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ABSTRACT 

The Okavango is a vast inland delta system in northern Botswana which receives an annual flood 

from the highlands of southern Angola. There are distinct communities of fish in the Okavango 

which can be separated from each other by the physical characteristics of the different habitat 

types with which they co-evolved. 

This thesis provides an account of the biology and ecology of selected fish species in the 

Okavango Delta. Their response to the annual flood regime, and the environmental factors which 

limit their distribution and abundance, are examined. The thesis emphasizes the importance of 

water fluctuations in determining the nature of the fish fauna and the reaction of the fishes in terms 

of community structure, movements, breeding, predator-prey interactions and feeding. 

Four major ecotones were studied in the Okavango Delta. In the riverine floodplain and perennial 

swamp ecotones a higher species diversity was recorded than in the seasonal swamp and drainage 

rivers ecotones where diversity was lowest and comprised mainly of smaller fish species. A greater 

variety of habitat types was associated with the riverine floodplain and perennial swamp relative 

to the seasonal swamp and drainage rivers. The variety of habitat types between ecotones is 

associated with the degree of flood inundation in the respective ecotones. 

During the course of this study, annual recruitment of fish into the drainage rivers was from ref" ,,;a 

in the seasonal swamp whereas the greatest degree of lateral and longitudinal movement was in 

the riverine floodplain and perennial swamp. Movement was in response to both biological 

requirements, such as availability of food and spawning sites, and physical features of the 

environment, such as the changing water depth. 

The total catch per unit effort (CPUE) of fish throughout the year was more constant in the riverine 

floodplain and perennial swamp than in the seasonal swamp and drainage rivers where CPUE 

f1uctutated widely. An increase in CPUE during the duration of this study was apparent and related 

to the magnitude of the annual flood. 

In contrast to most other African wetlands, the arrival of the annual flood in the Okavango Delta 

coincides largely with the dry winter months. This situation presented an opportunity to compare 

the influence of floods and water temperature on the reproductive biology of the selected fish 

species. The results show a definite pattern and indicate that both the flood cycle and increased 

water temperatures greatly influence the breeding cycles of the selected species. 
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The tilapia Oreochromis andersonii exhibited a considerable degree of phenotypic plasticity. Fish 

from the seasonally inundated areas showed a smaller mean size, egg size and larger number of 

eggs relative to fish in the perennially flooded areas. The size at sexual maturity was also smaller. 

These different reproductive characteristics exhibited by O. andersonii are dependent on the degree 

of water retention in the different habitats. 

The fishes of the Okavango have adopted other reproductive strategies to survive the changing 

environmental conditions brought about by an annual flood cycle. These strategies include the 

construction of foam nests, as described for Hepsetus odoe, for guarding the young and to provide 

an oxygen-rich environment. 

Two main non-piscivorous feeding pathways were identified in the Okavango. These are a detritus 

pathway based on dead plant and animal material, and an epiphyte pathway, based on algae and 

invertebrates that are attached to plant stems. Seasonal changes in diet in relation to the annual 

flood were recorded. The most dramrtic change was demonstrated by the catfish Clarias 

gariepinus which congregates in mass aggregations in the northern regions of the Delta and hunt 

in packs. Pack-hunting by catfish is a regular response to the annual fluctuations in water level. 

It is my conclusion that the main flow of biotic and abiotic stimuli within the Okavango Delta 

originates from the relatively hydrologically stable riverine floodplain and perennial swamp 

ecotones to the widely fluctuating seasonal swamp and drainage rivers ecotones. The relatively 

stable ecotones allow a diverse and biotically interdependent fish community to develop, whereas 

the widely fluctuating seasonal swamp and drainage rivers ecotones are characterized by a less 

diverse and interdependent fish community. 

The degree of abiotic and biotic interdependence among fish in an ecotone is very important for 

the long term management of the Okavango Delta. Potential developers have to determine whether 

the effect of a given action by man is likely to result in a long term disturbance or merely in an 

elastic recoil to a more or less similar state. Recommendations are made on the conservation and 

management of Okavango fishes taking into account the ecological characteristics of the delta. 
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CHAPTER 1 

INTRODUCTION 

Floodplain ecosystems, such as the Okavango Delta in northern Botswana (Fig. 1.1), are subject 

to regular cycles of flooding and draining. The timing, magnitude and duration of these floods are 

not constant from year to year and in the Okavango these parameters are determined largely by 

the periodicity and amount of annual rainfall within the highlands of southern Angola. 

Floodplain fish populations are often characterized by a dependence on a natural, annual flood 

cycle for their survival (Lowe-McConnell, 1975; Welcomme, 1979). The floods periodically connect 

the water bodies on the floodplain to the river, and facilitate essential ecological functions, such 

as the movement and spawning of most fish species. By inundating low-lying regions, the flood 

waters also convert terrestrial plant and animal matter into food for fish and other aquatic 

organisms. This allochthonous food input is often utilized by the fish for the ripening of gonads 

before spawning, and forthe growth olthe fish fry (Lowe- McConnell, 1975; Welcomme, 1979). The 

inundation of shallow floodplains and adjacent terrestrial lands is also important for providing safe 

nursery sites for fish larvae and juveniles during their early stages of development (Bruton & 

Jackson, 1983). Within the Okavango Delta a similar pattern of annually fluctuating water levels 

which regulate the structure of the fish community is apparent, but the processes involved are not 

fully understood (Campbell et al., 1976). 

The fishes of the Okavango Delta represent a valuable natural resource for the people of Botswana. 

Increased demand for fish has, however, resulted in an escalation in fishing effort over the last ten 

years. Through the efforts of the Botswana Fisheries Unit, an expanding commercial fishery now 

exists in the delta. Recreational fishing is also increasing as new '10urisf' fishing camps are 

licensed and more people visit the delta to fish. 

These exploitation pressures are further compounded by natural and artificial environmental 

perturbations. The extended period of drought and of low water levels since 1982 (broken in 1988) 

drastically changed the characteristics of the delta by decreasing the area of floodplain habitat. 

Botswana's 2.2 million head of cattle form the basis for one of the main economies of the country. 

For many years nagana (sleeping sickness in cattle) kept the herds and people away from the 

Okavango Delta. Since the early 1970's campaigns to control the tsetse fly (Glossina morsitans), 
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a vector of the disease, using insecticides have been successful in the delta (Davies & Bowles, 

1976). However, because the tsetse fly readily recolonizes the Okavango from adjacent countries, 

particularly Namibia and Zambia, repeated applications of insecticides have been carried out in the 

delta (Merron & Bruton, 1989). 

Throughout the course of this research project aerial spraying of insecticides occurred over large 

areas of the Okavango Delta. Although every effort has been made by the Botswana authorities to 

use ultra-low volumes of insecticides, repeated applications of insecticides have had an effect on 

certain non-target organisms, including fishes (Douthwaite et aI., 1981; Matthiessen et aI., 1982; 

Merron, 1986; Merron & Bruton, 1989, 1990a & b). In villages along the Okavango River in Namibia 

ground spraying of DDT for mosquito control also occurs, the magnitude of which is unknown. 

Petroleum pollution caused by military vehicles crossing the Okavango River prior to Namibia's 

(1990) independence has also been documented by Skelton & Merron (1987). 

Botswana is a dry country; its average annual rainfall is 250 mm in the south and 650 mm in the 

north. The Okavango Delta contains over 95% of the country's surface water resources and 

therefore features strongly in industrial and agricultural development plans for Botswana. A water 

abstraction scheme at Rundu in Namibia (Fig. 1.1) and schemes to canalise and regulate the rivers 

in the southern areas of the Okavango near Maun (Fig. 1.1) are also being constructed and may 

affect the dynamics of the flood cycle. 

It is apparent, therefore, that there are a variety of man-induced and natural stresses on the 

Okavango Delta. The potential of the delta to continue to supply vital natural resources, such as 

fish and water, to the people of Botswana may thus be detrimentally affected. It is therefore 

essential that adequate scientific information on the fish stocks should be obtained and that an 

understanding of the biology and ecology of the fishes and their responses to the annual flood 

regime should be reached. 

During the recent drought in northern Botswana the area of Lake Ngami, a sump lake at the 

southern end of the Okavango system (Fig. 1.1), decreased from over 150 km2 in 1979 to less than 

1 km2 in 1983 (Shaw, 1985). The fish community was reduced from 26 species, including benthic, 

pelagic, and littoral forms, to two scavengers, the catfishes, Clarias gariepinus and C. ngamensis 

(Bruton & Jackson, 1983). In late 1984 Lake Ngami once again received flood water and 

subsequently 12 fish species recolonized the lake (Merron & Bruton, 1988). This pattern 

demonstrates the resilience of both Lake Ngami and the recolonizing fish fauna to natural 

fluctuations in environmental conditions. 

Floodplain ecosystems such as the Okavango are characterized by a fluctuating environment and 

have been described as generally unstable and fragile (Lowe- McConnell, 1975). It is my contention 

that the Okavango Delta is not unstable but that it is a changeable, regularly cycling ecosystem. 

The fish species inhabiting the Okavango can be classified as either having a very broad or narrow 
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distribution that is influenced by the annual flood cycle. Stenotopic fish species exhibit resistant, 

density-dependent life history characteristics, whereas eurytopic species display resilient, density

independent life history characteristics. Similar life history characteristics in fish species described 

from other wetland systems (Welcomme, 1979; Furse et aI., 1979; Kok, 1980; Benech et aI., 1983) 

appear to support this classification. 

The overall objective of this study was to establish the response of the fishes to the annual flood 

cycle and to identify the key factor or factors (e.g. timing, magnitude and duration) of the flood 

which determine the nature of the fish communities. The broad hypothesis is that the annual flood 

regime is important in maintaining the fish populations. The specific hypothesis is that the main 

factors determining the distribution and abundance of fish communities in the delta are the 

permanence (retention time) of water in particular habitats and whether or not the water is flowing . 

It is believed that these two factors determine other physical features such as the extent of aquatic 

macrophyte communities, substrate type and oxygen values, as shown for other wetland systems 

(Lowe-McConnell, 1975; Welcomme, 1979). Obviously these parameters will also affect food 

quantity and quality, spawning periodicity and other biological events in the delta. 

This hypothesis is tested on a comparative basis by identifying the major habitat types such as 

perennially and seasonally inundated areas of the delta. Although both environs are subject to 

flooding, the enormous size of the delta (15,000 km2 at high flood) causes the timing, magnitude 

and duration of flooding to vary, with the greatest fluctuations occurring in the southern 

(downstream) end of the system. 

In addition, an interbasin comparative approach is made with the Pongolo floodplain, a riverine 

floodplain in Zululand, as this system was being studied simultaneously, although not to the same 

degree as the Okavango. This comparison provided an excellent opportunity to compare these two 

important floodplain ecosystems of southern Africa. Comparisons of Okavango fishes with the 

ichthyofaunae of other palustrine wetland ecosystems such as Lake Liambezi and the 

Kwando-Linyanti swamps (van der Waal, 1976; Merron, 1990), Kafue floodplain (Chapman et aI., 

1971; Lagler et aI., 1971), Zambezi (Jackson, 1961a; Bell-Cross, 1974), Amazon (Goulding, 1980), 

Everglades (Kushlan, 1976, 1980) and Pongolo (Kok, 1980; Merron et aI., 1989) were also made. 

This research also offered an opportunity to test fundamental theories regarding community 

stability and alternative life-history styles. These theories were examined by using the permanence 

of the water in a particular locality as an indication of the stability ("predictability") or instability 

("unpredictability") in the Okavango. The Okavango is predictable in the sense that it is driven by 

an annual flood cycle. What is irregular or unpredictable, however, is the water retention and flow 

rates which increases its effect on the fish fauna in a downstream direction. 
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CHAPTER 2 

1lHE OKAVANGO DELTA 
ECOSVSTEM 

The Okavango Delta is situated in northwestern BotswanalFlg. 1.1) and fluctuates in area from 

15000 km2 during the flood season to 6000 - 8000 km2 during the dry season (Campbell, 1983). 

Geologically the Okavango is a young system (approximately 10000 years old) which, before major 

uplifting, formed a drainage channel into a great lake called Makgadikgadi (Campbell, 1983). 

Presently, the Okavango is the only large river of the world which forms an inland delta. 

The Okavango River rises in a series of headwater streams on the southern slopes of the Angolan 

highlands (Fig. 1.1). These streams flow south and south-eastwards then gather to form a large 

mainstream (the Cubango), which turns eastwards shortly after reaching the Angola-Namibia 

border. A second major branch of the system (the Cuito) also rises in the Angolan highlands and 

joins the mainstream before it flows across and forms the western boundary of the Caprivi Strip 

(Fig. 1.1). The Okavango enters Botswana as a single broad river, approximately 150 m wide and 

4 m deep, and meanders within a broad riverine floodplain (average width 15 km) bounded by fault 

lines running south-easterly from the Namibian border. It is only after the confines of the riverine 

floodplain (colloquially termed the riverine panhandle) that the Okavango branches out to form the 

anastomoses of the delta. 

The flood waters arrive in the northern riverine floodplain in January and take approximately six 

months to traverse the delta reaching the drainage rivers in the south in June (Fig. 2.1). By the 

time the floodplains and rivers in the southern areas are full, the water level is low again in the 

northern regions. The timing, magnitude and duration of the flood is not constant from year to 

year. Due to the nonavailability of hydrological data for the Okavango Delta in Botswana, the daily 

discharge of water in the Okavango River at Rundu in Namibia from 1983 to 1986 is shown in 

Figure 2.2. It is apparent that between 1983-84, the highest discharge was recorded with a 

maximum in excess of 800 m3s·' and a minimum of 30 m3s·' . The 1984-85 flood cycle was the 

lowest recorded with a maximum daily discharge at the height of the flood of approximately 410 

m3s·' . The 1985-86 flood cycle, although higher than the 1984-85 period, had a truncated duration 

when compared to former years. 

One of the most important features to consider in this thesis is that the timing, magnitude and 

duration of the annual Okavango flood is different each year and that it has a cycle of high and low 
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Figure 2.1. Map of the Okavango Delta, Botswana showing the approximate arrival of the annual 

flood waters and location of all ecotones. The following ecotones are shown: 1: Okavango riverine 

floodplain; 2: Perennial swamp; 3: Seasonal swamp; 4: Drainage rivers; 5: Sump lake. 
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Figure 2.2. Daily discharge of the Okavango River at Rundu for the period October 1983 to July 

1986. Discharge data provided by the Department of Water Affairs, Namibia. 

water levels. However, the cycle does not return to the same point each year and fluctuates widely 

depending on the magnitude of the annual flood. Although there is a water level increase and a 

water level decrease each year, the starting point for the beginning of each annual cycle depends 

on the rainfall history in Angola and the nature of the drainage patterns in Botswana. It must be 

emphasized that the flow of water through the delta can be influenced by seismographic 

disturbance and channel blockages, which can alter the drainage patterns in a given year (Ernest, 

1976). The Okavango is thus a dynamic system which varies in space and time and in major 

physico-chemical factors, such as water availability and quality, which can change each year 

among the Clifferent habitat types. 

Globally, and in the context of its recent geological age, the Okavango Delta can be considered 

to be a stable ecosystem as it persists with time. Regionally, however, it is very changeable and 

unpredictable. In terms of its hydrology, the Okavango is more stable (predictable) in the northern 
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regions and less stable (unpredictable) in the southern regions. The magnitude of difference in the 

area covered by water during different floods is in the order of 1 to 2 in the northern Delta and 1 

to 10 in the southern seasonal areas (Wilson & Dincer, 1976). In addition, because the Okavango 

floods laterally, it therefore also operates along two dimensions. 

DISTRIBUTION OF HABITATS 

Five major ecological regions are recognized in the Okavango Delta (Fig. 2.1). These are the 

riverine floodplain, perennial swamp, seasonal swamp, drainage rivers and sump lakes. The sump 

lake region (e.g. Lake Ngami) was, however, virtually dry during the course of this study. The four 

ecological regions studied can be considered as ecotones (Holland, 1988) as they grade into, and 

are dependent on, one another. 

The riverine floodplain and perennial swamp ecotones cover approximately two-thirds of the area 

of the delta. These areas have surface waters up to 3 m deep and are covered with a dense growth 

of papyrus (Cyperus papyrus) , reeds (Phragmites australis), bulrushes (Typha latifolia subsp. 

capen sis) and the fern (Cyclosorus interruptus). In the riverine floodplain the mainstream channel 

is approximately 150 m wide. The substrate is sandy. The water is clear with secchi disc readings 

ranging from 3 m at high water level to < 1 m at low water level. The mainstream channel flows 

at a steady velocity of approximately 1 m/sec at low water level and 4 m/sec at high water level. 

There are numerous tributaries and oxbow lagoons associated with the mainstream channel. 

These areas are lined with dense stands of aquatic macrophytes including Nvmphaea capensis, 

Potamogeton thumbergi and Elodea densa. The adjacent sawgrass floodplains and isolated 

lagoons are flooded between February and June each year. 

Upon entering the perennial swamp the mainstream channel splits into three distributary systems, 

the Thoage, Nqoga and Jao (Fig. 2.3). The Thoage is the western most distributary which, prior to 

1960, served as a major drainage channel. However, due to seismographic shifting which resulted 

in a decreased flow rate, numerous blockages built up which have now choked this river below 

Nokaneng (Fig. 2.3). The Nqoga extends along the Moanachira and Kwai Rivers and during 

extremely high floods empties into the Mababe Salt Pan. Since 1960 the Jao has become the 

primary distributary of the central delta (Shaw, 1984) and after passing through Xo Lagoons is 

called the Boro River (Fig. 2.3). There is also a northeasterly extension of the upper perennial 

swamp north of the Moremi Game Reserve along the Selinda (Magwegqana) Spillway which 

empties into the Linyanti swamps at exceedingly high floods (Fig. 2.3) . 
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The southern seasonal swamp covers about one-third of the area of the della and is characterised 

mostly by shallow grass and sedge-covered floodplains. There are, however, certain perennial 

lagoons such as Nxaraga and Qorokwe (Fig. 2.3). The southern swamp is a seasonally inundated 

swamp which varies markedly in area, depending on the magnitude of the annual flood from 

Angola and the amount of local rainfall. 

At the southeast end of the Okavango Della, the main drainage channels, the Boro and the 

Santandadibe, re-unite along a faull line to form the southwestward-flowing Thamalakane River. 

The Thamalakane River abruptly changes course to the southeast at its bifurcation into the Nghabe 

and Boteti Rivers (Fig. 2.3). Lake Ngami, a sump lake in the southwestern corner of the della, was 

once fed by the Thaoge River in the extreme west but is now more dependent on the Kunyere and 

Nghabe Rivers for its water supply (Shaw, 1985; Fig. 2.3). This fealure also indicates the 

changeability of the system as the Boro was, before 1960, not an important drainage river of the 

delta (Shaw, 1984). Except for a relatively short period in 1982 and late 1984 to early 1985, Lake 

Ngami was dry during this study period. The Boteti River empties into Lakes Xau and Mopipi and, 

at high flood levels, into the extensive Makgadikgadi Salt Pans (Fig. 1.1). 

ANNUAL FLOOD CYCLE AND LlMNOLOGICAL CHARACTERISTICS 

The mean annual inflow into the delta from the headwaters in Angola is 11 x 10· m', with local 

rainfall contributing on the average about 5 x 10· m' (Ernest, 1976). The principal output (96%) is 

through evapotranspiration (15.4 x 10· m') with groundwater seepage claiming 0.3 x 10· m' (Ernest, 

1976). The output through the Thamalakane River in the south, therefore, represents approximately 

2% of the inflow into the swamps. II must be stressed, however, that these recordings were taken 

during periods of elevated flood regimes and probably do not represent the amount of water which 

entered Botswana during the period of this study. The Botswana Department of Water Affairs is 

actively taking various hydrological measurements to provide a longer time series of inflows into 

the della. What is also not known is the frequency of the wet and dry cycles and significance of 

the one in ten year or one in twenty-five year flood cycle to the productivity of the della. 

Each year the water level in the northern area of the della recedes from the floodplains, between 

June and August, leaving behind numerous isolated floodplain lagoons. Depending on the rainfall 

patterns in the Okavango catchment, the annual floodwaters from Angola begin to arrive at 

Shakawe in January and reach Maun, at the southernmost part of the della, in June (see Fig. 2.1). 

This slow pattern of inundation is due to the extremely low gradient (1:36000) which causes the 

water to spread out to form the Okavango Della. The slow flood cycle causes water to reach the 
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southern parts of the swamp during the coldest months when water temperatures are lowest 

(average June temperature 16"C). 

Wetlands such as the Okavango Delta are typically dynamic ecosystems which have high 

biological productivity. The Okavango system is, however, low in available nutrients when 

compared to other tropical wetlands and has a water conductivity in Ihe region of 8 uS cm-l 

(Thompson, 1976; Hart, 1986; Allanson et aI., 1990). The relatively low conductivity may partly be 

due 10 the source of the waters (e.g. rainfall in southern Angola) which drains off relatively infertile 

soils. Upon entering Botswana the watershed does not contribute significantly to the nutrient input 

from run-off as the topography is flat Kalahari sand with a high moisture deficit and a high seepage 

rate. The nutrient input into the Okavango largely comes from decomposing aquatic macrophytes 

and dung deposited by the large numbers of game in the numerous central floodplains or cattle 

along the fringes of the delta. 

The limnology of this system has, however, not yet been fully studied and a paucity of quantitative 

information exists. During the course of this research project I encouraged Iimnologists from 

Rhodes University to provide meaningful information and many have assisted on an "ad hoc" basis. 

Unfortunately it was beyond the scope of this study to perform an in-depth Iimnological survey, 

although readings for various physico-chemical parameters were taken when possible_ 

Water temperatures have been recorded in the range of 9- 38D C depending on season and site 

(Reavell et al., 1973; Merron & Bruton, 19848, 1988). Measurements of pH indicate slightly acidic 

water in the northern reaches with values between 5.8 and 6.7; whereas in the southern reaches 

slightly alkaline water is apparent with values between 7.1 and 8.2 (Douthwaite et al., 1981; Merron 

& Bruton, 19848 & b). The alkaline water in the southern end of the system can be attributed to the 

large amounts of bicarbonate and carbonate salts that are inundated each year with the flood 

(pers. observation). Sec chi disc transparency during the flood peak is high, often reaching the 

bottom of most waterbodies (I.e. 2 - 3 m). During the receding and low water level an increase in 

the amount of organic and inorganic matter moving into the mainstream channel results in a 

relatively low water transparency with a sec chi disc reading of < 1 m. 

Oxygen values are low in certain areas, especially in the mainstream channels, during the receding 

and low water phase when surface oxygen saturation ranged from 39.7 to 65.3% and water 

temperatures ranged from 26.9 to 28.S"C (Maar, 1965; Merron & Bruton, 1988). The receding flood 

waters are low in oxygen as a result of the abundant decomposing vegetation on the floodplain. 

The preliminary evidence suggests that a "wave" of reduced oxygen moves southeastwards in the 

mainstream channel as the water level recedes. There is also a wide diurnal fluctuation in oxygen 

levels probably due to the deficit caused by photosynthesis during the day. Oxygen values In 

slow-flowing parts of the delta can fall below 10% saturation (Merron & Bruton, 1988). Because the 
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physical features of the Okavanga Delta play an important role in determining the composition of 

fish communities, obvious physical factors such as the depth and flow rates of the water, as well 

as substrate and macrophyte cover, were recorded at each sampling site and used in the 

multivariate community analysis. 

BRIEF REVIEW OF PREVIOUS FISH RESEARCH 

Despite the diversity of and great interest in the fish fauna in other parts of Africa, the Okavango 

fauna is poorly known. The early history of ichthyological work in the delta is reviewed by Jubb 

& Gaigher (1971) and Skelton et al. (1985). The latter authors provide an up-to-date checklist of the 

fishes of the Okavango drainage in Angola, Namibia and Botswana and a review of recent 

ichthyological research there. It should be emphasized that the major proportion of prior research 

work on fishes in the Okavango consisted of taxonomic studies and distributional surveys. A total 

of 83 species have been recorded from the Okavango River and Delta. However, only alpha 

taxonomic studies have been performed and several phylogenetic problems still remain to be 

resolved (Skelton et aI., 1985). 

There are few ecological and biological studies on Okavango fishes. Maar (1965) conducted an 

early fisheries study for the Oxford Committee for Famine Relief (OXFAM). Brief accounts on the 

fish and the fishery have also appeared in the Proceedings of the Symposium on the Okavango 

Delta (Fox, 1976; Gilmore, 1976). Gilmore (1979a & b) examined the food preferences and trophic 

relationships of certain fish species, particularly with regard to the effects of insecticide spraying. 

Douthwaite et al. (1981) examined the mortality of fish to insecticides and Bruton (1979, 1980) 

outlined the results of two multi-disciplinary expeditions from Rhodes University to the Okavango 

Delta and Lake Ngami. Skelton et al. (1983) outline the results of an expedition to Lake Ngami in 

December 1982 and Merron et al. (1983) provide a preliminary account of the fish communities in 

the riverine floodplain at Nxamaceri (see Fig. 2.3) in February 1983. 

A quantitative fisheries research programme was launched by the J.L.B. Smith Institute of 

Ichthyology in November 1983 at the request of the Botswana Fisheries Unit to gather biological 

data on commercially important fish species. This information was requ1red by the Fisheries Unit 

to serve as a foundation for recommending ways to increase the local harvest of fish while 

conserving the long term integrity of this important resource. A partial report on the results of this 

research programme is given by Merron & Bruton (1988). Recommendations on fisheries 

management based on species composition, relative abundance and mass contributions in 

different mesh-size gillnets have already been implemented by the Fisheries Unit and are explained 

in greater detail in Chapter 8. This thesis is an attempt to synthesize this information so as to 

provide a detailed interpretation of selected fish species and their responses to the annual flood 

cycle. 
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CHAPTER 3 

SAMPLING SITES, METHODS AND 
GENERAL TECHN·IQUES 

The present study was conducted over the period November 1983 to December 1986. From 

November 1983 until April 1985 the research was based from the J.L.B. Smith Institute of 

Ichthyology, 2200 km south of the Okavango. A fully functional research station was set up in April 

1985 at the DeBeers (Debswana) Maun Base Camp, 14 km upstream from Maun on the south bank 

of the Thamalakane River at Matlapaneng (Fig. 2.3). 

It should be emphasized that there were considerable constraints in working in an undeveloped 

country and numerous hazards and logistical problems working in the Okavango Delta. At many 

of the camp sites lions, leopards, elephants and venomous snakes were a constant threat. On one 

occasion a staff member, Mr. V. Vose, was confined to a truck for two-days as a pride of eight lions 

kept a vigil by him. Fortunately the lions lost interest. An indication of one of the campsites used 

during quarterly surveys is shown in Figure 3.1. Within the numerous waterbodies and channels 

hippopotami, crocodiles and elephants often disrupted the equipment. On a few occasions 

hippopotami tipped the boat over, sending staff frantically swimming to shore. In addition, the 

rough terrain necessitated off-road four wheel driving at times taking two days to reach a sampling 

site 300 km away! The research vehicle used during 1984 and 1985 the majority of this study is 

shown in Figure 3.2. Notwithstanding these constraints, the data presented in this thesis does, 

however, represent the first attempt at obtaining a standardized set of quantitative information for 

the fishes of the Okavango Delta in relation to the annual flood regime. 

Because of the logistical difficulty with accessibility in the mosaic of islands, floodplains, lagoons 

and river systems in the Okavango Delta, a quarterly sampling programme was followed as 

accurately as possible. Since the physical and biological leatures of the delta are extremely 

variable, the effective sampling of the system required the use 01 a wide selection 01 fishing gear, 

the characteristics and uses of which are detailed below. 
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Figure 3.1. One of the many campsites used throughout the course of this study. This particular 

campsite was located approximately 10 km southeast of Nxaraga Lagoon, June 1984. Mr Xavier 

von Berra, a field assistant during the June-July 1984 survey is present. 

Figure 3.2. The forward control 4x4 land rover used during 1984 and 1985 in the Okavango Delta. 
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SAMPLING SITES 

The sampling sites chosen to study the abundance, biology and ecology 01 selected commercially 

and ecologically important species were located in all the major ecotones 01 the delta. Within the 

riverine floodplain, sampling was conducted between the mainstream channel at Seronga and 

Dungu floodplain lagoon (Fig. 3 .. 3). Habitat types within this ecotone consist 01 a mainstream 

channel, oxbow lagoons, backwater channels, seasonal floodplains, and floodplain-connected 

lagoons such as Dungu. Figures 3.4 and 3.5 provide a visual impression 01 the prominent habitat 

types within this ecotone. 

Within the perennial swamp sampling was conducted in the northeastern corner 01 Moremi Game 

Reserve from Xakanixa Lagoon southwards to Maxegana Pools (Fig. 3.3). Habitat types within this 

ecotone were similar to those in the riverine floodplain and consisted 01 perennially flowing river 

channels (Moanachira and Kwai) , perennial lagoons (Xakanixa) and floodplain lagoons (Maxegana 

Pools). Although the water level in the perennial swamp does not fluctuate as dramatically as in 

the seasonal swamp, the surrounding floodplain does become inundated seasonally. Flood waters, 

on average, reach Xakanixa Lagoon in June each year. Figures 3.6 and 3.7 provide a visual 

impression 01 the prominent habitat types within this ecotone. 

The rain pool habitat type was found throughout the delta, although they occurred with the greatest 

frequency in the northern areas of the delta. Throughout this study rain pools were mainly sampled 

along the extreme margins of the Kwai and Moanashira floodplains, in the perennial swamp 

ecotone (see Fig. 2.3). These rain pools were only connected to the surrounding floodplains during 

the relatively high flood levels of 1984 and 1986 and were primarily maintained by local rainfall and 

underground seepage. Many 01 the rain pool sampllng sites were sometimes reduced to a mud 

pool or had dried completely. Figure 3.8 provides a visual impression 01 this habitat type. 

In the southern seasonal swamp, Nxaraga Lagoon and the Boro River at the southeast end of 

Chief's Island were surveyed as well as the surrounding floodplain and floodplain lagoons (Fig. 

3.1). Figure 3.9 provides a visual impression of the seasonal swamp habitat type. 

Within the drainage river ecotone the Thamalakane River at Matlapaneng (Fig. 3.1) was surveyed. 

As previously mentioned the drainage rivers experience a widely fluctuating flood regime. Figures 

3.10 and 3.11 provide an indication of the drainage river habitat type at both high and low water 

level. In addition, the Boteti River at Chanoga Lagoon was surveyed (Fig. 3.1). Chanoga Lagoon 

was one of a few perennial waterbodies along the Boteti River during the drought (Le. 1982-88). 

Much of the river below Chanoga Lagoon was reduced to a series of mud pools, especially in 1983 
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Figure 3.3. Map of the Okavango system in Botswana showing the location of all major sampling 

sites used throughout this study. 
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and 1985. Figure 3.12 provides a visual impression of Chanoga Lagoon. Figure 3.13 provides an 

indication of the effects of the drought on the Boteti River and to the cattle which often became 

stranded in the mud and perished. The sump lake habitat type (i.e. Lake Ngami) was dry during 

most of the study period. However, Bruton & Jackson (1983) and Merron & Bruton (1988) provide 

information on fish population changes within this ecotone. All the above sampling sites were 

chosen because they represent different habitat types and were accessible throughout the year. 

Table 3.1 provides the sampling codes and select physical parameters for the eight sampling sites. 

These physical parameters include a qualitative indication of water retention, depth, flow, substrate 

type and amount of emergent, submerged and floating aquatic vegetation. These physical 

parameters are used in this thesis to classify the sampling sites and assist in determining the 

factors which limit the distribution and abundance of the fish communities. 

In addition to these sites which were surveyed on a quarterly basis from November 1983 to 

December 1986, "ad hoc" collections where made throughout the rivers and floodplains of the 

Okavango system during the course of this project. Of particular interest were three ichthyological 

surveys of the fish communities along the Okavango River in Namibia between 1984 and 1986 

(Skelton & Merron, 1984, 1985, 1987). In the riverine floodplain additional surveys were conducted 

at Nxamaceri and Etsatsa (see Fig. 2.3) and in the perennial swamp Gadikwe, Jao, Nguma and Xo 

Lagoons were also periodically surveyed (see Fig. 2.3). 

In the seasonal swamp collections of fish were also made around the village of Thokatsebee (see 

Fig. 2.3) as this area represented the transitional zone between the southern seasonal swamp and 

the drainage rivers. In the drainage rivers collections were made in the Kunyere River near Lake 

Ngami (see Fig. 2.3) in December 1982 and 1984. 
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Figure 3.4. Typical habitat type of the riverine floodplain mainstream channel, Okavango Delta, 

October 1986. 

Figure 3.5. Typical habitat type of a riverine floodplain-connected lagoon, Dungu, Okavango Delta, 

October 1986. Professor Tom Hecht on the extreme right supervising the seine netting while Dr. 

Humphry Greenwood, with red hat, pulls in one end. 
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Figure 3.6. Typical habitat type of the perennial swamp at Xakanixa Lagoon, Okavango Delta, 

January 1986. 

Figure 3.7. Typical habitat type of the perennial swamp floodplain-connected lagoons, Okavango 

Delta, August 1985. Hippopotami can be seen in the middle distance. 
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Figure 3.8. Typical habitat type of rain pools, Kwai floodplain, Okavango Delta, June 1984. This 

photo was taken during high water level. 

Figure 3.9. Typical habitat type in the seasonal swamp at Nxaraga Lagoon, Okavango Delta, 

November 1985. 
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Figure 3.10. Typical habitat type of the Thamalakane River at Matlapeneng, Okavango Delta, April 

1985. This photo was taken during the low flood level. 

Figure 3.11. The Thamalakane River at Matlapaneng, Okavango Delta, September 1984. This photo 

was taken during the high water level. 
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Figure 3.12. Typical habitat type of Chanoga Lagoon, Boteti River, Okavango Delta, November 

1984. 

Figure 3.13. The Boteti River below Chanoga Lagoon during the drought in June 1985. Note the 

extreme desiccation of the river and effect on cattle, which often became stranded in the mud. 
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Table 3.1. The survey codes and select physical parameters lor the eight sampling sites used in the Okavango Delta, Botswana, during the course of this study. 

Sampling Sampling *Ecotone Water Mean Flow Substrate Emergent Submerged Floating 

site code retention depth vegetation vegetation vegetation 

Chanoga Lagoon 1 dr moderate 1.0 m 0.2 m/sec muddy common abundant common 

Thamalakane river 2 dr low 1.0 m 0.5 m/sec mud-sand rare limited common 

" 
Nxaraga Lagoon 3 ss high 

'" 
1.5 m 1.0 m/sec mud-sand common abundant abundant 

Xakanixa Lagoon 4 ps high 2.0 m 2.5 m/sec sand abundant common common 

Maxegana Pools 5 ps high ).5 m 0.5 m/sec muddy abundant muddy abundant 

Rain Pools 6 ps low 0.3 m 0.0 m/sec sand-mud none rare rare 

Mainstream channel 7 rf high 2.5 m 2-7 m/sec sand abundant common common 

Floodplain lagoons 8 rf high 1.5 m 0.5 m/sec sand-mud common abundant abundant 

*dr= drainage rivers; ss= seasonal swamp; ps= perennial swamp; rf= riverine floodplain 



SAMPLING METHODS 

Gillnets 

From November t983 until December 1986 gillnets were set on a quarterly basis in all sites except 

the riverine floodplain. Although qualitative sampling began in the riverine floodplain in February 

1983 (Merron et al.. 1983) and continued in November 1984 (Merron et al., 1985), quarterly gillnet 

sampling only began in April 1985. This was mainly due to logistical and financial constraints. 

A wide variety of gillnets was used to sample the fish populations during each quarterly survey. 

A monofilament gillnet fleet consisting of stretch-mesh sizes 24, 40, 50, and 110 mm and a 

multifilament fleet consisting of stretch- mesh sizes 60, 75,96,110 and 143 mm were used in all 

sampling periods. Gillnets were set on at least two consecutive nights in each sampling site. All 

nets were 25 m long, 2.0 m deep and hung by the half. 

The annual overnight frequency distribution, by sampling site, for an experimental gillnet fleet (24 

- 143 mm) set in the Okavango Delta, between November 1983 and December 1986 is presented 

i;'l Table 3.2. The use of different gillnet mesh sizes made it possible to determine the species and 

size of fish caught in each mesh size and the relation of mesh size to the number and weight of 

fish caught per net. In addition to collecting fish in experimental gillnets, considerable time and 

effort was put into monitoring and recording the activities and catches of commercial, recreational 

and artisanal fishermen. 

The gill nets were checked everyday for holes caused by crocodiles and hippopotami. Nets which 

had minor holes were assigned a percentage torn value and the abundance of all fish species was 

based on the percentage of effective net used the previous night. Many of the small holes in the 

multifilament nets were then repaired. Monofilament gillnets lasted about three months before they 

were greater than 25% torn, after which they were removed from the float. 

Seine nets and rotenone ichthyocide 

Seine nets and rotenone ichthyocide were also extensively used in all sampling sites throughout 

the study period. Table 3.3 shows the annual frequency distribution for the total number of seine 

net and rotenone collections in the different sampling sites within the various ecotones . 

• 
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Table 3.2. The annual overnight frequency distribution of effort, by sampling site (= code), for an 

experimental gillnet fleet (24 - 143 mm) set in the Okavaqgo Delta, between November 1983 and 

December 1986. 

Date Sampling code* 

2 3 4 5 6 7 8 

1983 2 2 3 2 2 0 0 0 

1984 16 15 16 16 14 14 0 0 

1985 16 17 16 16 18 16 18 17 

1986 16 16 16 16 16 15 17 19 

Total 50 50 51 50 50 45** 35 36 

*sampling codes as given in Table 3.1. 

**gillnet catches are lowest in rain pools as these habitats were sometimes dry. 

A 12 mm stretched-mesh seine net was used which had a mounted length of 10 m, a 1.5 m purse 

and a 2.5 m effective haul depth. The seine net was used in both exposed and moderately 

vegetated littoral areas. The procedure entailed one person in the water paying the net out from 

shore perpendicular to shore. The net was then pulled parallel to shore In a half circle covering an 

approximate 100 rTf sampling area (see Fig. 3.5). 

The rotenone ichthyocide used contained 6.8% active ingredient. This ichthyocide is miscible with 

water after pre-treatment with 50% iso-propanol. Rotenone sampling proved to be very effective in 

areas where gillnets or seine nets could not be used, such as in heavily vegetated floodplains or 

in the dense papyrus mats. 

At selected siles concentrations of rotenone at 5 - 7 ppm, depending on water temperature, were 

used and the solution slowly stirred into the collecting area. These collections covered an area of 

approximately 100 m2
• These areas were blocked off with enclosure nets where possible. The 

treated site was worked for 2 - 4 h during which the bulk of the fishes were collected. The site was 

then left, although it was revisited over a 48 h period when possible. 
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Table 3.3. The annual diurnal frequency distribution for the total number of seine net and rotenone 

collections in different sampling sites (= codes) within the various ecotones of the Okavango Delta, 

between November 1983 and December 1986. 

Year Sampling code· 

1 2 3 4 5 6 7 8 

1983 4 8 10 8 6 4 0 0 

1984 18 19 17 19 15 18 0 0 

1985 17 15 15 16 23 12 24 20 

1986 21 16 20 18 16 12 21 27 

Total 60 60 62 61 60 46 45 47 

·sampling codes as given in Table 3.1. 

Electrofishing 

In November 1983 and March 1984 an elec"lrofisher was tried in an effort to collect fish. 

Unfortunately due to the low conductivity of the Okavango waters this method proved to be of little 

value and was discontinued. 

Fish tagging 

In an attempt to help substantiate the movements of the selected species for study, a tagging 

programme was undertaken from March 1984 to November 1985. Fish were captured mainly with 

rod and line or using gillnets and marked by inserting a Flay FD-67 spaghetti tag under the dorsal 

fin. Out of a total of 1219 marked fish, only 2 (0.2%) were recaptured by November 1985. This poor 

return rate is a result of the dispersed nature of the fish species and size of the Okavango Delta 

which mitigated against a high recapture rate. Therefore, no reliable results were being obtained 

for the amount of effort put into this method and tagging ceased in November 1985. 
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GENERAL TECHNIQUES 

Measurement 

Fish captured in gillnets were measured for standard length (SL), to the nearest millimetre, and 

weighed in the field to the nearest gramme on a 3.0 kg digital balance. Standard length was found 

to be more consistently measurable as the caudal fins of many fish were either bitten by crabs and 

smaller fish or damaged while in the nets. Heavier fishes were weighed to the nearest 10 g on a 

10 kg capacity Pesola spring balance. Where stomach and gonad samples were required for 

laboratory analysis, the abdominal cavity was slit open and the entire viscera removed, labelled 

and preserved in 10% buffered formalin fixative. 

Preservation and curation 

All fishes caught in seine nets or with rotenone were fixed in 10% formalin solution and brought 

back to the J.L.B. Sinith Institute of Ichthyology or research station in Maun. These fishes were 

identified, sorted, and weighed no later than one-month after capture. The fish were then 

preserved in 50% iso-propanol. All the specimens are housed in the collection of the J .L.B. Smith 

Institute of Ichthyology (OK 83-1 to OK 86-113t. 

Statistical analysis 

All the relevant biological and ecological information was stored on an IBM-PC computer. 

Summations of relative abundance and mass compositions, catch per unit effort, gonad maturation 

indices and fecundity relationships were performed using the LOTUS-123 statistical programme. 

Two-way indicator species analysis (TWINSPAN; Gauch, 1982) was used to determine a community 

classification for the different sampling sites and to help explain the factors limiting the distribution 

and abundance of fish. TWIN-SPAN constructs an ordering of the data sets and classifies the 

samples using dichotomies. The aim of the TWIN-SPAN arrangement is to identify the most 

important features of the data set and to group together species with similar ecological 

preferences. 

The entire data set was entered on the Rhodes University mainframe computer together with data 

on pertinent physical properties of each sampling site such as the depth of water, whether or not 

the site was perennially or seasonally flooded, flow rates, substrate type and amount of floating, 
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emergent and submergent aquatic vegetation (see Table 3.1). The data set was then used to obtain 

an ordered dendrogram that expresses each species synecological relationships. 

Ordination of the data sets was carried out using CANOCO, a computer programme which 

performs Partial Detrended Canonical Correspondence Analysis and is an extension of the Cornell 

University Ecology Programme DECORANA (Ter Braak, 1987). This programme was used to derive 

clusters that quantify the degree of similarity or dissimilarity in fish collections made in the different 

sampling sites. 

Selection of species 

The species chosen for detailed study throughout this thesis include the sharptooth catfish Clarias 

gariepinus, silver catfish Schilbe mystus (now synonomized with Eutropius depressirostris; De Vos, 

1984), tigerfish Hydrocynus vittatus, African pike, Hepsetus odoe and threespot tilapia Oreochromis 

andersonii (Table 3.4). These five species were selected for study because of their ecological 

importance in the food chain and their importance in the commercial, artisanal and recreational 

fisheries. Additional information on the biology and ecology of each of these species is presented 

in Table 3.4. 

Table 3.4. The five selected species chosen for detailed study in the Okavango Delta, between 

November 1983 and December 1986 and relevant taxonomic and biological information. 

Species 

Clarias gariepinus 

Schilbe mystus 

Hydrocynus vittatus 

Hepsetus odoe 

Oreochromis andersonii 

mean standard 

length 

474 mm 

195 mm 

326 mm 

254 mm 

227 mm 
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trophic reproductive 

group guild 

omnivore/predator non-guarder 

insectivore/predator non-guarder 

piscivore non-guarder 

piscivore guarder 

detritivore bearer 



Clarias gariepinus (Burchell, 1822). Sharptooth catfish. 

DistribUlion and abundance: The sharptooth catfish (Fig. 3.14a) is found in every habitat type in 

the Okavango Delta including the fast-flowing stretches of the main river channels, tributaries, 

oxbow and floodplain lagoons and rain pools (Chapter 4). The length-frequency histogram for 

fishes collected in gillnets (24 - 143 mm) between November 1983 and December 1986 indicates 

that the mean standard length is 474 mm in a range from 210 to 920 mm SL (Fig. 3.14b) . .Q" 

gariepinus is one of the most important species caught in the commercial and artisanal fisheries. 

Biology: C. gariepinus can survive long periods in thick viscous mud in drying up lagoons and 

floodplains by breathing atmospheric oxygen. The ability olthe catfish Clarias gariepinus to survive 

almost total habitat desiccation has been reviewed by BrUlon (1979), and further instances of their 

ability to survive in fluid mud have been observed on the Pongolo floodplain (Merron et aI., 1987). 

At the posterior end of the head are two sponge-like supra-branchial organs that allow for oxygen 

transfer in or out of the water. Spawning takes place between July and March in different parts of 

the Delta (Chapter 6). Females are highly fecund with up to 236000 eggs recorded from a 770 mm 

fish (Chapter 6). The eggs are broadcast among aquatic vegetation in slow-flowing river channels 

and shallow floodplains. C. gariepinus Is an omnivorous predator with a diet consisting mainly of 

fish, aquatic and terrestrial insects, plant material, seeds, fruit and shrimps (Chapter 7). 

Schilbe mystus (Linnaeus, 1758). Silver catfish. 

Distribution and abundance: The silver catfish (Fig. 3.15a) is found throughout the Okavango Delta 

in large numbers in the open water areas 01 slow-flowing rivers and lagoons (Chapter 4). The 

length-frequency histogram for fishes collected in gillnets (24 - 143 mm) between November 1983 

and and December 1986 indicates that the mean standard length is 195 mm in a range from 90 to 

260mm (Fig.3.15b). This species is important in the commercial and artisanal fisheries. 

Biology: Gonad examination indicates that the silver catfish has a relatively high fecundity (e.g. 

13500 eggs for a 221 mm fish; Chapter 6) and spawns between July and March in different parts 

of the Delta (Chapter 6). S. mystus is an insectivore predator which mainly feed on adult aquatic 

and terrestrial insects and fish (Chapter 7). 
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Figure 3.14. An illustration of a sharptooth catfish (C. garieplnus) from the Okavango Delta, May 

1986 (a), and respective length-frequency histogram (b) for fish collected in gillnets (24 - 143 mm) 

between November 1983 and December 1986 (n = 759). 
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Figure 3.15. An Illustration of a silver catfish (S. mystus) from the Okavango Delta, April 1985 (a), 

and respective length- frequency histogram (b) for fish collected in gillnets (24 - 143 mm) between 

November 1983 and December 1986 (n = 1429). 

250 



Hvdrocynus vittatus (Cuvier, 1819). Tigerfish. 

Distribution and abundance: The tigerfish (Fig. 3.16a) is an open water species found mainly in the 

perennial waters olthe OKavango (Chapter 4). The main ecological factors limiting their distribution 

in the Okavango appear to be water permanency, depth and flow. The length-frequency histogram 

for tigerfish collected in gillnets (24 - 143 mm) between November 1983 and December 1986 

indicates that the mean standard length is 326 mm in a range from 210 to 620 mm SL (Fig. 3.16b). 

Tigerfish are not a commercially exploited species, although they are an important component of 

the recreational and artisanal fisheries. 

Biology: Tigerfish spawn in early summer in the papyrus fringe of the mainstream channel and 

oxbow lagoons (Chapter 6). Females are highly fecund, spawning over 200000 eggs at a time and 

attain a larger size than males (Chapter 6). The tigerfish is an extremely active and voracious 

predator with a diet consisting largely of fish (Chapter 7) . 

Hepsetus odoe (Bloch, 1794). African pike. 

Distribution and abundance: The African pike (Fig. 3.17a) prefers the slower-flowing reaches of the 

seasonal swamp and drainage rivers from which tigerfish were absent (Chapter 4). These two 

predatory species do not normally co-exist in the same habitat. The length-frequency histogram 

for pike collected in gillnets (24 - 143 mm) between November 1983 and December 1986 indicates 

that the mean standard length is 254 mm in a range from 110 to 390 mm SL (Fig. 3.17b). Pike are 

not a commercially important species although they are important in the artisanal and recreational 

fisheries. 

Biology: Pike spawn between October and March in different parts of the Delta (Chapter 6) . This 

species has one of the most interesting breeding behaviours of fish in the Delta. The fertilized eggs 

are deposited in a foam nest which is guarded by the parents (Chapter 6). These nests are found 

along the fringe of the river channels and oxbow lagoons as well as in the floodplains. Foam nests 

appear to be a predator avoidance mechanism as well as an adaptation to fluctuating water levels. 

Fecundity is relatively low with a mean number of 2627 eggs. Gonad examination reveals eggs of 

varying sizes which suggests that this species is a multiple spawner. 

The pike is an ambush predator, unlike the tigerfish which is a fast-swimming, marauding predator. 

The stomach contents of pike indicate an almost exclusive piscivorous diet with a wide range of 

fish species such as topminnows, barbs and juvenile cichlids consumed (Chapter 7). 
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Figure 3.16. An illustration of a tigerfish (H. vittatus) from the Okavango Delta, October 1986 (a), 

and respective length- frequency histogram for fish collected in gillnets (24 - 143 mm) between 

November 1983 and December 1986 (n = 1113). 
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Oreochromis andersonii (Castelnau, 1861). Threespot tilapia. 

Distribution and abundance: The threespot tilapia (Fig. 3.18a) is one of the most common and 

ubiquitous small-mouthed cichlids found in the Okavango Delta (Chapter 4). O. andersonii is 

tolerant of fluctuating environmental conditions, and is one of the last species to survive 

desiccating conditions. O. andersonii is also one of the first species to colonize recently inundated 

water bodies. The length-frequency histogram for fishes collected in gillnets (24 - 143 mm) between 

November 1983 and December 1986 indicates that the mean standard length is 227 mm in a range 

from 50 to 395 mmSL (Fig. 3.18b). This cichlid species is one of the most common fishes in the 

commercial and artisanal catch and is highly valued in the recreational fishery. 

Biology: O. andersonii is a mouth-brooder and multiple spawner with a low fecundity (e.g. 1223 

eggs for a 210 mm fish; Chapter 6). Spawning behaviour involves the male setting up territories 

in arenas or "leks" and preparing nests in which mating occurs with a succession of receptive 

females. The male attracts a female which then lays her eggs in the nest for the male to fertilize. 

The female then picks up the eggs in her mouth where they are incubated for about one month 

after which the juveniles move away into very shallow margins of the floodplains. This species 

feeds mainly on detritus, digesting the bacteria and diatoms and passing the mud through the 

intestine (Chapter 7). 
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CHAPTER 4 

POPULATION DEMOGRAPHY AND FAUNAL ASSOCtATtONS OF 

S'ELECTED SAMPLING SITES 

INmODucnON 

This chapter provides a quantitative account of the species diversity, relative abundance and mass 

compositions of fishes collected in the different sampling sites studied in the Okavango. This 

information provides an understanding of the faunal associations and the factors which determine 

the distribution and abundance of species. 

MATERIALS AND METHODS 

To ascertain the population demography and faunal associations of fishes in the delta, particularly 

the five selected species, the percentage numeric and mass contributions were summed from all 

gillnet catches, and seine and rotenone collections for each respective sampling site as described 

In Chapter 3. A total of 367 overnight gillnet settings were carried out between November 1983 and 

December 1986 (Table 3.2). A total of 441 seine net and rotenone collections were also carried out 

between November 1983 and December 1986 (Table 3.3). The results presented below are a 

summation of all the sampling methods for each individual species and site. All collections within 

a given sampling site between November 1983 and December 1986 were grouped together for this 

analysis. 

It is apparent from Table 3.2 and 3.3 that, although quantitative quarterly sampling only began in 

the riverine floodplain in April 1985, a relatively uniform distribution of effort using standardized 

methods throughout the Okavango Delta was achieved. It is therefore reasonable to assume that 

the catches of the selected species in each sampling site are related to the proportional 

contribution made by that species to the faunal composition of that particular sampling site. It 

should, however, be stated that the habitat characteristics of a particular sampling site determined 

to a large extent the effectiveness of the different sampling methods. For example, seine nets were 

often more effective than gillnets in the rain pool environs and rotenone sampling was more 

effective in the slower moving drainage rivers than in the faster flowing mainstream channel. 

Although the sampling efficiency was not standardized as much as would be desired, it was 

unavoidable as each sampling site had characteristics unique to it. 
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These data were used to construct pie diagrams of species composition and relative abundance, 

based on numbers and mass, for each sampling site. This was necessary to provide a holistic 

interpretation of the fauna and to circumvent the biases associated with reporting on only one of 

these variables. It should be noted that within the genus Synodontis only 4 species (e.g. ~ 

leopardinus, S. nigromaculatus, S. macrostigma and S. woosnami) were recognized in the present 

analysis, although Skelton and White (1990) recognize two additional species (i.e. S. macrostoma 

and S. vanderwaali) . 

The results are presented firstly as an overall assessment of the entire Okavango fauna, and 

secondly as a broad description of the distribution and abundance of species, and therefore the 

communities in different sampling sites. These data were then further analysed using multivariate 

analytical techniques (e.g. TWIN-SPAN community classification & CANOCO similarity analysis) 

to determine the respective ordination and degree of similarity in fish communities between the 

sampling sites. Various physical features of the different sampling sites are considered in this 

analysis including the permanence (retention time) of water, flow rates, depth, substrate type, and 

extent of floating, emergent and submergent aquatic macrophyte communities as given in Table 

3.1. 

As the pie diagrams only allow 12 slices, one group of fishes represented in the pie charts labelled 

"Others" requires further mention. The group "Others" represents species which contributed on 

average less than 1 % each to the total number or mass of fish at each site. All numeric and mass 

ligures within the pie diagrams are reported to one decimal place. It should also be noted that the 

17 species of the family Cichlidae contributed considerably to the numeric and mass compositions 

of the communities relative to other families of fish. Therefore, to obtain a general trend in 

community structure of the different sampling sites reference is made to the groups cichlid and 

non-cichlid species when referring to the species compositions of the different sampling sites. A 

taxonomic listing of all species collected during this study including trophic and reproductive 

guilds is given in Appendix 1. 

RESULTS 

THE OVERALL RSH FAUNA OF THE OKAVANGO DELTA 

A total of 130908 specimens comprising at least 66 species with a combined mass of 3901 kg was 

collected in the Okavango Delta between November 1983 and December 1986 (Appendix 2) . 

Numerically, the most important cichlid species included Oreochromis andersonii (8.0%), O. 

macrochir (3.0%), Tilapia sparrmanii (7.1 %), T. rendalli (3.4%), Pseudocrenilabrus philander 

(4.6%), and Pharyngochromis darlingi (3.6%; Fig. 4.1a). Important non-cichlid species included 

Aplocheilichthys johnstoni (7.2%), Schilbe mystus (4.3%), Brycinus lateralis (6.1%) and Barbus 
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barnard I (4.5%) and B. thamalakanensis (3.7%). The group "Others" (44.6%) represents a total of 

55 additional species. 

The results on mass composition of all Okavango fishes (Fig. 4.1b) Indicates that Important clchlld 

species Included Oreochromls andersonil (12.3%), O. macrochlr (4.6%), Serranochromls 

angustlceps (7.1%), TUapla sparrmanii (3.3%) and T. rendalli (3.0%). Important non- clchlld species 

included Hydrocynus vlttatus (12.8%), Clarias garieplnus (11.5%) and C. ngamensls (4.2%), S. 

mystus (10.3%), Hepsetus odoe (6.3%) and Synodontis nlgromaculatus (3.7%). The group "Others" 

contributed 20.8% of the total mass value. 

The five selected species are well represented comprising 53.2% of the overall fauna by mass and 

16.9% by number (Table 4.1). The results on species diversity and relative abundance for the entire 

delta presented above can now be used as a foundation on which to compare Interspecific 

variations In faunal associations between the different sampling sites. 

Table 4.1 The percentage mass contribution lor the five selected species for study for each 

sampling site in the Okavango Delta between November 1983 and December 1986. 

Species 1 2 3 4 5 6 7 8 

Clarlas garieplnuB 5.3 8.2 7.0 15.1 11.8 8.9 15.3 16.3 

Schilbe mystus 19.3 15.3 14.7 6.8 7.0 1.2 6.1 6.1 

Hydrocynus vittatus 0.0 0.0 0.5 29.2 10.3 0.0 29.6 15.2 

Hepsetus odoe 11.2 9.4 17.4 0.0 3.9 1.6 0.0 3.1 

Oreochromis andersonii 15.2 14.2 9.8 7.4 13.8 37.5 8.7 12.9 

Total 51.0 47.1 49.4 58.5 46.8 49.2 59.7 53.6 
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Figure 4.1. Total number (a) and mass (b) of fish collected using all sampling methods from the 

Okavango Delta, between November 1983 and December 1986. 
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DISTRIBUTION AND ABUNDANCE OF FISH SPECIES FOR EACH SAMPUNG SITE 

Chanoga Lagoon. Boteti River 

A total of 26206 specimens, representing 46 species with a combined mass of 581 kg, was 

collected from this site (Appendix 2). Numerically, the most common cichlid species included 

Tilapia sparrmanii (10.8%), T. rendalli (3.6%), Oreochromis andersonii (8.3%), O. macrochir (5.0%), 

Pharyngochromis darlingi (5.9%) and Pseudocrenilabrus philander (5.7%; Fig. 4.2a). Important 

non-cichlid species included B. lateralis (7.8%), Rhabdalestes maunensis (5.5%), Barbus barnardi 

(7.7%), A. johnstoni (6.1%) and S. mvstus (4.5%). The group "Others" comprised 35 additional 

species which contributed 29.1% to the total. 

An analysis olthe contribution by mass (Fig. 4.2b) indicates that important cichlid species included 

Oreochromis andersonii (15.2%), O. macrochir (6.1%), Tilapia sparrmanii (6.0%), Serranochromis 

codringtoni (2.8%), S. giardi (2.7%) and S. thumberqi (2.6%). Important non-cichlid species 

included S. mystus (19.3%), H. odoe (11.2%), C. gariepinus (5.3%), Synodontis leopardlnus (3.9%) 

and S. nigromaculatus (3.5%). The group "Others" contributed 21.4% of the total mass value. 

The species composition of this sampling site differs markedly from the overall Okavango fauna 

(see Fig. 4.a & b). Four of the five selected species were well represented in this sampling site 

comprising 51.0% of the overall mass and 14.5% of the numeric contribution (Table 4.1). H. vittatus 

was absent from all samples, although one individual was collected by staff of the Botswana 

Fisheries Unit in November 1984 (pers. observation). 

Thamalakane River 

A total of 23359 specimens, representing 56 species with a combined mass of 489 kg, was 

collected from this sampling site (Appendix 2). Important cichlid species in the numeric 

composition of the community included Tilapia sparrmanii (11.2%), T. rendalli (4.8%), Oreochromis 

andersonii (8.8%), O. macrochir (4.6%), Pharyngochromis darlingi (5.9%) and Pseudocrenilabrus 

philander (4.4%; Fig. 4.3a). Important non-cichlid species included Barbus barnardi (5.7%), !!.:. 
thamalakanensis (3.9%), Brycinus lateralis (5.7%), A. johnstoni (7.2%) and S. mystus (4.5%). The 

group "Others" comprised 45 additional species which contributed 33.3% to the total. 

An analysis of the mass composition (Fig. 4.3b) indicates that important cichlid species included 

Tilapia sparrmanii (6.6%), T. rendalli (5.6%), Oreochromis andersonii (14.2%), O. macrochir (6.5%), 
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Figure 4.2. Total number (a) and mass (b) of fish collected using all sampling methods from 

Chanoga Lagoon, Boteti River, Okavango Delta, between November 1983 and December 1986. 
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Figure 4.3. Total number (a) and mass (b) of fish collected using all sampling methods from the 

Thamalakane River, Okavango Delta, between November 1983 and December 1986. 
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and Serranochromis thumbergi (2.7%). Important non-cichlid species included H. odoe (9.4%), ~ 

mystus (t5.3%), Clarias gariepinus (8.2%), C. ngamensis (3.5%), Marcusenius macrolepidotus 

(2.9%) and Synodontis leopardinus (2.8%). The group "Others" contributed 22.3% of the total mass 

value. 

It is apparent that the species composition and relative abundance of fish in this sampling site 

differs markedly from the overall Okavango Delta analysis (see Figs. 4.1a & b). With the exception 

of H. vittatus the four other selected species (e.g. C. gariepinus, S. mystus, H. odoe & O. 

andersonii) were well represented in this sampling site comprising 47.1% of the total mass and 

15.9% of the numeric contribution (Table 4.1) . 

Southern seasonal swamp 

The southern seasonal swamp sampling site at Nxaraga Lagoon and the Boro River harboured a 

greater diversity of non-cichlid species when compared to either Chanoga Lagoon or the 

Thamalakane River. A total of 20188 specimens, representing 60 species with a combined mass 

of 481 kg was collected from this sampling site (Appendix 2). 

Numerically, the community was dominated by non-cichlid species of which A. johnstoni (12.1%), 

Brycinus lateralis (7.8%), S. mystus (6.6%), Barbus barnardi (5.7%), B. thamalakanensis (6.7%), 

B. haasianus (5.8%), B. afrovernayi (3.7%), B. bifrenatus (2.6%) and Coptostomabarbus wittei 

(4.0%) were the most common (Fig . 4.48). Only two cichlid species T. sparrmanii (6.4%) and O. 

andersonii (4.7%) were common. The group "Others" comprised 49 additional species which 

contributed 33.9% to the total. 

In terms of mass contribution (Fig. 4.4b), Important non- cichlid species included H. odoe (17.4%), 

S. mystus (14.7%), Clarias gariepinus (7.0%), C. ngamensis (3.4%), Synodontis leopardinus (4.2%) 

and S. nigromaculatus (5.8%). Important cichlid species included Oreochromis andersonii (9.8%), 

O. macrochir (2.8%), Serranochromis angusticeps (7.9%), S. robustus jallae (3.5%) and T. 

sparrmanii (4.7%). The group "Others" contributed 18.8% to the total. 

With the exception of H. vittatus, all other selected species featured prominently in this sampling 

site and comprised 49.0% of the total mass and 14.1% of the numeric composition (Table 4.1) . .!i. 

vittatus was virtually absent from this sampling site with only two individuals recorded during the 

study period. 
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Figure 4.4. Total number (a) and mass (b) of fish collected using all sampling methods from the 

seasonal swamp, Okavango Delta, between November 1983 and December 1986. 
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Northern perennial swamp 

The perennial swamp habitat type was characterised by a community of many non-cichlid species, 

that were not recorded in the former sites. A total of 11327 specimens, representing 64 species 

with a combined mass of 599 kg was collected from this sampling site (Appendix 2). Both species 

diversity and the total mass catch was greater than that recorded in the previous sampling sites. 

Most noticeable was the appearance of large numbers of the rheophilic H. vittatus (Table 4.1). 

Numerically, the most common fishes collected in the perennial swamp were non-cichlid species 

of which the following were the most important: B. lateralis (7.3%), A. johnstoni (7.2%), 

Hemigrammocharax machadoi (6.5%), H. vittatus (6.5%), M. acutidens (6.4%), S. mystus (4.9%), 

M. macrolepidotus (4.7%) and Petrocephalus catostoma (4.7%; Fig. 4.5a). The only common 

cichlids in the numeric analysis were Pseudocrenilabrus philander (3.5%), O. andersonii (3.4%) and 

T. sparrmanii (3.3%). The group "Others" comprised 53 additional species which contributed 41.6% 

to the total. 

In terms of mass contributions (Fig. 4.5b), the most important non-cichlid species were H. vittatus 

(29.2%), Clarias gariepinus (15.1%), C. ngamensis (5.7%) and S. mystus (6.S%). Important cichlid 

species included S. angusticeps (S.9%) and O. andersonii (7.4%). The group "Others" contributed 

12.S% of the total. The total cichlid proportion in the community was considerably less than the 

proportion found in the drainage river sampling sites or seasonal swamp (Appendix 2). 

All five selected species were collected in this community and comprised 59.7% of the total mass 

and 17.5% of the numeric composition (Table 4.1). However, the percentage mass contribution of 

H. odoe and S. mystus was considerably lower than in the previous sampling sites. 

46 



(a) 

S mystus 4.9% 

M. macrolepidotus 4.7% 

P. catostoma 3.7% 

P. ph i lander 3.5% 

O. andersonii 3.4% 
T. sparrmanii 3.3% 

n = 11261 

(b) 

H. v i ttatus 29.2% 

C. 9ariepinus 15.1% 

S. angusticeps 8.9% 

O. andersonii 7.4% 

mass = 599 kg 

NUMBER 

H. v i ttatus 6.5% 

MASS 

H. machadoi 6.5% 

A johns toni 7.2% 

B. lateral is 7.3% 

Others" 53 spp. 41.6% 

Others " 53 spp. 12.8% 

O. macrochir 1.6% 

T. sparrmanii 2.0 % 
M. macrolepidotus 2.9% 

S. nigromaculatus 3.7% 
S. robus tus 3 .8% 

C. ngamensis 5.7% 
S. mystus 6.8% 

Figure 4.5. Total number (a) and mass (b) of fish collected using all sampling methods from the 

perennial swamp, Okavango Delta, between November 1983 and December 1986. 

47 



Perennial swamp floodplain-connected lagoons 

A total of 11261 specimens, representing 62 species with a combined mass of 394 kg was collected 

from this sampling site. Numerically, the most important species were non-cichlids which included 

Sarbus haasianus (10.8%), A. johnstoni (7.2%), Srycinus lateralis (5.9%), C. wittei (4.4%), S. mystus 

(4.2%), M. macrolepidotus (3.8%), Hydrocynus vittatus (3.7%) and Hemigrammocharax machadoi 

(3.3%; Fig. 4.6a). Important cichlid species were P. philander (6.3%), T. sparrmanii (3.2%) and O. 

andersonii (3.0%). The group "Others" comprised 51 species which contributed 44.2% to the total. 

The most substantial mass contributions were recorded for the non-cichlid species of which Clarias 

gariepinus (11.8%), C. ngamensis (4.7%), Labeo lunatus (10.7%), H. vittatus (10.3%), Schilbe 

mystus (7.0%) and Synodontis nigromaculatus (3.5%) were the most common (Fig. 4.6b). Important 

cichlid species included Oreochromis andersonii (13.8%), O. macrochir (4.9%), Serranochromis 

angusticeps (11.3%) and T. rendalli (3.0%). The group "Others" contributed 15.0% of the total. 

All five selected species were collected in this sampling site and comprised 46.8% of the total mass 

and 12.9% of the numeric composition (Table 4.1). However, the relative abundance and mass 

contributions of S. mystus and H. odoe were low when compared to the seasonal swamp and 

drainage river sampling sites. 

Rain pools 

A total of 12345 specimens, representing 28 species with a combined mass of 102 kg was collected 

from this habitat type (Appendix 2). Numerically, the most important cichlid species included 

Oreochromisandersonii (26.9%), O. macrochir (6.4%), Tilapia rendalli (10.8%), T. sparrmanii (4.7%), 

T. ruweti (2.7%) and P. philander (8.2%; Fig. 4.7a) . The non-cichlid, numeric composition of the 

fauna was represented by Sarbus paludinosus (16.9%), S. thamalakanensis (6.3%), S. bifrenatus 

(2.7%), C. gariepinus (2.8%) and A. johnstoni (2.5%). The group "Others" comprised 17 additional 

species which contributed 9.1 % to the total. 

In terms of mass contributions (Fig. 4.7b), the most important cichlid species included 

Oreochromis andersonii (37.5%), O. macrochir (14.7%), Tilapia rendalli (17.3%), T. sparrmanii 

(4.3%) P. philander (1.4%) and S. codrlngtoni (1 .1%). Important non-cichlid species included 

Clarias gariepinus (8.9%), C. ngamensis (3.5%), S. paludinosus (4.1%), S. mystus (1 .2%) and.!t. 

odoe (1.6%). The group "Others" contributed 5.0% of the total. 

Of the five selected species, only O. andersonii and C. gariepinus featured prominently in this 

sampling site (Table 4.1). H. vittatus was absent from collections. The rain pool habitat type 

harboured a depauperate fauna with the community dominated by a few abundant, species. 
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T. sparrman;; 3.2% 

H. machadoi 3.3% 
H. vi t tatus 3.7% 

M. macrolep;dotus 3.8% 

S. mystus 4.2% 

lateral;s 5.9% 
P philander 6.3% 

Others = 51 spp. 15.0 % 

T. rendalli 3.0 % 

S. n;gromaculatus 3.5% 

H odoe 3.9% 

C. ngamensis 4.7% 

O. macrochir 4.9% 

S. mystus 7.0 % 

Figure 4.6. Total number (a) and mass (b) of fish collected using all sampling methods from the 

perennial swamp floodplain-connected lagoons, Okavango Delta, between November 1983 and 

December 1986. 

49 



(a) NUMBER 

B. pa ludinosus 16.9% 

T. renda lli 10.8% 

n = 12345 

(b) MASS 

O. andersonli 37.5% 

O. macrochir 14.7% 

mass = 102 kg 

A. johns toni 2.5% 
T. ruweti 2.:% 
B. bifrenatus 2.7% 
C. gariepinus 2.8% 

T. sparrmani i 4.7% 

B. thamalakenens is 6.3% 

O. macrochir 6.4% 

P. philander 8.2% 

Others' 17 spp. 5.0 % 
S codrjogtooj 1.1% 
T sparrmaoi i 4 .3% 
P . ohi lander 1.4% 

H odo e 1.6% 
C. ngamensis 3.5% 

B. palud inosus 4.1% 
S. mystus 1.2% 

C. gariepinus 8.9% 

Figure 4.7. Total number (a) and mass (b) of fish collected using all sampling methods from the 

rain pool habitat type, Okavango Delta, between November 1983 and December 1986. 
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Riverine floodplain mainstream channel 

A total of 10077 specimens, representing 66 species with a combined mass of 649 kg was 

collected from this sampling site (Appendix 2). Numerically, the community was dominated by 

non-cichlid species of which M. macrolepidotus (8.5%), Hemigrammocharax machadoi (8.0%), B. 

latera lis (5.2%), H. vittatus (4.9%), S. mystus (4.4%), M. acutidens (4.2%), P. catostoma (3.6%), C. 

gariepinus (3.5%) and S. nigromaculatus (3.3%) were the most common (Fig. 4.8a). Only two 

clchlid species, O. andersonii (3.8%) and T. sparrmanii (3.4%), were common. A total of 55 

additional species in the group "Others" comprised 47.2% of the total. 

The largest non-cichlid contributions to the mass composition (Fig. 4.8b) were from H. vittatus 

(29.6%), Clarias gariepinus (15.3%), C. ngamensis (4.0%), Schilbe mystus (6.1%), Synodontis 

nigromaculatus (4.2%) and M. macrolepidotus (2.6%). Common cichlid species included 

Serranochromis angusticeps (10.6%), S. robustus jallae (2.4%), S. giardi (1.4%), Oreochromis 

andersonii (8.7%) and O. macrochir (2.7%). The group "Others" contributed 12.4% to the total mass 

of fish. 

The species composition of this sampling site was similar to that recorded for the perennial swamp 

and was characterized by a high diversity of species with large body size, such as H. vittatus. All 

the selected species were represented in this sampling site, comprising 60.1% of the total mass 

and 16.9% of the numeric composition (Table 4.1). The percentage contribution of H. odoe and S. 

mystus was, however, considerably less than in the seasonal swamp or drainage river sites. 

Riverine floodplain-connected lagoons 

The species composition of this sampling site was also characterized by the large proportion of 

non-cichlid species. A total of 16145 specimens, representing 60 species with a combined mass 

of 605 kg was collected from this sampling site (Appendix 2). 

Numerically important non-cichlid species included A. johnstoni (8.8%), Brycinus latera lis (6.2%), 

Barbus haasianus (5.4%), B. afrovernayi (4.8%), B. barnardi (3.9%), B. fasciolatus (3.5%) and ~ 

mystus (3.0%; Fig. 4.9a). The most commonly encountered cichlid species included T. sparrmanii 

(5.5%), O. andersonii (5.0%), Pseudocrenilabrus philander (4.5%) and Pharyngochromis darlingi 

(4.1%). The group "OthE'rs" comprised 49 additional species which contributed 45.3% to the total. 

The largest non-cichlid contributions to the mass composition of the community (Fig. 4.9b) were 

from Clarias gariepinus (16.3%), C. ngamensis (6.2%), H. vittatus (15.2%), Schilbe mystus (6.1 %), 
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(a) NUMBER 

n = 10077 

(b) 

O. andersonii 5.0 % 
B. afrovernaYI 4.8% 

P. ohilander 4.5% 

B. barnardi 3.9% 

B. fasciolatus 3.5% 

S. mystus 3.0 % 

O. andersonii 12.9% 

S angllstjceps 7.9% 

O. macrochjr 6.6% 

mass = 649 kg 

B. 

johnstonj 8.8% 

Others 0 49 spp. 45.3% 

MASS 

C. gar iepinus 16.3% 

Others = 49 spp. 16.5% 

S. robustus 2.3% 
H. odoe 3.1% 

T. rendalli 3.3% 
S. nigromaculatus 3.6% 

S. mystus 6.1% 
C. ngamensis 6.2% 

Figure 4.8. Total number (a) and mass (b) of fish collected using all sampling methods from the 

riverine floodplain mainstream channel, Okavango Delta, between April 1985 and December 1986. 
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(a) 

n = 16145 

(b) 

NUMBER 

H. machadoi 8.0 % 
B. lateral is 5.2% 

H. 

S. mystus 4.4% 

M. acutidens 4.2% 

O. andersonii 3.8% 

P. catostoma 3.6% 
C. gar iepinus 3.5% 

T. sparrmanii 3.4% 
S. nigromaculatus 3.3% 

H. vi ttatus 29.6% 

S. angusticeps 10.6% 

MASS 

O. andersonii 8.7% 

mass = 605 kg 

Others " 55 spp. 47.2% 

Others" 55 spp. 12.4% 

S. giardi 1.4% 

S. robustus 2.4% 
M, macrolepidotus 2. 6% 
o-macrochir 2.7% 

C. ngamensis 4,0 % 

S. nigromaculatus 4.2% 
S. mystus 6.1% 

Figure 4.9. Total number (a) and mass (b) of fish collected using all sampling methods from the 

riverine floodplain-connected lagoons, Okavango Delta, between April 1985 and December 1986. 
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Synodontis nigromaculatus (3.6%) and H. odoe (3.1%). Important cichlid species included 

Oreochromis andersonii (12.9%), O. macrochir (6.6%), Serranochromis angusticeps (7.9%), S. 

robustus jallae (2.3%) and T. rendalli (3.3%). The group "Others" contributed 16.5% to the total. 

All of the selected species featured in this sampling site, comprising 53.6% of the total mass and 

12.9% of the numeric composition (Table 4.1). The relative abundance of H. odoe and S. mystus 

was, however, low when compared to catches in the drainage river and seasonal swamp sampling 

sites. The overall mass of fish collected, based on standardized catch and effort data, was also 

higher than in the seasonally fluctuating habitat types (Appendix 2). 

COMMUNITY SIMILARITIES 

Within the southern African geographic region, the Okavango DeHa has a high diversity of fishes 

(66 species recorded during the present study period). However, the number of species and their 

relative abundance in different sampling sites varied markedly. Fish diversity and total catch, in 

mass, were highest in sampling sites within perennially flooded ecotones (e.g. riverine floodplain 

and perennial swamp), whereas diversity and total catch was lowest in sampling sites within 

seasonally flooded ecotones (e.g. seasonal swamp and drainage rivers; Appendix 2). 

The use of the TWIN-SPAN multivariate community classification further revealed a clear 

distinction, at the first level of division, between the species composition of sampling sites in 

perennially or seasonally flooded ecotones (Fig. 4.10). 

At the second level of division a clear distinction was again made between the species composition 

of perennially flooded, fast flowing (> 1 m/sec) sampling sites and perennially flooded, moderately 

flowing (0.5 m/sec) sampling sites. The species composition of fast-flowing sampling sites formed 

a group on the left side of the dichotomy; whereas the species composition of perennially flooded, 

moderately flowing sampling sites formed a group on the right hand side of the dichotomy. Within 

the seasonally flooded ecotones the species composition of the rain pool sampling site formed a 

group on the left hand side of the dichotomy. Rain pools had no measurable flow and as 

previously stated harboured a depaurperate fauna. The species composition of seasonally flooded, 

slow-flowing sampling sites « 0.3 m/sec) were grouped on the right hand side of the dichotomy. 

It should be stressed that this is a simplistic interpretation at present but that these two parameters 

(e.g. perennial versus seasonal and having a flow or not) affect everything else such as substrate 

type and presence of aquatic vegetation, which in turn influence the community structure. 
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Figure 4.10. TWIN-SPAN community classification based on the grouping of all fish collections and sampling sites in the Okavango Delta, between the period 

November 1983 and December 1986. Sampling site numbers are given in Table 4.1. 



The third dichotomy further subdivides the sampling sites. The species composition of the 

perennial swamp at Xakanixa Lagoon (site 4) and the riverine floodplain mainstream channel (site 

7) formed a group on the extreme left side of the perennially flooded, fast flowing division. The 

species composition of perennial swamp floodplain-connected lagoons (e.g. Maxegana Pools; site 

5) and the riverine floodplain-connected lagoons (e.g. Dungu Lagoon; site 8) were grouped 

together under perennially flooded, moderately flowing sampling sites. 

Although the riverine floodplain mainstream and floodplain-connected lagoons (e.g. sites 7 and 8) 

were immediately adjacent to one another, the species composition of the riverine floodplain 

mainstream (e.g. site 7) showed a stronger affinity to the perennial swamp fauna at Xakanixa 

Lagoon (e.g. site 4). It should be noted that although both of these sampling sites were in different 

ecotones, the riverine floodplain mainstream and perennial swamp sampling sites were within 

habitats with a continual flow of water. The perennial swamp floodplain-connected lagoons (e.g. 

site 5), on the other hand, was more closely aligned with the riverine floodplain-connected lagoons 

(e.g. site 8). Both these sites were perennial floodplain lagoon habitat types that are connected to 

the larger river channels during flooding. 

Within the seasonally flooded, slow flowing habitat types, the species composition of Nxaraga 

Lagoon (e.g. site 3) formed a group on the right side of the dichotomy. The species composition 

of the drainage river sites were grouped on the left side of the dichotomy. No further distinction 

was made for the rain pool sampling site. 

The fourth dichotomy further subdivides the drainage rivers sampling sites (e.g. Chanoga Lagoon; 

site t & the Thamalakane River; site 2) into distinct groups. The species composition in all other 

sampling sites also formed closely similar groups on their own (Fig. 4.10). 

For the most part the species assemblages and corresponding sampling sites formed a fairly well 

defined sequence from those clustered on the left side of the dichotomy (e.g. perennial habitat 

types) to those clustered on the right side of the dichotomy (seasonal swamp and drainage river 

habitat types). These differences can be associated with the difference in physical, chemical and 

biological characteristics between the respective sampling sites such as the permanence of water, 

flow rates, depth, substrate and aquatic macrophyte cover. 

CANACO similarity ordination further revealed two distinct groups of sampling sites (e.g. perennial 

versus seasonal swamp habitat types) that can be separated at a similarity level of 40% (Fig. 4.11). 

The drainage river and seasonal swamp sampling sites (e.g. site 1, 2 & 3) formed one stem, while 

the perennial swamp and riverine floodplain sampling sites (e.g. sites 4, 5, 6, 7 & 8) formed another 
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stem. The relatively long stems of the dendrogram giving rise to perennial and seasonal sites 

indicate that these two groups are quite distinct. The drainage river sampling sites (e.g. 1 & 2) had 

a 90% similarity, but only a 50% similarity to the seasonal swamp. These results are supported by 

the above TWIN-SPAN dichotomies (Fig. 4.10). The rain pool habitat type (e.g. site 6) formed its 

own grouping, with a 50% similarity value. Species which occurred in all sites in perennially 

flooded habitats (i.e. indicator species) included H. vitlatus, M. acutidens and S. robustus jallae, 

and those for the seasonally flooded habitats included H. odoe, S. mystus and B. lateralis. 
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'sampling site 1 = Chanoga Lagoon; site 2 = Thamalakane River; site 3 = Nxaraga Lagoon; site 

4 = Xakanixa Lagoon; s;te 5 = Maxegana Pools; site 6 = Rain Pools; site 7 = Okavango 

mainstream channel; site 8 = Dungu Lagoon 

Figure 4.11. CANOCO similarity ordination based on all collections and sampling sites grouped 

together in the Okavango Delta, between the period November 1983 and December 1986. 
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DISCUSSION 

It is apparent that each of the various major sampling sites within the different ecotones in the 

Okavango has a unique combination of hydrological fluctuations and other pertinent physical 

features. A general relationship between the degree of fluctuation and the diversity of forms, total 

catch and similarity of sampling sites (ecotones) can be made. A greater diversity and overall 

catch, particularly of larger non-cichlid species (e.g. H. vittatus), was found in the more 

hydrologically stable riverine floodplain and perennial swamp ecotones relative to the 

hydrologically unstable seasonal swamp and drainage rivers ecotones. This trend may be attributed 

to the greater habitat heterogeneity resulting in a wider range of microhabitats (e.g. dense papyrus 

roots, mainstream channel, floodplain lagoons) in the riverine floodplain and perennial swamp 

ecotones which enable more stenotopic non-cichlid species to proliferate relative to the cichlid 

species. It is reasonable to assume that the degree of stability of the annual flood cycle is 

negatively correlated with species diversity. 

During the course of this study there wa~ both lateral and longitudinal zonation from a relatively 

predictably perturbed (stable) rheophilic state to an unpredictably perturbed (unstable) palustrine 

state. The seasonal swamp and drainage river communities were dominated by a large number of 

smaller species « 200 mm SL) such as B. lateralis, S. mystus and M. macrolepidotus. In contrast, 

the community structure in the perennial swamp and riverine floodplain was dominated by a high 

diversity of many large fish (> 200 mm SL) such as H. vittatus, Serranochromis angusticeps and 

S. robustus jallae. 

Based on standardized CPUE figures for the mass contribution to individual sampling sites 

(Appendix 2), the catch was highest in the riverine floodplain and perennial swamp and lowest in 

the seasonal swamp and drainage rivers. In addition, a greater mass of fish in the riverine 

floodplain and perennial swamp were collected in larger mesh nets (e.g. 96, 110 & 118 mm 

stretch-mesh) whereas smaller mesh nets (e.g. 24, 40 & 50 mm stretch-mesh) caught the greatest 

mass of fish in the seasonal swamp and drainage rivers. 

The major factor determining the distribution and abundance of fishes in the Okavango Delta 

appears to be habitat preferences, with the physical characteristics of the environment playing a 

major role. The permanence of the water (I.e. retention time) and the nature of its flow properties 

are two of the most obvious ecological factors influencing community structure in the Okavango. 

These two factors influence all other physico-chemical parameters in the Okavango, such as 

substrate type, extent of emergent, submergent and floating macrophyte cover, dissolved oxygen 

values, water temperatures, etc. 
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The TWIN-SPAN community classification and CANOCO similarity analysis did separate the major 

components of the fauna into perennial and seasonal swamp habitat types. However, it should be 

stressed that this is not an absolute criterion as, even within the perennial, riverine reaches of the 

system, seasonal floodplains and marsh conditions were found, and within the seasonal swamp, 

perennial water bodies were found. 

Based on the results presented in this Chapter, the specialized rheophilic species such as .!::!.,. 

villatus, Nannocharax macropterus and Barbus eutaenia were restricted to the riverine floodplain 

and perennial swamp. In the seasonal swamp many of the species were widely distributed in 

floodplains and channels throughout this ecotone. Species in this category included H. odoe, 

Mormyrus lacerda, T. ruweti, S. giardi, Clarias theodorae, A. hutereaui and Ctenopoma multispinis. 

A large number of species also have sufficiently generalized habitat preferences to be widespread 

and relatively common throughout all sampling sites. The most obvious of these were several small 

Barbus species, including B. barnardi, B. radiatus and B. thamalakanensis, as well as 

Petrocephalus catostoma, M. macrolepidotus, Pseudocrenilabrus philander, O. andersonii and C. 

gariepinus. 

Four of the five selected species (e.g. C. gariepinus, S. mystus, H. odoe & O. andersonii) appeared 

in the catches of almost all the sampling sites. However, only two specimens of H. villatus were 

collected from the seasonal swamp, and none were collected in the drainage rivers (e.g. Chanoga 

Lagoon and Thamalakane River). The virtual absence ofthis species from these sampling sites can 

be related to its preference for large, relatively clear water bodies. H. odoe, on the other hand, was 

more conimon in the drainage rivers and seasonal swamp than in the perennial swamp or riverine 

floodplain. The habitat preferences of H. odoe are well-vegetated areas. Being an ambush predator, 

H. odoe relies on dense vegetation for cover while waiting for prey (Chapter 7). In the perennial 

swamp the fast-flowing mainstream channel was relatively deep and void of submergent vegetation 

where H. villatus were common. In contrast, the seasonal swamp and drainage river habitats were 

characterized by slow-flowing channels and extensive floodplains with abundant submerged 

vegetation. These observations on habitat preference for the above selected species are in 

agreement with the findings in other similar African wetland systems such as the Zambezi River 

system (Jackson, 1961a) and Kwando-Linyanti-Chobe River systems (van der Waal, 1985; Merron 

1990). The relative increase of S. mystus in the seasonal swamp and drainage rivers is also 

noteworthy, particularly for the long-term development of the commercial fishery (Chapter 8). 
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CHAPTER 5 

SEASONAL ANAL VSIS OF FISH CO,,",MIJNtTIES AND THEtR R'ESPONSE TO 

THE ANNUAt. FLOOD REGIME 

INlHODUCll0N 

Chapter 4 revealed that there are distinct communities of fish in the Okavango Delta that can be 

separated from each other by the physical conditions (e.g. water retention and flow rates) within 

the different sampling sites. This chapter assesses the seasonal responses of these fish 

communities, particularly the selected species, to the annual flood cycle. This was essential for 

determining the importance of the role of the floods in maintaining these communities. This 

chapter attempts to quantify whether or not large scale intra- and inter-sampling site migrations 

existed and to assess the significance of these movements in relation to the annual flood regime. 

It has been well established that African floodplain fish populations move in response to the annual 

flood regime (Jackson, 1961a; Lowe-McConnell, 1979; Welcomme, 1979; Kok, 1980). Many fish 

move to more favourable breeding and feeding sites. This trend has also been found in many other 

wetland areas of the world. Kushlan (1976, 1980) found that the seasonal fiuctuation in water level 

in the Everglades Swamp in the USA was the most critical environmental factor affecting the 

demography of the fish community. Goulding (1980) discusses the role of fishes of the Amazon 

basin in South America as organisms of dispersal for aquatic and terrestrial plant seeds during 

flooding. 

An important question which needed to be addressed in this thesis is the degree of biotic 

interaction between peripheral floodplain-connected lagoons and the mainstream channels. 

Floodplain-connected lagoons occur throughout the Okavango system, but with a greater 

frequency in the riverine floodplain ecotone. 

MATERIALS AND METliODS 

The standardized gillnet, seine net and rotenone sampling results described in Chapter 4 were 

analysed on a seasonal basis to determine the species diversity, relative abundance and mass 

composition of the fish commmunities under different flood regimes. 
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This analysis entailed grouping each collection of fish made within each sampling site according 

to four distinct flood levels (I.e. receding, low, filling and high water levels). Each site at which 

collections were made was then assigned a habitat code. For example, Chanoga lagoon during 

the receding water level was assigned habitat code lR; during the low water level habitat code lL; 

during the the arrival of the floods (I.e. filling phase) habitat code IF; and at high water level 

habitat code 1 H. This process was repeated lor all 8 major sampling sites. A total of 32 different 

habitat codes was assigned. Table 5.1 shows all the habitat codes assigned to the different 

sampling sites. 

Multivariate {TWIN-SPAN) community analysis was again performed to determine whether or not 

differences existed in the species composition at various flood levels between the different sites. 

The catch per unit effort (CPUE) for each sampling site and quarterly survey was established to 

ascertain the demography of the population in response to the annual flood. It should be 

emphasized that the CPUE was calculated based on the combined sampling methods using 

identical gear. The quarterly surveys were conducted in such a way that the different techniques 

and efforts in different sampling sites are believed to be as comparable in the present context as 

possible. In addition, computer-smoothed trends of the amplitude of change for the CPUE in each 

sampling site are also shown. The collections of fish recorded in August 1984 were done by 

courtesy of the Botswana Fisheries Unit, but all other collections from November 1983 to December 

1986 were carried out by the author. 

Table 5.1 . The habitat codes assigned to four distinct flood levels for each sampling site based 

on all fish collections in the Okavango Delta, between November 1983 and December 1986. 

Sampling site Flood cycle 

Receding Low Filling High 

Chanoga lagoon, Boteti River 1R lL IF lH 

Thamalakane River 2R 2L 2F 2H 

Seasonal swamp, Nxaraga lagoon 3R 3L 3F 3H 

Perennial swamp, Xakanixa lagoon 4R 4L 4F 4H 

Perennial swamp floodplain lagoons 5R 5L SF 5H 

Rain pools 6R 6L 6F 6H 

Riverine floodplain mainstream 7R 7L 7F 7H 

Riverine floodplain lagoons 8R 8L 8F 8H 
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RESULTS 

Chanoga Lagoon. Boteti River 

The TWIN-SPAN community classification for all 32 different habitat codes was identical to that 

presented in Figure 4.10 and revealed that the fish fauna of Chanoga Lagoon was more similar 

within this site than to any other sampling site irrespective of flood level (e.g. receding, low, filling 

and high water level; see Appendix 3) . Although the species composition over the flood regime 

remained relatively constant, large scale annual changes in CPUE occurred in this sampling site 

according to the prevailing flood level. The highest catches were recorded during low water level 

while the lowest catches were taken at high water levels (Fig. 5.1a). Four of the five selected 

species (e.g. C. gariepinus, S. mystus, H. odoe & O. andersonii) featured prominently in this 

sampling site contributing more than 50% of the total mass of fish collected during all flood levels 

(Appendix 3). H. vittatus was absent from this sampling site. 

Chanoga Lagoon was first surveyed in November 1983 during the receding water phase. The CPUE 

based on all sampling methods was 52.2 kg. Chanoga Lagoon was nex1 surveyed in March 1984 

during the low water level. The CPUE was slightly higher than that recorded for November 1983 

with 53.5 kg collected (Fig. 5.1a). 

Chanoga Lagoon began to receive flood waters in late June 1984. In July 1984 the CPUE declined 

sharply to 32.1 kg. By August 1984 the lagoon was at its highest annual level, and the CPUE was 

lower than that previously recorded for any flood level (28.1 kg; Fig. 5.1a). 

Similar changes in CPUE were apparent in 1985 and 1986, with the highest catch recorded in 

March 1986 (Fig. 5.1a). The computer-smoothed changes in annual catch indicates that the catch 

was not constant and the amplitude between peaks varied markedly depending on the flood cycle 

(Fig. 5.1 b). The highest CPUE was recorded during low water with the lowest CPUE recorded at 

high water. These changes most likely reflect the concentrating and diluting effects of fish stocks 

in relation to the flood level. 
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Figure 5.1 . The catch per unit effort (a) and computer-smoothed trends in catch (b) based on all 

sampling methods for different flood levels in Chanoga Lagoon, Boteti River, Okavango Delta, 

between November 1983 and December 1986. The various flood levels are R = receding, L = low, 

F = filling and H = high flood levels. 
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Thamalakane River 

The annual changes in species composition indicate that this sampling site also was more similar 

to itself at different flood levels than to any other sampling site irrespective of the flood level (see 

Fig. 4.10; Appendix 4) . Four of the five selected species (e.g. C. gariepinus. S. mystus. H. odoe & 

O. andersonii) contributed more than 40% of the mass composition during all flood levels 

(Appendix 4). H. vittatus was again absent from this sampling site. The CPUE (Fig. 5.2a) indicates 

that the catch was not constant and that large scale annual changes in CPUE occurred in this 

sampling site according to the prevailing flood level. The highest catches were recorded during 

low water level while the lowest catches were taken at high water levels (Fig. 5.2a) . 

In November 1983 the Thamalakane River was limited to a narrow channel, about 10 m wide on 

average and less than 1.0 m deep. Aquatic macrophytes were scarce and limited to the extreme 

margins of the river. The combined CPUE based on all sampling methods was 56.7 kg (Fig.5.2a). 

By March 1984 the Thamalakane River was reduced to a series of shallow « 1 m) turbid, disjunct 

pools void of aquatic macrophytes. The density of fishes per unit sampling effort was higher than 

that recorded in November 1983 with a total catch of 95.7 kg (Fig. 5.2a). This reflects the 

concentrating effect on the fish stocks during the annual drawdown of flood waters. Although the 

CPUE was higher than that recorded in November 1983, many of the species succumb to natural 

mortality during the annual low water level. Pelicans and maribou storks fed heavily in the drying 

up pools each year (pers. observation). In many of the smaller isolated remnant pools the 

community was reduced to mainly three species (i.e. O. andersonii, C. gariepinus and .§,. 

paludinosus). This finding is similar to that found by Skelton et al. (1983) and Bruton and Jackson 

(1983) for Lake Ngami, Merron et al. (1987) for the Pongolo floodplain and Jackson (1989) for Lake 

Mweru. 

Except for a small 50 x 50 m pool below Matlapaneng (Fig. 3.1), the entire Thamalakane River dried 

up by late April 1984 (P. A. Smith, Department of Water Affairs, Maun, Botswana, pers. 

communication). Flood waters began to fill the river in June 1984. The river rose rapidly with the 

initial pulse of flood waters and continued to fill for the next month. By the end of July 1984 the 

area of the Thamalakane River was greatly expanded in size, up to 100 m wide in some areas, with 

extensive areas of terrestrial vegetation now inundated. The CPUE of 35.8 kg was lower than in 

either November 1983 or March 1984 (Fig. 5.2a). This suggests that movement of fish occurred 

from upstream areas and indicates the resilience of the fish community in this sampling site, as 

the river had virtually dried up in April 1984. During the height of the flood in August 1984 the 

CPUE was at its lowest level with a total catch of 30.0 kg (Fig. 5.2a) . 
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Figure 5.2. The catch per unit effort (a) and computer-smoothed trends in catch (b) based on all 

sampling methods for different flood levels in the Thamalakane River, Okavango Delta, between 

November 1983 and December 1986. The various flood levels are A = receding , L = low, F = 
filling and H = high flood levels. 
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When compared to the same time period in 1983, the Thamalakane River in November 1984 

maintained a considerably higher water level. The CPUE of 69.6 kg was higher than for the same 

period in 1983 (Fig. 5.2a). This indicates the difficulty of assigning specific months to different 

flood levels. Although the river in November 1984 was in a receding stage, the magnitude of the 

annual flood made it resemble the high water level condition of 1983 (P.A. Smith, pers. 

communication). 

The Thamalakane River was also subjected to wide annual fluctuations in water level during the 

1985 and 1986 sampling periods. Similar patterns of CPUE changes were apparent (Fig. 5.2a) with 

the highest catches recorded during low water levels. The computer smooth trends for CPUE also 

indicate that marked changes in the amplitude of the catch is influenced by the magnitude of 

previous and present flood conditions (Fig. 5.2b). 

The highest CPUE recorded was in 1986 and an overall increase in CPUE of 20% was apparent 

between 1983 to 1986 (Fig. 5.2a). The catch in 1986 is believed to be a result of large scale 

movement of fish spawned during the relatively high 1984 flood in the seasonal swamp. Similar 

changes in CPUE have been recorded by Welcomme (1979) who states that the recruitment and 

catch in a given year x is determined largely by the magnitude of the flood in year x-2. Although 

a longer time series of data are needed to quantitatively model yield in the Okavango, the 

preliminary results suggests that a similar pattern of flood related increases in catch was evident 

in the Okavango between 1983 and 1986. This observed increase in catch could also be an artifact 

of increased sampling efficiency which undoubtedly occurred during the course of this study. 

However this bias was kept to a minimum and it is believed that the overall increase in CPUE 

during this study more closely reflects the magnitude of the various annual flood cycles. 

There was also a succession of species which recolonized the Thamalakane River from upstream 

areas. The primary colonizers were small fish species « 50 mm SL) such as A. johnstoni and 

various Barbus spp. followed by large fish species (> 200 mm SL) such as C. gariepinus and S. 

mystus. As the system stabilized (i.e. within 2 - 4 weeks of flooding) other large fishes, such as.!i. 

odoe and Serranochromis species, were represented in the catches. The catfishes C. gariepinus 

and S. mystus were the first larger species to migrate as they can take advantage of the increase 

in allochthonous food sources, such as drowned terrestrial insects and small mammals (see 

Chapter 7). It is believed that the cichlids are not able to take immediate advantage of the rising 

flood waters to feed as the detritus food web takes longer to develop. These observations for the 

Okavango are similar to recolonization patterns observed for recently inundated areas of the 

Pongolo floodplain in Zulu land (Merron et al., 1987). 
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Seasonal swamp 

The species composition of the seasonal swamp also was more similar within this site than to any 

other sampling site regardless of the flood level (see Fig. 4.10; Appendix 5). The species 

composition of the seasonal swamp does, however, have a closer affinity to Chanoga Lagoon and 

the Thamalakane River than to the other sampling sites (see Chapter 4). 

With the exception of H. vittatus, of which only two individuals were caught during the high water 

phase in 1984, the four other selected species featured prominently in this community, contributing 

greater than 40% to the total mass during a" flood levels (Appendix 5). 

In November 1983 the water level in the seasonal swamp at Nxaraga Lagoon was in full recession. 

The surrounding floodplains were drying and the Boro River averaged 7 m wide and 0.5 m deep. 

The CPUE at Nxaraga Lagoon of 36.2 kg (Fig. 5.3a) was lower than that recorded for either the 

Thamalakane River or Chanoga Lagoon during the same time period. In March 1984 the Boro River 

leading into Nxaraga Lagoon averaged 3 m wide and less than 0.3 m deep and a" the surrounding 

floodplains were dry. Fish populations in Nxaraga Lagoon were concentrated and a high CPUE of 

53.8 kg was recorded (Fig. 5.3a) . 

The seasonal swamp was next sampled in July 1984, after the relatively large flood which reached 

this area in May 1984. The CPUE in Nxaraga Lagoon had dropped markedly to 25.5 kg, lower than 

either the November 1983 or March 1984 values (Fig. 5.3a). During the period of high water level 

in August 1984, the CPUE dropped slightly, relative to that recorded in June 1984 to a value of 13.5 

kg (Fig. 5.3a). By November 1984 the water level at Nxaraga Lagoon was again receding. The CPUE 

of fish (41.4 kg) was higher than the same time period in 1983 (Fig. 5.3a). A similar pattern of 

changes in CPUE was evident in the 1985 and 1986 sampling periods with an overall increase in 

CPUE recorded between 1983 and 1986. 

The amplitude of change in CPUE recorded for the seasonal swamp was similar to the drainage 

river sites with the highest CPUE recorded during the receding and low water levels when stocks 

were concentrated (Fig. 5.3b; Appendix 5) . However, the species composition of the catch at low 

water level in the seasonal swamp was dominated by a greater percentage of larger fish whereas 

in the drainage rivers it was dominated by a greater percentage of smaller fish species. 

An increasing importance of lateral and longitudinal movements of fish in the seasonal swamp was 

evident when compared to the former sampling sites. In general the drainage rivers received an 

annual influx of fish whereas refuges in the seasonal swamp, such as Nxaraga Lagoon, harboured 

important inocula which recolonized the floodplains and drainage rivers during the flood. 
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Figure 5.3. The catch per unit effort (a) and computer-smoothed trends in catch (b) based on all 

sampling methods for the seasonal swamp, Okavango Delta, between the period November 1983 

and December 1986. The various flood levels are R = receding, L = low, F = filling and H = high 

flood levels. 
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Perennial swamp 

The seasonal changes in species composition of the perennial swamp at Xakanixa Lagoon indicate 

that the fauna was more similar throughout the flood cycle than to any other sampling site 

regardless of the flood level (see Fig. 4.10; Appendix 6). The perennial swamp sampling site does, 

however, share some similarities with other northern Okavango sampling sites (e.g. riverine 

floodplain mainstream channel; see Chapter 4). 

Of the five selected species, H. vittatus, O. andersonii and C. gariepinus contributed the greatest 

mass proportion during all flood levels (Appendix 6). There was a noticeable decrease in mass 

contribution for the other two keynote species (e.g. H. odoe and S. mvstus) during all flood levels 

when compared to the former sampling sites (Appendix 6). 

The perennial swamp was first surveyed during the receding water level in November 1983. The 

CPUE, based on all sampling methods, was 43.8 kg (Fig. 5.48). During the low water level in March 

1984 a higher CPUE of 53.8 kg was recorded compared to November 1983 (Fig. 5.48). During the 

filling phase in July 1984 the CPUE was 54.5 kg (Fig. 5.48). The CPUE for August 1984, during the 

high water level, was the highest recorded for the 1983/84 flood season with 61.9 kg collected (Fig. 

5.48). This is in sharp contrast to the finding in the former sites where an increase in CPUE was 

recorded during the receding and low water levels. 

In November 1984, during the receding flood level, a decrease in the CPUE was recorded (35.9 kg , 

Fig. 5.48). Similar results for CPUE were observed during the 1985 and 1986 sampling periods (Fig. 

5.48). An increase in catch between 1983 and 1986 was recorded and agrees with the findings for 

the former sampling sites (Fig. 5.48). 

It is apparent that, although diversity did not change throughout the flood cycle, the catch 

composition changed between the selected species. At high water levels a greater mass 

contribution of H. vittatus and C. gariepinus was recorded in the catches while during the receding 

and low water levels the mass contribution of O. andersonii increased (Appendix 6). 

During the receding and low water levels C. gariepinus and H. vittatus appear to undergo 

potamodromic movements out of this habitat type and more cichlids, particularly O. andersonii, 

appeared in the catch (Appendix 6). A more consistent CPUE was recorded in the perennial 

swamp with the degree of amplitude in the CPUE not as marked as for the seasonal swamp or 

drainage river sampling sites (Fig. 5.4b) . 
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Perennial swamp floodplain-connected lagoons 

The seasonal changes in the relative abundance and mass composition of the fish fauna in the 

perennial swamp floodplain-connected lagoons at Maxegana Pools were more similar during all 

flood levels than to any other sampling site irrespective of the flood level (see Fig. 4.10; Appendix 

7). This sampling site does, however, share some similarity with other northern Okavango sampling 

sites (see Chapter 4). 

All five selected species were common during all flood levels. During the receding and low water 

levels the mass contribution of O. andersonii in the catch increased while H. vittatus and C. 

gariepinus were more common from catches during the filling and high water levels (Appendix 7). 

Both H. odoe and S. mystus did not feature as strongly in the mass composition of this sampling 

site as they did in the sea~onal swamp and drainage rivers sampling sites (Appendix 7). 

The perennial swamp floodplain lagoons were first surveyed during the receding water level in 

November 1983. The CPUE, based on all sampling methods, was 20.8 kg (Fig. 5.5a). During the 

low water level in March 1984 an increase in the CPUE to 34.8 kg was recorded (Fig. 5.5a). 

During the arrival of the flood waters in July 1984 (Le. filling phase) the CPUE decreased to 27.7 

kg (Fig. 5.5a). During the high water level in August 1984, the CPUE was 25.8 kg (Fig. 5.5a). In 

November 1984, the water level was again receding and the CPUE increased to 32.4 kg (Fig. 5.5a). 

Similar changes in CPUE were apparent during the 1985 and 1986 sampling periods (Fig. 5.5a). The 

degree of change in the amplitude of the CPUE (Fig. 5.5b) was more uniform over time than that 

found for the seasonal swamp and drainage river sites. An increase in CPUE during the course of 

this study period was also evident in the perennial swamp floodplain-connected lagoons and 

agrees with the findings recorded for the other sampling sites. 

Rain pools 

The species composition of rain pools was more similar within this sampling site regardless of 

flood level than to the other sampling site (see Fig. 4.10; Appendix 8). Of the five selected species, 

H. vittatus was absent from the rain pool sampling site. O. andersonii and C. gariepinus were the 

most common species during all flood levels but the proportions of H. odoe and S. mystus were 

the lowest recorded for any sampling site (Appendix 8). 
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The rain pool habitat type was first surveyed during the receding water phase in November 1983. 

The CPUE, based on all sampling methods, was 7.0 kg (Fig. 5.68). This was the lowest CPUE 

recorded for any previous sampling site. During the low water level in March 1984 the CPUE was 

slightly higher (8.4 kg; Fig. 5.68) . In July 1984 the rain pools were connected to the main floodplain 

and a slight decrease in CPUE was apparent (7.4 kg; Fig. 5.68), possibly due to dispersal. In 

August 1984, during the high water level, the CPUE was 7.8 kg (Fig. 5.68) whereas in November 

1984, during the receding water level, a CPUE of 7.7 kg was recorded (Fig. 5.68). 

Similar results were obtained during the 1985 and 1986 sampling periods (Fig. 5.68). The 

movement patterns of fish in this sampling site were relatively simple and included fish which 

immigrated or emigrated only during periods of connection. The amplitude of change in the CPUE 

was minimal (Fig. 5.6b) although this may be an artifact of the ease of collecting fish within rain 

pools. 

Riverine floodplain mainstream channel 

The species composition of this sampling site was also more similar within this sampling site than 

to any other sampling site irrespective of the flood level (see Fig. 4.10; Appendix 9) . The riverine 

floodplain mainstream channel fauna shared its closest affinities with the perennial swamp fauna 

(see Chapter 4). 

As stated in Chapter 3, quantitative quarterly sampling was only initiated in this sampling site in 

April 1985. However, a number of "ad hoc" collections were made in this habitat type (Merron et 

&. 1983; 1985). This area has also been resurveyed by staff of the J.L.B. Smith Institute of 

Ichthyology between September and December 1987, 1988, 1989 and 1990 (Merron, in press). With 

the exception of H. odoe, the four other selected species (e.g. C. gariepinus, S. mystus, H. vittatus 

and O. andersonii) featured prominently in this sampling site contributing more than 50% to the 

mass composition during all flood levels (Appendix 9). 

During the arrival olthe annual floods in April 1985, the CPUE based on all sampling methods was 

47.5 kg (Fig. 5.7a). During the high water level in July 1985 the CPUE decreased to 31.4 kg (Fig. 

5.7a). This was slightly lower than that recorded in April 1985 (Fig. 5.7a) and possibly a result of 

the dilution of the fish stocks brought about by increased water levels. 

In November 1985, during the receding water levels, a dramatic increase in CPUE was apparent 

rising to 83.5 kg (Fig. 5.7a) . Towards the end of the low flood in February 1986, the CPUE was 

greater than that recorded in former sampling periods with a total of 99.2 kg (Fig. 5.7a). 
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A similar pattern of reduced catches was evident in May and July 1986 with a CPUE of 74.3 and 

61.0 kg (Fig. 5.7a). However, during the receding and low water levels in October and December 

1986 an increase in CPUE was again apparent with values of 120.1 and 126.2 kg (Fig. 5.7a). 

Of particular interest in the November 1985 and October 1986 collections was the appearance in 

catches of large numbers of the catfish Clarias gariepinus in the mainstream channel. This trend 

was the result of an annual mass congregation of this species which pack-hunt at this time of year 

in the mainstream channel. This phenomenon is explained in greater detail in Chapter 7. It is, 

however, important to stress here that these aggregations are a predictable response to the 

receding and low water levels each year (Merron, in press). 

The changes in CPUE throughout the year in the riverine floodplain mainstream channel were 

relatively more stable and predictable, with the amplitude of change considerably less than in the 

seasonal swamp or drainage rivers (Fig. 5.7b). The overall catch in 1986 in the riverine floodplain 

mainstream channel was also higher than that recorded for 1985 and in this respect agrees with 

the findings for the other sampling sites. 

Riverine floodplain-connected lagoons 

The species composition ofthe fish fauna inhabiting the riverine floodplain-connected lagoons was 

also more similar within the group of samples for this sampling site than to any other sampling site 

irrespective of the flood level (see Fig; 4.10; Appendix 9). The community does share some 

similarities with the riverine floodplain mainstream channel and perennial swamp sampling sites 

(Chapter 4). 

During the filling and high water levels the mass composition was dominated by H. vittatus and 

C. gariepinus while during receding and low water levels O. andersonii contributed a larger 

percentage to the mass composition (Appendix 9). The two other selected species (e.g. S. mystus 

and H. odoe) were common although their contribution to the mass composition was lower than 

that recorded in the seasonal swamp or drainage rivers. 

In April 1985, during the filling phase, a CPUE of 60.0 kg was recorded (Fig. 5.10a). In July 1985, 

during the high water level, the CPUE was 89.6 kg and was higher than that recorded in April 1985 

(Fig. 5.10a). This pattern of increased CPUE of fish during high water levels was similar to that 

observed in the perennial swamp sampling site at Xakanixa Lagoon where high water levels also 

resulted in the highest CPUE of fish (see Fig. 5.48). 
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In November 1985 and February 1986 during the annual drawdown of flood waters, a lowered CPUE 

was apparent with values of 58.7 and 40.2 kg respectively (Fig. 5.10a). A similar pattern of 

progressive increases in CPUE with higher flood levels was evident for the May and July 1986 

sampling periods with the overall catch higher than that recorded during the same time periods 

in 1985 (Fig. 5.10a). The amplitude of change in CPUE was also less severe than in the seasonal 

swamp and drainage rivers (Fig. 5.10b). 

DISCUSSION 

The results presented in this Chapter indicate that different degrees of change occurred within the 

mass and abundance data for fish communities in each sampling site at different stages of the 

annual flood cycle. These differences were, however, more similar within the particular sampling 

site than to any other sampling sites flood level. It is possible that because of a relatively short 

sampling period (e.g. November 1983 to December 1986) that was conducted during the height of 

a drought, the data and interpretations based on quarterly surveys, may not have detected all the 

changes which occur annually within a sampling site. Although the total catch varied throughout 

the year in all sampling sites, the proportions of certain fish species within the community did not 

change. The results presented here serve, however, as a first attempt to quantify the dynamics of 

the fish population and lay a foundation for further scientific investigations. 

The widely fluctuating drainage rivers can be characterized by relatively simple movement and 

recolonization patterns, primarily from refuge areas in the seasonal swamp (e.g. Nxaraga Lagoon). 

This is an obvious conclusion as the drainage rivers, except for Chanoga Lagoon on the Boteti 

River (see Fig. 3.1), either dried up completely or were reduced to a series of isolated pools 

following low floods during the course of this study. Chanoga Lagoon retained water and a 

relatively diverse and abundant fish fauna throughout the drought and was likely of considerable 

importance in recolonizing the lower half of the Boteti River when the annual flood waters arrived. 

Although the colonization ability of fish into the drainage rivers appears to be high, the mortality 

rate of these species was also high when conditions deteriorated in the rapidly drying drainage 

river channels. Many fish become trapped in isolated pools which suggests that upstream 

movement into the seasonal swamp refuges when water levels recede does not appear to be as 

important as downstream movements. The fact that the Okavango system also recedes in a 

downstream direction may also create physical barriers to upstream movement during the low 

water level each year. It should also be stressed that the Thamalakane River was surveyed during 

the height of the drought when fish communities were naturally stressed. The absence of .t:h 
vittatus and the low frequency of other rheophilic forms (e.g. M. acutidens) suggests that 

recruitment from the perennial swamp into the drainage rivers was minimal during the course of 
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this study. This supports the contention that the main movement and recruitment during the 

course of this study was by species and individuals from the seasonal swamp to the drainage 

rivers. However, movements of fish from the perennial swamp to the seasonal swamp and drainage 

rivers under high flood conditions may occur during an extended wet cycle. 

The changes which occurred in lake Ngami (Fig. 2.3) on a relatively short time scale, described 

below, also serve as a microcosm of what can happen to the communities of fish in the drainage 

rivers. In 1979 when the lake was > 150 km2 in area, a total of 49 species was recorded (Bruton, 

1979c; Bruton & Jackson, 1983). In late 1982, when the lake was drying, the community was 

reduced to two species of catfish, Clarias gariepinus and C. ngamensis (Skelton et. aI., 1983). In 

1984 the lake received flood waters via the Kunyere River (Fig. 2.3). There was a large migration 

of fish into the lake from the refuges of the seasonal swamp. By mid-1985 lake Ngami once again 

dried until 1989 when flood waters re-entered the lake (pers. observation). 

A similar pattern has also been recorded for lake Chilwa, Malawi. During the years 1965 to 1968 

the lake was transformed from a large body of open water to a dry lake basin. As soon as the lake 

was reflooded fish catches rose dramatically (Furse et aI., 1979). Wide fluctuations in catch in 

relation to changing water levels have also been reported for lake Mweru, Zambia (Jackson, 1989), 

lake Chad, Chad (Durand, 1980; Benech et aI., 1983), lake Rukwa, Tanzania (Mann, 1967) and the 

Pongolo floodplain in South Africa (Kok, 1980; Merron et al., 1987). 

"During this study, permanent water bodies in the seasonal swamp, such as Nxaraga lagoon served 

as refuges which harboured dense concentrations of fish stocks during the drying down phase. 

These fish dispersed laterally at high water level to recolonize the previously dry surrounding 

floodplains and longitudinally into the drainage rivers. 

The seasonal swamp community thus has a resident fish fauna with recolonization taking place 

mainly from within this ecotone. Minshull (1985) also found that refuges in the seasonal swamp 

playa crucial role in repopulating the adjacent floodplains during the flood. This conclusion is also 

based on the finding that very few H. vittatus and M. acutidens, were collected, which would 

indicate a greater movement from perennial swamp to seasonal swamp. However, these species 

were insignificant in the catch (see Appendix 5). Many of the other smaller rheophilic species (e.g. 

the mastacembelid eel, Afromastacembelus frenatus) found in the perennial swamp were also rare 

in the seasonal swamp and further supports the finding that minimal movement occurred between 

the perennial swamp and seasonal swamp during the study period. If large scale longitudinal 

movement existed a greater number of these rheophilic species would have been expected. It must 

also be stressed again that this study was performed during a period of extreme drought and 
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lowered water levels which may have enhanced the formation of physical isolating mechanisms 

between different sampling sites. Many species may be prevented from migrating from the 

perennial to the seasonal swamp, except during exceedingly high floods. This is especially 

important with regard to predation by raptorial birds such as the fish eagle, particularly on larger 

species such as H. vittatus. 

The two H. vittatus recorded from the seasonal swamp during the relatively large flood of 1984 (see 

Fig. 2.2) are, however, believed to have originated further upstream. The presence of this species 

supports the finding that the movement of more specilialized forms at high water level does occur 

at certain times. This finding suggests that encroachment of the perennial swamp fauna may 

occur, although it must be stressed that the magnitude of this encroachment is likely to depend 

on repetitive years of high flood levels. For example, the rheophilic H. vittatus was collected from 

Lake Ngami in 1858 by Frederic Daviaud who described the Lake as a "Grand Lac" over 200 km 

long (see Jubb & Gaigher, 1971). During this period the Okavango experienced prolonged years 

of high floods (Shaw, 1984). This, undoubtedly, allowed a greater movement of rheophilic species 

from the riverine floodplain and perennial swamp that colonized the seasonal swamp, drainage 

rivers and sump lakes. 

The seasonal swamp fish community exhibited both lateral movement of certain species onto the 

adjacent floodplains, and a succession of longitudinal movements of certain species into the 

drainage rivers. The reason why some fish have different movement patterns may be related to 

their trophic or spawning requirements. For example, the cichlid Serranochromis giardi displayed 

a greater degree of lateral movement, possibly because its preferred food supply, molluscs, was 

more abundant on the floodplains (pers. observation). Predatory species such as C. gariepinus and 

S. mystus exhibited a greater degree of longitudinal movement. 

During the filling and high water levels in the perennial swamp, a larger mass contribution of H. 

vittatus and C. gariepinus was recorded. Conversely, during the receding and low water levels the 

mass contributions of these two species was considerably lower. This may suggest that these 

species, which are known to be potamodromous, may be migrating out of the perennial swamp 

and upstream into the riverine floodplain at this time of year. This migration is believed to result 

from fish seeking more favourable spawning (e.g. H. vittatus; Chapter 6) and feeding sites (e.g.C. 

gariepinus; Chapter 7). 

It is also believed that both C. gariepinus and H. vittatus return to the perennial swamp during the 

filling and high water level. This theory is supported by the increased catches of these species in 

the perennial swamp when water levels were high (see Appendix 6). The overall increase in CPUE 
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of all species during the filling and high water levels in the perennial swamp was in contrast to that 

recorded for the seasonal swamp and drainage rivers where an increase in CPUE was apparent 

during the receding and low water levels. 

There was also a large degree of lateral movement at high water level in the perennial swamp to 

the floodplain-connected lagoons such as Maxegana Pools. Maxegana Pools is a complex of 

relatively stable perennial floodplain lagoons with a large resident population of fish. The relatively 

stable CPUE may reflect the presence of large numbers of hippopotami in this lagoon which serve 

to enrich the system by defaecating in the water. 

The greatest complexity of seasonal movement of fish was documented between the riverine 

floodplain and perennial swamp. This was particularly evident in the seasonal, low water 

aggregation of the catfish Clarias gariepinus in the mainstream channel which is explained in 

greater detail in Chapter 7. Another important interaction, documented by Merron & Bruton (1988), 

was the degree of annual size segregation among predator and prey species between the 

mainstream channel and floodplain-connected lagoons, i.e. large predators-small prey in the 

mainstream channel and small predators-large prey in the floodplain lagoons. Size segregation 

between different species may indicate a more stable, biotically interactive community. 

The riverine floodplain and perennial swamp should be classified as the definitive refuge for fish 

of the Okavango Delta. The seasonal swamp and drainage rivers ecotones depend, uHimately, on 

these refuge stocks for re-inoculation. However, during the course of this study, fish in the 

perennial swamp moved upstream to the riverine floodplain, whereas fish in the seasonal swamp 

moved downstream to the drainage rivers. Very few fish species were recorded moving from the 

perennial swamp into the seasonal swamp. This apparent paradox in movement patterns between 

refuges during this study is probably due to the extreme low water levels during the drought 

stricken 1980's. It is apparent that a longer time-series is needed, particularly during a prolonged 

wet cycle, to quantify the importance of movement and recolonization between ecotones. 

It is concluded that the degree of biotic interdependence exhibited in both lateral and longitudinal 

movements progressively diminishes in a downstream direction from the perennial to the seasonal 

habitat types. In the seasonal swamp relatively simple lateral and longitudinal movements of fish 

replace the relat ively complex movement patterns of fish from the perennial swamp and accounts 

for the recolonization of fish into the drainage rivers. 

The wide oscillations in species composition and relative abundance, based on CPUE, from the 

north to the south in the delta was another significant trend apparent in the results. A greater and 

81 



more consistent CPUE was recorded for the northern Okavango relative to the southernmost 

sampling sites. 

Because the tota l ichthyomass of the delta varies considerably in relation to fluctuations in water 

level, it follows that the yield fluctuates widely, from low catches in extremely dry years to very 

large catches shortly after periods of large floods. Welcomme {1979} showed that the yield from 

a river-associated wetland fishery is reasonably well correlated with the flood history of the 

previous two years. This is due to the flood-dependent spawning behaviour of many of the fish 

species. Periods of high water level result in a greater percentage of the population being able to 

spawn successfully and also create vast nursery areas for the young. Although a longer time series 

of data are required to accurately predict yields in the Okavango, the preliminary results presented 

in this Chapter support Welcomme's {1979} finding, with a 20% increase in catch in November 1986 

compared to November 1983. This is two years after the relatively high flood of 1984. 

Yield is also correlated with the flood level in a given year. Higher relative yields are obtained in 

the riverine floodplain, seasonal swamp and drainage rivers under low water conditions when fish 

stocks are more concentrated. Conversely, lower relative yields are obtained under high water 

levels when fish stocks are diluted. In contrast, in the perennial swamp and riverine 

floodplain-connected lagoons a greater yield was recorded at high water levels. 
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CHAPTER 6 

THE REPRODUCTIVE BIOLOGY OF SELECTED FISH SPECIES 

AND THEIR RESPONSE TO THE ANNUAL FLOOD REGIME 

INlHODUCllON 

Floodplain ecosystems are often inhabited by fish which synchronize their entire reproductive 

biology to the flood cycle (Lowe-McConnell, 1975; Welcomme, 1976). Many floodplain fishes have 

been reported to spawn during the flood season. This finding has been shown in the fish of the 

middle Zambezi River (Jackson, 1961a), the Kafue floodplain (Chapman et aI., 1971), the Pongolo 

floodplain (Kok, 1980; Merron et al., 1987, 1989) and the Kwando- Linyanti swamp and Lake 

Liambezi (van der Waal, 1985; Merron, 1990). 

The flood cycle and associated environmental changes tend to occur seasonally in African swamps 

and therefore affect the onset of maturation of the gonads in a cyclical pattern (Lowe-McConnell, 

1975, 1979; Welcomme, 1979). The environmental factors associated with a flood can be divided 

into biotic or abiotic factors. Biotic factors include population densities and the quality and quantity 

of food, while examples of abiotic factors are fluctuating water levels, water depth, temperature, 

onset of the rainy season and increasing photoperiod. 

The floods in most African floodplains are synchronous with the warmer summer months and rainy 

seasons (Lowe-McConnell, 1975; Welcomme, 1979). In the Okavango Delta, however, the flood 

reaches a peak (in the greater part of the delta, particularly in the seasonal swamp and drainage 

rivers) during the coldest and driest part of the year when conditions are believed to be least 

conducive for spawning. This led Fox (1976) to speculate that breeding activity is not dependent 

on the floods in the Okavango as the main floods do not occur in summer. However, no 

quantitative studies had been conducted to test this hypothesis. The information collected 'during 

this study provided an opportunity to determine the interrelationships, if any, between the influence 

of floods and water temperature on the reproductive seasonality of the selected fish species. 

An eco-ethological classification of fishes (Balon, 1975, 1981b) reveals that there are over 30 

reproductive guilds divided into three main sections: non-guarders, ruarders and bearers (Table 

6.1). 
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Table 6.1. Summary of the repmductive guilds of fishes proposed by Balon (1975, 1981b) 

Non-Guarders 
- Spawners on open substrata (egg scatterers) : seven guilds of pelagic, gravel, plant and sand 
spawners which produce buoyant or adhesive eggs and do not hide or guard the young 
- Brood hiders: five guilds of beach, gravel, cave and other specialized spawners which hide 
the young but do not guard them 

Guarders 
- Substratum choosers: four guilds of pelagic, above water, rock and plant spawners whose 
young are tended by the parents 
- Nest spawners: eight guilds of froth, gravel, plant, sand and other specialized spawners 
which make protective cavities in which they guard the young 

Bearers 
- External bearers: five guilds of mouth, gil/chamber and pouch spawners which carry the 
young in a cavity opening to the exterior in order to protect them 
-Internal bearers: four guilds of spawners which carry the young inside the bOdy cavity where 
they may receive some nutrition from the parent 

This classification distinguishes guilds of species which are similar in their use of the ecosystem 

and which have covergent behavioural, morphological and physiological adaptations, irrespective 

of phyletic origin. The eca-ethological classification of Balon thus bears no resemblance to the 

Linnean classification since some phylogenetically primitive fishes (e.g. coelacanth, mustelid 

sharks) are found in advanced guildS and vice-versa (Balon, t 985; Bruton & Merron, 1990; 

Compagno, 1990). 

Of the five selected species, C. gariepinus, S. mystus and H. vittatus are egg-scattering 

non-guarders while H. odoe is a nest spawning guarder and O. andersonii is an external bearer. 

MATERIAl..S AND MElHODS 

The present study was conducted over the period November 1983 to December 1986. A quarterly 

sampling schedule using a wide variety of gil/nets was undertaken as explained in Chapter 3. In 

addition to collecting fish in gil/nets, a 10 m seine net and rotenone ichthyocide were also used 

at all sampling sites throughout the study period to collect juvenile fish. 

Because of the close similarities and interdependence of the riverine floodplain and perennial 

swamp, it is practical in this chapter to include these two ecotones together. The data for the 

seasonal swamp and drainage rivers ecotones have also been grouped for the present analysis. 
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Reproductive seasonalityforthe five selected species was determined by macroscopic examination 

of the gonads using a gonadal maturation index (GMI) of one to six from Nikolsky (1963). These 

gonad indices can be summarized as follows: 1 = inactive; 2 = active; 3 = developing; 4 = ripe; 

5 = ripe-running; 6 = spent. These data are presented in tables for each sampling site and 

respective quarterly survey. In addition, all fish with a GMI > 4 were combined, using a standard 

arithmetic weighted means, over one calender year and graphically presented to indicate the trends 

in reproductive seasonality in relation to the annual flood in different parts of the Delta. Although 

minor variations in reproductive seasonality undoubtedly occur annually depending on the timing, 

magnitude and duration of the flood cycle, within the context of this chapter an overall trend was 

desired. 

Data used to compute length at sexual maturity were taken from a sub-sample of fish during each 

quarterly survey. For the purpose of this study, the size at which 50% of the population have 

mature gonads has been taken to represent the average length at sexual maturity (Table 6.2). 

In the present analysis fecundity is defined following Bagenal (1971) as the number of ripening 

eggs in the female prior to the next spawning period. This was necessary because H. odoe and O. 

andersonii showed a polymodal distribution in egg size and are multiple spawners. Ripening and 

ripe-running ovaries (GMI stages 4 & 5) were removed from selected fish and preserved in the field 

for laboratory inspection. For H. odoe and O. andersonii all eggs from one ovary were counted. For 

S. mystus 20% of the total ovarian weight was used to count the number of eggs and for C. 

gariepinus and H. vittatus 10%. This difference in egg counting procedure in the latter three 

species was necessary because of their high gonadal mass and fecundity. The counted eggs were 

weighed in the laboratory and then multiplied by the appropriate factor (e.g. two, five or ten) to 

determine fecundity. 

The occurrence of juveniles < 50 mm SL, was also graphed over one calender year and flood 

cycle to substantiate the spawning periodicity for each species. Other species were qualitatively 

checked for reproductive condition during the course of the overall fisheries research programme 

(Merron & Bruton, 1988) and mention is made of these findings in the discussion. 
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Table 6.2. The tolal number, mean size (SL, mm), sex ratio and size at sexual maturity (SL, mm) 
of male and female fishes of the selected species between November 1983 and December 1986 
in the Okavango Delta 

Species 

C. gariepinus 
S. mystus 
H. vitlatus 
H.odoe 
O. andersonii* 

no. 
M 

312 
430 
857 
371 
338 

mean 
size (mm SL) 

F M F 

447 460 485 
999 160 210 
256 310 380 
677 241 279 
248 240 210 

sex size at 
ratio sexual maturity (SL mm) 
M:F M F 

1:1 .4 290 275 
1:2.3 125 140 
3.3:1 190 260 
1:1.8 140 160 
1.4:1 110-140 105-155 

*0. andersonii showed considerable variation in size at sexual maturity, as discussed below. 

RESULTS 

NON-GUARDERS 

Clarias gariepinus 

Mean size, sex ratio and size at 50% maturity 

The mean size of C. gariepinus females (485 mm SL) was larger than males (460 mm SL; Table 

6.2). The sex ratio (male:female) of C. gariepinus indicates that females were slightly more 

numerous than males with a male:female ratio of 1:1.4 (Table 6.2). These findings are slightly 

higher to those reported from Lake Sibaya (1:1.07; Bruton, 1979) and Lake Liambezi (1:1 .1; van der 

Waal, 1985) and likely reflect the different environmental conditions which can influence the sex 

ratio at the various study sites. 

On the basis of 50% maturity, C. gariepinus was found to mature at 290 mm SL for males and 275 

mm SL for females (Table 6.2). These sizes agree with similar sizes at sexual maturity recorded by 

Bruton (1979; 340 mm TL for males & 330 mm TL for females) and van der Waal (1985; 270 mm 

TL for males & 300 mm TL for females). It should be noted that the abovementioned authors 

reported on total length (TL) of fish whereas the data presented here are reported as standard 

length (SL), for reasons explained in Chapter 3. However based on preliminary TL:SL conversions 

for Okavanga fishes these sizes are similar (D. Freer, pers. communication). 
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Spawning season and environmental influences at the time of spawning 

Throughout the Okavango Delta the spawning periodicity of C. gariepinus was closely associated 

with the flood peak. In the seasonal swamp and drainage rivers all ripe-running and recently spent 

fish (i.e. GMI 5 & 6) were collected between July and December (Table 6.3) . This spawning season 

encompasses the entire flood peak (Fig. 6.1) and both cooler (e.g. 20°C) and warmer (e.g. 30°C) 

water temperatures. 

In the riverine floodplain and perennial swamp ripe-running and recently spent fish were collected 

between January and April (Table 6.4). The peak spawning period in these ecotones also 

corresponds with the rising flood waters (Fig. 6.2) and high water temperatures. The activities 

leading up to the spawning season in these ecotones, particularly the riverine floodplain, did 

however entail an intense ~eeding migration between September to December each year which is 

explained in greater detail in Chapter 7. This intense feeding migration was associated with an 

increase in reproductive condition at this time of year so that as soon as the flood arrives this 

species can take immediate advantage of the rise in water level. Intense feeding prior to the arrival 

of the flood in the seasonal swamp (i.e. Nxaraga Lagoon) and drainage rivers (Le. Thamalakane 

River & Chanoga Lagoon) was not recorded during the course of this study period. 

The observations on the -spawning seasonality of C. gariepinus in the riverine floodplain and 

perennial swamp complement those of Bruton (1979), Kok (1980) and van der Waal (1985). These 

studies indicate that the spawning season extends from September to April-May, and that spawning 

is dependent on the incidence of rain and/or flood conditions. However, in the seasonal swamp 

and drainage rivers of the Okavango fish spawned in July which is earlier than these authors 

indicate and most likely reflects the variation in flood cycle between the different study sites. 
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Table 6.3. The number of Individuals and corresponding Gonad Maturation Index (GMI) of male (m) 

and female (I) Clarias garieplnus from the seasonal swamp and drainage rivers, Okavango Delta, 

between November 1983 and December 1986. 

" C> 

'" -c: 

" 0 
~ 

" Il. 

Gonad Maturation Inde. 

Date no. . 1 2 3 4 5 8 

m m I m I ml m I m I m I 

November 1983 9 17 2 3 2 4 1 5 2 2 1 1 2 

March 1984 . 11 23 2 3 8 5 1 9 2 8 o 0 o 0 

July 1984 8 14 0 0 0 3 1 1 3 2 4 8 0 2 

November 1984 12 24 0 0 0 3 3 8 2 3 2 5 5 8 

April 1985 10 18 3 5 5 4 1 8 1 3 0 0 0 0 

July 1985 14 23 0 1 1 3 2 7 4 5 5 4 2 3 

November 1985 18 25 0 2 1 8 4 5 5 8 2 2 3 4 

January 1988 18 21 4 8 8 7 2 5 2 3 0 0 0 0 

March 1988 14 18 3 5 8 9 4 3 1 0 0 0 0 

July 1986 11 13 0 0 1 2 2 2 3 4 6 2 1 

Octobor 1988 14 22 1 0 0 1 3 5 3 8 4 8 3 4 

December 1988 15 28 3 2 5 7 2 4 2 5 2 2 8 

Total 150 244 
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Figure 6.1 . The combined monthly number and percentage of C. garieplnus with a GMI > 4 In the 

seasonal swamp and drainage rivers, Okavango Delta, between November 1983 and December 

1986. An Indication of the annual flood regime Is also shown. 
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Table 8.4. The number of Individual a and corresponding Gonad Maturation Index (GMI) of male (m) 

and female (I) Clarlas garleDlnus from the riverine floodplain and perennial swamp, Okavango 

Delta, between November 1983 and December 1988. 

.. 
01 

'" ~ c ., 
() 
~ ., 
Q. 

GONld Mlturatlon Indl. 

Olte no. 1 2 3 4 5 8 

m f m m mf m m m f 

November 1883 7 11 · 0 0 0 0 3 5 4 8 0 0 0 0 

Mlrch lta4 8 13 0 1 2 1 2 2 2 5 1 3 

July 1884 ·10 8 1 2 4 5 2 2 3 0 o 0 0 0 

November 1884 14 18 2 0 1 4 8 8 5 8 0 0 0 0 

Aprl11985 8 11 0 2 3 2 1 0 0 o 1 4 5 

July 1985 8 12 2 1 4 4 8 2 1 00 o 0 

November 1885 15 27 2 0 4 · 2 4 12 5 13 o 0 0 0 

Jlnulry 1888 11 15 0 0 0 0 2 4 3 7 4 3 2 

Mlrch 1888 5 14 0 1 1 2 o 3 0 1 3 3 1 4 

July 1188 22 13 2 I 8 8 8 3 3 3 o 0 o 0 

October 1188 28 33 0 I 4 8 18 18 e 10 o 0 0 0 

aeclmber Ita8 24 27 0 0 I 2 8 8 15 18 o 0 0 0 

Total 182 203· 

100r-------~---~--------------------------__. +_--_..L 
80 

60 

40 

20 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Month 

." 
0 
0 
Co 

0 

'" !l 
CD 

Figure 8.3. The combined monthly number and percentage of C. garleplnu8 with a GMI > 41n the 

perennial swamp and riverine floodplain, Okavango Delta, between November 1983 and December 

1988. An Indication of the annual flood regime Is also shown. 
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Monthlv frequency of occurrence of luvenlle fish 

Juvenile < 50 mm Sl C. garleplnus were mainly collected between July and December In the 

seasonal swamp and drainage rivers and between January ' and April In the riverine floodplain 

and perennial swamp (Fig. 6.3). This finding supports the above observations on spawning 

periodicity based on gonad maturation indices. 
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Figure 6.3. The combined monthly number of juvenile C. garleplnus « 50 mm Sl) collected in the 

seasonal swamp and drainage rivers (S), and the riverine floodplain and perennial swamp (P), 

Okavango Delta, between November 1983 and December 1986. 

Fecundity 

Fecundity estimates for C. garleplnus trom the Okavango were as high as 34511 to 236000 eggs 

for females ranging from 436 mm to 770 mm SL (Table 6.5). Poll (1969) found that females of 670 

and 1100 mm TL from the Pongolo floodplain have 293000 and 446000 eggs. These estimates are 

higher than the fecund hies established for C. garleplnus In Lake Sibaya, where an average size 

female of 540 mm Tl produced 50000 eggs and a female of 894 mm TL produced 163000 eggs 

(Bruton, 1979). In the Shire marshes, females of 300 and 400 mm Tl produced 20000 and 160000 

eggs respectively (Willoughby & Tweddle, 1978). From these wide ranging estimates it Is apparent 

that egg production is high and that It increases whh increasing size of the female. The different 

estimates also reflect the response of the populations to the prevailing environmental conditions 

in the different sampling shes. No obvious differences In fecundhy between sampling sites were 

noted. 
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Spawning behaviour 

The spawning behaviour of C. gariepinus has been described by Bruton (1979). This species 

spawns a relatively large number of eggs that are broadcast in shallow, well-vegetated water 

without any subsequent parental care. 

Table 6.5. The fecundity of ripe (GMI stages 4 & 5) C. gariepinus in the Okavango Delta, between 

November 1983 and December 1986. 

SL Fish Gonad Total no. of 

weight (g) weight (g) ripe eggs 

436mm 970 49.2 34511 

455mm 1204 32.6 32929 

490 mm 1346 56.7 50656 

495 mm 1522 83.2 55716 

495mm 1470 85.9 47619 

500 mm 1502 76.0 90764 

530mm 1696 76.2 107656 

770mm 4871 93.8 236000 

mean no. 81981 

Schilbe mystus 

Mean size, sex ratio and size at 50% maturity 

The mean size of female S. mystus was 210 mm SL while males had a smaller mean size of 160 

mm SL (Table 6.2). The sex ratio of S. mystus was skewed towards females with a 1 :2.3 

(male:female) ratio (Table 6.2). This finding is slightly lower than that recorded for Lake Liambezi 

(1:2.7; van cier Waal, 1985). 

Male S. mystus matured at a smaller size than females (125 to 140 mm SL, respectively). These 

estimates fall within the range of sizes at 50% sexual maturity described by Kok (1980; 120 mm SL 

males & 160 mm SL females) and van der Waal (1985;120 mm TL males & 140 mm TL females). 
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Spawning season and environmental influences at the time of spawning 

In the seasonal swamp and drainage rivers, where floodwaters arrived in June (during the coldest 

time of year), an increase in the number of ripe-running and recently spent S. mystus occurred 

immediately after the arrival of the floods and extended until December (Table 6.6; Fig. 6.4). It is 

likely that the arrival of the flood stimulates gonad development which peaks as water temperatures 

increase. The results of Daget (1954) also indicate that the onset of flood conditions serves as an 

important cue for gonad development in S. mvstus. 

In the riverine floodplain and perennial swamp an increase in the number of ripe-running and 

recently spent S. mystus occurred in January with a peak in March and April (Table 6.7). This 

co-incides with the arrival of the flood (Fig. 6.5) and with high water temperatures. 

This information is important for the management of S. mvstus in the delta as their are two distinct 

spawning populations. Any formulation of fishing regulations, based on the spawning season of 

this species, should take into account the fact that the bulk of the S. mystus population spawns 

between January and April in the riverine floodplain and perennial swamp and between July and 

December in the seasonal swamp and drainage rivers. 

Similar spawning activity of S. mystus and E. depressirostris (now synonomized with S. mystus; 

De Vos, 1984) has been recorded by Daget (1954) , Groenewald (1967), Carey & Bell-Cross (1965), 

Galgher (1969a), Olatunde (1978a), Hecht (1980), Kok (1980) and van der Waal (1985). 

Monthly freguency of occurrence of juvenile fish 

The majority of juvenile S. mystus « 50 mm SL) were collected from the seasonal swamp and 

drainage rivers between July and December (Fig. 6.6). This further substantiates an earlier 

spawning season of this species in these regions of the Okavango. No juveniles were collected 

between January and June. In the riverine floodplain and perennial swamp the appearance of 

juveniles in catches occurred between January and April (Fig. 6.1) and further supports a later 

spawning season for these regions. 
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Table 6.6. The number of Individuals and corresponding Gonad Maturation Index (GMI) of male (m) 

and female (I) Schllbe mystus from the seasonal awamp and drainage rivers, Okavango Delta, 

between November 1983 and December 1986. 

.. 
g> -c: 

'" 0 
~ .. n-

GONld Mllurallon Index 

Olle no. 1 2 3 4 5 8 

m m m m m I m m 

Novemberl ta3 23 51 3 12 8 17 8 10 . 3 • 2 5 3 7 

Mlrch 1114 II 41 4 11 • 15 8 14 3 • 0 0 0 0 

July 1114 27 , 57 0 0 5 • 4 11 • 18 7,14 3 8 

November 1184 18 43 0 3 2 7 5 12 3 I 2 3 8 I 

April 1"5 25 58 • 17 11 15 3 22 2 4 0 0 0 0 

July 1185 18 47 2 1 3 5 2 I 5 18 • 14 0 0 

November 1985 21 44 5 5 4 10 8 10 4 3 2 I 8 7 

Jlnuary 1188 21 55 4 22 8 21 0 11 2 1 0 0 0 0 

Mlrch 1185 17 41 2 5 I 11 4 13 2 4 0 0 0 0 

July 1188 28 " 7 5 1 18 2 13 5 13 2 19 I 23 

October 1188 17 31 1 1 2 5 2 4 1 5 3 4 8 12 

December 1188 14 44 3 15 2 11 1 8 1 3 1 2 8 7 

TOIII 254 818 

100.-------------------------------------__ --, 

60 

60 

40 

20 

o '--'---'--
May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Month 

"T1 
0' 
0 
Q. 

0 
~ 
eD 

Figure 6.4. The combined monthly number and percentage of S. myatua with a GMI > 4 In the 

seasonal swamp and drainage rivers, Okavango Delta, between November 1983 and December 

1986. An Indication of the annual flood regime Is also shown. 
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Table 8.7. Tha number of Individuals and correapondlng Gonad Maturation Index (GMI) of male (m) 

and female (I) Schllbe mystus from the riverine floodplain and perennial awamp, Okavango Delta, 

between November 1983 and December 1986. 

Q> 

'" os -c: 
Q> 

e 
Q> 
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Gonad MllunlUon IndlX 

Dill no. 2 3 4 5 8 

m m m m m m m 

NO.lmber 1883 11 27 0 2 2 4 4 , 5 12 0 0 0 0 

Mlrch 1'84 , 23 1 5 0 5 0 0 3 4 3 , 
July 1184 17. 38 , 15 8 7 3 8 2 0 0 0 0 

November 1'84 14 35 0 3 2 3 5 11 7 18 0 0 0 0 

April 1185 19 42 4 8 5 , , 0 0 0 2 9 14 

July 1185 • 27 3 11 1 7 2 8 2 3 0 0 0 0 

November 1185 1. 37 3 2 , 7 12 8 13 0 0 0 0 

JlnUIIY I_ • 21 0 0 1 1 1 8 3 17 3 4 0 1 

Mlrch 1888 15 35 4 8 1 7 0 3 2 3 0 3 • 13 

July 1_ 28 41 , 7 • 13 7 18 2 5 0 0 0 0 

October 1_ 13 27 1 3 2 5 4 7 8 12 0 0 0 0 

Doc .... ber 1188 1. 24 0 1 3 3 7 8 • 14 0 0 0 0 

TolIl 178 3&3 

100 
+ 

80 

80 

40 

20 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Month 

"11 
'0 
0 
Q. 

0 
~ 
Ii" 

Figure 6.5. The combined monthly number and percentage of S. mY8tu8 with a GMI > 4 In the 

perennial 8wamp and riverine floodplain, Okavango Delta, between November 1983 and December 

1986. An Indication of the annual flood regime 18 allo Ihown. 
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Figure 6.6. The combined monthly number of juvenile S. mystus « 50 mm SL) collected in the 

seasonal swamp and drainage rivers (S), and the riverine floodplain and perennial swamp (P) , 

Okavango Delta, between November 1983 and December 1986. 

Fecundity 

S. mystus has a relatively high fecundity which Increases with length. Fish of 156, 221 and 253 mm 

SL produced 9408, 13500, and 34541 eggs respectively (Table 8.8). The eggs are small (650 um 

diameter) and of uniform size which suggests a Single spawning season (i.e. monocyclic 

spawners) as reported by van der Waal (1985). The fecundity estimates of S. mystus In the 

Okavango agree with egg counts from the Kafue River (Carey & Bell·Cross, 1967) and Lake 

Llambezl (van der Waal, 1985) which range between 38500 and 67500 eggs for a body length range 

of 240·270 mm FL. 

No difference in the egg size or number of eggs was apparent between the sampling sites. 

Relatively high fecundity and small egg size are features characteristic of S. mystus in the 

Okavango that help to explain the success of this species In the delta where the unpredictability 

of the flood regime may Influence year class strength. 
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Table 6.8. The fecundity of ripe (GMI stages 4 & 5) S. mystus in the Okavango Delta, between 

November 1983 and December 1986. 

SL 

156 mm 

196 mm 

220 mm 

221 mm 

239 mm 

249 mm 

253 mm 

mean no. 

Spawning behaviour 

Fish 

weight (g) 

44 

83 

171 

179 

206 

236 

245 

Gonad Total no. of 

weight (g) ripe eggs 

7.7 9408 

11.9 18935 

10.0 12380 

9.2 13500 

12.3 35900 

13.7 40800 

11 .6 34541 

23638 

S. mystus is a broadcast spawner which places its eggs on submerged aquatic vegetation 

(Welcomme, 1979). Many tropical and sub-tropical riverine fishes migrate upstream during flood 

periods in order to spawn in areas removed from their dry-season habitats (Lowe-McConnell, 1975; 

Welcomme, 1979). During the summer flood, Whitehead (1959) observed the ascent of S. mystus 

from Lake Victoria up the Nzoia River in Kenya. They entered the river in fairly compact shoals and 

swam for 8-25 km up-river before moving laterally into floodwater pools to spawn. Potamodromic 

behaviour of S. mystus has also been recorded in the Niger River (Daget, 1954; Olatunde, 1978a) 

and on the Pongolo floodplain (Kok, 1980; Merron et al., 1987). The probable reasons for this 

behaviour are to provide a suitable physico-chemical environment forthe development of eggs and 

larvae (Greenwood, 1965), to ensure dispersion of the species over the entire colonizable river 

course (Fryer, 1965), and to provide juveniles with adequate food and protection from predators 

(Jackson, 1961a). 

There was no direct evidence of S. mystus undergoing potamodromic migrations in the Okavango 

Delta. However, in the riverine floodplain a large degree of lateral movement occurred, as indicated 

in Chapter 5. 
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Hydrocynus vit1atus 

Mean size, sex ratio and size at 50% maturity 

The mean size of H. vit1atus females (380 mm SL) was larger than males (310 mm SL; Table 6.2). 

Males at1ained sexual maturity at 190 mm SL while females matured at 260 mm SL (Table 6.2). 

Gaigher (1970) gives the size at sexual maturity for male H. vit1atus in the Incomati River system 

at 200 mm SL, while that for females was 275 mm SL. Kok (1980) also quotes these lat1er sizes as 

the size at which H. vit1atus in the Pongolo floodplain become sexually mature. 

There was a skewed sex rat io in favour of males in the Okavango (3.3:1; Table 6.2). This sex ratio 

is similar to that reported for Lake Kariba (3:1; Kenmuir, 1973) and the Pongolo floodplain (3.2:1; 

Merron et aI., 1987). 

Spawning season and environmental influences at the time of spawning 

The spawning season of H. vittatus has been well documented. In the Zambezi River (Jackson, 

1961a; Bell-Cross, 1966), Lake Kariba (Badenhuizen, 1967; Kenmuir, 1973), Incomati River system 

(Gaigher, 1970) and Pongolo floodplain (Kok, 1980; Merron et aI., 1987) spawning occurs during 

the flood or rainy season. 

Based on the quarterly GMls of both sexes from the riverine floodplain and perennial swamp, all 

ripe-running and recently spent H. vittatus were collected between October and December (Table 

6.9). This is a relatively truncated spawning season and in the Okavango it is importan1 to realize 

that spawning occurs before the arrival of the flood or the rainy season (Fig. 6.6). No data are 

available for H. vittatus from the seasonal swamp or drainage rivers as these areas are not 

preferred habitats 01 this species during the course of this study (see Chapter 4) . 

H. vittatus were found in an advanced reproductive condition (GMI 4) in winter (e.g. July), although 

no fish were recorded to spawn at this time (Table 6.9). Kenmuir (1973) found that many H. vit1atus 

in Lake Kariba also ripened months before the spawning season. 

Monthly freguency 01 occurrence of juvenile fish 

Juvenile H. vit1atus « 50 mm SL) were only collected from the riverine floodplain and perennial 

swamp between October and December (Fig. 6.8) . It was noted, however, that fewer juveniles were 

collected in the perennial swamp (e.g. Xakanixa Lagoon; see Fig. 3.1). This finding supports the 

observation made in Chapter 5 that H. vit1atus undergoes potamodromic migrations to the riverine 

floodplain each year and, based on the above findings, probably to spawn. 
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Table 6.9. The number of Individuals and corresponding Gonad Maturation Index (GMI) of male (m) 

and female (f) Hydrocynus vittatus from the riverine floodplain and perennial swamp, Okavango 

Delta, between November 1983 and December 1986. 

'" '" '" -C 

'" 0 
~ 

'" D.. 

Gonad Maturation Index 

O.te no. . 1 2 3 4 5 8 

m f m f m f m f m f m m 

November 1983 38 5 5 1 10 2 8 0 7 1 8 1 2 0 

March 1984 40 7 17 2 22 5 1 0 0 0 0 0 0 0 

July 1984 48- 9 9 0 11 2 10 5 18 2 0 0 0 0 

November 1984 81 28 8 1 4 3 • 4 18 5 14 10 8 3 

April 1985 45 18 12 9 24 5 9 4 0 0 0 0 0 0 

July 1985 71 18 19 2 14 7 17 3 21 4 0 0 0 0 

November 1985 95 37 14 8 21 8 28 14 18 4 11 8 12 4 

January 1986 85 24 29 8 41 14 11 0 4 2 0 0 0 0 

March 1988 78 17 25 10 38 5 13 2 0 0 0 0 0 0 

July 1988 91 28 18 11 28 5 33 2 18 8 0 0 0 0 

October 1988 120 39 0 0 12 3 30 8 34 13 28 8 18 9 

Oecember 1986 89 32 22 0 21 5 24 10 13 2 3 4 18 11 

Total 258 857 
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Figure 6.7. The combined monthly number and percentage of H. vittatus with a GMI > 4 In the 

riverine floodplain and perennial swamp, Okavango Delta, between November 1983 and December 

1986. An indication of the annual flood regime Is also shown. 
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Figure 8.8. The combined monthly number of Juvenile H. y!ttatU8 « 50 mm SL) collected In the 

riverine floodplain and perennlal,wamp, Okavango Delta, between November 1983 and December 

1988. 

F,cundlty 

Fecundity e,tlmat" for H. V!ttatUI In the Okavan!Jo (n = 8) Indicate that fish of 410, 482 and 530 

mm SL produced approximately 218970, 224886 and 429180 8991 re,pectlvely (Table 8.10). 

F8cundlty "tlmat" from Lake Karlba range from 787150 89ga for, female 0' 311 mm FL to 7791590 

8991 for a female of 8815 mm FL (Kenmulr, 1973) while Pott (1989) record. female, from the 

Pongolo floodplain of 510, 1525 and 830 mm FL producing 308000, 477000 and 873000 899' 

respectively. Bowmaker (1973a) gives an 899 production of 300000 for an average Ilzeadult female 

(400 mm FL). 

Table 8.10. The fecundity of ripe (GMI stages 4 & 5) H. vittatul In the Okavango Delta, between 

November 1983 and December 1988. 

SL 

410 mm 

425 mm 

462 mm 

478 mm 

495 mm 

530mm 

mean no. 

Fish 

weight (g) 

1279 

1387 

1843 

2102 

2470 

3138 

Gonad 

weight (g) 

22.5 

23.0 

19.4 

27.8 

31 .8 

35.7 

99 

Total no. of 

rlpa 899' 

218970 

287580 

224865 

29815115 

360725 · 

429160 

299838 



Spawning behaviour 

Direct observations of H. vittatus spawning were never made during the course of this study in the 

Okavango. Based on its fecundity and ecology, it would appear that H. vittatus is a broadcast 

spawner which releases large numbers of eggs into the environment with little or no parental care 

afforded to the young. This apparent spawning behaviour of H. vittatus in the Okavango is 

supported by observations on the spawning behaviour of this species in other ecosystems 

(Gaigher, 1970; Kenmuir, 1973; Kok, 1980). 

Lowe-McConnell (1975) regards the characins as total spawners with seasonal spawning activity 

associated with floods. However, in the Okavango, the characin H. vittatus spawns at least two 

months before the floods and it would appear that some other regulatory mechanism determines 

the timing of spawning in this wetland system. 

GUARDERS 

Hepsetus odoe 

Mean size, sex ratio and size at 50% maturity 

The mean size of female H. odoe was larger than males (279 vs. 241 mm SL; Table 6.2). The sex 

ratio of H. odoe of 1 :2.1 (male:female) indicates that females were twice as numerous as males 

(Table 6.2). This finding agrees with the sex ratio reported from Lake Liambezi (van der Waal, 1985) 

which was 1 :2.5. 

On the basis of 50% maturity, H. o!!oe was found to mature at approximately 140 mm SL for males 

and 160 mm SL for females (Table 6.2). These estimates are similar to those sizes at sexual 

maturity reported by van der Waal (1985) of 180 mm TL for males and 200 mm TL for females. 

Spawning season and environmental influences at the time of spawning 

The majority of ripe-running and recently spent H. odoe in the seasonal swamp and drainage rivers 

were collected between October and January (Table 6.11). Although this spawning period is after 

the peak flood conditions (Fig. 6.9), it does correspond to increased water temperatures. 
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Table 6.11. The number of Individuals and corresponding Gonad Maturation Index (GMI) of male 

(m) and female (f) Hepsetus odoe from the seasonal swamp and drainage rivers, Okavango Delta, 

between November 1983 and December 1986. 
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no. 1 2 3 4 5 S 

m I m m m m m m I 

Howmber 1183 5 12 0 2 3 0 1 3 1 5 0 1 0 1 

M8n:h 1884 31 It 2 7 7 31 14 20 3 11 0 0 5 13 

July 1884 3 S 1 0 0 I 1 3 1 1 0 0 0 1 

Howmber 1884 17 20 2 0 4 S 0 1 2 1 3 2 S • 
April 1185 13 40 4 a 7 a 1 11 0 S 0 3 1 4 

July 1185 30 41 II 9 8 14 2 10 4 2 0 1 0 5 
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Figure 6.9. The combined monthly number and percentage of H. odoe with a GMI > 4 in the 

seasonal swamp and drainage rivers, Okavango Delta, between November 1983 and December 

1988. An indication of the annual flood regime is al80 shown. 
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In the riverine floodplain and perennial swamp H. odoe was not a common species (Chapter 4; 

Table 4.1). Based on the limited data, a greater number of ripe-running and recently spent H. odoe 

were collected between October and April (Table 6.12). H. odoe spawned before and during the 

arrival of the annual flood (Fig. 6.10) when water temperatures were highest and can be classified 

as a facultative flood dependant spawner. This is in agreement with the lindings 01 van der Waal 

(1985) for H. odoe in Lake Liambezi where water temperature changes have a marked influence 

on spawning periodicity. 

These observations on the spawning season 01 H. odoe are in agreement with the spawning 

season lor this species reported from the Gambia River (Budget!, 1901 b; Svensson, 1933), Lake 

Chad (Blache, 1964), Kalue floodplain (Carey & Bell-Cross, 1967; Chapman et aI., 1971) and Lake 

Liambezi (van· der Waal, 1985). 

Table 6.12. The number 01 individuals and corresponding Gonad Maturation Index (GMI) 01 male 

(m) and lema Ie (f) Hepsetus odoe from the riverine floodplain and perennial swamp, Okavango 

Delta, between November 1983 and December 1986. 

Gonad Maturation Index 

Date no. 1 2 3 4 5 6 

m I m I m I m I m I m I m I 

November 1983 1 3 0 0 0 0 1 0 0 2 0 0 0 1 

March 1984 3 4 0 1 0 0 0 2 2 1 0 0 1 0 

July 1984 2 5 2 1 0 2 0 2 0 0 0 0 0 0 

November 1984 4 8 0 0 0 0 1 2 2 3 1 2 0 1 

April 1985 0 2 0 1 0 0 0 0 0 0 0 0 0 1 

July 1985 7 2 2 0 4 1 1 1 0 0 0 0 0 0 

November 1985 8 19 0 0 0 3 4 7 3 6 0 3 1 0 

January 1986 7 15 0 0 2 3 1 2 2 2 1 6 1 2 

March 1986 3 7 2 3 0 1 0 1 0 1 0 0 1 1 

July 1986 8 21 8 5 0 14 0 2 0 0 0 0 0 0 

October 1986 11 28 0 0 4 2 0 3 3 10 2 11 2 2 

December 1986 6 4 0 0 0 0 0 0 2 1 4 3 0 0 

Total 60 118 
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Figure 6.10. The combined monthly number and percentage of H; odoe with a GMI > 4 in the 

perennial swamp and riverine floodplain. Okavango Deita. between November 1983 and December 

1986. An Indication of the annual flood regime Is also shown. 

Monthly freguency of occurrence of juvenile fish 

Juvenile H. odoe < 50 mm 5L were mainly collected from the seasonal swamp and drainage rivers 

between the warmer months of October and December (Fig. 6.11). The majority of juvenile H. odoe 

. were also collected in the riverine floodplain and perennial swamp between October and January 

(Fig. 6.11). It should be noted that Juveniles were also collected in July 1984 (n = 1) and July 1986 

(n = 4) although no ripe-running adults were collected. These findings support the above 

observations on spawning periodicity for this species from these sampling sites and indicates that 

spawning Is not dependent on the arrival of the annual flood. 
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Figure 6.11. The combined monthly number of juvenile H. odoe « 50 mm 5L) collected in the 

seasonal swamp and drainage rivers (5). and the riverine floodplain and perennial swamp (P). 

Okavango Delta. between November 1983 and December 1986. 
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Fecundity 

The fecundity of H. odoe is relatively low, with an average total number of 2627 eggs (n = 17; 

Table 6.14). Ripe eggs are large (2.5 to 2.9 mm diameter), and ovaries contained eggs of different 

sizes which suggests a multiple spawning habit. 

Table 6.14. The fecundity of ripe (GMI stages 4 & 5) H. odoe from the Okavango Delta, between 

November 1983 and December 1986. 

SL 

257 mm 

258 mm 

275 mm 

288 mm 

305 mm 

307 mm 

310 mm 

310 mm 

312 mm 

314 mm 

323 mm 

324 mm 

325 mm 

326 mm 

327 mm 

335 mm 

340 mm 

mean no. 

Fish 

weight (g) 

351 

342 

416 

377 

492 

526 

496 

520 

516 

507 

551 

559 

605 

582 

558 

628 

670 

Gonad Total no. of 

weight (g) ripe eggs 

33.2 3715 

23.4 3091 

10.5 2186 

15.8 1714 

22.5 3128 

22.4 3092 

13.0 1998 

25.7 3177 

17.8 1743 

23.9 2519 

28.5 3823 

25.9 3431 

17.4 1502 

31.0 2320 

11.6 1986 

15.3 2347 

22.4 2891 

2627 
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Spawning behaviour 

H. odoe belongs to the aphrophilic nest-guarding breeding guild of Balon (1975, 1981b), which is 

characterised by a moderate parental investment in relatively few young, the construction of a nest 

for guarding the young and the provision of an oxygen-rich environment. Other features of this 

group are the deposition of eggs in clusters of mucous bubbles, and embryos which typically have 

a cement gland and well-developed respiratory structures. At least 23 species of fishes in three 

families have been reported to produce foam nests (Breder & Rosen, 1966; Axelrod & 

Vroderwinkler, 1974). The aerial mode of protection of the young in H. odoe is similar to that 

exhibited by various anuran Amphibia which also attain some independence from the water and 

the risks associated with it (Duellman, 1985, 1989). The trend in anuran life-history evolution has 

been towards the placement of the eggs in situations which are increasingly independent of water, 

whereas this is a relatively rare behaviour in fishes. 

In the Okavango Delta, H. odoe built foam-bubble nests among dense emergent reeds and sedges 

along the reed fringe of lagoons, mainstream channels and shallow floodplains (Fig. 6.12). The 

nests were generally well hidden from view. 

Figure 6.12. A H. odoe nest in the seasonal swamp of the Okavango Delta, November 1986. 
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H. odoe nests, when newly formed, consist of a firm high dome of tightly packed foam-bubbles 

with embedded eggs. Older nests have a more flattened configuration whereas abandoned nests 

consist of a few loosely-packed bubble rafts. The nests have a roughly circular base and vary in 

diameter and height according to their age. The nests are pierced to varying degrees by plant 

stalks which may serve to stabilize their location when they are subjected to wind-induced wave 

action. Older nests were typically covered with leaf and stalk debris, which soils the bright white 

foam and creates a more cryptic colour. Upon hatching the embryos wriggle their way down 

through the foam nest and continue their early development suspended from their cement glands 

on the lower row of bubbles. Embryos removed from two nests totalled 1604 and 1844 in number 

(Merron et aI., 1990). Early development is rapid with fry of 28 mm SL morphologically similar to 

adults. 

Although the construction of the foam nests was not observed, the presence of eggs in the foam 

nest above the water line and their absence from the upper stratum of the nest suggests that the 

nests are partially built prior to spawning. Johnels (1954) came to the same conclusion when he 

found fully formed nests devoid of eggs lnd later found eggs embedded in these same nests. 

Adults exhibit territorial behaviour in the vicinity of the nests. 

H.odoe has an interesting spawning behaviour which was relatively easy to observe under field 

conditions in the Okavango Delta. Their spawning behaviour allows them to take full advantage 

of the fluctuating water levels in the Okavango, particularly in the seasonal swamp and drainage 

rivers, where they are abundant (see Chapter 4; Appendix 3). H. odoe has also been the focus of 

a detailed reproductive and embryonic development study (Merron et. ai, 1990). A diagrammatic 

illustration of its life cycle in the Okavango has been published by these authors and is useful to 

include in the present context (Fig. 6.13). 

Because the spawning season occurs mainly during low water and oxygen levels, H. odoe has to 

overcome a number of threats to the survival of their offspring. The likely advantages of their 

foam-nesting habit can be summarized as follows: 

(a) The dense vegetation cover around the nests affords protection to the embryos from aerial, 

aquatic and terrestrial predators as well as from the intense tropical heat. The nest also serves as 

an aggregating device to facilitate more effective parental care. 

(b) By placing the eggs out of the water and the embryos at the air/water interphase, a hospitable 

oxygen environment is provided for the young. This is especially important at low water levels 

when there are reduced oxygen concentrations (Chapter 2). 

(c) The nest affords flotation during periods of changing water levels. 

(d) The nest may provide food for the embryos at the start of first exogenous feeding. Wunder 
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(1931) found that bubbles in the foam nests of fishes may contain dead bacteria and saliva from 

the adult fishes. 

(e) Foam nests act as an anchor to which the embryos can attach before they are able to swim and 

hunt independently. In this respect, the cement gland on the head is an important adaptation of 

the embryos. These glands allow the embryos to remain attached to the nest and to the water 

surface where oxygen is relatively abundant. 
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~'t;N2P 

Adults form pairs 

Growth into f 
adult 

phenotype 

Nest construction 

Mating and egg deposition 

Adults guard nest 
As nest breaks up 

embryos disperse 

Free embryos suspended from 

water surface beneath nest 

Figure 6.13. Diagrammatic illustration of the life cycle of H. odoe in the Okavango Delta (from 

Merron et aI., 1990). 
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However, there are certain disadvantages associated with foam nesting. Most obvious is a foam 

nests conspicuous microhabitat appearance within the reed beds which results in increased 

predation on eggs by reed ants and various species of spiders (pers. observation). Aerial predation 

on the young may also be a threat in certain instances. However, many of the fish eating birds 

inhabiting the Okavango such as the giant kingfisher (Ceryle maxima) and African fish eagle 

(Haliaeetus vocifer) prey mainly on larger size fish, such as tilapia and tigerfish . 

Kryzhanovsky et al. (1953) and Balon (1975) have proposed that two factors play leading roles in 

determining the nature and course of embryonic development in fishes: predation pressure and 

the availability of oxygen. These factors appear to be associated with the foam nesting habit of H. 

odoe, although additional observations relating to predation pressure are needed. 

Oreochromis andersonii 

Mean size, sex ratio and size at 50% maturity 

O. andersonii males were larger than females (240 vs. 210 mm SL; Table 6.2). Males were also 

slightly more numerous (1.4:1), as found by van der Waal (1:0.6; 1985). 

O. andersonii is one of the most widely distributed cichlids in the Okavango Delta. The size at 50% 

sexual maturity was attained between 110-140 mm SL for males and 105-155 mm SL for females 

depending on site. In the perennially flooded habitats the size at sexual maturity for both sexes was 

significantly larger (P < 0.05) than in areas of seasonally fluctuating water levels where sexual 

maturity was attained at a smaller size. 

Spawning season and environmental influences at the time of spawning 

The quarterly GMI's of male and female O. andersonii from the seasonal swamp and drainage 

rivers indicates that the majority of ripe-running and recently spent fish were caught mainly 

betweeen October and January (Table 6.14). This is after the arrival of the annual flood but 

corresponds to relatively high water levels (Fig. 6.14) and increased water temperatures. In the 

riverine floodplain and perennial swamp the majority of O. andersonii with ripe-running and 

recently spent gonads were also collected between October and April (Table 6.15). This spawning 

season coincides with both low and high flood levels (Fig. 6.15) and increased water temperatures. 

108 



T.ble 8.14. The number of Indlvldu.l. and corresponding Gonad M.turatlon Index (GMI) of male 

(m) .nd fem.le (I) Oreochroml. anderaonll from the leslonal IWimp and drainage rivera, 

Okavango Delta, between November 1983 and December 1988. 
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Figure 8.14. The combined monthly number and percenatge of O. anderaonll with • GMI > 4 In 

the .... on.I.Wlmp and drainage rivera, Okavango Delta, between November 1983 and December 

1988. An Indication of the annual flood regime II allo Ihown. 
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Table 6.15. The number of Individuals and corresponding Gonad Maturation Index (GMI) of male 

(m) and female (1) Oreochromls anderson II from the riverine floodplain and perennial swamp, 

Okavango Delta, between November 1983 and December 1986. 

CD 
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CD 
0.. 

Gonad Maturation Index 

Date no. 2 3 4 5 6 

m I m m I m I m I m I m I 

November 1983 11 4 1 1 3 0 4 2 0 1 2 1 1 0 

March 1964 11 5 2 1 1 2 3 0 2 1 2 0 1 1 

July 1984 14 7 2 1 4 3 4 2 2 1 1 0 1 0 

November 1984 19 15 2 1 2 3 4 1 3 2 5 3 3 4 

April 1985 8 5 1 2 3 1 1 1 1 0 1 1 1 0 

July 1985 13 8 3 2 4 1 3 3 2 1 0 0 1 0 

November 1985 18 17 1 0 2 3 4 3 2 3 4 4 5 4 

JanlJ8ry 1986 12 15 1 1 1 3 3 1 2 3 2 1 3 3 

March 1998 7 5 0 1 5 2 0 1 0 0 1 3 1 1 

July 1986 1. 6 2 1 4 2 5 2 3 0 2 1 2 0 

October 1986 11 14 2 1 3 2 0 2 1 3 2 4 3 2 

December 1998 12 • 0 0 4 1 2 1 2 2 2 3 2 2 

Total 155 110 
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Figure 6.15. The combined monthly number and percentsge of O. andersonii with a GMI > 4 in 

the perennial swamp and riverine floodplain, Okavango Delta, between November 1983 and 

December 1986. An indication of the annual flood regime is also shown. 
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Monthly frequency of occurrence of juvenile fish 

Juvenile O. andersonil < 50 mm SL occurred throughout the year in all regions (Fig. 6.16). This 

feature, together with the relatively wide distribution of sexually mature fish throughout the year, 

is indicative of the extended spawning season of this species relative to the non-substrate 

spawners (e.g. C. gariepinus, S. mystus and H. vittatus). 
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Figure 6.16. The combined monthly number of Juvenile O. andersonll « 50 mm SL) collected In 

the seasonal swamp and drainage rivers (S), and the riverine floodplain and perennial swamp (P), 

Okavango Delta, between November 1983 and December 1986. 

Fecundity 

Of the selected species chosen for detailed study, O. andersonli exhibited a significant difference 

(P < 0.05) in size at sexual maturity between perennially and seasonally flooded areas. Therefore, 

fecundities were determined separately for these areas. Overall, the fecundity of O. andersonil was 

relatively low, with an average total number of 3270 eggs (n = 9) and 1756 eggs (n = 11) for fish 

In the seasonally and perennially flooded sampling sites respectively (Table 6.16). 
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Table 6.16. The fecundity of ripe (GMI stages 4 & 5) O. andersonii from perennially and seasonally 

flooded sampling sites in the Okavango Delta, between November 1983 and December 1986. 

SL (mm) Fish Gonad Total no. of 

weight (g) weight (g) rip e eggs 

Seasonally 

flooded 155 110 2.64 1948 

160 116 2.86 2209 

221 302 3.21 2592 

230 360 5.10 3546 

232 356 5.24 3655 

240 397 8.50 4031 

247 440 6.01 3971 

250 504 10.10 3794 

255 512 8.47 3684 

mean no. 3270 

Perennially 210 340 3.80 1223 

flooded 215 372 4.21 1172 

221 392 7.53 1486 

225 408 3.56 1050 

234 461 9.70 1362 

238 468 8.64 1378 

256 553 10.60 1712 

258 597 12.65 1740 

263 624 8.31 1354 

323 1160 14.31 3468 

330 1349 13.90 3369 

mean no. 1756 
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The lowered fecundity of this species is related to the mouth-brooding activity of the female in 

which the eggs and resulting fry are retained in the mouth cavity until those large enough to be 

independent of parental care are released. Ripe eggs were found to vary in size between 0.8 and 

2.4 mm diameter, with larger eggs recorded from perennially flooded areas. Although the sample 

size Is relatively low, fish from perennially flooded areas also had fewer eggs relative to those 

collected in seasonally inundated areas. This change In egg size and number for fish 01 a given 

length group does not appear to be attributed to an allometric change in the size of the individuals 

between these sites. The linear regressions for the relationship betWeen fecundity and fish size 

(Fig. 6.17) from perennially and seasonally sites Indicates that there Is a significant difference in 

the slopes and Intercepts lor these two regression lines (P < 0.05) 
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Figure 6.17. Linear regressions lor the relationship between fish size and number of eggs in the 

ovaries of O. andersonil in seasonally and perennially flooded areas of the Okavango Delta, 

between November 1983 and December 1986. 
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Spawning behaviour 

The spawning behaviour of O. andersonii has been adequately described (Bell-Cross, 1976). In 

summary, spawning involves the male setting up territories in arenas or "leks" and preparing nests 

in which mating occurs with a succession of receptive females. The male attracts a female which 

then lays her eggs in the nest for the male to fertilize. The female then picks up the eggs in her 

mouth where they are incubated for about one month after which the juveniles move away into the 

very shallow margins of the floodplains. 

DISCUSSION 

The research on reproductive biology was designed to assess the influence of the flood cycle on 

spawning behaviour. The results presented in this Chapter, and given by Merron and Bruton 

(1988), indicate that the flood cycle does influence the spawning periodicity of many Okavango 

fishes. 

In the riverine floodplain and perennial swamp many species, particularly non-guarding, 

egg-scattering fishes, synchronize spawning with the initial arrival of the flood in February and 

March. The information obtained on S. mystus and C. gariepinus from the riverine floodplain is 

an example of this pattern. The advantages attached to this synchronized spawning are obvious. 

The recently inundated vegetated areas provide cover for the spawning fishes and for the juveniles. 

In addition, the conditions for adult and larval growth are favourable since the floods cause an 

injection of nutrients and stimulate a rapid growth of micro-organisms and small invertebrates. This 

newly produced micro-fauna serves as a food source for many of the juveniles (Lowe-MCConnell, 

1979; Bruton ~ Jackson, 1983). However the non-guarding, egg-scattering H. vittatus has a 

truncated spawning season prior to the arrival of the flood and may be selecting this strategy in 

the Okavango to ensure that their young are sufficiently large to take advantage of fry of species 

which spawn during the floods. 

Although the arrival of the flood waters in the riverine floodplain and perennial swamp is 

associated with spawning in most non-guarding species of fish, the results also indicate that 

certain fish species, particularly within the guarding reproductive guilds such as O. andersonii and 

H. odoe, have an extended spawning season before, during and after the arrival of the annual 

floods. 

The reason for the difference in sexual activity between the majority of non-guarders and guarders 

can possibly be ascribed to the difference in spawning pattern of these species. In the riverine 
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floodplain and perennial swamp, the non-guarding spawners, such as C. gariepinus and S. mystus 

are dependent on the right physico-chemical conditions before they spawn. These species have 

adopted a high fecundity and high risk strategy. The guarders and mouthbrooders like H. odoe 

and O. andersonii seek and create suitable conditions for spawning in the nest and/or mouth and 

have an extended spawning season which is relatively independent of physico-chemical conditions 

when compared to the non-guarders. 

In the seasonal swamp and drainage rivers, where the floodwaters arrive, on average, in June 

(during the coldest time of year), both C. gariepinus and S. mystus spawned in July, shortly after 

the arrival of the floods. O. andersonii and H. odoe spawned during spring with a peak between 

October and November, which was after the initial flood pulse but did coincide with relatively high 

water levels and temperatures. During January to May the water level in the seasonal swamp and 

drainage rivers was at its lowest level. 

It is therefore concluded that both the arrival of the flood and an increase in water temperature are 

major ecological factors determining spawning periodicity of fish in the Okavango Delta. It is 

believed that a combination of these two environmental variables is the primary stimulus 

determining the success of respective year classes of fish. 

Of particular interest in the present discussion is that, within the reproductive guild category of 

bearers, differences in reproductive characteristics are apparent. In O. andersonii individuals 

reached sexual maturity at a larger size and attained a greater maximum size in relatively 

hydrological stable environments (e.g. the perennial mainstream channel) relative to unstable 

environments (e.g. drainage rivers) . It appears reasonable to suggest that, in the stable areas of 

the Okavango, more energy is directed into growth as the selection pressures in these areas 

probably favour a large "experienced" parent which produce fewer, larger young. Alternatively, in 

areas which are subject to wide fluctuations in flood inundation, O. andersonii spawns at a smaller 

mean size and more energy is shunted into reproductive effort to counteract the relative 

unpredictability of the varying flood cycle. 

The reproductive guilds of Balon (1975, 1981b; Table 6.1) may be represented as alternative states 

from generalized to specialized forms (Bruton, 1989). The most generalized forms such as C. 

gariepinus, S. mystus and H. vittatus belong to non-guarders which have a high fecundity and 

scatter their eggs on open substrata and perform no parental care. They invest a relatively small 

amount of energy in each of the large number of young. The more specialized reproductive guilds 

belong to the guarders and bearers. In the Okavango, species such as H. odoe and O. andersonii 

spawn in specially prepared nests and/or carry the young internally. These fish exercise intensive 
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parental care, have a low fecundity but large-yolked ova and invest a large amount of energy in 

each of a small number of young. 

Superimposed on this genotypic state is a phenotypic one whereby a fish can alter its life-history 

style by shifting its relative position on an altriciallprecocial continuum in response to the 

environment (Balon, 1989b; Bruton, 1989). The terms altricial and precocial were first described 

for birds (Rickleffs, 1973) and later adopted for fish (Balon, 1985). With reference to O. andersonii, 

fishes which have altricial suites of characters produce relatively small, incompletely developed 

young and are capable of surviving in an unstable environment in which they are mainly subjected 

to density-independent mortality. O. andersonii exhibiting precocial suites of characters produce 

large, well-developed young and are adapted to survive in a stable environment which is subject 

to density-dependent mortality. The interaction between the genotypic and phenotypic states allows 

the fish to change its relative position on the continuum in response to different environmental 

stimuli. Kok (1980) and Merron et al. (1987) found that the resident stock of Oreochromis 

mossambicus, a closely related species to O. andersonii, in Nhlanjane pan on the Pongolo 

floodplain in South Africa also exhibited suites of altricial characters. Nhlanjane is usually 

separated from the Pongolo River for several consecutive seasons before the pan is flooded again. 

The spawning size of O. mossambicus is affected by the unstable environmental factors in this pan 

when compared with the more stable environments (i.e. pans which annually connect to the river). 

These populations of fish appear to display different phenotypic, altricial traits when compared to 

populations in more stable environs. These traits include earlier maturity, decrease in egg size, and 

decrease in mean adult size. 

It is apparent that different life styles exist within O. andersonii in perennially flooded or seasonally 

flooded sampling sites in the Okavango and is an exciting area for future research. A summary of 

the preliminary data on life- history characteristics typically associated with these habitat types is 

given in Table 6.19. 

It would be useful in the future to determine whether or not there is a genetic mixing between the 

two "apparenf' populations of O. andersonii during high water levels, and to determine whether the 

above traits are genotypic or phenotypic. It is my belief that the environment can have a marked 

effect on the phenotype of many Okavango fishes and that the phenotype, if not the genotype, is 

flexible. Similar changes in the phenotype in response to changing environmental conditions for 

other plant and animal groups (Balon 1980, 1985; Via & Lande 1985; Bruton, 1989) appear to 

support the above idea. 

116 



Table 6.19. Various reproductive parameters for O. andersonii from the predictably perturbed (i.e. 

perennially flooded) and unpredictably perturbed (i.e. seasonally flooded) sampling sites in the 

Okavango Delta. 

Unpredictably Predictably 

perturbed perturbed 

Life history exhibit altricial exhibit precocial 

traits traits 

Egg no. 3270 1756 

Egg size 0.8 mm diameter 2.4 mm diameter 

Size at first 

maturity (females) 105 mm SL 155 mm SL 

Final size < 200 mm SL > 135 mm SL 
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CHAPTE.R 7 

FEEDING BIOLOGY OF SELECTED 

FISH SPECIES 

IN-rnODucnON 

The Okavango Delta, with its densely-vegetated swamps, has much of its nutrients locked up in 

papyrus and reed mats and associated epiphytes and detritus. The annual inundation of the 

floodplain results in an allochthonous nutrient pulse into the aquatic system. Extensive tracts of 

semi-terrestrial vegetation are submerged, and leaves, fruits, seeds and the dung of antelope, 

elephants, other wild game and cattle are carried into the water. A rich invertebrate fauna develops 

which provides food for young fishes. Daily, small water level changes caused by wind-induced 

seiches also enrich the system by carrying game and cattle manure into the waterbodies (Allanson, 

1980; Merron & Bruton, 1989). 

A quantitative assessment of the feeding habits of the selected fish species was essential in order 

to obtain an understanding of the feeding response of these species to the annual flood regime. 

Since the Okavango experiences cyclical floods and seasonal environmental fluctuations, temporal 

and spatial feeding variations within the community may be expected. An indication of the 

respective feeding niches and trophic relationships can show how the food chain of this 

community, on a broad scale, responds to the annual flood cycle. It is not the intention of this 

chapter to elucidate all the trophic pathways in the Okavango Delta but to determine the broad 

changes in diet for the selected species in response to the flood. 

MATERIALS AND MElliODS 

From November 1983 to December 1986 at least twenty-five stomach samples from each selected 

species were collected from quarterly gillnet catches. The specimens chosen for study were the 

same as those analysed for reproductive biology (Chapter 6). However, the data presented for C. 

gariepinus include an additional 317 fish from the riverine floodplain which were examined for 

stomach contents during October to December 1986. This was during the annual catfish 

migrations, explained in greater detail in this Chapter. The selected species represent all major 

trophic groups in the Okavango (Table 3.4). These include an omnivore/predator (C. gariepinus), 

insectivore/predator (S. mvstus), piscivores (Hydrocynus vittatus and Hepsetus odoe), and 

detritivore (0. andersonii). These five species comprised 53.2% of the total mass of fish collected 
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during this study (see Table 4.1). None of the species found in the Okavango can be regarded as 

a strict planktivore and only one species, T. rendalli, is a strict herbivore (Merron & Bruton, 1988). 

Phytoplankton production appears to be inhibited in most wetlands by the shallowness of the 

system and seasonal fluctuations in water level which may be faster than the growth rate of the 

phytoplankton, as has been proposed for estuaries (McLusky, 1981). It should be emphasized that 

the stomach contents of the majority of other species have been qualitatively assessed in a 

separate study (Merron & Bruton, 1988). 

The stomachs of whole fish were dissected out by cutting through the oesophagus above the 

stomach and below the pyloric sphincter. After fixation, the stomachs were opened and their 

contents washed into a glass petri dish for sorting under a dissecting microscope. Each food item 

was assigned to its broad taxonomic grouping i.e. fish, terrestrial insects, aquatic and larval 

insects, bivalve molluscs, gastropods, detritus and algal material. These data were firstly combined 

to obtain an overall indication of the dietary preferences of each species and, secondly, according 

to their broad habitat types. Seasonal and size-related changes in diet in relation to the flood cycle 

were than assessed. 

The number of stomachs in which each food item occurred was recorded and expressed as a 

percentage of the total number of stomachs examined. A quantitative volumetric ranking index was 

determined for each stomach. The volumetric ranking index entails a volumetric assessment of the 

diet categories weighted by a stomach fullness index. This method most closely resembles the 

Hynes (1950) method whereby values (e.g. 10%,20%) are ascribed volumetrically to individual food 

items. The value ascribed to a particular food item was multiplied by the degree of stomach 

fullness. The importance of each diet category was then calculated by expressing the summation 

of multiplied values for each food item for all stomachs as a percentage of the total values. This 

method should be treated with caution when specimens are captured in gillnets as stomach 

contents may be digested or regurgitated by the time the fish are removed from the net. However, 

as this variable remained constant throughout the study period, a relative indication can be 

obtained. Fish prey that were undigested and could be identified were measured using standard 

length. All samples have been housed in the J.L.B. Smith Institute of Ichthyology for further 

analysis. 

All methods of stomach content analysis have certain advantages and disadvantages (Hynes, 1950; 

Hyslop, 1980). For the purpose of this thesis, the occurrence of the dominant food items and the 

response of the selected species to the annual flood regime was of most importance. In this 

respect it is believed that the data presented here is an accurate indication of the diet based on 

a volumetric assessment. 
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RESULTS 

Clarias gariepinus 

General feeding biology and size-related changes in diet 

A total of 759 sharptooth catfish in the size range 200 to 940 mm SL was examined for stomach 

contents (Table 7.1). A large number of the stomachs were empty (i.e. 243 or 32%). The overall 

composition of all catfish stomachs throughout the Okavango indicates that the most important 

dietary items were fish (27%) of which cichlids, characins, mormyrids and cyprinids were the most 

common. Other important components of the diet were detritus and algal material (19%), molluscs 

(10%), adult aquatic insects (10%), larval aquatic insects (4%), terrestrial insects (9%), gastropods 

(4%), crustaceans (2%), seeds and fruit (7%\ and aquatic macrophytes (3%). C. gariepinus was also 

found to have amphibians (i.e. frogs) (2%), small mammals (2%) and bird hatchlings (1%) in their 

stomachs (Table 7.1). It was noted that smaller C. gariepinus « 300 mm SL) fed mainly on 

insects, detritus and algal material and that larger C. gariepinus (> 300 mm SL) fed proportionately 

more on fish. 

The overall prey composition reveals that C. gariepinus is an omnivorous predator. The gross 

composition of the diet of C. gariepinus in the Okavango approximates the diets established for 

this species in other systems such as Lake Liambezi, Namibia (van der Waal, 1976), Shire River, 

Malawi (Willoughby & Tweddle, 1978), Lake Sibaya, South Africa (Bruton, 1979a) and the Pongolo 

Floodplain, South Africa (Kok, 1980). 

This species is morphologically well-adapted to feed on a wide range of foods. The circum-oral 

barbels function as mechano-, electro- and chemoreceptors that enable the catfish to feed at night 

and in turbid waters (Bruton, 1979a). The mouth is terminal with a wide gape and the jaws are 

equipped with numerous small teeth. In addition, there is a vomerine band of small teeth as well 

as paired pharyngeal tooth pads. This buccal structure enables C. gariepinus to capture and 

swallow large prey items whole. The stomach is thick-walled and muscular with the intestine 

thin-walled and moderately short, as is common in many predatory fish. 

Seasonal changes in diet in relation to the annual flood 

Temporal and spatial changes in prey choice have been recorded for other populations of C. 

gariepinus (Bruton, t979a; van der Waal, 1985). The most dramatic seasonal change in diet of C. 

gariepinus in relation to the annual flood regime in the Okavango was demonstrated in the riverine 

floodplain mainstream channel. 
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Table 7.1. The percentage importance of diet items according to a weighted, volumetric method 

for five selected species in the Okavango Delta, between November 1983 and December 1986. The 

underlined figures indicate the major dietary items. 

Species * 
No. examined 

No. empty 

Fish 

Fish scales 

Adult aquatic insects 

Larval aquatic insects 

Terrestrial insects 

Bivalve molluscs 

Gastropods 

Detritus and algal 

material 

Crustaceans 

Seeds and fruit 

Aquatic macrophytes 

Amphibians 

Reptiles 

Birds 

Mammals 

1 

759 

243 

10 

4 

9 

10 

4 

II 
2 

7 

3 

2 

1 

2 

2 

1429 

529 

11 
9 

14 

7 

24 

3 

8 

6 

5 

1 

1 

1 

3 

1113 

479 

5 

3 

4 

4 

2 

3 

4 

1048 

545 

7 

3 

9 

5 

4 

5 

586 

70 

5 

• 1 = C. gariepinus; 2 = S. mystus; 3 = Hydrocynus vittatus; 4 = Hepsetus odoe; 5 = O. 

andersonii 

Each year mass aggregations of C. gariepinus occur in this habitat type during the low flood level 

between October and January (see Fig. 7.1). In an attempt to quantify the reasons why these 

catfish congregate at this time of year an intensive survey was launched in the riverine floodplain 

mainstream channel between Shakawe and Seronga (see Fig. 3.1) in 1986. During this intensive 

survey an additional 317 C. gariepinus were dissected to assess the stomach contents and 

reproductive condition of fish. 

Although 34% of C. gariepinus stomachs were empty, those with contents revealed that the 

majority of prey items consumed during this time were mormyrids, particularly M. macrolepidotus 

and P. catostoma (Table 7.2). C. gariepinus contained an average of 2.48 prey items per stomach. 
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The highest number recorded was from a 520 mm SL C. gariepinus which had 8 M. macrolepidotus 

and 2 P. catostoma in its stomach (Fig. 7.2). 

Whilst feeding, the catfish make a distinctive slurping sound, believed to be the result of suctorial 

feeding and surface breathing. Many catfish were observed with fresh lesions on and around the 

caudal fin. It is likely that these lesions are caused by catfish beating the densely rhizomed 

papyrus mats with their tails to chase fish into the open water. Figure 7.3 provides a diagrammatic 

illustration of catfish pack-hunting. As water levels recede in September a larger number of .M,. 

macrolepidotus move into the mainstream. During October and December, catfish form 

pack-hunting groups in which it appears all the individuals benefit. 

Table 7.2. Species composition and numerical abundance of prey items in the stomach contents 

of 317 Clarias gariepinus caught during pack-hunting in the riverine floodplain mainstream channel 

of the Okavango Delta, between October and December 1986. The underlined figures indicate the 

major dietary items. 

Species no. % contribution 

Hippopotaml1rus discOrhl1nchuS 5 0.6 

Marcusenius macrolepidotus 423 53.9 

Morml1rus lacerda 6 0.8 

Petrocephalus catostoma 196 25.0 

Polliml1rus castelnaui 57 7.3 

Brycinus lateralis 11 1.4 

Schilbe ml1stus 32 4.1 

Sl1nodontis spp. 3 0.4 

Clarias theodorae 1 0.1 

Hepsetus odoe 1 0.1 

Barbus poechii 7 0.9 

Barbus spp. 16 2.0 

Labeo lunatus 1 0.1 

Pseudocrenilabrus philander 9 1.1 

Serranochromis angusticeps 3 0.4 

S. macrocephalus 2 0.2 

S. robustus jallae 1 0.1 

Tilapia sparrmanii 11 1.4 

Total 785 99.9 
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Figure 7.1. A mass aggregation of C. gariepinus along the riverine floodplain mainstream channel, 

November 1986. 

Figure 7.2. Stomach contents of a C. gariepinus showing eight M. macrolepidotus and two ~ 

catostoma taken during pack-hunting in the riverine floodplain mainstream channel, October 1986. 

Photo by R. Stobbs. 
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Pack-hunting catfish fed in and amongst the papyrus fringe, while others, some satiated with 

mormyrids, drilled passively downstream. Once the catfish were located it was possible to follow 

them on a daily basis and to determine the direction of travel and distance covered. Visual 

observations indicate that the overall movement was upstream at a speed of 2 - 4 km per day 

despite some downstream drilling. 

In an attempt to substantiate the diel periodicity of feeding activity, nocturnal observations were 

made on five occasions between October and December t 986. It should be mentioned that the 

presence of both crocodiles and hippopotami in the river restricts night research. The limited 

nocturnal observations revealed that the catfish were actively feed ing along the fringe of the 

mainstream throughout the night. Catches from gillnets set approximately 500 m upstream of the 

shoal at dusk and retrieved at dawn also demonstrate an upstream movement during the night. 

Further evidence of nocturnal feeding activity by catfish in the Okavango is provided by Donnelly 

(1966) . 

There were at least four distinct pack-hunting shoals operating simultaneously at different places 

in the river each day. The average length of the pack-hunting shoals studied was approximately 

250 m, with a range between 50 m and 1.5 km. The average water depth at which the catfish fed 

was found to be 0.5 m and the width of the shoal extended approximately 20 m into the papyrus 

fringe. 

Stomach content analysis revealed that C. gariepinus that were pack-hunting fed predominantly 

on mormyrids (86%), especially M. macrolepidotus (Table 7.2). It is useful in the present context 

to describe briefly the movement patterns of this prey species to fully appreciate the biotic 

inter-relationship of catfish pack-hunting in response to the annual flood levels in the northern 

perenn ial areas of the Okavango. 

The length frequency of M. macrolepidotus taken from C. gariepinus stomachs was plotted and 

compared with the length frequency of M. macrolepidotus collected in gillnets set along the 

mainstream channel and in Dungu Lagoon, a floodplain-connected lagoon (Fig. 7.4). The modal 

lengths offish collected from stomach contents was 130 mm SL, those from gillnets set in the 

mainstream channel and Dungu Lagoon 130 mm and 160 mm SL respectively. These figures 

suggest that the catfish were feeding on the same size class of fishes as that available in the 

mainstream channel. However, when the length-frequency for fish collected in C. gariepinus 

stomachs or gillnets set in the mainstream channel are compared with those for fishes collected 

in Dungu Lagoon, a very interesting contrast emerges. It appears that there is a segregation in the 

size classes of M. macrolepidotus between these two main sampling sites (i.e. habitat types) in the 

riverine floodplain. A higher proportion of larger individuals was found in the floodplain lagoons 

than in the stomachs of C. gariepinus or caught using gillnets in the mainstream channel at this 
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time of year. Although the student '1" test showed that there was no significant difference between 

the three samples (P > 1.0), the mode of the standard length for Dungu (i.e. 160 mm SL) was 

greater than that for the mainstream (i.e. 130 mm SL) and from catfish stomach contents (i.e. 130 

mm SL; Table 7.3). This finding of similar size M. macrolepidotus in the mainstream channel and 

catfish stomach contents compared with the size of M. macrolepidotus in the floodplain- connected 

lagoons such as Dungu Lagoon warrants further investigation. It is, however, important to realize 

that this trend of apparent size-segregation is similar to the observations made by Merron and 

Bruton (1988) for S. mystus and H. vittatus in the riverine floodplain ecotone. 

Table 7.3. Comllarisions of modal length and standard deviation for M. macrolepidotus taken from 

catfish stomach contents, mainstream and Dungu floodplain lagoon gillnet catches between 

October and December 1986 in the Okavango Delta. 

variable stomach mainstream Dungu lagoon 

contents gillnets gillnets 

Sample size 237 83 82 

Modal length of prey (mm) 130 130 160 

Standard deviation 

of prey (mm) 23.2 22.4 22.1 

Schilbe mystus 

General feeding biology and size-related changes in diet 

A total of 1429 S. mystus over a size range of 105 to 260 mm SL was examined for stomach 

contents (Table 7.1). A large number of the stomachs were empty (529 or 37%). The overall prey 

composition based on all fish in the Okavango indicates that insects were the most important 

component of the diet with terrestrial insects (22%), adult aquatic insects (14%) and larval aquatic 

insects (7.0%) forming the major components of the diet. Fish prey, including cichlids, characins 

and cyprinids, were also important in the diet (24%). Other food items in the diet included fish 

scales (9%), molluscs (3%), crustaceans (Caridina nilotica) (6%), detritus and algal material (8%), 

unidentified seeds and Ficus sycamorus fruits (5%), aquatic macrophytes (1%), amphibians (1%), 

and mammals (i.e. small rodents; 2%). Plant fragments found in the stomach contents were 

considered to have been ingested accidentally when S. mystus fed on fish amongst the dense 

beds of aquatic macrophytes as all the stomachs which contained macrophytes also contained 

fish. 
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The diet of this species from the Okavango generally agrees with that found for S. mystus in other 

systems (Corbet, 1961; Groenewald, 1964; Gaigher, 1969b; Gilmore, 1979a; van der Waal, 1985). 

S. mystus is an opportunistic, generalized insectivore and piscivorous predator as shown by the 

wide range of food items consumed (Table 7.1). It differs from other catfish species by being 

morphologically adapted to a more pelagic mode of life. The head is smaller and less ossified, and 

the abdominal viscera are compressed within the anterior one-third of the body, thus moving the 

center of gravity forward. The long post-anal body segment is laterally flattened and muscular, 

forming a large power unit for active swimming. The comparatively larger and more anteriorly 

orientated eyes are also indicative of active hunting habits. The body is equipped with sensory 

barbels, a large mouth, jaws armed with numerous small teeth and with a short alimentary tract 

that is typical of a predatory fish. Prey appears to be swallowed whole, often resulting in gross 

distension of the stomach, as witnessed in Cahora Bassa, Mozambique (Jackson & Rogers, 1976). 

Smaller S. mystus « 150 mm SL) fed proportionately more on aquatic insects, mainly 

ephemeropteran, dipteran and trichopteran nymphs, and the larger fish (> 150 mm SL) 

predominantly on larger prey, such as fish and terrestrial insects. 

The importance of aquatic nymphs decreases with increasing size of S. mystus, possibly because 

individual prey organisms are extremely small and the energy expenditure required in capturing 

sufficient bulk of these organisms is generally not warranted. It was also observed that insect prey 

size tended to increase with increasing predator length so that aquatic larvae found in large 

specimens of S. mystus consisted almost entirely of odonatid nymphs rather than smaller 

ephemeropteran and dipteran larvae found in smaller S. mystus. 

The success of S. mystus as a predator in the Okavango can be attributed to its ability to feed on 

a wide selection of prey. S. mystus is abundant in the delta, especially in the seasonal swamp and 

drainage rivers (Chapter 4; Table 4.1), and thus the importance of its role in community dynamics, 

in these ecotones, must be considerable. 

Seasonal changes in diet in relation to the annual flood 

Throughout the Okavango Delta this species is one of the few predators which fed extensively on 

terrestrial winged insects, especially flying termites when they hatch after heavy summer rains (Fig. 

7.5). Other insects such as grasshoppers and crickets (Orthoptera), beetles (Coleoptera) and 

termites (Isoptera) in addition to small mammals were recorded in highest numbers as flood waters 

rose over the floodplains. Because S. mystus feeds heavily on allochthonous resources, it 

represents a major pathway by which exogenous energy is introduced into the aquatic system. 
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Figure 7.5. The stomach contents of one S. mystus (bottom) showing at least 35 terrestrial flying 

termites in November 1984. The specimen on top shows gross distention of the stomach. Note the 

damaged caudal fin on the bottom specimen. 

Hydrocynus vittatus 

General feeding biology and size-related changes in diet 

A total of 1113 H. vittatus between the size range 220 to 620 mm SL was examined for stomach 

contents (Table 7.1). A large number of the stomachs were empty (Le. 479 or 43%). 

The proportions of dietary items in the stomachs of H. vittatus confirm that this species fed almost 

exclusively on fish (79%). Other less important components of the diet included adult aquatic 

insects (5%), larval aquatic insects (3%), terrestrial insects (4%) and crustacea (4%). The prey 

species that occurred most frequently in H. vittatus stomachs were open water shoaling fishes 

such as the small characins, B. lateralis and M. acutidens. During the annual pack-hunting catfish 

migrations between October and December, M. macrolepidotus and S. mystus featured strongly 

in their diet. 
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Some species are less susceptible to H. vittatus predation than others, which may be a result of 

their morphology (e.g. the large dorsal spines of Synodontis spp.) or behaviour (e.g. the nocturnal 

behaviour of Barbus radiatus). The insects recorded from H. vittatus stomach contents were mainly 

odonatid nymphs and aquatic hemipterans. Freshwater shrimps (Caridina nilotica) formed the 

crustacean component of the diet. Two stomachs also contained intact snakes (3%), one a night 

adder (Causus rhombeatus) and the other unidentifiable. 

Although aquatic macrophytes comprised 2% by volume olthe dietary items, plant material should 

not be regarded as making a substantial contribution to the diet of H. vittatus. Aquatic 

macrophytes were never found in significant quantities in any single stomach. Generally, plant 

material was found in small fragments in stomachs that also contained fish prey either picked up 

incidentally or regurgitated by prey. 

Insect remains and crustacea were more important in the diet of fish less than 300 mm SL. In 

addition, B. lateralis, M. acutidens, S. mystus, M. macrolepidotus and Serranochromis spp. were 

almost exclusively consumed by H. vittatus individuals greater than 300 mm SL. H. vittatus less 

than 300 mm SL exerted the greatest predation pressure on the smaller size Barbus populations. 

This can be explained by the fact that smaller H. vittatus occupy a similar habitat (i.e. relatively 

sheltered areas) to that of Barbus species. 

The diet and relative abundance of different prey items consumed by H. vittatus largely reflects the 

findings of other workers (Jackson, 1961a; Munro,1967; Matthes, 1969: Gaigher, 1970; Kenmuir, 

1973, 1975; Kok, 1980). 

Seasonal changes in diet in relation to the flood regime 

A greater number of M. macrolepidotus and S. mystus was recorded from stomachs during 

October and December. This coincides with the annual catfish feeding migrations. It was observed 

that H. vittatus also shoal and feed heavily on these species at this time. The degree of stomach 

fullness was also highest during the annual catfish feeding migrations. 

The impact of H. vittatus predation on the community dynamics of tropical rivers and floodplains 

has been extensively discussed by Jackson (1961b) and Fryer (1965). It is beyond the scope of 

this discussion to comment on whether H. vittatus predation is responsible for spawning 

migrations of other fish species as Jackson (1961b) suggests. The presence of H. vittatus in a fish 

community does appear to have a considerable impact upon the behaviour of smaller fish. Th is 

observation is supported by diurnal-nocturnal seine netting which reveals that the species 

composition and relative abundance of the inshore littoral community is much richer at night when 

H. vittatus are less active (Skelton & Merron, 1984). Social hunting by H. vittatus (approximately 
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200 mm SL) was recorded by Skelton & Merron (1984) on small fish species leaving the floodplain 

at the confluence of the Okavango/Omatako Rivers in Namibia (see Fig. 1.1). 

Hepsetus odoe 

General feeding biology and size-related changes in diet 

A total of 1048 H. odoe between the size range 125 to 475 mm SL was examined for stomach 

contents (Table 7.1). A large number of the stomachs were empty (545 or 52%). The results 

indicate that H. odoe fed almost entirely on fish (72%; Table 7.1). The majority of prey fish taken 

were small cichlids, cyprinids and characins. Other important dietary items included terrestrial 

insects (9%), adult aquatic insects (7%), larval aquatic insects (3%) and crustaceans (5%). Aquatic 

macrophytes were also recorded (4%) but are likely to have been bitten 011 when consuming 

smaller prey species in the dense macrophyte beds. The diet of H. odoe from the Okavango closely 

approximates that reported for the Kafue floodplain (Chapman et al., 1971) and for Lake Liambezi 

(van der Waal, 1985). 

Size dillerences were also noted with smaller size groups (Le. < 200 mm SL) feeding 

predominantly on smaller fish and insects, as recorded for H. vittatus, S. mystus and C. gariepinus. 

H. odoe greater than 200 mm SL fed predominantly on fish. 

Seasonal changes in diet in relation to the annual flood 

H. odoe exhibited a higher percentage of stomach fullness during the receding and low water 

levels, similar to H. vittatus. During the receding water level H. odoe was observed at floodplain 

drainage channels in the seasonal swamp, feeding mainly on A. johnstoni moving 011 the 

floodplain. At most other times of the year cyprinids and cichlids made up the majority of the fish 

prey. 

Oreochromis andersonii 

General feeding biology and size-related changes in diet 

A total of 586 O. andersonii between the size range 50 to 390 mm SL was examined for stomach 

contents (Table 7.1). A relatively small number of stomachs were empty (70 or 12%). O. andersonii 

fed almost entirely on detritus (95%; Table 7.1). The low incidence of empty stomachs (12%) can 

be attributed to the high bulk intake of detritus in this species which may be due to the low 

nutritional value per unit volume of food eaten. 

The dietary importance of detritus (silt and fine sand grains with its associated microfauna and 

microflora) and algal material (diatoms, desmids and filamentous blue-green algae) attest to the 
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benthic feeding habits of this fish. Bowen (1981) has shown that a closely related species, O. 

mossambicus, digests hetl!rotrophic micro-organisms which are associated with the detritus. Living 

vascular plant material (bOSh aquatic and emergent) was of relatively minor importance, comprising 

5% of the diet. No apparent size-related change in diet was observed using the volumetric analysis. 

Young O. andersonii showed a diurnal preference for the shallowest vegetated margins where 

water temperatures were considerably higher (35°C) than in the deeper open waters (25°C). This 

has also been noted by Welcomme (1964) and Bruton & Boltt (1975), who suggest that diurnal 

movement results from the young fish seeking out the warmer waters during the day, then 

returning to deeper waters at night as the shallows cool off. This habitat preference enables the 

young fish to utilize the rich marginal waters during the day, and to benefit from a lower metabolic 

cost in cooler, deeper water at night when this species (like most cichlids) rests on the substrate. 

Jackson (1961a) has also stated that, in the presence of predators, fry and juveniles seek refuge 

in shallow vegetated waters. Therefore, because of the many piscivores in the Okavango, a 

preference for shallow water serves a dual purpose, namely for protection and feeding. Because 

one of the main energy pathways of the Okavango system is detritus-based, especially in the 

seasonal swamp and drainage rivers, O. andersonii is one of the major primary consumers. 

Seasonal changes in diet in relation to the annual flood 

No apparent dietary changes were recorded between the various sampling sites, although it was 

observed that a decrease in stomach fullness occurred during colder water periods (e.g. May, June 

& July). 

DISCUSSION 

Food chain dynamics 

One of the main ecological roles of wetland fishes is to convert the resources at the base of the 

food chain, i.e. detritus, epiphytes and plants, into food for higher trophic levels (Bruton & 

Jackson, 1983). In the fast-flowing waters of the riverine floodplain and perennial swamp, where 

a rich invertebrate community exists under the floating papyrus mats, an insectivore-predator food 

chain appears to be the main food pathway. This finding is exemplified by the annual catfish 

pack-hunting event where M. macrolepidotus, an insectivore, is fed on by C. gariepinus, an 

omnivorous predator. The qualitative feeding accounts of other Okavango fish species (Merron & 

Bruton, 1988) also support the above finding. 

In the slow-flowing waters of the seasonal swamp and drainage rivers, a high degree of settling 
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occurs. A detritus-fish, and to a lesser degree an epiphyte-fish, food chains are the main food 

pathways. 

Seasonal changes in trophic dynamics 

During flooding a greater percentage of allochthonous material was consumed and the diets of four 

of the five selected species indicate that they became more generalized feeders. The detritivore, 

O. andersonii, showed no obvious change in diet. During the low water level, however, the selected 

species specialized in their dietary preferences. This was recorded for C. gariepinus which fed 

predominantly on M. macrolepidotus during the low water level. Hydrocynus vittatus also fed 

proportionately more on M. macrolepidotus, while Hepsetus odoe fed largely on A. johnstoni 

moving off the floodplains. At high water level these species were more generalized piscivores. 

These data support the well-substantiated tenet of Lowe-McConnell (1975) that species with 

specialized diets in low water conditions become more generalized feeders in high water periods. 

Low water levels have a concentrating effect on the fish species and lead to increased predation 

on selected smaller fish species. 

Pack-hunting catfish 

The most significant finding with regard to the response of fish, in terms of feeding, to the 

changing water levels was the annual congregation of pack-hunting catfish in the riverine 

floodplain. Pack-hunting by catfish in the Okavango was a regular response to the annual 

fluctuation in water level in which it appears that all the individuals in the group benefit. Bruton 

(1979a) found that C. gariepinus in Lake Sibaya, South Africa, herded small cichlids, predominantly 

Oreochromis mossambicus, into the shallow littoral areas where they were heavily preyed on. This 

activity was more commonly seen at low water levels when prey were concentrated. Van der Waal's 

(1976) account of catfish feeding frenzies in Lake Liambezi, Namibia, most closely resembles the 

Okavango event. He states that thousands of C. gariepinus hunt in packs and chase fish to the 

water surface as the lake and surrounding floodpla ins recede. The main prey items found in van 

der Waal's (1976) study were the small cyprinids Barbus paludinosus and B. haasianus, the 

distichodontid Hemigrammocharax spp. and small cichlids. Although most of these species were 

present in significant numbers in the papyrus mats in the Okavango, they were not preyed on by 

the catfish (Merron, 1987). 

During pack-hunting, catfish fed predominantly on mormyrids. It is possible that, because of their 

size and abundance, they are a preferred food source. However, the mean size of other abundant 

species in the community such as Brycinus latera lis and Schilbe mystus (95 mm & 135 mm SL 

respectively, Merron in press) would also be ideal to consume. The dorsal and pectoral fin spines 

of Schilbe mystus may be a deterrent to C. gariepinus predation, and they may therefore not be 
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preferred by these predators when other less defensively armed fish such as M. macrolepidotus 

are available. It was observed, however, that H. vittatus consumed large numbers of S. mystus 

during these periods. 

It is known that mormyrids generate a weak electrical field (Bullock, 1973) and that catfish are 

electro-receptive (Lissman & Machin, 1963). Although additional data are needed, the results on 

pack-hunting catfish may be interpreted as a preference by catfish for feeding electro-receptively 

on mormyrids, particularly M. macrolepidotus. 

One of the ways in which the population of M. macrolepidotus can withstand such an intense 

predation pressure and still maintain viable population levels may be by size-selective habitat 

preferences. It is postulated that, as the flood begins to recede, a large percentage of smaller-sized 

M. macrolepidotus respond by moving out of the floodplain lagoons into the mainstream river 

channel. This is believed to be a dispersal mechanism by smaller, more abundant fish and possibly 

relates to the limited niche space available for fish in the few remaining floodplain lagoons as the 

water level recedes. 

The larger and older M. macrolepidotus remain in the floodplain lagoons. The relatively high 

fecundity coupled with an extended spawning season and early maturation are all attributes which 

enable this species to withstand this high degree of predation pressure. The heaviest mortality from 

catfish in the mainstream is then exerted on the smaller and younger fish. As the flood penetrates 

the delta, predation pressure on the remaining fish in the mainstream would be minimal due to a 

dilution effect on the fish stocks and lateral migration of catfish onto the floodplains to spawn. 

There appears to be a great deal of size selective movement in response to the fluctuating water 

levels for many other Okavango fish species. This concept is of fundamental importance when 

understanding predator-prey interactions in this ecosystem, particularly in the riverine floodplain 

ecotone. It was noted in seine net and rotenone collections that large numbers of small cyprinids 

such as Barbus haas ian us and Coptostomabarbus wittei, appeared with a greater frequency in 

mainstream sites as a result of movement off the floodplains during the receding water level. It is 

postulated that sufficient numbers of larger individuals exist, however, in the few remaining isolated 

floodplain lagoons to repopulate the area once the floods arrive. The isolated lagoons remaining 

on the floodplain are thus important refuges that harbour inocula of sexually mature fishes at low 

water level. Kushlan (1980), Howard-Williams and Ganf (1981) and Bruton and Jackson (1983) have 

emphasized the importance of inocula in wetland conservation and management. During the 

dry-down it is thus essential to avoid the temptation to exploit the inocula in these peripheral 

floodplain lagoons. 

134 



OHAPTER 8 

FLOODPLAIN ECOLOGY: 

A CONCLUDING DISCUSSiON 

The fishes of the Okavango Delta are an important renewable resource for Botswana. Over the last 

decade the increased levels of commercial gill netting concurrent with increased levels of 

recreational fishing on selected species (e.g. H. vittatus) have placed considerable pressure on the 

resource. In other wetlands, selective fishing pressure has resulted in the decline of stocks of the 

large species, which are replaced by smaller and less desirable species (Welcomme, 1979). 

Other natural and artificial perturbations such as extended periods of low water level as a result 

of drought, and ultra-low-volume continual insecticide spraying have contributed to these 

pressures. In addition, plans to increase the utilization of the Okavango's waters in order to 

develop the mineral and agricultural potential of northern Botswana and Namibia have been 

developed and are presently being implemented. The exotic water plant Salvinia molesta has also 

been found in the Okavango Delta (pers. observation). This plant is an extremely hardy aquatic 

macrophyte with a rapid growth rate and can cover an entire lagoon in a few months. The 

establishment of S. molesta mats leads to the exclusion of light, which can result in a reduction 

of primary productivity and lowered fish densities (Merron, 1990). 

It is apparent that quantitative scientific information on the fish communities was needed in order 

to make rational recommendations on the long term sustainable utilization of this resource. This 

concluding discussion is an attempt to define the ecological dynamics of the Okavango system 

and place into perspective the relative environmental components of this unique and increasingly 

threatened wetland system. 

COMMUNITY CHANGES AND ECOSYSTEM STABIUTY 

The results presented in Chapter 4 on community Similarities showed that marked differences in 

fish populations existed between different areas of the Okavango Delta while other areas were not 

as different. These communities of fish can be separated from each other by the degree of stability 

in the annual flood cycle and their response to the co-evolving environment. The riverine floodplain 

and perennial swamp ecotones experience a relatively stable flood cycle and harbour a similar 
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species composition which was more closely related than the seasonal swamp and drainage rivers 

(see Chapter 4). These two latter ecotones experience a widely fluctuating flood cycle and share 

similar compositions of fish. In Chapter 5 it was shown that these fish communities differ widely 

in the extent of their population fluctuations, and consequently, in their degrees of movement and 

stability. 

The complexity of both lateral and longitudinal movement was greater in the riverine floodplain and 

perennial swamp than in the seasonal swamp and drainage rivers. It is apparent that the annual 

flood regime has an important role in regulating the fish populations in the Okavango Delta. 

Welcomme (1979) showed that the higher the magnitude ofthe annual flood the longer its duration 

on the floodplains and the greater the overall production of fish. It would appear that the most 

important regulatory mechanism controlling the fish populations in the Okavango is also the 

magnitude of the annual flood. During the course of this study, the timing of the flood did not 

appear to be as decisive a factor as the magnitude of the flood. This conclusion is based on the 

fact that the flood arrives in the riverine floodplain and perennial swamp after the warmer summer 

months and in the seasonal swamp and drainage rivers before the warmer summer months, which 

is characteristically the optimum time for fish spawning and growth. The critical parameter of the 

annual Okavango flood cycle is the magnitude of the flood, particularly in the seasonal swamp and 

drainage rivers. If the magnitude of the flood is high, the water retention time will be longer and 

may lead to a longer spawning period with Ii greater percentage of the population spawning 

(Chapter 6). The duration and water retention time of flood waters in the Okavango Delta is 

characteristically long, when compared to intense but short periods of water retention as a 

consequence of flash flooding, such as in the Pongolo Floodplain (Merron et al., 1989). 

The degree of stability of the Okavango flood cycle in the different ecotones is a major determinant 

of the nature of the fish community that inhabits that ecotone. Relatively stable ecotones, taken 

as representing the riverine floodplain and perennial swamp, enable the fish community to reach 

a higher level of complexity and biotic interdependence. The fish community achieves its stability 

through a relative constancy, which in these ecotones is a greater predictability in the degree of 

fluctuation in the annual flood cycle. Relatively unstable ecotones, such as the seasonal swamp 

and drainage rivers, are characterized by a fish community which exhibits a lower level of 

complexity and biotic interdependence. The fish community achieves only a short burst of stability 

each year which is directly influenced by the magnitude of the annual flood cycle. 

In a broad ecological context, the Okavango Delta can be considered to be a sub-climax 

ecosystem that is maintained by the annual flood regime. It is important to realize that, although 

there are wide oscillations with regard to the timing, magnitude and duration of the annual flood, 
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the Okavango receives a flood each year and a broad pattern over time is apparent. In this respect 

the Okavango Delta can be considered to be stable, though changeable. However, some areas 

within the Okavango (i.e. riverine floodplain and perennial swamp) are relatively more stable than 

others (i.e. seasonal swamp and drainage rivers). 

The stability of an ecosystem, or in the present context an ecotone, usually refers to a tendency 

to remain near an equilibrium point or to return to it after a disturbance. Margalef (1969) and 

Jacobs (1975) have defined stability as the persistence of a given state or range of states in time. 

The word "stability" can, however, mean many things such as constancy, persistence, inertia, 

elasticity, cyclical and trajectory stability (Orians, 1975). However, the dual aspects "resistance" 

(constancy) and "resilience" (return after perturbation) adequately describe the main aspects of 

stability for most uses in ecology (Patten, 1975) and are mentioned in this discussion to describe 

the dynamics of the fish communities inhabiting the Okavango. 

By measuring (albeit qualitatively) the degree of water level change in all major sampling sites 

throughout the delta, the relative stability of the flood cycle in the different sampling sites and 

ecotones was ascertained. By measuring the response of the fish populations in these habitats to 

the various flood cycles (Chapter 5) their resilience and/or resistance was assessed. In the 

Okavango, the riverine floodplain and perennial swamp fish community can be classified as a 

resistant fauna, whereas the fish community inhabiting the seasonal swamp and drainage rivers 

can be classified as a resilient fauna. However, this is not an absolute criterion as even within the 

seasonal swamp, the fauna inhabiting refuge lagoons such as Nxaraga (Fig. 3.1) should be 

classified and managed as a resistant community. 

The main determinants of fish communities in the Okavango appear to be a combination of the 

extent of time the water is present and the nature of its flow in the different ecotones. Undoubtedly 

there are a host of other interconnected environmental parameters, but these two broad and 

obvious parameters separate much of the variation in fish communities between sampling sites. 

Where there is greater water flow, as in the riverine floodplain and perennial swamp mainstream 

channels, the water constantly flushes the system, creating a sandy substrate. This prevents the 

accumulation of detritus which is the basis of the food chain for many fish species. In these habitat 

types the food chain is based, predominantly, in the sub-surface « 1 m) papyrus roots with 

associated epiphytes and aquatic invertebrates. 

In the slower flowing channels of the seasonal swamp and drainage river ecotones, the water 

retention time is of a relatively short duration and flow rates are at times imperceptible. The food 

chain is simple and dominated by a few links of which the detritivore/omnivore/predator chain is 
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most apparent. The floodplains, however, have an epiphyte- and mollusc-based food chain. This 

is mainly because these areas are not inundated for sufficient time to allow the formation of a rich 

detritivore based food chain. Many of these areas are utilized by game (or cattle) which release 

large amounts of dung on the floodplains during the annual drying phase. This dung becomes 

inundated during the next flood cycle, most likely resulting in a surge in nutrients into these 

habitats. 

It is my conclusion that the main flow of biotic and abiotic stimuli within the Okavango Delta 

originates from the riverine floodplain and perennial swamp to the seasonal swamp and drainage 

rivers (i.e. from a predictably perturbed area to a unpredictably perturbed one). A simple analogy 

may be made with a lightning bolt. The energy of the bolt widens and dissipates in force as it 

moves further away from its epi-center. 

In the relatively stable riverine floodplain and perennial swamp ecotones a resistant and delicately 

balanced community has evolved, whereas in the unstable seasonal swamp and drainage river 

ecotones a resilient and robust community exists. All the fish species in the Okavango which have 

a limited distribution, such as H. vittatus, M. acutidens, C. intermedium, and B. euteania, were 

found in the stable ecotones (see Appendix 2). These fishes have narrow tolerance limits and 

specific habitat requirements. More ubiquitous fishes, such as C. gariepinus, S. mystus and O. 

andersonii were found in all ecotones and have broader tolerances and more flexible habitat 

requirements. 

The Okavango Delta can be regarded as a changeable ecosystem characterized by predictably 

wide temporal and spatial fluctuations (e.g. timing and magnitude of the flood) . The closer the 

system approxi!Ylates equilibrium (taken as representing the riverin£' f!oodplain and perennial 

swamp), a more diverse and resistant fish fauna is apparent. In addition, it is predicted that a loss 

of resilience in these ecotones will result from perturbations originating from outside the 

co-evolved system. 

In the predictably perturbed riverine floodplain and perennial swamp, the community becomes 

more speciose and interspecific connections assume increasing importance (e.g. seasonal 

movements and feed ing relationships, such as catfish pack-hunting) which extend both temporally 

and spatially. It is postulated that the reason why complex inter-relationships are only likely to 

develop in relatively stable ecotones is that these interactions are finely in tune with the relatively 

minor hydrological changes within these ecotones. The widely fluctuating seasonal swamp and 

drainage rivers ecotones do not permit the time necessary for complex interactions to develop. 
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The evolution of an ecosystem has been described as a process of information accumulation; 

succession proceeds in a direction which maximizes information or order (Margalef, 1958, 1963, 

1968; Connell & Slatyer, 1977). Successions typically lead towards an increasingly mature 

community, but may be halted or slowed by biotic or abiotic factors. Since the annual flood regime 

is the basic independent (abiotic) variable influencing the distribution and abundance of fish in the 

Okavango, its relative constancy is an important determinant of the characteristics of the fish 

communities and how they respond to perturbations. Low maturity, relatively unstable ecotones 

such as the seasonal swamp and drainage rivers, which are subject to wide natural fluctuations, 

are predicted to be able to sustain a greater degree of human exploitation. It is also predicted that 

the relatively mature and complex relationships of the fish faun9 in the riverine floodplain and 

perennial swamp would initially be resistant to low level exploitation and small perturbations. 

However, the fish fauna is believed to be very vulnerable to the introduction by man of major, 

unnatural perturbations and human exploitation. The complex biotic relationships of the riverine 

floodplain and perennial swamp fish communities would be reconstituted less easily than the 

simpler relationships of the less diverse communities of the drainage rivers and, depending on the 

degree of perturbation, could be irreversible. 

The Okavango system harbours a dynamic and co-evolving fish fauna. Although the Okavango is 

regulated by an abiotic factor (e.g. flood regime), the response of fish to the annual flood regime 

in the riverine floodplain and perennial swamp is based on complex biotic interactions with other 

species and, to a lesser degree, in response to abiotic factors that are characteristic regulatory 

mechanisms in the seasonal swamp and drainage rivers. 

Numerous studies suggest that, as a system becomes more complex in the sense of having more 

spacies and a richer structure of interdependence, it becomes more dynamically fragile, i.e. has 

a narrower amplitude of stability (May, 1973, 1975; Whittaker, 1975; Bruton, 1989). Based on 

hydrological characteristics, the relatively stable riverine floodplain and perennial swamp fish 

community need only cope with relatively minor annual hydrological changes in comparison with 

the seasonal swamp and drainage rivers fish community where hydrological changes are more 

severe. The riverine floodplain and perennial swamp fish community can therefore achieve a 

dynamically fragile complexity and persist relative to the seasonal swamp and drainage rivers 

which are characterized by a less diverse but resilient fish community. 

Large scale fluctuations, such as a markedly different hydrological regime due to water abstraction 

schemes in the headwaters of Angola and/or Namibia, indiscriminant gillnetting and recreational 

fishing, and long-term pesticide spraying operations, may intertere with the integrity of the riverine 

floodplain and perennial swamp by causing species that are finely in tune with their environment 
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to become threatened and possibly extinct. For example, there exists the possibility that large scale 

water abstraction via the Eastern National Water Carrier in Namibia might prevent the annual 

connection of the riverine floodplain mainstream channel with the floodplain-connected lagoons 

in northern Botswana. This may prevent the movement of predators and prey and break down 

essential, complex biotic interactions in this region of the Okavango. Ultimately, it is possible that 

the demise of annual events such as catfish pack-hunting might occur as the spawning population 

of the preferred prey species, M. macrolepidotus, may be affected. 

Such extreme cases have already been observed in other systems which have approached their 

equilibrium state and have been disturbed as a result of man's inadvertent or often haphazard 

intervention. The drastic decline of the indigenous lake trout (Salvelinus namaycush) and burbot 

(Lota Iota) populations which today have been replaced by exotic salmon ids (Oncorhynchus spp.), 

sea lampreys (Petromyzon marin us) and alewifes (Alosa psuedoharengus) in the North American 

Great Lakes (Christie, 1974) is a classic example of major changes in a relatively stable or 

predictably perturbed ecosystem. The decimation of the cichlid fish species flocks of Lake Victoria 

in east Africa through the introduction of ~ile perch (Lates niloticus; Coulter et aI., 1986) is another 

example of a major alteration in the community structure of this once "stable" lake. 

Man-made hydrological changes to wetland ecosytems have generally reduced the amplitude of 

oscillation in the annual water level fluctuations. The study on a riverine floodplain system such 

as the Pongolo floodplain in South Africa (see Merron et. aI., 1989) shows that the timing, 

magnitude and duration of floods released from the Pongolapoort Dam is now largely 

asynchronous with the normal flooding cycle. This unnatural change has had a severe impact on 

the downstream fish fauna, especially the highly obligatory potamodromic species such as Labeo 

rosae which pre now prevented from reaching their headwater spawning sites. 

The traits exhibited by an ecotone and its fish community, be they 'resistant' or 'resilient' are very 

important factors to be considered when formulating a long term management strategy for the 

fishes of the Okavango. Developers will need to determine whether the effect of a given action by 

man is likely to result in a long term disturbance or merely in an elastic recoil to a more or less 

similar state. Clearly, conservation and resource management strategies will differ depending on 

whether the perennially or seasonally flooded ecotones of the Okavango are being investigated for 

potential development. 
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COMMENTS ON!- and K- SELECTION AND ALTERNATIVE UFE- HISTORY STYLES 

A wetland fish community such as in the Okavango Delta, with its varying ecotones and degrees 

of flood stability, requires a much longer data series to accurately describe the population 

dynamics of the fish communities and their response to the changing flood cycle. It must be 

emphasized again that this study was done during a period of prolonged drought and the 

interpretations are based largely on a community of fish sampled under extreme environmental 

conditions. It is apparent that a longer data series on the response of the fish communities during 

a prolonged wet cycle is needed. Notwithstanding this limitation, the theory of r.- and ~- selection, 

first proposed by MacArthur & Wilson (1967), can serve as a starting pOint when interpreting the 

response of fish communities to the annual flood regime. r.- and K- selection were first defined in 

relation to natural communities which are subject to either density-dependent or 

density-independent mortality rates. The majority of wetland fishes exhibit I-selected traits 

(Lowe-McConnell, 1977; Welcomme, 1979). Wetland fish species live in an environment in which 

rapid colonization is favoured. Species with I-selected traits typically show rapid population growth, 

surplus production, early maturity and high fecundity. Species with K- selected traits show the 

opposite suite of characters, i.e. large size at sexual maturity, larger egg size and lower fecundity. 

However, many of the typically non-guarding species in the Okavango with r.-selected traits (e.g. 

H. vittatus) show a great deal of habitat specialization and narrow niche tolerance which are traits 

more closely associated with ~- selection. On the other hand, many K-selected species (e.g. O. 

andersonii) exhibit some I-selected traits and depending on whether they inhabit seasonal or 

perennial flooded habitat types will exnibit varying reproductive styles. The difference in egg 

number presented for O. andersonii in Chapter 6 support this observation. I- and ~- selection 

cannot fully describe the phenotypic plasticily exhibited by this s;Jecies in response to different 

environmental stimuli in the Okavango. 

Mann et al. (1984) found that the theory and concepts of r.- and K- selection were too inflexible to 

explain their data and observations and proposed that genetically determined differences in 

life-history styles are overshadowed by environmental effects. Duellman (1989) states that although 

I - and ~- selection adequately describes population demography, it does not explain the 

mechanism involved in phenotypic changes from one form to another. 

An on-going debate regarding the importance of various patterns of bifurcation reflected in I- and 

~-selection, generalist and specialist, and altricial and precocial life histories, is resulting in new 

interpretations on the importance of density-independent and density-dependent control of 

populations (see Bruton, 1989). Much of the debate centers on the ability of an organism to keep 
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open two or more life-history options, and allow the co-evolving environment to determine which 

one will be most successful. 

Balon (1985) and Bruton (1989) prefer the ecological concept of altricial/precocial homeorhetic 

states (ALPREHOST) when describing an organisms response to environmental change. In altricial 

forms, the parental investment per individual young is different from precocial forms, which 

produce a few, large young as described in Chapter 6. The same thinking, developed by 

Hutchinson (1978) distinguished between "profligate" species, which lay a large number of small 

eggs, and "prudential" species, which raise a few, large young. 

Species with altricial traits are characterized by rapid population growth during short favourable 

seasons, efficient dispersal abilities and density-independent mortality. Species exhibiting precocial 

traits, on the other hand, have characteristics which ensure their persistence and success in a 

strongly competitive, density- dependent environment (Bruton, 1989). 

Based on the reproductive data presented for O. andersonii (Chapter 6), it appears that the 

prevailing environmental conditions in different habitat types have a marked gffect on the 

phenotype of this species. Under a widely fluctuating flood cycle as in the seasonal swamp and 

drainage rivers, O. andersonii exhibits a greater degree of generalized, altricial traits. However, 

under relatively stable flood conditions in the riverine floodplain and perennial swamp, specialized, 

precocial traits are favoured. The phenotypic plasticity associated with either altricial or precocial 

life-history strategies is dependent on the degree of water retention in different habitats. Clearly, 

persistence in seasonally flooded habitats would require more resource allocation to survival and 

reproduction, whereas in perennially flooded habitats growth is emphasized. 

Although alternative life-history styles such as r- and K- selection, generalist and specialist, and 

altricial and precocial forms represent patterns in nature, they do not adequately explain the 

process behind an organisms ability for phenotypic change under different environmental 

conditions. Bruton (1989) speculates on the mechanism which may produce the alternative 

life-history styles exhibited by many species, such as O. andersonii. He states that the concept of 

altricial-precocial homeorhetic states (ALPREHOST) is based on the principle that epigenetic 

processes are probably involved in the formation of these patterns. Bruton (1989) further states 

that the ALPREHOST may, therefore, be regarded as the means whereby generalist/specialist and 

other phenotype pairs are produced. He concludes that altricial and precocial forms represent the 

pattern, ALPREHOST the mechanism responsible for the formation of the pattern, and the 

predictability or l'npredictability olthe environment the causal factor both initiating the process and 

selecting the surviving form or forms. 
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Based on the results in th is thesis and given by Merron & Bruton (1988) , a greater percentage of 

species exhibiting precocial traits are associated with relatively hydrologically stable ecotones in 

the Okavango and which have the following kinds of flood stability: high constancy, low amplitude 

and high cyclical stability, as in the riverine floodplain and perennial swamp. In contrast, species 

exhibiting an altricial life-history trajectory are associated with resilient ecotones characterised by 

a flood cycle with a low constancy, high amplitude of change and low cyclical stability, as in the 

seasonal swamp and drainage rivers. 

It is predicted that man-induced regulation of the flood regime in the predictably perturbed 

ecotones will result in a more unstable community composed of fishes exhibiting an altricial 

life-history style. Fish species exhibiting precocia: traits suffer mosl from human interference 

because of their low rates of reproduction and specialized life styles which are intricately linked 

to, and dependent upon, other species (Norton, 1986). 

It is also predicted that prolonged periods of high water level, as in the 1970's, will result in an 

encroachment of the resistant riverine floodplain and perennial swamp fauna into the resilient 

seasonal swamp and drainage rivers and that these fish communities will become inhabited by 

precocial forms. This is based on the assumption that fish communities, living under relatively 

stable environmental conditions (e.g. flood cycle) in the Okavango, will tend towards a more 

mature, diverse state through ecological succession, thus favouring a more precociallife form. An 

example of this succession is shown in Lake Ngami, where the stenotypic H. vittatus is found 

under more stable lake levels such as when the early explorer Frederic Daviaud visited this Lake 

in 1858 (see Jubb & Gaigher, 1971). Conversely, as the lake becomes increasingly perturbed (e.g. 

prolonged low water levels during a drought) there is a reduction of habitat specialists as found 

by Skelton et. al. (1983). It is predicted that these communities will be dominated by more 

eurytopic species (e.g. C. gariepillus alid O. ander\;onii) whicli are tolerant of a wide range 01 

environmental . conditions. Although both of these species fall on opposite ends of the r- and .!$.

continuum they are likely exhibiting altricial traits. 

RSHERIES MANAGEMENT 

In addition to the intrinsic scientific aspect of this research, it was necessary to provide relevant 

baseline biological data to the Botswana Fisheries Unit to enable this management authority to 

develop a clear understanding of the ecology and community structure of the fish populations. 

An important finding regarding increased fisheries potential has been to identify the 

underexploitation of the prolific catfish S. mvstus. This stock of fish represents a potentially large 

resource which is now being drawn on to increase the yield of fish to local fishermen (see Merron 

& Bruton, 1988). Targeting on this species also alleviates pressure on lar!,ler fish species, such as 
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O. andersonii and H. vittatus. which have been heavily exploited for over a decade by both 

commercial and recreational fishing activities. Fishermen are now encouraged through a monetary 

incentive programme to harvest S. mystus using smaller-mesh gillnets (e.g. 50-60 mm stretch 

mesh). In addition, recreational fishermen, realizing their own long-term interest in the resource, 

are beginning to practice a catch and release strategy. 

Because of the relatively small size of S. mystus (e.g. 195 mm mean SL) it was not being caught 

because of the traditional use of only large-mesh gillnets (e.g. 96-118 mm stretch meSh). It was 

first thought that the use of smaller-mesh gillnets would harvest a variety of immature cichlids. 

Studies by Merron & Bruton (1988) showed, however, that very few immature cichlids were caught 

in small-mesh nets set in open water. 

One of the reasons for the low numbers of immature cichlids in small-mesh gillnets is that the 

smaller cichlids inhabit tha shallow littoral areas. The average length of various cichlid species 

which move into the open water limnetic zones is approximately 250 mm SL (Merron & Bruton, 

1988). This pattern of low cichlid catches in small-mesh gillnets set in open water has also been 

reported for the Kafue floodplain (Lagler et. aI., 1971) and Lake Liambezi (van der Waal, 1985). 

Another important findings Included the difference in catch between large-mesh (i.e. 96 mm) 

monofilament and multifilament gillnets. It was found that the monofilament nets caught a larger 

number of overexploited cichlid species and H. vittatus, whereas multifilament nets harvested a 

greater mass of underexploited Clarias gariepinus and C. ngamensis. 

Increased fishing effort should be focussed on the drainage rivers, as this area has fish with 

life-history styles that allow a higher fishing pressure. There is a large annual movement of fishes 

from refug&s in the seasonal swamp to repopul&te prev:ously dry areas in the drainage rivers. A 

large surplus of smaller fish is typically produced in each generation. 

The northern perennial waters of the Okavango Delta should have restricted fishing activity and 

environmental changes imposed on it. The relatively resistant fish stocks might initially absorb 

considerable fishing pressure but these stocks may collapse suddenly as their life-histories are not 

suited to continual exploitation on a large scale. In addition, the complex predator-prey interactions 

such as the annual catfish pack-hunting migrations may be affected, as the components of these 

relationships are intricately interlinked. It is predicted that overfishing of one species may have a 

severe affect on the abundance of other species. 

The data presented in Chapter 4 indicate that there was a greater mass of fish collected per unit 

effort in the riverine floodplain when compared with the seasonal swamp and drainage rivers. In 

addition, it was noted that there was a clear distinction in mass for individual mesh-size gillnets 
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between the different sampling sites. In the riverine floodplain and perennial swamp, large-mesh 

gillnets (96 - 143 mm stretch mesh) harvested the highest percentage of fish mass whereas, in the 

seasonal swamp and drainage rivers small-mesh gillnets (24-60 mm stretch mesh) harvested the 

greatest percentage of mass. This difference in species composition of gill nets can be attributed 

to the degree of water level fluctuation between these sampling sites, which is the factor 

determining the nature of the fish community. 

Plans to increase fishing activities must, furthermore, take into account the factors which limit the 

distribution and abundance of the fish populations, and the response of the fish populations to 

seasonal water level fluctuations. There is a potential to expand the fishery, although previous 

estimates, based on Welcomme's (1!!79) formula, in excess of 10,000 tonncs per annum 

(Skjonsberg & Merafe, 1987) appear to be inflated. Although the total surface area of the 

Okavango Delta is approximately 15,000 km2
, the surface area of the more productive perennial 

water is approximately 1,000 km2
• This is because many terrestrial areas in the Okavango (e.g. 

Chief's Island and the Sandveld tongue; see Fig. 2.3) are not flooded each year. This modified 

figure is probably a more realistic one to use in Welcomme's (1979) formula, and gives a yield of 

approximately 5,000 tonnes per annum. It must be pointed \lut that Welcomme's (1979) formula 

is of a very general nature. However, this simple formula has a relevance in third world situations 

until additional quantitative data are available to apply to more sophisticated yield models. 

The commercial fishery presently harvests 1200 tonnes per annum and it would appear that the 

resource is under-utilized. There is a potential to increase the commercial fishery, but it must be 

realized that commercial fishing activities are not the only exploiters of the fish resource. 

Recreational fishing, makes an extremely important contribution to Botswana's lucrative tourist 

trade, and depends on the availability of popular angling species. Artisanal fishery practices, of 

which"lilile is known, are also increasing as popuialio" lIensity increases. Alihough no accurate 

figures are available on the magnitude olthe artisanal fishery, it is believed to harvest 1000 tonnes 

per annum from the delta. The recreational fishery, centered largely in the riverine floodplain and 

perennial swamp, is estimated to harvest approximately 800 tonnes per annum. The total yield of 

the commerCial, recreational and artisanal fishes is therefore about 3000 tonnes per annum and 

could be increased, with adequate management. 

Clearly, commercial fishing is not the only pressure exerted on the fish stocks. Any management 

plan designed to increase the yield of fish in the Okavango must consider all the users of the 

resource, as well as the diversity of habitat types, the variations in species compositions and the 

life-history styles of the species within the habitat types. 

Management strategies for African inland fisheries should be based on a life-history approach. 

Previous management strategies in many African wetlands have not taken into consideration the 
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recommendations of biologists when exploitation schemes were designed and th is has lead to the 

demise of many traditional inland fisheries (Jackson, 1989). Although the data presented in this 

thesis, and those provided by Merron & Bruton (1988) , are being used to assist in refining potential 

yield estimates from the Okavango, it should be stressed that an on-going fisheries research 

programme is necessary to refine our knowledge of the ebb and flow of the fish communities in 

the Okavango. 

CONCLUSION 

The fish stocks in the Okavango Delta represent an important commercial, recreational and 

artisanal fishing resource. The fish species are also important in maintaining many ecological 

processes. Man-made manipulations of the Okavango Delta, such as large scale water ex1raction, 

will have a marked effect on the natural flood regime and on the fish populations living there. This 

thesis has tried to establish a fundamental understanding of the factors which limit the distribution 

and abundance of fish species. Based on this initial study, I accept the original hypothesis put 

forward in this thesis that the annual flood regime is important in maintaining the fish populations. 

In addition, the main factors determining the nature of the fish communities in the Okavango Delta 

are the retention time of water in particular habitats and whether or not the water is flowing. 

Fisheries development in the Okavango Delta should be aimed at increasing the yield of fish to 

local fishermen. However, this can only be achieved if the fish communities are managed in such 

a way that they can sustain themselves, which in turn depends on the preservation of genetic 

diversity and the maintenance of essential ecological processes, such as flooding and draining. 

In the Okavango, potential developers must strike an acceptable balance between the often 

conflicting needs of short term resource management and conservation. Long-term measures 

which safeguard the natural resource base and provide for the sustainable utilization of various 

plants and animals must be ensured. The ultimate aim should be to improve the quality of life of 

man by integrating conservation and development in such a way that the pace of change is 

dictated by the intrinsic strengths and weaknesses of the Delta. The preservation of the Okavango 

for its own sake is clearly not a viable option at present. However, it should be borne in mind that 

the present and potential natural productivity and diversity of the Okavango is the main working 

capital on which a natural-resource based economy can be sustained. 
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;\ppendix 1.. The di f fer ent r e product lve guilds { non- guarders, guarders 
and bearers ) Clnd trophic group for all speCIes recorded from the 
Okavango Delta, Botswana between November 1'l8'l and December 1986. 

Species 

Mormyriri::le 
Hippopotamvrus ansorgii 
~ discorhynchus 
Marcusenius macrolep i dotus 
Mormyrus lacerda 
Petrocephalus catostoma 
Pollimyrus castelnaui 

Characidae 
Brycinus lateralis 
Hydrocvnus vittatus 
Micralestes acutidens 
Rhabdalestes maunensis 

Hepsetidae 
Hepsetus odoe 

Distichodintidae 
Hemigrammocharax machadoi 
~ multifasciatus 
Nannocharax macropterus 

Cyprinidae 
Barbus afrovernayi 
1h barnardi 
1h bifrenatus 
1h eutaenia 
1h fasciolatus 
1h haasianus 
1h multilineatus 
B. paludinosus 
1h poechii 
B. radiatus 
1h thamalakenensis 
1h unitaeniatus 
Coptostomabarbu~ wittei 
Labeo cylindricus 
h lunatus 
Opsaridium zambezensis 

Bagridae 
Auchenoglanis ngamensis 
Zaireicthys chobensis 

Reproductive 
guild 

non- guarder* 
non- guarder* 
non- guarder* 
non-guarder* 
non-guarder* 
non- guarder* 

non-guarder* 
non-guarder* 
non-guarder* 
non-guarder* 

guarder 

non-guarder* 
non-guarder* 
non-guarder* 

non-guarder* 
non-guarder* 
non-guarder* 
non- guarder* 
non-guarder* 
non- guarder* 
non-guarder* 
non-guarder* 
non- guarder* 
non-guarder* 
non- guarder* 
non-guarder* 
non-guarder* 
non-guarder* 
non- guarder* 
non- guarder* 

guarder* 
guarder* 
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Trophic 
group 

insectivore 
insectivore 
insectivore 
insect i vore 
insectivore 
insectivore 

insectivore 
piscivore 
insectivore 
insect i vore 

piscivore 

insectivore 
insectivore 
insectivore 

insectivore 
insect i vore 
insectivore 
insect i vore 
insectivore 
insectivore 
insectivore 
insecti vore 
insectivore 
insectivore 
insectivore 
insecti vore 
insectivore 
insect i vore 
insectivore 
insectivore 

omnivore 
insect i vore 



Appf!nd i~ I Icontinued '" The diffe rent ['eproductive guilds ( non- guarders, 
guul'de r's and bearers ) and trophic gr oup for all species recorded from the 
Okavango Delta, Botswana be t ween November 1983 and December 1986, 

Seh i Ibe idae 
Schilbe mvs tus 

Clari i dae 
Clari.as f(ariepinus 
£.:. ngamens is 
£.:. stappersi 
£.:. theodorae 

Mochokidae 
Chi l oglanis faseiatus 
Synodontis leopardinus 
~ macrostigma 
~ nigromaculatus 
~ woosnami 

Poecil i idae 
Aplocheilichthys hutereaui 
!l.:.. ,iohnstonii 
A. katangae 

Cichlidae 
Hemichromis elongatus 
Oreochromis andersoni 
~ macrochir 
Pharyngochromis darlingi 
Pseudocrenilabrus philander 
Serranochromis (Serranochromis ) 
angusticeps 
~ (Sargochromis) carlottae 
~ i.U codringtoni 
~ i.U giardi 
~ i.U greenwoodi 
~ (Serranochromis) longimanus 
~ i.U macrocephalus 
s. i.U robustus ,iallae 
~ i.U thumbergi 
Ti lapia rendalli 
~ sparrmanii 
1'..0. ruweti 

Anah an L i dae 
Ctenopoma i ntermedium 
£.:. mult ispinus 

Afromastacembelidae 
Afromastacembelus frenatus . 

no,n- guarder* 
non- guarder* 
guarder* 
guarder* 

non- guarder* 
non- guarder* 
non-guarder* 
non-guarder* 
non-guarder* 

guarder* 
guarder* 
guarder* 

bearer 
bearer 
bearer 
bearer 
bearer 

bearer 
bearer 
bearer 
bearer 
bearer 
beare r 
bearer 
bearer 
bearer 
guarder 
guarder 
guarder 

guarder'* 
non-guarder* 

non- guarder* 

* Many of the species accounts are qualitative. 
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orrm.ivore 

omn.lvore 
omnivore 
omnivore 
omnivore 

insectivore 
omnivore 
omnivore 
omnivore 
omnivore 

insectivore 
insectivore 
insectivore 

piscivore 
detritivore 
detritivore 
insectivore 
insectivore 

piscivore 
mollusci vore 
molluscivore 
molluscivore 
molluscivore 
piscivore 
piscivore 
piscivore 
piscivore 
herbivore 
detritiv~re 
detri t i vore 

insecti.vore 
omnivore 

insectivore 



Appendix 2. Percentage number and mass (in parentheses) of fish collected from respective sampling sites in the Okavango Delta, between 
November 1983 and December 1986 . 

Sampling site Total 
Species 1 2 3 4 5 6 7 8 Okavango 

Mormyridae 
Hippopotamyrus ansorgii O.Ol( , O.Oll 0.01«0.01) 
~ discorhynchus 0.13(0.03) 0 . 16(0.07) 0. 13(0.03) 0.10(0.Oll O.ol(o.oll 0.01(0.02) 
Marcusenius macrolepidotus 1.61(1.40) 2.42(2.90) 2.15(1.96) 4.67( 2.90) 3.78(2.39) 0.03(0.07) 8.49(2.60) 2.65(1.29) 2.80(2.20) 
Mormyru~ lacerda 0.18(1.52) 0 . 16(1.76) 0 . 15(1.50) 0.08(0.62) 0.19(0.64) 0.15(0.72) 0.01(0.61) 0.13(1.01) 
Petrocephalus catostoma 0.92(0.26) 1.18(0.39) 1.58(0.40) 3.67(0.47) 2.35(0.37) 3.55(0.36) 2.65(0.05) 1.76(0.38) 
Pollimyrus castelnaui 0.21(0 . 04) 0.11(0.02) 0 . 43(0.07) 2.60(0.17) 1.94(0.22) 2.60(0.14) 1.58(0.12) 0.91(0.11) 
Characidae 
Brycinus lateralis 7.72(0.76) 5.75(0.71) 7.79(0.74) 7.34(0.97) 5.87(0 . 34) 0.62(0 . 17) 5.15(0.61) 6.19(0.51) 6.13(0.66) 
Hydrocynus vittatus 0.01(0.06) 6.45(29 . 20) 3.71(10.30) 4.93( 29.60) 2.17(15.20) 1.53(12.80) 
Micralestes acutidcns 0.09(0.01) 0.15(0.02) 6.42(0.26) 2.82(0.14) 4.23(0.19) 1.50(0.09) 1.35(0.10) 
Rhabdalestes mauncnsis 5.50(0 .11) 3.55(0.11) 1. 29(0.03) 1.88(0.02) 1.74(0 .03) 0 . 28(0.01) 3.21(0.04) 2.00(0.06) 2.77(0.06) 
Hepsetidae 
Hepsetus odoe 1.42(11.20) 1.89(9.40) 2.32(17 .40) 0.29(1.20) 0 . 63(3.90) 0.13(1.60) 0.28(0.98) 0.61(3.10) 1.77(6 . 30) 
Distichodontidae 
Hemigrammocharax machadoi 0 . 68(0.01) 0.88(0.01) 0.70(0.01) 6.47(0.05) 3.32(0.03) 8.04 (0.04) 2.88(0 . 02) 2.22(0 . 02) 
H. multifasciatus 0.05(~0 .01) 0.06(0 . 01) 0.31(0.02) 1.56(0 . 04) 0 . 98(0.03) 2.41(0.08) 0.69(0.03) 0 . 56(0.03) 

..... Nannocharax macropterus 0 . 06«0.01) 0 . 01«0.01) 
Ol Cyprinidae 
'" Barbus arrovernayi 1.84(0.05) 2.05(0.08) 3 .73(0.12 ) 0 . 92(0.01) 0.79(0.02) 1.59(0.02) 4.79(0.11) 2.17(0 . 06) 

B. barnardi 7.71(0.23) 5.72(0.19) 5.68(0.16) 2.02(0.02) 1.54(0.04) 1.38(0.07) 2.42(0.03) 3.88(0 . 07) 4.54(0.10) 
B. bifrenatus 0 . 47(0.03) 1.26(0.12) 2.59(0.18) 1.05(0.04) 0 . 62(0.02) 2.71(0.35) 0.79(0.02) 1.91(0.06) 1.42(0 . 07) 
B. eutaenia 0.11«0.01) 0.04(~0.01) 0.47(0.01) 0.01«0.01) 0.05(<; 0.01) 
B. fasciolatus 0.80(0.03) 1.04(0.05) 0 . 53(0.02) 1.86(0. 03 ) 2 . 79(0 .07) 3.30(0.04) 3.53(0.08) 1.52(0 . 04) 
B. haasianus 0.16«0.01) 5.77(0.07) 3 . 09(0.01) 10.78(0.12) 1. 88(0 . 01) 5.36(0.06) 2 . 92(0 .03) 
B. multilineatus 0.06«0.01) 0.77(0.03) 1.11(0.03) 0.40(~0 . 01) 0.19«0 . 01) 0 . 19(0.01) 1.31(0.01) 0.92(0.06) 0 . 60(0.01) 
~ paludinosus 0.40(0 . 04) 1.10(0.16) 0.51(0.02) 0.11«0.01 ) 2.05(0.04) 16 .88(4.10) 0 . 29(0 . 01) 0 . 57(0.01) 2.22(0 . 14) 
~ poechii 2 . 77(0.77) 3.05( 1.05) 1.20(0.20) 1.44(0.11) 0.86(0.09) 1.11(0.40) 0.84(0.07) 1. 32 (0. 19) 1.82(0 . 35) 
B. r:1di _, t:l .' ~ 2.57(0 .1. 5) 2 .97( 0 .27) 1.29(0.04) 2.54(0 . 06) 2 . 87(0.10) 0.76(0 . 21) I. . 41( 0.04) 1.28(0.03) 2 . 05(0.10) 
B. thama l okenen~ i~ 2 . 53(0 . 05) 3.95(0.14) 6.73(0.20) 2.28(0.03) 2.92(0.05) 6.25(0.44) 2.25(0.03) 2.09(0.04) 3 . 72(0.08) 
B. uni t aeniatus 3.14(0 . 40) 2.30( 0 .5ll 0.08(0 . 01) 0.02(0.01) 0.32(0.04 ) 0.07«0.01) 0.24(0.02) 1.13(0.13) 
Coptos t omabarbus wittei 0.36«0.01) 4.05(0.04) 0.86(0.01) 4 . 38(0 . 02) 0.38(0.02) 1. 58( 0 . 01) 2 . 61(0.02) 1.62(0 . 01) 
Labeo cylindricus 0 . 06«0 . 01) 0. 12«0.01) 0.02(<;0.01 ) 
L.lunatu::> 0.02(0.23) 0.10(0 . 27) 0 . 31(10.70) 0.10( 1.04) 0 . 05(0 .45) 0.05(1.39) 
Opsari,ji ~m zambezensis 0.02«0 . 01) 0.02(<;0 . Oll 0.03«0.01) 0.01«0 . 01) 0 .01«0.01) 
BagriJac 
Auchcnoglanis ngamcns is 0 . 07(0.15) 0.02(0.09) 0.21(0.19) 0.l1(0.06) 0.01(0 . 01) o .19( 0.09) 0.02(0.01) 0 . 08(0.oa) 
Zaireicthy::> chobensis 0.01«0.0 1 ) 0.24(0.01) 0.02«0.01) 0.04«0.01) 0.08«0.01) 0.02(<; 0.01) 0.05(.(0.01) 
Schilbe i dae 
Schilbc mystus 4.46(19.10 ) 4.54(15.30) 6.64(14.70) 4.92(6.80) 4.24(7 .00) 0.36( 1.20) 4.36(6.10) 2.98(6.10) 4. 25(10 . 30) 
Clariidae 
Clarias gariepinus 0.32(5.30) 0.64(8.20) 0 .44(7.00 ) 2.42(15 . 10) 1.29(11.80) 2.83(8.90) 3.53(15.30) 2 . 09(16 . 30) 1 . 36(11 . 50 ) 
~ ngamen;;; is 0 . 11(2.21) 0 . 20(3.50) 0.28(3.40) 0 .92(5 .70) 0.35(4.70) 0.28(3.50) 0 . 82(4.00) 0.92(6 . 20) 0.41(4.20) 
~ ::>tappers i 0 . 01(0.01) 0.06(0.03) 0 . 01(0.04) 0.06(0.07) 0.05(0.08) 0.02(0.03) 
C. theoJorae 0.14(0.04) 0.16(0.05) 0 . 12(0.04) 0.17(0 . 02) 0.12(0.02) 0.28(0.04) 0.15(0.03) 0.14(0.03) 
Mochokidae 
Chilog!ani s .fasciatus 0.06«0.01) 0.01 «'0.01) 
S. l eopa rJ illus 1.36(3.90) 1..39(2.80) 1. 31(4 . 20) 1. 27(0 . 52) 0.46(0 .48) 0 . 36(0 . 31) 0.38(0.64) 0 . 95( 1. 73) 
S. maCr0:.i t i gm~l. 0 . 35(0.90) 0.32 ( 0 . 92) 0 . 55(0.88) 1. 82(1.52) 0 . 61(0.58) 1. 54 (0 . 94) 0.45(0.67) 0.60(0.91) 
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AppenJix 2 . Percentage number and rna::;::; (i n pLlrentheses) of fi::;h collected from respecti ve sampli ng si tes ill the Okavango Del ta between 
November 1963 and December 1966 (continued). 

Species 

~ nigromacu!atus 
S. woosnami 
Poeciliidac 
Aplocheilich thys hutcreaui 
~ johns toni 
~ katangae 
Cichlidac 

1 

0.73(3.50) 
0 . 59(0.95) 

6.11(0.07) 

Hemichromi s elongatus 0.05(0.06) 
Oreochromis andersonii 8.30{15.20) 
O. macrochir 5.04(6.10) 
Pharyngochromis darlingi 5. 90( O. 56) 
Pseudocrenilabrus philander 5.67(0.39) 
Serranochromig (Sargochromis) 
carlottae 0.75(2.60) 
~ (Sar.) codringtoni 2.30(2.80) 
~ (Sar.) giardi 0.74(2.70) 
§.:.. (Sar.) greenwoodi 0.35(1.45) 
S. (Serranochromis) 
angusth.:t::p::; 
~ ~ longimanus 
~ ~ macrocephalus 
~ ~ robustus jallae 
§.:.. ~ thumbergi 
T!lapia rendall! rendalli 
!.:. sparrmanii 
T. ruweti ----Anabantidae 
Ctenopoma intermedium 
£.:. multispinus 
Afromastacembelidae 
Afromas tacembelus frenatus 

Total no. species 
Total no. specimens 
Total mass (kg) 

0 . 28(1.99) 
0.12(0.11) 
0.30(0.56) 
0.07(1.03) 
0.72(2 . 60) 
3.64(2.36) 
10.75(6.00) 
0.04(0 . 0 1 ) 

46 
26206 

581 

Sampling site 
2 3 

0.72(2.49 ) 
0 . 38(1.13) 

0.09(.(0.01) 
7.24(0.11) 
0.01(,0.01) 

0.0) (<'0.01) 
8.81(14.20) 
4. 55( 6.50) 
5 . 89(0.57) 
4.38(0.43) 

0.57(2.05) 
1.05( 1.60 ) 
0.27( 1. 78) 
0.16(0.68) 

0.19(2.28) 
0.03(0.09) 
0.28(0.79) 
0.06(1.52) 
0.87(2.70) 
4.76(5.60) 
11.05(6.60) 
0 . 32(0.08) 

1.48(5.80) 
0.59(0.95) 

2 . 36(0.02) 
12 . 01(0 . 17) 
0.20«0.01) 

0.07(0.08) 
4.72(9.80) 
1.39(2.80) 
1. 91( 0 .18) 
1.87 (0.1 1) 

0.17(0.73) 
1.40( 1.80) 
0 . 53(2.53) 
0.07(0.30) 

0.95(7 . 90) 
0.12(0.25) 
0.30(0.60) 
0.15(3.50) 
0.26(0.99) 
1. 73(2.66) 
6.36(4.70) 
1.04(0.11) 

0.07(0.01) 
0.01 «0 .01) 0.05(0 . 02) 

4 

2.69(3.70) 
0.95(0.86) 

0.34(<'0 . 01 ) 
7.25(0 . 04) 
0.1l(~0.01) 

0.16(0.09) 
3.42(7.40) 
0.74(1.60) 
1.73(0.11) 
3.53(0.19) 

0.44(1.25) 
0.26(0 . 46) 
0.23(1.17) 
0.03(0.06) 

1.97(8.90) 
0.03(0 . 02) 
0.16(0.50) 
1.21(3.80) 
0.05(0 . 15) 
0.71(1.29) 
3.26(2.00) 
0 . 08(0.01) 

5 

2.21 (3.50) 
0.64(0.38) 

1.29(0.01) 
7.17(0.03) 
0.23(<' 0.01) 

0.24(0.09) 
3.01(13.80) 
0.99(4.90) 
1.37(0.07) 
6.25(0.18) 

0 . 36(0.89) 
0.61 (1. 24) 
0.35(1.73) 
0 . 09(0. 19) 

2.42(11.30) 
0.02(0.12) 
0.23(0.79) 
0 . 37(1.39) 
0 . 07(0 . 32) 
2.66(3.00) 
3.24(0.03) 
1.05(0.19) 

0.09((0.01) 0 . 05(<'0.01) 
0.02(<'0.01) 0.01(<'0.01) 

0.01(<'0.01) 0 . 08(0.01) 0.27(0 . 03) 0.12(0.02) 

56 
23359 

489 

60 
20188 

481 

64 
11327 

599 

62 
11261 

394 

6 

0 . 36(0.01) 
2.49(0. 14) 

7 

3.31(4 . 20) 
0.84(0.85) 

0.46«0.01) 
3 . 20(0.01) 
0.42(0.01) 

0.26(0.11) 
26.90(37.50)3.79(8.70) 
6.38(14.70)0.90(2.70) 
2.30(0.28) 1.01 (0 .05) 
8.24(1.40 ) 2.77(0.14) 

0 . 51( 1. 23) 
0.29(1.10) 0.36(0.55) 

0.35(1.40) 
0.09(0.20) 

0.15(0.64) 2.45(10 . 60) 
0.04(0.08) 
0 . 37(0.66) 
1.03(2.40) 

0.11(0.76) 0.10(0.30) 
10.77(17.30)0.63(1.14) 

4 . 71(4.30) 3.35( 1 .07) 
2.71(1.07) 0.03(40 . 01) 

0.42(0.01) 
0.38(0.41) 0.11(0.01) 

8 

1.43(3 . 60) 
0.24(0.63) 

2.77(0.02) 
8.77(0.08) 
0.23((0.01) 

0.72(0.92) 
5.02(12.90) 
1.52(6.60) 
4.09(0 . 20) 
4.52(0.36) 

0.48(1.62) 
0.72(1.69) 
0.27(0.93) 
0.15(0.22) 

1.65(7 . 90) 
0.10(0.29) 
0.32(0.80) 
0.49(2.30) 
0 . 19(0 . 81) 
1. 44(3.30) 
5.50(1.86) 
0 . 48(0.12) 

Total 
Okavango 

1.36(3.70) 
0.51(0.18) 

0.93(0.01) 
7.18(0.07) 
0.12((0.01) 

0.16(0.20) 
7.96()2.30) 
3.04(4.60) 
3.59(0 . 25) 
4.60(0.29) 

0.44(1.48) 
1. 08( 1. 43) 
0.39(1.66) 
0.15(0.43) 

1.02(7.10) 
0.07(0.13) 
0.26(0.65) 
0.33(2.27) 
0.39(1.10) 
3.38(3.00) 
7.05(3.30) 
0.64(0.09) 

0 . 07«0.01) 0.06(tO.01) 
0.12(0.02) 0.07(0.02) 

0.16(0.02) 0.05(0.01) 0.07(0.01) 

28 
12345 

102 

66 
10077 

649 

60 
16145 

605 

66 
130908 

3901 

• 1 = Ch~noga Lagoon; 2 = Thamalakanc River; 3 = Seasonal swamp ; 4 = Perennial swamp; 5 = Perennial swamp floodplain-connected lagoons; 
6 Perennial s wamp rain pools; 7 = Riverine floodplain mainstream channel; 8 = Riverine floodplain-connected lagoons 



~ppendt)( 3 , Perccntage numbe r and ma!:i~ (in parcnthu:';c!:i) of fi::;h coll~ct!Jd from ChalH1(!ot 
L.lgoon, Boteti River , Okavallgo Dolta . between Novcmbcl' 1903 alld Dllct:!OIl.cr 19A6 ;:U IJ 
gr'oupuJ accor~ing to di fforcnt nooL! lcvlll::;, 

Specie::; 

~\OI'my \' i dOle 
!.!..:.. di:.>corhYllchu::; 
MarCll~cnill:3 macrolopiliotll:J 
MOI'my rus 1 ace rda 
rl!l.roc~phallJ~'; catO!:itoma 
Pollimy'!:~ castdnGlui 
CharociJac 
nryciulls latcral1~ 
lihllbdalcslc s maunensis 
Hepse ti Jae 
IIc p!::; ctu ::; odoe 
Ui::; ti chodontidae 
lIemigrammocharax machadoi 
II. mIll ti fa::;c 1 atUl:> 
CypriniJ.ae 
Oarb\lS arrovernayi 
n . b,ll'oardi 
D. birrt!natu~ 

H." ~cToT~tus 
O. multj lillcatus 
B. paluJillO!.iIlS 
B. poechi i 
B. ruLliatu!.i 
B. thumu lilkcl\cnsi S 

O. \Jot Laelllulu::; 
Utled Jail 
Auchcnus l anis ngamen::; i s 
SchilbeiJae 
Sch i Ibe my::; tu::; 
Clad i dac 
Cl~I' ias garicpinu!:i 
~ ngamoll::lis 
C. thcodoraa 
Mochokidae 
§ynodolltil3 lcopar,jillu::; 
~ rnacrost igmCi 
S. nigrornaculatus 
S. woo::;nami 
Pocc~ li i ,jan 
!2.:.. johnl:>toni 
Cichlidae 
llcmichromi::l olonsatus 
Orcochromis alldorsonii 
O. macrochir 
PharYIIgochromi s darl inSi 
P::lt!udocrellilnbru~ philander 
Sl~rrallochromi::l (Sargochromi::i) 
carlot tao 
~ (S<i!:...J. codringtoni 
~ (Sar.) giardi 
~ (Sor.) srecnwooJi ' 
~ (Se l~ranochrom i::;) 
ullgusticep!:i 
s. (S.) l ong imanus 
§.;. (5.) macrocopholu:J 
S . (5.) robu ::; tus .1allao 
S. (S.) thwnucrgi--
Tilapiu rcndal l} rcndalli 
'1'. rL!loIuti ----!;. spart'manii 

Total no. specie::. 
Total no. specime ns 
Totol mnS3 (kg) 

1 
filling 

0. 13(0.04) 
1.62( 1.41) 
0.19( 1.53) 
0.92(0.26) 
0.21(0 . 04) 

7.72(0.77) 
5.49(0.11 ) 

1.41(11.29) 

0.67(0 . 01) 
0.06«0.01) 

1. 85(0 . 05) 
7.71(0.23) 
0.48(0.03) 
0.80(0.03) 
0.06(~0.01) 
0.40(0 . 04) 
2.77(0.78) 
2.59(0 . 15) 
2.52(0.05)' 

3. 13(0.41 ) 

0.08(0.15) 

4.46(19.23) 

0.32(5.38) 
0.Jl(2 . 23) 
0.13(0.04) 

1.35(3.97) 
0 . 36(0.91 ) 
0.72(2.86) 
0.59(0.96) 

6. 10(9. 08 ) 

0 .04(0.06) 
8.30(15 . 35 ) 
5 . 04(6. 10) 
5.89(0.57) 
5.66(0.39) 

0.74(2.65) 
2.31(2.86) 
0.74(2.69) 
0.36(1.46) 

0.29(2 . 00) 
O.U(O.ll) 
0.31(0.57) 
0.08( 1.04) 
0.72(2.66) 
3.64(2.37) 
0 . 0.(0.01 ) 

10.76(6.09) 

47 

5243 
1.14 

Scuup li IIg : . .d t e 

high 

0.13(0.03) 
1. 61(1.41) 
0.18(1.53) 
0.92(0.26) 
0.22(0.04) 

7.71(0.77) 
5.49(0 . 11 ) 

1.43(11.28) 

0.70(0.01 ) 
0 . 04«0.01 ) 

1.84(0 . 05) 
7.7 1(0 . 23) 
0.47(0.03) 
0.0 1 (0.03) 
0.07(~0.01 ) 
0.40(0.04) 
2.78(0.78) 
2.60(0.15) 
2.53(0.05) 
3.14(0.41 ) 

0.07(0.15) 

4.46(19.23) 

0 . 3]( 5.37) 
0.1](2 . 22) 
0. 13(0.04) 

1.37(3 . 97) 
0.36(0 . 9 1 ) 
0.72(2 . 91 ) 
0.58(0 . 96) 

6.10(0.08) 

0.04(0.06) 
8.30( 15 . 34) 
5.04(6.10) 
5.90(0.56) 
5.67(0 . 39) 

0.74(2.65) 
2.29(2.06) 
0.74(2 . 69) 
0.36(1.46) 

0.29(2.00) 
0.11 (0.11) 
0 . 29(0.5'1) 
0.07( 1.04) 
0 . 72(2.66) 
3 . 63(2 . 3'1) 
0.04(0.01 ) 

10 . 74(6.0B) 

47 

4460 
100 

164 

0.13(0.03) 
1.61 (1 . 41 ) 
o. IS( 1 .51) 
0.93(0.26) 
0.2]( O. 04) 

7.72( 0.76) 
5 . 51 (0.11 ) 

0.67(0.01 ) 
0.05{(O.0 1 ) 

1.84(0,05) 
7.72(0.23) 
0 . 47(0.03) 
0.79(0.03) 
0.05«0.01 ) 
0.4](0 . 041 
2.78(0.78) 
2.54{O.I:l) 
2.5:?{O.1l~) 

3.14«l.40) 

0.07(0.151 

4 . 47( 19.23) 

0.32(5.30) 
0.10(2.20) 
0.14(0.04) 

1.35(3.92) 
0.35( 0 . 89) 
0 . 73( 4. 1'1) 
0.59(0.94) 

6. 12(0.07) 

0.05(0.06) 
8.30(15.14) 
5.05(6.021 
5 .90(0. 56) 
5.68(0 . 38) 

0.75(2.62) 
2.30(2.82) 
o . 7.1( 2 . 65) 
0.35(1 .. 14) 

0 . 20( 1.90) 
0.13(0,11 ) 
0.30(0.571 
0.06(1.02) 
0.72(2.63) 
3.64(2.34) 
0.05(0.011 

10.77(6.00) 

47 

8638 
193 

low 

0.13( 0.031 
1.61(1.411 
0, le( 1 .52) 
0.92(0.26) 
0.20(0.041 

7 . 72(0.76) 
5.51 (0.11) 

1.41( 11.22) 

0.67(0 . 01 ) 
0.05«0 . 01 ) 

1 .84(0.05) 
7.72(0.23) 
0.47(0.03) 
0 . 80(0.03) 
0.06(.(.0,0 1 ) 
0.4\(0 . 041 
2.77(0 . 781 
2.58 (0. 151 
2 . ~3(O.O~) 

3.14(0 . 4<1) 

0 . 06(0.151 

4 . 46( \9.23 1 

0.33(5.35) 
0.\1(2.211 
0.14(0 . 041 

1.36(3.95 ) 
0.36(0 . 90) 
0.72(3.41 ) 
0.60(0.951 

6.12(0.07) 

0 .05(0 . 06) 
8 . 29( 15.26) 
5.05(6.06) 
5.90(O . ~G) 
5 . 67(0.39) 

0.75(2.64) 
2.30(2 . 85) 
0.74(2.67) 
0.36t 1.45) 

0.20( 1.9U) 
0 . 1\(0. II ) 
0.31(0.5'11 
O. OG( 1 . 03) 
0.72(2.65) 
3 . 64(2 . 36) 
0 . 04(0.01) 

10.74(6 . 05) 

47 
7855 

173 



Append i x 4. l'el"~ll1Ill111U Itllmbel' all.!' mil~Hl ( 111 purunl.h.:~e~.) of ri:..1t C:.llle~·I , ~.1 ..... )111 ltoe 
TII:lln.l l .. k;lIu) . n i vel', 011;'V11I1(:tl Dtll Lu, In,l lwtlUIl N,lVUlflhel' \ ~nJ illh l Ihl .~etnh""l· \\)111; .. 11.1 1,; I',J.ll''''.1 
.. C:Ctl/,.J11I1: 10 rOUI' di~lltlcL flolld luvul:J. 

------------------------c~,' '!ilp lll lU U 111,1 

M.)rIllY I'i,liltl 

n,:. d i :.C:I)I·hYII~!~~ 

!~:.!!£!!:':~~:.:! ~~£!:!!.!.upl.lo!~~ 
"l.lI'mynl~ IIICUI " ~ 

~~l~lll~ cuto:Jtnma 

~~L!~~~ £!.!~lu!.!.!!!~!. 
(':1I"I ' lie 1t\"U 

t!.~t.£l!.~:! ~~I.:!!!.!.:! 
MJ c ";lllll;\C:> ilculi."HI~ 

ita;:,b ,';t\~~:;·_;;;~\I~u 
iTtllll:Ut.I~- ----

~~:!.!!..!.~~ I),ttl.!:, 
11I ,; \ ichl)oIunl.j.t1l1J 

thlm!&~m_~,)cl~~ ~Ia.ltll 
II, MIIIIr. I;.CI .. tll~ 
t::;pr'j';''-~'XI-;'----

B.II ' hl~ ~~~~~ti 
n. to,lr l l;H',h 

if:' tH r"~'l;t\l:J 
ii: ;;IL.~-
D"':' r ... :;c\ U \.l t.Il:l 

ll.'~~~L~ S: II'IlI ll ll\lluullllJ 

~ P;11I~~1I0::U~ 
~~~U 
n. l' il<1i ; Il\l~ 

'ii': lhanla 1 Ukc nol,u \IJ 
il":'Wi~~~
~'~,'pr:;~~t;";';!1 willel 
U.l~r · I,I .. tl 

~~!!~~ll! UI1 i Ii lIijilmollu I u 
"I. .. il·tli('lh~ chl)lllJ~ 
!:ichi lllciJall 
:-.c 1l!..!!..!E: my ~l tU!; 
c..:t ... rI ida!) 
C\.Lrin:; curiopillll~ 

£...:. !.!!iilln c n~i~ 
C. lhcodunlo 
t:h)c~;U-
~,o~l('1n t I:> 1 ooportll mlu 
S. ~,\cl'outiljll\a 

~!!..!.ll!:~II\nl~ 
~. 'oIuo:lII'lIni 
PouCil~ 
~~~icllt.ht.:! hulun:l:lu l 
~ julll l:.LuLIi 

~ ~~~~~ 
Cichlid.w 

Ikml cIIl'OI" \~ o\o!.!~~:! 
(In!och r t)m\::; 11II,\i: I'::;ULIII 

~~r 
PIi.I I'YII~~ ~!'~ 
i"JUUJllC, ' clli IlIllI'll:! l'hllulh\"r 
Sc r'r;uIOChrtl'Ri ~ (Sul'H,ochrOlnllJ) 
cal'ltlilau 

~.:. .k~!:.:.l co,k IllS llllll 
~ i!~;I1") (liar,1i 

~ i~ul'.) a~~U. 
~ (:icr l ' ,J.l\llch ,'olnl:;) 

~~:!!:i..Ctli';; 
~ !2.:l ~~lmLl~ 
1i..:. t~.) ~~0..~ , 
1L (5.) l'ul ,u : ;I\L~ j!.!ll~!! 
~ (S.l l llumlu!l]l!. 
"II~pl;1 rt!lIdall i rundal ll 
~ !.:~lwl,\i---- ----

L~~U 
A'LLlu ... nll Juu 
SIll\I\UI:i~ 
A f run ... :!l a~ulnlJu 11 .Iull 

~r!.:2~ctl",h~ rronnl.llu 

" utu l IItl. :Jpec\\):; 
Tu l ul 110, ::lptlCllllell:J 
Tulul RI~'Jti (kg) 

, 2 , 
fit t illil hiQh 

O.l(i(O . O'1) 

2.111 (" .O~) 
O.IG( I.'/!,} 
\. W(D.311) 
O.l'U(O.Oli) 

O. \!l(O,n'l) 
:? 4t)(;! • Ill) ) 

O.'~(''-/.l) 
I • 1 n (0. )11) 
O.3li(0.0'I) 

(). \()Io ,(r!) 
~. 4 ;'(:' ,11,1) 

0, 't.{ 1.'lI,} 
,. \!1{O. J 'J) 
0.OJ{t1.01) 

(), III ((l , 0 1 ) 

:' .. \11.',11',) 

(l,lllt 1.'0\ 

I • \ 111 \ J, \ '.1) 

(I,Il·HIl.III) 

5.ntO.70) 
O.26{O,0:1l 
3. ~4(O. II) 

~. 7.1(0. '10) 

0.31(0,114) 
:1.53(0.1 \) 

5. '1li{O. '/I ) 

Cl . OI «0,01 \ 
J. ~ . G( ll. I I ) 

!.., '/~.\ n, 'I I \ 

n ,til t t.f, ,II I J 
j . ~, I ' \ II. II ) 

l.nn{~.3!J) I .n~(!J .11) 1.11'1(!I.'hi) 

0.01l(0.01) 
D.O'J(O.OI) 

0.0'/ (0.01 ) 
O.O~(O . OI) 

O.O!J(O . ClI ) 
O.ill. ( tl,(ll) 

(I 11'1\0.(1) 
tl,lrlltl,lIl) 

2.04(0,011) 
5.71 (0. \!J) 
I. c7 (0.12) 

1.04(0.05) 
0.16(0 . 01 ) 
0.77(0.03) 
\ .O~(O.I!)) 
3.03( I .05} 
2.%(O.2t.) 
3.!l4tO. \3) 
2.29(0.5 1 ) 
0.35(,0.01) 

0 . 02(0. HI) 

4.S:l(IS.Ul) 

0.63(0. 19) 
0 .1 9(3.52) 
0.16(0.0!.J) 

I.J!l(2.76) 
0.32(0.92) 
0.72{2.96) 
0 .39( \ .1:n 

O . Ql:l (.l..O.Ol) 
7.22(O.Il) 

0.71)( 14 .1) 
4.54(6.114) 
S.BO(O.W) 
4.37(O.4c) 

0.56(2.04) 
1.04( 1. S!l ) 
0.20(1.7'1) 
0.16(0.6"}) 

0.11)(2.27) 
0,Q4(O.O!l) 
0.213(0,"'6) 
O.O'I ( 1.51) 
0.U6(2.6"1) 
4'-/4(5.61) 
1l.J2(0.OU) 

1 \ ,02(6.54) 

50 
3'148 

'44 

2.05\0.Oll) 
5 ,"lOt o. , 4J) 
l .n,(O.I?) 

~.Ob(n,O!l) 

~,. nln. IH) 
1 .:?li(O.12) 

~, ,11'., (\ I ,tIll I 

~,:I Htl .. 'll ) 
I ,~I Jl II, I ,q 

1 .02(0.04) 
O.15(~O.01) 

o.TI(a.Ol) 
1. IO(a.1 S ) 
3.04{1.04) 
2.!l"I(O.;?1l) 
J.!l4(O .1 3) 
2.2U{ 0 . 51) 
O.Jti~(,O,OI) 

) .0-l(0.Of,) 
O.lu(O.D\ ) 
0:111(0,0.1) 

1.{l-lIO,{l"l) 
O.lhH .. t1.llI) 
O.'F1t(}.O I ) 
1.{l·Jttl . led I . \ lJ( O. 16) 

J .O~t 1.05) :\ .()~t I . Ill! ) 

2.vll\o.n) 

0.05(\:..0.01 ) 

4 . 5:1( 1!l.Oti) 

0.64(6 . n) 
O.20(J.~0) 

O.ISIO.OS) 

1,3U(2.74) 
0.31 (O.!) I ) 
0.72(3 . 82) 
a.31l( 1.11) 

0,00\.(0.0\ ) 
7.21( 0.11) 
0,O3(<;0.()1) 

e.?7( 13.f)!)) 
4.!;)3(r).J~) 

5.11610.57) 
4 .. 17(O.4:.n 

a.!J6(2.0;! ) 
\ .Ob{ \ .~7) 
0.21l( 1. '/'6) 
0.15(0 . 67) 

O.20(2 . :?!~) 

0 ,03(0.0'.1) 
0.20(0.7U) 
o. ost 1.50) 
0.07{2.6'.)) 
4 ,'I3(S.!:.7) 

2 .·.n(n . ;'>'}) 
3 .%(0.\ 4) 
2.30(0.' .. >1) 

Cl.36({,a,01) 

O.O;?(O.IO) 

4.55( )5.)0) 

0.C5(B.:?fi) 
0.;>0(3.5';») 
0, I~{O . O ~,) 

1.3!J/2.7U) 
0.32\0.9:.!) 
O,nl;?,:?"!) 
O. JO \ I • 13 ) 

O.O!J(£.O,OI) 
7 • :>~( {}. II ) 
0.0\ l<.n.O\) 

O.Ot{(O.Ol) 
A .Ol( 14 . 21 ) 
<I . !,b\ft.,I'J) 
5.!)OtO.~H ) 

4.J!J(0 .• n) 

O . ~'}{2 .ll!l ) 
\ .O~( I ,LU) 
O.~'/( I,"ltl) 
O.lb{O.tjll) 

U. 19{".! .~'!.I) 
O.O"{O.O'J ) 
O . ;"6(0,"J!)) 

O.116( I ,5:') 
O.tl'/ (2.G!)) 
.,. '/6{I.l.LlJ) 

a,J I (O,On) 0.32(0.00) 
1 \ .~O(tl."tI) II.ll"II6.'j9) 

J • 'J~t 11. 1-1 ) 
? : Hlln.~:!) 

o. )(,,\(,,0.0\ I 

4 .r,':!! I'.J .)) ) 

O.b':.(!I,:?U) 
tl.?llt3.~Ii) 

O.I(,tIL{J~) 

I.j~ ( ':-'-J'.l ) 

O . )21l1.~J) 

O . '/:'(:!.M) 
{l . 3tH L 1:1} 

O . O'J{l"O.OI ) 
·1.:'~tU.t l ) 
('I.O\{<,C'I.O I) 

II.O!{I·I.:'4) 
,I • ~,u (t.>.!,) ) 

t..!hHO.hll) 
4.)oJ{I), .11) 

n.~'/I:'.tl(,) 

I .n~ , t I. toO l 
ll. ;'11{ I • "ll ) 
11,Il,(O.li tt) 

11. I'J 12. ;'!.I) 
1l,0JI0.IIV ) 
O.~'J\tl'-'9 ) 

fl.tn{ 1. ~.1) 

(l.U7(.,!. '/0) 

.1 , 'I GI ~.,. L " ) 

O. ].'tll,tIU) 

II .(HI Ii ,(,0 ) 

0.02((,0.011 O,fll\<..fl.O I) 

51 
25UO 

'08 

O.02t(O.OI) 0 ,111(0.11\ } 



Appendl>e 5. Purccnt.age number antI IIIlHIIi (ill purllnthcselO) of rI~h collecle..J rr.Jrn the 
sea~onal swamp, Okavanj,lo Delta , betwcon November 1'l83 an..J O"ccmbcr 1906 dUo..! grollpc,l 
accorJing tu four di~tinct floo..1 lev~ls. 

Specic:; 

Mormyrio..!<Ill 
~ o.1ldcorhynchu~ 

t'-arcui:icniu:; lIIacrolcpldotu:.l 
M<lrmYI'u:,; laccl',la 
Pc lrocuphu Ill:; cat.o~ toma 
Poilimyru~ £a~lclnaul 

Ch'Ii'ac! duo 
Drycillu:J lateral il:i 
Itytlrocynus vittalu~ 
Micralu:.ltul:i scuLlt.luiU::I 
RhubJulu::;Lu:J nhHlllUIl:Ji ~ 
IICp:..;ulhlau 
Illlpsetu:> 00.100 
Di sLI ChO..JOllt io.1ae 
II1lmisrammochar8X machadoi 
tI. !nu l ti fasciuLlH. 
typr ill i .luo 
~I'bul:i ufl'ovorllayi 
!!.:.. bartletl',li 
B, bifl'tlnatutl 
B.' fusciolaLu:.i 
fi':" ha;)siaIIU:J 
B.' ~T;'Watul:i 
H: paluJinotiu:J 
!!..:. pocch ii 
I}, radialu;:> 
B.' lhulna luko lltln::;ls 
!!...:. unitaolliat\ll:i 
C"pto::ltolnaha l'bu::; wi ttol 
k lUllallls 
Bu~riJuo 

Allchcl10fjlanis ngamclI:J is 
7.ilirtllcthYI:I chobtl ll:J!s 
Schilb~io.1all 

Sc:td ILe mystu::l 
Clarlio..!OQ 
Cluria~ gal'icpinul:i 
£.:. Llgamoll::lb 
£:.. tit'arrtlr~i 
C. thuodorao 
Mocholdo.1Oltl 
Synotlontl.s leopard-Inlls 
s. milc r o:>tlgma 
§...:.. nigromacul ... tu~ 
S, loIo,)uslluml 
POoeili idat.l 
M:lochuillchthy:; hlltoroaui 
~ 1 01 lll~loni 

~ k<ltilllSi:lC 
Cichl id;.ttJ 
Ilumichrom iu ulollQatmJ 
Orcoclll'om lt; '1IIdu l·:;()lli! 
O. rnucrochlr 
PhUrYllgllchl'oml::l darling ! 
P:.;(:udocrolill nbl'lH::I ph Ilumlur 
St.lc'rullochroml:> (Surg"chrom!l:i) 
carluLlih) 
§.:.. (Sur.) coddng l olli 
:h ( S"r . ) sia l'di 
S, (Snr,) gl'c.::nwood i 
S. (Stlrl'anoclll'umil.» 
~!!.S.U:";Liccp~ 
§...:. (S .l lOllglmalluu 
§..:. ~ macrocophalus 
§.:. li.:l l'obuslu:> lallue 
§..:. (S,) thllcnbt.lrgi 
Tilapia rC lidalli rClhlall1 
1.:.. ruwcti 
l!. ~parrman i 1 
All<lbant i Juc 
Ctcnopoma Intormedium 
C . multisplllu~ 

Afromi4s l<lcf.lmbc 1 i dno 
Arromllutaccmbolu:f fronotuu 

Tolal no . spocic~ 
Total no. :;pccimulls 
Toli..ll mi..l:$:) (kg ) 

3 
filling; 

0 .15(0.00) 
2, 16(1 .67) 
0, 15( 1.43) 
1.57(0.38) 
0.401(0.07) 

7.7e(0,7l) 

0.15(0.02) 
1,28(0.03) 

2 .33(16.64) 

0.70(0.01) 
0,32(0.0:n 

3.7310.ll) 
5 . 68(0.15) 
2.59(0.17) 
0,52(0.02) 
5.77(0.07) 
1.U(O . OJ) 
0.50(0.02) 
I. Hl(O . 19) 
1.28(0.04) 
6.7)(0.1!l) 
0.09(0.01) 
4.05(0.03) 

0.2610.32) 
0.23(0.01) 

6.65(14.01) 

, 

0.44(6.66) 
0,26(3.23) 
0 . 03(0.01) 
0.12(0 . 04) 

1.31(5.33) 
0.55(0 . 84) 
1.4<)(8.85) 
0.5S(0.9\) 

2.36(0 . 02) 
12.01(0.16) 
0.201(0 .0 1 ) 

0.06(0.07) 
4.72(9.39) 
1.4D(2.·}O) 
1.92( 0.17 ) 
1.07(0 .10) 

0.17(0.70) 
1..011.71) 
0.52{2.42) 
0.09(0.29) 

0.93(7.54 ) 
0.12(0.24) 
O,29{O.S7) 
0.15(3.33) 
O,26(0.!J5) 
1.72(2.54) 
1,05(0.10) 
6.35(4.50) 

3 
high 

0,12(0.00) 
2 .14( I .94) 
0.16( 1.49) 
L !j7(0.40) 
0.41{O,O7) 

7 . 79(0,74) 
0,08(0.05) 
0 . 16(0.02) 
1. 2tHO,(3) 

2.31(17.27) 

0 .70(0.0 1 ) 
0.29(0,02) 

3.71(0.12) 
5.65(0.16) 
2 .60(0, lin 
0.54(0.02) 
5.77(0,07) 
LlltO.03) 
0.49(0.02) 
1.20(0.20) 
1.28(0,04) 
6,72(0.20) 
O.oa(O,Ot) 
4.04(0.0,n 
0,04(0.26) 

0.21{0 .21) 
0.25{0,01 ) 

6.64(14.54) 

0.45{6.91) 
0.2!l(3.35) 
0.08(0.04) 
0.12(0,04) 

1.32(4.27) 
0.54(0 . 87) 
1.48(6.01) 
0.58(O.9·n 

2.35(0 . 02) 
12.00(0.17) 
0.21(0.01 ) 

O.Da{O,OB) 
4. "' O( 9. nil 
1.40( 2 .81 ) 
1.90tO.tS) 
1,86(0. 10 ) 

0.16(0.72) 
1 .40( I. ·'U) 
0.54(2,51) 
0.08(0.30) 

0.95(7,B2) 
0.12(0.25) 
0 . 29(0.5!J) 
0.16{3.46) 
0.25(0.98) 
1.73(2,64) 
1.03(0 .11 ) 
6.35(4.67) 

3 
rCC(h~ illg 

0.14(0.00) 
2.15( I ,'JI) 
0, 15( 1.4G) 
1,5tHO,39} 
0.43(0 . 07 ) 

7,7!l(0.72) 

0 . 18(0.a:?) 
1.21J{0.03) 

2.32( 16.9£1} 

0.70(0.01) 
().30(0.o:n 

3.73(0, II) 
5 . 68(0.16) 
2 . 59(0,\8) 
0.54(0.02) 
!1.76(0.07) 
1.11(0.0) 
0.51 (0.O2) 
1,20(0,19) 
1. 2IJtO.O'1) 
6,73(0.19) 
O . OB(O.O I ) 
4.04(0.03) 
0.0-1(0,41 ) 

0 . 22(0 .12 ) 
0.25(0 . 0 1 ) 

6.63(14.30) 

0.44(6,']9) 
0.28(3.29) 

0 . 12(0.04) 

1.3\(4,78) 
0,55(0.86) 
1.4'/("'.43) 
0,5~(O . 93) 

2.37{0.02) 
1;?,01 (0.17) 

3 
1 viol 

O.IJ{l..O.OI) 
2 . 1~(2.0b) 

0.16( 1,!.s8) 
, . 5~(0.4..?) 

0 .~ ~ ( 0 .07) 

7,80(0.·J8\ 

o. JJ(l),t12) 
1. 30to.nOI) 

2,32(18.31) 

0.7(0 . 01 ) 
0.) 1( 0.02) 

3,74(0,12) 
5.6U(O.17) 
2.59(0.19) 
0.54(0.02) 
5,"0(0,00) 
1.10(0.uJI 
0.51(0 . 0 :.' ) 
1.20(0,21 ) 
1.29(0 . 04) 
6.7~(0,21) 

0.00(0,01) 
4.05(0.O~) 

0,01 (0 . IJ) 

0.17{0 . ltl) 
0,2.:1{0.01 ) 

6.64(15.44) 

0.4~(7,3) 

0,28(3.56) 

0.\3(0.0.1) 

i. 32 ( 2,!l8) 
0.55{0 . 93) 
1.47(2,52) 
0 . 59ll.00) 

2.36(0,02) 
12.02(0 . 18) 

0.21 ((a,OI) O. :?O(<'O.O l) 

0.07(0.06) 0 .07(0.oa) 
4. n(!).S!l) 4,'ll( 10.35) 
1 .3'l( 2.76) I .3~{2 .90) 
1.9 1 ( 0.18) 1.!l1(0.19} 
1 . 87(0.10 \.87(0. \1) 

0.17(0,., I) 0.1'l{0.77) 
\ .40( I,'J5) I . 4l1( I . ~'.) 
0, b2 (::!- 4 ')) 1,l.52(2.t)t,) 
O.O"/(O . :!!) 0.07(0.32) 

O.95(7 .6!l) 0 . !l5(tI . 30) 
0.1 2(0 , 25) 0.11(0.2'1) 
0.30(0.58) 0 . 30(0,6]) 
0.15(3.40) 0,16(3.(,7} 
0.26(0.07 0.2S{ 1.04) 
1.73(2, 5 ) \.74(2.60) 
I . 03(011) 1 . 05(0, II I 
6 , 35(4,0) 6,36(-1.96) 

0.061(0.01) o.oako.ol) 0.07(<'0.01) O,O"J(O.OI) 

0.0610.02) 0.04(0 . 02) o.oMo,o:?) 0 . 06(0.0:1) 

0.09(0.01) 0. 08(0.01) 0.08(0,01 ) 0,07(0.01 ) 

57 59 57 57 
3431 2425 7270 7062 

83 57 l73 l et! 

166 



f.ppendtx 6. Percontagt.) number anJ milUS (In parcnlhusus) of fl :;11 c,)iicc\e,j fr vm tl .e 
p'lI'l:nnial uwnmp , Okavanno Oulta, , b etwu en Uovt!mbo r IIJ A3 anJ 0.:..:: u1I111,: I- 1',)116 .. Ihl gl·"l.i .u J 
accol',linU lo (our ,l i::lLinct Ji((erent fl ooJ lovolti. 

Spo cit.l:J 

MtlrmYI' i J .. ~ 
!..!.!1!i,apotomyrllu !!!.!!~!:..S.!l 
~ d i :..ocoI·i!t.nc huu 
Ma l"Cll:.iU ll i "::!. mac rol up i dolll:; 
HI.'lI'mY I·u:J lacu rJa 
I't!Lroccplwl'l:.i catosloma 
~rll:.i c lHitulnau l 
Cllo,l'ucitluu 
(kyci llll:.i laloral!..!!. 
~~ vitto,lu:j 
Ml cral~~~ uculhlclI!J 
!\hulJdul Uti lou maUIIUI\::I i a 
IIcp:.iotidae 
J\up ~ u tliU 0.\00 
o i:> l i cho,lont i .lao 
lIo:mi grammochi.l"ux moChlll\ot 
It. nllllLif"uci:...lll::l 
CYprllli.lilU 
ll il l'lltlti nfrovel'lIay! 
B, barnard I 
D." ll1 fru lliltu:; 
0. culi.llllliu 
n:- fbScltliutulJ 
il:' IUli.l :; i 0.1111::> 

~~~uLu:; 
B. palu ,li llOliUU 
B." pouch I i 
H. ra.1i u tU:J 
a. lhamal ukonollslu 
n. uflilaurliulu:J 
CtlptO:.,;tOI1Hluul'll\m willol 
L<..Ibuo cylind"icu::I 
L. luna luu 
OPs~ zambozensl::l 
OagriJall 
AuchenoBlani::l nsarncll::lI:;' 
'Zillrelcthyu chobulHll::I 
Sc hi lbulJaa 
Schi lhe .my ::ltu::I 
Clurlidaa 
Clnria~ Sarl6plnu~ 

C. "Bumcn::iit> 
£.:.. titappursl 
C. thuoJorau 
Mtlcliok i .I<lu 
~l\cJ\ln t!.:! leopert.! I nuti 
~ m3crost lgma 
~ nlsromaclllutu::I 
S ..... oo::iI1<sm i 
roue III iJau 
~ochoil i c hlhys huterunu\ 
~ )ohn:.>loni 

~~~~ 
Clchl1J;,.u) 
Itumich rom l a elollsslua 
Or uochrt.lln is uu.lur::; oni i 
O. mac l'ochir 
PharYlicochn.)mi U d .. r11 na! 
P;.;uud oc runl1abruu phllun,jal' 
Scrranoehromi u (SurBochl'omi 8) 
cilrlollau 
§.:. (3 ... 1·.) codrill(tlolll 
~~ Biardi 
~ (Si.lr.) Rrl,l~lIw ooJ I 
S . (Scl'l'anochromis) 
~U:;llcUP:J 
~ (5.) lOllg l manl\~ 
~ (5 ~ nlacrocophtl lUll 
§.:. !..iJ. robu::ll.lls jullao 

~ i.§.J. ~~ 
!l111!)!!!. I'tlndalll r.unda l ll 
". rulolu t I 

L.~anl l 
AnauanllJaa 
Ctcilopoma intormed i um 
~ mulLl::I plllu::I 

ArroO\a~ lacembu it dao 
Hrnma~lacLlmbuhlu rrolllltut! 

Total 110. :;pccius 

Tolal tit.) . :;pecimuns 
Total rntlS~ (kg) 

4 
fl11ll11: 

SUlilpi inll ui' tl 
4 4 

high I'ue'hiinU 

O. (' It 11.111 ) 

4 
l il ... 

O.ll!(n.O l) 
0 . 0'.l(0.1l3} 0. 1 \ (t1.03) O. !l1{tl.lIl) U.lItJ(L).O .lj 
4.7612.!J2) 4. 'JJ(:'I.06) 4.~UI-'.IIt '} 4.~U{2.~(I) 

0.0'J(0,61 ) 0.OtHO.(4) 0.04 (\l, to ll) ll.OtJ(l),(,I) 
3.74(0.47) 3.73 {0,4~) 3.ul(ll.4u) J.~6(O.4c) 

2.65(0.16) 2.63(0 .17) 2.54(0. 16) :,~6(O.lo ) 

7.47(0.97) 7 .46( \ .01) 7.lt)(O.!i=.) '1.20(0,%) 
7.18(31.86) 7.07(31.03) 5.6·H2ci.ll .!) S . 'I ll{ 20 . '.12) 
6. 5610. 2 6) 6 . 5\(0.:??) 6.:tHO.;'>~) 6. ]l)j0.2~1 
1.!)\{O.0:n 1.1J2(0. 02) I.B·HO. O.? ) l.tlb(O.02) 

0.29(1.19) 0.21J( 1.25) O.?O{ I .17) O.:?9( 1, IEl) 

6.59(0. O5} 6.57{0.05) 6.J!'-o(a.oS) 6.3.:1{0.05) 
l.S!J(0.04) 1.58(0.04) 1,:)4(0.0.1) 1.54(0.04) 

0.1J4(0.0l ) 0.95(0 .0\ ) O.!lO(O.tll ) O.!lO(O . OI) 
2.06(0.02) 2. 05(0 .03) 1.97Ul,(2) I .~U\O.O:!) 
1 . 00(0.04) 1.OB ( 0.04) 1 . 04(0.04) 1. 02(0.04) 
0.07{(0.01) 0.12«0.01) 0.\0«0.1)1 ) O.IO«O.IH} 
1.60(0.03) l.B9{Q.03) 1.8411'l . (1) 1 .8:O(O .u)j 
3.15(0.01) 3.1 3 (0 .0 1 ) 3.04{O,lll ) 3.0-1(\).0 1 ) 
0.41(,0.01 ) 0.39«0.01 ) 0 . 40(~0. O I) 0,]6{(Q . OI) 
0.12«0.01) 0.11«0,01) O.Otll{O.OI) O.IS{40.IH) 
1.47(0.11 ) l.47{0.12) 1 . 40{0. 11) 1 . .:1 HO. II) 
2.5!l(0.06} 2.57(0 . 06) 2.47{0. O6) 2.5010.06) 
2.32(0.b3) 2 . 31(0.03) 2.24111.0.1) 2.24\0.01) 
0.21(0 . 01 ) 0.21 (O.OI) 0 . 20(0.01 ) O.I!l{O.OI) 
0.88(0.01) 0.87(0.01) O.O]{I,.U.lll) a.tlJ\LIJ.lll) 
O.O:?( 0.01 ) 0.11 (0.01) O.0·J\l1.01) O.o)(O,lll ) 
0.09(0.26) 0.11 (0.26) 0 . 08\0.:'>6) 0, 10i O. 26 ) 
O . O:H<O.O l ) 0.02(<,0.01 ) 

0.12(Q . 05) o. \ 110.06) 0.10(0.05) a .IO{o . OS) 
0.031~0.01) 0 . 03(<;0.01 ) 0.0\ «0.01) 0 . 01 «0.0\) 

5.0.0(6.79) 4.91J{7.10) 4.B\(6.54) 4.83(6.'12) 

3.06(18 . 68) 3.26{19.67} 1.70{ I O.Ba) 1.41(9.15) 
1 . 24(7.45) 1.21{7.21) a.57!3.55) 0.~tH3.7a ) 

0.09(0.05) 0.03(0.01 ) 0.07(0 . 0 4) 0.04(0 .05 ) 
0.16(0.02) O.I!J{D . O: ) 0.17(0.02 ) 0.16(0.02) 

1.29(0.5\ ) 1.29(0.54) 1 . 24(a.!"0) 1 .2 :)(0 .!:d ) 
I.05t 1.51) 1.84(1.58) I. TI( \ .4e} 1.7~ { 1.50) 

2.74(4.05) 2.73(2.92) 2 . 6ot(4 . 21) 2.66(3.90) 
0 . 97(0.86) O,IJ!l(o . !Jn) 0.94(0.tI4) O,9)(O.6~) 

0.35{~0 . O l ) 0.34(4 0 . 01 ) o.3Ji(0.0 1} 0,'32(LO,tll) 
7.36(0.04) ·1 . 3~( 0.04) 'J. I \ (0.04) 7. 10(0. 0 4) 
0.12«0.01) 0.13«0.01) 0.10«0.01) O.13(~(1.0L) 

0.15(0,09) 0.16(0.0~) 0.17(0.0-)) O . I~(O .O'JI 

2.32(5.00) 2.42(5.14) 4.t:.tJ{ llL~-I) 4 . 6·H IO . .?d) 
0.56(1.23) 0,!l5(1.:!11) O.!.lOI2.Uu) O.9'J(2,32) 
1.';6(0.11 ) 1 . "JoIO . I I ) 1.70(0.ln) 1.70(0.Iu) 
3.59(0 . 19) 3.60{0.1!» J.47(O. IU) 3.46 t O.I~) 

0 . 29(0.63) 0.32(0.00) 0.60(1.'/6) 0.~(1.74) 

0.26(0.46) 0.26(0.48 ) 0 . :>4(0 , 4':» 0,:>6{u.45) 
0 . 12(0.56) a.13{o.64) 0. 3J( I.'ll) 0.3U{2.0:?) 
a.03(O.OB) O.OJI O.Od) o .0](0. u6 ) 

1.41(6.27) 1 . 47(6.4'1) 2.61 (1:>.02) 2 . 56! 12 .11) 
0.03(0.04) 0 . 01(0.01 ) 0.0·HO.03) O.OottO.O':') 
0. 16(0.49) 0.16(0.52) o.nla .. tO) 0 .16 (0.49) 
0.94(2.93 ) a.97{2.!J~) 1 .~O( .t.ll!:.) 1.5u( 4.':l1l} 
0.06(0.15) 0.03(0.16) O.Oj(ll.I~) 0.03 (0.\ !:.) 
0.44(0.78) 0.4,(0.70) I . 04( I .9) 1.02( 1.93) 
0.07(0.01) 0.06(0.01) Q.O'1(O.ll\ ) O.OatO.OI) 
2.80 ( 1.55) 2.84( 1.56) 3.B7{;.?2B) 3.9.?(2.32) 

0 . 09«0.01) O.OB«O.OI) 0.07('0.01) 0.06«0.01) 
0.D6( .0 .01) 

0.26(0.03) 0.26(0.04) 0.)'1(0.01) 0.,6(0.0)) 

61 60 60 61 

2690 ]2)(, :? ~J,l !) ':! t,'",o 
156 116 1:1.' I '),) 
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AppendJx 7. rU l'CtJlllilijU lIumhor am! m8:J::l (i n p.wOlll.huuct;) or riLth co ll.:clu,l r,"um PUI''':,llll .. 1 
:;WhIllP flOQ,\pluin-cl,)lIl1uctud li.lCI,),.>ntJ, OkavallBo D..:ll.l.I. bulw<!ulI tluY ,!mbll l' 1 ~1l:l ;," ,\ Oo.:c,,~,l''':l" l'JOi. 
<.!lid CI'OllPLJ.t acc..:wdill,g \.0 raul'" Jit:;Lillcl flood lcyul:.,;. 

SruclUlJ 

Mlll'myl'ldau 
~ dl:fcor'hync1HHJ 
t!:.!.~llill:'; ~!:!!!!pl.totu:.,; 

t!~!:~IJ!:!:=! ~~2r!!i! 
~.!..~~!..:.pl"\l\l:i ca l ol.t~ 
!'~~c;I :..;l.c ln ; 1I11 

CIL~I·i.lciJ;JU 

~1'yciIIUU lilL'lI"i.lli~ 

t~~yIHHi ~i..!:.~ 
Mit:r"a}u:.,;lt~:'; ~Gllti"ull~ 

~"lt,ja!.!:.:.;l.c :1 ~!.!!.IlHI:;I:!. 

Ih11':Juli .l;:;u 

~C~ 0,1.)0 

OJ :..Ill cho.\Ullt i . Iao 
lI.:m i gl''-tnlnl.)char<.l'' machi.lJo i 
II. ffitll lifil:.;ciatUlJ 
C;I\;:T~-

!!~ ilfroYUr"1I0L!. 
II. hal"I'I I· .I\ 

n: i;T(r;~"H 
n.-~~ 
if: ~Ol"atll:.i 
n-:- lI'I..1:;lul,\I;.1 

i1':' nll t\Lilino.:ntuti 

~ Cilltl.li,h}:';II:J 

!!..!. l?E.=..£lli 
U. I , .. di .. tll:'; 
n:- ~::;;;;ii.k"!Ilon:.; I:.; 
~ Ullil"'!lliat.u:.; 

F~pl.ll;;~~~~!~!! wi I.I.0j 

G!.!.!~ £tiill,JI'iGu:. 
L. 1'111;,111:.1 
jj7;g;:~c'-

A'lcllLlIlLlslull la ~~~iiJ 
1.~ .II'Lli'::lhy:.i cilullulluiu 
f.chi 1huiJ;lu 

~,dl i lilt! ~y:J t\I~; 
Clad j,\;1C 

CI"I' l a.s ~pllI\lu 

S. !.!f'. :LJnU II~;j:.; 
£:. :>Luppt!r::ii 
C. thcodorau 
j:i;)chOki,\,\c 

SYllo.t.lnt.i !.l l oopal',lllIu~ 

~ . ntacro:;Li~~ 

!!.:. Illp ,·nnw.cul., lu:; 
5 , WQI,);'J\<Jln i 
r.;u~ i iJi.\u 
Ap I Llch..: III ch l hyt/. hu Loro'31J 1 

~ 101111:'; I.on i 
~ kal<i0fjuc 
C i chi i-hltJ 
!Iumictll'omi:> C10llBl.itu~ 

O,'uodlronl! iJ £1II .\ul '~1U1I11 

O. lIli.crochi r 
I'lll.ll"YIlCoclll'omlu o..I u rlil1nl 
~~lJdu£!.:£!!.!.13hrtJ1J 1I1I \ 1 11111101' 
SC I'r,IIIOChl',)mi;J i Si.II'Ul,)ch . 'I)li\i:l) 
C'II' j.)I.i.:ll.l 

~;. (Sar . ) cOllrl uul.onl 
s: ( Sor . ) Hi<.lr, l i 
[;: 'fS~ Bi'UUlIwoo,1I 
~ ( ~CI 'I' ;"lloclll'Ollli:'l) 
ULIGU:; L I cup:.; 
~ is.) l!!!!c.llnimua 
§...:. (5.) nl' lcl·OCoph!..!.hl::l 

:i.:. !.~.:..l ~~ ;"\\:\11 
~ (~; .) \h\lll,h~ 
Tilil jliCl l'cn,I;I}ll rOII.lillll 
!..:. rLlwl.l ti 
1.:. upiu'rmilil i I 

AllltlJlillll dUfJ 

CI.CIIOJlOm~ IIIt:armo,l\ um 

~ m\J lll:lrlnl!~ 
Afrom:!:;taccmllutIJac 
A rromil~ taccnll!c 1\1 ::; r['nnn til::; 

TulOll no. :,;pl!cic::; 

TOI.",1 no. ~pl!clmun:.l 

T<Jlol rna:;::; (hS) 

5 
[Hlina 

Samp l illU :.;i Iu , 
h iGh 

O.O2(~0.01} 0.02«0.01 ) 0.o2(tn.Ol ) 0.0:1(1.0.01 ) 
3.TI (2.7~) 3.75( 2.8<.1) :1. t\ I ( .I. to ) 3. 'J!] (:'. 'J~J) 

O. E)(0.6\} O.ltl(O.h3) O.III(O . li'l) 1).I~J(tl.L~.) 

2.35(0.:Hi) 2.J .1(O.3·j) 2. : j"J( O. j'.l} ~l.]o(O.:Jiq 

1. <.12(0.21 ) I . 'H{O.:?!) I .~I·Ho . ...'.1} I . 'J·IIIJ.:!.'} 

5,65(0.32) 5.62(0.33) S.<JCl(1l.:;6) ~.1l~(0 . 1 .. 11 
5.23( 14.15) 5.47(14.60) 2.·\',)('1.13} ;!.J.':l{h. '.l/) 
2 . 8\ (O.1 3 ) 2.02(0.\3) '2 . (!J( O. \ 4) 2,11 I(n. 1.1) 
1.73(0.02 ) I . 'J2{O .O...'} I ",~(o.tn} 1 "/~(O . tlJ ) 

0,62(3.73) 0.6213.65} 0.05(4.10) O.ti ·lI].~n) 

3 . 31(0.02) 3 . 3\ (0 . 03) 3.32{O.03) 3.3-1( 0 .0)) 
0.96(0.03) 0.97('0.03) O.~.lt1(0.O:1) O.'J~(O.t)]} 

0.77(0. 02) 0.79(0.02) O.th1(O . O.:!) O.fll)(O.O~) 

\ .54(0.04) 1.54(0.04) 1.~4{n.().1) 1 • !l.I( 11. n.\) 
0.62(0.O:n O.62(O.O:n 0.131 (O.O'J) 0.6410 .02) 
0.04«0.0 1 ) 0.0,1(<.0.0 1 ) 0.01(<.0 . 01) O.cn(.c..O.OI } 
2.7'1(0.07) 2 . 78(0 . 07) 2 . 80(0.OU) :>.nO\o.o·J} 

W.'/4(0, II) 10."12(0 .11 ) 1I).A2(0.1:'» IO.t).'?(O . \'?) 
0. 19(0.01 ) 0,18«0 . 01) 0. 18 1< Q,OI1 tl. l '.l{(O.OI) 
2,011(0.04) 2.03(0 .(14) .? ,Oti (Il. !J111 :.> .o"J(O .n·l) 
o .o ~(a.OU) 0 .80(0.09) O.AG\O.Il'.)} O.BG\().O~) 

2 . 05(0 . 10) 2.(0(0. 10) 2.ti9(O . II ) .? .tJO(I). 10) 
2.93(0.04) 2.1J1{0.()~) 2.92(0.00.:.) 2. ~J.H a. O~ ) 

0.31(0.03) 0.31(0.0.1) O.1,1(n.n·1) 0,32(O.IlJ.) 
4 .J!HO.O::!) 4 ·:V(o.0:!1 -1.:l9\O.II.') .1.:.l ·J{tl.02} 
0 . 01«0,01 ) O.01(<:,Cl.OI) O.OII(O.llI ) II.OIIVl.{)l ) 
0.3\ (10.40) 0.3\ (0 . 'IG ) (). ) , ( 1 0. '1.~) o.].~( I...' .tb} 

0.02(0.0\ } 0.02\0.fJl} 0.02(0.0 1 } 
0.013(<.0.01 ) 0.0~(<..0 . 01 ) 

4.23(6.63) 4.IU(6.0S) 4.2.1l7.~)~1 4.26(7.(10) 

1.66( 14 .73) I.n( Hi.IA) O.'JlH'.l . :n) t1.9'J('.l.24 ) 
0, 511(r/. 16) 0.li;? ( t3. 14) 0.10(2.1;(1) 0.1 fi( 2 . 2] ) 
0 , 01 (0. I S) 
0.12(0 . 02) 0 . 13(0.02) 0.12{O,O3) 0 .13 ( O.0:?) 

0,46(0,4tl) 0.44 ( 0 . 47) O.<1G(O.~1 ) O . .tU(0.4S) 
0 . 62(0 . 55) 0 . u:,1{0.57) 0.0 1 (O.GO) 0.bl)\0.5S) 
2.HI(3.2~) 2.21(J.n) 2.21 (3. -J'.l) ~.2 J( 3 . I O} 

0.65(0. 30) 0.52(0.3'J ) O. 6~(11.<11)) O.G.t(O.3tl) 

1.27 (0 .01 ) 1.20{0.01) 1.29(0.01 ) 1.30(0 . 011 
? 16{ O . 03) 7.10(0 . 03) ?, \910,(11) 7.1~(O.O3) 

0.23«0.01 ) 0.22«0.01 ) O.:.oS«tLOI) 0.22(..:.0.01 ) 

0.23( 0,06) 0,22(0.08) 0.25(0.O!]) 0.2':.(0.0~) 

2.23 (9 . 94) 2.12(9,3~) 3,G3( 1'1.11) 3.tit5(17.1S) 
0,81(3 .92) 0.75(3 . rlO) 1,14(5.84) J • I ~I!), 84) 
1.35(0.0'1) 1.37(0.07) I . 30( 1.1. ()'l) 1.3"(11.08) 
6 ~ 24t.0.17) . 6.22(0.ltll 6 . 2'1(0.19) v,nin .I S) 

O.3b(Q,0!i) 0,35(0.0'1) n.J7 (o.<.1:11 0.3S(0.U'.l) 
Q,52( 1 , I!.) ) a.62( 1. 2J) O.GI (I .JI1) U.bll{ 1.2!J) 
O.35( 1.65) 0.3ti( 1. -/0) 0.34( 1. 0 1) o . ~j~{ I. "4) 

o.oa(o. lu) O.O<.1{O.IO) 0.0<.1(0.11} 0.l<1(O. I 'J) 

2.0"(~.2?) 1.94{6.7'::1) 2.74{n.l'l} 2.-',1{ 13 .0') 
0.03(0.12) 0.01(0 . 10) O.O:l{t).1 ~) 
O.23{0,"'5) 0,22(0,70} 0.2510.B:l} O.~...' (n. "'.l) 
O,JO( \ .32) 0.35( 1.37) (). )'/ ( I . .,~) o . JU( I . . W) 
0.00(0 . 3 1) n.Cl'.l(O,J:!) 0 . 0(,( O . .1·1 ) (l,nG(I). 'J:J) 
2.27(2 . 53} 2 . 21(2 .4 3) ...'.~O{ :L~>I =, ,~'.H J. Lu ) 
1.04(O.IB) 1.06(0.18) 1.04(0.<.1) I.OSIO.ID) 
3,23(0.09) 3.22(0.92) .1.;?ti\Il.9) :J .2':>( n.!.))} 

0 ,0'«0,01 ) 0 ,04(0,0 1) Q,06{{O,OI) 0.D6(,0. 01) 
0,04(0,01) 

O. 12(O.O:n 0.13(0 .0::) O .1 2(O.tl21 0.13\0 . 02) 

59 '" CO ~,tl 

2598 22137 3:.'~-l 31·12 

"' "2 III 1{)7 
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Appendix P.. Percentage number and ma~:.:; (in parentheses) of fizh collected from the perennial 
swamp rain pools. Okavango Delta, be t. .... ·cen November 1983 and December 1986 and grouped 
according to four distinct flood level~. 

Sampling site 
Species 6 6 6 6 

filling high receding low 

Mormyrid&E: 
Marcuscnius macrolepidotus 0 . 0410 . 07) 0.0410.07) 0.0310.07) 0 .0310.07) 
Characidae 
Brycinus lateralis 0 . 6310 . 17) 0 .61 10. 17) 0 . 6210. 17) 0.6310.17) 
Rhabdalestes maunensis 0.2910.01) 0.2910 . 01) 0.2710.01) 0.2810.17) 
Hepsetidae 
Hcesctus odoe 0 . 111 1. 57) 0.14(1.57) 0.14(1.57) 0.13(1.57) 
Cyprinidae 
B. barnardi 1. 36( 0 . 07) 1. 37 ( 0 . 07) 1. 38( 0 . 07) 1.3910.07) 
B. bjfrcnatus 2.7210 . 35) 2.71(0.35) 2 . 7210.35) 2.7110 .35) 
B . mul tilincatus 0.1810.01) 0.1810.01) 0.1910 . 01) 0.1910 . 01) 
B. ~uluJino:3.us 16.89 ( 4.15) 16.87(4.15) 16.8914.15) 16.8814.15) 
B. poechii 1.1010.40) 1.12(0 . 40) 1.1110.40) 1.1010.40) 
B. radiatus 0 . 7710.21) 0 .76(0.21) 0.7610.21) 0.76(0.21) 
B. thamalakcnensis 6.2610.44) 6 . 25(0 . 4 4 ) 6 . 2410. 44) 6 . 2710 .44) 
Co~tostomabarbu3 wittei 0.3710.02) 0.4010.02) 0 . 38(0 .02) 0.38(0.02) 
Schilbeidae 
Schilbe mystus 0.37(1. 21) 0.3611.21) 0.35(1.21) 0 . 35(1.21) 
Clari idae 
Clarias garicpinus 2.8318.88) 2.82(8 .8B) 2 . 8218.88) 2.83(8.88) 
c . nsamensis 0.2613 . 46) 0.2913 . 46) 0 . 2713. 46) 0 . 28(3. 46) 
Poeciliidae 
Aplocheilichthxs hutcreaui 0 . 3710.01) 0.36(0.01) 0 . 35(0 . 01) 0.38(0.01) 
A. johns toni 2 . 50(0.1.4) 2.49(0. 14 ) 2 . 50(0.14 ) 2.49(0.14) 
Cichlidae 
Oreochromis a..nctersonii 26.90 137 . 47) 26 . 9 1 137 . 47) 26 . 91(37.47) 26.89137 .47) 
O. rnacrochir 6 . 37114.07) 6.36114.07) 6.38114.07) 6.39114 .07 ) 
Phar,'tns;ochromis darline;i 2.28(0.28) 2.31 ( 0 .28) 2.31(0.28) 2.3010.28) 
P::;cuJocrcnila.bru~ philander 8.2411.38) 8.2411.38) 8.231 1. 38) 8.25(1.38) 
~ (Sar.) codringtoni 0 . 29(1.15) 0.2911.15) 0 . 301 1.15) 0.281 1.15) 
~ (Scrranochromis) 
angus ticces 0.1510.64) 0.14(0.64) 0.16(0.64) 0.16(0.64) 
~ ~ macroceehalus 0.01«0.01) 0.01 1(0 .01) 
~ ~ t humbergi 0.1l(0.76) 0.1l( 0.76 ) 0.1l( 0.76 ) 0.1310.76) 
Tilaeia rendalli rendalli 10 . 78(17.26) 10.77117 . 26) 10 .78(17.26 ) 10.77(17.26) 
T. ruweti 2.7211.07) 2 . 71(1.07 ) 2.72(1.07) 2 . 7111.07) ----!..:. searrmanii 4.71(4.35) 4.7014.35) 4 . 70(4 . 35) 4.69(4.35 ) 
Anabantidae 
c. multi3Einus 0.3710.41) 0.4010.41) 0.3810. 41) 0.3810.41) 

Total no . species 28 28 29 29 
Total no . specimens 2717 2768 3683 3176 
Totul mass Ikg) 22 23 31 26 
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Append i x g. PerCCIl tagc !lumbar t:lll d m<l!:l::i (i 1\ purcnthc::;c::;) o f n:.ih cu I lec t cd rl'urn t.hc 1'1 VCI ' IIiC 

rl oodpl a i II mOl i nl.l tl'C<lm , Okuvango VI.! lli.l. Lal twecn Ap I'i 1 1905 ,HId I)cc .~mb<!l· 1 !lUu .111- 1 !J 1',ll lpe,! 
nccOrJing to fOUl' ui:.ilincl flooJ level:>. 

Specie:.:! 

Ml.ll'myridi.lc 

llippopotamyru:;; illl::;orgi i 
II. J i !:lcorhynchu:.; 
M,lrCII~H~11 ill:;; mocru I ep i dotu::; 

!:I:~~~ 
~~~phollJ!:l culo:;;toma 
b?ll.i~!:'..!..:! ca:JLIlIIHlul 
Cllill'Ctcid<.lu 
Brycinll:.> latc l'ali::; 
!.!ldrocYllu!:l vi ltillll:> 
NlcrCtlc!:llu!:l OlcuLldcll::; 
Rhullda 1 c::;LC!:l m;}llllCJlS i:c; 
IJcp:.;c~ 
IJc!)~;l!!. II:J odoc 
Oi t; l i ChO'!UII L i doc 

Hemi grilmmoC/)arax mnchadoi 
II . mul li ra::;ciatu:.; 
N.IlLllochnrax milcr'optcru::; 
CyprilliJutl 
~ u frovorll<.lyi 
B . b<irnul'l..l i 
D:" bl rr'un;}tu!:l 
B:' I!U tacll i a 

"ii"":" r U:c;ciol uLu:c; 
.!:. hnal:iiollll!:l 
11. nllllt.i!i.!~ 
!!.! (luiudiIlO:JllS 
!l:.. PojClCh i i 
B. r<lItiutll::; 
n:- LangenJulI:c;iti 
"il"":" thamaL.lkcllclI:;;j s 
l1:' UII i Lacni a tu:; 
COpt.O:;Lolllilhal'oll!i ~ 
~ cyl jodl'icu:.! 
I. . lUO<.I1.lJ:.I 

Dp:;ar:TJTUm zamo uzCllS i s 
DagriJall 
AUCho,loglanis nSilmallsis 
Za i I'lli c lhy:; chubollsis 
Sc!JIlo'lida'l 
~ mystlls 
Clari i J(;I1! 
~ gar i apinus 
£:.. ngamClllsis 
£:.. stuppcrt:;i 
C . theodorai! 
M,Jcholl i dill! 
Cili I oglalli:.; fl:l:;;ciutus 
SyuodonLi:; It~ op'lI'dillU!:l 
§.:.. macro:;tigma 
~ nigl'omaculatu!:l 
S. WQOsll<1mi 
POl!CiliiJaa 

Aplocht!ilichthys hutcl"Cau1 
~ juhnstolli 
~ kilt.u llsac 
CichUJao 
Hcmichromis clongatu:.l 
Ol'cochrorn i s anJur::,:onj i 
O. mn.crochir 
PII.H·Yllg nchromi:; uiu"lingl 
P!.JCtJJoc l"olli lubrU::i phi l ander 
SllrrnllOc hl'omi:; (Sar'jlochromis) 
carlottac 
~ (Sar.) codrlngtonj 
S. (Sm'.) giill'di 
~ (S;lr.) greenwoodl 
S. ( St:lrranochrornl:» 
angu:;ticCp:.i 
§..:.. .!...§.:l longimallus 
~ i2..:...l macroctJphalu(:j 
§.:. li:...l robu:;;Lq:; jallao 
§.:. (S.) t.humllllrsi 
Tilapiu rClldulli runlla lll 
T. rltwtltl 

T. ~anii 
Anuui.lIlLiJnt:l 
Ctenopoma in t crmcIll urn 
~ m'llti:;pinus 
Aft'omas luccntoc l i Jat! 

Ar,·oma:.;tact!mbclu:.; rrcllnLlIs 

Total no. spClcics 
TOl a;l 110 . tipccimcll~ 

Tot."} Ina:.;:.; (JIg) 

7 
fi 11 ing 

0.05«(.0.01 ) 
8.53(2 . 26) 
0 . 16(0.75) 
3 . 5B(0 .3"1) 
2.50{0.14) 

5.16(0.6<1) 
4.!)5(30.89) 
4.26(0.20) 
3.21(0 . 05) 

0.26( 1 .03) 

8.05(0 . 04) 
2.42(0 . 08) 
0.03(0.01 ) 

1 .58(0.02 ) 
2 .42(0 . 03) 
0.79(0.02) 
0 .47(0.01 ) 
3.32(0.04) 
1.89(0.01 ) 
1.32(0.01 ) 
0.32(0.01 ) 
0.84(0.07) 
1.42(0.04) 
0.05«0 . 01) 
2 . 26(0 .03) 
0.05(~0.01 ) 
1..58(0 . 0 1 ) 
0.02«0.01 ) 
0.1l{ 1.08) 
0 . 05«0.01 ) 

0.11(0.05) 
0.08(<.0 . 01) 

4.37(6 . 41) 

3 . 53(11.88) 
0.B4(4. 16 ) 
0.05(0.00) 
0.26(0.04) 

D.05(~0.01 ) 
0 .37(0 . 33) 
1. 53(0 .98) 
3.32{4 . 61) 
0.84(0 . 87) 

0 .47( '<.0.0 1 ) 
3.2\{0 .01) 
0.42«0.01 ) 

0.26(0 .11 ) 
3.79(9.07) 
0 . 09(2 . 79) 
1.00(0 . 05) 
2.79 (0.15) 

D.53(1.28) 
0 . 37(0 . 57) 
D.37( 1 . 44) 
0.11(0.21) 

2.47(11.07) 
0.05(0,08) 
0.37(0.60) 
1.05(2.55) 
D. 1l(0.31) 
0 . 53( l.l !) 
0.03«0 . 01) 
3.37(1. 12) 

0.42(0.0 1 ) 
0.05(0.01) 

0.16(0.02) 

65 
1900 

123 

Stunplil lg ::Ille 
"I 

high 

0.111(0.01) 
0. 14(0.01 ) 
0.411(2 . 27) 
0.14(0.7!1) 
).57(0 . 3!l) 
2.61 (0. 1!J) 

5 .1,1(0.65) 
4.94(31.09) 
4.10(0.20) 
3.22(0 . 05) 

0.27( I .03) 

8.02(0.0~) 

2 . 40(0.08) 
0.27«0 . 01) 

1.58(0 . 02 ) 
2.40(0.03) 
0.82(0.02) 
0.48(0 . 0\ ) 
3.29(0.04) 
1 . 85(0.01 ) 
i.30(0.01 ) 
o,:n(O.o l) 
0.02(0 . 07) 
1.37(0.011) 
0. 14(0.01 ) 
2.26(0 . 03) 
0 . 07( <. 0 . 0] ) 
1.50(0.01 ) 
0.21 (0 . 01) 
O.O?( 1.09 ) 
O.02(~0 . 01) 

0 . 27(0.13) 
0.00(<.0.01 ) 

4. 32(6 .4 5) 

3.50(10.38) 
0.82(4.18) 
0.07(0.08) 
0.27(0.04) 

0.07«0 . 01 ) 
0.34(0.33) 
1.58(0.99) 
3.29(5 . 43) 
0.82(0.95) 

0.48(<'0.01) 
3. 16(0.0}) 
0.41«0.01) 

0.27(0.11) 
3.77(9.13) 
0.89(2.81) 
1. 03(0.05) 
2.74(0.15) 

0.48{ 1.29 ) 
0.34(0 . 58) 
0.34(1.45) 
0 . 07(0 . 21) 

2.47(11.14) 
0 . 04(0.0:3) 
0.34(0.69) 
1.03(2.57) 
0.07(0.32) 
0.G2 { 1.20) 
0.03(<0 . 0 1 ) 
3.36(1 . 13) 

0 . 41(0.01 ) 
0.07(<'0 . 01) 

0. 111(0.02) 

C6 
1·158 

"J 

7 

0 . 03«.0.01 ) 
0. 13(0.01 J 
o. 52(? 2 ~i) 

O. 16(0 . -/~) 
3.~!)(O . "j"/) 

2 . 61 (O. 1·1 ) 

5 . 16(0.64) 
4.!.]4(30.-hl) 
.:1.25(O.I~) 

3.21 (O . O~») 

O.2u( J .O:!) 

0 . 05(0 . 0 4 ) 
2.42(0 . 08) 
O. 03 (<..0.0 1 ) 

1.60(0.02) 
2. 42(0. 03) 
0.79(0 . 0::.') 
0 .47 {O.O I ) 
3.30(0.04) 
1 .89(0.01) 
1 .32(LOI) 
0.2tl(0.0} ) 
0.85(0.0'1) 
1.42(0.0_1) 
0 . 06«0 .0 1 ) 
2.26(0.03) 
0.06(L...O . OI) 
1. 57(0 . 01 ) 
0.06( <. 0 . 0 1 ) 
O . O!)( 1 . 08) 
0.02«0.0 1 ) 

0 .16(0. 07) 
0.06(":;0 . 01 ) 

4. 37(6 . 3!l) 

3.55( 12.46) 
0.82(4. 14) 
0.06(0.0'1) 
0.28(0.04) 

0.05«0 . 01 ) 
0.35(0 . 33) 
1. 54(0.98) 
3.33(4 . 29) 
0.05{0.b7) 

0.44(<.0.01) 
3.21(0.(H) 
0 . 4 1 ( <' 0.01) 

0.25(0.11 ) 
3.81 (9.04) 
0.91(2.79) 
1.01 (0.05) 
2.77(0 . 15) 

0.50( 1.27) 
0.35(0.57) 
0.35( 1 . 43) 
0 . 0~(0 .2 1 ) 

2. <l 5(11.03} 
0 . 03(0 . 08) 
0 . 38(0 . 68) 
J . O<l(~ . 54) 
O.O~(O.JI ) 
0.63( 1 .IU) 
0.03(<.,0.01 ) 
3 . 36( I. 12) 

0.41(0.01 ) 
0.06«0.01 ) 

O.ln(O.O:?) 

66 
318\) 
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7 
10\0,' 

0.08(<'0.01 ) 
0.1.1(0.01 ) 
8.48D . 15) 
O.I.1(O.·/~) 

).~J(() . .l") 
2.60(0. 13) 

5.14( 0.57) 
4.D2(27.22) 
4.21 (0. 17) 
3.19(0 . 0.1) 

O.':H(O.90) 

B.02(0.04) 
2.40(0.07) 
0 . 03(<"O.lH) 

1.~8(0 . 02) 

2.·13(0.03) 
0.79(0.02) 
0. 40:. ( 0.01 ) 
3.3110 . 0.1) 
1.85(0.01 ) 
1.30(0.01 ) 
0.2tl«0 . 0 1 ) 
0.13~(O.06) 

1.111 (0.003) 
0.()3(~0.OJ ) 
2.23(0 . 03) 
0 . 013«0.0 1 ) 
I .~8(0.01) 
0 . 20(0 . 01 ) 
0.11 (0.!)5) 
O.02{{ .. O.01 ) 

0.23(0.11 ) 
0.08(,(0 . 01 ) 

4.35(5 . 65 ) 

3.53(21.78) 
0.82(3.66) 
0.06(0 .07) 
0.28 (0. 0·1) 

0.06(0. 01 } 
0 . 3"1(0.29 ) 
I.S3(0.86) 
3.3 J (3 .39 ) 
0.85(0 .77) 

0.<15(':; 0 . 0 1 ) 
3. 19 (0.01 ) 
0.4:l( 1,..0.0 1) 

0.25{0. 10) 
3.79(7 . 99) 
0 .9l)(2 . <l6) 
1.02(0 . 0..1) 
2.'17(0. 13) 

0.51(1.13) 
0.37{O.51 ) 
0. 3ol ( 1 .27) 
0.08(0.19) 

2.43(9.75) 
0 . 03(0 .07) 
0.37(0.60) 
1.02(2.25) 
0.11 (0.2t3 ) 
0.62( l.Ot» 
0.03(<.0.01 ) 
3.33(0.99) 

0.42(0.0 1 ) 
0.20(0.01 ) 

66 
35.19 

.~ :'U 
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App<!ndix 10 .. Percentage number and ma::;l:i (in parenthe::;c!:;) of fish collected from thu riverine 
floodplain-connected lagoons. Okavango Delta, between April 1985 and December 1986 and 
grouped according to four distinct flood love l s. 

Specie!:> 

Mormyridae 
H. Ji::;corhynchu:; 
Marcuscuiu::i maerolcpidotu3 
Mormyru::i 1accrda 
Pctroccpha1u:i c ato::; t.oma 
Pol1imyrus cnste1J1aui 
Charaeidae 
8ryeinus latorali s 
HyJrocynus vi tta tus 
Mi cralcstcs acutidcns 
IlhabJalu::;tcs maunellsis 
Hepsetidae 
Hop!:>e t us odoe 
Di:;tichodontidae 
Hemisrammocharax machadol 
H. multifasciatus 
Cyprinidae 
8arbus afrovornayi 
!!..:. barnardi 
~ bi frcnatus 
8. eutacllia 
~ fa:;ciolatus 
8. haasianus 
8. multilinoatus 
!:. paluJino::iul:i 
!!..:. poechi i 
8 . rad i atu s 
~ thamalakenensls 
B. unitacniatus 
COpto:;tomabarbus wittet 
L. lUlliltUl:i 
Dagridae 
Auchenog1an i:) ngsmcn!>! s 
Zaireicthy::; choban::;is 
Schilbeldao 
~ mystus 
Clariidao 
Clar ias goriepinu::i 
£.:. ng amcn::;i s 
~ stapper:;i 
C. theodorae 
MOchol<idac 
Synodontis 1eopardinu:; 
§..:. macrostigma 
~ nisromaculatu~ 

.§.:. loIoo.\:lnami 
Pocciliidae 
Ap locheilichthys hutcrcaui 
A. john::otoni 
~ katangae 
Cichlidae 
Hcmichromis elongat.us 
Orcochromi:; andorsonii 
O. mac:roch i r 
Pharynl!ocilromis darling! 
PscuJoc:"cn i labrus phi lander 
Serranochromi::; (S<lI'gochromi s). 
carlottac 
§..:. ~ codringtoni 
?.!. ~ giardi 
§..:. LSar . ) greenwoodi 
S . (Serranochr'Jmi s ). 
angusticcps 
~ (5./ longlmanus 
~ ~ macrocuphalus 
§..:. ~ robu:;tu:; ia llao 
~ ~ thurnbergi 
Tilapla rendall i rcnJall1 
T . ruwet i 
T. :3parrmall! i 
AIH..bant1Jatl. 
Cter.opoma intcrmcJium 
£.:. multispinus 
Afrom<ls t i.lcombolidao 

Afromastar.embal'Js .!:r~ 

Total no. specioa 
Total no. spocimens 
Total mllss (kg) 

a 
fillillg 

0.03«0.Oll 
2.70(1.42) 
0.10tO . 63) 
2.70(0.51} 
1.61(0.13) 

6.30(0.52) 
2.47(17.31) 
1. 53(0.09) 
2 . 04(0.06) 

0.36(1.89) 

2.93(0.02) 
0.71(0.03) 

4.87(0.11) 
3.95(0.07) 
1.94(0.06) 
O.Ol(.c.O.O\ ) 
3.59(0 . 08) 
5.45(0.06) 
0.93(0.Oll 
0.58(0.01) 
1.35(0.19) 
1.30(0.03) 
2.1.3(0.04) 
0 . 24(0.02) 
2.65(0 .02 ) 
0.08(0.85) 

0.01(<.0.01 ) 
0 . 03(.c;0.01) 

3.03(6.28) 

2.39( 18.69) 
1.20(6.03) 
0.05(0.08) 
0.16(0.03) 

0.39(0.65) 
0 . .45(0.68) 
1.45(3.68) 
0.25(0.32) 

2.81(0.02) 
8.93(0.08) 
0.23«0 . 01) 

0 .73( 0 . 94) 
4.06(10 • .41) 
1.17(6.75) 
4.16(0.20) 
4.60(0.37) 

0 . 49(1.65) 
0.73(1.73) 
0.28(0.95) 
0. 15(0.22) 

L30{6.22) 
0.10(0.29) 
0 .32 (0.82) 
0.23(1.12) 
0.20(0.82) 
1.20(2 .74) 
0. 48(0. 13) 
5.61(1.90) 

0.07«(..0.0 1 ) 

0.1310.02) 

0.0510.01) 

60 
3844 , .. 
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Sampling ::ii te 
a a 

high recedi ng 

0 .01 «0:01 ) 0.02(.(0.01 ) 
2 .69(1.43) 2.61 (1 .36 ) 
0 . 10(0.63) 0.IOlO .60) 
2.69 (0.51) 2.61 (0.49) 
1.61(0 . 13) 1.56(0 .12) 

6.28(0 . 52) .6.09 (0 .50) 
2.38(16.89) 1.88(13 . 15) 
1 . 53(0 . 09) 1.48(0.09) 
2.03 (0 . 0 6) 1 . 97(0.06) 

0.44(2 . 34) 0.83(4.31) 

2.92(0 . 02) 2.83{0.02) 
0.70(0 . 03) 0.68(0.02) 

4.86(0.11 ) 4.71(0.11) 
3.94(0.07) 3 .82 ( 0.07) 
1.93(0.06) 1.87(0.06) 

0 .01 (,\0 . 0 1 ) 
3.58(0.08) 3.48(0.06) 
5.44(0.06) 5 .27 (0.06) 
0 . 93(0.01) 0.90(0.01 ) 
0.58{O,O} ) 0.56(0.01 ) 
1.34(0.19) 1.30 (0 .18) 
.1.30( 0.03) 1.26(0.03) 
2. 12 (0.04) 2 .06{0 .04) 
0.2.4(0.02) 0.23(0.02) 
2.64(0.02) 2.56(0.02) . 
0.04(0.40) 0.02(0. IS) 

0.02(0.02) 0.01 (':'0.01) 
0 . 01( .... 0.011 0.01 «0.01) 

3. 02 (6.32) 2.93(6.02 ) 

2.29( 18.13 ) 1 . 81 ( 14.09) 
0.94(6.36) 0.66(4.42) 
0.05(0.08) 0.05(0 . 08) 
0.16(0.03) 0.15(0.03) 

0 . 39(0 .66) 0.38(0.63) 
0 . 45(0. 68) 0.44(0.65) 
1.45 (3.70) 1.41 (3.53) 
0. 2 4( 0 .58) 0 . 24(0 . 91) 

2.81(0 . 02) 2. 72\0 . 02 ) 
8.90(0.08) 8.63(0.07) 
0 . 2 3(<.0 .01 ) 0.23«(..0 . 011 

0.73(0 . 95) 0.71 (0.90) 
4.37( 11.35) 5.92( 15.13) 
1. 28( 6 . 79) 1.86{6.47) 
4.15(0.20) 4.02 (0. 19 ) 
4.58(0.37) 4.44(0.35) 

0.49(1.66) 0.47( 1. 56} 
0. 7 31.74) 0 . 71(1.66) 
0 . 28(0.96) 0.27(0.91 ) 
0.15(0.22) 0.15(0,21) 

1.40(6.80) 1.96(9.45 ) 
0.10(0 .29) 0.10{0.28) 
0.32(0.82) 0.31(0 . 78) 
0.32{l.56) 0. 73(3.5 1) 
0.19(0.83) 0.19(0.79) 
1.28(2.96) 1. 66(3 .79) 
0.48{0.13) 0.47(0.12) 
5 . 59{ 1..91) S.40( i.82) 

0. 07«0.01) 0. 07« (..0.01 ) 
0.l3{0.O21 0 . 1210.02) 

0.0510.01) 0. 051<0.01) 

59 60 
5623 409 1 

20a IS. 

a 
low 

o. Oe(O.Ol) 
2. 57( 1 . 31) 
0.1 0 (0.58) 
2.57(0.47) 
1.53( 0.12) 

5.99(0.48) 
1.70(11.62 ) 

. 1.46(0 . 08) 
1. 94(0 . 06) 

0.97(4 . 90) 

2.79(0.02) 
0.67(0.02) 

4.64(0.10) 
3 . 76(0.07) 
1.85(0.05) 
0.01«0.0! 1 
3 . .42(0 . 08) 
5.19(0 . 05) 
0.89( 0.01 ) 
0.55(0.01) 
1.28(0.18) 
J .24(0.03) 
2.03(0.0.3) 
0.23(0.02) 
2 . S~{0.02) 

0.08{0 .4.4) 

0 . 08(0. 0 4) 
0.01(~0.01 ) 

2.88(5.80) 

1.62(12.37) 
0 .89(5.83) 
0.05(0.07) 
0.15(0 .03) 

0.37(0.60) 
0. 43( 0.63 ) 
1.38(3.40) 
0.23(0 . 76 ) 

2.68{O . 02) 
8.50(0.07) 
0.22 «0. 0 1 ) 

0.70(0 .87) 
6.42(16 .05 ) 
2.05(6.23) 
3.96(0,}61 
.4.37(0.34) 

O.47( 1.52) 
0.70( 1.60) 
0.26(0.88) 
0.14(0.21 ) 

2.16(10 . 11) 
0.10(0.27) 
0.31 (0.75) 
0.85(3.99) 
0.19(0.76) 
1.78(3.97) 
0.46(0.12) 
S.30( \. 75) 

0 . 07(<'0.0} ) 

0 . 12(0 . 02; 

0.051<0.01 ) 

60 
2587 

99 
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