma 2.4 that G(BI \B2) and G(B2) are non-<:amparable. 

Similarly we obtain that G(B2 \B1) and G(Bl) are non-<:omparable. 

If G(Bl) ~ G(B2) then since Bl \B2 C B1, we have 

G(BI \B2) ~ G(Bl) ~ G(B2)· This contradicts the fact that G(BI \B2) is 
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non--{;omparable with G(B2). Similarly, assuming that G(B2) S G(Bl) leads to 

a contradiction. Thus G(Bl) a.nd G(B2) are non--{;omparable. In particular they are 

not equal. If Bl C B2, Bl f. B2 then Bl a.nd B2 \Bl are disjoint then as above by 

Lemma 2.4 and Lemma 2.5, G(B1) and G(B2 \B1) are non--{;omparable. 

Also G(B2) = G( Bl U (B2 \B1) ) = G(B1) V G(B2 \B1)· So G(Bl) f. G(B2). 

This proves that Gis 1-1, a.nd is by definition onto. 

Thus G is the required isomorphism. 

In [41] Le=a 2.2 Wa.ng proves that if a lattice L is regular then 

order-homomorphisms take fuzzy points to fuzzy points. He calls, a lattice regular 

if a.nd only if infimum of two non-zero elements is non-zero. With the use of the 

above proposition we obtain the following generalisation of his Le=a 2.2. 

This. generalisation is directly shown in Proposition 2.12. 

Let / A / denote the cardinali ty of set A. 

Theorem 2.7 

Suppose that L does not contain any sub-lattice Ll isomorphic to the lattice 2A, 

such that the top and the bottom elements of L1 are the top and the bottom 

elements of L then, / supp(F(lx)) / < / A /. 

Proof. 

Suppose that / supp(F(I)) / ~ / A / for some A c Y. Let B = supp(F(lx))' 

By Proposition 2.6 there exists a sub-lattice Ll c L isomorphic to 2B such that the 

top and the bottom elements of Ll are also the top and the bottom elements of L. 

Now we shall construct a sub-lattice i of 2B isomorphic to 2A such that the top 

and the bottom elements of i are equal to the top and the bottom elements of 2B 
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Since I A I < I B I there exists an injection f : A .... B. Choose any x E A and 

let C = B \ f(A). Define 

{ 

f(X) U C 
F(X) = 

f(X) otherwi s e 

if x EX 

Let L = F(2A). Now we shall show that F : 2A .... L is an isomorphism. 

A 
Let {Aa} aEJ C 2 ,J 1= { a E J : x E Aa} and J 2 = J\h 

(A) If x E n Aa then since f is 1-1 and x E Aa for all a E J we have, 

F( n Aa) = f( n Aa) U C = ( n f( Aa) ) U C = n ( f( Aa) U C ) = n F( Aa)' 

If x ~ n A a then F( n A a ) = f( n A a ) = n f( A a ) = [ n { f( A a ) : a E J d 1 n 

[n {f( Aa) : a EJd 1 = [n {f( Aa) U c: a EJd 1 n [n {f( Aa) : a E Jd = 

[n {F( Aa) : a E Jd 1 n [n {F( Aa) : a E Jd 1 = n F( Aa) since J 2 * 0. 

(B) Suppose that x E U Aa then F( U Aa) = f( U Aa) U C = U f( Aa) U C. 

Clearly J I is non empty. Thus U F( Aa) = [ U { F( Aa) : a E J I} 1 U 

[ U { F( A a ) : a E J 2 } 1 = [ U { f( A a ) U C : a E J I } 1 U [ U { f( A a ) : a E J 2 } 1 = 

U f( Aa) U C. Ifx ~ U Aa then since x ~ Aafor all aEJ we have 

F( U Aa) = f( U Aa) = U f( Aa) = U F( Aa)' 

(C) If x E X then x ¢ A \X thus since f is 1-1 we have F(A \X) = f(A \X) = f(A) \ f(X) . 

On the other hand B\F(X) = B \ ( f(X) U C ). By noting that f(A) = B \ C we 

obtain F(A \X) = B\F(X). In case x ~ X the proof is similar. Also F(A) = f(A) U C 

= Band F(0) = f(0) = 0. 

(D) The F is onto by definition of L Suppose F( Xl) = F( X2 ). If x t Xl then 

F( Xl ) = f( Xl ). Clearly f( Xl ) n C = 0 so F( X2 ) n C = 0. This means that 

x t X2. Thus from definition f( Xl ) = f( X2 ). Since f is 1-1, Xl = X2. 

If x E Xl then F( Xl ) = f( Xl ) U C. By argument as previously we have x E X2 and 

F( X2 ) = f( X2 ) U C. Since f( XI\{x} ) n C = 0 and f( X2\{x} ) n C = 0 we must 

have f( XI\{x} ) = f( X2\{X} ). Sincefis 1-1, XI\{x} = X2\{X}. 

But x E Xl and x E X2 implies that Xl = X2. 
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So finally F : 2A .... L is an isomorphism. This immediateily implies that there exists 

a sublattice L1 of L isomorphic to 2A such that the top and the bottom elements of 

L1 are the top and the bottom elements of L. This is a contradiction to our original 

assumption. 

Corollary 2.8 

If L does not contain any sub-lattice L1 isomorphic to the power set of a two 

element set such that the top and the bottom elements of L1 are the top and 

the bottom elements of L, then the order-homomorphism F takes fuzzy points with 

the same support to fuzzy points with the same support. 

Proof. 

By Theorem 2.7 I supp(F(IJ) I < 2. Thus I supp(F(lx)) I ~ 1. Since F-l(O)=O 

we must have F(l ) * 0, so I supp(F(1 )) I = 1. In another words F(l ) is a fuzzy x . x x 

point. Furthermore, if p ~ Ix then F(p) ~ F(lx) ' Thus F(p) is a fuzzy 

point with the same support as F(IJ. 

Example 2.9 

Let L = 2{a,b}. Consider an order-homomorphism F : L{x} .... L{y,z} defined by 

F({a,b}IJ = {ally V {b}lz' F({a}lx) = {ally' F({b}lx) = {b}lz and F(O) = O. 

We treat L = 2{ a,b} as a power set , boolean, lattice. 

It is easy but tedious to check that the function F is an order-homomorphism 

which does not takes a fuzzy point Ix to a fuzzy point. 

Theorem 2.10 

An order - homomorphism F : LX .... L Y takes fuzzy points to fuzzy points if and only 

ifthere exist functions f : X .... Y and K. : X xL .... L such that K.{ x,' ) is an order

homomorphism and for all J1.E LX we have F(J1.)(Y) = sup{ K.{x,p.{x)) : x E f-l(y)}. 
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Proof. 

Suppose F : LX .... L Y takes fuzzy points to fuzzy points. For each x E X and 

a E L\ {OJ, F( al ) is a fuzzy point. Consequently we can write F( al ) = fJl x x y 

for some y E Y and some fJ E L\{O}. If, E L\{O} then F((a V ,)lx) = 

F( al V,l ) = F( al ) V F(,l ). Since F( (a V ,)1 ) is a fuzzy point we must x x x x x 

have supp(F( alx)) = supp(F( ,Ix)). Thus supp(F( alxl) is only dependent on x. 

This shows that there exist functions K. : X xL .... Land f : X .... Y such that 

F( alxl = K.(x,a)lf(x)' where we allow a in alx to be zero, i.e. Olx = O. Moreover, 

F(Jl.)(Y) = F( V JtCx)l ley) 
xEX x 

= V F(JtCx)l ley) 
xEX x 

= (x~x K.(x,Jt(x))lf(x) ley) 

= V { K.(x,Jl.(x)) : f(x) = y }. 

To see why K.(x,. ) is an order-homomorphism consider the following: 

(HI) Since F(O) = 0 we must have K.(x,O) = 0 for all x E X. 

Let x E X and {a)iEJ C L then K.( x, 'VJ ai ) = F( 'VJ ailx )(f(x)) = 
IE IE 

(H2) 

= V F( a.l )(f(x)) = V K.(x ,a.). 
'J IX 'J I IE IE 

(H3) Let x E X, fJ ELand ~ a) = K.(x,a). Then, 

'Iji-V3') = V { a : 'Iji( a) S fJ' } 

= V { a: K.(x,a) S {3' } 

since K(x,a) S (3' iff K(X,a) If(x) S ({3'lf(x))' then 

= V { a : K(x,a)lf(x) S ({3lf(x))' } 

= V { a: F(alx) S (fJlf(x))' } 

= [ V { alx : F( alxl S (f31f(x))' } lex) 

= F-I( (f31f(x))' lex) 
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= [F-l( ,81f(x) )(x)] ' 

= [ V { a : 1{1( a) ~ fJ } ], 

= 7/!-l(fJ) ' . 

The converse, follows similarly. 

Compare this with f(jJ.)(y) = sup{ J1.(x) : x E f-l(y) } which is the way a crisp 

function f extends to a fuzzy set jJ., see Definition 2.1. 

Example 2.11 

Consider a lattice 1 = { 0, a, fJ, 1 }, where a ' = a, fJ ' = fJ and a and fJ are 

non-comparable. The lattice 1 does not contain any sub-lattice isomorphic to the 

boolean lattice 2{ a,b}. So, by Corollary 2.8 any order homomorphism F : 1 X .... 1 Y 

will preserve fuzzy points. This lattice 1 is clearly not regular. 

Proposition 2.12 

Corollary 2.8 is an extension of Wang's 1e=a 2.2. 

Proof. 

Suppose 11 is a sub-lattice of a regular lattice 1 which is isomorphic to 

the boolean lattice 2{a,b} such that 11 contains the top and the bottom from 1 . 

1et a E 11 \{O,l} then a * 0 and a' A a = O. Consequently 1 is not regular. 

This means that if 1 is regular then the conditions of Corollary 2.8 are satisfied. 

Note that now we revert back to our assumption that 1 is totally ordered. 
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3. FUZZY CARDINALS 

3.1. INTRODUCTION 

For our following discussion let us establish some notation. 

Let K be the "set" of all cardinals . Of course the set of all cardinals 

is an ill defined concept. We can think of K as the set of all cardinals smaller 

than some cardinal k ,where k is chosen sufficiently large, so that all 
tD tD 

the operations that are considered on cardinals are internal to K . 

The usage of the "set" K, will save on unnecessary repetitions. Let I AI denote 

the cardinality of a crisp set A. Clearly K = ( K, +, x, $ ). 

In what follows we are going to deal with collections of fuzzy sets which do not 

necessarily have the same domains . Consequently, we require the follOwing 

definitions. If V'i,:Xr'L}iEJ is a collection offuzzy sets, then their union 

V I1J : U Xi'" L and intersection A I1J : U Xi'" L are given by, 

( V I1J )(x) = sup { ILr(x) : i E J } 

and 

( A I1J )(x) = inf { ILr(x) : i E J } 

respectively, where ILr : U Xi'" L are given by, 

ILf(X) = 1 1 . 
{ 

Jl;(x) if x E X. 

1 0 otherwi s e 

Under this setup two fuzzy sets IL : X ... L and v : y ... L are disjoint iff IL A v = 0. 

In the future, unless otherwise stated, the fuzzy sets will not necessarily have the 

same domains. 
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For example, consider two fuzzy sets Ji.: [0,2] .... [0,1] and v: [1,3] .... [0,1]' defined 

by p,{x) == ~ x and v(x) == ~ ( x - 1 ). Then, Ji. V v: [0,3] .... [0 ,1] and 

Ji. A v : [0,3] .... [0,1] are defined by, 

and 

{ 
(1/2)x if x E [0,2] 

(Ji. V v)(x) == (1/2)(x-1) if x E (2,3 

(Ji. A v)(x) == { (1/2)~X-1) if x E [1,2] 
otherwise . 

In the literature various definitions of cardinality offuzzy sets have been given. 

A review of some of them can be found in [8] . Here we consider the definitions 

introduced by Gottwald [14], Blanchard [2] and Wygralak [47]. Each one of these 

definitions has associated with it some equipotence relation. The most obvious 

definition of equipotence can be given as follows: 

(A) Two fuzzy sets '" and v are equipotent if and only if there exists 

an bijection f : supp(Ji.) -+ supp(v) such that f("'1 supp(Ji.)) == vI supp(v)· 

This definition of equipotence results in Gottwald's cardinality of fuzzy sets. 

Gottwald's cardinality of a fuzzy set Ji., denoted cardG(Ji.), is a function from L to 

cardinals (i .e. K), given by cardG(Ji.)( a) == I Ji.-I( a) I . Clearly cardG(Ji.) 

is not a fuzzy set with membership grades belonging to L. However, it is possible 

to make cardinality based on the equipotence relation (A) such that it results in 

a fuzzy set with membership grades belonging to L. For instance let, 

given by, 

cardG, (Ji.) : K x L -+ L 

cardG, (Ji.)((I>,a)) == { ~ if I Ji.-I( a) I == I> 

otherwise 
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However, the way in which this fuzzy set is constructed is very unnatural. 

( What we mean by unnatural is going to be explained shortly. ) 

At this stage we shall investigate some basic properties of Gottwald's 

cardinality because it is used in later sections . Firstly, for any g E KL there exists 

a fuzzy set p. such that cardG(p.) = g. To see this we can construct the required 

fuzzy set p. as follows. Let {Aa} aEL\ {a} be a collection of pairwise disjoint sets such 

that I Aa I = g( a). Define p.: U Aa .... L by letting p.(a) = a if and only if a E Aa. 

Clearly cardG(p.) = g. We now note that, two fuzzy sets p. and II are equipotent (A) 

if and only if for all a E L\ {O}, I p.-l( a)1 = 11I-1( a)l. This proves that cardG is well 

defined. We call any element from KL Gottwald's cardinal 

Now suppose that CardG(p.) = CardG(II). This means that for all a E L\ {O}, 

I p.-l( a) I = 11I-1( a) I . So, there exist bijections fa: p.-l( a) .... 1I-1( a) for all a E L\ {O}. 

Define f : supp(p.) .... supp( II) by letting f(x) = fp.(x)(x). Clearly f is a bijection 

and f(P.1 supp(p.)) = III SUpp(II)' i.e. p. and II are equipotent in sense (A). 

From a collection offuzzy sets {1lj:Xi .... L} we can construct a collection {p.rXj'L} of 

pairwise disjoint fuzzy sets such that P.i and Ilj are equipotent by letting 

X~ = {i} x X. and W(i,x) = p..(x) . 
1 1 1 1 

Definition 3.1.1 

Let {g)iE J be a collection of Gottwald cardinals then the sum !I) and the product ® 

are defined as follows: 

(i) Let {1Lj}iEJ be a collection of pairwise disjoint fuzzy sets such that 

cardG(tt;) = g. then [!I) g. ](a) = cardG( V tt; )(a). 
1 1 . 1 . 1 

1 1 

(ii) Let {Ilj liE J be a collection of not necessarily disjoint fuzzy sets such that 

cardG(p.i) = gi then [ ® gi ]( a) = cardG( r.r Ilj )( a). 
1 1 
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We now show that the operations lB and s are well defined:-

( Subject to the conventions established in the first paragraph. ) 

(i) Let {v)iEJ be another collection of pairwise disjoint fuzzy sets such that 

carda(vi) = carda (l1j) and let { fi : supp(!"J·' supp(vi) }iEJ be a collection of 

bijections such that fi (11j1 supp(!".)) = vii supp(v.)· Then, 
1 1 

[ lB g. J( a) = carda ( V JL; )( a) 
1 . 1 

1 

= I (V JL; tl(a) I . 1 
1 

= I {x E U supp(JL;) : ( V JL; )(x) = a} I 
· 1. 1 
1 1 

since I1j are pairwise disjoint then 

= I U { x E supp(JL;) : JL;(x) = a} I 
.11 
1 

since f. are bijections and v.(f.(x)) = !".(x) then 
1 1 1 1 

= I ~ { f/x) : x E sUPP(I1j) and vPi(x)) = a} I 
1 

= I U {yE supp(v.): v.(y) = a} I 
.11 
1 

since vi are pairwise disjoint then 

= I {y E U supp(v.) : ( V v. )(y) = a} I 
· 1· 1 
1 1 

= I (V v. )-I( a) I 
. 1 
1 

= carda ( V v· )( a). 
• 1 1 

(ii) Let {vi}iEJ be another collection of fuzzy sets such that cardaCvi) = 

carda(!"i) and let { fi : supp(I1j) .... supp(vi) hEJ be a collection of bijections 

such that fi(11j1 supp(!")) = vii supp(v.)· Then, 
1 
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[~ ~ ](a) = 1 (I:r ~ )"l(a) 1 
1 1 

= 1 {(xi): xi E supp(~) and ~ ~(xi) = a} 1 
1 

since fi are bijections and ~(x) = vi(fi(x)) then 

= 1 { (fi(xi)) : xi E supp(~) and" vPi(xi)) = a} 1 

1 

= 1 { (y.) : y. E supp(v.) and II v.(y.) = a} 1 
1 1 1 . 1 1 

1 

= cardG( II v. )( a). 
. 1 
1 

Proposition 3.1.2 

If gl and g2 are two Gottwald cardinals then, 

and 

Proof. 

(i) Let /1 and v are two disjoint fuzzy sets such that cardG(/1) = gl 

and cardG(v) = g2. Then, 

[ gl Ell g2]( a) = cardG( /1 V v)( a) 

=1 (/1 Vv )-l(a)1 

since /1 and v are disjoint then 

= 1 /1-1( a) U v-1( a) 1 

= 1 /1-1(a) 1 + 1 v-1(a) 1 

= cardG(/1)(a) + carddv)(a) 

= gl(a) + g2(a) 

This argument is also valid for arbitrary collections of cardinals. 
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(ii) Let,.. and v be two fuzzy sets such that cardG(,..) = gl 

and cardG(v) = g2. Then, 

[gl41 g2]( a) = cardG(,.. x v)( a) 

= I (,.. x vtl(a) I 
= I ,..-I(a) x v-I(a,l] U ,..-I[a,l] x v-I(a) I 

= 1,..-I(a)1 x I v-l(a,l]1 + 1,..-I[a,lJi x I v-l(a)1 

= 1,..-I(a)1 x ( h I v-I(-y) I ) + ( h I,..-I(-Y)I ) x I v-l(a)1 
,>a 1? a 

= ( gl( a) x (h g2( ,) ) ) + ( ( h gl( ,) ) x g2( a) ). 
,>a ,~a 

If ,.. and v are two not necessarily disjoint fuzzy sets then we have: 

[ cardG(,..) e cardG(v) ]( a) = I ,..-1 ( a) I + I v-It a) I. To see this we proceed as 

follows: Let gl = cardG(,..) and g2 = cardG(v). Then, 

[ cardG(/k) e cardG(v) ]( a) = [gl e g2 ] 

= gl(a) + g2(a) by Proposition 3.1.2 (i) 

= I ,..-I(a) I + I v-I(a) I· 

Now we shall prove the additivity property for Gottwald's cardinality. 

Theorem 3.1.3 

If ,.., vEL X are two fuzzy sets then, 

cardG(/k) e cardG(v) = cardG(,..A v) e cardG(,.. V v). 

Proof. 

We first note that (,..A v)-I(a) = (,..-I(a) n v-I(a,l] ) U (,..-I[a,l] n v-I(a)) 

and (,.. V vtl( a) = ( ,..-I( a) n v-I[O,a] ) U ( ,..-1[0, a) n v-It a) ). 
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Since (J.I A vtl( a) and (J.I V vtl( a) are written as unions of disjoint sets, 

(J.I-l(a) n v-l(a,l]) n (J.I-l(a) n v-I[O,a] ) = 0, (J.I-l[a,l] n v-l(a)) n 

( J.I-l[O,a) n v-l( a) ) = 0, ( J.I-l( a) n v-l( a,l] ) U ( J.I-l( a) n v-I[O ,a] ) = J.I-l( a) and 

(J.I-l[a,l] n v-l(a) ) U (J.I-l[O,a) n v-l(a) ) = v-l(a) we have, 

[ cardG(J.I A v) e cardG(J.I V v) ]( a) 

I (J.lA vtl(a) I + I (J.lV vtl(a) I By Proposition 3.1.2 (i) 

I (J.I-l(a) n v-l(a,l] ) U (J.I-l[a,l] n v-l(a)) I 

+ I (J.I-l( a) n vl[O,a] ) U ( J.I-l[O,a) n v-l( a) ) I 

I J.I-I(a)n v-l(a,l]I + I J.I-l[a,l]n v-l(a) I 

+ I J.I-I(a) n v-I[O,a] I + I J.I-l[O,a) n v-l(a) I 

_ ( I J.I-I( a) n v-l( a,l] I + I J.I-I( a) n v-I[O,a] I ) 

+ ( I J.I-l[a,l] n v-l(a) I + I J.I[O,a) n v-l(a) I ) 

_ I J.I-l( a) I + I v-l( a) I 

- [cardG(J.I) e cardG( v) ]( a). 

In essence Gottwald's cardinality is equivalent to asking the following question 

about a fuzzy set: If the required level of fuzziness is a, what is the cardinality? 

This sort of reasoning is not used in fuzzy set theory. In fuzzy set theory 

we ask questions in the following way: To what degree is the cardinality of a given 

fuzzy set equal to some cardinal K.? This way of reasoning was followed by 

Wygralak and Blanchard in their definitions. Now we shall consider these 

definitions from a different perspective than those given by Blanchard 

and Wygralak. 
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Consider a set X and its power set 2X The cardinality function assigns to each 

element from 2X an element from K. In another words, 1·1 : 2X ... K. More 

generally let us consider some function F : 2X ... Z where Z is a set. 

The question now arises as to how can one extend in a natural way the function 

F on 2X, to a function on LX 

To answer this question we need the following concepts introduced by Diskin [7J 

and used extensively by Sostak [39J 

(a) generalised inclusion [. c . J : LX x LX ... L where, 

[p. c 1IJ = inf { J!.' (x) V 1I(x) : X EX} 

(b) generalised equality [. =. J : LXx LX ... L where, 

[J!. = 1IJ = [J!. C 1IJ A [11 C J!.J 

Note that [J!. C 1IJ and [J!. = 1IJ can be regarded as the degree to which J!. is a subset 

of 11 and the degree to which J!. equals 11 respectively. 

The motivation for the above definitions comes from the following facts: A C B if 

and only if B u A' = X j A = B if and only if A c B and B c A where A, B C X. 

Each set A E 2X can be identified with the fuzzy set l{A} : 2X ... {D,l}. 

X 
This observation motivates us to introduce t : LX ... L(2 ) given by 

t(J!.)(A) = [lA = J!.J. We shall show that t is an injection on fuzzy points:

Let J!. = alx ' 11 = {3ly' xj.y, and A = {x}. Note that in general [ 1 A = J!. J = 
inf J!.(x) A inf J!.'(X). SO in our case we have [lA = J!.J = [lA = 1IJ is equivalent 
xEA xf.A 

to JJ.{x) A inf J!.' (y) = a A 1 = a = D = D A {3' = lI{x) A inf 11' (z). That means that 
YfX zfX 

we must have x = y and also a = {3. 

In the case J!. = lB' we have t(J!.)(A) = t(lB)(A) = [lA = lBJ· 

It is easy to check that [IA = BJ = {6 ~!h~r~i~e' Therefore t(lB) = l{B}' 

Recall that if f: X ... Y and J!. E LX then f(J!.)(Y) = sup{ J!.(x) : f(x) = y } ( d. 2.1 ) 
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Since t (JL) is a fuzzy set on 2X and F : 2X .... Z the symbol F(' (JL))(z) is defined, 

and we are in a position to extend F : 2X .... Z to F : LX .... L Z, by 

F(JL)(z) = F(+(J.!))(z) = sup{ + (J.!)(A) : F(A) = z} = sup{ [IA = J.!] : F(A) = z}. 

Now F( 1 A )( z) = sup{ [1 A = IB] : F(B) = z }. Since [1 A = I B] is non-zero only 

if A = B and then equals 1, we have that, F( 1 A) = I F (A) which can be identified 

with F(A) ( c.f. page 3 ). This shows that F is indeed an extension of F . 

In the case of the crisp cardinality function I . I (Le. F = I . I ), we obtain, 

which is Wygralak's definition of cardinality for fuzzy sets. ( Wygralak considers the 

case where L = [0,1] only. ). In fact, Wygralak has instead of [ 1 A = J.!] 

the following : 

[ lA = J.!l := inf {I-I J.!(x) -IA(x) I } 
XEX 

= (~~1 J.!(x) ] II (~~\A (1-J.!(x)) ] 

= [ lAC J.!] II [ lX\ A C J.!' ] 

=[IA C J.!]II [J.!C l A ] 

= [ 1 A = J.! ]. 

X 
It is useful to consider a different injection q : LX .... L(2 ) given by 

~ (J.!)(A) = [IA C J.!]. Note that [IA C J.!] = inf { J.!(a) : a E A}. 

For convenience we introduce J.f('» : 2X .... L given by J.f(A» = [IA C J.!]' 

thus ~(J.!)(A) = J.f(A». To show that ~ is an injection it is sufficient to note 

that t(J.!)({a}) = J.!(a) . The symbol J.f(A» represents the degree to which A is 

a subset of JL. In the crisp case ~ assigns to each set A the collection 
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of all its subsets. For our later investigations the injection I is more useful 

than t since it gives simpler results without the loss of insight. 

X 
Let [c L(2 ) be given by £ = {n : 3 p,E LX witH(p,) = ~ }. 

Define operations A and V on £ as follows: 

( ~l A ~2 )(A) = 111(A) A ~2(A) 

(~l V ~2 )(A) = inf{ ~l({a}) V 1J2({a}) : aE A} 

The map t preserves V and A, so that £ is closed under V, A and is a lattice. 

Further investigation of £ could be embarked upon, however it is not necessary 

for what follows. 

Recall that Blanchard's definition of cardinality cardB : LX -+ L K is given by, 

cardB(J.L)(It) = sup{ a E L: I J.L-l([a,l]) I ~ k} = sup{ aE L: I E~ I ~ It}, [2J. 

Proposition 3.1.4 

Under the injection t, the crisp cardinality function I· I results in Blanchards 

cardinality. In another words cardB(J.L) = 1·1 (t (J.L)). 

Proof. 

Fix It. If a E L such that I E ~ I ~ It, then there exists ACE ~ such that J.t{ A» ~ a 

and I AI = It. So sup{ J.t{A» : I AI = It} ~ sup{ a E L : I E~ I ~ It }. 

Let A c X such that I AI = It and a = J.t{A» then I E~ I ~ It. 

Thus sup{ J.t{A» : I AI = It} ~ sup{ a E L : I E~ I ~ It}. The result follows . 

Now, we note that if we use t injection then we obtain Wygralak's cardinality, 

and if we use t injection we obtain Blanchard's cardinality. 
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We shall use the definition of cardinals given by Blanchard to develop our own 

cardinals. Consequently the following sections deal with her cardinals. 

The development of Blanchard's cardinals was also carried out for its on sake. 
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3.2 BLANCHARD'S FUZZY CARDINALS - BASIC RESULTS 

Blanchard defined her cardinals for a finite case, but they make sense in the 

infinite case as well. 

Recall the definitions of E(. ) and H(. ) from 1.1.4. 

Definition 3.2.1 ( Blanchard [2] ) 

Let /l- E LX then cardB(/l-) : K ... L , is defined by : 

cardB(/l-)(I» = sup { aE L: I E~ I ~ I>} = sup { aE L: I /l-.l([a,l])1 ~ I>}. 

This means that cardB(/l-) ELK, i.e cardB(/l-) is a fuzzy set on K . 

Incase /l-is a crisp set, it is easy to see that cardB(/l-) = l{O, ... ,I>} where 

o 
I> = I supp(/l-) I , thus I supp(/l-) I = sup HcardB(/l-) . 

Proposition 3.2.2 

cardB(/l-)(I» = sup { a E L : I H~ I ~ I>} . 

Proof 

Let ao = cardB(/l-)(I» = sup { a E L : I E~ I ~ K.}. 

Clearly for all a > ao, I H~ I ~ I E~ I < I> . 

If ao E 1. then H~O = E~O , I E~O I ~ 1>. Hence ao = sup { a E L : I H~ I ~ I> } . 

If ao ¢ 1. then for all a < ao there exists f3 E L such that a < f3 < ao 

and I E~ I ~ 1>. Clearly I H~ I ~ I E~ I ~ 1>: This proves the result. 

In the crisp theory two sets A and B are equipotent ( or have the same cardinality) 

if and only if there exist a bijection between them. 
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What equipotence relation exists between two fuzzy sets with the same cardB? 

We can define an equipotence relation NB given by p. NB v if and only if 

for all a E L, I H~ I = I H~ I . 

Proposition 3.2.3 

Two fuzzy sets p. and v are NB equipotent if and only if cardB(p.) = cardB(v). 

Proof. 

If p. N v then for all a E L, I H~ I = I H~ I. By Proposition 3.2.2 

cardB(p.) = cardB(v) . Conversely, suppose cardB(p.) = cardB(v) and for some aE L, 

11:1 = I H~ I t I H~ I = Kz· With out loss of generality we can assume that 11:1 < Kz. 

Since I H~ I = Kz and I H~ I = 11:1 < Kz we have cardB(v)(1I:2) ~ a and 

cardB(p.)(Kz) ~ a. Consequently we have cardB(p.)(Kz) = cardB(v)(Kz) = a. 

If a E L_ then clearly I H~ I = I E~ I = I E~ I = I· H~ I , which is a contradiction. 

Otherwise a ¢ L_ If Kz is not a limit cardinal then there exists fJ > a such that 

I E~ I ~ Kz which contradicts the fact that cardB(v)(Kz) = a. 

If Kz is a limit cardinal then we must have sup{ I H~ I : fJ> a} = Kz for otherwise 

we would have I H~ I < Kz . The interval (11:1> Kz) is infinite, so we can pick 

11:3 E (11:1> Kz). We must have cardB(J1.)(1I:3) = cardB(v)(1I:3) and cardB(v)(1I:3) > a, 

since I H~ I = Kz· On the other hand for all fJ > a, I H~ I ~ 11:1 thus 

cardB(J1.)(K3) ~ a, which is a contradiction. Thus I H~ I = I H~ I for all a E L. 

Example 3.2.4 

Let p., v : IR .... [0,1) be defined by : J1. = L and vex) = { 01 -I xl itfhx e.[-l,l) 
IJ{ 0 erWlse 

Since L = ,p we have for all a E [0,1) , H~ = IR and H~ = { ~ a-1,l-a) :i ~ ~ ~0,1) 
and clearly H~ = H~ = ,p . So for all a E [0,1) , I H~ I = I H~ I . 
This is however not true for E(. ), since I E~ I = I IR I t 1 = I {OJ I = I E~ I 
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Proposition 3.2.5 

If c = cardB(JL) is a fuzzy cardinal then, 

(a) c is a non-increasing function on K, 

(b) c( 0) = 1 and there exists It E K such that c( It) = 0, 

(c) Rc is upper-well-ordered, where Rc = c(K)\{O} 

(d) sup c"!([a,1]) E c"!([a,1]), 

(e) c is continuous with respect to the order topologies on L and K, 

i.e. the topologies generated by the open intervals. 

Proof. 

Parts (a), (b) are taken from [2] . 

Since K is lower-well-ordered and c is a non-increasing function on K, 

by Proposition 1.1.10, we must have Rc upper-well-ordered. 

To see (d) let It! = sup c·!([a,1J) E K. If It! is not a limit cardinal then 

It! E c"!([a,1J) trivially. So , suppose that It! is a limit cardinal. 

Clearly for all It < It!, c(lt) ~ a. In case aE L, for all It < It!, I JL"!([a,1J) I ~ It, 

thus I JL"!([a,1J) I ~ It!, which means that c(It!) ~ a, or It! E c"!([a,1J). 

In case a ~ L", we have for all It < It! and f3 < a, I JL"!([f3,1J) I ~ It, 

thus for all f3 < a, I JL"!([f3,l]) I ~ It!, which means that c(It!) ~ a, or It! E c"!([a,l]). 

Finally, we show that c is continuous. Firstly by (d), for all a E L, 

sup c"!([a,lJ) E c"!([a,lJ) and by (a) and (b), c(O) = 1 and c is non-increasing 

thus c"!([a,l]) = [0, sup c"!([a,l])] which is a closed set. 

Secondly since K is lower-well-<lrdered inf C"!([O,a]) E C"!([O,a]). 

Thus C"!([O,a]) = [inf C"!([O,a]),k ] which is closed ( Certainly c·!([O,aJ) is 
CD 

not empty because there exists It E K such that c(lt) = 0 ). 

Consequently c is continuous. 
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Example 3.2.6 

For a non totally ordered lattice it is possible that sup E~ard(lt) ¢ E~ard(lt) 

for It E LX. Consider the following lattice L : 

L = {O,a1,a2, ... ,1} where 0 and 1 are bottom and top respectively with 

a· II a . , a· V a· = 1 and a. A a. = 0 if j f i . 
I J I J I J 

Let X = U { A. : i E IN } where A. are disjoint sets with I A·I = i. 
I I I 

Define It : X .... L by It(x) = a. if x E A .. Clearly I Eai I = i and thus 
. I I It 

cardB(It)(x;) = 1 for all x; E IN and cardB(It)(N o) = 0 since for all a E L\ {O} , 

I E~ I < No . Thus sup E~ardB(It) = sup IN = No ¢ IN . 

It seems that distributivity is necessary for Blanchard's cardinals to be continuous . 

Proposition 3.2.5 motivates the following definition. 

Definition 3.2 .7 

A L-fuzzy cardinal c is a non-increasing continuous function c : K .... L such that 

c(O) = 1 and there exists x;E K such that c(x;) = o. Denote the set of all L-fuzzy 

cardinals on K by K(L) . 

The above definition makes sense if and only if the following proposition is true. 

Proposition 3.2.8 

If c is a L-fuzzy cardinal then there exists a L-fuzzy set It such that cardB(It) = c . 

Proof 

We are going to construct It: X .... L in the following way: Let R = Rc if c(l) = 1 

otherwiseR = Rc\{l} . For all aE Rlet Aa= c-1(a)\{O}. Each Aais nonempty, 

so let s = sup A and i = inf A . Since cardinals are well-ordered, i EA . a a a a a a 
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Since c is continuous, non-increasing and c(O)=l, we have c-1[a,1] = {O, ... ,it} which 

is a closed set in the order topology on K. Thus sa = it and sa E A a . 

If s a is a finite cardinal then let X a be a set with cardinality sa - i a + 1 . 

If s a is an infinite cardinal then let X a be a set with cardinality sa' 

Clearly we can choose all X a disjoint. Let X = U { X a : a E Rc} and 

define /l.: X .... L by Jl.(x) = a for all x E Xa' Now we shall show that cardB(/l.) = c. 

If sa is finite then Rc n [a,l] = { ah a2, ... , an }. 

Suppose further that a = a1 and if i < j then ai < aj. Consequently, 

I /l.-1([a,1]) I = I U { /l.-1( ai) : i = 1, ... , n } I 
= I U {Xai : i = 1, ... , n } I 

= E { I Xail : i = 1, ... , n } 

= ( s a1 - i a1 + 1 ) + ( s a2 - i a2 + 1 ) 

+ ... +(s -i +1) 
an an 

= s a1 + ( s a2 - i a1 + 1 ) + ( s a3 - i a2 + 1 ) 

+ ... +(i -1) . 
an 

=s a 

In the last equality we have used the fact that i = 1 and s = i + l. 
an lli 0i-1 

If sa is infinite then I Xa I = sa' but also we have I X{j I < sa for all (j > a 

so I /l.-1([a,l]) I = I Xa I = sa' Thus for all a E L, I /l.-1([a,1]) I = sa' 

Finally, if itE supp(c)\ {O} then since R is upper-well-ordered and cis 

non-increasing there exists {j E R such that s {j ~ it and for all a E R wi th a > {j, 

sa < it. So sup{ a E R : s a ~ it} = (j and c( it) = (j. Thus, 

cardB(/l.) (it) = sup{ aE L : I /l.-1([a,1]) I ~ it} 

= sup{ aE R: sa~ it} 

=(j 

= c(it). 

Clearly cardB(/l.)(O) = 1 = c(O). This concludes the proof. 
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Note that in proposition 3.2.8 we have constructed a fuzzy set such that R 
/J. 

is upper well ordered. This gives us the following important corollary. 

Corollary 3.2.9 

If c is a fuzzy cardinal then there exists a fuzzy set /J. : X ... L such that 

cardB(/J.) = c and R/J. = Rc is upper well ordered. 

Call a fuzzy set /J. : X ... L a boz iff /J. = edT for some T c X 

Note that cardB(/J.) = al{O, ... ,1 TI} . 

It is easy to see that cardB(v)(I\;) is the" height of the highest box /J. such that 

I supp(/J.)I = I\; that can be put inside v " . Obviously highest means sup. 

We now discuss some further motivation for the cardinality function. 

First define the following two fuzzy sets /J. , v : IN .... I by /J. = ~ and 

v = ~1{1} V ~\ {I} . It is easy to check that cardB(/J.) = cardB(v) = l{O, ... ,!{o}. 

Let f : IN ... IN be any bijection then clearly f(/J.) f v since f(/J.)(n) f ~ for all n E IN . 

( Note that in here we use the Definition 2.1 for an image of a fuzzy set ) 

Also it is easy to see that I H~ I = l\O = I H~ I for all aE(O,I) . So /J.N B v. 

So there is no bijection between these two sets. Is this in contradiction with 

what is required in the fuzzy cardinality theory? We say no. If we have a look 

at these two fuzzy sets clearly ~\ {I} and ~ should have the same cardinality 

and from intuitive point of view addition of a single point of certainty ~ 

should not change the cardinality. Is there maybe some other form of bijection 

between fuzzy sets ( not Zadeh type) if and only if cardB(/J.) = cardB(v) ? 

This would lead us to the following formulation of such a bijection. 

F : LX ... L Y is an bijection if and only if for all /J. E LX and for all a E L , 

I H~ I = I H~(/J.) I .This i=ediately implies that F takes fuzzy points to fuzzy 

points and also preserves the height of fuzzy sets. 
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We shall now investigate the finiteness of fuzzy sets. 

Definition 3.2.10 [2] 

A fuzzy set p. E LX is finite if and only if there does not exist a proper 

injection, i.e. non-bijective injection, f: supp(p.) -+ supp(p.) 

Proposition 3.2.11 [2] 

A fuzzy set p. E LX is finite if and only iffor all a E L\ {o} the set p.-l([a,l]) is finite. 

It is possible for a finite set p. E LX to have an infinite support. 

Consider p.: IN -+ [0,1] given by p.(n) =~. Clearly the support of a finite fuzzy set 

must be countable. 

In [2] Blanchard has formulated the following statement : p. E LX has finite support 

if and only if p. is a compact element of the lattice LX This statement is false, 

in general. It is enough to consider the case where L = [0 ,1]. 

For any set p. E [O,l]X\ {O} we have p. = V C where C = { a1x : 0 < a < p.(x) }. 

Clearly there does not exists a finite subcollection 1 ( C such that V 1 = p.. 

Thus 0 E [O,l]X is the only (vacuously) compact fuzzy set . In fact this statement 

is only true if L is upper-well-ordered. A true fuzzy equivalent version of above 

theorem can be obtained when we use a different notion of compactness. We look 

towards fuzzy topology for a definition of compactness, in order to prove that 

a fuzzy set p. is finite if and only if p. is compact in the discrete fuzzy topological 

space (X, r = LX) . In fact we shall use f-compactness, refer to Definition 1.2.3. 
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Lemma 3.2.12 

If IJ. E LX is finite and 1 E L. then supp(IJ.) is finite . 

Proof. 

Since L has an order reversing involution ' and 1 E L., we have 

inf { a E L : a> 0 } = (3 > O. Clearly IJ..1([(3,1]) = supp(IJ.) which is finite . 

Theorem 3.2.13 

A fuzzy set IJ. : X ... L is finite if and only if IJ. is f-<:empact in (X, LX). 

Proof. 

Suppose IJ. is finite. Thus for all a E L\ {O}, IJ..1([ a,1]) is finite. 

Clearly for all a E L\ {1}, (IJ.' )"1([O,a]) is finite. 

Suppose a ELand eeL X such that (IJ.' V (v e)) ~ alx' In case a E 1., 

for each x E X, such that IJ.' (x) < a, we can select one Vx E e such that vx(x) ~ a. 

Since the set (IJ.' )"1([0, a)) is finite ( by above Lemma, a can also be 1 ) 

the above collection 1 = {vx } is finite and (IJ.' V (V 1)) ~ alx' In case a~ L., 

let (3 < a. Clearly (3f. 1. Again the set (IJ.' )"1([0,(3)) is finite, 

and the proof follows similarly. The converse follows by backtracking. 

Definition 3.2.14 

We will follow Wygralak [47] in denoting fuzzy cardinals in vector form. 

If c is a fuzzy cardinal such that c( 1\;) = 0 for some I\; < II 0 then 

we express c by : (a1,a2, ... ,a ) where a· = c(i) and 1\;1 is the highest cardinal 
1\;1 1 

for which C(I\;I) f. 0 . Note that since aO = c(O) is always 1 we do not include 

aO in our notation . If c(1) = 0 then we write c = a , i.e. c is the zero cardinal. 
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Example 3.2.15 

Let J1. : {1,2,3,4,5,6,7} -+ {O,M,1} be defined as follows: 

J1.(1) = 1, J1.({2,3}) = ~ and J1.({4,5,6,7}) = * then 

cardB(J1.) = (1,~,HH,*) . 

We will denote by K/L) the set of all finite fuzzy cardinals, i.e. c E K/L) 

if and only if there exits finite fuzzy set J1. such that cardB(J1.) = c. It is easy 

to see that finite fuzzy cardinals are themselves finite fuzzy sets with c(N 0) = o. 

Furthermore, if J1. is finite fuzzy set then RJ1. is either a finite set or a sequence 

decreasing to o. 

Proposition 3.2.16 

Let J1. and v be finite fuzzy sets. Then cardB(J1.) = cardB(v) if and only if 

there exists a bijection f: supp(J1.) -+ supp(v) such that f(J1.1 supp(J1.)) = VI supp(v) . 

Proof. 

Let J1., v be finite and c = cardB(J1.) = cardB( v). By Proposition 3.2.3 for all a E L 

I H~ I = I H~ I . Since J1. is finite, RJ1. is finite or a sequence { a!, a2, ... } decreasing 

to zero. Consequently, we must have I E~ I = I E~ I for all a E RJ1. = Rv. 

Now it is easy to see that I J1.-I(an ) I = lEan \ Ean-I I = I E an I -I Ean-I I -
J1. J1. J1. J1. 

I E~n I -I E~n-I I = I E~n \ E~n-I I = I v- I
( an) I. This proves existence 

of the required bijection. The converse is clear. 

From the above proposition we can conclude that cardB is sufficient for finite fuzzy 

sets. Consequently we shall use cardB for finite fuzzy sets, and use representation 

given in 3.2.14. 
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Now we shall investigate the operations on fuzzy cardinals. 

Definition 3.2.17 

Let {c)iEJ be a collection offuzzy cardinals then by corollary 3.2.9 

for each c. we can find v· E XL for some set X. such that X. are disjoint 
1 1 1 1 1 

and cardB(vi) = ci . Now, define, 

i) ED { ci : i E J } = cardB ( V { vi : i E J } ) 

ii) ill { C. : i E J } = cardB( IT { v. : i E J } ) . 
1 1 

Proposition 3.2.18 

The operations ED and ill on K(L) are well defined. 

Proof. 

The proposition 3.2.8. allows us to find the required collection {J.li}iEJ 

of disjoint fuzzy sets for the above definition. Suppose that {J.li}iEJ' {v)iEJ are two 

collections of disjoint fuzzy sets such that cardB(J.lJ = cardB( v.) = c" 
1 1 1 

(i) To prove that cardB( V J.lj ) = cardB( V Vi ), by Proposition 3.2.3., it is 

enough to prove that I H~ I = I H~ I for all ex E L. 
J.lj Vi 

Using various properties of 1·1 , H(. ) and Proposition 3.2.3., we have, 

I Hex I = I U Hex I = E I Hex I = E I Hex I = I U Hex I = I Hex I. 
V J.lj J.li J.li Vi Vi V Vi 

(ii) Let fl = cardB( IT v. )(1)). If fl E L_ then Efl = Hfl, Efl = Hfl and 
1 ~ ~ J.lj J.lj 

I E~v. I ~ 1>. Consequently by Proposition 3.2.3. 
1 

I Efl I = I IT Efl I = II I Efl I = II I Efl I = I II Efl I = I EITflv. I ~ x.. 
~ ~ ~ ~ ~ 1 1 1 1 1 1 

Thus cardB( II J.lj )(x.) ~ fl. By symmetry cardB( II J.lj )(x.) = cardB( IT Vi )(x.) . 

If fl ~ L_ then for all ex < fl, there exists "( E L, such that ex < "( < fl. 

Thus I Eg I = II I E ex I ~ IT I Hex I = II I Hex I ~ IT I E"( I = I ElL. I ~ x., 
J.lj J.li J.li Vi Vi 1 
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since cardB( II I)(K) = (3. Thus for all O! < (3, 1 Egj.!; 1 ~ K,. 
1 

Theorem 3.2.19 

If {Ci liE J is a collection of fuzzy cardinals then 

i) [Ell ci ](K) = sup { inf { ci(lI1) : i E J} : I: ",. > K,} 
1 -

ii) [0 Ci ](K,) = sup { inf { c/lI1) : i E J} : II 111 ~ K} 

Proof. 

Let {vi}iE J be any collection of disjoint fuzzy sets Vi E LX such that cardB(vi) = ci . 

i) Let C(K) = sup { inf { ci(lI1) } : I: 111 ~ K,} 

We first show that for all O! E L\ {OJ we have E~ c. = E~ . We consider two cases: 
1 

If O! E L_ then : 

(==l) Let K, E E~ c. ' By definition sup{ (3 E L : 1 He v. 1 ~ K} ~ O! 
1 1 

Since Vi are disjoint we have sup{ (3 E L : I: 1 H~. 1 ~ K,} ~ O!. 
1 

SinceO!E L_wemusthaveI: 1 EO! 1 ~K.Let""=1 EO! I . v. 1 v· 
1 1 

Clearly Ci(Ki) ~ O! thus inf { ci(lI1) : i E J } ~ O! and I: 111 ~ K. 

Thus c(K,) ~ O! i.e. K E E~ . 

(¢=) Let K, E E~ i.e. c(K,) ~ O!. Since O! E L_ then there exists {1I1}iEJ such that 

inf { ci (111) : i E J } ~ O! and I: { K,i : i E J } ~ K . Thus for all i E J we have ci (K,i) ~ O! 

Since O!E L, HO! = EO! so we must have 1 HO! 1 > K, .. Since v· are disjoint v. v· v. - 1 1 
1 1 1 

I: 1 H~. 1 = 1 H~ v. 1 ~ I: Ki ~ K. Thus [Ell ci ](K,) ~ O! i.e. K.E E~ C: 
1 1 1 

If a~ L then: 

(==l) Let K, E E~ c. then sup { (3 E L : 1 Ee v. 1 ~ K,} ~ O! 
1 1 

Thus for all (3 < a ,lEe v. 1 ~ K, . Since Vi are disjoint I: 1 
1 

E~. 1 ~ K 
1 
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Let J[ = 1 E~. 1 . Clearly ci (J[) ! fJ and E J[! f(,. 

I 

So for all fJ < a) inf { c/ J[) : i E J } ! fJ and E J[! f(,) thus f(, E E ~ . 
(~) Let M E~ then for all fJ < a there exit J[ such that 

E J[! f(, and inf { ci (J[) : i E J } ! fJ . Let 7 E L such that fJ < 7 < a 

then for all i E J ) ci(f(,l)! 7 thus for all i E J ) 1 H~. 1 ! f(,l and since vi are disjoint 
I 

E 1 H~. 1 = 1 H!j v. 1 thus f(, E E~ c . . 
I I I 

Finally we use proposition 1.1.7. (ti) to obtain the final result . 

ii) The proof of this part follows exactly the same pattern as i) above. 

This time we use the fact that 1 E a 1 = II 1 E a 1 II v. v. 
I I 

Definition 3.2.20 ( N.Blanchard [2] ) 

If c1 and c2 are two fuzzy cardinals then c1 c2 = cardB( vw) 

where v) WE LX for some X such that cardB(v) = c1 and cardB(w) = c2 . 

The properties of the fuzzy sets J1.v can be investigated further but it is not of 

interest to us here. 

If we accept the definition of vW in 1.1.2 (ix) then N.Blanchard [2] points out 

that if Cl and C2 are two finite fuzzy cardinals then Cl C2 might not be finite . 

This is not desirable. We think that exponentiation offuzzy sets should be defined 

as follows: Given J1. : X .... L and v : Y .... L then 7 = J1.v : X Y .... L is defined such that 

a 
for all a ELand g E Ha Hv there exists unique f E Ha such that fl Ha = g and 

J1. 7 v 

conversely. Obviously in such a case JI.vexists and is not necessarily unique . 

From the construction of J1.v we see that if we pick two different representatives 

of J1.v say 71 and 72 then for all a E L ) 1 Ha 
1 = 1 Ha 

1 thus cardB( 7tl = 
71 72 

cardB( 72). Thus cardB( JI.v) is independent from the choice of the representatives 
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but also, 

I Hll< I I H~ I = I HO< II I . Thus if CI and C2 are two fuzzy cardinals then 
J1. J1. 

we define ClC2 as follows let J1. , II be two fuzzy sets such that card
B

(J1.) = CI 

and cardB(lI) = C2 then ClC2 = cardB( J1.lI) . Using (*) we can proceed in the same 

way as in Theorem 3.2.19. to show that CIC2(1)) = sup { CI(l>tl II C2(1)2) : 1>11>2 ~ I>} . 

It is clear now that if CI and C2 are finite fuzzy cardinals then CI C2 is finite . 

Our definition of J1.lI is not very nice since J1.lI is not a unique fuzzy set on X Y . 

The additivity property for card was proved in [8] for sets with finite support. 

This is also true for arbitrary sets. 

Theorem 3.2.21 

X If J1. , II E L then cardB ( J1. ) e cardB ( II ) = cardB ( J1. V II ) e cardB ( J1. All) 

Proof. 

Clearly we can choose two fuzzy sets J1.1 and III such that CI = cardB(J1.I) = card
B

(J1.), 

C2 = cardB(lIl) = cardB(lI) and J1.1 II III = O. By Proposition 3.2.3, I H~I I = I H~ I 
and I Hll< I = I HO< I for all 0< E L. Consequently, III II 

[cardB(J1.) e cardB(lI) ](1)) 

=(Cl e C2)(I» 

= cardB ( /1-1 V III )(11:) 

= sup{ ll< E L : I H~I V III I ~ II:} 

= sup{ ll< E L : I Hll< U Hll< I ~ II: } 
/1-1 III 

= sup{ 0< E L : I Hll< I + I Hll< I ~ II:} J1.1 III 

= sup{ ll< E L : I H~ I + I H~ I ~ II: } 

= sup{ 0< E L : I H~ n H~ I + I H~ U H~ I ~ II:} 

= sup{ 0< E L : I H~ II II I + I H~ V II I ~ II:} 
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On the other hand, we can choose two fuzzy sets wand (T such that 

Cll = cardB(/l II 1/) = cardB( w), Cn = cardB(/l V 1/) = cardB( (T) and 

for all a E L, I H~ I = I H: II 1/ I and I H~ I = I H~ V 1/ I . Thus, 

[ cardB(/l II 1/) e cardB(/l V 1/) ](1)) 

= ( Cll e C22 )(1)) 

= cardB( wV (T)(I» 

= sup{ a E L : I H~ V (T I ~ I>} 

= sup{ a E L : I H~ I + I H~ I ~ I>} 

= sup{ a E L : I H~ II 1/ I + I H~ V 1/ I ~ I>} 

It is important to note that the above theorem follows from Theorem 3.1.3 since, 

Proposition 3.2.22 

If {c) iE J is a collection of fuzzy cardinals then : 

[e { ci : i E J }](I» = sup { inf { ci(~) : i E J} : L { I>i : i E J } = I>} 

Proof. 

Firstly, we note that, { inf { ci(~) : i E J } : L ~ = I>} is a subset of 

{ inf { ci(~) : i E J} : L I>i ~ I>}. Thus sup { inf { ci(I>i) : i E J} : L ~ = I>} ~ 

sup{ inf { ci(~) : i E J} : L ~ ~ I>}. 

Secondly, for each collection {~}iEJ such that L ~ ~ I> we can choose a collection 

{~}iEJ such that for all i E J, ~ ~ ~ and L ~i = 1>. To see this we consider a few 

of cases . Let J ' = { i E J : 1>. > 0 }. If there exists i E J ' such that 1>. > I> then let 
1 1 -

~. = I> and for all ,ifi let K,. = O. Then L K,. = I> and for all i E J, K,. < Kr . 
1 1 1 1- 1 

If there does not exist i E J' and I> ~ No then I J ' I ~ 1>. In this case let J * ( J ' such 

that I J* I = I> and ~i = 1 for all i E J* and ~ = 0 otherwise. If I> is finite then 
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J ' must be finite. To construct the necessary ~'s we can repeatedly take one 

from /t. 's until sum of them equals 1>. Since c. are non-increasing we 
1 1 

have ci(~) ~ ci(I»· So, sup { inf { ci("'i) : i E J} : E "'i = I> } ~ 

sup{ inf { ci ("'i) : i E J } : E "'i ~ I> }. This concludes the proof. 

There is no equivalent of Proposition 3.2.22 for multiplication of fuzzy cardinals. 

To see this let L = [0,1]' CI = (1 , ~ , j) and C2 = (1, i). 

Then CI 41 C2 = (I,!, j, {, { , i ). Let c ELK be given by, 

c(l» = sup{ CI(I>I) A C2(1)2) : 1>1 1>2 = I>} then c = (I,!, j , {, 0, i). 

So if "~" is replaced by "=" in the definition of multiplication of fuzzy cardinals 

then it might not necessarily result in a fuzzy cardinal as is the case with c above. 

However we have the following restricted result . 

Proposition 3.2.23 

If k is an infinite cardinal and CI and C2 are two fuzzy cardinals then, 

Proof. 

By Proposition 3.2.19, [ c\ 41 C2](I» = sup { CI(I>I) A C2(1)2) : 1>1 1>2 ~ I>}. 

Given 1>1 1>2 ~ 1>, since I> is infinite we must have 1>1 ~ I> or 1>2 ~ 1>. 

Without loss of generality we may assume that 1>1 ~ 1>. We can write 1>1 = K + ~I 

and 1>2 = 1 + ~ . Thus we have Cl(l>l) A C2(1)2) = CI(I> + ~I) A c2(1 + ~) ~ 

CI(I» A c2(1) because CI and C2 are non-increasing functions. This gives the result 

because I> 1 = 1>. 

Corollary 3.2.24 

If I> is an infinite cardinal then [Cl41 C2](I» = [CI(I» A cl(l)] V [C2(1)) A c2(1)] . 
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Proposi tion 3.2.25 

If I<. is an infinite cardinal then [CI Ell C2](I<.) = CI(I<.) V C2(1<.). 

Proof. 

From Proposition 3.2.22 we have [CI Ell C2](1<.) = sup{ CI(I<.I) A C2(1<.2) : 1<.1 + i<.2 = I<. }. 

Since I<. is infinite if 1<.1 + i<.2 = I<. then 1<.1 = I<. or i<.2 = 1<.. Consequently, 

if 1<.1 = I<. then, CI(I<.) = CI(I<.) A C2(O) ~ CI(I<.) A C2(i<.2) and 

if i<.2 = I<. then, C2(1<.) = CI(O) A C2(1<.) ~ CI(I<.I) A C2(1<.). 

Thus [CI Ell C2](I<.) = CI(I<.) V C2(1<.) . 

An equivalent of the Proposition 3.2.25 for III is not true. The reason for this is 

that CI(l) is not necessarily equal to c2(l) . Consider two infinite cardinals CI and C2 

defined as follows: cI(l) =~, CI{I<.) = i for I<. E {2, 3, ... , No}, CI(I<.) = 0 otherwise; 

c2(1) = t, C2(1<.) = t for I<.E {2, 3, ... , No}, C2(1<.) = 0 otherwise. Then, 

[C\III c2](N o) = sup{ ~ At, t Ai} = H tv i = CI(NO) V C2(NO). 

Definition 3.2.26 

If {ci }iE J is a collection of fuzzy cardinals then we define a fuzzy cardinal 

SUP { ci : i E J } by 

SUP { ci : i E J }](I<.) = sup { inf { ci(IIi) : i E J} : sup {iii} ~ I<.} . 

Proposition 3.2.27 

[ SUP { CI , C2 } ](1<.) = CI{I<.) V C2{1<.) . 

Proof. 

Fuzzy cardinals are non-increasing, so let 1<.1 = i<.2 = I<. to obtain the result. 

Example 3.2.28 

Note that if {ci }iEJ is an infinite collection offuzzy cardinals then not necessarily 
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[ SUP { ci : i E J } ](,,) = sup { Ci(,,) : i E J} . 

Let J = IN and c. = l{O '} then V { c. : i E J } = ~ and thus 
1 " .. ,1 1 

sup E~ = l{ 0 ~ E~ and so ~ is not a fuzzy cardinal . 

On the other hand [ SUP { c. : i E J } 1 = l{O "} which is a fuzzy cardinal . 
1 , ... ,1\ 0 

The above is equivalent of the following statement in the crisp setup: 

In the crisp case we can construct supremum of a collection {"i} iE J of cardinals 

in the following fashion. Since cardinals are well-ordered we can well order J such 

that if i,j E J with i S j then "i S "f Now we can choose a collection of sets {Ai liE J 

such that I Ail = "i and if"i S "j then Ai C Af Finally define, 

SUP { "i : i E J } = I U Ai I . 

Thus from the definition of SUP we have a partial ordering on the set Offllzzy 

cardinals on K. This ordering is clearly not a well ordering in the crisp sense. 
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3.3. A NEW APPROACH TO CARDINALITY OF FUZZY SETS 

From Proposition 3.2.16 we see that Blanchard's cardinality is sufficient for finite 

fuzzy sets. However if we consider Blanchard's cardinality of infinite fuzzy sets 

we see how forgetful it is, i.e. two very much different infinite fuzzy sets 

can have exactly the same Blanchard cardinality. For instance consider two 

infinite fuzzy sets /1-, v: [1,(0)'" [0,1] given by, J!(t) = 1-{ and v(t) = 1. 

It is easy to check that cardB(/1-) = cardB(v) = l{O, ... , \\J}' despite the fact that 

even R f R . Clearly the fuzzy sets /1- and v are markedly different. On the other 
/1- v 

hand one could argue that the fuzzy set /1- should have the same cardinality as v as 

follows: the set /1- contains fuzzy sets, t1[l/(l-t), (0) for all t E [0,1); each one 

having fuzzy cardinality 10 V t1{O, ... , \\J}' consequently the fuzzy set /1- should 

have cardinality equal to l{O, ... , \\J} . 

In what follows we aim to establish a cardinality for fuzzy sets that gives a more 

accurate representation. Before we introduce our definition of cardinality we discuss 

what has lead us to it. 

When we consider the Hutton's Urysohn 1emma for normal fuzzy topological 

spaces which uses the fuzzy unit interval 1(1), see [16]' we observe the 

following similarities between I(L) and K(1): a fuzzy real number v is a non

increasing function from I to 1 such that for all t < 0, v( t) = 1 and for all t > 1, 

v( t) = 0 ( v( t) can be interpreted as the degree to which v is larger than t ). 

On the other hand, a fuzzy cardinal c is a non-increasing function from cardinals 

to 1 which is eventually 0 ( c(k) can be interpreted as degree to which cardinality 

is larger than k ) and c(O) = 1. Hutton introduces an equivalence relation on the 

fuzzy reals identifying those which have the same left and right limits at all 

points in [0,1]. In our case such a treatment is not necessary since Blanchard's 

cardinals are already continuous with respect to the order topologies. 
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Finally the fuzzy topology on the fuzzy unit interval is a collection of fuzzy sets 

on it. Consequently we define a new fuzzy cardinal as a fuzzy set on Blanchard's 

fuzzy cardinals. 

This is in line with our conclusion from Chapter 2 and Appendix which states that 

we should expand the range of functors between fuzzy objects rather than 

complicate them. Recall definition of jS(..» from section 3.1. 

For each p. E LX, define the function 1·1 p. : 2X 
-> K(L) by 

1·1 p.(A) = cardB(p.1 A)' 

With the use of the injection' from the Section 3.1 this function extends 

to the whole of LX, denoted by Card: LX -> L K(L), given in the following 

Definition 3.3.1 

For convenience sake let us denote a fuzzy cardinal of the form 10 V cd{l, .. . ,It} 

by c( It, a). Define the functions It : K(L) -> K and m : K(L) -> L by letting 

It{c) = sup{supp(c)} and m(c) = c(lt(c)). 

Lemma 3.3.2 

If p. is a fuzzy set then jS(.supp(p.»> s m(cardB(p.)). 

Proof 

Let (J = jS(.supp(p.»> and It = I supp(p.) I. Thus for all x E supp(p.) we have 

p.(x) ~ (J. Clearly I p.-l(['Y,l]) I = It for all 0 < 'Y S (J. Thus cardB(p.)(It) ~ (J and 

for all Itl > It, cardB(p.)(ltl) = O. Consequently x;(cardB(p.)) = It and 

m(cardB(p.)) ~ {J = jS(.supp(p.»> . 
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Proposition 3.3.3 

If J1. is a fuzzy set and c is a fuzzy cardinal then, 

C d( )( ) = {m(c) if there exists A C supp(J1.) such that cardB(J1.1 A) = c 
ar J1. c ° otherwl se 

Proof. 

Assume that L_ = 0. In case L_ # 0 the proof is similar. 

Suppose Card(J1.)(c) > m(c). This means that there exists A c supp(J1.) such that 

J1.1 Af(.A) > m(c) and cardB(J1.1 A) = c. Since sUPP (J1.1 A) = A we have 

a contradiction with Lemma 3.3.2. Consequently, Card(J1.)(c) $ m(c) . 

Suppose that there exists A C supp(J1.) such that cardB(J1.1 A) = c. Let 11 = J1.1 A' 

Then for all'Y < m(c), I HZ I = i>(c), cardB(111 H'Y) = c and z.«H) ~ 1- Thus 
11 

Card(J1.)(c) ~ m(c). Consequently Card(J1.)(c) = m(c). 

Example 3.3.4 

Let J1. : IN ... [O,lJ be a fuzzy set given by J1.(n) =-/;. 
w 

Clearly c = cardB(J1.) = 10 V ( i~l jl{l, ... , i} ). 

Note that Card(J1.)(c) = m(c) = 0. This is not so disturbing if we observe 

that Card(J1.)(c(n,-/;)) =-/;. 

Proposition 3.3.5 

If J1. is a fuzzy set and K. a cardinal such that cardB(J1.)(K.) > ° then 

m( cardB(J1.) II l{O, ... A ) = cardB(J1.)(K.)· 

Proof 

Clearly cardB(J1.) II 1{0, .. . ,K.} is Blanchard cardinal. Since cardB(J1.)(K.) > 0 we have 

{O , .. . ,K.} c supp(cardB(J1.))· Consequently K.( cardB(/t) II 1{0, ... ,1t} ) = K.. Finally, 

m( cardB(J1.) II l{O, ... A ) = ( cardB(/t) II l{O, ... A )(It) = cardB(/t)(K.). 
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Theorem 3.3.6 

Let Jl and II be two fuzzy sets. Then, 

(i) If carddJl) = cardG(II) then Card(Jl) = Card(II). 

(ii) If Card(Jl) = Card(lI) then cardB(Jl) = cardB(II) 

Proof 

(i) Since cardG(JL) = cardG(II) there exists a bijection f: supP(JL) .... SUpp(lI) 

such that f(JLI sUPp(JL)) = III SUpp(II)· Consequently, 

Card(J.I)(c) = sup{ j¥(.A> : cardB(JLI A) = c} 

= sup{ j¥(.A> : cardB(JLI A) = c and A C supp(JL) } 

= sup{ L(f(A»> : cardB(1I1 f(A)) = c } 

= sup{ L(C» : cardB(1I1 C) = c} 

= Card(II)( c). 

(ii) Assume that L_ = 0 .. Suppose that for some cardinal ~ cardB(JL)(~) t 

cardB(II)(x,). Without loss of generality we may assume that cardB(JL)(~) < 

cardB(II)(x,). From the definition of cardB we see that there must exist 7, 8 E L such 

that 7> 8, I H7 I ~ x, and I HDI < x,. Let c = cardB(II) A l{O }. 
II J.I , .. . ,~ 

Since L(H;? ~ 7 and cardB(1I1 H7) = cardB(II) A l{O, .. . ,x,} = c we have 
II 

Card(II)(c) ~ "f. Because I H; I < x" there does not exists A E supp(JL) such that 

cardB(JLI A) = c. Consequently Card(J.I)( c) = O. In case L_ t 0 the argument is 

similar. 

Corollary 3.3.7 

In case JL is finite Card, cardG and cardB are equivalent . 

Proof 

Apply Proposition 3.2 .16 and Theorem 3.3.6. 
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Example 3.3.8 

Let the fuzzy sets J1., v: [0, 2J .... [O,lJ be given as follows, 

,,(t) ={ i :~ ~ ~.rOn1\,2] and V= {t1 if t E [0,1] 
,- 0 otherw:t ~ e [ otherwise 

One can check that Card(J1.) = Card(v) and carddJ1.)(l) = No f IIRI = cardG(v)(l). 

Example 3.3.9 

Let the fuzzy sets J1., v: [O,1J .... [O,lJ be given by J1.(t) = t and v(t) = l. 

Clearly cardB (J1.) = cardB(v) = c(11R1 ,1) = 1{0, ... ,11R1}· 

However, Card(J1.)(c(1,1/2)) = 1/2 f 0 = Card(v)(c(1,1/2)). 

Lemma 3.3.10 

Any cardinal c E K(L) can be written as 

c=(!) c(I\:,,) 
']€R ' c 

where for all , ERe' 

{

SUP c-l(,) 

1\:, = sup c-l(,) _ inf c-l(,) + 1 

if sup c- l(,) is infinite 

otherwise 

Proof 

By Proposition 3.2.8 and Corollary 3.2.9 there exists a fuzzy set J1. : X .... L such that 

c = cardB(J1.) and R = R is upper well-ordered. For all , E R let X = V l(,) J1. c J1. , 

and J1. = J1.1 X . Clearly X are disjoint and so are J1. , and cardB(J1. ) = c(1\: ,,). , " ", 
Since J1. are disjoint and J1. = V J1., we have 

, ']€ R ' c 

cardB (J1.) = cardB ( V J1.) = (!) cardB (J1. ) = (!) c( I\: ),). 
']€ R' ']€ R ' ']€ R ' c c c 

This proves this proposition. 
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Lemma 3.3.11 

If c, c(x;,a) E K(L) such that x;(c) < x; and m(c) > a> 0 then 

Card(JL)( c tB c(x;,a) ) = Card(JL)(c) A Card(JL)(c(x;,a)). 

Let Card(JL)(c) > 0 and Card(JL)(c(x;,a)) > O. Then by Proposition 3.3.3 there exists 

sets At, A2 C supp(JL) such that cardB(JLI AI) = c, cardB(JLI A2) = c(x;,a), 

Card(JL)(c) = m(c) and Card(JL)(c(x;,a)) = a. Let Bl = Al n H~ . Since m(c) > a, 

cardB(JLI B) = c. Clearly for all x E sUPp(JLI A)' tL{x) $ a. Also, Bl and A2 are 

disjoint, so JLI Bl and JLI A2 are disjoint. Thus c tB c(x;,a) = 

cardB(JLI B) tB cardB(JLI A) = cardB( JLI Bl V JLI A2 ) = cardB(JLI (Bl U A 2))' 

Since, m( CtB c(x;,a)) = a and cardB(JLI (Bl U A2)) = CtB c(x;,a) by Proposition 3.3.3 

we have Card( CtB c(x;,a) ) = a = m(c) A a = Card(JL)(c) A Card(JL)(c(x;,a)) . 

In the case Card(JL)(c) = 0, since m(c) > 0, by Proposition 3.3.3 there does not exist 

A C supp(JL) such that cardB(JLI A) = c. Consequently there does not exist 

A C supp(JL) such that cardB(JLI A) = C tB c(x;,a). Finally Proposition 3.3.3 implies 

that Card(JL)(ctB c(x;,a)) = 0 = Card(JL)(c) A Card(JL)(c(x;,a)). 

We proceed similarly in the case Card(/t)(c(x;,a)) = O. 

Theorem 3.3.12 

Card(/t)(c) = A Card(/t)( c(x; ,,"()) where x;,., is as in Lemma 3.3 .10. 
')E Re '"( I 

Let (3E Rc and c(3 = tB c(x; ,'"() . Observe that m(c(3) = (3 and *(3) = x;(3' Since R 
'"(~(3 '"( c 

is upper-well-ordered we can find the predecessor a of (3. Then c(3 and c(x;a,a) 

satisfy the conditions of Lemma 3.3.11. Giving that Card(/t)( c(3tB c(x;a,a)) = 

Card(/t)(c(3) A Card(/t)(c(x; ,a)). By Lemma 3.3.10 we can write c = tB c(x; ,'"() . 
a ')E~ '"( 

Since Rc is upper well-ordered this theorem follows by transfinite induction. 
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Note that the above theorem states that Card(J.!) is entirely determined on the 

cardinals of the form c( 1>, 'Y). 

We mention the following easily proved statement in passing. 

Proposition 3.3.13 

Suppose RJ.! is upper-well-ordered. Then if Card(J.!) = Card(/I) then cardG(J.!) = 

cardG(/I)· 

Denote by K(L) the set of all C E LK(L), such that there exists a fuzzy set J.! with 

Card(J.!) = C. Clearly K(L) can be endowed with operations ED and@ in the usual 

fashion. 

Definition 3.3.14 

Let C 1, C2 E K (L) and J.!, /I be any two disjoint fuzzy sets such that 

Card(J.!) = C1 and Card(/I) = C2. Then, 

(i) C1 ED C2 = Card( J.! V /I), 

(ii) C1 @ C2 = Card( J.!' /I) . 

Proposition 3.3.15 

The operation ED and@ on K(L) are well defined. 

Proof 

Let J.!1 and /11 be two disjoint fuzzy sets such that Card(J.!I) = Card(J.!), 

Card(/ll) = Card(/I) and c E K(L) . ( By Theorem 3.3.12 it is sufficient to prove 

the assertion on cardinals ofthe form c(l>,a). ) Suppose that Card( J.! V /I )(c) = 

a > O. Then by Proposition 3.3.3 there exists A ( supp( J.! V /I) such that 

c = cardB( ( J.! V /1)1 A ) = cardB( J.!I A V /II A ) = cardB(J.!1 A) ED cardB(/l1 A) = 
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c e c . Since Card(JLI)(C ) = Card(JL)(c ) and Card(vl)(Cv) = Card(v)(c ) there 
JL v JL JL v 

exists Cl C SUPP(JLI) and C2 C SUPP(VI) such that cardB(JLII C) = cJL and 

cardB(vll C) = cv' Since JLI and VI are disjoint c = cJL e Cv = cardB(JLII C) e 

cardB(vll C) = cardB( JLII Cl V vII C
2 

) = cardB( ( JLI V VI )1 (C l U C
2

) ). 

So there exists C = Cl U C2 such that cardB( (JLI V vl)1 C ) = c. The case where 

Card( JL V v )(c) = 0 is easier. This shows that Card( JLI V VI) = Card( JL V v), i.e. 

the well definition ofe in K(L). We proceed similarly for ®. 

The structure ofK(L) can be investigated as in the section 3.2 for K(L). However in 

here we establish that our Card has the additivity property. 

Recall the definition of the cartesian product of fuzzy sets. In particular if we have 

two fuzzy sets JL : X -+ L and v : Y -+ L such that v = 1y we can write JL x v = JL x Y. 

The fuzzy set JL x Y: X x Y -+ L is given by (JL x Y)(x,y) = JL(x) A ly(Y) = JL(x). 

Theorem 3.3.16 

Card(JL) e Card(v) = Card( JL A v) e Card( JL V v) 

Proof 

By Theorem 3.1.3 we have, 

cardG(Jl) e cardG(v) = cardG(JL A v) e cardG(Jl V v). 

Since (JLx {I}) A (v x {2}) = 0 and ((JLA v) x {I}) A ((JLV v) x {2}) = 0 it follows 

from the defini tion of the addition of fuzzy cardinals that, 

cardG((JLx {l})V (v x {2})) = cardG(((JLA v)x {l})V ((JLV v)x {2})). 

By Theorem 3.3.6 (i) we obtain, 

Card((JLx {I}) V (v x {2})) = Card(((JLA v) x {I}) V ((JLV v) x {2})). 

Again by the definition of the addition of fuzzy cardinals we have, 

Card(Jl) e Card(v) = Card(Jl A v) e Card(JL V v). 
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4. FUZZY VECTOR SPACES 

In this and the following chapter we apply fuzzy cardinals from Chapter 3 to other 

fuzzy objects. However the results in this chapter, for instance Theorem 4.5.7 and 

Theorem 4.5.10, do not require any specific cardinality as long as it has the 

additivity property. Throughout this chapter we are going to denote the cardinality 

by card which could be one of cardG, Card or cardB· 

In this chapter we are mostly dealing with finite dimensional fuzzy vector spaces. 

Thus by Proposition 3.2.16 we see that in such cases Blanchard's cardinality is 

completely adequate and we use it . 

This. chapter is a revised version of the authors paper [27] on the fuzzy vector 

spaces. Now we use arbitrary fuzzy cardinals which possess the additivity property 

instead of the scalar cardinals as is the case in [27]. The results obtained here are 

more general than those in [27]. 

Let us preview the results in this chapter: 

We define basis and dimension for a fuzzy vector space. 

A class of fuzzy vector spaces having a finite fuzzy dimension is studied, and two 

standard results from the crisp theory are proved for this case, namely, 

dim (ILl) Ell dim (Ji.2) = dim( ILl + Ji.2 ) Ell dim ( ILl A Ji.2 ) and 

dim( IL ) = dim( f(IL) ) Ell dim( ILl ker f ). 

The sum of two fuzzy vector spaces is characterised under certain conditions. 
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4.1 INTRODUCTION 

In this chapter we study purely algebraic properties of fuzzy vector spaces. 

The ideas presented here can easily be applied to other algebraic fuzzy objects. 

The concept of a basis is fundamental to the study of crisp vector spaces, 

in fact it gives us a very elegant representation of all crisp vector spaces. 

We define the concept of basis for a fuzzy vector space and show that a very wide 

class of fuzzy vector spaces possess it . 

R. Lowen in [26] defines the dimension of a fuzzy vector space (on a finite 

dimensional space only) as a n-tuple; we define dimension for a fuzzy vector spaces 

as a fuzzy cardinal. Finally we investigate the properties of the introduced concepts. 

4.2 PRELIMINARIES 

If VIand V 2 are vector spaces and VIis a subspace of V 2 then we write VI < V 2' 

The concept of the fuzzy vector space was introduced by A.K. Katsaras and 

D.B. Liu in [18] . 

Definition 4.2.1 

Fuzzy vector space J.L over a vector space E is a function from 

a crisp vector space E to L, i.e. J.L E L E with the property that 

for all a,b E IR and x,y E E we have J.L(ax + by) ~ J.L(x) A J.L(Y) . 
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Proposition 4.2.2 

If J1. is a fuzzy vector space over E then 

i) 

ii) 

iii ) 

Proof 

HO! < EO! < E 
J1. J1. ' 

V a E IR \ {O}, J1.(ax) = J1.(x) 

liu, vEE and J1.(u) > J1.(v) then J1.(u+v) = J1.(v). 

We prove only (iii) since (i) and (ii) are well-known. 

Since J1.(u) > J1.(v) we have J1.(u+v) ~ J1.(v) . 

Also J1.[(u+v) - uJ = J1.(v) ~ J1.(u+v) 1\ J1.(u). 

Since J1.(u) > J1.(v) we have J1.(u+v) ~ J1.(v). 

Consequently J1.(u+v) = J1.(v). 

Proposition 4.2.3 

If J1.is a fuzzy vector space over E and v, wEE with J1.(v) f J1.(w) then 

J1.(v+w) = J1.(v) 1\ J1.(w). 

Proof 

Apply Proposition 4.2.2 (iii). 

Proposition 4.2.4 

If J1. is a fuzzy vector space over E then J1.(O) = h(J1.). 

Proof 
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4.3 LINEAR INDEPENDENCE IN FUZZY VECTOR SPACES 

We find an attempt at the definition of fuzzy linear independence 

in [30] . However this reduces to normal linear independence. We give below an 

alternative definition. 

Definition 4.3.1 

Let J.£ be a fuzzy vector space over E. We say that a finite set of vectors {xi}f =1 ( E 

is linear independent in J.£ if and only if {xi}i~1 is linearly independent in E 

n n 
and for all {a·}·~1 ( IR, J.£( E a.x.) = II JL(a.x.). 

1 1- . 1 1 1 . 1 1 1 
1= 1= 

Any set of vectors is linearly independent in J.£ if all finite subsets of that set 

are linearly independent in J.£. 

Example 4.3.2 

Consider J.£ : [R2 -l [0,1], where, 

{

I ifx=y= ° 
J.£((x,y)) = 1/2 if x = ° and y f ° 

1/4 ifx f ° 
It is easily checked that vectors x = (1,0) and y = (-1,1) are linearly independent 

in E but are not linearly independent in J.£. This example also illustrates a situation 

where JL(x) = J.£(Y) and J.£(x + y) > J.£(x) . 

Proposition 4.3.3 

Let J.£ be any fuzzy vector space over E, then any set of vectors {xi}i~1 ( E \ {o} 

which has distinct J.£-values is linearly independent in J.£. 

We prove the proposition by induction on N. 

In case N = 1 we have only one vector - clearly the statement is true. 
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Now suppose that the proposition is true for N. 

Let {xi} ~!~ be a set of vectors in E\ {O} with distinct I>-values . 

By inductive hypothesis we have: {x)i~l is linearly independent in 1>. Suppose 

that {x.}N:!:ll is not linearly independent in E, thus xN+1 = E a.x. where 
11- iEsII 

S ( {I, ... , N}, S * ¢ and for all i f S, ai * O. 

Therefore ""'xN+1) = 1\ 1>( a.x.) = 1\ I>(x.) 
'S 11 ·S 1 IE IE 

N 
and then l>(xN+l) f {I>(xi)}i=l ' 

This contradicts the fact that {x)~!~ has distinct I>-values. Therefore {x)~!i is 
linearly independent in E. Finally Propositions 4.2.2 (ii), 4.2.3 and 4.2.4 

clearly show that {xi}~!i is linearly independent in 1>. 

Remark: If I> is a fuzzy vector space over E such that dim E = n , then 

I j>(E)1 ~ n + 1. 
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4.4 BASIS FOR A FUZZY VECTOR SPACE 

Definition 4.4.1 

A set BeE, is a basis for a fuzzy vector space Ji. : E .... L if and only if 

i) B is linearly independent in Ji., 

and, 

ti) B is a basis for E. 

The following shows how we can construct a very wide class of fuzzy vector spaces 

with a basis. 

Given a vector space E with a basis B = {va} o£A ' constant Ji.O E L\ {O} and any 

set of constants {Ji.a} o£A C L\ {O} such that Ji.O!. Ji.a for all aE A. Let us construct 

a function Ji. : E .... L in the following way. Any z'" 0, z E E can be uniquely written 

N N N 
as z =.E1 ai va. with ai ", O. Define Ji.(z) =./11 Ji.(va) =./l

1
Ji.a. and Ji.(0) = Ji.o · 

1= 1 1= 1 1= 1 

Clearly Ji. is defined for all z E E and is well-defined. 

Theorem 4.4.2 

The set Ji. is a fuzzy vector space with basis B. 

n 
We prove that Ji.( ax + by )!. Ji.(x) /I J1(Y) . Let a'" 0, b '" 0, x = E a.v . and 

i=l 1 a, 
m 

y = E b .vp .. Of course, we may assume that ai'" 0 and bj '" O. We may also write 
j=l J J 

S 

ax+by= E ckv withck '" O. Now, 
k=l 'i'k 

s 

Ji.(ax+by) = A J1(v'i'k) by definition 

k=l 
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, 6 ~'.;) 1 {~~'P;) 1 
since { v'Yk : k=l, ... ,s } ( { V

ai 
: i=l, ... ,n } n { v flj : j=l, ... ,m } 

= Jl(x) II Jl(y). 

The case where a = 0 and b = 0 is trivial as Jl(O) ~ Jl(va ) for all a E A. 

Thus p. is a fuzzy vector space and B is a basis for p.. 

We were unable to prove that all fuzzy vector spaces have a basis or find an 

example of a fuzzy vector space without a basis. However, we have a simple 

condition under which a fuzzy vector space has a basis. 

At this point we refer the reader to the Chapter 1, Section 1, where the concept 

of upper well orderness is introduced. Recall that if p. : x .... L then Rp. = p.(X)\ {O} . 

Lemma 4.4.3 

If p. is a fuzzy vector space over E such that Rp. is upper well ordered, 

and V is a proper subspace of E then there exists w E E\ V such that for all v E V, 

p.(w+v) = Jl(w) II p.(v) . 

Proof 

Since Rp. is upper well ordered we can find w E E\ V such that 

p.(w) = sup[p.(E\ V)]. Let v E V. If p.(v) t p.(w) then by Proposition 4.2.3, 

Jl(w+v) = p.(w) II p.(v) . If p.(v) = p.(w) then by Definition 4.2.1, 

p.(w+v) ~ p.(w) II p.(v) . Since w+v E E\ V and p.(w) = sup [Jl(E\ V)] we must have 

p.(w+v) ~ p.(w) = p.(v). Thus p.(w+v)= p.(w) II p.(v). 
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Lemma 4.4.4 

If /1. is a fuzzy vector space over E such that R/1. is upper well ordered, 

and B* is a fuzzy basis for /1.1 V where V is a proper subspace of E 

then there exists wE E\ V such that B+ = B* u {w} is a basis for /1.1 W, 

where W = <B+> is the vector space spanned by B+. 

Proof 

Pick w E E\ V such that JJ.{w) = sup [JJ.{E\ V)], then clearly by Lemma 4.4.3 

w is linearly independent from B * in /1.. Let B + = B * U {w}. 

Clearly B + is a basis for /1.1 W' 

Theorem 4.4.5 

All fuzzy vector spaces /1. : E .... L for which R/1. is upper well ordered have a basis. 

Proof 

Let /1. : E .... L be any fuzzy vector space for which R/1. is upper well ordered. 

Let 0 = { BeE 1 B is linearly independent in /1. }. 

Partial order 0 by set inclusion. Let C be a totally ordered subset of 0 

and let A = U B . Clearly A is upper bound for C. Suppose a1, ... , a E A , 
BEC n 

then there exist B a(l)' ... , B o{n) E C such that ai E B a(i) . 

Since C is totally ordered, one of the sets, say B a(k) is a superset of the others . 

Hence ai' ... , an f B o{k) . Since B a(k) is linearly independent in /1., ai' .. . , an are 

linearly independent in /1.. Thus A is an upper bound of C in O. 

By Zorn's Lemma there exists a maximal element B* in O. 

Suppose <B*> = V is a proper subspace of E then by Le=a 4.4.4 there exists 

wE E\ V such that B+ = B* u {w} is a basis for /1.1 W, where W = <B+> . 

This contradicts the fact that B* is a maximal element in O. 

Thus we must have <B*> = E and B* is a basis for /1.. 
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Corollary 4.4.6 

If Ji. is a fuzzy vector space over E such that E is finite dimensional 

then Ji. has a basis. 

Proof 

Since E is finite dimensional Ji.{E) is finite and consequently upper well ordered. 

Thus by above theorem Ji. has a basis. 

Definition 4.4.7 ( Liu, Katsaras [18] ) 

Let Ji.1' ~ E L E be two fuzzy vector spaces over E. 

Define the intersection of Ji.l and ~ to be Ji.l II Ji.2 and 

the sum Ji.l + Ji.2 of Ji.l and Ji.2 as a function Ji.1 + Ji.2 : E .... L by: 

(Ji.1 + ~)(x) = sup { Ji.l (Xl) II Ji.2(x2) I X = Xl + x2 and Xl' x2 E E } 

= sup { Ji.1 (Xl) II Ji.2 (X-Xl) I Xl E E }. 

Proposition 4.4.8 

Let Ji.1 and Ji.2 be two fuzzy vector spaces over E. 

We have the following results : 

1) 

2) 

3) 

Ji.1 II Ji.2 is a fuzzy vector space over E, 

Ji.1 + Ji.2 is a fuzzy vector space over E, 

If R and R are upper well ordered then 
Ji.1 Ji.2 

Ji.1 II Ji.2 and Ji.l + Ji.2 have a basis. 

1) See [18] Proposition 3.4. 

Proof of 2) was not presented in [18], thus we prove it here. 
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2) Suppose (~l + ~)(x+y) < (~l + ~2)(X) A (~l + ~)(y). 

Thus there exists xl and x2 such that for all x3 we have: 

(*) ~l (X3) A ~2(x+y-X3) < [~l (Xl) A ~2(X-Xl)J A h (X2) A ~2(y-x2)J 

but [~l (xl) A ~(X-Xl)J A [~l (X2) A ~2(y-~)J 

= ~l (Xl) A ~1(X2) A ~2(x-Xl) A ~(Y-X2) 

< ~l (Xl +X2) A ~2(x+y-xCx2) 

Therefore there exists x3 = xl + x2 for which (*) is false. 

Thus we have a contradiction. 

Also, if a'" 0, then, 

If a=O, 

3) 

(~ + ~)(ax) 

(It 1 + ~)(Ox) 

Clearly 

= sup{ ~l (xl) A ~2(X2) : xl + x2 = ax } 

= sup{ ~l (axl ) A ~2(ax2) : xl + x2 = X } 

~ sup{ ~l(Xl) A ~(x2): xl + x2 = x} 

=(~l + ~2)(x), 

= (lt1 + 1t2)(0) 

= sup{ Itl (xl) A 1t2(X2) : xl + x2 = 0 } 

= Itl (0) A 1t2(0), by Proposition 4.2.4. 

and R(ltl + 1t2) = (lt1 + 1t2)(E) C Itl (E) U ~(E) = Rltl U R~2' 

Since R" and R are upper well ordered the set R URis upper well ordered 
'"I ~2 Itl ~ 

and all operations are done within this set, consequently, R( A ) 
Itl 1t2 

and R( + ) are upper well ordered. 
~1 1t2 

By Theorem 4.4.5, Itl A 1t2 and Itl + 1t2 have a basis. 
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Theorem 4.4.9 

Let I/. : E .... L be a fuzzy vector space then: 

B is a basis for I/. if and only if for all a E L, E: n B is a basis for E: . 

Proof 

(=l) Suppose that B is a basis for I/. and for some a E L, B n E~ is not a basis 

for Ea. Thus span( B n Ea ) is a proper subspace of Ea. Let x E E~span( B n E a ). 
I/. I/. I/. I/. I/. 

So I/.(x) ~ a. Since B is a basis for I/. there exist { bt, b2, .. . , bn } C Band 

n n 
{ at, a2, ... , an } C 01\ {O} such that x =i~l aibi and JL(x) =i~l I/.(bi) ~ a. 

Since x ¢ span( B n E~) there exists j E { 1, ... , n} such that bj E E\E~ 
n 

i.e. JL(b.) < a. This means that JL(x) = II JL(b.) < a. This is contradiction. 
J i=l 1 

(<==) Suppose that for all a E L, B n E a is a basis for Ea. Since EO = E, B is a basis 
I/. I/. I/. 

for E. Let { bt, b2, ... , bn } C B, { ab a2, ... , an } C 01\ {O}, ai = JL(bi) and 

a = rnin( ai: i = 1, ... , n }. We can choose bi such that ai ~ aj iff i ~ j. Select 

k 
k E { 1, ... , n} such that Cl!k = a and for i > k, ai> a and then let x = E a.b" 

. 1 1 1 1= 

Now we show that JL(x) = a. Suppose that JL(x) = fJ > a, i.e. x E EfJ. Since B n EfJ is 
I/. I/. 

. fJ . . { - - -} fJ { a basIs for EI/. there eXIsts an umque bt, b2, ... , bm C B n EI/. and at, a2, ... , am } 

m 
C 01\ {O} such that x = E a.b .. So we have found two different expressions for x, 

. 1 1 1 1= 
m k 

namely E a.b. and E a.b .. They are different because I/.(b.) = afar i = 1, .. . ,k 
'111 '111 1 1= 1= 

and JL(bi) ~ fJ for all i = 1, .. . ,m . But since B is a basis there is only an unique 

representation for x. This leads to a contradiction. Thus I/.(x) ~ a. But we also have 

m n 
JL(x) ~ II I/.(b.) = a. So I/.(x) = a. Let y = E a.b .. By definition JL(y) > a. 

i=l 1 i=k+1 1 1 

SO I/.(X) '* I/.(Y)· Thus by Proposition 4.2.3, JL(x+y) = I/.(x) II (y) = a. Finally, 

n n 
JL( E a.b. ) = JL(x) II JL(Y) = a = II I/.(b.). So B is a basis for 1/.. 

'1 11 '1 1 
1= 1= 
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From Theorem 4.4.9 we see that the problem of finding a basis for a fuzzy vector 

space is equi valent to the following : 

Proposition 4.4.10 

Suppose V = {V or} Of J is a chain of vector spaces then there exists a basis B for the 

vector space U Vor such that for all or E J, B n Voris a basis for Vor' 

If we assume that the collection V is upper well ordered under set inclusions, then 

we can find the required basis. This is shown in Theorem 4.4.5. As we have stated 

previously, we were not able to prove or find a counter-example to this statement 

in general. 
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4.5 DIMENSION OF FUZZY VECTOR SPACES 

Definition 4.5.1 

The dimension of a fuzzy vector space p, over E is dim{p,) = card{P,1 B) where B is 

any basis for p,. 

Note that the dimension of p, is a fuzzy cardinal. 

Proposition 4.5.2 

Given a fuzzy vector space p, over E and two basis BI and B2 for p" 

there exists a bijection f : BI .... B2 with p,{b) = p,{f{b)) for all b E BI. 

Thus card{P,1 B) = card{P,1 B)' i.e. the dimension of p, is independent 

from the choice of a basis for p,. 

Proof 

Since BI and B2 are basis for E, it is well known that 1 BI 1 = 1 B2 I· SO there 

exists a bijection between BI and B2. We must also have that R = R 
P,I BI P,I B2 

Otherwise suppose W.L.O.G. p,(b) ~ R for some b E Band b * a , this means 
P,IB2 

N N N 
that p,(b) *i~t(aibi) for all {ail i =1 C IR and {bi} i =1 ( B2 , because the infs are 

taken over finite sets . That would mean that B2 is not a basis for p,. 

Thus we must have R = R . Let a E R . Recall that Ea and Ha are 
P,I BI P,I B2 P,I BI p, p, 

both vector spaces with H~ < E~. Now given x E T~ = p,.I( a) it is easy to see 

N I MI N2 M2 
that we can write x = I: a· 1 b. 1 + I: a· 1 b. 1 = I: a. 2b. 2 + I: a. 2b. 2 where, 

i=1 I, I, i=1 1, I, i=1 I, I, i=l I, I, 

a. l' a. l ' a· 2' a· 2 E IR, and b. 1 E E
a ,b. 1 E T

a 
,b. 2 E E

a , 
I, 1, I, I, I, P,I BI I, P,I BI I, P,I B2 

b. 2 E T a . This follows from the fact that B I and B2 are both basis for p,. 
I, P,I B2 



69 

If an element from Ji.-l([O,il)) was in the linear combination expressing x then 

we should have ji.(x) < il and thus x ~ T~ , a contradiction. 

a1 . h Eil ( Til ) Hil ( Til ) Hil From I this we get t at = span 11. +" = span + 
Ji. '-1 B 1'- Ji.1 B2 Ji. 

thus I Til I = I Til I, so there exists a bijection f : Til .... Til 
Ji.IB I Ji.IB2 il Ji.IB I Ji.IB 2 

and 

We can construct such f for all il E R = R . Thus we can construct the 
il Ji.1 B 1 Ji.1 B2 

required bijection f: B1 .... B2 by letting f(b) = fJi.(b)(b). 

Clearly then Ji.1 B 1 (b) = Ji.1 B2 (f(b)) for all b E B 1· 

We say that a fuzzy vector space Ji. over E for which a basis B exists is 

finite dimensional if and only if ill B is a finite fuzzy set or dim(Ji.1 B) is 

a finite fuzzy cardinal. 

Proposition 4.5.3 

All fuzzy vector spaces Ji.: E .... L for which E~ is finite dimensional for all il E L\ {O} 

have a basis and are finite dimensional. We can justify the converse as well . 

Proof 

Since for all il E L\ {O}, E~ is finite dimensional, il(E~) is finite and thus 

we must have R
il

, a decreasing sequance to zero, which is upper well ordered. 

Thus by Theorem 4.4.5 il has a fuzzy basis. Clearly Ji. is also finite 

dimensional. i.e. ill B is finite. Converse follows simply as well. 

Proposition 4.5.4 

Let il be a fuzzy vector space over a finite dimensional vector space E wi th basis B 

for il and B* be any other basis for E, then there exists a bijection f : B* .... B such 

that ji.(b) ~ Ji.(f(b)). 
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Since E is finite dimensional, 1 JL(E\ {O})I = k ~ dim E. Let JL(E\ {o}) = {J.Ij}f =1 

such that IJ.; > IJ.; + l ' Since B is a basis for J1., B n EJ1.; is a basis for the vector 
1 1 J1. 

subspace EJ1.; and B* n EJ1.; is an linearly independent subset of EJ1.;. 
J1. J1. J1. 

Thus 1 B* n E~; 1 ~ 1 B n E~; 1 for all i E { 0, .. . , k }. Define recursively a set of 

injections { f1, f2, . •• , fn } as follows: let fl be any injection from B* n EJ1.1 to 
J1. 

B n E~I . Such fl exists since 1 B* n E~1 1 ~ 1 B n E~1 1 and clearly JL( v) ~ J1.( it( v)) 

for all v E B* n EJ1.I Given an injection fn-1 from B* n EJ1.n-l to B n EJ1.n-1 such that 
J1. J1. J1. 

JL(v) ~ J1.(fn-l(V)) for all v E B* n E~-I, let gn be any injection from B* n T~ 

to En = (B n EJ1.n )\ fn-l(B* n EJl.n-l) such that there exists x E B* n TJ1.n with 
J1. J1. J1. 

JL(x) = max(Cn) . Such gn exists since cn is finite and, 

1 B* n TJ1.n 1 = 1 B* n EJ1.n 1 - 1 B* n EJ1.n-l 1 
J1. J1. J1. 

~ 1 B n E~ 1 - 1 B* n E~-1 1 

= 1 B n E~ 1 -I fn-I ( B* n E~-1 ) 1 

= 1 (B n EJ1.n ) \ fn-1{ B* n EJ1.n-l ) 1 . 
J1. J1. 

Define fn : B* n E~ -. B n E~ as follows: If v E B* n E~-1 then let fn{v) = fn-1(v), 

otherwise let fn(v) = gn(V). It is now clear that fn is an injection and since 

gn( B* n T~ ) C E~, n E { 2, ... , k}, it follows that J1.(v) ~ JL(fn(v)) for all 

v E B* n E~. Since E~k = E and 1 B* 1 = 1 B 1 it follows that fk is a bijection 

between B* and B such that JL(v) ~ J1.(fk(V)) for all v E B*. 

The above proposition extends to any finite dimensional fuzzy vector space J1. . 

This can be seen by observing that if J1. is finite dimensional then RJ1. is either 

finite, in which case the above proposition applies directly, or a sequence 

decreasing to zero such that for all a E L\ {O}, E~ is finite dimensional. 

In the later case we define bijection f : B* -. B as follows : Let R = { J1.1, /1-2, '" } . 
J1. 

If v E supp(J1.) n B* then x E E~ for some n E IN . So, let f(v) = fn{v) . At this point 

we may assume that E = supp(J1.) . Clearly f is an injection. Let b E B. Then for 
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some n E IN, bE EI"n. From the definition in Proposition 4.5.4 of gn's we see that 
I" 

there exists m E IN and v E B* such that gm( v) = b. Consequently f is a bijection. 

Let us introduce the following equivalence relation N with respect to I" 

on the set of all basis for E: Bt N B2 iff there exits a bijection f : Bt .... B2 

such that I"(f(b)) = I"(b) for all b E Bt. It is easy to show that N is indeed 

an equivalence relation. Let C = { [Bl : B is a basis for E }, where [Bl is the 

equivalence class containing B. 

Furthermore we can introduce the following partial ordering i with respect to I-" 

on C: [Btl i [B2l iff there exist a bijection f: Bt .... B2 such that 

for all b E Bb !"(f(b)) ~ !"(b). It is reasonably easy to show that i is well defined 

and indeed is a partial ordering on C. 

Proposition 4.5.4 states that a basis B for a finite dimensional fuzzy vector space I-" 

is any element from the maximal equivalence class C under this order. In fact the 

maximum equivalence class. 

We now investigate further the properties of dimension of fuzzy vector spaces. 

In the example which follows we are going to use Blanchard's cardinality i.e. 

dim(l") = cardB(I") . Recall notation setup in the Definition 3.1.12. 

An important result from crisp theory that we would like to have in fuzzy setting is: 

If 1"1 and 1"2 are two fuzzy vector spaces over E then: 

(0) dim(1"1 + 1"2) 6) dim(1"1 II 1"2) = dim(l"l) 6) dim(1-"2)' 

Unfortunately this is not always true. 

Consider E = Ill, 1"1 " ~, 1-"2" i then 1"1 11 1-"2 = 1"1 + 1"2 " l So we don't even have 

1-"1 V 1"2 ~ 1"1 + 1"2 ' Clearly dim(1"1) = (~), dim(1"2) = (i), dim(l"l + 1-"2) = (i) and 

dim(l-"l II 1-"2) =(i) thus 

• 
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dim(/ll + ~) III dim(/ll II ~) = ({,{) * (~.{) = dim(/ll) III dim(/l2). 

It is easy to check that if ~ = { in above example is modified to ~(IR\ {O}) = { 

and ~(O) = i then (0) holds true. This example is significant in that it points 

out the flaws in the definition of the sum of two fuzzy vector spaces. which is 

derived using Zadeh's extension principle. 

We believe that /ll + ~ should be defined as follows: 

/ll + /l2 = II { /l : /l is a fuzzy vector space with /ll V ~ ~ /l } 

It is easy to see that such sum makes (0) valid in case /ll = ~ and /l2 = {. 

We note in passing the following. 

Proposition 4.5.5 

If /l is any fuzzy vector space over E where E is finite dimensional. 

then any basis B for /l can be constructed in the following way: 

Let /l(E\{O}) = {al' ...• ak}. For each aj> i=l •...• k define Ba. recursively 
1 

( starting with B ) such that B is any maximal set of linearly independent a l ai 

vectors in Tai that extend the basis U B of Rai to a basis U B of Eai 
/l j<i aj /l i~j aj /l 

Then B = U B is a basis of E such that B is also a basis for J.t •. 
i~k ai 

Proof ( Easy ) 

We now shall prove that under certain conditions (0) holds true. and give more 

interesting examples to illustrate the result. 

Note that in the following theorem the conditions /ll (0) ~ sup [/l2 (E\ {O})] and 

/l2(0) ~ sup [Ill (E\ {O})] are equivalent to /ll (0) II /l2(0) ~ /ll (x) V /l2(x) for all 

xE E\ {O}. 
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Theorem 4.5.6 

Let Ji.1 and Ji.2 be two fuzzy vector spaces over a finite dimensional vector space E 

such that Ji.1 (0) ~ sup [Ji.2 (E\ {o})] and Ji.2(0) ~ sup [Ji.1 (E\ {O} )]. Then 

there exist a basis B for E, which is also a basis for Ji.1' ~, Ji.1 /I ~ and 

J1.r +~. In addition, if Al = { x EEl Ji.1 (x) < ~(x) }, A2 = E\A1' then 

for all v E B n Al ' (Ji.1 /I 1'2)(v) = 1'1 (v), (1'1 + 1'2)(v) = 1'2(v) and 

for all v E B n A2 ' (1'1 /I ~)(v) = ~(v), (1'1 + 1'2)(v) = Ji.1 (v). 

Proof (By induction on dim E). 

In case dim E = 1 the statement is clearly true. Now suppose that the theorem 

is true for all the fuzzy vector spaces with the dimension of the underlying 

vector space equal to n. 

Let 1'1 and ~ be two fuzzy vector spaces over E with dim E = n+1 > 1. 

Let B1 = {v)~!i be any basis for 1'1' The existence of such basis is is guaranteed 

by Corollary 4.4.6. We may assume that 1'1(v1) ~ 1'1(vi) for all i E {2, ... , n+1}. 

Let H = span( {v)~!~ ). Since n+1 > 1, H j {O}. Clearly dim H = n. 

Define the following two fuzzy vector spaces: 111 = Ji.11 H and 112 = 1'21 H' 

By inductive hypothesis there exists a basis B* for H which is also a basis 

for 111' 112, 111 /I 112 and 111 + 112, 

Also for all v E B* n AI' (Ji.11 H /I 1'21 H)(v) = I'll H(v) and 

(I'll H + 1'21 H)(v) = 1'21 H(v) and for all v E B* n A2, (Ji.11 H /I 1'21 H)(v) = 1'21 H(v) 

and (I'll H + 1'21 H)(v) = Ji.11 H(v). 

We shall now show that B* can be extended to B such that B is a basis 

for 1'1' 1'2' 1'1 /I 1'2 and 1'1 + 1'2' Furthermore for all v E B n AI' 

(1'1 /I ~)(v) = 1'1 (v) , (1'1 + 1'2)(v) = 1'2(v) and for all v E B n A2 

(1'1/\ ~)(v) = 1'2(V) , (1'1 + 1'2)(v) = 1'1(v). 

First we have to show that for all x E H 

• 
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Let x E H\ {O}, then we have: 

(It I + 1t2)1 H (x) = sup {It I (xl) II 1t2(x-xl)1 xl E E} 

= sup {It I (xl) II ~(x-xI)1 xl E H} 

V sup {It I (~) II 1t2(X-X2)I x2 E E\H} 

Since x E H\ {O} we have 

Itl (x) II 1t2(x-x) = Itl (x) II 1t2(0) ~ sup {It I (xl) II 1t2(x-xI) I xl E H} 

Itl (0) II ~(x--O) = Itl (0) II ~(x) ~ sup {It I (xl) II 1t2(x-xl) I xl E H}. 

Since ~ (0) ~ sup [1t2(H\ {O})] and 1t2(0) ~ sup [It 1 (H\ {O})] 

Itl (x) II 1t2(0) = Itl (x) and Itl (0) II 1t2(x) = 1t2(x), 

this leads to the following inequality: 

(2) Itl (x) V ~(x) ~ sup {It 1 (xl) II 1t2(x-xl) I xl E H}. 

Suppose that: 

(3) sup {ltl(xl ) II ltiX-xl) I xl E H} < sup {ltl(x2) II 1t2(x-~) I x2 E E\H}. 

This means that there exists x E E\H such that 

sup {It 1 (xl) II 1t2(x-xl) I xl E H} < Itl (x) II 1b2(x-x). 

In view of (2) we must have 

(4) Itl (x) V 1t2(x) < Itl (x) II 1t2(x-x). 

Since x E E\ Hand Itl (E\ H) = Itl (v 1) ~ Itl (vi) for all i E {2, .... , n+1} 

we must have Itl (x) ~ Itl (x) . 

Thus (4) becomes Itl (x) V 1t2(x) < Itl (x) A 1t2(X-X). 

It is easily checked that the last inequality never holds. 

(Use the properties of A, V and <). This means that our assumption (3) is false . 

Therefore we must have: 

sup {1b1(xl ) II 1b2(x-xI) I Xl E H} ~ sup {ltl(x2) II 1t2(x-x2) I x2 E E\H}. 

Clearly this is also true if x = O. To conclude we have for all x E H 

• 
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(~l + ~2)1 H (x) = sup {~l (Xl) II ~(x-xI) I xl E E} 

- (sup {~l (Xl) II ~2(x-xI) I xl E H} ) 

V (sup {~1(x2) II ~(x-x2) I x2 E E\H} ). 

But since sup {~I(xI) II ~2(x-xI) I Xl E H} ~ sup {~I(x2) II ~2(x-x2) I ~ E E\H} 

= sup {~l (Xl) II ~2(x-Xl) I Xl E H} 

= sup {~ll H(xI ) II ~21 H(x-xI ) I Xl E H} 

= (~ll H + ~21 H)(x). This establishes (1) . 

Clearly (1) implies that B* is linearly independent in ~l + ~2. 

Let v* E E\H such that "'2(v*) = sup ["'2(E\H)]. 

Clearly such v* exists since ~2 assumes a finite number of values. 

By Lemma 4.4.3 and Lemma 4.4.4, v* is an extension of basis B* for v
2 

to 

B = B* U {v*} a basis for~. Since "'1(E\H) = "'l(vI ) then v* is also 

an extension of basis B* for VI to B a basis for ~l. 

Now we shall show that v* is an extension of the basis B* for VI II v2 

to B a basis for "'1 II ~2· If v* E Al then since "'1 is constant on E\ H, 

(~lll "'2)(AI n (E\H» = "'l(v*) and for all z E A2 n (E\H), ("'111 ~2)(z) $ "'1(v*). 

From this we may conclude that if v* E Al then 

(~lll ~)(v*) = sup [(~l fI ~2)(E\H)]. 

If v* E A2 then ~2(v*) $ ~l (v*). Since "'2(v*) = sup [~2(E\ H)] and 

~l is constant on E\H we must have Al n (E\H) = ¢. 

Therefore we have that if v* E A2 then ("'1 II il2)(v*) = sUP[("'1 II ~)(E\ H)]. 

By Lemma 4.4.4 we may now conclude that v* extends basis B* for 

VI fI v2 to B a basis for "'1 II "'2· 

Now we shall show that v* is also an extension of B* a basis for 

VI + v2 to B a basis for ~l + ~2 · Suppose that there exists Z E E\ H 

• 
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such that (1'1 + 1'2)(v*) < (1'1 + 1'2)(z) . Clearly vector z can be written in the form 

z = a(v* + v) where a f 0 and v E H. Therefore we have 

(1'1 + 1'2)(v*) < (1'1 + 1'2)(z) = (1'1 + ~)(a(v* + v)) = (1'1 + 1'2)(v* + v). 

This means that there exists Xl E E such that for all x 

(5) I'l(x) A 1'2(v* -x) < 1'1(Xl ) A 1'2(v* + v -xl) ' 

In particular (5) is true if x = 0, i.e. 

1'1 (0) A 1'2 ( v*) < 1'1 (xl) A 1'2(v* + v - Xl) ' 

But since 1'1 (0) ~ sup[~(E\ {O})] we have 

(6) 1'2(v*) < 1'1 (xl) A ~(v* + v - Xl) ' 

If Xl E H then since v E H we must have v - Xl E H. 

Thus by Lemma 4.4.3., 1'2(v* + v - Xl) = ~(v*) A 1'2(v - Xl) 

so (6) becomes ~(v*) < 1'1 (xl) A 1'2(v*) A 1'2(v - Xl)' which is impossible. 

Thus Xl E E\H. Let x = v* in (5) and since 1'2(0) ~ sup {l'l(E\{O})} we have 

(7) I'l(v*) < I'l(xl ) A 1'2(v* + v-Xl) ' 

Recall that 1'1(E\H) = I'l(vl ) and thus I'l(v*) = I'l(xl ), 

This again means that inequality (7) is false. Thus for all z E E\ V, 

(1'1 + ~)(v*) ~ (1'1 + 1'2)(z). Therefore by Lemma 4.4.3, v* is an extension 

of the basis B* for VI + v2 to a basis B for 1'1 + 1'2' 

Now we shall show that if v* E Al then (1'1 + 1'2)(v*) = 1'2(v*) and 

ifv* E A2 then (1'1 + 1'2)(v*) = 1'1 (v*) . From the definition we have: 

(1'1 + 1'2)(v*) = sup {I'l (Xl) A 1'2(v* - Xl) I Xl E E}. 

Let x be such that sup {I'l (Xl) A 1'2(v* - Xl) I Xl E E} = 1'1 (x) A 1'2(v* - x). 

By substituting Xl = 0 and then Xl = v* and recalling that 

1'1 (0) ~ sup {I'l (E\ {O} nand 1'2(0) ~ sup {I'l (E\ {O} n , we obtain 

1'1 (v*) V ~(v*) ~ 1'1 (x) A 1'2(v* - x). 

• 
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Suppose that: 

(8) JLl(v*) V ~(v*) < JLl(x) II ~(v* -x). 

If x E H then by Lemma 4.4.3,( as B = B* U {v*} is a basis for JL2 ) 

(8) becomes 

JLl(v*) V ~(v*) < JLl(x) II JL2(v*) II JL2(x). 

This is never true, thus x E E\ H. But now since JLl (v*) = JLl (x) 

the inequality (8) never holds, thus 

(9) JLl(v*) V ~(v*) = JLl(x) II JL2(v* -x) = (JLl + JL2)(v*). 

Equation (9) clearly leads to the required result. This completes the proof. 

The Theorem 4.5.6 is a valuable tool for fuzzy vector spaces. 

The follOwing is one result which follows from it . 

Theorem 4.5.7 

If JLl and JL2 are two fuzzy vector spaces over E such that 

the dimension of E is finite and JLl (0) ~ sUP[JL2(E\ {O})] and JL2(0) ~ sUP[JLl (E\ {O})] 

then dim(JLl) Ell dim (JL2) = dim(JLl + JL2) Ell dim(JLl II JL2). 

Proof 

Let B be the basis from Theorem 4.5.6. 

Then it follows from Theorem 4.5.6 that (JLl + JL2)1 B = JLll B V JL21 B and 

(JLl II JL2)1 B = JLll Il II JL21 B· We know that cardinals have the additive property 

from Chapter 3 (whichever cardinality we choose), thus 

dim(JLl + ).12) Ell dim().Il II JL2) = card( (JLl + JL2) I B ) Ell card( (JLl II ).12) I B ) = 

card( ).111 B V ).121 B) Ell card( JL11 B II ~I B) = card( JL11 B) Ell card( JL21 B) = 

dim().Il) Ell dim( JL2). 

• 
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Theorem 4.S.6 and Theorem 4.S.7 can be extended to fuzzy vector spaces 

with finite dimension by process recursion as follows: 

If J1. is finite dimensinal then from Proposition 4.S.3 we have that 

R is a decreasing sequence to zero such that for all a E R , E a is finite 
J1. J1. J1. 

dimensional. Since each level E~ is finite dimensional we can apply Theorem 4.S.6 

to J1.t EO, to obtain the result . 
J1. 

Example 4.S.8 

Suppose E = 1R2. Define J1.1 and ~ as follows : 

and 

{ 

S/6 
J1.1 (x,y) = 1/2 

1/4 

ifx=y=O 
if x = 0 and y f 0 
otherwise 

{

I ifx=y=O 
J1.z{x,y) = 1/3 if x = y and x f O. 

liS otherwise 

It is easily checked that J1.1 and ~ are fuzzy vector spaces over E, and 

J1.1 (0) ~ sup {JL2(E\ {Om and J1.2(0) ~ sup {J1.1 (E\ {Om· It is also easy to check that : 

{

S/ 6 ifx=y=O 
(J1.1 II JL2)(x,y) = 1/4 if x = y and xf 0 , 

liS otherwise 

{ 

S/6 
(J1.1 + JL2)(x,y) = 1/2 

1/3 

if x = y = 0 
ifx=OandyfO 
otherwise 

and B = {(O,l), (l,l)} is a basis for J1.1' J1.2' J1.1 II J1.2 and J1.1 + JL2' thus 

dim(J1.1 + J1.2) =(~,j), dim(JLI II J1.2) =({,i) , dim(JLI) = (~,{) and dim(J1.2) = (H)· 

dim(J1.I) Ell dim(J1.2) = (M,{,i) = dim(J1.1 II J1.2) Ell dim (JLI + JL2) · 

Definition 4.S.9 

Let J1. be a fuzzy vector space over E and f: E.., F a linear map, 



79 

where F is another vector space, then we define the image and the kernel 

of a linear map f on j.J, as f(j.J,) and j.J,1 ker f respectively. 

Note that we use Zadeh's definiton of an image f(j.J,) of a fuzzy set j.J, 

under crisp function f. 

Theorem 4.5.10 

Let j.J, be a fuzzy vector space over E with E finite dimensional, 

f : E --l F a linear map, then dim( j.J,1 ker f ) III dim ( f(j.J,) ) = dim ( j.J, ) • 

Proof 

Suppose that kerf f {a}. If kerf = {a} then the result follows trivially. 

Now let Bker be a basis for j.J,1 ker f' and BEx be an extension of Bker 

to a basis for j.J, (this is clearly possible by a repeated application 

of Lemma 4.4.4.). So B = Bker U BEx is a basis for j.J, with Bker n BEx = ¢. 

We first show that Blm = f(BEx) is a basis for f(j.J,). Clearly Blm is a basis 

for 1m f = f(E). Let v1'" ' ' vk E BEx and a1, ... , ak E IR not all zero . 

By definition we have: 

f(J.I) ( ~ a. f(v.))=jsUP{j.J,(X)1 XEf-\! aif(vi)) 
. 1 1 1 1-1 
1= 0 

k 
if f-I( h a. f(v.))j ¢ 

i=1 1 1 
otherwis e 

k 
Since h a. f( v.) E 1m f we have 

. 1 1 1 1= 

k k 
f(j.J,) ( h a· f(v.)) = sup { J.1,(x) I x E f-I( h a. f(v.) ) } 

'1 11 ' 1 11 1= 1= 

by linearity of f and by the properties of f- I we get 

k k 
f(j.J,) (h a. f(v.)) = sup { J.I(x) I x E kerf + h a.v. } 

'1 1 I '111 1= 1= 
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P 
If z E ker f then z = 0 or z = i~l bi ui' ui E Bker 

k 
where not all b. are zero; so if z E ker f + E a· v· 

1 i=l 1 1 
k P k 

then either J.L(x) = J.L( 0 + i~l ai vi ) or J.L(x) = (i~l biui +i~l aivi), 

p k 
thus J.L(x) = min (A J,L(b.u.), A J.L(a.v.)) 

' 1 11 ' 1 11 
1= 1= 

k 
which is clearly smaller or equal to J.L( E a. v.). Thus: 

. 1 1 1 1= 
k k 

f(J.L)( E a.f(v.)) = A J.L(a. v.). 
'1 11 '1 11 
1= 1= 

By the same argument we get that 

f(J.L) (f(v)) = J.L(vi). Thus 

k k 
f(J.L) (E a.f(v.)) = A f(J.L)(a. v.) and therefore 

i=l 1 1 i=l 1 1 

Blm is a basis for f(J.L). 

Now by the definition of dimension, and since J.Lr B A J.Lr = ¢, we get 
ker f BEx 

dim J.L = card( J.Lr B ) 

= card( J.Lr B V J.Lr B ) 
ker Ex 

= card( J.Lr B ) ED card( J.Lr B ) 
ker Ex 

= card( J.Lr B ) ED card( J.Lr B ) 
ker 1m 

= dim(J.Lr ker f) ED dim( f(J.L) ). 

Corollary 4.5.11 

The above theorem extends to finite dimensional fuzzy vector spaces, by an 

argument as before. (i.e. if Q > 0 then E~ is finite dimensional) . 
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5. FUZZY GROUPS 

5.1. INTRODUCTION-PRELIMINARIES 

In this chapter we would like to improve on some of the results already 

obtained in fuzzy group theory. Throughout this chapter L will be a complete chain. 

The definition of a fuzzy group was given by A. Rosenfeld [38] in 1971. Since then 

definitions of various concepts related to fuzzy groups have been introduced. 

Unfortunately large proportion of these concepts are not interesting or aren't really 

generalisations of the crisp concepts. Before we proceed with this let us recall the 

following: 

If H is a subgroup of G ( written H < G ) then, [G:H] denotes the index of H in G. 

Denote by e and S(n) the identity of any group and the cyclic group consisting 

of the n, n-th roots of unity respectively. 

Given a group G, a fuzzy group J1 on G is a fuzzy set J1 : G ... L satisfying [38], 

/1(gh) ~ J1(g) 1\ /1(h), and J1(g.l) = J1(g) 

Recall that if J1 is a fuzzy group then, for all e! E L, He! < Ee! < G. 
J1 J1 

Two fuzzy groups J1 : G1 ... L and v : G2 ... L are strongly isomorphic if and only if 

there exists an isomorphism 

f: sUPP(J1)'" supp(v) 

such that 

f( J11 sUPp(J1)) = VI supp(v) 

and they are weakly isomorphic if and only iffor all e! E L\ {O}, the level groups He! 
J1 

and H~ are isomorphic 
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We define finitely generated fuzzy groups as those for which all non zero level 

groups ( i.e. Ea, a E L\ {O} ) are finitely generated. Then, we show that the 
Jl-

fini tely generated fuzzy groups are precisely those which are f-<:ompact in the 

lattice of fuzzy groups. If we were to treat this lattice as a crisp lattice of 

crisp points and apply crisp lattice compactness then the previously mentioned 

result would not hold. Instead, we think of the elements of this lattice as fuzzy 

objects and we use compactness that makes sense in the fuzzy situation. In the 

case when the lattice is equal to {O)} all the results reduce to the crisp case. 

In the chapter on cardinality we have proved that a fuzzy set is finite if and only if 

it is f-<:ompact in the fuzzy discrete topology. Thus, we will, immediately, notice 

the unity between the two mentioned f-<:ompactness relations. 

In (32) P. Bhattacharya and N. P. Mukherjee define the order of a fuzzy group 

Jl-: G ... [0,1) as the crisp cardinality of the set {x E G : Jl-(x) = Jl-(e) }. 

(Also the order of G is assumed to be finite .) 

Using this definition they obtain the following "fuzzy" version of Lagrange's 

Theorem: If Jl-, v: G ... [0,1) are two fuzzy groups such that Ji-(e) = v(e) and v ~ Jl

then the order of v divides the order of Jl-. 

It must be pointed out that this is not a fuzzy version of Lagrange's Theorem. 

All that this statement says is that the order of group E~(e) divides the order of 

E~(e) . Thus, such a definition of order of a fuzzy group is not satisfactory. 

How can the order of a FUZZY group be a crisp cardinal? 

Surely, we must look to fuzzy cardinals for a proper definition of order of a fuzzy 

group. In what follows we shall give a satisfactory definition of order of a fuzzy 

group, prove Lagrange's Theorem using this definition, define and justify finitely 

generated fuzzy groups and finally define and classify cyclic fuzzy groups. 

Most of the contents of this chapter come from (29). 
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5.2. FINITELY GENERATED FUZZY GROUPS 

There have been various proposals for a finitely generated algebraic fuzzy objects . 

For instance see [51]. The authors did not consider the finiteness-compactness 

relation before introducing a definition of finitely generated objects. 

This has resulted in the definitions being too restrictive. 

In this section we look more closely at the finiteness-compactness relation. 

If G is a group, then let g be the set of all fuzzy groups on G. 

The supremum V and infimum A in g are defined in the following way: 

if It, /I E g then It A /I = J.! A /I and It V /I = A { wE g : J.! V II ~ w}. Thus g = (g, A, V) 

is a lattice; in fact it is complete. 

Proposition 5.2.1. 

If C is a collection of fuzzy groups from g then, 

VC=v{alA :O<EL\{O}}, where Ao<=V{H~:IIEC} . 
0< 

Proof. 

Since H~ ~ H~ for all 0< ~ {J and II E C , V { H~ : /I E C } ~ V { H~ : /I E C } 

for all 0< ~ {J and /I E C. Consequently, the fuzzy set, 

It=V{alA :O<EL\{O}} 
0< 

is a fuzzy group and V C ~ J.!. Let WE g such that V C ~ w. 

Clearly, V C ~ W if and only if for all a E L\ {O}, U { H~ : /I E C } ( H~. 

Since for all aE L\{O} , HO< = V {HO< : /IE C } 
It II 

is the smallest group containing U { Ha : II E C } we must have HO< < Ha. 
II It W 

Thus It ~ w. which proves this proposition. 
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Corollary 5.2.2. 

If C is a collection offuzzy groups from g, then: 

H~C = V {H~: liE C } and Efc = II {E~: liE C }. 

Definition 5.2.3. 

Given the lattice g = (g, II, V) of fuzzy groups on a crisp group G, 

then J1. Egis j-compact in g if and only if for all a ELand C c g such that 

(J1.' V (V C)) ~ al
G 

then, in case Ct E L_, there exists a finite subcollection 

1 c C such that (J1.' V (V 1)) ~ al
G 

' otherwise for all /3 < a there must exist 

a finite subcollection 1 c C such that (p/ V (V 1)) ~ /3IG' 

Definition 5.2.4. 

A fuzzy group Ji. Egis finitely generated if and only if 

for all a E L\ {a} the group E~ is finitely generated. 

Theorem 5.2.5. 

A fuzzy group J1. Egis finitely generated if and only if J1. is f--<:ompact in (G, g). 

Proof. 

Suppose Ji. Egis finitely generated, thus for all Ct E L\ {O}, Ji.-l([ a,l]) is a finitely 

generated crisp group. Clearly for all Ct E L\ {I}, (J1.' t1([O, a]) is a finitely generated 

crisp group. Let a ELand C c g be such that (Ji.' V (V C)) ~ al
G

. 

In case aE L_\{l}, by Corollary 5.2.2 . ,E~C = H~C = V {H~: liE C} 

= V { E~ : II E C } covers the finitely generated group (J1.' ) -l([O,Ct]). 

Therefore there exists a finite subcollection 1 c C, such that E~, = V { E~ : II E 1 } 

covers (J1.' tl([O,a]) . Consequently (J1.' V (V 1)) ~ al
G

· If Ct = 1 E L_ then, 

(J1.' t1([O,1)) is finitely generated and E~C = V { E~: II E C } certainly covers 

(p/ tl([O,l)). So there exists a finite subcollection 1 c C such that ~, covers 
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(~' tl([O,l)). Consequently (~' V (v 1)) ~ IG. In case Ct t L_, let {l < Ct. 

Clearly {lj 1. Thus the group (~' )-I([O,{J]) is finitely generated, and the proof 

follows similarly. The converse follows easily, ·by backtracking. 

5.3. LAGRANGE'S THEOREM FOR FUZZY GROUPS 

In this section we shall investigate the order of finite fuzzy groups. 

For finite fuzzy sets it is sufficient to use Blanchard's fuzzy cardinality. 

To proceed further we need to define when one fuzzy cardinal divides another 

and establish some other technical results. 

Recall from Chapter 3 the notation used to express finite fuzzy cardinals. 

Definition 5.3.1. 

Let c[ and C2 be two finite fuzzy cardinals. We say that c[ divides C2 strongly 

if and only if there exists a finite fuzzy cardinal c such that CI ® c = C2, 

and CI divides C2 weakly if and only iffor all Ct E L\ {O}, sup ECt divides sup ECt . 
CI C2 

Example 5.3.2. 

Let L = [0,1]' CI = (~ , ~, -}, -}) and C2 = (~,~,~,~, {, {, {, {) be two finite fuzzy 

cardinals. It is easily checked that c[ divides C2 weakly but CI does not divide C2 

strongly. 
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Proposition 5.3.3. 

Let m, n E IN, a, f3 ELand clo C2, C3 E K~L) then, 

(a) al{O, ... ,m} II f31{O, .. . ,n} = (aA (3)l{O, ... ,mn}' 

(b) (CI V C2) II C3 = (CIII Ca) V (C2 II C3), 

(c) CIII C2 = V V (-y A 8)l{O, ... ,(sup E'l' Jesup EO )} , 
ER oER CI C2 

1 CI C2 

(d) if CI(1) = c2(1) then RCIII C2 = RCI U RC2 and, 

CI II C2 = V 01{ ( EO )( EO )} . 0, .. . , sup sup 
oER U R CI C2 

C I C2 
Proof. 

Part (a) is easy. To see part (b) we note, 

[( CI V C2) II c3](k) = sup{ (CI V c2)(kl) A c3(k2) : kl k2 ~ k } 

= sup{ (cI(kl) A c3(k2)) V (c2(kl) A c3(k2)) : kl k2 ~ k } 

= sup{ cI(kl) A c3(k2) : kl k2 ~ k } V sup{ c2(kl) A c3(k2) : kl k2 ~ k } 

= (CIII c3)(k) V (C2 II c3)(k). 

Part (c) follows from the fact that we can write CI and C2 in the following way: 

CI = V 11{0 ( E'l' )} and C2 = V 01{ ( EO )} , , ... , sup C 0, ... , sup C 
1ER I OER 2 

CI C2 
and using parts (b) and (a) we obtain, 

= V V ('l'1{ ( 'l' )} ) II ( 01{ ( 0 )} ) 0, .. . , sup Ec 0, ... , sup E 
%R ~R I ~ 

CI C2 

= V V (-y A O)l{ ( 'l' )( 0 )} . 0, ... , sup Ec sup E 
1ER OER I C2 

CI C2 
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Finally we prove part (d). If 11 E R 4 C . By part (c) and since Rc 4 Cl ~ 2 1 ~ C2 

is upper-well-ordered, 11 = 12 " 13 for some 12 E RCI and 13 E RC2 · 

Since L is totally ordered 11 E R or 11 E R . In other words 11 E R u R . Cl C2 Cl C2 

Hence R 4 ( Rc u R . Clearly 1 E Rc n Rc n Rc 4 c . If 12 E Rc \ {I} then Cl ~ C2 1 C2 1 2 1 ~ 2 1 

let 13 = inf (R n b2,1) ). Since cl(l) = c2(1) and the set (Rc n b2,l) ) is finite, 
~ 2 

E,3 > 1 and 13 E R . Consequently for all 14 E Rc such that 14 > 12 we have C2 - C2 1 

(sup EI4)(sup E13) < (sup EI2)(sup EI3). Thus by part (c) there exists k E IN 
Cl C2 Cl C2 

such that (CIS c2)(k) = 13· Hence RCI ( RC1S C2· Similarly RC2 ( RC1S C2· 

SO R U R ( R 4 • The last identity follows easily. 
Cl C2 Cl ~ C2 

Definition 5.3.4. 

If p, is a finite fuzzy group we define the order o(p,) of this group by o(p,) = card(Jk). 

In what follows we assume that for all fuzzy groups p, and v, Jk(e) = v(e). This 

requirement was imposed by other authors as well, see [1) and [32) p .87. 

In fact in [1) Jk(e) = 1 for all fuzzy groups. A direct consequence of this assumption 

is that 0(p,)(1) = o(v)(l). If one did not impose the above condition the following 

theorem would be meaningless. The definition of order in [31,32,33) is not 

satisfactory as we have already stated in the introduction. 

Theorem 5.3.5. (Weak Lagrange's Theorem for fuzzy groups) 

If v is a finite fuzzy subgroup of p" ( i.e. v ~ p, ) then o( v) divides o(p,) weakly. 

Proof. 

It is easy to verify that, 

o(p,) = (V O!l{O, ... ,1 EO!I} ) V l{O} and o(v) = (V O!l{O, ... ,1 EO!I} ) V l{O} 
~~ Jk ~~ v 
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Since v ~ JI., for all Ct E L\ {O}, E~ is a subgroup of E~ and thus sup E~(v) = I 

divides I E~ I = sup E~(JI.)' So o(v) divides o(JI.) weakly. 

Definition 5.3.6. 

If v is a fuzzy subgroup of a finite fuzzy group JI.; we say that v is regularin JI. 

if and only iffor all Ct, {JE L\{O} with Ct~ {J, [E~:EJ ~ [E~:E~. 

Remark 5.3 .7. 

If v is regular in a fini te fuzzy group JI. then Rv C R JI.' 

Proof. 

Suppose Ct E Rv\RJI.' Let {J = min{ 'Y E RJk: 'Y> Ct }. Clearly, {J > Ct, E~ = E~ and 

E~ < E~. Consequently, [E~:EJ < [E~:E~. A contradiction. 

Theorem 5.3.8. ( Strong Lagrange's Theorem for fuzzy groups) 

Let v be a fuzzy subgroup of a finite fuzzy group JI. then, o(JI.) is strongly divisible 

by o( v) if and only if v is regular in JI.. 

Proof. 

Suppose o(JI.) is strongly divisible by o(v). Thus there exists a finite fuzzy cardinal 

c such that o(JI.) = c ® o(v). Since o(Jk)(l) = 0(/1)(1), c(l) ~ o(JI.)(l). 

Without loss of generality we can assume that c(l) = o(v)(l). 

By part (d) from Proposition 5.3.3 we have: 

o(JI.) = V ol{O, ... ,1 EOI} = c ® o(v) = V 01{O, ... ,(sup EO)I EOI} 
JI. c v 

OERJI. OERcU R/I 

and since for a ~ {J, sup E~ ~ sup E~ we must have [E~:EJ ~ [E~:E~l . 
So v is regular in JI.. 
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Conversely, let ZI be regular in J.I. and c E K~L) be given by, 

c = ( V a1{0' .. . '[Ea:E~]}) V 1{0} 
aER J.I. 

Jl. . 

Clearly, c(l) = o(ZI)(l), and thus by above Remark, part (d) of the previous 

Proposition, 0(J.L) = c II o( ZI). 

Example 5.3.9. 

Let L = [0,1], J.I. = ~lS(4) V t1S(8) and ZI = j1S(2) V j1S(4)· Clearly II is a fuzzy 

subgroup of J.I., 0(J.L) = (~, !, ~, ~, t, t, t, t) and O(ZI) = (!, !, j , j). 

From previous example we note that O(ZI) divides o(J.I.) weakly and O(ZI) does not 

divide o(J.I.) strongly. Hence the weak Lagrange Theorem holds but not the strong 

one. However if ZI is redefined to ZI = ~lS(2) V t1S( 4) then letting 

c = (1,1) we obtain 0(J.L) = c II O(ZI). Thus strong Lagrange Theorem is true in 

this case. 

Definition 5.3.10. 

If ZI is a regular subgroup of a finite fuzzy group J.I. then we define the index 

of ZI in J.L, by, [J.I.:II] = V { c E K~L) : 0(J.L) = C II O(ZI) }. 

By looking at 5.3.8 it is easily checked that [J.L:ZI] E K~L) and 0(J.L) = [J.L:II] II 0(11) . 

5.4. CLASSIFICATION OF CYCLIC FUZZY GROUPS 

Motivated by the theorem and the definition from the section on finitely generated 

fuzzy groups we introduce and characterise the concept of a fuzzy cyclic group. 

Note that this is different from other authors. They require the support to be 

a crisp cyclic group. We are less restrictive in the definition that follows . 
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Definition 5.4 .l. 

A fuzzy group Jl- : G ... Lis eyelicif and only if for all a E L\ {o} the crisp group 

Ea . cr Jl- IS cy IC. 

The following two technical lemmas from the crisp group theory are required in this 

section. These lemmas should be found somewhere in the literature, however we 

were unable to locate them so we include them here. The Lemma 5.4.3 is of a highly 

non-trivial nature since it uses Dirichlet's Theorem. 

Lemma 5.4.2. 

If GI is an infinite cyclic subgroup of an infinite cyclic group G2 and fl : GI ... II 

is an isomorphism, then there exits n E IN and an isomorphism f2 : G2 ... };ll such that 

f21 G
I 
= fl, where};ll = { }; k : k Ell} is a cyclic group generated by};. 

Proof. 

Clearly all cyclic super-groups ( G is a super-group of H iff H is a subgroup of G ) 

of II are ofthe from };ll . Let gl and g2 be cyclic generators of GI and G2 respectively. 

Clearly gl = ng2 or gl = -ng2 for some n E IN. If gl = ng2 then let gs = g2 otherwise, 

let gs = -g2 · Now gl = ngs and g3 is a cyclic generator of G2• Define f2 : G2 -I ill as 

follows : if x E G2 then x = mg3 for some m E ll, let f2(X) = fl(gl)fl. It is easy to 

verify that f2 is the required isomorphism. 

Lemma 5.4.3. 

If GI is a cyclic subgroup of a finite cyclic group G2 and fl : GI -I S( 1 GIl) 

is an isomorphism, then there exists an isomorphism f2 : G2 -I S(I G21 ) such that 

f21 G
I 

= fl. 

Proof. 

Let n = 1 GIl and m = I G21· Clearly k = WE IN. Without loss of generality we can 
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replace G1 and G2 by S(n) and S(m) respectively. Since f1 is an isomorphism we can 

choose t E {O, ... , n-l} such that f1(e2rit / n) = e2ri / n and then e2rit / n 

is a generator of S(n). Consequently we have gcd(t,n) = 1. 

The k-th roots of e2rit / n are given by e2ri(t+nj)/nk where j = 0, I , ... , k-1. 

Using Dirichlet's Theorem [20] we can find j E IN such that t+nj is prime and 

gcd(t+nj,nk) = 1. Let q = (Hnj) mod nk. We now show that gcd(q,kn) = 1. 

Firstly t+nj = q + y(nk) for some y E IN . If gcd(q,nk) = x > I, i.e. q = xr1 and 

nk = xr2 then t+nj = xr1 + yxr2 = x(r1 + yr2). In case y = 0, q = t + nj and so 

gcd(q,nk) = I, otherwise r1 + yr2 > I, which contradicts the fact that t+nj 

is prime. Clearly q can be written in the form t+nr for some r E {O, ... , k-l} . 

Thus e2ri(Hnr)/nk is a k-th root of e2rit/ n and a generator of S(m). 

Define f2 : S(m) .... S(m) as follows : given e2ria/ nk E S(m) there exists unique 

IE {O, .. . , nk-l} such that e2ria/nk = e2ril(Hnr)/nk let f2(e2ria/nk) = e2ril/ nk. 

This clearly gives a well-defined isomorphism. We now show that f21 S(n) = fl. 

Let e2rib/ n E S(n). Clearly e2rib/ n = e2rist/n for some s E {O , ... , n-l} . 

Also, (e2ri(t+nr)/nk)k = e2rit / n. So, 

f2( e2rist/n) = f2( e2rit / n)s 

= f2(e
2rik(Hnr)/nk)s 

= (e2rik/ nk)s 

= (e2ri / n)s 

= f1( e
2rit / n)s 

- f ( 2rist/n) 
- 1 e . 

which completes the proof. 



92 

Theorem 5.4.4. 

Suppose J.! is a cyclic fuzzy group. Then, 

(finite case) 

If J.! is finite then J.! is strongly isomorphic to a finite cyclic fuzzy group 1/ given by: 

1/= v 
a E RI' 

where RJ.! is either finite or a sequence converging to o. The support of the finite 

cyclic fuzzy group 1/ is contained in a unit circle and is not necassarily a finite 

cyclic group. 

(infinite case) 

If J.! is infinite then there exists {l E RJ.! such that E~ is infinite and J.! is strongly 

isomorphic to an infinite cyclic fuzzy group 1/ given by: 

1/ = [ Vorl (1/[E~:E~)71) V [ Val [E~:E'71 ) V j.t(e)l{O} 

a E RI' n (0,,8) a E RI' n [,8,j.t(e)) 

where RJ.! n (0,,8) is finite or a sequence decreasing to 0 and RJ.! n [{l,J.!(e)) is finite 

or an increasing sequence which does not contain its limit point. The support of the 

infinite cyclic group 1/ is contained in the real line II! and is not necessarily an infinite 

cyclic group. 

Proof. 

(finite case) For all a E L\ {O}, E~ is finite, consequently [a,l] n RJ.! is finite. 

This proves that RJ.! is either finite or a sequence converging to zero. 

Thus the set RJ.! can be written as RJ.! = {al, a2, ... , an} or RJ.! = {a" a2 , ... } where 

an < an+ Let f, : E~' .... S(I E~'I) be an isomorphism. Since E~2 is isomorphic to 

S(I E~21) and S(I E~'I) < S(I E~21), by Lemma 5.4.3. we can find an isomorphism 

f2 : Ea2 .... S(I E(21) such that f21 Ea, = f,. Given an isomorphism 
J.! J.! J.! 

fn-I : Ean-' .... S(I Ean-'I ) we construct an isomorphism fn : Ean .... S( I Eanl ) 
J.! J.! J.! J.! 
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again with the use of Lemma 5.4.3. Define an isomorphism 

f: supp(J.I) .... U { S(I E:I) : a E RJ.I} by letting f(g) = fn(g) such that g E E:n. Since 

fn's are restrictions, f is well defined. Clearly, vI supp(v) = f(J.l1 sUPp(J.I))· 

(infurite case) The existence of the required /3 is clear. To see that RJ.I n (0,/3l 

has the stated properties we suppose that RJ.I n (0,/3l is infinite. 

Let a E RJ.I n (0,/3) then E: is an infinite cyclic super-group of the infinite cyclic 

group E/3. Clearly there are only a finite number of subgroups between E/3 and Ea 
J.I J.I J.I 

consequently R n [a,/3l is finite. Thus R n (0,/3l is either finite or a sequence 
J.I J.I 

converging to zero. Now suppose RJ.I n [/3,j.!(e)) is infinite. First we show that E~e) 
is isomorphic to the trivial group. If E~e) is non-trivial then there exists n E IN 

such that nE~ = E~(e) . However there is only a finite number of subgroups between 

E~ and E~e), which contradicts the fact that that Rp, n [/3,J.I(e)) is infinite. 

Thus Ej.!( e) is a trivial group. Following a similar argument as in the finite case by p, . 

the use of Lemma 5.4.2 instead of Le=a 5.4.3 we arrive at the remaining results. 

Theorem 5.4.5. 

Two finite cyclic fuzzy groups with the same order are strongly isomorphic. 

Proof. 

The proof is similar to the one in Theorem 5.4.4. Using Lemma 5.4.3, we are able 

to construct the required isomorphism by starting with the top level groups which 

are isomorphic. 

Example 5.4.6. 

Two infinite cyclic fuzzy groups are not necessarily strongly isomorphic. 

To see that consider two infinite cyclic fuzzy groups p" v : 71 .... {O,a,l} given by, 

p, = al71 V 1271 and v = al71 V 1371 . Let fl : 271 .... 371 be an isomorphism, then 

without loss of generality we may assume that fl (2n) = 3n for all n E 71 . 
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It is clearly not possible to extend f1 to an isomorphism from 71. to 71.. 

Consequently J1. and /.I are not strongly isomorphic. Clearly there exits a bijection 

g : 71. --. 71. such that g(J1.) = /.I. 

This means that even if we consider two infinite cyclic fuzzy groups with the same 

order they may not be strongly isomorphic. (It may be easily verified that two 

cyclic fuzzy groups of the same order, using Blanchard's cardinals, are weakly 

isomorphic. ). 

Example 5.4.7. 

The following are examples of finite and infinite cyclic fuzzy groups. 

The membership grade L is taken to be the unit interval. 

/.I = V * lS(2n) 

n E IN 

Note that the support of J1. is given by U { (2-n)71. : n E IN } which is a non-cyclic 

group dense in Ill. Similarly the support of /.I is a dense non-cyclic subgroup of the 

unit circle. 

In the crisp case every finitely generated abelian group G is a finite direct sum of 

cyclic groups. Unfortunately this is not so in the fuzzy situation. The following 

finitely generated abelian fuzzy group will suffice: 
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where HD = { (aj ) : aj E 71 for j E {l, ... ,n} and aj = 0 otherwise} is a subgroup of 

H = { (ai) : ai E 71, j E IN }. The support of this fuzzy group is not finitely generated 

so we would require an infinite direct product of infinite cyclic groups 

to represent v. However we have: 

v = II ( l{e} V ~ 1 HD ) 

n E IN 

Maybe, an appropriate notion of fuzzy finite direct product would allow to give us 

a positive answer to the above problem. 
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