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Abstract 
 

This study was initiated to gain a better understanding of evolution and adaptation of 

elasmobranchs by investigating how a putative biogeographic barrier, the Benguela Current, 

had influenced populations of a demersal shark species, Triakis megalopterus. It was 

hypothesized that the Benguela Current formed a biogeographic barrier in the distribution of 

T. megalopterus and was responsible for the divergence between South African (SA) and 

Angolan (AN) populations. Since elasmobranchs are generally characterized by a slow rate of 

evolutionary change and conservative morphology and life history traits, it was hypothesized 

that there would be limited genetic, morphological and life history divergence between the 

populations.  

Both mtDNA Control Region (mtCR) and microsatellites (nDNA) were used to assess 

population connectivity and structure of T. megalopterus. The mtCR predominantly showed a 

northern (Angola, AN, and Namibia, NA) versus southern (Western Cape, WC, and Eastern 

Cape, EC) Benguela subsystem arrangement. This suggested that the formation of the 

Benguela Current had an influence on the genetic structure of T. megalopterus during the 

early Pleistocene. The nDNA, however, showed a distinct transoceanic, Atlantic (AN, NA, 

WC) versus Indian Ocean (EC) arrangement, and this was attributed to the more recent 

exposure of the Agulhas Bank and reduced rocky shore habitat during the glaciations of the 

late Pleistocene. 

Traditional morphological analyses on full body and tooth morphology were used to assess 

phenotypic plasticity and/or adaptability of T. megalopterus. A novel method of geometric 

morphology, with potential for non-lethal application, was developed and tested to examine 

interpopulation divergence in shape. Traditional morphometrics showed significant 

divergence between populations and this variation was congruous with the mtCR haplotypes. 

However, the divergence in the truss variables was not concomitant to the haplotypes and 
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suggested that differences in shape may be attributed to phenotypic plasticity. There was 

limited divergence in the tooth morphology between populations. The divergence in several 

morphological characters associated with swimming speed and manoeuvrability may be 

attributed to both habitat structure and dominant prey in the different biogeographic zones.  

The diet of T. megalopterus consisted primarily of crustaceans, teleosts and molluscs. The 

significant variation in the diet between populations suggested a generalist tooth configuration 

and broad trophic adaptability.  

There was significant divergence in the interpopulation life history parameters. The AN 

population had the fastest growth, smallest size at maturity, and shortest longevity. 

Individuals in the EC population had the youngest age at maturity, while the WC population 

had the earliest parturition. This divergence may be attributed to the contrasting thermal 

regimes in the three biogeographic regions and the dissimilar exploitation rates of the three 

populations.  

The results of this thesis demonstrated that a combination of the formation of the Benguela 

Current and sea level change most likely contributed to vicariance of three populations of T. 

megalopterus. The significant interpopulation morphological and life history divergence 

appeared to be both phenotypic and genetic, and suggested that contrasting environmental 

drivers can result in relatively rapid change in elasmobranchs.  
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"The sea, once it casts its spell, holds 

one in its net of wonder forever." 

~Jacques Yves Cousteau~  
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Chapter 1:  

General introduction 
 

The oceans cover 71% of the planet (Castro and Huber, 2003; Trujillo and Thurman, 2011), 

with a total volume of ± 1370 x 10
6 

km
3
 and around 300 times more habitable volume than 

land and fresh water systems combined (Lalli and Parsons, 1997). Five oceans surround the 

continents, namely the Pacific, Atlantic, Indian, Arctic, and Southern Oceans (Farndon, 

2011). The coasts of southern Africa encounter two oceans, the southern Atlantic Ocean on 

the west and the Indian Ocean on the east, which merge at the southernmost tip of Africa, the 

meridian of Cape Agulhas (Stewart, 2008). The Atlantic and Indian Oceans are the second 

and third largest oceans respectively, correspondingly occupying surface areas of 

approximately 77 million and 69 million km
2 

(McCutcheon and McCutcheon, 2003).  

The oceans, each with their own set of distinct characteristics (Stewart, 2008), are connected 

via an intricate network of currents. These are primarily driven by wind, topographic features, 

the Earth’s rotation (Coriolis Effect) and water temperature, and move warm and cold water 

great distances across the Earth’s oceans (Levinton, 2001; Beesley et al., 2008; Stewart, 

2008). Due to the Coriolis Effect, currents rotate in circular paths (gyres) that revolve 

clockwise and counter-clockwise in the Northern and Southern Hemispheres, respectively 

(McCutcheon and McCutcheon, 2003; Farndon, 2011). Boundary currents, classified as either 

western or eastern boundary currents, flow parallel to either the eastern or western coastline, 

respectively (Stewart, 2008). Eastern boundary currents are characterized as relatively 

shallow, broad and slow/weak currents (Karleskint et al., 2010) that transport cold water from 

the poles to the equator (Philander and Yoon, 1982). Western boundary currents are warm, 

deep, narrow and fast-flowing currents that form on the west side of ocean basins and 

transport water from the equator towards the Polar Regions (Cronin et al., 2010; Karleskint et 

al., 2010). Seas of the southern African coastal region are controlled by three ocean currents: 

Angola, Agulhas and Benguela (see Chapter 2, Figure 2.1).  

The Benguela Current is arguably the most influential of these and is one of the five major 

continental margin upwelling systems of the world (Jahn et al., 2003). Sedimentological, 

paleontological and geochemical data indicate the Benguela Current formation began off 

Northern Namibia in the late Miocene, ± 10 Ma. (Siesser, 1980; Diester-Haass et al., 1990; 

Krammer et al., 2006). Since then, however, the Pliocene-Pleistocene transition (~2 Ma.) 

gave rise to the intensification of ice sheet coverage in the northern and southern hemispheres, 

the formation of the Isthmus of Panama and established the Benguela Current characteristics 
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present today (Marlow et al., 2000; Krammer et al., 2006). The establishment of the Benguela 

Current had a major impact on the fish fauna of the South African, Namibian and southern 

Angolan coasts and resulted in a marked change in the distribution and abundance of fishes in 

the region (Henriques, 2011). 

The Benguela Current is a highly productive, cold-water upwelling regime that flows 

northward along the southwest coast of Africa between 15° S and 34° S (Siesser, 1980) and 

forms the eastern limb of the subtropical gyre (Nelson and Hutchings, 1983; McCutcheon and 

McCutcheon, 2003; Veitch et al., 2006; Veitch, 2007). The Benguela Current extends from 

the Angola-Benguela Frontal Zone (ABFZ), over the western Agulhas Bank (WAB) to Cape 

Agulhas (Shannon et al., 1983; Lutjeharms et al., 1991), not to Cape Point as formerly 

proposed (Andrews and Hutchings, 1980). This current is unique when compared to the other 

eastern boundary currents as it is bounded by warm water current systems, the western 

boundary Agulhas Current in the south and the warm, tropical Angolan Current in the north, 

which create warm-temperate confluence zones at both borders (Shannon and Nelson, 1996; 

Veitch, 2007).  

As an upwelling regime, the Benguela Current is rich in nitrate, silicate and phosphates. It has 

abundant phytoplankton and consequently rich fishing grounds (Siesser, 1980), although these 

characteristics are not uniform throughout its distribution. Dividing the Benguela into 

northern and southern subsystems is the perennial (Lutjeharms and Meeuwis, 1987) Lüderitz 

Upwelling Cell (27.5° S). The Lüderitz upwelling is the largest of its kind on earth (Demarcq 

and Dagorne, 2011), characterized by strong winds and high turbulence (Hutchings et al., 

2009), and compared to other upwelling cells, it exhibits cooler average sea surface 

temperatures and extends further offshore (Lutjeharms et al., 1991). The magnitude of the 

Lüderitz Upwelling Cell makes it a quasi-physical barrier to marine species (Demarcq and 

Dagorne, 2011). The Benguela Current is therefore considered to be an important 

phylogeographic barrier separating previously connected populations (Floeter et al., 2007; 

Helfman et al., 2009; Hutchings et al., 2009; Demarcq and Dagorne, 2011; Dudgeon et al., 

2012; Luiz et al., 2012; Taylor and Hellberg, 2015), particularly of warmer water species 

(Henriques et al., 2012, 2014a).  

Several studies (Table 1.1) of various cephalopod and teleost species have shown diverse 

genetic and phenotypic responses to being isolated by the Benguela biogeographic barrier. 

Some species have been shown to have developed significant morphological changes but have 

limited genetic divergence. Others are characterized by deep genetic divergence, yet have 

shown limited morphological differentiation.  
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Table 1.1: Existing information on species differentiation, morphometric and genetic, across the Benguela barrier  

 

Species Biology Reference Morphology Reference Genetics Reference 

       

Blacktail seabream  

Diplodus capensis 

(Smith, 1844) 

Significant 

biological 

divergence 

Richardson, 2010 
Morphological 

divergence 
Richardson, 2010 

Two distinct and 

divergent genetic 

clusters 

Henriques, 2011 

Geelbeck croaker  

Atractoscion aequidens 

(Cuvier, 1830) 

Significant 

biological 

divergence 

Henriques et al., 

in press 

Little 

morphological 

divergence 

Henriques et al., 

in press  

Two 

independent 

stocks, evidence 

of cryptic 

speciation 

Henriques et al., 

2014a 

Leervis 

Lichia amia 

(Linnaeus, 1758) 

Little biological 

divergence 
Potts et al., 2008 No data available 

Two 

independent 

stocks 

Henriques et al., 

2012 

Common octopus  

Octopus vulgaris 

Cuvier 1797 

No data available 

Lack of 

morphological 

divergence 

De Beer, 2014 

Significant 

genetic 

divergence 

De Beer, 2014 

Cape Hope squid  

Loligo reynaudii  

d’Orbigny, 1845 

No data available 
Morphological 

divergence 

Van der Vyver, 

2014 

Significant 

genetic 

divergence 

Van der Vyver, 

2014 

Zebra sea bream  

Diplodus cervinus 

(Lowe, 1838) 

Distinct 

biological 

divergence 

Winkler, 2013 
Morphological 

divergence 
Winkler, 2013 

Two 

independent 

stocks 

Gwilliam, pers. 

comm. 

Silver Kob 

Argyrosomus inodorus 

Griffiths and Heemstra, 1995 

Little biological 

divergence 

Griffiths, 1996; 

Kirchner, 1998; 

Kirchner and 

Voges, 1999 

Little 

morphological 

divergence 

Griffiths and 

Heemstra, 1995 

Two 

independent 

stocks 

Henriques et al., 

2014b 
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Species Biology Reference Morphology Reference Genetics Reference 

Yellowfin tuna  

Thunnus albacares 

Bonnaterre, 1788 

No data available No data available 

Atlantic vs. 

Indian Ocean 

stocks 

Henriques, 2011 

Sand steenbras 

Lithognathus mormyrus 

(Linnaeus, 1758) 

No data available 

Little 

morphological 

divergence 

Kruger et al., in 

prep 

No evidence of 

independent 

stocks 

Gwilliam, in 

prep 

Steentjie 

Spondyliosoma emarginatum 

(Valenciennes, 1830) 

No data available 

Distinct 

morphological 

divergence 

Kruger et al., in 

prep 

Significant 

genetic 

divergence 

Gwilliam, in 

prep 

Baardman 

Umbrina canariensis  

Valenciennes, 1843 

No data available No data available 

Significant 

genetic 

divergence 

Gwilliam, in 

prep 

Streepie 

Sarpa salpa 

(Linnaeus, 1758) 

No data available 

Little 

morphological 

divergence 

Kruger et al., in 

prep 

Significant 

genetic 

divergence 

Gwilliam, in 

prep 
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Besides the formation of the Benguela Current, several other historical events (e.g. sea level 

variation and habitat change) and contemporary features (e.g. temperature, chlorophyll) have 

also shaped the biogeographic patterns of fishes in southern Africa. While these patterns are 

well described for South Africa (Lombard et al., 2004), Africa (Whitfield, 2005; Potts et al., 

2015) and on a global scale (Ekman, 1953; Hedgpeth, 1957; Briggs, 1974a, 1995; Hayden et 

al., 1984; Bailey, 1998; Longhurst, 1998a; Adey and Steneck, 2001; Spalding et al., 2009), 

the spatial resolution provides limited information for southern Africa and west coasts.  

 

The most relevant biogeographic studies for this thesis are those by Whitfield (2005), 

Spalding et al. (2009) and Potts et al. (2015). Spalding et al. (2009), based on the results of a 

hierarchical and nested model, identified 12 realms, 62 provinces and 232 ecoregions called 

the Marine Ecoregions of the World (MEOW). They defined the coastal oceans of southern 

Africa as wholly temperate. Whitfield (2005), in a review of the biogeography of southern 

African estuarine fauna, grouped sub-Saharan African estuaries into four broad zones, in 

which Angola consisted of tropical and sub-tropical zones, Namibia included sub-tropical, 

warm-temperate and cool-temperate zones, and South Africa was categorized into cool-

temperate, warm temperate and sub-tropical. Unfortunately, this data may not be accurate due 

to the lack of estuaries along the west coast. For this reason, Potts et al. (2015) in a review of 

the impacts of climate change on coastal fishes in southern Africa used sea surface 

temperatures and the distribution of fish fauna to propose biogeographic regions for the 

coastal fauna. They identified cool-temperate (False Bay to Hentiesbaai), warm-temperate 

(Hentiesbaai to Namibe), sub-tropical (Namibe to Rio Longa) and tropical (Rio Longa 

northward) zones along the west coast of southern Africa (Figure 1.1).  
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Figure 1.1: Biogeographic zonation of southern Africa as presented by Potts et al. (2015) 

 

This isolation of warm temperate fish assemblages to the north and south of the Benguela 

Current, as well as the consideration of marine realms, provinces and ecoregions, provides a 

good model system for studying ecological speciation. The contrasting evolutionary response 

of different species in the frontal zones and the known temporal nature of the formation of the 

features of the current provide us with a natural laboratory to study allopatric speciation. 

Furthermore, this provides a unique opportunity to conduct systematic research to gain an 

understanding of evolutionary processes contributing to biodiversity. 

 

Elasmobranchs should be more susceptible to the impacts of climate change as they would 

have to rely on the slow process of genetic mutation and evolution for adaptive responses. 

However, elasmobranchs have survived, relatively unchanged, and through many past climate 

events (e.g. glacials and interglacials) suggesting a conflicting inherent resilience to climate 

change. Elasmobranchs therefore provide ideal candidates for inclusion in studies that 

examine the contrasting evolutionary response of marine species to allopatry. Ecosystems 

such as the Benguela, where the temporal nature of the formation of an isolation barrier is 
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known, provide unique opportunities to conduct this kind of comparative research. In 

addition, the assessment of phenotypic plasticity and rate of evolutionary change in 

elasmobranchs will greatly assist scientists when making predictions on the likely responses 

of species to rapid environmental change.  

 

Due to differences in life history traits, evolution of elasmobranchs and teleosts is 

predominantly dissimilar. Unlike many teleosts, shark species are characterized by slow 

growth rates, long lifespans, few offspring, late maturity (Smith et al., 1998), low fecundity 

and high maternal investment, and possibly polyandry (Feldheim et al., 2014). Without 

pelagic larvae to benefit from oceanic circulation, sharks rely solely on the juvenile and adult 

stages for dispersal (Duncan et al., 2006); thus dispersal potential is dependent on adult 

vagility (Schultz et al., 2008; Benavides et al., 2011).  

 

When it comes to intrapopulation differences in sharks, there are limited studies available 

quantifying life history traits and a complete absence of research describing morphological 

differences amongst populations. It also appears that life history comparisons are purely based 

on latitudinal variation and therefore temperature differences amongst populations. For 

instance, bonnethead sharks (Sphyrna tiburo) populations at the highest latitudes showed the 

largest asymptotic sizes, largest and oldest median size at maturity and largest near-term 

embryos (Parsons, 1993; Carlson and Parsons, 1997; Lombardi-Carlson et al., 2003). 

Likewise, patterns of larger size at maturity with latitude were reported for the cloudy 

catshark, Scyliorhinus torazame (Horie and Tanaka, 2002), shortspine spurdog, Squalus 

mitsukurii (Taniuchi et al., 1993) and the starspotted dogfish, Mustelus manazo (Yamaguchi 

et al., 2000). Despite the fact that life history parameters of many marine fish stocks have 

been shown to contrast in response to environmental variation and interactions with the 

environment and genotype (Begg, 2005), comparisons of life history parameters with 

genotype and/or morphology are lacking, particularly for sharks.  

 

The family Triakidae (hounds, tope, and whiskery sharks) is one of eight families making up 

the order Carcharhiniformes (López et al., 2006). Sharks of the genus Triakis Müller and 

Henle, 1838, are small to medium size sharks largely inhabiting tropical and temperate coastal 

regions and feed on benthic crustaceans, cepahalopods and osteichthyes (López et al., 2006). 

There are currently five recognized species of Triakis (Compagno, 1988) found in the world 

(Figure 1.2): Triakis scyllium Müller and Henle, 1839 (banded houndshark); T. megalopterus 
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(Smith, 1849) (spotted gully shark); T. semifasciata Girard, 1854 (leopard shark; T. maculata 

Kner and Steindachner, 1867 (spotted houndshark); T. acutipinna Kato, 1968 (sharpfin 

houndshark). Although Scylliogaleus quecketti Boulenger, 1902 (flapnose houndshark) is not 

currently classified as a species of Triakis, T. megalopterus is more closely related to S. 

quecketti than it is to all of the other members of Triakis (López et al., 2006; Naylor et al., 

2012) and has therefore been included in the distribution map for comparison. 

 

 

Figure 1.2: Distribution map of the five species from the genus Triakis and Scylliogaleus 

quecketti. Solid yellow regions for Triakis megalopterus indicate areas of known distribution, 

while the dashed red lines are indicative of dispersal uncertainty and/or low abundance.  

 

The spotted gully shark, Triakis megalopterus (Figure 1.3), is found in the temperate 

continental waters of the western Indian and south-eastern Atlantic oceans, in southern 

Angola, Namibia and South Africa (Smale and Goosen, 1999; Compagno, 2009). This species 

of shark is a bottom dweller typically found in shallow (<50 m) subtidal water in sandy and 

rocky habitats (Bass et al., 1975; Compagno, 1984a; Smale and Goosen, 1999). The body of 

T. megalopterus is commonly grey/bronze, with a lighter ventral side, and possesses small 

black spots frequently spread out over the body (Compagno et al., 1989). As described by 

Smale and Goosen (1999), T. megalopterus can reach a total length (TOT) of 2075 mm, have 

a rotund head, broadly rounded snout, large mouth and pointed teeth. Crustaceans, 

cephalopods, Osteichthyes and small elasmobranchs appear to be the prey of choice for this 

species (Compagno, 1984a; Smale and Goosen, 1999). Booth et al. (2011) found that T. 

megalopterus live up to 25 years of age and mature at 11 and 15 years for males and females, 

respectively. The embryos of T. megalopterus obtain nourishment from their own yolk sacks 

making this species of shark ovoviviparous (Bass et al., 1975; Compagno, 1984a). The 
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estimated gestation period is 19–21 months, with 5–15 pups (possibly 16) attaining an 

estimated size at birth of 420–450 mm (Smale and Goosen, 1999). 

 

Figure 1.3: Spotted gully shark, Triakis megalopterus, caught at the Cunene River mouth in 

southern Angola (male, 2.6 kg, TOT = 79.5 cm) 

 

Listed on the International Union for Conservation of Nature (IUCN) as near threatened, T. 

megalopterus does not yet qualify for a threatened status, although shark expert Leonard 

Compagno considers it to be threatened with extinction in the near future (Compagno, 2009). 

Due to their habitat preferences, large size at maturity, lengthy pregnancies, small litter sizes 

(Smale and Goosen, 1999), narrow distribution and small population sizes (Compagno et al., 

1989), this species can sustain only limited fishing pressure (Booth et al., 2011) and is 

vulnerable to overexploitation by inshore recreational and commercial shark fisheries (Smale 

and Goosen, 1999). While T. megalopterus is legislated as a non-commercial species (i.e. it 

may not be marketed by commercial operators), it is commonly mistaken as the commercial 

species Mustelus mustelus (Booth et al., 2011) and is a frequent bycatch in the South African 

demersal longline fisheries in Gaansbaai and False Bay (Compagno, 2009). According to 

Attwood and Farquhar (1999), T. megalopterus is also exploited by shore anglers between 

Walker Bay and Cape Hangklip in the Western Cape, South Africa. Although these 

recreational rock and surf anglers typically practise catch and release (C&R) on 

elasmobranchs, the high anaerobic activity, muscular fatigue and air exposure (Skomal, 2007) 

during the capture event results in physiological stress that has been shown to affect the 

feeding, growth, population size structure, reproductive potential (Cooke and Schramm, 2007) 

and consequently abundance (Stevens et al., 2000) of targeted species. Unfortunately, little is 

known about the post-release mortality of sharks subject to C&R (Skomal, 2007) and one can 

therefore not exclude the impact of recreational angling when estimating fishing mortality.  

 

T. megalopterus is a suitable model species to assess the impact of allopatry as it is a coastal 

species that is generally (no published migration data yet available) associated with decreased 



10 
 

vagility (Musick et al., 2004) and is also characterized by: a longer (± 20 months; Smale and 

Goosen, 1999) than average (9–12 months; Helfman et al., 2009) gestation rate; distributive 

disjunction (absent and/or unknown distribution between Cape Point and central Namibia); 

absence of pelagic larvae due to its ovoviviparous reproductive strategy; and late maturity – 

full maturity is only reached at 78% of average maximum size (Smale and Goosen, 1999). 

 

The aim of this study is to use the populations of T. megalopterus within and surrounding the 

natural laboratory provided by the Benguela Current (Angola, Namibia and South Africa), to 

gain a better understanding of allopatric speciation and the evolutionary processes 

contributing to biodiversity in elasmobranchs. As very little is known about the biology of T. 

megalopterus, particularly in Namibia and Angola, this thesis also aims to address this lack of 

knowledge by presenting comparative data on the genetics, morphology and life history of 

this species throughout its southern African distribution.  

 

It is hypothesized that the development of the cold water of the Benguela Current has formed 

a biogeographic barrier to the distribution of T. megalopterus along the southern African 

coastline and that despite this isolation, little or no morphological and/or life history change 

has occurred between the populations. 

 

The aims of the study are to improve our current understanding of allopatric speciation in 

elasmobranchs by means of a holistic approach using molecular, morphometric and life 

history characteristic comparisons. This will permit the description of potential threats to the 

conservation of this species and identify whether the species or its populations may be 

susceptible to rapid environmental change.  

 

Thesis outline 

To achieve the overall aim, this thesis adopts a holistic design approach containing several 

categories of analysis and is divided into four data oriented chapters: 

 

Chapter 1: Provides a general introduction that outlines the scope of the project, an 

introduction to the study species and the general hypotheses, aims and objectives.  

 

Chapter 2: Describes the marine environment and major oceanographic features within each 

sampling site and provides the general material and methods utilized throughout the study. 
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Chapter 3: Assesses the population genetics of T. megalopterus from four geographical 

locations using mitochondrial (mtDNA) and microsatellite (nDNA) markers. An examination 

of the patterns of gene flow, population connectivity/structure and the demographics of T. 

megalopterus can be used to gain a better understanding of elasmobranch evolution. 

 

Chapter 4: Compares the body and teeth morphology of T. megalopterus from South Africa 

and southern Angola using traditional morphology and landmark methods. Since traditional 

morphology generally lacks geometric properties (Bookstein, 1982), a truss protocol was 

designed and specifically developed for elasmobranchs. This was considered necessary in 

view of the perceived slow evolutionary rate of elasmobranchs, which potentially makes 

morphological changes between populations difficult to detect using traditional 

morphological techniques.  

 

Chapter 5: Examines differences in the diet of populations in dissimilar habitats; diet may be 

an important driver of morphological change. Therefore, this chapter provides a comparison 

of the feeding ecology of T. megalopterus between the southern Angola and South African 

populations. The feeding ecology is compared to the results from chapters three and four to 

determine if differences in the diet influenced morphology through the process of evolution or 

due to inherent phenotypic plasticity.  

 

Chapter 6: Quantifies important life history traits such as growth rate, age and length at 

maturity for T. megalopterus. As each population is subject to different environmental 

conditions, the life history traits are compared between populations to assess whether various 

marine environments may affect the life history of this species.  

 

Chapter 7: Provides a summary of results obtained and a general discussion drawing 

conclusions on the biology, evolution and likely impacts of climate change for T. 

megalopterus. 
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Chapter 2:  

Site selection and general methods 
 

As stated in the introduction (Chapter 1), the purpose of this thesis is to gain a better 

understanding of the biology of Triakis megalopterus while at the same time using this 

species as a case study to further understand allopatric speciation and the evolutionary 

processes contributing to biodiversity in elasmobranchs. In order to accomplish this, the 

sample site selection of T. megalopterus was based on the representation of different 

oceanographic regimes around the southern African coast. Sample sites were chosen on the 

coasts of southern Angola, northern Namibia, and the Western and Eastern Cape provinces of 

South Africa (Figure 2.1). All sample sites were situated within the temperate southern Africa 

realm (see Chapter 1; Spalding et al., 2014). Southern Angola, northern Namibia, Western 

and Eastern Cape provinces were selected to test population parameters within and potential 

isolation between the four areas recognised as potentially separate zones. Whole specimens 

were collected from the southern Angola, Eastern Cape and Betty’s Bay sample sites and used 

for the genetic, morphology, feeding and life history aspects of this thesis. Only fin clips were 

collected from Namibia and Cape Point for the genetic component of this thesis. 

 

Study sites 

Southern Angola 

Whole specimens from southern Angola were collected between Baia dos Tigres (16° 36' 

14.1" S 11° 49' 03.2" E) and the Cunene River mouth (17
°
 14' 33" S, 11

°
 44' 59" E). This 

warm-temperate zone (Potts et al., 2015) forms part of the Namib ecoregion in the northern 

Benguela province (Spalding et al., 2009) where the intertidal zone is dominated by sandy 

beaches, sandstone rocky outcrops and a continental shelf of approximately 36 km wide 

(Duarte et al., 2005). In the Cunene River mouth and Baia dos Tigres, the sea floor on the 

continental shelf is lined by coarse sand and clay/silt ocean floors, respectively (Bianchi, 

1992). 

 

The marine conditions off Angola are influenced by both the Angola and Benguela Currents. 

The Angola Current is a warm, southward flowing (Bianchi, 1992; Kostianoy and 

Lutjeharms, 1999), narrow and stable current (Moroshkin et al., 1970); it forms part of the 

Angola subsurface gyre (Lass et al., 2000) driven by the South Equatorial counter current (13
° 
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S; 4
° 

E; McCutcheon and McCutcheon, 2003). The confluence of the Angola and Benguela 

currents gives rise to the Angola-Benguela Frontal Zone (ABFZ; 18
° 
S), a permanent frontal 

system (Meeuwis and Lutjeharms, 1990; Veitch et al., 2006) that demonstrates seasonal 

variability dependent on the strength of the contributing ocean currents (Kostianoy and 

Lutjeharms, 1999). 

 

Figure 2.1: Map of sampling sites and oceanographic features in the oceans surrounding 

southern Africa; AC = Angola Current, ABFZ = Angola-Benguela Frontal Zone, LU = 

Lüderitz Upwelling Cell, AR = Agulhas Rings, BC = Benguela Current, WAB = Western 

Agulhas Bank, AGR = Agulhas Retroflection, AGRC = Agulhas Return Current, AGC= 

Agulhas Current (adapted from Shannon et al., 2006; Coetzee et al., 2008; von der Heyden et 

al., 2011). 
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During autumn/winter, the Benguela Current velocity is strongest and pushes the ABFZ 

further north (± 16
° 
S), while in spring/summer, the ABFZ is placed further south (± 20

° 
S) as 

a result of the higher velocity of the Angolan Current (Meeuwis and Lutjeharms, 1990; 

Kostianoy and Lutjeharms, 1999; Veitch et al., 2006; Ekau and Verheye, 2010). The seasonal 

variation in current velocity has pronounced effects on regional productivity as winter is 

primarily influenced by the cool, nutrient rich water of the Benguela Current whereas in 

summer, the warm oligotrophic water of the Angolan Current governs the ABFZ (Hutchings 

et al., 2009). This seasonal variability is reflected in the inshore water temperatures 

(Richardson, 2010), and, while Whitfield (2005) has characterized this region as a subtropical 

biogeographic zone, the thermal regime is more akin to a temperate zone. Also influencing 

the nutrient enrichment in southern Angola’s marine environment is the Congo River 

discharge and shelf-break upwelling (Bianchi, 1992). 

 

Northern/Central Namibia 

Fin clips for molecular analyses were collected from throughout the West Coast Recreational 

Area (WRCA), a 200 km section of coastline between the northern boundary of the Namib 

Naukluft National Park (22
°
 38’ 29” S, 14

°
 31’ 34” E) and the Ugab River (21

°
 10’ 55” S, 13

°
 

38’ 30” E) in Namibia. The WCRA falls within the cool-temperate zone (Potts et al., 2015) in 

the northern Benguela subsystem (Lüderitz to Angola) and shares the same type of habitat as 

southern Angola: sandy beaches and rocky outcrops (Sakko, 1998). The Namibian marine 

environment falls within the cool-temperate zoogeographic province (Emanuel et al., 1992) 

and is situated in the Namib ecoregion of the northern Benguela province (Spalding et al., 

2009). 

 

The northern/central Benguela subsystems are characterized by the seasonal movements of 

the Angola Current (known to penetrate as far as Walvis Bay; Moroshkin et al., 1970) and 

ABFZ, as well as low oxygen water bodies and year round coastal upwelling cells off Cape 

Frio and Lüderitz (Sakko, 1998). These upwelling cells are generally related to regions of 

narrower continental shelf and stronger southerly winds (Hutchings et al., 2009). Regardless 

of the upwelling cell at Cape Frio, primary productivity in the northern subsystem is lower 

than in the central region. This is attributable to the intrusion of warm, nutrient-poor Angolan 

Current water during austral summers (Hutchings et al., 2009). On its southward journey, the 

Angola Current plunges deeper to form the Benguela Poleward Undercurrent establishing the 

low oxygen water (LOW) boundary conditions for the northern/central Benguela systems 

(Veitch, 2007). The Central Benguela region (Namibia) is characterized by multifaceted 
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interactions between remotely forced shelf processes, biogeochemical carbon fluxes that 

control the LOW oscillations, and cyclical thermocline inconsistency (Monteiro et al., 2006).  

 

Western Cape, South Africa 

Whole specimens were caught in Betty’s Bay (34
°
 22' 22" S, 18

° 
51' 44" E) and Strand (34

°
 08' 

38" S, 18
°
 51' 02" E), whereas only tissue samples for genetics studies were collected from 

Cape Point (34
°
 21' 23" S, 18

°
 29' 51" E). All Western Cape sample sites are located between 

Cape Point and Cape Agulhas and therefore inside the borders for the WAB (Coetzee et al., 

2008). These sample sites all fall within the cool-temperate zone (Potts et al., 2015) in the 

Agulhas province and the Agulhas Bank ecoregion (Spalding et al., 2009). This section of the 

Agulhas Bank is unique because it is located within the meeting point of a western boundary 

shelf system, the EAB (Swart and Largier, 1987) and an eastern boundary shelf system, the 

west coast of southern Africa (Largier et al., 1992). This makes the WAB the transition zone 

between the Agulhas and Benguela shelf systems and consequently, the hydrodynamic 

processes within this section of the continental shelf are influenced by both the Agulhas and 

Benguela Currents (Dufois and Rouault, 2012). The WAB and the EAB are characterized by 

upwelling and non-upwelling regimes respectively (Largier et al., 1992). The circulation and 

stratification differences within the WAB and EAB are caused by wind forcing and their 

respective exposure to coast-parallel upwelling winds, and by oceanic forcing and their 

respective distance from the Agulhas Current, as well as the continental shelf characteristics 

of the eastern and western boundaries (Largier et al., 1992). The two subdivisions are further 

distinguished from one another by the oxygen (Chapman and Shannon, 1987), nutrient 

(Chapman and Largier, 1989) and plankton (De Decker, 1984) distributions therein. The 

nearshore habitat in this region is characteristically rocky patches with large sandy sections 

and kelp forests (Turpie et al., 2009). 

 

Eastern Cape, South Africa 

Sample collection took place in Port Elizabeth (34
°
 02' 42" S, 25

°
 36' 38" E), Port Alfred (33

°
 

32' 28" S, 27
° 

02' 54" E) and Old Woman’s River mouth (33
°
 29' 02" S, 27

°
 08' 55" E). As 

with the Western Cape sample sites, the Eastern Cape sample sites fall within the warm-

temperate zone (Potts et al., 2015) of the Agulhas province and Agulhas Bank ecoregion 

(Spalding et al., 2009). The Agulhas Current (27° S to 40°
 
S) governs the marine coastline in 

the Eastern Cape (Barange, 1994). This narrow, southward flowing Agulhas Current (Nelson 

and Hutchings, 1983), is one of the strongest currents in the world (McCutcheon and 

McCutcheon, 2003). The Agulhas Current is the western boundary current of the South Indian 
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Ocean, and extends the warm water from the subtropics (East Madagascar and Mozambique 

Currents) down the east coast of southern Africa (Gordon, 1985; Branch et al., 2004). After 

flowing parallel to the eastern coastline of South Africa, the Agulhas Current begins to move 

offshore at the Agulhas Bank (±22
° 

E) before making an abrupt anticyclonic turn known as 

the Agulhas Retroflection (Gordon, 1985). This retroflection continues east as the Agulhas 

Return Current and is characterized by substantial meandering caused by current instability 

and bottom topography (Quartly and Srokosz, 2015). Within this meandering, anticyclonic 

rings are shed and able to move far enough westward to form the foundation for inter-ocean 

heat and salt leakage (Hutson, 1980) from the Indian Ocean to the Southern Atlantic Ocean 

(Quartly and Srokosz, 2015). This part of the coastline is dominated by mixed sand and rocky 

reef surf zones (Hutchings and Clark, 2012). 

 

General material and methods 

Sampling took place over a three year period, beginning in November 2011 and ending in 

February 2013. Since there is no commercial fishery for this species, specimens were 

collected with the help of local fishermen. Local fishermen aided in the collection of small 

specimens from Old Woman’s River and large specimens from offshore in Port Elizabeth; 

these specimens were frozen in blast freezers at the Department of Ichthyology and Fisheries 

Science (Rhodes University) and Bayworld (Port Elizabeth), respectively. Local fishermen 

also facilitated the collection of tissue samples from Namibia and Cape Point. Primarily, 

however, the sample collections were done by the author and research teams. The exact 

numbers of specimens used per analysis has been described in the relevant chapters. 

 

Specimens of T. megalopterus were collected using standard angling techniques and 

sacrificed by severing the spinal cord. Mass was taken using a Salter Scale (50 kg, 200 g 

precision). Total length (TOT), fork length (FOR) and precaudal length (PRC) were 

measured, with a measuring tape, to the nearest 10 mm (Figure 2.2). Length measurements 

were made on a horizontal line, from the tip of the snout to the tip of the caudal fin, at full 

extension (Compagno, 1984a). All length measurements used in this thesis refer to TOT, 

unless otherwise specified.  
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Figure 2.2: Illustration of the total length (TOT), fork length (FOR) and precaudal length 

(PRC) measured from each specimen according to the Compagno (1984a) 

Muscle tissue was removed from below the dorsal fin using a sterilized blade and forceps 

before being stored in 70% ethanol for genetic analyses. All morphological measurements 

(Chapter 4) were obtained before specimens were dissected. After measurements were 

finalized, the jaws were removed, cleaned of excess tissue and dried for use in the feeding 

morphology component of the study. 

Stomachs were removed by severing the base of the oesophagus and the intestine immediately 

anterior to the pylorus. Stomachs were weighed whole using a digital balance (500g, 0.1g 

precision). If the stomachs could not be assessed fresh, the entire contents were removed and 

weighed before removing the otoliths and cephalopod beaks, which were dried and stored in 

70% ethanol, respectively. The rest of the stomach contents were stored in 10% neutral 

buffered formalin for later analysis.  

The liver was removed, weighed and discarded. Stage of maturity was assessed using the 

macroscopic criteria developed by Bass et al. (1975); that is, each specimen was assigned a 

reproductive stage of: embryo, immature, adolescent, mature, or pregnant (for females). 

Gonads were removed and all components (eggs, oviducal glands and embryos) of the female 

reproductive system were weighed and measured (length and width). The number of eggs and 

embryos were also counted. 

Three to five vertebrae were removed posterior to the skull and from below the dorsal fin. 

Vertebrae were separated, carefully cleaned of excess tissue and left to dry for later age 

analysis.  
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Chapter 3:  

Genetic connectivity of Triakis megalopterus across 

its southern African distribution 
 

Introduction 

Evolution is the change in inherited traits of a population over successive generations driven 

by variations in biological form originating from the genotype and phenotype (Stearns, 1989). 

Understanding evolutionary change requires an understanding of population genetic structure 

and the biotic and abiotic forces governing the patterns of neutral and adaptive genetic 

divergence (Hemmer-Hansen et al., 2007). Species are a cornerstone of biology, ecology and 

conservation (Petit and Excoffier, 2009) and due to growing concerns over threats to 

biodiversity, species delimitation is imperative (Wiens, 2007). The inability to effectively 

identify species, stocks and populations could potentially have major consequences for 

contemporary and future global biodiversity conservation, sustainability and fisheries 

management (Carvalho and Hauser, 1998; Ward, 2000).  

 

Systematics can be considered to have two key objectives: to discover and describe species 

and to determine the phylogenetic relationships of these species (Wiens, 2007). In the past, 

species identification and delimitations have mainly been based on morphological differences 

(Wiens and Penkrot, 2002), but the advances of modern molecular techniques have 

strengthened traditional taxonomic species delimitation (Hebert and Gregory, 2005; Vogler 

and Monaghan, 2007). The population structure of species is, however, composed of two 

sections, demographic structure (biological features associated with life history) and genetic 

structure (population structure, mutation, selection and evolution (Sunnucks, 2000). The 

relationships between life history features (mating, birth/death rates) and the distribution of 

molecular genetic diversity is vital as changeability of life history features is generaly a good 

indicator of potential genetic sub-structuring patterns (Graves, 1998; Bargelloni et al., 2005; 

Gaggiotti et al., 2009; Galarza et al., 2009). The subdivision of species into self-recruiting 

populations has important ecological and evolutionary consequences; for example, local 

recruitment facilitates local adaptation. As alleles favourable in a particular local environment 

can be selected for whilst not compromising their lower fitness in different environments 

(Sale et al., 2006). This mechanism forms the basis of the ecological species concept, which 
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proposes that a species evolves as it becomes adapted to a particular set of resources (niche) 

in the environment (Ridley, 2003).  

 

Chondrichthyans have existed for at least 450 million years (Hoenig and Gruber, 1990), thus 

demonstrating remarkable historic endurance (Grogan et al., 2012). Life history traits such as 

slow growth, large adult size, late reproduction and few, well-formed young (Prince, 2005) 

are thought to contribute to the evolutionary rates that Martin and Palumbi (1993a) estimated 

to be six times slower than in mammals and up to eight times slower than in primates and 

ungulates (Martin et al., 1992).  

 

Species with wide distribution ranges, such as sharks (Dudgeon et al., 2012), may frequent 

habitats with different ecological characteristics (coastal or oceanic, tropical or subtropical), 

and consequently distinct evolutionary units may develop (Mendonça et al., 2013). That said, 

coastal species (e.g. Triakis megalopterus) are frequently reliant on near-shore habitats, which 

limits dispersal potential and is more likely to result in the subdivision of populations (Heupel 

et al., 2007). Furthermore, near-shore species usually aggregate for natal philopatry, 

maturation and parturition (Simpfendorfer and Milward, 1993), all of which affect the level of 

population subdivision and genetic differentiation amongst geographic areas. When common 

to both sexes, behaviour such as philopatry contributes to the development of closed 

populations. Here reproduction and recruitment are more significant determinants of 

population dynamics than migration (Secor, 2002). For example, lemon sharks, Negaprion 

brevirostris (DiBattista et al., 2008) and bull sharks, Carcharhinus leucas (Tillett et al., 2012) 

exhibit female philopatry, while great white sharks, Carcharodon carcharias have been seen 

to exhibit male and female philopatry (Jorgensen et al., 2010).  

 

Evolutionary forces such as gene flow, mutation, genetic drift and natural selection govern 

population genetic structure (Dudgeon et al., 2012; Ovenden et al., 2013). Gene flow is an 

important evolutionary force in which genes are exchanged between populations. There are a 

number of factors affecting the rate of gene flow between different populations. One of the 

most significant factors is mobility: the more mobile an individual is, the greater its migratory 

potential. Unlike teleosts, sharks lack a larval stage which significantly limits their dispersal 

potential (Whitney et al., 2012) and correspondingly, gene flow between populations (Musick 

et al., 2004). Sharks do, however, reach large sizes and the increased vagility promotes 

dispersal during the adult phase (Musick et al., 2004). Dispersal potential can also be sex-

biased (Petit and Excoffier, 2009), which can be assessed by comparing patterns of genetic 
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diversity distribution presented in biparentally inherited nuclear markers (e.g. microsatellites) 

and maternally inherited mitochondrial markers (Veríssimo et al., 2012).  

 

An organism’s ecology and the characteristics of the marine environment may also influence 

patterns of dispersal. Barriers may inhibit gene flow amongst even the most mobile species. 

Biogeographic barriers facilitate allopatric speciation, which may also lead to high levels of 

narrow endemism (Myers, 1997). Barriers to gene flow can be in the form of biogeographical 

obstructions (Glor and Warren, 2010; Dudgeon et al., 2012), historical climatic fluctuations 

(Brown et al., 1996; Hewitt, 2000; Janko et al., 2007) and landmasses (Jackson, 2010). 

Oceanic characteristics such as wide ocean basins, temperature gradients (Spalding et al., 

2009), deep oceanic water (Briggs, 1974b), freshwater outflows (Floeter et al., 2007), ocean 

currents (Gaylord and Gaines, 2000), frontal zones (Sournia, 1994; Reuschel et al., 2010) and 

upwelling (Luiz et al., 2012) are also considered barriers to gene flow. For instance, the 

genetic structure of the scalloped hammerhead shark, Sphyrna lewini, has been affected by the 

formation of the Isthmus of Panama landmass (Daly-Engel et al., 2012), interglacial dispersal 

and Pleistocene divergence events as well as the decline in gene flow amongst ocean basins 

(Duncan et al., 2006).  

 

Various models/parameters of genetic differentiation have been proposed, such as:  

The isolation by distance (IBD) model where interbreeding is restricted to small distances 

by the occurrence of short range of dispersal (Wright, 1943), which results in limited 

gene flow between populations (Jensen et al., 2005), e.g. lemon sharks, Negaprion 

brevirostris (Schultz et al., 2008).  

A stepping stone model suggests that the exchange of genes is restricted between 

neighbouring populations (Kimura and Weiss, 1964), and genes tend to move or disperse 

a single step among population subunits every generation (Van Dyke, 2008), e.g. the 

scalloped hammerhead shark, Sphyrna lewini (Duncan et al., 2006).  

Clines (geographic gradient in the frequency of a gene) are caused by differential 

adaptation to ocean conditions, e.g. temperature, pH, salinity or depth (Teske et al., 

2011b) or by natural selection favouring a different form along the gradient (Ridley, 

2003).  

Founder effects are caused by the establishment of a population from a small number of 

individuals and/or genetic bottleneck where a population undergoes a drastic reduction in 

population size (Ayala, 1982; Pierce, 2010). Bottlenecks caused by historical climatic 

fluctuations have been reported in the narrownose smooth-hound shark, Mustelus schmitti 
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(Pereyra et al., 2010), basking shark, Cetorhinus maximus (Hoelzel et al., 2006) and bull 

sharks, Carcharhinus leucas (Tillett et al., 2012).  

Lastly, rapid genetic discontinuity results in limited gene flow across a biogeographic 

barrier where the barrier separates a species’ distribution range (Slatkin, 1987), 

subsequently limiting gene flow for a long enough period for alleles in each population to 

drift to fixation of alternate alleles or mutual monophyly (Heupel and Heuter, 2002), e.g. 

the blacktip shark, Carcharhinus limbatus, whose distribution was interrupted by the 

Isthmus of Panama (Keeney and Heist, 2006).  

 

A molecular marker is an easily identifiable piece of DNA that can be used to distinguish 

individuals, populations, or species. Bi-parentally inherited nuclear DNA (nDNA) and/or 

maternally inherited mitochondrial DNA (mtDNA) is used to determine demographic history 

and population genetic structure in sharks (Veríssimo et al., 2010). Microsatellite markers are 

short segments of DNA that have a repeated sequence (simple sequence repeats; SSRs) of 1–6 

nucleotides (Wyman and White, 1980), which are most frequently used in kinship (Goodnight 

and Queller, 1999) and population studies (Selkoe and Toonen, 2006). Microsatellites are 

abundant, randomly dispersed in high frequencies throughout the genome of most eukaryotes 

(Litt and Luty, 1989) and tandemly organized into uninterrupted, interrupted or compound 

loci, e.g. (AG)n, (GC)nAT(GC)n, and (GC)n(AT)n(GT)n, respectively (Tautz, 1989; O’Connell 

and Wright, 1997; Estoup and Cornuet, 1999; Anne, 2006; Liu, 2007). According to Selkoe 

and Toonen (2006), microsatellite markers are useful at a wide range of scales of analyses 

including parentage analysis, relatedness, inbreeding levels (FIS), genetic structure of 

subpopulations and populations, demographic history, gene flow between populations, 

phylogeographic studies and fine-scale phylogenies to the level of closely related species.  

 

Microsatellites are markers characterized by codominance (Jarne and Lagoda, 1996), 

hypervariability (Weber and Wong, 1993; Slatkin, 1995), locus-specificity (Portnoy and 

Heist, 2012) and Mendelian heritability, allowing distinguishability of heterozygote and 

homozygote individuals for the same locus (Selkoe and Toonen, 2006). Microsatellites also 

permit the analysis of genetic relationships at population (using allelic frequencies) and 

individual (through genotypes) levels (Selkoe and Toonen, 2006) and, due to their high 

mutation rates (Tautz, 1989), assessment of recent genetic changes in population structure 

(Hedrick, 2005).  
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Microsatellites are not without disadvantages. These kinds of markers need to be isolated de 

novo from most species being examined for the first time (Hoffman and Nichols, 2011), 

usually produce relatively few loci to work with (Glenn and Schable, 2005) and may be prone 

to amplification inaccuracies that lead to genotyping errors (Hoffman and Amos, 2005; Girard 

and Angers, 2008). These errors include null alleles (failure of an allele to amplify) and 

stuttering (multiple bandings of a single allele caused by slippage of Taq). Size homoplasy, 

where alleles of the same size but different lineages reduce the visible allelic diversity of 

populations, may also occur (Blankenship et al., 2002; Epperson, 2005). Regardless of these 

limitations, microsatellite markers have been applied in elasmobranchs for genetic stock 

characterization, individual identification, discerning genetic mating systems, kinship, 

relatedness, sex-biased dispersal and philopatry (Dudgeon et al., 2012; Portnoy and Heist, 

2012). 

 

Mitochondrial DNA are non-nuclear and make up a small portion (<1%) of the DNA of 

eukaryotic cells located within the mitochondria (Castro et al., 1998). This type of DNA is 

intron free (Wan et al., 2004) maternally inherited, not subjected to recombination and 

exhibits higher substitution rates compared to the nuclear genome (Avise et al., 1987; Castro 

et al., 1998). Due to its maternal inheritance, the effective population size of mtDNA is a 

quarter of that for nuclear genes (Avise et al., 1987). However, the maternal inheritance of 

mtDNA is also its major drawback as it results in a quarter of the effective population size of 

the nDNA (Wan et al., 2004). Hence, nDNA markers are more introgressive than mtDNA 

markers and, consequently, less diagnostic (Petit and Excoffier, 2009). Evolving at a rate of 

up to 10 times faster than nDNA, mtDNA is better for assessing relationships among species 

and populations that diverged within the past 5–10 Mya (Brown et al., 1979). In marine 

species, mitochondrial markers are frequently used to investigate levels of population 

connectivity and genetic diversity (Bester-van der Merwe et al., 2011), evolutionary history 

(Corrigan and Beheregaray, 2009) and phylogeographic patterns (Von der Heyden et al., 

2011).  

 

Different mitochondrial genes have been used to assess numerous aspects of shark genetics. 

These include intra- and interspecies global phylogeography of scalloped hammerhead, 

Sphyrna lewini (Duncan et al., 2006) and lemon sharks, Negaprion spp. (Schultz et al., 2008), 

population structure of spiny dogfish, Squalus acanthias (Veríssimo et al., 2010) and whale 

sharks, Rhincodon typus (Castro et al., 2007), species interrelationships of sleeper sharks, 
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Somniosus spp. (Murray et al., 2008), and biogeographic patterns and molecular clock 

analysis of angel sharks, Squatina spp. (Stelbrink et al., 2010).  

 

Although the influence of the Benguela Current on the isolation of elasmobranchs has not yet 

been investigated, Henriques (2011) studied the genetic differentiation, population 

connectivity and evolutionary history of five coastal (Diplodus capensis, Argyrosomus 

inodorus, Argyrosomus coronus, Atractoscion aequidens and Lichia amia), and one pelagic 

(Thunnus albacares) teleost fish species across the Benguela Current. Results indicate that 

oceanic species display shallow population differentiation across the Atlantic and Indian 

Oceans, whereas coastal species range from shallow structuring (Argyrosomus inodorus and 

Thunnus albacares) to speciation events (Atractoscion aequidens, Argyrosomus coronus and 

Argyrosomus japonicus). All of the aforementioned genetic structure was found to be 

congruent with Benguela Current oceanographic features signifying a feasible vicariant 

barrier to dispersal of coastal fish species.  

 

Although genetic studies exist for the phylogeny of Triakidae (López et al., 2006) and the 

paternity (Nosal et al., 2013) and genetic structure (Lewallen et al., 2007) of leopard sharks, 

Triakis semifasciata, there is no molecular data available for the genetic connectivity of T. 

megalopterus across its southern African distribution. The aims of this chapter are to assess 

the patterns of gene flow, population connectivity, population structure, and demographics of 

T. megalopterus and to relate these findings to the hydrodynamics, biogeographic barriers and 

historical climate and coastal changes along the southern African coastline.  

 

Material and methods 

Sample collection and DNA extraction 

For mtDNA Control Region (mtCR), a total of 86 individuals were randomly selected across 

four sample sites, the south-east Atlantic Ocean samples were collected from southern Angola 

(AN), northern/central Namibia (NA) and Western Cape (WC), and the south-west Indian 

Ocean samples from the Eastern Cape (EC). Total genomic DNA extraction was done using 

the Wizard® Genomic DNA Purification Kit (Promega, USA). Approximate concentration of 

extracted genomic DNA was assessed in a 1% Ethidium bromide (EtBr) stained agarose gel, 

using 100 bp KAPA Universal Ladder as a size and concentration reference. In order to 

confirm DNA concentration, all samples were quantified in a NanoDrop ND-1000 

spectrophotometer v3.0.1 (NanoDrop®).  



24 
 

 

For microsatellite analysis, 130 samples were analysed which included the same 86 

individuals from the mtCR analysis. Genetic samples were collected from four geographic 

locations across two oceanic regions, the south-east Atlantic and south-west Indian Ocean. 

The south-east Atlantic Ocean samples were collected from AN, NA and WC and the south-

west Indian Ocean samples from the EC. Total genomic DNA was extracted from muscle 

tissue or fin clips using the standard cetyl trimethyl ammonium bromide (CTAB) method 

(Saghai-Maroof et al., 1984). Quantification of extracted DNA was assessed using a 

NanoDrop ND-1000 spectrophotometer v3.0.1 (NanoDrop®). Thereafter, each sample was 

adjusted to a 10ng/μl working concentration and stored at -20 ºC.  

 

Species identification  

To ensure correct species identification, individuals were barcoded using the mitochondrial 

COI gene using primers FishF1 and FishR1 with recommended PCR conditions demarcated 

in Ward et al. (2005). The PCR amplicons were viewed on a 2% agarose gel stained with 

EtBr using a Promega 100 bp molecular size ladder. Sequencing was performed using the 

standard Sanger sequencing chemistry (BigDye® terminator v3.1 cycle sequencing kit; 

Applied Biosystems) and capillary electrophoresis conducted at the DNA sequencing unit of 

the Central Analytical Facility of Stellenbosch University. Sequences were compared to 

known T. megalopterus sequences using the Barcode of Life Data System (BOLD; 

Ratnasingham and Hebert, 2007).  

 

mtCR sequencing and alignment 

A fragment of the mtCR gene was analysed for population genetic structure and 

phylogeographic pattern inference of T. megalopterus. Polymerase chain reaction (PCR) was 

conducted using primers ElasmoCR15642F (5ʹ- TTG GCT CCCAAA GCC AAR ATT CTG -

3ʹ) and ElasmoCR16638R (5ʹ- CCC TCG TTT TWG GGG TTT TTC GAG -3ʹ) according to 

the recommended PCR conditions outlined in Naylor et al. (2005). Success of PCR 

amplification of the target DNA region was assessed for the presence of single amplification 

product of the expected size against a known size standard (KAPA Universal Ladder) in a 1% 

agarose gel stained with EtBr. The PCR amplicons were sequenced at Macrogen, Korea. 

Sequences were aligned using Bioedit v7.0.9 (Hall, 1999) then manually corrected and 

trimmed to equal lengths using Mega v6.06 (Tamura et al., 2013).  
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mtCR sequence analysis 

Unique haplotypes were identified using Arlequin v3.5.1.2 (Excoffier and Lischer, 2010). 

Number of polymorphic sites (S), haplotype diversity (h), nucleotide diversity (π), and 

nucleotide composition were assessed using DnaSP v5.10.1 (Rozas et al., 2010). The h is the 

probability of randomly choosing two different haplotypes from the one population, and π is 

the likelihood that two homologous base positions, from two different haplotypes of the same 

population, were different (Tillett et al., 2012).  

 

Connectivity between capture locations was subsequently assessed using F-statistics 

estimated in Arlequin v3.5.1.2 (Excoffier and Lischer, 2010) using pairwise FST values at 

1000 bootstrap replicates. Genetic variability (F-statistics) is based on values that range from 

zero to one; zero indicates complete panmixia, one represents genetically distinct or isolated 

populations (Roesti et al., 2012). In addition, average regional population pairwise differences 

were estimated by the average between populations, within population and the average 

pairwise differences. Arlequin was also used for analysis of molecular variance (AMOVA) 

whereby three types of pooling/grouping strategies were used: 1) according to sample sites 

(AN, NA, WC and EC), 2) coastline (AN, NA and South Africa) and 3) oceanic placement 

(Atlantic and Indian Oceans). Grouping by country/coastline also coincides with northern 

versus southern Benguela subsystems, while oceanic position represents possible transoceanic 

genetic structure.  

 

To investigate the geographical distribution of haplotypes, a maximum-parsimony haplotype 

network was constructed in Network v4.6.1.2 (Fluxus Technology Ltd, 2015) using the 

median joining algorithm (Bandelt et al., 1999). To test for divergence between lineages 

possibly associated with warmer (Betty’s Bay and AN) and colder (Cape Point and NA) 

water, a second haplotype network was constructed excluding the EC population. Mega was 

again used to select the best fit model (Bootstrap, 1000 permutations) for phylogenetic 

inference. To display the genetic relationship between the study haplotypes, the Maximum 

Likelihood (ML) method based on the Tamura 3-parameter model (Tamura, 1992), was used.  

 

Population demographics 

Demographic analyses using the mtCR sequence data were performed in Arlequin. 

Mitochondrial DNA may be subject to purifying selection over short timescales, which can 

influence haplotype frequencies and bias estimates of population structure and demographic 

history (Avise, 2000). To account for this, deviations from selective neutrality (therefore 
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population expansion) were tested with Tajima’s D (Tajima, 1989), Fu’s FS (Fu and Li, 1993) 

and Ewens–Watterson F (Slatkin, 1994) neutrality tests using 10 000 permutations and α = 

0.05. Summary statistics were computed to test if data conformed to the expectations of 

neutral (non-selective) evolution. Significant differences in Tajima’s D were used to confirm 

deviation of population equilibrium (Tillett et al., 2012) whereas positive and negative 

significant values for Tajima’s D and Fu’s FS may be indicative of population bottlenecks or 

expansions, respectively (Ramos-Onsins and Rozas, 2002).  

 

In order to investigate past demographic expansions in T. megalopterus, a mismatch 

distribution analysis was conducted in Arlequin to calculate the observed and simulated 

differences between sequences. Inferences of population size based on the frequency of 

pairwise differences among haplotypes were made using Harpending’s raggedness index (HRI) 

at 10 000 permutations following the expectations that a multi-modal (ragged) distribution 

proposes a stable population and a unimodal (smooth) distribution advocates a rapid 

population expansion (Slatkin and Hudson, 1991; Rogers and Harpending, 1992). 

Significance of deviations from the hypothesis of a past demographic expansion was assessed 

using the sum of squared differences (SSD) at 10 000 iterations.  

 

Calculating the time since expansions and effective population sizes is highly dependent on 

mutation rate (µ). Unfortunately, mutation rates are currently not known for Triakidae or 

congeneric species. Previous studies have used average mutation rates gathered from a range 

of shark species (Martin et al., 1992; Duncan et al., 2006; Keeney and Heist, 2006; Schultz et 

al., 2008). These average mutation rates have, however, been calculated using non-congeneric 

species having different life history traits. The rate of molecular evolution is associated with 

generation time further correlated with metabolic rate, generation time, body size and other 

physiological and life history variables (Martin and Palumbi, 1993a). Therefore, due to the 

absence of CR mutation rate estimates for T. megalopterus or closely related species and/or 

species with similar life histories, dating a population expansion event and estimating female 

effective population size (Nef) was not considered for this study.  

 

Microsatellite genotyping 

Population structure and phylogeographic patterns were assessed based on 22 microsatellite 

markers (Table 3.1) using Polymerase Chain Reaction (PCR) amplification. These markers 

were previously developed for Mustelus canis (Giresi et al., 2012), Galeorhinus galeus 

(Chabot and Nigenda, 2011) and M. henlei (Byrne and Avise, 2012; Chabot, 2012). In a 
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recent study, these markers were combined into four multiplex assays and successfully tested 

for cross-species amplification in 16 elasmobranch species (Maduna et al., 2014). Each of 

these markers was tested in a subset of eight T. megalopterus individuals, two individuals 

from AN, NA, WC and EC respectively. Polymerase Chain Reaction amplifications were run 

according to the conditions specified by Maduna et al. (2014) using the GeneAmp® PCR 

System 2700. Amplicons were viewed on a 2% agarose gel stained with 0.05 ng/µl EtBr. A 

Promega 100 bp molecular size ladder was used for size determination.  

 

Table 3.1: Primer sequence, motif, fluorescent tag (dye) and source of the 22 microsatellite 

markers tested for their use in Triakis megalopterus; * = TMeg1, ** = TMeg2 (dye labels 

from Maduna et al., 2014)  

 

Locus Primer sequence (5’-3’)  Motif References Dye 

Mh1* 
F: GGAGGAGGGAAGCCTATGG 

(AG)n Chabot, 2012  VIC 
R: TCTCTGGCTCCATTCAGGG 

Mh2 
F: ACTACACTGCATATAAACAGGC 

(GA)n Byrne and Avise, 2012 VIC 
R: TTTTCAGAGGGCATAACTCAC 

Mh9 
F: CAACCATCTTTACTACACTG 

(GA)n Byrne and Avise, 2012 FAM 
R: GATGGACCTCACATTTAACAC 

Mh25* 
F: TGCAATAACCGTTCTGCGTC 

(CT)n Chabot, 2012 FAM 
R: TCACACCCGCAGTTAGATCC 

Mca25 
F: ACACACTTTCACGCACAAGC 

(CA)n(CT)n Giresi et al., 2012  PET 
R: TCGCTCAAGTGAGACCAGAG 

McaB39* 
F: GGACAGGCAGCATCTGTGTA 

(CA)nGAT(AC)n Giresi et al., 2012 NED 
R: CCCAGGGGGATTAGGATATT 

McaB5** 
F: TAATCGACACGCAGTCATCG 

(GT)n Giresi et al., 2012 VIC 
R: AAGCTCCAATTCTCACTGTGC 

McaB6** 
F: AGGATAAATACACGCACACAGG 

(CA)n Giresi et al., 2012 FAM 
R: TTTTTGTTTTGCAATCTCACG 

McaB22** 
F: TCCTCTCCAGGACAAACACAC 

(AC)n Giresi et al., 2012 NED 
R: TCCCACCTGCCATAGTAATTG 

McaB27** 
F: ATCCAGTGGTTTTGAAATGC 

(GT) n Giresi et al., 2012 PET 
R: CCTCGTAGGTCTCGTC 

Mca33** 
F: CATTTGAACCCCGACAGAAC 

(ATC)n Giresi et al., 2012 FAM 
R: TCCAAGTAAGGATGAGTGACACC 

McaB37** 
F: TCTGCCTCTGTGTCTCATCC 

(GT)n Giresi et al., 2012 NED 
R: TTTCCATTTCCGACATAGGG 

Gg2* 
F: TGGCTCAGTCCAGAAACCC 

(TG)n Chabot and Nigenda, 2011  NED 
R: CCCTATTCGAGAGGCCCAG 

Gg3* F: CCGTGACTGAAAGCAGCC (GATT)n Chabot and Nigenda, 2011  PET 



28 
 

Locus Primer sequence (5’-3’)  Motif References Dye 

R: CCCTCAACCATGGCAAGTG 

Gg7 
F: CTGTGGAACCAAACTCCAGC 

(AG)n Chabot and Nigenda, 2011  NED 
R: AGCTGGTCGAGGTGAATGC 

Gg11 
F: AAGTTGCACGTTTCCCAGC 

(TCCC)n Chabot and Nigenda, 2011  NED 
R: TACTGCAGGACCGGTTTCC 

Gg12 
F: TGTCAAACACCATCGCAGG 

(TA)n Chabot and Nigenda, 2011  FAM 
R: TGCTCTGAAGTCTACAAGAATGG 

Gg15 
F: GGCTGAATGGTTTCCCAGC 

(GA)n Chabot and Nigenda, 2011  FAM 
R: GCCTCCAACTTAGCATAGCC 

Gg17 
F: CCTGCTTGTGACAGTTACCC 

(AC)n Chabot and Nigenda, 2011  PET 
R: ACAGGCATCACCTCTGTGC 

Gg18* 
F: TCCACTTCAGGAAGGCCAG 

(GA)n Chabot and Nigenda, 2011  VIC 
R: CAAAGCCAGGTGGTTCTCC 

Gg22 
F: TCCTGGGATGGCAACTTCG 

(GT)n Chabot and Nigenda, 2011  FAM 
R: AGGCCACCCAACTATCCTG 

Gg23 
F: ACAGACCACAGGGCATGG 

(AC)n Chabot and Nigenda, 2011  VIC 
R: TGCAGAGCAGGCTAGATGG 

 

Of the 22 microsatellite markers used in T. megalopterus, 12 were successfully cross-

amplified and selected for screening of genetic variation in T. megalopterus. To facilitate 

multiplex PCR, forward primers of the successful markers were fluorescently labelled with 

one of four fluorescent tags (FAM, VIC, PET, or NED). The 12 markers were separated into 

two multiplex assays, TMeg1 (Gg2, Gg3, Gg18, McaB39 Mh1 and Mh25) and TMeg2 

(McaB5, McaB6, McaB22, McaB37, McaB27, and Mca33). The two multiplex assays were 

used to genotype all 140 T. megalopterus specimens using a Qiagen Multiplex PCR kit 

according to the manufacturer’s recommendations. Fragment analysis was performed with the 

LIZ600 internal size standard using a forced-capillary 3730 instrument. Based on fragment 

size, genotypes were scored using GeneMapper v4.0 (Applied Biosystems, 2006).  

 

Marker validity 

Microsatellite loci were screened for genotyping errors due to null alleles (Shaw et al., 1999), 

short allele dominance (allele dropout) and/or stuttering using MicroChecker v2.2.3 (Van 

Oosterhout et al., 2004). Deviations from Hardy–Weinberg expectations of random mating 

within loci and across sample populations and linkage disequilibrium (i.e. non-random 

association of alleles between loci within samples) were tested applying the Inbreeding 

Coefficient (FIS) calculated in Genepop v4.0 (Raymond and Rousset, 1995) using the Markov 

chain parameters of 500 batches and 10 000 iterations. In Arlequin, the Slatkin’s exact test 
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was used to test for selective neutrality using the Ewens–Watterson infinite-alleles model at 

10 000 permutations (Slatkin, 1995).  

 

Genetic diversity and population differentiation  

Measures of genetic diversity such as allelic richness (AR), number of alleles (NA), expected 

(HE) and observed (HO) heterozygosity and Shannon–Weaver Information Index (I), mean 

relatedness (r) within populations (Queller and Goodnight, 1989) with 1000 permutations and 

derived 95% confidence intervals and pairwise FST between sample sites were calculated 

using GenAlEx v6.5 (Peakall and Smouse, 2012). Relatedness (r) is the measure of biological 

relationship between individuals. The amount of relatedness ranges from zero (unrelated) to 

one (identical twins) where expected full siblings and half siblings will result in r = 0.5 and r 

= 0.25, respectively (Queller and Goodnight, 1989).  

 

Arlequin was also used for analysis of molecular variance (AMOVA) whereby three types of 

pooling/grouping strategies were used: 1) according to sample sites (AN, NA, WC and EC), 

2) coastline (AN, NA and South Africa) and 3) oceanic placement (Atlantic and Indian 

Oceans). To visualize the distribution of genetic variation, a factorial correspondence analysis 

(FCA) plot was created using Genetix v4.05 (Belkhir et al., 2000). The IBD suggested by the 

FCA was analysed by means of a Mantel test (Mantel, 1967) implemented via GenAlEx v6.5 

(Peakall and Smouse, 2012)  

 

To detect the number of possible distinct genetic clusters (K) present in T. megalopterus, a 

Bayesian clustering admixture model with correlated allele frequencies was performed in 

Structure v2.3.4 using 10 replicates from K = 1 to K = 6, with 1 000 000 iterations. Structure 

output files were used to assess the most likely K value in Structure Harvester v0.3 (Earl and 

VonHoldt, 2012). Assignments of individuals to populations in Structure were calculated 

using Clumpp v1.1.2 (Jakobsson and Rosenberg, 2007) and the output visualized with 

Distruct v1.1 (Rosenberg, 2004).  

 

Demographic history 

Estimates of effective population size (NE) were done using the linkage disequilibrium (LD) 

test (minimum allele frequency 0.02) and heterozygosity excess method in NEEstimator v2.01 

(Do et al., 2014). As long term monitoring and historic data of T. megalopterus is unavailable, 

detecting past population bottlenecks needs to be done with methods that require only a single 

temporal sample (Cornuet and Luikart, 1996). For this reason, the possibilities of recent 
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bottlenecks were analysed using Bottleneck v1.2.02 (Piry et al., 1999), a method that tests for 

temporary heterozygote excess caused by a bottleneck that is relative to that expected under 

the mutational drift equilibrium. Heterozygosity excess or deficiency was tested under three 

commonly accepted mutation models for microsatellite evolution, Infinite Alleles Model 

(IAM; Watterson, 1984), Stepwise Mutation Model (SPM; Chakraborty and Nei, 1977) and 

Two-Phase Mutation Model (TPM; Di Rienzo et al., 1994). Bottleneck analysis made use of 

1 000 replications at the 5% nominal level using a TPM composed of 70% SMM and 30% 

IAM and a variance of 30 (Piry et al., 1999). The one-tailed Wilcoxon signed rank test was 

used to determine significance of the observed deviations.  

 

Results and interpretation  

Mitochondrial DNA (mtCR) 

Based on the COI gene and the BOLD database, all specimens were positively identified as T. 

megalopterus. A 673bp fragment from the mtCR, was successfully amplified in a total of 86 

T. megalopterus samples collected from four sample sites (AN, NA, WC and EC). Sequence 

alignment in Mega revealed nucleotide composition of 36.2% thymine, 21.2% cytosine, 

29.7% adenine and 13.0% guanine. The Tamura 1992 model (T92; Tamura, 1992) was 

approximated to be the best fit to the data using the Bayesian Information Criterion (BIC) in 

Mega.  

 

A total of six haplotypes were characterized by six polymorphic segregating sites (S) of which 

three were parsimony informative. Haplotype diversity (Table 3.2) varied substantially (h = 

0.000–0.0524) between sample sites where the South African localities displayed the highest 

haplotype diversities as opposed to NA which presented zero haplotype diversity. Nucleotide 

diversity was zero in all sample sites besides WC (π = 0.001). Therefore WC showed the 

highest haplotype and nucleotide diversity.  
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Table 3.2: Summary of population statistics for Triakis megalopterus integrated overall 

mitochondrial Control Region haplotypes from all four sampling sites; n = number of 

individuals, H = number of haplotypes, h = haplotype diversity, π = nucleotide diversity  

 

Population n H H Π 

Angola 16 2 0.125 0.0004 

Namibia 15 1 0.000 0.0000 

Western Cape 22 4 0.524 0.0014 

Eastern Cape 33 4 0.328 0.0006 

 

Network analysis revealed a central haplotype, TMH1, with two independent lineages 

representing mainly SA and AN respectively. Haplotype divergence was low, differing by 

only one mutational step, except TMH1-TMH5 which diverged by two mutational steps 

(Figure 3.1).  

 

 

Figure 3.1: Median-joining network of haplotypes in mitochondrial Control Region for all 

Triakis megalopterus individuals. Node size is proportional to number of individuals sampled 

within the haplotype. Branch lengths correspond to one nucleotide substitution between 

haplotypes except where black squares represent unsampled ("missing") haplotypes.  
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A second haplotype network excluding the east coast samples (Figure 3.2) also showed the 

main and central haplotype, TMH1, and included representatives from both the proposed cold 

(Cape Point and NA) and warm (Betty’s Bay and AN) water sample sites. Thereafter, the 

haplotype network showed clear separation between cold (Cape Point; TMH4) and warm 

(AN; TMH5) water lineages.  

 

Figure 3.2: Median-joining network of warm and cold water habitats (excluding the Eastern 

Cape population) haplotypes in mtCR for Triakis megalopterus. Node size is proportional to 

number of individuals sampled within the haplotype. Branch lengths correspond to one 

nucleotide substitution between haplotypes except where black squares represent a double 

mutation between TMH1 and TMH5.  

 

Phylogenetic reconstruction also revealed that the haplotypes were separated into two clades 

(Figure 3.3), consistent with the haplotype network in that separate clades were apparent for 

AN (TMH5) and the South African sample sites, WC (THM3) and EC (THM2, THM4 and 

THM6). 
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Figure 3.3: Molecular Phylogenetic tree of mitochondrial Control Region analysis for Triakis megalopterus using Maximum Likelihood (ML) 

molecular phylogenetic analysis with a bootstrap consensus tree inferred from 1000 replicates; AN = Angola, WC = Western Cape, EC = 

Eastern Cape.  
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mtCR population structure and phylogeographic patterns 

Genetic differentiation (FST; Table 3.3) was significant in all sample site comparisons except 

AN-NA (p = 0.991) which appears to be a homogeneous panmictic population. The largest 

genetic differences were amongst EC and all other sample sites (FST >0.380, p<0.01) 

revealing two diverse interoceanic groups, the Atlantic Ocean (AN-NA-WC) and Indian 

Ocean (EC), supporting trans-oceanic population structure. However, there was evidence of 

admixture (although non-significant) between the two South African sample sites, WC and 

EC (FST = 0.380, p<0.01) but lower levels of genetic differentiation between WC-AN (FST = 

0.150, p = 0.027) and WC-NA (FST = 0.164, p = 0.045). 

 

Table 3.3: Estimates of pairwise FST values from mitochondrial Control Region for Triakis 

megalopterus from four sample sites across southern Africa. Genetic distances and 

significance values are represented below and above the diagonal, respectively; statistical 

significance at the 5% level is highlighted in bold. 

 

 Angola Namibia Western Cape Eastern Cape 

Angola - 0.991 0.027 0.000 

Namibia -0.004 - 0.045 0.000 

Western Cape 0.150 0.164 - 0.000 

Eastern Cape 0.717 0.762 0.380 - 

 

Average pairwise distances (Figure 3.4) between populations were highest and lowest 

between AN-EC and AN-NA, respectively. Within population differences were highest and 

lowest in WC and NA, respectively, correlated to the haplotype and nucleotide diversities for 

these populations. Nei’s genetic distance showed the most distantly related sample sites were 

EC-AN and EC-NA, while the lowest genetic distance values were between WC-AN and 

WC-NA.  
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Figure 3.4: Average number of pairwise differences (π) for mitochondrial Control Region 

between sampled populations by means of three colour scales. Orange on diagonal represents 

π within populations; green above diagonal shows πxy between pairs of populations and blue 

below diagonal gives the net number of nucleotide differences between populations.  

 

Significant differences (p<0.05) were present within groups and within populations for the 

northern vs. southern Benguela and trans-oceanic grouping strategies (Figure 3.5). However, 

non-significant (p>0.05) differences were evident for the amongst group variables for the 

same pooling strategies, thus not supporting the cold vs. warm lineage hypothesis. 
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Figure 3.5: Analysis of molecular variance results for mitochondrial Control Region of (a) 

Atlantic (AN, NA and WC) vs. Indian (EC) Oceans and (b) northern (AN and NA) vs. 

southern (WC and EC) Benguela subsystems; AN = Angola, NA = Namibia, WC = Western 

Cape and EC = Eastern Cape, * = significance at the 5% level.  

 

mtCR population demographics 

Both Tajima’s (D = -0.788, p = 0.244) and Fu’s (FS = -1.248, p = 0.289) statistics for 

neutrality were negative and non-significant indicating no excess of alleles that would be 

expected following a population expansion event.  

 

Overall value for SSD (SSD = 0.007) was low and non-significant, p (Sim. SSD >= Obs. SSD) = 

0.116. This signified no deviations from expectations under the model of expansion and thus 

it was not possible to reject the null hypothesis of a past demographic expansion. 

Harpending’s raggedness index (HRI = 0.113) was also not statistically significant, p (Sim. HRI >= 

Obs. HRI) = 0.050, an indication that the data has relatively good fit to a model of population 

expansion (Harpending, 1994; Schneider and Excoffier, 1999).  

 

The mismatch distribution (Figure 3.6) exhibited a clear unimodal pattern of the genetic 

differences between pairs of individuals in a mismatch distribution considering all the 

analysed individuals. This is characteristic of populations that have undergone a demographic 

expansion in the past. This was reiterated by the mismatch analysis where the estimated 

ancestral population size (θ0) of 0.000 increased dramatically to an actual population size (θ1) 

of 99 999.00 with a τ value of 0.842. The large variance between θ0 and θ1 is an indication of 

population expansion.  
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Figure 3.6: Mismatch distribution of demographic expansion based on the infinite allele 

model for mitochondrial Control Region indicating the observed (thick black line) and 

expected (thin black line) numbers of pairwise differences for Triakis megalopterus  

 

Microsatellites (nDNA) marker validity 

The genetic structure of T. megalopterus was assessed using a subset of six microsatellite 

markers (Gg2, Gg3, Mh1, Mh25, McaB22 and McaB37). The remaining markers (Gg18, 

McaB5, McaB6, McaB27, McaB39 and Mca33) were excluded from further analyses as they 

displayed genotyping errors and/or did not conform to Hardy–Weinberg equilibrium and 

selective neutrality. A total of 99 T. megalopterus individuals from four sample sites (AN, 

NA, WC and EC) across southern Africa were successfully genotyped. 

 

nDNA genetic diversity and population differentiation  

Mean within-population pairwise relatedness (r) for nDNA loci from four T. megalopterus 

sample sites showed all sample site means were within the upper and lower confidence levels 

indicating that individuals from all populations were sampled randomly. Values amongst 

populations were not exceptionally high and ranged from r = -0.115 in EC to r = 0042 in NA. 

Comparable genetic diversity was evident across all sample sites (Figure 3.7). The mean 

number of private alleles was highest in WC with two markers (Mh1 and Gg3; Ap = 0.333) 
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showing private alleles compared to a single marker in all other sample sites (Ap = 0.167). 

Genetic diversity levels were highest in EC (mean HE = 0.578; mean AR = 2.441; mean I = 

1.020) and lowest in WC (mean HE = 0.514; mean AR = 2.328; mean I = 0.945).  

 

 

Figure 3.7: Mean genetic diversity estimates using microsatellite loci from Triakis 

megalopterus; AN = number of alleles, AR = allelic richness, I = information index, AP = 

number of private alleles, HE = heterozygosity.  

 

Pairwise genotypic differentiation (Table 3.4) indicated highly significant (p ≤ 0.002) 

population differentiation amongst four of the six population comparisons. All comparisons 

with EC were significantly different. Although AN and NA are neighbouring populations, 

both present within the Atlantic Ocean and in the northern Benguela subsystem, the AN-NA 

comparison revealed significant differences (FST = 0.039, p = 0.001). Interestingly, complete 

panmixia (FST = 0.000, p = 0.404) was apparent in AN-WC implying that there was gene flow 

between T. megalopterus from WC-AN and WC-NA but no significant gene flow between 

AN-NA.  

 

Table 3.4: Microsatellite pairwise FST values for the four sample site comparisons of Triakis 

megalopterus. Shown above and below the diagonal line are the significant (p) and FST values, 

respectively; statistical significance at the 5% level highlighted in bold.  

 Angola Namibia Western Cape Eastern Cape 

Angola  0.001 0.404 0.001 

Namibia 0.039  0.060 0.002 

Western Cape 0.000 0.017  0.001 

Eastern Cape 0.112 0.040 0.113  
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The hierarchical AMOVA (Figure 3.8) for the Atlantic (AN, NA and WC) vs. Indian Ocean 

(EC) geographic groupings showed trans-oceanic genetic structure with significant (p<0.05) 

differences amongst oceans (FCT = 0.055) and within populations (FST = 0.024). Northern 

Benguela (AN and NA) vs. southern Benguela (WC and EC) grouping revealed significant 

(p<0.05) differences within groups (FSC = 0.039) and within populations (FST = 0.073). 

Structure between the northern and southern Benguela subsystems (FCT = -0.037) were non-

significant (p>0.05).  

 

 

Figure 3.8: Analysis of molecular variance results from microsatellite data of Triakis 

megalopterus groupings of (a) Atlantic (AN, NA and WC) vs. Indian (EC) Oceans and (b) 

northern (AN and NA) vs. southern (WC and EC) Benguela subsystems; AN = Angola, NA = 

Namibia, WC = Western Cape and EC = Eastern Cape, * = significance at the 5% level.  

 

Factorial Correspondence Analysis (FCA; Figure 3.9) did not identify distinct groupings for 

individuals from the different sample sites, neither from the different ocean regions or the 

northern and southern Benguela subsystems. However, the vast majority of AN (left) 

individuals seem to form a tighter cluster, while the other three locations (NA, WC, and EC) 

appear to be more overlapping and dispersed. 
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Figure 3.9: Factorial correspondence analysis plots of microsatellite loci of Triakis megalopterus from all sample sites.  
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A regression of genetic distance (FST) and geographical distance of the four sample sites of T. 

megalopterus (Figure 3.10) showed no significant correlation between the four sample sites 

(r
2
 = -0.410, p = 0.419).  

 

 

Figure 3.10: Isolation by distance of microsatellite data showing pairwise population FST vs. 

geographical distance amongst all four sample sites of Triakis megalopterus.  

 

Bayesian clustering analysis in Structure indicated that the most likely number of clusters (K) 

for T. megalopterus was two (Figure 3.11 a and b) with AN, NA and WC representing one 

cluster and the other cluster comprising individuals only from the EC. This supported limited 

gene flow between the Atlantic and Indian Oceans. Furthermore, K = 3 (Figure 3.11 c and d) 

is shown to demonstrate clinal variation, gradual differences in allele frequencies across the 

four sample sites spanning the southern African coastline. 
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Figure 3.11: Genetic structure of microsatellite data for four Triakis megalopterus sample 

sites based on Bayesian clustering analyses, (a) K = 2 population Q-matrix; (b) K = 2 

individual Q-matrix; (c) K = 3 population Q-matrix and (d) K = 3 individual Q-matrix.  

 

nDNA demographic history 

Estimates of contemporary effective population size (NE; Table 3.5) indicated low (NE <3.3) 

effective population sizes for all populations except AN (NE = 26.9). Unfortunately, all 

confidence intervals contain infinity giving little power to make any inferences about NE.  

 

The bottleneck analyses showed a normal L-shaped distribution for all sample sites. Using the 

Wilcoxon signed-rank test, no significant (p>0.05) heterozygosity excess or deficiencies were 

apparent under the TPM or SMM across all the study sites. Lack of significance for 

heterozygosity deficiency and heterozygosity excess were indicative of no recent 

demographic expansion or bottleneck events.  
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Table 3.5: Microsatellite effective population size (Ne) estimates based on linkage 

disequilibrium and heterozygosity excess (Neb) amongst four sample sites of Triakis 

megalopterus  

   TPM SMM 

 Ne [95% CI] Neb [95% CI] 
He 

deficiency 

He 

excess 

He 

deficiency 

He 

excess 

Angola 
26.9 

[6.6 - ∞] 
∞ [2.8 - ∞] 0.410 0.633 0.213 0.820 

Namibia 
2.4 

[1.7 – 4.4] 
∞ [3.8 - ∞] 0.936 0.082 0.590 0.455 

Western Cape 
3.2 

[1.8 – 11.2] 
∞ [2.5 - ∞] 0.633 0.410 0.500 0.545 

Eastern Cape 
3.2 

[2.1 – 8.5] 
∞ [2.9 - ∞] 0.850 0.180 0.545 0.500 

 

Discussion 

As marine habitats have few barriers to physical dispersal, many marine species are known to 

range over very large distances (Lessios et al., 1998; Waples, 1998). Despite this, marine taxa 

with potentially high dispersal abilities have been known to show abrupt discontinuity in their 

distributions (Teske et al., 2005; Waters et al., 2005). Due to the fact that the South Africa 

marine realm shows no hard barriers to dispersal, it is difficult to explain phylogeographic 

breaks by means of contemporary oceanography alone (Teske et al., 2013). Historical 

processes such as geological changes and large scale climatic events can intensely effect the 

evolution of a species (Wilson, 2006; Hemmer-Hansen et al., 2007; Pardiñas et al., 2010). 

Therefore, historical events, such as those observed during the Pleistocene are most likely the 

cause of a reduction/break in gene flow amongst populations. The Earth’s climate became 

cooler through the Tertiary, 65 Mya, with frequent oscillations increasing in intensity leading 

to the series of major ice ages of the Quaternary, 2.4 Mya to the present (Hewitt, 2000). Since 

the Mesozoic, several geophysical events have shaped marine biotas e.g., the emergence of 

the Isthmus of Panama, closure of the Tethys Seaway and the formation of the Benguela 

upwelling (Duda and Lessios, 2009).  

In southern Africa, climate oscillations through the Pleistocene have altered coastal 

morphology (Teske et al., 2011b). Although sea level fluctuations on the southern African 
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coast have been less than 3 m in the last 7 000 years (Ramsay, 1995; Baxter and Meadows, 

1999; Compton, 2001), the Last Glacial Maximum (LGM), between 26 500 and 19 000 years 

ago (Clark et al., 2009), saw sea level drops of approximately 120–140 m lower than present 

(Ramsay and Cooper, 2002). During the LGM, the continental shelf of the South African 

continent, known today as the Agulhas Bank, was left exposed resulting in the southernmost 

tip of Africa (Cape Agulhas) lying approximately 200 km south of where it is today (Teske et 

al., 2013). According to von der Heyden et al. (2011), the drop in sea level and exposure of 

the Agulhas bank caused a range contraction, decline in available habitats and isolation of east 

and west coast populations. Studies have shown that during these cooler glacial periods, many 

temperate species experienced shifts in distribution and/or declines in population abundance 

(Hewitt, 2004).  

The most prominent and constant result signified by the mtCR (FST) and nDNA (Bayesian 

clustering analysis) showed that EC was a separate population. This indicates that the 

population structure of T. megalopterus conform to a transoceanic arrangement, Atlantic (AN, 

NA, WC) versus Indian Ocean (EC) populations. This transoceanic pattern of population 

structure was also found in the yellowfin tuna, Thunnus albacares (Henriques, 2011). The 

similarities in the structure of these two species indicate that, much like T. albacares, T. 

megalopterus is able to withstand the colder waters of the Benguela Current and displays a 

larger distribution potential for genetic admixture. Much like T. albacares, T. megalopterus 

may also migrate preferentially within ocean basins. 

Von der Heyden et al. (2011)  proposed that the drop in sea levels and exposure of the 

Agulhas Bank during the LGM resulted in rocky shore habitat being replaced by sandy 

beaches in southern Africa, thus driving divergence of populations occupying isolated rocky 

shores. This occurrence has been noted in the Caribbean where a 90% decrease in reef habitat 

was recorded during the LGM (Bellwood and Wainwright, 2002). Von der Heyden’s 

hypothesis was recently confirmed by Toms et al. (2014) who found that between Marine 

Isotope Stage 4 (MIS 4) and the LGM, the rocky shore refugia of the southwest and southeast 

coasts of southern Africa were disconnected by sandy shores for at least 40 000 years 

resulting in two lineages (west and east coast) of the clinid Clinus cottoides in southern 

Africa. As T. megalopterus in known to occupy rocky intertidal zones (Bass et al., 1975; 

Smale and Goosen, 1999), it would appear that the exposure of the Agulhas Bank and reduced 

rocky shore habitat may have played a considerable role in the separation of the EC 

population. Phylogeographic breaks between adjacent populations, particularly when there is 

concordance in several species with different life histories (such as C. cottoides and T. 
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megalopterus), is influenced by the presence and duration of a historical geographic barrier 

(Kuo and Avise, 2005).  

Further confirmation that the split between the Atlantic and Indian Ocean populations may be 

historic is the fact that the ORI tagging data show that T. megalopterus is uninterruptedly 

present from WC to EC and able to move between the two provinces (Dunlop and Mann, 

2014). According to Irwin (2002), phylogeographic breaks are still possible between 

continuously distributed species, particularly if mean dispersal distances and/or population 

sizes are low. Although not much is known about the population sizes of T. megalopterus, the 

tagging data show that this species displays a high level of residency and/or philopatry as 

approximately 80% of the recaptures were within a 20 km radius. One specimen was 

recaptured within 7 km after 17.4 years. The movement of this species explains why there is 

evidence of contemporary gene flow between WC and EC despite the separation of the two 

populations in the Bayesian cluster analysis. Tagging and/or acoustic tracking that includes 

sex data will also assist in a more robust evaluation of T. megalopterus movement patterns 

and help to determine the extent of female philopatry and the dependence of this species on 

their specific ranges.  

The Pleistocene has been hypothesized as a significant period for speciation (Thum and 

Harrison, 2009). This period is characterized by large-scale climatic changes which led to 

persistent variations in oceanic circulatory patterns, sea levels, productivity, SST (Hemmer-

Hansen et al., 2007) and reduction in suitable habitats (Toms et al., 2014), all of which have 

prominently influenced the evolutionary history of living marine taxa (Liu et al., 2007; 

Larmuseau et al., 2009). During the Pleistocene, cooler glacial cycles initiated a contraction 

and shift of temperate species to lower latitudes after which, during interglacial (warming) 

periods, these species would recolonize resulting in population growth. This is known as the 

Expansion–Contraction model (Provan and Bennett, 2008). Postglacial expansion into new 

habitats has been suggested to be vital in the geographic distribution of population and species 

genomes (Teske et al., 2013).  

Throughout the aforementioned glacial periods, changes in the Agulhas Current were also 

evident. This current was cooler and weaker in summer months and believed to have ceased 

to flow in winter (Hutson, 1980). Consequently, Agulhas leakage was considerably reduced 

and essentially halted the mixing between the Indian and south Atlantic ocean waters 

(Franzese et al., 2006) and the respective populations therein. These are all possible reasons 

for the isolation of the EC population from other sample sites in this study. Although EC may 
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have been isolated during these cold periods of the LGM, neither mtCR (non-significant 

Tajima’s D) nor nDNA data (non-significant heterozygosity excess) showed evidence of 

historical or contemporary bottleneck events.  

Population expansion, however, was evident by means of a unimodal mismatch distribution 

and a large increase from ancestral to actual population size. Although, due to the weak nature 

of observed patterns in the data, this population expansion may be speculative. However, if an 

population expansion did in fact take place, it can be hypothesized that the population 

expansion may have occurred in T. megalopterus after the LGM in a period where warming 

expanded populations from their glacial refugia (O’Brien et al., 2013). During this period of 

warming, sea levels were again elevated increasing appropriate habitat ranges for various 

marine organisms (Marko et al., 2010; Nance et al., 2011), in turn causing population 

expansions (Peltier, 1988; Miller et al., 1995; Teske et al., 2006, 2011a). This was also 

hypothesized for M. mustelus (Maduna, 2014).  

The nDNA FST data show a link between WC-NA and WC-AN but not AN-NA. As the NA 

population inhabits the colder waters of the Benguela Current and the AN population the 

warmer waters of the Angolan Current, it may be plausible that T. megalopterus consists of a 

warm and cold water lineage. The haplotype network of hypothesized warm versus cold 

clades shows evidence of warm and cold lineages. The warm clade comprised the population 

from AN and the warmer parts of the Western Cape, in this case, Betty’s Bay. The cold clade  

originated from NA and the cooler waters of the Western Cape, in this instance, Cape Point. 

Again, a lack of mutation rate for T. megalopterus hinders the exact dating of when this split 

was most likely associated with the inception of the Benguela Current and/or historical 

glacial/interglacial episodes. A similar pattern has been observed in two species of kob 

(Argyrosomus japonicus and A. coronus) from southern Africa. According to Potts et al. 

(2013), these two species stemmed from a common ancestor around southern Africa. 

Argyrosomus spp. were split into north-eastern and south-eastern populations due to rapid 

warming at the equator during an interglacial period (3.78–1.68 Mya.). This split was 

followed by sympatric speciation of Argyrosomus inodorus from coastal Argyrosomus spp. 

(early–mid Pleistocene, 2.41–1.33 Mya.) when cool and warm water individuals started 

spawning in separate grounds. Consequently, the final speciation event, to form what are 

today known as A. japonicus and A. coronus, was caused by the allopatric isolation of the 

warm water lineage during the establishment of the cold Benguela Current (2.19–0.93 Mya.). 

As sharks are known to evolve much slower than many other animals (Martin et al., 1992; 

Martin and Palumbi, 1993b), it may take many more years of uninterrupted isolation of the 
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warm and cold water clades before speciation would be evident in T. megalopterus. Future 

research is needed to determine an accurate mutation rate for T. megalopterus, which is 

imperative to precisely determine the demographic history of this species, its patterns of 

population stability, concentration or expansion, timing of population expansion events and 

accurate effective population sizes.  

According to the global biogeographic patterns (see Chapter 1), the South African 

populations of WC and EC are both present within the Agulhas province and Agulhas Bank 

bioregion, while AN and NA are both located within the Benguela province and Namib 

ecoregions. As the biogeographical provinces are said to be constrained by boundaries, such 

as geochemical influences, hydrographic features and geomorphological features, and 

ecoregions by temperature regimes, nutrients, freshwater incursion, upwelling systems, ocean 

currents, bathymetry, coastal complexity, isolation and/or ice regimes (Spalding et al., 2009), 

one would expect the genetics of species to represent these biogeographic patterns. Although 

the mtCR data (median-joining haplotype network and phylogenetic tree) showed a South 

Africa versus Angola split in populations, which conforms to a separation by biogeographic 

region, the nDNA exhibited two clades, separated by ocean, for T. megalopterus. It may 

therefore be possible that the distribution of this species was affected by biogeographic region 

before the exposure of the Agulhas Bank, which shaped the contemporary population 

structure of T. megalopterus.  

Phylogeographic breaks have also been well documented to separate lineages associated with 

cool-temperate and warm-temperate biogeographic regions (Emanuel et al., 1992; Turpie et 

al., 2000; Evans et al., 2004; Teske et al., 2007b). Several molecular studies within South 

Africa have identified marine localities that act as barriers to gene flow, namely Cape Point, 

Cape Agulhas, Algoa Bay, the Wild Coast and the Mozambique border (Von der Heyden et 

al., 2011). Should any of the aforementioned barriers have an effect on T. megalopterus, it 

would likely be Cape Agulhas, as this potential barrier is located between the sampling sites 

of the WC and EC. Cape Agulhas has been proven as a barrier to the dispersal of several 

marine species namely, abalone Haliotis midae (Evans et al., 2004; Bester-van der Merwe et 

al., 2011), various clinids (Von Der Heyden et al., 2008), the caridean shrimp, Palaemon 

peringueyi (Teske et al., 2007a), the mudprawn, Upogebia africana and the isopod, 

Exosphaeroma hylecoetes (Teske et al., 2006). Cape Agulhas was also proposed to be the 

prominent barrier in the dispersal of the common smoothhound, Mustelus mustelus (Maduna, 

2014). Interestingly, however, the ORI tagging data show that T. megalopterus is able to 

move between Cape Point, Cape Agulhas and Algoa Bay (Dunlop and Mann, 2014), 
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providing further evidence that the population structure of this species appears to be 

predominantly affected by historical events.  

The conservation of genetic variation is a fundamental element of many species management 

programmes. Effective management of biological resources therefore lies in gaining adequate 

knowledge of the genetic variability both intra- and inter-populations because, ultimately, this 

is what permits the adaptation of a species to varying environments and their response to 

selection (O’Connell and Wright, 1997). Consequently, historic and contemporary patterns of 

population divergence have the potential to inform scientists of the outcome of historical 

interactions between a species and its surrounding environment (Grosberg and Cunningham, 

2001). According to Gray (1997), a decrease in genetic diversity may be caused by 

environmental stress, species introduction and invasions, habitat degradation, fragmentation 

and loss and/or watersheds and physical alterations of coast. Fishing pressure (Smith et al., 

1991), the intermediate disturbance hypothesis (Connell et al., 1978), global climate change 

(Pernetta, 1993) and bottlenecks (Landergott et al., 2001) may also contribute to declines in 

genetic diversity. All of the selection pressures mentioned above, whether natural or human-

related, are capable of shaping the heritable adaptations of a species, which in turn will alter 

its characteristics over time. 

Compared to teleost species, it has been widely generalized that sharks have low genetic 

diversity (Smith, 1986; Dudgeon et al., 2012; Portnoy and Heist, 2012). Although this is true 

for the majority of shark species, there are exceptions, e.g.: the whale shark, Rhincodon typus 

(h = 0.97, π = 0.011; Castro et al., 2007); sandbar shark, Carcharhinus plumbeus (h = 0.959, π 

= 0.00475; Portnoy et al., 2010) , (h = 0.852, π = 0.0029; Blower et al., 2012); spiny dogfish, 

Squalus acanthias (h = 0.735, π = 0.0029; Veríssimo et al., 2010); blacktip shark, 

Carcharhinus limbatus (h = 0.843, π = 0.0041; Keeney and Heist, 2006); and the basking 

shark, Cetorhinus maximus (h = 0.720, π = 0.0013; Hoelzel et al., 2006).  

Historical (mtCR) genetic diversity for T. megalopterus showed an overall low mtCR 

haplotype and nucleotide diversity (h = 0.213, π = 0.0006), particularly in the NA population 

where only one haplotype was present and zero diversity was recorded. Overall, haplotype 

and nucleotide diversity for T. megalopterus was slightly lower than recorded for the closely 

related Mustelus schmitti (h = 0.226, π = 0.0015; Pereyra et al., 2010) but less than 50% of the 

diversity found for the common smoothhound, Mustelus mustelus (h = 0.517, π = 0.00104; 

Maduna, 2014) and the gummy shark, Mustelus antarcticus (h = 0.534, π = 0.0014; Gardner 

and Ward, 2002). Intermediate levels of genetic diversity were detected with nDNA loci 
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(mean HE = 0.546), higher than that of mtCR diversity. This discrepancy can be partly 

explained by a weak correlation between nuclear and mtCR diversity, based on independent 

demographic processes imposed by historical events (e.g. Brunner et al., 1998; Bernatchez et 

al., 2002) and different mutation rates known to occasionally be higher in nDNA (e.g. Moritz 

et al., 1987; Weber and Wong, 1993) resulting in a higher effective number of alleles at 

mutation-drift equilibrium (So et al., 2006).  

The greatest number of haplotypes found in T. megalopterus was four, which was found in 

the WC and EC populations. This is congruent with the greatest number of haplotypes found 

in the closely related leopard shark (Triakis semifasciata) from Los Angeles (Lewallen et al., 

2007). Although the lack of haplotype and nucleotide diversity in NA is alarming, it is not 

uncommon in shark populations. Several shark species have shown nucleotide and haplotype 

diversities of zero in certain populations: e.g., the ragged-tooth shark, Carcharias taurus, in 

Japan and Eastern Australia (Stow et al., 2006; Ahonen et al., 2009); scalloped hammerhead 

shark, Sphyrna lewini, in Thailand (Duncan et al., 2006); lemon shark, Negaprion 

brevirostris, in Taiwan, French Polynesia and Pacific Mexico (Schultz et al., 2008); zebra 

shark, Stegostoma fasciatum, in Indonesia, Borneo, Japan and South Africa (Dudgeon et al., 

2009); and the whitetip reef shark, Triaenodon obesus, in Hawaii, Cocos Island and Costa 

Rica (Whitney et al., 2012).  

The low genetic variation found for T. megalopterus may be best explained by processes such 

as especially low rate of molecular evolution and/or demographic events in the deep history of 

the species (Ahonen et al., 2009). Stow et al. (2006) attributed the low variability and single 

haplotype in the ragged-tooth populations to historical processes such as sequential founder 

effects followed by isolation. Although there was no indication of a founder event for T. 

megalopterus (non-significant Tajima D and Fu FS), and the NA and AN populations were 

panmictic according to mtCR, the contemporary (nDNA) data showed no mixing of these two 

populations. As mtDNA is maternally inherited, this may be an indication that NA females 

were migrating into the warmer waters of AN, specifically to the Cunene River mouth, to pup. 

Bull sharks (Carcharhinus leucas), for instance, are well known to make use of estuarine 

environments as nurseries (Heupel and Simpfendorfer, 2008). Although there is no evidence 

that T. megalopterus would migrate into estuaries or rivers, they may well make use of river 

mouths as nursery grounds as most of the juveniles caught in this study were found at the 

Cunene River and Old Woman’s River (EC) mouths. This may be the reason that, although 

AN and NA were panmictic populations, NA presented a lower haplotype and nucleotide 

diversity compared to the AN population.  
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The contemporary oceanographic attributes of the Benguela upwelling system (Diester-Haass 

et al., 1990; Krammer et al., 2006) can act as both a soft or hard barrier to different species 

depending on their behavioural, morphological, ecological and/or physiological 

characteristics (Luiz et al., 2012). This has been shown in several studies of various marine 

species: e.g., leerfish, Lichia amia (Henriques et al., 2012); geelbeck croaker, Atractoscion 

aequidens (Henriques et al., 2014a); blacktail seabream, Diplodus capensis (Henriques, 

2011); silver kob, Argyrosomus inodorus (Henriques et al., 2014b); and the zebra sea bream, 

Diplodus cervinus (Gwilliam, in prep). The Benguela does not appear to be a barrier to the 

dispersal of T. megalopterus, as contemporary data show gene flow between WC-NA and 

WC-AN. Historical data (mtCR), however, did not reveal the same pattern, as gene flow was 

not recorded between these same populations. As well as the warm and cold water clades 

mentioned previously, this discordance in the mtCR and nuclear markers may indicate the 

presence of male-mediated gene flow. This is not uncommon in shark species where the 

movement and reproductive mixing of females is inhibited by the need to return to coastal 

nursery areas for parturition (Feldheim et al., 2014). Males, however, do not necessarily 

display the same level of fidelity, possibly indicative that male-mediated gene flow often 

occurs over a wider geographic area. Female philopatry and male-mediated gene flow have 

been recorded in several shark species: e.g. white sharks Carcharodon carcharias (Pardini et 

al., 2001); shortfin mako, Isurus oxyrinchus (Schrey and Heist, 2003); blacktip shark 

Carcharhinus limbatus (Keeney et al., 2005); and lemon sharks Negaprion spp. (Schultz et 

al., 2008). Male-mediated gene flow in T. megalopterus may also be the reason for low 

genetic variation seen in the mtCR data for the NA specimens, as the contemporary data, 

which includes paternal inheritance, showed higher genetic diversity for NA individuals. 

Unfortunately, male-mediated gene flow in T. megalopterus cannot be confirmed by the ORI 

tagging data as the sex of neither tagged nor recaptured individuals was recorded.  

Interbreeding between AN and WC appears to increase over time as mtCR data generally 

shows an SA vs. AN population structure (haplotype network, phylogenetic tree) whereas 

nDNA indicates a trans-oceanic structure (FST, Bayesian cluster analysis). Throughout the 

results, EC appears to be an isolated population although the mtCR FST values do show 

evidence (although non-significant) of admixture with WC. Although IBD was not evident, 

the data seem to be consistent with a stepping-stone model (Kimura and Weiss, 1964) 

whereby individuals are exchanged between neighbouring or adjacent populations. Under 

stepping stone gene flow, pairwise gene flow estimates are high for close populations, (AN-

WC and WC-EC), but lower for more distant populations (AN-EC) where these distant 
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populations are linked via intermediate ‘stepping stones’ (Hellberg et al., 2002; Hellberg, 

2009), in this case the WC population. This makes sense as the WC populations are situated 

within the WAB Coetzee et al., 2008), in the transition zone between the Agulhas and 

Benguela shelf systems, which means this section of the continental shelf is influenced by 

both the Agulhas and Benguela Currents (Dufois and Rouault, 2012). 

 

Conclusions 

Triakis megalopterus showed low to moderate levels of genetic diversity based on the 

haplotype and nucleotide frequencies, observed number of alleles, allelic richness and 

expected heterozygosity. Historical data (Median joining network and Phylogenetic analysis) 

showed a southern Benguela subsystem and northern Benguela subsystem genetic structure 

with evidence of an EC separation, whereas contemporary data (FCA, FST and Structure) 

showed a distinct trans-oceanic genetic structure. The separation of the EC clade seems to be 

predominantly due to the historical isolation of populations owing to the exposure of the 

Agulhas Bank during the Pleistocene and extended periods of a reduction of the reef habitat of 

T. megalopterus during the LGM. Global biogeographic patterns and well known barriers to 

gene flow (Cape Agulhas and Cape Point) do not seem to play a role in the population 

structure of T. megalopterus. This difference in structuring may also, however, be indicative 

of limited female dispersal due to philopatry and contemporary male-mediated gene flow 

amongst WC-NA-AN. Significant Harpending’s raggedness index, unimodal mismatch 

distribution and a large increase from ancestral to actual population size indicates a population 

expansion in the demographic history of T. megalopterus. The hypothesis is that this 

expansion took place after the last glacial maximum when warmer conditions, higher sea 

levels and recolonizations were recorded. Cold (NA and Cape Point) and warm (AN and 

Betty’s Bay) water lineages may be possible for T. megalopterus and would probably have 

split during the glacial and interglacial periods and/or the inception of the Benguela Current. 

Future genetic studies need to include additional sampling from Betty’s Bay to Port Elizabeth 

to help detect if there is in fact a contemporary break in the dispersal ability of T. 

megalopterus. This could determine whether the separation of the EC population is in fact 

predominantly historical. Population genomics will also be beneficial to improve our 

understanding of microevolution and assist with a better understanding of the phylogenetic 

history and demography of this species.  
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Chapter 4: 

Morphology of Triakis megalopterus using traditional 

and geometric techniques 
 

Introduction 

Adaptations to ecological niches and the constraints of demanding environments have become 

evident in sharks (Stevens, 1999a). Changes in several morphological characteristics, such as 

protrusible upper jaws, advanced sensory structures, specialized dentition and reproductive 

systems have shown that these animals are not as primitive as once thought (Tricas et al., 

2002).  

Morphology is the quantitative study of biological form and structure of an organism 

(Bookstein, 1991; Webster and Sheets, 2010) which may be investigated quantitatively by 

using morphometrics and meristics (Turan, 2004). The study of morphology in fish is 

multidisciplinary and includes: the analyses of phylogeny (Morrison et al., 2006); phenotypic 

plasticity (Gillespie and Fox, 2003); functional morphology (Dean et al., 2006); ontogeny 

(Debowski et al., 1999; Hard et al., 1999); fish condition (Smith et al., 2005); stock structure 

identification (Cadrin and Friedland, 1999; Moore and Bronte, 2001; Alfonso, 2004; 

Zimmerman et al., 2006; Bronte and Moore, 2007; Shao et al., 2007; Bagherian and Rahmani, 

2009); estimation of biomass (Hockaday, 2000); and descriptions of new species (Teugels et 

al., 2001; Welsh and Wood, 2008).  

The phenotype of an organism comprises the observable physical characteristics, which are 

influenced both by its genotype and the environment (see Chapter 3; Ayala 1982). Although 

the genotype of an organism will remain the same throughout its life, a single genotype can 

exhibit variable phenotypes (Fordyce, 2006), this phenomenon is known as phenotypic 

plasticity. Phenotypic plasticity (Price et al., 2003; Byers, 2008) can change the biochemistry, 

physiology, morphology, behaviour, life history (Price et al., 2003; Whitman and Agrawal 

2009), development and phenology of organisms (West-Eberhard, 1989). Plasticity may be 

caused by the absence of gene flow between spatially or temporally isolated allopatric 

populations (genetic change), a reaction norm in which adaptation is caused by changing 

random developmental noise (Scheiner, 1993) and/or environmental conditions (Ayala, 1982; 

Bronte and Moore, 2007). Environmental conditions include physical and biological 

characteristics, such as nutrition/diet (Meyer, 2014), climate or stress (Badyaev, 2005), and/or 

external influences, such as prey behaviour, mates, competitors and/or predators (Fitzpatrick, 

2012). At an organismal level, plasticity can lead to an evolutionary change in the tolerance 
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and/or avoidance ability or even prompt novel traits or extinction at population level 

(Badyaev, 2005) and is not only visual, but also includes developmental, physiological 

responses and/or behavioural flexibility (Fitzpatrick, 2012).  

Plasticity can be adaptive or nonadaptive. Adaptive plasticity enhances the fitness of an 

organism (Hard et al., 1999; Fitzpatrick, 2012) by enabling its establishment and persistence 

in a new environment, thereby placing populations close enough to a new phenotypic 

optimum (Ghalambor et al., 2007). Consequently, phenotypic plasticity may be essential for 

the reproduction, survival and thus fitness of an organism (Robinson and Dukas, 1999). This 

type of plasticity includes immunity response, anti-predator behaviour, acclimatization, and/or 

life-history shifts (West-Eberhard, 1989; Schmid-Hempel, 2005). Non-adaptive plasticity 

occurs when an organism’s reaction to its environment steers its phenotypic response further 

away from the favoured optimum (Ghalambor et al., 2007) and does not enhance its fitness 

(Fitzpatrick, 2012). This type of plasticity makes organisms more vulnerable to abiotic factors 

(Miner and Stein, 1996) such as heat shock (Pigliucci et al., 2006) or manipulation by 

parasites or pathogens (Kenyon and Hunter, 2007; Poinar and Yanoviak, 2008). It is, 

however, possible that an organism is able to produce the same phenotype, regardless of 

environmental variation, this is known as canalization (Stearns, 1989). 

According to Webster and Sheets (2010), there are two general styles of morphometrics, the 

older traditional (linear measurements) and “newer” (~30 years) geometric (landmark, 

outline, truss based) methods. Due to the slow evolutionary rate of elasmobranchs, 

morphological changes between shark populations may be difficult to detect. Despite this, 

traditional morphological methods still dominate elasmobranch taxonomic studies regardless 

of the availability of innovative new methods such geometric morphology.  

Linear based approaches to traditional morphology have several disadvantages. The main 

drawback is that the focus is on longitudinal measurements, while depth and breadth 

characteristics are limited (Humphries et al., 1981). Correspondingly, there is pronounced 

repetition of linear data, while depth, breadth and diagonal dimensions are generally absent, 

thus specimen coverage is uneven (Strauss and Bookstein, 1982). The choice of landmark also 

plays a vital role as these points have the potential to be either "extremal" or "anatomical" 

(Moyers and Bookstein, 1979). Anatomical landmarks are true homologous points defined by 

biological characteristics (Jardine, 1969), e.g., tooth cusp or apex of the first dorsal fin. 

Extremal landmarks are inferred from geometry rather than biology and defined in terms of 

minimum or maximum distances, e.g., greatest body depth. This makes extremal landmarks 

ambiguous as they are not based on definitive structures (Moyers and Bookstein, 1979; 

Strauss and Bookstein, 1982; Parsons et al., 2003).  
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Although a difficult feature to quantify, body shape is an important trait in morphometric 

studies and the omission of shape information may reduce statistical power when attempting 

to discriminate amongst samples (Parsons et al., 2003). For this reason, methods that include 

both landmark and outline data were designed; this is known as geometric morphology 

(Adams et al., 2004). In effect, landmark data are far better at analysing shape than traditional 

methods (Bagherian and Rahmani, 2009). Because they incorporate the geometry of an 

organism, geometric methods have made progress in solving limitations of traditional 

morphometric methods (Rohlf and Marcus, 1993; Adams et al., 2004). Another major 

advantage of this type of morphology is the ability to instantly visualize the form of 

specimens (Webster and Sheets, 2010).  

The study of geometry using landmark data has become mainstream (Richtsmeier et al., 

2002). Geometric morphology is a powerful tool for identifying morphological variation that 

uniformly incorporates the entire specimen, and since it takes shape into account (Cavalcanti 

et al., 1999), it provides greater discriminatory power (Cadrin and Friedland, 1999). While an 

understanding of developmental patterns and the mechanisms driving phenotypic variation is 

vital for evolutionary research (Stearns, 1989), there is a paucity of whole body traditional 

and geometric morphometric studies on elasmobranchs. In the past, traditional techniques 

have been used to study the head and olfactory morphology of Carcharhinids and Sphyrnids 

(Kajiura, 2001; Kajiura et al., 2005), the brain morphology of pelagic sharks (Lisney and 

Collin, 2006), caudal fin morphology of Lamniformes (Kim, 2010) and fin morphology as a 

means of species identification (Marshall, 2011). Only one study used traditional morphology 

on whole specimens to determine interspecific differences between blacktip, Carcharhinus 

limbatus (Valenciennes, 1841) and spinner sharks C. brevipinna (Müller and Henle, 1839; 

Siqueiros-Beltrones, 1990). Although digitizers have been used on elasmobranchs, studies to 

date do not incorporate whole specimens. These studies include, but are not limited to, the 

pectoral fins of white spotted bamboo sharks, Chiloscyllium plagiosum (Wilga and Lauder, 

2001), fossil teeth of the great white, Carcharodon carcharias (Nyberg et al., 2006), mako 

sharks, Isurus spp. (Whitenack and Gottfried, 2010),  megalodon, Carcharocles megalodon 

(Pimiento et al., 2010) and the extinct weasel sharks, Hemipristis serra (Chandler et al., 2006) 

and caudal fin shape in Squalus acanthias (Reiss and Bonnan, 2010). Naylor and Marcus 

(1994) also used video digitizing to classify 22 species of Carcharhinus from around the 

world.   

While there is a lack of traditional morphometrics, there is a complete absence of geometric 

morphology on whole elasmobranch specimens. The deficiency of geometric data on whole 

specimens is justifiable as the size and shape of most elasmobranchs make it difficult, if not 

impossible, to accurately measure diagonal lines across the body. Accordingly, morphological 
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studies using digital photography and digitizers are also not typically feasible as most sharks, 

due to their cartilaginous skeletons (Tricas et al., 2002), lose their shape on land. Thus far, 

there seems to be only one way to get around this issue. One can use flow tanks and 

measurements can be taken from video footage as did Wilga and Lauder (2000) using small 

leopard sharks. This, however, is only feasible for larger specimens that are housed in large 

(normally public) aquaria and alternative methods for developing geometric data on 

elasmobranchs are critical.  

Not only does external morphology play an important role in morphometric studies, teeth are 

also intricately designed through evolution (Frazzetta, 1988). Chondrichthyan dentition has 

various classifications based on the form and function for prey capture and processing, e.g. 

dentition suited for clutching, tearing, cutting, crushing or grinding (Cappetta, 1987). 

Although variation in the teeth of same species of elasmobranchs is not uncommon (Shimada, 

2002), tooth morphology may still differ between life stages (Reif, 1976) and/or sexes 

(Kajiura and Tricas, 1996). Previous studies seem to concentrate on functional tooth 

morphology (e.g. Ramsay and Wilga, 2007), while few look at how tooth morphology varies 

according to sex, ontogeny or prey composition.  

The magnitude to which environmental factors affect morphometric variation is not well 

understood (Hard et al., 1999), and research on shark morphology is scarce. Studies on the 

plasticity of shark morphology are virtually non-existent and plasticity research in 

elasmobranchs has focused on trophic niche (Rhizoprionodon terraenovae; Drymon et al., 

2011), diel vertical migrations (Lamna nasus; Pade et al., 2009), size at maturity (Squalus 

mitsukirii; Lucifora et al., 1999) and behaviour (Carcharhinus limbatus and Ginglymostoma 

cirratum; Gardiner et al,. 2014).  

The aims of this chapter are: 1) to assess the phenotypic variation of T. megalopterus between 

populations using traditional morphometric methods on full body and tooth morphology; 2) to 

develop a protocol that allows the use of landmark, outline and truss data to be a viable 

method for future morphometric studies of elasmobranchs; 3) to test the validity of the new 

geometric morphology protocol for detecting interspecific and interpopulation differences in 

T. megalopterus and 4) to describe the phenotypic plasticity of T. megalopterus and to 

investigate whether genetic variation (Chapter 3) is reflected in morphological traits.  
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Material and methods 

A total of 120 T. megalopterus were measured, of which 43 were from Angola (29 F, 14 M), 

33 from the Western Cape (24 F, 9 M) and 44 from the Eastern Cape (28 F, 16 M). Overall, 

the sex ratio was female biased (81 F, 39 M).  

 

It was not always possible to work on fresh specimens, due to logistical constraints of remote 

study sites. Consequently, two methods of sample preservation (frozen and preserved) were 

used. In order to freeze specimens, freshly caught T. megalopterus were carefully placed into 

containers and positioned in a “natural” posture. The containers were then placed into a blast 

freezer until the morphometric analysis. For chemical preservation, freshly caught specimens 

were injected into the abdominal cavity with 10% formalin before the whole specimen was 

immersed into a 10% formalin solution. Specimens were left in the 10% formalin solution for 

a minimum of a month. Subsequently, the specimens were removed from the formalin and 

transferred into 10% and 50% ethanol solutions for three days each, respectively. If either 

frozen or preserved specimens appeared distorted or damaged, they were excluded from the 

analysis.  

 

Traditional morphology 

Measurements followed the methods from Sharks of the world, FAO species catalogue 

(Figure 4.1; Compagno, 1984a). In total, 98 linear measurements were taken from the left 

lateral aspect of each specimen (Table 4.1). Measurements <300 mm were made using digital 

callipers to the nearest 0.01 mm. Measurements >300 mm were made with a measuring tape 

to the nearest 0.1 mm.  

 

Due to sampling limitations in Angola, P1R was not measured. Since accuracy could not be 

guaranteed for SOD, PDI, DPO, PDO, DAO and DAI, these measurements were removed 

from the analysis. An extra two measurements were included over and above those described 

in the FAO guide, MOL2 (width of the medial-bottom jaw) and PRC2 (tip of the snout to the 

end of the second dorsal base). In total, 92 traditional linear morphometric measurements 

were used to assess morphometric differences between populations of T. megalopterus.  
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Figure 4.1: Morphological measurements taken from each whole specimen as described in the sharks of the world, FAO species catalogue 

(Compagno, 1984a).  
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Table 4.1: Variable names for abbreviation of morphology measurements as per the sharks of the world, FAO species catalogue (Compagno, 1984a) 

 

Abbreviation Variable name Abbreviation Variable name Abbreviation Variable name 

ABH Abdominal height DAO Second dorsal origin-anal origin P2B Pelvic base 

ABW Abdomen width DCS Dorsal-caudal space P2H Pelvic height 

ACS Anal-caudal space DIB First dorsal base P2I Pelvic inner margin length 

ANA Anal anterior margin DIP First dorsal posterior margin P2L Pelvic length 

ANB Anal base DPO First dorsal midpoint-pelvic origin P2P Pelvic posterior margin length 

ANF Anterior nasal flap length ESL Eye spiracle space PAL Preanal length 

ANH Anal height EYH Eye height PAS Pelvic-anal space 

ANI Anal inner margin EYL Eye length PCA Pelvic-caudal space 

ANL Anal length FOR Fork length PD1 Pre-first dorsal length 

ANP Anal posterior margin GS1 First gill slit height PD2 Pre-second dorsal length 

CDM Dorsal caudal margin GS2 Second gill slit height PDI Pelvic midpoint-first dorsal origin 

CFL Caudal fork length GS3 Third gill slit height PDO Pelvic midpoint-second dorsal origin 

CFW Caudal fork width GS4 Fourth gill slit height PG1 Prebranchial length 

CPH Caudal peduncle height GS5 Fifth gill slit height POB Preorbital length 

CPL Lower postventral caudal margin HDH Head height POR Preoral length 

CPU Upper postventral caudal margin HDL Head length PP1 Prepectoral length 

CPV Preventral caudal margin HDW Head width PP2 Prepelvic length 

CPW Caudal peduncle width IDS Interdorsal space PPS Prespiracular length 

CST Subterminal caudal margin one ING Intergill length PRC1 Precaudal length 

CSW Subterminal caudal margin two INO Interorbital space PRC2 Precaudal length two 

CTL Terminal caudal lobe INW Internarial width PRN Prenarial length 

CTR Terminal caudal margin LLA Lower labial furrow length PSP Prespiricular length 

D1A First dorsal anterior margin MOL1 Mouth length one SOD Subocular pocket depth 

D1H First dorsal height MOL2 Mouth length two SPL Spiracle length 

D1I First dorsal inner margin MOW Mouth width SVL Snout-vent length 

D1L First dorsal length NOW Nostril width TAH Tail height 

D2A Second dorsal anterior margin P1A Pectoral anterior margin TAW Tail width 

D2B Second dorsal base P1B Pectoral base TOT Total length 

D2H Second dorsal height P1H Pectoral height TRH Trunk height 

D2I Second dorsal inner margin P1I Pectoral inner margin TRW Trunk width 

D2L Second dorsal length P1P Pectoral posterior margin ULA Upper labial furrow length 

D2P Second dorsal posterior margin P1R Pectoral radial length VCL Ventral caudal length 

DAI Second dorsal origin-anal origin P2A Pelvic anterior margin 
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Development of truss morphology method 

The digital outline of each specimen was recreated from the traditional morphology 

measurements using AutoCAD 2011 design and drafting software. Sixteen measurements 

were used to re-create the left hand side, dorsal outline of specimens (Figure 4.2 a). Since 

right and left sides were assumed to be equal and the right side was mirrored from the left to 

complete the dorsal outline. A total of 13 landmarks (Figure 4.2 b) were assigned to the 

dorsal outline in order to create the truss network (from above).  

 

 

Figure 4.2: Truss development illustrating (a) the measurements used to recreate the left 

dorsal aspect of the truss outline, (b) complete truss diagram displaying the 13 landmarks; 

PP1 = Prepectoral length, P1B = Pectoral base, POB = Preorbital length, EYL = Eye length, 

PPS = Pectoral-pelvic space, P2P = Pelvic posterior margin length, PCA = Pelvic-caudal 

space, INO = Interorbital space, IGW = First gill (head) width, TRW = Trunk width, ABW = 

Abdomen width, TAW = Tail width, CPW = Caudal peduncle width, PGI = Prebranchial 

length, PD1 = Pre-first dorsal length, D1B = First dorsal base 

 

Once the truss was drawn in AutoCAD, each line could be measured, using the software, to 

the nearest 0.01 mm. Seven length (L1–L7; Figure 4.3 a), five diagonal (D1–D5; Figure 4.3 

b) and six vertical (V1–V6; Figure 4.3 c) measurements were taken per specimen. AutoCAD 

was also used to measure four angles (A1–A4; Figure 4.3 d).  
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Figure 4.3: Truss development illustrating the (a) seven lengths (L1–L7), (b) five diagonals 

(D1–D5), (c) six vertical (V1–V6) and (d) four angles (A1–A4) measured by the truss system 

 

The truss protocol was first trialled for its efficacy in discriminating between different 

species. The multispecies analysis compared 30 specimens evenly distributed over three 

species, T. megalopterus (spotted gully; SG), Mustelus mustelus (smooth hound; SH) and 

Haploblepharus edwardsii (puffadder shyshark; PA). The M. mustelus and H. edwardsii 
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specimens were all freshly measured. The M. mustelus specimens were collected from AN 

while the H. edwardsii were collected from Betty’s Bay. Truss networks were then developed 

for the 109 T. megalopterus specimens to examine the interpopulation morphological 

variation for specimens from AN, EC and WC. 

 

Tooth morphology 

Variances in tooth morphology between the different regional populations (AN, WC and EC) 

were examined. The jaws were placed in hot water (~60–90 
o
C) for approximately five 

minutes or until the connective tissue was soft. The teeth were then extracted using forceps. 

Tooth form varied from the lateral-superior (Figure 4.4 a), medial-superior (Figure 4.4 b), 

lateral-inferior (Figure 4.4 c) and medial-inferior (Figure 4.4 d) jaw quadrants. Thus, three 

sequential teeth were removed from each of the four quadrants. To minimize bias due to 

polyphyodonty, teeth were removed from the third lingual row to avoid underdeveloped or 

worn/damaged teeth. This area was chosen as it was evident that the teeth were fully 

developed, yet still protected by a thin covering of connective tissue. From the three 

sequential teeth, the most pristine specimens were individually positioned onto microscope 

slides. Using a Leica DMC2900 microscope camera, photos of 80 sets of teeth were taken 

overall using a dissecting microscope (magnification 40 x). Photos were imported into 

SigmaScan Pro 5 software where landmarks to measure the maximum mesial width, 

maximum height, maximum distal width, and crown tip were identified and marked. The 

landmarks were connected with straight lines to yield a box truss of six length measurements, 

area and four angles (Figure 4.4 e). To add quantitative measurements of shape, two of 

SigmaScan’s built in parameters, shape factor and compactness, were also incorporated into 

the analysis.  
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Figure 4.4: Lingual view of T. megalopterus teeth depicting (a) lateral superior, (b) medial-

superior, (c) lateral-inferior and (d) medial-inferior and (e) the four landmarks and associated 

box truss used to infer morphological differences amongst size and locations; 1 = maximum 

mesial width, 2 = maximum height, 3 = maximum distal width, 4 = crown tip. 
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Outlier detection 

Extreme outliers (more than three times the inter-quartile range to the left or right of the first 

and third quartiles) were identified using box plots. Outliers were checked for data entry 

errors and corrected where possible. If an entire specimen was identified as an outlier, it was 

removed from the analysis.  

 

Frozen versus preserved 

Paired sample t-tests were run using IBM SPSS Statistics 20 (IBM Corporation, 2011) on ten 

randomly sampled specimens of fresh-frozen and fresh-preserved specimens subsets to test 

for significant (p<0.05) differences between the different preservation methods.  

 

Transformation of absolute measurements 

Since allometric shifts in growth are common amongst elasmobranch fishes (e.g. Lowry, 

2005; Frisk and Miller, 2006; Lowry et al., 2007; Reiss and Bonnan, 2010; Irschick and 

Hammerschlag, 2015) absolute morphological measurements were transformed to size-

independent measurements before the final analysis. Although a popular choice when it 

comes to size correction in data, the use of ratios has been known to result in false 

approximations of shape differences (Brookstein et al., 1985), to be indifferent to allometric 

variances (Parsons et al., 2003) and to reduce statistical power (Atchley et al., 1976). For this 

reason, all morphometric characters were adjusted to an overall mean total length of 𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 

1205 cm according to the following equation (Simon et al., 2010): 

 

𝒀𝒊𝒋
′ = 𝒍𝒐𝒈 𝒀𝒊𝒋 −  𝒃𝒋 (𝒍𝒐𝒈 𝑻𝑶𝑻𝒊 − 𝒍𝒐𝒈 𝑻𝑶𝑻̅̅ ̅̅ ̅̅ ) 

 

where:  

 

𝑌𝑖𝑗
′  = is the adjusted value of character j for individual i 

𝑌𝑖𝑗  =  is the original value 

𝑏𝑗  =  is the pooled regression coefficient of logY on logTOT 

𝑇𝑂𝑇𝑖  =  is the total length of individual i 

𝑇𝑂𝑇  =  overall mean total length 

 

The efficacy of size transformation was determined from the coefficient of determination (R
2
) 

values of the logY’ vs. logTOT regression. 

 



64 

General data analyses 

Principal component analysis (PCA) aims to condense a large set of variables into a smaller 

set of “artificial” variables called principal components. By doing this, PCA reflects the 

covariance/correlation structure of the data by looking at the relationships amongst the 

morphometric measurements rather than extracting individual morphometric differences 

(Brookstein et al., 1985). In this study, the aim was to assess the differences observed, 

between populations, for each variable. The best way to do this was to compare individual 

variable means amongst populations. Therefore, the analysis of variance (ANOVA) was 

selected to analyse the data in this chapter.  

Variations amongst populations were tested using ANOVA after a Levene’s median test 

confirmed equal/unequal variance. If variances were equal (p> 0.01), Fisher's least significant 

difference (LSD) procedure was used to identify homogenous groups. If variances were not 

equal (p<0.01), data were analysed using the Games-Howell posthoc test. All statistical 

analyses were done using Statistica v10 (StatSoft, Inc. 2011) and IBM SPSS Statistics v20 

(IBM Corporation, 2011). Variables were considered to be significantly different if p<0.02 as 

these results showed no overlap at a 95% confidence interval making these variables 

completely distinguishable amongst the population comparisons. Because all morphometric 

measurements were adjusted to an overall mean total length, the effect of size differences 

between sexes should have been removed. Therefore, combined sex data were used for the 

initial analyses. However, when highly significant (p<0.02) differences were found between 

populations, separate ANOVAs were run for sex, using only the highly significantly different 

variables, to ensure the differences were not sex based. If significant differences were found 

between sexes within a population comparison, paired sample t-tests were run to determine 

exactly where the significance lay.  

In order to gain some insight into whether intrapopulation differences were phenotypic 

responses to environmental differences or genotypic changes, the morphology data 

(traditional, truss and tooth) were analysed using a separate ANOVA where the six haplotypes 

identified in the mtCR analyses (TMH1–TMH6; see Chapter 3) were selected as the 

grouping variable (instead of site). Should significant differences be congruent in the 

morphology analyses grouped by site (related to phenotype) and by haplotype (related to 

genotype), this may indicate the presence of adaptive divergence. 
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Tooth shape 

To assess tooth development, SHAPE 1.3 (Iwata and Ukai, 2002) was used to evaluate and 

illustrate the growth of the teeth of T. megalopterus from EC as this population had the best 

distribution of individuals in each size class. The SHAPE software is made up of four 

different applications. ChainCoder converts the uploaded images into black and white before 

extracting and delineating the information into chain code (Freeman, 1974). Chc2Nef uses the 

chain code data to calculate the elliptic Fourier descriptors (EFD; Kuhl and Giardina, 1982) 

from which a principle component analysis (PCA) is performed using PrinComp. Thereafter, 

the shape variations of the principle components are illustrated (Furuta et al., 1995). 

 

Results and interpretation 

Outlier detection 

Although extreme outliers were identified in the data, all were data entry errors which were 

corrected. No specimens were discarded due to outliers. 

Frozen versus preserved 

No significant differences were evident between fresh-frozen (p = 0.067) and fresh-preserved 

(p = 0.083) specimens. Frozen specimens appeared to wrinkle and soften when defrosted, thus 

losing a small amount rigidity whereas preserved specimens kept their shape well. Thus, 

preserving specimens appears to be the better method for sample preservation of whole 

elasmobranchs.  

Transformation of absolute measurements 

Adjusting absolute measurements to size-independent shape characters was successful in 

eliminating any variation resulting from allometric growth. Correlations determined by the 

coefficient of determination (R
2
) values of the logY’ vs. logTOT regression removed 

significance in the traditional (p>0.311), tooth (p>0.994), interspecific truss (p>0.559) and T. 

megalopterus truss (p>0.445) data.  

Traditional morphology 

Of the 92 variables analysed, 36 showed highly significant (p<0.02) differences between the 

populations (Table 4.2). Of the 36 variables that showed highly significant differences, only 

one of these variables, MOW, was significantly (p = 0.001) different between males and 

females. A paired-samples t-test conducted to compare MOW for AN-EC (the population 

comparison rendering significant differences amongst sample sites) showed that this variance 
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was attributed to a significant difference between females from AN (M = -3.000, SD = 6.367) 

and EC (M = 4.556, SD = 6.072); t(26) = -4.347, p<0.001. This result shows that females 

from EC have wider mouths compared to females from AN.  

Eighty-six percent of the 36 highly significant differences were observed between AN and 

EC, 47.2% between AN and WC and 12.1% between EC and WC.  

Compared to South African (WC and EC) populations, AN specimens had significantly 

shorter pectoral (P1A, P1P), first dorsal (D1H, D1P) and second dorsal (D2H, D2P) fins with 

a wider pelvic fin base (P2B). AN individuals also had significantly shorter fifth gill slit 

(GS5), smaller eyes (EYL, EYH) and spiracle (PSP), while the tail region was thicker (TAW, 

CPW) than that of WC and EC specimens.  

Compared to EC, AN specimens had significantly shorter pectoral fins (P1H), second dorsal 

and anal inner margins (D2I, ANI) and pelvic fin lengths (P2L) with a wider second dorsal fin 

base (D2B) and increased abdominal and tail (ABH, TAH) heights. Individuals from AN also 

had shorter gill slits (G1–G5), smaller mouth widths (MOW) and anterior nasal flap lengths 

(ANF). The caudal fins of AN specimens had larger caudal fork width (CFW), lower 

postventral caudal margin (CPL) and terminal caudal margin (CTR).  

Compared to EC, WC had smaller preventral caudal margin (CPV) and pectoral inner margin 

(P1I) and compared to AN, WC had a shorter second Precaudal length (PRC2) and larger 

Intergill length (ING). There were significant differences that all populations showed in the 

upper labial furrow length (ULA), where the smallest was in AN (-1.596) and largest in EC 

(1.550).  

Of the 36 variables that showed highly significant differences in traditional morphology 

amongst sample sites, 13 of these variables showed significant (p<0.05) differences, between 

haplotypes (highlighted in grey in Table 4.2). All (100.0%) of the significantly different 

variables were present between AN and EC, 6.5% between AN and WC and only 1.1% 

between EC and WC. These variables primarily included characters associated with the gills, 

the posterior fins and eyes. Consequently, there is evidence that the morphological differences 

for T. megalopterus are not just phenotypic responses to the environment but may also be 

associated with different genetic types. Unfortunately, out of the 120 specimens used in the 

morphology analysis, only 58 of these specimens had the associated haplotype data. The 

relationship between the genotype and phenotype may have been more evident had all of the 

specimens in the morphological study been analysed for the mtCR.  
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Table 4.2: Results of ANOVAs for traditional morphology data of T. megalopterus from 

Angola (AN), Western Cape (WC) and Eastern Cape (EC); F = Levene’s F statistic, p = 

Levene’s significance, * = significance at the 1% nominal level, ** = significance at the 2% 

nominal level, grey highlight depicts where significant differences were evident between 

haplotypes, see Table 4.1 for list of abbreviations  

 

 

Levene's Test for 

 Equality of 

Variance 

Least Significant 

Difference/Games-Howell 
Population Means 

F p AN-EC AN-WC EC-WC AN WC EC 

B
o

d
y

 L
en

g
th

s 

HDL 3.068 0.050 0.659 0.124 0.254 1.818 -3.072 0.527 

SVL 7.453 0.001* 0.097 0.032 0.357 -9.972 10.298 2.022 

PPS 15.882 0.000* 0.028 0.046 0.648 -10.334 9.251 3.160 

PAS 5.076 0.008* 0.083 0.556 0.922 4.247 -1.271 -3.198 

ACS 0.316 0.730 0.401 0.530 0.878 0.613 -0.226 -0.429 

PCA 5.121 0.007* 0.020 0.913 0.246 4.555 2.265 -6.150 

VCL 5.540 0.005* 0.412 0.966 0.427 4.126 1.998 -5.531 

IDS 4.225 0.017 0.246 0.446 0.751 1.865 -0.487 -1.457 

DCS 4.915 0.009* 0.468 0.936 0.852 0.732 0.106 -0.795 

P
ec

to
ra

l 
F

in
 

PP1 0.747 0.476 0.761 0.535 0.365 0.234 -1.916 1.208 

P1A 0.647 0.526 0.000* 0.000* 0.452 -7.294 3.008 4.873 

P1B 2.384 0.097 0.047 0.164 0.643 1.752 -0.546 -1.303 

P1I 3.036 0.052 0.043 0.216 0.002* -0.693 -3.138 3.030 

P1L 3.989 0.021 0.796 0.091 0.053 1.060 -3.684 1.727 

P1P 4.256 0.016 0.000* 0.000* 0.592 -8.558 5.684 4.101 

P1H 4.169 0.018 0.000* 0.025 0.273 -5.359 1.189 4.346 

C
au

d
al

 F
in

 

PRC1 4.006 0.021 0.752 0.041 0.078 -5.209 10.717 -2.947 

PRC2 3.003 0.053 0.225 0.001* 0.024 -11.488 17.492 -1.892 

CDM 4.773 0.010 0.284 0.480 0.773 -1.372 0.364 1.067 

CPV 3.282 0.041 0.012 0.402 0.002* -1.093 -2.538 2.972 

CPU 3.124 0.048 0.180 0.785 0.329 -0.863 -0.421 1.160 

CPL 7.445 0.001* 0.003* 0.029 0.917 -2.411 1.660 1.111 

CFW 3.248 0.042 0.002* 0.017 0.639 -1.956 0.790 1.318 

CFL 3.395 0.037 0.049 0.518 0.234 -1.442 -0.346 1.668 

CST 4.085 0.019 0.245 0.112 0.008 0.043 -1.555 1.124 

CSW 6.470 0.002* 0.995 0.773 0.783 0.196 -0.452 0.147 

CTR 4.913 0.009* 0.010* 0.591 0.466 -2.071 -0.091 2.093 

CTL 2.145 0.122 0.037 0.595 0.155 -1.293 -0.496 1.636 

1
st

 D
o

rs
al

 F
in

 

PD1 0.652 0.523 0.417 0.047 0.209 -5.321 7.575 -0.481 

IDS 4.225 0.017 0.246 0.446 0.751 1.865 -0.487 -1.457 

D1L 7.519 0.001* 0.403 0.723 0.998 -1.962 0.984 1.180 

D1A 6.679 0.002* 0.114 0.465 0.949 -2.549 0.969 1.764 

DIB 6.013 0.003* 0.056 0.981 0.341 1.996 1.387 -2.991 

D1H 2.006 0.139 0.000* 0.000* 0.185 -4.725 1.006 3.864 

D1I 1.038 0.357 0.003* 0.736 0.002* -1.559 -2.117 3.111 

DIP 0.232 0.794 0.000* 0.000* 0.815 -8.384 5.151 4.330 
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Levene's Test for 

 Equality of 

Variance 

Least Significant 

Difference/Games-Howell 
Population Means 

F p AN-EC AN-WC EC-WC AN WC EC 
2

n
d

 D
o
rs

al
 F

in
 

PD2 0.628 0.536 0.882 0.317 0.253 -1.291 4.449 -2.075 

DCS 4.915 0.009* 0.468 0.936 0.852 0.732 0.106 -0.795 

D2L 2.717 0.070 0.729 0.017 0.036 -1.885 3.941 -1.113 

D2A 2.976 0.055 0.028 0.025 0.833 -3.512 2.266 1.732 

D2B 2.390 0.096 0.001* 0.374 0.025 2.983 1.083 -3.727 

D2H 4.020 0.020 0.000* 0.003* 0.137 -5.022 1.079 4.099 

D2I 5.632 0.005* 0.000* 0.390 0.241 -2.129 -0.196 2.228 

D2P 1.825 0.166 0.002* 0.000* 0.016 -7.143 7.828 1.109 

P
el

v
ic

 F
in

 

PP2 8.139 0.000* 0.169 0.112 0.614 -8.104 7.992 1.926 

P2L 10.249 0.000* 0.008* 0.126 0.980 -3.407 1.670 2.077 

P2A 1.382 0.255 0.022 0.120 0.558 -2.931 0.833 2.240 

P2B 7.710 0.001* 0.000* 0.000* 0.341 6.212 -5.197 -2.174 

P2H 1.521 0.223 0.159 0.617 0.416 -1.681 -0.321 1.884 

P2I 5.255 0.007* 0.039 0.421 0.840 -3.231 0.936 2.456 

P2P 2.869 0.061 0.015 0.198 0.325 -2.877 0.249 2.625 

A
n

al
 F

in
 

PAL 4.236 0.017 0.354 0.226 0.722 -7.936 6.904 2.578 

ANL 4.187 0.018 0.069 0.094 0.993 -2.438 1.350 1.370 

ANA 1.983 0.142 0.019 0.241 0.301 -2.523 0.096 2.394 

ANB 2.707 0.071 0.021 0.022 0.885 2.679 -1.650 -1.381 

ANH 1.786 0.172 0.091 0.784 0.065 -1.132 -1.751 2.420 

ANI 9.091 0.000* 0.010* 0.528 0.734 -1.326 0.138 1.192 

ANP 2.694 0.072 0.103 0.478 0.416 -1.427 -0.081 1.455 

G
il

ls
 

PGI 2.953 0.056 0.040 0.068 0.932 -2.548 1.321 1.499 

ING 1.526 0.222 0.025 0.000* 0.010 4.325 -5.523 -0.084 

GS1 3.740 0.027 0.001* 0.103 0.108 -1.782 -0.002 1.743 

GS2 2.404 0.095 0.001* 0.017 0.488 -2.188 0.744 1.580 

GS3 2.934 0.057 0.001* 0.007 0.584 -2.334 0.932 1.582 

GS4 3.117 0.048 0.001* 0.008 0.540 -2.270 0.862 1.572 

GS5 5.069 0.008* 0.000* 0.012** 0.854 -2.656 1.134 1.745 

M
o

u
th

 

POR 2.453 0.090 0.034 0.086 0.803 -1.129 0.497 0.731 

MOL1 2.700 0.071 0.326 0.303 0.053 0.037 0.798 -0.635 

MOL2 3.979 0.021 0.739 0.061 0.115 -0.598 1.187 -0.306 

MOW 2.673 0.073 0.001* 0.050 0.246 -3.013 0.506 2.565 

ULA 2.551 0.082 0.000* 0.005* 0.007* -1.596 0.013 1.550 

LLA 4.486 0.013 0.013 0.785 0.039 -0.679 -0.481 1.024 

E
y

es
, 

S
p

ir
ac

le
s 

 

&
 N

ar
es

 

PSP 0.160 0.852 0.000* 0.000* 0.643 -2.608 1.740 1.244 

POB 1.306 0.275 0.408 0.270 0.734 -0.626 0.557 0.194 

PRN 6.128 0.003* 0.138 0.797 0.672 -0.744 -0.049 0.764 

EYL 4.065 0.020 0.000* 0.004* 0.020 -1.686 0.110 1.566 

EYH 0.888 0.414 0.000* 0.000* 0.553 -1.939 1.307 0.915 

NOW 1.821 0.166 0.166 0.492 0.049 -0.128 -0.441 0.456 

INW 1.941 0.148 0.563 0.861 0.475 -0.086 -0.187 0.224 

ANF 2.764 0.067 0.001* 0.014 0.509 -0.741 0.263 0.527 

INO 4.062 0.020 0.037 0.001* 0.145 2.111 -2.241 -0.383 
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Levene's Test for 

 Equality of 

Variance 

Least Significant 

Difference/Games-Howell 
Population Means 

F p AN-EC AN-WC EC-WC AN WC EC 

SPL 2.977 0.055 0.144 0.340 0.686 -0.401 0.103 0.315 

ESL 0.891 0.413 0.483 0.618 0.249 0.052 0.312 -0.285 

W
id

th
s 

HDW 10.681 0.000* 0.297 0.945 0.856 -2.110 -0.386 2.351 

TRW 6.193 0.003* 0.194 0.809 0.878 -2.580 0.261 2.326 

ABW 9.479 0.000* 0.988 0.926 0.831 -0.472 2.210 -1.196 

TAW 2.657 0.074 0.001* 0.000* 0.433 4.630 -3.472 -1.921 

CPW 0.320 0.727 0.000* 0.003* 0.054 1.939 -0.284 -1.682 

H
ei

g
h

ts
 HDH 9.174 0.000* 0.067 0.147 0.717 5.243 -5.173 -1.244 

TRH 6.300 0.003* 0.022 0.072 0.887 7.062 -5.234 -2.976 

ABH 5.295 0.006* 0.007* 0.123 0.985 6.444 -3.183 -3.911 

TAH 8.128 0.000* 0.000* 0.648 0.259 3.598 0.771 -4.095 

 
CPH 1.384 0.255 0.008 0.131 0.321 1.077 -0.146 -0.943 

 

 

Truss morphology: Interspecific trials 

From the 22 variables analysed for the ANOVA (Table 4.3), 14 variables showed highly 

significant (p<0.01) differences. These highly significant results showed no overlap at a 95% 

confidence interval making these variables completely distinguishable between T. 

megalopterus (spotted gully; SG), Mustelus mustelus (smooth hound; SH) and 

Haploblepharus edwardsii (puffadder shyshark; PA) specimens.  

 

In comparison to the SG and PA, the SH had a significantly longer snout (L2) and tail section 

(L7, D5) and a shorter snout to gill length (L3), head diagonal (D1) and trunk length (D2, D3 

and L5). The PA had a significantly wider body (V3, A2) compared to the SH and smaller 

trunk (A3) and tail (A4) widths compared to both SG and SH. The length between the gills 

and first dorsal (L4) was significantly longer in the SG compared to that of the SH. The first 

angle (A1) was significantly different for all three species with the largest angle found in the 

SG and smallest in the PA. These results suggest that SH have a more slender frame than SG 

and PA.  
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Table 4.3: Results of ANOVAs for interspecies truss data of T. megalopterus (spotted gully; 

SG), Mustelus mustelus (smooth hound; SH) and Haploblepharus edwardsii (puffadder 

shyshark; PA); F = Levene’s F statistic, p = Levene’s significance, * = significance at the 1% 

nominal level, L1-L6 = lengths, V1-V6 = verticals, D1-D5 = diagonals, A1-A4 = angles  

 

 

Levene's Test for 

 Equality of 

Variance 

Least Significant 

Difference/Games-Howell 
Species Means 

F p SG-SH SG-PA SH-PA SG SH PA 

L1 1.685 0.204 0.059 0.331 0.334 5.140 -5.129 -0.011 

L2 3.029 0.065 0.000* 0.569 0.000* -7.185 12.392 -5.207 

L3 5.442 0.010 0.002* 0.696 0.006* 4.397 -7.417 3.020 

L4 3.601 0.041 0.002* 0.273 0.024 7.924 -10.111 2.187 

L5 1.648 0.211 0.006* 0.669 0.002* 14.185 -35.651 21.467 

L6 1.899 0.169 0.518 0.875 0.423 -2.686 7.940 -5.255 

L7 0.150 0.861 0.000* 0.253 0.003* -11.616 15.951 -4.335 

V1 0.670 0.520 0.037 0.359 0.217 -3.206 3.546 -0.340 

V2 0.747 0.483 0.652 0.375 0.186 -0.693 -2.821 3.514 

V3 3.143 0.059 0.024 0.508 0.005* 3.217 -10.216 6.999 

V4 7.484 0.003* 0.745 0.978 0.288 -2.868 3.943 -1.075 

V5 3.732 0.037 0.085 0.702 0.172 -2.799 4.105 -1.306 

V6 5.541 0.010* 0.121 0.647 0.168 1.152 -1.389 0.237 

D1 0.229 0.797 0.001* 0.841 0.002* 3.457 -6.371 2.914 

D2 6.343 0.006* 0.004* 0.970 0.000* 6.184 -11.380 5.196 

D3 1.777 0.188 0.004* 0.562 0.001* 12.427 -33.418 20.992 

D4 1.766 0.190 0.423 0.942 0.383 -3.639 8.372 -4.733 

D5 0.119 0.888 0.000* 0.254 0.003* -11.397 15.600 -4.202 

A1 6.901 0.004* 0.008* 0.000* 0.007* 99.810 89.841 72.240 

A2 0.564 0.575 0.086 0.028 0.000* 94.664 88.116 103.210 

A3 15.316 0.000* 0.458 0.000* 0.000* 108.721 105.761 34.146 

A4 13.972 0.000* 0.983 0.000* 0.000* 133.900 134.385 44.003 

 

Truss morphology: Intraspecies 

Eight of the 22 truss variables were highly significant (p<0.01) between the three populations 

(Table 4.4). Compared to AN, WC specimens had longer snouts (L2) and smaller associated 

first angle (A1) caused by a shorter gill to first dorsal fin length (L4). Although L2 was 

significant at a higher 2% nominal level, this variable still showed no overlap of the 95% 

confidence intervals between AN-WC. Additionally, EC differed from AN with three vertical 

(width) measurements which suggest that specimens from the EC have a wider head (V1 and 

V2) and caudal (V6) region. Angolan specimens also had a significantly wider trunk region 

(V5) compared to both EC and WC. Within South Africa, only one highly significant variable 
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was detected between the EC and WC populations. Here, the second angle (A2) was larger in 

EC than it was in WC. 

 

Table 4.4: Results of ANOVAs from intraspecies truss data of interspecies truss data of T. 

megalopterus from Angola (AN), Western Cape (WC) and Eastern Cape (EC); F = Levene’s 

F statistic, p = Levene’s significance, * = significance at the 1% nominal level, L1-L6 = 

lengths, V1-V6 = verticals, D1-D5 = diagonals, A1-A4 = angles 

 

 

Levene's Test for 

 Equality of 

Variance 

Least Significant Difference 

(LSD)/Games-Howell 
Population Means 

F P AN-EC AN-WC EC-WC AN WC EC 

L1 0.489 0.615 0.476 0.019 0.076 3.623 -5.569 1.066 

L2 12.117 0.000* 0.037 0.013** 0.643 -4.401 2.708 1.630 

L3 7.168 0.001* 0.972 0.798 0.821 0.880 -1.295 0.217 

L4 1.186 0.309 0.025 0.000* 0.097 7.221 -6.994 -0.835 

L5 3.013 0.053 0.165 0.012 0.184 -8.768 9.400 0.360 

L6 2.124 0.125 0.637 0.501 0.247 0.141 -4.638 3.229 

L7 7.238 0.001* 0.110 0.941 0.444 3.792 1.846 -4.417 

V1 9.953 0.000* 0.005* 0.062 1.000 -3.719 1.792 1.735 

V2 9.389 0.000* 0.014* 0.119 0.981 -5.867 3.222 2.453 

V3 7.961 0.001* 0.099 0.680 0.885 -3.918 0.515 2.818 

V4 9.858 0.000* 0.901 0.804 0.912 -2.318 2.560 0.042 

V5 3.300 0.041 0.003* 0.000* 0.316 4.602 -3.361 -1.323 

V6 0.609 0.546 0.002* 0.021 0.561 1.775 -0.522 -1.069 

D1 6.982 0.001* 0.545 0.811 0.981 -1.673 0.480 1.015 

D2 5.767 0.004* 0.846 0.654 0.386 0.374 -2.801 1.715 

D3 5.459 0.006* 0.218 0.074 0.514 -9.075 8.469 1.281 

D4 2.720 0.070 0.845 0.287 0.193 1.520 -5.464 2.702 

D5 7.791 0.001* 0.080 0.887 0.484 4.181 1.464 -4.459 

A1 0.020 0.980 0.111 0.001* 0.065 95.671 88.644 92.478 

A2 0.136 0.873 0.442 0.032 0.003* 93.720 89.298 95.167 

A3 0.420 0.658 0.022 0.999 0.027 109.937 109.935 113.497 

A4 0.022 0.978 0.331 0.885 0.430 135.049 135.276 136.459 

  

Of the eight variables that showed highly significant differences in the intraspecies truss 

morphology, only one of these variables, V2 (the width of the head at the sight of the gills), 

was significantly (p<0.001) different between sexes. A paired-samples t-test conducted to 

compare V2 for AN-EC (the population comparison rendering significant differences amongst 

sample site) showed there was a significant difference in the female V2 from AN (M = 

125.167, SD = 35.749) and EC (M = 51.179, SD = 18.742); t(25) = 4.248, p<0.001. This 
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result conflicts with the significant difference in MOW from the same populations. Female T. 

megalopterus from AN exhibit a smaller mouth width, but larger head width at the first gill 

slit.  

None of the highly significant variables were significantly different amongst haplotype.  

Ontogenetic shifts on tooth shape  

The shape analysis (Figure 4.5) of the EC sample subset showed the teeth of T. megalopterus 

increase in area and width with ontogeny. Small specimens had dorsoventrally flattened and 

more molariform lateral teeth, while the teeth of larger specimens were broader at their base 

and lengthened to produce a single cusp. This cusp was more evident in the teeth positioned 

in the medial parts of the jaw. 

 

Figure 4.5: Shape variation of Triakis megalopterus teeth from Eastern Cape. Superimposed 

outlines in the first column represent all of the shape variations per tooth type. 

 

Tooth morphology 

The tooth morphology analysis revealed comparable results for all four teeth from the three 

populations (Table 4.5). Of the 52 variables analysed, only one variable (D3) for the medial-

superior teeth showed a highly significant (p<0.01) difference between AN and EC. This 

indicated the EC specimens have a wider base for their medial-superior teeth than the AN 

specimens. 

The only significant variable in the tooth data (D3, medial superior), was not significantly 

different between sex or between haplotype.   
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Table 4.5: Results of ANOVAs of tooth data for T. megalopterus from Angola (AN), 

Western Cape (WC) and Eastern Cape (EC); F = Levene’s F statistic, p = Levene’s 

significance, * = significance at the 1% nominal level 

 

 
Levene's Test for 

Equality of 

Variance 

Least Significant Difference 

(LSD)/Games-Howell 
Population Means 

F P AN-EC AN-WC EC-WC AN EC WC 

L
at

er
al

 S
u

p
er

io
r 

W 0.483 0.619 0.188 0.491 0.559 0.657 0.705 0.739 

L 0.567 0.570 0.184 0.131 0.684 -0.396 -0.231 -0.267 

A1 5.844 0.004* 0.779 0.831 0.980 4.763 4.813 4.820 

A2 1.125 0.330 0.508 0.725 0.776 3.790 3.757 3.734 

A3 2.682 0.075 0.999 0.713 0.655 5.030 5.022 5.030 

A4 4.299 0.017 0.862 0.123 0.094 4.082 4.407 4.114 

D1 0.929 0.399 0.132 0.357 0.611 0.155 0.234 0.270 

D2 1.223 0.300 0.226 0.342 0.880 -0.031 0.041 0.051 

D3 1.316 0.274 0.085 0.134 0.966 -0.004 0.114 0.117 

D4 0.689 0.505 0.552 0.606 0.210 -0.005 -0.043 0.034 

S 1.925 0.153 0.696 0.237 0.311 -0.886 -0.815 -0.865 

A 0.912 0.406 0.155 0.203 0.987 -0.434 -0.240 -0.241 

C 1.808 0.171 0.699 0.225 0.291 3.417 3.345 3.397 

M
ed

ia
l-

S
u

p
er

io
r 

W 1.775 0.176 0.213 0.867 0.257 0.778 0.786 0.829 

L 0.027 0.973 0.043 0.806 0.061 0.611 0.627 0.727 

A1 3.443 0.037 0.141 0.449 0.503 4.354 4.320 4.294 

A2 1.766 0.178 0.197 0.753 0.314 4.316 4.330 4.369 

A3 1.646 0.199 0.196 0.698 0.357 4.890 4.879 4.858 

A4 6.696 0.002* 0.699 0.914 0.404 4.464 4.516 4.347 

D1 0.351 0.705 0.165 0.830 0.082 0.614 0.604 0.676 

D2 0.147 0.863 0.076 0.685 0.157 0.548 0.571 0.636 

D3 1.051 0.355 0.008* 0.158 0.228 0.143 0.209 0.255 

D4 0.330 0.720 0.710 0.361 0.135 0.207 0.160 0.223 

S 0.353 0.703 0.120 0.400 0.510 -0.473 -0.455 -0.443 

A 0.200 0.819 0.044 0.745 0.076 0.701 0.731 0.868 

C 0.426 0.654 0.137 0.456 0.483 3.003 2.987 2.975 

L
at

er
al

 I
n

fe
ri

o
r 

W 0.273 0.762 0.586 0.433 0.128 0.637 0.682 0.608 

L 3.434 0.037 0.345 0.703 0.143 -0.347 -0.316 -0.416 

A1 3.813 0.026 0.439 0.381 0.817 4.879 4.912 4.905 

A2 1.365 0.261 0.146 0.319 0.720 3.750 3.685 3.665 

A3 2.198 0.118 0.176 0.677 0.342 4.939 4.947 4.963 

A4 2.153 0.123 0.173 0.805 0.080 4.515 4.558 4.307 

D1 0.689 0.505 0.853 0.200 0.082 0.001 0.077 -0.008 

D2 0.901 0.410 0.490 0.599 0.172 0.046 0.078 0.008 

D3 0.230 0.795 0.923 0.184 0.089 -0.005 0.078 -0.010 

D4 0.596 0.553 0.202 0.897 0.129 0.024 0.032 -0.050 

S 3.933 0.024 0.414 0.763 0.609 -0.804 -0.818 -0.839 
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Levene's Test for 

Equality of 

Variance 

Least Significant Difference 

(LSD)/Games-Howell 
Population Means 

F P AN-EC AN-WC EC-WC AN EC WC 

A 1.780 0.175 0.347 0.522 0.077 -0.374 -0.296 -0.475 

C 3.540 0.034 0.414 0.779 0.591 3.335 3.349 3.370 

M
ed

ia
l-

In
fe

ri
o
r 

W 0.320 0.727 0.381 0.894 0.273 1.011 1.005 1.042 

L 0.989 0.376 0.064 0.398 0.327 0.706 0.752 0.797 

A1 1.610 0.206 0.737 0.979 0.744 4.417 4.416 4.408 

A2 2.248 0.112 0.086 0.193 0.783 4.168 4.229 4.240 

A3 0.139 0.870 0.461 0.868 0.556 4.898 4.894 4.883 

A4 1.582 0.212 0.170 0.600 0.399 4.622 4.526 4.397 

D1 0.444 0.643 0.063 0.266 0.509 0.635 0.686 0.711 

D2 0.241 0.787 0.607 0.927 0.509 0.775 0.770 0.802 

D3 4.343 0.016 0.651 0.054 0.065 0.438 0.343 0.419 

D4 0.038 0.963 0.041 0.092 0.868 0.359 0.449 0.457 

S 2.676 0.075 0.660 0.643 0.304 -0.462 -0.471 -0.455 

A 0.996 0.374 0.338 0.591 0.096 1.092 1.055 1.149 

C 3.189 0.047 0.705 0.623 0.319 2.991 3.001 2.985 

 

Discussion 

The morphology and biomechanics of sharks range from slender and flexible in benthic 

species to more streamlined and stiff-bodied in pelagic species (Shadwick and Goldbogen, 

2012). Cartilage is living tissue that is able to change its shape in response to primary stresses 

(Carter and Beaupré, 2007). As sharks possess a purely cartilaginous skeleton (Cailliet et al., 

1983b), interspecies adaptation may occur when members of a population become better 

suited to their environments, increasing their chances of survival and/or improving their 

fitness (Futuyma, 2009). These types of morphological differences play an integral role in the 

ecological performance, and thus survival, of species and populations (Liem, 1990).  

 

From the sample site descriptions (see Chapter 2), it is clear that all three populations of T. 

megalopterus analysed for this chapter are exposed to very different environmental factors, 

which include ocean currents, temperature, oxygen and habitat. The genetic results (see 

Chapter 3) also show population structure for this species. Thus, we may expect that the 

morphology of T. megalopterus will show differences amongst populations. It is, however, 

possible that phenotypic variation is not linked to the genetics of a species. This occurs when 

the phenotypic expression is dependent on environmental influences, and stabilizing selection 

favours the same phenotype (Vogt et al., 2008).  
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Adjusting the morphometric measurements to an overall mean total length was successful in 

removing the effect of allometry and sexual dimorphism from the analyses. Only two 

variables from the traditional and truss morphology revealed significant differences between 

females from AN and EC. The mouth width in EC was significantly larger than in AN, while 

the head width (at the site of the gills) was significantly larger in AN compared to EC. This is 

a contradictory result that may have been caused by a sampling error since one would expect 

a wider head in the population that shows a wider mouth. As female sharks attain larger sizes, 

it is no surprise that they would have larger mouths as they will be able to take on larger prey 

than the males. In G. cuvier, for example, females had a higher prey diversity than the males 

(Simpfendorfer et al., 2001). Larger mouths in females from EC may be indicative of their 

more durophagous diet, whereas AN specimens feed on more soft bodied prey such as teleosts 

and cephalopods (see Chapter 5). For instance, cephalopods are easily manipulated in the 

mouth allowing smaller predators to ingest larger octopus as prey.  

 

Few significant differences were apparent between WC-AN (ING, INO) and WC-EC (P1I, 

CPV). The majority of the morphological differences were found between AN-SA and AN-

EC indicating that AN specimens appear to group out from the other locations. Generally, 

compared to the South African populations, AN specimens appear to have smaller fins 

(pectoral, 1
st
 and 2

nd
 dorsal), wider fin bases (pelvic, 2

nd
 dorsal), shorter gill slits, smaller eyes 

and spiracles, wider tail regions and larger caudal fork, smaller post ventral and terminal 

caudal margins. Many of these differences produce a more streamlined body for AN 

specimens. Unfortunately, functional morphology was beyond the scope of this thesis. For 

this reason, although differences amongst populations can be seen from the statistics, the 

reason for these differences cannot be accurately explained, only hypothesized. In order to 

properly quantify the mechanical and evolutionary association amongst the behaviour, 

dynamics and functional form of the sharks, all of the significant morphological differences in 

this chapter require further investigation into their physiology and functional morphology.  

 

Largely, theory states that the function of the pectoral fins is to generate lift to balance the 

movement generated by the heterocercal tail (Alexander, 1965; Simons, 1970; Thomson and 

Simanek, 1977). However, in T. semifasciata, the pectoral fins are critical for 

manoeuvrability, not for generating lift (Wilga and Lauder, 2000). Correspondingly, the 

dorsal fins are used for stabilization and to assist in sudden turns (Lingham-Soliar, 2005a). 

Therefore, it may be probable that the combination of shorter fins and larger fin bases, serves 

to increase the rigidity of fins offering less manoeuvrability (Helfman et al., 2009). 
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Consequently, sharks from AN may have less need for manoeuvrability, possibly due to 

feeding differences (feeding in the open water column) and/or as an adaptation to their local 

habitats conditions. The smaller fins (pectoral and dorsal) in AN specimens may also aid in 

streamlining the shark by minimizing inertial and viscous drag (Helfman et al., 2009) and 

permitting higher speeds (Bushnell and Moore, 1991), an adaptation found in active 

swimming species. Streamlined bodies are consistent with ram feeders (Webb, 1977, 1984) 

making the predator more successful in attacks on elusive, fast prey such as teleosts or 

cephalopods (Webb, 1982; Moody et al., 1983).  

 

Compared to the SA populations, AN possess a larger tail region (anterior to the caudal fin) 

that is both laterally and dorsoventrally greater. A study of free swimming leopard sharks, 

Triakis semifasciata, shows the movement of the tail surface deflects water ventrally and 

posteriorly, generating an anterodorsally directed reaction force with both lift and thrust 

components (Wilga and Lauder, 2000). The propulsion of the caudal fin is generated by both 

red and white axial muscles. The red muscle has a smaller diameter, is aerobic and active at 

slower, continuous swimming speeds, while the white muscle is larger in diameter, generally 

anaerobic and active for brief bursts of speed or fast-starts possibly geared to capturing fast 

swimming prey or to avoid predators (Flammang, 2010; Shadwick and Goldbogen, 2012). 

Generally, red muscle only varies in position and does not increase in quantity between 

species (e.g. Prionace glauca, Triakis semifasciata, Isurus oxyrinchus, Carcharodon 

carcharias, Lamna ditropis, Alopias vulpinus; Bernal et al., 2003). Similarly, in the caudal 

peduncle in the white shark, Carcharodon carcharias, there is an increase in the epaxial and 

hypaxial musculature combined with a dense layer of collagen fibre-reinforced adipose tissue, 

vital to efficient oscillatory motions of the caudal fin (Lingham-Soliar, 2005b). The thicker 

tail region in AN may be attributed to an increase in white muscle mass, possibly indicative of 

a morphological adaptation to brief bursts of speed. Therefore, the larger diameter caudal 

region may be related to the behaviour of the dominant prey species which are the relatively 

mobile Diplodus sargus capensis, Sardinella aurita, Atractoscion aequidens and Pomadasys 

olivaceum in AN compared with the sedentary Jasus lalandii in the WC and the 

predominantly crustacean based diet in the EC.  

 

Smaller eye height and widths were recorded in T. megalopterus from AN compared to SA. 

Although there are not much data available on differences in eye size amongst elasmobranch 

populations, there are significant differences in eye size amongst elasmobranch species. For 

instance, in a study of the residual axial eye diameter of 46 elasmobranchs, the residuals 
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ranged from 1.604 to 0.821 for the pelagic big-eye thresher (A. superciliosus) and the benthic 

and coastal coffin ray (Hypnos monopterygius), respectively. Generally, larger eyes, which 

imply that the shark will rely heavily on vision (Warrant and Locket, 2004), are commonly 

found in species of sharks that feed on more active and mobile prey (Lisney and Collin, 

2007). Large eyes also mean longer focal length, which aids in resolution and sight sensitivity 

(Lisney and Collin, 2007). For these reasons, the eyes of most pelagic species are generally 

large and well-developed (Fritsches et al., 2003), e.g. bigeye thresher shark, A. superciliosus, 

silky shark, Carcharhinus falciformis, blue shark, Prionace glauca and crocodile shark, 

Pseudocarcharias kamoharai (Lisney and Collin, 2006). The larger eyes in the SA 

populations of T. megalopterus may be an adaptation to hunting prey that requires higher 

resolution and sight sensitivity.  

 

Interestingly, the spiracles and all of the gill slits were shorter in AN compared to the SA 

populations. As both of these features have to do with the respiration and thus oxygen 

extraction (Stevens, 1999b), shorter gill slits and smaller spiracles in AN may be an 

adaptation to more oxygenated waters or waters with a more stable oxygen supply. Smaller 

gills and spiracles may also be an indication of a generally less active population that does not 

require the relatively large gill surface areas that more active specimens would. For instance, 

fast swimming mackerel have a 50 times larger relative gill surface area compared to slow 

swimming, bottom dwelling goosefish (Schmidt-Nielsen, 1997). Unfortunately, the 

respiratory system and gill structure was beyond the scope of this study. It is therefore 

difficult to accurately explain the shorter gill slits and smaller spiracles in AN compared to 

EC and further investigation is required.  

 

Morphological differences may be genetic, environmental (phenotypic) or usually both 

(Swain et al., 2013). Adaptations to environmental changes or varying environments take 

place through either phenotypic plasticity, a reversible change to the morphological 

phenotypes, independent of genotype or genetic adaptation, or a change in phenotype caused 

by changes in allelic composition by means of selection (Dillon et al., 2014). Theories on 

adaptive phenotypic plasticity predict that given genetic variation (evident in Chapter 3), 

selection will favour adaptive plasticity (different phenotypes) when populations inhabit 

different environments and are subjected to varying conditions (Ghalambor et al., 2007). We 

know that the three populations of T. megalopterus studied occupy different habitats which 

are controlled by different ocean currents, varying temperatures, oxygen and salinity. 

Therefore it is not impossible that some, if not all, of the morphological differences seen may 



78 

be adaptive (e.g. smaller fins, wider fin bases and larger tail area in AN specimens) placing 

populations close to a new phenotypic optimum (Ghalambor et al., 2007) that is essential for 

the survival (Robinson and Dukas, 1999) of T. megalopterus.  

 

The variation in the traditional morphology, present between SA and AN was consistent with 

the mtCR haplotype network and phylogenetic tree which showed an SA vs. AN genetic 

structure. Although the mtCR FST showed a transoceanic structure, there was evidence of 

admixture between WC and EC. This admixture is confirmed by the T. megalopterus tagging 

data, which clearly showed movement between WC and EC (Dunlop and Mann, 2014). The 

variation in the traditional morphology that was present between AN and EC specimens is 

consistent with mtCR FST and the transoceanic structure (AN-NA-WC vs. EC) reported from 

the nDNA Bayesian clustering analysis. From this overview of the morphology versus 

genetics, the general trend is that AN and EC are the most divergent populations, both 

phenotypically and genotypically, while the South African (SA) populations show a large 

amount of similarities. Therefore, the morphological analysis supports the distinction of the 

EC and AN populations and it can be hypothesized that these morphological changes began to 

slowly occur after the isolation of T. megalopterus populations during the Pleistocene (see 

Chapter 3).  

 

To properly assess the underlying causation of morphological variation in T. megalopterus, 

resolution of the relationship between morphological features and environmental variation is 

required. This can be done by means of “common garden experiments” in which captive 

individuals from different environments are subjected to the same controlled environmental 

conditions (Trip et al., 2008; Dudgeon et al., 2012). This, however, was not possible in the 

current study. Alternatively, in an attempt to assess whether the morphological variation 

found amongst populations of T. megalopterus was evolution or adaptation, the morphology 

data were analysed using the six haplotypes from mtCR as the grouping variable. The 

haplotype ANOVA shows that 38.9% (14/36) of the variation (second dorsal fin, gill slit 

lengths, eye size, ULA and CFW) is congruent between phenotype and genotype. The results 

of the ANOVA’s run using the six haplotypes confirmed this distinction and gave evidence 

that the morphological differences found amongst populations of T. megalopterus may not be 

strictly phenotypic and may possibly represent positive selection and adaptive divergence. 

 

Unfortunately, both mtDNA and microsatellites were neutral markers. This means that gene 

variants detected using these markers do not have a direct effect on fitness (Holderegger et al., 
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2006). Therefore, this type of genetic variation is selectively neutral and tells us nothing about 

the adaptive or evolutionary potential of a population or a species (Holderegger et al., 2006). 

In order to properly test whether the morphological differences are genotypic, population 

genomics needs to be undertaken using multi-locus data sets from multiple populations to 

identify non-neutral or outlier loci by contrasting patterns of population divergence among 

genetic regions (Nosil and Buerkle, 2010). Population genomics were beyond the scope of 

this study but will be very beneficial in the future to aid in the understanding of shark 

evolution and their adaptability potentials to different habitats, environmental conditions and 

global warming. For this reason, although morphological differences are apparent, one can 

only speculate as to what the causes of the differences may be. 

 

Despite the teeth playing an integral role in shark feeding, the principal focus on functional 

feeding studies have concentrated on the head morphology, muscle and jaw function and 

cranial components (e.g. Summers et al., 2004; Dean et al., 2006; Huber et al., 2006; Lowry 

et al., 2007). Very little information is available on tooth morphology and its function for 

sharks. The teeth of T. megalopterus form a plate-like dentition where the teeth in the front of 

the jaw have a molar-like base rising into a sharp cusp. This plate like dentition is consistent 

with a crushing feeding mechanism and a durophagous diet (Moss, 1977), while the cusps 

pierce the flesh of soft prey enabling the shark to grasp and manipulate teleosts and molluscs 

(Ramsay and Wilga, 2007). This dentition is consistent with the feeding study by Smale and 

Goosen (1999) who state that Triakis megalopterus from the Eastern Cape of South Africa 

feeds on crustaceans, cephalopods, teleosts and small elasmobranchs. The teeth of T. 

megalopterus grow and change shape during ontogeny, most likely caused by a change in the 

feeding habits of this species through ontogeny (see Chapter 5).  

 

In the subset analysis of EC dentition, small T. megalopterus have dorsoventrally flattened 

and more molariform lateral teeth. These lateral teeth have no cusps, only small, coarse 

serrations which would be more suited for a durophagous diet where crushing or grinding of 

hard-bodied prey is required. As T. megalopterus grow, so do their teeth grow and change 

shape. There is an increase in the area and width of the teeth from small to large specimens 

where the medial-inferior and medial-superior broaden at their base and lengthen to produce a 

single cusp. The development of this cusp may enable larger specimens to grasp/clutch and 

manipulate softer-bodied prey to inhibit their escape (Ramsay and Wilga, 2007). Therefore, 

the development of this cusp may be indicative of a diet expansion to include softer-bodied 

prey species with increasing size. In one of the few statistical studies to incorporate feeding 
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and dental morphology throughout ontogeny (Powter et al., 2010), the Port Jackson shark, 

Heterodontus portusjacksoni, showed a similar, although opposite pattern to that observed for 

T. megalopterus. Juvenile H. portusjacksoni have the sharp, cuspidate anterior teeth needed to 

grasp soft bodied benthic invertebrates, while the adults had more molariform teeth suited to 

their durophagous diet.  

 

Different biotic environments could result in differences in food composition as prey diversity 

and abundance varies with location (Yamaguchi and Taniuchi, 2000). Consequently, varied 

feeding habits in diverse habitats may result in different tooth morphology amongst 

populations. In this study, however, there was only a single variable (medial-superior base 

width) that differed significantly between AN and EC. Although this result suggests that the 

diet of T. megalopterus may be similar in the AN, WC and EC, this was not the case (see 

Chapter 5). Another explanation for the similar tooth morphology of the three populations 

may be that T. megalopterus implements feeding mechanisms that do not require biting, e.g. 

ram or suction feeding (Motta et al., 1997).  

 

During ram feeding the predator engulfs its prey whole or seizes it in its jaws (Motta and 

Wilga, 2001) thereby not making use of its teeth unless there is some degree of prey 

manipulation. For instance, Wilga and Motta (2000) state that the bonnethead shark, Sphyrna 

tiburo, ram feed on benthic prey by approaching prey with mouth wide open, depressing their 

mandible and engulfing the prey, after which this species implements prey manipulation by a 

combination of lateral headshakes and crushing of the prey. Conversely, during suction 

feeding the predator expands the volume of its oral cavity and/or throat causing a decrease in 

pressure inside the mouth/throat resulting in prey being pulled into the mouth (Motta and 

Wilga, 2001). The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that 

doesn’t require the additional help of prey manipulation techniques as its suction power alone 

can dismember prey (Matott et al., 2005).  

 

Male elasmobranchs are known to bite the fins and flanks of females during copulation in 

order to coerce females into and/or stabilize the female during mating (Byrne and Avise, 

2012). Therefore, sexual dental dimorphism may be apparent in elasmobranchs where it 

would be theoretically advantageous for males to develop sharp, pointed teeth during the 

mating season to enhance the grip efficiency and ultimately to increase male reproductive 

success (Kajiura and Tricas, 1996). There was, however, no evidence of sexual dental 

dimorphism in T. megalopterus as both sexes developed sharp cusps at larger sizes. There was 
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also no physical evidence, such as lacerations or mating scars on females. This may suggest 

that this species may not implement these courtship/mating behaviours. More likely, the 

males may still grip the females; their teeth, however, are just not large or sharp enough to 

cause severe lacerations. Mature female T. megalopterus may also possess thicker skin to 

accommodate the aggressive mating behaviour of males. For instance, the dermis of mature 

female blue sharks, Prionace glauca, is twice as thick as that of males, which means it is 

seldom that the males teeth penetrate the females dermis and cause damage to the musculature 

(Pratt, 1979). In this study, the skin thickness was not measured for T. megalopterus. It might, 

however, be useful to do so in any future studies.  

 

The truss system was effective in recognizing differences amongst Triakis megalopterus, 

Haploblepharus edwardsii and Mustelus mustelus. The results from the truss analysis of these 

three species revealed that M. mustelus has a more slender body whilst T. megalopterus and 

H. edwardsii were more similar due to their flatter, stouter frames. T. megalopterus and M. 

mustelus, which both belong to the subfamily Triakinae, appear to be morphologically similar 

to the untrained eye and are often mistaken for one another by fishers (Booth et al., 2011); the 

truss system, however, was successful in separating these species.  

 

The truss was also successful in detecting differences between populations of T. megalopterus 

that were not apparent in the traditional morphology. For instance, in the traditional 

morphology, compared to AN, WC had a larger POB though this variable did not differe 

significantly. However, in the snout length in the truss, L2 (POB + ½EYL) was significantly 

different between AN and WC. The traditional morphology showed that AN had a 

significantly larger caudal region, while the truss morphology also identified that specimens 

from EC have a wider head (V1 and V2) and caudal (V6) region.  

 

Dorsal truss networks are generally used on dorsoventrally flattened species, such as sand 

sharks, rays, skates (e.g. Orlando et al., 2015) and lobster (e.g. Cadrin and Friedland, 1999). 

Ventral truss networks are generally used on laterally flattened species, for instance, many 

teleosts (e.g. Hockaday, 2000; Turan, 2004; Shao et al., 2007; Bagherian and Rahmani, 

2009). With the exception of flatfish (e.g. sandsharks and rays), sharks display depth and 

width which means both dorsal and lateral truss systems are possible. In this study, the truss 

was restricted to a dorsal view though an analysis based on the lateral view is also possible 

with sharks and may be more beneficial as one can include landmarks relating to the insertion 

points of all fins. Correspondingly, the choice and number of landmarks used in the analysis 
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was limited as the specimens had already been dissected, this may have influenced the 

statistical power of the analysis (Parsons et al., 2003). Although the truss did reveal some 

differences between populations, the separation could have been better with the freedom to 

develop the truss from scratch by choosing the most relevant landmarks.  

 

By reconstructing the morphological measurements into a truss system one overcomes the 

main drawbacks of traditional morphology. The truss method is not dominated by redundant 

measurements along a single axis, which provides a more complete characterization of shape. 

This method makes use of longitudinal, diagonal, breadth and width measurements, 

encompasses systematic coverage of the entire specimen without repetition of linear 

measurements and makes use of anatomical rather than extremal landmarks by basing 

landmarks on definitive biological structures. By reconstructing the outline of specimens in 

AutoCAD, one also has the key advantages of visualizing the form of specimens and early 

recognition of measurement errors as the reconstruction will not be successful with errors in 

measurements. Most importantly, reconstructing specimens in AutoCAD means one does not 

need to worry about specimens losing shape on a planar surface due to their cartilaginous 

skeletons not being able to withhold their weight. The use of AutoCAD also reduces the 

amount of software one needs to use for analysis. Once the specimen is reconstructed, 

distances (length measurements), angles and landmark coordinates can be computed. 

Specimens can also be analysed in both two and three dimensional aspects. Therefore, the 

proposed truss morphology protocol will be very beneficial for protected species where lethal 

morphology methods are not an option. This methodology will also be a useful addition to 

traditional morphology for a holistic approach to morphological analyses.  

 

In order to understand exactly why morphological intrapopulation differences exist in T. 

megalopterus, future work on the functional morphology of the species will be beneficial and 

assist in understanding shark evolution and their adaptability potentials to different habitats, 

environmental conditions and global warming. Information such as prey detection and capture 

capabilities is also needed for a more comprehensive understanding of the functional feeding 

and therefore feeding strategies of this species.  

 

Conclusions 

Specimens from AN appear to be more streamlined than those from SA, an indication of an 

adaptation to local environmental conditions and/or feeding differences. Morphological 
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differentiation in T. megalopterus reflected the population structure found in both the mtCR 

and nDNA results. As T. megalopterus has shown differences in phenotype amongst 

populations, which appear to correspond with the genetic data, it is apparent that the 

phenotype of this species is influenced both by its genotype and the environment. The 

dentition of T. megalopterus appears to be consistent with a durophagous diet that also 

includes soft bodied prey (e.g. teleosts and cephalopods). The teeth of T. megalopterus show a 

broader base and longer cusp in larger specimens, possibly indicative of a dietary shift during 

ontogeny. There is no evidence of sexual dental dimorphism and virtually no difference 

amongst populations, despite differences in feeding amongst T. megalopterus populations, 

particularly in the WC. The truss network was effective in separating species as well as 

identifying intraspecific morphological differences that were not detected using traditional 

morphometrics. With additional testing, this methodology may very well be suitable for non-

lethal studies which will allow for morphological studies on protected species.  
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Chapter 5:  

Comparison of the diet of Triakis megalopterus from 

three biogeographic zones in southern Africa 
 

Introduction 

Successful foraging by elasmobranchs is essential to sustain bodily functions such as growth 

and reproduction (Ernest et al., 2003). Understanding the feeding habits of various species 

provides essential information about their natural history, role in ecosystems (Braga et al., 

2012), resource partitioning and habitat quality (Guedes and Araújo, 2008), habitat selection 

(Sims, 2003), trophic ecology (Cortés, 1999) and evolutionary specialization (Wilga et al., 

2007). 

 

Allopatric populations inhabit different geographic regions (Ayala, 1982) where they are 

subject to contrasting environmental conditions, habitat, resource availability, exploitation 

and predation. These factors are known as selective pressures and have the ability to alter the 

phenotype of individuals by changes to basic biological parameters (Bakun, 2010), fitness and 

behaviour (Shiu and Borevitz, 2008). Since these types of selective pressures are the driving 

force of natural selection and evolution (Schaffner and Sabeti, 2008), feeding can have a 

major impact on the phenotypic and genotypic expression in populations. 

 

Besides geographic dietary variations, it is not uncommon for animals to shift their diets with 

ontogeny. This switch often corresponds with changes in morphology, as shown by the 

teleost, Rutilus rutilus (Hjelm et al., 2003). According to Motta and Wilga (2001), an 

ecomorphological association between diet, feeding behaviour, and dental morphology also 

exists in sharks. In the family Heterodontidae (horn sharks), for example, the shape of the 

teeth and number of cusps change with ontogeny (Motta and Wilga, 2001). Dentition of the 

great white shark also changes when its diet shifts from predominantly fish to marine 

mammals (at length >3 m; McCosker, 1985). Several other shark species have similarly 

displayed morphological change related to dietary ontogenetic shift and their role in the 

ecosystem: e.g. tiger shark (Galeocerdo cuvier; Lowe et al., 1996); starspotted-dogfish 

(Mustelus manazo; Yamaguchi and Taniuchi, 2000); sevengill cow shark (Notorynchus 

cepedianus; Ebert, 2002); lemon sharks (Negaprion brevirostris; Newman et al., 2012); 

sandbar shark (Carcharhinus plumbeus; Ellis and Musick, 2006); and the Atlantic sharpnose 
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shark (Rhizoprionodon terraenovae; Hoffmayer and Parsons, 2003; Bethea et al., 2004, 

2006). 

 

Epigenetic inheritance will also allow for morphological changes between populations. 

Epigenetic inheritance is a phenotypic change that allows an organism to adjust its 

morphology and/or behaviour to suit different circumstances (Ehlinger, 1990) and to 

maximize their payoff in some kind of fitness (Schoener, 1971). This is possible when 

offspring transmit traits to the next generation that were not characteristic of the parent; this is 

called trans-generational developmental/phenotypic plasticity (Çabej, 2011). There is a little 

known about epigenetic inheritance of characters associated with feeding in elasmobranchs.  

 

Feeding ecology in sharks can be investigated in various ways: gut content analysis of 

deceased specimens (Braccini and Perez, 2005; Ebert and Ebert, 2005); non-lethal techniques 

such as stomach flushing (Kao 2000; Liao et al., 2001); DNA analysis of prey (Jarman and 

Wilson, 2004; King et al., 2008; Barnett et al., 2010); the analysis of tissue by means of 

organochlorine and/or stable-isotope (Fisk et al., 2002; Herman et al., 2005; Estrada et al., 

2006) and quantitative fatty acid signatures (Iverson et al., 2004; Herman et al., 2005); and 

visual/observation feeding analysis (Van Dykhuizen and Mollet, 1992).  

 

Each of these methods comes with its own particular bias. Dietary studies, in general, will be 

biased in favour of durable parts (e.g. cephalopod beaks, otoliths, vertebrae) attributable to 

differential rates of digestion (Tollit et al., 1997). Non-lethal methods do not guarantee full 

recovery of all prey items (Foster, 1997) and, depending on particular method used, prey 

retrieval success is dependent on species and specimen/prey size (Kamler and Pope, 2001). 

While DNA analysis of prey will increase the rate of data accumulation by enabling the 

identification of typically unidentifiable fragments of prey (flesh, bone, spine rays etc.), the 

success of this method is, however, expensive, time consuming and dependent on matching an 

unknown sequence to a reference sequence (Dunn et al., 2010) within a databank such as 

Barcode Of Life Database (BOLD). When using stable isotopes, isotopic ratios are affected 

by preservation techniques (Rau et al., 2003), nutritive stress changes (Bond and Jones, 

2009), rate of metabolism (Sears et al., 2009) and even latitudinal gradients (Quillfeldt et al., 

2005). Fatty acid composition of the inner fat layer is generally believed to be more 

metabolically active and thus, reflects diet better (Olsen and Grahl-Nielsen, 2003). Hence, this 

method is hindered by the difficulty of sampling the predator’s inner fat layer. Selective 

metabolism and biosynthesis by the predator also needs to be quantitatively accounted for by 
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forming calibration factors from captive feeding studies (Iverson et al., 2004). Visual 

observation techniques are generally difficult with large and/or pelagic species that need to be 

observed in open waters (Herman et al., 2005).  

 

Novel methods, such as stable isotopes, have advantages such as the ability to assess 

assimilated and not just ingested prey (Estrada et al., 2006), to distinguish between inshore 

and offshore feeding patterns (France, 1995) and to evaluate long-term feeding behaviours 

(Post, 2002; Peterson and Fry, 2015). Unfortunately, these modern methods are often not 

comparable with studies done before their inception. For this reason, when historical data are 

available for a study species, the use of commensurable methods is of more benefit for 

comparative purposes.  

 

Besides the confounding influence of different methods, dietary comparisons between marine 

populations are complicated by a variety of extrinsic and intrinsic factors. Extrinsic factors 

include prey availability and/or risk of predation (Perry and Pianka, 1997). The higher the 

species diversity in a marine ecosystem, the greater the number of potential prey species 

available to predators (Petchey, 2000). The latitudinal diversity gradient states that species 

richness increases towards the equator (Mittlebach, 1986), which is significantly correlated 

with mean sea surface temperature (Roy et al., 1998). The theory behind this is known as the 

temperature hypothesis, which suggests that increased temperature and therefore metabolism, 

supports greater speciation rates, culminating in higher diversity (Rohde, 1992). In a study of 

11 567 species across 13 taxa, sea surface temperature was the only ecological predictor 

correlated to the diversity across all taxa thereby supporting this hypothesis (Tittensor et al., 

2010).  

 

Seasonality, particularly in temperate regions, leads to fluctuations in temperature, dissolved 

oxygen and salinity (Abrahams et al., 2007). This may, in turn, lead to changes in prey 

abundance and thus predator feeding behaviour (Pulliam, 1974). For example, leopard sharks 

(Triakis semifasciata) are seasonally abundant in Humboldt Bay (Ebert and Ebert, 2005) and 

Elkhorn Slough, California, during spring, summer and autumn (Yoklavich et al., 1991). The 

absence of this species during winter has been attributed to their prey availability, 

reproduction, temperature and salinity variations (Hopkins and Cech, 1994; Carlisle and Starr, 

2009). For these reasons, dietary data need to be collected during all seasons to gain a 

comprehensive understanding of the dietary differences amongst populations and in different 

seasons.  
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Intrinsic factors such as age (size), sex, reproduction, epigenetic inheritance, dietary 

preference and nutritional requirements can affect feeding ecology (Perry and Pianka, 1997). 

An ontogenetic dietary shift is a change in the feeding of a species that coincides with its 

growth (Lowe et al., 1996; Kamura and Hashimoto, 2004) due to variations in prey capture 

success rates (Norton, 1991) and feeding behaviour (Ferry-Graham et al., 2002) of growing 

organisms. Body size is one of the key characteristics that determines food acquisition 

(Lucifora et al., 2009). Larger predators will have larger mouths and increased energy 

requirements (Cohen et al., 1993). Engen and Stenseth (1989), stated that larger sharks are 

able to feed on bigger prey; larger sharks tend to have greater nutritional requirements as 

maturity and reproductive processes increase their energy demand (Robbins, 1983). Larger 

and older sharks may also just be more experienced hunters allowing them to pursue and feed 

on species that are more difficult to catch (Rutz et al., 2006). Evidence of dietary ontogenetic 

shifts have been described in a number of shark species, including: Triakis semifasciata and 

Chiloscyllium plagiosum (Lowry, 2005; Lowry et al., 2007); Galeocerdo cuvier (Lowe et al., 

1996; Simpfendorfer et al., 2001); Carcharodon carcharias (Estrada et al., 2006); 

Notorynchus cepedianus (Ebert, 2002); Carcharhinus plumbeus (Ellis, 2003; McElroy et al., 

2006); Rhizoprionodon terraenovae (Hoffmayer and Parsons, 2003; Bethea et al., 2004); 

Carcharhinus limbatus (Bethea et al., 2004), Squalus megalops (Braccini et al., 2005), 

Sphyrna tiburo (Bethea et al., 2007); and Hexanchus griseus (Andrews et al., 2010). As 

dietary ontogenetic shifts appear relatively common in elasmobranchs, similar size classes 

should be used when comparing the diets of sharks from different populations.  

 

Sharks are generally considered to be asynchronous opportunistic predators, feeding on the 

most abundant prey item available to them (Motta and Wilga, 2001). Although, more recently, 

with the use of newer techniques such as stable isotopes, there is evidence of specialization 

(e.g. bull sharks, Carcharhinus leucas Müller and Henle, 1839), although this is not 

ubiquitous and is dependent on spatial overlap, competition, food-predation risk trade-offs 

and resource availability (Matich et al., 2011). Sharks will find, catch and eat to maximize 

calorie intake with minimal energy loss, according to the optimal foraging theory (OFT; 

MacArthur and Pianka, 2014). According to this theory, predators will give preference to prey 

that yields more energy per unit of handling time; lesser value prey will not feature in a 

predator’s diet when a greater abundance of higher value prey is available (Pulliam, 1974). 

Generally, teleosts and cephalopods are the most common prey items in the diet of 

elasmobranchs (Wetherbee et al., 2004). Small sharks associated with reef systems generally 

prey on invertebrates such as crabs, shrimps, squids, and small fishes, while the larger reef 
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dwelling sharks prey on larger bony fishes and molluscs (Tricas et al., 2002). Amongst the 

triakids, the leopard shark is a ram-suction (Ferry-Graham, 1998), opportunistic, generalist 

feeder preying on a wide variety of prey including benthic invertebrates (Ackerman, 1971; 

Talent, 1976; Kao, 2000). Occasionally, elasmobranchs are also included in the diet of this 

species (Ackerman, 1971; Talent, 1976; Ebert and Ebert, 2005). The diets of leopard sharks in 

California differ between locations. In Humboldt Bay, juvenile leopard sharks consume fish 

eggs, while adults shift their diets to feed on crustaceans (Ebert and Ebert, 2005). According 

to Talent (1976), this same species in Elkhorn Slough shows a dietary shift from 

predominantly crabs (<800 mm) to worms and clams (>800 mm). Over two decades later, 

however, another study in Elkhorn Slough reported that the ontogenetic dietary shift 

previously recorded was no longer evident (Kao, 2000). Only one analogous study could be 

found, on T. scyllium in Japan (Kamura and Hashimoto, 2004). Results show this species to 

feed on infaunal and epifaunal benthos where smaller (<700 mm) sharks favour the smaller 

prey such as innkeeper worms and shrimp, while larger (>701 mm) sharks only fed on larger 

prey such as octopus. 

To date, only one study has examined the feeding habits of Triakis megalopterus and this was 

done in the Eastern Cape of South Africa (Smale and Goosen, 1999). According to these 

authors, T. megalopterus appears to be a nocturnal feeder, with a diet consisting of 

crustaceans, cephalopods, teleosts and small elasmobranchs. There is presently no information 

available on the diet of T. megalopterus in the rest of South Africa (i.e. southern and Western 

Cape) or in southern Angola. The lack of feeding studies limits the knowledge of influences 

on the trophic dynamics of marine ecosystems (Cortés and Gruber, 1990). The data collected 

for this study provide a unique opportunity to examine the differences in feeding ecology of 

an elasmobranch across three biogeographic zones, in two countries, spanning the Atlantic 

and Indian oceans, the Angolan, Benguela and Agulhas ocean currents and both warm and 

cool temperate regions.  

The objectives of this chapter are to 1) describe the diet of T. megalopterus from South 

African (Western and Eastern Cape) and southern Angola populations and examine 

ontogenetic shifts and seasonal variability; 2) to investigate medium-term temporal changes in 

the diet of T. megalopterus in the Eastern Cape and relate this information to the phenotypic 

and genotypic differences between the three populations.  
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Material and methods 

Data collection and diet description 

A total of 119 T. megalopterus stomachs were analysed from AN (n = 40), WC (n = 33) and 

EC (n = 46) between November 2011 and February 2013. Eviscerated mass of the sharks 

were recorded to the nearest 0.1 g. Stomachs were removed by severing the oesophagus and 

the start of the spiral valve intestine. Where possible, stomach contents were analysed fresh. If 

stomachs had to be preserved for later analysis, the otoliths in the contents were removed, 

dried, and stored in Eppendorf tubes. Beaks were cleaned of excess tissue and stored in 70% 

ethanol. The remainder of the contents was then stored in 10% formalin. Freshly processed 

stomachs were weighed whole then cut open and the contents removed. Bait was immediately 

removed and excluded from subsequent analysis. Prey were sorted, enumerated and identified 

to the lowest taxonomic level possible. If prey items were not whole, the numerical estimates 

were based on countable parts, such as claws and legs for crustaceans, otoliths for fishes, and 

beaks for cephalopods. Stomach contents were sieved to drain excess fluid, and weighed to 

the nearest 0.01 g. Unidentifiable matter was weighed separately. All prey items were also 

measured. Total length (TL) for teleosts, carapace width (CW) and length (CL) for 

crustaceans and mantle width (MW) and length (ML) for cephalopods, henceforth termed as 

“prey size”.  

 

Diet quantification 

Prey items were quantified using a range of common indices (Hyslop, 1980). These included 

percent frequency of occurrence (%O), which is the number of stomachs containing a specific 

prey item divided by the total number of stomachs containing prey. This index reflects the 

proportion of predators utilizing a prey resource, or the homogeneity of the hunting method 

(Cortés, 1997). Occurrence does not however give any information on the number or quantity 

of prey nor does it consider digestion rates of prey items. Percent frequency of occurrence 

(%O) was calculated as: 

 

%𝑶𝒊 =
𝑱𝒊

𝑷
× 𝟏𝟎𝟎 

 

where:  

 

Ji  = number of fish containing prey item i 

P  =  number of fish with food in their stomach. 
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Percent abundance or number (%N) is the total number of prey items within each category 

divided by the total number of individual prey items. Although this index generally provides 

information on the feeding behaviour of a population (Zacharia, 2004), no allowance is made 

for the size differences between food items. Percent number (%N) was calculated as: 

 

%𝑵𝒊 =  
𝑵𝒊

∑ 𝑵𝒊
𝑸
𝒊𝟏

 

 

where: 

 

Ni  =  number of food category i 

 

The percent gravimetric index (%W) is the weight of a prey category divided by the total 

weight of all prey items. This method generally provides information on the nutritional 

importance of the different dietary items (Zacharia, 2004), however, digestion makes this 

method difficult, as prey items are not always whole. Percentage weight was calculated as: 

 

%𝑾𝒊 =  
𝑾𝒊

∑ 𝑾𝒊
𝑸
𝒊𝟏

 

 

where: 

 

Wi  =  number of food category i 

 

Each of these three measures (%O, %N and %W) provides a different insight into the feeding 

habits of the organism in question (Cortés, 1997). When considered separately, these three 

indices reflect a bias toward highly abundant prey (%O), small/digested prey (%N) or 

infrequent, large, non-digested prey (%W). Factors such as prey type, meal size, and 

evacuation rates (Bush and Holland, 2002) may also obscure prey importance.  

 

Thus it is suggested that a compound index of all the above indices be used, the most popular 

of these being the index of relative prey importance (IRI; Pinkas et al., 1971):  

 

𝑰𝑹𝑰𝒊 = (%𝑵𝒊 + %𝑾𝒊) %𝑶𝒊 
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The IRI value was converted into a percentage, for ease of comparison among food types, 

using the following equation (Cortés, 1997): 

 

%𝑰𝑹𝑰 =  
𝟏𝟎𝟎 𝑰𝑹𝑰𝒊

∑ 𝑰𝑹𝑰𝒊
𝒏
𝒊=𝟏

 

 

where: 

 

n  =  total number of food categories at a given taxonomic level. 

 

There is, however, much controversy regarding the accuracy of these types of compound 

indices. Not only do they use average values from different measures, they also combine the 

variation and errors associated with them (Hyslop, 1980). Thus, IRI has solely been included 

in this thesis to enable direct comparison with other studies.  

 

Ontogenetic shift 

Sharks from which samples were collected were divided into three size classes: small (<999 

mm), medium (1000–1399 mm) and large (>1400 mm) following Smale and Goosen (1999). 

The N%, %W, %O and %IRI for each prey category and size class was calculated. The %N 

data were standardized, square root transformed and subjected to Bray–Curtis similarity 

analyses (Bray and Curtis, 1957), group averaged clustering and multidimensional scaling 

(MDS; Clarke and Warwick, 2001) ordination using Primer v6. The MDS was included as the 

data are not forced into a hierarchy as with the cluster analysis, thus MDS is less constraining 

(Shepard, 1980). For the MDS, a minimum stress of 0.01 and 25 restarts were used and 

agglomerative cluster analysis based on the Bray–Curtis similarity coefficients was 

calculated. Significant differences of size classes were tested using the one-way analysis of 

similarity (ANOSIM) in Primer v6. Differences between sites were considered significant at 

p<0.05. The extent of significant differences was determined by the R-statistic (Clarke and 

Green, 1988), which ranges between zero (no similarity) and one (100% similarity), thus the 

R value indicates no similarity and 100% resemblance respectively. A one-way analysis of 

variance (ANOVA) was done in IBM SPSS Statistics 20 to test for significant differences in 

the %N of prey families between size classes. When the ANOVA indicated significant 

differences (T. megalopterus 0.05), a Tukey HSD post hoc test was performed. All of the data 

were analysed by the family each prey species belonged to.  
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Diet seasonality 

Sampling in AN only took place in summer (November/December 2011) and winter 

(June/July 2012). For this reason, and for the purpose of direct comparison, all sampling 

localities were only analysed using summer (December–February) and winter (March–

August) for the seasonal analysis. The %N, %W, %O and %IRI for each prey category, in 

each season (summer and winter), was calculated. Data for %N was standardized, square root 

transformed and subjected to Bray–Curtis similarity analyses (Bray and Curtis, 1957), group 

averaged clustering and two-dimensional non-metric Multidimensional Scaling (MDS; Clarke 

and Warwick, 2001) ordination. Independent t-tests were used to test the seasonal differences 

within each locality. Again, all of the data were analysed according to the family each prey 

species belonged to. 

 

Results and interpretation  

Of the 119 stomachs that were analysed, nine were empty. Only one small (470 mm) 

individual was caught in WC. Unfortunately, this was one of the specimens that had an empty 

stomach. For this reason, small sharks in WC could not be included in the analyses. 

 

All populations of T. megalopterus preyed upon teleosts, crustaceans and molluscs. A total of 

19 prey species belonging to seven families of teleost, eight families of crustaceans, one 

family of elasmobranch and three mollusc families were observed (Table 5.1). However, this 

may be an underestimate as there was a large amount of digested and unidentifiable prey in 

the stomachs. The elasmobranchs’ stomach contents included egg cases of Haploblepharus 

spp., as well as miscellaneous items such as a shell (Urosalpinx subsinuatus), small black 

stone, barnacle (Tetraclita serrata), and pieces of aquatic plant (Phaeophyceae) were also 

present. These miscellaneous items were considered accidental ingestions, thus not included 

in the analyses. From WC stomach contents, besides one Octopus vulgaris beak, no digested 

and/or unidentifiable matter was present and all prey was whole and easily identifiable.  

 

Ontogenetic change 

There were significant differences in the mean size of teleost (ANOVA, F(2.27) = 29.12, 

p<0.01) and crustacean (ANOVA, F (2.27) = 12.44, p<0.01) in the diet of small, medium and 

large T. megalopterus (Figure 5.1). A Tukey post-hoc test revealed that teleosts in the diet of 

the smaller size class were significantly smaller than in the medium (p<0.01) and large 

(p<0.01) size classes. Crustaceans were significantly different when comparing small and 
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large classes (Tukey post-hoc test, p<0.01). There were no significant difference in the size of 

the molluscan prey between the size classes (ANOVA, F(2.27) = 0.68, p = 0.54). 

 

 

Figure 5.1: Relation between predator size class and prey size (teleost = TL, crustacean = 

CW and mollusc = MW); TL = total length, CW = carapace width, ML = mantle length, 

error bars represent standard error 

 

Prey diversity for all size classes (Table 5.1) increased closer to equator, from WC to EC and 

AN with three, seven and 17 species present, respectively (excluding miscellaneous items). 

Stomach contents from WC contained no unidentifiable material. Both EC and AN had 

extensively digested material present. Highest quantities of unidentifiable material were in 

EC, from the small and large (%N = 6.67) to medium (%N = 7.14) specimens. Angolan 

specimens showed unidentifiable material of between %N = 3.57 and 6.06 for medium and 

large specimens, respectively.  

Although teleosts dominated the diet of all size classes of T. megalopterus in AN, they were 

absent in the diet of EC-small, EC-medium and all WC specimens. The importance of teleosts 

decreased in the diet of T. megalopterus with size, while the importance of crustaceans (AN-

medium, %N = 4.36) and molluscs (AN-large, %N = 19.12) increased. Although all size 
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classes of T. megalopterus in Angola fed on Sardinella aurita, it was less important in the diet 

of the larger individuals. The smallest sharks (AN-small) fed mainly on the small 

Parablennius pilicornis (%N = 17.1), while the largest sharks (AN-large) fed on the bigger 

and noxious Galeichthys feliceps (%N = 16.2). The only teleost identified in the stomach 

contents of T. megalopterus from EC was Galeichthys sp. which was observed in the diet of 

the large sharks. Elasmobranch (Squalus sp.) egg cases (%N =2.0) were also found in the 

diets of large T. megalopterus, but only in the large AN specimens. 

 

Crustaceans were present in the diet of T. megalopterus from all size classes and at all 

locations, although they were most dominant in both South African EC and WC populations. 

The Cape rock lobster (Jasus lalandii) dominated the diet of WC individuals (%N >98.1), 

while the only other crustacean identified from the WC was one crab, Plagusia chabrus (%N 

= 1.9). The number of crustaceans ingested decreased with the size of the EC specimens 

(small %N = 86.7, medium %N = 64.3, large %N = 46.7). In EC, P. chabrus dominated the 

crustacean prey category for all size classes, whereas Metacarcinus magister was the most 

favoured crustacean for AN-small (%N = 4.9) and AN-medium (%N = 14.3), while AN-large 

T. megalopterus consumed more Ovalipes trimaculates (%N = 4.0). 

 

Molluscs were present in the diet of T. megalopterus from all three populations. In AN, the 

common octopus (Octopus vulgaris) was found in the stomach contents of all size classes 

though the most were found in the large individuals (%N = 26.3). Octopus were only present 

in the large size class from WC (%N = 1.9) and EC (%N = 6.7). Abalone (Haliotis midae) 

flesh was found in the stomach contents of EC-medium (%N = 14.3) and EC-large (%N = 

6.7). No abalone was found in WC or AN specimens. Squid (Loligo reynaudii) were only 

found in AN-medium (%N = 3.6) and AN-large (%N = 3.0) specimens.  
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Table 5.1: Diet quantification indices (%N, %W, %O and %IRI) for small, medium and large T. megalopterus from Western Cape, Eastern Cape and Angola; %N = percent number, %W = percent weight, % O = percent 
frequency of occurrence, %IRI = percent index of relative importance 

%N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI

Teleost 20.00 31.82 21.43 24.51 70.73 65.37 45.45 74.59 67.86 53.83 60.00 88.84 49.49 34.41 40.54 34.52

Ariidae

Galeichthys sp. 13.33 10.24 14.29 15.33 16.16 22.78 16.22 21.98

Sparidae

Diplodus sargus capensis 3.03 0.07 4.05 0.44

Clupeidae

Sardinella aurita 14.63 20.88 9.09 11.49 7.14 10.77 13.33 5.10 7.07 6.94 5.41 2.64

Bleniidae

Parablennius pilicornis 17.07 17.04 9.09 11.04

Sciaenidae

Atractoscion aequidens 1.01 0.01 1.35 0.05

Haemulidae

Pomadasys olivaceum 1.01 0.00 1.35 0.05

Ammodytidae

Ammodytes sp. 2.44 0.25 4.55 0.44 3.57 3.41 6.67 0.99 1.01 0.04 1.35 0.05

Unidentified Teleost 6.67 21.58 7.14 9.18 36.59 27.20 22.73 51.62 57.14 39.66 40.00 82.75 20.20 4.58 10.81 9.32

Elasmobranchs 2.02 0.08 2.70 0.20

Squalidae

Squalus sp. 2.02 0.08 2.70 0.20

Crustaceans 100.00 100.00 100.00 100.00 98.11 99.87 96.43 99.96 86.67 97.87 83.78 99.12 64.29 87.55 44.44 89.56 46.67 59.49 42.86 61.83 17.07 23.72 36.36 17.93 21.43 25.27 20.00 6.65 14.14 10.76 18.92 3.08

Polybiidae

Ovalipes trimaculatus 3.57 21.11 6.67 3.52 4.04 4.28 5.41 1.57

Squillidae

Pterygosquilla sp. 2.02 0.89 2.70 0.27

Cancridae

Metacarcinus magister 4.88 1.05 9.09 1.92 14.29 3.65 6.67 2.56 1.01 1.22 1.35 0.10

Scyllaridae

Scyllarides elisabethae 6.67 27.67 7.14 11.16

Caridea 4.44 0.71 5.41 0.24 3.57 0.51 6.67 0.58 1.01 0.00 1.35 0.05

Xanthidae

Atergatis roseus 2.02 1.94 2.70 0.37

Plagusiidae

Plagusia chabrus 1.89 0.58 3.57 0.05 73.33 92.69 67.57 98.08 64.29 87.55 44.44 89.56 13.33 9.46 7.14 7.41 7.32 7.27 18.18 9.45

Palinuridae

Jasus lalandii 100.00 100.00 100.00 100.00 96.23 99.28 92.86 99.91 2.22 1.02 2.70 0.08 20.00 22.03 21.43 40.99 1.01 1.06 1.35 0.10

Unidentified Crustacean 6.67 3.46 8.11 0.72 6.67 0.33 7.14 2.27 4.88 15.40 9.09 6.56 3.03 1.37 4.05 0.62

Molluscs 1.89 0.13 3.57 0.04 14.29 8.32 22.22 6.67 13.33 6.49 14.29 6.44 7.32 8.27 9.09 5.05 7.14 13.06 13.33 2.88 26.26 51.35 27.03 59.44

Cephalopods

Octopodidae

Octopus vulgaris 1.89 0.13 3.57 0.04 6.67 0.00 7.14 2.17 7.32 8.27 9.09 5.05 3.57 0.00 6.67 0.51 23.23 50.40 22.97 58.88

Loliginidae

Loligo vulgaris reynaudii 3.57 13.06 6.67 2.37 3.03 0.95 4.05 0.56

Gastropods

Haliotidae

Haliotis midae 14.29 8.32 22.22 6.67 6.67 6.49 7.14 4.28

Miscellaneous 13.33 2.13 16.22 0.88 21.43 4.13 33.33 3.77 20.00 2.20 21.43 7.22 4.88 2.64 9.09 2.43 3.57 7.84 6.67 1.63 8.08 3.40 10.81 2.76

Unidentified material 6.67 2.01 8.11 0.61 7.14 3.86 11.11 1.62 6.67 1.97 7.14 2.81 4.88 2.64 9.09 2.43 3.57 7.84 6.67 1.63 6.06 3.36 8.11 2.66

Tetraclitidae

Tetraclita serrata 7.14 0.00 11.11 1.05 6.67 0.00 7.14 2.17 1.01 0.00 1.35 0.05

Muricidae 

Urosalpinx subsinuatus 1.01 0.04 1.35 0.05

Black Stone 2.22 0.12 2.70 0.06

Phaeophyceae 4.44 0.00 5.41 0.21 7.14 0.27 11.11 1.09 6.67 0.23 7.14 2.24

Medium Large

Western Cape

Small Medium Large

Angola

Small Medium Large

Eastern Cape
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Regional differences 

Dietary differences were clearly evident in terms of regions and size as depicted in the Bray–

Curtis similarity matrix-based cluster analysis (Figure 5.2 a) and MDS plot (Figure 5.2 b) 

using %N. Differences in the diet of T. megalopterus were overall statistically significant in 

all three populations and their size classes (ANOSIM, R = -0.32, p = 0.94).  

Cluster analysis of %N indicated an 18.2% similarity between WC and EC and 13.3% 

similarity between the South African and AN populations. The highest similarity was in WC-

medium and WC-large (87.0%), where both size classes predominantly fed on J. lalandii. In 

EC, the diet of small and medium specimens was 62.1% similar with large quantities of P. 

chabrus included in the diet of both of these size classes. The diets of EC-large specimens, 

however, were only 36.5% similar to the combined small and medium classes, indicative of 

the diet expansion of large individuals to include teleosts and O. vulgaris. The diets of AN 

specimens were comparable in all size classes with a similarity of AN-large (50.8%) 

compared to small and medium (59.0%), as small, medium and large specimens all preyed 

upon all prey categories with only the prey diversity increasing.  

Additional cluster analyses, where the three size classes were individually compared amongst 

locations, revealed that small specimens from EC and AN (no data for WC-small was 

available) showed a 24.1% similarity. Though both populations of small specimens fed on 

Plagusiidae, the quantity thereof was tenfold larger in EC (%N = 73.3) than in AN (%N = 

7.3). There was zero similarity amongst all three sample sites for medium specimens as AN, 

WC and EC fed on unidentified teleosts (%N = 57.1), Palinuridae (%N = 100.0) and 

Plagusiidae (%N = 64.3), respectively. Large individuals from AN and EC grouped together 

with 40.7%, whereas both of these populations only showed a 24.4% similarity with WC.  

 

Figure 5.2: Size class analysis for the %N of prey family similarity displaying the (a) Bray–

Curtis similarity matrix-based cluster analysis and (b) a two dimensional representation of the 

MDS plot depicting a 30% resemblance level; %N = percent number, AN = Angola, EC = 

Eastern Cape, WC = Western Cape, MDS = multidimensional scaling. 



 

97 

Diet seasonality 

There were no seasonal differences in the diet of T. megalopterus in WC (Table 5.2), J. 

lalandii dominated the diet all year (%N >95.5). Seasonal changes were, however, present in 

EC and AN diets. In EC, no teleosts or molluscs were consumed in winter. Crustacean 

ingestion, however, increased from summer (%N = 64.4) to winter (%N = 86.2) mainly due to 

the increased intake of Plagusia chabrus (%N = 21.3%) and in the winter only Caridea (%N = 

6.9) were consumed. Several prey items including J. lalandii (%N = 8.9), Galeichthys sp. 

(%N = 4.4), Scyllarides elisabethae (%N = 2.2), O. vulgaris (%N = 2.2), and H. midae (%N = 

6.7) were only present in the diet of T. megalopterus in summer.  

 

In AN, T. megalopterus fed on teleosts, crustaceans and molluscs in similar quantities in both 

summer and winter. The largest change in diet of AN specimens was a %N = 9.83 increase in 

molluscs intake during summer. Unlike in EC, Galeichthys sp. were present in AN during 

both seasons, although their numbers doubled in summer (%N = 11.1). Both P. pilicornis 

(%N = 13.5) and Ammodytes sp. (%N = 5.8) were only present in summer diets of T. 

megalopterus, while Atractoscion aequidens (%N = 0.9), Diplodus capensis (%N = 2.56) and 

Pomadasys olivaceum (%N = 0.9) were only present in the winter diets of AN specimens. 
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Table 5.2: Diet quantification indices (%N, %W, %O and %IRI) separated by summer and winter from individuals of WC, EC and AN; %N = percent number, %W = percent weight, %O = percent frequency of 
occurrence, %IRI = percent index of relative importance 

%N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI %N %W %O %IRI

Teleost 4.44 16.63 5.88 1.31 57.26 54.07 46.75 61.22 57.69 22.07 39.39 32.83

Ariidae

Galeichthys sp. 2.22 4.76 2.94 0.43 11.11 28.42 11.69 17.00 5.77 12.47 9.09 8.79

Sparidae

Diplodus sargus capensis 2.56 0.12 3.90 0.39

Clupeidae

Sardinella aurita 6.84 9.40 7.79 4.65 13.46 6.46 6.06 6.40

Bleniidae

Parablennius pilicornis 13.46 1.47 6.06 4.79

Sciaenidae

Atractoscion aequidens 0.85 0.01 1.30 0.04

Haemulidae

Pomadasys olivaceum 0.85 0.00 1.30 0.04

Ammodytidae

Ammodytes sp. 5.77 0.58 9.09 3.06

Unidentified Teleost 2.22 11.87 2.94 0.88 35.04 16.10 20.78 39.10 19.23 1.10 9.09 9.79

Elasmobranchs 3.85 0.13 6.06 1.28

Squalidae

Squalus sp. 3.85 0.13 6.06 1.28

Crustaceans 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 64.44 74.33 58.82 91.58 86.21 99.53 83.33 99.22 15.38 14.60 19.48 2.97 19.23 10.47 27.27 14.89

Polybiidae

Ovalipes trimaculatus 0.85 2.02 1.30 0.14 7.69 8.35 12.12 10.31

Squillidae

Pterygosquilla sp. 1.71 1.65 2.60 0.32

Cancridae

Metacarcinus magister 5.13 2.83 3.90 1.14 1.92 0.09 3.03 0.32

Scyllaridae

Scyllarides elisabethae 2.22 15.23 2.94 1.09

Caridea 6.90 1.38 8.33 0.61 1.71 0.08 2.60 0.17

Xanthidae

Atergatis roseus 1.71 3.60 2.60 0.51

Plagusiidae

Plagusia chabrus 4.55 1.81 10.00 0.36 51.11 46.48 41.18 85.03 72.41 93.43 66.67 97.75 1.71 0.28 2.60 0.19 3.85 0.37 3.03 0.68

Palinuridae

Jasus lalandii 95.45 98.19 90.00 99.64 100.00 100.00 100.00 100.00 8.89 12.45 11.76 5.31 0.85 1.97 1.30 0.14

Unidentified Crustacean 2.22 0.18 2.94 0.15 6.90 4.73 8.33 0.86 1.71 2.17 2.60 0.37 5.77 1.66 9.09 3.58

Molluscs 8.89 6.00 11.76 2.50 21.37 25.49 24.68 31.85 11.54 65.56 15.15 48.60

Cephalopods

Octopodidae

Octopus vulgaris 2.22 0.00 2.94 0.14 18.80 21.67 20.78 30.94 9.62 65.56 12.12 48.29

Loliginidae

Loligo vulgaris reynaudii 2.56 3.82 3.90 0.92 1.92 0.00 3.03 0.31

Gastropods

Haliotidae

Haliotis midae 6.67 6.00 8.82 2.37

Miscellaneous 22.22 3.03 23.53 4.60 13.79 0.47 16.67 0.78 5.98 5.84 9.09 3.95 7.69 1.76 12.12 2.41

Unidentified material 8.89 2.82 11.76 2.92 3.45 0.23 4.17 0.14 5.98 5.84 9.09 3.95 3.85 1.70 6.06 1.78

Tetraclitidae

Tetraclita serrata 8.89 0.00 5.88 1.11 1.92 0.00 3.03 0.31

Muricidae 

Urosalpinx subsinuatus 1.92 0.06 3.03 0.32

Black Stone 3.45 0.23 4.17 0.14

Phaeophyceae 4.44 0.21 5.88 0.58 6.90 0.00 8.33 0.51

Winter

Western Cape Eastern Cape Angola

Summer Winter Summer Winter Summer
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Seasonal differences in the feeding of T. megalopterus showed significant separation of all 

populations and seasons (ANOSIM, R = -0.4, p = 1.0). The seasonal cluster analysis (Figure 

5.3 a) showed the similarity of summer and winter diets of T. megalopterus were 52.0%, 

59.5% and 89.2% for EC, AN and WC, respectively. The MDS plot (Figure 5.3 b) clearly 

showed a split between all three populations at the 25% resemblance level. This, as with the 

ontogeny, showed the differences to be more related to location rather than season.  

 

Only one specimen of T. megalopterus was obtained from the WC in winter, its stomach 

contents, which comprised J. lalandii, were similar to those captured in spring (n = 12) and 

autumn (n = 7). Therefore, although limited in data availability, it is unlikely that the diet 

during winter would change in this region. All specimens caught within the summer and 

winter months fed predominantly on J. lalandii, with one P. chabrus present in the stomach 

contents of a summer-sampled specimen. Only one WC specimen was found to have ingested 

an octopus (O. vulgaris); this specimen was caught in spring and therefore not included in the 

seasonal analysis. The largest seasonal change was in EC, where no teleosts or molluscs were 

found in the winter diet.  

 

 

Figure 5.3: Seasonal analysis for %N of prey family similarity displaying the (a) Bray–Curtis 

similarity matrix-based cluster analysis and (b) a two dimensional representation of the MDS 

plot depicting a resemblance level of 25%; %N = percent number, AN = Angola, EC = 

Eastern Cape, WC = Western Cape, MDS = multidimensional scaling 

 

Discussion 

All populations of T. megalopterus seem to be benthic foragers, predominantly feeding on 

teleosts, crustaceans and molluscs. Stomach contents of specimens caught by day (AN and 

EC) had digested matter, which was not found in specimens caught at night (WC); this and 

the presence of nocturnal prey in stomach contents shows T. megalopterus is most likely a 
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predominantly nocturnal feeder. Although the warmer water in AN and EC may cause faster 

digestion rates (Kao, 2000), Smale and Goosen (1999) also suggested the EC population of T. 

megalopterus feed predominantly at night. 

 

From a prey diversity perspective, Smale and Goosen (1999) identified 34 prey species in the 

diet of T. megalopterus in the EC. Their study was, however, conducted over a broader 

geographic range (Cape St. Francis to Coffee Bay), over a 12 year period and included an 

analysis of 110 stomachs. In this study, specimens were collected over a two year period and 

only 10 prey species were recorded in an analysis of 46 stomachs. Comparison of these two 

studies supports the suggestion that a higher diversity of prey items will be found in studies 

with larger sample sizes (Wetherbee et al., 2004). Although Smale and Goosen (1999) found 

that T. megalopterus fed on elasmobranchs (Haploblepharus fuscus and Rhinobatos sp.), none 

were found in the stomach contents of EC specimens in this study. Nevertheless, both studies 

showed patterns consistent with a generalist benthic feeder with teleosts, crustaceans and 

molluscs the dominant prey items.  

 

The diets of T. megalopterus from AN and EC comprised teleosts, crustaceans and molluscs. 

In the WC, however, these sharks prey almost exclusively on Cape rock lobster (J. lalandii). 

This is not surprising as this rock lobster is also nocturnal (Fielder, 1965) and occupies the 

same reef habitat (Booth and Phillips, 1994). The Cape rock lobster is also highly abundant in 

Betty’s Bay where the WC sampling site was located. This is a consequence of increased 

population sizes of J. lalandii along the southern and eastern coasts since the early 1990s, 

which saw this species shift its distribution range eastwards to the east of Cape Hangklip 

(Tarr et al., 1996; Turpie et al., 2003; Cockcroft et al., 2008; Blamey and Branch, 2012). The 

incursion of lobster into the Cape Hangklip area initiated a regime shift whereby the 

ecosystem, previously dominated by coralline algae and herbivores, is now dominated by 

lobster and macroalgae (Blamey et al., 2010). The increase in numbers of J. lalandii is 

thought to be a consequence of the overexploitation of its main predators, reef fish and the 

Cape fur seal (Arctocephalus pusillus). The exploitation of the cape fur seal population began 

in the 18
th

 century (Shaughnessy, 1984) and resulted in the population decreasing to less than 

100 000 individuals (Shaughnessy and Butterworth, 1981). Since 1993, however, the Cape fur 

seal populations have been relatively stable with a population size of approximately 1.7 

million (Kirkman, 2010) and at a status of least concern (Hofmeyr and Gales, 2008). 

Although the seal population has recovered, it does not appear that they have managed to 

control the lobster population. This is perhaps due to the eastward shift of the lobsters, while 

the bulk of the seal population remains on the west coast (David, 1989). The size of the 
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lobster population has had a profound effect on the sea urchin and juvenile abalone 

populations. Due to predation by the Cape rock lobster, the sea urchin populace collapsed in 

Betty’s Bay and Mudge Point, South Africa in 1994 (Tarr et al., 1996). As juvenile abalone 

shelter under sea urchins (Tarr, 1995), the collapse of the sea urchin populations thus resulted 

in a high mortality rate of juvenile abalone (Tarr et al., 1996). Thus, despite the fact abalone 

do occur in the WC, none were found in the stomach contents of WC T. megalopterus, unlike 

the EC individuals. This pattern of reduction of predators (A. pusillus and reef fish), 

abundance of J. lalandii and consequent depletion of prey populations, is a prime example of 

the top-down effect predators have on their ecosystems (Posey et al., 2002).  

 

Approximately 80% of all Cape rock lobsters found in the stomach contents of T. 

megalopterus sharks were light in colour and had soft exoskeletons. This indicates that the 

lobsters had recently undergone ecdysis (Cockcroft and Goosen, 1995), making them 

immobile and more vulnerable to predation (Stein, 2013). This is called condition-dependent 

risk-taking (Wirsing and Ripple, 2010). In an attempt to maximize energy gain (Pulliam, 

1974), predators are selective consumers. They find, capture and ingest prey that will allow 

them to gain maximum calories while saving time and consequently energy (MacArthur and 

Pianka, 2014). Accordingly, the high abundance, episodic vulnerability and slower 

movements of the Cape rock lobster make it easy prey, ensuring optimal foraging by the 

predator. This supports predictions of the OFT, in which preference is given to prey yielding 

more energy per unit of handling time (Pulliam, 1974). Fish are generally able to adjust their 

diet choices in response to prey abundance (Dill, 1983). The shift in diet to the most plentiful 

prey in the system indicates a flexible foraging tactic (Newman, 2003) in T. megalopterus as 

has been found in other shark species such as lemon sharks, Negaprion brevirostris (Newman 

et al., 2012). This flexibility in the diet is a precise prediction of the OFT (Hugie and Dill, 

1994) and its Basic Prey Model (BPM), which states a predator should choose its prey by its 

profitability especially when the prey is highly abundant (Gill, 2003), and a predator should 

concentrate on this prey instead of broadening its diet (Dill, 1983). An energetically beneficial 

prey species is one that provides the maximum amount of energy gain with the minimum 

amount of energy loss (Ferry-Graham, 1998). 

 

The diets of T. megalopterus were the most diverse in AN, followed by the EC and WC. 

Geographical differences in shark diets have been observed for many species, including 

lemon shark, N. brevirostris (Cortés and Gruber, 1990); blue shark, Prionace glizuca 

(McCord and Campana, 2003); starspotted smoothhound, Mustelus manazo (Yamaguchi and 

Taniuchi, 2000); Atlantic sharpnose shark, Rhizoprionodon terraenovae (Bethea et al., 2006); 
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and sandbar shark, Carcharhinus plumbeus (Ellis and Musick, 2006). These studies have 

highlighted various factors contributing to this trend, factors that all emphasize differences in 

the living biotic environment (Yamaguchi and Taniuchi, 2000), e.g. habitat differences 

(Bethea et al., 2007), relative prey abundance (McCord and Campana, 2003) and increased 

species richness toward the tropics (Rohde, 1992). According to Reusch (2014), the ocean 

environment is partitioned by latitudinal and longitudinal gradients caused by combinations of 

numerous abiotic factors (i.e. light, turbulence, oxygen, pressure, temperature) that are 

affected by seasons and the diurnal cycle. All of these factors will affect species diversity and 

thus prey availability in different ecosystems. Because AN is closest to the equator and WC is 

furthest away, this pattern of species richness conforms to the latitudinal diversity gradient 

theory (Roy et al., 1998; Mittelbach et al., 2007; Ekau and Verheye, 2010; Sanders, 2014). 

The temperature hypothesis of the latitudinal diversity gradient (Tittensor et al., 2010) 

suggests that the slow metabolic rates associated with lower temperatures leads to lower 

speciation rates and thus lower species diversity (Rohde, 1992). With mean annual sea surface 

temperatures of 20.4 ºC for AN (Richardson, 2010), 18.0 ºC for EC (Karczmarski et al., 1999) 

and 16.5 ºC for WC (Dufois and Rouault, 2012), these results also support the temperature 

hypothesis. Furthermore, Angola has a poorly developed economy and as a result, the 

absolute biodiversity loss has been relatively small in comparison to its natural resource base 

(Biggs et al., 2008). There is also a distinct seasonal signal in AN as the warm Angola 

Current migrates southward into the study region during summer. 

 

All three populations of T. megalopterus displayed different prey preferences. Differences 

between AN and South African populations (EC and WC) correspond with the marine 

ecoregions of the world that separate areas of dissimilar species composition (Spalding et al., 

2009). These ecoregions show that the AN sample site falls within the Benguela-Namib 

province, while the WC and EC sample sites are situated in the Agulhas Bank province. 

Furthermore, separating South Africa and Angola is the Lüderitz Upwelling Cell (Fennel, 

1999), which clearly forms an environmental barrier that isolates Angolan species. 

The Agulhas Bank is an approximately 116 000 km
2
 extension of the South African coastal 

plain (Hutchings et al., 2002). Though both the WC and EC sample sites are situated on the 

western and eastern sides of the Agulhas bank, respectively, EC had double the prey diversity 

of WC, which latter shows a distinct decrease in marine biodiversity. This is probably because 

of the warmer, more productive and well oxygenated water associated with the EC region, 

compared with the cold, low oxygen and low productivity (Hutchings et al., 2009) waters 

characteristic of the WC study area. Many taxa show a trend of increasing species richness 
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from the west to east coasts of South Africa (Branch and Griffiths, 1988; Bustamante et al., 

1997; Awad et al., 2002). According to Watson et al. (2005) in their contribution to the 

Millennium Ecosystem Assessment, overexploitation has the highest impact on the 

biodiversity of marine ecosystems. Overfishing in the 20
th

 century severely depleted South 

African linefish populations (Griffiths, 2000), which is evident from the 80% drop in 

commercial catch per unit effort (CPUE) already reported over a decade ago in the Western 

Cape between Cape Hangklip and Walker Bay (Attwood and Farquhar, 1999). Although the 

east coast of South Africa has fewer and smaller commercial fisheries than that of the west 

coast, the east coast has a high human population density resulting in overexploitation of 

coastal fish as the recreational and subsistence fishers take advantage of inshore resources 

(Griffiths et al., 2010).  

A clear ontogenetic shift was apparent in the EC samples. However, as the small (Old 

Woman’s River surf), medium (Port Alfred) and large (Port Elizabeth) sharks were captured 

in different locations, these differences may be a reflection of local habitat variability causing 

size segregation. This separation of size classes was not evident in southern Angola where T. 

megalopterus of all sizes were caught at the same locality off Cunene River mouth. The 

differences in size segregation amongst different populations most likely have to do with 

predator avoidance. The reproductive success in the shelf waters of southern Africa is 

hindered by strong winds, ocean currents and short term variability. This may mean the 

smaller T. megalopterus are located around the more productive upwelling of Cape Agulhas, a 

known nursery ground for numerous warm temperate species (Hutchings et al., 2002). 

Juvenile T. megalopterus have also been reported in the Transkei (Bass et al., 1975) and 

Gansbaai. Nursery grounds also offer better habitat for small sharks to avoid predation by 

larger sharks such as great whites and cow sharks. This may be why, during the two years of 

sampling for this study, only one juvenile T. megalopterus of 470 cm was caught on the 

Strand (WC) reefs. The next smallest individual captured was 1216 cm, suggesting that 

individuals between 500 and 1200 cm may be absent in False Bay and Betty’s Bay.  

It is also possible that smaller individuals are outcompeted by the larger individuals in the 

WC. The substantially reduced prey diversity in this region and the lack of teleost diversity 

between Cape Hangklip and Walker Bay (Attwood and Farquhar, 1999) may have increased 

competition for food resources. The dynamics of competition and simultaneous obtainability 

of resources may evoke a relocation response (Pittman and McAlpine, 2003). Furthermore, a 

decline in resource renewal rates can cause complete size-segregation in which a larger 

fish/cooler water pattern will emerge as per capita resource levels fall (Hughes and Grand, 

2000). This may be why only larger specimens are found in Betty’s Bay, Western Cape and 
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why smaller specimens were perhaps more abundant in the warmer and more species rich 

waters closer to Cape Agulhas. Salmon sharks, Lamna ditropis, exhibited this larger 

fish/cooler water distribution pattern off Japan and the southern Kuril Islands where smaller 

specimens are found, whereas larger sharks are found in the western and central Bering Sea 

(Nagasawa, 1998). This pattern, however, is not always the case as large white sharks are 

known to frequent the tropics, while juveniles frequent temperate coastlines.  

For most fishes, prey size increases with predator size (Juanes, 1994; Scharf et al., 2000); 

larger prey are energetically beneficial because they provide a higher yield on energy 

investment (Labropoulou et al., 1999). The increase in prey size in this study could also be 

attributed to varying habitat choice with growth that results in differences in prey availability. 

Juvenile lemon sharks, for instance, select warm, shallow water with underlying structure to 

provide shelter and predator avoidance (Morrissey and Gruber, 1993). Such habitat choice 

would explain why small T. megalopterus feed primarily on small, benthic organisms such as 

small crabs and fish (Blenniidae). The growth of T. megalopterus shows a trophic niche 

expansion of larger-sized prey and (except in WC) variety of prey species. This indicates that 

T. megalopterus is selecting its prey by type (prey category) and size. 

Kamura and Hashimoto (2004) found that Triakis spp., improved their hunting capability as 

they grew and that the larger sharks captured larger and more mobile prey. This may be due to 

a relationship between the size of a predator and its swimming speed (Lowe et al., 1996), size 

of mouth gape (Ferry-Graham, 1998), tooth size, stomach volume (Wetherbee et al., 2004), 

and visual acuity (Dalu et al., 2013). These factors may have contributed to the increased 

hunting capability, which allows large sharks from AN and EC to feed on slow but spined, 

noxious prey such as sea barbel (Rutz et al., 2006) and faster or more difficult to catch species 

such as squid and octopus. The increase in squid prey may also be attributed to the 

aggregatory habits of squid during spawning (Smale et al., 2001). Furthermore, the increased 

strength of the larger T. megalopterus allows them to pull abalone off of rocks (EC) and 

subdue octopus (EC and AN). Although octopus were not found in the smaller sharks from 

EC, they were found in all three size categories from AN. This may attributable to the greater 

abundance of octopus in AN compared to EC (De Beer and Potts, 2013). The sizes of the 

molluscs were not dependent on the size class of T. megalopterus. Cephalopods do not 

possess bony skeletons and are therefore not rigid. Thus, as seen with squid (Smale and 

Compagno, 1997), molluscs are easily manipulated in the mouth allowing smaller predators to 

ingest larger octopus as prey. Feeding on cephalopods is therefore not reliant on gape size for 

small mouthed predators such as T. megalopterus. 
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Seasonal variation in the feeding habits of elasmobranchs is most likely due to changes in the 

abundance and distribution of prey (Braccini and Perez, 2005). According to Macpherson 

(2003), geographical boundaries in the world’s oceans occur alongside oceanographic 

processes (e.g. currents and upwelling) that are categorized by temperature, salinity and 

productivity changes (Longhurst, 1998a). Despite environmental changes in the WC between 

seasons, there was limited evidence for corresponding dietary variation, with the Cape rock 

lobster remaining dominant throughout the year. This is most likely due to its abundance 

throughout the year and due to the general lack of teleost prey in the WC. Although not 

significant, T. megalopterus consumed fewer teleosts and more crustaceans and molluscs in 

winter months in AN and the EC. The reductions in teleosts in the diets are most likely a 

reflection of the seasonal abundance of this prey in each region. Baremore et al. (2010) found 

a similar pattern in Atlantic angel sharks (Squatina dumeril) where medium and large size 

specimens showed seasonal-related differences in their diets by feeding predominantly on 

squid in autumn and teleosts in spring. These authors proposed that this variation was due to a 

seasonal change in the demersal fish community, natural variation in the diet and/or a 

broadening of niche breadth with season.  

Because they lack cutting teeth, T. megalopterus do not bite off pieces of prey: their dentition 

is suitable for grasping and/or crushing prey. Whole prey items in stomachs generally showed 

no sign of bite marks. The only evidence that teeth were used in the feeding strategy of T. 

megalopterus was the fact that some of the (non-moulting) Cape rock lobster antennae were 

severed at the base of their heads. This may be attributed to the bite force of the plate-like 

teeth that severed the antennae when the mouth closes. The absence of bite marks on whole 

prey items indicates that T. megalopterus makes use of a suction feeding technique which 

may also include manipulation of prey. This corresponds to the plate-like tooth morphology 

described by Tricas et al. (2002) who found that the teeth in the front of the jaw are rounded 

with a molar-like base rising into a sharp point for gripping. Although the back of the jaw 

contains flatter more molariform teeth, which would be suitable for crushing, prey does not 

appear crushed, suggesting the teeth are used more for manipulation of prey. This agrees with 

the results found in the tooth morphology analyses of T. megalopterus (see Chapter 4).  

The results from this chapter show that the teeth grow and change shape during ontogeny, 

which is consistent with the ontogenetic feeding changes of this species. In the subset analysis 

of dentition of sharks from EC, small T. megalopterus have dorsoventrally flattened and more 

molariform lateral teeth. These lateral teeth have no cusps, only small, coarse serrations. As 

the small specimens feed predominantly on crustaceans, these teeth are well suited for 

crushing or grinding of hard-bodied prey, therefore well suited to their durophagous diet. The 
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teeth of T. megalopterus grow and change shape as the shark grows. This is evident in 

dentition of EC specimens which show an increase in the area and width of the teeth from 

small to large specimens. Generally, as T. megalopterus grows, it expands its diet to include 

teleosts and molluscs. With this expansion to softer-bodied prey species, the medial-inferior 

and medial-superior broaden at their base and lengthen to produce a single cusp. This cusp 

enables larger specimens to grasp/clutch and manipulate softer-bodied prey in order to inhibit 

their escape (Ramsay and Wilga, 2007). Medium and large sharks do, however, still exhibit 

durophagy. These cusps would typically be damaged trying to grip hard exoskeletons. When 

harder prey items such as lobster are ingested, the possibility of breaking the sharp cusps 

increases unless they have just moulted. To counteract this, Chondrichthyans are able to 

depress and rotate these cusps inwards leaving the broader labial face of the teeth to form a 

plate like grasping and/or crushing surface (Ramsay and Wilga, 2007).  

Although the ontogenetic change of the teeth and feeding correlate, the tooth morphology and 

the feeding of the three different populations does not. The feeding showed differences 

between all three populations whereas the tooth morphology indicated the EC specimens teeth 

were both smaller in length, width and area compared to AN and WC. The longer teeth in AN 

specimens would allow for a longer cusp enabling these specimens to grasp/clutch and 

manipulate teleosts (Ramsay and Wilga, 2007). The shorter cusp observed in the EC 

specimens is more suited for crushing or grinding of hard bodied prey required for their 

durophagous diet. Interestingly, although WC consumed only crustaceans, their teeth were 

similar to those of AN specimens. This may be because the WC individuals were not 

grasping/manipulating prey as were the other two populations. All prey in WC stomach 

contents was whole indicating this population employs a suction feeding method, thus not 

using their teeth. Therefore their teeth do not need to evolve to suit their method of feeding. 

Alternatively, as the increased population sizes of J. lalandii east of Cape Hangklip only 

occurred in the 1990s (Tarr et al., 1996; Turpie et al., 2003; Cockcroft et al., 2008; Blamey 

and Branch, 2012), the altered prey preference in this population may not have occurred long 

enough ago to evolve the tooth shape. 

Based on the different feeding habit of T. megalopterus from WC, it is plausible that their 

morphology (both body and teeth) may be divergent from the other two groups (AN and EC). 

However, the greatest morphological variation was found between the T. megalopterus 

populations from the southern (WC and EC) and northern (AN) Benguela subsystems 

(Chapter 4). This pattern corresponded to the feeding analysis when one examines the broad 

classification of prey categories. Here the diet of the AN individuals was dominated by 

teleosts, while the diets of the South African specimens were dominated by crustaceans. The 
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AN T. megalopterus generally have shorter fins (pectoral, 1
st
 and 2

nd
 dorsal), wider fin bases 

(pelvic, 2
nd

 dorsal), shorter gill slits, smaller eyes and spiracles, wider tail regions and larger 

caudal fork, and lower post ventral and terminal caudal margins. Smaller fins found in AN 

individuals will also help streamline the shark, reducing drag and permitting higher speeds 

(Bushnell and Moore, 1991), while the wider tail region aids in propulsion (Weihs, 1981). All 

of these traits point to these sharks being better suited to hunt teleosts in the open water 

column. Indeed, the dominant teleost prey (Galeichthys feliceps and Sardinella aurita) in the 

diets of AN individuals primarily occupy the sandy benthic and pelagic habitats, which 

suggests that speed would be favoured over manoeuvrability. In contrast to the teleost prey in 

Angola, the crustaceans that were important in the diet of T. megalopterus from the EC and 

WC are primarily reef associated. As pectoral fins are used for manoeuvrability (Wilga and 

Lauder, 2000, 2001, 2002), larger fins would be more suited to the fine-tuned 

manoeuvrability required to locate and catch these prey items. 

Although T. megalopterus is a nocturnal feeder and probably relies more heavily on non-

visual senses than on sight, eye size differences were noted amongst populations. In relation 

to feeding, one would expect AN to have larger eyes than those of the South African 

populations as larger eyes are generally found in sharks that prey on more active and mobile 

prey (Lisney and Collin, 2007). This, however, was not the case. As a larger eye may improve 

the resolution and sensitivity of sight, it is possible that the eyes of South African T. 

megalopterus may have become larger to improve the detection of cryptic crustaceans in 

rocky reef habitats. However, as T. megalopterus are nocturnal feeders, eyesight probably 

plays a smaller role in feeding  

 

Conclusions 

With a diet primarily consisting of crustaceans, teleosts and molluscs, T. megalopterus 

appears to be a benthic forager. The primary feeding mechanism used by T. megalopterus is 

suction feeding with some prey manipulation. This species predominantly occupies reef 

systems, but also hunts over sandy bottoms and in the kelp forests east of Cape Hangklip. It 

would seem that the South African specimens are morphologically better suited to hunt in 

more high relief habitats and may have evolved from a primarily suction based feeding to also 

prying prey off of rocky reefs and in kelp forests. The extreme difference in feeding of WC 

individuals shows that T. megalopterus is able to employ flexible foraging tactics in order to 

feed on highly abundant prey. 
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The size of prey and the diversity of prey species generally increased with ontogeny. This 

may be associated with a relationship between predator size and an expansion of habitat, 

increase in foraging success, hunting capability, gape size and change in the feeding related 

morphology of the predator. A positive relationship between the body morphology and teleost 

prey preference of AN specimens is evident in shorter fins, more streamlined body and larger 

and more powerful tail and caudal fin. This shows the ability of predators to evolve in order to 

accommodate the change in diet. 

The highest and lowest prey diversity in the Angola-Benguela Front and the Western Cape 

respectively, conforms to the theory of a latitudinal diversity gradient (species richness 

increases closer to the equator) as well as the related temperature hypothesis (latitudinal 

gradient is directly related to temperature change). The high biodiversity in southern Angola 

also reflects that characteristics of this ecosystem are consonant with the fundamental triad of 

ecological processes (enrichment, concentration and retention) that lead to propagative 

habitats and high species richness. It is therefore not surprising that the feeding of T. 

megalopterus is affected more by location than size or season. Thus biodiversity, 

environmental factors and oceanography (e.g. Lüderitz Upwelling Cell), have more of a direct 

impact on habitat and prey populations, and therefore the feeding ecology of this species. 

Although feeding biology is now better understood for T. megalopterus, information such as 

prey detection and capture capabilities is still needed for a more comprehensive understanding 

of feeding strategy of this species. Further analysis with larger sample sizes is also required to 

properly assess ontogenetic and seasonal feeding differences as well as ecomorphological 

studies to assess how different feeding habitats affect the morphology of this species.   
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Chapter 6:  

Age, growth and reproduction of Triakis 

megalopterus from three biogeographic zones of 

southern Africa  
 

Introduction 

Studies on life history seek to explain the link between adaptive responses to ecological 

influences (density-dependent versus density-independent) and an organism’s fitness as 

varying demographic responses are elicited by variable spatial and temporal scales (Roff, 

1993; Reznick et al., 2002; Winemiller, 2005). The most recognised life history theory is that 

of r and K-selection (Pianka 1970). Sharks are generally recognised as K-selected species as a 

result of being long lived, showing late maturity, having small reproductive effort and bearing 

few, large young (Stearns, 1976), having large adult size, long gestation periods, iteroparity, 

precocial offspring (Cortés, 2000) and high survival rates of all age classes (Camhi et al., 

1998). In populations that are regulated by density-dependent factors (e.g. cannibalism and 

competition), higher fitness is expected in K-selected species than in species demonstrating 

the opposite suite of r-selected traits (Winemiller, 2005).  

 

Sharks are all recognised to be K-selected species, despite the large interspecies differences in 

life history traits (Smith et al., 1998). For instance, the age at maturity varies from 2–3 years 

in the female grey smoothhound shark, Mustelus californicus (Yudin and Cailliet, 1990) to 

approximately 35.5 years in the spiny dog fish, Squalus acanthias (Saunders and McFarlane, 

1993). Fecundity (F) varies from F = 2 in the sand tiger shark, Carcharias taurus, to F = 

82-95 in the sevengill cowsharks, Notorynchus cepedianus (Smith et al., 1998). Gestation 

periods in sharks generally average 9–12 months (Helfman et al., 2009), but have been 

reported as low as 4.5–5 months in the bonnethead shark, Sphyrna tiburo (Manire et al., 

1995) and as long as 3.5 years in the basking shark, Cetorhinus maximus (Parker and Stott, 

1965). Although many studies are available for single shark species within limited regions, 

very little research has focused on intraspecific life history traits and how these traits are 

affected by spatial patterns (Cope, 2006). This is peculiar as a single species can/will occupy 

different habitats and therefore be subject to the effects of diverse ecosystems and the 

different environments therein (Jones et al., 2002), and generally, there is a difference in life 

history traits between different areas (Cope, 2006). 
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The life history traits of species can be affected by their environment (Cope, 2006). As the T. 

megalopterus sampled in this study occupy different oceans, ocean currents and 

biogeographic zones, intrapopulation differences in life history traits should be evident. For 

example, life history theory predicts that stability in environments promotes slow 

development, late maturity, smaller reproductive effort, fewer young and long life, while 

fluctuating environments may result in shorter life spans, faster development, earlier 

maturation, semelparity, and larger reproductive effort, including higher number of young 

(Stearns, 1976). The trade-off between the size and number of offspring can also be 

influenced by environmental conditions (Southwood, 1988) and resource availability (Pianka, 

1970). Large body size offers fitness benefits (Roff, 1993; Blanckenhorn, 2000) such as 

access to a wider variety of prey (Juanes et al., 1994), reduced vulnerability to predators 

(Parker, 1971), superior competitive capabilities (Fausch and White, 1981) and improved 

ability to withstand extreme environments (Henderson et al., 1988) and/or disease (West and 

Larkin, 1987). Larger size also permits larger offspring (Chambers and Leggett, 1996; Green 

and McCormick, 2005) and/or larger productive output (Morris, 1996; Sogard et al., 2008), 

which may contribute to the survival success. 

 

Lombardi-Carlson et al. (2003) found that biological characteristics are generally affected by 

different ecological environments found at different latitudes. These differences are said to be 

caused by a physiological and/or genetic response to different environmental factors (Levins, 

1989; Conover, 1990). In general, fish grow faster and mature earlier at low latitudes 

(Lombardi-Carlson et al., 2003) while attaining larger sizes at high latitudes (Bergmann’s 

Rule; Mayr, 1956). Size plays a crucial role in intraspecies research as most life history trait 

variation, including growth, age at maturity, offspring size, and fecundity, is correlated with 

body size (Holden, 1973; Brander, 1981). Latitudinal variation in life history traits has been 

recorded in sharks. For instance, in studies of adult bonnethead sharks, Sphyrna tiburo, 

sampled from three populations in the eastern Gulf of Mexico, the population of highest 

latitude showed the largest asymptotic sizes, largest and oldest median size at maturity and 

largest near-term embryos (Parsons, 1993; Carlson and Parsons, 1997; Lombardi-Carlson et 

al., 2003). Similarly, patterns of larger size at maturity with latitude were reported for the 

cloudy catshark, Scyliorhinus torazame (Horie and Tanaka, 2002), shortspine spurdog, 

Squalus mitsukurii (Taniuchi et al., 1993) and the starspotted dogfish, Mustelus manazo 

(Yamaguchi et al., 2000). Fishing pressure may also affect life history traits amongst 

populations, particularly in sharks due to their K-selected traits and the direct relationship 

between stock size and recruitment (Holden, 1977). Exploitation has the potential to truncate 



 

111 

age/size classes and this in turn, has the potential to reduce the size and age at sexual maturity 

(Longhurst, 1998b; Rochet, 2000). 

 

Age information is considered to be the most valuable of the life history variables in fisheries 

research (Hilborn and Walters, 2013). Correctly determining the age of elasmobranchs is 

important in understanding the population dynamics of exploited species and essential for 

estimating longevity, maturity, mortality and growth rates by species and area (Serra-Pereira 

et al., 2008; Booth et al., 2011). The main driving force for life-history change is the 

necessity for species to optimize reproductive capability. Subsequently, life-history aspects 

such as age, growth and size at maturity are shaped by natural selection geared to maximum 

reproductive success (Thresher, 1984).  

 

The common ageing structures used for teleosts, such as scales, otoliths, or bones, are not 

applicable for elasmobranch ageing (Cailliet et al., 1983a). Elasmobranchs are most 

commonly aged by means of the growth zones in vertebral centra which are either viewed in 

their natural state or enhanced by various methods, e.g. grinding and polishing (Smith, 1984); 

electron microprobe analysis (Cailliet and Radtke, 1987); x-radiography (Urist, 1961; 

Applegate, 1967); x-ray spectrometry (Jones and Geen, 1977); oil clearing (Cailliet et al., 

1983b); silver nitrate (Haskell, 1948; Stevens, 1975); alizarin red S (LaMarca, 1966); cobalt 

nitrate (Hoenig and Brown, 1988); alcohol immersion (Richards et al., 1963); xylene 

impregnation (Daiber, 1960); or histology (Ishiyama, 1951).  

 

Vertebral ageing, however, is not without its problems. Due to developmental variances 

(Officer et al., 1996), different sections of the vertebral column may render dissimilar growth 

increment counts (Natanson and Cailliet, 1990). As increment formation can be influenced by 

environmental change (Geffen, 1992), it is critical to validate the rate of growth band 

deposition, and several techniques can be used to do so. In the past, the majority of 

elasmobranch ageing studies assumed that a single annual vertebral band pair was deposited 

annually throughout an individual's lifetime (Stevens, 1975), e.g., the lemon shark, Negaprion 

brevirostris (Gruber and Stout, 1983; Brown and Gruber, 1988), neonate sharpnose 

Rhizoprionodon terraenovae, sandbar C. plumbeus, (Branstetter, 1987a) and the bonnethead 

shark, Sphyrna tiburo (Parsons, 1993). There are, however, species that deposit two band 

pairs annually, e.g., the shortfin mako, Isurus oxyrinchus (Pratt and Casey, 1983), sand tiger, 

Carcharias taurus (Branstetter and Musick, 1994) and basking shark, Cetorhinus maximus, 

(Parker and Stott, 1965). Furthermore, additional difficulties in ageing elasmobranchs have 

been documented for the Pacific angel shark, Squatina californica. This species is born with 
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6–7 band pairs (Natanson, 1984), their band deposition is not annual (Natanson and Cailliet, 

1990); band deposition appears to be caused by vertebral column strengthening and shows no 

time scale relationship (Natanson, 1984), and fewer bands are deposited in older, larger fish 

(Natanson and Cailliet, 1990), possibly due to termination of band development in 

reproductively active individuals (Natanson, 1993). Intraspecies differences have also been 

noted in elasmobranchs. For instance, two different studies on the scalloped hammerhead, 

Sphyrna lewini, showed a single annual band deposition in sharks from North Carolina and 

the north-eastern Gulf of Mexico (Schwartz, 1983), but a double band deposition in north-

eastern Taiwan (Chen et al., 1990). These issues highlight the necessity for both inter- and 

intraspecies validation.  

 

Three methods of validation are typically used: marginal increment analysis (MIA); carbon 

dating; and the most common and reliable method of validation (Campana, 2001), mark and 

recapture of tagged sharks injected with a fluorescent marker such as oxytetracycline 

antibiotics (OTC) (Geffen, 1992). As recaptured, OTC injected T. megalopterus were 

available for this study, and because OTC is a common validation method in elasmobranchs, 

this was the chosen validation method for this study. When sharks are injected with OTC, it is 

absorbed and deposited at sites of active growth causing a fluorescent mark on the vertebra 

that illuminates under ultraviolet light. Subsequently, the growth (band deposition) observed 

after the OTC marking can be attributed to deposition over the time period the shark was at 

liberty. This allows the derivation of growth and deposition rates. Previous life history studies 

on Triakis spp. have reported an annual growth band deposition rate for OTC validated T. 

semifasciata (Smith, 1984; Kusher et al., 1992) and MIA validated Furgaleus macki 

(Simpfendorfer et al., 2000). Age validation is not yet available for the closely related 

scylliogaleus quecketti. 

 

Reproductive studies of T. semifasciata showed an annual reproductive cycle, 10–12 month 

gestation period (Smith, 1984; Ebert, 2003), fecundity of approximately 1–37 embryos per 

female (Ebert and Ebert, 2005) and a commencement of reproduction at 17 years of age with 

fecundity increasing with age (Ackerman, 1971; Talent, 1985; Kusher et al., 1992). Gestation 

periods for other Triakids are generally 9–12 months: e.g. soupfin shark, Galeorhinus galeus 

(Ripley, 1946); smooth-hound shark, M. mustelus (Smale and Compagno, 1997; Saïdi et al., 

2008); brown smooth-hound, M. henlei (Ebert, 2003); blackspotted smooth-hound, M. 

punctulatus (Saïdi et al., 2009); and the gummy shark, M. antarcticus (Lenanton et al., 1990). 

Shorter gestation times (7–9 months) have, however, been recorded in the whiskery shark, F. 

macki (Simpfendorfer and Unsworth, 1998). 
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Thus far, only two publications are available for the ageing and reproduction of T. 

megalopterus, both of which concentrate on specimens from the Eastern Cape, South Africa. 

Booth et al. (2011) OTC validated a single band pair annual deposition rate for T. 

megalopterus with a maximum age of 25 years and an 11 and 15 year age at maturity for 

males and females, respectively. Smale and Goosen (1999) states that T. megalopterus 

exhibits aplacental viviparity with a female reproductive cycle of 2–3 years, a gestation period 

of 19–21 months, a 9.7 mean number of embryos per pregnancy and a birth size of ~420–450 

mm TOT. Furthermore, these authors found that T. megalopterus reached 50% maturity at 

TOT = 1320 mm in males and TOT = 1450 mm in females with their largest specimens 

analysed being a male of TOT = 1520 mm and a female of TOT = 2075. 

 

The aims of this chapter are to 1) assess the life history traits, including growth rate, age, 

maturity and mortality of T. megalopterus from AN, WC and EC; 2) assess whether the life 

history traits are affected by habitat and environmental factors and 3) compare the life history 

of the three southern African T. megalopterus populations.  

 

Material and methods 

A total of 40 males and 81 females were collected from Angola, the Western Cape and the 

Eastern Cape using hook and line techniques (Table 6.1). All specimens were used for the 

reproductive analyses; however, vertebrae were not available for ageing one female from 

Angola, one female from the Western Cape and two males from the Eastern Cape. Due to size 

bias of small specimens in the EC population, the age data (n = 87) from Booth et al. (2011) 

was included in the age and growth analyses. This data was made up of 63 females and 26 

males. Unfortunately, maturity data was not available from this previous study and was 

therefore not included in the maturity analyses.  

 

Table 6.1: Sample numbers and sex allocation from all sample sites. Numbers in brackets 

illustrate the number of fish used in the age analyses.  

Sample site Males Females Combined sex 

Angola 11(11) 29 (28) 40 (39) 

Western Cape 9 (9) 24 (23) 33 (32) 

Eastern Cape 20 (44) 28 (91) 48 (135) 

Total 40 (64) 81(142) 121 (208) 
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Maturity was assessed using macroscopic methods developed by Bass et al. (1975). Male 

specimens were assigned to one of three reproductive stages: (1) juvenile, (short, soft 

claspers, threadlike testes, testis not developed), (2) adolescent (claspers partially calcified, 

testis developed, and no sperm in the seminal vesicle) or (3) mature (claspers calcified, sperm 

in the seminal vesicle). Females were assigned to one of four reproductive stages categorized 

as: (1) Juvenile (thin, thread-like uteri, no obviously developed ova in ovary, inconspicuous 

oviducal glands and), (2) adolescent (partly distended uteri), (3) mature (widened and fully 

flaccid uteri, enlarged ODG) or (4) pregnant (embryos present). 

 

Three measurements were taken from the male claspers, the outer length (CLO), inner length 

(CLI) and width (CBW; Compagno, 1984b). For the females, the diameters of ovarian eggs, 

length and widths of the oviducal glands and maximum width of the uterus were measured. 

The absence or presence of uterine eggs and embryos was recorded along with the number, 

length, weight and, where possible, sex for all embryos. Embryo number, per left or right 

uterus, was recorded. The mean number and length of each litter member was calculated.  

 

To assess the potential function of the liver as an energy source during pregnancy, the 

hepatosomatic index (HSI) of pregnant females was plotted against the mean embryo length 

(TOT). The HSI was defined as the ratio of liver weight to body weight, calculated as: 

 

HSI = 
𝑳𝑾

𝑩𝑾
 × 100 

 

where:  

 

LW  =  liver weight in grams 

BW  =  total body weight in grams. 

 

Vertebrae preparation and reading 

Five consecutive vertebrae from under the first dorsal fin were removed. Vertebra were 

separated and soaked in 4.5% sodium hypochlorite for up to 45 minutes (Booth et al., 2011), 

rinsed under running water and dried for future analysis (Officer et al., 1996). Cleaned 

vertebrae were embedded in polyester casting resin and sectioned to a thickness of 0.6 mm 

longitudinally through the focus of the centrum using a twin blade diamond bladed saw 

(Booth et al., 2011). Sections were mounted onto glass slides using DPX mountant medium. 

Annual growth bands were defined as a distinct narrow opaque zone comparative to a broader 
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adjacent translucent zone in the corpus calcareum (Goosen and Smale, 1997). A dissecting 

microscope with transmitted white light was used to count growth bands.  

 

All vertebrae were aged three times, each time by a different reader, without prior knowledge 

of the specimen’s location, length or sex. If counts differed amongst readers, the resolution 

criteria implemented by Richardson (2010) was used. If two out of three counts were equal, 

that count was accepted as the age of that specimen. If the three counts resulted in a 

consecutive sequence of age (e.g. 1, 2 and 3), the median was accepted as the age of that 

specimen. If two of the readings differed by two counts, the average of the two closest 

readings was accepted (e.g. 1, 3 and 7 was accepted as 2). 

 

Between reader estimates 

The consistency of growth zone counts was assessed by calculating the index of average 

percentage error (APE; Beamish and Fournier, 1981) as:  

 

𝑰𝑨𝑷𝑬 =  
𝟏

𝒏
 ∑ [

𝟏

𝑹
∑

|𝑿𝒊𝒋 −  �̅�𝒋|

�̅�𝒋

𝑹

𝒊=𝟏

]  × 𝟏𝟎𝟎

𝒏

𝒋=𝟏

 

 

where: 

 

n  =  number of sharks 

R  =  number of readings 

Xij  =  age determined for the jth shark and the ith reading 

Xj  =  mean age calculated for the jth shark 

 

An IAPE <10% was considered acceptable (Goosen and Smale, 1997).  

 

Validation of growth zone deposition rate 

A total of four T. megalopterus that had been tagged and injected with OTC were recaptured 

in the De Hoop Nature Reserve (information on individuals shown in Table 6.3) by the 

Department of Environmental Affairs, Oceans and Coast, Marine Biodiversity and Coastal 

Research. The vertebrae were stored in the dark to minimize deterioration of OTC 

fluorescence, prepared for examination as described above and photographed using 

transmitted white and ultra violet light in order to view the location of the OTC band in 
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relation to the opaque growth zones. The number of visible growth zones between the OTC 

marking and the vertebral edge were counted and related to the time at liberty.  

 

Growth model 

The growth of T. megalopterus was estimated by fitting the three parameter von Bertalanffy 

growth function (VBGF; Ricker, 1975) to observed length-at-age data. The VBGF is 

described by the equation: 

 

𝑳(𝒕) = 𝑳∞(𝟏 − 𝒆−𝒌(𝒕−𝒕𝒐)) 

 

where: 

 

Lt  =  predicted age-at-length t 

L∞  = theoretical asymptotic length 

k  = growth coefficient  

to = age-at-zero length 

 

Length at maturity 

In order to assess the length at 50% maturity, specimens were separated into 100 mm length 

classes. The percentage of sexually mature sharks (PMi) by length (li ) and age was fitted with 

a logistic ogive of the form: 

 

𝑷𝑴𝒊 =
𝟏

(𝟏 + 𝒆−(𝒍𝒊− 𝒍𝟓𝟎)/𝜹)
 

 

where: 

 

PMi = proportion of mature sharks in the ith length (or age) class,  

li = ith length class 

l50 = mean length at 50% maturity  

δ = width of the logistic ogive 

 

Since the sample sizes of males was low and there was an uneven spread of maturity stage 

classes in EC and WC, sexes were pooled for the maturity ogives for each population.  
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Mortality rate estimates 

Total mortality rate (Z) was estimated using the method of Hoenig (1983) by: 

 

Z = exp(1.44 – 0.982lntmax) 

 

where: 

 

tmax  =  the age of the oldest fish per population  

 

Natural mortality (M) was estimated using the method of Pauly (1980) by:  

 

M = exp(-0.0152 – 0.279lnL∞ + 0.6543lnk + 0.463lnT) 

 

where: 

 

L∞ and k  =  Von Bertalanffy growth model parameters (see Table 6.4) 

T  =  the mean water temperature per population 

 

The mean water temperatures (T) used for AN, WC and EC were 20.4 ºC (Richardson, 2010), 

16.5 ºC (Dufois and Rouault, 2012) and 16 ºC (Smale and Goosen, 1999), respectively. 

Although the water temperature for EC should be higher than that for WC (18.0 ºC; 

Karczmarski et al., 1999), 16 ºC was used for direct comparison to the study by Smale and 

Goosen (1999). 

 

The fishing mortality rate (F) was calculated by subtraction (F = Z - M). 

 

Statistical analyses 

Modelling of growth parameters followed the methods described by Potts et al. (2010). Model 

parameters were estimated using a downhill simplex search routine (Nelder and Mead, 1964), 

comprising a non-linear minimization routine to acquire model parameter estimations. Model 

fits were attained by minimizing the negative normal log-likelihood for the observed and 

predicted lengths-at-age. Bartlett’s test for their homoscedascity and a non-parametric, one-

sample runs test for residual randomness was applied to compare the models fit. A 

conditioned parametric bootstrap resampling method (Efron, 1982), with 1 000 iterations, was 

used to estimate variance. From the bootstrap data, 95% confidence intervals and standard 

errors were constructed using the percentile method described by Buckland (1984). A 
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likelihood ratio test (LRT; Cerrato, 1990) was used to compare growth model parameters 

amongst populations. Due to the low sample sizes and the lack of significant differences in 

the growth pattern between male and female T. megalopterus (Booth et al., 2011), sexes were 

combined for the growth models. Paired sample t-tests were run to see if significant 

differences were apparent between the age estimates all population comparisons using IBM 

SPSS v20.0 (IBM Corporation, 2011) 

 

Results and interpretation 

Size range and sex ratio 

Size ranges for the current study (Figure 6.1) were similar in AN (687 mm and 1830 mm 

TOT; (𝑇𝑂𝑇̅̅ ̅̅ ̅̅ ) = 1407 mm) and WC (470–1750 mm TOT; 𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 1509 mm). Although EC had 

a comparable size range (396–1670 mm TOT), the majority of specimens collected were 

small, and the mean total length (𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 861 mm) was small compared with the other 

populations. Large (>1400 mm) specimens dominated the AN (66.7%) and WC (84.4%) 

samples. In contrast, EC was dominated by small (<999 mm) specimens making up 69.6% of 

the total sample size for this population. However, with the inclusion of these data from 

Booth et al. (2011), T. megalopterus was better represented in all size classes (353 mm and 

1830 mm TOT; (𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 1061 mm; Figure 6.2). These data included six smaller (<396 mm) 

specimens ranging between 353–379 mm TOT and a largest male (1520 mm TOT) and 

female (1746 mm TOT) for the population.   
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Figure 6.1: Length frequency histogram of Triakis megalopterus, showing (a) females, (b) 

males and (c) combined sexes from Angola (AN), Western Cape (WC) and Eastern Cape 

(EC). 
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Figure 6.2: Length frequency histogram of Triakis megalopterus, including the data from 

Booth et al. (2011) showing (a) females, (b) males and (c) combined sexes from Angola 

(AN), Western Cape (WC) and Eastern Cape (EC). 
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The relationship between TOT and weight, for each population (AN, WC and EC), were best 

described by power functions and comparable amongst all populations. Power function 

equations are given in Figure 6.3. As the weight of the aged specimens was not available 

from Booth et al. (2011), this weight to TOT relationship only represents the current data.  

 

 

Figure 6.3: Relationship between total length and weight of Triakis megalopterus from 

southern Africa; AN = Angola, WC = Western Cape, EC = Eastern Cape. 

The male:female (M:F) sex ratio was skewed towards females in all populations (Table 6.2). 

The AN (M1:F2.6) and WC (M1:F2.7) populations had similar sex ratios. In EC, however, 

more males were present, resulting in a more comparable and less female biased sex ratio 

(M1:F1.4). In EC there was a large number of small specimens captured which included 18 

males and 16 females <900 mm TOT. The smallest free swimming individuals in each 

population were a 621 mm TOT female in AN, 470 mm TOT male in WC and a 369 mm 

TOT female in EC. The WC and EC neonates still had very evident umbilical scars indicating 

recent parturition. According to neonate size, WC appears to have a larger birth size than EC. 

It was not possible to estimate birth size from AN as neonates were not available in this 

population. Expectedly, the largest specimens in all populations were female. The largest 

specimen captured was from AN (1830 mm TOT). 

The male skewed sex ratio decreased (M2:F1) with the inclusion of the data from Booth et al. 

(2011) in EC. This data increased the mean TOT for males (𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 941) and females (𝑇𝑂𝑇̅̅ ̅̅ ̅̅  = 
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1061). Furthermore, smaller minimum and larger maximum sizes were evident for both males 

and females.  

Table 6.2: Sex ratio and number, mean, minimum and maximum size of male and female 

Triakis megalopterus captured in southern Africa; Eastern Cape
2
 = Booth et al. (2011) data 

included  

Location 
Male : 

Female ratio 

Males (mm TOT) Females (mm TOT) 

n Mean Min Max n Mean Min Max 

Angola 1:2.6 11 1341 687 1610 29 1407 621 1830 

Western Cape 1:2.7 9 1509 470 1625 24 1551 1216 1750 

Eastern Cape 1:1.4 20 747 406 1450 28 861 396 1670 

Eastern Cape
2
 1:2 44 941 354 1520 89 1061 353 1746 

 

 

Figure 6.4: An example of a sectioned vertebra of a 22 year-old, 1566 mm TOT, Triakis 

megalopterus tagged and injected with oxytetracycline hydrochloride 10 years before 

recapture. 
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Age validation, growth and maturity 

The time at liberty for OTC marked fish ranged from zero to 12 years (Table 6.3). 

Unfortunately, out of the four tagged, OTC injected and recaptured T. megalopterus used in 

this study, only two of these specimens had the data for the date on which the shark was 

tagged. The first was at liberty for 12 years. During that time it grew 205 mm. The second 

specimen was at liberty for eight years and grew 140 mm during that time. In both cases the 

number of opaque bands coincided with the number of years at liberty (e.g. in Figure 6.4).  

 

Table 6.3: Information on the Triakis megalopterus individuals used in the chemical age 

validation experiment conducted in the De Hoop Nature Reserve, Western Cape (NK = 

unknown) 

 

Capture  / 

recapture  

locations 

Tagging 

date 

Recapture 

date 

Tagging 

length 

(mm TOT) 

Recapture 

length (mm 

TOT) 

Years 

at 

liberty 

Zones 

distal 

to OTC 

Total 

Age 

NK  Lekkerwater NK 06/05/2004 NK 1500 0 0 (793) 16 

Koppie Alleen 24/10/1996 06/10/2014 1235 1440 12 12 (616) 15 

Lekkerwater 09/5/1997 26/05/2005 1420 1560 8 8 (812) 19 

NK  Lekkerwater NK 06/10/2014 NK 1566 10 10 (082) 22 

 

Age estimates were accepted for 117 (97%) of the 121 vertebrae analysed. There was a 26% 

agreement on all age assessments, 24% agreement between age readings within one year, 42% 

within two years and 8% agreement between readings within three years. Band pair counts 

were considered to be reasonably precise with an estimated IAPE of 7.86%, a satisfactory 

percentage within the acceptable limit (<10%) for use in ageing results for population analysis 

(Powers, 1983).  

 

The youngest specimens were a male from WC (470 mm TOT) and a female from EC (396 

mm TOT), both specimens were aged at zero years. The maximum ages were 24 years in AN 

(1830 mm TOT), 27 years in WC (1750 mm TOT) and 30 years in EC (1612 mm TOT). The 

oldest sharks in each population were mature females. 

 

Predicted asymptotic length (L∞) was smallest in AN (1696.7 mm TOT), followed by the WC 

(1828.2 mm TOT) and the EC (1962.7 mm TOT; Table 6.4). These differences were, 

however, not significant (LRT = 1.33; p = 0.24). There were significant differences in the 

Brody growth coefficient (LRT = 33.57; p = 7.94 × 10
-31

), with the AN population attaining 
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their theoretical maximum size (L∞) at the fastest rate (K = 0.17 year
−1

) followed by WC (K = 

0.09 year
−1

) and then EC (K = 0.06 year
−1

). 

 

Table 6.4: Life-history parameter estimates for combined sex Triakis megalopterus from 

Angola (AN), Western Cape (WC) and Eastern Cape (EC); size reported was TOT (mm). 

Parameter AN WC EC 

Sample size 39 32 133 

Theoretical maximum size (L∞) 1696.74 1828.20 1962.67 

Growth coefficient (K) 0.17 0.09 0.06 

Theoretical age (years) at zero length (to) 0.45 -2.80 -3.23 

Median size at maturity (L50) 1274.0 1425.0 1160.0 

Observed maximum size 1830.0 1750.0 1746.0 

Observed maximum age 24 27 30 

 

The growth rates of Triakis megalopterus individuals from different populations are 

illustrated in Figure 6.5. The comparatively rapid growth of the AN population was most 

evident between the ages of six and 22 years (Figure 6.5a). Unfortunately, due to lack of 

specimens between zero and 4 years in the AN sample, there was no information available for 

early growth estimates. Similarly the lack of fish between the ages of zero and 12 years in the 

WC (Figure 6.5b) meant that the early growth of this population could not be well described 

(as evidenced by the broad confidence intervals).  
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Figure 6.5: Von Bertalanffy growth function (with 95% confidence intervals) fitted to 

observed length-at-age data for Triakis megalopterus from (a) Angola, (b) Western Cape, (c) 

Eastern Cape and (d) all populations combined; AN = Angola, WC = Western Cape, EC = 

Eastern Cape. 
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Natural mortality (M) was highest for AN (0.143 yr
-1

) followed by the WC (0.114 yr
-1

) and 

EC (0.069 yr
-1

). Conversely, fishing mortality (F) was highest for the EC (0.078 yr
-1

) and 

lowest for AN (0.043 yr
-1

).  

 

Table 6.5: Mortality estimates for Triakis megalopterus from Angola (AN), Western Cape 

(WC) and Eastern Cape (EC) 

Mortality Parameter AN WC EC 

Total mortality (Z) 0.19 0.17 0.15 

Natural mortality (M) 0.14 0.11 0.07 

Fishing mortality (F) 0.04 0.07 0.08 

 

Size at sexual maturity 

The smallest mature (1415 mm TOT) and largest immature (1410 mm TOT) males were both 

caught in WC (Table 6.6). The largest immature (899 mm) and smallest mature (1452 mm) 

males from EC are most likely under- and overestimations, respectively, as no adolescents 

and only two mature males were captured in this population. There was only a 5 mm 

difference in size between the smallest mature (1415 mm) and largest immature (1410 mm) 

males from WC. The smallest mature (1272 mm) and largest immature (1392 mm) females 

were captured in EC and WC, respectively.  

 

Table 6.6: Size, largest immature and smallest mature range of Triakis megalopterus from 

Angola, Western Cape and Eastern Cape. All measurements are given in mm TOT.  

 
Angola Western Cape Eastern Cape 

Males    

Largest immature 1066 1410 899 

Smallest mature 1420 1415 1425 

Females    

Largest immature 1355 1392 1386 

Smallest mature 1320 1312 1272 

 

Length-at-50% maturity for males and females combined was estimated to be 1274 mm in 

AN, 1425 mm in WC and 1160 mm in EC (Figure 6.6). The maturity ogive was narrow in 

WC and EC specimens with sharks maturing within 300 mm TOT. Maturity in AN was 

however represented by a wider ogive where sharks matured within 850 mm TOT.  
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Figure 6.6: Logistic ogive for the combined sex maturation pattern of Triakis megalopterus 

from (a) Angola, (b) Western Cape and (c) Eastern Cape showing the percent maturity at total 

length (mm). 
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General reproductive characteristics 

Mean clasper lengths (𝐶𝐿𝐼̅̅ ̅̅ ̅) were shortest in EC (𝐶𝐿𝐼̅̅ ̅̅ ̅ = 56.18 mm), 70.5% shorter than WC 

(𝐶𝐿𝐼̅̅ ̅̅ ̅ = 190.23 mm) and 57.0% shorter than AN (𝐶𝐿𝐼̅̅ ̅̅ ̅ = 130.51 mm). The shortest claspers 

(20.7 mm CLI) were measured on a male captured in EC (406 mm TOT), the longest claspers 

(235.0 mm CLI) were measured on a 1525 mm TOT male from AN. Interestingly, the base of 

the claspers were already calcified in one small (857 mm TOT) male specimen from AN. 

Correspondingly, the CLI (101.21 mm) of this specimen was 41% larger than the 𝐶𝐿𝐼̅̅ ̅̅ ̅ of all 

juveniles combined (42.29 mm TOT).  

 

Of the 50 mature females sampled, 12 were pregnant with a total of 96 embryos (Table 6.7). 

The average litter size was eight embryos. The smallest mean embryo lengths were observed 

in two females caught in EC in February 2013. The largest mean embryo total lengths were 

recovered from pregnant females from AN (𝑇𝑂𝑇̅̅ ̅̅ ̅̅ = 437.45) in July 2012 and from EC 

(𝑇𝑂𝑇̅̅ ̅̅ ̅̅ = 388.17) in February 2013. These embryos were all still attached to yolk sacs (20–25 

mm), although the sacs were flaccid and resorption was evident. This pregnant female from 

AN had a litter size of 11 in which the embryo total lengths ranged from TOT = 404–459 mm. 

The pregnant female from EC, however, had a litter size of six smallest and largest pups 

measuring 280 mm and 495 mm TOT, respectively. The WC specimens had the smallest (n = 

2; 𝑇𝑂𝑇̅̅ ̅̅ ̅̅ = 225 mm) and largest (n = 12; 𝑇𝑂𝑇̅̅ ̅̅ ̅̅ = 210 mm) litter sizes. These belonged to 

pregnant females of comparable lengths (1740 mm and 1750 mm TOT).  

 

The two smallest, free swimming, aged zero specimens from EC were captured in September 

and October indicating parturition in August/September for this population. The small, aged 

zero shark in WC was captured in February, and although this was only one specimen, may 

suggest a 3–6 month earlier commencement of parturition compared to EC. The youngest 

specimen from AN was 4 years of age. However, a heavily pregnant female, collected in July, 

contained embryos with a mean total length of 437.50 mm. Since the embryos were still 

attached to their yolk sacs it is possible that parturition may occur at a similar time to the EC 

(August–September).  

 

The smallest neonate (396 mm TOT) and the largest embryo (495 mm TOT) recorded for the 

EC in this study; size at birth is estimated between 396 and 500 mm TOT. The smallest in the 

WC (470 mm TOT) and the largest embryo in AN (459 mm TOT) suggest (despite the low 

sample size) that the birth size may be fairly similar for all populations. 
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Table 6.7: Summary of information on the pregnant female T. megalopterus captured in Angola, Western Cape and Eastern Cape showing the month 

of capture, sex, total number, size range (total length, TOT) and mean TOT of embryos, per litter, as well as whether embryos were present in the left 

or right uterus 

 

Sample Site 

Pregnant 

female 

total length 

Month 

Total 

embryos 

(n) 

Female 

embryos 

(n) 

Male 

embryos 

(n) 

Embryos in 

left 

uterus (n) 

Embryos in 

right 

uterus (n) 

Smallest 

Embryo 

(mm TL) 

Largest 

Embryo 

(mm TL) 

Mean embryo 

length (mm 

TL) 

Angola 1650 December 6 3 3 4 2 156 251 196 

Angola 1700 December 5 2 3 4 1 312 325 319 

Angola 1590 December 10 8 2 5 5 322 323 323 

Angola 1655 December 8 2 6 4 4 266 320 298 

Angola 1614 July 11 5 6 5 6 404 459 437 

Angola 1565 July 8 3 5 3 5 217 237 226 

Western Cape 1740 May 12 8 4 6 6 205 215 210 

Western Cape 1750 June 2 2 0 0 2 225 225 225 

Eastern Cape 1612 February 6 3 3 1 5 280 495 388 

Eastern Cape 1620 February 9 4 5 4 5 350 370 361 

Eastern Cape 1550 February 10 - - 5 5 84 98 82 

Eastern cape 1670 February 9 - - 4 3 76 101 93 
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Discussion 

Interpopulation differences in T. megalopterus are evident from the life history analyses. In 

AN, sharks grow 2–3 times faster and have shorter lifespans (max age = 25 years) when 

compared to the EC and WC populations. Maximum size captured was smallest in EC, 

although this population displayed the largest L∞. Size at maturity was also the smallest in the 

EC, which coincides with the highest fishing mortality. Although data was limited, parturition 

in WC appeared to commence 3–6 months earlier than in AN and EC. 

 

Populations are dynamic entities whose characteristics and structure vary in response to 

numerous factors, such as their physical environment, evolutionary histories of habitat and 

species, human impacts, biological assemblages (Trip et al., 2008), food availability 

(Childress, 1995) exploitation, environmental change/stressors (Planque et al., 2010) and 

predation (Hutchings and Baum, 2005). Due to the numerous factors that have an effect on 

life history and the way they are intertwined with one another, establishing the causes of 

demographic variation is a challenging task.  

 

Not only does T. megalopterus occupy coastal waters, this species also lives within different 

benthic habitats in different biogeographic zones with varying thermal regimes (see Chapter 

2): all factors that have the potential to influence life history traits. For instance, lower 

temperatures (e.g. WC and EC) generally elicit earlier maturity (Lombardi-Carlson et al., 

2003), larger body size (Kozlowski et al., 2004), and increased longevity (Beverton, 1992). 

Correspondingly, stable environments (e.g. AN) generally prompt later maturity and increased 

longevity (Stearns, 1976). Growth is the main factor that determines life history 

characteristics (Stearns, 1992). However, the growth of fishes is a very complex process 

dependent on many variables, such as prey abundance and temperature as well as populations 

genetic properties. Most sharks are ectotherms, thus, water temperature is thought to be one of 

the main physical factors affecting them (Speed et al., 2012). Generally, it can be assumed 

that higher temperatures and food abundance favour faster growth rates and this has been used 

to explain the variation in the growth between areas (Magnussen, 2007). The AN sample site 

is situated in southern Angola, the most productive, pristine and unexploited (F = 0.043) of 

Angola’s fishing zones (Beckensteiner, 2013). Temperatures in AN are approximately 5 ºC 

more than recorded in WC and EC (Richardson, 2010), and food abundance appears to be 

highest in this region (see Chapter 5). Warmer waters and increased foraging effort will lead 

to an increase in metabolism and ultimately an increase in growth. Faster growth rates in 
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warmer water are not unusual in elasmobranchs. For example, juvenile tiger sharks 

(Galeocerdo cuvieri) had faster growth rates in the warmer water of the Gulf of Mexico 

compared to the Atlantic Ocean off Virginia (Branstetter, 1987b). 

 

Besides temperature, sharks may grow faster in environments with high risk of predation 

(Freitas et al., 2006). While the relative abundance of predatory species in AN was not 

quantified, the coastal habitat, which comprised interspersed sand and low profile reef, 

provided limited refuge from predators. In comparison, the EC and WC coasts offer better 

refuge in high profile reef and kelp habitats. Therefore the faster growth in AN may be a 

compensatory mechanism (Freitas et al., 2006) to reduce the amount of predation.  

 

Latitude has been found to influence the life-history traits of various animal groups (Ray, 

1960; Sinervo, 1990; Iverson et al., 1993; Stergiou, 1999; Morrison and Hero, 2003). The 

latitudinal gradient theory predicts that populations will adapt and evolve to specific 

environmental conditions or stressors to maximize fitness (Frisk and Miller, 2006) in response 

to the temperature, seasonality and productivity changes associated with latitude (Trip et al., 

2008). Thus, populations at lower latitudes generally exhibit faster growth. This was the case 

in this study where AN, the population of lowest latitude, had a growth rate of 2–3 times 

larger than in the EC and WC, which two populations are located at a similar latitude. A 

latitudinal pattern of growth has been reported for other sharks such as scyliorhinids 

(Flammang et al., 2008) and the bonnethead shark, Sphyrna tiburo (Parsons, 1993). 

The lower temperature and larger L∞ in the South African populations, are consistent with the 

temperature-size rule, which states that lower temperatures at higher latitudes should produce 

a cline of increasing body size with increasing latitude (Kozlowski et al., 2004). According to 

Blackburn et al. (2008), larger body sizes are found at higher latitudes (and lower 

temperatures) as large animals have an advantage of better heat conservation because of their 

higher surface area to volume ratios. The same author also states that larger animals are more 

resistant to starvation and are more likely to survive the scarcity of resources in high latitude 

environments. Indeed a latitudinally-related increase in body size has been attributed to the 

requirement of energy reserves for the season of low resource availability in several shark 

species, e.g. the shortspine spurdog, Squalus mitsukurii (Taniuchi et al., 1993), bonnethead, 

Sphyrna tiburo (Parsons, 1993; Carlson and Parsons, 1997), cloudy catshark, Scyliorhinus 

torazame (Horie and Tanaka, 2002) and the angular angel shark, Squatina guggenheim 

(Colonello et al., 2007), and this may well be the case for the WC population, in particular. 
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Variations in length at maturity among geographic regions also have been reported for sharks 

and linked to temperature differences correlated to latitude (Yamaguchi et al., 2000; 

Lombardi-Carlson et al., 2003). A latitudinal increase in size at maturity has been reported for 

the angular angel shark, Squatina guggenheim (Colonello et al., 2007) and the sliteye shark, 

Loxodon macrorhinus (Stevens and McLoughlin, 1991). Despite the low samples sizes, the 

results from this study suggest that individuals in the EC reach L50 at the smallest size (1160 

mm TOT), followed by AN (1274 mm TOT) and WC (1425 mm TOT). It is possible that the 

earlier maturation in AN compared to WC may be attributed to the compound interest 

hypothesis which proposes that ectotherms mature earlier in warmer environments (Partridge 

and French, 1996; Fischer and Fiedler, 2002). As both AN and EC are warm-temperate 

environments (Potts et al., 2015), one would expect similar size at maturity if temperature 

was the only influencing factor. However, this was not the case and suggests that other factors 

may play a role in the early maturation in EC. Unfortunately, the small sample sizes, female 

biased sex ratios and uneven representation of size classes, made the estimations of separate 

sex maturity estimates impossible and may very well have caused inaccuracies in the 

estimations for combined sex maturity. According to (Cortés, 2000), males generally mature 

at a smaller size and age (normally two years earlier) than females. This was confirmed by 

Smale and Goosen (1999) who identified a 130 mm differences in the size at 50% maturity 

for male (1320 mm) and female (1450 mm) T. megalopterus. This suggests that, unless the 

proportion of males and females were similar in each of the three populations (which they 

were not), the maturity ogives in this study are biased. This may also explain some of the 

results as males were overrepresented in the EC population. Nevertheless, the smaller size at 

maturity may also be an indication of exploitation in EC which will be explored further 

below.  

While the low sample sizes are acknowledged, it was interesting that two females captured in 

EC (1610 mm; 30 yr) and WC (1750 mm; 27 yr) were older that the oldest age recorded by 

Booth et al. (2011) in the EC. Since one of the scientists (M. Smale) interpreting the vertebrae 

worked on both datasets, it is unlikely that this is a result of interpretation error. The 

maximum age recorded for the AN population was a 1830 mm TOT female of 24 years. 

Interestingly, the maximum ages recorded for this study were directly opposite to what would 

be expected according to the latitudinal gradient. According to this theory, lower latitudes 

should produce increased longevity (Beverton, 1992). However, in this study, the lowest 

maximum age was recorded in AN and the highest in EC. When looking at the longevity 

(maximum age) trends in this study, longevity from the Atlantic to the Indian Ocean 
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increased, with AN (Atlantic Ocean) tending to be shorter lived than EC (Indian Ocean) and 

WC being the intermediary population. The same pattern was seen in coral reef fish between 

the Indian (lower longitude) and Pacific (higher longitude) oceans, where Indian Ocean 

populations tended to be shorter lived than their Pacific Ocean counterparts (Trip et al., 2008). 

The maximum age, combined with the previously discussed L∞ and L50 of T. megalopterus 

populations, indicates that longevity in AN may be a trade-off for faster growth and earlier 

maturity. A similar pattern was observed in the blue shark, Prionace glauca, in the North 

Atlantic Ocean (Skomal and Natanson, 2002).  

 

Low latitude populations generally have extended seasonal windows for spawning compared 

to their low latitude counterparts (Srinivasan and Jones, 2006), which may result in 

differences in the time of parturition in the same species. The earlier, summer parturition in 

WC may be an adaptive response to size-selective winter mortality as this population is the 

only T. megalopterus population that is found in a cool-temperate environment. Parturition in 

the warmer summer waters may mitigate against the susceptibility of small sharks to cold 

conditions (Conover, 1990).  

 

Based on the available information, size at birth for all populations of T. megalopterus is 

estimated between 396–500 mm TOT. This estimate is larger than previously reported (300–

320 mm TOT) by Compagno (1984b) and has a wider range than the 420–450 mm TOT 

estimate by Smale and Goosen (1999). Unfortunately, estimates for WC were based on a 

single neonate and estimates for AN were based on a single litter of pups. So although we can 

be certain that birth size for AN and WC does fall within the estimates for EC, it may be 

possible that the ranges will be different. As parturition occurs earlier in WC it is possible that 

they may produce larger offspring in order to minimize winter mortality. This pattern has 

been found in S. tiburo where bigger neonates are born later at higher latitudes (Lombardi-

Carlson et al., 2003). 

 

Due to their low reproductive rate and the direct relationship between stock size and 

recruitment (Holden, 1977), sharks are extremely susceptible to overfishing (Joung et al., 

2008). Due to their habitat preferences, large size at maturity, lengthy gestation, small litter 

sizes (Smale and Goosen, 1999), narrow distribution and population sizes (Compagno et al., 

1989), T. megalpterus has been listed as near threatened by the International Union for 

Conservation of Nature (IUCN) and is considered to be threatened with extinction in the near 

future (Compagno, 2009). Exploitation of T. megalopterus is apparent in the fishing mortality 
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values where all populations show fishing pressure greater than the level of 0.02 that 

according to Booth et al. (2011) is the fishing mortality rate required for a stable population. 

It is not surprising that fishing pressure was highest in the SA populations. Although 

legislated as a non-commercial species and proven to sustain very limited fishing pressure 

(Booth et al., 2011), T. megalopterus is frequently mistaken in commercial fisheries as the 

commercial species Mustelus mustelus (Booth et al., 2011). This species is also a frequent 

bycatch in the South African demersal longline fisheries (Compagno, 2009) and is exploited 

by recreational anglers (Attwood and Farquhar, 1999). Over exploitation has been shown to 

affect the feeding, growth, population size structure, reproductive potential (Cooke and 

Schramm, 2007) and consequently abundance (Stevens et al., 2000) of targeted species. One 

of the most immediate and obvious effects of fishing is a reduction in the size of fish in the 

population because older/larger fish are preferentially eliminated from the population 

(Beckensteiner, 2013). Therefore, size-differential fishing results in a decline in maximum 

length in exploited populations (Planque et al., 2010).  

 

Another sign of exploitation is a smaller/younger age at maturity in populations exhibiting 

high mortalities (Promislow and Harvey, 1990). Despite the high L∞ in the EC and WC, the 

average maximum size of sharks caught was 82 mm TOT smaller than in AN, with EC having 

the earliest maturity of all populations. Therefore, the highest fishing mortality, smallest 

maximum size and smallest size at maturity were all recorded in EC – all signs that this 

population has been affected by the greatest fishing pressure. Since this population was also 

identified to be a separate clade (Chapter 3) and divergent in terms of their morphology 

(Chapter 4), it is possible that exploitation may have driven evolutionary changes in EC (see 

Law, 2000; Frisk, 2010).  

 

One of the caveats in many ageing studies (including elasmobranchs) is to stress the accuracy 

of age validation (Beamish and Fournier, 1981; Campana, 2001). Previously, Booth et al. 

(2011) examined 23 OTC marked vertebra, concluding that a single opaque and translucent 

band pair was deposited annually up to at least 25 years of age in EC. In this study, T. 

megalopterus displayed annular growth zone formation, depositing one band pair per year, 

validated at eight and 12 years for De Hoop Nature Reserve in the WC. This finding is also 

similar to the closely related T. semifasciata (Smith, 1984; Kusher et al., 1992; Smith et al., 

2003). Unfortunately, as yet, no validation is available for AN. As it is possible for the same 

species from different areas to show differences in band formation periodicity (Schwartz, 

1983; Chen et al., 1990), the ageing of the AN population may be biased. While it is unlikely 
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that the AN population will lay down more than one opaque zone each year, validation of this 

is critical before this population’s life history parameters can be fully accepted.  

 

Due to difficulties associated with samples sizes, vertebral preparation and inter reader 

variability, growth is one of the most difficult traits to measure accurately (Cailliet and 

Tanaka, 1990). In this study, however, methods were kept standard meaning that if any 

methodological problems were encountered, these would have had an effect of all 

populations, simultaneously, and not caused bias or outliers in a single population.  

 

If the life history of these T. megalopterus populations were influenced by genetic factors, one 

would expect the most divergent life history from the EC population. Indeed the AN and EC 

populations were the most divergent with regards to life history. This pattern also conforms to 

a transoceanic arrangement, Atlantic (AN, WC) versus Indian Ocean (EC) populations, and 

reflects the results of the mtCR and nDNA analysis (see Chapter 3). This separation is 

hypothesized to be caused by the historical split of EC population during the LGM when a 

drop in sea level and exposure of the Agulhas Bank caused rocky shore habitat to be replaced 

by sandy beaches in southern Africa. This was the driving force for the divergence of 

populations occupying isolated rocky shores. It may be that both genetic and phenotypic 

plasticity influence the varying life history of these populations, but the very divergent life 

history of the EC population may suggest that genetic factors play a role. 

 

The published ORI tagging data show T. megalopterus to be uninterruptedly present from WC 

to EC and able to move between the two provinces (Dunlop and Mann, 2014). This admixture 

of WC and EC could be contemporary as a result of postglacial expansion into new habitats 

(Teske et al., 2013). This recolonization, however, appears to have not been for long enough 

to prompt a genetic or life history response in T. megalopterus from EC. Thus, this 

population, although migrating to and from WC, still shows significantly different life history 

parameters to WC. Where there are similarities in the life histories (asymptotic length, 

longevity and growth) of EC and WC, these may be attributed to the observed genetic 

connectivity between these regions. Contemporary tagging data also show that there is no 

clear distributional break in connectivity between the WC to EC populations (Oceanographic 

Research Institute, unpublished data). 
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Of great concern is the well documented global decline and extinction risk of marine predator 

populations (Pauly et al., 2002; Dulvy et al., 2008) and the impacts that these extinctions will 

pose on marine ecosystems (Stevens et al., 2000). Life history dictates fundamental 

susceptibility to extinction risk and these types of studies are essential for the conservation 

and management of all species (Winemiller, 2005; Joung et al., 2008). This study shows the 

importance of assessing the entire geographical range of a species before accurate 

management decisions can be made. Although small sample sizes may have led to weak 

predictive powers in this study, the results herein do show the importance of quantifying 

spatial patterns in intraspecific life history traits, which according to Cope (2006), may allow 

for responsible management of regionally data-poor species.  

 

Conclusions 

Parturition in the cool-temperate WC appeared to commence 3–6 months earlier than in warm 

temperate AN and EC populations. The earlier, summer parturition in WC may be an adaptive 

response to size-selective winter mortality that mitigates against the susceptibility of small 

sharks to cold conditions. The birth size estimates recorded for T. megalopterus in this study 

are larger and have a wider range than previously documented, with embryo sizes ranging 

from 396–500 mm TOT.  

 

Longevity of T. megalopterus is lengthier than previously noted, particularly in WC (27 

years) and EC (30 years), five years longer than previous estimates (25 years) for the EC 

population. Interestingly, longevity conforms to a longitudinal, rather than a latitudinal, 

gradient. In the Atlantic Ocean (AN), T. megalopterus are shorter lived than in the Indian 

Ocean (EC) with WC being the intermediary population. The lowest longevity in AN (24 

years) may be a trade-off for the faster growth and earlier maturity in AN. There was a strong 

latitudinal gradient in body size between AN and WC: AN reached smaller asymptotic size 

compared to WC. This conforms to the temperature-size rule where populations at higher 

latitudes, thus lower temperatures, should produce larger body sizes. EC reached L50 at the 

smallest size, followed by AN, then WC. The earlier maturation in AN compared to WC is 

consistent with the compound interest hypothesis, which states that ectotherms mature earlier 

in warmer (in this case AN) environments. The earliest maturation in EC, however, did not 

follow this hypothesis and appears rather to be directly correlated with the highest fishing 

mortality recorded for this population. Latitudinal gradients, thus water temperature, seemed 

to have the largest impact the growth of T. megalopterus, particularly between AN and WC 
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populations. In the warmer waters of AN, sharks grew at a higher a rate and matured at an 

earlier size compared to WC. The faster growth, smaller L∞ and L50 for AN shows this 

population lives a faster life attributable to warmer environments, but growth was also 

accelerated due to increased prey abundance and predator avoidance. Both SA populations 

showed larger L∞ in cooler waters which may be due to heat conservation and starvation 

resistance hypothesis.  

 

As mentioned, the EC population seems to suffer the greatest fishing pressure as the highest 

fishing mortality, smallest maximum size and smallest size at maturity were all recorded in 

EC. Although EC did not generally conform to latitudinal gradients and showed more 

characteristics of an exploited population, this conforms to the genetic data which states that 

EC is a separate clade. This may be an indication of fisheries-induced evolution.  

 

With the lack of validation for AN, and assuming annular growth bands as reported in EC and 

WC, it may be possible that this population has been aged incorrectly. Therefore 

interpretation of this age data needs to be provisional and validation is needed for AN to 

confirm whether age estimates are in fact correct for this population. Further analysis with 

larger sample sizes and a better spread of individuals over all maturity stages is also required 

to assess differences in the size at maturity of males and females within and amongst all 

populations.  
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Chapter 7:  

General discussion 
 

The formation of the cold Benguela Current led to a marked change in the distribution and 

abundance of fishes along the west coast of southern Africa. It essentially formed a barrier to 

gene flow between the warm-temperate fishes, which were restricted to either side of the 

Benguela Current (Henriques, 2011). With a known time of formation (~2 Mya), the 

Benguela Region has provided us with a natural laboratory in which to examine evolutionary 

patterns across multiple taxa and to gather much needed information on elasmobranch 

evolution and adaptation. 

 

Elasmobranchs have existed for millions of years (Hoenig and Gruber, 1990) and clearly 

demonstrate a remarkably conservative morphology (Grogan et al., 2012). With this 

seemingly slow rate of phenotypic change and evolution, elasmobranchs should provide a 

baseline against which other marine organisms can be compared. However, despite the warm 

temperate distribution of T. megalopterus, the results of this study suggest that the formation 

of the Benguela Current and its associated cold water upwelling systems may not have been 

the only vicariant barrier to the distribution of the species.  

 

Vicariance 

In the absence of obvious physical barriers, such as land bridges and offshore islands, 

processes shaping population structure along the South African coastline are poorly 

understood (Toms et al., 2014). Previous studies within the same system showed that the 

Benguela Current was the primary cause of isolation amongst teleosts: e.g. the blacktail 

seabream, Diplodus capensis (Henriques, 2011); geelbeck croaker, Atractoscion aequidens 

(Henriques et al., 2014a); leervis, Lichia amia (Henriques et al., 2012); zebra sea bream, 

Diplodus cervinus (Gwilliam, pers. comm.); silver Kob, Argyrosomus inodorus (Henriques et 

al., 2014b); baardman, Umbrina canariensis and steentjie, Spondyliosoma emarginatum 

(Gwilliam, in prep); as well as a cephalopod, e.g., the common octopus, Octopus vulgaris (De 

Beer, 2014).  The northern versus southern Benguela subsystem structure evident in the 

species mentioned above is not obviously apparent in the T. megalopterus genetic structure. 

However, the mtCR data (median-joining haplotype network and phylogenetic tree) show a 

South Africa versus Angola split in populations. The FST values are significantly different 
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between the AN-WC (p = 0.027) and WC-NA (p = 0.045) population comparisons. 

Furthermore, AN-NA (p = 0.991) appears to be an homogeneous panmictic population, and 

although the WC-EC comparison is also significantly different, there is evidence of admixture 

between these two South African sample sites (FST = 0.380, p<0.01). This suggests that the 

formation of the Benguela Current may have played a role in the isolation of T. megalopterus 

populations of the northern (AN and NA) and southern (WC and EC) Benguela subsystems. 

Nevertheless, the mtCR FST does show the EC population to be significantly different to all 

other populations. This is confirmed in the nDNA (Bayesian clustering analysis) data which 

show that the contemporary population structure of T. megalopterus conforms to a 

transoceanic arrangement of Atlantic (AN, NA, WC) versus Indian Ocean (EC) populations. 

Without a clear and consistent pattern of southern versus northern Benguela population 

structure of T. megalopterus, it is apparent that there is another contributing factor to the 

genetic arrangement of this species.  

 

The most plausible explanation for the consistent transoceanic arrangement of T. 

megalopterus may be climate oscillations through the Pleistocene Epoch. At that time, the 

coastal morphology was altered (Teske et al., 2011b) by the exposure of the Agulhas Bank 

(Teske et al., 2013) and the rocky shore habitat was reduced (Von der Heyden et al., 2011; 

Toms et al., 2014). As T. megalopterus is a reef associated species, it is possible that this may 

have resulted in the isolation of east and west coast populations. Interestingly, although this 

genetic structure did not agree with the findings of previous studies on teleost species 

separated by the Benguela Current, this pattern is congruent with the two genetically 

divergent lineages of Bluntnose klipfish, Clinus cottoides (Toms et al., 2014). Although one 

would expect vast differences in genetic structure between a klipfish and a shark, both of 

these species have two things in common. Firstly, both species occupy rocky reef habitats. 

Secondly, both are viviparous. Two important characteristics: viviparity has been said to 

reduce dispersal potential, particularly in organisms utilizing rocky shore habitats (Von der 

Heyden et al., 2008). Therefore, the exposure of the Agulhas Bank and the corresponding 

increase of predominantly sandy beaches would have acted much like a land bridge abruptly 

blocking marine circulation between the Atlantic and Indian Oceans. The rocky shore refugia 

of the southwest and southeast coasts of southern Africa were disconnected by sandy beaches 

for at least 40 000 years (Toms et al., 2014). This equates to approximately 2424 generations 

when calculating the generation time (age at maturity/fishing mortality + 1). This appears to 

be a sufficient time frame to play a considerable role in the isolation and consequent 

divergence of the EC population.  
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This transoceanic pattern of population structure was also found in the yellowfin tuna, 

Thunnus albacares (Henriques, 2011). Much like T. albacares, T. megalopterus is able to 

withstand the colder waters of the Benguela Current and displays a larger distribution 

potential for genetic admixture compared to the previously mentioned teleost and cephalopod 

species, despite their larval stages that should theoretically increase their distribution 

potential. Furthermore, as with T. albacares, T. megalopterus may also migrate preferentially 

within ocean basins. The Cape Hope squid, Loligo reynaudii also showed morphometric (Van 

der Vyver, 2014) and genetic (Stonier, 2012) divergence between the south coast (central and 

EAB), west coast (WAB and west coast) and southern Angola. Isolation by distance (IBD) 

played a major role in the level of genetic flow between the sampled spawning aggregations, 

although some genetic flow between all of the groups is still occurring. The divergence of L. 

reynaudii populations is said to be caused by IBD as squid do not all necessarily move very 

large distances, despite their larval stages that should theoretically allow for increased 

dispersal potentials. Therefore, the transoceanic divergence of this species may also have been 

impacted by both the inception of the Benguela Current and the exposure of the Agulhas 

Bank, much like T. megalopterus.  

  

The general patterns in other characteristics (morphology and life history) is congruent with 

the genetic structure of T. megalopterus populations, where EC is a separate clade and AN 

and EC are the most divergent populations. There does, however, appear to be interactions 

between the environment and underlying genetic architecture of this species that have affected 

the morphology and life history. The findings of this thesis suggest that several environmental 

factors may have played a role in the morphological and life history divergence between the 

populations since their isolation. These include sea temperature, prey availability, exploitation 

and habitat.  

 

Temperature 

Mean sea temperature was possibly one of the most noticeable differences in the habitats of 

the three populations (AN = 20.4 ºC, WC = 16.5 ºC, EC = 18.0 ºC). Indeed it appeared that 

this factor played a role in shaping the life history parameters of T. megalopterus, with higher 

growth rates observed in warmer temperatures. Faster growth rates generally have an impact 

on other life history parameters, such as size at maturity, which was lower in the populations 

where growth was the fastest. These trends conformed to the latitudinal gradient theory where 

species tend to grow faster and mature earlier in warmer waters.  
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Faster growth, smaller L∞ and L50 for AN shows that in this population, T. megalopterus live 

faster lives attributable to warmer environments but growth is also accentuated due to 

increased prey abundance and predator avoidance. Bergmann’s rule states that larger adult 

size is expected in colder environments (Partridge and French, 1996; Blackburn et al., 2008) 

and in this case both of the SA populations had larger L∞ (and maximum observed sizes) than 

the AN population. Blackburn et al. (2008) attributed larger size in cool environments to the 

requirements for heat conservation and resistance to starvation. While the results of this study 

seem to correlate with Bergmann’s rule, the reduced sample sizes obtained in this study may 

also have had an influence, and the outcome (in terms of maximum size) may have been 

coincidental. However, besides maximum size, temperature may have also influenced other 

life history parameters, such as maturation and parturition. Here sharks in the cool temperate 

WC habitat matured later, while their parturition occurred earlier in the year. The earlier 

parturition most likely could be attributed to an adaptive response to size-selective winter 

mortality: parturition in warmer summer waters may mitigate against the susceptibility of 

small sharks to cold conditions (i.e., the tendency of small fish to die more readily than large 

fish; Conover, 1990). Unfortunately, there does not appear to be any published information of 

this phenomenon occurring in sharks.  

 

The feeding of T. megalopterus was indirectly influenced by temperature through its impact 

on prey diversity. The temperature hypothesis suggests that increased temperature and 

therefore metabolism, supports greater speciation rates, culminating in higher diversity 

(Rohde, 1992). Therefore, species richness (and thus prey diversity) tends to increase closer to 

the equator with increasing temperature. The highest prey diversity in the Angola-Benguela 

Front and lowest prey diversity in WC conform to the aforementioned temperature 

hypothesis.  

 

Exploitation 

Exploitation may also have a profound effect on a population, principally in the life history as 

demographic traits such as growth and reproduction change under fishing pressure (Rodhouse 

et al., 1998). However, several recent studies have also highlighted the influence of 

exploitation on the evolution of fish species (e.g. Conover and Munch, 2002; Heino and 

Godo, 2002; Grift et al., 2003; De Roos et al., 2006; Kuparinen and Merilä, 2007; Mollet et 

al., 2007; Swain et al., 2007; Enberg et al., 2009). The potential impacts of exploitation were 

observed in the EC population, which is subject to the highest exploitation (F = 0.78 yr
-1

). 
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This is not surprising as T. megalopterus in the EC are exploited by the inshore recreational 

and the commercial shark fisheries (Smale and Goosen, 1999). Here the T. megalopterus 

population matured at 1160 mm TOT, which is 114 mm smaller than in AN and 265 mm 

smaller than in WC. The earlier onset of maturity in the EC may provide this population with 

some resilience to the impacts of exploitation by increasing the lifetime reproductive potential 

of individuals (Geraghty, 2013). This has been observed in Carcharhinus obscurus and C. 

plumbeus, which appear to mature at younger ages in south-east Australian waters compared 

to New South Wales (Geraghty, 2013).  

 

Theoretically, exploitation should promote faster growth by reducing biomass, which 

decreases pressures of intraspecific competition (Rodhouse et al., 1998; Law, 2000). 

However, exploitation can also remove the fastest growers first, and the consequence of this 

may be a fisheries-induced evolutionary response towards slower growth. The results of this 

study may hint towards a fishery induced evolutionary response. But ultimately, the 

comparisons may also be flawed due to the low samples sizes, and other potential 

confounding factors (such as prey availability) and further investigation is required.  

 

Exploitation not only directly affects the life history of a population, it may also indirectly 

affect the feeding of a population when prey species are the focal point of the exploitation. 

While the diets of T. megalopterus from AN and EC consisted of teleosts, crustaceans and 

molluscs, in the WC these sharks fed almost exclusively on Cape rock lobster (J. lalandii). 

While the latitudinal and temperature hypotheses may have played a role in this result, (ie 

decreased prey diversity), a trophic cascade has been documented in the WC (Griffiths, 2000). 

This cascade could be ascribed in particular, to the overfishing of the WC linefish 

populations. Griffiths (2000) documented an 80% drop in commercial catch per unit effort 

(CPUE). This kind of decline was already reported over a decade ago in the Western Cape 

(Attwood and Farquhar, 1999) and suggests that many of the teleost prey are no longer readily 

available to the WC population. The second factor influencing the trophic cascade was the 

overexploitation of the Cape fur seal (Arctocephalus pusillus) in the Cape Hangklip area. This 

resulted in an increase in the quantity of their dominant prey species, the Cape rock lobster, 

Jasus lalandii (Tarr et al., 1996; Turpie et al., 2003; Cockcroft et al., 2008; Blamey and 

Branch, 2012). The differences in feeding of T. megalopterus in the three populations suggest 

that this species has a broad trophic adaptability (defined as the ability of an organism to take 

advantage of the most profitable prey source at a particular time; Gerking, 2014). This is 

afforded to them by a mouth, teeth and jaw arrangement which favours generalist feeding. 



 

143 

They are also able to employ flexible foraging tactics, which include fast swimming to 

capture pelagic prey (as is the case for the AN population) and the ability to navigate high 

relief areas to capture crustaceans in rocky habitats (WC population). A morphology that 

supports broad trophic adaptability could be one of the key features that have allowed 

elasmobranchs to remain relatively unchanged through time.  

  

Habitat  

Different geographic regions are subject to contrasting selective pressures that have the ability 

to alter the phenotype of individuals by changing basic biological parameters (Bakun, 2010), 

fitness and behaviour (Shiu and Borevitz, 2008). We know that T. megalopterus occupy 

different habitats throughout their southern African distribution (see Chapter 2). Coarse sand 

and clay/silt ocean floors in AN (Bianchi, 1992), rocky reefs with large sandy sections and 

kelp forests (Turpie et al., 2009) in WC and mixed sand and rocky reef surf zones (Hutchings 

and Clark, 2012) in EC. These different habitats appeared to have had an effect on the 

morphology of T. megalopterus although the main driver of these may be related to 

optimizing the feeding success on the prey associated with these habitats. Compared to SA 

populations, AN sharks possess smaller fins (pectoral, 1
st
 and 2

nd
 dorsal), wider fin bases 

(pelvic, 2
nd

 dorsal) and wider tail regions, all of which point to a more streamlined body that 

appears to be adapted for faster, but less manoeuvrable swimming. Therefore, in relation to 

their more open, sandy and less “reefy” environments, AN sharks are better suited to hunt 

more elusive, fast prey such as teleosts or cephalopods in the open water column. In contrast, 

the South African populations are morphologically better suited to hunt in more high relief 

habitats such as rocky reefs and in kelp forests. As of yet, there appears to be no evidence of 

other studies that have documented intrapopulation significant divergence of morphological 

features associated with prey capture between shark populations.  

 

Although these morphological differences appear to be an adaptation to the local environment 

(i.e. phenotypic plasticity), this thesis provided some evidence there may be a genetic 

mechanism influencing these changes. When traditional morphometric variables were 

analysed using haplotype as a grouping variable, there were significant morphological 

differences between fish with the unique AN haplotype (TMH5) and the others. Individuals 

with the TMH5 haplotype had a smaller second dorsal fin, smaller gill slits and eyes and 

larger dorsal base and caudle peduncle height. This discrete morphology therefore correlates 

with the presence of two independent evolutionary lineages and suggests that there may be 
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directional selection on the above mentioned morphological characters in the AN population. 

Unfortunately, there is limited evidence for selection in elasmobranch populations. This study 

however suggests that given contrasting selective pressures (mainly associated with habitat, 

and diet), the morphology of sharks may diverge and that this divergence may be a result of 

genetic selection. In this species, it is estimated that these changes were prevalent after an 

isolation of approximately 2424 generations (see above calculation). However, since there are 

two or more mutational steps between the AN and other haplotypes, these evolutionary 

changes may have occurred earlier, and relatively rapidly.  

 

Truss protocol 

Landmark morphological methods have been used extensively in teleost taxonomy 

(Richtsmeier et al., 2002). Landmark methods are a powerful tool for identifying 

morphological variation that uniformly incorporates the entire specimen (Cavalcanti et al., 

1999) and provides greater discriminatory power (Cadrin and Friedland, 1999). 

Correspondingly, unlike traditional techniques, landmark methods also have the advantage of 

incorporating depth and breadth characteristics (Humphries et al., 1981) and make use of 

anatomical rather than extremal landmarks, where true homologous points defined by 

biological characteristics are used (Jardine, 1969).  

 

Due to the slow molecular evolutionary rate of elasmobranchs (Martin et al., 1992; Martin 

and Palumbi, 1993b; Martin, 1995), morphological changes between shark populations may 

be difficult to detect. This is why it is imperative to incorporate all possible morphometric 

methods to increase the likelihoods of detecting intrapopulation differences in sharks. The 

deficiency of geometric data on whole specimens is, however, justifiable as the sheer size and 

shape of elasmobranchs in general make it difficult, if not impossible, to accurately measure 

diagonal lines across the body. The use of digital photography and digitizers are not feasible 

on larger specimens as their cartilaginous skeletons lose shape on land. While recording video 

footage from flow tanks is possible with smaller sharks (e.g. Wilga and Lauder, 2000), this 

method is also not feasible on larger specimens. The method proposed in this thesis makes use 

of approximately 12 measurements taken from a specimen, after which the outline of the 

sample is reconstructed in AutoCAD. With the use of AutoCAD, there are key advantages of 

instantly visualizing the form of specimens and recognizing measurement errors as the 

reconstruction will not be successful with errors in measurements. The truss was successful in 

detecting differences between populations of T. megalopterus and even managed to detect 
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differences that were overlooked by the traditional morphology (e.g. snout length between 

AN and WC). The truss morphology also identified that specimens from EC have a wider 

head (V1 and V2) and caudal (V6) region compared to AN (see Chapter 4).  

 

Because this thesis shows that T. megalopterus is susceptible to exploitation and is already 

showing the effects thereof, this and other protected species would benefit greatly from non-

lethal taxonomic methods. For this the novel method of morphological analyses developed in 

this study can be of great benefit to protected species. This truss network can use as little as 

12 measurements to recreate the outline of a shark using architectural software (AutoCAD). 

On average, when working with a preserved specimen, 102 measurements took approximately 

25 minutes to complete. This equates to approximately 14.7 seconds per measurement. If the 

truss network requires only 12 measurements, this could potentially be completed on a shark 

that is placed into tonic immobility within 3 minutes. Thus, with further refinement, this 

technique could be breakthrough in the field of elasmobranch geometric morphometrics and 

morphological analyses, particularly for protected species where lethal measures are not an 

option. An additional benefit of the proposed truss method is that it can be used through the 

conversion of existing morphological datasets. This will allow the reanalysis of existing 

datasets and may provide valuable additional morphological information for taxonomic 

research or population delineation. In the future, this protocol may also be useful in fisheries 

management as a means of population identification. When combined with genetic analysis 

this new proposed truss analysis could provide methods for non-lethal evolutionary and 

taxonomic studies on sharks that may also contribute to our understanding of their adaptive 

and non-adaptive plasticity.  

  

Shortcomings 

According to the genetics of T. megalopterus, EC is a separate clade. Unfortunately, due to 

funding constraints, there was a large interval between sampling sites (Betty’s Bay and Port 

Elizabeth), which prevented the identification of a potential break or overlap in lineages in 

this area. Therefore, a better geographic representation of T. megalopterus, particularly 

around Cape Agulhas, would have been beneficial for the genetic and morphometric chapters 

of this thesis.  

 

There is ambiguity in describing the genetic versus plastic and adaptive versus nonadaptive 

variations amongst populations of T. megalopterus. However, without the inclusion of studies 
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such as population genomics, where specific genes pertinent to recent and ongoing 

differentiation are identified, a more accurate description of plasticity, adaptation and /or 

evolution was not possible. Similarly, climate-associated shifts in genotype and/or phenotype 

can only be postulated as it is difficult to pin point the exact environmental factors that cause 

a particular genotypic/phenotypic change.  

 

Small sample sizes and an uneven spread of sex and size classes hampered the assessment of 

ontogenetic and seasonal feeding differences. Also, sexes were pooled for the maturity ogives 

and growth models for each population due to low sample sizes, female biased sex ratios and 

an uneven spread of maturity stage classes. This is not ideal, as the growth and maturity of T. 

megalopterus differs between sexes (Booth et al., 2011). Also, with the lack of validation for 

AN and assuming annular growth bands as reported in EC and WC, it may be possible that 

this population has been aged incorrectly. Therefore interpretation of these age data needs to 

be provisional and validation needs to be undertaken in T. megalopterus from AN to confirm 

whether age estimates are in fact correct for this population. 

 

Future research  

To build on the results of this thesis and gain a better understanding of shark evolution and 

phenotypic plasticity, accurately determining the genetic versus plastic changes in T. 

megalopterus is essential. Population genomics will be highly beneficial to gain a better 

understanding of microevolution and the evolutionary processes that affect genomes. This 

type of analysis will not only facilitate the identification of adaptive molecular variation but 

also increase the estimation accuracy of important parameters such as phylogenetic 

relationships, population size and migration rates (Luikart et al., 2003). Determining an 

accurate mutation rate for T. megalopterus will also permit a more precise description of the 

demographic history of this species as well as patterns of population stability, dating 

population expansion events and accurate effective population sizes. Information such as prey 

detection and capture capabilities is still needed for a more comprehensive understanding of 

feeding strategy of T. megalopterus. Studies on the ecomorphology of T. megalopterus will 

also be beneficial to give us a better understanding of the relationship between the ecological 

role of an individual and its morphological adaptations. 
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Conclusion 

Unlike many other warm-temperate coastal marine species, T. megalopterus populations 

appeared to retain some connectivity across the cold Benguela Current system. This suggests 

that the adults of this species (which are the most mobile life history stage) are cold water 

tolerant and able to pass through the cold water barrier associated with the Lüderitz 

Upwelling Cell. Genetic isolation was however evident between the EC and AN populations, 

which suggested that historical climate changes (including sea level change) associated with 

the Pleistocene Epoch were responsible for a historical Atlantic/ Indian ocean isolation. 

 

Despite the fact that sharks are thought to evolve at a slower rate than other animals (Martin et 

al., 1992; Martin and Palumbi, 1993b), this study provided some evidence to suggest that 

genetic and morphological divergence may occur at equivalent rates to certain teleost species, 

particularly when exposed to selective pressures associated with feeding. While there was 

some evidence for adaptive evolution (e.g. the more streamline body and smaller gill slits of 

AN specimens and fisheries-induced evolution in EC), there was also evidence for phenotypic 

plasticity (e.g. larger tail regions and trunk height and width in AN). Therefore, it is possible 

that sharks are able to adapt to their environments and display a level of phenotypic plasticity, 

despite their “apparent slow evolutionary potentials”. 

  

The ability to evaluate fish stocks with minimal data is becoming increasingly important 

(Cope, 2006). By linking genetic data, which reveals intraspecific population substructure, 

with other information (e.g. morphology, feeding and life history), one can assess localized 

adaptations and plasticity in a population, which is imperative in species management (Avise, 

2000; Roff, 2002). Although, the predictive power of this study may currently be weak due to 

the reduced sample sizes, the results of this thesis highlight the importance of incorporating a 

broad range of information through the distribution range of elasmobranch species. Failure to 

do that may result in the poor definitions of the “stock” and ultimately in unsuitable 

management recommendations for the species.  
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