
 

 

EVALUATING UNCERTAINTY IN WATER RESOURCES ESTIMATION 

IN SOUTHERN AFRICA: A CASE STUDY OF SOUTH AFRICA 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the degree of  

 

DOCTOR OF PHILOSOPHY  

of  

RHODES UNIVERSITY 

 

 

by  

 

TENDAI SAWUNYAMA 

 

December 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

ABSTRACT 

 

Hydrological models are widely used tools in water resources estimation, but they are simple 

representations of reality and are frequently based on inadequate input data and 

uncertainties in parameter values. Data observation networks are expensive to establish and 

maintain and often beyond the resources of most developing countries. Consequently, 

measurements are difficult to obtain and observation networks in many countries are 

shrinking, hence obtaining representative observations in space and time remains a 

challenge. This study presents some guidelines on the identification, quantification and 

reduction of sources of uncertainty in water resources estimation in southern Africa, a data 

scarce region. The analyses are based on example sub-basins drawn from South Africa and 

the application of the Pitman hydrological model. While it has always been recognised that 

estimates of water resources availability for the region are subject to possible errors, the 

quantification of these uncertainties has never been explicitly incorporated into the methods 

used in the region. The motivation for this study was therefore to contribute to the future 

development of a revised framework for water resources estimation that does include 

uncertainty. 

 

The focus was on uncertainties associated with climate input data, parameter estimation 

(and recognizing the uncertainty due model structure deficiencies) methods and water use 

data. In addition to variance based measures of uncertainty, this study also used a reservoir 

yield based statistic to evaluate model output uncertainty, which represents an integrated 

measure of flow regime variations and one that can be more easily understood by water 

resources managers. Through a sensitivity analysis approach, the results of the individual 

contribution of each source of uncertainty suggest regional differences and that clear 

statements about which source of uncertainty is likely to dominate are not generally possible. 

Parameter sensitivity analysis was used in identifying parameters which are important within 
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specific sub-basins and therefore those to focus on in uncertainty analysis. The study used a 

simple framework for evaluating the combined contribution of uncertainty sources to model 

outputs that is consistent with the model limitations and data available, and that allows direct 

quantitative comparison between model outputs obtained by using different sources of 

information and methods within Spatial and Time Series Information Modelling (SPATSIM) 

software.  

 

The results from combining the sources of uncertainties showed that parameter uncertainty 

dominates the contribution to model output uncertainty. However, in some parts of the 

country especially those with complex topography, which tend to experience high rainfall 

spatial variability, rainfall uncertainty is equally dominant, while the contributions of 

evaporation and water use data uncertainty are relatively small. While the results of this 

study are encouraging, the weaknesses of the methods used to quantify uncertainty 

(especially subjectivity involved in evaluating parameter uncertainty) should not be neglected 

and require further evaluations. An effort to reduce data and parameter uncertainty shows 

that this can only be achieved if data access at appropriate scale and quality improves. 

Perhaps the focus should be on maintaining existing networks and concentrating research 

efforts on making the most out of the emerging data products derived from remote sensing 

platforms. While this study presents some initial guidelines for evaluating uncertainty in 

South Africa, there is need to overcome several constraints which are related to data 

availability and accuracy, the models used and the capacity or willingness to adopt new 

methods that incorporate uncertainty. The study has provided a starting point for the 

development of new approaches to modelling water resources in the region that include 

uncertain estimates.  
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1. INTRODUCTION 
 

1.1 General background of the study 

 

The scope of water resources planning and management has drastically changed in the 

last decade in most parts of the world (Heun and Koudstaal, 2001). This is partly 

because hydrometeorological data collection and analysis are not keeping pace with 

actual water development and management needs (Kundzewicz, 2007). Despite the 

increasing demands for water and the growing stress in the available water resources, 

calling for improved and scientifically-based management techniques, the largely 

inadequate funds available for data collection and maintenance of hydrometeorological 

services are reducing further especially in developing countries (Dube, 2006). The 

situation is worse in southern Africa (a data scarce region) where water in many areas 

has become a limited or even a scarce resource, either in quantity or quality. Rainfall-

runoff models have long been invaluable tools in simulating information for use in 

making decisions for water resources planning and management (Rose and Peters, 

2001), but these models are a simple representation of reality which makes their results 

uncertain (i.e. lack of sureness or complete knowledge about the outcome). Beven 

(1989, 2001a) has pointed out the limitations of the current generation of rainfall-runoff 

models and argued that the way forward must be based on realistic assessments of 

predictive uncertainty. Predictive uncertainty arises mainly from uncertainty associated 

with the model structure, input data and the parameter values. This study was motivated 

by one of the objectives of the International Association of Hydrological Sciences (IAHS) 

on Prediction in Ungauged Basins (PUB), which is a reduction of predictive uncertainty in 

modelling ungauged and poorly gauged basins (Sivapalan et al., 2003), which includes 

most parts of southern Africa.  

 

The application of rainfall-runoff models for making predictions largely depends on the 

information relating to the spatial and temporal distribution of hydrologic processes (Jain 

et al., 2004). The reliability of this information might be questionable in the face of 

uncertainties associated with the collection and assessment of model input and output 

data. Furthermore, the problems of heterogeneity of process responses in a basin and 

unknown scale-dependences of parameters mean that the development of a single 

hydrological model based upon the fundamental “physics” of hydrology is not attainable 
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(Beven, 1989, 1993). As a consequence, hydrological models are simplified 

representations of the basin hydrological processes through aggregation into conceptual 

elements perceived to dominate the hydrological problem at hand, which means they 

exist to achieve specific tasks at specific spatial and temporal scales (Franks, 2007). If 

complex process-based models are used, they can only be over-parameterised and 

driven with significant uncertainty in input data and parameter values due to a lack of 

adequate model inputs at appropriate scales (Beven, 1989). Conceptual models with a 

priori specified structures based on the hydrologist’s understanding of the relevant 

processes and with parameters calibrated against observed data, are therefore most 

commonly used in data scarce regions (Wheater et al., 1993).  

 

The way hydrological models, whether conceptual or physically-based, represent natural 

hydrological processes at basin or sub-basin scales, leads to considerable uncertainty 

as a result of many issues. For instance, the neglect of important processes in 

hydrological modelling because of a lack of understanding of how a hydrological system 

works is an ultimate constraint on how the system can be predicted. However, there is 

not much that can be learned as long as the models that require calibration are adopted 

in making predictions rather than treating models simply as hypotheses about how the 

hydrological systems work and which might be rejected (Beven, 2002a, b). From this, it 

can be said that the very nature of hydrological modelling is inherently imperfect, which 

leads to uncertainties that cannot be easily quantified. The main sources of uncertainty 

in hydrological modelling have been discussed in many studies (Melching, 1995; Beven 

2001a) and are related to errors in climate input data, use of inappropriate parameters or 

model structure and errors in the data used for model calibration and validation. All these 

uncertainties are often incorporated into what is referred to as hydrological uncertainty. 

The separation of these sources of uncertainty is a challenge because of complex 

compensation effects between them. It is therefore very difficult to represent the 

processes in nature, or to make predictions of future responses in basins of interest 

(often poorly or ungauged) without acknowledging the inherent uncertainty involved. 

 

Uncertainty estimation (i.e. a process of identifying and quantifying uncertainty) has 

received increasing attention over the last two decades in water resources research. 

However, a significant part of the community is still reluctant to embrace uncertainty 

estimation in hydrological modelling, in spite of its importance (see e.g. Pappenberger 
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and Beven, 2006). Most users of modelling results have been taking average values and 

ignoring any distribution or range of values around these averages. This long standing 

tradition has survived over the last decade and it is not surprising that modelling results 

are still very rarely presented with uncertainty bounds in research and practice. Instead, 

the quantification and reduction of uncertainty in the model input data, parameter values 

and the predictions in any hydrological modelling practice has largely been ignored in 

favour of model results verification (Higdon et al., 2004; Xia et al., 2005). Despite current 

modelling practice of placing more emphasis on verifying model results, uncertainty 

estimation must be part of any water resources estimation procedure. Beven (2006a) 

has recently proposed that not incorporating formal sensitivity and uncertainty analyses 

when applying a model ultimately results in undermining the science and value of 

hydrological models.  

 

There exist several techniques for uncertainty estimation ranging from analytical, formal 

statistical, sensitivity or numerical through to non-probabilistic methods (Melching, 1995; 

Montanari, 2007). However, the selection and implementation of the appropriate 

uncertainty estimation method remains a challenge as they are better understood by 

developers of these methods rather than by practitioners. The appropriate method 

should depend on the purpose of the application and the availability of data. While the 

best method of uncertainty estimation is not yet known in ungauged or poorly gauged 

basins, non-probabilistic approaches are promising tools (Montanari, 2007). Besides, 

hydrologists do not require the best uncertainty estimation method, but theories and 

guidelines that are comprehensive and clear. In light of this, simpler and more 

understandable methods of quantifying uncertainty as well as guidelines to explicitly 

evaluate the different sources of uncertainty are urgently needed. This background 

raised important issues and motivates a need to further investigate the problems specific 

to the southern African region where uncertainty is expected to be high because of data 

scarcity and because large parts of the region are poorly gauged. 
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1.2 Modelling tools in southern Africa 

 

There have been many discussions in southern African countries about appropriate 

modelling tools for water resources estimation in the face of the limitations of the 

relevant data. This is due to water resources management pressures as a result of 

gradual depletion of available water resources with increasing demand. Within this data 

scarce region, water resources planning and management decisions are frequently 

based on simulated information. One can classify most of the basins in southern Africa 

as poorly gauged basins due to the rather low and unevenly distributed observation 

stations of hydrometeorological variables of interest (i.e. rainfall, evaporation, runoff, 

etc). 

 

It is common practice that all the available hydrometeorological data are used to 

establish a rainfall-runoff model to simulate representative time series of naturally 

available water resources. These estimates of natural streamflow are then used with the 

information on water use and other anthropogenic factors, such as land use change, 

within water resources systems models to estimate current levels of water availability. 

However, the reliability and accuracy of water use information, such as patterns of 

irrigation water use, changes in land use patterns and water utilisation practices is 

questionable. In South Africa, rainfall-runoff and water resources yield models are being 

developed in response to specific practical needs such as estimating available water 

resources or assessing impacts of development needs or climate change (Schulze, 

2000; Hughes, 2004a). The emphasis is on the practical use of scientific research in the 

field of water resources planning and management. The hydrological models widely 

used in South Africa are the Pitman model (Pitman, 1973; Hughes, 2004b; Bailey and 

Pitman, 2005), a conceptual, semi-distributed monthly time-step model and ACRU 

(Agricultural Catchments Research Unit; Schulze, 1990; 1995), a conceptual, physically-

based daily time-step agro-hydrological modelling system. These models have 

frequently provided valuable information for water managers. The Pitman model is 

traditionally calibrated against observed flow data (Pitman, 1973), but Kapangaziwiri and 

Hughes (2008) has recently developed an a priori approach for estimating some of the 

traditionally calibrated parameters directly from basin physical property data. The ACRU 

model is not a parameter fitting model and the parameters are designed to be estimated 

from the physical characteristics of the basin (Schulze, 2005).  
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One of the issues that has been neglected in water resources modelling in South Africa 

and many other southern African countries is the incorporation of the uncertainty that 

exists in the quantitative estimates of water resources availability in management 

decisions. If the treatment of uncertainty is to be advanced, an appropriate conceptual 

structure and practical methods are required for handling uncertainty. In addition, efforts 

to reduce predictive uncertainty such as establishment of ways to improve databases, 

and quantifying the spatial and temporal impacts of artificial influences in hydrological 

basins are needed. However, in practice there will always be uncertainty even if efforts 

are made to reduce the uncertainty and therefore there is a need for parallel approaches 

to incorporate uncertainty into estimates and reduce that uncertainty. It should therefore 

be clear that, for any water resources assessment procedure, uncertainty analysis is 

always relevant and there should be no reason for not incorporating it.  

 

The selection of South Africa for the present study was based on data availability, that is, 

the existence of historical and quality-controlled datasets (rainfall, evaporation, geology, 

soils, regionalised parameter values, observed and naturalised flow data). While not 

without problems, these data have provided the baseline information for a wide range of 

water resources assessments in South Africa. Such information would be difficult to 

obtain from other countries in southern Africa. The availability of these datasets allows 

the methods and procedures that are relevant to the present study to be effectively 

tested and the findings would be applicable to the whole of southern Africa. This is 

because, in this thesis, it has been assumed that the characteristics of the test sub-

basins from South Africa would be representative of the hydro-climatic and physical 

conditions mostly found in many parts of southern Africa region.  

 

In spite of the number of models available for water resources assessments, the Pitman 

model was selected for use because it is the most widely used model for regional scale 

water resources planning in South Africa and many other countries in the region 

(Hughes, 1997; Hughes et al., 2006). The model is semi-distributed and has been 

previously applied at a wide range of sub-basin scales and climate conditions. While the 

general approach adopted for uncertainty assessment in this study is model independent 

(such as uncertainties associated with model input data or water use data), the analysis 

of uncertainties associated with parameter values is model dependent since any 

parameter estimation approach is not entirely independent of the model structure. 
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 1.3 Rationale 

 

It has been shown that the process descriptions used in current hydrological models may 

not be appropriate; that the data inputs are not representative, that the appropriate 

model parameter values may vary within sub-basin scales, that techniques for parameter 

estimation are often at inappropriate scales, and that there is uncertainty in the model 

structure (Beven, 2001a). Recognising these problems in hydrology, there will always be 

multiple acceptable models to represent a sub-basin of interest, all reproducing any 

observation of basin runoff to some acceptable level. There is therefore a need to work 

with existing hydrological models to make predictions within an uncertainty framework, 

which allows for such inherent equifinality (Beven, 1993) in models to match the current 

levels of observed data accuracy. In spite of this, and the fact that many ungauged 

basins exist, the current practice of water resources estimation using hydrological 

models in South Africa has not taken much account of uncertainty. The evaluation of the 

different sources of uncertainty will allow water managers to be able to identify the 

uncertainties that are important in influencing the final modelling results and focus 

resources efficiently. Given that the concept of uncertainty analyses is well understood 

by academics but is awkward for practitioners, the latter would welcome more guidance 

and increased awareness on this aspect. This would empower them to make appropriate 

decisions using cost-benefit analyses of various water resources management options 

(for example, risk analysis) that usually follow. Public discussions and policy decisions in 

South Africa are frequently based on deterministic model results since stakeholders 

believe that making decisions does not require total accuracy. However, this study 

contends that decisions are greatly enhanced if the confidence in the scientific results 

(uncertainty bounds) is known and incorporated into the decision-making process. It is 

therefore critical to encourage model users in South Africa to recognise the inherent 

uncertainty in their results and to start applying uncertainty principles in water resources 

estimation and consequently in the decision making process. There are, however, 

several constraints that must be addressed that are related to data availability and 

accuracy, as well as the capacity or willingness to adopt new methods that incorporate 

uncertainty estimates. 

 

While many recent studies have focused on the effectiveness of uncertainty modelling 

approaches (Gupta et al., 2006; Beven, 2006b), this study contributes to the 
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development of procedures and guidelines for uncertainty estimation for hydrological 

model users in South Africa. It presents some guidelines on the identification of sources 

of uncertainty and how these different sources of uncertainty can be quantified in the 

current hydrological modelling practice in South Africa. It also offers suggestions on 

alternative options to reduce some of these uncertainties and to improve the application 

of one of the recent versions of the Pitman model. While for complete uncertainty 

analyses, quantifying all sources of uncertainty and how they propagate within the model 

would be desirable, this was not feasible in this study as this would be a huge task 

beyond the resources and time available for a single research project. The main focus 

was on uncertainties associated with model input data, parameter estimation and water 

use data, although this is not intended to downplay the importance of uncertainty arising 

from suitability of the model structure. The expectation of the study is to raise awareness 

on the importance of incorporating uncertainty analyses in water resources modelling in 

South Africa. This is because it is widely accepted that conducting uncertainty analyses 

can provide guidance to improve the quality of decision making, to assess the 

robustness of decisions, and to understand whether the current knowledge is sufficient 

to make decisions. 

 

1.4 Research questions 

 
The study attempts to answer the following research questions: 

1. What are the main sources of uncertainty in hydrological model applications in 

South Africa and/or the whole of southern Africa region? 

2. How can the uncertainty be quantified given data and model constraints? 

3. What are the alternative approaches of minimising uncertainty in model 

predictions? 

4. If we introduce alternative approaches to reduce uncertainty, can they not 

introduce more uncertainty? 
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1.5 Study objectives 

 

The study is aimed at contributing to the development of procedures and guidelines for 

the assessment of water resources estimation uncertainties in South Africa which are 

consistent with the constraints of the model structure, data and human resources. The 

emphasis is on the Pitman model, but some observations and analyses will also be 

relevant to other models that are commonly used to estimate water resources 

availability. It is also aimed at quantifying and suggesting the possible options of 

reducing the identified sources of uncertainty. Local and international trends and 

initiatives in water resources modelling are investigated and compared. The findings are 

used as a basis for developing guidelines for evaluating uncertainty in water resources 

estimations in South Africa. In this study three specific objectives have been identified: 

1.5.1 Identify sources of uncertainty and quantify their individual impacts on 
model output uncertainties. 

 
This should offer the hydrologist a valuable insight regarding the contribution of each 

individual source of uncertainty to the overall model output. Particularly: 

• Identification and classification of each source of uncertainty. 

• Quantifying the propagation of each source of uncertainty (in particular input 

data and parameter uncertainty) to the model output uncertainty. 

1.5.2 Identify possible options for reducing uncertainty in model input data and 
parameter estimation. 

 
The aim is to reduce sources of uncertainties identified and quantified in objective 1.5.1. 

In some instances, only the identification of sources of uncertainty would be achieved as 

the reduction component would require collection of more data and/or improved 

measurement techniques. The applicability of the options, are illustrated for selected 

hydrological problems in South Africa, particularly; 

• The potential use of satellite based rainfall data and correction procedures to 

improve spatially averaged rainfall estimates. 

• The potential use of temperature time series data to estimate variations in 

potential evaporation demand.  

• The application of a priori parameter estimation procedures including 

uncertainty for the Pitman model. 
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1.5.3 Investigate the combined contribution of uncertainty sources to model 
output uncertainty. 

 
This objective follows from objective 1.5.1 and is designed to assess the impacts of all 

the sources of uncertainty (including uncertainty in some water use data) collectively on 

model outputs and how these uncertainties interact within the same framework in order 

to achieve more complete information on overall model predictive uncertainty as an 

important requisite for an improved assessment of risk. This is because outputs from 

hydrological models are used as inputs to water resources yield models which simulate 

present day water availability which aid in decision making process for future 

management of risks. If the present day impacts are not adequately quantified, the 

availability of water resources for future development will not be accurately estimated 

even if the estimates of the natural water resources are. 

 

1.6 Structure of thesis 

  

Chapter 2 reviews the relevant literature and the theoretical background of the study. 

Chapter 3 introduces the study area and general methodologies. Chapter 4 introduces 

the potential sources of uncertainty and the procedures used to identify the main 

sources of modelling uncertainty in the application of the Pitman rainfall-runoff model. 

Chapter 5 involves an assessment of uncertainty in the estimation of spatial rainfall and 

its propagation into streamflow predictions. Some alternative procedures and data 

sources (satellite data products) that can be used to reduce rainfall data uncertainty are 

reported in Chapter 6. Chapter 7 provides a detailed analysis of uncertainties 

associated with the estimation of the potential evapotranspiration demand and how they 

impact on streamflow predictions. Chapter 8 discusses procedures and results for 

parameter estimation, sensitivity and uncertainty analyses. Chapter 9 describes a 

strategy that integrates evaluations of all the different sources of uncertainties including 

water use data within the same framework in a South African context. The overall 

conclusions and recommendations for the study are provided in Chapter 10. 
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2. LITERATURE REVIEW AND THEORETICAL BACKGROUND

This chapter has been structured such that the relevant literature drawn from mainly

three databases, which are, the Science Direct, Scopus and Scirus as well as national

reports, and the theoretical concepts in hydrological modelling including uncertainty

estimation from both international and regional perspectives are presented. The general

theory of rainfall-runoff modelling concepts and application of hydrological models in

both gauged and ungauged basins are first introduced, followed by a review of the

literature on identification and quantification of the sources of uncertainty in the

application of hydrological models dating from the 1980s. An overview of existing

uncertainty assessment techniques and potential options to reduce some of the sources

of uncertainty are introduced and discussed. The final section then provides an overview

of the current hydrological modelling practices in South Africa with special emphasis on

model development and application, and the need to shift to a modelling practice that

incorporates uncertainty in any water resources estimation process.

2.1 General rainfall-runoff modelling concepts

The increase in computing power has seen the development of rainfall-runoff models to

simulate and extrapolate natural hydrology. The main objective of hydrological modelling

is to provide reliable information for water resources planning and management through

an understanding of the hydrological processes and their interaction. Any kind of

modelling can be looked upon as a system that transforms the input into output, with a

good example being the unit hydrograph model which is a linear transformation of

effective rainfall to runoff (Duband et al., 1993). Rainfall-runoff models are mathematical

representations of natural hydrological systems which can be very complex and highly

variable in time and space (Pitman, 1973; Beven, 1989). Often, it is not possible or

practical to represent the hydrological system in great detail, and simplifying

assumptions are commonly made. This is done for a number of reasons, including a lack

of basic data and that all the factors and processes affecting system behaviour are not

fully understood (Beven, 2000a). Simplifications of the physics and lack of complete

knowledge about the hydrological processes are problems always faced by hydrologists.
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There are many different models in hydrology, which vary on lines of development or

degrees of complexity (see e.g. Clarke, 1973; Wheater et al., 1993; Singh, 1995). They

range from complex descriptions based on partial differential equations to simpler and

less complex conceptual descriptions. Models are distinguished based on contrasting

properties such as stochastic versus deterministic, conceptual versus physically-based,

lumped versus distributed models, and others (Clarke, 1973; Abbott and Refsgaard,

1996). These divisions, as presented here, are more general than rigorous and may not

encompass all concepts and views in the history of rainfall-runoff models. A fundamental

distinction is between stochastic and deterministic models. Stochastic models are data

based and assume some randomness or uncertainty in the simulated output as a result

of randomness in input variables, while deterministic models are process based and

assume single prediction of all its output variables being produced from a sequence of

given inputs and that processes are defined in physical terms without a random

component (Beven, 2001a, b).

2.1.1 Classification of hydrological models

Rainfall-runoff models have been classified on the basis of their structure as either black

box (empirical), grey box (conceptual), or white box (physically-based) models (Clarke,

1973). Empirical models represent only the numerical relationship of observed output to

observed input data without an understanding of processes and a very good example is

a linear regression model that relates runoff volume to rainfall depth (Kokkonen and

Jakeman, 2001). In contrast, physically-based models are based on the laws of

thermodynamics, conservation of mass, momentum and energy such as St Venant

equations (Beven, 2002a). These models treat a basin as a spatially variable system and

processes involving a hill slope to the entire basin may be modelled (Beven, 2001b,

2002a). Between empirical and physically-based models exist conceptual models in

which some understanding of hydrological processes is included in the model

formulation. In conceptual modelling, the basin is perceived as consisting of several

moisture storages through which rainfall inputs are routed by a process of moisture

accounting, eventually to produce streamflow output, all of these elements are

represented explicitly by mathematical relationships (Beven, 2001a).
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Rainfall-runoff models are further classified on the basis of the scale at which they

represent the basin hydrological system, that is, as either lumped or distributed in nature

(Todini, 1988). With lumped models, a basin is treated as a single unit and rainfall inputs

are related to streamflow outputs with no consideration of the spatial variations of

processes and characteristics within the basin (Szymkiewicz, 2002). Alternatively, with

distributed models an attempt is made to take account of the spatial variations of

hydrological response within a basin, which is treated as a discrete unit (Abbott et al.,

1986; Abbott and Refsgaard, 1996; Beven, 2001b). The discussion that follows attempts

to give an overview of the way hydrological models evolved from simple lumped, through

conceptual to more complex physically-based distributed models.

2.1.2 History of hydrological model development

Rainfall-runoff modelling effectively began in the 1880s with the development of the

‘rational method’ that relates streamflow directly to a measure of rainfall inputs, basin

area, and a runoff coefficient (Dooge, 1957; Smith and Lee, 1984). The difficulty in

applying this method was deciding on the value of the runoff coefficient because this

parameter would not only vary from one basin to another, but also with the magnitude of

an event and state of the basin before an event. In the 1960s, more complex lumped

models were developed to explicitly reflect the perceptions of hydrologists about the

processes of hydrological responses to rainfall inputs. This led to the unit hydrograph

approach (Dooge, 1959; Newton and Vineyard, 1967) that attempts to predict the time

distribution of discharge as well as its peak through a linear approximation process.

Despite serving hydrologists quite well, the linear assumption of the unit hydrograph

approach has been much criticized because hydrological responses to rainfall are non-

linear (Dooge, 1979; Bates and Davies, 1988). This saw the introduction of conceptual-

lumped models to account for non-linearity in rainfall-runoff responses, in particular when

computers started to become widely available between the 1960s and 1980s. One of the

earliest examples of such a model is the Stanford Watershed Model (Crawford and

Linsley, 1966; Görgens, 1983), which is a lumped explicit soil moisture accounting model

in that it represents different basin hydrological processes and storages (interception,

upper soil moisture, lower soil moisture and groundwater) with several elements. The

flows between these stores are controlled by different parameters, which require

calibration for a particular application against observed data (Beven, 2001a). These
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models vary widely in terms of the number of parameters, from simple (Roberts, 1979;

Diskin et al., 1973) to more complex structures (Crawford and Linsley, 1966). However

simpler models are often preferred because they have few parameters that require

calibration and their performances are often similar to those gained from using complex

models (Young et al., 2006). Other examples of conceptual models are the Sacramento

model (Burnash, 1995), the HBV (the Swedish name of Sweden's Meteorological and

Hydrological Institute, where the model was developed) model (Bergström, 1995) and

the Pitman model (Pitman, 1973). However, conceptual models can be made distributed

by applying them to different sub-basins and routing the outputs to the point of interest

using a river routing component, a strategy often called semi-distributed modelling. An

example is a soil water balance (SWB) model (Schaake et al., 1996), which explicitly

accounts for spatial variability in rainfall and model states. A semi-distributed modelling

approach takes account of spatial heterogeneity of parameters over a basin but retains

the more simple structure of the less data intensive lumped models. The limitation of

such a strategy would be that each sub-basin would then require its own set of

parameter values and rainfall inputs to be estimated.

In contrast to conceptual models, where parameters are frequently estimated through

calibration against observed data, the parameters of fully physically-based distributed

models are expected to be directly measurable from basin physical characteristics.

Physically-based distributed models have the advantage of taking into account the

variation of several basin processes and states at a number of locations distributed in

the basin (Binley et al., 1991; Beven, 2001b; Moreda et al., 2006). It must be noted that,

despite the distributed nature of these models, some degree of parameter ‘lumping’

occurs because the scale of the model is generally larger than the scale which

characterises the operation of various hydrological processes (Beven et al., 1988). The

important perceived difference between conceptual and physically-based distributed

models is that the parameters of physically-based models may be validated with field

measurements and are generally more suited for basins with no observed response

data. Physically-based distributed models are often considered to be more appropriate in

situations with no observed response data because of their basis in physical

representation of the basin processes (Abbott et al., 1986). However, a major drawback

of such models is their impracticality due to the amount of data inputs required and their

complexity (Beven, 1989; Binley et al., 1991). Well-known examples of distributed
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models are TOPOMODEL (Beven et al., 1995), the MIKE SHE model (Rafsgaard and

Storm, 1995) and the SWAT model (Arnold, 1992).

Given this wide variety of different rainfall-runoff models available, there is a real

problem of model choice for any practical application. Model users often prefer simple

models that are relatively easy to operate but represent important hydrological

processes (Butts et al., 2004). Therefore, the semi-distributed modelling approach which

attempts to bridge the gap between a simple lumped approach and the complex

distributed modelling approach is most favoured. In this regard, Beven (2001a)

summarises a number of criteria on which to base model choice including model

availability, data input requirements, the ability of the model to make predictions and its

assumptions. However, he further argued that some compromises have to be reached if

these criteria are to be used for practical applications, otherwise all models would be

rejected and hence model users must be able to evaluate the uncertainties associated

with such compromises.

In practical water resources assessments, the scale of application of a hydrological

model as well as the resolution of model input data, both spatially and temporally, has a

major influence on its structure and detail (Klemeš, 1983; Schaake et al., 1996). With

respect to spatial scale, aspects of natural processes that are important at one scale

may not be relevant at another and therefore models can be scale dependent (Beven,

1995; Blöschl and Sivapalan, 1995). From a water management perspective, the spatial

scale at which predictions are of practical importance ranges from property or cadastral

scales, through catchment or basin scales to regional or national scales. Inevitably, more

complex models would require more detailed data, measured at finer scales while the

simpler models would require less detailed data, averaged over broader scales (Koren et

al., 1999). Equally, there is little or no benefit in modelling at complex levels beyond what

can be reasonably supported by the available data (Perrin et al., 2001). Conversely,

simpler models that require simple inputs often do not adequately capture all the

necessary hydrological processes operating in any given hydrological system (Wood et

al., 1990). Temporal scale is reflected in the time-step of the model and rainfall-runoff

models simulate the behaviour of hydrological systems over a period of time, which may

range from fractions of an hour to decades or more. The time period over which a model

is run also influences its complexity and it is rarely viable to apply highly complex models
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over long time periods, often due to a lack of climate data measured at shorter time

steps (Finnerty et al., 1997). Therefore, a balance is needed between the available data,

model complexity and the desired outputs from the model.

The history of rainfall-runoff models is such that it has evolved over the last few decades

from simple empirical, through conceptual to complex physically-based models (Dooge,

1959; Binley et al., 1991), and back to simpler or parsimonious models (Perrin et al.,

2003). This has largely been due to the search for appropriate modelling tools to achieve

specific objectives. The concept of appropriate modelling means developing and

selecting a model with a level of complexity that reflects the actual needs for modelling

results (Jakeman and Hornberger, 1993). To understand hydrological processes, the

model’s ability to describe them is very important and a good fit of a model to observed

data may be obtained by parameterisation of the different processes involved (Beven,

1989). The concept of parameter parsimony in describing hydrological processes is thus

crucial and even more important when the models are used for predictive purposes

(Perrin et al., 2003; Lazzarotto et al., 2006). Reliable predictions can only be achieved

with models using a set of appropriate parameters that reflect the fundamental governing

mechanisms involved in the basin (Beven, 1989). The main problems seem to be related

to model complexity relative to data availability, choice of objective functions and the

associated difficulties in identifying the chosen model structure and estimating its

parameters (Yew Gan et al., 1997). These issues still constitute the largest obstacle to

the successful application of water resources estimation models in both gauged and

ungauged basins. This has seen the introduction of new modelling approaches and

initiatives including fuzzy modelling techniques (Kundzewicz, 1995), top-down

approaches to model development (Sivapalan and Young, 2006), calibration and

uncertainty estimation in rainfall-runoff modelling (Beven, 2001a) and Prediction in

Ungauged Basins (PUB) initiative (Sivapalan et al., 2003). These new approaches and

initiatives are being introduced in recognition of the difficulties and limitations to the

successful application of the current hydrological models to aid in decision making

processes.
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2.2 Calibration and validation of rainfall-runoff models

2.2.1 Model calibration

Rainfall-runoff models are a simple representation of the ‘real’ world, which means that

their parameters necessarily aggregate the non-uniform basin hydrological processes

using empirical relationships (Beven et al., 1998). Consequently, the parameters often

lose their exact physical meaning and therefore, all models (whether simple, conceptual

or complex physically-based) are normally calibrated against observed data to identify

the model parameters appropriate for a given condition (Beven and Binley, 1992). This is

because there are no measurement techniques that would allow the direct observation

and independent estimation of the parameter values at a scale required by a model

(Klemeš, 1983; Abbott et al., 1986). There are two classifications of model parameters

that exist, namely; the calibration parameters that appear in empirical relationships and

need to be calibrated from observed climate and runoff data, and the physically-based

parameters that in principle are observed or estimated directly from measurements in the

basin. The limitations of using physically-based parameters are related to their scale-

dependences and the quality of information from which these parameters are derived

(see e.g. Beven, 1989). A focus of the discussion in this section is on calibration

parameters. The main reasons for calibrating models are threefold: to account for effects

of the hydrological conditions in a particular sub-basin, to adjust for biases in climate

inputs (such as rainfall measurement errors, spatial and temporal variability), and most

importantly, to account for basin physical properties (soil and vegetation) which are

highly non-uniform and essentially unknown or at least poorly known (Blöschl, 2006).

It has often been suggested or implied in the literature that the data used to calibrate

hydrological models should be representative of the various phenomena experienced by

the basin (Beven and Binley, 1992; Ao et al., 2006). Given the limitations of observed

streamflow data, as well as the model structural constraints, it is frequently difficult to

achieve unique model solutions when observed responses are available (Beven, 1993).

In practice, the climate and streamflow data necessary to search for suitable parameters

for an existing condition in gauged basins are often not reliable. Streamflow data may

have missing and short records, in addition to variable effects of developments (e.g.

small dam or irrigation abstractions) that need to be accounted for before use with a
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model designed to simulate natural conditions, while rainfall data may be sparse, or

completely unreliable due to measurement errors or non-representativeness. There is

therefore no general agreement on how best to calibrate hydrological models, as

calibration is associated with uncertainties (see section 2.4 for more details) that cannot

be easily separated (Gupta et al., 2006). In any calibration procedure, not all parameters

are treated alike because some of the parameters are sensitive while others are not

(Beven, 2001a). The most sensitive parameters are considered to have an important role

in the physical processes and are explicitly involved in the parameter calibration process,

while others are considered useful only for fine tuning the model results. The other

parameters normally have their values fixed to their initial estimates throughout the

calibration procedure as they are considered to have a negligible impact on model

results (Beven, 2001a). The type of parameters in each case depends on the type of the

rainfall-runoff model under consideration.

Two approaches are widely used to calibrate rainfall-runoff models, namely manual and

automatic calibration approaches. Manual calibration requires an experienced user to

adjust parameters interactively in successive model runs to improve results. In

evaluating the quality of model fit to observed time series, human judgement and one or

more objective functions are often used, for instance, the Nash-Sutcliffe Efficiency (Nash

and Sutcliffe, 1970). The advantage with this procedure is that parameter values can be

selected so that they are hydrologically meaningful. However, the weaknesses with this

procedure are the inherent subjectivity involved, since it is a trial-and-error process and a

time consuming and labour intensive process. Hence, the parameters derived are

subject to bias and there is no clear point at which the calibration process is said to be

complete.

Automatic procedures, on the other hand, use a computer algorithm to search the

parameter space through performing multiple runs of the model such as the Shuffled

Complex Evolution method (Duan et al., 1992; Vrugt et al., 2003). The advantage with

this approach is that the computer does much of the work of exploring parameters rather

than the user and the procedure is objective. The calibration process should ideally be

able to define an optimum parameter set which cannot be normally achieved with

manual calibration. However, the disadvantage of the approach is that this may

essentially be a numerical exercise which produces parameters that may lack physical
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meaning (Hughes, 1997; Yapo et al., 1998). Despite this, automated calibration

procedures can perform favourably when multiple objectives are used (Gupta et al.,

1998; Bastidas et al., 1999; Madsen et al., 2002). A lot of literature on the automated

calibration methods exist (e.g. Beven and Binley, 1992; Duan et al., 1992; Kuczera and

Parent, 1998; Yapo et al., 1998; Madsen, 2000), but these methods suffer from

‘equifinality’ problems, where many parameter combinations give similar acceptable

simulation results (Beven, 1993; Beven and Freer, 2001). However, Boyle et al. (2000)

contemplated that a more robust calibration strategy would require the use of combined

automated and manual approaches. This is particularly true for semi-arid regions where

there is limited spatial information and highly non-linear rainfall-runoff relationships

(Shah et al., 1996). Here the automated approach must be done after an initial manual

calibration to fine tune parameters to physically acceptable ranges. Automatic

techniques have been developed and tested for calibrating the Pitman model

parameters in southern Africa, but did not give acceptable simulation results (Ndiritu and

Daniel, 1999). This was attributed to model structure and data errors, because the

optimisation process may generate parameter values that reflect the noise in data, rather

than the real signal of the hydrological response (Hughes, 2004a). It is evident,

therefore, that parameter values estimated through automatic procedures may be

fraught with uncertainty, not limited to parameter sensitivity, parameter

interdependences and the location of local or global optima (Beven, 2001a). While it may

not be easy, the uncertainty associated with any parameter estimation or calibration

process needs to be quantified (see section 2.4 for more details on this aspect)

2.2.2 Model validation

In testing if rainfall-runoff models can be generalised and assessing if the calibrated

parameter values are suitable, the calibrated model should be run with an independent

set of data or an independent period of the same data record, a process often referred to

as model validation (Kapangaziwiri, 2008). When the comparison between the simulated

and the observed streamflow is acceptable in relation to the result obtained during the

calibration period, the model is said to be validated. A detailed scheme of validating

models has been outlined by Klemeš (1986) which includes split-sample tests,

differential split-sample tests, proxy-basin tests and differential proxy-basin tests.

However, Hughes (1993) highlighted that the multi-criteria validation approaches assess
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model simulations with different variables to those used in calibrating the model, and

have the potential to reduce the equifinality problems (Beven and Freer, 2001).

Despite the importance of validating models, in practice, independent datasets or long

records for split-sample tests may not be available. This is a critical issue in southern

Africa where even observed streamflow data to calibrate the models are already limited.

In addition, the independent data useful to validate a model may not be representative

and Klemeš (1986) postulated that the model should be validated for the intended

purpose, beyond which model performance cannot be guaranteed. Typically validation

statistics are often worse than for the calibration period and Rosbjerg and Madsen

(2006) questioned whether a model can be validated at all.

2.3 Prediction in ungauged basins

A basin where no runoff data or where measurements do not relate to the condition

being modelled is termed “ungauged”. The application of hydrological models in

ungauged basins has received much attention in the hydrological community in recent

years through the International Association of Hydrological Sciences (IAHS) Decade on

Prediction in Ungauged Basins (PUB) (Sivapalan et al., 2003) and this remains a difficult

field in hydrological research (Wagener and Wheater, 2006; Wagener and Kollat, 2007).

The application of rainfall-runoff models to ungauged basins requires that model

parameters are estimated by other methods and a practical discussion of parameter

estimation methods is given in Duan et al. (2001). The model parameters are either

estimated by inferring from field measurements or remote sensing (a priori estimation) or

by parameter regionalisation (transposing calibrated parameters from similar gauged

basins or using the notion of hydrological similarity) approaches. In theory, estimating

the parameters should be a straightforward task, but the extreme non-uniformity of basin

physical conditions (e.g. soil properties) or the unresolved spatial and temporal variability

of climate variables and model structure constraints may limit the estimation of the

appropriate parameters in ungauged basins (Beven, 1989, 1993).

Modelling ungauged basins started a long time ago with the use of simple approaches

such as the rational method. The increased availability of computers in the 1960s
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prompted the development of continuous watershed models (Nash and Sutcliffe, 1970)

and since then one of the focus areas of research has been attempts to estimate

parameters in ungauged basins. Different approaches have been used at different sub-

basin scales which include the proxy-basin method (e.g. Klemeš, 1986), linear

interpolation methods (e.g. Bergström, 1990), multiple regression approaches (e.g.

Seibert, 1999; Fernandez et al., 2000; Mazvimavi, 2003), parameter mapping (Midgley et

al., 1994) and a priori estimation methods (Duan et al., 2001). However, the problem is

far from resolved given that regionalisation of parameters of rainfall-runoff models for

prediction in ungauged basins is not an easy task and that the associated uncertainties

are not always clear.

Data from gauged basins are frequently used to calibrate hydrological models and derive

a set of parameters which are then used with a set of basin characteristics to derive

regional relationships (Hughes, 1982), which form the basis for estimating parameters

for ungauged basins. As an example, Hundecha and Bárdossy (2004) used a non-

classical approach to develop regionalisation relations (transfer functions) between

hydrological parameters and physical basin characteristics, while Merz and Blösch

(2004) used the classical approach for regionalisation of parameters through regression

methods for the HBV model. There are a number of problems associated with these

regionalisation approaches. The approaches, for instance, require the parameters of the

regionalisation relations to be calibrated in some way against observed data (Ao et al.,

2006; Franks, 2007). There is uncertainty associated with the extent to which the rainfall-

runoff relationships reflected in the observed data are sufficiently representative to allow

a suitable parameter set to be quantified. However, the transfer of parameters is difficult

as optimal parameter sets depend on model type and objective functions used (Gupta et

al., 1998), parameters are themselves uncertain (Kuczera and Parent, 1998) and

parameters are not unique (Beven and Freer, 2001). Consequently, there is high

predictive uncertainty for ungauged basins even though regionalisation approaches

based on parameter calibrations have been aimed at reducing parameter uncertainty

(Franks, 2007). A good understanding of a particular model and a sound knowledge of

hydrological processes within a natural system is necessary for developing reliable

regionalisation approaches (Madsen et al., 2002).
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Application of a priori parameter estimation approaches is also limited because they are

fraught with the uncertainty associated with unknown scale-dependences of the

parameters and problems of process responses being non-uniform (Beven, 1989; Binley

et al., 1991). Despite this, investigations of physically-based parameter estimation

approaches which do not require calibration to observed flow data are becoming popular

for modelling ungauged basins (Gupta et al., 2006; Kundzewicz, 2007; Yadav et al.,

2007). It is therefore appropriate to continue research on this aspect. Recent

developments include improvements in the application of physically-based approaches

to estimate model parameters directly from basin physical properties (Kapangaziwiri and

Hughes, 2008) or use of alternative remote sensing data products to calibrate physically-

based models (Baumgartner et al., 1997; Nandagiri, 2007). Additionally, Yadav et al.

(2007) developed a model-independent approach to quantify basin hydrologic behaviour

through the use of similar hydrological response indices within an uncertainty framework

to constrain the parameter behaviour of ungauged basins.

The next section introduces the concept of uncertainty in water resources estimations

given that it is an inherent element in the application of rainfall-runoff models due to

compensation effects during the model calibration process. In situations where no

observed response data (i.e. measured streamflow) are available, this uncertainty is

likely to be severe, since these response data are normally used to reduce (at least) the

uncertainty in the parameters (Blöschl, 2006). It is now generally accepted that all

sources of uncertainty and their effect on model predictions should be quantified, since a

reliable estimate of the prediction uncertainty is crucial for making efficient decisions on

the basis of model simulations (Rosbjerg and Madsen, 2006).

2.4 Accounting for sources of uncertainty in hydrological modelling

The calibration of rainfall-runoff models for poorly gauged or ungauged basins and the

simulation of basin development scenarios and water usage practices are problems

faced by water resources managers (Ao et al., 2006). This is because they are

frequently faced with short, patchy and unreliable climate and hydrological records with

poor spatial coverages. Furthermore, the knowledge of geology, soil and land use is

based on coarse scale maps that have not been generated using hydrologically relevant

source data (Blöschl, 2006) and that appropriate databases of water use information are
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not always available. This makes the whole process of water resources modelling a

challenge as the results could be highly unreliable due to the use of uncertain model

inputs or inappropriate model parameter values (Beven, 2001a). Therefore, not

accounting for sources of uncertainty could lead to false assumptions of modelling

accuracy as well as consequent risks of potential outcomes and precludes the

recognition of the need to reduce uncertainty and improve the reliability of the model

results.

Incorporating uncertainty estimates in hydrological modelling is an emerging and crucial

concept not only for scientists but for all water practitioners who use the model simulated

results as it has significant impacts on the quality of the decisions. Despite its relevance,

a significant part of the community is still reluctant to embrace uncertainty estimation in

hydrological modelling. Pappenberger and Beven (2006) summarised seven common

reasons why uncertainty analysis is not a normal and expected part of modelling

practice, but argued that there should be no excuse for not incorporating uncertainty in

water resources estimations. However, one of the main reasons that has so far

prevented the full appreciation of the knowledge of uncertainty estimation is the

impracticality of systematic testing and a lack of guidance in the use of many methods

and applications that are available (Montanari, 2007). The problems of modelling

hydrological processes have long been recognised and two issues need to be

addressed in future modelling practice (Beven, 2006a). The first is how to estimate the

uncertainty in hydrological modelling (in both gauged and ungauged basins) and reduce

uncertainty using new datasets and improved estimation techniques. The second is how

to present and use uncertainty in management decisions. This study will focus on the

first issue.

It remains a challenge to those engaged in water resources planning and management

to identify and quantify the main sources of uncertainty (Gourley and Vieux, 2006). It is

also a challenge to develop methods and identify ways to reduce this uncertainty as well

as how the uncertainty should be accounted for in decision making. Extensive literature

on hydrological modelling has focused on various approaches to model parameter

calibration and uncertainty analyses. Examples are the Generalized Likelihood

Uncertainty Estimation (GLUE) by Beven and Binley (1992), the more recent Bayesian

Recursive Estimation (BaRe) algorithm introduced by Thiemann et al. (2001), or the

Shuffled Complex Evolution Metropolis (SCEM-UA) by Vrugt et al. (2003). Other studies
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have concentrated on the quantification of different sources of uncertainty (Kuczera et

al., 2006; Kavetski et al., 2006; Rubarenzya et al., 2007; Wagener and Kollat, 2007),

data assimilation (use of more information to constrain parameter values - Vrugt et al.,

2005) and the general problem of estimating parameters in ungauged basins (Sivapalan

et al., 2003; Yadav et al., 2007). To be able to interpret model results correctly, those

engaged in model applications need to have information about possible uncertainties,

their distribution and the consequences of using information containing uncertainties.

2.4.1 A topology of uncertainty in hydrological modelling

There are many definitions of uncertainty and perhaps the simplest is that “uncertainty is

a general concept that reflects our lack of sureness or knowledge about outcomes which

may be important in decision making” (Sayers et al., 2002). Beven (2000a) describes the

risk of a possible outcome as uncertainty and that uncertainty differs from error in that an

error represents a specific departure from “reality”. Others postulate that uncertainties

result from the natural complexity and variability of hydrological systems, and a lack of

knowledge of the hydrological processes (e.g. Kundzewicz, 1995). There have been

numerous attempts to distinguish between different types of uncertainty. Plate and

Duckstein (1987) classified uncertainties into data uncertainties (e.g. measurement

error), sampling uncertainties (e.g. sample size error), parameter uncertainties or model

structural uncertainty (empirical equations and scaling laws), while Bernier (1987)

distinguishes between natural uncertainty, that is related to the random nature of

physical processes, technological uncertainty, sampling errors and model structure

uncertainty. Melching (1995) distinguishes in detail between uncertainty related to (i)

natural randomness (variability) of climate and hydrological data, (ii) errors in input data

(precipitation, evapotranspiration, temperature, antecedent moisture conditions), (iii)

errors in data used for model calibration and validation, (iv) use of inappropriate model

parameters, and (v) use of incomplete or imperfect model structure. The source of

uncertainties (i, ii and iii) depends on the quality of data and are independent of the

model, whereas (iv) and (v) are more model dependent. The disagreement between

observed and simulated outputs in rainfall-runoff modelling depends on all these sources

of uncertainties. Table 2.1 shows a simple topology of uncertainty based on the major

categories namely, real world environmental uncertainty (e.g. natural variability) and

knowledge uncertainty (Environment Agency, 2000). A detailed description of each type
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of uncertainty in Table 2.1 and some background information are presented in the

following sections.

Table 2.1 A simple topology of uncertainty (based on Environmental Agency, 2000).

2.4.2 Real world environmental uncertainty versus knowledge uncertainty

Real world environmental uncertainty is related to variability, or a change in hydrological

quantity (e.g. climate or streamflow) either in space or time. Variability occurs naturally or

because of human activity (e.g. land use changes or management) and can be random

(happening by chance) or systematic (trend or pattern) in nature (Environment Agency,

2000). Natural variability is related to the inherent unpredictable nature (occurrences and

intensities cannot be predicted in advance) of hydro-climatic events. Variability is a form

of uncertainty and the implications of understanding the differences between uncertainty

and variability are relevant to decision making. The knowledge of variability can guide

Type Examples of sources

a. Real world environmental uncertainty(e.g. Natural
variability) (not reducible form of uncertainty)

-Randomness observed in nature (climate

data)

-Inherent variation in natural hydrological

response systems

b. Knowledge Uncertainty

(This is a reducible form of
uncertainty and  is
associated with ignorance
or incomplete information)

i. Model input data
uncertainty

Climate data and hydrological data

-missing/inaccurate records

-non-representative data (spatial and temporal)

-inappropriate temporal/spatial resolution

-data processing

ii. Model structural
uncertainty

- Incomplete conceptual frameworks

-Spatial and temporal averaging of a model

-Ambiguous boundary conditions

-Wrong process representation

iii. Parameter uncertainty -Lumping of parameters and scale issues

-Parameter estimation process

-Choice of objective functions

-Use of inappropriate parameters

-Parameter sensitivity and interactions
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the identification of significant sampling uncertainty (e.g. number of raingauges) which

might merit more focused study (Sawunyama and Hughes, 2007) or to ascertain whether

the variability is due to “real” natural changing weather patterns. Climate variability is

different from climate change in that the former is a natural variation in climate from one

period to the next while the latter is a long-term alteration in the climate. The implication

of real world environmental uncertainty is that natural variability may dominate and

preclude the identification of trend signals in hydrological and climatic data either due to

climate change or anthropogenic causes (Schulze, 2000, 2005). Climate variability may

show trends when short records are used but these trends may disappear when more

data are available. Because of climate variability, records of 30 years or shorter may not

be useful for detecting climate change or other systematic trends (Schulze, 2005). While

there is a need to quantify different sources of variability the decline in observation

networks throughout the world represents a major constraint. The selection of time and

space scales at which to resolve variability is often a challenging task to hydrologists

since scale has a great effect on the perceived variability and a comprehensive review of

scale related issues can be found in Blöschl and Sivapalan (1995).

Knowledge uncertainty is associated with the use of data with limited information or due

to incomplete empirical knowledge or only a partial understanding of the processes,

interactions and dependencies of different parts of the hydrological system (Beven,

1993, 2001a). The unrepresentativeness of input data, incomplete model structures and

inappropriate parameter values form what is called “knowledge uncertainty’’ (Table 2.1)

and these are discussed below. However, knowledge uncertainty can be reduced

through further research or measurements and through the use of improved approaches

or models. The focus of recent studies on modelling uncertainty is on the quantification

and reduction of knowledge uncertainty (e.g. Vrugt et al., 2005; Yadav et al., 2007).

2.4.3 Input hydro-climate data uncertainty

The uncertainties in input data (rainfall, evaporation demand and observed flow data)

used in rainfall-runoff models are mainly associated with their spatial and temporal

representation, errors in measurements, inconsistency and non-homogeneity of data,

collection and processing of the data. The effects of errors in model input data related to

measurement, inconsistencies and non-homogeneity in records have been studied
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(Görgens, 1983; Seed and Austin, 1990; Schulze, 1995). One of the major causes for

concern in model calibration is the fact that models can be fitted to input data that

contain errors (Paturel et al., 1995; Oudin et al., 2006), which implies that the resulting

parameter set cannot be considered representative of the real catchment response. Both

climate and hydrological data are naturally continuous and variable in space and time

and this presents a major challenge in obtaining representative observed time series

(Smith et al., 2004; Habib et al., 2008).

The errors in estimation of rainfall may be due to inaccuracies of point rainfall

measurements and these errors can be systematic or random. Systematic errors

generally result in an under measurement of the true rainfall mainly due to wind effects

as well as evaporative losses. Random errors can be caused by poor raingauge

maintenance (e.g. leakage or damage), by the observer (inaccuracies in reading

instrument) or can be introduced in the course of data processing and transmission

(Görgens, 1983). Lack of representivity of spatial rainfall estimates may be related to

limited gauging density or an inadequate distribution of point measurements

(Sawunyama and Hughes, 2007) as well as inappropriate spatial interpolation

approaches used to convert point data to spatial time series (Teegavarapu and

Chandramouli, 2005). This has been confirmed by many other studies (Andréassian et

al., 2001; Guo et al., 2004; Buytaert et al., 2006) which showed that the reliability of

rainfall-runoff models is mainly associated with the ability to represent spatial and

temporal rainfall characteristics.

Some of the initial studies of rainfall data uncertainties focused on how well networks of

raingauges were capable of estimating total rainfall amounts using generated data

(Troutman, 1983) and real gauged data (Krajewski et al., 1991; Shah et al., 1996;

Andréassian et al., 2001). Such studies commonly assume that the highest resolution

data are approximately representative of the real pattern of rainfall behaviour (Obled et

al., 1994). Goodrich et al. (1995) observed that rainfall could be considered spatially

uniform for modelling small basins, and therefore does not contribute to parameter and

output uncertainty. This assumption has been questioned since optimum parameter

values are not independent of rainfall inputs (Görgens, 1983), while others recognised

that bias in rainfall estimates may at least be partially compensated for by model

parameter adjustment (Melching, 1995). It is clear that, no matter how physically-based
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or conceptual the hydrological models are, they will be sensitive to rainfall uncertainties

(Faurés et al., 1995; Chaubey et al., 1999; Dong et al., 2005). The analyses from the

various studies reported here were based mainly on adequately gauged small

experimental sub-basins and extending such studies to large basins (with limited

gauging networks) used for large scale water resources planning requires further

research.

Other studies (Paturel et al., 1995; Nandakumar and Mien, 1997; Andréassian et al.,

2004; Oudin et al., 2005) have assessed the sensitivity of rainfall-runoff simulations to

uncertainties in potential evapotranspiration data. However, the quantitative effects on

simulated runoff patterns of inadequate evaporation demand estimates have not been

addressed fully in southern Africa (Sawunyama and Hughes, 2007). Fowler (2002)

concluded that substituting mean potential evaporation estimates into a soil water

balance model produces very similar results to using observed potential evaporation

measurements under both dry and wet conditions. The problems with the data used to

represent evaporation estimates in the models used in southern Africa are expected to

be worse due to a lack of understanding of spatial and temporal variations of

evaporation demand that vary within different hydro-climatic regions, in addition to the

limited number of evaporation gauging stations.

Apart from rainfall and evaporation data uncertainties, further consideration is

uncertainty in observed streamflow data used for model calibration. The main sources of

errors are in the flow measurements and may be due to under-estimation and overflow

of gauging structures since flow gauges will only measure certain flow ranges, in addition

to rating curve inaccuracies especially at very high and very low flows (Peterson-

Øverleir, 2006). Therefore, simulation of wet and dry years is often difficult when a model

is calibrated using unrepresentative observed streamflow data. A further consideration is

the length of the data period that is required to establish representative parameters

(Anctil et al., 2004). Yapo et al. (1996) used a global optimisation method to calibrate a

flood forecasting model and concluded that approximately 8 years of data are required to

obtain stable calibrations. In contrast, Görgens (1983) found that more than 15 years of

data are required to obtain acceptable calibrations in semi-arid situations. Moreover, it is

often difficult to determine spatial variations from available streamflow data because

many of the available time series have gaps due to missing data or are non-stationary
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due to time variant land use effects or water abstraction patterns which effectively

shorten the record period (Smakhtin, 2001). The decline in quality of observed flow

records and the increased number of ungauged basins makes it difficult to calibrate

hydrological models with observed flow data. It is therefore difficult to regionalise model

parameters for prediction in ungauged basins and alternative approaches are required.

2.4.4 Model structural uncertainty

Given that rainfall-runoff models are simplified representations of hydrological systems,

the choice of model assumptions for process descriptions is often a key aspect in the

model structure (Beven, 1989). The assumptions may exist in the conceptualisation and

mathematical formulations of the model structure as well as the computer coding,

contributing to model structure uncertainty. However, it is often difficult to separate

uncertainty in model structure and uncertainty in the parameter values because the

parameters are not independent of the model structure (Beven and Binley, 1992).

The degree of spatial and temporal averaging of hydrological processes that occurs in a

model may introduce a degree of uncertainty to model outputs which may be difficult to

quantify (Sieber and Uhlenbrook, 2005; Beven, 2006b). There is always a trade-off

between computation time and the space and time resolutions used within a model

(Beven, 1995). Very often, a coarse grid resolution introduces approximations and

uncertainties into the model results. However, a finer resolution may not necessarily

result in more accurate predictions despite a demand for more computer resources and

input data. Besides, our limited understanding of hydrological processes even at small

scales often results in inappropriate assumptions and, therefore, governing equations

(Hughes, 1993; Beven, 2000a). Uncertainties may also arise when there are alternative

sets of scientific assumptions for developing the same model. In such cases, if the

results from competing models give similar conclusions (Beven, 1993), then one can be

confident that the decision is robust in the face of the uncertainty. If, however, model

formulations lead to different conclusions, further model evaluation might be required.

Model structural uncertainties are also associated with the understanding of hydrological

storages and processes of water movement within the limitations of the time and space

scales used in a model. Fully distributed models have been developed to represent
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surface, soil and subsurface flow processes in time and space (e.g. MIKE SHE,

Rafsgaard and Storm, 1995). Despite the ability of a distributed model to account for

spatial variability of the inputs and sub-basin characteristics and the use of measured

parameters, only very approximate solutions could be achieved even with the best

computers when the equations are applied at grid scales (Freeze and Halan, 1969). In

spite of these models requiring high resolution observed data, local measurements to

estimate parameters are generally at a coarser scale than the model scale. Some

models have attempted to take account of the temporal and spatial heterogeneity of

processes at sub-basin scales but in a parsimonious way (i.e. with a small number of

parameters). Examples include the Probability Distributed Function (PDF) (Moore and

Clarke, 1983; Moore, 1985), Arno model (Todini, 1996) and the Variable Time Interval

(VTI) model (Hughes, 1993; Hughes and Sami, 1994). These models have been

developed as semi-distributed, to account for the spatial variation of some variables

within basins and include ‘sub-grid’ (i.e. variations at smaller scales than the sub-basins)

effects as part of the model structure. Because of simplifications made, the non-

linearities and thresholds of processes (Zehe et al., 2005) that exist in nature are not

adequately represented by these models and hence, predictions though spatially

variable, are more approximate than for fully distributed model. Therefore, a question still

remains that if the model structure is inadequate can a satisfactory result be obtained

with any set of parameters? Several authors have already concluded that the current

model structures are not capable of reproducing the streamflow hydrograph or flow

ranges with a single parameter set (Gupta et al., 1998; Uhlenbrook et al., 2004;

Wagener and McIntyre, 2005).

2.4.5 Parameter uncertainty

Uncertainty in the choice of a parameter estimation method and the parameter values

themselves remain very crucial aspects in the application of hydrological models in water

resources estimations (Beven, 2001a). The problem is more acute in ungauged or poorly

gauged basins as there are no observed flow data to reduce parameter uncertainty

through calibration process (Wagener and Wheater, 2006; Goswami et al., 2007). It has

already been noted in section 2.2 that one perceived problem with any calibration

process are the effects of data errors (especially observed streamflow data) on the

resulting parameter set and how these uncertainties may be propagated into other areas
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where the model is applied. One approach to reducing this problem could be to use a

priori parameter estimation procedures based on basin physical properties (see also

section 2.3). However, using a priori parameter values may be associated with

uncertainties in physical property data and how the parameters are related to basin

physical characteristics. Alternatively, when regionalisation approaches to parameter

estimation are used, the uncertainties in parameter values may be related to uncertainty

in the model structure and the hydro-climate data as well as the regionalisation methods

themselves

The uncertainty associated with model calibration process is introduced from multiple

sources (see e.g. Ao et al., 2006):

(i) Model structure. Given that model equations and its parameters are simple

approximations of the description of the complex nature of processes (Beven,

1989), this will induce uncertainty in parameter values.

(ii) The amount and quality of input data. Inputs covering the same data period

but with different temporal and spatial scales may lead to different parameter

sets (Görgens, 1983; Bormann, 2005). The issue of appropriate data lengths

for model parameter identification has been investigated (Yapo et al., 1996)

with the conclusion that the required length mainly depends on data quality,

model complexity and climate variability.

(iii) The choice of initial parameter ranges. This would affect parameter values,

particularly when optimised, since the aim would be to find a parameter

space wide enough such that acceptable fits of the model are not excluded,

while at the same time, not so wide that parameter values have no sense or

meaning or that they would result in unnecessary model runs (Beven, 2001a).

(iv) The choice of objective function and optimisation algorithms used for model

evaluation. This could affect parameter sets, since the parameters are not

independent of the objective functions and algorithms that are used (Gupta et

al., 1998). Approaches to calibration based on a single objective function can

lead to multiple parameter sets that are equally acceptable (Freer et al.,

1996; Lidén and Harlin, 2000).

(v) Equifinality. This is a concept introduced by Beven (1993) that describes the

situation where different parameter sets give similar simulation results

because of parameter insensitivity and interactions. Beven (2001a) stated
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that this interaction can only be reduced when the number of parameters is

small, one of the reasons for trying to identify parsimonious models.

It is beyond doubt that parameter uncertainty affects modelling results and their reliability

(Melching, 1995; Uhlenbrook et al., 2004). Despite the many sources of parameter

uncertainty stated above, most models appear to suffer most from (iv) and (v), which are

related to parameter insensitivity and interactions as well as a lack of identfiability

(Beven, 2001a).

With respect to point (v) above, equifinality is a result of trying to fit model parameters to

available observed streamflow data and may arise from over-parameterization, data

limitations and model structural errors (Uhlenbrook et al., 2004; Seiber and Uhlenbrook,

2005). The problem of equifinality has prompted a shift from identifying a single best

parameter set towards finding a range of parameter sets that all result in model

acceptability using the Generalised Likelihood Uncertainty Estimation (GLUE)

methodology by Beven and Binley (1992), for example. The equifinality concept has

been rejected by many (Yapo et al., 1998; Gupta et al., 1998; Boyle et al., 2000;

Thiemann et al., 2001; Vrugt et al., 2003), in favour of finding an ‘optimal’ set of

parameters in a Pareto or Bayesian sense using the global and multi-objective algorithm

uncertainty estimation (MOCOM-UA). Beven (2006b), however, argues that the search

for ‘optimum’ parameter sets has the risk of avoiding important issues of model

acceptability and uncertainty, because a number of acceptably good fits can be found

rather than just an ‘optimum’ parameter set. In his article, Beven further argued that the

global optimum may change significantly with changes in streamflow data, errors in input

data and changes in the objective functions that are used. Inevitably, through a

parameter calibration process an objective function used to calibrate the model

parameters implicitly assumes that all sources of uncertainties in the modelling process

can be attributed to parameter errors (Ajami et al., 2007), which is not necessarily true in

practice.

As model predictions are affected by other sources of uncertainty (see sections 2.4.1-

2.4.4 above) and because of the highly non-linear nature of hydrological systems, it is

not feasible to account for all the uncertainties from different sources through model

parameter adjustment (Beven, 1993). Additionally, parameter insensitivity or interaction
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(Beven, 2001a) is always present in the mathematical representations of natural systems

and given the number of parameters used in physically-based models any parameter

optimisation would be subject to far greater problems of interaction than simpler lumped

conceptual type models (Beven, 1989; 2001b). As a consequence, parameters are not

easily identifiable, making it difficult to regionalise the model parameters for use in

ungauged basins. This is one of the reasons for a shift from the use of complex models

with many parameters to simpler and less parameterised (parsimonious) conceptual

models (Perrin et al., 2003). A number of studies have attempted to account for the

different sources of uncertainty and the details of some of these approaches are

discussed in section 2.5.

2.5 An overview of uncertainty estimation approaches

There is a rapidly growing body of literature on the estimation of predictive uncertainty in

the application of hydrological models and the majority of the studies have concentrated

on the development of algorithms for parameter estimation and uncertainty analyses

(Beven and Binley, 1992; Thiemann et al., 2001; Vrugt et al., 2003) because parameter

uncertainty is easier to quantify than other sources. There are a number of different

approaches for addressing the problem of uncertainty in hydrology ranging from fractals,

Bayesian, fuzzy-sets, random fields, time series, risk criteria and non-parametric

methods (Kundzewicz, 1995). Uncertainty estimation aims at quantifying the overall

uncertainty (i.e. spread or distribution) of model output (e.g. simulated streamflow) as a

result of the propagation of different sources of uncertainty that arise in the model

applications (such as input data, parameters or the model structure). Uncertainty

analysis differs from sensitivity analysis which has been used for some time in rainfall-

runoff modelling but has not been a standard procedure (Spear and Hornberger, 1980;

Bastidas et al., 1999; Muleta and Nicklow; 2005). Sensitivity analysis only tries to

understand how the variations in output are based on the variations in model input, the

model parameters or structure without concentrating on the overall model output

uncertainty (Saltelli, 2000). Many uncertainty analysis methods deal with parameter

identifiability, ambiguity or uniqueness (Wagener et al., 2003), and thus include some

elements of sensitivity analysis. Therefore, sensitivity analysis may be interpreted as a

component of uncertainty analysis, but not the whole part. However, a separate

discussion has been proposed for sensitivity analysis (section 2.5.1) because it is often
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confused with uncertainty analysis in practical applications. The uncertainty estimation

methods that quantify amount of uncertainty in model output namely, first-order

uncertainty analysis (i.e. mean-value first-order second-moment (MFOSM), advanced

first-order second-moment (AFOSM)), Monte Carlo Simulation (MCS), Rosenblueth

uncertainty analysis, Latin Hypercube simulation (LHS), Harr’s point estimation method,

(see the thorough review by Melching, 1995) and the Bayesian family of uncertainty

analysis methods (e.g. GLUE by Beven and Binley, 1992; BaRe by Thiemann et al.,

2001 and SCEM-UA by Vrugt et al., 2003) are briefly discussed in section 2.5.2.

The formal application of sensitivity and uncertainty analyses in hydrological modelling

serves several purposes: (i) to examine the behaviour of a model, (ii) to identify the

important model input data or parameters, and the interactions between them, to guide

the calibration of the model, (iii) to identify input data or parameters that should be

measured or estimated more accurately to reduce uncertainty of model outputs and (iv)

to quantify the uncertainty of the model results (Saltelli, 2000).

2.5.1 Sensitivity analysis

Sensitivity analyses attempt to ascertain how a model depends on its inputs,

parameters, structure and framing assumptions (that is, reveal the relative contributions

of different modelling elements to overall uncertainty). Therefore, sensitivity analysis can

be part of uncertainty estimation methods to decide where effort in defining and reducing

uncertainty should be concentrated. In rainfall-runoff modelling, sensitivity analysis is a

widely used approach at successive steps of the modelling process such as data

selection, model development, parameter estimation and uncertainty assessment

(Refsgaard et al., 2006). The sensitivity analysis techniques are grouped into local and

global techniques (Saltelli et al., 1999). The local techniques allow the response of

outputs to variation of individual inputs or parameters while fixing the other parameters at

their initial values. The global techniques allow for variation of all inputs or parameters

and implicitly account for parameter interactions (Muleta and Nicklow; 2005). However,

only a few studies explicitly discuss the effect of parameter interactions on the parameter

identifiability and Bastidas et al. (1999) pointed out that most sensitivity analysis

techniques are weak in dealing with issue of parameter dependency.
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The existing sensitivity analysis studies, involving rainfall-runoff models mostly deal with

the sensitivity to rainfall input data (Andréassian et al., 2001; Fekete et al., 2004; Xu et

al., 2006), the sensitivity to potential evapotranspiration input data (Andréassian et al.,

2004; Oudin et al., 2005) and the sensitivity to model structure and parameter values

(Butts et al., 2004; Vrugt et al., 2005). To date, sensitivity and uncertainty analyses of

hydrological models have typically focussed on model inputs and parameter values as

evidenced by the range of methods available for uncertainty propagation and for

evaluating plausible parameter values (e.g. Beven and Binley, 1992; Thiemann et al.,

2001 ; Vrugt et al., 2003). The focus of these studies, and many others, partly reflect the

assumption that uncertainties due to the input data and parameters are the most

important. In practice, model structure uncertainty may be more important than

parameter uncertainty in evaluating model performance, but such uncertainties are

difficult to assess explicitly or to separate from other uncertainties during the calibration

process (Beven and Binley, 1992). The effects of model structural uncertainty can be

assessed, for example, by model validation and inter-comparison (e.g. Georgakakos et

al., 2004). However, Beven (2006b) acknowledged that impacts of model structural

uncertainty are difficult to quantify explicitly unless alternative model formulations are

explored (use of flexible model structures) or, less ideally, if an appropriate error

component is added. In practice, none of these is a straightforward task, and thus model

structural uncertainty is usually neglected when a single model is used, and the model is

assumed to be structurally “perfect”. There are few studies of sensitivity analysis for the

southern African region (e.g Schulze, 1995) and hence there is a need for further

research, in particular, using models developed in the region that are applicable to a

wide range of climate conditions and sub-basin scales.

2.5.2 Approaches to estimate the amount of uncertainty present in model output

i. Monte Carlo Simulation (MCS) involves uniform random sampling of parameters

and subsequently the determination of model output (Beven and Binley, 1992).

MCS generates a large number of simulations of model parameters according to

their corresponding probability distribution. The uniform distributions of lower and

upper bounds are assumed to represent variations of calibrated parameters. The

sampling number often determines the quality of the probability distribution of
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model output and the use of efficient sampling technique can restrict the number of

simulations needed.

ii. Latin hypercube simulation (LHS) is a stratified approach that efficiently estimates

the statistics of an output by dividing a probability distribution of each basic

variable into N ranges with an equal probability of occurrence (1/N) (Helton and

Davis, 2003). The order of ranges is randomized and the model is executed N

times with the random combination of each basic variable values from each range

for each variable. According to Melching (1995), this approach efficiently estimates

the statistics of an output better than MCS.

iii. Rosenblueth’s point estimation method (RPEM) uses a point-probability distribution

to estimate the statistical moments (mean and covariance) of an output and was

proposed to deal with symmetric, correlated, stochastic and asymmetric random

variables in a Taylor series expansion (Rosenblueth, 1981; Binley et al., 1991).

The samples of parameters are associated with the number of parameters (p) and

2p parameter sets are needed.

iv. Harr’s point estimation method (HPEM) involves the estimation of the statistical

moments of the model output for a given number of parameters and model

runs,(Harr Milton, 1989). The samples of parameters are associated with the

number of parameters (p) and 2p parameter sets are needed; less than the

number required for the Rosenblueth method.

v. The first-order uncertainty analysis method is a Taylor series expansion

approximate linearization (MFORM) using the mean of a parameter range

(Melching et al., 1990) and an improved approach (AFORM) that uses a ‘likely’

point and not the mean (Melching, 1992). The technique allows for the

determination of a distribution of uncertainty of model output as a function of the

parameters based on statistical moments.

The limitation of the MCS and LHS approaches is that they are computer intensive

because they require many model simulations to establish acceptable parameter sets

(Beven, 2001a). The point-estimation approaches (iii-v) are limited by the assumption of

approximating linearity of a model, despite the use of approximate methods in practical

situations where probability and statistical moments of model output cannot be derived
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analytically due to non-linearity and complexity in models (e.g. first-order uncertainty

analysis, RPEM and HPEM). Therefore, having recognised the limitations of the above

methods, the advanced numerical simulation approaches such as Bayesian and multi-

objective methods were introduced.

vi. Bayesian uncertainty analysis methods are of the Monte Carlo family and these

approaches estimate model uncertainty by combining prior information regarding

the uncertainty of model inputs with the ability of different parameter sets to

describe the available data on state variables. They commonly apply random

sampling procedures to explore feasible parameter space in search of behavioural

models or parameter sets (Gupta et al., 2006). An example is the MOSCEM

approach (Vrugt et al., 2003) which is a Bayesian strategy that estimates

uncertainty related to model structural uncertainty.

vii. Multi-objective approaches normally evaluate uncertainty using predictions based

on some Pareto “optimal” parameter sets (Gupta et al., 1998; Yapo et al., 1998).

Here, behavioural models are defined as models that describe certain

characteristics of the hydrograph response realistically.

viii. The Generalised Likelihood Uncertainty Estimation (GLUE) method (Beven and

Binley, 1992; Freer et al., 1996) rejects the concept of an “optimal” parameter set

in favour of the equifinality concept, allowing for multiple acceptable models or

parameter sets based on some likelihood measures and performance thresholds.

The above (vi-viii) philosophies are currently the most widely accepted uncertainty

estimation tools in hydrological applications. The practical limitations of applying the

GLUE approach as an uncertainty estimation tool include subjective selection of

likelihood functions and assessment of the threshold between behavioural and non-

behavioural models, that is, how bad a performance measure has to be before it can be

rejected as having no probability of representing the system (Moradkhani et al., 2005;

Montanari, 2007). The multi-objective based approach has also been criticised for

ignoring important issues of model acceptability (see e.g. Beven, 2006b).

The uncertainty methods summarised above may be broadly classified into approximate

analytical methods, formal statistical methods, approximate numerical methods and non-
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probabilistic methods as in Montanari (2007). The approximate analytical methods

propagate uncertainty using a priori assumptions about the different sources of

uncertainties without the use of additional evaluation data (Hall and Anderson, 2002),

but the inherent uncertainty in the modelling process results in questioning this

approach. Typical examples are Monte Carlo error propagation and reliability methods.

While formal statistical approaches use statistical models to account for sources of

uncertainty (Smith and Krajewski, 1991), approximate numerical approaches quantify

uncertainty by conditioning statistical inferences (e.g. GLUE) to available observed data,

but these inferences are often questioned because of lack of statistical significance and

statistical methods are not transparent to those unfamiliar with them (Mantovan and

Todini, 2006). The non-probabilistic approaches are based on non-statistical measures

and these include the use of fuzzy measures (Franks et al., 1998; Freer et al., 2004),

frequency duration curves (Bonta and Cleland, 2003) or qualitative measures. The non-

statistical approaches are useful in situations where observed data are scarce and

where probability distributions or statistical measures might be difficult to evaluate.

Most of the uncertainty estimation methods described above do not explicitly separate

out the different sources of uncertainty in rainfall-runoff modelling since their primary

emphasis is on parameter estimation uncertainty. Appropriate procedures are, however,

being developed to estimate and capture the propagation of different sources of

uncertainty into model output uncertainty. These procedures include, simultaneous data

assimilation (using more information) and parameter estimation (Moradkhani et al.,

2005), simultaneous uncertainty estimation of input data and parameter estimation

(Kavetski et al., 2003), Bayesian total error analysis to capture the combined impacts of

input data, parameter and model structure uncertainty (Kavetski et al., 2006; Kuzcera et

al., 2006) and the IBUNE approach to capture input, parameter and model structural

uncertainties (Ajami et al., 2007). Most of these studies focus on handling uncertainty

within a statistical framework in which assumptions about the nature of uncertainties are

made. However, these assumptions may not always be justified in practical water

resources modelling especially in data scarce regions where little information is available

to describe probability distributions and allow valid statistical inferences (Montanari,

2007; Hughes, pers. comm.).
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It should therefore be stressed that potential users are always faced with a difficult

decision about which uncertainty analysis method to choose, since there are no

universally applicable methods. Instead there are a range of different philosophies,

assumptions and methodologies to choose from. It should be acknowledged therefore,

that choosing a suitable uncertainty analysis method for a specific model application

remains a challenge to water resources practitioners. However, if there is a choice

between complex ways of quantifying uncertainty and conducting research focused on

reducing important sources of uncertainty, spending money on reducing uncertainty

would seem preferable to spending it on ways of describing it. In this regard, more

simple and user-friendly approaches would be more useful for water resources

practitioners. Therefore, in ungauged or poorly gauged basins, non-probabilistic

techniques including sensitivity analysis may represent the most promising approaches

for uncertainty estimation. In spite of significant progress made internationally on the

development and application of uncertainty estimation methods in rainfall-runoff

modelling, the most appropriate approaches are not always obvious and similar studies

have not been carried out in the southern African region. Ultimately, any

recommendations by this study for methods to be used should take into account the

numerical complexity and difficulties of performing the analysis for practicing hydrological

modellers in the region. This is expected to be quite a serious limitation, given the

complexity (and computing software and hardware requirements) of some of the

Bayesian approaches.

2.6 Reducing uncertainty in hydrological modelling

While investigations of ways of quantifying uncertainty, is one issue, recent research has

also focused on attempts to reduce uncertainty and to increase the confidence and

reliability of water resources estimations. The critical sources of uncertainties identified in

hydrological modelling that often need attention are the model input data uncertainties

(section 2.6.1) and parameter uncertainty (section 2.6.2). However, there have also been

some discussions on issues of reducing model structural uncertainty and these are

included in section 2.6.2.
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2.6.1 Reducing input data uncertainty

The critical issues with the most important hydrological inputs (i.e. rainfall, temperature

or evapotranspiration) are their spatial representation and the accuracy of the point

measurements themselves. Within many developing countries and specifically many

parts of southern Africa, observation networks have always been relatively sparse and

are continuously decreasing (Hughes, 2004a). The uncertainty to be reduced is related

to incomplete spatial coverage of in-situ measuring networks and accuracy of different

methods of interpolating data from point observations to improve spatially averaged

information.

With respect to rainfall input data, improvement in spatial estimation approaches are

being suggested and remotely sensed products are becoming available to potentially

reduce rainfall data uncertainty. The advantages of satellite data over raingauge

networks are manifold; satellite-based data covers extended areas, allows rapid access

for real-time hydrological applications and its spatial and temporal resolution can be high

depending on the scale of the basin (Seed and Austin, 1990). While providing spatially

and temporally continuous estimates of rainfall, remotely sensed products (both satellites

and surface radar networks) have shortcomings which must be accounted for and

corrected before they are used as model inputs (Pegram and Clothier, 2001; Hughes,

2006b; Andersson et al., 2006; Wilk et al., 2006). Spatial rainfall estimates derived from

in-situ raingauges are therefore widely used as ‘ground truth’ for radar or satellite rainfall

measurements (Seed and Austin, 1990). Remotely-sensed rainfall estimates (both radar

and satellite) are becoming more readily available and are expected to offer an

alternative to in-situ raingauge-based rainfall estimates in poor data areas in the future.

Several studies on the use of radar-based (Moore and Hall, 2000; Borga, 2002;

Carpenter and Georgakakos, 2004) or satellite-based (Hsu et al., 1999; Koster et al.,

1999; Sorooshian et al., 2000; Grimes and Diop, 2003) information to derive rainfall

estimates have been reported. Radar estimates, although costly, when compared to

raingauge data, were found to offer analytical improvement to rainfall analysis by

providing a direct representation of the “true” spatial distribution of rainfall (e.g. Sun et

al., 2003; Smith et al., 2004). However, because of cost implications, the impact of

ground clutter, hail and bright band on rainfall estimates, radar networks remain
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unpopular in hydrological applications especially in developing regions (Terblanche et

al., 2001). Satellite-based estimates are, on the other hand, often freely available and

offer advantages of providing direct basin spatial averages in sparsely gauged areas

thereby eliminating the problem of interpolation from point observations (Lee and Oh,

2006). The downscaling and ground-truthing of satellite-based data remain critical issues

to be solved and satellite-derived rainfall estimates do not always compare well with

raingauge data (Sawunyama and Hughes, 2008). The problem of scale manifests itself

when measurements of rainfall rates provided by raingauge data are compared with the

areal averaged rainfall remotely-sensed from satellite borne sensors (e.g. Sandham et

al., 1998). Consequently, some models have been developed that combine satellite and

raingauge data to account for local and regional variability in cloud and rainfall relations

(Todd et al., 1999). The accuracy of the final operational satellite-based rainfall

estimates are therefore dependent on these interpretative models that are also subject

to calibration. In addition, there are frequently insufficient gauged data available to

calibrate the satellite-based estimation methods. The impacts of uncertainty in remotely

sensed rainfall estimates on runoff prediction uncertainty have been explored (Huffman

et al., 1997; Sharif et al., 2002; Lee and Oh, 2006), but they are beyond the scope of the

present study.

Although extensive literature on remotely sensed rainfall estimates exists, this has

concentrated more on the development of methods to derive rainfall from satellite

imagery (e.g. Kummerow et al., 1998; Todd et al., 1999; Xie et al., 2002) and

comparison of satellite- or radar-derived rainfall estimates with those from gauges (e.g.

Guo et al., 2004; Hughes, 2006a). However, few studies have investigated the

comparative application of areal rainfall estimates from raingauges and satellite data for

input into hydrological models (Grimes et al., 1999; Hughes, 2006a). Recent studies

conducted to evaluate the impact of using operational satellite rainfall estimates in

hydrological models in southern Africa (Thorne et al., 2001; Hughes, 2006a; Wilk et al.,

2006; Sawunyama and Hughes, 2008) have emphasized the need to correct the

satellite-based rainfall data to be consistent with the historical gauged data before using

them as model inputs. However, such correction procedures have not been fully

established and need to be investigated further.
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With respect to evaporation demand, spatial variability is a major issue. Spatially

interpolated pan-derived potential evaporation estimates are often used as inputs to

hydrological models, despite the limited pan evaporation measurement networks

(Sawunyama and Hughes, 2007). According to Schulze and Maharaj (2006) the

extrapolation of evaporation pan data from measurements at a site to other locations

could introduce substantial errors. The Penman type equations for estimating potential

evaporation cannot be used in data scarce regions because all of the available

meteorological data may not be available (Penman, 1956). In order to resolve this

problem, temperature-derived estimates of potential evaporation (Hargreaves and

Samani, 1985) offer an alternative, because they benefit from a higher density of

temperature observation networks. Temperature information may be interpolated to

ungauged locations more readily than evaporation pan data and may be extrapolated to

altitudes beyond the range of observations because of the close association of

temperature with physiographic factors (Schulze and Kunz, 1995). It is not surprising

therefore that temperature estimates have been used as input variables in a wide range

of climatological, hydrological and agricultural applications (Schulze and Maharaj, 2004).

However, the complex relationships between temperature and evaporation demand can

introduce uncertainty in estimates of the spatial variability of evaporation demand that

cannot be easily quantified if estimation methods are not properly adjusted (Schulze and

Maharaj, 2006). Schulze and Kunz (1995) showed that the Hargreaves and Samani

(1985) method performed better than other temperature-based methods to calculate

potential evaporation in South Africa. Recently, with the availability of remote sensing

products, Immerzeel and Droogers (2008) calibrated a distributed hydrological model

based on satellite-derived evapotranspiration. Therefore, there is a need to explore the

possibility of using remotely sensing evapotranspiration to calibrate conceptual type

models as well as to further investigate the use of temperature derived

evapotranspiration estimates.

2.6.2 Reducing model structure and parameter uncertainty

A strong focus in current hydrological research (e.g. PUB) is the reduction of parameter

and model structural uncertainty as part of any model evaluation (Refsgaard et al.,

2006). Beven (2006b) argues that the dominant source of uncertainty does not lie in the

predictions but rather in the mapping of the hydrological processes into the space of
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acceptable parameter sets. Furthermore, in evaluating a model, it is not only a matter of

finding justifiable assumptions about the model structure but also of finding a set of

parameters that satisfy some conditions of model acceptability. There is therefore, a

need to develop improved model structures based on better understanding of physical

processes and better mathematical representation (Sivalapan et al., 2003). However,

while there are a number of studies that have quantified model structural uncertainty

(Yapo et al., 1998; Vrugt et al., 2003), few have attempted to reduce it. A great deal

more effort has been put focused on reducing parameter uncertainty (e.g. Beven and

Binley, 1992; Thiemann et al., 2001; Vrugt et al., 2003). Although this topic is covered

quite extensively in the literature, the models in common use within South Africa have

relatively fixed structures (from a natural hydrology point of view) and are not expected

to change very much in the future. However, recent experience with the Pitman model

(Hughes, 2004a) suggests that model improvements can often be considered, even for

well established models if the improvements do not introduce additional problems of

identifiability. In the example referred to (Hughes, 2004b), a more explicit ground water

function was added that could be supported with available information from a national

database of ground water characteristics (Conrad, 2005).

The approaches to reducing parameter uncertainty will depend on the methods of

calibration or regionalisation (for ungauged basins) as well as the model structure and

the objectives of a specific study. Physically-based parameter estimation approaches are

being revised (e.g. Yadav et al., 2007; Kapangaziwiri and Hughes, 2008) and alternative

information such as remote sensing data (Franks et al.,1998; Boegh et al., 2004) are

being used in a bid to reduce parameter uncertainty and, hence predictive uncertainty,

especially in ungauged basins. The approach of using more information (e.g. soil

moisture, vegetation cover, etc.) to constrain parameters has been referred to as data

assimilation (Moradkhani et al., 2005; Vrugt et al., 2005) and offers a promising solution.

The value of using additional data to calibrate (or constrain) hydrological models in the

absence of observed streamflow data has been studied (e.g. Uhlenbrook and Sieber,

2005). Multi-scale data (i.e. runoff from sub-basin) were compared to multi-response (i.e.

concentrations of dissolved silica) in terms of the ability to reduce the uncertainty of

discharge predictions (Uhlenbrook and Sieber, 2005). Franks et al. (1998) developed a

simple methodology to estimate the extent of runoff-producing saturated areas based on

single frequency microwave remote sensing to calibrate hydrological models in



43

ungauged basins. Nandagiri (2007) investigated the feasibility of using areal potential

evapotranspiration to calibrate a physically-based model in an ungauged basin in India.

Boegh et al. (2004) incorporated remote sensing data (distribution of vegetation cover

and land use) to derive correct predictions of potential evapotranspiration and the soil

water balance using a physically-based hydrological model (MIKE SHE). Within southern

Africa, Kapangaziwiri and Hughes (2008) developed a parameter estimation approach

that directly uses physical basin properties to estimate the parameters for a semi-

distributed Pitman conceptual model for use in both gauged and ungauged basins.

The revised approaches and new data products are meant to constrain the uncertainty

associated with the usual reliance of rainfall-runoff data alone to calibrate hydrological

models and the problems of existing parameter regionalisation techniques. The use of

rainfall-runoff data alone, pre-assumes a perfect knowledge of the spatial patterns of

inputs, initial and boundary conditions that are difficult to attain in practice, giving rise to

uncertainty (Beven, 2001a; Franks, 2007). On the other hand, the sampling and

measurement scale difficulties involved in using field measured parameter values and

the errors involved in using a priori estimates would suggest that parameter values used

in a model will always have some degree of uncertainty (Binley et al., 1991). Therefore,

improving databases of high resolution data and revision of parameter estimation

approaches are likely to be the most effective developments to reduce parameter

uncertainty.

2.7 Hydrological modelling in southern Africa

2.7.1 Model development

Hydrological models have been developed and applied over a wide range of climatic

regions for an extensive range of applications in southern Africa (Hughes, 1982).

Despite the large number of mathematical models referred to in the literature (section

2.1), the models available in southern Africa, and specifically in South Africa, have been

developed to serve specific practical purposes because resources are limited (Hughes,

2004a). Models that require more detailed data inputs such as fully distributed models

have found little application in southern Africa given the resolution and accuracy of the

available data. The tendency has been to develop and use less detailed models (in
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terms of data requirements) and work towards finding alternative sources of data (e.g.

remote sensing) to ensure adequate information in the future. The models that have

been developed are based on a conceptual understanding of hydrological processes

and have a relatively large number of parameters (making them more complex in terms

of the number of parameters to be quantified), even for monthly-time step models

(Pitman, 1973). This stems from a tradition of attempting to represent processes of

runoff generation through a conceptual approach rather than opting for simpler

mathematical transformations with fewer parameters (Perrin et al., 2003). According to

Hughes (2004a), one of the motivations for the conceptual approach used in South

Africa is that the model parameters are more meaningful in terms of “real” hydrological

processes and can be related to measurable basin characteristics (Kapangaziwiri, 2008).

It appears that the purpose of applying a model as well as the type of information that is

available should therefore dictate the type of model that is best to use for any

hydrological problem.

The first rainfall-runoff models developed for South African conditions were the monthly

and daily versions of the Pitman model (Pitman, 1973, 1978). The monthly Pitman model

gained popularity as a practical water resources estimation tool and became the

standard model recommended for the country (see section 2.7.3 for more details about

available versions of the model). Another widely used model in South Africa is the ACRU

model, a daily agrohydrological model named after the Agricultural Catchment Research

Unit, which is frequently used in the assessment of hydrological responses to land use

modifications and climate change (Schulze, 2000). The ACRU model has been designed

around a multi-layer soil moisture accounting scheme and has a large number of

parameters that require quantification. It is designed to be used in ungauged basins on

the basis that its parameters are evaluated through default relationships with

measurable catchment properties (soils, vegetation, geology etc). Hughes and Sami

(1994) also developed a Variable Time Interval (VT1), semi-distributed, partly physics-

based model with a facility to estimate some of the parameter values from physiographic

data, but data limitations and a difficult calibration process limits the success in the

application of this model in the region.
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2.7.2 Model application

The Pitman and ACRU models are the most widely used in South Africa and the whole

of southern African region for practical purposes. These models vary in terms of the

time-step, data requirements, the number of parameters and sometimes the purposes

they serve. However, choosing a hydrological model to use depends on the experience

of the user with a particular model and the purpose of the modelling as well as the

parameter estimation process. With the Pitman model, the parameter estimation is

normally based on intuitive understanding of how the parameter values should change

with changing basin properties and supported by calibration against the observed data.

On the other hand, with the ACRU model, an a priori parameter estimation approach is

used based on methods of directly estimating default parameter values from measurable

properties. Schulze (2000) argued that the application of models in ungauged basins

require that models are not calibrated and therefore, parameter values have to be

quantified from measurable sub-basin characteristics. However, this approach suffers

from the lack of availability of sub-basin data in a form and at a scale that is compatible

with the model, inability to construct models where relationships between parameter

values and sub-basin characteristics are understood and quantified, and the scale

differences in model algorithms and the available data (Hughes, 2004a). In spite of the

efforts by Hughes and Sami (1994) to incorporate concepts of representing parameters

by probability distributions rather than single values (Moore, 1985), the problem has not

yet been resolved.

While the application of calibration procedures in South Africa have been dominated by

guidelines for manual calibration (Pitman, 1973), there have been several attempts to

apply automatic optimization procedures to the Pitman and other models (Görgens,

1983; Ndiritu and Daniell, 1999, 2001). Mwelwa (2005), working with a semi-distributed

version of the Pitman model on the Kafue basin in Zambia, found that it is difficult to

obtain consistent calibrated parameter sets across several hydrologically similar sub-

basins when using automatic calibration. Part of the problem is almost certainly related

to errors in the input data and the fact that the model is being calibrated to the noise in

the data, rather than the real signals. The perceived advantages and disadvantages of

automatic calibration have already been referred to in section 2.2.1. The primary focus of
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most automated calibration approaches is now toward estimating parameter sets that

include uncertainty bounds (see e.g. section 2.4 above).

There are few examples of parameter regionalisation in southern Africa and those that

are available have focussed on the extrapolation of parameters from gauged basins by

relating model parameters to catchment characteristics using regression relationships

(Hughes, 1982; Mazvimavi, 2003). The other form of regionalisation has been parameter

mapping applied by Pitman (1973) and Midgley et al. (1994) as part of the South African

national database of simulated water resources availability. The latter used the

knowledge of physiographic conditions in South Africa to produce regional maps of

model parameters. Kapangaziwiri (2008) introduced an a priori approach to Pitman

model parameter estimation based on a re-interpretation of the conceptual structure of

the model and the conceptual meaning of the parameters (see also Kapangaziwiri and

Hughes, 2008). The results were encouraging in that flows simulated were comparable

at least (as well as to observed records) to those generated using the same model with

existing regionalised parameter values. The parameter sets were, however, very

different, an observation that is consistent with the recognized lack of parameter

identifiability of the Pitman model parameters.

In spite of the above discussions, data availability used to drive models constitutes the

most critical issue for successful model applications. Unfortunately, South Africa, like

many developing countries in southern Africa, suffers from limited hydrological and

climate data, with measuring networks being sparsely distributed or in many cases

closed (Lynch, 2004). The degree to which the available hydro-climatic database of

southern Africa is adequate to define large scale variations depends on the type of the

variable and its temporal resolution (Schulze, 1997). The accuracy of areal rainfall

estimated from point raingauges depends on the representativeness of the point

measurements, the spatial variability of the rainfall, the size of the basin, duration of

rainfall as well as the method used to estimate the areal distribution from the point

measurements (Schulze, 2006). Schulze and Maharaj (2004) reviewed the problems

associated with evaporation measured from pan measurements in South Africa and

showed that all data obtained through existing networks are not necessarily accurate

and great care should be taken in checking the reliability of these data. A number of

reasons were therefore identified for using temperature information as a surrogate for
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estimating pan equivalent evaporation (Schulze and Maharaj, 2004; 2006). Spatial

interpolation procedures have been developed to extend the spatial extent of estimates

that are made from point measurements but their degree of accuracy remains

questionable (Schäfer, 1991; Teegavarapu and Chandramouli, 2005).

The other challenge in hydrological model application is a lack of understanding of land

cover/use changes as well as the variations (both spatial and temporal) of water

utilisation or abstraction practices. While the impacts of small farm dams on streamflow

dynamics are generally understood (Maaren and Moolman, 1986) and the spatial extent

of their occurrence can be obtained from satellite imagery or aerial photography (Meigh,

1995), there is little quantitative information generally available about their storage

capacities (Sawunyama et al., 2006). In addition, the information on groundwater

resources may be available for large alluvial aquifer abstraction schemes (Görgens and

Boroto, 2003), but not for smaller, more distributed abstractions. Without complete

information of these anthropogenic changes in flow records, it is difficult to establish

hydrological models that can generate reliable streamflow results given that

naturalisation of flows will not be possible (Hughes et al., 2006). Unless the input

information base is improved, neither the development of new models, nor improving the

application methodology of existing models is likely to improve the situation. The choice

seems to lie therefore between modifying techniques to make better use of existing data

and collecting additional data to support the existing techniques (Hughes, 2004a).

Recent developments in remote sensing have seen improvement in the measurements

of meteorological input data (e.g. rainfall and evaporation) and basin physical

characteristics (e.g. soils and vegetation). Some studies in South Africa investigated the

effects of using different levels of spatial detail in rainfall in hydrological models

(Sawunyama and Hughes, 2007), while others have focused on improving the inputs to

models by using radar coupled with stochastic space-time models of rainfall fields

(Pegram and Clothier, 2001), or satellite-based rainfall estimates (Hughes, 2006a, b;

Wilk et al., 2006; Hughes et al., 2006; Sawunyama and Hughes, 2008). While radar and

satellite imagery for rainfall estimates (see also section 2.6.1) are able to provide real

time spatial estimates of rainfall values, the primary source of rainfall data is still

considered to be ground based gauge observations (Seed and Austin, 1990). However,

if the existing trend of declining network density continues, this essential source of input
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data to hydrological models will be lost and it is unlikely that it can be adequately

replaced with radar or satellite data.

In summary, it is worth noting that internationally, the focus on hydrological modelling

has not been on practical model application and has commonly tended towards the more

academic research issues (Hughes 2004a). There is therefore need to find ways to

integrate international developments, which include the incorporation of uncertainty

analyses approaches and tools, with tried and tested models that have been developed

locally such as the Pitman model.

2.7.3 The Pitman Model

The Pitman model is a conceptual type, monthly time-step rainfall-runoff model that has

a relatively large number of parameters associated with components that represent the

main sub-basin scale hydrological processes (interception, surface runoff, soil moisture

storage and runoff, groundwater recharge and discharge, evapotranspiration losses and

routing). There are several versions of the Pitman model available, either the original

form (Pitman, 1973), or several revisions and additions to its structure (Hughes, 2004b;

Hughes and Parsons, 2005; Bailey and Pitman, 2005). The recent versions of the model

also include several components to represent anthropogenic impacts (land use

modifications, river abstractions and return flows, distributed small farm dams and large

reservoirs). The Hughes (2004b) and Hughes and Parsons (2005) versions are spatially

semi-distributed (based on sub-catchments with their own inputs and parameter sets)

and the model is typically applied in small to medium catchments. The version of the

model used in this study (GWPIT-Hughes, 2004b) includes more explicit interactions

between surface and ground water than the original (Pitman, 1973) and is implemented

as part of the Rhodes University’s Spatial and Time Series Information Modelling

software (SPATSIM) (Hughes and Forsyth, 2006). Detailed descriptions of the GWPIT

version of the model components are well documented (see for example in Hughes et

al., 2006 and Kapangaziwiri, 2008) and a less detailed conceptual structure is briefly

described in Chapter 3, section 3.4 of this thesis.

The parameters of the model are ‘conceptually-based’ (within certain constraints

associated with the time and space scales that the model typically operates over) in that
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they can be interpreted with respect to our conceptual understanding of the way in which

sub-basin scale hydrological processes operate. This suggests that an opportunity exists

to examine the conceptual interpretation of the model components and develop

approaches to parameter estimation using well established principles of catchment

hydrology and estimated physical basin properties. Kapangaziwiri and Hughes (2008)

report on the development of such an approach and demonstrate that it has a great deal

of potential compared with alternative regional parameter estimation approaches used in

South Africa (Hughes, 1982; Midgley et al., 1994; Mazvimavi, 2003). The incorporation

of uncertainty analyses as part of this approach as well as the whole modelling process,

still needs to be investigated.
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3. STUDY AREA, DATASETS AND GENERAL METHODS

3.1 Description of the hydro-climatic and physical characteristics of
South Africa

Although the objectives of the present study refer to the southern Africa region, the test

sub-basins were drawn from South Africa (see details in section 3.2) largely because

these sub-basins are expected to be representative of the hydro-climatic and physical

conditions found in most parts of southern Africa. In addition, South Africa has an

extensive and relatively good quality database of information required for hydrological

assessments compared to the other countries and hence is suitable for developing

guidelines for incorporating uncertainty analysis into water resources estimation within

the whole region. The general climate, hydrology, geology, soils, vegetation and land

use characteristics of South Africa are summarised below. Factors such as rainfall,

evaporation, soils, geology and land cover characteristics affect the total volumes of

runoff generated from sub-basins but also affect the different components of flow

regimes (high and low flows for example) in different ways.

3.1.1 Climate and hydrology of South Africa

While this section provides a general overview of climate and hydrology of South Africa,

further details can be obtained from several sources including the national Surface

Water Resources databases of South Africa, (WR90 - Midgley et al., 1994), the

Integrated Water Resources of South Africa 2005 (WR2005-WRC, 2005), the South

African Atlas of Climatology and Agrohydrology (Schulze, 1997, 2006) and the

Agricultural Geo-Referenced Information System comprehensive database (AGIS,

2007).

3.1.1.1 Rainfall

Rainfall is one of the key driving variables of a hydrological model for any climate region.

South Africa experiences highly variable rainfall, both spatially and temporally, which

contributes to risks in the availability of sustainable water resources (Schulze, 1997).

Mean annual precipitation (MAP) is generally below the world average of 860 mm/yr
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except in a few parts where it exceeds 1000 mm/yr and spatial variability is high across

the country (Figure 3.1, based on information obtained from the national Surface Water

Resources database of South Africa (WR90), Midgley et al., 1994) There are many

organisations and private individuals that have recorded rainfall data in South Africa,

including the South African Weather Service (SAWS), the Agricultural Research Council

(ARC), the South African Sugar Association (SASA), the Department of Water Affairs

and Forestry (DWAF) and municipalities. The majority of the national rainfall data are

recorded at a daily time-step, but there are a number of sites that record data at finer

intervals using continuously recording instruments.

In the past rainfall was measured at a relatively large number of daily total recording

stations, many records extending back into the 19th century. However, more recently

many of these stations have been closed and a gradual decline of stations reporting

rainfall data in South Africa has been experienced (Lynch, 2004). This steady decline in

number of rainfall stations is continuing due to the lack of maintenance of data

observation networks. The situation is made worse by frequent missing data. The

problems are most critical in high runoff mountainous areas where point rainfall displays

considerable spatial variability. Dense raingauge networks are needed in such areas to

obtain accurate estimates of areal rainfall as inputs into water resources estimation

methods (Schulze, 2006). Figure 3.2 shows the spatial distribution of gauges with

different record lengths and illustrates how few stations are available to quantify long-

term patterns of variability.

Figure 3.3 illustrates the temporal variability of rainfall which is approximately inversely

related to mean annual totals. The variability is least in the eastern high rainfall areas

and greatest in the western semi-arid to arid parts of the country. The highest rainfall

occurs in the mountain ranges of a small part of the Western Cape and the Drakensberg

region of KwaZulu-Natal that are also characterized by low coefficients of variation. The

low rainfall regions of Northern Cape have the highest coefficient of variation. Seasonal

and monthly rainfall variability is considerably higher than annual variability (Schulze,

2006).
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Figure 3.1 Distribution of Catchment Mean Annual Precipitation (CMAP) for different
water management areas (WMA) in South Africa (after Midgley et al.,
1994).

Figure 3.2 Distribution of number of rainfall stations in South Africa with different
record lengths (Schulze, 2006).
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There are three major seasonality zones in South Africa; the winter rainfall zone of the

Western Cape, the bimodal rainfall zone of the Eastern Cape and the summer rainfall

zone covering the majority of the rest of the country. Schulze (2006) further divided

these seasonal zones (Table 3.1) into all year round, winter (June-August), early

summer (December), mid-summer (January), late summer (February) and very late

summer (March). In the Northern Cape, very late summer rainfall (associated with

convergence systems) are experienced while the North West Province has mid-summer

rainfalls (mainly convectional and convergence) which stretches into the Free State,

Gauteng and Limpopo Provinces. The factors which influence rainfall types in different

seasons vary from one province to another. In the eastern Drakensberg of the KwaZulu-

Natal Province, the mid-summer rainfall is strongly influenced by the Inter-Tropical

Convergence Zone (ITCZ) which moves southwards in summer (November-February),

and is also influenced by orographic effects. Orographic rainfall dominates in the

mountains of the eastern parts of the country, stretching from KwaZulu-Natal to

Mpumalanga Province. The rainfall in the south western and southern coastal parts of

the Western Cape Province is influenced by frontal systems developing in the southern

Oceans and moving eastwards. These frontal systems bring cool, moist air during the

winter season (June-August) and are far more extensive than isolated convectional

systems. In the Northern Cape Province where air is dry and topography flat, the main

rainfall-producing mechanism is the occasional convectional thunderstorm. The type of

rainfall has strong influence on the areal distribution of rainfall in a river basin.

Figure 3.3 Coefficient of variation of rainfall over South Africa (Schulze, 2006).
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Table 3.1 Distributions of rainfall seasonality in South Africa (excluding Swaziland

and Lesotho) (Schulze, 2006)

Province Dominant season Sub-dominant season

I ii

Limpopo Mid-summer Early summer -

Mpumalanga Early summer Mid-summer -

North West Mid-summer Late summer -

Northern Cape Very late summer Late summer Winter

Gauteng Mid-summer Early summer -

Free State Late summer Mid-summer Early summer

KwaZulu-Natal Mid-summer Early summer Late summer

Eastern Cape Late summer Early summer All year

Western Cape Winter All year -

3.1.1.2 Potential evaporation

Potential evaporation is the second largest component of the water balance but the

availability of potential evaporation data is far worse than for rainfall data. Evaporation

from free water surfaces is likely to differ from that which occurs from land surfaces,

which is further affected by variations in vegetation cover and land use patterns. This

makes it very difficult to provide adequately representative measurements of potential

evaporation demand for input to hydrological models. The amount of water consumed by

soil and vegetated surfaces may take place at rates equal to the potential rate under wet

soil conditions, but will be much lower when soils are dry or when plants are under stress

(Schulze, 2006). There are few parts in South Africa where mean annual potential

evaporation (MAE) is less than mean annual rainfall (Schulze, 1997). These are confined

to the high rainfall areas where annual rainfall is greatly in excess of 1500mm/yr. Figure

3.4 shows that there are wide regional variations of mean annual potential evaporation in

South Africa, which increases from east to west. Where potential evaporation is high, dry

conditions will prevail unless if there is high rainfall to offset it. In semi-arid regions, for

most of the rainfall events that occur, the generation of runoff is less dependent upon

initial soil moisture conditions (which are dependent on evaporative losses) than on

rainfall intensity characteristics and soil surface conditions.
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Schulze and Maharaj (2006) showed that there are many methods of estimating

potential evaporation, ranging from physically-based complex methods (that use more

meteorological variables) to simple methods, with some based on single variables such

as temperature. However, these methods give different results under different climatic

conditions and a reference potential evaporation (such as evaporation losses from a free

open water surface) is required against which other methods are compared and adjusted

(Schulze and Maharaj, ,2006). In South Africa hydrologists have mostly favoured

evaporation estimates using standard Symons pan and standard American A-type pan

evaporimeters.

Figure 3.4 Distribution of Mean Annual Evaporation (MAE) in South Africa (after
Midgley et al., 1994).

3.1.1.3 Temperature

Temperature variations over South Africa are strongly determined by altitude, latitude

and proximity to large water bodies. Schulze (1997) showed that high altitude (1500-

1700m) inland regions experience warm summer mean daily maximum temperatures

(26-28°C) and cool winter mean daily minimum temperatures (0-2°C) with frost during the

coolest months. The coolest months are generally June and July, while the warmest

months are October and November. However, the northern parts of the coastal region

experience warm winter and warm summer temperatures (ranging from 17-38°C), and

the climate is strongly sub-tropical. The southern and south western coastal parts of the

Western Cape experiences moderate winter temperatures (ranging from 4-20°C).
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Temperatures generally decrease with increasing latitudes southwards in South Africa

(Schulze, 1997). The general trend in the country shows that areas of high temperature

experience high evaporation rates.

3.1.1.4 Groundwater recharge

Groundwater recharge can be an important component in runoff generation in some

parts of South Africa through the replenishment of aquifers and subsequent discharge to

rivers. Groundwater recharge occurs in a number of ways, as direct recharge (water

added to ground water storage in excess of moisture deficits and evapotranspiration, by

direct vertical percolation through the unsaturated zone), localised recharge (near

surface concentration of water in the absence of well defined channels) or indirect

recharge (percolation to the water table through the beds of water courses). Direct

recharge is controlled by many factors such as the amount, type, duration and temporal

distribution of rainfall and evaporation, surface slope, type of vegetation cover,

interception and transpiration losses and soil infiltration capacity. In South Africa most

ground water resources are contained within secondary aquifers, where the movement

and storage of water is dominated by fracture zones. Many river channels follow fracture

zones and thus provide favorable conditions for recharge through the stream beds. The

heterogeneity in geological characteristics affects groundwater recharge and hence the

available groundwater resources in the country. In arid areas, direct recharge from

rainfall is less important and indirect recharge through river beds is often more important.

According to Vegter (1995) the distribution of rainfall, particularly effective rainfall, over

South Africa provides a rough indication of the variation in recharge. In addition, large

variability of rainfall volumes is associated with an even larger variability in recharge

volumes (Bredenkamp et al., 1995). The risk associated with the utilisation of

groundwater resources is therefore expected to be greater in areas of high rainfall

variability.

3.1.1.5 Runoff

The distribution of mean annual runoff (MAR) will clearly reflect the patterns of both

rainfall and evaporation (Figure 3.5). Runoff is highest in the eastern parts of the country

with isolated high values in the Western Cape, while the majority of the central and

northern parts of the country have low mean annual runoff (Figure 3.5). MAP and MAR
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are not directly related, but runoff decreases rapidly with a decrease in rainfall because

of high evaporation losses associated with low rainfall conditions. In low rainfall

conditions, there are longer dry periods between rainfall events, soil temperatures are

high and the air is often warm and dry. Therefore, evaporation of soil moisture is high

and soil dries out to a much greater extent between successive rainfall events with the

result that small rainfall amounts are quickly absorbed by the soil and then evaporate

without generating any runoff. The relationship between rainfall, potential evaporation

and runoff is such that the percentage of rainfall that becomes streamflow decreases

with decreasing rainfall and increasing potential evaporation (Schulze, 1997). Moreover,

the heterogeneity in rainfall patterns is often amplified in the spatial and temporal

variability of streamflows (Schulze, 1997). Runoff is normally measured in South Africa

using concrete weirs and flumes (rather than rated channel sections). The maintenance

of streamflow gauges and the resulting databases is the responsibility of the Department

of Water Affairs and Forestry (DWAF) and suffers from similar problems already referred

to with respect to the network of rainfall observations.

Figure 3.5 Distribution of Mean Annual Runoff (MAR) (in mm) in South Africa (after

Midgley et al., 1994).

3.1.2 Topography, geology, soils, natural vegetation and existing developments

The main physical characteristics that are important for runoff generation processes and

groundwater recharge are topography, soils, geology, natural vegetation and existing
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developments (land use, reservoirs and water transfers). This information is also

essential for estimating hydrological model parameters in ungauged basins. The physical

characteristics of South Africa and the sources of available data are briefly summarised

below.

3.1.2.1 Topography

Topography is a feature of the physical landscape described in terms of slope, altitude

and aspect (Schulze and Horan, 2006). Altitude and aspect have a major influence on

climate as they clearly influence local rainfall gradients through orographic effects.

Altitude (Figure 3.6) by itself does not present a complete description of terrain

characteristics and slope (Figure 3.7) variations are expected to be more important in

influencing local runoff responses to climate. There are five major characteristics that

dominate the distribution of altitudes (Figure 3.6) over South Africa (Schulze and Horan,

2006):

 A generally narrow coastal strip of low altitudes, widening only along the north

eastern coast of KwaZulu-Natal and flat terrain (gentle slopes) of the Western

Cape.

 The steep sloping Great Escarpment, inland from the south and east coasts, the

region where moderate to high rainfall occurs,

 The Drakensberg mountain range of KwaZulu-Natal and Lesotho Highlands.

 A vast interior plateau inland of the Great Escarpment dropping gently from the

east to the west.

 High variation of altitudes in the Western, Eastern Cape, KwaZulu-Natal regions.

According to AGIS (2007), 83% of the country has slopes of 12% or lower and of this

area 40% is level or very gentle (0-2%). These gently sloping areas often coincide with

low rainfall zones (Figure 3.7). Only about 20% of the country has slopes greater than

20% and these areas commonly coincide with high rainfall zones (Figure 3.7).

Topographic conditions exercise local controls on larger scale synoptic rainfall patterns.

Altitude is a major determinant of temperature and evaporation demand variations and

therefore topography has a large impact on runoff response. As an example, the

Western Cape has complex topography with steep mountain slopes and large

surrounding areas of flat, low-lying terrain (Midgley et al., 1994) giving rise to wide
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differences in climate and hydrological response over relatively short distances. Hilly

topography with relatively high rainfalls are common in the south eastern coastal areas

of South Africa, while generally flatter topography with drier conditions covers 65% of the

most inland area of the country.

Figure 3.6 Variation in altitude in South Africa (Schulze and Horan, 2006).

Figure 3.7 Slope map of South Africa (AGIS, 2007).
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3.1.2.2 Geology

The majority of South Africa is underlain by fractured and weathered hard rock aquifers

which do not exhibit primary porosity and groundwater flows are mainly controlled by

structural features, such as faults and fractures (Bredenkamp et al., 1995). The fractured

rock aquifers mainly comprise sandstones, siltstones, and layered shales and

mudstones (AGIS, 2007). The Cape Fold Mountains of the Western Cape are associated

with siliceous sandstone and shale rock formations. The sandstones of the Cape Fold

Mountains contain both primary and secondary porosity leading to higher permeability.

Siliceous sandstones are also found along parts of KwaZulu-Natal Province. The central

regions of the country comprise predominantly mudstones and sandstones, which give

rise to shallow soils, typically with a hardpan layer in the profile that inhibits infiltration

(Schulze, 1997). Locally, in some of the larger river valleys, alluvial deposits represent

important groundwater resources. The differential weathering of rocks results in the

development of dolerite formations rising above sedimentary plains in the Karoo region

of the Western Cape Province (AGIS, 2007). The Table Mountain Group which extends

from the Western Cape to Eastern Cape comprises a thick sequence of hard

sedimentary rocks dominated by fractured sandstones with a thickness ranging from 900

m to 5000 m (Rust, 1973). It is estimated that approximately 90% of South African

groundwater occurs in secondary aquifers (Bredenkamp et al., 1995). More detailed

geological descriptions of South Africa are provided by Council for Geosciences of South

Africa (CGS, 1984).

3.1.2.3 Soils

Information relating to the hydrological characteristics of soils is critical to understanding

the hydrological response of basins and therefore to a priori hydrological model

parameter estimation approaches (e.g. Schulze, 1995; Kapangaziwiri and Hughes,

2008). The Soil Classification Working Group (SCWG, 1991) classified soils based on
specific kinds of diagnostic horizons, with their properties and subdivisions and resulted

in the concept of broadly defined soil forms, of which 73 have been identified in South

Africa (Schulze, 1995; 1997). The Institute for Soil, Climate and Water (ISCW; formerly

the Soil and Irrigation Research Institute, SIRI) of the Agricultural Research Council, in

an effort to inventorise the factors that determine agricultural potential, initiated the Land

Type surveys with the aim of delineating Land Types at 1:250 000 scale (with fieldwork
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at 1:50 000), defining each Land Type, and analysing soil profiles within Land Types

(SIRI, 1987; Schulze, 1997). The Land Type information (SIRI, 1987) provides a

valuable source of information from which existing databases of soil data were

developed. The Midgley et al. (1994) database includes generalised information on soil

depth classes (shallow, moderate, moderate to deep and deep) and texture (Loamy

Sands (LmSa), Sand Loamy (SaLm), Sand (Sa), Sand Clay (SaCl), Sand Clay-Clay

(SaCl-Cl), Sand Clay-Loamy (SaCl-Lm), Sand-Loamy Sands (Sa-LmSa), Sand Loam-

Sand Clay Loamy (SaLm-SaClLm), Loamy Sands-Sand Loamy (LmSa-SaLm)) as shown

in Figure 3.8 but provides no quantitative information. In the Schulze (1997) database,

the soils were classified according to their hydrological responses to suit the

requirements of the ACRU model with a focus on plant available water, texture classes

and soil depths.

The most recent AGIS (2007) database (which includes GIS Land Type maps and

tabulated Land Type information in computerised form) provides the most detailed

spatial distribution data for the soils of South Africa. The information provided is based

on relatively homogeneous land types, each one further divided into terrain units (hill

tops, slopes, valley bottoms and channel zones). The data includes the percent area

occupied by each terrain unit, the range of slope and the percent area and depth range

of different soil series found within each terrain unit. Further information is provided

about the clay content and texture class of each soil series.

It is therefore apparent that the basis for estimating hydrologically important soil

parameters (porosity, water holding capacity and hydraulic conductivity) must be largely

based on the descriptions of the texture characteristics contained within the various

information sources. However, local factors, such as surface crusting and macropore

development, can also strongly influence the hydrological response characteristics of

soils. These factors are not documented in any of the information sources and have to

be inferred from a combination of the soil type and surface cover conditions.
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3.1.2.4 Natural vegetation and existing developments

The distribution of natural vegetation and existing developments (land use, reservoirs

and water transfers) information is available in the WR90 (Midgley et al., 1994) and

WR2005 (WRC, 2005) reports and can also be obtained from different agencies.

Distribution of natural vegetation: Natural vegetation represents an integrated reflection

of diverse variables such as climate, geology and soils. In South Africa, the veld types of

Acocks (1988) are often used to describe the distribution of natural vegetation. The

density of vegetation is controlled by climate, soils and lithology. Regions of relatively

dense vegetation cover are generally found in high rainfall areas. Vegetation can

influence the amount of runoff as a result of interception of rainfall and extraction of

water from the soil, both of which are subsequently evaporated. The central parts of the

country contain many shallow-rooted grasses and woody shrubs. The shallow-rooted

savanna vegetation types are mainly found in the Mpumalanga Province, while

grasslands are common in the KwaZulu-Natal Province. The grasslands and savanna

type vegetation are associated with lower transpiration rates. The Mediterranean type,

the desert shrubs and the mid-latitude broadleaf vegetation types with deep-rooted roots

cover the majority of the arid to semi-arid parts of country and these are associated with

high transpiration losses. In addition, the amount of intercepted rainfall is greater with tall

forest cover than short sparsely populated vegetation cover.

Figure 3.8 Generalised soil map of South Africa (Midgley et al., 1994).
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Land use: Land use includes afforestation (eucalyptus and pine plantations), urban

development and agriculture. Agriculture includes irrigated agriculture and dryland

agriculture. The average annual evapotranspiration for irrigated lands varies greatly and,

apart from the climatic controls, is dependent on the grass or crop type, quantity of water

applied, and length of the growing season. Afforestation may greatly reduce base flows

in the wetter parts of the country during dry seasons and irrigation abstractions may

reduce downstream flows. During a drought, forests may experience moisture stress and

wilting, whereas irrigated grasses and crops continue to grow and transpire at a normal

rate (if water supplies are available for irrigation). Urban developments may contribute to

more surface runoff due to impervious surfaces and may also affect water quality

through the return of effluents to rivers.

Reservoirs and water transfers: The upstream development activities in a sub-basin

include reservoirs (small and large), return flows (from wastewater treatment plants, for

example) and water transfers, all which have major impact on available natural water

resources. Small farm dams, as with large reservoirs, have a significant impact on

downstream hydrology through the impoundment of streamflow, evaporation,

abstractions and controlled or uncontrolled releases (Havenga et al., 2007). In some

parts of the country, especially in highly developed catchments, water transfers are

implemented to ease the problem of water shortages

3.2 Characteristics of test sub-basins

Section 3.1 provided a summary of climate and physical characteristics of the study area

at a national scale. Figure 3.9 shows the 1946 quaternary catchments that cover the

whole country including Swaziland and Lesotho. The quaternary catchment scale is

widely used for water resources planning and management in South Africa. However, in

this study, a term ‘sub-basin’ which is more internationally accepted was used instead of

‘quaternary catchment’. A total of 22 sub-basins (shaded in Figure 3.9) were selected to

represent different climate regimes, largely based on mean annual rainfall and covering

arid (<400mm/yr), semi-arid (400-600mm/yr), sub-humid (601-800mm/yr) to humid (>

800mm/yr). This number was found sufficient to ensure that different basin physical

characteristics (i.e. topography, soils, vegetation and geology), and therefore different

hydrological response characteristics within the climatic regions, are considered. The
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main characteristics of the selected sub-basins are given in Table 3.2 (from east to west,

Figure 3.9).

Figure 3.9 Map of South Africa showing location of test sub-basins used (shaded)
from the 1946 quaternary catchment system.
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Table 3.2 Characteristics of the selected river sub-basins (source: AGIS, 2007 &

WR90 reports-Midgley et al., 1994).

Sub-
basins &
Area

MAP
(mm/yr)

MAE
(mm/yr)

MAR
(mm/yr)

Topography Soils Geology

Sabie
(X31A)
230km2

1240 1400 452 Steep Moderate
to deep
sandy clay
loams

Mainly inter-bedded
shale and quartzite
underlain by dolomite
and granite rocks.

Vaal
(C12D)
898km2

660 1580 59 Flat Moderate
to deep
clayey

Fractured shales and
sandstones

Elands
(X21F)
397km2

757 1400 106 Undulating Shallow
medium
sandy clay
loam

Comprises of shale
and quartzite

Mkomazi
(U10E)
327km2

990 1300 312 Steep Moderate
to deep
sandy clay
loam

Mainly dolerite with
small areas of fine-to
medium grained
sandstone

Mohlapetsi
(B71C)
263km2

746 1500 153 Steep upper
slopes and
gentle valley
bottom

Shallow
soils on
upper
slopes and
deeper
sandy
loam

Mainly quartzite,
shale and sandstone;
and some parts of
dolomite, chert and
limestone

Limpopo
(A23A)
357km2

698 1750 42 Relatively flat Moderately
deeper
sandy
loam

Shale, quartzite and
chert

Thukela
(V60D)
308km2

850 1500 125 Undulating to
gentle

Soils are
shallow
sandy clay

Mainly sandstone
with parts  dolerite

Boesmans
(V70B)
121km2

1172 1300 360 Steep Moderate
to deep
fine sandy
clay loam

Sandstone
formations

Mooi
(V20A)
267km2

1024 1300 314 Steep Deep
sandy clay
loam

Mainly dolerite

Mgeni
(U20B)
353km2

988 1300 201 Undulating Moderate
to deep
sandy clay

Mainly dark grey
shale with dolerite,
siltstone and
sandstone

Tsitsa
(T34H)
590km2

905 1300 185 Steep Deep
sandy
loam

Comprises of
mudstone and
sandstone

Toise
(S60C)
216km2

668 1500 80 Steep to
undulating

Shallow
fine sandy
loam

Sandstone with some
dolerite
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Table 3.2 continued.
Sub-
basins &
Area

MAP
(mm/yr)

MAE
(mm/yr)

MAR
(mm/yr)

Topography Soils Geology

Kat (Q94C)
135km2

768 1600 91 Steep Shallow
sandy
loam clay

Comprises of
mudstone, shale and
sandstone with parts
of dolerite

Bedford
(Q92F)
665km2

415 1650 6 Flat Moderate
to deep
fine sandy
loam soils

Comprises of
mudstone, shale and
sandstone with
dolerite

Seekoi
(D32J)
1063km2

324 800 4.6 Undulating to
gentle

Shallow to
moderately
deep
sandy clay
loam

Shale, mudstone and
sandstone  and
dolerite intrusions are
common

Orange
(D61B)
1196km2

272 2100 2.8 Flat moderate
soil depths,
mainly
sandy clay
loams

Mainly shales,
mudstone and
sandstone and
dolerite intrusions are
frequent

Gourtiz
(J33D)
260km2

380 2036 48 Steep Shallow
sandy
loam

Mainly arenaceous
shale, siltstone and
quartzite sandstone

Touws
(K40A)
87km2

705 1400 214 Steep Shallow
loamy
sand

Mainly quartzitic
sandstone and
subordinate shale of
the Table Mountain
Group; locally also
schist as well as
gneissic granite

Breede
(H10C)
260 km2

650 1650 266 Steep rocky
outcrops and
gentle valleys

Shallow to
deep
loamy
sand

Mainly shale and
sandstone

Klein
(G40K)
429km2

495 1430 45 Gentle sloping
topography

Deep silt
loamy

Mudstone, siltstone,
shale and feldspathic
sandstone

Olifants
(E40B)
707km2

235 1945 8.5 Undulating Shallow
sandy clay
loam

Comprises of blue
grey shale, but green
when weathered

Berg

(G10A-B)

126-

172km2

1580 1475 1015 Steep Shallow to
moderately
deep
loamy
sands

Quartzitic sandstone
of the Table
Mountain Group. In
the south, the lower
mid slopes and foot
slopes consist of
quartzite
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3.3 Summary of datasets

The datasets used in this study are rainfall, potential evapotranspiration, observed

streamflow, basin physical property (geology, soils, vegetation, topography) and water

use data (mainly irrigation abstractions and afforestation).

3.3.1 Raingauge rainfall data

Section 3.1.1.1 provided a general overview of the raingauge network and the different

sources of rainfall data in South Africa. The daily point rainfall datasets used in the study

were acquired from the former Computing Centre for Water Research (CCWR) while

other data were acquired from the South African Weather Service (SAWS). The WR90

(Midgley et al., 1994) spatially averaged monthly rainfall time series, widely used for

water resources assessments in South Africa, were also used in the analyses. While the

WR90 rainfall estimates were based on the same original point raingauge information

used in this study, the spatial rainfall generation of the WR90 data was based on

Thiessen polygons (Dent et al., 1989; Midgley et al., 1994), while the Inverse Distance

Weighting interpolation technique was used in this study. However, previous studies

(Schäfer, 1991; Lynch, 2004) showed that the spatial interpolation of rainfall depends

mainly on the information content of the original rainfall data rather than the interpolation

approach used. This issue is discussed further in Chapter 5.

While comparisons can be made between the WR90 datasets and sub-basin rainfall

data interpolated from the raingauge networks as part of the current study, explanations

for the differences are not readily possible because the raingauges used in the WR90

study are not documented. The WR90 data were being updated during the course of this

study (Bailey and Pitman, 2005) and the results were only made available towards the

end of the project. It was therefore not possible to fully integrate these data into the

rainfall uncertainty analysis.

With respect to the rainfall data used in this study, some of the raingauges selected for

the interpolation process have records extending back to 1893 but others started after

the 1950s. Similarly, there are large differences in the end dates of the records, some

extending to the year 2000 and beyond, while other stations were closed much earlier.
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Most of the raingauges have data available between 1920 and 1960 but there is a

gradual decrease in the number of operational gauges from 1961 onwards. The

selection of gauges to include in the analysis was based on initial simple checks on the

quality of rainfall records and a record length of at least 14 years so as to include as

many raingauges in the analysis as possible, while a length less than 14 will not be

hydrological relevant as the period will be too short. All raingauges that did not meet

these criteria were discarded from the analysis (see for example Appendix 1.1 for details

of the gauges for selected sub-basins used in the study). Within different modelling

periods it is likely that the number of gauges will therefore vary quite considerably

causing problems in the generation of stationary sub-basin rainfall time series over

extended periods of time (refer to Chapter 6, for further details). The following

assumptions about the national rainfall data were used:

 The data have been previously quality controlled by the CCWR for any

measurement errors and inconsistencies;

 The period with the maximum number of gauges represents the ‘best’ spatial

coverage of rainfall variations. However, it is accepted that it is not possible to

provide an absolute assessment of real spatial variations. This problem will be

exacerbated in areas with steep rainfall gradients associated with orographic

rainfall in mountain areas.

This study also used some detailed break point rainfall data for 28 raingauges within an

area of 665 km2 that are available for a period of 5 years (1988-1992). This network was

established as part of an experimental basin (Bedford) to investigate hydrological

processes and test hydrological models in a semi-arid region of South Africa (Hughes et

al., 1993). While there are some gaps in the records for individual gauges, the

performance of the raingauge network as a whole was found to operate with less than

10% gauge failure (Hughes and Sami, 1991).

3.3.2 Satellite rainfall data products

Given that the national network of ground based rainfall observations has been shrinking

in recent years, the study decided to investigate the potential for using readily available

satellite rainfall products.  There are several satellite rainfall estimation methods reported
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in the literature that are used to derive final satellite rainfall datasets. The products range

from global to regional datasets and include:

 National Oceanic and Atmospheric Administration’s Climate Prediction Center

Rainfall Estimation Algorithm RFE2.0 (NOAA’s CPC RFE2.0; 1 day, 0.1 degree;

Xie et al., 2002);

 NOAA CPC Morphing Technique (CMORPH; 30mins, 0.1 degree or 1 day, 0.25

degree, Joyce et al., 2004);

 TRIMM Real Time Multi-satellite Precipitation Analysis (TMPA-RT; 1 hr, 0.25

degree; Kummerow et al., 1998);

 Microwave InfraRed Algorithm (MIRA; 1 day, 0.1 degree; Todd et al., 2001;

Layberry et al., 2005);

 Global Precipitation Climatology Project (GPCP; 1 day, 1 degree; Huffman et al.,

1997);

 Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks (PERSIANN; 6 hour, 0.25 degree; Hsu et al., 1999; Sooroshian et al.,

2000).

The final rainfall estimates are based on merged information from several satellite

imagery sources. A detailed evaluation of each of the sources  and the methods used for

all the datasets is beyond the scope of this study and reference can be made to the

literature sources given above for more details. The focus in this study is on the use of

the final operational rainfall estimates as inputs to regional hydrological models. Some of

the global satellite products have already been used in hydrological modelling studies

(Grimes et al., 1999; Todd et al., 1999; Thorne et al., 2001; Grimes and Diop, 2003). The

GPCP and PERSIANN data sets were used as inputs to the Pitman hydrological model

in southern African basins (Hughes, 2006b). In addition, Wilk et al. (2006) used rainfall

estimates from Special sensor microwave (SGPROF) estimated using the Goddard

Profiling Algorithm at 0.5° resolution, to estimate spatial rainfalls (1991-2002) in the

Okavango River basin. Some of the practical considerations that need to be addressed

before satellite datasets can be used successfully have been identified by Hughes

(2006a, b). Existing hydrological models have typically been calibrated using historical

gauged data, while the short periods of satellite data are insufficient to cover the various

cycles of wet and dry periods found in hydrological records. At the same time, the
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relationships between gauged rainfall data and satellite derived rainfall data are not

always clear and vary with satellite sources and across different regions.

While there are lot of studies on the application of global products (Todd et al., 1999;

Thorne et al., 2001; Grimes and Diop, 2003; Hughes, 2006a, b) most of these are at

quite coarse spatial scales compared to the required scales for water resources planning

in South Africa.  As part of developing spatially continuous and accurate rainfall datasets

at more finer scales (spatially), NOAA’s Climate Prediction Center derived gridded daily

rainfall totals at 0.1°spatial resolution for the whole continent of Africa (NOAA’s CPC

RFE2.0 data) (Xie et al., 2002), which are available from 2001 and are continuously

updated on daily basis. The NOAA CPC RFE2.0 data have been used in this study

because they are available for the recent past when raingauge observations have

declined even further in South Africa and because the temporal and spatial resolutions

were considered suitable.

The NOAA CPC RFE2.0 rainfall datasets are satellite based rainfall outputs derived by

merging several satellite estimates and station-based raingauge data (Love, 2004). The

initial procedure did not incorporate an Advanced Microwave Sounding Unit (AMSU)

satellite rainfall estimate assumed to potentially reduce bias in the final precipitation

estimate (Xie et al., 2002). Therefore, with additional AMSU satellite estimates, the final

African precipitation estimates (NOAA’s CPC RFE2.0) were derived from four sources

namely: Daily Global Telecommunications Systems (GTS) raingauges from up to 1000

stations, Special Sensor Microwave/Imager (SSM/I) satellite precipitation estimates at a

frequency of up to 4 times a day, the Advanced Microwave Sounding Unit (AMSU)

satellite rainfall estimate and Global Precipitation Index (GPI) cloud-top IR temperature

precipitation estimates on a half-hour basis (Love, 2004). The final products are daily

binary data and graphical output files produced at approximately 6Z-6Z, meaning that

the rainfall daily totals are from 06h00 Universal Time one day to 06h00 Universal Time

the next day with a spatial resolution of 0.1°. The Universal Time is based on the time at

Greenwich Mean Time, England. The spatial extent of the data covers the whole of the

Africa region from 40°S-40°N and 20°W-55°E. Despite the data used in this study being

available from January 2001 to October 2006, the data are continuously being updated

and are freely available from the internet, website (accessed in October 2006):

ftp://ftp.cpc.ncep.noaa.gov/fews/newalgo_est.
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3.3.3 Potential evapotranspiration data

Potential evapotranspiration data used in hydrological models in South Africa are often

based on estimates from standard Symons or American A class pans (see also section

3.1.1.2). In South Africa evaporation is measured at about 300 DWAF stations, usually

by means of Symons pan evaporimeters. The SAWS also equips their meteorological

stations with A-type pan evaporimeters. The evaporation recorded by these two types of

pans is significantly different because they are different installations but this difference

may be reconciled by using existing relationships (Midgley et al., 1994). The data used in

the present study were the fixed mean monthly evaporation estimates available in the

WR90 reports (Midgley et al., 1994). The potential evaporation values were converted

using appropriate pan factors (Midgley et al., 1994) to potential evapotranspiration that

are used as inputs to the Pitman model. Some time series estimates were obtained from

DWAF Symons pan measurements which are available at a limited number of sites (e.g.

one gauge for a whole river basin covering approximately 10 000km2).

Having recognised the limitation in the number of pan evaporation gauges to use in

estimating representative time series variations in evaporation demand for each sub-

basin (quaternary catchment) in South Africa, the study attempted to make use of

temperature time series data that have more observation stations. Given that the Pitman

model is typically used with pan evaporation data, variations in temperature time series

covering a period 1950 to 1990 were used to estimate variations (from long-term means)

in potential evaporation. The assumption was made that time series variations in

evaporation demand could be estimated using equivalent temperature variations based

on the following relationship:

j

ij
jij 


 ……………………………………………………………………………3.1

where j and j are long-term monthly mean evaporation and temperature values for

month j, while ij and ij are monthly evaporation and temperature values for year i. The

spatial time series temperature data were obtained from a database prepared by

Schulze and Maharaj (2006). These data are available as mean monthly temperature

time series for 50 years for each of the 1946 quaternary catchments in South Africa and

applicable for the purposes of the present study.
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3.3.4 Observed streamflow data

The observed streamflow time series data were obtained from the DWAF database

which is continuously updated (http:/www.dwaf.gov.za/hydrology, the data used in this

study were downloaded in October 2006). These data are available as mean daily runoff

values (m3/s) which are aggregated to monthly flow volumes for use with the Pitman

model. There are three main factors that affect the use of these data for assessing

outputs from hydrological models; (i) poorly defined artificial upstream influences

(upstream reservoir storage, dynamic patterns of abstractions, return flows and land use

modifications notably commercial afforestation), (ii) gauge inaccuracies, particularly in

the low flow part of hydrographs and (iii) the inability of some gauging structures to

measure flows above certain thresholds.

The majority of the observed streamflow data in South Africa reflect anthropogenic

changes within most river basins. While these changes can be identified, there are few

reliable data sources from which to quantify their impacts and derive naturalised flows. In

some cases the anthropogenic changes are relatively small and in some situations it is

very clear that the observed streamflow data do not represent natural conditions, but

rather some modified conditions. This may be because the upstream water resources

developments are well understood or it may be because the 'signal' in the flow record is

very clear. It is therefore frequently necessary to naturalise flows and examples of

naturalised flow data can be found in the WR90 reports (Midgley et al., 1994). However,

there are many situations where the extent of flow modification is not clear at all, or

where there is clearly a present day influence but it is not straightforward to identify

historical trends due to the unknown quantity of the impact.

DWAF uses various types of gauging structures (Figure 3.10) to monitor streamflows,

including weirs (sharp crest, v-notch, vee crump, ogee spillway etc.) and flumes (slicing,

parshall etc.). They all have different degrees of accuracy across the range of flows that

they are designed to measure. Knowledge of the structure type can be very useful in

assessments of the accuracy of the streamflow record. For example, many of older weirs

are sharp crested weirs with relatively wide low flow sections. The rating curves are

relatively insensitive to changes in weir pool depth during low flows, while the weir pools

are also subject to problems of siltation.

www.dwaf.gov.za/hydrology
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Figure 3.10 Types of flow gauging structures used by DWAF (website:
http://www.dwaf.gov.co.za/hydrology downloaded in June 2008).

DWAF attach quality codes to individual daily streamflow data values and some errors

(such as gauge exceedance) are easily identified, while others related to such as weir

pool siltation are not. Figure 3.11a (gauge X3H001, Sabie River, Mpumalanga Province)

illustrates a potential problem in the observation of low flows prior to 1958. While this

effect can be related to changes in upstream development impacts, there is no evidence

to support such a conclusion and the non-stationarity is more likely to be due to gauging

errors. An additional problem associated with many of the available streamflow records

is that they have truncated peak flows due to the limited range of stage-discharge

relationships. An extreme example is provided in Figure 3.11b using mean daily flow

records for gauge X3H007 (White Water River, Mpumalanga Province). While the effects

are relatively simple to identify using daily average data, the uncertainties can be

obscured when these data are aggregated to monthly values.

The implications of using uncertain observed streamflow information to calibrate or to

assess the output from rainfall-runoff models are clear. It is therefore essential that the

streamflow data are carefully assessed (for errors, upstream development effects and

possible non-stationarity) before they are used with a model. These checks should be

performed on the higher resolution daily data, rather than the aggregated monthly

streamflow volumes. In this study all the missing values were patched and the flows

were checked for stationarity before they were used.

Parshall V-notch Sharp crest

Vee crump Slicing Ogee

http://www.dwaf.gov.co.za/hydrology
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Figure 3.11a An illustration of non-stationarity in measured daily average streamflow
time series record (gauge X3H001).

Figure 3.11b An illustration of the streamflow gauging exceedence errors in measured
daily average streamflow time series record (gauge X3H007).

3.3.5 Basin physical property data

Information on soils, vegetation, topography and geology (see also section 3.1.2) is often

critical in understanding the hydrological responses to climate inputs and is commonly

required for hydrological parameter estimation or regionalisation (Kapangazawiri and

Hughes, 2008). There are several possible sources of such information in a South
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African context including topographic, geology, soil survey maps, Google Earth, the

WR90 reports (Midgely et al., 1994), the South Africa Atlas of Climatology and

Agrohydrology (Schulze, 1997) and the Agricultural Geo-Referenced Information System

comprehensive database (AGIS, 2007). All these present the required information in

different ways, with different spatial resolutions and with different degrees of direct

relevance to hydrological modelling. The implication is that it is difficult to identify a single

source of relevant information and most of these sources require at least some degree of

interpretation or pre-processing before being used with a hydrological model (e.g. for

parameter estimation). A common problem is that the spatial resolution of the data

source does not correspond to that of the model. Uncertainties in misinterpretation of the

physical property data will clearly affect the accuracy of parameter estimation methods,

such as that proposed by Kapangaziwiri and Hughes (2008).

Experience gained throughout this study suggests that the information presented in

AGIS (2007) database represents the most comprehensive source of basin physical

property data, particularly with respect to topographic slope, geology and soils data

relevant to hydrological modelling. The data are available online

(www.agis.agric.za/agisweb/agis.html) in a GIS format, supported by more detailed

‘Landtype’ data (Table 3.3) which provides, soil depth, type and texture information

based on terrain units. Despite the high level of detail contained within this database, the

interpretation of the data for use with a hydrological model remains a challenge. Google

Earth can be extremely useful to get an overall impression of topographic variations and

land use.

3.3.6 Water resources development data

These data include upstream reservoirs (both large and small), abstractions, return flows

and land use patterns (e.g. afforestastion, dryland and irrigated crops), all of which can

have a significant impact on natural streamflows. Data are available from the WR90

reports (Midgley et al., 1994), WR2005 project (WRC, 2005) and DWAF Water Use

Authorisation and Registration Management System (WARMS) database. Where a

model is to be calibrated against observed flow data, or where these data are used to

assess model output uncertainties, it is clearly important to understand what the

observed data represent. As already noted in the section on streamflow data, the

www.agis.agric.za/agisweb/agis.html
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information available about existing water resources developments is frequently

incomplete. For example, there is quite a lot of information available (volume and surface

area) for registered dams, but there are many un-registered dams for which there is very

little information. The amount of detail of water development data is therefore not usually

adequate to accurately quantify their influences or uncertainties. Additional uncertainties

are introduced through unknown variations in abstractions and return flows over the

period of observations.

Table 3.3 An illustration of Landtype data format (soil depth ranges, slope, soil

texture, and geology) obtained from AGIS (2007) for Gouritz sub-basin.
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3.4 General modelling methodologies of the study

The overall objectives of this study were to identify sources of uncertainty in hydrological

modelling (based on the literature and past experience), quantify the degree of

uncertainty for individual sources, identify possible interventions to reduce uncertainty

and combine individual sources to assess their combined impact on model outputs in a

South African context. The details of the methods used in this study are briefly

highlighted in section 3.4.3 but further details are presented in specific chapters that

follow. For example, Chapter 4 presents a qualitative approach to identifying the

hierarchy of uncertainty sources that eventually contribute to the uncertainty and

associated risks in water resources decision making. The focus of this study has been

on the uncertainty associated with simulations of natural hydrology, while the additional

sources found in water resources management and operational planning are beyond the

scope of this study.

Chapters 5 to 8 discuss the independent modelling experiments that were undertaken to

address individual sources of uncertainty associated with rainfall-runoff modelling

(specifically using the Pitman model). The input data (i.e. rainfall and potential

evapotranspiration) and parameter uncertainties were quantified through a sensitivity

analysis approach. These chapters also discuss possible approaches for reducing the

uncertainty. Chapter 9 discusses the integration of the effects of different sources of

uncertainty but also includes the evaluation of uncertainty in water use data (e.g.

uncertainty in irrigation abstractions and afforestation) on modelling natural water

resources availability. While observed streamflow data are used throughout these

chapters to provide quantitative estimates of uncertainty, the focus is on providing

estimates of uncertainty that will result from application of the model in ungauged or

poorly gauged basins. The remainder of this chapter briefly describes the data

processing and modelling tools that have been used to achieve the objectives of the

study.

3.4.1 Data management and model application using the SPATSIM software

The major components of any hydrological modelling study are the efficient management

of the required data, the effective integration of the data with the model and the
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availability of appropriate methods for assessing and analysing the model outputs.  The

Spatial and Time Series Information Modelling (SPATSIM) software (Hughes and

Forsyth, 2006) was developed at the Institute for Water Research at Rhodes University

for exactly these purposes. It incorporates a comprehensive data management system

(using structured database tables) with a Geographical Information System (GIS)

interface that allows data to be accessed and used in a spatial context. It has been

designed to allow a wide range of generic data management and processing facilities to

be combined with access to a number of hydrological and water resources management

models.

Data access is managed through a spatial interface (using GIS shape files called

features) linked to any number of data attributes (Figure 3.12). These attributes are user

defined and cover a wide arrange of data types including text information, single values,

tabular information (e.g. model parameter sets or seasonal evaporation values), time

series data and graphic images (e.g. photographs of gauging structures).

Figure 3.12 Screen image of SPATISM software also showing the model setup
interface.

The SPATSIM software has internal facilities which include routines for importing

different types of data, viewing, graphically displaying and editing data, sharing data with

other users and further processing of data to create new information. Besides the

internal facilities, SPATSIM has links with external models. The models linked to

SPATSIM are developed as separate computer programs but using generic procedures

to associate the data input and output requirements of the models with the data

attributes of a specific SPATSIM application (Figure 3.12). Also linked to SPATSIM is an
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external time series analysis program referred to as TSOFT (Hughes et al., 2000).

TSOFT (Figure 3.13a) can be used to graphically or statistically analyze and summarize

all types of time series data and is designed inter alia for the assessment of observed

data (e.g. error checking, identifying non-stationarity), comparison between observed

and simulated data and the detailed investigation of model outputs. Available analysis

methods include the generation of seasonal distributions, flow duration curves, threshold

analyses and X-Y scatter plots used to compare two time series. The scatter plot option

(Figure 3.13b) also generates comparative statistics that are typically used to compare

observed and simulated flows during model calibration.

Figure 3.13a Graphical view of the observed (white) and simulated (blue) flow time
series in the TSOFT analysis program.

Figure 3.13b Output of comparative statistics as part of the X-Y scatterplot option in
TSOFT.

The goodness-of-fit statistics generated as part of the X-Y scatter plot option (Figure and

3.13b) that were used in this study to evaluate model performance and assess accuracy

of model outputs are summarised below:

a) Percentage differences in mean monthly flows {%Diff.Mn}:



80

100.% x
Mn

MnMn
MnDff

obs

obssim







 
 ………………………………………………………….. 3.2

where, Mnsim is the mean of the simulated monthly flow time series and Mnobs is the

mean of the observed monthly flow time series. The acceptable percentage difference in

mean flows was assumed to be within ± 5% in this study (based on the previous

application of the model).

b) Coefficient of determination (R2) – this describes the proportion of the total

variance in the observed data that can be explained by the model or simulated data and

is given by:
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where, Oobs is the observed time series and obs is the mean of observed time series

while Osim is the simulated time series and sim is the mean of simulated time series and

the comparisons are over a given period divided into N time increments which can be

any duration (monthly or daily time-steps). The criterion can be over-sensitive to extreme

values (outliers) and is insensitive to systematic differences between the simulated and

observed flows.

c) Nash coefficient of efficiency (CE) by Nash and Sutcliffe (1970) is the most

widely goodness-of fit criteria in hydrological modelling and is given by:
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This criterion represents an improvement to R2 because it is sensitive to differences

between the observed and model simulated means and variances, but due to squared

differences it is also sensitive to extreme values (outliers in data). If the square of the

differences between model simulations and the observations is as large as the variability

in the observed data, the CE=0, which means that simulated flows are not better

estimators than the observed mean. A perfect fit between the two time series results in

CE=1, while an acceptable minimum value can be assumed to be approximately 0.6

(based on previous experience).
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d) Percentage differences of standard deviations of monthly flows {%Diff.Stdv}:

100(%) x
Stdv

StdvStdv
Stdv

obs

obssim







 
 ……………………………………………………3.5

where, Stdvsim and Stdvobs represent the standard deviations of simulated and observed

flows respectively. Acceptable percentage differences in standard deviations of monthly

flows were assumed to be approximately ± 15% in this study.

The above objective functions (a-d) are calculated for both the un-transformed data (e.g.

%Diff.Mn(Q); R2(Q) CE(Q); %Diff.Stdv(Q)), which tend to be influenced by high flows,

and log transformed data, to emphasis role of low flows (e.g. %Diff.Mn (InQ); R2(InQ) CE

(InQ); %Diff.Stdv(InQ)}. The coefficient of efficiency is also calculated for inverse

transformed data (CE {1/data}).

3.4.2 SPATSIM version of the Pitman Model

The SPATSIM version of the model retains a large part of the structure of the original

model (Pitman, 1973) but includes some recent developments designed to improve the

general applicability of the model in the southern African region (Hughes, 1997). This

version also includes the more explicit representation of surface and groundwater

interactions as proposed by Hughes (2004b). A brief summary of the model structure is

provided below, while a more detailed description can be found in Hughes et al., 2006).

Kapangaziwiri (2008) provides a full description (including all of the model algorithms

and conceptual interpretation of the parameters.

3.4.2.1 Natural hydrology model components

The Pitman model is a semi-distributed conceptual model that consists of storages

linked by functions designed to represent the main hydrological processes and can

simulate the major natural water balance processes which prevail at basin scales

(Kapangaziwiri, 2008). The semi-distributed nature of the model allows all sub-basins to

be modelled with independent parameter sets and input time series within SPATSIM.

The main inputs to the model are the parameter sets, monthly time series of rainfall

totals and time series or fixed mean monthly distributions of potential evapotranspiration.

Interception, soil moisture, and groundwater are the three main conceptual storages in
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the model. Figure 3.14 illustrates the main structure of the model while Table 3.4

provides a list of the parameters and their descriptions, including those for the optional

development impact components (refer to section 3.4.2) of the model.

The Pitman model operates over four model iterations to reduce large changes in state

variables and to avoid issues of order in which processes are accounted for on a long

time-step model and the distribution of the total monthly rainfall over these iterations is

controlled by a rainfall distribution (RDF) parameter. Low RDF values give more even

distribution of rainfall with the effect being more pronounced for higher rainfall totals

(Hughes et al., 2006). Rainfall is intercepted (based on the storage parameters PI1 and

PI2 for two vegetation types) before reaching the surface and the interception function is

based on a relationship between the relevant PI parameter and rainfall amount and is

decreased by evaporation demand at the potential rate (Hughes et al., 2006). The

balance of the rainfall is applied to the impervious area (parameter Fract.) and the

surface runoff function (ZMIN, ZAVE and ZMAX). The latter is controlled by a

symmetrical triangular distribution of catchment absorption (Box 1) as in the orginal

version of the model (Pitman, 1973). However, the latter version (Hughes, 2004b)

assumes a non-symmetrical distribution of catchment absorption (see Kapangaziwri,

2008 for details). The infiltration parameters describe the absorption capacity of the

basin in response to different rates of rainfall input (Box 1). Rainfall that is not either

intercepted or converted to surface runoff is added to the soil moisture storage (with a

maximum value of ST) which is subject to evapotranspiration losses (parameter R). If

this storage is exceeded, additional surface runoff is generated (Box 2), while soil

moisture runoff from the storage is controlled by a non-linear power (POW) function with

a maximum value of FT mm month-1 (at storage equal to ST). Both the surface and soil

moisture runoff components are subject to lag and attenuation using parameter TL.  A

function similar to the soil moisture runoff function is used to determine recharge (RE) to

the conceptual groundwater storage using parameters GPOW and GW (Box 2). The

relationship is assumed to describe the rate at which water drains from subsurface

storage to streams. Box 1 and 2 only shows the relationships of the parameters that

were used in the sensitivity analysis in Chapter 8.

The details of the groundwater functions and the generation of groundwater

contributions to streamflow are discussed by Hughes (2004b). Briefly, the model
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simulates groundwater gradients on the basis of the sub-surface water balance, which

together with the transmissivity parameter (T) and the drainage density (D.Dens) are

used to estimate outflows to the river channels. A further parameter is used to estimate

evapotranspiration losses from groundwater in the channel riparian areas. Finally, a

channel routing parameter is included but is only expected to be used when modelling

very large sub-basins (greater than about 10 000km2).

Box 1: Relationships between surface runoff generation parameters Zmin, Zave and
Zmax.

For any given absorption rate, Z mm per month
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3.4.2.2 Model extension to developed sub-basins

The model includes several components to represent anthropogenic impacts on natural

hydrology (land use modifications such as managed forest plantations, run-of-river

abstractions and return flows, distributed small farm dams and large reservoirs). This

version of the model has routines to account for abstractions from the river and the

groundwater store for various purposes and there is an option to return a proportion of

abstracted water to the river (Table 3.4). Small farm dam routines in the model account

for surface storage (and abstraction) of runoff generated within a sub-basin, while for

large reservoir storages a main reservoir water balance component (Hughes, 1992) is

Box 2: Relationships between the sub-surface runoff generation
parameters (FT, ST, POW, SL, GW and GPOW)
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SL0
Soil moisture –S(mm)

S is the current soil moisture storage level in mm, ST is the maximum soil moisture storage

capacity and SL is the lower limit of soil moisture state of the soil below which no groundwater

recharge occurs. Q is the monthly discharge in mm/month, FT refers to runoff generated from

the soil when soil moisture level is at its maximum (ST), POW represents the relationship

between total basin moisture status and spatial distribution of this moisture. RE is the monthly

recharge rate in mm; GW is the upper limit of the groundwater recharge rate (mm/month) at

moisture state S, GPOW describes the shape of the relationship between moisture stored in the

unsaturated zone and the volume of recharge
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included. The latter receives inflows from all upstream sub-basins and can be setup with

a number of abstraction and release operating rules based on the level of storage in the

reservoir. Both reservoir components (small farm dam and main reservoir) estimate

evaporative losses on the basis of power relationships between simulated volumes (Vol -

obtained from the model water balance) and surface area (Area = A*VolB). While the

model has been used quite frequently to simulate development effects, in complex

situations (such as multiple water supply sources and complex operating rules) water

resources systems models are more appropriate simulation tools.

3.4.3 Sensitivity and uncertainty analysis for the Pitman model in SPATISM

In a broad sense, all the sources of uncertainty that affect variability of model output are

assessed through formal sensitivity and uncertainty analyses methods (Chapter 2,

section 2.5). It is generally argued that uncertainty analysis coupled with sensitivity

analysis can help to understand whether the current knowledge is sufficient to allow

decision makers to make a reliable decision (Beven, 2001a). If not, such analyses can

also help to identify which uncertainty sources require knowledge improvement in order

to achieve the desired level of confidence in decision making. While sensitivity analysis

determines the strength of the relation between a given uncertain model “input variable”

(e.g. rainfall, evaporation or parameter) and model outputs, uncertainty analysis

propagates input uncertainties into the model outputs (Saltelli, 2000).

Sensitivity analysis procedures consist of a strategy to vary the model inputs and a

numerical measure to estimate how the model response has changed based on varying

one or more inputs (Wagner and Kollat, 2007). The model then propagates model

parameters and other uncertainties into model outputs. The SPATSIM facilities were

used for these purposes through independent sensitivity assessments of each source of

uncertainty; sensitivity to areal averaged rainfall uncertainty (Chapter 5 and 6); sensitivity

to evapotranspiration data uncertainty (Chapter 7); and sensitivity to parameter

estimation uncertainty (Chapter 8). With respect to climate data (i.e. rainfall and

evaporation), the assessment technique required a ‘reference’ observed climate dataset

against which other results could be compared. In this study the rainfall or evaporation

realisations that are assumed to be most representative of sub-basin conditions were

used as the ‘reference’. Additional rainfall or evaporation realisations were then
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assessed using a fixed parameter set for all model realisations. More details on the

procedures are found later in the relevant chapters.

Figure 3.14 The main components of the Pitman model (after Hughes et al., 2006).

A separate software version of the model was used to investigate parameter sensitivity.

It allows the ‘best guess’ parameter values to be modified over several steps with

defined step sizes. The program then generates objective functions (based on

comparisons with some input ‘observed data’ time series) for all possible combinations

of the parameters that are varied. The ‘observed data’ used for comparison with the

simulated data can be real observed data (in gauged basins), or could be the simulation

based on the ‘best guess’ parameter set (for ungauged basins). This approach was

adopted as it was simple to implement and provided a starting point for the development

of more detailed sensitivity analysis and uncertainty assessment procedures. Despite the

fact that it uses discrete parameter values as input rather than continuous parameter
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distributions, it is still possible to explore the extent of parameter non-uniqueness, which

is a common problem with the Pitman model. A typical application of five parameters

with seven steps (best guess and 3 steps either side) generates a total number of 16

807 ensembles. The parameter ranges are determined by subjectively (and therefore

without probability statements) assessing the likely maximum and minimum values of

estimated basin physical property data (Table 3.5), which are used as inputs in the

parameter estimation method of Hughes and Kapangaziwiri (2008).

In the context of parameter uncertainty analysis, the same software version used in the

sensitivity analysis was also used to generate ensemble simulations. The number of

steps was reduced to 3, but with the inclusion of all the parameters expected to be

estimated with uncertainty. The results of the multiple ensembles can be very useful in

identifying which parameters are likely to influence uncertainty the most and therefore

where the focus on accurate parameter estimation should be.

For the parameter sensitivity and uncertainty assessment (more details in Chapter 8),

the parameter sets were varied, but with fixed inputs of rainfall and potential

evapotranspiration data used for all the parameter combinations. Initially the parameters

were estimated using the a priori parameter estimation technique of Kapangaziwiri and

Hughes (2008), rather than the traditional manual calibration procedure. Figure 3.15

shows the paths followed in the developmental of the a priori approach. The assumption

of the approach is that both the model structure and basin parameters are based on

sound physical hydrology principles (Kapangaziwiri, 2008; Kapangaziwiri and Hughes,

2008). If a set of relevant basin physical properties are available then it is feasible using

conceptual links between these properties and model parameters to develop physically-

based parameter estimation procedures following the path depicted in Figure 3.15. The

focus was on the main runoff generation parameters (ZMIN, ZAVE, ZMAX, ST, FT and

POW, Table 3.4), while it is assumed that the approach could ultimately be extended to

the full parameter set of the Pitman model (Kapangaziwri, 2008).



88

Table 3.4 Pitman model parameters including those of the reservoir water balance

model (after Hughes et al., 2006).

Parameter Units Pitman model parameter description
RDF Rainfall distribution factor. Controls the distribution of total

monthly rainfall over four model iterations

AI Fract. Impervious fraction of sub-basin

PI1 and PI2 mm month-1 Interception storage for two vegetation types

AFOR % % Area of sub-basin under vegetation type 2

FF Ratio of potential evaporation rate for Veg2 relative to Veg1

PEVAP mm year-1 Annual sub-basin evaporation

ZMIN mm month-1 Minimum sub-basin absorption rate

ZAVE mm month-1 Mean sub-basin absorption rate

ZMAX mm month-1 Maximum sub-basin absorption rate

ST mm Maximum moisture storage capacity

SL mm Minimum moisture storage below which no GW recharges

occurs

POW Power of moisture storage–runoff equation

FT mm month-1 Runoff from moisture storage a full capacity (ST)

GPOW Power of moisture storage-GW recharge equation

GW mm month-1 Maximum ground water recharge at full capacity (ST)

R Evaporation-moisture storage relationship parameter

TL months Lag of surface and soil moisture runoff

CL months Channel routing coefficient

D.Dens Drainage density

T m2 d-1 Ground water transmissivity

S Ground water storativity

Slope Initial ground water gradient

AIRR km2 Irrigation area

IWR Fract. Irrigation water return flow fraction

EFFECT Fract. Effective rainfall fraction

RUSE Mm3 yr-1 Non-irrigation demand from the river

MDAM Mm3 Small dam storage capacity

DAREA % Percentage of sub-basin above dams

A,B Parameters in the non-linear dam area-volume relationship

IRRIG km2 Irrigation area from small dams
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Table 3.4 continued.

Parameter Units Reservoir  model parameter description

CAP Mm3 Reservoir capacity

DEAD % Dead storage

INIT % Initial storage

A,B Parameters of non-linear dam area-volume relationship

RES1-5 % Reserve supply levels (percentage of full capacity)

ABS Mm3 yr-1 Annual abstraction volume

COMP Mm3 yr-1 Annual compensation flow volume

Table 3.5 Input basin physical property data required for the estimation of

parameters (ZMIN, ZAVE, ZMAX, ST, FT and POW) according to

Kapangaziwiri and Hughes (2008).

Basin physical property Metric
Soil texture (for ZMIN, ZAVE & ZMAX) Range of infiltration rates for each texture

class.
Soil Texture (for FT) Range of permeability rates for each texture

class.
Soil Texture (for ST) Range of porosity values for each texture

class.
Mean soil depth (for ST) Mean soil depth and % basin area for

upper, mid and lower slopes in the basin.
Drainage density (for FT) Map estimation
Basin slope (for  FT and ST) Map or DTM estimation or measurement of

mean basin slope.
Regional ground water gradient (for ST and
FT)

Based on channel slope in lower part of
basin by default.

Drainage vector slope (for ST and FT) Based on classes of geological structure
types in the unsaturated zone.Storativity

Depth to ground water (GW) Based on mean basin slope and regional
ground water gradient.
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Figure 3.15 Flow diagram of a priori parameter estimation approach by Kapangaziwiri
and Hughes (2008).

While useful, the statistical measures listed in section 3.4.1 can be limited in their

applications in that they only consider part of the available uncertainty information in

model outputs (i.e. mean flows, high flows or low flows etc). Decision makers sometimes

are not only interested in the mean value and standard deviation of model outputs and

this study includes a yield deficit statistic to evaluate model prediction uncertainty and

their consequences on reservoir yield, which moves the research from a purely

theoretical realm to one that is more relevant to water  managers. The main reservoir

function of the Pitman model structure has a facility to simulate the mean annual yield of

a sub-basin at its outlet for a given draft (mean annual abstraction demand) and

reservoir size. The method uses a yield deficit statistic to assess the impacts of different

outputs realizations (based on different rainfall, evaporation or parameter scenarios) on

decision making for future water resources planning. The approach integrates a variety

of characteristics of the simulated flow time series into a single impact on the reservoir

yield, is less sensitive to extremes and is expected to be more useful to a water

resources manager. The mean monthly percentage yield deficit for each of the

ensembles based on a user-defined reservoir capacity and required yield is expressed

as:
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where, Yieldsim and Yieldreq represent the simulated and required yields, respectively.
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4. IDENTIFICATION OF SOURCES OF UNCERTAINTY IN 

WATER RESOURCES AVAILABILITY ESTIMATION 

 

4.1 Introduction 
 

The main sources of uncertainty that are generally common to hydrological modelling 

are discussed extensively in Chapter 2. This chapter provides some guidelines for the 

identification and classification of the sources of uncertainty that need to be considered 

when making hydrological and water resources estimations in a South African context. 

However, there are additional models and tools (apart from those associated with 

hydrological modelling) that will be used in water resources decision making and how 

these decisions are converted into management options is critical (examples include 

socio-economic and climate change models). While these will also be subject to various 

sources of uncertainty, they are beyond the scope of this study. The focus of this study 

is on uncertainties associated with simulating natural water resources availability in 

poorly or ungauged basins using hydrological models (lower part of Figure 4.1), 

specifically, the Hughes (2004b) version of the Pitman model. This chapter discusses 

the hydrological uncertainties in the context of the uncertainty and risk in making 

decisions about future water resources development plans. The areas where future 

interventions have the potential to reduce or constrain uncertainties, and therefore future 

management risks, are referred to at the end of the chapter. Figure 4.1 proposes a 

hierarchy of sources of uncertainty associated with the type of modelling tools commonly 

used in southern African water resources assessment studies. The diagram identifies 

the different types of uncertainty at each level of a water resources decision making 

system, recognising that the propagation of these uncertainties increases the risk in 

decision making and of water management failures. This diagram has been based on 

the author’s experience of the limitations of model applications combined with the 

sources of uncertainty and their interrelationships identified by previous studies (e.g. 

Beven, 2001a; Rubarenzya et al., 2007). The following sections discuss the uncertainty 

sources identified in Figure 4.1 starting at the top of the diagram. 
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Figure 4.1 Hierarchal system showing the sources of uncertainty. The areas with the 

greatest potential for uncertainty reduction are shaded in grey. 
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4.2. Decision making support tools   
 

Decision support tools are necessary to enable formal and more objective linkages to be 

made between climate, hydrology, institutional process and socio-economic models. The 

primary sources of uncertainty in decision making about future water resources 

management are mainly a function of the decision support tools that are used to aid in 

the decision making process. These tools include the same water resources systems 

models that are used to simulate present day water resources availability (see section 

4.3).  Additional tools may include climate prediction models, population and economic 

growth prediction models, as well as socio-economic models used to evaluate the 

benefits of different patterns of future water use. These tools suffer from uncertainty 

about the estimates of present day water availability (outputs from water resources 

system models), and future water resources availability related to future climate 

variability (Hudson and Jones, 2002; Andersson et al., 2006) and change, financial, 

political, social, environmental factors, and land use changes that affect decisions that 

can be made (Figure 4.1). Uncertainties may also emanate from the evaluation of 

different management options using simple diagnostic or evaluation tools.  

 

4.3. Water resources systems models 
 

The uncertainty associated with estimation of present day water resources availability 

(Figure 4.1) is related to the uncertainties in the natural water resources availability 

(simulated by a rainfall-runoff model) and the extent to which existing developments 

(storage, abstractions, return flows, water transfers, land use modifications, etc.) have 

impacted on the natural water resources in a basin. These impacts are frequently 

simulated using water resources system models that can involve quite complex 

simulations of a wide variety of water storages, abstractions and return flows including 

operating rules that specify priorities under conditions of water shortage. As with any 

model, one of the sources of uncertainty is related to the way in which the model is 

formulated to represent the complexities of the real world, while the other sources of 

uncertainty relate to the input climate data (for example, evaporation losses from 

reservoirs) and the model parameters.  
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The existing information base for defining present day water use in South Africa is 

relatively weak, but is being improved through attempts by the Department of Water 

Affairs and Forestry to identify lawful water use as a necessary step towards 

implementing compulsory licensing as part of the National Water Act of 1998 (South 

Africa, 1998). While average or peak water demands may be known with relatively high 

levels of accuracy, actual water use in any one year may depend on the prevailing 

climate conditions and can be highly variable, particularly in terms of irrigation water use. 

While the necessary information (surface area – storage volume relationships, for 

example) available for large reservoirs is likely to be quite accurate (from bathymetric 

surveys), the same is unlikely to be true for the large number of small farm dams that 

exist in southern Africa. There are few studies that have attempted to derive the surface 

area-storage volume relationships for small dams in southern Africa (Maaren and 

Moolman, 1986; Meigh, 1995; Sawunyama et al., 2006) and the accuracy of these 

relationships remain questionable as they are derived from a limited sample of small 

dams in the region. Even if the impacts of small farm dams on downstream hydrology 

within sub-basins are well known and their surface areas can be derived from satellite 

imagery and aerial photography, there is little quantitative information generally available 

about their storage capacities (Havenga et al., 2007), nor about the volumes of water 

abstracted. 

 

4.4. Hydrological models: the case of the Pitman model 
 

While some of the sources of uncertainty associated with the application of hydrological 

models are model independent (e.g. model input data), others are dependent on the 

specific model structure and the associated parameters. The uncertainties in the 

simulated natural water resources availability derived from rainfall-runoff models may be 

due to the uncertainty in the hydro-climatic data, model structure and parameter 

estimation methods as shown in Figure 4.1. 

4.4.1 Hydro-climatic data uncertainty 
 
The climate inputs most commonly used in hydrological models are rainfall and potential 

evapotranspiration and the necessity of accurate spatial estimates of these input data 

has been frequently investigated (Görgens, 1983; Schulze, 1995; Andréassian et al., 
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2004; Guo et al., 2004; Buytaert et al., 2006). Measured streamflow data, on the other 

hand, are used to calibrate or validate model performances. The limitations of observed 

streamflow data and the problems of naturalising streamflow data for use in simulation 

models in South Africa has been extensively discussed in Section 3.3.4 and will also be 

briefly revisited in section 4.4.3. The present section focuses on rainfall and potential 

evaporation uncertainty. 

 

One of the biggest sources of uncertainty in the climate input data to hydrological 

models is related to the differences in spatial scale and extent between the climate 

observations and the models. While the lesser problem of gauge measurement accuracy 

should never be ignored, the issue of obtaining adequately representative observations 

to define climate spatial variations has long been recognised as one of the major factors 

limiting the success of any hydrological model application (Görgens, 1983; Krajewski et 

al., 1991; Andréassian et al., 2001, 2004; Dong et al., 2005). It is therefore clear that, 

while the characteristics of climate variables vary continuously in space and time, their 

measurements always occupy a limited number of space-time points. The accuracy of 

spatially averaged rainfall or evaporation estimated from point measurements depends 

on the representativeness of the point measurements, the spatial variability of these 

climate variables, the degree of spatial averaging (i.e. the size of the area) and the 

methods used to estimate areal distributions from point measurements.  

 

The accuracy of most of the standard methods used in interpolating point data, such as 

Inverse Distance Weighting, Theissen polygons and Kriging (Schäfer, 1991) varies, 

depending on basin topographical characteristics and the density of the gauge network 

within the basin. With respect to rainfall, these methods usually fail to yield accurate 

estimates of spatially averaged (areal) rainfall in basins where there is marked variability 

in relief, experiencing strong orographic rainfall influences and they often leads to 

smoothing errors, which become source of error when threshold process are at play. 

Frequently inadequate raingauge distributions in elevated areas fail to capture 

systematic spatial variations of rainfall. Interpolation methods also generally fail to give 

accurate rainfall estimates in areas experiencing convective rainfall with typically high 

degrees of spatial variation within individual storms, and particularly when coupled with a 

sparse raingauge network (Schulze, 2006). As a result, random uncertainties occur as 

variations in the actual rainfall patterns during a storm may cause the representativeness 
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of each gauge covering a specific area to fluctuate. While areal interpolation methods 

have been designed to make the best use of the available data, they are not able to 

substitute for inadequately representative observations. Shrinking observational 

networks are exacerbating this problem and attention is being focussed on alternative 

methods of obtaining areal rainfall estimates from radar (Pegram and Clothier, 2001) 

and satellites (Hughes 2006a, b). However, the importance of establishing the 

relationships between remotely sensed data and historical raingauge based 

measurements has already been noted (Hughes et al., 2006; Wilk et al., 2006). 

 

With respect to evapotranspiration estimates, observations in South Africa have been 

mainly based on pan measurements, while the extent to which these measurements can 

be related to the potential evaporation demand used within many models is not very 

clear (Görgens, 1983). The immediate pan environment can substantially affect 

measurements and coupled with the very low density of observations suggests that 

available measurements are poor indicators of areal evaporation demand. The lack of 

representative time series of evaporation demand is almost certainly one of the reasons 

why it is common practice to use long-term monthly means within the Pitman model. 

However, the uncertainties resulting from ignoring inter-annual variations in evaporation 

demand are largely unknown. Some models have used evaporation estimates based on 

meteorological variables (Schulze, 1997) and specifically temperature based estimates 

given the fact that temperature data are more readily available and benefit from a higher 

density of observation stations (Schulze and Maharaj, 2004,2006). A further possibility is 

to make use of evaporation pan based monthly estimates, but perturbed on the basis of 

variations in temperature (applied by Hughes et al., 2006 in the application of the Pitman 

model in the Okavango River basin and see Section 3.3.3). 

 

A further issue is associated with future water resources planning and allowing for 

potential non-stationarities in climate input data related to global warming and climate 

change (IPCC, 2007). While the outputs from regional climate models are improving 

(Schulze, 2005), there are still a number of uncertainties associated with the climate 

models, the downscaling methods and therefore the climate predictions (Hewiston and 

Crane, 2006). There are a number of examples in the literature where the uncertainties 

(demonstrated by variations in the application of different models or different carbon 

dioxide scenarios) are extremely large (Costa and Foley, 2000; Vörösmarty, 2002) and 
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would clearly dominate any attempt at making decisions about future water resources 

management. 

4.4.2 Model structure uncertainty 
 

Model structure uncertainty is mainly a function of the way in which the hydrological 

processes are represented and the temporal and spatial scale approximations used in 

the model. The conceptual nature of the Pitman model and parameters suggests that 

they can be interpreted in terms of hydrological storages and processes of water 

movement, but within the limitations of the time and space scales used in the model.  

There is no guarantee that the scale at which model conceptual relationships have been 

established will match the scale at which the model is applied, using the same 

parameters, due to the high degree of heterogeneity of the real hydrological processes 

and to different sources of non-linearity. Beven (1995) demonstrated that even if 

conceptual relationships may be valid, ‘’effective’’ parameters are simple approximations 

of the description of the complex nature of the processes and there is no general method 

available to derive these parameters from highly variable values of point measurements. 

In addition to the scale of application of a hydrological model, the resolution of the model 

input data, both in space and time, also has a major influence on the model structure 

and detail (Klemeš, 1983). 

4.4.2.1 Time scale uncertainties  

 
The Pitman model is a monthly time-step model and although there are internal 

iterations, the basic climate inputs are monthly totals. As an example, the model 

operates over four model iterations and the distribution of total monthly rainfall over 

these iterations is assumed to be controlled by a symmetric S-curve function that 

depends on the total rainfall and the rainfall distribution factor (RDF) parameter (Hughes, 

1997). The model assumes low rainfall in the first and last iterations and higher rainfall in 

the middle pair (Kapangaziwiri, 2008) and these assumptions lead to greater 

uncertainties given that inter-month rainfall distributions can be highly variable in some 

climate zones. Other uncertainties are related to the assumptions about the interception 

storage, where total rainfall in one day is assumed to be concentrated in a single storm 

event and that the stored water evaporates completely in a single day (Pitman, 1973). In 

reality, with monthly-time step models, the validity of these assumptions depends on the 
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rainfall distribution and patterns within a particular month. Potential uncertainties 

associated with time scale are also related to soil moisture storage thresholds, where 

models with different time-steps (daily compared to monthly, for example) exceed the 

storage thresholds under different model conditions.  

4.4.2.2 Spatial scale uncertainties 

 
Many basins have highly spatially heterogeneous hydrological processes with some 

parts of the basin generating far more runoff than others. Uncertainties therefore exist in 

how this heterogeneity is represented (if at all) in a coarse scale model. To a certain 

extent, these limitations in the model structure can be offset by the use of appropriate 

parameter quantification methods. Some of these problems may be overcome by 

applying the model at smaller spatial scales (the version used in this study is semi-

distributed), but the impact of this approach on setting appropriate parameter values has 

not been adequately tested. Model scale may influence the way in which the parameter 

values are quantified and the relationship with the scale of measurable basin property 

data. The scale at which predictions are required, however, may not match the scale at 

which information is available to represent the important hydrological processes. 

Information might be at either finer or coarse scale in relation to the spatial scale of the 

model. The Pitman model is widely applied to a range of sub-basin scales from 

approximately 10km2 up to 10 000km2 and therefore spatial scale can play a major role.  

4.4.2.3 Boundary conditions and process representation 
 

Uncertainties in boundary conditions may be associated with assumptions made about 

the correspondence of surface and sub-surface basin boundaries and the destination of 

recharging water which may not be fully understood.  Basin modelling is difficult because 

the system response is often controlled by its heterogeneity which is completely 

unknown and described, since the transformation of rainfall signals to discharge involve 

processes that are non-uniform and non-linear (Beven, 1989). The initial conditions 

(‘warm up’ period for the model during simulation) and the dynamics of rainfall events 

will activate a particular process (e.g. infiltration excess overland flow) involving 

threshold effects within a basin. The model routines should therefore be able to explicitly 

simulate the dynamics of different runoff generation mechanisms, mainly overland, sub-

surface and base flows. If this is not the case, parameter interpretation may be difficult. 
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A simple example is the lack of snow accumulation and melting routines within the 

Pitman model. Although snow is not a major component of any South African basin, 

locally and in some years the effects may be relevant. To adequately simulate infrequent 

snowmelt effects, other model parameters would have to assume values that are 

inappropriate, given the model conceptualisation. Another example is related to the 

ability of a model to account for the effects on runoff of non-stationarity in vegetation 

cover, a characteristic that has been identified as important in some arid and semi-arid 

basins of southern Africa (Hughes, 1995; Hughes and Metzler, 1998). 

4.4.3 Parameter uncertainty 
 

A large amount of the international literature on hydrological model uncertainty 

discusses the issue of model parameter uncertainty (see the literature review in Chapter 

2). The uncertainty is reflected in the degree to which a specific parameter set can 

generate model outputs that are representative (or ‘behavioural’ using the terminology of 

Beven, 2006b) of the hydrological response of a basin. The factors contributing to 

parameter uncertainty depend to a large degree on the methods that are used to 

determine an appropriate parameter set for ungauged basins. Figure 4.1 recognises two 

main generic approaches, while the actual methods will vary considerably in detail. 

4.4.3.1 Uncertainty associated with parameter regionalisation or extrapolation 

 
The bottom left hand side of Figure 4.1 illustrates the sources of uncertainty associated 

with a parameter estimation approach involving calibration on gauged basins followed by 

extrapolation or regionalisation to ungauged basins. In this case the uncertainties in the 

calibrated parameter set will be partly related to the input hydro-climatic data (see 

Section 4.4.1) and partly the calibration process, including interactions with the model 

structure. These uncertainties will be passed through to the regionalisation approach 

and added to by uncertainties in the methods (e.g. regression relationships) and data 

(e.g. basin physical properties) used for extrapolating the calibrated parameter sets to 

ungauged basins. Thus the uncertainties in the regionalised parameter sets are not 

independent of the uncertainties in the available hydro-climate data that were used to 

calibrate the parameters for the gauged basins. These dependencies could be quite 

complex and difficult to identify. The hydro-climatic data used to calibrate models often 

have short record lengths with many gaps and it is not always realistic to assume that 
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the data are of good enough quality to achieve representative calibrations. The Pitman 

model has a large number of parameters that interact with each other such that single 

optimum solutions are rarely possible. The model is also usually calibrated manually and 

therefore different model users working on the same sub-basin may produce different 

calibration parameter sets giving equally good simulations. Because of too many 

parameters (the equifinality problem referred to by Beven and Freer, 2001), a model can 

be fitted to the ‘noise’ in the data rather than the signal (Hughes, 2004a). This makes the 

regionalisation process difficult and uncertain as there would be many acceptable 

parameter sets to choose from to use in determining regionalised relationships. In many 

applications the model structure remains fixed and therefore variations in the 

appropriateness of the model structure could be reflected in the variations in uncertainty 

in parameter values, which is based on the premise that parameter values can be 

adjusted to compensate for model structural problems. 

 

Within the South African context, much of the observed flow data used for model 

calibration have poorly quantified development impacts, which are typically removed by 

naturalisation prior to use in model calibration.  Without more detailed land use and 

water use data, this naturalisation process will always be uncertain and the calibrated 

parameter sets will reflect this uncertainty. Where observed flow data are scarce, the 

calibrated parameter sets may not provide sufficiently representative information upon 

which to base any regionalisation approach. 

 

Part of the uncertainty emanates from the lack of precision of the statistical relationships 

or regionalisation indices between calibrated parameter values and the physical property 

data (Hughes, 1982; Mazvimavi, 2003). While methods are available, and have been 

presented in the literature, for quantifying these sources of uncertainty, their impacts on 

parameter sets for ungauged basins has been referred to less often (Yadav et al., 2007). 

Direct parameter mapping approaches, based on some measure of basin similarity (e.g. 

Midgley et al., 1994), using either physical property data and/or hydro-climatic data, 

often suffer from the qualitative (or subjective) nature of the mapping method. Some 

calibrated parameters may also be highly sub-basin specific, making it difficult to 

determine regional patterns.  
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4.4.3.2 Uncertainty associated with a priori parameter quantification  
 
An alternative approach (see Figure 4.1) to parameter estimation (for both gauged and 

ungauged basins) is to use a priori parameter quantification (Kapangaziwiri and Hughes, 

2008) based on basin physical property data and conceptual interpretations of the model 

parameters. The resulting parameter sets will reflect uncertainties associated with the 

physical property data and the methods used to relate the basin physical property data 

to parameter values. The assumption of this approach is that both the model structure 

and parameters are based on sound physical hydrological principles (Kapangaziwiri, 

2008). One of the potential advantages of this type of approach, particularly in areas 

where hydro-climatic data are scarce, are that the uncertainties in parameter estimation 

should be independent of the hydro-climatic data uncertainties. This approach also 

overcomes many of the issues associated with non-uniqueness of calibrated parameter 

sets and equifinality (Beven, 2006b).  

 

Uncertainties in the physical property data will be related to differences in the scale of 

the available data and the scale of modelling as well as the resolution and accuracy of 

the available information. In some cases the model scale may be finer than the available 

data and the differences between sub-basins may be difficult to quantify (refer also to 

Section 4.4.2 on model structure uncertainty). As an example, FAO (2003) provide an 

internationally accepted soil classification method (soil characteristics, soil horizons and 

soil properties) based on the Global Soil and Terrain (SORTER) database, but the 

spatial resolution of such data do not match the scale resolution of models used in South 

Africa (see Figure 4.2, top right). In other cases, the model scale may be coarser than 

the available data and uncertainties may be associated with the way in which the data 

are sampled to achieve a representative sub-basin value. In South Africa, the landtype 

database (AGIS, 2007), for example, has detailed soil information presented as depth 

ranges and texture classes but interpreting this information when estimating Pitman 

model parameters is often not a straightforward task as some up-scaling may be 

required (see Figure 4.2, bottom left). The main sources of uncertainty are associated 

with the spatial variation of depth and texture and the most appropriate method to 

specify basin averages.  These disparities in the level and amount of detail of available 

soil information from different sources as illustrated in Figure 4.2 have implications for 
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both a priori parameter estimation methods, such as that proposed by Kapangaziwiri 

(2008), as well as for regionalizing parameter values using regression type relationships.  

 

The accuracy of the basin physical property data also includes the degree to which the 

available data are hydrologically appropriate. For example, soil characteristic information 

is frequently designed for agricultural use and values of hydrological relevance (porosity, 

water holding capacity, field capacity, hydraulic conductivity, etc) are often inferred from 

relationships with texture, structure or soil type (Schulze, 1997). The measurement 

techniques and scale (or number of point observations used) at which basin property 

data are originally measured are also important, but rarely specified as part of the final 

data products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Illustration of the spatial scales and the level of detail of the soils 

information available from different sources (Kapangaziwiri, 2008). 

 

The uncertainty issues related to the resolution and accuracy of the physical property 

data will combine with uncertainties in the a priori methods themselves and are expected 

to be associated with the extent to which the estimation equations reflect the conceptual 

structure of the model (Kapangaziwiri, 2008). These uncertainties are always difficult to 

quantify and isolate from uncertainties associated with physical property data. 
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Ultimately, there are many sources of uncertainty associated with parameter value 

estimation approaches and many of them will be inter-dependent. This presents a real 

challenge in terms of quantifying the overall uncertainty. While the literature review 

presented in Chapter 2 indicates that the issues of quantifying overall uncertainty have 

been widely covered in previous studies, the most appropriate approach to use in any 

specific modelling application will not always be obvious. While it is one thing to identify 

the primary sources of uncertainty, it is another thing to quantify this uncertainty in a 

specific situation.  

 

4.5 Potential for reducing uncertainty 

 

Several suggestions have been raised in the literature on the potential options of 

reducing the different sources of uncertainty in hydrological modelling (Section 2.6). 

However, the present section attempts to briefly identify potential areas of reducing 

uncertainty for specific modelling applications in South Africa and the most obvious 

areas are highlighted in Figure 4.1. Some of these are dealt with in further detail during 

later chapters, while others are beyond the scope of the present study.  

 

Hydro-climatic (rainfall, evaporation and streamflow) data uncertainties may be reduced 

through more data collection (increasing network densities), improvements in the 

measurement techniques for some variables, as well as making better use of existing 

data through pre-processing methods. The use of spatially averaged information from 

satellites or radar also offers many possibilities, but may also introduce additional 

uncertainty when combined with more traditional ground based observations (Hughes, 

2006a, b; Hughes et al., 2006; Wilk et al., 2006).  

 

Improvements in the methods of measuring and interpreting basin physical property data 

is an area that offers a high potential for reducing uncertainty, especially given the 

increasing availability of alternative sources of information, such as remote sensing. 

However, improvements in the techniques used to integrate these data at appropriate 

modelling scales are also required for this potential to be realised. Another way of 

reducing parameter uncertainty is to increase the amount of information available to 

identify parameters, but the success of this depends on the ability of the model structure 
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to handle more output variables (Beven, 2001a). An alternative way is to use different 

periods to identify model parameters and this leads to the multi-objective calibration 

approach for estimating model parameter values and model evaluation (Wagener et al., 

2001). With respect to a priori estimation methods, improved parameter estimation 

methods (algorithms) that reflect the nature of the available data, but are also linked to 

the understanding of the model operation and parameter inter-dependencies are 

required. It stands to reason that improving databases of spatial data and revision of the 

parameter estimation approaches are the most critical areas to effectively reduce 

parameter predictive uncertainty.  A method that potentially compliments the a priori 

parameter estimation approach is that proposed by Yadav et al. (2007) which is based 

on using regionalised runoff-response (basin behaviour) signatures to constrain 

behavioural model parameter sets. 

 

Another target area is to reduce uncertainty in the accuracy of water use or basin 

development data. This is particularly important where observed flow data are used for 

model calibrations or evaluating other sources of uncertainty, but equally so when 

generating estimates of present day water availability using water resources systems 

models.  Once again, remote sensing and satellite data sources have the potential to 

contribute. 

 

One of the important issues to recognise from a practical point of view is that the focus 

areas for uncertainty reduction should be those that have the potential to produce 

relatively rapid, cost-effective and measurable results. In a southern African context, the 

focus is therefore unlikely to be on expanding the existing gauge (rainfall, evaporation 

and stream flow) networks. First of all these can be expensive to establish and maintain, 

while secondly it has proved difficult in the past to convince governments of the 

importance of such improvements. Perhaps the focus should be on maintaining existing 

networks and concentrating research efforts on making the most out of some of the 

emerging data products derived from remote sensing platforms.   
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5. UNCERTAINTY IN SPATIAL RAINFALL ESTIMATION AND
IMPACTS ON SIMULATED RUNOFF

5.1 Introduction

This chapter explores the uncertainties associated with the estimation of spatially

averaged rainfalls and the extent to which these uncertainties are propagated into

streamflow predictions. Rainfall has been found to be the main driving force behind most

hydrological processes and rainfall-runoff models are frequently more sensitive to rainfall

inputs (Schulze, 1997, 2006) than other climate variables. It is therefore important that

rainfall inputs should be as spatially and temporally representative as possible before

they are used as model inputs. The accuracy of areal rainfall estimates depends on the

representativiness of point raingauges, the degree of spatial and temporal averaging and

the methods used to spatially interpolate raingauge measurements as referred to in

section 4.4.1 in Chapter 4.

Studies of spatial and temporal resolutions of rainfall measurements have demonstrated

the advantages of the improved accuracy of rainfall inputs in rainfall-runoff modelling

(Krajewski et al., 1991; Andréassian et al., 2001; Dong et al., 2005). The pre-existing

condition of deriving accurate areal rainfall estimates is that a representative sample of

raingauges is available. Therefore, studies that analyse rainfall uncertainty should use

relatively dense raingauge networks or alternatively raingauges should be located in the

critical sites to capture any local scale physiographic effects. Data should also be pre-

processed carefully to avoid systematic errors and reduce heterogeneity in the datasets

(Schulze, 1997). While the implications for estimating sub-basin areal rainfall inputs to

hydrological models are clear, there have been few attempts to quantify uncertainty and

its impacts on simulated runoff through the application of the Pitman model in South

Africa.  In this chapter, an approach based on using real rainfall data from observation

stations (not stochastic rainfall inputs) is used to thoroughly investigate the effects of

various raingauge sampling methods and consequent areal rainfall estimation

uncertainties on the uncertainty of generated runoff. With raingauge networks,

uncertainties not only arise from limited spatial sampling but also from the location of the

raingauges in a sub-basin with respect to real patterns of rainfall variation.
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Most of the analyses are based on the national network of daily rainfall observations

acquired from the former CCWR and/or SAWS, and using the various test sub-basins

drawn from South Africa. However, one of the rainfall uncertainty assessments has been

based on some short period, but higher spatial resolution rainfall data collected in the

Bedford area as part of a semi-arid modelling research programme (Hughes and Sami,

1991). The Bedford (Q92F quaternary catchment) data cover approximately 665km2 with

a gauge density of 1 raingauge per 24km2 and very little missing data over the 5 years of

observation. In contrast the spatial resolution for the other sub-basins (using the national

network of raingauges) is generally less than 1 raingauge per 100km2 and varies over

time as raingauges are added to, or removed from service. While the record lengths are

typically much longer than the Bedford data, in many cases there are frequent periods of

missing data.

Strictly, rainfall uncertainty cannot be easily quantified as there is no perfect rainfall

observation and thus no means of obtaining the ‘true’ rainfall from which to estimate

uncertainties (Schutlz, 1985). As a consequence, the reference datasets that use the

highest number of raingauges were assumed to provide the ‘best’ estimate of the true

rainfall against which other rainfall estimates (realizations) could be compared. There

are, of course, situations where the highest density network will not provide a

satisfactory representation of real rainfall variations. This is particularly the case in areas

with strong orographic rainfall gradients, which have few raingauges in the elevated

parts of the basin.  However, the assumption that the highest density network provides

the least biased estimate should still be valid in most cases.

5.2 Approaches to generate spatial rainfall data

While it is recognised that there are a number of alternative spatial interpolation

approaches, the Inverse Distance Weighting procedure (IDW) has been used throughout

this study. This technique was chosen because it is easy to use and not computer

intensive, and when the density of the point data is sufficient and the variation in rainfall

is not complex the method has been demonstrated to be adequate (Lynch, 2004). The

IDW method typically uses 3 or 4 gauges lying within a maximum search radius to

generate the sub-basin spatial averaged rainfalls. However, the inclusion of key

raingauges with short records, or exclusion of those with long records, often relies on the
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intuition of the modeller. When there are missing data in the records, the interpolation

approach uses the next closest raingauge and it is possible that the maximum number of

raingauges may not be found within the maximum search radius. This approach

prevents raingauges being used which are too far from the sub-basin even when

optimally located raingauges have missing data periods.

There are numerous interpolation techniques that have been proposed in the literature

which range from simple Thiessen polygons to more complex Kriging techniques (Syed

et al., 2003). Some methods, such as weighted averages (Thiessen and Inverse

Distance Weighting), are based directly on the original data points or mathematical

formula that determine the interpolation surface, while Kriging techniques are based on

statistical models to produce optimal interpolation of point data (Krajewski, 1987).

Despite Kriging being the most powerful and effective tool, it does not address all the

rainfall interpolation problems (Teegavarapu and Chandramouli, 2005) and is

computationally intensive. As Lynch (2004) concluded, the IDW approaches, however,

are not very reliable in areas of complex topography with sparse networks, especially

where elevated parts of the basin are not represented by raingauges (see also Schäfer,

1991). For areas where the topography is complex, some correction procedures are

frequently required to improve IDW based estimates, but such procedures must be

simple and not the complex statistical approaches such as Co-Kriging (Krajewski, 1987).

The spatial rainfall variations in such areas are often highly non-linear and not

consistent, frequently varying with synoptic weather patterns.  Previous approaches in

South Africa have used additional weighting factors based on gridded mean annual or

mean monthly rainfall data (Hughes, pers. comm.). The weighting factors are based on

the ratios of the grid values averaged over the catchment to the grid values for individual

raingauges. However, where mean annual rainfall spatial gradients are large there is a

tendency for this approach to over-exaggerate extreme rainfalls. It is therefore

reasonable to conclude that the most important consideration in the success of any

spatial rainfall interpolation method is the information content of the raingauge network

rather than the methods themselves.
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5.3 Rainfall uncertainty assessment for the Bedford sub-basin

The Bedford experimental sub-basin (see Figure 3.9; Chapter 3) was established in

1987 (Hughes and Sami, 1991) to investigate hydrological processes and test

hydrological models in a semi-arid region of South Africa. The total area covered by the

sub-basin is approximately 665km2 and it corresponds to quaternary catchment Q92F

(Midgley et al., 1994). Break point rainfall data are available for 28 raingauges as shown

in Figure 5.1 for a period of 5 years (1988-1992). This raingauge network represents one

of the few South African examples of a relatively high spatial resolution of observations

covering a complete sub-basin (quaternary catchment).

The objective of this part of the study was to assess the impacts of varying the spatial

and temporal resolution of rainfall observations on estimates of spatially averaged sub-

basin rainfalls and on the resulting streamflow volumes simulated by a monthly time-step

rainfall-runoff model. The model was set up with a dense raingauge network (28

raingauges) which was then re-sampled to represent different reduced gauge densities.

The following steps were used:

i. A grid of size 5 * 5 minutes of a degree was established, with a total of 12 grid

squares (including grids not completely inside the sub-basin boundary) assumed to

represent the ‘total’ sub-basin area. Table 5.1 and Figure 5.2 illustrate the

assumed linkages between the grids.

ii. All 28 raingauge stations were used to establish both daily and monthly time series

of spatially averaged rainfall for each of the 12 grids. The spatial averaging was

based on the Inverse Distance Weighting procedure using a maximum of 3 gauges

and a large enough search radius to ensure that no gauges will be excluded in a

search to replace missing data. The spatially averaged monthly time series were

generated in two different ways:

a. Daily observed gauge rainfall data were used to create daily spatial averages

and then aggregated to monthly averages.

b. Observed monthly gauge rainfall data were used to generate monthly spatial

averages. In this situation even one missing day in a gauge rainfall record

means that the whole month for that gauge will be considered missing and

an alternative gauge will have to be used.
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iii. Sub-samples of the 28 raingauges were used to generate the spatially averaged

rainfalls as in step ii. The sub-samples were selected semi-randomly on the basis

of the station numbers using the following approach:

a. 2 samples of 14 raingauges each (Figure 5.3), using the even and odd

numbered stations (samples Even and Odd).

b. 4 samples of 7 raingauges each (Appendix 2.1; i), using 50% of the even and

odd numbered stations (samples Even50%1 and 2, Odd50%1 and 2).

c. 8 samples of 4 raingauges each (Appendix 2.1; ii and iii), using 25% of the

even and odd numbered stations (samples Even25%1 to 4, Odd25%1 to 4).

iv. The time series of spatial average rainfalls were compared for all the grids with the

‘reference’ time series generated using all the available rainfall data from 28

raingauges – step ii). A set of standard statistics from SPATSIM (see Chapter 3,

section 3.4.1) were used to compare the time series.

v. All the spatial average rainfall time series were used as input to a monthly rainfall-

runoff model. The model parameter values were set to be the same for all rainfall

realizations and grids, and were based on a previous calibration of the revised

version of the Pitman model (Hughes, 2004b) to simulate the pattern of monthly

flows for Q92F quaternary catchment given in the WR90 database (Midgley et al.,

1994). The calibration was based on the WR90 naturalised flows in the absence of

any long time series of observed flows. The final analysis consisted of comparing

the simulated flows for the different spatial rainfall inputs with the flows generated

using the ‘reference’ rainfall data derived from 28 raingauges.

Table 5.1 Linkages between grids for Bedford sub-basin showing direction of flow.

Grid name Flows into grid
22 23
23 24
24 18
25 18
16 17
17 18
18 11
9 17
10 17
4 11
11 12
12 Sub-basin outlet
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Figure 5.1 Schematic for gridded Bedford sub-basin, showing the location of the 28

raingauges (NYP1 – NYP28).

Figure 5.2 Schematic of 5’ x 5’ grids (total 12) representing the Bedford sub-basin

area with arrows showing the direction of flow of water within the sub-

basin.

25.92°E 26.0°E 26.08°E 26.16°E 26.24°E

-32.68S

-32.76S

-32.84S

-32.92S

Scale: 1 min of a degree is equivalent to 1.85 km

Scale: 1 min of a degree is equivalent to 1.85 km
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Figure 5.3 Distribution of ‘Odd’ (left-hand side) and ‘Even’ (right-hand side) samples

(numbered) with 14 gauges each.

5.3.1 Results for Bedford example

Figures 5.4 and 5.5 illustrate the results for all 12 grid squares for the Bedford sub-basin

for even and odd raingauge sub-samples respectively.  The sub-samples were based on

14, 7 and 4 raingauges derived using a semi-random sampling procedure (step iii of the

methodology above). The three sets of results on each graph refer to comparisons

(against estimates generated based on all 28 raingauges and using the coefficient of

efficiency statistics) of daily spatial data generated from daily gauge data, monthly

spatial data generated from monthly gauge data and monthly spatial data aggregated

from daily spatial data.

As might be expected, uncertainties in estimating daily spatial rainfall increase (low CE

values) with a decrease in raingauge density (4 raingauges) more so than in estimating

monthly spatial rainfall. The increased uncertainties are due to the higher variability in

daily data than in monthly data (related to temporal averaging). The higher uncertainty

for grid 4 may be related to extrapolation of rainfall data from nearby gauges as there

are no raingauges which lie within this grid. The uncertainty in rainfall estimates for grid

11 (as in all other grids) as shown in Figures 5.4 and 5.5 derived using samples with

reduced raingauge numbers (7 and 4 gauges) were expected. However, the uncertainty

for the daily-daily estimate for grid 11 based on using a sample of 14 raingauges was not

expected and may be due to the inability of raingauges to capture the actual rainfall

variations within the grid. Moreover, the graphs (Figures 5.4 and 5.5) also show that the

Scale: 1 min of a degree is equivalent to 1.85 km
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uncertainty in areal rainfall estimates can be reduced if daily data (higher temporal

resolution) are used in spatial averaging and then aggregated to monthly values than

using monthly spatial data generated directly from monthly gauge data (coarse temporal

resolution).

Figure 5.4 Comparisons (with estimates based on a sample of 28 gauges) of spatial

average rainfall estimates using 14, 7 and 4 gauges based on even sub-

samples.

It is interesting to note that the rainfall estimate based on a higher number of raingauges

is not always better than one based on a lower number (see e.g. grid 25 comparison of

the daily-daily rainfall estimate using 14 gauges in Figure 5.4 and that using 4 gauges in

Figure 5.5). This serves to illustrate that the number of gauges is not the only factor that

contributes to uncertainty in spatial rainfall estimates and that the spatial arrangement of

those gauges is also important (Figure 5.6). In this specific case, the result is a

consequence of the sampling procedure adopted and that the two ‘best’ gauges for grid

25 are both ‘odd’ (NYP9 and NYP27, see Figures 5.3 and 5.6). While the spatial

arrangements of some of the raingauges are shown in Figures 5.3 and 5.6, the spatial

arrangements of the other different samples of raingauges are in Appendix 2.1. From the

analysis, one can deduce that the inclusion of gauges that are in the vicinity of the grid

but not representative of rainfall variations may introduce uncertainty in the spatial

rainfall estimates during the spatial interpolation process and that a larger sample does

not necessarily give the ‘best’ rainfall estimate of real spatial variations in a sub-basin.
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Figure 5.5 Comparisons (with estimates based on a sample of 28 gauges) of spatial

average rainfall estimates using 14, 7 and 4 gauges based on odd sub-

samples.

As an alternative to the use of objective statistics to assess rainfall uncertainties,

differences in rainfall estimates can be illustrated using comparisons of rainfall frequency

of exceedence curves. Figure 5.7 shows the results for three grids; one taken from

upstream (i.e. grid 23), one from the middle (i.e. grid 17) and one from downstream (i.e.

grid 11) and for four of the monthly rainfall realizations. There are clearly large

differences for all the grid squares at high rainfalls. This is an important observation with

respect to runoff estimation in a semi-arid sub-basin which will be dominated by high

intensity rainfalls. The result may be due to systematic variations in rainfall depths that

also depend on rainfall distribution and amount. A comparison of the rainfall frequency

curves based on all 28 raingauges provides an indication that rainfall spatial gradients

exist in the Bedford area, with some grids (grid 23 in the upstream part of the sub-basin)

receiving higher maximum rainfalls (±190mm) than grid 17 in the middle part of the sub-

basin (±160mm) and grid 11 downstream (±140mm). This result offers some explanation

for the differences in spatial rainfall estimates derived from different gauge densities. The

propagation of rainfall uncertainty within grids to simulated runoff uncertainty is dealt with

later in this Chapter.
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Figure 5.6 Distribution of ‘Odd’ (left-hand side) and ‘Even’ (right-hand side) samples

with 4 raingauges each.

Figure 5.7 Monthly rainfall exceedence frequency curves for four realizations (based

on even samples) over 3 grids.
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5. 4 Assessment of rainfall uncertainty based on data from the national
raingauge network

The previous section analysed the effects of reducing the spatial resolution of rainfall

measurements on spatially averaged rainfall estimation using a short record raingauge

from a dense network established for research purposes. The quality of raw data as well

as the raingauge density is better than might be expected when using rainfall data from

the national network, as would be case with water resources estimation in most of the

sub-basins in South Africa. The sub-basins listed in Table 5.2 were selected partly

because they all have relatively high raingauge densities at some time in the past, while

others were selected based on their climate and topographical features (elevated or flat

areas). This was necessary so that comparative analyses, similar to that carried out for

the Bedford sub-basin, could be performed using a range of sub-basins. It is important to

note however, that while the maximum number of raingauges in these sub-basins may

have been quite high in the past, there are frequent gaps in the data and the number of

gauges can vary quite substantially over time (see e.g. Appendix 1.1). For example,

Figure 5.8 (left-hand side) and Table 5.3 both indicate that there are 46 raingauges

which were operational over a common 20 year period (1930 to1950) (see Table 5.2) in

the whole Seekoei River basin (a semi-arid and flat basin), while a maximum of 29 were

still operational from 1950 to 1970. During 1980 to 2000, the number of operational

raingauges reduced to 8. Figure 5.8 (right-hand side) and Table 5.4 illustrate another

example, but from a humid and mountainous region (Berg River basin), where there

were 16 operational raingauges during 1940 to 1960, which was an increase in the

number of gauges compared to that from the period 1920 to 1940. However, from 1980

to 2000 the number of operational raingauges reduced to 5.

Historic raingauge data spanning the common period 1920-2000 were used to evaluate

the effects of varying gauge density on sub-basin rainfall estimation and the propagation

of this uncertainty into streamflow estimation uncertainty. The ‘Reference period’ in

Table 5.2 refers to the period (20 or 30 years long) when data for the maximum number

of raingauges were available for each basin. The final column of Table 5.2 refers to the

number of raingauges that were active or operational during other periods, as well as

during the reference period. Multiple realizations of areal averaged sub-basin rainfall

were generated for all of the raingauge groups for the reference period. For example, six
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sub-basin rainfall time series were generated for the C83A to C sub-basins for the

reference period 1930-1950 using the 15, 10, 9, 6, 4 and 3 raingauges also active during

the listed periods (Table 5.2). In all cases the Inverse Distance Weighting procedure was

used to generate spatially averaged sub-basin rainfalls using an un-restricted search

radius and a maximum of 3 or 4 (depending on sub-basin size) gauges. Where some

records have missing data, the interpolation procedure simply uses data from the next

closest gauge (unless there are no more gauges available). As the sub-basin raingauge

density decreases it is clear that more distant raingauges will be used.

Table 5.2 Number of raingauges available (in brackets) for the different rainfall

realizations for 8 river basins (with a total of 31 sub-basins).

Basin region Reference period Time period & no of gauges
Vaal-C83A, B & C 1930-1950 (15) 1940-1960(10)
(250-830km2), sub humid 1950-1970(9)

1960-1980(6)
(3 sub-basins) 1970-1990(4)

1980-2000(3)
Limpopo-A23A, sub-humid 1930-1950(12) 1940-1960(8)
(682km2) 1950-1970(6)

1960-1980(5)
(1 sub-basin) 1970-1990(3)

1980-2000(1)
Orange-D32A to K 1930-1950(46) 1940-1960(31)
(572 to 1443km2), 1950-1970(29)
arid/semi-arid 1960-1980(24)

1970-1990(15)
(10 sub-basins) 1980-2000(8)
Sabie-X31A  to G (7 sub-
basins) 1950-1980(25) 1930-1960(12)
(94 to 214km2), humid 1970-2000(12)
Berg-G10A to D 1940-1960(16) 1920-1940(7)
(126 to 687km2),humid 1960-1980(12)
(4 sub-basins) 1980-2000(5)

Lions-U20A-C 1950-1980(11) 1930-1960 (5)
(279-358km2),humid(3 sub-
basins) 1970-2000(2)
Thukela-V70A-B 1950-1980(5) 1930-1960(1)
(124 to 276km2), humid
(2 sub-basins) 1970-2000(4)
Vaal-C12D , (898km2), 1930-1950 (7) 1950-1980(3)
sub-humid(1 sub-basin) 1970-2000(1)

The various realizations of monthly spatial average rainfall time series were used as

inputs to the hydrological model to assess the impacts on runoff generation. The model
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was not calibrated for each realization but a fixed set of regionalised model parameters

based on Midgley et al. (1994) were used. The analyses were based on comparing the

‘reference’ rainfall estimate (the realization using the highest number of raingauges) with

alternative estimates using a smaller number of gauges that were active during the other

periods. Comparisons were made between the spatially averaged rainfalls (both daily

and monthly) as well as between the patterns of runoff simulated when the model was

driven by different rainfall realizations and several statistical measures of comparison

referred to in section 3.4.1 were used.

Table 5.3 A list of raingauge stations for the Seekoei River basin (D32) example.

Sub-basin Station name Start year End year No. of  years
D32A 0118640W 1912 1998 76

715km2 0118694W 1908 1953 45
0118782W 1913 1941 28

D32B 0119091W 1934 1982 48
581km2 0119097W 1917 1983 66

0119276A 1911 1989 78
0119276W 1911 1989 78
0119315W 1907 2000 93

D32C 0144266W 1913 1956 43
849km2 0144449W 1911 1978 67

0144085W 1911 1976 65
0144385W 1913 1954 41
0144253W 1913 1950 37
0144534W 1913 1953 40
0144648W 1925 1952 27

D32D 0118066W 1927 1947 20
850km2 0118395W 1907 1989 82

0143598AW 1893 1989 96
1118460W 1925 1950 25

D32E 0143294W 1911 1946 35
1155km2 0143258W 1912 1978 66

0143345W 1913 1990 77
0143853W 1911 1962 51
0143675W 1931 1944 13

D32F 0143579W 1911 2000 88
1441km2 0143784W 1878 1990 112

0144250W 1931 1979 48
0144182W 1923 1953 30
0171177W 1914 1971 57
0170885W 1922 1947 25
0170889W 1906 1946 39
0171117W 1914 1987 73
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Table 5.3 continued.

D32G 0171446W 1913 2000 87
1044km2 0144602W 1941 1971 30

0144580W 1920 1953 33
0144697W 1932 1963 31
0144791W 1884 1999 115
0144795W 1911 1956 45

D32H 0171652W 1941 1978 37
572km2 0172027W 1945 1974 29
D32J 0171756W 1907 1989 82

1063km2 0171546W 1923 2000 77
0172163W 1877 2000 123

D32K 0200180W 1920 1946 26
823km2 0199293W 1920 1952 32

0199894W 1920 1961 41

Figure 5.8 Schematic maps of two river basins in South Africa, the Seekoei River

basin (D32A to D32K; left-hand-side) and the Berg River basin (G10A to

D; right-hand side) with dots representing raingauge stations in each sub-

basin.

D32F

Seekoei River basin

G10B

G10D

G10C

G10A

Berg River basin

0022116W
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Table 5.4 A list of raingauge stations for the Berg River basin (G10) example.

Sub-basin Station name Start year End year No. of years
G10A 0022116W 1920 1961 41
172km2 0022204W 1942 1970 28

0022205A 1942 1974 32
0022174A 1942 1974 32
0022113A 1919 1982 63
0022113W 1919 2000 81

G10B
126km2 no gauges
G10C 0021806W 1911 1991 80
309km2 0021892W 1893 1975 82

0021860A 1941 1991 50
0021795A 1942 1989 47
0021824W 1878 1986 108
0021838W 1936 1991 55

G10D 0022009W 1930 1950 20
688km2 0022038W 1904 2000 96

0022004W 1931 1986 55
0041836W 1941 1979 38

5.4.1 Rainfall uncertainty results and analysis

As might be expected, the results for most sub-basins show greater differences

(compared to the reference estimate) as the number of gauges is reduced. The effects

are typically much greater for daily rainfall estimates than for monthly. Figures 5.9 and

5.10 illustrate that there can be large differences in rainfall between sub-basins within

the same area, particularly for daily rainfall estimations.  Basin D32 (Figure 5.9A)

illustrates that there is not always a simple relationship between gauge numbers and

differences in rainfall estimates, particularly for daily rainfall. A reduction from 46 to fewer

gauges has little impact in some sub-basins (D32E, F and K), but large impacts in others

(D32B and C). In some other cases (e.g. D32B) the results deteriorated when the total

number of gauges for the sub-basin was reduced to 15, while the results for D32F are

still acceptable at that stage and only deteriorate when the number of gauges is reduced

further. For D32H the impact is initially quite large but reduces despite a large reduction

in the number of gauges.  Similarly, basin G10 (Figure 5.9B) shows that there are larger

differences in rainfall estimates in some sub-basins (G10A, C and D) than others

(G10B). The analysis also showed that using the highest number of raingauges does not

always result in better rainfall estimates than when a reduced number is used. For
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G10A, when daily data are considered, a sample of 7 gauges gave better results than a

sample of 12, but this effect is not repeated with the monthly estimations.

A

B

Figure 5.9 Comparisons of daily and monthly rainfall realizations with the reference

period using coefficient of efficiency for Seekoei (A: D32, semi-arid

climate) and Berg River (B: G10, humid climate) sub-basins.
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Figure 5.10 illustrates the results for the Sabie (X31) basin, while Tables 5.5a and b

show the results for the other examples with the addition of two further comparison

statistics. The root mean square error (RMSE) measure used is given by:

 
2

1

1 



N

i
iN

RMSE …………………………………………………………………..5.1

Where N is the number of observations,  is the estimated rainfall value and i is the
actual value of the observation at gauge i.

The results in Table 5.5a show that a reduction in raingauge numbers can lead to

substantial uncertainty in spatial rainfall estimation. When the R2 and CE (which are

dimensionless) are considered, a comparison between results in Table 5.5a and 5.5b

demonstrate larger variability in daily rainfall estimates than monthly estimates as

already demonstrated by Bedford sub-basin example in the section 5.3.

Figure 5.10 Comparisons of daily and monthly rainfall realizations with the reference

period using coefficient of efficiency for Sabie (X31) sub-basins.
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Table 5.5a Comparisons of daily spatial rainfall realizations with the ‘reference’

realization (in brackets are gauges available in the reference period).
Sub-

basins
Statistics Reference C83A C83C
No. gauges C83A(15) & C83C(15) 10 3 10 3
RMSE 0.28 5.42 1.13 1.51
R2 0.99 0.32 0.97 0.94
CE 0.99 0.16 0.96 0.93

U20B V70A
No. gauges U2OB(8) & V70A(5) 5 2 4 1

RMSE 2.19 5.95 1.57 7.85
R2 0.89 0.38 0.95 0.20
CE 0.88 0.13 0.95 -0.20

A23A C12D
No. gauges A23A(12) & C12D(7) 3 1 3 1
RMSE 5.59 6.38 4.39 6.22
R2 0.38 0.31 0.48 0.28
CE 0.26 0.03 0.36 -0.29

Table 5.5b Comparisons of monthly spatial rainfall realizations with the ‘reference’

realization (in brackets are gauges available in the reference period).
Sub-

basins
Statistics Reference C83A C83C
No. gauges C83A(15) & C83C(15) 10 3 10 3
RMSE 1.56 35.41 4.18 6.51
R2 0.99 0.68 0.99 0.99
CE 0.99 0.68 0.99 0.99

U20B V70A
No. gauges U2OB(8) & V70A(5) 5 2 4 1

RMSE 7.85 34.87 7.86 43.48
R2 0.99 0.78 0.99 0.74
CE 0.99 0.75 0.99 0.71

A23A C12D
No. gauges A23A(12) & C12D(7) 3 1 3 1
RMSE 20.46 24.44 18.22 26.56
R2 0.90 0.86 0.91 0.82
CE 0.89 0.84 0.90 0.78

Figure 5.11 shows the variability of rainfall frequencies using different realizations for

D32B and D32J sub-basins (Seekoei basin). The left-hand side of Figure 5.12 shows the

individual raingauge curves which were used in estimating the monthly spatial averages

for basin G10A (right-hand side). The effects of raingauge selection in the spatial
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interpolation are clearly demonstrated. Figure 5.13 shows frequency curves for the other

G10 sub-basins and the X31 sub-basins, while the frequency curves for the other basins

(A23A, C12D, C83A, C83C, U20B and V70B) are provided in Appendix 2.2. The rainfall

variability is high in areas of steep topography (G10 and X31 sub-basins) which impacts

the real distribution of rainfall through orographic effects. If these orographic effects are

not represented by the available gauge data, the interpolation approach will not be able

to account for them. G10A sub-basin (Figure 5.12) illustrates a situation where not only

the total number of raingauges available in a sub-basin contributes to rainfall uncertainty,

but also the position of the gauges that are selected during sampling. The wider

differences in rainfall estimates for 1940-1960 (the reference period) and other rainfall

realizations may be due to the inclusion of a single raingauge (in this case, gauge

0022116W - see location in Figure 5.8) sampled during the spatial interpolation process,

which records exceptionally higher daily rainfall amounts compared to the other

raingauges available in the sub-basin (Figure 5.12, left-hand side). In this case, truly

representative spatial rainfall for this basin may be difficult to quantify with the

information available from the raingauge network alone. In such circumstances,

additional analyses using assumptions of relationships between rainfall depth and

topography may be necessary. However, this is beyond the scope of this study.

Figure 5.11 Monthly rainfall exceedence frequency curves for three realizations over

two sub-basins (the solid square symbol represents the base period

realization).
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Figure 5.12 Effects of choice raingauges (left-hand side) used on estimating monthly

spatial average rainfalls (right-hand side) for G10A sub-basin.

Figure 5.13 Monthly rainfall exceedence frequency curves for three realizations for

G10 and X31 sub-basins (the solid square symbol represents the base

period realization).
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The rainfall uncertainties for the majority of the other sub-basins (see also Appendix 2.2)

are less than for the G10 and X31 sub-basins, which suggests that the effects of

raingauge density variations are site specific. However, the general conclusion is that the

largest differences in monthly rainfall totals occur within high rainfall months which have

a greater impact on uncertainties in simulated runoffs in both semi-arid and humid sub-

basins. It is worth noting that there has been a further reduction in the number of active

raingauges in most parts of South Africa since 2000, which means that future estimates

of rainfall will be highly uncertain unless more complex methods are used in the spatial

interpolation process. It must also be recognised that the real spatial variation in rainfall

is often unknown and that the realization with the largest number of gauges will not

necessarily generate the most realistic spatial rainfall estimate.

5.5 Model performance and runoff response to rainfall uncertainty

5.5.1 Analyses at sub-basin scale

An understanding of the relationship between rainfall and runoff is important in

assessing model performance and investigating the effects of rainfall uncertainty on

runoff estimation uncertainty. Figure 5.14 illustrates typical relationships between

monthly rainfall and runoff for both semi-arid and humid sub-basins.

The scatter plots indicate that rainfall depths below a certain threshold in arid to semi-

arid regions (left-hand side) hardly produce any runoff. This is expected from a

consideration of the much higher initial soil moisture losses in arid to semi-arid regions

compared with sub-basins in humid regions. High evaporation rates and infrequent

rainfall contribute to the general lack of base flow in the semi-arid basins. High soil

moisture deficits suggest that only high rainfall depths will generate any runoff. An

exception to this is when relatively low monthly rainfall totals are made up of only a few

high intensity events which could generate runoff through infiltration excess processes.

Deep-rooted and sparse vegetation in the arid basins often result in high

evapotranspiration rates and low interception and as such only high rainfall event depths

can generate runoff. This contributes to non-linearities in the relationship between

rainfall and runoff, but the overall result is a more consistent relationship than is found for

humid regions. The implication is that uncertainties in spatial rainfall generation for
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rainfall below a certain threshold will not be important in terms of runoff generation.

Figure 5.15 (D32 - a semi-arid basin), however, shows that even in semi-arid areas

rainfall uncertainties are still propagated into simulated runoff responses. In some cases

the differences are evident in the rainfall realizations (left-side of Figure 5.15) as well as

the simulated runoff (right side of Figure 5.15). In others, despite similar RMSE values

for all rainfall realizations, the realization based on a lower number of raingauges

produce runoff RMSE values which are substantially higher (D32A and C).

Figure 5.14 Relationships between rainfall and runoff for a semi-arid (left side) and a

humid (right side) sub-basin.

Figure 5.15 Root mean square error (RMSE) for individual sub-basin rainfall estimates

in mm (left side) and sub-basin runoff response in m3 x 106 (right side) to

different rainfall realizations (based on 31,29,24,15 & 8 gauges) for

Seekoei basin.
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In humid regions, more runoff generating processes are usually active, where both the

rainfall characteristics (depth, duration and intensity) and the antecedent basin moisture

characteristics will play major roles. Relationships between rainfall and runoff, therefore

usually demonstrate far more scatter (Figure 5.14, right-hand side). This scatter can be

further influenced by the presence of delayed runoff responses due to sub-surface

drainage and groundwater discharge. It is therefore realistic to suggest that the

importance of estimating spatial rainfall over the full range of values is greater in humid

regions than in semi-arid regions. The consequences on runoff generation due to the

use of uncertain rainfall estimates are illustrated in Table 5.6. The table provides

statistics of comparison between time series of simulated monthly runoff generated for

the reference period (highest gauge density) and the rainfall realizations using the

gauges that are available during the other periods. Only the best case (relatively more

gauges) and worst case (least number of gauges) scenarios are shown for each sub-

basin.

Examples X31(A and B) in Table 5.6 show that even when different samples with equal

gauge numbers are used, the model performance statistics can be substantially different.

X31 also illustrates that the effects of rainfall uncertainty can be very different for closely

adjacent sub-basins (X31A and X31B), which might reflect orographic effects on rainfall

distribution. G10A and D illustrate how the flow simulations can be affected by even

small changes in the number of available gauges. Most of the results for the other sub-

basins in Table 5.6 show that the model performance deteriorates when the worst case

scenario (least number of gauges) has been used. There are cases where this is not true

and apart from the total number of raingauges required for adequate rainfall-runoff

simulation, there are other important factors including orographic effects and the extent

to which they are adequately represented by the gauges. The results do, however,

demonstrate the high degree of uncertainty that can exist at the sub-basin scale related

to the use of different combinations of raingauges as well as a consistent spatial

interpolation method.

Based on the volume difference statistic (%Diff.Mn (Q)) in Table 5.6, the results indicate

that the uncertainty related to spatial rainfall estimation can be extremely large. For the

worst case rainfall estimation in sub-basin D32B (using 8 gauges still active during 1980

to 2000) the generated runoff is over 200% greater than the estimate based on the
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reference period gauges (using 46 raingauges). The results are similar for C83, G10,

X31 and V70 sub-basins.  In contrast, the uncertainty in U20B is very much less and the

flow simulations based on 5 or 2 gauges are not very different. Similar patterns are

observed for A23A, C12D and D32J sub-basins. The extent to which these findings, at

the scale of single sub-basins, apply at wider basin scales is discussed in sub-section

5.5.2.

Table 5.6 Model performance simulation statistics based on different rainfall

realizations when compared to reference simulations for each sub-basin

(in brackets are gauges available in the reference period).

Sub-basins
Statistics Reference D32B D32J
No of gauges (46) 32 8 32 8
%Diff.Mn(Q) 2.19 232.24 -0.97 7.4
R2(Q) 0.96 0.23 1.00 0.99
CE(Q) 0.95 -10.85 1.00 0.99
%Diff.Mn(InQ) -1.70 79.60 3.32 0.01
R2(InQ) 0.94 0.48 0.99 0.97
CE(InQ) 0.94 0.30 0.99 0.97

X31A X31B
No of gauges (25) 12 12 12 12
%Diff.Mn(Q) 78.67 6.58 -1.98 58.06
R2(Q) 0.65 0.81 0.91 0.77
CE(Q) -1.72 0.80 0.90 -0.36
%Diff.Mn(InQ) 30.81 -4.62 -1.91 19.76
R2(InQ) 0.68 0.86 0.94 0.82
CE(InQ) -0.46 0.82 0.92 0.27

U20B V70A
No of gauges U20B(8) & V70A(5) 5 2 1 4
%Diff.Mn(Q) -2.00 -2.00 -18.15 -0.79
R2(Q) 0.97 0.88 0.64 0.99
CE(Q) 0.97 0.87 0.60 0.99
%Diff.Mn(InQ) -2.09 -2.99 -17.00 -0.91
R2(InQ) 0.98 0.95 0.78 1.00
CE(InQ) 0.98 0.94 0.66 1.00

A23A C12D
No of gauges A23A(12) & C12D(7) 3 1 3 1
%Diff.Mn(Q) 5.91 0.78 19.20 21.98
R2(Q) 0.62 0.34 0.80 0.46
CE(Q) 0.56 0.26 0.77 0.26
%Diff.Mn(InQ) 25.71 40.00 30.61 29.93
R2(InQ) 0.89 0.82 0.81 0.65
CE(InQ) 0.88 0.80 0.77 0.57
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Table 5.6 continued.

Statistics Reference G10A G10D
No of gauges (16) 7 5 7 5
%Diff.Mn(Q) 0.39 -65.35 38.16 65.35
R2(Q) 1.00 0.82 0.94 0.94
CE(Q) 1.00 0.20 0.52 -0.10
%Diff.Mn(InQ) 0.11 -60.64 15.95 24.9
R2(InQ) 1.00 0.92 0.97 0.97
CE(InQ) 1.00 0.55 0.93 0.84

C83A C83C
No of gauges (15) 10 3 10 3
%Diff.Mn(Q) 0.00 -27.51 -0.32 -11.86
R2(Q) 1.00 0.11 1.00 0.45
CE(Q) 1.00 0.10 1.00 0.45
%Diff.Mn(InQ) 0.58 -5.13 -1.08 -1.27
R2(InQ) 1.00 0.71 0.99 0.83
CE(InQ) 1.00 0.69 0.99 0.82

In general terms, the impact of rainfall uncertainty appears to be greater for semi-arid

sub-basins, which are characterised by low runoff efficiencies (ratio of basin runoff to

rainfall) and highly non-linear rainfall-runoff relationships (Shah et al., 1996), as well as

areas where there are significant altitude related rainfall gradients that are poorly

represented by the available gauges (G10 and X31). While these results tend to support

the concept that lower runoff efficiencies will often lead to higher relative runoff errors for

a given rainfall estimation error (Xu et al., 2006), there are other factors that clearly play

a major role making simple generalisations less than completely valid.

5.5.2 Analyses at the basin scale

The previous section investigated the impacts of different spatial rainfall realizations on

simulated runoff generated within single sub-basins (incremental flows). The extent to

which variations in spatial rainfall estimates and simulated runoff balance each other out

across sub-basins will clearly have an impact on simulated runoffs at basin outlets. The

previous sub-section 5.5.1 has clearly demonstrated that the relatively large

uncertainties can be associated with the preparation of rainfall data inputs to

hydrological models at individual sub-basin scales (Faurés et al., 1995).

Returning to the Bedford example, Figure 5.16 illustrates the effects on runoff simulation

at different points within the basin. Grid 23 is an upstream grid and the ‘worst’ simulation
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(4 gauges) generates a peak monthly runoff which is 30% less than that of the ‘best’

simulation (28 gauges). In this quaternary catchment the situation is very similar when

the individual grid runoff simulations are routed to the catchment outlet (grid 12).

However, the propagation of rainfall differences to simulated runoff differences is not

very conclusive in this example due to the short record length (very few months in which

runoff is generated).

Figure 5.16 Illustration of the effects of reducing number of raingauges on simulated

streamflow volumes in different grids (Bedford sub-basin example).

Figures 5.17 and 5.18 and Appendix 2.3 (in which the best rainfall realization is

compared to the worst case rainfall realization) compare the rainfall input uncertainties

and the extent to which they are propagated in the rainfall-runoff model to output

uncertainties using the differences (expressed as percentages relative to the base

period realization) in annual rainfall and simulated runoff totals. In the first humid

example (X31A in Figure 5.17), differences in annual rainfall mostly fall within the range

±100%, while the corresponding runoff differences are mostly within 80% for the

upstream sub-basin. For the downstream sub-basin (X31B) the rainfall errors are within

±30%, while the runoff differences frequently exceed 80% with a decreasing trend from

1970-1980 representing a dry period. The second humid example (G10A in Figure 5.17)

is characterised by steep topography, where differences in rainfall and consequently

simulated runoffs are all negative reflecting a systematic under-estimation of rainfall

totals and simulated streamflow volumes. The simulated runoff differences are much

less in the downstream sub-basin which could be partly attributed to the generally
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positive rainfall differences in the lower parts of the basin and the fact that G10D has a

greater catchment area. The two examples (X31 and G10) further illustrate the effects of

systematic rainfall uncertainty due to orographic effects.

Figure 5.17 Percentage differences (relative to the base period realization) in

estimated annual rainfalls and annual runoffs for one realization (few

gauges) for humid Sabie (X31) and Berg (G10) sub-basins (upstream

X31A,G10A & downstream- X31B, G10D).

Notes: % Diff. in rainfall and %Diff in runoff in Figures 5.17 and 5.18 represents

percentage differences of using one realisation relative to the base period realization in

annual rainfall and simulated runoff totals respectively

In a semi-arid example (for sub-basins in D32, Figure 5.18) the range of annual rainfall

differences is within ±60%, while annual runoff differences are within 350% but the
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extremes can be as high as 750%. Generally, the results for D32A and D32B are similar,

except for some extreme cases. For the downstream sub-basins (D32F and J), the

runoff differences are relatively low and more evenly distributed between positive and

negatives (i.e. ±100%), while there is an extreme case of 450% for D32F sub-basin. This

is a result of upstream differences being relatively random and therefore being partly

cancelled out as sub-basin runoffs are routed downstream.

Figure 5.18 Percentage differences (relative to the base period realization) in

estimated annual rainfalls and annual runoffs for one realization (few

gauges) for semi-arid Seekoi sub-basins (upstream- D32A, B &

downstream- D32F, J).

.
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5.6 Discussion and observations

5.6.1 Rainfall uncertainty analyses

It is apparent that in many parts of the world, networks of hydrometeorological

observations are shrinking. South Africa is no exception and the sample of 8 basins

used within this study illustrates the situation. In some cases the number of available

raingauges has reduced by 50% or more and the situation after 2000 is even worse

(Hughes and Mallory, 2008). It is therefore inevitable that the information content of the

national rainfall monitoring network is declining and this part of the study has illustrated

the potential impacts on estimations of spatial rainfall, which contributes to uncertainty in

one of the key inputs to hydrological models.

The study has demonstrated that predicting levels of uncertainty consequent on a loss of

observed rainfall information is not straightforward. The uncertainty is dependent on the

temporal resolution of the raw gauge data and the model input as well as on the climatic

characteristics of the basin. There are inevitably higher potential errors in the use of daily

data given that individual gauge differences are expected to be greater at a daily time

scale than at a monthly time scale. While only a monthly time-step model was used in

this study, the implication of this observation for daily modelling, and particularly for real-

time modelling based on daily data are clear. The Bedford example suggests that some

advantages can be gained from using daily data in the spatial interpolation approach and

then aggregating the daily spatial data to monthly totals. This is because the use of

monthly data to estimate basin spatial average rainfalls tends to smooth the variations

and noise in daily data. The present study has also demonstrated that significant

uncertainties are introduced when a reduced number of raingauges is used to estimate

the spatial rainfall and that these uncertainties vary both in space and time, which

confirms studies carried out in other parts of the world (Andréassian et al., 2001).

Comparisons have been made between the relatively flat semi-arid D32 basin (where

systematic rainfall variations are not expected) and the steeper, humid G10 and X31

basins. In the latter basins, orographic rainfall effects are expected to cause systematic

variations in spatial rainfall and if these are not adequately represented by the gauge

records no interpolation method can generate adequately representative spatial rainfalls.
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However, Figure 5.9A (D32 basin) illustrates that even where systematic rainfall

variations are not expected, large reductions in gauge numbers can lead to a high

degree of uncertainty. Figure 5.10 (X31 basin) illustrates that even if two samples with

equal gauge numbers are used in the spatial interpolation there can be relatively large

differences in spatial rainfall estimations. The other examples in Table 5.5 illustrate that

a small reduction in number of gauges can also lead to large differences in sub-basin

rainfall estimations. The effects of spatial arrangement and sampling of raingauges on

rainfall estimation were also demonstrated using data from both the Bedford example

and national raingauge networks.

The analyses in this study have ignored the potential effects of errors in the data at

individual raingauge stations. However, such errors are frequently difficult to identify

given the large spatial variations in rainfall that are known to occur in most of the basins

in South Africa (Schulze, 1995). Ideally, the same set of raingauges should be used over

the entire record period to be simulated. However, with declining network densities this

may not be possible and associated uncertainties must be quantified. Further difficulties

arise in those areas (dominated by convective rainfall processes) where spatial

variations in rainfall are essentially random and correlations between gauge totals even

at the monthly scale are typically low. This issue could become even more important if

conventional (gauges) and new sources (satellite data) of rainfall data are used together

in hydrological models to make up for the lack of gauge data in the future (Hughes,

2006a, b). A general observation was that small increases in raingauge density for

sparse networks can substantially reduce areal rainfall estimation uncertainty, while for

already dense networks (highest number of representative raingauges) areal rainfall

estimation uncertainty only decreases minimally with increased station density. A more

general observation from the study is that the use of different combinations of

raingauges can introduce substantial uncertainties on spatially averaged rainfall.

Improved understanding of spatial rainfall patterns and the use of appropriate correction

procedures are therefore needed to reduce uncertainties in spatial rainfall estimates.

5.6.2 Effects of rainfall uncertainty on runoff simulation uncertainty

The extent to which rainfall estimation uncertainties are propagated to uncertainties in

runoff simulations depends on the nature of the runoff response to rainfall (as reflected
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in the parameter values of the model), spatial scale and the relationships between

uncertainty and rainfall depth. For example, the majority of runoff in semi-arid basins is

generated from moderate to high rainfalls (Figure 5.14), while for humid basins

uncertainties for the full range of rainfall depths are important in runoff estimations. The

extent to which uncertainties at sub-basin scales are smoothed or cancelled out at the

basin scale depends to a certain extent on whether the uncertainties are systematic or

random. In areas where topographic effects dominate (G10 and X31 basins, for

example) spatial patterns of both rainfall (through orographic effects) and runoff

uncertainties are likely to be systematic. In other cases, random uncertainties on

individual sub-basins may cancel out at the basin scale. This has been demonstrated in

this study (e.g. Bedford-grid elements and Seekoi sub-basins- D32A-D32J), where some

of the errors in runoff estimation cancelled out when they are aggregated and routed

through a number of sub-basins than when a single spatial element is used.

The effect of spatial variability of rainfall to response of sub-basins has similarly been

reported in a large number of studies world wide (Obled et al., 1994; Smith et al., 2004).

The sensitivity of runoff to rainfall uncertainties in the arid to semi-arid regions

demonstrate the need to make significant improvements in rainfall monitoring possibly

through the use of satellite or radar data (Hsu et al., 1999; Soorishian et al., 2000;

Hughes, 2006a). Furthermore, runoff responses in semi-arid regions are such that there

is a high proportion of zero flows which means that even for long observed flow records

the information content can be very small (Ye et al., 1997) to successfully calibrate

hydrological models, hence large uncertainties are induced into the model parameter

estimation process. The situation is different in humid regions which have sustained

baseflows through high groundwater recharge rates. Within South Africa these regions

are also frequently mountainous and this means they have high rainfall gradients and

hence the interpolation techniques must be improved to be able to account for rainfall

variations caused by topographic influences. The implications of using rainfall inputs with

such high variabilities would be an increase in the uncertainty in the modelled

predictions. This is more apparent when a model is calibrated using observed hydro-

climatic data, since rainfall uncertainties will be propagated into the parameter set. A

priori parameter estimation approaches are not subject to the same problems and may

offer some advantages over calibration based methods.
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6.  POTENTIAL REDUCTION IN SPATIAL RAINFALL 

ESTIMATION UNCERTAINTIES 

 

6.1 Introduction 

 

The previous chapter identified problems and uncertainties associated with using 

raingauge networks to generate spatially averaged rainfalls when the network densities 

are inconsistent over time. It showed that the current sparse raingauge networks 

frequently do not provide the resolution required to adequately describe the distribution 

of rainfall patterns. It also demonstrated that there are spatial and temporal 

inconsistencies in rainfall records when data from raingauges recording over different 

time periods and differing groupings are used to generate sub-basin spatially averaged 

rainfalls for a common period. The conclusions were that, different spatial time series of 

rainfall and simulated flow can result from the use of different raingauge groupings. 

 

The present chapter focuses on the generation of long time series of spatial rainfall over 

periods that span very different raingauge network densities. The results from Chapter 5 

suggest that such spatial time series will frequently be non-stationary due to changes in 

the quantity of available information (i.e. variation in number of gauges being used). A 

further issue is that ‘real’ non-stationarity could exist in the rainfall data due to changes in 

climate. Given the large reduction in the number of active raingauges in recent years, 

this introduces a high degree of uncertainty in the process of spatial rainfall generation. 

This chapter examines trends in the various spatially averaged rainfall datasets and 

proposes a non-linear correction approach based on inter-comparison of rainfall 

frequency characteristics to remove possible inconsistencies in the datasets. If climate 

change effects are considered to be present during any of the periods used, the 

methods presented here will not be directly appropriate and would require modification. 

 

The objective of this chapter is therefore to isolate ‘real’ non-stationarities or trends 

(related to climate change or natural climate variability) from ‘false’ trends caused by the 

use of particular raingauges during interpolation or lack of representation of 

observations. Potential approaches that can be used to remove non-stationarities in 

spatial rainfall data are also investigated. The recent reduction in raingauge network 
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density has been paralleled by the increasing availability of alternative rainfall data 

products, specifically near-global satellite based estimates. Many studies (e.g. Hughes, 

2006a, b; Wilk et al., 2006) have investigated the integration of spatial rainfall estimates 

provided by satellite data with historical point estimates of rainfall from raingauge 

networks and noted that it is not a simple task. This chapter therefore includes satellite 

based rainfall estimates in the analysis to extend the available historical spatial 

raingauge data into the future when the existing number of raingauges is expected to 

decline. From a hydrological modelling perspective an appropriate comparison of the 

different types of generated spatial rainfall time series is to use them as model inputs 

and assess the model outputs (e.g. comparing simulated and observed flows). 

 

To achieve the main objective of this chapter, the approach adopted is as follows: 

� Trend analysis of individual raingauge data with long records to identify any ‘real’ 

(i.e. climate related) non-stationarities. 

� Generation of long records of spatial rainfall time series using the IDW approach 

and trend analysis to identify problems with ‘false’ non-stationarity. 

� An assessment of a non-linear correction procedure based on frequency of 

exceedence curves to correct ‘false’ non-stationarity. 

� An assessment of the use of satellite rainfall data (uncorrected and raingauge-

corrected) to extend raingauge based estimates into the future.  

� An assessment of the effects on simulated runoff of using different spatial time 

series rainfall products. 

 

6.2 Methods for assessing trends in rainfall record s 

 
South Africa has high inter-annual variability of rainfall under present climatic conditions 

(Schulze, 2000) and therefore examining a rainfall time series provides information about 

whether rainfall characteristics are consistent and stationary throughout the period of a 

record. Trends are assessed on a monthly (intra-annual) or an annual (inter-annual) 

basis. Annual rainfall totals are preferred for long-term water resource planning because 

inter-annual variations may be more important than intra-annual variations. The common 

causes of changes in rainfall data series are long-term climate variability, climate change 

and problems linked to data (Kundzewicz and Robson, 2004). The whole point of the 

trend analysis in this study is to see whether the spatially averaged rainfall time series 
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generated using the IDW approach from a variable number of available point raingauge 

data can be considered ‘real’ (and if the process generates any trends). This is done by 

comparing trends in the spatial data with the trends in representative individual 

raingauge data with long records of at least 50 years. Trend analysis is also done on 

adjusted spatial rainfall time series to assess if the proposed non-linear correction 

method can remove any ‘false’ trends. 

 

There are numerous methods for trend analysis ranging from simple statistics, moving 

averages, linear regression and to non-parametric tests (Kundzewicz and Robson, 

2004). Simple statistics include the mean, median and standard deviation and while 

generally insufficient to determine trends, they form a starting point for more detailed 

analyses. The assessment of gradual trends in annual rainfall data series in this study 

involved visual interpretations of simple 5-year moving-averages and rainfall anomaly 

indices, and the application of a non-parametric Mann-Kendall statistical test, while the 

magnitude of a trend can be quantified using a regression method.  

 

A 5-year moving-average is a simple process to smooth short-term variations in data and 

to eliminate sharp fluctuations in the annual rainfall values and illustrate trend directions. 

The rainfall anomaly index, which is a standardised annual rainfall departure from the 

long-term mean annual rainfall, was used as an index to indicate changing variability in 

different portions of the time series and to identify extremes but was also used in this 

study to assess stationarity in the rainfall records. Moving averages and the anomaly 

index graphs provide simple techniques for graphically identifying trends but do not 

determine the magnitude of a trend or whether the trend is statistically significant. A 

distribution-free Mann-Kendall test (Salmi et al., 2002; Ognuntunde et al., 2006) was 

used to test for the presence of significant trends in annual rainfall time series to 

complement the moving average and anomaly index approaches. The Mann-Kendall 

test approach determines the significance of a trend, which is considered more important 

than its magnitude in this study. The Mann-Kendall test is a simple rank-based test 

which is based on an alternative measure of correlation known as Kendall’s tau, and it is 

robust to the effect of extreme values and to non-linear trends (Hirsch et al., 1982).  The 

test is used to determine upward or downward trends and to establish if a time series 

has remained relatively constant over time.  In order to accomplish this, a statistic based 

on all possible data pairs is computed.  The starting point is to arrange n data pairs in an 
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increasing order and calculate all possible differences (xi – xj), where xj precedes xi in 

time. The difference is either positive (if xi > xj), negative (if xi < xj), or zero (if xi = xj) for 

each of the pairs. The number of positive differences minus the number of negative 

differences is then calculated. This becomes the Mann-Kendall test statistic S (Hirsch et 

al., 1982) .Stated in statistical terms, the null hypothesis of randomness, H0, states that 

the data, (x1, x2, … , xn) are a sample of n independent and identically distributed 

random variables.  The alternative hypothesis, H1, states that the distribution of xi and xj 

are not identical for all i, j ≤ n with i ≠ j).  The test statistic is defined as: 

       ………………………………………………………………..........6.1 

 

Where, xi and xj are values in years i and j respectively and, Sgn () is the function:  

 

                             …………………………………………………………………………...6.2 

 

The standardised test statistic z is   

   

 

                                              ………………………………………………………………....6.3  

  

 

The mean (E(S)) and variance (Var(S)) of S are given by E(S) =0 and 

                                  

                                                                ……………………………………………………6.4 

 

respectively. The standardised z statistic is approximately normally distributed and is 

used to test the null hypothesis, H0, that the data are randomly ordered in time, against 

the alternative hypothesis, H1, that there is an increasing or decreasing trend. A positive 

or negative value of z indicates an upward or downward trend, respectively. H0 is 

rejected at a particular level of significance if the absolute value of z is greater than the 

p-value i.e.: 

 

                      …………………………………………………………………………………6.5 
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Where, z1-α/2 is the value of the standard normal distribution with probability of 

exceedance of α/2 (see Hirsch et al., 1982 for further details about Mann Kendall test). 

 

 

6.3 Non-linear rainfall correction procedure  

 

The basis for developing a non-linear correction procedure is to correct rainfall frequency 

characteristics which may be very different between two data periods (Figure 6.1, left-

hand side). While this may be real, differences in rainfall frequency characteristics may 

also be caused by different sources of data (Figure 6.1, right-hand side). The left-hand 

side graph illustrates that the rainfall frequency characteristics of spatially averaged 

rainfalls can be different if generated based on different groups of gauges. The right-

hand side graph illustrates a similar effect but based on two different sources of data (i.e. 

raingauge and satellite based).  

 

 

 

 

  

 

 

 

 

Figure 6.1 Monthly rainfall exceedence frequency curves for rainfall realizations for 

D32B sub-basin. 

 

The correction procedure was developed to adjust the frequency characteristics of the 

original IDW spatially interpolated raingauge data using the frequency characteristics of 

a reference stationary time series dataset. The entire record period of 1920-2000 was 

used in the analysis. This was the longest period spanned by all the raingauge records 

that were available for this study. The development of the non-linear correction algorithm 

was based on an approach used by Hughes and Smakhtin (1996) to patch and extend 

streamflow time series and some minor adjustments to the algorithm were made in this 

study to correct the frequency characteristics of rainfall datasets. While the procedure is 
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simple to apply when correcting rainfall characteristics of different spatial datasets 

covering the same period, the intention in this chapter is also to correct one dataset 

using another dataset when the two are not coincident in time. Under such 

circumstances, it is essential to recognise that the two datasets may have ‘real’ 

differences in rainfall characteristics as well as ‘false’ differences related to the 

information content of the raw data. 

 

The non-linear correction procedure involves transferring source rainfall values to 

destination values (i.e. the corrected time series) through the use of similar percentage 

points (probabilities) from the respective rainfall frequency of exceedence curves (RFCs) 

which are a summary of the relationship between rainfall magnitude and frequency,and 

therefore the variability within a time series. The source rainfall record is the original IDW 

interpolated data, while the destination RFCs are based on WR90 rainfall data (Midgley 

et al., 1994). The assumption is that the destination RFC is representative of the 

frequency characteristics of ‘real’ rainfall. The procedure involves generating tables of 

monthly rainfall values for each spatial point and month for 17 fixed percentage points of 

the RFCs (i.e. 0.01, 01., 1, 5, 10, 20, 30, 40, 60, 70, 80, 90, 95, 99, 99.9 and 99.99%). 

These are used to identify the percentage points corresponding to each rainfall value in 

the time series, log-interpolation being used to define the position between fixed 

percentage points (see, Hughes and Smakhtin, 1996 for more details).  

 

The algorithm is available in the SPATISM modelling software package and the 

procedure is illustrated in Figure 6.2. An estimate of the rainfall in any month at the 

destination point (corrected rainfall record) is made by identifying the percentage point 

position on the source RFC for the monthly rainfall in the source record and reading off 

the rainfall value for the same percentage point from the destination RFC.  

6. 3.1 Selection of appropriate period to generate destination RFCs 
 

It is a straightforward process to transform the data for the period 1920-1990, where the 

source (original IDW) and the reference (WR90) datasets are coincident in time. 

However, for the extended period 1991-2000, the transformation process was 

complicated by the fact that the WR90 reference data do not cover the last 10 years. The 

selection of the appropriate period to use for generating the destination RFC is therefore 

critical to the success of the transformation procedure. The total WR90 rainfall time 
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series (1920-1990) is unlikely to be representative of the entire period of analysis up to 

the year 2000. An appropriate period was selected by visually identifying a period 

(testing several periods) within the 1920-1990 period that is climatically similar to the 

period 1991-2000 using appropriate (nearby) DWAF observed flow time series. The 

DWAF observed flows were used to establish periods with similar characteristics (e.g. 

sequencing of dry and wet years) because they were the only available and most 

reliable data that span the period 1991-2000. The selected period within 1920-1990 that 

has similar flow characteristics to the period 1991-2000 was used to derive the 

destination RFC from the WR90 data. The approach was complemented by the use of 

individual raingauges within the sub-basins, with long records that cover the entire 

period (1920-2000). The observed flows that are used should be first checked to ensure 

that they have not been heavily affected by major abstractions and impoundments. 

Where observed flows are heavily influenced by anthropogenic influences the approach 

will be difficult to implement especially if they are the only available data for a specific 

situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2   Graphical illustration of a non-linear correction process.  
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Using nine sub-basins as an example (Table 6.1), the WR90 rainfall time series for a 10-

year period 1974-1984 was found to be suitable to derive destination RFCs (Table 6.1, 

last column) for most of the sub-basins in the central to eastern parts of South Africa, 

while the 10-year period 1966-1976 was considered suitable for sub-basins in the 

western parts of the country. However, there were a few exceptions where this general 

rule did not apply (Table 6.1).  

Table 6.1  Sub-basins, DWAF gauges, areas, observed flow record and appropriate 

destination frequency curve periods for different regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Application examples and procedures based on ra ingauge data 

 

The application examples were drawn from different regions of the country and include, 

Seekoei (D32A-J), Sabie (X31A-D), Berg (G10A-C), Boesmans (V70A-B), Mgeni 

(U20B), Mooi (V20A), Limpopo (A23A), Upper Vaal (C12D) and Touws (K40A) river sub-

basins (Figure 3.9, Chapter 3). These basins represent a wide range of different climatic 

conditions and gauge density variations over time. The original IDW spatially averaged 

rainfall time series were compared with the longest individual raingauge records to asses 

if any trends that could be observed in the spatially averaged time series are ‘real’ and 

not a consequence of different raingauge inputs to the spatial interpolation process. The 

individual raingauge analysis was based on gauges drawn from each basin (Table 6.2) 

Sub-basins Gauge Area (km 2) Observed flow  

data 

WR90 

destination RFC 

period 

A23A A2H027 357 1978-2000 1974-1984 

C12D C1H004 898 1965-2000 1974-1984 

D32A-J D3H015 8330 1980-2000 1935-1945 

G10A-C G1H020 609 1966-2000 1966-1976 

K40A K4H003 87 1961-2000 1966-1976 

U20B U2H007 358 1960-2000 1974-1984 

V20A V2H005 267 1972-2000 1974-1984 

V70A V7H017 281 1973-2000 1974-1984 

X31A X3H001 174 1959-2000 1974-1984 
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and their daily data patched for missing records using adjacent gauges before starting 

the trend analysis.  

Table 6.2        Individual raingauge stations used in trend analysis. 

Sub-basin Station Name SAWS No. Start year End year  Longitude Latitude 

Seekoei (D32A-J) Colesberg 0172163W 1877 2000 25°6´ E 30°43´S 

Berg (G10A-C) Vrugbaar 0022038W 1903 2000 19°3´E 33 °38´S 

Touws (K40A) Bergplaats 0029294W 1924 2000 22°41´E 33°54´S 

Limpopo (A23A)  Donkerhoek 0513827W 1903 2000 28°28 ´E 25°47´S 

Vaal(C12D) Leslie 0477772W 1912 2000 28°56´E 26°22´ S 

Mgeni(U20B) Impendle 0238636W 1926 1996 29°52´E 29° 36´S 

Mooi(V20A) East Meshlyn 0268441W 1925 1984 29°45´E 29°21´S 

Thukela (V70A-B) Heartsease 0299900W 1927 2000 29°2 9´E 29°01´S 

Sabie (X31A-D) Mac Mac 0594539W 1913 1992 30°49´E 2 4°59´S 

Note: SAWS represent South African Weather Service. 

 

The raingauge based data analysis allowed three long spatial rainfall realizations to be 

established and comparatively assessed to identify their differences. The first realization 

consists of the WR90 (1920-1990) regional rainfall data (Midgley et al., 1994), which is 

one of the most widely available longest dataset used in water resources assessments in 

South Africa and known to be a stationary time series (WR90- Midgley et al., 1994).  

Given that in practice true spatial rainfall is not known, data are needed to compare 

others to when carrying out rainfall uncertainty assessment and thus since the WR90 

data are widely used in South Africa, they were assumed to represent a de facto 

standard The updated WR2005 (1920-2005) data were recently made available through 

a Water Research Commission project (WRC, 2005), but were only completed towards 

the end of this study and could not be integrated into the present analysis. The 

uncertainty associated with both the WR90 and WR2005 datasets are largely unknown 

given that these were generated based on Thiessen polygons (Dent et al., 1989) using 

the same sample of gauges used in this study. The second realization is based on the 

IDW interpolated data (1920-2000) using the closet three or four raingauges to the sub-

basin centroid. While there are often adequate gauges within the period 1920-1990, 

there is a further decline in raingauge numbers after 1990 which were used to generate 

the second realization. The third realization consists of the same rainfall data source as 
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the second realization, but with the frequency characteristics corrected to be the same 

as the first realization (i.e. WR90 dataset).  

 

6.5   Results of trend analyses in rainfall data se ries 

6.5.1 Individual raingauge analysis 
 
Examples of the results of the trend analyses for individual raingauge data are 

graphically presented in Figure 6.3 (G10A-C, V70B and K40A sub-basins) and Appendix 

3.1, while statistical Mann-Kendall results for all the sub-basins are provided in Table 

6.3. Except for K40A (gauge 0029294W), the rainfall anomaly index graphs show no 

presence of trends in the raingauge records. However, based on 5-year moving-

averages (Figure 6.3) and statistical tests in Table 6.3, all the results, including K40A, 

show that there are no significant ‘real’ trends in annual rainfall time series for the 

sample of individual raingauge records. The raingauge analysis provides evidence that 

there are no ‘real’ non-stationarities due to natural variation of climate in the records and 

hence, provides a basis for investigating the existence of ‘false’ trends in the IDW 

spatially interpolated data.  

Table 6.3   Mann-Kendall test summary statistics of individual raingauge analysis. 

Notes: N is the length of time series in years, ** Trend is significant at α=0.05 level, *Trend is significant at 

α=0.1 level. 

 

 

 

 

Sub-basin s &   

  SAWS No.  N Kendall tau Test z p-value 

G10A-C (0022038W) 96 0.061 0.880 0.379 

K40A (0029294W) 76 -0.137 -1.749 0.128 

D32A-J (0172163W) 123 -0.021 -0.350 0.726 

A23A (0513827W) 96 0.046 0.671 0.502 

C12D (0477772W) 88 -0.077 -1.060 0.298 

U20B (0238636W) 70 0.034 0.411 0.681 

V20A (0268441W) 60 -0.028 -0.313 0.755 

V70A-B (0299900W) 73 0.057 0.714 0.475 

X31A-D (0594539W) 79 -0.054 -0.707 0.480 
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Figure 6.3 A 5-year moving-average (left side) and anomaly (right side) graphs for 

rainfall data raingauge based data for three sub-basins. 
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6.5.2 Analysis of spatially interpolated rainfall t ime series 
 

The results of the trend analyses of IDW spatially interpolated data showed that there 

exist significant trends in rainfall records in some of the sub-basins (i.e. G10A and 

V70B), while  no trends are observed in the records of the other sub-basins (Figure 6.4 

and Table 6.4). Some of the results show that significant trends exist when based on a 

0.05 level of significance, while others are only significant when a significance level of 

0.1 is used. The trend observed in the G10A example is related to the inclusion of 

raingauge 0022116W (a problem already indentified in Chapter 5, Figure 5.12) during 

the first half of the period. The observed daily rainfall totals recorded at this gauge are 

exceptionally high in relation to other nearby raingauges in the sub-basin. The question 

remains as to whether the inclusion of this raingauge generates more or less 

representative spatial rainfalls (i.e. is the first and second half of the period 

representative of the ‘real’ spatial rainfall patterns).  The trend for the V70B example is 

more gradual with a possible change occurring in early 1950s. Most of the gauge 

records start in the 1950s, with only a few extending back to the 1920s. For K40A, the 

non-significant trend identified using individual raingauge analysis (Figure 6.3), is not 

repeated in the interpolated data (Figure 6.4). The graphs of trend analyses for other 

sub-basins are presented in Appendix 3.1, with no signs of any trends, which support the 

results in Table 6.4. A conclusion that can be derived from this analysis is that the use of 

different raingauges available over different time periods, may give rise to significant 

‘false’ trends in spatially interpolated rainfall records in some regions.  

6.5.3 Analysis of corrected or adjusted spatial rai nfall time series 
 

The trend analysis results (Figure 6.5 and Table 6.5) show that any significant trends 

that exist in the original IDW data (e.g. A23A, G10A, D32J, V20A and V70B sub-basins) 

based on either 0.05 or 0.1 significance level were successfully removed. Graphical 

results for some of the example sub-basins are presented in Appendix 3.1. For the K40A 

example, the rainfall analysis (anomaly index) shows a minor trend that is not evident in 

the 5-year moving-average and statistical tests (Tables 6.3 and 6.5). It can be concluded 

that the non-linear correction procedure can remove ‘false’ non-stationarities that may be 

introduced during the spatial interpolation of rainfall data. 
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Figure 6.4 A 5-year moving-average (left side) and anomaly (right side) graphs for 

original spatially interpolated gauge data for three sub-basins. 
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Table 6.4  Mann-Kendall test summary statistics of IDW spatially interpolated data. 

 

Notes: N is the length of time series in years, ** Trend is significant at α=0.05 level, *Trend is significant at 

α=0.1 level. 

 

6.6 Comparison of different raingauge based spatial  rainfall realizations 

 
The trend analyses results in section 6.5 were based on annual rainfall totals which tend 

to mask characteristics peculiar to each month. The information on monthly variations is 

important in water resources estimation especially for short term planning and intra-

annual variations are expected to be higher than inter-annual variations. This section 

presents comparative statistics of both monthly and annual rainfall characteristics of 

three spatial rainfall realizations based on raingauge data (i.e. the WR90, original IDW, 

and the transformed data) to establish the differences in these datasets. A set of 

statistical measures (mean, standard deviation, coefficient of variance, root mean square 

error and coefficient of efficiency) and graphical presentations, which include frequency 

of exceedance, are used for this analysis. 

 

 
 

Sub-basin  N Kendall tau  Test z  p-Value 

A23A 80 0.142 1.861 0.063* 

C12D 80 0.089 1.172 0.241 

G10A 80 -0.419 -5.500 0.001** 

G10B 80 -0.037 -0.490 0.624 

G10C 80 0.039 0.515 0.606 

K40A 80 -0.043 -0.565 0.572 

X31A 80 0.020 0.258 0.798 

X31B 80 0.026 0.341 0.733 

X31C 80 0.085 1.113 0.266 

X31D 80 -0.075 -0.989 0.323 

U20B 80 -0.069 -0.910 0.363 

V20A 80 0.418 1.939 0.052* 

V70B 80 0.261 3.423 0.001** 

D32B 80 -0.069 0.906 0.365 

D32F 80 0.109 1.430 0.153 

D32J 80 0.128 1.687 0.092* 
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Figure 6.5 A 5-year moving-average (left side) and anomaly (right side) graphs for 

corrected spatial time series for three sub-basins. 
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Table 6.5    Mann-Kendall test summary statistics of transformed (corrected) data. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: N is the length of time series in years, ** Trend is significant at α=0.05 level, *Trend is significant at 

α=0.1 level. 

 

The previous section showed that non-stationarities in datasets can be removed through 

employing a non-linear correction procedure which only corrects the frequency 

characteristics of rainfall. However, it is also essential to establish if the sequencing of 

the rainfall time series is adequate for all the datasets. The results (i.e. monthly 

characteristics) for two example sub-basins using three sets of statistics as presented in 

Figure 6.6 shows that there are major differences when the different spatial rainfall 

realizations are compared on a monthly basis. The WR90 data monthly characteristics 

are based on a 70 year period dataset (1920-1990), while the characteristics for the 

original IDW and the corrected IDW are based on an 80 year period dataset (1920-

2000). Clearly, there are many inconsistencies in the original IDW rainfall monthly 

distribution characteristics when compared to WR90 (Figure 6.6) and this is supported 

by the annual statistics given in Table 6.6.  

 

Sub-basin  N Kendall tau  Test z  p-Value 

A23A 80 0.017 0.224 0.822 

C12D 80 0.070 0.922 0.365 

G10A 80 -0.001 -0.017 0.987 

G10B 80 0.040 0.523 0.600 

G10C 80 0.073 0.956 0.339 

K40A 80 -0.100 -1.313 0.189 

X31A 80 -0.080 -1.055 0.291 

X31B 80 0.004 0.050 0.960 

X31C 80 0.018 0.233 0.817 

X31D 80 0.014 0.183 0.855 

U20B 80 0.012 0.167 0.867 

V20A 80 0.055 0.724 0.469 

V70B 80 0.013 0.174 0.861 

D32B 80 0.036 0.474 0.636 

D32F 80 0.035 0.465 0.642 

D32J 80 0.049 0.640 0.522 
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Table 6.6  Annual rainfall characteristics (i.e. monthly average, standard deviation 

and coefficient of variation). 

 
 i.  Monthly average (AVE) in mm 

Sub-basin  A23A C12D D32J G10A K40A U20B V20A V70B X31A 

WR90 696.1 661.3 311.7 1598.3 708.9 983.6 1027.6 1092.6 1243.0 

IDW_org  699.9 701.4 331.7 1325.4 775.7 1034.7 1016.5 1083.1 1127.6 

IDW_corr  702.6 663.1 304.9 1573.6 710.1 981.7 1029.9 1080.2 1237.7 

 

 ii. Standard deviation (STDEV) in mm 

Sub-basin  A23A C12D D32J G10A K40A U20B V20A V70B X31A 

WR90 141.1 103.2 108.7 350.1 156.9 187.4 200.8 232.2 263.8 

IDW_org  206.8 127.8 123.7 539.2 199.2 179.3 209.3 256.9 252.5 

IDW_corr  146.6 108.2 107.1 328.3 153.8 176.4 200.9 240.2 260.2 

 

 iii. Coefficient of variance (CV) 

Sub-basin  A23A C12D D32J G10A K40A U20B V20A V70B X31A 

WR90 0.20 0.16 0.35 0.22 0.22 0.19 0.20 0.21 0.21 

IDW_org  0.30 0.18 0.37 0.41 0.26 0.17 0.21 0.24 0.22 

IDW_corr  0.21 0.16 0.35 0.21 0.22 0.18 0.20 0.22 0.21 

 

Notes: ‘orig’ represents original & ‘corr’ represents corrected IDW rainfall data. 

 

The differences between the three datasets are mostly systematic over- and under-

estimation of monthly rainfall totals, particularly in high rainfall months (Figure 6.7).  

Figure 6.7 illustrates results drawn from humid regions characterised by complex 

topography and steep slopes. The rainfall in these regions is topographically controlled 

(orographic type). G10A shows that for more than 50% of the time, the monthly rainfall 

totals (both high and low values) are systematically under-estimated by about 40% when 

based on the original IDW interpolated data which could have a major influence on 

model simulation results. This result is supported by differences in the statistics 

presented in Tables 6.6 and 6.7. However, for V70B, only high monthly rainfall totals are 

over-estimated which are often difficult to capture with point raingauges. The spatially 

averaged rainfall estimation uncertainties in areas of complex topography have been 
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corrected by the transformation procedure to generate monthly rainfall characteristics 

that are consistent with the existing reference WR90 dataset (Tables 6.6 and 6.7).  

 

The analysis has also demonstrated that mixed results occur when the spatial datasets 

(IDW original and corrected data) are compared relative to WR90 dataset (Table 6.7). 

The results show significant improvements after correcting the data in some cases (e.g. 

G10A, V70B) and no improvements in others (e.g. C12D, U20B) even after the 

correction of the original interpolated data. Figure 6.8 shows frequency curves for two 

examples drawn from a sub-humid region (Mgeni River basin; U20B) and from a semi-

arid region (Seekoei River basin; D32J), characterised by undulating and relatively flat 

topography respectively. The rainfall experienced in U20B is largely caused by Inter-

Tropical Convergence Zone (ITCZ), while D32J is dominated by convectional storms or 

convergence weather systems. As with some other basins (Table 6.7; A23A, D32J, 

C12D, U20B, V20A and X31A), corrections to the frequency characteristics of the 

original IDW data are not necessary. One of the reasons might be that there are enough 

raingauges distributed within the sub-basins to adequately characterise rainfall 

variability.  

Table 6.7  Statistics of comparison for two rainfall realizations (relative to WR90 

data) for a common period 1920-1990. 

 

 i.  Root mean square error (RMSE) in mm 

Sub-basin  A23A C12D D32J G10A K40A U20B V20A V70B X31A 

IDW_org  26.3 18.0 12.7 65.2 19.3 27.9 26.0 32.6 35.4 

IDW_corr  24.0 20.5 11.4 54.0 13.5 30.4 26.1 25.9 38.3 

 

 ii. Coefficient of efficiency (CE) 

Sub-basin  A23A C12D D32J G10A K40A U20B V20A V70B X31A 

IDW_org  0.80 0.87 0.81 0.72 0.73 0.84 0.89 0.85 0.88 

IDW_corr  0.84 0.86 0.85 0.81 0.87 0.81 0.89 0.91 0.86 

 

Notes: ‘orig’ represents original & ‘corr’ represents corrected IDW rainfall data. 
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Figure 6.6 Monthly rainfall characteristics for two sample sub-basins (AVE is the long 

term average monthly rainfall; STDEV is the standard deviation and CV is 

the coefficient of variance). 
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Figure 6.7 Comparison of rainfall frequency of exceedence curves for three 

raingauge based spatial rainfall realizations for G10A and V70B sub-

basins. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Comparison of rainfall frequency of exceedence curves for three 
raingauge based spatial rainfall realizations for D32J and U20B sub-
basins. 
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6.7 Analysis of the potential use of satellite base d rainfall data  

 

The focus of the present section is on the integration of rainfall information from different 

sources (raingauge and satellite) into a single dataset. The fact that raingauge networks 

are continuously declining suggest that the introduction of satellite data products (e.g. 

Hughes, 2006a, b) can offer a potential alternative for defining basin rainfall data. 

Satellite based rainfall estimates provide spatial estimates over extended areas and are 

becoming more readily available. Section 2.6.1 reviewed the relevant literature on the 

potential application of satellite based rainfall estimates within hydrological models. 

However, there is need to combine raingauge and satellite data into a single stationary 

time series for use with a model and a single parameter set. The main challenge is that 

the records for the analysis are not coincident in time as the available periods of satellite 

data coincide with a large reduction in gauge numbers. The same correction procedure 

described in section 6.3 is applied to try and overcome this problem, since studies by 

Wilk et al. (2006) and Hughes (2006a) have already emphasized the need to correct the 

original satellite based estimates before they are used as model inputs. In spite of a 

recent decline in gauge numbers, raingauge networks are expected to remain an 

important source of rainfall data (Seed and Austin, 1990), but may require support from 

other sources to improve the quality of spatial rainfall information for use in hydrological 

assessments.  

6.7.1  Data preparation 
 
The satellite data product (available from 2001 to 2006) used is the NOAA CPC RFE2.0 

data available in daily binary format (for more details refer to section 3.3.1) and the data 

were converted from binary to text format using a simple Delphi data extraction program 

(Figure 6.9, left-hand side). The derivation of rainfall spatial estimates for each sub-basin 

involved first selecting the appropriate grid squares covering each sub-basin (e.g. U10A 

in Figure 6.9, right-hand side). In Figure 6.9 (right side), the polygons represent sub-

basin boundaries, the unlabelled points are raingauges, while V2H005 and U1H005 are 

DWAF streamflow gauges. The sub-basin spatial rainfall estimates were based on 

simple averages of the daily rainfall totals from appropriate grids lying within each sub-

basin, which were then aggregated to monthly values. 
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Figure 6.9  Data extraction window (left side) and gridded representation for deriving 

satellite-based rainfall estimates for individual sub-basins (right side).  

6.7.2 Transformation of satellite based rainfall da ta 
 
The first problem to be solved for combining raingauge and satellite data measurements 

is that point raingauge measurements cannot be directly compared with the spatial 

estimates produced by satellite imagery, since the former only provide information at a 

point, which might not be spatially representative. Therefore, existing WR90 historical 

spatial gauge based estimates are used in the analysis instead of individual point 

raingauge estimates. The alternative approach to spatially interpolate the gauge data 

over the same period with satellite data suffered two limitations. One of the problems is 

that the longest record period of the raingauges used is 1920-2000, while the satellite 

data covers the period 2001-2006. Secondly, the idea was to establish if a single model 

parameter set derived using one rainfall dataset can be applied to another dataset. It 

was therefore sensible to use the WR90 data which were used in establishing the 

existing regional parameter sets for the Pitman model (Midgley et al., 1994).  

 

The source RFC in the transformation process (section 6.3) was calculated from the 

original satellite data time series, while a destination RFC was quantified from the WR90 

rainfall time series. As presented in section 6.3, the selection of an appropriate period for 

establishing the destination RFC was based on visual identification of a period within 

1920-1990 that is climatically similar to the satellite period (2001-2006) using DWAF 

observed flow records and a limited number of rainfall stations with data up to 2006. The 

WR90 rainfall time series for the period 1964-1974 was found to be suitable to derive 
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destination RFCs (Table 6.8, last column) for most of the summer rainfall region (central 

to eastern parts), while the period 1970-1976 was considered suitable for the winter 

rainfall region (western part) of South Africa. However, they were exceptional cases 

(Table 6.8) where the generic reference periods identified did not appear to be 

appropriate.  

 

Table 6.8   Sub-basins, DWAF gauges, areas and appropriate destination frequency 

curve period for different regions. 

Sub-basins Gauge Area (km 2) Observed flow period  

 

WR90 destination RFC 

period 

D32A-J D3H015 8330 1980-2006 1925-1935 

G10A-C G1H020 609 1966-2006 1970-1976 

G21C G2H012 244 1973-2006 1970-1976 

G40J-K G4H006 600 1963-2006 1970-1976 

Q94C Q9H019 76 1972-2006 1964-1974 

S60C S6H003 215 1971-2006 1964-1974 

T34A-H T3H005 2597 1952-2006 1964-1974 

T35A-K T3H006 4268 1952-2006 1964-1974 

U10A-E U1H005 1744 1960-2006 1964-1974 

U20B U2H007 358 1960-2006 1964-1974 

V20A V2H005 267 1972-2006 1964-1974 

V20A-D V2H002 937 1950-2006 1964-1974 

V20A-E V2H004 1546 1960-2006 1964-1974 

V60A-B V6H004 658 1954-2006 1964-1974 

V60D V6H003 312 1954-2006 1964-1974 

V70A V7H017 276 1973-2006 1964-1974 

V70B V7H016 124 1973-2006 1964-1974 

X12A-C X1H016 581 1970-2006 1968-1980 

X21F-K X2H015 1554 1958-2006 1968-1980 

X31A X3H001 174 1959-2006 1968-1980 
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6.7.3 Inter-comparison of satellite based rainfall realizations  
 
This section presents an inter-comparison of the original (refer to section 3.2.2, pp 69 for 

the details on how the product used in this study was derived) and corrected satellite 

rainfalls to establish the extent of their differences using time series and frequency curve 

graphs as well as root mean square error and coefficient of efficiency statistics. As an 

illustration, Figure 6.10 presents the results of the transformation approach using 

frequency of exceedence curves and time series plots for V70A. A comparison of the 

time series of the original satellite-based rainfall data with the DWAF station measured 

rainfall data indicates that the monthly rainfall distribution patterns and timing are 

generally consistent (Figure 6.10, left-hand side). The original satellite estimates under- 

estimate the WR90 monthly rainfall totals by up to 40%, mainly during wet years which 

would have major impacts on simulated streamflows if not corrected. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Comparison of the time series of satellite-based rainfall data (original and 

transformed) with DWAF station rainfall (left side) and frequency of 

exceedence curves of monthly rainfall totals of WR90 spatial data and 

satellite-based estimates (right side) for V70A sub-basin.  

 

Figure 6.11 illustrates that there are cases where the original satellite based estimates 

matches closely with the frequency characteristics of the WR90 data (e.g. D32B and 

D32J sub-basin) before any transformation. This result was similar for all the D32 sub-

basins (A-J) in the Seekeoi River basin. As the basin is flat it is possible that the satellite 

based data give a more representative estimate of spatial rainfall since there are no 
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topographic effects which control rainfall distributions and are not reflected in the satellite 

estimates.  However, the high spatial and temporal variability of rainfall and runoff in the 

semi-arid D32 sub-basins make the selection of the appropriate period for use in deriving 

destination RFCs difficult and, is the main limitation of the correction procedure. It must 

therefore be concluded that the period used to establish the destination RFC (Table 6.8) 

was inappropriate in this example. 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Comparison of frequency of exceedence curves of monthly rainfall totals 

of WR90 spatial data and satellite-based estimates for D32B and D32J 

sub-basins. 

 

A summary of the statistics of inter-comparison between the original and corrected 

satellite data in Table 6.9 demonstrates that there are regions in the country where the 

original satellite data must be corrected and in others where it appears to be 

unnecessary. It is not surprising that most of the sub-basins with poor statistics are 

characterised by complex topography where satellite estimates tend to mask the 

orographic variations in rainfall data. 
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Table 6.9  Statistics of inter-comparison of original and corrected satellite data. 

 
Sub-basin  Root mean square error (mm) Coefficient of efficiency 

C12D 12.26 0.92 
D32A 6.22 0.94 
D32B 6.91 0.93 
D32C 9.13 0.88 
D32D 6.22 0.93 
D32E 8.13 0.88 
D32F 9.90 0.85 
D32G 11.20 0.85 
D32H 12.27 0.83 
D32J 11.30 0.85 
G10A 120.11 -8.52 
G10B 80.95 -3.13 
G10C 61.85 -2.26 
G40J 13.32 0.88 
G40K 8.37 0.94 
H10E 117.5 -5.97 
K40A 12.64 0.85 
Q94C 33.04 -0.04 
S60C 13.06 0.90 
T34A 25.78 0.61 
T34B 22.93 0.69 
T34C 18.17 0.80 
T34D 19.60 0.80 
T34E 25.96 0.61 
T34F 14.70 0.91 
T34G 24.68 0.84 
T34H 9.34 0.96 
T35A 16.29 0.86 
T35B 14.25 0.90 
T35C 12.57 0.93 
T35D 27.26 0.82 
T35E 14.31 0.94 
T35F 10.62 0.95 
T35G 6.89 0.98 
T35H 12.88 0.94 
T35J 15.68 0.92 
T35K 14.43 0.93 
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Table 6.9  continued. 
 

Sub-basin  Root mean square error (mm) Coefficient of efficiency 
U10A 35.98 0.53 
U10B 25.87 0.77 
U10C 25.37 0.78 
U10D 18.57 0.88 
U10E 20.50 0.86 
U20B 21.75 0.83 
V20A 22.27 0.82 
V20B 16.92 0.90 
V20C 12.41 0.95 
V20D 7.55 0.98 
V20E 6.41 0.99 
V60A 19.39 0.88 
V60B 15.62 0.92 
V60D 12.31 0.95 
V70A 45.84 0.28 
V70B 55.10 0.00 
X12A 22.80 0.80 
X12B 26.36 0.72 
X12C 30.05 0.64 
X21F 21.47 0.81 
X21G 27.28 0.66 
X21H 52.84 -0.37 
X21J 53.47 -0.49 
X21K 55.07 -0.63 
X31A 89.73 -3.01 
X31B 84.33 -1.86 
X31C 88.94 -1.64 
X31D 51.92 -0.18 

Note: Bold values indicate worst or unacceptable statistics. 
 
 
 
6.8 Hydrological model response to different spatia l rainfall realizations 

 

The objective of this section of the study is to identify the extent to which the differences 

in rainfall spatial estimates (both raingauge and satellite based) are propagated into 

simulated runoffs. The simulated flows were assessed by comparing with observed flows 

using visual comparisons of time series and flow duration curves as well as the set of 

goodness-of-fit statistics presented in section 3.4.1. The model was run using fixed 

evaporation demand inputs and fixed parameter sets. The parameter sets were based 

on calibration against observed data using the WR90 rainfall data. 
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6.8.1 Model response to raingauge based rainfall in puts 
 
This section evaluates the use of corrected spatially interpolated raingauge based 

rainfall data for both the calibration period (all observed data up to 1990) and the 

extended period (1991-2000) compared with the original spatial IDW interpolated data or 

the WR90 rainfall data. Table 6.1 in section 6.4 lists the sub-basins (quaternary 

catchment names), the associated DWAF streamflow gauges and the sub-basin areas. 

A total of five rainfall realizations are used and five model outputs were generated (Table 

6.10).  

 

Table 6.10 indicates that many of the simulations based on the IDW rainfall realizations 

are at least as good as the simulations based on calibration using the WR90 rainfall 

data. However, there are a number of cases where the original IDW rainfall data 

produced relatively poor results, which were improved by the use of the rainfall 

correction process. It is also evident that even some of the calibration results do not 

generate ‘acceptable’ results based on some of the statistics (note some of the large 

%Diff values when using log transformed flows). This is likely to be partly related to 

some un-accounted for upstream development effects in the observed data, as well as 

errors in the data. A further contributing factor is likely to be that none of the available 

rainfall inputs are ‘true’ sub-basin rainfall information. The similarity in results across all 

three simulations for the period up to 1990 for some basins could be related to the fact 

that all of the rainfall inputs are based on the same source sample of rainfall data and 

that these data are generally sufficient to provide inputs to the model.   

 

For the extended period, 1991-2000 (Table 6.10) which is characterised by a reduction 

in raingauge numbers (relative to those of the period 1920-1990), some of the simulation 

statistics based on the original IDW data were poor (e.g. D32A-J, G10A, X31A) and 

some satisfactory (e.g. C12D, V20A, V70A), while for the corrected input rainfall data the 

statistics improved for most of the sub-basins. However, in some instances few gauges 

can give equally good results especially when the sub-basins are small. The correction 

procedure was very useful in removing large systematic uncertainties in spatial rainfall 

estimates. An example is provided in Figure 6.12 for the topographically complex group 

of sub-basins G10A-C, with the flows measured at downstream sub-basin G10C. The 

simulation statistics of the transformed (corrected) data are at least as good as the 
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WR90 flows for most of the sub-basins (e.g. A23A, D32J, V70A, V70B and K40A) as 

shown in Table 6.10. While the overall conclusion is that the correction procedure 

applied here has been demonstrated to be useful, there are examples where it has not 

worked (e.g. C12D). The main problem is almost certainly associated with the selection 

of the period to use in generating the destination RFC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12  Comparison of monthly flows time series form October 1990 to 

September 2000 for Berg river sub-basins (G10C). 

6.8.2 Model response to satellite-based rainfall es timates 
 
Table 6.11 presents statistics of comparison of simulated flows (relative to observed 

flows) for two satellite based rainfall realizations. Figure 6.13 shows flow time series and 

flow duration curves respectively for the observed flows and the simulated flows based 

on the original and corrected satellite estimates for the V70A sub-basin. The simulation 

based on the original satellite based rainfall shows substantial under-estimation of both 

high and low flows, while flow hydrographs are well modelled by using the corrected 

satellite based data (Figure 6.13, left-hand side). Similarly, the flow duration curves 

illustrate (Figure 6.13, right-hand side) that the use of the original satellite data resulted 

in under-estimation of streamflow volumes by approximately 60% and that the corrected 

streamflow patterns are in close agreement with the observed flow patterns.  
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Table 6.10  Comparison of simulated statistics (with reference to observed flows) 

based on five rainfall realizations. 

Sub-

basins 
Data 

Un –transformed flows (Q)  Log -transformed flows {ln(Q)}  

%Diff 

Mn 

%Diff 

Stdv  R 2 CE 

%Diff 

Mn 

%Diff  

Stdv  R 2 CE 

A23A 

1978-1990 

WR90 -5.5 -32.7 0.70 0.67 -18.1 -13.0 0.64 0.64 

 IDW(org1) 10.7 13.0 0.69 0.67 -83.0 -7.8 0.64 0.57 

 IDW(corr1) 4.2 -33.5 0.66 0.63 -81.9 -18.6 0.62 0.56 

 1991-2000         

 IDW(org2) 6.9 65.9 0.80 0.23 -68.3 39.0 0.74 0.27 

 IDW(corr2) -6.6 28.0 0.86 0.74 -63.0 24.9 0.79 0.50 

C12D 

1965-1990 

WR90 -29.3 -30.8 0.68 0.65 -25.9 -20.5 0.60 0.60 

 IDW(org1) 10.2 -13.6 0.71 0.71 123.8 13.6 0.67 0.61 

 IDW(corr1) -23.2 -38.6 0.72 0.65 30.1 -20.9 0.64 0.63 

 1991-2000         

 IDW(org2) 14.3 -15.9 0.58 0.57 58.5 24.1 0.68 0.23 

 IDW(corr2) -62.3 -49.8 0.76 0.56 -87.8 -2.7 0.68 0.02 

D32A-J 

1980-1990 

WR90 14.6 6.8 0.91 0.89 -70.4 -33.3 0.57 0.48 

 IDW(org1) 52.0 14.3 0.89 0.84 -90.5 -34.5 0.47 0.26 

 IDW(corr1) -22.2 -93.5 0.26 0.24 -64.7 -39.2 0.44 0.38 

 1991-2000         

 IDW(org2) 439 207 0.51 -6.9 135 -48.9 0.22 -0.87 

 IDW(corr2) 19.0 -15.4 0.68 0.67 31.0 -25.7 0.42 0.35 

G10A-C 

1966-1990 

WR90 20.4 6.7 0.90 0.86 15.9 -15.6 0.84 0.77 

 IDW(org1) -36.4 -41.6 0.80 0.62 -9.8 -18.7 0.80 0.77 

 IDW(corr1) 17.3 4.7 0.83 0.80 14.0 -15.0 0.80 0.74 

 1991-2000         

 IDW(org2) -33.9 -38.9 0.81 0.65 -18.4 12.8 0.79 0.50 

 IDW(corr2) 11.0 5.1 0.80 0.77 -2.1 22.9 0.79 0.68 

K40A 

1961-1990 

WR90 8.9 -21.2 0.65 0.65 -33.0 -12.8 0.65 0.60 

 IDW(org1) 32.4 14.4 0.77 0.66 -35.1 8.6 0.66 0.47 

 IDW(corr1) -4.4 -30.1 0.76 0.73 -12.8 4.3 0.67 0.62 

 1991-2000         

 IDW(org2) 47.2 50.6 0.71 0.13 -23.7 30.8 0.61 0.26 

 IDW(corr2) 6.6 -5.9 0.69 0.68 1.2 17.5 0.62 0.47 
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Table 6.10  continued 

Sub-

basins 
Data 

Un –transformed flows (Q)  Log -transformed flows {ln(Q)}  

%Diff 

Mn 

%Diff 

Stdv  R 2 CE 

%Diff 

Mn 

%Diff  

Stdv  R 2 CE 

U20B 

1960-1990 

WR90 15.9 21.7 0.68 0.65 -15.6 -7.2 0.67 0.64 

 IDW(org1) -8.0 -10.8 0.64 0.63 -6.9 -1.8 0.72 0.69 

 IDW(corr1) -13.2 -12.0 0.64 0.62 -9.8 5.7 0.72 0.70 

 1991-2000         

 IDW(org2) 9.2 25.2 0.58 0.33 28.9 -21.0 0.52 0.48 

 IDW(corr2) -17.5 -25.7 0.60 0.58 7.8 -24.6 0.51 0.50 

V20A 

1972-1990 

WR90 -15.4 -15.7 0.84 0.82 -17.2 22.1 0.81 0.64 

 IDW(org1) -13.6 -12.2 0.84 0.82 -17.6 21.9 0.85 0.69 

 IDW(corr1) -18.9 -19.3 0.83 0.79 -19.5 20.2 0.84 0.67 

 1991-2000         

 IDW(org2) -3.2 0.1 0.85 0.84 -19.9 31.4 0.85 0.64 

 IDW(corr2) -16.9 -25.1 0.85 0.80 -12.6 9.5 0.86 0.80 

V70A 

1973-1990 

WR90 4.0 11.8 0.68 0.68 2.7 12.9 0.80 0.79 

 IDW(org1) -21.1 -24.0 0.87 0.81 -6.5 -14.1 0.86 0.84 

 IDW(corr1) 12.4 -13.9 0.74 0.73 0.3 -15.9 0.82 0.82 

 1991-2000         

 IDW(org2) -2.0 0.8 0.70 0.66 3.0 -7.9 0.87 0.87 

 IDW(corr2) 0.6 -5.5 0.68 0.67 4.9 -6.9 0.84 0.83 

X31A 

1959-1990 

WR90 9.3 3.5 0.85 0.82 3.8 -1.1 0.85 0.82 

 IDW(org1) 28.2 31.6 0.86 0.59 9.0 4.1 0.84 0.70 

 IDW(corr1) 8.4 -1.2 0.84 0.82 4.4 -6.7 0.83 0.80 

 1991-2000         

 IDW(org2) 39.7 23.8 0.81 0.52 17.1 -8.6 0.87 0.62 

 IDW(corr2) 10.7 -12.1 0.75 0.74 8.9 15.7 0.83 0.76 

Notes:  Bold values indicate improvement in statistics after transformation; IDW(org1)/(corr1) represents data period up 

to 1990; IDW(org2)/(corr2) represents data period from 1991-2000 
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Figure 6.13  Comparison of monthly flow time series (left) and comparison of flow 

duration curves (right) for the October 2001- September 2006 period for 

V70A sub-basin. 

 

Based on all the results of the sub-basins studied (Table 6.11), the original satellite-

based estimates substantially under-estimated rainfall totals in 13 (65%) cases and 

generated  poor simulation statistics for both un-transformed and transformed flows. This 

seems to be severe in sub-basins located in mountainous regions with steep topography 

(G10A-C, X31A, H10E, Q94C, V70B and U20B) where the effects of orographic rainfall 

are expected to be high leading to high rainfall spatial variabilities which could not be 

represented by satellite data. However, in most of these cases, when the corrected 

satellite data were used they generated substantially improved simulations based on the 

majority of the statistics presented in Table 6.11. There are other cases where 

improvements are marginal (e.g. G40J-K), while others are worse (e.g. D32A-J) as 

shown in Table 6.11.  
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Table 6.11   Comparison of simulated statistics (relative to observed flows) based on 

original and transformed satellite estimates. 

Sub-

basins 

Data 

2001-2006 

Un –transformed flows (Q)  Log -transformed flows {ln(Q)}  

%Diff 

Mn 

%Diff 

Stdv  R 2 CE 

%Diff 

Mn 

%Diff  

Stdv  R 2 CE 

D32A-J Sat (org) 4.7 -7.7 0.41 0.34 9.9 7.3 0.14 -0.17 

 Sat (corr) 72.7 1.1 0.39 0.18 70.2 -23.8 0.16 -0.17 

G10A-C Sat (orig.) -79.4 -80.4 0.64 -0.11 -67.0 31.6 0.59 -2.87 

 Sat (corr) 12.6 8.5 0.77 0.71 -1.4 25.9 0.65 0.44 

G21C Sat (orig.) -67.6 -73.7 0.76 0.33 -2.4 -34.7 0.72 0.68 

 Sat (corr) -20.0 -13.8 0.54 0.52 22.6 -25.6 0.72 0.68 

G40J-K Sat (orig.) -15.7 19.3 0.32 -0.08 40.3 -40.4 0.60 0.56 

 Sat (corr) -17.1 17.1 0.25 -0.22 82.3 -47.1 0.61 0.51 

H10E Sat (orig.) -83.6 -82.2 0.78 -0.13 -188.5 40.4 0.78 -1.49 

 Sat (corr) -18.1 -42.7 0.79 0.67 28.3 -23.5 0.71 0.66 

Q94C Sat (orig.) -77.9 -63.2 0.21 -0.35 -309.6 6.6 0.47 -2.73 

 Sat (corr) -7.2 33.3 0.32 -0.28 -60.7 21.3 0.60 0.28 

S60C Sat (orig.) -41.0 -36.5 0.63 0.49 -452.7 -6.7 0.68 0.28 

 Sat (corr) -23.8 48.5 0.38 -0.40 -437.0 11.6 0.65 0.22 

T34A-H Sat (orig.) -24.5 -25.8 0.61 0.54 -0.1 -34.7 0.61 0.59 

 Sat (corr) 14.1 7.3 0.56 0.44 10.1 -19.4 0.62 0.57 

T35A-K Sat (orig.) 0.1 23.9 0.36 -0.05 4.8 -25.1 0.64 0.61 

 Sat (corr) 6.7 3.4 0.46 0.34 8.4 -24.9 0.70 0.64 

U10A-E Sat (orig.) -50.7 -62.4 0.78 0.32 -13.0 -27.5 0.88 0.67 

 Sat (corr) 13.5 -33.5 0.69 0.65 2.5 -22.7 0.82 0.80 

U20B Sat (orig.) -61.0 -63.4 0.79 0.18 -79.3 -8.3 0.78 0.07 

 Sat (corr) -25.6 -15.0 0.56 0.49 -29.8 1.1 0.78 0.66 

V20A Sat (orig.) 55.8 -55.9 0.79 0.29 -55.1 13.7 0.88 0.11 

 Sat (corr) -25.6 -23.5 0.72 0.65 -26.0 21.8 0.84 0.58 

V20A-D Sat (orig.) 11.7 3.4 0.58 0.49 7.7 -3.0 0.76 0.72 

 Sat (corr) -18.8 -24.5 0.61 0.58 -5.1 -7.6 0.79 0.77 

V20A-E Sat (orig.) 22.9 -4.3 0.59 0.52 27.0 -25.9 0.79 0.60 

 Sat (corr) -13.0 -28.4 0.55 0.54 9.4 -30.1 0.75 0.70 

V60A-B Sat (orig.) -38.8 -49.3 0.50 0.42 -48.3 -28.0 0.74 0.71 

 Sat (corr) 9.6 -14.8 0.51 0.49 199.4 -21.3 0.73 0.62 

V60D Sat (orig.) -26.2 -34.9 0.54 0.51 -9.4 -17.2 0.63 0.63 

 Sat (corr) 4.3 -14.3 0.54 0.53 -109.6 -18.9 0.63 0.55 

V70A Sat (orig.) -62.0 -66.6 0.87 0.17 -43.0 -18.8 0.83 0.23 

 Sat (corr) -3.2 -5.7 0.88 0.88 2.1 -9.4 0.87 0.87 
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Table 6.11  continued. 

Sub-

basins 

Data 

2001-2006 

Un –transformed flows (Q)  Log -transformed flows {ln(Q)}  

%Diff 

Mn 

%Diff 

Stdv R 2 CE 

%Diff 

Mn 

%Diff  

Stdv  R 2 CE 

V70B Sat (orig.) -51.7 -60.5 0.75 0.31 -72.3 -23.0 0.79 0.57 

 Sat (corr) 9.2 13.7 0.65 0.53 19.7 -5.4 0.72 0.70 

X12A-C Sat (orig.) 62.7 70.7 0.30 -1.64 53.1 -16.8 0.52 -0.09 

 Sat (corr) 3.4 -30.0 0.72 0.69 15.2 -21.7 0.75 0.70 

X21F-K Sat (orig.) 55.8 5.5 0.63 0.18 29.4 -27.1 0.66 0.05 

 Sat (corr) -10.7 -46.4 0.70 0.60 2.8 -26.8 0.77 0.74 

X31A Sat (orig.) -80.0 87.0 0.43 -0.58 -99.0 -31.3 0.47 -3.48 

 Sat (corr) -6.8 -23.5 0.53 0.53 1.1 -13.1 0.71 0.71 

Notes: Sat (orig) represents original & Sat (corr) represents corrected satellite rainfall data; Bold values indicate 

improvement in statistics after transformation. 

 

V20A, X12A-C and X21F-K are examples where the original satellite data generated 

simulations in excess of observed streamflows, but improved after corrected satellite 

data are used. However, for D32A-J, the original satellite resulted in more acceptable 

model results than the corrected data, which indicates that satellite data can be used in 

their original form in some locations. In other sub-basins (T35A-K and V20A-D), the 

original satellite data generated acceptable results in terms of monthly volumes, while 

other statistics improved after correction which might be related to how the rainfall data 

is processed through the rainfall-runoff model. Comparison of the flow statistics between 

the WR90 data (calibration period) and the satellite data was not strictly possible as they 

covered different time periods and a few poorly simulated months in a six year period 

(satellite) data can affect the overall results far more so than within a much longer period 

(WR90). 

 

6.9 Discussion 

6.9.1 Rainfall analysis results 
 
The first part of this chapter focussed on an analysis of trends and variations in rainfall 

records (both individual gauge and spatially interpolated data), since the objective of the 

overall chapter was to generate long and continuous spatially averaged rainfall datasets 

that are stationary, consistent and representative and which are useful for long-term 

water resources assessment projects. Long spatial rainfall databases are not readily 
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available in many countries in southern Africa and this study offers approaches and 

alternative datasets that could be potentially used to achieve this goal. The analysis 

quantified some of the uncertainties associated with the generation of long spatial rainfall 

datasets using different sources of information (raingauge versus satellite data).  

 

Trend analysis of the original IDW spatially interpolated raingauge data showed that in 

some situations (e.g. for G10A and V70B sub-basins, for example) different raingauge 

densities covering different time periods may introduce ‘false’ trends in the time series. 

However, based on individual raingauges with long records no ‘real’ trends were 

observed. When compared to WR90 data for a common period (1920-1990), there is 

evidence that information from the available raingauge data is more important than the 

spatial interpolation approach and this issue became critical when the extended period 

(1991-2000) was considered due to a further decline in number of active raingauges. 

Therefore, uncertainty in spatial rainfall generation appears to be mainly related to how 

representative the observation stations are for a particular sub-basin. A comparison of 

the spatial rainfall realizations showed that substantial uncertainties can exist when a 

non-stationary time series is compared to the WR90 dataset (Table 6.6) and that these 

results are climate dependent. An overall observation from the analysis is that there are 

situations where the use of reduced density networks with less information may result in 

poor estimates of spatial rainfalls. However, the use of a frequency based correction 

approach can improve the estimates.   

 

With respect to satellite based data, the under-estimations of spatial rainfall in the sub-

basins located in mountainous regions (e.g. G10A-C, H10E, V70A, V70B or X31A) may 

be attributed to satellite imagery (or the methods used to interpret the imagery) ignoring 

rainfall variations due to altitude, slope and aspect in those sub-basins where rainfall is 

mainly orographic in nature. Similar observations can be associated with the use of 

raingauge data over the extended period of 1991-2000 where there are fewer 

raingauges. Therefore in these regions, there is a need to carefully employ spatial 

rainfall correction procedures, or to ensure that raingauge networks are adequate for 

spatial rainfall estimation. This issue will remain a challenge in developing countries, 

where the allocation of financial resources to maintain raingauge networks is not always 

high on the agenda of most governments (Hughes, 2004a). 
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As rainfall information is always needed for hydrological assessments even in gauged 

basins, a method of correcting spatially interpolated data based on a period with few 

representative raingauges, using the frequency characteristics obtained from a period 

with a denser network, was therefore explored. Also explored was the potential use of 

satellite based rainfall estimates in situations where raingauge densities have declined 

further. The use of a correction procedure offers a solution to merging datasets that 

cover different time periods and ensures a higher degree of consistency in their 

statistical properties. The procedures involved in obtaining and processing the satellite 

data are relatively straightforward and require little training to put into practice. They are 

therefore consistent with the requirements of the region, where complex methods often 

fail due to a lack of training in their application. 

 

The application of satellite based estimates for supplying rainfall inputs where gauge 

measurements are scarce appears to offer a potential future solution to a problem that is 

widespread in developing regions such as southern Africa. Similar studies that have 

been conducted (e.g. Barrera et al., 2007) showed that remote sensing methods provide 

improved spatial coverage, and even when rainfall estimates at a single pixel are not 

precise, they provide relatively accurate areal-averaged rainfall estimations over sub-

basins. However, in the present study the period to which satellite data were available is 

different to that of historical spatial raingauge based data (WR90), which makes the 

direct merging and comparison of spatial raingauge and satellite based data difficult. The 

need to correct satellite rainfall data products is dependent on the region and is 

specifically required in areas of complex topography where systematic rainfall variability 

is high. 

6.9.2 Model simulation results 
 
The effects of rainfall uncertainty on simulated runoff were assessed by using different 

rainfall realizations as inputs to a rainfall-runoff model and comparing model outputs to 

observed flows. The raingauge based spatial rainfall data analyses and subsequent flow 

simulation results showed that correction of the original IDW interpolated spatial rainfall 

estimates resulted in significant improvements in model results (Table 6.10) for the 

extended period (1991-2000) in some of the example sub-basins (e.g. G10A, V70B), 

while in others there were marginal improvements (e.g. V70A) and the results were 

worse in others (C12D). For the calibration period (all available data up to 1990), most of 
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the model results (Table 6.10) based on all rainfall realizations (including the corrected 

data) are not very different from each other, except for the sub-basins characterised by 

steep topography (G10A-C, K40A and X31A). The results suggest that simple correction 

procedures based on adjusting rainfall frequency characteristics can be used when 

information is lost through a reduction in gauge network density. The effects on model 

results of different raingauge based rainfall inputs varied from region to region, and 

some of the variations are dependent on the climate and basin physical properties such 

as slope. The humid areas with complex topography often receive orographically 

controlled rainfalls and therefore variations in rainfall inputs will have a greater impact on 

modelled flows, while for the Seekoei River basin, which is flat and semi-arid, the 

impacts of differences in rainfall inputs on modelled flows are far less. The general 

observation from the analysis indicates that with the existing networks of raingauges and 

limited access to information about the individual raingauges, the choice of interpolation 

method in some parts of South Africa is less important than the inclusion of key 

raingauges. The results support the conclusions reached in other studies by Schäfer 

(1991) and Wilk et al. (2006) in South African catchments and the Okavango River basin 

respectively.  

 

With respect to satellite based rainfall data, the application of the non-linear spatial 

correction procedure generally improved the simulation results in most of the sub-basins 

used (Table 6.11). However, in some of the sub-basins (e.g. G40J-K, T34A-H, S60C and 

Q94C), no improvements are evident. This might be partly related to inadequacies in the 

RFE 2.0 algorithm used to derive satellite based rainfall data. According to Love et al. 

(2004) the algorithm does not capture warm cloud rainfall especially along coastal 

regions, where warm cloud effects dominate. This is consistent with the analysis by Todd 

et al. (1999) who showed that successful application of remotely sensed information 

suffers from the problems of the inadequate validation of the techniques used in deriving 

satellite rainfall data. However, there are cases (e.g. D32A-J) where the original satellite 

data resulted in good simulations and corrections were unnecessary and offered no 

advantages. With the limited number of sub-basins used in this study it is very difficult to 

reach firm conclusions, but in the absence of dense monitoring networks in the future, 

these alternative data sources together with simple correction procedures appear to offer 

a solution to providing rainfall input data to hydrological models. 
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It is also important to note that fixed parameter sets were used for all rainfall realizations, 

but Beven and Binely (1992) concluded that different parameter sets should be used 

with different rainfall inputs. Görgens (1983) and Oudin et al. (2006) pointed out that, the 

sensitivity of a rainfall-runoff model to uncertainty in rainfall input data also depends 

upon its interaction with parameters and the model structure and therefore further 

research is needed to understand these interactions. The focus of the present study was 

to discover if an alternative raingauge based spatial rainfall dataset and satellite data 

could be adjusted or corrected to make them consistent with historical spatial rainfall 

data used during model calibration. It should be emphasized that the alternative of 

calibrating the model using satellite data is not practical due to the current short period of 

data available. According to Görgens (1983) six years of data would be too short to be 

used to establish alternative parameter sets in most parts of South Africa. Even, if this 

were possible for gauged sub-basins, extrapolation to ungauged basins would contribute 

to a high degree of uncertainty. Part of this uncertainty would be related to the differing 

degrees to which the satellite data are representative of real rainfall variations. 

 

For all the model simulation results presented here, it should be recognised that while 

the observed streamflows were used as a basis for comparison they are far from perfect 

for the purpose. The streamflows contain inaccuracies in gauging both low and high 

flows and none of them can be said to be completely natural, such that differential 

developmental effects may occur between data periods. While every attempt was made 

to select sub-basins that are ‘relatively’ natural and not affected by developments, this is 

almost impossible in South Africa. The alternative of naturalising the streamflows relies 

upon accurate information about the nature of water resources development projects 

and their impacts. This information is often not available or unreliable and has the 

potential to introduce additional uncertainty into the modelling process. 

 
 

 

 



 174

7. UNCERTAINTY IN POTENTIAL EVAPOTRANSPIRATION 

ESTIMATION AND IMPACTS ON SIMULATED RUNOFF 

 

7.1 Introduction 
 

Potential evapotranspiration (PE) constitutes one of the primary components of the 

water balance of a basin and is a key input to rainfall-runoff models (Andréassian et al., 

2004). There are many techniques available for estimating potential evaporation (that is 

converted to potential evapotranspiration using appropriate factors) comprising both 

direct and indirect methods. The direct methods measure evaporation from the land 

surface and include the American class A pan and the Symons pan. The indirect 

methods, which vary in complexity and data requirements estimate potential evaporation 

from climatic variables. They include temperature-based equations (e.g. Blaney-Criddle), 

equations that combine temperature and radiation (e.g. Priestley-Taylor), equations 

which include an allowance for humidity and wind (e.g. Penman or Penman-Monteith), or 

energy balance equations (e.g. SEBAL; Mckenzie and Craig, 2001). Hydrological model 

calibrations are necessarily tuned to the particular form of PE estimate chosen 

(Andréassian et al., 2004). A comparison of 27 potential evapotranspiration estimation 

models by Oudin et al. (2005) showed that rainfall-runoff model efficiency can be 

improved by using simple temperature-based PE models, which only require mean daily 

temperature data. 

 

Methods that use temperature for estimating potential evapotranspiration have been 

successfully applied in South Africa (Hargreaves and Samani, 1995; Schulze and Kunz, 

1995; Schulze and Maharaj, 2004, 2006). This is because temperature data are 

available for a relatively long time period and benefit from a dense network of 

observation stations compared to pan measurements (Schulze and Maharaj, 2004). 

Given that South African hydrologists favour pan evaporation measurements (Schulze 

and Maharaj, 2004), a further possibility that is explored in the present study is the use 

of pan based mean monthly evapotranspiration estimates, but perturbed on the basis of 

time series variations in monthly temperature data (see section 3.3.3 and Hughes et al., 

2006). This is a very different approach compared to methods followed by most studies 

which assessed evapotranspiration uncertainties based on using different PE formulae 
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(Andréassian et al., 2004; Oudin et al., 2005). In South Africa, pan evaporation 

measurements, even with short records, are used for the determination of mean 

evapotranspiration rates (Midgley et al., 1994). This is because potential 

evapotranspiration has relatively small variations from year to year at a given location 

and therefore relatively short records can be used to obtain reasonably accurate 

estimates of mean monthly values (Schulze and Maharaj, 2006).  

 

Although it is intuitively clear that a more suitable evaporative demand input should have 

a positive impact on hydrological simulations, it is striking that few studies have focused 

on the validity of using long-term mean PE instead of time-varying PE (Folwer, 2002; 

Andréassian et al., 2004) and the sensitivity of hydrological models to uncertainty in 

potential evapotranspiration estimates (Görgens, 1983; Paturel et al., 1995; Oudin et al., 

2005). It has been common practice in South Africa model applications to make use of 

long-term mean values of PE data, largely due to a lack of appropriate meteorological 

data needed to compute time series of PE and an apparent lack of sensitivity of rainfall-

runoff models to PE even under extreme dry and wet conditions (Folwer, 2002). This 

lack of sensitivity is mainly related to the availability of water to satisfy potential 

evapotranspiration demand and the fact that actual evapotranspiration is often controlled 

by available moisture rather than the demand over monthly time steps. Despite model 

insensitivity to potential evapotranspiration inputs (Burnash, 1995), it remains unclear 

whether rainfall-runoff models are able to benefit from the use of time series PE 

estimates. The quantitative effects of including the time series variations in potential 

evapotranspiration demand on simulated streamflows within a southern African context 

have not been addressed.  

 

While some of the studies in the literature (e.g. Folwer, 2002) investigated the possibility 

of using actual potential evapotranspiration compared to using long-term means, the 

focus of the present study is on using time series deviations from the mean rather than 

the actual values of potential evapotranspiration. This chapter therefore, presents an 

assessment of the uncertainties associated with potential evapotranspiration estimates 

used with the Pitman model and examining the extent to which these uncertainties are 

propagated into streamflow predictions for a range of sub-basin scales and climate 

regimes.  
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7.2 Application examples and procedure 
 

20 of the sub-basins and the pan based evaporation data referred to in section 3.2 and 

section 3.3.3 respectively were used to assess the effects of including time series 

variations in PE demand within Pitman model. The spatial distribution of pan evaporation 

measurements is such that they are found at sites which are not always representative 

of higher altitudes where runoff is generated (Schulze and Maharaj, 2006). 

 

The first part of the analysis involved deriving possible potential evapotranspiration 

realisations. The Pitman model uses either long-term mean monthly Symons pan 

potential evapotranspiration estimates, expressed as a percentage of mean annual 

evapotranspiration (MAE) as shown in Table 7.1 or monthly time series of 

evapotranspiration estimates, expressed as fractions of the long-term mean monthly 

values and referred to as T/S (Pan). The approach of using deviations rather than actual 

values of potential evapotranspiration allows the model to be flexible in its requirements. 

The time series deviations can be based on either pan measurements or on other data, 

such as temperature. Pan observations (either monthly means or time series) are 

typically converted to sub-basin potential evapotranspiration data using pan factors 

(Midgley et al., 1994). Potential evapotranspiration rates for sub-basins without pan 

evaporation measurements were estimated by extrapolating from nearby pan gauged 

sub-basins. While the focus of this study is not on the uncertainty in absolute values of 

PE, Görgens (1983) already demonstrated that the errors which could be incurred when 

extrapolating pan evaporation data in South Africa can contribute to uncertainty in model 

results. 

Table 7.1  Mean monthly distribution of potential evapotranspiration (PE) 

(expressed as a percentage of MAE) (Midgley et al., 1994) for G10A sub-

basin 

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP  
8.77 12.4 15.47 16.12 13.44 12.29 6.12 3.24 2.4 2.21 3.24 5.3 

 

 

As an alternative to using the limited time series pan-based potential evapotranspiration 

estimates, the use of time series deviations perturbed on the basis of temperature data 

was also explored. The procedure involved expressing the monthly temperature values 
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as fractions (deviations) of their long-term mean monthly values for each calendar year 

(based on equation 3.1) and referred to as T/S (Temp).  A third option is the use of A 

pan equivalent potential evapotranspiration values estimated using existing regional 

relationships (which combine temperature and radiation) given in Schulze and Maharaj 

(1991). The equations, for a given region and a specified month (Schulze and Maharaj, 

1991, 2006), take the general form: 

 

Eapan(i)=b0Tmax(i)Ra(i)+b1z-b2Pmd(i)+ b3 ............................................................................................7.1 

 

Where,  Eapan = A-pan equivalent potential evapotranspiration estimate (mm.month-1); 

Tmax = monthly mean of daily maximum air temperatures (°C); Ra = mean extra-

terrestrial solar radiation for the month; z = altitude (m); Pmd = median monthly 

precipitation (mm); i = month of the year, and b0-b3 = regression constants. Figure 7.1 

shows the three time series of potential evaporation demand data expressed as 

deviations from their monthly mean values for G10A. The A pan equivalent  potential 

evapotranspiration values were generated only for illustration purposes to investigate if 

there are any differences between deviations derived from these estimates and single 

monthly mean temperature values.  

 

Figure 7.1 illustrates that there are no real differences between using simple 

temperature data and the A pan equivalent estimates. However, both are very different 

(much lower range variations) compared to deviations based on data from a single pan. 

The differences may be attributed to local variations in pan evapotranspiration data or 

errors in measured pan data as it is always difficult to account for rainfall effects. The 

differences may also be attributed to the fact that temperature ignores the other 

variations due to additional ‘weather’ related factors, an indication that temperature is a 

relatively poor predictor of potential evapotranspiration demand, despite being the ‘best’ 

from a data availability point of view. Based on the illustration in Figure 7.1 it was 

therefore sufficient to derive potential evapotranspiration time series deviations based on 

temperature data. 

 

The final part of the analysis involved assessing the effects of uncertainty in potential 

evapotranspiration inputs on simulated runoff. While the potential evapotranspiration 

inputs into the rainfall-runoff model were varied, the same model parameter sets and 
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rainfall inputs (Midgley et al., 1994) were used for all model runs. One part of the 

analysis involved a comparison of simulated streamflows based on using three potential 

evapotranspiration realizations (Mean (Pan), T/S (Pan), T/S (Temp)) for a few sub-

basins. The Mean (Pan) realization was used as reference as this represents common 

practice in South Africa. For basins where there are no suitable pan time series data, 

only two realizations were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1   Comparison of monthly evapotranspiration time series deviations 

(expressed as fraction of long term means) based on three realizations 

for G10A sub-basin. 

 

7.3 Results and discussion 
 

The model inputs consisted of long-term mean PE estimates only and time series 

perturbed using deviations in temperature data as shown graphically in Figures 7.2 and 

7.3 for four selected sub-basins. The comparisons demonstrate that some of the 
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extreme values are pronounced in some sub-basins and that there are possible regional 

differences, with higher values found in D61E and G10A than in A22B and C81G.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Comparison of monthly potential evapotranspiration demands derived 

from using fixed mean monthly and time series estimates perturbed on 

the basis of variations in temperature data for D61E and G10A sub-

basins. 
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Figure 7.3 Comparison of monthly potential evapotranspiration demands derived 

from using fixed mean monthly and time series estimates perturbed on 

the basis of variations in temperature data for A22B and C81G sub-

basins. 
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7.3.1 Effects of including time series variations i n potential evaporation demand 
 
Table 7.2 lists the simulation results of using the two PE time series variations compared 

to the reference simulation results using long-term monthly mean PE data. There are 

substantial differences in the simulation statistics for some sub-basins, despite their 

long-term means being the same. The differences are greater when using time series of 

pan evapotranspiration data than when using time series perturbed from temperature 

data. This may be due to differential local effects such as the quality of pan data as well 

as the pan factors used in estimating pan based time series variations.  

 

Table 7.2 also illustrates that there are regional differences in the results, for example 

D61E and G10A sub-basins in the winter rainfall region have relatively lower percentage 

differences of mean flows than sub-basins A22B, C81G and X31A located in the 

summer rainfall region. Table 7.2 indicates that most of the differences in mean monthly 

flows are positive and that the effects are greater on un-transformed flows (i.e. high 

flows) than on transformed flows (medium to low flows), for most of the sub-basins. This 

result is partly a consequence of the model structure which references all monthly 

evaporation demands to the maximum potential evaporation value in the time series. 

Within the model structure, the evaporation function depends on the current month’s 

potential evaporation relative to the month with the highest potential evaporation. If a 

single month (rather than the peak calendar month value in a fixed seasonal distribution) 

has a lot higher potential evaporation value than most other months in the time series 

(1987 for D61 in Figure 7.2), the effect is to reduce the effective evaporation demand in 

other months. The result is generally lower actual evapotranspiration rates, lower soil 

moisture losses and thus higher simulated runoffs compared to using fixed monthly 

distributions. This effect is less evident in the winter rainfall region when moisture 

availability is more important in determining actual evaporation during the season of high 

potential evaporation demand (summer). While the results in Table 7.2 are based on 

sub-basins where both pan and temperature data are available within a sub-basin, Table 

7.3 present the results for the other sub-basins where there are only temperature data to 

assess the regional differences. 
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Table 7.2  Mean (Mn), standard deviation (Stdv), their percentage differences respectively and coefficient of efficiency (CE) 

(relative to mean monthly pan data) of monthly flows for simulations using different potential evapotranspiration inputs. 

 Sub-basins, 
Area &  Data 

Un–transformed flows (Q)  Log -transformed flows {ln(Q)}  

Simulation 
periods  Mn Stdv 

%Diff 
Mn 

%Diff  
Stdv CE Mn Stdv %Diff Mn 

%Diff  
Stdv CE 

A22B  Mean PE 0.74 2.27    -1.99 2.11    

284km2 T/S  (Pan) 1.18 3.40 60.7 49.7 0.55 -1.42 1.92 -28.8 -9.0 0.84 
1966-1990 T/S (Temp) 0.81 2.32 10.6 2.4 0.99 -1.50 1.67 -24.8 -20.7 0.84 

C81G Mean PE 2.63 4.52    0.37 0.92    

434km2 T/S (Pan) 3.54 6.33 34.4 40.4 0.74 0.61 0.95 64.5 3.8 0.90 
1970-1990 T/S  (Temp) 2.74 4.70 7.8 4.0 0.99 0.47 0.89 26.6 -2.2 0.98 

D61E Mean PE 0.30 1.86    -4.49 8.20    

1090km2 T/S (Pan) 0.34 2.23 13.2 19.4 0.94 -4.47 8.21 -0.5 -0.1 1.0 

1960-1990 T/S (Temp) 0.30 1.86 0.0 0.0 1.0 -4.40 8.20 0.0 0.0 1.0 

E40A & 40B Mean PE 1.10 3.54    -3.57 9.37    

1648km2 T/S (Pan) 1.23 4.01 11.8 13.4 0.86 -3.53 9.39 -1.1 -0.2 1.0 

1951-1990 T/S (Temp) 1.20 3.53 -0.1 -0.2 1.0 -3.58 9.37 0.1 0.0 1.0 

G10A-G10C Mean PE 31.76 37.27    2.62 1.48    

609km2 T/S (Pan) 31.99 37.78 0.72 1.3 1.0 2.62 1.48 0.1 0.4 1.0 

1966-1990 T/S (Temp) 31.81 37.26 0.2 -0.02 1.0 2.62 1.48 0.00 0.00 1.0 

U20B Mean PE 5.85 8.10    1.26 0.95    

358km2 T/S(Pan) 6.28 8.88 7.2 9.5 0.94 1.36 0.91 7.4 -4.8 0.94 

1960-1990 T/S (Temp) 6.10 8.33 4.2 2.8 1.0 1.32 0.93 4.7 -2.8 0.99 

X31A Mean PE 4.73 3.38    1.37 0.57    

174km2 T/S (Pan) 5.65 3.66 19.2 8.3 0.91 1.58 0.53 14.8 -7.0 0.85 

1959-1973 T/S(Temp) 4.97 3.43 4.8 1.7 0.99 1.43 0.55 4.2 -2.9 0.98 
Notes: Mean PE- represents simulation based on using fixed mean monthly potential evapotranspiration (PE) from pan data , T/S (Pan) – represents simulation based on additional 

use of  monthly time series potential evapotranspiration based on pan data, T/S (Temp)- represents simulation based on additional use of  monthly time series potential 

evapotranspiration based on temperature data. Mn and Stdv values are in m3 * 106/month.  
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In contrast to the results in Table 7.2, Table 7.3 suggests that the effects on low to 

moderate flows (transformed statistics) are the largest. In many respects, this is more 

logical result as changes in the potential evaporation demand would be expected to 

change the low flow regime more than high flows. As far as high flows are concerned, it 

might be expected that arid to semi-arid sub-basins (A22B, D61E, E40A-B, Q94C, 

S60C) would be most affected by the changes in PE model inputs, as such basins lose a 

higher proportion of their rainfall through potential evapotranspiration than humid sub-

basins (G10A-C, G21C, U10A-E, U20B,V60D, X12A-C, X31A). The differences in the 

arid basins (e.g. E40A-B and D51A-B in the Northern Cape), are largely confined to 

those months when high rainfalls generate runoff due to exceedence of the main 

moisture storage component in the model, which is typically small in arid regions with 

shallow soils. The overall results (Tables 7.2 and 7.3) demonstrate that the effects of 

including time series variations of potential evapotranspiration demand are dependent 

on the climate of the region. Sub-basins located in the Western Cape region (e.g.G10A-

C, G21C, K40A) receiving high rainfall in winter months (June and July which 

correspond to low temperatures) are less sensitive to changes in potential 

evapotranspiration inputs. Sub-basins from the central to eastern parts of the country 

(e.g. A22B, B71C, C12D, C81G,S60C, U20B V60D, X31A) that receive high rainfall in 

summer months (October and November which correspond to higher temperatures and 

hence higher potential evapotranspiration rates) are more sensitive to uncertainties to 

potential evapotranspiration inputs.  

 

The preceding analysis compared simulation results to illustrate the uncertainties 

associated with using different PE inputs to the model without any reference to observed 

flows. Table 7.4 repeats the analysis for the fixed monthly means and the temperature 

based time series variations but using statistics of comparison with the available 

observed flows. In some situations there appear to be substantial benefits of using time 

series variations of potential evapotranspiration estimates, but also suggests that a 

parameter set established using mean monthly evaporation demand would not be 

appropriate if time series variations are included. Table 7.5 illustrates the results of a 

limited re-calibration exercise that attempted to determine parameter sets that are more 

appropriate to use in combination with time series variations of potential evaporation 

demand. 
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Table 7.3 Comparison of mean (Mn) and standard deviation (Stdv) and their percentage differences (relative to mean monthly 

pan data) respectively and coefficient of efficiency (CE) of monthly flows for simulations using two potential 

evapotranspiration inputs. 

Sub-basins,  

Area  
Data 

(1950-1990) 
Un–transformed flows (Q)  Log -transformed flows {ln(Q)}  

Mn  Stdv  
%Diff 
Mn 

%Diff 
Stdv  

 
 

CE Mn Stdv  
%Diff 
Mn %Diff Stdv  

 
 

CE 
B71C Mean PE 2.98 2.78    0.87 0.6     

263km2 T/S  (Temp)  3.24 2.96 8.7 6.5 0.98 0.97 0.57 11.5 -5.0 0.96 
C12D Mean PE 4.06 8.75      0.50 1.11      

898km2 T/S (Temp) 4.35 8.97 7.1 2.4 0.99 0.60 1.10 20.8 -0.8 0.97 
D51A-B Mean PE 1.06 4.26      -4.38 8.54      
1645km2 T/S (Temp) 1.06 4.24 0.0 -0.5 1.0 -4.35 8.59 -0.7 0.6 1.0 

G21C Mean PE 1.16 2.75     -1.64 2.69     
244km2 T/S (Temp) 1.17 2.78 0.9 1.1 1.0 -1.64 2.68 0.0 -0.4 0.99 
K40A Mean PE 0.89 1.08      -0.54 0.88      
72km2 T/S (Temp) 0.89 1.08 0.0 0.0 1.0 -0.55 0.88 1.9 0.0 1.0 
Q94C Mean PE 0.64 1.00      -0.98 0.90     
76km2 T/S (Temp) 0.66 1.01 3.1 1.0 1.0 -0.91 0.87 -7.1 -3.3 0.99 
S60C Mean PE 1.11 1.97     -0.51 0.99      

215km2 T/S (Temp) 1.19 2.00 7.2 1.5 0.99 -0.40 0.95 -21.6 -4.0 0.98 
T34A-H Mean PE 39.72 51.37      3.14 0.99      
2597km2 T/S (Temp) 41.05 52.54 3.4 2.3 1.0 3.19 0.97 1.6 -2.0 0.99 
U10A-E Mean PE 51.81 54.70      3.52 0.91      
1744km2 T/S (Temp) 52.94 55.22 2.2 1.0 1.0 3.54 0.89 0.6 -2.2 1.0 

V20A Mean PE 7.17 8.17      1.28 1.31      
267km2 T/S (Temp) 7.36 8.24 2.7 0.9 1.0 1.35 1.24 5.5 -5.3 1.0 
V60D Mean PE 2.81 4.66      0.14 1.30      

312km2 T/S (Temp) 3.01 4.89 7.1 4.9 0.99 0.25 1.25 77.8 -3.4 0.98 
V70B Mean PE 3.78 4.23      0.82 1.02      

124km2 T/S (Temp) 3.88 4.25 2.7 0.5 1.0 0.87 1.00 6.1 -2.0 1.0 
X12A-C Mean PE 6.34 4.40     1.69 0.53     
581 km2 T/S (Temp) 6.76 4.56 6.6 3.6 0.98 1.76 0.51 4.1 -3.8 0.97 
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Table 7.4  Comparison of percentage differences of mean and standard deviations 

(relative to observed data) and coefficient of efficiency (CE) of monthly 

flows for simulations using two potential evapotranspiration inputs. 

Sub-basins,  

Area  
Data & 

Simulation 

period 

Un–transformed flows (Q)  Log -transformed flows {ln(Q)}  

%Diff Mn  %Diff Stdv  

 
 
       

CE %Diff Mn  %Diff Stdv  

 
 
 

CE 
B71C 1970-1990        

B7H003 Mean PE 2.6 -35.2 0.56 28.6 -31.0 0.51 
263km2 T/S(Temp) 5.0 -32.9 0.56 43.4 -34.4 0.45 
C12D 1960-1990        

C1H004 Mean PE -17.7 -28.8 0.61 127.5 -30.0 0.50 
898 km2 T/S(Temp) -10.6 -26.5 0.63 183.2 -30.2 0.49 
G21C 1973-1990       

G2H012 Mean PE -0.1 1.0 0.70 -69.0 -29.6 0.42 
244km2 T/S(Temp) 6.3 -0.5 0.69 -68.7 -32.2 0.35 
K40A 1961-1990       

K4H003 Mean PE 8.9 -21.2 0.65 -33.0 -12.8 0.60 
87km2 T/S(Temp) 8.3 -21.9 0.65 -31.9 -12.2 0.60 
Q94C 1972-1990       

Q9H019 Mean PE -20.3 -28.1 0.76 -17.1 -36.8 0.58 
76km2 T/S(Temp) -16.9 -27.1 0.77 -24.0 -38.8 0.56 
S60C 1971-1990       

S6H003 Mean PE 9.7 -14.0 0.52 -25.4 -21.9 0.72 
215km2 T/S(Temp) -3.0 -11.9 0.57 -44.8 -24.8 0.68 

T34A-T34H 1952-1990       
T3H005 Mean PE 9.2 9.3 0.67 11.4 -23.7 0.65 
2597km2 T/S(Temp) 16.4 12.2 0.66 13.1 -24.8 0.63 

U10A-U10E 1960-1990       
U1H005 Mean PE -8.4 -31.3 0.70 6.4 -25.7 0.80 
1744km2 T/S(Temp) -7.0 -31.2 0.70 7.2 -26.9 0.78 

V20A 1972-1990       
V2H005 Mean PE -15.4 -15.7 0.82 -17.2 22.1 0.64 
267km2 T/S(Temp) -14.0 -15.3 0.82 -13.4 15.7 0.73 
V60D 1954-1990       

V6H003 Mean PE -8.3 -7.3 0.48 -24.0 -6.4 0.58 
312km2 T/S(Temp) -2.7 -5.1 0.48 62.0 -13.5 0.61 
V70B 1973-1990       

V7H016 Mean(Pan) 4.0 -9.9 0.69 25.7 -9.8 0.79 
124km2 T/S(Temp) 6.5 -9.5 0.69 31.7 -12.0 0.77 

X12A-X12C 1970-1990       
X1H016 Mean PE 0.17 -16.8 0.48 7.7 -26.9 0.62 
1554km2 T/S(Temp) 15.6 7.9 0.62 10.4 -25.8 0.51 
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Table 7.5 Mean (Mn), standard deviation (Stdv), their percentage differences respectively and coefficient of efficiency (CE) 

(relative to observed flows) of monthly flows for simulations using three evapotranspiration inputs. 

 
 Sub-basins, 
Area &  Data 

Un–transformed flows (Q)  Log -transfo rmed flows {ln(Q)}  

Simulation 
periods  Mn Stdv 

%Diff 
Mn 

%Diff  
Stdv CE Mn Stdv 

%Diff 
Mn 

%Diff  
Stdv CE 

G10A-C Observed 26.40 33.72    2.41 1.48    

609km2 Mean PE 31.76 37.27 20.3 10.5 0.88 2.62 1.48 8.6 -0.1 0.82 

1966-1990 T/S (Pan) 31.99 37.78 21.2 12.0 0.87 2.62 1.48 8.7 -0.6 0.82 
 T/S (Temp) 31.81 37.26 20.5 10.5 0.87 2.62 1.22 8.8 -0.1 0.81 
 Re-calibrate T/S(Pan) 27.77 30.79 4.2 -8.7 0.89 2.64 1.32 8.8 -10.6 0.82 

U20B Observed 5.05 6.66    1.10 1.02    

358km2 Mean PE 5.21 7.42 3.2 12.5 0.63 1.16 0.93 5.3 -8.6 0.66 
1954-1990 T/S (Pan) 5.66 8.30 12.1 25.8 0.53 1.25 0.90 13.8 -11.8 0.65 
 T/S (Temp) 5.45 7.62 7.9 15.4 0.61 1.22 0.91 11.2 -11.1 0.66 
 Re-calibrate T/S(Pan) 5.12 7.75 1.5 17.4 0.60 1.16 0.89 5.3 -13.1 0.66 

X31A Observed 4.21 3.35    1.17 0.77    

174km2 Mean PE 4.67 3.33 10.8 -0.5 0.63 1.36 0.57 15.6 -26.7 0.59 

1959-1973 T/S (Pan) 5.58 3.58 32.5 7.0 0.47 1.57 0.53 33.2 -32.1 0.38 

 T/S (Temp) 4.90 3.39 16.2 1.1 0.60 1.42 0.55 20.5 -28.8 0.53 

 Re-calibrate T/S(Pan) 4.12 2.92 -2.3 -12.8 0.64 1.25 0.54 6.0 -30.5 0.60 
Note: Bold values show improvements after re-calibration using time series variations of pan potential evapotranspiration.  
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The parameters that were adjusted during the re-calibration process were mainly the 

maximum soil moisture storage capacity (ST – generally increased) and the groundwater 

recharge (GW – generally decreased) parameters. The results indicate that only limited 

improvements in the simulations could be achieved in terms of CE values, but some 

improvements are seen in streamflow volumes. 

 

7.4 Observations 

 
This part of the study demonstrated that including time series variations of potential 

evapotranspiration can have substantial impacts on simulated flows. This result is partly 

a consequence of the model structure, which was designed to operate with fixed mean 

monthly values of potential evapotranspiration. Most of the effects can be attributed to 

isolated high potential evapotranspiration values in the time series, which has the effect 

of reducing the PE demands in the other months. This conclusion is consistent with the 

much greater impact of using pan data based variations which are much greater than 

temperature based variations (Figure 7.1). Anticipating this result would require a quite 

detailed knowledge of the model structure (see Kapangaziwiri, 2008). The effects related 

to the structure of the specific model used within this study might explain why the results 

are different to previous studies (Andréassian et al., 2004; Oudin et al., 2005) that 

suggest that models can be relatively insensitive to changing PE demand inputs. This 

study suggests that regional differences do occur within South Africa. This result is not 

surprising, given the large differences in seasonal rainfall and PE demand patterns that 

occur between the winter and summer rainfall regions of the country. Substantial 

variation in the ratio of rainfall to PE demand (an index of aridity) will also inevitably 

contribute to the effects of using different PE demand inputs to the model.  

 

The overall conclusion is that, while it may appear to be an attractive option to include 

time series variations of PE demand, these may be incompatible with the model 

structure and create further additional uncertainty. Certainly, a parameter set that has to 

be established using a fixed seasonal distribution should not be used with time series 

variations of PE. The alternative would be to adjust the structure of the model to be 

compatible with both types of potential evaporation demand input. 
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8. UNCERTAINTY IN PARAMETER ESTIMATION AND
RESULTS OF THE PITMAN MODEL

8.1 Introduction

The previous chapters (i.e. Chapter 5-7) focussed on assessing the individual

contributions of rainfall and evapotranspiration input data uncertainties on streamflow

prediction uncertainty. The analyses used existing regional model parameters (Midgley

et al., 1994) derived through manual calibration of the model and identified some of the

problems associated with using a single parameter set with different model input

realisations. Manual calibrations can rarely be achieved without some degree of non-

uniqueness in the estimated parameters and this leads to uncertainties in the model

predictions. This chapter focuses on assessing the uncertainties associated with the

parameters of the Pitman monthly model estimated through an a priori estimation

approach. Chapter 4 identified the main sources of uncertainty associated with the

parameter estimation methods (i.e. regionalization and a priori methods) for ungauged

basins. One conclusion was that the factors contributing to parameter uncertainty

depend to a large degree on the methods used to determine an appropriate parameter

set. The uncertainty associated with the use of parameter regionalization methods have

been extensively studied (Gupta et al., 2006). The primary focus of this study is on

uncertainty estimates associated with the application of the physically based parameter

estimation method of Kapangaziwiri and Hughes (2008) referred to in section 3.4.3. The

advantage of this approach is that the parameter uncertainties are independent of the

input data uncertainties, overcoming the issue of non-uniqueness of calibrated

parameter sets and equifinality (Beven, 2006b). In addition, the parameters estimated by

directly relating them to basin physical property data are interpretable in physical rather

than statistical terms. According to Ao et al. (2006), the reliability of direct parameter

estimation using basin physical characteristics depends on (i) model parameters that

have exact meanings, (ii) extensive databases of spatial physical property data, (iii)

establishment of relationships between basin physical property data and parameter

values, (iv) establishment of parameter basin characteristic transfer functions and (v) the

use of GIS techniques. Yadav et al. (2007) have already referred to the impacts of
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uncertainty in basin physical property data and catchment response characteristics on

the parameter sets for ungauged basins.

One of the most critical aspects in modelling both gauged and ungauged basins is to

identify parameters that are representative of the system under study. Even when the

input data and model parameters are well known, model predictions are often different

from the observed data, because models are simplified approximations of complex

natural processes. This means that parameters aggregate the complex and

heterogeneous real-world characteristics in a mathematical relationship (Beven, 1989).

These parameters are often ‘conceptual’ rather than directly measurable entities

(Wagener and Kollat, 2007).

While recent developments in parameter estimation and uncertainty analyses (Beven,

2001a; Gourley and Vieux, 2006) could be applied in the southern Africa context, their

application would be limited to a relatively small number of catchments where observed

data exist. Additional constraints are related to the willingness of model practitioners to

adopt new methods. This chapter attempts to create a platform for developing strategies

to assess the effects of parameter uncertainty on model outputs, which also take into

account the constraints that exist in southern Africa. The main objectives of this chapter

are:

 To estimate feasible (behavioural) parameters using the parameter estimation

approach of Kapangaziwiri and Hughes (2008).

 To explore the sensitivity of model outputs to parameter value differences.

 To assess the impact of parameter uncertainty on model output uncertainty in a

very simple way.

8.2 Parameter uncertainty estimation approaches

A summary of the approaches for parameter and uncertainty estimation (e.g. first order

analysis, GLUE, Monte Carlo, fuzzy approaches etc) is presented in section 2.5. One of

the critical issues is that using a strictly statistical framework for uncertainty analysis is

not always possible, largely because the statistical properties and distributions of the

input information are frequently unknown. The focus therefore shifts to identifying the

feasible range of parameter values and generating model outputs that can all be
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considered possible or ‘behavioural’. However, it is still necessary to have some method

of identifying those parameter sets that can be considered to generate ‘behavioural’

outputs (Yadav et al., 2007).

Kapangaziwiri (2008) and Kapangaziwiri and Hughes (2008) demonstrated the potential

of using an a priori parameter estimation approach based on conceptual interpretations

of some of the Pitman model parameters linked to measurable physical basin properties.

However, this previous study did not consider uncertainty. The approach proposed to

quantify parameter uncertainty in this study involves using different assumptions about

the basin physical property data to derive ‘best’ guess parameters as well as lower and

upper bounds for a given sub-basin. This is considered to be a first attempt at

incorporating uncertainty into the parameter estimation approach and that there will be a

high degree of subjectivity involved. It is therefore recognised that further work will be

required in the future to remove some of the subjectivity. While uncertainties associated

with the model structure are largely ignored in this approach, model scale (space and

time) issues affect the interpretation of the available basin physical property data.

Therefore, some aspects of model structural uncertainty are incorporated into the

parameter estimation process.

8.3 Approach to the analysis of the Pitman model parameters

The conceptual nature of the Pitman model offers opportunities for revised physically

based parameter estimation approaches (Kapangaziwiri and Hughes, 2008) to be used

in obtaining appropriate parameter sets, but the large number of parameters  (see e.g.

section 3.4.2, Table 3.4) suggests that the use of the model is associated with issues of

parameter identifiability, non-uniqueness and equifinality (Beven, 1993). Previous

experience of the Pitman model suggests that different groups of model users frequently

apply different approaches to calibration and parameter estimation, making it very

difficult to integrate parameter sets in regional studies (Hughes, 1997). The parameter

estimation approach of Kapangaziwiri and Hughes (2008) represents an attempt to find

a solution to this problem whilst retaining the widely accepted structure of the model.

However, the integration of parameters based on using different physical property data is

not a straightforward task and there remain unresolved scale issues. These are related

to the integration of basin-wide variations of such properties as soil depth, slope,
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hydraulic conductivity, transmissivity and many more variables. Without established

integration methodologies, it is not possible to avoid an element of subjectivity in the

basin average values that are used and this introduces uncertainties in the parameter

estimation process.  In this study the following steps were followed to estimate three sets

of parameters (best ‘guess’ as well as lower and upper bounds) for use in a parameter

sensitivity and uncertainty analysis:

 Initial identification of parameter conceptual interpretations (section 8.3.1).

 The quantitative estimation of parameters based on basin physical properties

(section 8.3.2).

 Parameter exploration or sensitivity analysis (section 8.3.3).

 Parameter and output uncertainty analysis (section 8.3.4).

8.3.1 Initial identification of parameter conceptual interpretations

A full description of the revised version of the Pitman model and its parameters is

provided in Kapangaziwiri (2008) together with detailed explanations of the conceptual

interpretations of all the parameters. A brief description of the model and its parameters

has been provided in section 3.4.2, while Table 8.1 provides a summary of the

parameters which are expected to be important in any sensitivity and uncertainty

analysis. The focus in Table 8.1 is on differences in parameter importance for different

climate regions, while other factors such as topography, geological setting and soil-

vegetation relationships are equally important. These interpretations can be used to

constrain parameter values in the process of developing a ‘behavioural’ model and also

form a basis for a more quantitative approach to parameter estimation. The important

component of this step is the development of a conceptual understanding of the

hydrological processes that are dominant in the basin being modelled in the context of

the model structure and its parameters.
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Table 8.1 Conceptual interpretations and assumptions about importance

parameters as an initial guide for parameter sensitivity analysis.

Parameter Model effects Relevance to different flow regimes
Semi-arid Humid

RDF
Non-dimen.

Affects the time distribution of
rainfall within a month

Can have large effect in
high rainfall months and is
linked to whether ST is likely
to be exceeded.

Will not have a large effect,
except in tropical areas where
high monthly rainfalls occur.

AI
% area

Impervious area directly connected to channel - rarely used under natural conditions and not part
of uncertainty analysis (AI=0).

PI
mm month-1

Interception capacity Expected to be greater for humid zones with higher surface
cover.

ZMIN
ZAVE
ZMAX
mm month-1

Control surface runoff
generation. ZAVE is typically
set half way between ZMIN
and ZMAX.

Main source of runoff
generation. ZMIN will
strongly affect small events,
while ZMAX will affect the
size of all events.

Generally less important, but
can be locally important in
some basins, especially if
heavy rainfall is experienced,
or if parts of the basin have
thin soils or soils with low
infiltration rates.

ST
mm

Interacts with many other
parameters and its effects are
very dependent on other
parameter values. Determines
the maximum limit of soil
moisture storage.

Size of ST determines how
frequently storage is
exceeded during high
rainfall months.

ST determines (together with
other parameters) the amount
of baseflow runoff and
recharge. Large values mean
that changes are gradual for
the same rain inputs.

FT
mm month-1

Maximum runoff from moisture
storage at ST. Determines the
balance between evaporation
and runoff.

Expected to be 0 in most
cases but may represent
unsaturated zone fracture
flow in steep basins.

Very important parameter
having a strong influence on all
aspects of the simulated flow
regime.

POW
Non dimen.

Power of the relationship
between moisture storage and
runoff.
Controls the rate of runoff from
the soil for any moisture state.

If FT > 0, POW is expected
to be high, suggesting very
variable runoff generation
(ephemeral rivers).
In catchments with very
short-lived baseflow.

Together with FT, has a large
impact on simulated runoff
generation.

R
Non-dimen.

Controls the rate at which
evaporation reduces as soil
moisture is depleted.

Not very important as high
rates of evap. dry soil
storage quickly at any R.

Can have important impacts on
the amount and time
distribution of runoff.

TL
Months

Runoff routing parameter. Rarely used in calibration but could be important if sub-
catchment size is very variable.

GW
mm month-1

Maximum groundwater (GW)
recharge depth at ST.

Frequently unimportant as
groundwater rarely
contributes to streamflow.
However, for some semi-
arid model applications it is
important to simulate
recharge and flow into static
channel pools.

Important parameters in
determining total volume of
groundwater contribution to
streamflow.

GPOW
Non-dimen.

Power of the relationship
between S and recharge.
Controls the rate of recharge
from the soil for any moisture
state.

SL
mm

Limiting soil moisture level for
recharge.

Typically set to 0 as GPOW
usually adequate to control
recharge distribution.

DDENS
km km-2

Effective drainage density for
GW inputs to streamflow.

Frequently unimportant as
groundwater rarely
contributes to streamflow.

Important parameters in
determining the rate and
temporal variability of
groundwater inputs to
streamflow.

T
m2 d-1

Groundwater transmissivity

S
Non-dimen.

Groundwater storativity

RSF
%

Parameter that determines
riparian evaporation losses
from GW storage.

Important in ensuring that
GW recharge does not
accumulate to generate
baseflow.

Can be important in the overall
water balance between
recharge and GW inputs to
streamflow.

TLGMax
mm month-1

Channel loss parameter for
both incremental runoff (within
one sub-catchment) and runoff
from upstream sub-
catchments.

Can be very important
where upstream areas
experience perennial flow
which is partly lost to
seepage.

Not important as flow is
assumed to be out of GW and
channel transmission losses
not present.
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8.3.2 Quantitative parameter estimation based on basin physical properties

The initial focus of the physically based parameter estimation approach has been on

some of the parameters listed in Table 8.1 (ZMIN, ZAVE, ZMAX, ST, FT and POW) and

is based on the physical interpretation of the parameters and the search for estimation

equations using measurable basin physical properties (Kapangaziwiri, 2008). If

parameter values can be constrained using physical basin properties earlier on in the

parameter quantification process, the parameter regionalization is expected to be less

uncertain. This implies that the use of physical basin properties in determining the

parameter sets reduces the subjectivity in manual calibration and, therefore, equifinality,

making it possible to obtain a basin specific, physically-based optimum parameter set.

Figure 3.15 in section 3.4.3, already presents the paths followed in the developmental of

such a priori parameter estimation approach. It is an inherently uncertain approach partly

because precise relationships are not possible and partly because the spatial resolution

and accuracy of the available physical basin information are typically less than suitable.

Although the approach is known to be uncertain it is a different matter to realistically

quantify that uncertainty. The best that can be achieved at present is to make use of the

likely ranges (e.g. Table 3.5, in Chapter 3) of the basin physical property estimates

based on the quality of the available information (e.g. AGIS, 2007). AGIS (2007)

provides relatively detailed information about topography and soil types. The soil type

data is in the form of depth ranges and texture classes for different topographic units

within the sub-basins. There is therefore uncertainty associated with the interpretation of

the AGIS information required by the parameter estimation procedure.

For each parameter, three values were obtained, the ‘best’ guess or initial value, a lower

value and an upper value. The bounds (lower and upper value of each parameter) are

determined based on an interpretation of how the parameters interactively generate

either lower or upper runoff. Given that in some instances there is more than one runoff

generation mechanism (e.g. soil moisture and groundwater functions) such as in humid

conditions, a direct approach of establishing the parameter bounds will not be possible

and some sampling approaches are needed. In an attempt to address this problem, a

simple manual sampling process was used. The lower and upper runoffs were used to

represent the likely simulation uncertainty bounds due to parameter uncertainty. The

limited observed streamflow data available in some of the sub-basins were used to
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evaluate the simulation bounds, but in the absence of this information the simulated flow

bounds are compared with the simulations based on the ‘best guess’ parameter set.

8.3.3 Parameter sensitivity analysis

Despite a wide spectrum of studies of parameter estimation, interdependences and

sensitivity analysis available in the literature (Sorooshian and Gupta, 1983; Beven, 1989,

1993; Beven and Freer, 2001; Gupta et al., 1998, Boyle et al., 2000), there have been

few attempts to apply similar approaches to the models in common use in southern

Africa. Irrespective of the method used for parameter estimation, one often has little

sense of which of the model parameters most influence model output and hence the

need for sensitivity analysis. Sensitivity analysis is based on multiple runs of the model

using appropriate parameter value combinations. The parameter exploration version of

the Pitman model (which allows for parameter interactions) as described in section 3.4.3

was used for this purpose. The output from this program is a list of parameter values and

a range of objective function statistics (section 3.4.1) comparing each model result with

an ‘observed’ time series. In the absence of observed data simulated flows based on

using the ‘best guess’ parameter set are used to compare with other simulations.

The sensitivity analysis results can be used to constrain the uncertainty analysis together

with the expected relevant information (framing assumptions) in Table 8.1. In this sense,

sensitivity and identifiability are similar issues. If the results are not sensitive to

parameter changes, the parameter is not identifiable, but at the same time, the

importance of getting the value correct is not important either. The parameters that are

not sensitive should therefore not affect model output uncertainty. The sensitivity

analysis should focus on groups of parameters that affect similar hydrograph

components. This would be strongly linked to the basin physical property data and

climate region. Parameter sensitivity analysis is a necessary, but not a sufficient

requirement for identifiability, since values of a sensitive parameter that produce good

model performance (relative to observed data) can still be distributed over a relatively

wide range of feasible parameter space (Wagner et al., 2001, 2003).
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8.3.4 Parameter uncertainty analysis

The same version of the model used in section 8.3.3 can be used to generate

ensembles within defined uncertainty bounds. In section 8.3.3 it was appropriate to limit

the number of parameters involved in each run of the model, but to have several steps

either side of the initial parameter value. Sensitivity analysis can assist in identifying

those parameters that should be included in the uncertainty analysis. In the uncertainty

analysis all parameters that are expected to be uncertain must be varied. The number of

parameter steps is restricted to three (minimum, initial and maximum parameter value),

while the number of parameters included will be large. A maximum of 10 parameters

could be included in the uncertainty analysis to generate 59 049 simulations with a

model run time of approximately 20 minutes. The resulting flow ensembles determine the

simulation uncertainty bounds due to parameter uncertainty. Constraining parameter

uncertainties in the absence of measured flow data (i.e. in ungauged basins) remains a

challenge (see Yadav et al., 2007). In the absence of an alternative approach the

ensembles are compared to the simulated flows based on the ‘best guess’ parameter

set, assumed to be the most likely result. The effects of parameter uncertainty on

simulated runoff are assessed using goodness-of-fit measures, together with visual

comparisons of time series plots and flow duration curves. The yield deficit (based on a

hypothetical reservoir and abstraction volume) outputs for each ensemble can also be

used to assess the differences in the ensemble flow regime characteristics. The yield

deficit statistic integrates many characteristics of a simulated flow regime (including intra-

and inter-annual variations) and can be more useful than single objective functions as

noted already in Chapter 3.

8.4 Application examples and results

The application of the procedures presented above is illustrated using 10 examples from

South Africa (Chapter 3, Figure 3.9); sub-basins of the upper Vaal River (C12D), the

Towus River (K40A), the Sabie River (X31A), the Gouritz River (J33D), the Breede River

(H10C), the Boesmans, a Thukela tributary (V70B), the Mgeni River (U20B), the Berg

River (G10B), the Elands River (X21F) and the Mooi River (V20A). The physical

properties for these sub-basins have already been presented in section 3.2. The

selection of the sub-basins for this analysis was mainly influenced by the availability and

quality of observed streamflows, despite the focus being on ungauged basins. The use
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of observed flows was to validate the methods used for parameter estimation, sensitivity

and uncertainty analysis so that confidence in the approaches can be assessed before

application to ungauged basins. The sub-basins were also chosen to reflect the diversity

of typical basin physical properties (i.e. soil properties, geological and topographical

conditions; climate and runoff regions). The size of the sub-basins ranged from as small

as 87km2 (K40A sub-basin) to 901km2 (C12D sub-basin).

The model input requirements (i.e. rainfall and potential evapotranspiration), have been

taken from Midgley et al. (1994) and were fixed throughout the analysis. The parameters

considered for sensitivity and uncertainty analysis were restricted to FF (in some sub-

basins), ZMIN, ZMAX, ST, FT, POW, GW, GPOW, DDENS and RSF, while the

remaining parameters were assumed to be estimated without uncertainty for the

purposes of this study. The parameter estimation process for ZMIN, ZMAX, ST, FT and

POW has been based on the procedure described in Kapangaziwiri and Hughes (2008)

using information on soils and topography largely derived from the Agricultural Geo-

referenced Information System (AGIS, 2007) of the South African Agricultural Research

Council. The AGIS (2007) soils and topography data are supported by information from a

database of groundwater characteristics for South Africa (Conrad, 2005). This database

provides values for the storativity and transmissivity parameters of the model as well as

estimates of mean annual recharge which can be used to establish appropriate values

for the parameters GW and GPOW.

8.4.1 Parameter estimates, sensitivity and uncertainty results

Three sets of parameters (initial value, lower and upper bounds) were estimated using

the methods of Kapangaziwiri and Hughes (2008). The table also includes the sensitivity

comments for each parameter and the three objective functions (coefficient of efficiency

(CE), percentage mean flows (Mn) for both un-transformed and transformed values, and

the yield deficit (%YD)) as well as the recharge rates associated with each parameter

set. The results for C12D (Table 8.2), H10C (Table 8.3), J33D (Table 8.4) and X21F

(Table 8.5) sub-basins are discussed in detail while additional results are provided in

Appendix 4.1.

C12D is a sub-humid sub-basin and the uncertainty in parameter values is mostly related

to the estimation of soil properties (texture classes and soil depth). The sub-basin is flat,
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characterized by moderate to deep clayey soils which are assumed to have restricted

drainage, particularly in the lower soil horizons and are underlain by fractured shales and

sandstones. The variations in maximum soil moisture absorption rates will result in a

substantial difference in simulated runoffs and yield deficits (i.e. yield deficits ranging

from 5.6 to 70.9%) as shown in Table 8.2. The yield deficits were based on a 65 * 106m3

reservoir (approximately equal to the observed mean annual runoff) and an annual

abstraction demand of 80 * 106m3/yr (distributed appropriately for irrigation

requirements). Given the poorly drained soils and low gradient (slope of 2-4%), it is

assumed that there will be no rapid soil moisture distributions during a rainfall event in

this sub-basin (Kapangaziwiri, 2008) and therefore very little sub-surface flow. The

sensitivity analysis results (Table 8.2) showed that the model is sensitive to ZMIN and

ZMAX, where the parameter ZMAX is more identifiable at a value of between 400 and

420 (Figure 8.1, left-hand side). Figure 8.1 (right-hand side) shows the flow duration

curves for the three simulations and the observed flows. Clearly the model output

uncertainty bounds are wide. It was not considered necessary to generate ensemble

simulations in this situation as the relationships between simulated flow characteristics

for the lower and upper bound parameter sets (Table 8.2) are very clear.

Figure 8.1 Sensitivity plot (left-hand side) based on 2401 simulations and flow

duration curves (right-hand side) for C12 sub-basin (simulation period is

1960-1990).
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Table 8.2 Basin property data, parameter estimates and objection function values

for C12 Sub-basin.

Sub-basin;
gauge area C12D; (C1H004-901km2)

i. Basin physical
property data Initial value

Uncertainty bounds
Lower runoff Upper runoff

Soil texture

SaClLm=60%;
SaCl=25%;

Cl=15%

SaClLm=50%;
SaCl=30%;

Cl=20%

SaClLm=70%;
SaCl=20%;

Cl=10%

Drainage Density
(km/km2) 1.70 1.70 1.70
Mean basin slope
(BS) (%) 3.0 2.0 4.0
Regional GW slope
(GS) (%) 1.0 1.0 1.0
Drain. Vector slope
(VS) (%) 100 100 100

Mean soil depth (m) 1.30 1.50 0.75

FT soil depth (m) 1.43 1.73 0.78

Soil porosity 0.33 0.32 0.34

Vertical variation (%) 40 40 40
Soil
Permeability(m/day) 0.36 0.27 0.37

Depth to GW (m) 25 25 25
GW storativity
(*1000) 2.0 2.0 2.0
Unsat transmissivity
(m2/day) 0.0 0.0 0.0

ii. Physically based parameters & Obj. function. values Sensitivity comments

ST (mm month-1) 172.0 220.0 100.0
Not sensitive in the range of 120 to
250.

FT (mm month-1) 0.8 0.4 1.0

Although low flows are sensitive to
changes in FT, the estimates are
constrained by the low basin slopes.

POW 4.0 6.5 3.5 Not sensitive given low FT values.

ZMIN ( mm month-1) 20.0 80.0 20.0 The overall volume of runoff is very
sensitive to both of these
parameters.ZMAX ( mm month-1) 420.0 500.0 320.0

GW (mm month-1) 14.0 8.0 20.0 Dry season low flows are very
sensitive to changes in recharge.GPOW 4.0 4.0 4.0

DDENS (km km-2) 0.2 0.2 0.2
Groundwater response is sensitive
to DDENS estimates.

RSF (%) 0.2 0.3 0.1

Dry season low flows are
moderately sensitive to riparian
losses.

Mean recharge (% of
rainfall) 1.4 1.0 1.9 The results and statistics given in

the the 3rd and 4th two columns are
based on model runs using the
parameter values in the rows above
for the equivalent column.

CE(Q) / CE (lnQ) 0.62/0.57 0.45/0.15 0.46/0.28
%Mn(Q)/ %Mn(lnQ) -2.1/190.6 -63.3/-488.2 65.5/459.8
Yield deficit (%) 26.7 70.9 5.6



199

H10C is also a sub-humid sub-basin and most of the boundary consists of steep rocky

outcrops with moderate to gentle slopes in the central part of the sub-basin. The soils

are loamy sands and vary in depth across the sub-basin, from very shallow on the upper

slopes to moderately deep in the valley bottom. The geology is mainly shale and

sandstone of the Bokkeveld group (although a Table Mountain Sandstone ridge occurs

in the southern part of the basin). Sensitivity analysis of different groups of parameters

suggests that most of them are sensitive (Table 8.3), with parameter ST being the most

identifiable (Figure 8.2, left-hand side). The complex nature of the topography and the

variation in soil depths across the whole sub-basin suggest that ST is an important

parameter in the uncertainty analysis. The output uncertainty (Figure 8.2, right-hand

side) is wide and there are many occasions when the observed flows are close to the

lower bound flow simulations. This is a consequence of not accounting for water use for

irrigation from a large number of small farm dams within the sub-basin, which represents

an unaccounted for uncertainty in this part of the study. All of the output ensembles

were run with a 113 * 106m3 reservoir capacity (approximately equal to the observed

mean annual runoff) and an annual abstraction demand of 141 * 106m3/yr to give the

yield deficits range (2- 50%) in Table 8.3.

Figure 8.2 Parameter sensitivity plot (left-hand side) based on 2401 simulations and

flow time series (right-hand side) for H10C sub-basin.
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Table 8.3 Basin property data, parameter estimates and objection function values

for H10C Sub-basin.

Sub-basin;
gauge area H10C; (H1H003-656km2)

i. Basin physical
property data Initial value

Uncertainty bounds
Lower runoff Upper runoff

Soil texture

Sa=25%;
LmSa=60%;

SaClLm=10%
SCl=5%

Sa=30%;
LmSa=60%;
SaClLm=5%

SCl=5%

Sa=40%;
LmSa=50%;

SaClLm=10%
SCl=0%

Drainage Density
(km/km2) 1.90 1.90 1.90
Mean basin slope (BS)
(%) 18.0 18.0 14.0
Regional GW slope
(GS) (%) 1.0 1.0 1.0
Drain. Vector slope
(VS) (%) 2.0 3.1 2.0

Mean soil depth (m) 0.65 0.29 1.15

FT soil depth (m) 0.76 0.34 1.35

Soil porosity 0.40 0.40 0.39

Vertical variation (%) 80 80 80
Soil
Permeability(m/day) 2.44 3.21 2.44

Depth to GW (m) 25 25 25

GW storativity (*1000) 2.0 2.0 2.0
Unsat transmissivity
(m2/day) 2.5 2.5 2.5

ii. Physically based parameters & Obj. function. Values Sensitivity comments

ST (mm month-1) 255.0 137.0 405.0 Sensitive in the range of 130 to 410.

FT (mm month-1) 43.9 31.1 57.1

Seasonal hydrograph shape and
overall water balance sensitive to
changes in FT.

POW 1.8 2.0 2.1
A change in POW affects overall
water balance.

ZMIN ( mm month-1) 0.0 0.0 0.0 The overall volume of runoff is
sensitive to ZMIN and ZMAX.ZMAX ( mm month-1) 1200.0 1100.0 1400.0

GW (mm month-1) 40.0 30.0 50
Low flows are sensitive over the
range 10 to 70.

GPOW 3.0 2.9 3.1
Low flows not sensitive to GPOW
change.

DDENS (km km-2) 0.4 0.3 0.5
Overall flow sensitive to values
within the range 0.1 to 0.7

RSF (%) 0.2 0.1 0.3
Low flows sensitive over the range
0.1 to 0.3

Mean recharge (% of
rainfall) 8.7 6.3 11.9 The results and statistics given in

the 3rd and 4th columns are the
extremes of all 6561 ensembles
using the parameter bounds given in
the 3rd and 4th columns above

CE(Q) / CE (lnQ) 0.58/0.67 -0.08/0.24 0.61/0.75
%Mn(Q)/ %Mn(lnQ) -1.8/13.3 -38.9/-54.6 67.7/39.7
Yield deficit (%) 27.0 50.0 2.0
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For J33D, a semi-arid sub-basin, one of the main sources of uncertainty is the definition

of spatial variations in rainfall, which is dominated by highly variable convective storms in

summer. The sub-basin has steep topography with shallow sandy loam soils, while the

geology of the area is mainly arenaceous shale, siltstone and quartzite sandstones.

Minor irrigation activities are practiced along the channel margins in alluvial soils and

supplied from in-channel weirs or off-channel storage dams. As with C12D the

parameters for J33D that generate the least and most runoff are relatively simple to

derive from the expected range of basin physical properties. The main runoff generation

mechanism is through surface runoff, controlled by infiltration parameters ZMIN and

ZMAX, which are dependent on soil texture properties. As illustrated by the sensitivity

plot (Figure 8.3, left-hand side), the sensitivity analysis of this sub-basin is difficult to

interpret and is dependent on the objective function selected. While groundwater

recharge rates and interflow are expected to be small (low FT and GW values) the

observed flow duration curve (see Figure 8.3-right side) suggests that zero flows are

only expected for some 5% of the time and that low flows are a significant component of

the flow regime despite the aridity of the sub-basin. The yield deficit analysis, with a 13.5

* 106m3 reservoir capacity (approximately equal to the observed mean annual runoff)

and an annual abstraction demand of 10 * 106m3/yr (distributed appropriately for

irrigation requirements), resulted in a range of deficits of 2-34% (Table 8.4). The results

demonstrate that the output uncertainty due to parameter uncertainty is not wide, as

shown by the relatively narrow range between the upper and lower bounds in Figure 8.3

(right-hand side). However, compared to observed flows, the simulations are not very

good and low flows area always over-simulated.

Figure 8.3 Parameter sensitivity plots (left-hand side) based on 2401 simulations and

flow duration curves (right-hand side) for J33D sub-basin.
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Table 8.4 Basin property data, parameter estimates and objection function values

for J33D Sub-basin.

Sub-basin;
gauge area J33D; (J3H012-688km2)

i. Basin physical
property data Initial value

Uncertainty bounds
Lower runoff Upper runoff

Soil texture
distribution

Sa=10%;
LmSa=60%;

SaClLm=20%
SCl=10%

Sa=5%;
LmSa=50%;

SaClLm=30%
SCl=15%

Sa=15%;
LmSa=70%;

SaClLm=10%
SCl=5%

Drainage Density
(km/km2) 1.30 1.30 1.30
Mean basin slope
(BS) (%) 15.0 10.0 20.0
Regional GW slope
(GS) (%) 1.0 1.0 1.0
Drain. Vector slope
(VS) (%) 4.2 4.2 4.2

Mean soil depth (m) 0.30 0.50 0.19

FT soil depth (m) 0.39 0.63 0.24

Soil porosity 0.38 0.37 0.39

Vertical variation (%) 80 80 80
Soil
Permeability(m/day) 0.47 0.36 0.62

Depth to GW (m) 25 25 25
GW storativity
(*1000) 1.0 1.0 1.0
Unsat transmissivity
(m2/day) 0.5 0.4 0.6

ii. Physically based parameters & Obj. function. values Sensitivity comments

ST (mm month-1) 110.0 164.0 80.0
Flows sensitive in the range of 20 to
200.

FT (mm month-1) 3.8 3.0 4.2
Flows are sensitive to changes in
FT.

POW 2.2 2.4 2.0
Changes in FT affect overall volume
of runoff.

ZMIN ( mm month-1) 0.0 0.0 0.0 The overall volume of runoff is very
sensitive to both of these
parameters.ZMAX ( mm month-1) 310.0 400 280.0

GW (mm month-1) 5.0 4.0 6.0

Dry season low flows are very
sensitive to recharge values less
than 5 and not sensitive for higher
values.

GPOW 2.5 3.0 2.0
Dry season low flows are very
sensitive to changes in recharge.

DDENS (km km-2) 0.2 0.1 0.3
Groundwater response is sensitive
to DDENS estimates.

RSF (%) 0.3 0.4 0.2
Dry season low flows are sensitive
to riparian losses.

Mean recharge (% of
rainfall) 1.1 0.7 1.6 The results and statistics given in

the 3rd and 4th two columns are
based on model runs using the
parameter values in the rows above
for the equivalent column.

CE(Q) / CE (lnQ) -0.32/0.22 0.07/0.22 -0.66/0.22
%Mn(Q)/ %Mn(lnQ) -2.0/-19.7 -39.9/-51.4 20.1/-89.0
Yield deficit (%) 9.0 34.0 2.0
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X21F is a sub-humid sub-basin characterized by undulating topography with shallow

sand clay loams. The geology comprises mainly shale and quartzite. The main source of

uncertainty is in the estimation of soil texture and depth. Given that the soils are shallow,

the main runoff generation mechanism is through surface runoff, controlled by infiltration

parameters ZMIN and ZMAX. However, sensitivity analysis (Table 8.5) showed that the

most sensitive parameters are ZMAX and FT.  Figure 8.4 (left-hand side) shows that

ZMAX is identifiable over the range of values that were tested. The yield deficit analysis,

with a 57 * 106m3 reservoir capacity (approximately equal to the observed mean annual

runoff) and an annual abstraction demand of 57 * 106m3/yr (distributed appropriately for

irrigation requirements), resulted in a range of deficits of 0.7%-30.6% (Table 8.4). While

the ‘best’ estimate parameter set generated results that are close to the observed

moderate to high flows, the upper bound set generate better results for most of the low

flows. It is possible that the extreme low flows of the observed records are impacted by

some abstractions.

Figure 8.4 Parameter sensitivity plot (left-hand side) based on 343 simulations and

flow duration curves (right-hand side) for X21F sub-basin.
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Table 8.5 Basin property data, parameter estimates and objection function values

for X21F Sub-basin.

Sub-basin; gauge
area X21F; (X2H011-397km2)

i. Basin physical
property data Initial value

Uncertainty bounds
Lower runoff Upper runoff

Soil texture

SaClLm=60%;
SaCl=30%;

Cl=10%

SaClLm =50%;
SaCl =35%;

Cl=15%

SaClLm =70%;
SaCl =25%;

Cl=5%

Drainage Density
(km/km2) 1.9 1.9 1.9
Mean basin slope (BS)
(%) 7.0 4.0 10.0
Regional GW slope
(GS) (%) 1.0 1.0 1.0
Drain. Vector slope
(VS) (%) 5.3 5.3 5.3

Mean soil depth (m) 0.67 0.80 0.42

FT soil depth (m) 0.74 0.94 0.47

Soil porosity 0.33 0.34 0.33

Vertical variation (%) 60 60 60
Soil
Permeability(m/day) 0.27 0.27 0.47

Depth to GW (m) 25 25 25

GW storativity (*1000) 1.0 1.0 1.0
Unsat transmissivity
(m2/day) 0.5 0.0 1.0

ii. Physically based parameters & Obj. function. values Sensitivity comments

ST (mm month-1) 140.0 163.0 96.0
Mean flows sensitive to ST over the
range 80 to 200.

FT (mm month-1) 4.6 1.2 8.5
Overall flow volumes sensitive to
FT.

POW 2.1 2.1 2.1 Slightly affects flow volumes.

ZMIN ( mm month-1) 10.0 0 10.0 ZMIN is not sensitive over the range
0 to 20 and ZMAX is sensitive for a
given range.ZMAX ( mm month-1) 420.0 500 400

GW (mm month-1) 18.0 10 25
Overall flows sensitive to GW for
values less than 25.

GPOW 3.0 3.5 2.5 Not sensitive over a given range.

DDENS (km km-2) 0.2 0.1 0.4
Overall flow volume sensitive to
changes in DDENS.

RSF (%) 0.1 0.2 0.1
Affects low flow parts of the flow
hydrograph.

Mean recharge (% of
rainfall) 4.7 2.3 7.1 The results and statistics given in

the 3rd and 4th two columns are
based on model runs using the
parameter values in the rows above
for the equivalent column.

CE(Q) / CE (lnQ) 0.54/0.63 0.52/0.08 0.33/0.60
%Mn(Q)/ %Mn(lnQ) 3.3/-5.0 -29.4/-53.1 32.2/23.6
Yield deficit (%) 6.5 30.6 0.7
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While the physical property data, model parameters and objective function values for the

other six sub-basins (G10B, K40A, U20B, V20A, V70B and X31A) are given in Appendix

4.1, the sensitivity plots and flow duration curves are provided in Figures 8.5 and 8.6

respectively. The results suggest that some of the parameters are very sensitive while

others are not at all (refer to previous examples and Appendix 4.1). The overall results

for the 6 sub-basins show that parameters ZMAX, ST and GW are relatively well defined

over the range of values tested (Figure 8.5), while ZMIN, FT, POW, GPOW and DDENS

are not identifiable in some sub-basins but are sensitive. An exceptional case is U20B

where parameter DDENS is sensitive and identifiable. The sensitivity tests presented

here are dependent on the objective functions used and some parameters appear to be

sensitive to either high or low flows depending on the runoff generation mechanism. The

differences in sensitivity tests also reflect the importance of parameter interactions and

the fact that FT and GW may not be identifiable because both can be used to generate

the low flow signal. Fixing one of these parameters then makes the other more

identifiable. The regional differences (Figure 8.5) in sensitivity tests are a consequence

of the differences in sub-basin physical properties (mainly soil texture and depth,

geology characteristics) and climatic differences.

The analysis of model output uncertainty results (Figure 8.6) suggest that simulated

flows in different sub-basins respond differently to parameter uncertainty. The

uncertainty bounds for G10B, K40A, U20B, V20A and V70B sub-basins are relatively

wide while X31A has relatively narrow uncertainty bounds. In sub-basins G10B, K40A

and V70B, the observed flows are closer to the lower bound than the upper bound,

which suggest less optimistic water development solutions. However, for sub-basins,

U20B and V20A, the observed and the ‘best’ estimate are closer to the upper bound

than to the lower bound, which suggest a more optimistic water development solution.

These findings are important in decision making processes when planning for further

development of the sub-basins. All of the above observations about the uncertainty

results need to be viewed with caution because of the subjective nature of the process

used to establish parameter bounds. While every effort was made to be consistent, it is

recognized that a more objective is required.
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Figure 8.5 Illustrations of parameter sensitivity analysis plots for different sub-
basins.
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Figure 8.6 Uncertainty analysis based on flow duration curves (observed, best

estimate & simulation uncertainty bounds) for different sub-basins.
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8.5 Discussion

Decision makers who use results of hydrological modelling studies to assess the effects

of various development impacts need guidance from modellers on the propagation of

uncertainty in model simulations and what the implications are for policy making.

Parameter uncertainty is but one of the sources of modelling uncertainty to consider.

This part of the study presented a starting point for the evaluation of the impact of

parameter uncertainty on water resources estimation using the revised version of the

Pitman model (Hughes, 2004b). While it is known that climate input data (rainfall and

potential evapotranspiration) influence the estimation of some of the parameters of the

Pitman model, these were fixed in this analysis and the parameter estimation approach

used is independent of the climate input data. While model structure uncertainty

associated with spatial and temporal averaging is always present in any modelling

process, this was ignored and effectively considered to be part of the parameter

estimation process. One of the major causes of uncertainty is the scale issues

associated with understanding the relationships between parameter values and

measured physical properties.

Many of the existing approaches to deriving acceptable parameter sets with uncertainty

rely upon information from observed flow data (Gupta et al., 1998; Beven, 2006b). In the

past, the knowledge gained from gauged basins has been extrapolated to ungauged

basins through direct regionalization of model parameters. The success of this approach

has been limited, partially due to unknown impacts of model structural errors and the

lack of calibration strategies that preserve the physical meaning of parameters (Wagener

and Wheater, 2006). However, the approach adopted in the study made use of a priori

parameter estimation methods (Kapangaziwiri and Hughes, 2008) that are applied

independently of any observed flows. The main problem with this approach is how to

identify parameter ranges or bounds that are realistic from an uncertainty point of view.

In this study, the bounds have been set using a rather subjective interpretation of the

uncertainties in physical property data (with no sampling involved) which are used as

inputs into the parameter estimation equations. While this is clearly not a satisfactory

long-term solution, it represents a first step towards the development of relevant

approaches to analyse uncertainty in the Pitman model parameters. The results

presented in this chapter have to be seen in the light of this subjectivity and the fact that
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no probability statements can be made about the upper and lower bounds of the

simulations.  Further research work is already in progress to address this deficiency in

the methods (Kapangaziwiri and Hughes, pers.comm.).

As might be expected, the most important parameters vary depending on sub-basin

climate and physical property conditions and the relatively simple (and easy to apply)

approach to sensitivity analysis served to identify important parameter interactions. The

parameters ZMAX (e.g. in sub-basins C12D, K40A, J33D, U20B, V20A, X21F) and ST

(e.g. in sub-basins G10B, H10C and V70B) were the most sensitive and identifiable

parameters (depending on the objective function used) for most examples used but FT

was found to be more identifiable for X21F. These parameters are controlled by soil

properties such as texture and depth. A high level of parameter identifiability indicates

that a parameter is important during either high or low flow periods depending on the

objective function used. In some cases parameters GW (e.g. U20B, X31A sub-basins)

and DDENS (e.g. U20B sub-basin) were also sensitive and these are controlled by the

geological settings. There are also distinct differences between the rainfall-runoff

response characteristics of the sub-basins studied and these are largely attributed to

differences in the geology and soil characteristics. The sensitivity of surface runoff

generation parameters reflects the dominance of surface and soil moisture runoff

contribution to total streamflow, while sensitivity of recharge and groundwater discharge

parameters reflects the dominance of base flow contribution to total streamflow in some

areas.

There is generally low sensitivity in some of the parameters which suggests a degree of

parameter interdependence. The sensitivity analysis will help to indentify insignificant

and redundant parameters and provides support for further evaluation of the model in an

effort to simplify it. As a decision aid, isolation of those parameters with the most effect

on model outputs would support the design of further data collection to improve the

accuracy of the physical property data. One of the important issues is the differences in

scale between many physical data sources and the scale of the model.

The information available at regional scales (e.g. the WR90 database-Midgley et al.,

1994 or FAO soils map) is difficult to interpret and translate into parameter estimates

using the methods of Kapangaziwiri and Hughes (2008). For example, soil depth data

are given as qualitative descriptions (moderate to deep, shallow etc). The more spatially
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detailed AGIS (2007) data are more suited for the purpose, but there are still limitations

with respect to their interpretation. Soil depths, for example, are provided as ranges for

each soil type, while soil texture distributions are provided for each topographic unit

within land type zones. The depth ranges have to be interpreted into the most

appropriate value for model parameter estimation equations. While it is obvious that

these interpretations are subject to uncertainty it is less than obvious how the uncertainty

should be quantified. A further problem is the relevance of the original data sources with

respect to the model structure and the physical meaning of the parameter values. For

example, much of the hydrogeological data available (Bredenkamp et al., 1995) have

been derived from borehole records and pumping tests. The extent to which this

information is relevant at a sub-basin scale model is largely unknown and uncertain at

present and therefore, further evaluations of hydrogeological data are necessary.
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9. EVALUATION OF THE COMBINED CONTRIBUTION OF 

UNCERTAINTY SOURCES TO MODEL OUTPUT UNCERTAINTY 

 

9.1 Introduction 
 

Previous chapters have demonstrated that the performance and outputs of a hydrological 

model are profoundly affected by many sources of uncertainty related to hydro-climatic data 

and parameter values as well the model structure itself. The results from these chapters 

suggest that individual sources of uncertainty contribute in different ways under different 

climate and sub-basin physiographic conditions and that clear statements about which 

source of uncertainty is likely to dominate are not generally possible. In this part of the study 

an attempt is made to integrate the combined effects of different sources of uncertainty on 

total output uncertainty for a limited number of sub-basins. However, the previous chapters 

focused on the simulation of natural flows and ignored uncertainty in estimating water use 

data that would be required to accurately estimate present day water resource availability. 

The main objectives of this chapter are therefore: 

� To include an assessment of the contribution of water use data uncertainty to 

simulated runoff uncertainty. 

� To assess in a simple way the combined effects of different sources of uncertainty on 

overall model output uncertainty. 

 

9.2 Assessment of impacts of uncertainty in water use data  
 

The extended version of the Pitman model (section 3.4.2) which includes several 

components to represent anthropogenic or water use impacts (land use modifications such 

as managed forest plantations, run-of-river abstractions and return flows, distributed small 

farm dams and large dams) on natural hydrology is used to assess the impacts of 

uncertainty in water use data on estimating present day water availability. Water use data 

are among the most unreliable information in many developing countries because 

observations of actual (rather than licensed) water use are relatively uncommon. The water 

uses considered in this part of the study are streamflow reductions due to managed forest 

plantations and direct runoff-of-river irrigation abstractions. However, in some instances 

irrigation water may be abstracted from small farm dams rather than directly from 

streamflows, but a lack of capacity-area relationships often hinders a comprehensive 

assessment of the impacts of small farm dams on streamflow reductions, despite their 
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relevance in providing water for supplementary irrigation. Forest plantations, run-of-river 

irrigation abstractions and distributed small farm dams represent important components of 

the present day water balance of a number of South African basins. The impacts of large 

dams and the associated operating rules are equally important, but the Pitman model is not 

really appropriate for simulating these effects. In such situations, water resources system 

models are far more appropriate estimation tools. As such the sub-basins used in this part of 

the study do not have large dams. 

9.2.1 Sources of uncertainty 
 
Information on forest plantations and irrigated areas as well as on storage volumes and 

surface areas of small farm dams is provided in the national water resources assessment 

studies (i.e. WR90 and WR2005). However, additional information is available from the 

Water Use Authorisations and Registration Management System (WARMS) database which 

is being developed by DWAF as part of the process of registering existing lawful water uses 

within South Africa. There exist disparities between water entitlements, or registered use, 

and actual use and these have been noted in many unpublished South African studies of 

present day water availability (e.g. Hallowes and Lecler, 2005).  

 

A source of uncertainty in small farm dams is a lack of information on the exact number of 

small dams, their capacity-area relationships and the sub-basin area above these dams. The 

source of uncertainties in irrigation water demand arises from the lack of information on the 

exact area under irrigation in a particular sub-basin. The uncertainty may also be related to 

the type of crop being irrigated, and the irrigation method and the source of water (run-of-

river or small farm dams). Due to a lack of data on crops, the crop-dependent water demand 

and the seasonal distribution of this demand, an average annual irrigation demand per 

hectare for each sub-basin is often adopted. With respect to forest plantation effects on 

streamflow reduction, the uncertainties are associated with the estimation of the total planted 

area, as well as tree type, density, stage of growth and growing conditions. Despite the large 

amount of work that has focussed on estimating water use by managed plantations in South 

Africa (e.g. Schulze, 2000; Gush et al., 2002) it remains difficult to incorporate accurate 

estimates into hydrological models. There has been substantial debate over the most 

appropriate approach to be used to estimate the changes in natural hydrology resulting from 

changes in land use with a strong focus on water use by managed forest plantations (Gush 

et al., 2002).   
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Given that the water use information is given as annual aggregated values, rather than time 

series values, it is difficult to quantify time series variations of water use for any simulation 

period. This can cause substantial uncertainty in quantifying accurate estimates of present 

day and future water resources. The uncertainties in water use may also be caused by the 

differences on the information obtained by different agencies in different times. As an 

illustration, for U20B, the annual irrigation demand given in the WR90 database (Midgley et 

al., 1994) is 9.92 * 106m3 while the WARMS database (i.e. 2006 estimates) reports a value 

of 11.7 * 106m3. Similarly, for K40A, the estimated annual irrigation demand varies from 7.31 

* 106m3 (Midgley et al., 1994) to 0.11 * 106m3 (WARMS). Additional uncertainties are related 

to the monthly variations in irrigation demand associated with actual rainfall amounts. While 

the model can account for this effect through part of the irrigation demand being met by a 

defined fraction of rainfall (a model parameter representing effective rainfall), there is no 

information available about how individual irrigation farmers actually manage irrigation 

applications. Apart from abstractions from large dams (not dealt with in this study) irrigation 

water may be obtained from run-of-river abstractions or from small farm dams. Both can be 

simulated by the model, but the information on the volume-surface area relationships of 

small farm dams is generally not available which introduces uncertainty in evaporation loss 

estimates. 

 
In this study, the effects of water use uncertainties are mainly confined to uncertainties in the 

areal extent of irrigation and afforestation (Table 9.1). The irrigation demand is based on a 

fixed seasonal distribution of demand for the most likely crop in each sub-basin. The main 

source of irrigation water for all sub-basins used in this study is through run-of-river 

abstractions but there are a few exceptions (X31A & U20B), where water is also obtained 

from small farm dams. An assessment of the impacts of small farm dams is based on full 

supply volumes and assumed capacity-area relationships. The total full supply volume 

(cumulative) of small farm dams in X31A sub-basin, for example is 0.05 * 106m3, while for 

U20B sub-basin is 11.08 * 106m3, based on information from the WR90 database. The other 

sub-basins have no significant storage in small farm dams. The afforestation effects on 

streamflow reductions are based on fixed changes to interception (PI) and evaporation 

demand (FF) parameters of the Pitman model as recommended in Hughes (1997). Table 9.1 

presents the information on water use data that is readily available to a water resource 

manager without detailed site investigations. Two or three realizations (depending on the 

availability of information) of present day conditions based on irrigation and afforestation 

areas given in the WR90, WR2005 and WARMS databases are used in the analysis. The 

existing WR90 regional model parameter sets (Midgley et al., 1994), rainfall and 

evapotranspiration inputs were fixed for all model runs for this analysis.  
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Table 9.1 Areas under irrigation and afforestation for different sub-basins   
  from different sources. 
 

Sub-basin & Area G10B 

(126km2) 

K40A 

(87km2) 

U20B 

(353km2) 

 X31A 

(230km2) 

Source Data Area covered  (in km2) 

WR90 Irrigation  3.1 8.8 16.3 0 

Afforestation 15.0 58 49.0 188 

WR2005 Irrigation  3.18 - 7.79 0 

Afforestation 0.02 - 42.7 153.7 

 WARMS2006 Irrigation  - 1.5 30.4 0 

Afforestation - 42.7 36.0 181.7 

Note: There is no information for G10B from the WARMS2006 database and for K40A from the WR2005 database. 

 
The effects of uncertainty in estimating water use on water resources availability are 

quantified in terms of the impacts on mean annual runoff (MAR) and the results are 

presented in Table 9.2. The table shows the effects of irrigation abstraction, afforestation 

and the combined effects of the two, on sub-basin MAR. It has already been noted that there 

are a number of sources of uncertainty in water use data, as well as the way in which water 

use information is used in the model. However, with one exception, most of these will have 

smaller effects than differences in areal extent of irrigation and afforestation. The one 

exception is the water use by different trees and plantation management approaches (e.g. 

planting in riparian areas or excluding such areas). However, an assessment of these 

uncertainties is a very specialised topic and beyond the scope of this study. 

 

As mentioned earlier, irrigation abstractions can be either through run-of-river abstractions or 

from small farm dams. These two scenarios were assessed for U20B for which reasonably 

reliable information on small farm dams was available from the WR90 database. The results 

from this analysis (Table 9.2, bold values) showed that small farm dams decrease the MAR 

by a greater amount (14.8%) than equivalent run-of-river abstractions (5.3%). The reasons 

for this are attributed to the additional losses from reservoir evaporation and the fact that the 

irrigation requirements can be more completely sustained during low flow periods. The flow 

duration curves for K40A and U20B in Figure 9.1 illustrate the differences in flow realizations 

(derived from different combinations of water uses) from the natural flow simulations and the 

observed flows. While the observed flow duration curve for K40A is outside the ensemble 

range for most of the time, the observed flows lie within the range of all the flow realizations 

for U20B. The differences in flow realizations from the observed flow for K40A are an 

indication of unaccounted for uncertainty in parameter values and in the water use data. 
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Table 9.2 Realizations of simulated mean annual runoff (MAR) for different water uses 
in four sub-basins. 

 
Sub-basin G10B K40A U20B X31A 

 Mean annual runoff (m3   * 106)/yr 

Source of data No. abs. 91.6 18.0 67.6 115.7 

WR90 Irr. only. 90.1 15.5 64.0;57.6 - 

Aff. only. 88.9 12.1 59.8 80.8 

 Aff & Irr. 87.4 10.0 56.2;49.8 - 

WR2005 Irr. only. 90.1 - 65.8 - 

Aff. only. 91.6 - 60.8 86.7 

 Aff & Irr. 90.1 - 59.0 - 

WARMS2006 Irr. only. - 17.4 61.6 - 

Aff. only. - 13.4 61.8 81.9 

 Aff & Irr. - 12.9 56.1 - 

Note: No. abs- represents no abstraction realization where a natural flow is simulated; Aff- represents afforestation and Irr- 

represents irrigation water use abstractions, Bold values in the column 4 represent impacts of farm dams (for irrigation use) on 

streamflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9.1 Flow duration curves (based on 10 realizations) showing effects of uncertainty 

in water use data (Bold line represents simulated natural flow and dotted bold 

line represents observed flow). 
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9.3 Combined propagation of uncertainty sources through the Pitman 
model 

 

Despite the clear importance of separating all the sources of uncertainty in hydrological 

practice (Beven, 2000b), there are very few studies (e.g. Ajami et al., 2007) which have 

made attempts to explicitly account for all the different sources of uncertainty in rainfall-

runoff modelling within the same framework. The few methods that have attempted this, 

such as the Bayesian Total Error Analysis (Kavetski et al., 2006) and the Integrated 

Bayesian Uncertainty Estimator (Ajami et al., 2007), have used statistical or data-driven 

approaches. Given the limited availability of data and resources in southern Africa, these 

methods are often inappropriate for use in the region. In this study, through a sensitivity 

analysis approach on a limited number of sub-basins, combined or collective contributions of 

climate input data, model parameter (assumed to include model structure uncertainty in this 

study) and water use uncertainties on simulated runoff are quantified within the SPATSIM 

framework. The analysis was performed by creating different scenarios or realizations of 

different sources of uncertainty, combine their contribution and propagate them through the 

model to generate simulation ensembles that include the expected range of model output 

uncertainty. The scenarios (based on assessments from the previous chapters), include 

different formulations of rainfall input, potential evapotranspiration estimates, water use data 

and parameter sets (Table 9.3). In this study, uncertainty propagation was evaluated based 

on both the simulated mean annual runoff (MAR) and the simulated yield of hypothetical 

reservoirs at each sub-basin outlet. The simulated yields are based on a mean annual 

achieved abstraction demand (at 90% level of assurance of supply). The reservoir sizes 

were set equal to about 1 x MAR of observed flows and the annual abstraction demand was 

assumed to be distributed by irrigation demands based on sub-basin information. Table 9.4 

presents information on reservoir volumes (full supply volume) and mean annual required 

demands for three sub-basins. 

9.3.1 Results of uncertainty propagation 
 

Table 9.5 presents the results of the combined effects of propagating the different sources of 

uncertainty through the Pitman model to simulated mean annual runoff and how this would 

affect simulated yields. The results are based on ensemble streamflow simulations covering 

a wide spectrum of all the possible combinations of different uncertainty sources (i.e. rainfall, 

evapotranspiration, parameters and water use uncertainties in Table 9.3), all which will 

conjunctively have an influence on simulated reservoir yields. As expected, any change in 

simulated runoff resulted in a change in yield as presented in Table 9.5. The model output 
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uncertainty assessment is based on comparisons of flow duration curves (see e.g. Figures 

9.2, 9.3 and 9.4) and achieved yields (Table 9.6 and Figure 9.5).  

 

Table 9.3 Description of scenarios used in the uncertainty analysis 
 

Scenario Description 

R1 WR90 zonal rainfall (Midgley et al., 1994) (1920-1990). 

R2 IDW spatially interpolated data (1920-2000). 

R3 Same as ‘R2’ but with frequency characteristics corrected based on ‘R1’ (1920-2000). 

E1 Fixed monthly pan based evaporation demand (Midgley et al., 1994). 

E2 Monthly time series evaporation demand based on pan data (start dates are different in different 

sub-basins). 

E3 Monthly time series evaporation demand perturbed from temperature data (1950-2000) 

PW Existing WR90 regional parameters values based on calibration against observed flows (Midgley 

et al., 1994). 

PB The ‘best’ estimate parameter values estimated by parameter estimation approach of 

Kapangaziwiri and Hughes (2008).  

PL The lower bound parameter values also estimated by parameter estimation approach of 

Kapangaziwiri and Hughes (2008). 

PU The upper bound parameter values also estimated by parameter estimation approach of 

Kapangaziwiri and Hughes (2008). 

W1 This represents irrigation and afforestation data based on WR90 database. 

W2 This represents irrigation and afforestation data based on either WR2005 or WARMS data. 

 

Table 9.4  Hypothetical reservoir sizes and mean annual required abstraction demand 
 

Sub-basin G10B K40A U20B 

Reservoir volume (106 * m3) 93.1 8.5 63.6 

Mean annual required demand (106 * m3)/yr 80.1 7.7 52.1 

 
 
The flow duration curves in Figures 9.2, 9.3 and 9.4 illustrate that the uncertainty bounds of 

simulated flows are increased when all the sources of uncertainty are considered than when 

rainfall, evaporation and water use uncertainties are included individually. In gauged sub-

basins (K40A and U20B), the available observed flows are included into the flow duration 

curves but in ungauged sub-basins (G10B) the ‘best estimate’ flows are used to assess for 

comparison with the ensembles. The best estimate flow was generated based on using the 

combination, WR90 rainfall input (R1), mean monthly evapotranspiration (E1), ‘best guess’ 

parameter values estimated using Kapangaziwiri and Hughes (2008) approach (PB) together 

with water use data from the WR90 database(W1) (Table 9.3). For G10B, the flow duration 
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curves (Figure 9.2, left-hand side) show two distinct groups of ensembles which clearly 

reflect uncertainty in rainfall input data due to the high spatial rainfall gradients in this 

mountainous region. The inclusion of parameter uncertainties (upper and lower bounds) 

(Figure 9.2, right-hand side) contribute a large amount of uncertainty. For K40A (Figure 9.3) 

most ensembles under-estimate observed flows, mainly in the low flow regime. This may be 

a reflection of unaccounted for sources of uncertainty or because the ‘best-guess’ parameter 

set is not very behavioural. For U20B, Figure 9.4 (left-hand side) shows that the 

uncertainties due to rainfall, evaporation and water use alone are relatively small and that 

parameter uncertainty dominates (Figure 9.4, right-hand side). The parameter uncertainty is 

mainly caused by uncertainty associated with the inability to accurately relate physical 

property data to the parameter values and how the Pitman model responds to these effects 

given that the scale of physical property data does not match the model scale. With respect 

to water use data, the uncertainties vary from sub-basin to sub-basin and this is a reflection 

of the differences in the information on areas covered by irrigation and afforestation in 

relation to the total sub-basin size.  

 
 
 
 

 
 
 
 

 

 

 

 

 
 
 

Figure 9.2 Flow duration curves of uncertainty ensembles (left-hand side - no parameter 

uncertainty included; right-hand side - all sources of uncertainty included) for 

G10B sub-basin. (Bold lines represent best estimate flows). 
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Table 9.5 Ensemble simulations of MAR and yield for three sub-basins. 
 

Sub-basin G10B K40A U20B 

Realization MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

R1, E1, PW, W1. 87.4 77.2 10.0 7.3 56.2 47.4 

R1, E2, PW, W1. 86.7 78.6 11.4 7.5 63.1 48.7 

R1, E3, PW, W1. 91.6 79.1 10.7 7.3 60.7 49.5 

R2, E1, PW, W1. 50.7 50.7 14.1 7.5 62.6 50.4 

R2, E2, PW, W1. 48.9 48.3 14.9 7.6 68.4 49.8 

R2, E3, PW, W1. 50.7 50.8 14.2 7.4 66.2 50.0 

R3, E1, PW, W1. 88.2 76.2 10.0 7.4 55.4 48.1 

R3, E2, PW, W1. 87.1 75.9 10.5 7.3 61.9 49.1 

R3, E3, PW, W1. 90.1 76.6 10.1 7.2 59.5 49.2 

R1, E1, PW, W2. 90.1 77.9 12.9 7.7 59.0 48.9 

R1, E2, PW, W2. 89.4 79.1 14.1 7.7 65.9 49.7 

R1, E3, PW, W2. 94.4 79.4 13.6 7.7 63.5 50.6 

R2, E1, PW, W2. 52.8 52.8 17.3 7.7 65.5 51.0 

R2, E2, PW, W2. 50.9 50.2 18.3 7.7 71.3 50.6 

R2, E3, PW, W2. 50.3 49.6 17.5 7.7 69.1 50.8 

R3, E1, PW, W1. 90.8 77.4 13.0 7.6 58.2 49.5 

R3, E2, PW, W2. 89.6 77.2 13.5 7.7 64.6 50.0 

R3, E3, PW, W2. 92.7 77.8 13.0 7.6 62.4 50.1 

    

R1, E1, PB, W1. 67.4 64.7 5.9 5.1 57.8 48.4 

R1, E2, PB, W1. 66.7 64.8 7.0 5.4 63.5 49.6 

R1, E3, PB, W1. 71.4 67.0 6.9 5.6 61.1 49.7 

R2, E1, PB, W1. 33.3 33.6 9.1 6.6 64.1 50.8 

R1, E2, PB, W1. 32.0 32.2 10.0 6.2 69.1 50.3 

R1, E3, PB, W1. 31.3 31.5 10.0 6.4 66.7 50.4 

R3, E1, PB, W1. 68.6 64.8 6.4 5.3 56.9 49.0 

R3, E2, PB, W1. 67.9 63.1 6.4 5.0 62.6 49.5 

R3, E3, PB, W1 70.6 65.8 6.4 5.3 60.3 49.6 

R1, E1, PB, W2. 69.9 66.6 7.9 6.7 60.4 49.8 

R1, E2, PB, W2. 69.1 66.9 8.9 6.6 66.1 50.3 

R1, E3, PB, W2. 73.9 68.7 9.6 6.9 63.8 50.8 

R2, E1, PB, W2. 35.0 35.3 11.4 7.4 66.7 51.4 

R2, E2, PB, W2. 33.6 33.6 12.0 7.3 71.7 51.1 

R2, E3, PB, W2. 33.0 32.9 12.7 7.5 69.4 51.0 

R3, E1, PB, W2. 72.8 67.1 7.8 6.6 59.5 50.2 

R3, E2, PB, W2. 70.2 64.6 8.4 6.3 65.2 50.3 

R3, E3, PB, W2. 73.0 67.2 8.5 6.6 62.9 50.4 
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Table 9.5 continued. 

Sub-basin G10B K40A U20B 

Realization MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

MAR 
(m3*106)/yr 

Yield 
(m3*106)/yr 

R1, E1, PL, W1. 62.1 60.5 2.5 2.3 45.0 41.3 

R1, E2, PL, W1. 61.4 60.2 2.9 2.9 50.5 43.9 

R1, E3, PL, W1. 66.0 63.2 2.8 2.7 47.6 43.1 

R2, E1, PL, W1. 28.1 28.5 4.3 3.5 49.8 45.8 

R2, E2, PL, W1. 27.0 27.3 4.8 3.5 55.1 47.0 

R2, E3, PL, W1. 28.3 29.1 4.8 3.7 52.5 46.9 

R3, E1, PL, W1. 63.3 60.6 2.2 2.2 43.9 42.1 

R3, E2, PL, W1. 62.6 58.8 2.4 2.6 49.1 45.1 

R3, E3, PL, W1 65.3 62.1 2.4 2.8 46.8 44.9 

R1, E1, PL, W2. 64.7 62.5 3.4 3.3 47.6 43.3 

R1, E2, PL, W2. 63.9 62.4 3.8 3.6 52.7 45.2 

R1, E3, PL, W2. 68.7 65.0 4.3 4.0 50.5 45.2 

R2, E1, PL, W2. 29.8 30.2 5.6 4.6 52.4 47.5 

R2, E2, PL, W2. 28.6 28.8 6.3 4.4 57.2 47.7 

R2, E3, PL, W2. 30.1 30.8 6.1 4.8 55.1 48.0 

R3, E1, PL, W2. 65.8 62.5 3.2 3.2 46.5 44.2 

R3, E2, PL, W2. 65.0 60.7 3.5 3.4 51.7 46.8 

R3, E3, PL, W2. 67.8 63.8 3.4 3.4 49.5 46.7 

    

R1, E1, PU, W1. 77.2 71.9 7.9 6.5 68.8 52.1 

R1, E2, PU, W1. 76.3 72.5 9.1 6.7 76.1 52.2 

R1, E3, PU, W1. 81.1 73.6 8.9 6.9 72.7 52.2 

R2, E1, PU, W1. 42.2 42.3 11.5 7.4 75.9 51.9 

R2, E2, PU, W1. 40.7 40.3 12.2 7.2 81.8 52.1 

R2, E3, PU, W1. 42.3 42.5 12.8 7.5 79.2 51.8 

R3, E1, PU, W1. 78.3 71.1 7.8 6.5 67.9 51.6 

R3, E2, PU, W1. 77.5 69.3 8.4 6.3 74.9 51.9 

R3, E3, PU, W1. 80.3 71.1 8.3 6.6 71.8 51.6 

R1, E1, PU, W2. 79.7 73.2 10.5 7.5 68.5 51.9 

R1, E2, PU, W2. 78.9 74.0 11.6 7.6 75.4 53.5 

R1, E3, PU, W2. 83.7 74.9 12.3 7.7 72.2 52.0 

R2, E1, PU, W2. 44.0 44.1 14.5 7.6 75.6 51.8 

R2, E2, PU, W2. 44.2 44.3 15.5 7.7 81.2 51.9 

R2, E3, PU, W2. 44.2 44.2 15.2 7.6 78.6 51.7 

R3, E1, PU, W2. 80.7 72.4 10.5 7.5 67.6 51.5 

R3, E2, PU, W2. 79.9 70.8 11.1 7.4 74.1 51.8 

R3, E3, PU, W2. 82.7 72.3 10.9 7.4 71.6 51.5 

Notes: The yield estimate is a simulated value based on a mean annual achieved abstraction demand and a 
hypothetical reservoir design size. Shaded rows are grouped to form set 1 (see Table 9.6) where evaporation is 
varied (E1, E2, E3) while other sources are fixed. 
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Figure 9.3 Flow duration curves of uncertainty ensembles (left-hand side - no parameter 

uncertainty included; right-hand side - all sources of uncertainty included) for K40A 

sub-basin (Bold lines represent observed flows from 1965-2000). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.4 Flow duration curves of uncertainty ensembles (left-hand side - no parameter 

uncertainty included; right-hand side - all sources of uncertainty included) for 

U20B sub-basin (Bold lines represent observed flows from 1954-2000). 

 

Table 9.6 summaries the results of the uncertainty analysis using the minimum and 

maximum yield estimates selected for ‘sets’ of ensembles. A ‘set’ is defined by those 

ensembles which have one source of uncertainty varying, while fixing the other three 

sources (the ‘shaded rows’ in Table 9.5 form ‘set 1’ in Table 9.6 for evaporation uncertainty). 

There are therefore 24 evaporation uncertainty sets, 24 rainfall uncertainty sets, 18 

parameter uncertainty sets and 36 water use uncertainty sets (but only 18 are shown in 
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Table 9.6). The last two rows of Table 9.6 give the average of the maximum and minimum 

values for all the sets and the percentage differences between these averages.  

 

Table 9.6 Summarised results of combined contribution different uncertainty sources on 

simulated mean annual yields (m3 * 106) for three sub-basins 

G10B sub-basin 

Set 
 

Evaporation 
 

Rainfall 
 

Parameter Water use 

  
Min 

Yield 
Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

1 77.2 79.1 50.7 77.2 60.5 77.2 60.5 62.5 

2 48.3 50.8 48.3 78.6 60.2 78.6 60.2 62.4 

3 75.9 76.6 50.8 79.1 63.2 79.1 63.2 65.0 

4 77.9 79.4 52.8 77.9 28.5 50.7 28.5 30.2 

5 49.6 52.8 50.2 79.1 27.3 48.3 27.3 28.8 

6 77.2 77.8 49.6 79.4 29.1 50.8 29.1 30.8 

7 64.7 67.0 33.6 64.8 60.6 76.2 60.6 62.5 

8 31.5 33.6 32.2 64.8 58.8 75.9 58.8 60.7 

9 63.1 65.8 31.5 67.0 62.1 76.6 62.1 63.8 

10 66.6 68.7 35.3 67.1 62.5 77.9 71.9 73.2 

11 32.9 35.3 33.6 66.9 62.4 79.1 72.5 74.0 

12 64.6 67.2 32.9 68.7 65.0 79.4 73.6 74.9 

13 60.2 63.2 28.5 60.6 30.2 52.8 42.3 44.1 

14 27.3 29.1 27.3 60.2 28.8 49.6 40.3 44.3 

15 58.8 62.1 29.1 63.2 30.8 49.6 42.5 44.2 

16 62.4 65 30.2 62.5 62.5 77.4 71.1 72.4 

17 28.8 30.8 28.8 62.4 60.7 77.2 69.3 70.8 

18 60.7 63.8 30.8 65.0 63.8 77.8 71.1 72.3 

19 71.9 73.6 42.3 71.9 - - 64.7 66.6 

20 40.3 42.5 40.3 72.5 - - 64.8 66.9 

21 69.3 71.1 42.5 73.6 - - 67.0 68.7 

22 73.2 74.9 44.1 73.2 - - 33.6 35.3 

23 44.1 44.3 44.3 74.0 - - 32.2 33.6 

24 70.8 72.4 44.2 74.9 - - 31.5 32.9 

Average 58.2 60.3 38.9 70.2 50.9 68.6 54.1 55.9 

%Diff.  3.4  44.6  25.7  3.1 
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Table 9.6 continued 
 

K40A  sub-basin 

Set 
 

Evaporation 
 

Rainfall 
 

Parameter Water use 

  
Min 

Yield 
Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

1 7.3 7.5 7.3 7.5 2.3 7.3 2.3 3.3 

2 7.4 7.6 7.3 7.6 2.9 7.5 2.9 3.6 

3 7.2 7.4 7.2 7.4 2.7 7.3 2.7 4.0 

4 7.7 7.7 7.6 7.7 3.5 7.5 3.5 4.6 

5 7.7 7.7 7.7 7.7 3.5 7.6 3.5 4.4 

6 7.6 7.7 7.6 7.7 3.7 7.4 3.7 4.8 

7 5.1 5.6 5.1 6.6 2.2 7.4 2.2 3.2 

8 6.6 6.6 5.0 6.2 2.6 7.3 2.6 3.4 

9 5.0 5.3 5.3 6.4 2.8 7.2 2.8 3.4 

10 6.6 6.9 6.6 7.4 3.3 7.7 6.5 7.5 

11 7.3 7.5 6.3 7.3 3.6 7.7 6.7 7.6 

12 6.3 6.6 6.6 7.5 4.0 7.7 6.9 7.7 

13 2.3 2.9 2.2 3.5 4.6 7.7 7.4 7.6 

14 3.5 3.7 2.6 3.5 4.4 7.7 7.2 7.7 

15 2.2 2.8 2.7 3.7 4.8 7.7 7.5 7.6 

16 3.3 4.0 3.2 4.6 3.2 7.6 6.5 7.5 

17 4.4 4.8 3.4 4.4 3.4 7.7 6.3 7.4 

18 3.2 3.4 3.4 4.8 3.4 7.6 6.6 7.4 

19 6.5 6.9 6.5 7.4 - - 5.1 6.7 

20 7.2 7.5 6.3 7.2 - - 5.4 6.6 

21 6.3 6.6 6.6 7.5 - - 5.6 6.9 

22 7.5 7.7 7.5 7.6 - - 6.6 7.4 

23 7.6 7.7 7.4 7.7 - - 6.2 7.3 

24 7.4 7.5 7.4 7.7 - - 6.4 7.5 

Average 6.0 6.2 5.8 6.5 3.4 7.5 5.1 6.0 

%Diff.  4.3  11.4  55.1  15.2 
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Table 9.6 continued 
 

K40A  sub-basin 

Set 
 

Evaporation 
 

Rainfall 
 

Parameter Water use 

  
Min 

Yield 
Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

Min 
Yield 

Max 
Yield 

1 47.4 49.5 47.4 50.4 41.3 52.1 41.3 43.3 

2 49.8 50.4 48.7 49.8 43.1 52.2 43.9 45.2 

3 48.1 49.2 49.2 50.0 43.1 52.2 43.1 45.2 

4 48.9 49.7 48.9 51.0 45.8 51.9 45.8 47.5 

5 50.6 51.0 49.7 50.6 47.0 52.1 47.0 47.7 

6 49.5 50.1 50.1 50.8 46.9 51.8 46.9 48.0 

7 48.4 49.7 48.4 50.8 42.1 51.6 42.1 44.2 

8 50.3 50.8 49.6 50.3 45.1 51.9 45.1 46.8 

9 49.0 49.6 49.6 50.4 44.9 51.6 44.9 46.7 

10 49.8 50.8 49.8 51.4 43.3 51.9 51.9 52.1 

11 51.0 51.4 50.3 51.1 45.2 53.5 52.2 53.5 

12 50.2 50.4 50.4 51.0 45.2 52 52.0 52.2 

13 41.3 43.9 41.3 45.8 47.5 51.8 51.8 51.9 

14 45.8 47.0 43.9 47.0 47.7 51.9 51.9 52.1 

15 42.1 45.1 43.1 46.9 48.0 51.7 51.7 51.8 

16 43.3 45.2 43.3 47.5 44.2 51.5 51.5 51.6 

17 47.5 48.0 45.2 47.7 46.8 51.8 51.8 51.9 

18 44.2 46.7 45.2 48.0 46.7 51.5 51.5 51.6 

19 52.1 52.2 51.6 52.1 - - 48.4 49.8 

20 51.8 52.1 51.9 52.2 - - 49.6 50.3 

21 51.6 51.9 51.6 52.2 - - 49.7 50.8 

22 51.9 53.5 51.5 51.9 - - 50.8 51.4 

23 51.7 51.9 51.8 53.5 - - 50.3 51.1 

24 51.5 51.8 51.5 52.0 - - 50.4 51.0 

Average 48.7 49.7 48.5 50.2 45.2 51.9 48.6 49.5 

%Diff.   2.0   3.4   13.0   1.9 
 
Notes: %Diff represents percentage differences between minimum (min) and maximum (maxi) average yields and is given by: 

{100 x (maximum average-minimum average value)/maximum average value}. Minimum and maximum values represent a 

range of yield VALUES when one source of uncertainty is varied, while others are fixed. A ‘set’ represents a number of 

combinations which are grouped (the shaded rows in Table 9.5 represents set 1) where one source of uncertainty is varied 

while others in the combinations are fixed.  

 

The average values of minimum and maximum yield estimates for all sets (Table 9.6) were 

used to compare the ranges of individual sources of uncertainty when propagated with other 

sources through the model. As an example, for G10B (Table 9.6), the range of achieved 

yields (based on averages) due to evaporation uncertainty is 58.2 * 106m3 to 60.3 * 106m3, 

with a difference of 3.4%, while the range due to rainfall uncertainty is 38.9 * 106m3 to 70.2 * 

106m3, with a difference of 44.6%. The range due parameter uncertainty is 50.9 * 106m3 to 
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68.6 * 106m3, with a difference of 25.7%, while the range due to water use data uncertainty is 

54.1 * 106m3 to 55.9 * 106m3, and a difference of 3.1%. To illustrate the differences between 

sources of uncertainty and sub-basins Figure 9.5 uses pie charts based on the percentage 

differences of the average minimum and maximum yield estimates given in Table 9.6.  It has 

been assumed that the sum of these percentage differences represents a measure of the 

total uncertainty and that the individual differences represent the relative contribution of each 

source.  

 

The results indicate that the major source of uncertainty is either rainfall (i.e. 59% for G10B) 

or parameter value estimation (i.e. 64% for K40A and 64% for U20B; Figure 9.5) depending 

on the sub-basin. In the three examples, evaporation and water use uncertainties are 

relatively small. This information is useful to both hydrologists and water resources 

managers and it allows concrete decisions in water resources planning to be made about 

future risks of using uncertain information and where efforts to reduce uncertainty should be 

focussed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.5 Pie charts showing combined contribution of different uncertainty sources to 

total output uncertainty based on the achieved yield from a hypothetical 

reservoir. 
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9.4 Discussion and observations 
 

With respect to the assessment of the impacts of water use uncertainties on streamflows, 

this study presents some limited findings. The impacts vary from sub-basin to sub-basin (i.e. 

G10B, K40A and U20B), with impacts greater for K40A, since a relatively greater portion of 

this sub-basin is afforested (over 60% of the total sub-basin size). The impacts also vary 

when different sources of information are used in the model, given that the databases of 

water use in South Africa will not necessarily give the same information (e.g. WR90 versus 

WR2005 or WARMS). The model is designed to account for three types of water use; 

streamflow reduction activities (afforestation), the effects of distributed farm dams and 

associated abstractions and run-of-river abstractions. The uncertainty in forestry is related to 

a number of factors which are frequently either unknown or their effects poorly understood. 

While there are parameters of the model that can have their values modified to simulate 

forestry impacts, establishing appropriate values is far from straightforward. Apart from 

simply the afforested area, the age and tree density, the location of the forestry within the 

sub-basin (slopes, hilltops or riparian areas), the tree type and the effective rooting depth are 

all factors that could affect water consumption. In addition, given that forestry areas may be 

mapped from satellite images, often narrow unforested areas within blocks of plantations will 

be included, which tends to overestimate afforested areas. The streamflow reductions due to 

afforestation are important components of water use licencing in South Africa but detailed 

analyses are beyond the scope of the present study. 

 

There are also inherent modelling uncertainties associated with the simple reservoir water 

balance approach used to assess the impacts of farm dams within the model structure. 

While spatial coverages of small farm dams information are available and additional 

information on abstraction from farm dams is available from WARMS, neither of these 

provide the required information in a suitable format for the model. Additional information 

includes catchment areas, volumes and surface areas, which is available from the WR90 

and WR2005 databases, but the information on capacity-area relationships is usually not 

available and some assumptions have to be made. It was therefore relatively difficult to 

quantify the farm dam parameters of the model from existing information, in spite of attempts 

made for U20B sub-basin. A further source of uncertainty is associated with the use of a 

monthly time step and the fact that run-of-river irrigation abstractions are assumed to be 

evenly distributed throughout the month. Moreover, the effects of abstracting water for 

irrigation from either small farm dams or directly from streamflows may be ill-defined. In 

general, it can be concluded that the uncertainty in water use is associated with the inability 

to accurately define the present day water uses within sub-basins and representing these in 
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an integrated way using model parameters. The information on ‘real’ water use in many 

parts of the country is lacking and inaccurate, and constrains the successful implementation 

of water availability estimation tools. While the WARMS database represents a serious 

attempt to address this issue, it is apparent that limitations exist in terms of the willingness 

and ability of existing water users to supply accurate information. 

 

With respect to the assessment of a collective contribution of different uncertainty sources, 

the results of this part of the study suggest that while input climate data (mainly rainfall) 

always contributes substantially to total uncertainty, there may be many situations where 

parameter uncertainty dominates. G10B and K40A represent examples where high spatial 

rainfall variability occurs and the lack of adequate observations contributes to the uncertainty 

in climate input data. In G10B, an area with steep topography, rainfall uncertainty dominates, 

because orographic effects play a dominant role in the spatial rainfall variability. In some 

instances (e.g. K40A and U20B), the dominant source of uncertainty is in the quantification 

of model parameters. The uncertainty in the parameter estimates is made up of uncertainty 

in the physical property data, as well as in the estimation equations themselves. Part of this 

problem lies in the scale differences between the physical property data and the model. 

However, it must be accepted that the methods used in this study to quantify the uncertainty 

ranges require further development. Some of the differences in the contributions of 

parameter uncertainty can be attributed to the lack of a consistent approach to interpreting 

the physical property data. While Kapangaziwiri and Hughes (2008) suggest that the 

methods used to generate the ‘best’ estimates of parameters appear to be successful, 

methods to generate uncertainty bounds have yet to be properly developed.  

 
Overall, the results show no evidence that the contribution of different uncertainty sources is 

additive but that there are variations on how they contribute to total output uncertainty in 

different sub-basins. This is partly because the methodology used to estimate model 

parameters is independent of the model input data. However, an important observation is 

that a collective assessment of uncertainty is more informative than individual assessments 

of the contribution of uncertainty sources to total modelling uncertainty. This kind of analysis 

gives a clear picture of the effects of uncertainty sources on total model uncertainty, which 

was not possible in the initial experiments when individual sources of uncertainties were 

considered separately.  

 

Ultimately, this is a limited illustration of how uncertainty sources can be combined in a water 

resource estimation process and a more consistent strategy must be developed. Moreover, 

simulating ensembles with ranges of uncertainty for each source illustrates that care is 
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needed to generate useful results and that MAR as well as yields can be very different. 

These differences could be very confusing to a practical water resources manager and the 

information should be translated into a format that can be readily interpreted by decision 

makers. One possibility would be to develop expressions of confidence in the various yield 

estimates resulting from the ensembles. This has not been possible in this study because 

the methods of uncertainty analysis used here still require further development. Specifically, 

additional components are required that can be used to evaluate the degree to which any 

ensemble can be considered behavioural. One approach would be to further develop the 

methods of estimating the inputs (climate data and parameters) such that some measure of 

the probability of each possible input is quantified. An alternative approach has already been 

suggested by Yadav et al. (2007) and essentially involves quantifying regional measures of 

hydrological response that can be used to evaluate the likelihood of any of the simulated 

ensembles.  
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10.  CONCLUSIONS AND RECOMMENDATIONS 
  

10.1 Introduction 
 

The purpose of this chapter is to summarise the main findings of the study and relate them to 

the study objectives. In addition, it also highlights some important recommendations for 

further research work. The context of the study is the relatively long history of the practical 

application of hydrological models in southern Africa (specifically, South Africa), but virtually 

no formal recognition of the uncertainties involved. In recent years there has been an 

increasing recognition of the need to account and incorporating estimation of uncertainty into 

water resources decision making. The international literature provides many examples of 

different possible approaches to achieving this objective. However, it is not clear how these 

can be applied in a South Africa context, given the type of model in common use, the data 

constraints and the willingness of practising hydrologists to adopt new methods.  

 

While formal uncertainty analysis has not formed part of hydrological modelling practice in 

South Africa, the limitations of the model results have been recognised. Model applications 

are often hampered by: 

• A high degree of spatial and temporal variation in hydro-meteorological data. 

• A lack of adequately long or continuous time series records of rainfall, evaporation 

and streamflow data. 

• Uncertainty in parameter estimation methods, mainly for ungauged basins. 

• Limitations of the model structure. 

• A lack of quantitative understanding of land cover/use changes, and both spatial and 

temporal variations in water utilisation data.  

 

It is therefore surprising that, while many of the impacts are understood, there have been no 

attempts to incorporate some form of uncertainty assessments into standard modelling 

practice. This study therefore represents a first step towards employing uncertainty principles 

in water resources assessment studies. The study evaluated the main sources of uncertainty 

that are common in water resources estimation within a South African context and presents 

some generic guidelines on the identification of (Chapter 4), quantification of, and potential 

options for reducing (Chapters 5-9) the different sources of uncertainty in water resources 

estimation within a data scarce region using a hydrological model developed and widely used 

in the region. 
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10.2 Conclusions and recommendations 
 

The main findings of this study are that uncertainty in water resources estimation depend 

upon the quality and availability of data, the human and technical resources available, the 

models being developed and used and the management decisions being made. The level of 

uncertainty and how it propagates through rainfall-runoff models therefore tends to vary from 

one region to another. One of the critical components of this study was to identify the 

potential sources of uncertainty within a southern African context, given that this would allow 

an evaluation of the deficiencies in climate data, parameter estimation methods as well as 

the model structure. This study proposed a hierarchy of sources of uncertainty associated 

with the type of modelling tools (including the Pitman hydrological model) commonly used in 

the region. This hierarchy was used as a guideline to identify the different types of 

uncertainty in each level of a water resources decision making system, the propagation of 

these uncertainties and how they will affect the risks involved in water resources decision 

making. Previous water resources planning decisions in South Africa have been taken 

without considering the uncertainty in quantifying both natural and present day water 

resources, despite the fact that model estimates have always been known to be imprecise. 

The risk associated with using such information can be substantial.  

 

While it has long been recognised that hydrological models should not be more complicated 

than specific applications require, recent research has consistently reiterated the need to 

balance model complexity with the quality and resolution of the information available to 

quantify the model inputs (Perrin et al., 2001). High resolution input data are of little use 

when the models themselves are inherently uncertain, as is always the case with 

hydrological models (Beven 2000b). The present study and many other researchers (e.g. 

Blöschl and Sivalapan, 1995) have argued for improvements in field observations at scales 

that match that of the models being used and the improvements in collecting hydro-climatic 

data as a key source of information for reducing uncertainties in hydrological modelling. 

Indeed, estimates of model output uncertainties will be unreliable if the assumptions upon 

which they are based are not appropriate. In principal, this implies detailed analyses of the 

climate and basin physical properties and the careful inspection of the assumptions that are 

introduced in the modelling process. In practice, however, this assumes an in-depth analysis 

and expertise, including a detailed knowledge of the model structure, that is, rarely, if ever 

available to water resources managers (Blöschl, 2001).  
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The following broad conclusions and recommendations have been drawn from the study: 

 

i. While water resources managers typically rely on scattered networks of rain, 

evaporation and stream gauges to assess how much water is available in a sub-

basin, this study showed that substantial uncertainties exist in using such information.  

The study demonstrated that the dominant source of uncertainty in simulating natural 

hydrology is highly variable, depending on the degree of spatial variation of rainfall 

and evaporation from different climatic regions in South Africa. While the effects of 

rainfall variability are greater for daily than monthly estimates, aggregating daily to 

monthly values resulted in improved spatial rainfall estimates than directly using 

monthly values within the model. The resulting uncertainties in simulated streamflows 

varied greatly between semi-arid and humid regions due to their differences in 

rainfall-runoff response relationships. Most importantly, substantial uncertainties in 

rainfall estimates were observed mainly in mountainous areas (especially in elevated 

parts) where observation networks are too scarce to capture high spatial rainfall 

variability. A rainfall frequency curve based correction procedure was developed and 

used in this study to generate long stationary spatial rainfall estimates using both 

gauge and satellite based datasets. The approach ensures that data from two 

different sources are consistent in their frequency characteristics, but there remain 

some unresolved issues with respect to the successful application of satellite based 

rainfall estimates in some parts of the country. The differential effects of using 

different evaporation inputs varied between the two main climatic regions in South 

Africa (smaller effects in the winter rainfall region and greater effects in the summer 

rainfall region). However, the important conclusion is that, while it may appear to be 

an attractive option to include time series variations of potential evapotranspiration 

demand, these may be incompatible with the model structure and create further 

modelling uncertainty. Another important aspect is that the observed streamflows 

used to validate model results often contain inaccuracies in gauging both low and 

high flows and few of the available records can be assumed to be completely natural. 

Differential developmental effects may also occur between data periods and thus the 

current observed flow data in South Africa should not be entirely relied upon without 

some form of adjustment or correction (naturalisation). 

 

ii. It is recommended therefore that hydro-climatic (rainfall, evaporation and streamflow) 

data uncertainties be reduced by more data collection through improvements in the 

measurement techniques (such as maintaining the existing network densities), further 

use of new satellite data products and making better use of the existing data through 
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pre-processing methods. However, it is important to recognise that from a practical 

point of view, uncertainty reduction should focus on those interventions that have the 

potential to produce relatively rapid, cost-effective and measurable results. In a 

southern African context, the focus is therefore unlikely to be on introducing new 

gauge (rainfall, evaporation and stream flow) networks. These networks can be 

expensive to establish and maintain and it has proved difficult in the past to convince 

governments in southern African countries of the importance of such improvements. 

There is a perception that readily available satellite data products (which capture the 

spatial distribution of rainfall) can offer better estimates of rainfall. However, this study 

concludes that historical raingauge stations are not replaceable and the two sources 

should be used conjunctively, together with appropriate correction procedures to 

adjust the frequency characteristics of satellite data to be consistent with historical 

gauge data (Hughes, 2006 a, b; Wilk et al., 2006).  

 

iii. There has been a general shift in recent research efforts away from using calibration 

methods to estimate model parameters to approaches that are calibration-free in 

order to reduce predictive uncertainty in ungauged basins. This is a result of the 

challenges in finding optimal model parameters in gauged basins and subsequently 

transferring them through regionalisation methods (such as regression approaches) 

to ungauged basins. The major problems are that many of the existing streamflow 

data are of poor quality and that information on water abstractions is often not 

available. Uncertainty also exists in the regionalisation methods themselves. This 

precludes the proper validation of hydrological models for application in ungauged 

basins. The uncertainty of model output is of concern in sub-basins with limited 

historical data and when rainfall-runoff models are applied to conditions outside the 

range for which they were calibrated and verified (Yu et al., 2001).  Despite this, 

many of the existing approaches for deriving acceptable parameter sets with 

uncertainty rely upon information from observed flow data (Gupta et al., 1998; Beven, 

2006b). 

 
 In light of the above, the present study made use of a priori parameter estimation 

methods (Kapangaziwiri and Hughes, 2008) that are applied independently of 

observed flows and climate data, to estimate the Pitman model parameters. In spite 

of being seen as an improvement to parameter regionalisation and mapping methods 

(Midgley et al., 1994; Mazvimavi, 2003), the approach is not without shortcomings. 

One of the problems is related to the identification of parameter ranges or bounds 

that are realistic from an uncertainty point of view.  The parameter uncertainty bounds 
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used in this study have been set using rather subjective interpretations of the 

uncertainty in physical property data, such as soil depth, texture, slope ranges and 

geological characteristics from AGIS (2007) information. The parameter uncertainty 

assessments presented in this study have to be seen in the light of this subjectivity 

and the fact that no probability statements can be made about the upper and lower 

bounds of the simulation (i.e. only bands are presented with no confidence intervals). 

While this is clearly not a satisfactory long-term solution, it represents a first step 

towards incorporating parameter uncertainty in South Africa. 

 

A parameter sensitivity analysis demonstrated that the most important model 

parameters vary from one region to another depending on climate and physical 

characteristics. The contribution of uncertainty in individual parameter values to the 

output uncertainty is therefore, similarly variable within the region. Parameter 

sensitivity analysis is useful for identifying parameter interdependencies in specific 

sub-basins, and therefore which parameters should be focussed on in an effort to 

reduce prediction uncertainty. These observations about regional variations could 

contribute to the future development of modelling procedures for use in ungauged 

basins. The main challenge of using physically-based parameter estimation methods 

is the relevance of the original data sources with respect to the model structure and 

the physical meaning of the parameter values. Even if alternative data sources (such 

as remote sensing data) for estimating basin physical property data are used in the 

future, similar problems will be experienced. The alternative approach is to combine 

the a priori parameter estimates and the regionalised key signatures of basin 

behaviour to constrain model parameters in ungauged basins (Yadav et al., 2007). 

 

iv. This study recommends that there is a need to further establish generalized regional 

parameter ranges and establish the more identifiable and uncertain parameters. 

Definitive and non-subjective procedures for establishing parameter bounds for 

uncertainty estimation within the southern Africa region are yet to be established and 

will depend upon the amount and type of information that is available. If a high level 

of confidence can be expressed in the information available on topography, soil types 

and depths, vegetation cover and hydrogeological conditions, the parameter bounds 

are expected to be narrow, while poor quality information will clearly lead to a wide 

range of possible parameter values. If observed data are available in a nearby sub-

basin which is hydrologically similar (based on similar basin properties and climate), 

model calibration can be used to reduce the parameter bounds, otherwise regional 

constraints are used.  It stands to reason that improving databases of spatial data 
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and revision of the parameter estimation approaches are the most critical areas to 

effectively reduce parameter prediction uncertainty in data scarce areas. 

 

v. This study used a framework for assessing the combined contribution of uncertainty 

sources to total modelling uncertainty. The approach is consistent with the model 

limitations and data available and allows direct quantitative comparison between 

model predictions obtained using different sources of information. The initial results 

from independent assessments of uncertainty sources suggest that individual sources 

of uncertainty contribute in different ways under different climate and sub-basin 

physiographic conditions and that clear statements about which source of uncertainty 

is likely to dominate are not generally possible. The approach to integrate 

uncertainties was achieved through a simple ensemble approach of model 

simulations using a set of realizations of rainfall, evapotranspiration input, parameters 

and water use data. The rainfall estimates used for the ensemble simulations were 

derived from raingauges (i.e. original and corrected records). The potential 

evapotranspiration estimates (mean and time series values) were derived from pan 

measurements, while additional time series were perturbed on the basis of 

temperature data. The uncertainty in water use data was also incorporated but mainly 

considering uncertainty in irrigation and afforestation demands. The model 

parameters were perturbed within their physical bounds using the parameter 

estimation approach of Kapangaziwiri and Hughes (2008) to create combined input-

parameter-water use ensembles. Evaluating the contribution of different sources of 

uncertainty to total model prediction uncertainty is important for understanding which 

is the greatest source of uncertainty and therefore where to direct future efforts to 

reduce uncertainty. The results from integrating all the sources of uncertainties 

showed that parameter uncertainty is likely to dominate in most situations. However, 

in some parts of the country, especially those with complex topography, rainfall 

uncertainty can be equally dominant, while the contribution of potential evaporation 

and water use data uncertainty was relatively small. Regional differences were 

apparent in the results of the uncertainty analysis and an improved understanding of 

the classification of basin physical properties and climate is a prerequisite to evaluate 

uncertainty using the methods presented here. 

 

vi. Many efforts in developing tools to evaluate the total contribution of uncertainty 

sources in recent studies (e.g. Ajami et al., 2007) have been statistical or data-driven 

approaches, which might be difficult to employ in data scarce areas. While the 

approaches used in this study to quantify uncertainty are able to define ranges or 
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envelopes of uncertainty, defining uncertainty in more probabilistic terms is currently 

very difficult to achieve (Montanari, 2007). The study only provides a basis for further 

investigations into the use of more widely used probability (Yadav et al., 2007) and 

fuzzy (Yu and Yang, 2000; Freer et al., 2004) uncertainty analysis methods. 

However, Hall and Anderson (2002) postulated that much human reasoning about 

hydrological systems is possibilistic rather than strictly probabilistic. In such 

instances, it is reasoned whether a given scenario will happen, without necessarily 

attaching probabilities to the likelihood of it happening, particularly in situations of 

very scarce information. Water resources managers do not necessarily require the 

best uncertainty estimation method, but guidelines that are clear and appropriately 

related to the risks involved in the decision making process. This study therefore 

recommends that the uncertainties in water resources estimation must be 

acknowledged, quantified and minimised in both research and practice and properly 

communicated to water managers and the public using simple but informative 

approaches. 

 

vii. While in a broader sense the focus of the study was on southern Africa, the analyses 

were based only on South African examples. It is therefore important to extend similar 

studies to other countries within the region. These would contribute to a better 

understanding of how uncertainties vary from region to region, from country to 

country or even from data provider to data provider. However, sources of data are not 

always easy to access and therefore improvements in the effective management and 

sharing of data are necessity for regional modelling studies. 

 

viii. This study recommends further work to assess model structure uncertainty, possibly 

through development of flexible conceptual models or to consider top-down 

approaches to modelling. The modelling approach presented in this study was based 

on a fixed model structure and a subsequent estimation of parameters through an a 

priori approach using physical basin properties. The approach is called a bottom-up, 

or reductionist approach, since there is a spatially explicit representation of the model 

structure based on knowledge of the underlying physics (Ebel and Logue, 2006), 

basin physical properties and climate inputs. Such an approach results in a very 

complex model structure (Pitman 1973, Hughes, 2004b), making it difficult to 

understand the meaning of model output and evaluate the uncertainty associated with 

using such a complex model structure due to many interactions of uncertainty 

sources (Beven, 1993). An alternative to the bottom-up approach has been 

suggested (Young, 1998) based on ideas for a top-down analysis framework by 
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Klemeš (1986). The idea is that the parameters of the model structure should relate 

to the dominant basin characteristics controlling its responses, rather than based on 

an a priori estimation approach or model calibration process. Such an approach has 

been tested by Yadav et al. (2007), and the success of its application in southern 

Africa region will also depend on the availability of basin response information which 

is sadly lacking.   

 

If the treatment of uncertainty is to be advanced within the southern Africa region, an 

appropriate conceptual structure and practical methods are required for handling uncertainty. 

These issues must be addressed if an important aim of developing uncertainty analyses tools 

is to encourage more widespread criticism of data and hydrological models in the region, 

which will create avenues for further research. In addition, efforts to reduce predictive 

uncertainty such as improvements in spatial databases, and quantifying the spatial and 

temporal impacts of artificial influences in basins are needed. However, in practice there will 

always be uncertainty even if efforts are made to reduce the uncertainty and therefore there 

is a need for parallel approaches to incorporate uncertainty analyses into estimates and 

reduce the uncertainty. Unless the input information base is improved, neither the 

development of new models, nor improving the application methodology of existing models is 

likely to improve the situation. The choice seems to lie therefore between modifying existing 

techniques to make better use of existing data and collecting data to support the existing 

techniques. 
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APPENDICES 
 

 
Appendix 1.1 A list of raingauges covering different time periods for each sub-

basin. 

(i) 

Sub-basins Station name Start year End year No. of years 
A23A 0513 894W 1979 2000 21 
  0514 023W 1933 1953 20 
  0513 862W 1979 1998 19 
  0513 827A 1984 1999 15 
  0513 827W 1904 2000 96 
  0513 795W 1981 2000 19 
  0513 643W 9106 1986 80 
  0513 611W 1966 2000 34 
  0513 550W 1949 2000 51 
  0513 521W 1979 1992 13 
  0513 584W 1977 1991 14 
  0513 524W 1909 1978 69 
  0513 556W 1978 2000 22 
  0513 676W 1909 1924 15 
  0513 677W 1913 1978 65 
  0513 738W 1906 1943 37 
  0513 558W 1982 2000 18 
  0513 742W 1979 2000 21 
  0513 743W 1920 1959 39 
  0513 529W 1915 1948 33 
  0513 349W 1921 1948 27 
  0513 528W 1974 2000 26 
  0513 496W 1914 1968 54 
  0513 466A 1979 2000 21 
  0513 465A 1924 1973 49 
  0513 465W 1960 2000 40 
  0513 464W 1906 1962 56 
  0513 494A 1905 1982 77 
  0513 494W 1905 1959 54 

C12D 0440637W 1934 1977 43 
 0477629W 1925 1953 28 
 0477772W 1906 2000 94 
 0478029W 1923 1952 29 
 0441215W 1913 1955 42 
 0478330W 1984 2000 16 
 0478360W 1912 1975 63 
 0478510W 1976 1990 14 
 0478175W 1934 1951 17 
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(ii) 

Sub-basins Station name Start year End year No. of years 
C83A 0331 704W 1977 1996 19 

 0331 616W 1927 1943 16 
 0332 017W 1925 1940 15 
 0331 828W 1940 2000 60 
 0331 740W 1913 1982 69 
 0331 893W 1917 1956 39 
 0332 206W 1924 1966 42 
 0332 201W 1919 1957 38 
 0331 658W 1913 1949 36 

C83B 0331 467W 1974 2000 26 
 0331 470W 1977 1994 17 
 0331 474W 1927 2000 73 
 0331 590W 1980 2000 20 

C83C 0367 506W 1977 1996 19 
 0367 417W 1981 1995 14 
 0367 597W 1925 1949 24 
 0367 600W 1925 1949 24 
 0331 423W 1977 1993 16 
 0331 455W 1933 1996 63 
 0331 607W 1977 2000 23 
 0331 520A 1948 1991 43 
 0331 520W 1948 1983 35 
 0331 521W 1955 1990 35 
 0331 672W 1977 1994 17 
 0331 432W 1921 1945 24 
 0331 402W 1977 2000 23 
 0331 375W 1919 1964 45 
 0331 436W 1905 1938 33 
 0331 524W 1904 1931 27 
 0331 554W 1922 2000 78 
 0331 585AW 1980 2000 20 
 0331 794W 1925 1977 52 
 0331 883W 1905 1949 44 

U20B 0268806A 1969 1989 20 
 0268891W 1967 1987 20 
 0269111A 1947 1989 42 
 0269114A 1929 1981 52 
 0269147A 1953 1989 36 
 0269295A 1932 1985 53 
 0238543A 1936 1980 44 
 0238662A 1972 1989 17 
 0239002W 1953 2000 47 
 0239184A 1903 1989 86 
 0238636W 1927 1996 70 
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(iii) 

Sub-basins Station name Start year End year No. of years 
 0267887W 1947 1993 46 

V70 A & B 0267862W 1959 1977 18 
 0267693W 1962 2000 38 
 0299900W 1927 2000 73 
 0268548W 1926 1953 27 
 0268614W 1919 1950 31 
 0268199W 1955 2000 45 

V20A 0268352A 1953 2000 47 
 0268441W 1925 1985 60 
 0268614W 1919 1950 31 
 0268380W 1968 1989 21 

K40A 0029291W 1933 1977 44 
 0029294W 1924 2000 76 
 0029297W 1920 1980 60 
 0594539W 1914 1992 78 
 0595030W 1965 2000 35 
 0594596W 1910 1989 79 

 

(iv) 

Sub-basins Station name Start year End year No. of years 
X31A 0555280A 1928 1982 54 

 0555280W 1961 1994 32 
 0555487W 1903 1954 23 
 0555483W 1957 2000 43 

X31B 0555486W 1973 2000 27 
 0555579W 1933 2000 67 
 0555639W 1927 1960 33 
 0555664W 1960 2000 40 
 0555573W 1932 1995 63 
 0555662W 1952 2000 48 

X31C 0555631W 1942 2000 58 
 0594779W 1943 2000 57 
 0594539W 1914 1992 78 
 0595030W 1965 2000 35 
 0594596W 1910 1989 79 

X31D 0555698W 1923 1941 18 
 0555878W 1929 1993 64 
 0556183W 1958 1999 41 
 0556127A 1977 1991 14 

X31E 0595025W 1972 2000 28 
 0594802W 1950 2000 50 
 0594828W 1963 2000 37 
 0594623W 1933 1958 25 
 0595110W 1905 1996 91 
 0595202W 1935 1972 37 

X31F 0594806W 1935 2000 65 
 0594715W 1949 1994 45 
 0594626A 1949 2000 51 
 0594626W 1906 1977 71 

X31G 0594896W 1914 1952 38 
 0595210W 1931 1978 46 
 0556212A 1969 1991 22 
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Appendix 2.1 Graphs of sub-samples of raingauges (showing spatial 

arrangement) used in the Bedford sub-basin analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Even50%1               Even50%2 

     
 
 
 
 
 
 
 
 
 
 
 

 
Odd50%1       Odd50%2 
 

i. Distribution of ‘Even50%1’ and 2; and ‘Odd50%1’ and 2 samples with 7 gauges each.  
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Even25%1            Even25%2 
 
 
 
 
 
 
 
 
 
 
 
 
 
Even25%3       Even25%4 
 

ii. Distribution of Even25% samples (1 to 4) with gauges each. 
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 Odd25%3       Odd25%4 
 
iii. Distribution of Odd25% samples (1 to 4) with gauges each. 
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Appendix 2.2 A set of monthly rainfall exceedence frequency curves for three 

realizations over selected sub-basins.  
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Appendix 2.3 Percentage differences (relative to the base period realization) in 

estimated annual rainfalls and annual runoffs for one realization. 
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Appendix 3.1 Graphs of 5-year moving-averages and rainfall anomalies for 

individual raingauge, IDW original and IDW corrected spatial data 

analyses for different sub-basins. 
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 ii. Summary of results for C12D sub-basin. 
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 iii. Summary of results for D32J sub-basin. 
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 iv. Summary of results for V20A sub-basin. 
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 v. Summary of results for K40A sub-basin. 
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 vi. Summary of results for X31B sub-basin. 
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Appendix 3.2 Frequency of exceedance curves showing comparisons of 

spatially-averaged (both raingauge-based and satellite-based) 

rainfall estimates. 
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Appendix  4.1 Basin property data, parameter estimates and objection function 

values. 

 
 

Sub-basin; 
 gauge area G10B; (G1H003-46 km2) 

i. Basin physical 
property data  Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

LmSa=20% 
SaClLm 
=40%; 

SaCl=20%; 
Cl=20% 

 

LmSa=15% 
SaClLm =35%; 

SaCl=25%; 
Cl=25% 

 

LmSa=25% 
SaClLm =45%; 

SaCl=15%; 
Cl=15% 

  
Drainage Density 
(km/km2) 1.5 1.5 1.5  
Mean basin slope 
(BS) (%) 30 20 35  
Regional GW slope 
(GS) (%) 1.0 1.0 1.0  
Drain. Vector slope 
(VS) (%) 4.2 4.2 4.2  

Mean soil depth (m) 0.90 1.0 0.60  

FT soil depth (m) 1.07 1.21 0.69  

Soil porosity 0.37 0.37 0.38  

Vertical variation (%) 80 80 80  
Soil 
Permeability(m/day) 1.07 0.81 1.85  

Depth to GW (m) 25 25 25  
GW storativity 
(*1000) 2.0 2.0 2.0  
Unsat transmissivity 
(m2/day) 2.0 1.5 4.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 311.0 338.0 227.0 ST sensitive to overall flows. 

FT ( mm month-1) 38.5 23.4 55.1 Overall volume sensitive to FT. 

POW 2.2 2.3 2.3 Affects flow volumes. 

ZMIN( mm month-1) 50.0 20.0 60.0 
ZMIN is not sensitive and ZMAX is 
sensitive for a given range. ZMAX (mm month-1) 500.0 610.0 400.0 

GW (mm month-1) 10 10 10 
Overall flows slightly sensitive to 
changes in GW over a given range. 

GPOW 3 3.5 2.5 Affects both recharge and total flow. 

DDENS (km km-2) 0.6 0.4 0.6 
Low flow volume sensitive to changes 
in DDENS. 

RSF (%) 0.1 0.2 0.1 
Low flow volume slightly sensitive to 
changes in RSF. 

Mean recharge (% of 
rainfall) 3.1 3.0 3.2 

The results and statistics in the 3rd and 
4th columns are two extremes of all 
6561 ensembles using the parameter 
bounds given in the 3rd and 4th 
columns above. 

CE(Q) / CE (lnQ) 0.73/0.87 0.73/0.83 0.68/0.86 

%Mn(Q)/ %Mn(lnQ) 0.54/-8.8 -6.9/-20.5 13.5/-13.9 

Yield deficit (%) 11.1 16.4 4.8 
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Sub-basin; 
 gauge area U20B; (U2H007-353 km2) 

i. Basin physical 
property data Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

LmSa=10%; 
SaClLm=30%; 

SaCl=40% 
Cl=20% 

LmSa=15%; 
SaClLm=20%; 

SaCl=40% 
Cl=25% 

LmSa=20%; 
SaClLm=25%; 

SaCl=40% 
Cl=15%  

Drainage Density 
(km/km2) 2.5 2.5 2.5  
Mean basin slope (BS) 
(%) 16.0 13.0 20.0  
Regional GW slope 
(GS) (%) 1.0 1.0 1.0  
Drain. Vector slope 
(VS) (%) 3.1 3.1 3.1  

Mean soil depth (m) 0.80 1.0 0.5  

FT soil depth (m) 0.93 1.13 0.59  

Soil porosity 0.46 0.45 0.47  

Vertical variation (%) 80 80 80  
Soil 
Permeability(m/day) 0.27 0.27 0.47  

Depth to GW (m) 15 15 15  

GW storativity (*1000) 2.0 2.0 2.0  
Unsat transmissivity 
(m2/day) 1.0 1.0 2.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 307.0 386.0 215.0 Slightly affects the total flow. 

FT ( mm month-1) 11.0 11.6 25.5 
Flow hydrograph and volume 
sensitive to changes in FT. 

POW 2.2 2.1 2.4 
POW is slightly sensitive over a 
given range. 

ZMIN( mm month-1) 10.0 20.0 40.0 
ZMIN is less sensitive but ZMAX is 
sensitive within a range 400 to 800. ZMAX (mm month-1) 600.0 800.0 700.0 

GW (mm month-1) 10.0 8.0 20 
GW affects recharge and hence 
total flow. 

GPOW 3.0 3.0 2.8 
Similar effect to GW but is less 
sensitive. 

DDENS (km km-2) 0.4 0.2 0.5 Affects overall flow volume. 

RSF (%) 0.2 0.2 0.1 Moderately sensitive to low flows. 
Mean recharge (% of 
rainfall) 3.2 2.8 6.0 

The results and statistics in the 3rd 
and 4th columns are two extremes of 
all 19863 ensembles using the 
parameter bounds given in the 3rd 
and 4th columns above. 

CE(Q) / CE (lnQ) 0.63/0.67 0.46/-2.4 0.71/0.78 

%Mn(Q)/ %Mn(lnQ) 2.8/7.5 -51.6/-107.6 39.3/38.9 

Yield deficit (%) 4.0 43.5 0.01 
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Sub-basin; 
gauge area K40A; (K4H003-87 km2) 

i. Basin physical 
property data Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

LmSa=30%; 
SaClLm=60%; 

SCl=10% 

LmSa=20%; 
SaClLm=65%; 

SCl=15% 

LmSa=40%; 
SaClLm=55%; 

SCl=5%  
Drainage Density 
(km/km2) 1.70 1.70 1.70  
Mean basin slope 
(BS) (%) 20.0 15.0 25.0  
Regional GW slope 
(GS) (%) 1.0 1.0 1.0  
Drain. Vector slope 
(VS) (%) 4.2 4.2 4.2  

Mean soil depth (m) 0.35 0.60 0.27  

FT soil depth (m) 0.41 0.71 0.32  

Soil porosity 0.35 0.34 0.36  

Vertical variation (%) 80 80 80  
Soil 
Permeability(m/day) 1.85 0.81 2.44  

Depth to GW (m) 25.0 25.0 25.0  
GW storativity 
(*1000) 2.0 2.0 2.0  
Unsat transmissivity 
(m2/day) 2.5 1.0 4.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 140.0 221.0 100 
ST not sensitive over the range 50 and 
250. 

FT ( mm month-1) 26.4 13.1 39.3 
FT slightly sensitive for a range of 
values between 5 and 45. 

POW 2.0 2.5 2.0 
A change of POW has no effect on 
flows. 

ZMIN( mm month-1) 50.0 75.0 60.0 Overall flows sensitive to change in 
ZMAX and not sensitive to ZMIN for 
given range of values. ZMAX (mm month-1) 220.0 340.0 180.0 

GW (mm month-1) 15.8 14.0 20.0 
Flows sensitive for values between 5 
and 25. 

GPOW 2.0 2.3 1.8 No effect on flows. 

DDENS (km km-2) 0.4 0.3 0.2 
Sensitive to dry season flows for 
values greater than 0.4 

RSF (%) 0.2 0.3 0.1 
Flows less sensitive over the range 0.1 
and 0.3 

Mean recharge (% of 
rainfall) 3.50 2.96 4.85 

The results and statistics in the 3rd and 
4th columns are two extremes of all 
19863 ensembles using the parameter 
bounds given in the 3rd and 4th 
columns above. 

CE(Q) / CE (lnQ) 0.66/0.69 0.43/0.17 0.66/0.69 

%Mn(Q)/ %Mn(lnQ) -4.8/-16.2 -49.8/-74.5 57.3/59.8 

Yield deficit (%) 6.0 44.2 0.01 
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Sub-basin; 
 gauge area V20A; (V2H005-267 km2) 

i. Basin physical 
property data Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

LmSa=25% 
SaClLm=40%; 

SaCl=20%; 
Cl=15% 

 

LmSa=20% 
SaClLm=50%; 

SaCl=20%; 
Cl=10% 

 

LmSa=30% 
SaClLm=45%; 

SaCl=20%; 
Cl=5% 

  
Drainage Density 
(km/km2) 2.1 2.1 2.1  
Mean basin slope 
(BS) (%) 25 20 30  
Regional GW slope 
(GS) (%) 1.0 1.0 1.0  
Drain. Vector slope 
(VS) (%) 4.2 4.2 4.2  

Mean soil depth (m) 7.20 1.0 0.5  

FT soil depth (m) 0.90 1.20 0.59  

Soil porosity 0.36 0.33 0.35  

Vertical variation (%) 80 80 80  
Soil 
Permeability(m/day) 0.617 0.270 1.1  

Depth to GW (m) 25 25 25  
GW storativity 
(*1000) 3.0 3.0 3.0  
Unsat transmissivity 
(m2/day) 2.5 2.0 5.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 276.0 327 207 Overall flows sensitive to ST. 

FT ( mm month-1) 27.3 18.9 50.2 Overall volume sensitive to FT. 

POW 2.0 2.0 2.0 Not sensitive. 

ZMIN( mm month-1) 20.0 40 10 
Flows not sensitive to ZMIN, but 
sensitive to ZMAX for a given range. ZMAX (mm month-1) 450.0 500 360 

GW (mm month-1) 20.0 15 25 
Overall flows sensitive to changes in 
GW over a given range. 

GPOW 3.0 3.5 2.5 Affects both recharge and total flow. 

DDENS (km km-2) 0.4 0.3 0.5 
Overall flow sensitive to changes in 
DDENS. 

RSF (%) 0.2 0.3 0.1 Slightly sensitive to flow volume. 
Mean recharge (% of 
rainfall) 4.9 4.0 5.0 

The results and statistics in the 3rd 
and 4th columns are two extremes of 
all 19863 ensembles using the 
parameter bounds given in the 3rd and 
4th columns above. 

CE(Q) / CE (lnQ) 0.79/0.83 0.69/0.80 0.82/0.76 

%Mn(Q)/ %Mn(lnQ) -14.4/4.1 -30.6/-9.1 14.4/20.4 

Yield deficit (%) 3.2 16.8 0.01 
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Sub-basin; 
 gauge area V70B; (V7H016-121 km2) 

i. Basin physical 
property data Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

SaClLm=60%; 
SaCl=20%; 

Cl=20% 
 

SaClLm=55%; 
SaCl=25%; 

Cl=20% 
 

SaClLm=65%; 
SaCl=20%; 

Cl=15% 
  

Drainage Density 
(km/km2) 1.70 1.70 1.70  
Mean basin slope (BS) 
(%) 25.0 20.0 30.0  
Regional GW slope (GS) 
(%) 1.0 1.0 1.0  
Drain. Vector slope (VS) 
(%) 4.2 4.2 4.2  

Mean soil depth (m) 0.60 1.0 0.40  

FT soil depth (m) 0.69 1.13 0.44  

Soil porosity 0.34 0.34 0.33  

Vertical variation (%) 80 80 80  

Soil Permeability(m/day) 0.81 0.47 1.10  

Depth to GW (m) 25 25 25  

GW storativity (*1000) 2.0 2.0 2.0  
Unsat transmissivity 
(m2/day) 2.5 2.0 5.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 206.0 298.0 151.0 
Sensitive to both low 
and high flows. 

FT ( mm month-1) 24.9 19.3 35.7 
Overall volume sensitive 
to FT. 

POW 2.0 2.0 2.0 Not sensitive. 

ZMIN( mm month-1) 60.0 10.0 20.0 
ZMIN is not sensitive 
over the given range 
and ZMAX sensitive for 
values less than 400. ZMAX (mm month-1) 450.0 600.0 400.0 

GW (mm month-1) 15.0 10.0 30.0 

Both low and high flows 
slightly sensitive over a 
given range. 

GPOW 2.0 2.3 1.5 
Affects both recharge 
and total flow. 

DDENS (km km-2) 0.4 0.3 0.5 

Overall flow sensitive 
within the range 0.1 and 
0.7 

RSF (%) 0.2 0.3 0.1 
Moderately sensitive to 
flow volume. 

Mean recharge (% of 
rainfall) 6.1 4.2 11.5 

The results and 
statistics in the 3rd and 
4th columns are two 
extremes of all 19863 
ensembles using the 
parameter bounds given 
in the 3rd and 4th 
columns above. 

CE(Q) / CE (lnQ) 0.70/0.77 0.59/0.47 0.73/0.82 

%Mn(Q)/ %Mn(lnQ) 0.56/29.9 -27.2/-53.0 35.7/84.8 

Yield deficit (%) 9.3 23.8 0.01 
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Sub-basin; gauge 
area X31A; (X3H001-174 km2) 

i. Basin physical 
property data Initial value 

Uncertainty bounds  

Lower runoff Upper runoff  

Soil texture 

SaClLm=70%; 
SaCl=15%; 

Cl=15% 
 

SaClLm=60%; 
SaCl=20%; 

Cl=20% 
 

SaClLm=70%; 
SaCl=20%; 

Cl=10% 
  

Drainage Density 
(km/km2) 1.50 1.50 1.50  
Mean basin slope 
(BS) (%) 25.0 20.0 30.0  
Regional GW slope 
(GS) (%) 1.0 1.0 1.0  
Drain. Vector slope 
(VS) (%) 2.0 2.0 2.0  

Mean soil depth (m) 0.74 1.0 0.5  

FT soil depth (m) 0.89 1.21 0.59  

Soil porosity 0.34 0.34 0.33  

Vertical variation (%) 80 80 80  
Soil 
Permeability(m/day) 0.36 0.27 0.47  

Depth to GW (m) 25 25 25  

GW storativity (*1000) 4.0 4.0 4.0  
Unsat transmissivity 
(m2/day) 4.5 3.5 5.0  

ii. Physically based parameters & Obj. function. values Sensitivity comments   

ST( mm month-1) 297.0 367.0 230.0 
Sensitive in the range of 150 
to 450. 

FT ( mm month-1) 15.2 12.2 16.4 

Seasonal hydrograph shape 
and overall water balance 
sensitive to changes in FT. 

POW 1.9 1.9 1.9 
Change in POW affects overall 
water balance. 

ZMIN( mm month-1) 0.0 0.0 0.0 The overall volume of runoff is 
sensitive to changes in ZMIN 
and ZMAX. ZMAX (mm month-1) 700.0 750.0 560.0 

PI(Forest) 
(mm month-1) 4.0 5.0 3.0 

Forest interception, affecting 
all runoff components. 

FF 1.4 1.5 1.3 

Increased evapotranspiration 
from forest affecting recharge 
and runoff from soil  moisture  

GW (mm month-1) 60.0 58.0 68.0 
Low flow sensitive over the 
range 30 to 90. 

GPOW 2.0 2.1 1.9 
Low flows moderately 
sensitive to GPOW change. 

DDENS (km km-2) 0.4 0.3 0.5 
Overall flow sensitive within 
range 0.2 to 0.6 

RSF (%) 0.2 0.3 0.1 
Slightly sensitive within  the 
range 0.1 to 0.3 

Mean recharge (% of 
rainfall) 14.1 12.3 16.1 The results and statistics in 

the 3rd and 4th columns are 
two extremes of all 19863 
ensembles using the 
parameter bounds given in the 
3rd and 4th columns above. 

CE(Q) / CE (lnQ) 0.71/0.69 0.50/0.61 0.73/0.70 

%Mn(Q)/ %Mn(lnQ) -4.3/0.56 -17.3/-9.3 15.3/10.5 

Yield deficit (%) 13.0 23.8 4.3 


