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ABSTRACT 

 

The Caledon River Basin is located on one of the most water-scarce region on the African 

continent. The water resources of the Caledon River Basin play a pivotal role in socio-economic 

activities in both Lesotho and South Africa but the basin experiences recurrent severe droughts 

and frequent water shortages. The Caledon River is mostly used for commercial and 

subsistence agriculture, industrial and domestic supply. The resources are also important 

beyond the basin’s boundaries as the water is transferred to the nearby Modder River. The 

Caledon River is also a significant tributary to the Orange-Senqu Basin, which is shared by five 

southern African countries. However, the water resources in the basin are under continuous 

threat as a result of rapidly growing population, economic growth as well as changing climate, 

amongst others. It is therefore important that the hydrological regime and water resources of 

the basin are thoroughly evaluated and assessed so that they can be sustainably managed 

and utilised for maximum economic benefits.   

Climate change has been identified by the international community as one of the most 

prominent threats to peace, food security and livelihood and southern Africa as among the most 

vulnerable regions of the world. Water resources are perceived as a natural resource which 

will be affected the most by the changing climate conditions. Global warming is expected to 

bring more severe, prolonged droughts and exacerbate water shortages in this region. The 

current study is mainly focused on investigating the impacts of climate change on the water 

resources of the Caledon River Basin.   

The main objectives of the current study included assessing the past and current hydrological 

characteristics of the Caledon River Basin under current state of the physical environment, 

observed climate conditions and estimated water use; detecting any changes in the future 

rainfall and evaporative demands relative to present conditions and evaluating the impacts of 

climate on the basin’s hydrological regime and water resources availability for the future climate 

scenario, 2046-2065. To achieve these objectives the study used observed hydrological, 

meteorological data sets and the basin’s physical characteristics to establish parameters of the 

Pitman and WEAP hydrological models. Hydrological modelling is an integral part of 

hydrological investigations and evaluations. The various sources of uncertainties in the outputs 

of the climate and hydrological models were identified and quantified, as an integral part of the 
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whole exercise. The 2-step approach of the uncertainty version of the model was used to 

estimate a range of parameters yielding behavioural natural flow ensembles. This approach 

uses the regional and local hydrological signals to constrain the model parameter ranges. The 

estimated parameters were also employed to guide the calibration process of the Water 

Evaluation And Planning (WEAP) model. The two models incorporated the estimated water 

uses within the basin to establish the present day flow simulations and they were found to 

sufficiently simulate the present day flows, as compared to the observed flows. There is an 

indication therefore, that WEAP can be successfully applied in other regions for hydrological 

investigations.  

Possible changes in future climate regime of the basin were evaluated by analysing 

downscaled temperature and rainfall outputs from a set of 9 climate models. The predictions 

are based on the A2 greenhouse gases emission scenario which assumes a continuous 

increase in emission rates. While the climate models agree that temperature, and hence, 

evapotranspiration will increase in the future, they demonstrate significant disagreement on 

whether rainfall will decrease or increase and by how much. The disagreement of the GCMs 

on projected future rainfall constitutes a major uncertainty in the prediction of water resources 

availability of the basin. This is to the extent that according to 7 out of 9 climate models used, 

the stream flow in four sub-basins (D21E, D22B, D23D and D23F) in the Caledon River Basin 

is projected to decrease below the present day flows, while two models (IPSL and MIUB) 

consistently project enhanced water resource availability in the basin in the future.  

The differences in the GCM projections highlight the margin of uncertainty involved predicting 

the future status of water resources in the basin. Such uncertainty should not be ignored and 

these results can be useful in aiding decision-makers to develop policies that are robust and 

that encompass all possibilities. In an attempt to reduce the known uncertainties, the study 

recommends upgrading of the hydrological monitoring network within the Caledon River Basin 

to facilitate improved hydrological evaluation and management. It also suggests the use of 

updated climate change data from the newest generation climate models, as well as integrating 

the findings of the current research into water resources decision making process. 
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1 INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Water resources play a vital role in the socio-economic development activities in the Caledon 

River Basin as well as in the broader southern African region and are essential for agriculture, 

food security, industrialisation, energy production, urbanisation (Postel, 1997) and many other 

uses. The Caledon River Basin is located in one of the most water-scarce parts of the globe, 

prone to severe water shortages and recurring droughts, which have hindered the economic 

development and social well-being in the region. Therefore, comprehensive hydrological 

evaluation forms an integral part in the sound planning and management of water resources, 

especially in view of mitigating the impacts of droughts, curbing water shortages and boosting 

the economy of the region.  

 

The quality and quantity of water resources are susceptible to various environmental and 

societal dynamics. While the impacts of environmental changes on water resources have been 

investigated for a relatively long time (Hibbert, 1967; Bosch and Hewlett, 1982), the relationship 

of societal issues and water resources has only received significant attention in recent years 

from the International Association of Hydrological Sciences (IAHS: Montanari et al., 

2013).Nevertheless, hydrological scientists continue to investigate the impacts of changes 

such as population growth (Vörösmarty et al., 2000; Arnell, 2004) and migration (Roy et al., 

2008; Wenger et al.,2009; Allen et al., 2011) on water resources. Several studies (Calder et 

al., 1995; Legesse et al., 2003; Jewitt et al., 2004; Warburton et al., 2012) have also 

investigated the hydrological impacts of land use changes. 

 

Perhaps the most widely investigated threat to water resources is the phenomenon of climate 

change. Contemporary literature abounds with research into the possible changes in 

hydrological processes and regimes, as well as water availability at both regional and global 

scales. While only a few studies (Alcamo et al., 2007; Gosling et al., 2011; Arnell and Gosling, 

2013) have focused on the global impacts of climate change, many have investigated the 

regional and local impacts (Andersson et al., 2006; Hughes et al., 2011a; Tshimanga and 

Hughes, 2012; Wolski et al., 2012). From both management and scientific perspectives, these 

impacts on, and other changes in, water resources need to be well understood so that they can 

be incorporated into hydrological simulations of the past and present, as well as for the 

predictions of future water resources. 
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While the current study takes into consideration the various changes affecting water resources 

in the Caledon River Basin which include, among others, the impacts of climate change. As it 

is widely accepted that the quality and quantity of water resources are impacted by regional 

climate variability and change, predictions about the future status of water resources relies 

heavily upon the predictions of future climatic conditions. Adequate understanding and 

reasonable simulations of the current state of water resource dynamics are necessary to 

achieve reliable predictions of the future. (Beven 1993; Nandakumar and Mein 1997).More 

confidence in the future predictions can be achieved if the past and the present are successfully 

simulated. 

 

Hydrological models, in one form or the other, are the basic tools used for hydrological 

simulations of the present climate and land use conditions. Future hydrological predictions of 

the influence of climate change are achieved by driving the hydrological (and water resources) 

models with predicted climate data derived from the coupled atmosphere-ocean general 

circulation models (AOGCM’s), otherwise known as global climate models (GCM’s). 

 

The accuracy and integrity of such future climate conditions and related water resource 

predictions are inevitably marred by the cascade and propagation of uncertainties emanating 

from various sources (Bastola et al., 2011; Dobler et al., 2012). Water scientists and managers 

are faced with the difficult task of incorporating such uncertainties in the decision-making 

process. It is therefore useful to assess, quantify and eventually attempt to minimise these 

uncertainties. Uncertainty has not always been included as part of general hydrological 

modelling and water resources assessment until fairly recently, when it has received increased 

consideration (Montanari, 2007). Nowadays almost every hydrological investigation published 

in internationally recognised journals includes estimation of uncertainty. 

 

1.2 RATIONALE 

Water resource projects usually involve huge monetary investments and careful planning is 

required in order to maximize benefits. Such planning should also be done well ahead of time. 

However, in an attempt to make hydrological plans, water resource managers and decision 

makers are faced with a number of uncertainties in terms of hydrology, water demands, 

allocations and environmental impacts (Hobbs et al., 1997). Accurate projections of water 

resource status are inherently affected by various sources of uncertainties, more especially 

when the impacts of climate change are taken into consideration (Lempert et al., 2004). 
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Uncertainties such as those related to climate change significantly affect the hydrological 

decision-making process. For instance, a decision on whether to construct a larger reservoir or 

a higher bridge will depend on the predicted impacts of global warming on the local water 

resources and the local hydrology. A larger dam would be constructed to conserve more water 

if lower flows are predicted, while anticipated increases in peak flows may lead to the re-design 

of bridges, dam spillways or urban drainage systems. The scale and magnitude at which a 

project is executed depends on the uncertainties involved and the related risks in order to avoid 

over- or under-design of hydraulic structures. 

 

Even though hydrological uncertainties can have serious consequences, they are sometimes 

ignored or indirectly addressed. Uncertainties impact on reliability, resilience and vulnerability 

of water resource management systems. Hydrological predictions should be as reliable as 

possible and the related uncertainties should be assessed and used to provide information for 

the decision makers. The uncertainty estimates can be used for risk assessment in the 

decision-making process. Inadequate uncertainty evaluation can lead to poor and ineffective 

water resource management decisions. When decisions about water resources are taken, it is 

important therefore that the uncertainties are thoroughly understood (Ajami et al., 2008). 

 

1.3 RESEARCH OBJECTIVES 

The study is aimed at enhancing the understanding of the water resources and hydrological 

dynamics of the Caledon River Basin. It will also investigate the potential hydrological impacts 

of climate change, using the Pitman and the WEAP models. Uncertainties related to 

hydrological modelling and climate models will be evaluated and quantified, and approaches 

to minimise them will be formulated. An adequate understanding of general hydrology and 

water resources of the Caledon River Basin will lead to better integrated water resource 

management strategies and help maintain sustainable use of the resources. The study and its 

findings will also be useful in informing the policy and decision-making process and will be 

applicable to nearby basins and possibly to other areas with similar physiographic and 

hydrological environments. The main objective of the study will be achieved through the 

following specific objectives: 

 

1. Accounting for natural and artificial factors affecting the quantity of water within the 

basin. 
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2. Simulating the past and present hydrological regime of the basin as influenced by the 

current and past state of the physical environment, observed climate conditions and 

estimated water use. 

 

3. Predicting the future status of water resources in the basin and evaluating the impacts 

of climate change under predicted future climate conditions.  

 

4. Identifying and assessing major sources of uncertainty related to the use of both the 

hydrological and the climate models. 

 

5. Establishing methods of reducing the uncertainties at various stages of the prediction 

process.  

 

1.4 STRUCTURE OF THE THESIS 

Chapter 2 covers the contemporary literature on the latest hydrological, water resource 

systems and climate modelling concepts, with emphasis on related uncertainties. Methods 

used in the various stages of the investigations are described in Chapter 3, while the 

description of the study area is covered in Chapter 4. Chapter 5 provides detailed results of 

hydrological simulations of the Basin using the Pitman and WEAP models. Results of climate 

change scenarios are outlined in Chapter 6. General discussion, conclusions and 

recommendations arising from the study are outlined in Chapter 7. 
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2 LITERATURE REVIEW 

2.1. INTRODUCTION TO HYDROLOGICAL MODELLING 

A hydrological model is, by definition, any simplified representation of a complex hydrological 

system with a set of physical, chemical and biological processes involved in the conversion of 

input climatic variables, such as precipitation, to hydrological output variables, such as river 

discharge and groundwater storage (Hughes, 2004a). Rainfall–runoff models have long been 

used by hydrologists for a variety of purposes, including investigating and representing the 

hydrological catchment processes that convert rainfall into river discharge (Clarke, 1973; 

Loague and Freeze, 1985; Jakeman and Hornberger, 1993; Singh and Woolhiser, 2002; 

Moradkhani and Sorooshian, 2008). Such representations of the hydrological systems can be 

in various forms. For instance, a model can be a physical scaled-down exemplification of the 

real catchment; it can be an analogue-electrical model with various electronic components 

representing different catchment processes, or it can be in mathematical form where a set of 

mathematical equations and logical statements are used to represent various hydrological 

processes that influence the catchment response to the climatic inputs (Alley and Emery, 1986; 

Konikow, 1986; Refsgaard and Storm, 1996). To date, mathematical models have been the 

most widely used form of hydrological models, mainly because of the advances in computer 

technology. The discussions that follow will therefore only refer to the mathematical form of 

rainfall–runoff models. 

 

2.2 THE CONTINUUM OF HYDROLOGICAL MODELS 

A variety of hydrological model models have been developed over the past several decades to 

represent the hydrologic response of catchments to meteorological inputs. The models vary 

significantly in terms of degree of complexity. Several criteria for classifying rainfall–runoff 

models have been proposed within the hydrological arena (Clarke, 1973; Wheater et al., 1993; 

Singh, 1995; Hughes, 2004b). Nonetheless, a more simplified classification involves 

categorising the models into three classes according to how they represent the physical 

hydrological system, the hydrological processes and the catchment’s spatial characteristics. 

 

Traditionally, hydrological models were regarded as either deterministic or stochastic. A 

deterministic model represents a hydrological system in such a way that the same sets of inputs 

always yield the same output series, given identical conditions. Deterministic models 

traditionally did not account for any type of error or uncertainty in either the input or the output 



6 
 

variables (Jain and Indurthy, 2004; Schuol et al., 2008). Many of the hydrological models in use 

today are of a deterministic nature (Beven, 2001) but many of them also include stochastic 

components in that they allow for uncertainty in either climate inputs or model parameters or 

both (Beven, 2001; 2010). 

 

Stochastic hydrological models on the other hand, have at least one component of a random 

character which is not explicit in the model input, such that identical random input sequences 

may yield different outputs under similar conditions. This type of model considers the random 

nature of hydrological variables (Hirsch, 1981; Yevjevich, 1987; Vachaud and Chen, 2002). 

The basis of stochastic models is to establish model parameters from statistical relationships 

between the input and output variables. Recently, the issue of uncertainty in hydrological 

models has been widely acknowledged and it is now part of many modelling exercises 

(Refsgaard, 1996; Krzysztofowicz, 2001) and consequently the traditional distinction between 

stochastic and deterministic models is less clear. 

 

Another classification approach for hydrological models is based on the amount of detail and 

degree of complexity used to describe hydrological systems (Hughes, 2004b). Figure 2.1 

shows the variation of model complexity in three dimensions: structural, spatial and temporal. 

Figure 2.1 also provides a few examples of commonly used hydrological models and places 

them in a three dimensional ‘complexity space’ according to their various features.    

 

Structural complexity in rainfall-runoff models is primarily determined by the extent and detail 

to which they represent and describe the various processes involved in transforming climatic 

inputs (e.g. rainfall and evaporative demands) into hydrological outputs (e.g. stream flow). 

While conceptually complex models explicitly represent individual processes such as 

interception, infiltration and groundwater movement, relatively simple models use fewer 

mathematical equations to implicitly account for dominant hydrological processes (Freeze and 

Harlan, 1969; Beven, 1989; Grayson et al., 1992). For this reason, complex models inevitably 

use large numbers of parameters to describe the hydrological processes, while the simplified 

model structures comprise only a few model parameters. Similarly, the amount and detail of 

data required to inform a model increases with the level of model complexity. This can be 

demonstrated as presented by the direction of the arrow in Figure 2.1.  
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Figure 2.1 Illustration of a classification of hydrological model according to the level of 
complexity, with examples of commonly used models: IHACRES (Jakeman et al., 1990), 
Pitman (Hughes, 2004a), WEAP (Yates et al., 2005), ACRU (Schulze, 1994), PDM (Moore, 
2007), SWAT (Arnold et al., 1998), MIKE-SHE (Abbott et al., 1986).  

 

The level of complexity and conceptual detail required in hydrological models has been a matter 

of considerable debate by hydrological scientists (Perrin et al. 2001; Das et al., 2008; Rosero 

et al., 2010). While some are of the opinion that simplified model structures may be sufficient 

to represent hydrological systems, others maintain that models should be complex enough to 

adequately represent many of the catchment hydrological processes. One of the advantages 

of the simple model structures is that they are easier to calibrate, while on the other hand a 

complex model with many parameters suffers from parameter interaction (Boyle et al., 2000; 

Rosero et al., 2010), equifinality (Beven, 2006) and the problem of parameter identifiability 

(Beven and Freer, 2001).  Beven (1989) argues that a simple model with five or less parameters 

can sufficiently reproduce the hydrologic information of a system. The use of simple models 

has also been advocated by Hornberger et al. (1985) and Loague and Freeze (1985), both of 

whom found that simple models can out-perform complex model systems. Perrin et al. (2001) 
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demonstrated that simpler models can perform at a level similar to models with many 

parameters.    

 

Spatial complexity defines the resolution with which a model represents spatial details of a 

hydrological system. In spatially simple models an entire catchment is considered to be a 

homogenous unit with input and output data and parameter sets being uniform throughout the 

catchment and runoff considered at the outlet of the catchment and not at sub-basin level 

(Refsgaard, 1996; Willems, 2001; Ruelland et al., 2008). Very spatially simplified models do 

not account for heterogeneous spatial variations in physical characteristics of a watershed 

(such as slope, vegetation and geology). On the opposite end of the spatial complexity scale 

are the models which are described as fully-distributed. Spatially complex models are fully 

capable of incorporating the heterogeneous nature of the state variables, basin properties and 

meteorological forcing data. These are delineated and defined at grid cell scale, each of which 

are uniquely defined (Clark et al., 2008; Immerzeel and Droogers, 2008; Bouma et al., 2011). 

The role of spatial complexity in the performance of hydrological models has been investigated 

by several researchers (Refsgaard and Knudsen, 1996; Shah et al., 1996; Boyle et al., 2001; 

Koren et al, 2003; Zhang et al., 2004; Carpenter and Georgakakos, 2006; Das et al., 2008). 

Even though spatially complex models are more realistic representations of the environment, 

many of these studies suggest that they are not superior over simplified model structures, as 

one might hypothesise. In fact, Das et al. (2008) concluded that models with intermediate 

complexity structures performed better than both fully distributed and lumped models.   

 

Another dimension of complexity of hydrological models is the temporal resolution (Figure 2.1). 

This scale is based on the simulation interval and time duration at which input and output 

variables are defined. Bruneau et al. (1995) contend that time resolution of a hydrological model 

can have a significant impact on modelling results. The coarsest time interval usually used in 

models is the monthly time-step and there are also more complex models which simulate 

hydrological variables at finer temporal scales: daily, hourly and sub-hourly (Singh and 

Woolhiser, 2002; Bárdossy, 2007; Collischonn et al., 2008). Some models use variable length 

time intervals to simulate rapid and slower hydrological responses of a watershed in an efficient 

manner (Hughes, 1993; Hughes and Sami, 1994; Zhang et al., 2008).   

 

All hydrological models, regardless of the level of complexity (see Figure 2.1) require data and 

information to be able to adequately simulate the hydrological process of a basin (O’Connell, 

1991). Less spatially complex models require sufficiently long observation data to enable the 

quantification of parameters through mathematical calibration and less detailed basin property 
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data may be necessary (Brath et al., 2004). On the other hand, highly complex models (e.g. in 

case of a fully distributed physically-based model structure) depend more on field data relating 

to physical basin properties to estimate the parameter values (Beven, 1989). These require 

extensive field surveys running over substantial periods of time for every grid cell. However, 

Beven (1989) contend that measurements and information representative for every grid cell 

are feasible only at the scale of small experimental watersheds. To mitigate the extensive data 

demands required for spatially distributed, physically-based modelling approaches, some 

modellers proposed that some of the hydrological processes be presented by means of 

simplified conceptual algorithms. This has consequently, given rise to a generation a mixed 

conceptual- physically-based model types (Brath and Montanari, 2000). While some 

parameters of such models are quantified through field investigations, others are estimated by 

mathematical calibration against historical data (Brath and Montanari, 2000; Brath et al., 2004). 

Other models have incorporated probability distribution approaches to represent variability in a 

structure with a relatively low degree of spatial resolution (Moore, 2007). 

 

The choice of a model to represent the basin’s hydrological response to climate inputs should 

therefore be guided by the type and quantity of data available. Complex models are more 

appropriate to represent hydrological systems of catchments with high geometrical variation, 

such as the Caledon River Basin. However, lack of sufficient measured data in southern Africa 

(Hughes, 1997; Oyebande, 2001) presents a major challenge and results in substantial 

uncertainties in model predictions (Binley et al., 1991). For this reason application of simpler 

models is more appropriate in data-scarce regions. In general, simpler models require less 

intense data and information than complex models, nevertheless their outputs will have a 

substantial uncertainty resulting from the more generalised model structure.  

 

2.3 MODEL PARAMETERISATION 

Rainfall-runoff models are characterized by parameter values which often represent physical 

processes of the catchment spatial hydrological processes. Parameters are typically designed 

to represent different components affecting runoff generation process, such as soil types, 

vegetation types, geological layers (Refsgaard, 1996), as well as the general hydrologic 

response of a catchment. Fewer model parameters imply a simpler calibration process but 

more parameters are required to represent the complex rainfall-runoff processes (Hughes, 

2004a). The optimum level of detail and the number of parameters is therefore not easily 

determined and is dependent on the available data to quantify parameters or calibrate a model 

(Beven, 1989; Jakeman and Hornberger, 1993). Wheater et al. (1993) propose that model 



10 
 

parameters should preferably be quantified from field measurements. Although this proposal is 

convincing and scientifically plausible, Beven (1989) recognised that this is precluded by the 

heterogeneity of process responses and the scale-dependence of parameters. To mitigate this 

challenge, several researchers developed simplified coefficients to quantify model parameters 

based on physical basin properties (Ao et al., 2006; Wagener and Wheater, 2006; 

Kapangaziwiri and Hughes, 2008). This approach is known as the priori estimation technique. 

An advantage with this approach is that the established quantitative relationships between 

model parameters and basin characteristics (e.g. topography, soil types and geology) can be 

applied to in poorly gauged and ungauged basins, where there are insufficient stream flow 

records to facilitate mathematical calibration (Refsgaard and Knudsen, 1996; Loague and 

Kyriakidis, 1997). 

 

2.4 MODEL CALIBRATION 

Hydrological models consist of parameters which define the hydrological response of the 

modelled catchment and thus determine the ability of the model to simulate and predict the 

catchment runoff. It is common practice to adjust parameter values so that the modelled output 

matches the observed records as closely as possible (Beven and Smith, 2014; Zhou et al., 

2014). The ‘optimum’ parameter values are determined based on the best model performance 

in terms of an established set of objective functions, which may be in the form of statistical 

coefficients, bias, visualisation of the hydrographs, as well as the use of scatter plots. 

Calibration is therefore aimed at obtaining a set of parameter values which yield the maximum 

or minimum value (whichever is the case) of the set objective function (Geem, 2014).   

 

Ndiritu and Daniell (1999) describe calibration as an iterative procedure whereby the first step 

is to simulate using initial parameter values from a search space, followed by a new set that 

performs better than the previous one. The procedure is repeated until there cannot be any 

further improvements obtained for the simulated time series relative to the observed. The 

traditional idea of obtaining the optimum set of parameters may seem appropriate for 

parsimonious models (Perrin et al., 2003; Basu et al., 2010) with a relatively few parameters, 

with minimum interaction. However, for models with many parameters, a combination of many 

different parameter sets can yield equally acceptable hydrological simulations, in which case 

there is no best single parameter set. This concept is known as equifinality, coined in the 1950`s 

by von Bertalanffy (1950) and later introduced to the hydrological world by Beven (1993, 1996, 

2001). There are basically two ways in which calibration of model parameters can be achieved, 

i.e. either manually or automatically. 
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2.4.1 Manual Calibration 

Traditional manual calibration requires the user to manually adjust parameters, usually one at 

a time, in a trial-and-error fashion. Adjustments are done until the best hydrograph fit is 

achieved, based on visual judgement and some form of performance measures. This 

procedure requires the expertise of a modelling hydrologist about the model structure being 

used as well as of the effects of individual parameters on a simulated hydrograph. Because 

parameters are adjusted one by one, the effect of each on the simulated hydrograph can easily 

be identified. However, the process can be tedious and time-consuming. This exercise is even 

more difficult in the case of a model with several parameters, which might also interact with 

each other in the way outputs are determined (Gupta et al., 1998; Fenicia et al., 2007; Boyle et 

al., 2000). While manual calibration can give good results (Govender and Everson, 2005) and 

allows the user to pass  judgement on the plausibility and validity of parameter values, its major 

disadvantage is that it is a subjective exercise and it may not always be able to cover the 

plausible parameter space (Kim et al., 2007). 

 

2.4.2 Automatic Calibration 

The development of automatic methods of parameter calibration for hydrological models was 

mainly motivated by the drawbacks inherent in manual calibration. Automatic calibration uses 

mathematical algorithms to sample through the parameter continuum in search of optimum 

parameter values, based on a well-defined search procedure and one or more objective 

functions (Madsen, 2000). Automated calibration is suitable in structurally complex models with 

several parameters, where manual calibration might be extremely difficult. Automatic 

calibration takes advantage of high speed computer power and thus saves a lot time, compared 

to the manual method. Though automatic calibration offers a convenient means of obtaining 

optimal parameter values for hydrological modelling, there is a major concern about its lack of 

assessment of the physical plausibility of parameter values (Boyle et al., 2000; Madsen et al., 

2002).  

 

Some of the first developments of automated calibration were formulated in the mid 1960’s and 

the late 1970’s (Dawdy and O`Donnell, 1965; Chapman, 1970; Nash and Sutcliffe, 1970; 

Johnston and Pilgrim, 1976). Recently, there has been considerable interest in the use and 

improvement of automatic parameter calibration and as such, a large number of parameter 

optimization algorithms have been formulated. The use of some of the most popular globally-

based optimization methods reported in the literature include the adaptive random search 

(Brazil, 1988), generic algorithm (Wang, 1991; Ndiritu, 2001), shuffled complex evolution (Duan 
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et al., 1992; 1993), multi-start simplex method (Sorooshian et al., 1993), automatic calibration 

scheme for HBV (Zhang and Lindström, 1997) and simulated annealing (Sumner et al., 1997). 

 

The abundance of methods for automatic calibration makes it a challenging task for a 

hydrologist to select one particular method over others. This has motivated researchers to 

embark on studies with the aim of comparing the performance of some of the more popular 

frameworks. Such comparative studies may assist hydrologists in the difficult task of selecting 

a suitable method to meet their objectives. In one study, Madsen et al. (2002) compared the 

performance of three calibration methods. The authors concluded that none of the methods 

was superior to others in terms of general performance, but indicated that different methods 

perform differently on various performance indicators. On the other hand, a similar study by 

Goswami and O’Connor (2007) compared six automatic calibration routines and concluded that 

one method (simulated annealing) generally out-performed other competing methods. 

Numerous other comparative studies were also reported for example by: Gan and Biftu (1996); 

Cooper et al. (1997); Kuczera (1997); Franchini  et al. (1998); Thyer et al. (1999); Vugrin (2005). 

Many of these studies concluded that the population-shuffle-based routines such as the 

shuffled complex evolution method (SCE-UA) developed by Duan et al. (1993) yielded the best 

results in terms of obtaining the closest fit to the observed. 

 

Some researchers have proposed to combine the two calibration approaches (i.e. manual and 

automatic) to estimate model parameters (Gupta et al., 1999; Boyle et al., 2000; Flipo et al., 

2012). The so-called hybrid calibration takes advantage of the high-speed automatic 

calculations, at the same time involving the personal experience and skill of a hydrologist. In 

this case, a modeller would manually estimate parameter values based on prior experience 

and then ‘fine tune’ them using automatic calibration. Other studies compared the performance 

of manual against automatic calibration, with a variety of conclusions. For instance, Ndiritu 

(2009) compared the two approaches using the Pitman model and concluded that automatic 

calibration performed better in some catchments and worse in other catchments. Conversely, 

Madsen (2003) noted that automatic calibration provided better hydrological simulations than 

the expert manual approach. It is still therefore, inconclusive as to which of the two calibrations 

is superior to the other. They both have significant advantages and drawbacks. The hybrid 

approach may however, appear to be the more attractive choice as it makes use of the 

strengths of each procedure (Boyle et al., 2000; Madsen et al., 2002). 

 

The entire calibration process, whether manual or automated, is commonly complicated by the 

inherent limitations in the quality and quantity of observed input data, complexity of the 
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mathematical representation of the physical and hydrological processes occurring in the 

catchment, as well as an incomplete knowledge of the watershed characteristics (Immerzeel 

and Droogers, 2008). These result in hydrological model parameters, and the entire model 

predictions, being fraught with uncertainties.  

 

2.5 MODEL EVALUATION 

Hydrological models are the most powerful tools available to a hydrologist and thus play a 

critical role in hydrological sciences and water resource management. As such, the models 

need to be evaluated to gain confidence in their outputs. Model evaluation is normally based 

on its ability to simulate major hydrological processes in a watershed. Model performance 

assessment is normally carried out by comparing the model predictions at the basin outlet with 

the corresponding observed records (Wagener, 2003; Krause et al., 2005; Moriasi et al., 2007). 

Of all the hydrologic variables that rainfall-runoff models simulate, river discharge is the most 

frequently used variable for evaluation because it is generally measured more often than other 

variables. Soil moisture content, groundwater levels, evapotranspiration and other components 

of catchment hydrology have also been used, albeit occasionally, as additional evaluation 

criteria for model performance (Anderton et al., 2002; Parajka et al., 2006; Immerzeel and 

Droogers, 2008; Rakovec et al., 2013). Heavy reliance on observed stream flow for model 

evaluation has recently been criticised for the fundamental reason that total output of a 

catchment can be simulated for the wrong reasons in the absence of other assessment 

measures of model performance (Kirchner, 2006).  

 

There are a number of essential reasons why model evaluation should be performed. 

According to Krause et al. (2005), the main advantages of evaluating model performance are 

to quantitatively estimate the ability of the model to simulate the past, and possibly the future, 

hydrological response of a river basin and to allow, facilitate and monitor model improvements 

resulting from parameter and structural modifications.  

 

Evaluation of model performance involves assessing the ‘goodness-of-fit’ of the simulated and 

the observed hydrological variables such as stream flow. This is usually achieved either by 

subjective visual inspection of the two hydrographs (Ewen, 2011) in terms of timing, rising and 

falling limb and base flow variations among others; or by objective mathematical methods. 

While visual inspection has no formalised standard procedure, it depends profoundly on the 

experience of a modelling hydrologist. However, objective model evaluation involves the use 

of mathematical estimation of the disparity between observed and simulated time series of a 
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chosen output variable (Beven, 2001). Several mathematical objective functions have been 

developed and used over the years in hydrological modelling studies. The commonly used 

criteria include: the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), index of agreement 

(Willmott, 1981), coefficient of correlation (Wilcox et al., 1990), and percentage bias. 

Traditionally, a modeller uses one of the objective functions to evaluate model performance. 

However, it is now widely acknowledged that using multiple objective functions is more 

appropriate as no single indicator can represent all the statistical aspects of a hydrological 

variable and may consequently lead to an inaccurate model assessment (Gupta et al., 1998; 

Wagener, 2003; De Vos and Rientjes, 2007).  

 

A number of studies have compared the efficiency of different performance indicators (e.g. 

Krause et al., 2005).These comparison studies concluded that none of the evaluation criteria 

is superior to others, but emphasised that each has its own strengths and drawbacks. 

Therefore, more than one indicator may provide more information about the models’ ability to 

represent the hydrological system response. Because there are a large number of model 

performance measures available to a hydrologist, it is difficult to justify the most appropriate 

indicator to use mainly because there are no clear and universally standardised guidelines on 

the quantitative evaluation of hydrological models (Moriasi et al., 2007). However, Legates and 

McCabe (1999) recommend that a proper hydrological model evaluation should include at least 

one dimensionless statistic, one absolute error index as well as a graphical analysis technique.  

 

Both calibration of model parameters and the entire procedure of evaluating performance of 

hydrological models rely on the availability, quality and quantity of observation data (Boughton, 

2007). Lack of sufficient hydrological and meteorological data is the main challenge facing 

hydrological modelling exercise in many parts of the world. Among others, Boughton (2007) 

and Li et al. (2010) assessed the effects of length of observation data series on calibration and 

performance of hydrological models. Whereas the former concluded that longer data sets 

produced improved model performance, the latter did not find any significant differences 

between data sets of varying lengths. The accuracy of hydrological modelling depends entirely 

on the observed hydrological and climate data, which is one of the major sources of uncertainty 

in hydrological predictions.   

   

2.6 UNCERTAINTIES IN HYDROLOGICAL MODELLING 

The accuracy and integrity of hydrological model predictions are inevitably affected by a 

cascade of uncertainties from various sources. Water scientists and managers are faced with 
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the difficult task of incorporating such uncertainties in the decision-making process. It is 

therefore essential to understand, assess, quantify and, eventually minimise uncertainties in 

hydrological modelling at various phases as well as in the final model output.  

 

The term ‘uncertainty’ does not appear to have a universal meaning in the context of 

hydrological science. However, in the context of the English language, ‘uncertainty’ refers to a 

state of having limited knowledge, where it is impossible to describe exactly the existing state, 

a future outcome or more than one possible outcome. Similarly, Zadeh (2005) defines 

uncertainty simply as ‘an attribute of information’. Uncertainty has not always been included as 

part of general hydrological modelling and water resources assessment until fairly recently, but 

since its inclusion, it has been receiving increased consideration (Montanari, 2004).  

 

Hydrological model accuracy is affected by a number of sources of uncertainty including: errors 

in input data, parameter setting and model structure. When hydrological models are used to 

predict hydrological impacts of climate change, a predicted climate data set is used to drive 

them. Such data becomes an additional source of uncertainty. 

 

2.6.1 Uncertainties in Observed Data 

Rainfall–runoff models require, as input, several hydro-meteorological variables such as 

rainfall, potential evapotranspiration and snowmelt data. Other observation records that might 

be used to calibrate a model and quantify parameter values include stream flow volumes, 

groundwater heads and soil moisture content of the catchment being modelled (Kavetski et al., 

2006a). Uncertainty in the hydrological modelling process is introduced by both systemic and 

random errors inherent in the values of these variables. Systematic errors in rainfall 

measurements may arise from factors such as strong winds (Nešpor and Sevruk, 1999) and 

evaporation from rain gauges which lead to under-estimation of rainfall depth (Habib et al., 

2001; Ciach, 2003). Poor rain gauge maintenance (leakage and damage) can also affect the 

estimation of rainfall in a catchment (Bartholomew, 2009). 

 

Rainfall over any duration needs to be spatially interpolated from point data to obtain a 

representative estimate of catchment rainfall. There are a number of techniques used to 

convert gauge point measurements to areal data series. These include arithmetic average, 

Kriging and the Theissen polygon method which, because of their various assumptions, yield 

different average values (Buytaert et al., 2006; Ruelland et al., 2008). In many catchments 

especially in southern Africa, estimation of catchment rainfall is impacted by inadequate density 

of rain gauges which are not able to capture the high spatial and temporal variability 
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(Sawunyama and Hughes, 2007; Villarini et al., 2008). Butts et al. (2004) contend that rainfall 

input is the major contributor of uncertainty in predicted flows. 

 

Evapotranspiration (ET) is one of the most important constituents of the hydrological cycle in 

many environments and it comprises a major input in hydrological models (Droogers, 2000; 

Hargreaves and Allen, 2003). Accurate estimation of evapotranspiration is therefore critical in 

hydrological simulations and predictions. Inclusion of evapotranspiration data to drive 

hydrological models constitutes a major source of uncertainty in model outputs (Thompson et 

al., 2014).  One of the reasons for this is that ET is difficult to determine as it depends on many 

driving forces such as wind speed, temperature and other meteorological variables, which are 

also measured with a certain degree of error. There is a plethora of methods and models 

available for estimating potential evapotranspiration and according to Lu et al. (2005), there are 

more than 50 of such methods. Hargreaves and Samani (1982) and Lu et al. (2005) provide 

some of the commonly used ET estimation approaches. The Penman-Monteith method 

(Monteith, 1965) is one of the most widely used estimation methods in many hydrological 

models (Beven, 1979; Abbott et al., 1986; Arnold et al., 1998; Kay and Davies, 2008). The use 

of remote sensing for ET estimation is being tested globally in an attempt to explore 

methodologies of improving estimation as well as reducing model output uncertainties (McCabe 

and Wood, 2006; Cleugh et al., 2007; Kalma et al., 2008; Mu et al., 2011).  

 

One of the uncertainties in the estimation of ET stems from the method used, as well as the 

integrity of data of the atmospheric variables used in the estimation (Andréassian et al., 2004). 

Given the fact that meteorological variables required for ET estimation are subject to systematic 

and random errors, it is inevitable that the resultant ET estimation will be uncertain. In southern 

Africa and other economically poor regions, such estimations are also affected by inadequate 

spatial distribution of meteorological stations. Oudin et al. (2005) have demonstrated that 

hydrological model outputs are sensitive to ET estimates and therefore uncertainties in the ET 

inputs are critical. Similarly, Middelkoop et al. (2001) adds that uncertainty in evapotranspiration 

becomes even more important during low river flows. 

 

In some other regions, snowmelt is an important contributor to stream runoff. Snowmelt is not 

directly measured but is usually inferred from air temperature and albedo. Blöschl (1991) offers 

an example of the use of various models in determining the amount of snowmelt from air 

temperature and albedo. The author comments that uncertainty in albedo is a major contributor 

in snowmelt estimations. Another uncertainty in snowmelt arises from the fact that it is usually 
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difficult to know how much snow is there to melt (Beven, 2001). The snowmelt component in 

hydrological modelling thus adds a significant uncertainty.  

 

Runoff data and stream discharge records are typically used for model calibration and 

validation. Stream flow discharge is typically determined from river water levels, flow velocity 

and cross-sectional areas of a river channel, measurements of which are significantly uncertain 

(Pelletier, 1988; Herschy, 2002; Di Baldassarre and Montanari, 2009). The widely used stage-

discharge relationships (rating curves) are established for river channels as a convenient 

estimation of stream flow from stage height records. Stream flow estimations by rating curves 

are affected by a number of uncertainties. Westerberg et al. (2011, citing Schmidt, 2000) 

suggest that uncertainties in discharge derived from rating curves can be categorised into three 

groups: i) natural uncertainties caused by geomorphological changes in river cross-section; ii) 

incomplete knowledge about physical processes and the assumptions in the stage-discharge 

model and iii) systemic errors in stage measurements.  

 

Westerberg et al. (2013) and Guerrero et al. (2012) showed that stage-discharge relationships 

can have high temporal variation especially in alluvial river environments and that uncertainties 

in stream flow estimates can be substantially high for low flows.  The implication is that rating 

curves need to be continuously updated to mitigate the uncertainty. There is an additional 

uncertainty when the rating curves are used to determine discharges beyond the range for 

which they were established (Di Baldassarre and Claps, 2010), especially during very high river 

flows. Considerable focus has recently been on quantification of uncertainty in stream flow 

estimation (Montanari, 2004; Baldassarre and Montanari, 2009) and the investigation of 

possible effects of uncertain stage-discharge relationship on the performance of hydrological 

models (Aronica et al., 2006; Thyer et al., 2009; McMillan et al., 2010).  

 

In most environments, especially forested areas, rainfall interception is a significant part of the 

hydrological cycle and therefore is an important part of a rainfall–runoff modelling setup. 

However, there are no direct measurements of interception, instead there are several models 

developed for this purpose. Muzylo et al. (2009) comprehensively documented various models 

for calculating interception. Rainfall data and vegetation cover used as inputs in interception 

models introduce additional uncertainty in the calculated interception which is carried along in 

hydrological models.  

 

Methods for determining soil moisture content are well documented in the literature: direct in-

situ methods (Walker et al., 2004; De Lannoy et al., 2007; Hawke and McConchie, 2011) and 
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remote sensing methods (Engman, 1991; Kostov, 1993; Njoku and Entekhabi, 1996). 

Uncertainty in soil moisture measurement arises from the various methods of measurement, 

assumptions made and variations in space and with depth. The soil moisture estimation 

component therefore gives rise to additional uncertainty in hydrological model output. 

 

2.6.2 Model Structure Uncertainty 

Hydrological models are a conceptual approximation, simplification and representation of a 

hydrological system. The efficiency of these conceptualizations is limited by the understanding 

of the hydrological processes, assumptions made, mathematical equations representing the 

processes, and the computer code thus developed (Uhlenbrook et al., 1999; Wagener and 

Gupta, 2005). The models’ ability to simulate and predict flow depends on its structure and any 

flaws in the structure representing the physical world will result in uncertainties in the model 

efficiency (Refsgaard et al., 2006). Refsgaard et al. (2006) further contend that model structural 

inadequacies constitute a significant source of model output uncertainties. This view was also 

shared by Engeland et al. (2005) who showed that model structural uncertainty was larger than 

uncertainties related to parameters values. 

 

Structural uncertainty in hydrological models does not appear to have been adequately dealt 

with like other sources (e.g. input data and parameter) of uncertainty and there is presently not 

as many formal frameworks developed to deal with it (Refsgaard et al., 2006). Since model 

structural uncertainty is not well understood, it is more difficult to assess as well as to 

characterise (Renard et al. 2010). Nevertheless, there are researchers who have attempted to 

address this source of uncertainty. For instance, Butts et al. (2004) evaluated different models 

using a set of performance criteria and contended that resulting variations in hydrological 

simulations were a result of uncertainty in model structures.  Refsgaard et al. (2006; 2007) 

developed a framework dealing particularly with model structural uncertainties using a multiple 

conceptual rainfall–runoff model method. On the other hand, Renard et al. (2010) adopted a 

different strategy to isolate structural uncertainties from the total model predictive uncertainty 

using a statistical probability approach. It is widely acknowledged that structural uncertainty is 

much more difficult to quantify than other sources of model uncertainty (Rojas et al., 2008; 

Warmink et al., 2010).  

 

2.6.3 Model Parameter Uncertainty 

In traditional hydrological modelling, models are usually calibrated to estimate optimal 

parameter sets. Calibration introduces parameter uncertainty because it is generally not 
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feasible to estimate model parameters from field measurements or by a priori estimation 

(Beven, 2001). Most hydrological models are, to some extent, considered to be over 

parameterised (Jakeman and Hornberger, 1993) and as a result their parameters cannot be 

estimated with a high degree of confidence. In many cases many parameter sets provide 

equally good fits compared to observed records (Duan et al., 1992; Freer et al., 1996), and 

there is no single optimal parameter set. This problem is referred to as ‘equifinality’ (Beven, 

2001). Parameter uncertainty arises from various aspects of modeling. These include the 

quality of data used for calibration (Kuczera and Williams, 1992; Fonseca et al., 2014) as well 

as from the objective function used for optimisation (Sefe and Boughton, 1982; Bastidas, 1998; 

Silvestro et al., 2014). Parameter uncertainty has also been found to increase with the number 

of model parameters (Jin et al., 2010).  

 

Quantification of parameter uncertainty in hydrological models has received considerable 

attention in the past years and there is a variety of approaches developed to deal with it (Jin et 

al., 2010) some of these methodologies are discussed in the following sections.  

 

2.7 METHODOLOGIES FOR EVALUATING UNCERTAINTIES IN HYDROLOGICAL 

MODELLING 

The various sources of hydrological model prediction uncertainty need to be identified, 

assessed and quantified in order to be incorporated into the decision-making process and in 

the risk assessment procedure. A number of methods have been used to quantify and assess 

uncertainty in hydrological models. The general procedure used in these methods is to observe 

the model output while the source of uncertainty is used to perturb the model. While the 

developed approaches differ in various ways, such as the underlying assumptions, they    make 

use of the various well-established sampling procedures. There are several sampling methods 

that have been developed in recent years which include: Monte Carlo simulation, Latin 

hypercube simulation (McKay et al., 1979; McKay, 1992), Rosenblueth’s point estimation 

(Rosenblueth, 1975) and Harr’s point estimation method (Harr, 1989).  

 

Monte Carlo Sampling 

The Monte Carlo sampling (MCS) procedure was introduced in the 1940s by Ulam (Metropolis 

and Ulam, 1949) while working on the nuclear weapons projects. The procedure has since 

been applied in a wide range of fields, including hydrology. In hydrological modelling, the Monte 

Carlo procedure is generally used for sensitivity analysis, as well as for assessing uncertainty 

resulting from model parameter values (Krajewski et al., 1991; Kuczera and Parent, 1998; Yu 
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et al., 2001; Vrugt et al., 2008). In this procedure a large number of realizations of model 

parameters are generated, based on the prior probability distribution function (e.g. normal, 

uniform). This is perhaps the most widely used method of sampling, and it is incorporated into 

many uncertainty analysis frameworks (discussed in the following section).  

 

Latin Hypercube Sampling (LHS) 

This statistical method generates a distribution from a possible range of values in a multi-

dimensional distribution. When sampling a function of N variables, the LHS divides each 

variable into M equally probable intervals. The order of ranges is randomized and the 

calculation is executed N times with the random combination of each basic variable values from 

each range for each variable. The Latin hypercube sampling (LHS) technique has been 

extensively used in engineering and various fields of research (Helton, 1999; Hofer, 1999; 

Helton and Davis, 2003) and has consequently attracted some attention in the hydrological 

modelling arena, though it has not been applied to a great extent.  

 

A few examples of the use of LHS available in the literature include Hossain et al. (2005) who 

used the sampling procedure to assess uncertainty resulting from satellite-based observations 

of flood predictions. Sieber and Uhlenbrook (2005) carried out a sensitivity analysis on a 

distributed ‘tracer aided catchment’ model using the Latin hypercube procedure. Similarly, the 

LHS technique was also used by Christiaens and Feyen (2002) to evaluate uncertainty and 

sensitivity measures for the physically-based MIKE SHE model and for a regional hydrological 

simulation model (Lal et al., 1997).  Yu et al. (2001) compared a number of sampling methods 

for uncertainty analysis for hydrological model predictions and concluded that LHS was a more 

efficient sampling methodology (than, for example, Monte Carlo) since it is less computationally 

demanding. 

 

Rosenblueth`s Point Estimate Method (RPEM) 

This is a probabilistic point estimate method which was first proposed by Rosenblueth (1975) 

to deal with uncertainty estimation of a model with correlated and symmetric random 

parameters. The method was later developed (Rosenblueth, 1981) to accommodate 

asymmetric random variables. Though the RPEM has not been extensively applied in 

hydrological modelling, some applications were reported by Yu et al. (2001). These authors 

present a good example of the use of this method in comparison with other sampling estimation 

methods. Similarly, Protopapas and Bras (1990) applied the method to the unsaturated flow 

model. The use of RPEM for estimating uncertainty has also been reported in other fields of 
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research, for example, in water quality, environmental and structural engineering (Wang and 

Hao, 2002; McIntyre et al., 2002; Tsai and Franceschini, 2005; Wang, 2012).  

 

Harr’s Point Estimate Method (HPEM) 

Regarded as an improvement on RPEM, HPEM was introduced by Harr (1987) and is able to 

deal with multi-random variables. The method requires 2p (where p is the number of 

parameters) model runs to estimate the statistical moments of the model output. The 

application of Harr’s method in hydrology has been reported by authors such as Yeh et al. 

(1997) who used it to analyse uncertainty in the regionalisation of the unit hydrograph. Muleta 

and Nicklow (2005) have also applied the method for uncertainty analysis to investigate 

reliability of hydrologic model outputs. 

 

2.8 UNCERTAINTY ESTIMATION FRAMEWORKS 

Recently, there have been developments of a large number of frameworks dedicated to dealing 

with the assessment of uncertainty within the field of hydrological modelling. Many such 

uncertainty frameworks are basically parameter optimisation algorithms, such as those used 

for automatic calibration (discussed above), with the additional ability to account for various 

sources of uncertainties, such as input data errors and parameter uncertainties. As such, their 

common objectives are to locate optimal (or behavioural) sets of parameters while 

simultaneously evaluating various sources of uncertainty. Though the general concept behind 

the formulation of uncertainty frameworks is consistent, they differ in their general assumptions. 

They also differ in the sampling methodologies applied within the individual framework. Another 

basic difference is in the source of the uncertainty being evaluated. For instance, one 

framework may focus on addressing uncertainty resulting from input data, while another may 

deal with parametric uncertainty.  

 

Some of the widely used uncertainty frameworks in hydrological modelling include: Generalised 

Likelihood Uncertainty Estimation (GLUE) introduced by Beven and Binley (1992), Bayesian 

Recursive parameter Estimate (BaRE) by Thiemann et al. (2001), Bayesian Total Error 

Analysis (BATEA) of Kavetski et al. (2006a; 2006b), Shuffled Complex Evolution Metropolis 

Algorithm (SCEM) developed by Vrugt et al. (2003), Maximum Likelihood Bayesian Model 

Averaging (MLBMA) of Neuman (2003), DYNamic Identifiability Analysis (DYNIA) by Wagener 

et al. (2003), Simultaneous Optimization and Data Assimilation (SODA) by Vrugt et al. (2005), 

Dual state-parameter estimation of Moradkhani et al. (2005), Integrated Bayesian Uncertainty 

Estimator (IBUNE) by Ajami et al. (2007). According to Ouyang et al. (2014), the most 
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commonly used methods are GLUE (Beven and Binley, 1992) and the Bayesian-based 

methods (Thiemann et al., 2001; Kavetski et al., 2006a; 2006b).  

 

The current study uses an uncertainty framework based on the approach developed by 

Kapangaziwiri et al. (2009). This uncertainty assessment approach makes use of a priori 

parameter estimation based on physical characteristics of watersheds. They coupled this 

methodology with an independent Monte Carlo sampling procedure to generate output 

simulation ensembles from which behavioural sub-sets could be identified according to regional 

signatures of hydrological behaviour. While one advantage with this approach is that the 

established signatures are independent of the model structure, it however relies heavily on 

availability and quality of observed data to determine bounds of uncertainty (Kapangaziwiri et 

al., 2009).  

 

The importance of evaluation and estimation of a hydrological model’s output uncertainty 

cannot be over-emphasised. Notwithstanding the fact that there are plenty of methodologies 

available for a hydrologist to select from, there are still no clear and explicit guidelines on the 

proper application of individual frameworks, or on the criteria for selection of any methodology 

to meet an individual hydrologist’s objectives. It is also not clear which methodology is 

appropriate in a particular set of modelling and physical environment conditions.  In light of 

such concerns, there is a need for more guidance on using such frameworks in such a way 

that they do not end up being inappropriately applied.   

 

2.9 HYDROLOGICAL MODELLING IN SOUTH AFRICA 

South Africa, and the SADC region as a whole, has a very high degree of climate variability, 

with some catchments experiencing wet tropical-type climate while others experience arid and 

semi-arid climates. This type of climate variability translates into stream flow variability as well. 

In general, South Africa is a water-scarce country and, as such, it is important that this limited 

but vital resource be well managed to achieve maximum benefit and to maintain sustainable 

use for generations to come. Hydrological modelling remains one of the most valuable tools for 

water resource management, especially for simulating hydrological information where data 

collection is not feasible and to reduce both labour and equipment costs.   

 

The hydrological modelling exercise faces numerous challenges. One of the most important is 

lack of, or poor hydro-meteorological records such as rainfall, evaporation and stream flow. 

Such records normally require financial and political will to implement, maintain and sustain. 
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Until decision-makers recognise the importance of investing in upgrading and improving 

gauging and monitoring networks in the country, the problem may persist for quite a long time. 

 

Within the context of South Africa, which might also be the case in other developing countries 

in southern Africa, Kapangaziwiri and Hughes (2008) contend that the main challenges that 

limit the applicability of hydrological models are: variation of climate and resultant river 

discharge in space and time; inadequate rainfall and stream flow records; general shortage of 

information on activities that impact on stream flow such as land use and water abstractions; 

inadequate scientific knowledge of hydrological processes, and more importantly, lack of 

trained personnel. 

 

Hydrological modelling has proved to be one of the most important tools in the scientific 

understanding of the dynamic physical processes affecting the availability of water in South 

Africa and elsewhere. In recognition of hydrological models as invaluable water resource 

management tools, there have been a number of hydrological models developed in the country 

(e.g. Pitman, 1973; Schulze 1994; Hughes 2004b). The structures of these models were 

developed to suit the unique arid and semi-arid conditions of the country and the region as well. 

The conditions are commonly marked by high spatial and seasonal variations.  The models 

were aimed at addressing some of the environmental and hydrological challenges that are 

faced by South Africa and the neighbouring countries, perhaps initiated and driven by 

development of water resources prompted by economic growth. The models were also useful 

for evaluating possible impacts of various water resources development options/scenarios, as 

well as feeling the hydrological data gaps resulting from inadequate monitoring networks, 

common in economically developing countries (Hughes 2004b). 

 

Pitman Model 

This model was introduced in the 1970’s by Pitman (1973). It is a semi-distributed, conceptual 

model, with parameters which have physical relevance and can be inferred from characteristics 

of a catchment. The model runs on a monthly time step and there is also a version that runs on 

a daily time-step, but which is rarely used for practical purposes (Hughes, 2013). Since its 

inception, the model has been modified a number of times to include additional physical 

processes such as groundwater recharge and outflow, wetland and reservoir sub-modules and 

water abstractions (Hughes, 1997, 2004a; Hughes et al., 2014a) which are significant and 

prevalent under southern African environmental conditions. The Pitman model has a relatively 

large number of parameters (see chapter 3 for a more detailed model structure) and might be 

considered to be over-parameterised (Jakeman and Hornberger, 1993). It is however, 
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considered by Hughes (2013) to be a compromise between an adequate representation of a 

complex reality and “mathematical simplicity”. Of all the locally developed hydrological models, 

the Pitman model is arguably the most applied model both in the country and the wider region 

(Gan et al., 1997; Andersson et al., 2003; Hughes et al., 2006a, 2006b; Hughes, 2006; Wilk et 

al., 2006; Tshimanga and Hughes, 2012). The commercial version of this model, named the 

Water Resources Simulation Model (WRSM 2000) is the model of choice of the South African 

Department of Water and Sanitation (DWS).  

 

ACRU Model 

The ACRU agrohydrological modelling system was developed at the University of KwaZulu-

Natal by Schulze (1994). It is described by Jewitt and Schulze (1999) as an integrated physical 

conceptual model with a multi-purpose and multi-level capability. It is able to simulate stream 

flow, evapotranspiration and land cover impacts on water resources. The model runs on a daily 

time step and was designed for use in where there is no adequate stream flow data. This was 

achieved by having parameters which can be directly related to measurable physical 

characteristics of a catchment such as soil cover, vegetation and geology (Schulze, 1994). 

ACRU model has been used in South Africa for variety of purposes including the hydrological 

impacts of land use changes (Jewitt and Schulze, 1999; Gush et al., 2002; Görgens and van 

Wilgen, 2004; Jewitt et al., 2004; Dye and Versfeld, 2007), design flood estimations (Smithers 

et al., 1997; Boughton and Droop, 2003), agriculture (Martin et al., 2000; Schulze, 2000) and 

water resource availability assessment (Schulze et al., 2001). 

 

VTI Model 

The variable time interval model is a daily step model developed by Hughes and Sami (1994), 

at the Institute of Water Research, Rhodes University. The model was originally aimed at 

studying the catchment response characteristics of a semi-arid catchment in South Africa. It 

has, nevertheless been successfully applied in other regions of South Africa, as well as in other 

countries in southern Africa (Hughes, 1995; Smakhtin et al., 1997; Hughes, 1997). As the name 

suggests, shorter time modelling intervals can be applied depending on the objectives of the 

user. Based on the paucity of published documentations available in the mainstream electronic 

databases, the VTI model appears not to have received as much attention of water resources 

managers and hydrologists alike, compared to the other locally developed hydrological models 

(Pitman and ACRU). 
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Internationally developed hydrological Models 

In addition to locally developed hydrological models, there has been a considerable interest in 

the application of models developed outside the southern African region. These models were 

used to achieve various scientific objectives. One of the examples is the use of a physically 

based distributed TOPographic Kinematic Approximation and Integration model (TOPKAPI) 

developed by Liu and Todini (1999). The model consists of five main modules: soil, overland, 

channel evapotranspiration, snow and can be run at hourly time-steps. TOPKAPI was tested 

for performance under South African environmental conditions by Vischel et al. (2008a) and 

was later used to simulate soil moisture content in a few catchments by Vischel et al. (2008b) 

and Sinclair and Pegram (2010).  

 

The Identification of Hydrographs and Components flow Rainfall, Evaporation and Stream 

(IHACRES) (Jakeman et al., 1990; Jakeman and Hornberger, 1993) is one of the simplified 

hydrological models that has been used in the South Africa. The model is based on the moisture 

deficit principles and uses a non-linear module to determine effective rainfall and a linear 

routing module to represent transport lags to convert effective rainfall to stream flow. Dye and 

Croke (2003) evaluated the model for stream flow simulation in two South African catchments. 

They found that the model is able to accurately simulate stream flow over a short duration (2-

3 years), while it performed poorly for longer durations.  

 

Govender and Everson (2005) used the Soil Water Assessment Tool- SWAT, to simulate the 

hydrological processes in two mountainous catchments, with different land covers, in the 

KwaZulu-Natal province of South Africa. The authors reported that SWAT performed 

reasonably well in simulating the major hydrological processes in the catchment. They 

however, observed that the model performed better in drier years than in wet periods. SWAT 

is a relatively complex, continuous daily time-step model developed at the United States 

Department of Agriculture (Arnold et al., 1998). It is an integrated model with a comprehensive 

water balance, includes flood and sediment routing, water transfers as well as agricultural 

management and water quality components.  

 

Another model of international origin that was used in southern Africa is the HBV (Bergström, 

1992). HBV is classified as a semi-distributed conceptual model, with three main components 

consisting of subroutines for snow accumulation and melt; soil moisture accounting; response 

and river routing. The model was originally developed by the Swedish Meteorological and 

Hydrological Institute with the aim of simulating runoff (Lindström et al., 1997). Lidén and Harlin 

(2000) applied the HBV model in Zimbabwe and Tanzania with the objective of assessing its 
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suitability and performance in catchments with varying climatic conditions. The authors 

reported that HBV performed better under wetter conditions and less climate variability. Their 

findings imply that the model might not be suitable for application in South Africa, as it was 

developed for humid Nordic conditions.  

 

2.10 WATER SYSTEMS MODELLING 

Water resources in any hydrological system are renewable but at the same time subject to 

limitations and subsequently have to be allocated to various, ever-increasing and competing 

interests. Water allocation needs to be done in a strategically and economically viable manner, 

while satisfying all the demands and needs. It therefore has to be managed in a way that aims 

to achieve sustainable use of the resource. In some cases, it may be necessary to have 

additional sources of water because of an inadequate available supply. Scientific and 

technological advancements have enabled efficient means of reusing and recycling waste 

water, which may further augment the limited available resources.  

 

Recently, issues such as environmental and ecological water uses and requirements, which 

were previously not given much attention, are now being regarded as even higher priority than 

other uses. For instance, environmental flows, also termed instream flow requirements (Louw 

et al., 2000; Hughes and Louw, 2010) are legally binding in South Africa and any water-related 

project undertaken in the country must cater for such a requirement in order to maintain aquatic 

and other life forms dependent on water. The inclusion of the environmental flows as part of 

holistic water resources management (Hughes and Mallory, 2008) has rendered the allocation 

of water for uses such as irrigation, municipal, hydropower a daunting exercise for managers 

and decision makers, and as such requires careful integrated water resource management and 

planning. This has been achieved largely by the application of computer modelling tools known 

as water resources system models, or yield models. 

 

2.10.1 Water Resources Systems Modelling Tools 

Water resources system planning models include any of the several computer-based tools 

designed to deal with the management and allocation of available water resources within a 

given hydrological setting. These are also commonly known as decision support systems 

(Loucks, 1995) as they provide information that is useful to decision-makers and water 

managers. The concept of decision support systems was conceived in the early 1970’s (Gorry 

and Morton, 1971), and they have since been developed and modified to assist in addressing 
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some of the environmental and socio-economic challenges driven by the availability of water 

resources.  

 

There are a number of such tools with varying frameworks, methodologies and approaches. 

They are however, commonly aimed at accounting for water demand for municipal, industrial 

and agricultural water uses as well as maintaining environmental and other instream flow 

requirements in relation to the available water resources. Such tools may incorporate the 

assessment of the impact of facilities such as the size and location of reservoir storage and 

water supply diversion (Muttiah and Wurbs, 2002) to seek the optimum operational solution 

with the highest possible economic returns. 

 

Unlike hydrological models, most water resource system models do not attempt to simulate the 

various physical processes involved in the conversion of precipitation to stream runoff. This is 

of one of the major challenges in the use of water systems models in that they normally rely on 

the outputs from hydrological, reservoir hydraulics and water quality models for analytical 

calculations (Westphal et al., 2003). Thus, unavoidably inheriting any flaws and uncertainties 

inherent in the outputs of these models. Irrespective of such concerns, these models have been 

used quite extensively and are developed either as generalised or project-specific tools. 

Labadie and Sullivan (1986) suggest that a well-planned and properly designed decision 

support system can be successfully used to reduce operational costs, improving systems 

efficiency and production as well as increasing the system’s reliability. 

 

Even though these water resource system models have been widely used for decades for 

various specific and general purposes in many water resources projects and in solving water-

related conflicts, the fact remains that it is still difficult to assess objectively the level at which 

they succeed or fail. The main reason for this, as pointed out by Mysiak et al. (2005) is that 

there is no clear, specified and universal definition of what actually constitutes the quality of a 

model-based decision.  

 

2.10.2 Water Resources Systems Modelling in South Africa 

There are a few models which have been locally developed and applied within South Africa in 

the last two decades. These include the Water Resources Yield model (WRYM), Water 

Resources Planning Model (WRPM), Water Situation Assessment Model (WSAM) and Water 

Resources Modelling Platform (WReMP). These models use, as inputs stream flow simulations 

from rainfall-runoff models, commonly the Pitman model. Additionally, stochastically generated 

stream flow sequences have traditionally been applied as inputs for predictions of future water 



28 
 

resources availability. The sequences may be generated by independent statistical software. 

While this is aimed at accounting for hydrological input uncertainties, other sources of 

uncertainties such as water use and reservoir parameters are not included.  

 

Water resources yield model – WRYM 

The WRYM is the first and perhaps the most broadly applied decision support system in South 

Africa and the southern Africa region as a whole. It was developed by South Africa’s DWAF 

and has been in use since 1985 to assist in decisions relating to the operation of water supply, 

mostly from artificial reservoirs. The WRYM model uses a network solver to analyse complex 

water resources systems under varying operation and management scenarios. It was originally 

designed for the Vaal river system supplying water to the Gauteng region (DWAF, 1989). 

Subsequent to the Vaal system, it has been successfully applied to other river systems (Mudd 

and Smith, 2006; Nyabeze et al., 2007; Juízo and Lidén, 2010). The fundamental objective of 

WRYM is to determine the quantity of water available for use after the Reserve (for both 

ecological and basic human needs) has been catered for (Louw and Birkhead, 1999). 

 

The model operates on a monthly time step and has facilities to provide analysis for both short 

and long terms of up to 100 years. It uses a series of data sets, with each set comprising files 

for naturalised stream flow data, point rainfall data as well as water demand data (e.g. irrigation 

and afforestation). The system requires as input data, historical or stochastically generated 

stream flow sequences to calculate various outputs e.g. reservoir yield (McKenzie and van 

Rooyen, 2003) and thus, allow for the analysis of uncertainties in the model outputs. WRYM 

configures any given water resources system into reservoirs, channels and nodes. Although 

the system has been widely used within the southern Africa region, Juízo and Lidén (2010) 

raise a concern that the model is too complicated for users to be able to correctly interpret the 

results, and it is also difficult to use without advanced training. 

 

 

WRPM 

This model was developed by the Department of Water Affairs and Forestry (DWAF, 1989). 

WRPM is a monthly time-step network model for which the configuration is based on an existing 

WRYM set-up. The model is run with a large number of stochastically generated long term 

stream flow sequences, and accounts for growth in water demand and change, as well varying 

operating rules to the end of a given future target time horizon (Basson et al.,1994). For each 

year into the future the model superimposes the set of increasing system demands linked to 

that particular year and then simulates the sequential behaviour of the total system for set of 
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stochastic stream flow. For each of the model runs, long term stochastic yield-reliability 

characteristics are used to maintain allocations to different users. One of the advantages of 

WRPM is that it allows shorter-term future scenario assessment based on stochastic 

projections and is used for one- year ahead reservoir management. 

 

Water Situation Assessment Model– WSAM  

This model was developed for the South African Department of Water Affairs and Forestry 

(DWAF) in the early 21st century by Schultz and Watson (2002). The model is suitable for use 

at variable spatial scales such as national, water management agency and quaternary levels. 

It is normally applied at the exploratory phase of water resources planning and management 

for scenario testing. WSAM is designed to provide a summary of the availability, supply and 

utilisation of water resources, which is vital information for any planned or existing water-related 

project. 

 

The water situation assessment model incorporates a substantial data-base with more than 

150 input parameters for all of the 1 946 quaternary catchments of South Africa, Lesotho and 

Swaziland. The database component of the water situation model has been continuously 

updated to better present the current water resources situation of the country (Lange et al., 

2007).The model uses an annual water balance, reconciling the available water resources 

against the requirements at an assurance level of 98%, i.e. at the failure rate of 1 in 50 years. 

According to Schultz and Watson (2002), the model integrates about 20 sub-models which are 

sequentially executed to yield a final output. The sub-models include among others, the 

calculations for irrigation requirements, reservoir characteristics, hydropower and ecological 

water requirements.  

 

The WSAM model has been mostly used in South Africa for various objectives in many projects. 

There are however, only a few reported studies available in the general literature. These 

include research by Görgens and van Wilgen (2004) and Cullis et al. (2007). Both of these 

studies used WSAM to investigate the impacts of invasive alien plant species on the availability 

of water resources in two watershed areas in South Africa. Similarly, Ncube and Taigbenu 

(2005) assessed the hydrological and water resources impacts of the changing land cover and 

use in the Oliphant’s catchment in Limpopo, using the WSAM. Other reported studies that used 

the model include those by Nel et al. (2007) and McCartney and Arranz (2007). One of the 

disadvantages about this model is that operates at the quaternary catchment level as its highest 

spatial resolution and thus, not offer enough details for projects of smaller scales.    
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Water Resources Modelling Platform –WReMP 

The WReMP model (Mallory and van Vuuren, 2007) uses various water use input data sets 

which may consist of, for example, forestry and irrigation. The system configuration of WReMP 

is very similar in nature to that of the WRYM model, particularly in the way the physical reality 

is represented. The two models differ mainly in the in terms of software environment and user 

interface that enables WReMP to be more user-friendly. 

 

The mainstream literature databases do not yield much about the published reports on the use 

and application of the WReMP model. One of the published reports includes that of Mallory et 

al. (2008). The authors used WReMP on the Algoa water supply system in the Eastern Cape 

to determine the firm yield. They reported that the model represented the real situation 

reasonably well. Nyabeze et al. (2007) compared the performance of the WReMP model and 

two others (WRYM and Mike Basin) in the operational analysis of a reservoir system of the 

Letaba River in Limpopo. The authors reported that their results could not clearly indicate which 

of the models performed better. 

 

Internationally Developed Water Resources System Tools 

MIKE-Basin and WEAP are two of the internationally developed water resources tools that are 

currently being applied in South Africa for water management and research purposes. Though 

the two models have minor differences in terms of design and utilities, they have a lot of 

features in common. Both are river basin planning and management models that use a network 

approach allowing simulation of water allocation and evaluate consequences of various 

development options on the availability of water resources within a river basin.  The models 

have utilities to address reservoir operations and water quality issues. MIKE-Basin and WEAP 

are developed by the Danish Hydraulic Institute (DHI) and the Stockholm Environment Institute 

(SEI), respectively. Both models simulate water distribution according to user-specified priority 

settings. The two water resources systems models operate on the basic concept of 

conservation of mass to estimate yield. Although the two models have been globally used, they 

have been minimally applied within South Africa. The use of MIKE-Basin in the country has 

been reported by Nyabeze et al. (2007), Pott et al. (2008), Grové (2011) and Jackson et al. 

(2012). The reported application of the WEAP model includes the evaluation of water demand 

in the Olifants River Basin (Levite et al. 2003; Arranz and McCarthey, 2007; McCartney and 

Arranz, 2007).  WEAP has also been used to investigate the impacts climate change on water 

quality and quantity in some South Africa catchments (Hughes et al., 2011b; Slaughter et al., 

2011).  
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2.11 GLOBAL WARMING 

Global warming is widely defined as the continuing rise in the average temperature of the 

earth’s atmosphere and oceans caused by the increased concentrations of greenhouse gases 

(GHG). The emissions and the subsequent increase in the atmospheric greenhouse gases 

such as carbon dioxide, methane and nitric dioxide in the atmosphere from the last two 

centuries have been associated with an increase of the temperature of the earth’s atmosphere 

(International Panel on Climate Change- IPCC, 2007).  

 

The global warming phenomenon was first proposed in 1824 and later confirmed by 1859 

(Weart, 2008). The impacts of GHG’s on global warming are now widely acknowledged (IPCC, 

2007). According to some projections, the global temperature may rise by 1 to 5 oC during the 

next 100 years or so (Wuebbles and Jain, 2001). The potential impacts of global warming 

include rise in sea level, and changing global patterns in precipitation marked by increased 

frequency of droughts and floods (Arnell, 1999). Global warming might also be accompanied 

by an increase in extreme weather events such as heat waves, tropical cyclones and 

hurricanes. Climate change induced variability will inevitably affect the global and regional 

water cycles, general hydrological characteristics and water resource availability because 

various regions might experience altered water cycles resulting from changes in rainfall, 

temperature and evapotranspiration. It has been indicated that different regions will be 

impacted differently. Such changes have been suggested by many researchers, including 

Matondo et al. (2004), who suggested that rainfall amounts in some regions may increase by 

up to 20% while other regions may experience a decrease of the same magnitude. 

 

Climate change impacts on hydrology and water resources are predicted by forcing 

hydrological models with predicted climate variables, usually derived from General Circulation 

Models (GCMs) (Döll, et al., 2003; Singh et al., 2014). Global and regional climate projections 

depend on the GCM simulations of climate response to atmospheric concentrations of 

greenhouse gases. While the current generation of GCMs generally predict increased future 

temperatures, they typically disagree on the direction and magnitude of change of rainfall 

(Hughes et al., 2014b). The disparity in the projections of future rainfall constitutes a major 

uncertainty in the assessment of future water resources availability and hydrological impacts 

of climate change (Maurer, 2007; Minville et al., 2008; Chen et al., 2011). 
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2.12 CLIMATE CHANGE MODELLING 

General circulation models are currently the best tools available for simulation of the past 

climate conditions and prediction of the future climate change. However, there is a major 

concern about the reliability of their outputs. It is widely observed that GCM predictions are 

generally biased relative to observed climatology, particularly rainfall (Leith and Chandler, 

2010), to the extent that they cannot be directly used for hydrological application without any 

sort of bias correction.  

 

The climate simulations from the GCMs are also subject to a number of errors and 

uncertainties. One of the most important and widely acknowledged challenge in the prediction 

of water resources availability is the fact that climate change science is marred with a significant 

degree of uncertainties (Arnell, 2004).  Such uncertainties inevitably propagate through when 

climate change impacts on water resources are evaluated and these need to be assessed and 

incorporated in hydrological projections. Some of the known uncertainties in climate projections 

are discussed in details in the sections that follow. Uncertainties in the outputs of the GCMs 

emanate from several sources. While some of these uncertainties are known, there are also 

others which still remain largely unknown. The known uncertainties stem mainly from the 

climate model structures, greenhouse emission scenarios, internal variability and the 

downscaling approaches (Kay et al., 2009). Though Wu et al., (2005), among others, recognise 

initial and boundary conditions as other sources of uncertainty in climate change modelling, 

these are often regarded as negligible in long term climate projections (Buizza 1997; Kalnay, 

2003).  To inform climate change policies, it is necessary that all the known uncertainties be 

assessed and quantified (Allen et al., 2000; Webster et al., 2003; Murphy et al., 2004; Tebaldi 

et al., 2005; Millar et al., 2007). Such uncertainties should also be adequately presented to the 

scientific and non-scientific stakeholders, the general public and managers (Shackley et al., 

1998; Zehr, 2000). The ultimate aim may therefore be to account for, and reduce, the 

associated uncertainties (Araújo et al., 2005; Hawkins and Sutton, 2009) and finally to 

incorporate them into impact assessment studies. 

 

2.12.1 General Circulation Models 

The earth’s climate system is complex and limits the current scientific understanding of the 

various processes and the climatic forcings (McFarlane et al., 1992). Notwithstanding these 

concerns, the coupled general circulation models are by far the best tools currently available 

for simulating and studying the various dynamics of the earth’s climate system, as well as to 

project future climate. However, there is inherent uncertainty in the outputs of the GCMs arising 
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from various sources, including the model structure and model parameterisation (Pope et al., 

2000; Tebaldi and Knutti, 2007). 

 

Models are a simplification of the real world and their structures differ in the way the earth’s 

climate system is presented in the numerical computer code, according to how their developers 

conceptualise the physical climate system. Other structural differences occur because of 

inadequacies and imperfect scientific understating of some physical, biological processes and 

feedbacks that affect the climate dynamics (Collins et al., 2011). This has led to some of the 

processes either being presented in a very simplified manner or being excluded altogether from 

the models, while other models present those processes in varying degrees of complexity 

(Jackson et al., 2004).  

 

There is additional uncertainty involved in estimating and predicting the ocean circulation and 

dynamics (Manabe et al., 1991). Several studies, including Washington and Meehl (1989), 

Stouffer et al. (1989) and Manabe et al. (1990) have asserted that oceans absorb and distribute 

heat energy contained in greenhouse gases, thereby impacting the atmospheric temperatures. 

Similarly, Ganopolski et al. (1998) pointed out that the reduction of circulation of the Atlantic 

Ocean causes an increase in atmospheric temperatures in the southern hemisphere. 

Incomplete scientific knowledge of the interaction between the ocean and the atmosphere is 

consequently reflected in the GCM structures, adding more uncertainty to the prediction of 

future global climate (Rayner et al., 2006; Kent and Taylor, 2006). Because of such knowledge 

gaps, climate models cannot fully mimic the earth’s climate system and are unable to simulate 

past climate conditions perfectly, reducing confidence in projecting future climate change even 

more (Smith et al., 2007; McWilliams, 2007; Knutti, 2008).  

 

One of the approaches to statistically estimate the uncertainties related to the model structure 

is the use of multi-model ensembles. A number of studies (Cess et al., 1990; Hulme and Brown, 

1998; Lambert and Boer, 2001; Prudhomme et al., 2003; Williams et al., 2006; Meehl et al., 

2007; Weigel et al., 2008) compared outputs from several GCMs and demonstrated significant 

variances in the simulations of the observed climatic variables and the climatic response to 

increased CO2. Such divergences give rise to a critical question of how reliable the climate 

models are in projecting greenhouse gas-induced climate change (Räisänen and Ylhäisi, 

2012), especially in view of the lack of a standardised approach for evaluating model 

performance (Gleckler et al., 2008).  
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Figures 2.2 and 2.3 demonstrate model uncertainty in the temperature and precipitation 

simulations from several models under similar operating conditions. It can be seen that the 

uncertainty in both precipitation and temperature increases with the increasing time horizon 

projection. For instance, temperature is projected to rise by 1–2 oC by the mid-21st century and 

by about 2–5 oC by the end of the century (Figure 2.2). Similarly, the climate models used in 

Figure 2.3 suggest a 0–3 % increase in global rainfall by 2050. This range increases further 

(1–9%) by the beginning of the year 2100. 

 

In dealing with model uncertainties, some researchers advocate the use of a simple arithmetic 

mean (Wang and Ding, 2006) to reduce the uncertainties, while others support the idea that a 

weighted mean of the ensemble members is a more effective approach (Robertson et al., 2004; 

Nohara et al., 2006; Min and Hensen, 2006; Weigel et al., 2008). However, taking an ensemble 

mean does not reduce the uncertainties, but only ignores them. Whichever aggregation method 

is applied, there is a consensus within the climate modelling community that using the 

combined multi-model ensembles is a better way to quantify model uncertainties, while 

simultaneously achieving superior simulations to the individual members of the ensemble 

(Hagedorn et al., 2005; Palmer et al., 2005; Thomson et al., 2006; Weigel et al., 2008). 

 

The other source of uncertainty in GCMs is related to model parameters. This occurs because 

some of the processes, such as cloud formation and plant-snow interactions in the climate 

system, are too complex to be explicitly resolved by mathematical equations in the model 

computer code. It is, therefore, common practice among model developers to present such 

processes by means of parameters. Parameterisation of processes adds a certain degree of 

uncertainty and different models may assign different parameters for the same process. For a 

given model structure, parameters are set within a plausible and accepted range of values, 

while some parameters are estimated based on observations (Webster et al., 2003; Murphy et 

al., 2004; Zaehle et al., 2005). 
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         Figure 2.2 Uncertainty in global mean temperature as projected by various 
GCMs (Houghton et al., 2001) 

            

Figure 2.3 Uncertainties in the projections of global precipitation (Cubasch et al., 2001). 
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Parameters are usually adjusted in a search for a set that yields the best or optimum simulation 

for a given variable (Annan et al., 2005). Knutti (2008) notes that the uncertainty due to 

parameter adjustment increases if the selected range of values is not based on observed 

records. Parameter uncertainty in climate models has been substantially investigated 

especially through the use of ‘perturbed physics ensembles’ (Murphy et al., 2004; Stainforth et 

al., 2005; Collins et al., 2011). In this method, a model is run multiple times while varying the 

internal parameters to explore the full range of parameter space. The ensemble outcomes may 

be combined by various statistical approaches to quantify the parametric uncertainty within a 

given model structure (Annan et al., 2005; Murphy et al., 2007; Rougier, 2007). 

 

2.12.2 Emission Scenarios 

Projections of the future human-induced climate change depend on the assumed emissions 

and concentrations of the atmospheric greenhouse gases. To estimate these, the International 

Panel on Climate Change (McCarthy, 2001) developed sets of emission scenarios which are 

used to drive climate models for projections of future climate conditions. The currently used 

‘special report on emission scenarios’ (SRES) scenarios replaced the 1990 IPCC scenario A 

(SA90) of the first assessment report  (Houghton et al., 1992) and the 1992 IPCC scenarios 

(IS92) used during the third assessment report (Leggett et al., 1992). The SRES consists of 

forty (40) different scenarios based on possible future human activities that might affect the 

rate of emission of greenhouse gases. The 40 SRES scenarios emanate from the four 

qualitative storylines or ‘families’, namely, A1, B1, A2 and B2. The four storylines comprise six 

sets of scenarios, one from each of A2, B1, B2 and three from A1 (A1F1, A1B and A1T). Each 

of the scenarios makes different assumptions about issues such as future economic and 

technological advancement, world population and the consumption of fossil fuels. Nakicenovic 

et al., (2000) summarises characteristics of the different emission scenario groups.  

 

Uncertainties associated with emission scenarios occur when any individual scenario is 

considered for climate projections because the future is uncertain, especially in view of the 

assumptions made to formulate the emission scenarios. In other words, it is not known which 

of these scenarios will manifest. There are no probabilities assigned to the scenarios and they 

are therefore considered equally likely. It is also possible that none of the storylines and 

scenarios will actually occur. The adverse divergence of the greenhouse gases concentration 

for each scenario is shown in Figure 2.4, while Figure 2.5 shows the corresponding rises in 

predicted average global temperature.  
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There is significant uncertainty in the rate of emissions as proposed by the four scenarios. It is 

clear from Figure 2.4 that all but one scenario (B1) suggests an increase in greenhouse gases. 

The scenarios suggest a wide range of carbon dioxide emission between 5 and 28 Gt C/yr at 

the end of the 21st century. This trend and uncertainty in emissions is translated by the climate 

models to average global temperature range of about 2–5 0C at the end of the century. Figure 

2.5 also indicates that the uncertainty in global temperature increases with the time horizon.  

 

2.12.3 Internal Variability 

Climate models are aimed at simulating long-term average conditions of the atmosphere as a 

result of anthropogenic greenhouse emissions. However, the earth’s climate system is also 

influenced by short-term internal variability. These are caused by natural processes in the 

atmosphere and oceans. For instance, the phenomena such as the North Atlantic Oscillation 

(Hurrell et al., 2001; Wanner et al., 2001; Hurrell and Deser, 2009) and the Atlantic Meridional 

overturning circulation (Bingham et al., 2007; Cunningham et al., 2007; Kanzow et al., 2010) 

are known to cause significant fluctuations in precipitation over the high latitudes (Fowler and 

Kilsby, 2002; Folland et al., 2009). Researchers such as Genesio et al. (2011) and Wolff et al. 

(2011) reported a link between the El-Nino/ Southern Oscillation and the inter-annual rainfall 

variations in Africa. This natural climate variability adds more uncertainty in the climate 

projection since it is not adequately represented in the current generation of the GCMs (Hulme 

et al., 2001). When quantifying the various sources of uncertainty in climate modelling, Hawkins 

and Sutton (2009) concluded that internal variability contributes a much smaller uncertainty 

than the other sources. 
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Figure 2.4 Emissions and concentrations of the greenhouse gases (equivalent of carbon 
dioxide) projected by the four SRES emission scenarios (Source: USGCRP, 2009) 

 

Figure 2.5Global mean temperature variations predicted under various emission scenarios 
(Source: McCarthy, 2001). 
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2.12.4 Downscaling Techniques 

Because GCMs are designed for global scale simulations, they have spatial resolutions of 

hundreds of kilometres (Wilby et al., 2004) and are too coarse (Grotch and MacCracken, 1991; 

Kidson and Thompson, 1998) to be used at regional and local scales for impact assessment 

such as hydrological and water resources. The outputs of the GCMs are normally downscaled 

to attain finer resolutions of tens of kilometres (Wilby et al., 2004), to extract local-scale 

information suitable for application with hydrological and other local impact assessment 

modelling tools. A choice of method for downscaling adds more uncertainty in the prediction of 

the impact of climate change because of limitations in the assumptions used in the 

methodologies. 

 

Downscaling GCM data is normally achieved by using one of two techniques; dynamical or 

statistical approaches. A number of studies provide detailed reviews on the past and current 

developments and on the application of the two methods of downscaling (Hewitson and Crane, 

1996; Wilby and Wigley, 1997; Zorita and von Storch, 1997; Xu, 1999; Wilby et al., 2004; 

Hewitson and Crane, 2006; Fowler et al., 2007; Teutschbein et al., 2011). On the other hand, 

extensive research has focused on comparing and contrasting the general strengths and 

limitations of each of the two general downscaling techniques as well as quantifying their 

related uncertainties in the hydrological context (Kay et al., 2009; Prudhomme and Davies, 

2009; Quintana-Segui et al., 2010; Chen et al., 2013).  

 

Statistical Downscaling 

The statistical (empirical) downscaling approach entails the use of any of several statistical 

techniques that map large-scale climate GCM ‘predictors’ and circulation characteristics to local 

or regional-scale meteorological ‘predictants’ (Xu, 1999; Wilby et al., 2004; Ghosh and 

Mujumdar, 2008). Some of the widely applied statistical methodologies include regression 

methods, weather pattern-based methods, stochastic weather generators, artificial neural 

networks, continuous vorticity methods and self-organising maps. Even though these methods 

are substantially different in approach, they are based on the common premise that regional 

climate is influenced by both large-scale climate and local physiographic features (Timbal et 

al., 2009) and as such, a statistical relationship can be derived based on observed historical 

data. The established relationships can then be used to predict future climate under different 

conditions indicated by a GCM.  

 

Statistical downscaling considers several assumptions, including: i) there is a statistically 

significant relationship between large- and small-scale predictor variables; ii) the established 
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relationship is constant and does not vary under future climatic conditions; and iii) the predictor 

variables and their changes are well characterised by the GCM (Karl et al,. 1990; Wigley et al., 

1990; Wilby and Wigley, 1997; Wilby and Wigley, 2000). These assumptions introduce inherent 

uncertainties in the projection of future climate conditions. Details of the various empirical 

methodologies have been widely documented in the contemporary literature and some can be 

found in Wilby and Wigley (1997), Wilby et al. (1998) and Hewitson and Crane (2006). 

 

According to Gachon and Dibike (2007), some of the main advantages of the statistical 

downscaling approach are that it is a relatively easy method to apply; it is not computer 

intensive, and it provides site-specific, high resolution climatic information. Another advantage 

noted by Hessami et al. (2008) is that the technique performs well in regions with highly 

heterogeneous environments. However, the approach has a major drawback since the 

fundamental assumptions cannot be verified, raising concerns that the established present-day 

statistical relationships may not be valid in future (Wilby and Wigley, 2000).  

 

Statistical downscaling techniques have been widely used for regional climatic and impact 

assessment and their use has also been promoted for the reasons mentioned above. Some 

studies such as Wilby et al. (2004) and Schmidli et al. (2006) provide detailed guidelines on 

using statistical downscaling to develop climate scenarios, while other studies have evaluated 

and compared the performance of various statistical techniques (Heyen et al., 1996; Huth, 

1999; Busuioc et al., 2001; Khan et al., 2006; Maurer and Hidalgo, 2008).   

 

According to Khan et al. (2006), uncertainty in statistical downscaling arises from the concepts 

on which the downscaling models are based, as well as from the historical climate data used 

in the process. Dibike et al. (2008) evaluated the implications of uncertainties related to 

statistical downscaling, remarking that such uncertainties make it “difficult to have great 

confidence” in the output climate variable for “meaningful climate change impacts studies”. 

Contrary to that, Segui et al. (2010) indicated that uncertainties related to downscaling of GCM 

data are less important than uncertainties due to other sources, such as emission scenarios. 

This conclusion was later supported by Chen et al. (2011) who added that the downscale-

related uncertainties are relatively minor.  
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Dynamical Downscaling 

The basic aim of dynamic downscaling is to extract high resolution local-scale climate 

information from coarse resolution large-scale GCM data (such as the lateral boundary 

conditions, sea surface temperature and initial land surface conditions). This is generally 

attained by the use of limited-area models (LAMs) or regional climate models (RCMs). These 

are capable of achieving spatial resolutions of about 0.50 (longitude, latitude) and can simulate 

regional climatic features including orographic precipitation and extreme climate events (Fowler 

et al., 2007). Though the dynamical downscaling approach has the disadvantage of being 

computationally expensive and is strongly dependant on the parent GCMs’ boundary conditions 

(Chen et al., 2011), the method is based on physically consistent atmospheric processes and 

is thus achieving reasonable simulations of the atmospheric flow at the regional scale (Caldwell 

et al., 2009).  

 

There are several dynamical downscaling approaches and Xu (1999) (after Rummukainen, 

1997) summarises  some of the commonly used methods: i) running a regional climate model 

using data from a GCM as geographical or spectral boundary conditions, also known as ‘one 

way nesting’; ii) performing global scale experiments with high resolution atmospheric regional 

climate models (RCMs) with data from GCMs as initial and boundary conditions; and iii) using 

a variable-resolution global model where the highest resolution is over the area of interest.  

 

Uncertainties in dynamical downscaling arise mainly from the imperfect structures of the RCM, 

as well as from the driving GCM outputs (Rowell, 2006). Such uncertainties can either be 

significant or minor, depending on scale, season and the climate variable under consideration. 

For instance, according to Rowell (2006), the uncertainties in temperature simulations are less 

than those for precipitation. However, the uncertainties associated with the RCMs are less 

significant than those associated with the emission scenarios (Rowell, 2006). Déqué et al., 

(2007) suggest that the largest uncertainties in the RCMs climate outputs are due to 

uncertainties in the boundary conditions of the driving GCM rather than to the RCMs 

themselves.  

 

Since many downscaling techniques have been developed, the choice of any particular one is 

critical when predicting climate change on local and regional scales and the results should be 

interpreted with great care (Chen et al. 2011). Concurrent application of several downscaling 

methods may yield a better understanding about the level of uncertainties relating to the 

downscaling approaches. 
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2.13 SUMMARY 

Hydrological models are commonly used tools to simulate the different basins’ hydrological 

processes. The above sections highlighted the pertinent technical aspects relating to the 

various forms of the models, ranging from rather simplified to sophisticated structures. The 

choice and application of any single model for hydrological investigations depends on the 

amount of detail required, as well as the data available to inform and drive the model. It is 

therefore important to select a model which is the most appropriate with regard to structure and 

data availability. In general, hydrological modelling is subject to a variety of uncertainties, and 

as such there are several approaches developed to evaluate and assess these uncertainties. 

Outputs of climate models constitutes an additional source of uncertainty in water resources 

projections under the influence of climate change, in which case climate projections are used 

to drive the hydrological models. It is important that all these technical issues be considered 

when estimating future status of water resources under climate change.  
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3 METHODS  

3.1 INTRODUCTION 

The main objectives of the study are to assess the historical, current and likely future water 

resources availability of the Caledon River Basin. Two hydrological models are used to achieve 

to these objectives, for the purpose of comparison. While the Pitman model (Pitman, 1973; 

Hughes, 2004a) has already been extensively applied in southern Africa, including the 

Caledon, the WEAP model has only recently been tested in this region. For this reason, the 

existing Pitman model set-up for the Caledon River Basin is used to guide the parameter 

estimation of the WEAP model. This process involved comparing the various functionalities of 

the two models representing the catchment hydrological processes, as well as the simulation 

outputs. The two models are used to simulate stream flow of the Caledon River influenced by 

a number of water uses and the predicted future climate conditions. Figure 3.1 illustrates the 

methodology adopted for this study. The methodology is divided into three main parts: firstly, 

to simulate the natural historical hydrology of the Caledon River Basin using the two 

hydrological models; secondly, to estimate the present-day stream flow by incorporating water 

uses and artificial modifications of the natural flow. The last part involves the estimation of 

future water resources availability under the influence of climate change.     

 

Future availability of water resources in the Caledon River are predicted by forcing the two 

hydrological models with projected future rainfall and temperature data. The projected climate 

data were obtained from 9 climate models (GCM), downscaled by the Climate Systems 

Analysis Group of the University of Cape Town. The rainfall climate data was corrected for bias 

against historical data before being used in the hydrological models. Daily rainfall data were 

also analysed to detect any change in future rainfall characteristics at time scales of less than 

the monthly time step used in the hydrological models.   

    

3.2 THE PITMAN MODEL 

The Pitman hydrological model was first developed by Pitman (1973) with the core objective of 

simulating river flow from meteorological inputs for water resources planning in South Africa. 

The Pitman model is an explicit soil moisture accounting model and represents the main 

hydrological processes such as interception, soil moisture and groundwater storages. It has 

arguably become the most widely-used rainfall-runoff model in southern Africa.  
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Figure 3.1 Flow diagram illustrating methodological procedure and the methods used in the 
study. 

 

The model’s development was specifically based on the environmental conditions of South 

Africa, but it has since been successfully applied elsewhere in the Southern Africa region and 

abroad. For example, the model has been used in the Okavango Basin shared between 

Angola, Namibia and Botswana (Andersson et al., 2003; 2006; Wilk et al., 2006; Hughes, et 

al., 2006a; 2006b; 2011), the Kafue River Basin in Zambia (Mwelwa, 2005), various rivers in 

Namibia (Hughes and Metzler, 1998), Mali (Grimes and Diop, 2003); Botswana (Meigh, 1995), 

Democratic Republic of Congo (Tshimanga and Hughes, 2012), India (Wilk and Hughes, 

2002a; 2002b), China (Bharati and Gamage, 2010).  

 

Though the basic structure of the model (Pitman, 1973) has been preserved, the model has 

been modified a number of times to incorporate some of the important hydrological processes 
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that are significant and relevant to southern African environmental conditions. Some 

modifications were initiated by hydrological assessments of the Southern African Development 

Community (SADC) region during the Southern Africa FRIEND programme (Hughes, 1995; 

1997). More explicit links between surface and groundwater including revised methods that 

account for groundwater recharge, discharge and abstractions were added by Hughes (2004a). 

Several other components and parameters have also been added to improve the functionality 

of the model (Hughes and Metzler, 1998; Görgens and Boroto, 2003; Hughes et al., 2003; 

Hughes et al., 2014a). Hughes (2013) summarises the developments and applications of the 

model over the last 40 years or so. 

 

The model now exists in a number of different forms and various modelling platforms. In the 

current study, the Pitman model is applied  within an integrated software package referred to 

as SPATSIM (SPatial And Time Series Information Modelling) platform which was developed 

at the Institute for Water Research, by Hughes (2002) and has been continuously enhanced 

(Hughes and Forsyth, 2006). The SPATSIM version of the model is a semi-distributed, 

conceptual monthly rainfall–runoff model. The software package is coded in the ‘Delphi’ 

programming language, with ESRI MapObjects which affords easy links to spatial data as well 

as an integrated database for access to all the data typically required for hydrological modelling. 

It has the advantage of a more user-friendly graphical output display and easy-to-use data 

management for setting up models and analysing their outputs.   

  

3.2.1 Structure of the GW-Pitman Model   

The modified version of the model used in this study is known as GW-PITMAN and the main 

difference from the original model is that it incorporates explicit groundwater fluxes. It also 

includes a number of storages such as rainfall interception and soil moisture and model 

accounts for the dominant hydrological processes such as infiltration, evapotranspiration, 

surface runoff, soil moisture runoff and groundwater recharge. These processes are presented 

as a conceptual model structure in Figure 3.2. The methods for simulating the individual 

processes and the associated parameters have been presented many times in the literature 

and are summarised in the following sub-sections. The model requires monthly precipitation 

and potential evapotranspiration as input data for each sub-basin.        
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Figure 3.2 Flow diagram representing the structure of the modified Pitman model  
(Source: Hughes et al., 2006a) 

 

3.2.2 Parameters and Conceptual Functions  

In attempting to represent known hydrological processes, together with possible water uses, 

the Pitman model has a total of 40 parameters. Of these, 28 influence the natural catchment 

hydrological response, while others are related to water use and abstraction. The 28 

parameters represent the surface, sub-surface, groundwater processes as well as flow routing 

(Table 3.1) and some (PI1, PI2, ZMIN) can be seasonally variable. Each sub-basin in the 

distribution system has its own parameter set. 
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Table 3.1 Parameters of the Pitman model. 

Parameter Units Parameter Description 
RDF - Rainfall distribution factor 
AI - Impervious fraction of sub-basin 
PI1, PI2 mm Interception storage for vegetation types (2) 
AFOR % Percentage area with vegetation 2 
FF - Ratio of potential evaporation rate for veg2 relative to veg1 
PE mm/year Annual potential evapotranspiration 
ZMIN mm/month Minimum sub-basin absorption rate 
ZAVE mm/month  Average sub-basin absorption rate 
ZMAX mm/month  Maximum sub-basin absorption rate 
ST mm Maximum storage capacity 

SL mm Minimum moisture storage below which no GW recharge 
occurs 

POW - Power of moisture storage-runoff Equation 
FT mm/month Runoff from moisture storage at full capacity 
GPOW - Power of moisture storage in GW recharge Equation 
GW mm/month Maximum groundwater recharge 
RIP % Controls the riparian evaporation losses from GW storage 
R - Evaporation-moisture storage relationship 
TL month Lag of surface and soil moisture runoff 
CL month Channels routing coefficient 
D DENS km/km2 Drainage density 
T m2/day Transmissivity 
S - Storativity 
GW Slope - Initial groundwater gradient 
RWL m Groundwater rest water level 

 

Rainfall distribution Factor (RDF) 

The rainfall distribution function accounts for the distribution of total monthly rainfall over four 

model iterations. The function depends on both rainfall amount and the value of the RDF 

parameter. Lower values of this parameter indicate a more even monthly rainfall distribution. 

The original model (Pitman, 1973) had a fixed value of 1.28. 

 

Interception (PI1, PI2) 

This function is used to represent the amount of rainfall intercepted by vegetation cover. The 

interception function is controlled by the interception parameters, PI, which are allowed to vary 

seasonally to cater for changes in vegetation cover throughout the year. Two different types of 

vegetation (PI1 and PI2) can be used to account for major vegetation differences and 

specifically to allow for managed forest plantations.   
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Surface runoff (AI, ZMIN, ZAVE, ZMAX, ST)   

In the Pitman rainfall-runoff model, surface runoff is conceived as being generated in three 

ways: i) from an impermeable surface (AI), ii) when the rainfall amount is higher than the 

absorption capacity (ZMIN, ZAVE, ZMAX), and iii) when the maximum soil moisture storage 

(ST) is exceeded. The soil absorption capacity is controlled by a triangular distribution function 

defined by ZMIN, ZAVE and ZMAX. 

 

Soil moisture storage and runoff (ST, FT, POW) 

The depth of runoff from the soil moisture storage is determined by a non-linear relationship 

between runoff and relative storage. The power of this relationship is defined by POW, while 

FT represents the maximum runoff rate (mm month-1) at maximum soil moisture storage (ST). 

 

Groundwater Recharge (ST, SL, GW, GPOW) 

The groundwater recharge function uses a similar non-linear relationship as the soil moisture 

runoff function, with GW representing the maximum monthly recharge rate (mm month-1) at ST 

and GPOW the power of the relationship. Parameter SL is the soil moisture storage level (mm) 

at which recharge ceases. 

 

Evaporation from the soil moisture storage (ST, PE, R)      

The annual potential evaporation parameter (PE) is distributed into 12 monthly mean values 

(an additional model input). The actual evapotranspiration in any month is determined as a 

function of the current soil moisture storage level (relative to ST), the current monthly potential 

evapotranspiration value relative to the maximum monthly values and parameter R. R ranges 

from 0 to 1, where 0 implies higher evaporation that continues to low moisture storage levels. 

When R is 1, evaporation ceases at progressively higher moisture levels as the monthly 

potential evapotranspiration decreases. Low values of R therefore imply shallow rooting depths 

and less effective evapotranspiration. 

 

Groundwater storage and discharge (S, T, DDENS, GW Slope, RWL, RIP) 

Hughes (2004) describes the relatively simple geometry approach used to determine 

groundwater storage and discharge to the river. Groundwater recharge inputs, drainage 

outputs to the river, drainage to downstream catchments and evapotranspiration losses from 

the riparian strip (RIP) are used to update the assumed gradient of groundwater within a sub-

basin. When the gradient is positive drainage to the channel occurs and is calculated from the 

gradient, transmissivity (T) and channel length (derived from sub-basin area and drainage 

density). When negative gradients occur, riparian strip evapotranspiration and downstream 
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drainage are progressively reduced until groundwater storage reaches the level equivalent to 

the rest water level. Transmission losses from upstream channel flows can occur when the 

gradient is negative. More details can be obtained from Hughes (2004a) and Tanner (2014). 

 

3.2.3 Parameter Estimation Approaches 

The successful application of any hydrological model depends on its parameterization. 

Parameter values for many models are estimated by a trial-and-error process of calibration 

which is based on comparing the simulated hydrograph against the observed using visual 

comparisons or more quantitative objective functions. The challenge with such an exercise is 

that a model may yield similarly acceptable simulations with different parameter sets, thus 

leading to significant uncertainties in hydrological estimations. This complex issue in 

hydrological modelling is referred to by Beven (1996) as equifinality. The existence of 

equifinality in models with many processes also makes it difficult to obtain optimum parameter 

sets using automatic calibration methods.  

 

One possible approach to reduce the equifinality is to make use of parameter estimation 

approaches based on an understanding of the conceptual structure of a model and physical 

sub-basin properties. These approaches were thoroughly explored for the Pitman model 

(Kapangaziwiri and Hughes 2008; Kapangaziwiri, 2010). An advantage with such an approach 

is that the parameter estimation established through a relationship with basin physical 

properties would lead to a more consistent methodology, especially when the role of each 

parameter in the hydrological response of a catchment is conceptually well-defined 

(Kapangaziwiri, 2010). Empirical relationships that transform physical basin characteristics to 

small scale model parameters values have been developed (Kapangaziwiri and Hughes, 2008; 

Hughes et al. 2010) for the Pitman model. The inherent uncertainties in the parameter 

estimations were defined in terms of the uncertainties and spatial variability in the data defining 

the sub-basin properties (Kapangaziwiri et al., 2012).  

 

The use of physical basin characteristics for estimating parameters of a hydrological model 

was also adopted by Schulze (1994) for another locally developed rainfall–runoff model 

(ACRU). Other studies that explored this approach include Duan et al. (2003) and Ao et al. 

(2006). The importance and effectiveness of estimating hydrological model parameters using 

a priori techniques has also been recognized by the International Association of Hydrological 

Sciences within its recent 10-year theme on “Prediction in Ungauged Basins” (Sivapalan et al., 

2003).  
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3.2.4 Uncertainty Versions of the Pitman Model 

Prior to and during the course of this study several uncertainty versions of the Pitman model 

were created (Kapangaziwiri et al., 2012; Hughes, 2013; Tumbo and Hughes, 2015). All of the 

versions share the same basic approach using simple independent Monte Carlo sampling of 

the parameter space and generating ensembles (typically 5 000 to 10 000) of model 

simulations. The sampling space for each parameter can be defined by uniform or normal 

distributions. The differences between the approaches are mostly related to two major issues. 

The first is at what point in the whole modelling process are the ensembles assessed for their 

ability to represent the known hydrological response regime of the basin being modelled. The 

earlier versions of the model (Kapangaziwiri et al., 2012) were based on doing this assessment 

after the ensembles had been generated (i.e. a form of post-processing filtering), while more 

recent versions have been based on doing this as part of the model run, using constraint indices 

(see section 3.2.5). The second issue is associated with the extent to which the parameter 

samples for each sub-basin in the total basin are independent of each other. One of the sub-

objectives of this study was to evaluate some of the different uncertainty approaches in the 

relatively large Caledon River Basin that has 31 sub-basins. 

 

3.2.5 Parameter Constraining Procedure 

In the initial approach proposed by Kapangaziwiri and Hughes (2008) either a priori parameter 

estimation using physical basin properties or simple estimation of likely parameter ranges or 

distributions were used. During the model run each parameter value is sampled independently 

but groups of sub-basins with similar expected responses are sampled from the same 

parameter space, such that high (or low) values of a specific parameter will be similarly high 

(or low) in all the sub-basins in the same group. The reasoning behind this approach is that if 

all sub-basins are considered independent, then the degree of uncertainty substantially 

reduces as more and more sub-basins are combined at downstream locations. This reduction 

in uncertainty occurs as a result of different sub-basins generating different relative responses 

to the climate inputs such that the upstream uncertainties tend to be largely cancelled out at 

downstream sub-basins. Allowing groups of similar sub-basins to have parameters sampled 

from a similar space has been demonstrated to better preserve the upstream uncertainties in 

downstream sub-basins (Hughes, 2013). 

 

During the initial approach, the ensemble outputs of the model runs were examined on the 

basis of expected constraints on runoff response (such as mean monthly runoff volume, 

recharge depth, slope of flow duration curves) and a decision is made about which ensembles 
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are behavioural and which are not. However, the fundamental problem with this approach is 

that the selected behavioural ensembles at downstream sub-basins can be made up of a 

mixture of behavioural and non-behavioural ensembles in all of the upstream sub-basins 

(Hughes, 2013; Tumbo and Hughes, 2015). This could mean that ensemble outputs that are 

selected for further use in water resources management could be spatially inconsistent in terms 

of their representativeness relative to the known (or expected) ranges of hydrological response.  

 

In the revised approach (Tumbo and Hughes, 2015) that was finally used in this study, not only 

are the parameter ranges defined as model inputs, but also the likely output constraints. The 

regional constraint bounds are therefore an additional input into the model. The constraint 

bounds are mainly based on observed streamflow within the region and reflect uncertainty in 

the available knowledge about the hydrological response of the different parts of the total basin 

and can be narrow if there are sufficient observation data available. The revised approach 

adopts a two-step procedure; the first step is aimed at identifying behavioural parameter sets 

(only for the natural hydrological response) for each sub-basin, while the second step involves 

using these parameter sets to simulate the basin response as a whole and can include 

uncertainty sampling of the parameters associated with water use and other anthropogenic 

impacts. 

 

Step 1 of the approach is aimed at constraining only the parameters related to natural runoff in 

each sub-basin. The constraints apply to the incremental runoff in each sub-basin and step 1 

does not simulate the cumulative flows in downstream sub-basins. The sub-basin response 

characteristics used for constraining or for deciding behavioural ensembles are: mean monthly 

runoff (MMQ), high (Q10), medium (Q50) and low (Q90) flow volumes of the flow duration curve 

relative to mean monthly flow, mean monthly groundwater recharge and percentage of time 

with zero flow. The mean monthly runoff and the flow duration curve characteristics are typically 

obtained from stream flow gauging data from catchments with similar physiographic 

characteristics to the ones being studied. Groundwater recharge estimates are established in 

South Africa from the Groundwater Resources Assessment study (GRA II- DWAF, 2005). 

 

For each sub-basin the model is run up to 100 000 times with an independent Monte Carlo 

sampling procedure from pre-determined parameter distributions. The outputs are assessed 

against the constraints during each run of the model. If all constraints are satisfied the full 

parameter set is saved for further analysis. The model continues until a pre-defined number of 

parameter sets (2 000 to 5 000) are saved or until the maximum number of model runs (50 000 

to 100 000) is reached.  
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A facility is available within SPATSIM (Figure 3.3) to examine the distributions of parameter 

values and constraints in the saved results to guide any decisions about whether to change the 

input parameter distributions or re-evaluate the constraint ranges to achieve the required 

number of behavioural parameter sets.  

 

Figure 3.3 Illustration of the tool designed to help with determining appropriate 
parameter bounds. 

 

Figure 3.4 illustrates three possible outcomes of the first step. Figure 3.4A shows a situation 

where the parameter bounds and constraint bounds are compatible, and the constraint bounds 

are compatible with each other. The required number of parameter sets is found and less than 

100 000 test runs of the model are required. The results evaluation method (Figure 3.3) can be 

used to determine if the results are reasonably well distributed within the constraint bounds or 

whether the initial parameter bounds could be changed to achieve the required number of 

behavioural parameter sets more efficiently. In Figure 3.4B the constraint bounds are not 

compatible with each other and no ensembles meet all of the behavioural requirements. In this 

situation the constraint bounds have to be adjusted to ensure compatibility. Figure 3.4C 

illustrates a situation where all of the model simulations are inconsistent with the constraints 

and therefore either the constraints need to be re-evaluated, or the ranges of some of the 

parameters have to be modified to match the expected response (defined by the constraints). 
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There can be a number of intermediate situations between Figures 3.4B and 3.4C where some 

behavioural parameter sets are found but not enough before the total number of model runs is 

reached. The facility illustrated in Figure 3.3 is then used to identify which parameters require 

their ranges to be adjusted. In the example it can be seen that the Q10 constraint is always at 

the lower end of the input range and that ZMIN and ZMAX (surface runoff parameters) are also 

at the low ends of their input ranges. Shifting the range of one or both of these parameters 

downwards will generate more surface runoff, solving the problems with the Q10 constraint and 

increasing MMQ which is also under-simulated in the example provided.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Step 1 in the revised approach to uncertainty estimation with the Pitman model 
(Source: Tumbo and Hughes, 2015). 

 

Step 2 is only initiated after all of the sub-basins have the desired number (typically 2 000 or 

5 000) of saved parameter sets. At the beginning of step 2 the saved behavioural parameter 

sets are sorted according to the 6 constraint values from wetter to drier conditions. The sub-

basins are then grouped and random samples (typically 10 000) are drawn from the parameter 

sets using the same sub-basin group sampling dependency referred to in the description of the 

earlier uncertainty method. In this step all the model parameters are sampled and used with all 

sub-basins linked to generate cumulative streamflow simulations. While the parameters related 

to the natural runoff are randomly sampled from the saved parameter sets, the others (e.g. 
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those related to water use and land use changes) are sampled independently from their pre-

defined input distributions. The main advantage with this approach is that, unlike the previous 

methods, it assures that all the incremental catchments have behavioural simulations relative 

to the constraints. 

 

For sub-basins with stream flow records, a summary output file provides evaluations of all the 

ensembles based on four objective functions: Nash-Sutcliffe coefficient of efficiency and 

percentage bias in mean monthly flow for normal and natural log-transformed data.  

 

3.3 THE WEAP MODEL 

The Water Evaluation And Planning (WEAP) modelling software tool was developed in the 

1990’s by the Stockholm Environment Institute-Boston (Yates et al., 2005), and has undergone 

a number of modification phases and improvements over the years. The WEAP program 

provides a holistic and integrated representation of the water supply and demand system within 

a basin, suitable for varying user-specified physical, social and economic conditions at a 

monthly temporal scale.  

 

WEAP is capable of graphically representing a variety of sources of water supply and points of 

water demand, through a GIS-based user interface. The water supply sources covered by the 

software include river systems, groundwater, wetlands, artificial reservoirs, etc. On the other 

hand, demand sources such as towns, irrigated areas and hydro-power can also be 

represented. Other water-related activities such as water and wastewater treatment facilities 

and water transfers can also be analysed within the WEAP modelling system. 

 

The software program is relatively versatile and is able to handle simple, as well as complex 

watersheds or any other system such as agricultural and municipal systems, single catchments 

as well as complex river systems like the Caledon River Basin. Points and areas of water 

demand for both consumptive water uses and non-consumptive uses (e.g. environmental flow 

requirements) are also represented. Configuring a specific water resources system is achieved 

through a GIS interface (Figure 3.5) by adding objects or nodes to represent all of the different 

elements of the system such as catchments, reservoirs, water demands, transfers, return flows, 

etc.  
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Figure 3.5 The Schematic view of the WEAP model. 

Facilities are included in the model that allow time series data files (e.g. rainfall, temperature, 

observed streamflow) to be linked to the nodes, as well as entering variables (seasonal 

distributions of climate data, water use, etc.) and the model parameters. Variables and 

parameters can be entered as single numbers or as mathematical expressions. There are also 

a range of tools to graphically display (Figure 3.6) outputs and results and to export these to 

Excel spreadsheets for further analysis. The WEAP model allows for various scenarios to be 

simulated, making it a very useful tool for examining changing conditions of either water 

resources use or climate.  

 

WEAP has been applied worldwide for various purposes,  and in recent years, the modelling 

software has been popular for investigating the potential impacts of climate change on water 

resources (Yates et al., 2009; Hughes et al., 2011b; 2011c; Slaughter et al., 2011; Donley et 

al., 2012; McCartney and Girma, 2012). Applications of WEAP for other objectives have also 

been documented. For example, Levite et al. (2003), McCartney and Arranz (2009) and 

Droogers et al., (2012) used WEAP to study the impacts of population growth, economic 

development and environmental considerations on the availability of water supply to meet 

expected demands. WEAP has also been used as a decision support system (Le Page et al., 

2012; Harma et al., 2012). More details on the general use, application and publications related 
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to the WEAP model are provided by the Stockholm Environment Institute (SEI), at their official 

website: www.weap21.org   

 

 

Figure 3.6 Snapshot of a result view window of the WEAP model. 

 

In the current study, the WEAP model was used to simulate the natural stream flow and the 

flow impacted by various water uses within the Caledon River Basin, in the past, current and 

future climate conditions.     

  

3.3.1 The Rainfall–Runoff Soil Moisture Method 

While there are several options within the WEAP model for simulating streamflow, this study 

used the ‘rainfall-runoff soil moisture’ method. This method uses a two compartment soil 

moisture accounting structure that is designed to account for inputs of rainfall, losses through 

evapotranspiration and runoff generated as  surface runoff, interflow (from the upper soil 

storage) and groundwater (from the lower storage). The model is therefore simpler than the 

Pitman model but also simulates the main water balance components of natural hydrological 

systems (Figure 3.7).  
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Figure 3.7 Conceptual diagram of the rainfall–runoff soil moisture model (Adopted 
from SEI, 2013). 

 

Some of the default functionalities of the different components of the WEAP model have been 

modified by including some expressions in the parameter definitions to achieve simulations 

matching those of the Pitman model. The following sub-sections present a brief overview of the 

WEAP model components and compare them to the Pitman model. 

 

3.3.1.1 Evapotranspiration 

There is no interception function within the WEAP model and therefore all atmospheric losses 

are dealt with in a single non-linear equation (3.1) that relates the relative soil moisture store 

and the proportion of potential evaporation that contributes to actual evaporation losses:   

      

ET = PET * Kc* (5Z1-2Z1
2) / 3 … Equation 3.1 

Where:         

 PET = Potential evapotranspiration (seasonally variable) 
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    Kc = Crop coefficient (seasonally variable) 

 Z1 = Current upper storage level (relative to maximum storage) 

 

Figure 3.8 compares the estimations of actual evapotranspiration of the WEAP and Pitman 

models for PET values of 120 and 60 mm, assuming the Kc-value of 1 and the Pitman 

parameter R of 0.  While the Pitman evapotranspiration increases proportionately with moisture 

content, the non-linearity relationship in the WEAP function implies that higher values of 

evapotranspiration will be generated for the same demand value (PE * Kc) and this will have 

the largest impact at moderate relative moisture storages.   

 

Kc, the crop coefficient parameter, is a property of plants which can be used to predict 

evapotranspiration for a particular type of vegetation. It therefore varies with the type and stage 

of growth of a crop. The Z value in WEAP is similar to S/ST of the Pitman model.  

 

 

 

 

 

 

 

 

 

 

Figure 3.8 WEAP model actual evapotranspiration from soil moisture 
function. 

3.3.1.2 Surface Runoff 

The default surface runoff (SQ) equation for WEAP is given by Equation 3.2, where P and Z 

are monthly rainfall and relative soil moisture content of the upper zone, respectively and RRF 

is the surface runoff parameter. 

 

SQ = P*Z1
RRF …   Equation 3.2 
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This implies that surface runoff is dependent not only on rainfall (as in the Pitman model) but 

also on storage level of the upper soil zone. This default equation also implies that surface 

runoff will occur at all rainfall depths, unlike in the Pitman model where rainfall has to exceed 

ZMIN. To better align the surface runoff calculations of the two models, an expression was 

developed for RRF rather than using a fixed value. This expression (Equation 3.3) was 

developed after various approaches were explored within an Excel spreadsheet.  

 

If P-Pmin<0.5, 20, N + Pmax/(P-Pmin)(Ln(P)/5) ; … Equation 3.3 

Where:   

P = monthly rainfall depth (mm) 

Pmin = monthly rainfall (mm) below which surface runoff is not expected 

N = nominal RRF 

Pmax = rainfall scale factor 

 

Figure 3.9 compares the simulated surface runoff for the WEAP and Pitman models using 

various combinations of ZMIN, ZAVE and ZMAX (for Pitman) and Pmax, Pmin and N for 

different relative moisture contents in the WEAP model. Figure 3.9 suggests that the general 

shape of the surface runoff relationship for WEAP can be made similar to that of the Pitman 

model.  
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Figure 3.9 Differences in simulation of surface runoff between the two models. For WEAP the 
numbers refer to the rainfall scale factor, minimum rainfall, relative moisture content 
and nominal RRF; for Pitman the number refers to ZMIM, ZAVE and ZMAX.  

 
3.3.1.3 Interflow Function 

The WEAP interflow function is used to determine both interflow and percolation to the lower 

storage zone and is based on two parameters; Ks1 (root zone conductivity in mm month-1) and 

f (dimensionless fraction), the preferred flow direction (Equations 3.4 and 3.5). 

 

Interflow = Ks1 * f * Z1
2  … Equation 3.4 

 

Percolation = Ks1 * (1-f) * Z1
2  …     Equation 3.5 

 

This is a similar function to that used in the Pitman model with Ks*f being equivalent to FT and 

POW is fixed at a value of 2. The percolation component is roughly equivalent to groundwater 

recharge in the Pitman model but is clearly less flexible in the WEAP model. 
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3.3.1.4 Groundwater or Baseflow 

The WEAP model baseflow function is based on a simple non-linear function (Equation 3.6) of 

the relative storage level of the lower zone (Z2) storage using a single deep conductivity 

parameter (Ks2): 

Baseflow = Ks2*Z2
2 …   Equation 3.6 

 

This is clearly much simpler than the approach used in the Pitman model and therefore less 

flexible. One of the problems with the use of the WEAP model in semi-arid areas is that the 

default function does not allow for zero flows. The function was therefore modified using a 

conditional expression (Equation 3.7) for Ks1 and Ks2 based on either the upper (Ks1) or deep 

(Ks2) zone storage levels at the end of the previous time step (prevTSValue(Z%) and a 

threshold parameter (Zthresh).  

 

If (prevTSValue(Z%) < Zthresh, 0, Ks1 * (prevTSValue(Z%) – Zthresh)/ prevTSValue(Z%))

        …Equation 3.7 

 

In ephemeral river systems Equation 3.7 would be used for the upper zone and Ks1, while the 

preferred flow direction parameter (f), and the deep storage zone capacity values would be set 

to 0. The Zthresh value could then be calibrated to ensure the correct duration and patterns of 

zero flow. 

 

Within the Pitman model it is possible to have groundwater recharge as well as zero flow 

periods because of the riparian evapotranspiration function which can intercept the movement 

of groundwater towards the river channel system.  

 

3.3.1.5 Summary on Functionalities of the Models 

There are substantial differences in the conceptual structures, assumptions and functionalities 

of the WEAP and the Pitman models. Some of the differences include surface runoff and 

drainage from storage functions. There are also a number of similarities in the processes the 

two models simulate and therefore some of the parameters (individually or combined) can be 

compared. Table 3.2 shows the processes and the related parameters of the two models.  

While some of the WEAP parameter values can yield similar results to the Pitman model 

outputs (given the same climate inputs), some WEAP expressions have to be used achieve 

comparable outputs from parts of the WEAP model. The WEAP model was ‘forced’ to produce 

similar outputs to Pitman mainly because the latter has been extensively used in the region 
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and hence gained a lot  of confidence, while the former is yet to be applied as much. Another 

reason is that the Pitman simulations are bound on constraints based on observed records.       

 

Table 3.2 List of comparable parameters controlling similar hydrological processes of the 
WEAP and Pitman models.  

 

3.3.2 Setting up the WEAP Model for the Caledon River Basin  

The same GIS layers used in setting up the Pitman model in SPATSIM (sub-basin boundary 

polygons and river network) were used as the basis for establishing appropriate nodes within 

the WEAP model. Apart from the major reservoirs towards the downstream end of the Caledon 

River Basin (see chapter 4), the major water uses in the basin are irrigation from either run-of-

river abstractions or small farm dams. Each sub-basin was therefore represented by two 

catchment nodes, one representing the proportion draining into small farm dams and one with 

no reservoir storage. The latter were set to be downstream of the former, while run-of-river 

abstractions and demand sites were established at downstream nodes. Other water uses 

include rural and municipal domestic water supplies and these are treated in the same way as 

the abstractions for irrigation.  

  

3.4 TIME SERIES DATA SETS 

Both WEAP and the Pitman models require monthly rainfall data as an input for each of the 

quaternary catchments.  The data used in this study were obtained from the surface water 

resources study of South Africa of 2005 (WR2005, Middleton and Bailey, 2008).  

 

The two models use different approaches to estimate evaporation demands. While the Pitman 

model uses a mean annual value that is distributed by either a fixed seasonal distribution or by 

an additional time series input of monthly deviations (as fractions) from the fixed seasonal 

values, the WEAP model uses temperature, humidity and wind speed data together with the 

Process Pitman WEAP 

Evapotranspiration R  Kc 

Surface Runoff ZMIN 
ZAVE 
ZMAX 

RRF 

Interflow FT 
POW 
ST 

Ks1 

f 
Upper zone maximum storage 

Groundwater GW 
GPOW 
RIP 

Ks2 

f 
Lower zone maximum storage  
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Penman-Montieth estimation equation to generate reference evaporation. The Pitman model 

assumes that the evaporation demand is represented by S-Pan estimates. There were no wind 

speed and cloudiness fraction data available for this exercise. Therefore the default values of 

2 m s-1 and 1 (no clouds) were used for wind speed and cloudiness respectively. Latitude data 

are used in the WEAP model for adjustments of potential evaporation due to extraterrestrial 

radiation and daylight hours. The sub-basin latitudes were obtained from the SPATSIM GIS 

layers.  

 

The initial temperature values used in this study were obtained from the Climate Systems 

Analysis Group (CSAG, 2012) of the University of Cape Town. Together with the temperature 

data, relative humidity data were set to reflect differences between wet and dry seasons. Both 

temperature and humidity data were then adjusted to achieve the potential evaporation 

seasonal variations that closely match those used in Pitman model.  

 

Figure 3.10 illustrates some comparisons between the seasonal evaporation demands for one 

sub- basin of the Caledon River Basin based on WR90 Pitman model data (Midgley et al., 

1994) and several possible estimates of monthly temperature and relative humidity (see Table 

3.3) using the WEAP model approach.  

 

 

 

 

 

 

 

 

    

 
 
Figure 3.10  Graphical comparisons of seasonal evaporation demand estimates (in mm). 

The numbers in parenthesis for the WEAP series refer to the various 
combinations of temperature and relative humidity values given in Table 3.3. 
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Table 3.3 Comparisons of seasonal evaporation demand estimates (in mm). PE (1/1) is the 
evaporation demand calculated by WEAP using initial temperature (Temp1) and 
relative humidity (RH1) data; PE (1/2) and PE (2/1) are modified to approximate the 
Pitman evaporation values.   

  
 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Pitman 140.8 152.0 175.2 165.4 128.2 111.3 77.2 60.3 45.5 53.2 78.0 113.0

WEAP 

Temp1 15.0 16.0 17.5 17.5 17.5 17.0 15.0 11.0 9.0 10.0 10.0 13.0

RH1 53.0 65.0 7.0 75.0 78.0 75.0 70.0 65.0 55.0 50.0 45.0 45.0

PE 

(1/1) 

155.7 163.5 180.0 173.0 141.9 134.7 99.3 72.4 62.3 73.8 93.2 123.6

RH2 61.0 75.0 77.0 82.5 90.0 96.0 88.0 75.0 70.0 70.0 55.0 54.0

PE 

(1/2) 

147.0 156.1 174.5 167.0 129.5 118.0 85.5 62.2 50.0 60.9 80.4 113.7

Temp2 12.0 14.0 16.5 16.5 14.5 11.5 10.5 8.0 2.0 4.0 8.0 11.0

PE 

(2/1) 

141.7 153.8 174.8 167.9 129.4 112.8 85.2 64.8 47.3 58.5 86.6 115.8

 
 
The same observed stream flow data (see Chapter 4) were used to calibrate (or assess the 

uncertainty ensembles in the case of the Pitman model) both models, while some of the Pitman 

model results were also used in ungauged sub-basins to guide the WEAP model calibration. 

This was justified on the basis of the far greater effort put into the Pitman model calibration that 

included uncertainty analysis. 

 

3.5 CLIMATE CHANGE PROJECTIONS   

Predictions in climate change and climate variability are essential for sound and meaningful 

water resources planning and management for future use. Global circulation models (GCMs) 

simulate the past climate and predict future global climate. While GCMs attempt to represent 

most mechanisms and processes of the earth’s atmosphere, ocean and land surface (Lambert 

and Boer, 2001), the outputs are too coarse a scale for use in hydrological models and require 

downscaling. There are also substantial differences in projections across different models due 

to different assumptions, boundary conditions and parameterisation of the physical processes 

of the climate dynamics (MacKellar et al., 2007) and therefore hydrological modelling studies 

should ideally use an ensemble of future predictions.  
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3.5.1 Downscaling the Climate Data 

For use at river basin scales GCM data need to be processed to a finer spatial scale, normally 

tens of kilometres (Wilby et al., 2004). This is commonly achieved by downscaling techniques. 

The data used in this study were statistically downscaled by the Climate Systems Analysis 

Group (CSAG), based at the University of Cape Town using the method of Hewitson and Crane 

(2006). The projections of future climate variability were attained by assuming the SRES A2 

carbon emission scenario of IPCC (2007). Table 3.4 provides a list of the GCMs used to 

generate the data products provided by CSAG that were used in the current study. The climate 

models were selected solely on the basis of availability and not through any sort of objective 

selection criteria. 

 

Table 3.4 List of general circulation models used in the study 

GCM Source References 

CCCMA Canadian Centre for Climate Modelling and 
Analysis 

Flato et al. (2000) 

CNRM France Centre National de Recherches 
Meteorologiques 

Salas-Melia et al. (2005) 

CSIRO Australian Atmospheric Research Gordon et al. (2002) 

GFDL USA NOAA Geophysical Fluid Dynamics Lab Wetherald and Manabe (1988)

GISS USA Goddard Institute for Space Studies Hansen et al. (1988) 

IPSL France Institut Pierre Simon Laplace Marti et al. (2005) 

MIUB German Meteorological Institute of the 
University of Bonn 

Min et al. (2004) 

MPI Max-Planck Institute For Meteorology Jungclaus  et al. (2006)

MRI Japan Meteorological Research Institute Tokioka et al. (1996) 

 

3.5.2 CSAG Data Products 

Daily rainfall and temperature data sets are available from CSAG for baseline (1961-2000), 

near-future (2046-2065) and far-future (2081-2100) periods for each of the nine GCMs. The 

data are available at the ‘quinary’ catchment scale which is more detailed than the ‘quaternary’ 

scale used for the Caledon. The quinary catchments were first represented as a point GIS 

coverage (points located at the quinary centroid, Figure 3.11), and the raw CSAG data 

imported.  The quinary scale data were then spatially interpolated using the inverse distance 

squared interpolation method (Equations 3.8 and 3.9) to cover the quaternary catchment scale. 

This interpolation approach forms a standard analysis procedure in the SPATSIM modelling 

framework. The SPATSIM procedure allows the user to specify the maximum number of points 
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to use in the interpolation as well as the maximum radius of the search area away from the 

quaternary centroid. The interpolated time series can be at the same time step as the original 

data (daily) or cumulated to monthly totals.  

 

  ∑    … Equation 3.8   

  

 =     
∑

    … Equation 3.9 

 
Where: 

Rp – interpolated quaternary catchment rainfall 

Ri – rainfall at a quinary point 

 N – number of data points  

di  – distance from the quinary points to the centroid of the quaternary catchment  

 

Figure 3.11 Snapshot of a SPATSIM window showing positions of quinary catchments 
(red dots). 
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3.5.3 Bias Correction of Downscaled Rainfall Data  

It has been observed that most of the GCM products are biased (Ines and Hensen, 2006; 

Hageman et al., 2011), where there is a shift of baseline model simulations from the observed 

historical climate data. Bias is mainly due to systemic errors inherent in the GCMs and the 

models’ inability to adequately represent some of the important climate components (Piani et 

al., 2010). To attain sensible results when using downscaled climate data, the model outputs 

should be bias-corrected before they are used for any impact assessment. This is particularly 

true when the GCM data are used with a hydrological model that has been calibrated using 

historical data and when several GCMs are to be used and compared. In an attempt to bridge 

the gap between the observed and the simulated climatology, a number of bias correction 

techniques have been developed.  

The main objective of such methods is to achieve a GCM-simulated climatology with similar 

statistical characteristics to the historical observations. Most methods either establish a 

statistical or non-statistical relation, also known as a `transfer function’, between the observed 

and the simulated climate. The same transfer function is then applied to the future climate 

scenarios. One of the main assumptions used in the bias correction methods is that the bias 

properties of the GCMs are not time dependent and subsequently the established transfer 

function remains unchanged in the future. Another assumption is that the observation records 

are perfect and free of measurement, random and systematic errors.    

 

The characteristics of the downscaled baseline rainfall (point and interpolated) data for the 

Caledon River Basin were significantly different from the historical (WR2005) data, in terms of 

seasonal distribution and descriptive statistics. This therefore required the application of some 

mathematical transformation so that the GCM baseline output was statistically comparable to 

the observed rainfall data. The same correction factor was then applied to the future (near and 

far) rainfall data to remove bias in the statistical parameters, while maintaining the behavioural 

properties of individual GCMs outputs (Equation 3.10). Statistically, baseline temperature data 

from the GCMs were not substantially different from the observed data used in WR2005 

(Hughes et al., 2014b). It was therefore not considered necessary to apply a bias correction 

procedure to the temperature data.  

 

FRCijk = [WRMj + WRSDj*(FRijk – BRMjk)/BRSDjk]2 … Equation 3.10 

Where: 

 

FRCijk – corrected future rainfall for month i and calendar month j in the time series of GCM k. 
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WRMj  - mean of WR 2005 rainfall for calendar month j  (historical observed data). 

 

WRSDj – standard deviation of WR2005 rainfall for the calendar month j. 

 

FRijk – future rainfall for month i and calendar month j in the time series of GCM k.  

 

BRMjk – mean of the baseline rainfalls for GCM k and the calendar month j. 

 

BRSDjk – standard deviation of the baseline rainfall for the GCM k and calendar month j. 

 

All of the rainfall data bias corrections are based on square root transformations of the data as 

this was found to give the lowest skewness values (i.e. closest to normal distribution) across 

all data sets and all calendar months. 

 

3.5.4 Estimation of Future Evaporation  

The Pitman model typically uses fixed calendar month distributions of potential evaporation, 

but can also include time series of fractional deviates from the monthly means. The CSAG daily 

maximum and minimum temperature data for baseline and future scenarios were used to 

estimate time series of the temperature components of the Hargreaves (Hargreaves and 

Samani, 1982), equation (3.11). 

 

The Hargreaves` potential evapotranspiration estimation is given by: 

 

PET = 0.0075 * Ra * Ct *δt 
1/2*Tavg.d   … Equation 3.11 

Where:  

PET – Potential evapotranspiration 

Ra – Total incoming extra-terrestrial solar radiation 

Ct – Temperature reduction coefficient which is a function of relative humidity  

δt – Difference between the mean monthly maximum and mean monthly minimum 

temperatures 

Tavg.d – Mean temperature in the time step. 

 

The temperature components are derived through Equation 3.12 below.   

 

HCkj= (Tmaxkj + Tminkj)/2 * (Tmaxkj-Tminkj)1/2   … Equation 3.12 
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Where:  

           HCkj – Temperature component of the Hargreaves equation for GCM k, and month j         

Tmaxkj – Daily maximum temperature for GCM k and month j 

Tminkj – Daily minimum temperature for GCM k and month j 

 

The mean calendar month HCkj values were computed for the baseline and near future periods 

for each GCM and the percentage changes calculated (Equation 3.13). The same percentage 

changes were then applied to the historical mean monthly potential evaporation values, while 

the annual potential evaporation value was left un-changed. While the sum of the historical 

mean monthly evaporation values always adds up to 100, the sums for the near-future will 

always be greater than 100 (assuming that all GCMs predict increases in temperature). The 

approach is therefore based on the assumption that changes in the temperature component of 

the Hargreaves equation (3.11) will dominate changes in future potential evaporation demand, 

and that the solar radiation and relative humidity effects can be ignored. 

 

The time series of potential evaporation for the future scenarios therefore reflect GCM projected 

increase in evaporation demand based on temperature increases. The evaporation factors 

(Equation 3.13) from the GCMs are applied to the quaternary historical evaporation demands, 

which are expressed as a percentage of annual evaporation rates. The difference of future 

evaporation relative to historical for each GCM and for month j is given by Equation 3.14.  

 

 Ekj =  100 * (HCkjb – HCkjf)/HCkjb … Equation 3.13 

 

             Ediffj = Ekj * Eobsj / 100  … Equation 3.14 

 

Where: 

 Subscripts b and f stand for baseline and future climate scenarios respectively. 

 Ek – evaporation factors derived from GCMs.  

 Ediff – difference in future evaporation value relative to historical. 

 Eobs – observed evaporation rates (historical WR90).  

 

3.5.5 Daily Rainfall Variability Analyses    

As part of this study new analysis routines were added to the SPATSIM framework to facilitate 

detailed daily rainfall analyses and quantify projected changes (baseline to near and far future) 

in daily rainfall characteristics. The three analyses included were:  

 Annual and seasonal rainfall threshold changes. 
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 Changes in high rainfall at different probability of exceedence. 

 Changes in the frequency of dry spells of different duration. 

 

The objective of these analyses was to identify if there are projected changes in daily rainfall 

characteristics that might be masked when using a monthly time step in the hydrological model 

that was used to assess projected changes in streamflow and water resources availability.  

 

3.5.5.1 Annual and Seasonal Threshold Analysis 

This analytical technique involves determining the maximum number of consecutive days with 

rainfall below the prescribed rainfall thresholds of 2, 5, 10, 15, 20 and 50 mm, for all the climate 

models and the three climate scenarios. These were carried out for selected quinary 

catchments and were analysed at seasonal and annual time scales. Seasons are defined only 

as summer (wet), spanning October to March, and winter (dry), which is April to September.  

 

3.5.5.2 Annual Probability of Exceedence 

This method determines the probability that rainfall of a particular depth can occur or be 

exceeded. The values of all daily rainfalls are considered for the total period of each of the 

three climate scenarios. Comparisons were made for rainfall occurring less than 0.5, 1, 10 and 

15% of the time.    

 

3.5.5.3 Frequency of Dry Spells 

In this analysis, the frequency of occurrence of consecutive number of days (‘dry spells’) with 

rainfall below of the thresholds of 5, 10, 20, 50 mm are analysed. The method determines how 

often dry spells of 10, 30, 60, 180, 270, 360, 720, 1440, 1800, and >1800 days occur throughout 

the duration of each of the climate scenarios projected by each GCM.  Figure 3.12 shows an 

example of the output of the annual frequency analysis from one the quinary points (the figure 

is abridged to show analysis for a rainfall threshold of 5 mm only).  
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Figure 3.12 A snapshot showing an example of an output of frequency analysis from SPATSIM.   

 

3.6 SUMMARY  

The aim of this chapter was to outline the various methodological approaches and models used 

to achieve the objectives of the study.  Hydrological models are vital tools and are an integral 

part of water resources evaluation and hydrological investigations. Similarly, GCMs are 

currently the best generation of models for simulating and predicting future global climate. The 

output of any modelling exercise inevitably depends upon of the quality and availability of input 

data, in terms of both temporal and spatial representativeness. It is therefore important that 

climate and hydrological data sets are processed and analysed using methods with sound 

scientific bases. It is however, recognised that there are inherent methodological uncertainties 

related to extrapolation both in time and space.   

 

 

 

 



72 
 

4 THE CALEDON RIVER BASIN 

4.1 INTRODUCTION  

A thorough hydrological study of an area requires a full understanding and knowledge of the 

various physical and anthropological aspects of the basin under investigation. Further, a 

satisfactory description of a drainage basin depends on the various types of data and 

observational information recorded. The success of any hydrological modelling exercise 

depends on the quality and level of detail of the data available to describe the area. These data 

also provide the basis for a conceptualisation of the hydrological processes (Tetzlaff et al., 

2008). 

 

Remote-sensing products have proved to be a viable option when field data are not available 

and have recently gained popularity (Bøgh  et al., 2004), though some ground-truthing is often 

necessary (Hughes, 2006; Soulsby et al., 2008). This innovative approach has in many cases 

alleviated the severe shortage of information in many areas, where ground monitoring networks 

are not feasible. The availability and quality of hydrologically relevant historical observation 

data is also extremely important in hydrological studies (Smakhtin et al., 1997; Sivapalan et al., 

2003). However, developing countries are faced with the challenge of producing such data with 

the quality required by hydrologists.  

 

This chapter describes the Caledon River Basin characteristics that are relevant to a 

hydrological understanding of the area. These include, but are not in any way limited to, 

topography, climate conditions, historical stream flow records, generalised geology and soil 

cover, as well as land and water use activities within the basin.  

   

4.2 LOCATION OF THE CALEDON BASIN 

The study area is the upper Caledon River extending for more than 250 km in length from the 

source at the Golden Gate Highlands (-28.50 lat, 28.650 long) at an altitude of about 2035 m to 

the Welbedacht dam (-29.90 lat, 26.860 long) at an altitude of about 1424 m. The Caledon River 

Basin is a transboundary watershed shared between the western lowlands and the north 

western regions of the Kingdom of Lesotho and the eastern part of the Free State province of 

the Republic of South Africa (Figure 4.1). The basin covers an estimated area of about 

15 266 km2. The Caledon River flows in a south westerly direction and forms part of the border 

between the two countries before entering the Free State province near the town of Wepener. 
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It then continues westwards into Welbedacht dam. The Caledon River Basin is one of 

Lesotho`s major drainage basins (Chakela, 1981) and is also a significant tributary to the 

Orange–Senqu River which drains the majority of the Kingdom of Lesotho, passes through the 

central regions of South Africa and flows into the Atlantic Ocean at the boundary between 

Namibia and South Africa. 

  

Figure 4.1 Location of the Caledon basin.  

 

4.3 TOPOGRAPHY 

Topography is one of the most important physical properties of a basin and, through its 

influence on hydraulic gradients, has a significant impact on hydrological processes and 

variability (Armstrong and Martz, 2003; Wu et al., 2008). Topography has therefore often been 

used as a basis for developing physically meaningful methods for evaluating basin`s response 

to climatic inputs and in the development of rainfall–runoff models (Zhang and Montgomery, 

1994; Beven et al., 1995). Kirkby (1988) contends that basin response can be categorised on 

the basis of topographic characteristics. The role of topography and associated drainage 
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networks in hydrological studies has also been emphasised by Devito et al. (2005) who pointed 

out that topography is the basis of well-defined hydrologic response units (HRUs) and that 

topography influences flow rates as well as direction.    

     

The Caledon River Basin is generally a gently sloping area, with vast areas having slopes of 

less than 8 degrees, mostly within the South African parts. The basin consists of undulating 

terrain throughout the entire western and south-western regions, marked by gentle and 

moderate slopes (Figure 4.2). The eastern and the north-eastern parts of the basin, mainly 

within Lesotho, consist of slightly sloping terrain towards the south and the middle regions. The 

steep rugged topography of the Drakensberg Mountains lying at around 2 400 m above mean 

sea level covers most of the upper half of the basin on the eastern side (Figure 4.2).  

 

Figure 4.2 The slope map of the Caledon River Basin generated using SRTM digital elevation 
data at the resolution of 90 meters (http://srtm.csi.cgiar.org/Index.asp). 
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4.4 CLIMATE 

The entire basin falls into the so-called ‘cold interior’ climatic zone, which is marked by generally 

dry and cold winters together with warm and humid summers. Winter months are May, June 

and July and temperatures occasionally drop below -3 0C in the low lying areas and -8.5 0C in 

the mountainous Drakensberg region (Lesotho Meteorological Services- LMS, 2013). 

Relatively small amounts of snow are common in winter in the eastern part of the basin, while 

frost occurs in the flat lower topographic regions in the west. The summer season extends from 

October to February, while January is the hottest month of the year with average temperatures 

of about 20 0C in the mountainous regions to 30 0C in the low-lying areas (LMS, 2013).  

Figures 4.3A, 4.3B and 4.3C show average monthly rainfall and temperatures from three 

weather stations located at Fouriesburg in the north-east, Maseru in the centre and Wepener 

in the south-western part (see Figure 4.4 for the locations). These are based on a 30-year data 

record (1979–2000) obtained from the climate information platform of the Climate System 

Analysis Group (CSAG) based at the University of Cape Town (CSAG, 2014). Although there 

are some differences in absolute values for both temperature and rainfall, the three figures 

indicate very similar seasonal variations. The similarities in precipitation are not as marked as 

they are for temperature. However, it is clear that for the three stations under consideration, up 

to 70% of the rainfall in the basin occurs during the five-month period ending in February.  

Based on the South African water resources study of 1990 compiled by Midgley et al. (1994), 

the mean annual precipitation within the Caledon River Basin varies from 1 000 to 1 500 mm 

in the north-eastern parts of the Drakensberg Mountains, and drastically decreases to between 

500 and 600 mm in the lower south-western parts of the basin (Figure 4.4A). The rainfall 

patterns in the basin are very seasonal, with approximately 70% of the rain falling between 

November and March. The rainfall values used by Midgley et al. (1994) were derived from the 

network of rain gauges within the basin (shown in Figure 4.4A) with variable record periods 

spanning the period from 1920 to 1989.  
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Figure 4.3A Average climate conditions in the Caledon Basin at Fouriesburg. 

 

 

Figure 4.3B Average climate conditions in the Caledon Basin at Maseru. 
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Figure 4.3C Average climate conditions in the Caledon Basin at Wepener. 

 

The density of the evaporation network of stations in the Caledon River Basin is relatively low, 

with only a few of them located in the Lesotho side of the basin. There are about 10 stations 

recording evaporation rates from Symons pans, all of which are located in the lower lying areas 

and none in the mountain areas. Using the available information from the functional stations, 

Midgley et al. (1994) suggest that S-pan mean annual evaporation ranges from less than 

1 200 mm in the mountainous headwaters of the basin and increases gradually to about 1 500 

to 1 600 mm downstream (Figure 4.4B). It is apparent that the western sub-basins with lower 

rainfall amounts, also experience higher rates of evaporation, making the water scarcity severe 

in those areas. Just like many parts of water-stressed southern Africa, most parts of the basin 

have higher evaporative demands than can be satisfied by rainfall.      
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Figure 4.4 Mean annual precipitation (A) and mean annual evaporation (B) of the Caledon 
River Basin. 
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4.5 STREAM FLOW  

With an estimated area of about 16 000 km2, the Caledon River Basin is divided into 31 

quaternary catchments (Figure 4.5). Quaternary catchments are the fourth order catchments 

which are the principal hydrological units used by the Department of Water and Sanitation, 

DWS (formerly known as the Department of Water Affairs and Forestry) for management 

purposes in South Africa. Each quaternary catchment has a relatively homogenous 

hydrological response, and has been assigned representative properties of various physical 

and climate characteristics such as soil properties, mean monthly temperature and potential 

evapotranspiration (Schulze and Maharaj, 1997). The whole country (including Lesotho and 

Swaziland) is demarcated into 1946 quaternary catchments, covering a total area of about 1.3 

million km2.  The quaternary catchments comprising the Caledon have surface areas ranging 

from 200 km2 to more than 900 km2 (Table 4.1).  

 

 
Figure 4.5 Quaternary catchments and key stream flow monitoring gauges in the Caledon 

River Basin. 

 

 

D2H028 

D2H022 

D2H034 
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              Table 4.1 Quaternary catchments of the Caledon River Basin 

Catchment ID Area (km2) Coverage (%) 

D21A 309 2.02 

D21B 394 2.58 

D21C 212 1.39 

D21D 251 1.64 

D21E 268 1.76 

D21F 480 3.14 

D21G 278 1.82 

D21H 381 2.50 

D21J 359 2.35 

D21K 326 2.14 

D21L 304 1.99 

D22A 635 4.16 

D22B 457 2.99 

D22C 485 3.18 

D22D 628 4.11 

D22E 498 3.26 

D22F 633 4.15 

D22G 969 6.35 

D22H 541 3.54 

D22J 652 4.27 

D22K 324 2.12 

D22L 376 2.46 

D23A 608 3.98 

D23B 597 3.91 

D23C 861 5.64 

D23D 565 3.70 

D23E 702 4.60 

D23F 351 2.30 

D23G 512 3.35 

D23H 776 5.08 

D23J 534 3.50 

TOTAL 15 266 100.00 
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The density and the condition of the stream flow gauging network in the Caledon River Basin 

are not satisfactory. In a physiographic environment such as that of the study basin, the World 

Meteorological Organisation (WMO, 2008) recommends at least one gauging station every 

1 875 km2. However, there are only six partially functional stream flow gauging stations in the 

basin, with some gaps in recorded data (Figure 4.5, Table 4.2). A further problem with the 

current monitoring network is that the data records are short, cover different periods and have 

substantial amounts of missing data. Similarly, the stations do not measure the full range of 

high flows due to limitations with the rating curves. 

 

An additional challenge in quantifying the stream flow characteristics of the basin is that 

upstream abstractions are poorly quantified. The combined uncertainties in the observed data 

make the basin effectively ungauged. The observed data may be useful for constraining some 

aspects of simulated flow data, but cannot be effectively used for conventional model 

calibration (Seibert and Beven, 2009; Hughes, 2013). There are two additional gauges 

(D1H006 and D1H032) which are not located within the Caledon but are useful for defining 

flow regime characteristics of the steep headwater catchments that can be used to establish 

regional flow constraints. These gauges are on the eastern side of the Drakensburg 

mountains and drain southwest towards the Orange- Senqu River. 

  

4.5.1 Temporal Variations 

Analysis of the stream flow records from the six gauging stations in the main channel and the 

tributaries indicate that peak flows generally occur during the months of January and sometimes in 

February, followed by gradually declining flows with minimum flow around the months of June and 

July (Figure 4.6). There are however, a few exceptions from this general trend. For instance, gauge 

D2H003 depicts a rather delayed maximum flow occurring in March, while D2H005 shows a bi-

modal hydrograph with a second peak also occurring in March. There is a large monthly variation 

of river discharge in the Caledon River Basin. All the gauges indicate that more than 40% of the 

annual stream flow occurs in the period January to March. 

The flow records of most of the gauges have significant missing data and comparisons between 

gauges are rather difficult since they also cover different time periods and are of varying lengths of 

observation. It is apparent that the flow trends shown by the seasonal distributions in Figure 4.6 do 

not necessarily reflect the natural hydrology of the catchment because the basin is heavily impacted 

by numerous water abstractions and impoundments constructed along the length of the main 

channel as well as in the tributaries (see section 3.7). Figure 4.7 presents the observed and 

simulated total annual stream flow at gauge D2H001 (1920-1977) and at the outlet of quaternary 
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catchment D23F (1920-1989). Both indicate a steady increase in the long-term variation of stream 

flow in the basin, since 1920.  

 

Table 4.2 Summary of properties of the stream flow gauges in the Caledon Basin. 

Gauge 
No. 

Catchment 
area (km2) 

Records Details  Missing 
data (%) 

D2H012 518 1968–2011 High flows poorly quantified; some farm 
dam and land use change effects. 

2 

D2H005 3 857 1941–1956 High flows moderately well quantified; many 

farm dams, abstractions and land use 

impacts; some domestic return flows. 

1 

D2H020 8 399 1982–2010 High flows moderately well quantified; large 

and poorly quantified impacts of Maseru city 

abstractions plus all upstream impacts.  

54 

D2H003 1 424 1934–1954 High flows well quantified; some agricultural 

abstractions but assumed to be relatively 

small (note that the period of record is 

before the construction of a large dam). 

0 

D2H022 12 852 1988–2010 Stable river section and subject to many 

uncertainties. 

7 

D2H001 13 421 1926–1978 High flows very badly quantified in early 

parts of record; many accumulated 

upstream abstraction impacts.  

11.6 

D2H034 1 082 1992-2012 Recent gauge with records since 1999. 

Highly impacted catchment with many farms 

dams and irrigation. 

0 

D1H006* 2 969 1949-2013 Located at the Makhaleng River in Lesotho. 

High flows fairly are quantified and it is 

impacted by relatively minimal upstream 

abstractions.   

12 

D1H032* 1 074 1986-2013 Senqunyane River – 16 years of record 
available prior to Mohale Dam construction. 
Relatively good quality data with little water 
abstraction. 

1.5 

 

*Not located in the Caledon River Basin.  
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Figure 4.6 Observed monthly average stream flow from the gauging stations in the Caledon 
River Basin. 
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Figure 4.7 The temporal stream flow variations of the observed (gauge D2H001) and the 
simulated at the outlet of the D23F quaternary catchment.  

 

4.5.2 Spatial Variations  

There is high spatial variation in terms of normalised runoff across the length of the basin. 

According to the water resources study reports (Midgley et al., 1994; Middleton and Bailey, 

2008), the mean annual runoff ranges from above 500 mm in the headwater mountainous 

region to as low as below 50 mm in the downstream catchments. The majority (19) of the 

quaternary catchments of the Caledon River Basin produce annual average runoff between 50 
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and 100 mm. These sub-basins are located in the middle and the northern parts of the basin. 

Sub-basins in the western part contribute the least amount of runoff (20–50 mm) to the total 

basin discharge, which is reported by the Department of Water Affairs (DWAF, 2004) to be 

about 1 240 million m3 per annum (81 mm).  

 

 4.6 GEOLOGY  

Most of the western and northern parts of the Caledon River Basin lie within the Stormberg 

geological group of the Karoo super-group. In this area the Stormberg group of rocks consists 

of three geological formations namely, the Molteno, Elliot and Clarens (Figure 4.8). The three 

formations are basically sandstones which were formed through a variety of processes of 

cementation and lithification of sand grains. The Molteno formation sandstones are light-

coloured, with fine to very coarse sand grains. This formation can be up to 100 m thick 

(Eriksson, 1984). The red coloured, argillaceous sandstones of the Elliot formation vary in 

thickness from about 30 m in some areas to more than 150 m in others (Eriksson, 1985). The 

Clarens formation of the Stormberg is dominated by light-coloured, fine sandstones with a 

combination of sand siltstones and mudstones (Smith et al., 1993; Holzförster, 2007). The 

Clarens formation can be 115-195 m thick. 

 

In the north-eastern parts of the basin, geology is mainly composed of fresh basalts belonging 

to the Drakensberg geological group. These are a relatively young group of volcanic rocks, 

intruded by numerous dolerite dykes which resulted in the fracturing of the main rock body. The 

Drakensberg volcanic capping the Stormberg sandstones rocks are up to 1 000–1 400 m thick 

(Haskins and Bell, 1995; Moore and Blenkinsop, 2006).  

 

The geological characteristics of an area play an important role in the hydrological regime of a 

watershed. The Stormberg geological formations, which mostly underlie the Caledon River 

Basin, are known to store and transmit appreciable amounts of groundwater (van Tonder and 

Kirchner, 1990). The southern and western parts of the Caledon basin sit on top of the Karoo 

sedimentary aquifer as illustrated by Cobbing et al. (2008). 

 

The fractured basalts also play an important role in the percolation of rain water, which would 

otherwise contribute immediately to the stream flow as surface flow. The stored precipitation 

within the geological domain impacts the amount of baseflow (Bloomfield et al., 2009) in 

Caledon River. Such a geological setting would then affect the water balance and thus, the 

hydrological regime of the basin.  The role and contribution of groundwater (recharge and 
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discharge) to stream flow has long been recognised (e.g. Hughes, 2004a). Consequently, in 

recognition of the importance of geology-driven groundwater, interaction of surface and 

groundwater has also received significant attention (Hughes and Sami, 1994; Kalbus et al., 

2006; Tweed et al., 2009).   

Figure 4.8 Simplified geology of the Caledon River Basin.  

4.7 SOIL COVER 

According to Midgley et al., (1994), there are various types of soils within the catchment. The 

basin is mostly covered by moderate to deep sandy soils on the steep eastern and northern 

parts, down to the centre and towards the southern area. The sandy soils reflect weathering of 

sandstones in the area. There is also a strip of moderate to deep clayey soil material along the 

eastern border of the basin, stretching south to the downstream boundary of the catchment. 

These soils are on the steep terrain of the basin and are associated with the basalts of the 

Drakensburg series. The south-western sub-catchments with undulating terrain are 

characterised by clayey loam soils originating from the mudstones and the siltstones present 

in this part of the basin.  

 

The South African Agricultural Geo-referenced Information System (AGIS, 2007) database 

describes various land types based on soil cover for the basin and the country as a whole. 

Geology Caledon River Basin 
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According to the database, the basin is covered by various soils of different properties defined 

in terms of depth, top soil and sub-soil clay content, texture and depth limiting material for each 

soil series. Information on soil properties of basins can be used to quantify the runoff generation 

parameters of the Pitman model (Kapangaziwiri, 2010). Kapangaziwiri (2010) however, noticed 

that this information is too detailed and highly variable in many sub-basins, making it quite 

difficult to assimilate into a modelling exercise especially for a large basin like the Caledon.    

 

4.8 WATER USES 

4.8.1 Domestic water use 

The water resources of the Caledon River Basin are locally important to sustain water supplies 

for many small and medium sized towns in South Africa and Lesotho. The Caledon River is 

used for various water uses including irrigation, and municipal and industrial use in two local 

municipalities namely, Dihlabeng and Mantsopa.  According to the South African census of 

2011, Dihlabeng municipality (six towns) has a total population of 128 704 people, while 

Mantsopa (5 five towns) has 51 056 people (Statistics South Africa, 2013).  

 

The Lesotho capital, Maseru, relies on direct river abstraction (40 000 m3 d-1) from the Caledon 

River when the flow is high enough (i.e. > 2 m3s-1) and on storage in off-channel reservoir 

(Maqalika) at other times. The reservoir is used when the river flow is low or when the river 

water is too turbid. The abstraction is meant to meet the capital’s water demand, mainly for wet 

garment industries and the population of about 432 000 people. There are also other smaller 

towns such as Teyateyaneng, with 250 000 people (Bureau of Statistics Lesotho, 2006) which 

rely on the Caledon River for water. According to the water utility in Lesotho, Water and Sewage 

Company (WASCO, 2013) the minimum water allocation target set by the Lesotho government 

is 30 litres per capita per day; however, some social classes use up to 80 litres per person per 

day or more. There are also very small and scattered rural settlements located in the highlands 

of Lesotho. There are no developed water distribution facilities or reticulation systems in most 

of these villages and the water they use is mainly from natural springs and boreholes. The 

water is used primarily for domestic purposes.   

 

The Caledon water resources are important even beyond the catchment. There is an inter-

basin transfer scheme abstracting water from the Knellpoort and Welbedacht dams to Magaung 

municipality which comprises the cities of Bloemfontein, Thaba-Nchu, Botshabelo and others, 

and is located in the Modder River Basin in the north-western part of the Free State province 

and to the west of the Caledon River Basin. The Caledon-Modder scheme transfers about 5.6 * 
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106 m3 per annum, mainly for municipal purposes and supplies more than 747 430 people with 

potable water (discussed further in section 4.9 below).  

 

4.8.2 Reservoir Infrastructure  

There are seven major artificial reservoirs constructed within the boundaries of the Caledon 

River Basin on both sides of the international border (Table 4.3). The reservoirs have diverse 

storage capacities, ranging between 4 and 130 * 106 m3. While the majority of these reservoirs 

are located across tributaries (Leeu, Rietspruit and Phuthiatsana Rivers) of the main Caledon 

River channel, only Welbedacht and Maqalika dams receive water from the main channel as 

instream and off-channel reservoirs, respectively. Amongst the reservoirs in the basin, the 

Knellpoort dam presents a unique case, being both an instream and off-channel reservoir in 

that it simultaneously intercepts flow of the Rietspruit River and receives pumped water from 

the Caledon River. The main aim of these impoundments is to secure a more stable and reliable 

water supply for nearby urban centres and for industrial and irrigation purposes. Table 4.3 

provides a brief summary of the reservoirs located within the catchment.  

 

Table 4.3 List of large dams in the Caledon basin 

Reservoir River Storage Capacity 

(106 m3) 

Quaternary 

Newbury1  Leeu 5.6 D23C 

Armenia1 Leeu 13.0 D23C 

Knellpoort1 Rietspruit 130.0 D23H 

Welbedacht1 Caledon 9.6 D23J 

Maqalika2 Caledon 3.7 D22H 

Metolong*3 Phuthiatsana 63.7 D22J 

*Under construction.  

Sources: 1 DWAF (2013); 2Letsie (2005); 3Metolong Authority (2013).   

 

There are also many small and moderate sized farm dams (Figure 4.9) in the basin which have 

a direct impact on the total runoff of the river. Midgley et al. (1994) list a total of 53 

impoundments with a combined storage capacity of approximately 202 * 106  m3, compared 

with the river’s estimated  mean annual runoff of 1 244 * 106 m3. There is no doubt that small 

and large impoundments offer some sort of socio-economic benefit, but they impact 

significantly on the hydrological regime of the watershed which might complicate studying and 

understanding the contemporary and future hydrological characteristics of the Caledon River. 
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The impacts of small farm dams on the hydrological regimes have been reported by many 

researchers including Schreider et al. (2002), Hughes and Mantel (2010), and Nathan et al. 

(2005). Similarly, hydrological changes of rivers brought about by large dams, such as those in 

the Caledon basin, have been investigated (Maingi and Marsh, 2002; Magilligan and Nislow, 

2005; Graf, 2006).        

 

Figure 4.9 Distribution of farm dams and other impoundments, both represented by black 
shaded areas, in parts of the Caledon River   Basin. Quaternary catchments and 
river network are shown by red and blue lines, respectively. 

 

4.8.3 Water Development Projects 

There are two major water development projects designed to supply the Bloemfontein area 

through an inter-basin transfer scheme, and an additional scheme that supplies the Lesotho 

capital of Maseru. The other water developments projects are much smaller and designed to 

supply either local municipalities with domestic water or irrigation schemes. These include 

many privately owned farm dams.  
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4.8.3.1 Caledon-Modder River Government Water Scheme 

The Caledon-Modder River Government Water Scheme (CMRGWS) was commissioned in 

1974 to transfer potable water from the Caledon to the Modder River through a 115 km long 

pipeline in order to meet the water demand of Bloemfontein and neighbouring urban areas. To 

achieve this, the 32-metre high Welbedacht dam was constructed with an original storage 

capacity of approximately 115 * 106 m3. Severe siltation in the Caledon reduced the dam’s 

capacity to about 16 * 106 m3 some 20 years after completion (DWAF, 2012). The transfer 

pipeline has a discharge capacity of about 1.16 m3 s-1. Because of the high sediment content, 

the water was first treated at a purification plant, located downstream of the dam, before being 

transferred. The plant has average and maximum capacities of 1.68 m3 s-1 and 1.85 m3 s-1, 

respectively.  

 

4.8.3.2 Novo Transfer Scheme 

As silting reduced the storage capacity of the Welbedacht Dam from 115 million m3 to about 

10% of that, the water demand of Bloemfontein and other towns could no longer be satisfied. 

The Novo transfer scheme was therefore inaugurated in 1988 and was expected to deliver 

water with the maximum capacity of 150 million m3 by the year 2030. The scheme comprises 

the construction of the Knellpoort Dam on the Riet River (tributary to the Caledon), with a 

maximum storage capacity of 137 million m3.  

 

The 50 m high dam was completed in 1988. The dam also receives water from the Caledon 

River, as off-channel storage, through a pumping facility at Tienfontein. Water from the Caledon 

is delivered through a 2 km long canal to the Knellpoort Dam from the Tienfontein pumping 

station which is equipped with four pumps with a combined maximum pumping capacity of 

about 3.7 m3 s-1. The transfer channel was designed to trap and minimise siltation of the 

Knellpoort Dam to avoid a similar situation to that of the Welbedacht Dam. From the Knellpoort 

Dam, water is then pumped into the Modder River. Figure 4.10 gives a schematic view of the 

Novo transfer scheme. Slabbert (2007) investigated the potential impacts that the Novo water 

transfer scheme might impose on the integrity of the both the Caledon and the Modder Rivers.  
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Figure 4.10 The Novo water transfer scheme (Source: DWAF, 2012). 

4.8.3.3 Maqalika Reservoir 

The Maqalika reservoir is located on the outskirts of the Lesotho capital, Maseru, and collects 

the runoff of the Mejametalana stream which drains a 44 km2 catchment. The sole purpose of 

the dam was to supply the rapidly developing city with a stable potable water supply. With a 

25 m high zoned clay core embankment, the reservoir initially had a maximum storage capacity 
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of 3.7 million m3 which is however, dwindling because of the high rate of sedimentation (Letsie, 

2005). Maseru was previously supplied by water pumped directly from the Caledon River to 

the nearby water treatment facility. However, during dry seasons, the flow can be very low, thus 

failing to meet the city’s water demand. The construction of the Maqalika reservoir was aimed 

at stabilising the supply. The reservoir was constructed in 1983 as a temporary measure to 

ease the ever-increasing water demand of Maseru, and was intended to be operational till 

1995, while more sustainable alternatives were being sought. The reservoir is still being used 

at the moment. During high flows in the Caledon River, water is pumped into the reservoir, 

which is located less than 100 m away (Figure 4.11). Caledon water inevitably adds more 

sediment to the already silted reservoir resulting in a decreased capacity. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 4.11 Arial view of the location of the Maqalika Reservoir and the Caledon 
River. 

Caledon River 

Maqalika Reservoir 

SOUTH AFRICA 

LESOTHO 
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4.9 LAND USES 

The Caledon River Basin on the South African side is sparsely populated, with an average of 

21 persons km-2 and relatively small areas are urbanised. The available land is used for 

agricultural purposes in the form of stock farming (mainly beef, dairy cattle and sheep), as well 

as for growing cash crops (mainly maize, sorghum and wheat) (Figure 4.12A). The agriculture 

is predominantly rain-fed but there are also irrigation activities abstracting water either from the 

farm dams or directly from the streams. However, it is not always straightforward to identify 

which areas are regularly irrigated and it is possible that some areas are irrigated 

opportunistically when water is available.  

 

By contrast, the Lesotho side of the basin is one of the most densely populated zones of the 

country (Figure 4.12B). This is where most major urban areas, including the capital of the 

country are situated. Subsistence agriculture is sporadic and maize is the major crop, mostly 

dependent on rainfall (Figure 4.12C). There is, however, minor run-of-river irrigation in the 

northern parts of the basin. Cattle, sheep and goat rearing are a common practice among the 

local population and largely uncontrolled, leading to massive over-grazing and subsequent soil 

erosion. Deep gully erosion is evident in most parts of the basin (Figure 4.12D). This has been 

associated with poor land use practices, geology and slope gradient, among other factors 

(Seitlheko, 2003; van Zijl et al., 2013). Stromquist et al. (1985) contend that gully erosion is the 

most important source of the sediments in the Caledon River.  

 

4.10 SUMMARY 

The Caledon River Basin is located in a generally dry and cool region. The basin has quite a 

diverse physiography, with the northern parts largely marked by steep slopes of the 

Drakensberg Mountains, while the central and southern regions are gentle and flat. The basin 

experiences high rainfall variability. The northern regions are mostly wetter relative to the 

southern and western parts. Hydrology and water resources availability in the basin is 

influenced by several factors including soil cover, topography, geology and water uses.  For 

successful hydrological assessment and predictions, it is important that the physical 

characteristics of the Caledon Basin and the water-related anthropological activities are well 

understood. This chapter highlighted important features of the basin which are useful in 

developing a comprehensive hydrological model of the basin.  
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Figure 4.12 Land use types in the Caledon River Basin. A is an irrigated commercial farming 
area located in D23C; densely populated area in D22H; C shows a mainly rain-fed 
agriculture with possible small-scale run-of-river abstractions in D21A; D (in Sub-basin 
D22F) depicts the extent of soil erosion typical in most parts of the central and southern 
parts of the basin.   
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5 HYDROLOGICAL SIMULATIONS OF THE CALEDON RIVER BASIN 

5.1 INTRODUCTION 

Any hydrological model is a simplification and interpretation of highly complex river basin 

systems and hence no model is expected to generate simulations without some degree of 

uncertainty. The Pitman model has been successfully applied for hydrological research and 

practical purposes within South Africa and elsewhere in southern Africa and confidence has 

been gained in its ability to successfully simulate hydrological systems. However, despite the 

popularity of the model, the level of uncertainty of these simulations has rarely been quantified. 

On the other hand, the WEAP model has not been sufficiently applied and tested for 

hydrological assessment under the environmental conditions of southern Africa (Levite et al., 

2003). The current study therefore focusses on applying the Pitman model within an uncertainty 

framework and investigates the application of the WEAP model in the South African context 

using the Pitman model setups as a point of reference for assessment.               

 

The main differences between the models are the level of detail included within the structures 

and the number of hydrological processes that are explicitly included. Both are conceptual 

models, but the Pitman model includes more processes, while the WEAP model has somewhat 

more parsimonious parameter requirements. The other main difference is that there is a great 

deal more documented experience of the use of the Pitman model within the region. One of 

the sub-objectives of this study was to determine if quantitative links between the parameters 

of the two models could be identified in an attempt to develop guidelines for transferring 

parameters from existing Pitman model setups to new WEAP model setups and then take 

advantage of the water use functionality of the WEAP model. Another objective was to outline 

the differences between the two models as well as the likely impacts of the differences on the 

simulation results of the Caledon River.  

 

In this chapter, the two models are used to quantify and characterize the hydrology (both natural 

and with existing anthropogenic modifications) of the Caledon River Basin. The Pitman model 

parameters were estimated using the uncertainty framework discussed in Chapter 3, whereas 

the WEAP model was established using more traditional manual calibration approaches, using 

the limited observed stream flow data and the Pitman model outputs to quantify the WEAP 

model parameters and assess the outputs. Hydrological simulations using the two models were 

carried out under natural conditions and present day conditions for the historical period (1920 

to 2005). Chapter 6 reports on the results of the climate change assessments which used the 
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two calibrated hydrological models together with climate projections data for the mid-21st 

century (2046-2065) (rainfall and temperature) downscaled from nine general circulation 

models (GCMs).   

 

Some of the objectives of this study, namely the quantification and reduction of hydrological 

model output uncertainties contribute to the international trends in hydrological science 

reflected by the themes of the two science decades of the International Association of 

Hydrological Sciences (IAHS). The PUB (Predictions in Ungauged Basins) decade ended in 

2012 and had a very large component of uncertainty analysis (Hrachowitz, et al., 2013; Blöschl 

et al., 2013) and addressed some aspects of uncertainty in practice (Pomeroy et al., 2013). 

The new science decade was launched in 2013 with the theme of ‘Everything Flows (Panta 

Rhei)’ and is designed to address change in hydrology and society (Montanari et al., 2013), but 

also emphasises the value of putting science into practice. Inevitably it retains some of the 

uncertainty issues that came out of the PUB programme. 

 

From a practical perspective, it is important to establish realistic uncertainty ranges. A low 

range of uncertainty may imply false confidence, while unrealistically high uncertainty may 

preclude the use of the outputs in making decisions about future developments of water 

resources. Therefore, the main purpose in dealing with the quantification of realistic uncertainty 

bounds is how uncertainty can be reduced to the extent that it can be included as part of 

practical water resources assessments.    

 

5.2 QUANTIFYING UNCERTAINTIES IN HYDROLOGICAL SIMULATIONS  

5.2.1 Strategies for Reducing Uncertainty in the Parameter Ensembles 

The two-step approach for including and constraining uncertainty in the modelling of large 

basins with many sub-basins that was explained in Chapter 3, has been applied in this study. 

The first step involves the use of regional or local constraints to identify the parameter sets that 

can be considered behavioural in the simulation of natural (un-impacted) incremental flows for 

each sub-basin. These parameter sets are then used with uncertain water use parameters 

sampled independently in the second step when the cumulative flows at the outlet of all sub-

basins are simulated. One of the advantages of the approach is that where there are high 

confidence gauged data, the constraints can be set with very narrow uncertainty bounds, while 

in ungauged areas these bounds are expected to be much wider. The approach therefore 

allows for different levels of uncertainty to be included in basins where the hydrological 

response in some areas is well understood and known, but where other areas have much 
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higher uncertainty. The approach was largely designed to allow realistic uncertainty bounds to 

be established throughout a large river basin. 

5.2.2 Constraining Natural Flow Simulations 

The Caledon River represents a complex example of uncertainty analysis for several reasons. 

The first reason is that there is a great deal of distributed water use, such as irrigation from 

farm dams and directly from the river, coupled with some municipal supplies within the 

catchment. These water-use activities impact on the interpretation of the observed stream flow 

data. The observed flow data are also very limited and there are no gauges to represent, for 

instance, the steep mountain sub-catchments that drain the Lesotho parts of the basin. A 

further level of complexity is associated with the differential effects of upstream sub-basin 

uncertainty on the uncertainty outputs of the downstream sub-basins. The first step of the 

constraint analysis, is only applied to simulating the incremental flows of individual sub-basins 

without including inflows from upstream areas and therefore avoids any problems associated 

with cascading uncertainty from upstream simulations.  

There are not enough observed stream flow data to establish individual constraints for all of 

the sub-basins and therefore one of the important issues is the grouping of the 31 quaternary 

catchments of the Caledon River Basin into groups that are assumed to have similar 

hydrological responses, constraints and directions of uncertainty. Table 5.1 lists the quaternary 

catchments, their groupings and some of the characteristics that have been used to determine 

the groupings and guide the quantification of the constraints. Table 5.2 lists the stream flow 

gauging stations that are available within the Caledon River Basin and nearby catchments, 

some of which were used to develop the regional constraints. Table 5.2 also includes some 

notes about the quality of the stations and data, as well as some indications of the extent to 

which the available data can be used to represent natural flows. It is clear that there really are 

not enough reliable observed data to quantify the constraints without a relatively high level of 

uncertainty.   
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Table 5.1 Uncertainty groups for the Caledon River Basin and the characteristics used to group 
them. 

Groups Quaternary 

catchment 

Mean annual 

rainfall (mm) 

Characteristics 

1 D21A, B, C, D, J, 

K, L 

839 – 1021 Steep eastern headwaters in the Lesotho 

Maluti mountains. Possibly some stock 

grazing. 

2 D21E, F, G, H 

D22A, B, C, D 

682 – 782 Undulating topography in the northern 

headwaters with some steep areas. 

Intensive agriculture in the valley bottoms. 

3 D22G 

D23C, D, H 

519 – 688 Dry south western tributaries with 

undulating to flatter topography and 

intensively cultivated. 

4 D22E, F, J, K 

D23B, F, G 

705 – 817 Undulating topography with some steep 

headwater areas. Extensively cultivated in 

South Africa and dense rural populations 

with over-grazing in Lesotho.  

5 D22H, L 

D23A, E, J  

541 - 730  Lower basin valley bottom areas with 

generally flatter topography and intensively 

cultivated. 

 

It was decided to use uniform distributions to represent the parameter uncertainty, thus 

avoiding the need for any assumptions about mean values, the shapes of the distributions 

(normal or log-normal) and the extent of any outliers. Table 5.3 lists the minimum and maximum 

values of the constraints that were used (excluding the % zero flow constraint). The 

groundwater recharge data were obtained from DWAF (2005) and the range of uncertainty was 

based on the two lowest recharge estimates of the three that are available in the GRAII (DWAF, 

2005) database for the quaternary catchments falling into each group. The choice of the lowest 

two estimates was based on previous experience of using the GRAII database (Kapangaziwiri 

et al., 2012). The recharge constraints given in Table 5.3 are expressed as percentages of 

mean annual rainfall, which are then dimensionalised for use with individual quaternary 

catchments by the mean monthly rainfalls of the time series used in the simulations (WR2005 

data). Similarly, the mean monthly flow constraint is expressed in mm and dimensionalised 

using the catchment areas of the sub-basins (quaternary catchments). 
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Table 5.2 Stream flow gauging stations available for use in developing the regional constraints 
(see Figure 4.5 for the station locations). 

Gauge 

No. 

Catchment 

area (km2) 

Records Groups Details  

D2H012 518 1968-2011 1 & 2 High flows poorly quantified; some farm 

dams and land-use change effects. 

D2H005 3 857 1941-1956 1 & 2 High flows moderately well quantified; 

many farm dams, abstractions and land-

use impacts; some domestic return 

flows. 

D2H020 8 399 1982-2010 1, 2 & 4 High flows moderately well quantified; 

large and poorly quantified impacts of 

Maseru city abstractions plus all 

upstream impacts.  

D2H003 1 424 1934-1954 3 High flows well quantified; some 

agricultural abstractions but assumed to 

be relatively small (note that the period of 

record is before the construction of a 

large dam). 

D2H022 12 852 1988-2010 All Stable river section and subject to many 

uncertainties. 

D2H001 13 421 1926-1978 All High flows very badly quantified in early 

parts of record; many accumulated 

upstream abstraction impacts.  

D2H034 1 082 1992-2012 2 Recent gauge with records since 1999. 

Highly impacted catchment with many 

farms dams and irrigation. 

D1H006 2 969 1949-2013 1 Makhaleng River in Lesotho.  

D1H032 1 074 1986-2013 1 Senqunyane River – 16 years of records 

available prior to Mohale Dam 

construction. 
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Table 5.3 Constraints developed for the quaternary catchment groups of the Caledon River 
Basin.  

Group 

Mean 
monthly 

flow (mm) 

Mean monthly 
recharge (% mean 
monthly rainfall) 

Flow duration curve constraints 
(values are fractions of  mean monthly flow) 

Q10 Q50 Q90 

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

1 10.0 17.0 3.5 8.0 2.5 3.0 0.35 0.55 0.04 0.08

2 2.5 7.0 2.5 3.7 3.0 4.0 0.15 0.30 0.02 0.05

3 1.2 3.2 0.8 2.5 2.0 2.5 0.15 0.25 0.02 0.05

4 6.0 10.0 1.2 7.2 2.5 3.0 0.35 0.55 0.04 0.08

5 1.2 3.2 1.2 4.2 2.0 2.5 0.15 0.25 0.02 0.05
Note: The % time of zero flow constraint were set at the range 0 – 8 % for the 5 groups of sub-

basins. 

 

Analyses of the data from the flow gauges within the basin and in the nearby catchments were 

used for quantifying the mean monthly flow and flow duration curve constraints (including the 

duration of zero flows). These were also supported, to a certain extent, by examining the 

existing simulations available from the WR90 (Midgley et al., 1994) and WR2005 studies 

(Middleton and Bailey, 2008). Gauge D2H012 has a relatively long record, but is affected to 

some extent by poor high flow measurements and abstraction impacts on low to moderate 

flows. It also covers two of the quaternary groups, being at the outlet of D21E (group 2), which 

includes D21D (group1). The observed (after some corrections to account for missing high flow 

observations) mean monthly flow depth of 5.4 mm is expected to be an under-estimate but 

more representative than the simulated data reported in both WR90 (9.3 mm) and WR2005 

(5.9 mm). The under-estimation is expected to effect the low flow Q90 estimates the most. 

 

D2H005 and D2H020, both on the main Caledon River, have a number of problems with 

uncertainties in the accuracy of the gauged flows and are heavily impacted by intense water 

uses within the upstream parts of the basin. They were therefore not considered useful for 

developing constraints. While D2H001 appears to have a relatively good record (after some 

adjustments to high flows based on data from a nearby flood section), it represents the 

accumulation of flows from most of the quaternary catchments and therefore cannot be used 

for constraints. Nevertheless, it is useful to compare these records with the total uncertainty 

outputs from D23F which is close to the basin outlet. However, it must be remembered that this 

gauging record reflects many upstream water uses that have varied over time. 

 

Gauge D2H003 represents group 3, the driest parts of the catchment, and has a record that 

pre-dates any of the large dams constructed in the upstream quaternary catchments. However, 
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it is assumed that some distributed agricultural water use occurred even before 1934 and 

therefore the observed data are expected to under-estimate flows, particularly low to moderate 

flows. The mean monthly observed flows of 1.6 mm are substantially lower than the values 

given in either WR90 (3.8 mm) or WR2005 (3.1 mm) and it is difficult to justify an almost 

doubling in mean volume on the basis of the likely agricultural water use in the 1940s and 

1950s. 

 

Gauge D2H034 (representing group 2) is heavily impacted by distributed agricultural water use 

and therefore the 2.9 mm mean monthly flow will definitely be an under-estimate. WR90 and 

WR2005 suggest that the values should be in the region of 4.6 to 6.0 mm month-1.  

 

Gauges D1H006 and D1H032 drain the eastern slopes of the Lesotho Mountains and have 

very large mean monthly runoff values of 16.8 mm and 29.6 mm, respectively. Both of these 

catchments have more consistently steep and mountainous terrain than the Group 1 Caledon 

catchments and even more so for the Group 4 catchments. WR90 and WR2005 suggest mean 

monthly flows of between 13 mm and 22 mm for the quaternary catchments that are gauged 

by D1H006 and D1H032, respectively. Developing constraints for Groups 1 and 4 is therefore 

problematic.  

 

The flow duration curve (FDC) constraints were based on the same gauges (with the same 

problems of interpretation) and all the constraint values are given in Table 5.3 (as unit runoff 

values or non-dimensional values relative to mean monthly flow). Given the lack of reliable and 

representative observed data, it is inevitable that most of the constraint boundaries are 

subjective. However, attempts have been made to ensure that they are at least realistic. Group 

5 is made up of catchments in the lower parts of the catchment through which the main Caledon 

River flows and has been allocated runoff and FDC constraints that are the same as Group 3, 

but with a wider range of recharge.  

 

5.2.3 Caledon River Basin Hydrology Under Natural Conditions 

Establishing the initial uncertainty parameter ranges and then ‘calibrating’ the ranges to ensure 

compatibility with the outputs constraints discussed in the previous section firstly involved some 

trial runs of the single-run version of the model (i.e. no uncertainty ensembles) to approximately 

establish the likely range of parameter values that would generate some outputs that are 

consistent with the constraints. This was followed by running Step 1 of the main uncertainty 

model that only simulates incremental flows and tries to find (and save back to the database) 
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2 000 behavioural parameter sets (out of 50 000 total model runs) that generate outputs that 

are within the constraint ranges given in Table 5.3.  

 

This process started with some sub-basins from each group and then progressed until all sub-

basins were successfully simulated, where success mean that 2 000 parameter sets were 

saved. An analysis utility (incorporated into SPATSIM, and illustrated in Figure 3.3) was used 

to revise the parameter ranges for individual sub-basins when the total of 50 000 model runs 

were completed without reaching 2 000 so-called ‘behavioural’ parameter set solutions. 

Typically, this process involves identifying which parameters have values at one end of the 

input range within the saved behavioural parameter sets and adjusting the input range, such 

that a repeat of the model run will identify saved sets that are more evenly distributed within 

the input range. This ‘calibration’ process can also involve adjusting the input parameter ranges 

even when 2 000 sets are saved, particularly if the output values of the constraints associated 

with the 2 000 saved sets are not reasonably distributed within the input ranges of the 

constraints given in Table 5.3.  

 

Table 5.4 provides a range of values for a list of parameters resulting from the two-step 

uncertainty analysis of the Pitman model. Ranges are the minimum and maximum values 

yielding behavioural flow ensembles for uncertain parameters. Single values are assigned to 

those parameters which are considered not to be uncertain.    

 

Step 2 of the uncertainty model involves running the complete model (i.e. routing upstream 

incremental flows through downstream sub-basins and generating total cumulative flow at all 

sub-basin outlets). However, the natural stream flow simulations are almost impossible to 

evaluate because almost none of the available observed stream flow data can be considered 

representative of natural conditions. It was therefore considered more appropriate to include 

the development impacts before undertaking comparisons with observed data and evaluating 

the model performance. 

 

5.2.4 Caledon River Basin Hydrology Under Developed Conditions 

There are a number of water use activities impacting on the flow volumes and patterns of the 

Caledon River, the most notable of which are direct abstractions for irrigation and municipal 

use, construction of farm dams and irrigation from farm dams, and storage by large reservoirs. 

It is essential that such activities are quantified and incorporated in the modelling exercise.  

Table 5.4 Final input parameter ranges (minimum: maximum) for the 5 catchment groups.  
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Parameter Group 1 Group 2 Group 3 Group 4 Group 5 

RDF 1.280 1.280 1.280 1.280 1.280

PI1 1.50 1.50 1.50 1.50 1.50

PI2 4.0 4.0 4.0 4.0 4.0

ZMIN 10:150 10: 150 10:150 10:150 10:150

ZAVE 250 300 300 300 400

ZMAX 200:2000 200:2000 200:2000 200:2000 200:2000

ST 60:300 60:300 60:300 60:300 80:300

POW 1.5:5.0 1.5:5.0 1.5:5.0 1.5:5.0 1.5:5.0

FT 2:20 2:20 0:10 1.0:20 0:10

GPOW 4.0:6.0 4.0:6.0 4.0:6.0 4.0:6.0 4.0:6.0

GW 0:100 0:100 0:100 0:100 0:100

R 0.3:0.7 0.3:0.7 0.3:0.7 0.3:0.7 0.3:0.7

TL 0.25 0.25 0.25 0.25 0.25

D Density 0.4 0.4 0.4 0.4 0.4

T 5:50 5:50 5:50 5:80 5:50

S 0.004 0.001 0.001 0.001 0.004

GW Slope 0.011 0.011 0.011 0.011 0.010

RSF 0.2:2.0 0.2:2.0 0.2:2.0 0.2:2.0 0.2:2.0

 

5.2.4.1 Abstractions for Irrigation 

The irrigation areas were initially based on an assumption that the annual yield of the farm 

dams would be the same as their maximum stored volume. However, a large part of the 

irrigation is assumed to be supplied from direct abstractions from the river and these areas 

were based on an analysis of Google Earth imagery through the identification of parcels of land 

that appeared to be under irrigation (distinguishable by green patches of land) and were within 

reach of major river channels (either the main Caledon channel or major tributaries).  

 

Additional information provided from WRP Consulting (pers. comm, 2013) suggests that the 

original estimates of irrigation areas could be considerably under-estimated. The WRP study 

was largely based on the registration of existing water uses and rights that formed part of the 

transformation of national water management in the post-Apartheid era, and also included 

some attempts to validate the estimates of the individual landowners who had registered water 

rights. The extent to which this is likely to impact on downstream flows largely depends on 

whether the WRP estimates are realistic, and whether the estimates of farm dam volumes or 
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river flows (in the case of run-of-river direct abstractions) can support such expanded irrigation 

areas. This also depends, to a certain extent, on the seasonal distributions of water use. If the 

majority of the seasonal water use for irrigation is during the dry winter months, then it will 

largely have to be met from storage with minimal inflows. However, if part of the requirement 

is within months of higher flow, then wet season storage will be used and more upstream 

inflows will be intercepted by the farm dams, causing reduced downstream flows.  

 

It is evident, however, that the WRP estimates are extremely high in many areas (Table 5.5). 

In revising the water use estimates, a more detailed assessment of Google Earth images was 

employed together with a comparison between the original estimates and the WRP estimates. 

The overall conclusion was that a large degree of uncertainty remains in any of the estimates 

as it is not always possible to distinguish between dry land farming and irrigated agriculture. It 

is also not always possible to determine whether the irrigation abstractions are derived from 

small dam storage or from direct channel abstractions.  

 

The detailed examination of Google Earth suggests that many of the areas included in the data 

obtained from WRP are not permanently irrigated. The evidence for this is partly based on the 

visual signal of the fields (dry conditions) and partly on the lack of a clearly available water 

source in the vicinity, either from a perennial river or from farm dams. It is possible that some 

‘dry’ fields are irrigated at times of the year other than those covered by the Google images; 

however, the second source of evidence (no water source) is much more difficult to account 

for. The final minimum and maximum irrigated areas have been approximately quantified to 

represent the overall uncertainty in expected irrigation water use.  

 

The crops are dominated by pasture/lucerne (25%), maize (25%), maize/wheat (18%) and 

wheat (13%) (WRP, pers. comm, 2013). It is possible that many of the summer grain crops are 

in fact not irrigated most of the time. The seasonal distribution of irrigation requirements that 

was used in the present-day uncertainty analysis was therefore a weighted distribution 

dominated by lucerne and wheat (based on WR90 data; Midgley et al., 1994) and is given in 

Table 5.6. It is, however, accepted that the validity of this distribution is substantially uncertain. 

 

5.2.4.2 Farm Dams 

The volume of the farm dams was estimated using a GIS coverage (which includes data on 

surface area at full capacity) which was used together with regional estimates of the 

relationship between surface area and volume (using an approach similar to that of Hughes 

and Mantel, 2010). However, these estimates are largely uncertain as there are no field 
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measurements to support the establishment of the relationships. Volume estimates for farm 

dams in each of the sub-basins are included in Table 5.5. A normal uncertainty distribution has 

been assumed for the farm dam volumes and it is specified by the mean and standard deviation 

(subjectively assumed to be approximately 10% of the mean).  

 

The Pitman model includes a function that allows a proportion of each incremental runoff sub-

basin to contribute to the storage in these dams, while the remainder of the simulated runoff is 

unaffected by that specific type of development impact. The portion of the sub-basin 

contributing to storage was estimated using GIS information including a sub-basin polygon 

layer (used in the Pitman model), the farm dam polygons, river network line layer and a contour 

layer. The approach also uses details on the density of farm dams and their position within the 

sub-basins. 

 

The WEAP model does not include such a function and the farm dams have to be dealt with 

using the normal on-channel reservoir function. Therefore, in practice, this means that all of the 

catchment nodes need to be divided up into two – those that contribute to reservoir inflow and 

those that do not. To achieve this without doubling the catchment nodes, pairs of quaternary 

catchments in the Pitman model setup have been combined. One of these is used to represent 

the part of the combined catchment area that is assumed to contribute to the total farm dam 

storage, while the other is assumed to be downstream. Any direct run-of-river abstractions for 

irrigation or other uses are assumed to be from the downstream catchment and therefore will 

be impacted by the effects of the farm dams. This is thought to be the most realistic way in 

which these development effects can be incorporated into the WEAP model. The WEAP model 

has been set up using similar water demand (farm dams and abstractions) data that were used 

in a present day uncertainty run of the Pitman model. 

 

5.2.4.3 Abstraction for Domestic Water Use 

There are a number of small to medium sized towns within the Caledon River Basin, both in 

South Africa and Lesotho which depend on the river for their water supplies. Information on the 

rural and town populations were not directly available (and would change over time) and 

therefore all of these estimates for this study are uncertain and quite subjective. Although it is 

fairly clear that the Lesotho capital of Maseru uses water from both the off-channel storage 

facility and the river, it is not clear how many of the South African towns (Clarens, Fouriesburg, 

Ficksburg, Ladybrand, Wepener and others) abstract directly from the channel or rely on local 

reservoirs. Patterns of abstraction for Maseru are also difficult to determine despite having 
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water consumption data for the city as a whole. This is because there are no data on how much 

is abstracted from the river, and when, to replenish the off-channel storage. 

The volumes of use for towns and the rural areas in the basin are therefore based on rough 

estimates of population coupled with consumption of water of 100 l person-1 d-1. Detailed 

information about the population estimates was not readily available. The mean value 

estimates of the water use are given in Table 5.5, while the range was based on approximately 

50% of the mean (i.e. mean ± mean * 0.25), reflecting the very high uncertainty (but relatively 

low volumes of water use). The seasonal distribution of use has been slightly biased toward 

summer, partly to account for influxes of tourists in some of the towns and partly based on an 

assumption of garden watering during the hot summer months. 

5.2.4.4 Large Reservoirs  

There are 5 quaternaries where large reservoirs, with storage capacity of at least 1*106 m3 have 

been added as part of the present day model set up. D22B has a reservoir with 2.6 * 106 m3 

storage and 3 * 106 m3 annual water use to account for the Meulspruit dam that possibly 

supplies Ficksburg, while D23C has a reservoir (Newbury) with 5.6 * 106 m3 storage and 2 * 

106 m3 annual water use that is assumed to be used for downstream irrigation.  

 

A relatively small channel storage volume (1 * 106 m3) has been allocated to D22H to allow for 

the fact that Maseru may pump some water from river pools, even when the river stops flowing. 

Annual water use has been set to 12 * 106 m3 but this would not be obtainable from the available 

storage and this value has been used to ensure that the instream pool storage is pumped dry, 

as evidenced by the number of months with zero flow at gauge D2H022. Reservoir storage has 

also been added to D23H to represent the Knellpoort Dam with estimated storage capacity of 

137 * 106 m3. Some of the large reservoirs in various sub-basins are shown in Figure 5.1 and 

the information on their storage volumes and water use has been mainly based on Midgley et 

al. (1994). 
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Table 5.5 Farm dam volumes (m3 * 106), percentage area of sub-basin contributing to storage 
and irrigation areas (km2) estimated by different methods (direct abstractions are in 
m3 * 103 y-1).  

 

Dam 
Vol. (m3 
* 106), 

% 
Area 
above 
dams 

Direct abstraction 

Dams 
Irrig. 

WRP Google Final 

Domestic Irrig.   Min Max 

D21A 391 50 100.0 0.0 0.35 1.23 0.40 0.35 0.50

D21B 0 0 100.0 0.0 0.00 0.00 0.10 0.00 0.00

D21C 240 20 100.0 0.0 0.20 0.50 0.03 0.10 0.40

D21D 630 50 400.0 0.0 0.50 9.40 1.10 0.50 1.50

D21E 2660 70 0.0 2.5 2.20 13.70 4.40 2.50 5.00

D21F 4440 70 0.0 0.0 3.50 36.30 2.20 2.20 4.00

D21G 2200 50 0.0 0.0 1.80 11.80 1.30 1.30 2.50

D21H 3130 20 275.0 0.0 2.50 11.50 0.75 1.00 3.00

D21J 35 5 75.0 0.0 0.03 0.00 0.00 0.00 0.10

D21K 60 5 80.0 0.0 0.07 0.00 0.00 0.00 0.10

D21L 1200 20 100.0 0.0 1.00 0.00 0.00 1.00 2.00

D22A 10595 90 0.0 0.0 8.80 29.80 3.70 5.00 10.00

D22B 8300 85 0.0 0.0 6.50 33.60 1.70 5.00 10.00

D22C 4000 90 120.0 0.0 3.00 5.50 0.30 1.00 4.00

D22D 12000 85 90.0 8.4 12.50 53.40 14.50 10.00 20.00

D22E 0 0 65.0 0.0 0.00 0.00 0.00 0.00 0.00

D22F 280 10 225.0 0.0 0.22 0.00 0.00 0.00 0.50

D22G 21000 90 0.0 0.0 15.00 57.80 3.90 5.00 20.00

D22H 7900 70 14000.0 0.0 6.00 18.30 3.10 3.50 7.00

D22J 0 0 110.0 0.0 0.00 0.00 0.00 0.00 0.00

D22K 0 0 110.0 0.0 0.00 0.00 0.00 0.00 0.00

D22L 6600 60 5000.0 0.0 5.50 11.30 1.10 1.50 6.00

D23A 10000 80 0.0 0.0 6.00 5.60 1.40 1.50 7.50

D23B 20 5 65.0 0.0 0.02 0.00 0.00 0.00 0.10

D23C 41600 100 0.0 0.0 30.00 48.60 25.00 25.00 40.00

D23D 22000 85 0.0 0.0 19.00 39.40 28.00 19.00 32.00

D23E 14500 60 1000.0 0.0 10.00 22.70 6.20 6.00 12.00

D23F 3500 100 0.0 0.0 3.20 1.70 2.30 2.00 3.50

D23G 9600 70 200.0 0.0 6.00 6.10 0.50 1.00 6.00

D23H 19000 85 0.0 0.0 15.00 38.30 3.90 5.00 20.00

D23J 14000 85 0.0 0.0 10.00 28.20 6.20 7.00 15.00
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Table 5.6 Seasonal distribution of irrigation requirements (mm) for Lucerne and wheat 
obtained from WR90  

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

67 47 56 48 36 28 19 15 18 30 61 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Examples of the large reservoirs in the Caledon River Basin. 
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5.2.5 Present Day Flow Simulation Results 

5.2.5.1 Present-day results at D21E 

Figure 5.2 compares the flow duration curves of the simulated natural and present day flow, 

with the observed records of gauge D2H012 located at the outlet of D21E, while Table 5.7 

compares several quantiles of the flow duration curves of the modelled and the observed. 

Comparisons of the simulated flow against the observed are based on four objective functions: 

the Nash-Sutcliffe coefficient of efficiency of the normal and natural logarithm values, NSE and 

NSE{In}, and percentage bias of normal and natural logarithm values, %Bias and %Bias{ln}. 

An index was formulated that identifies the best (based on the overall performance on the four 

objective functions) of the 10 000 generated flow ensembles. The ‘best fit’ index ensemble is 

given by: 100 * (NSE + NSE{ln}) / (abs %Bias + abs %Bias). Figure 5.3 compares the variations 

of the four objective functions with the best fit index for the full ensemble set. As expected, the 

high values of the index correlate well with the better values of % bias (normal and natural 

logarithmic values), as well as with the ensembles of better NSE values.  

 

The very high flows (occurring at less than 10% of the time) are under-represented in the 

observed data due to poor high-flow gauging. There are some indications that the lower 

estimates of water use (Table 5.5) are perhaps more appropriate than the higher values, 

however, the observed data also represent non-stationary abstractions since 1966.  Overall, 

the simulated ensembles bracket the observed flows very well, despite the fact that the 

objective function values are frequently poor. This outlet represents two of the catchment 

groups (1 and 2) and therefore it is difficult to make any firm conclusions about the constraints 

that were used for these groups. The generally high positive bias values are partly a reflection 

of the poor high flow gauging, while it is also possible that the Q50 and MMQ constraints for 

the upstream sub-basin are too high.  
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Figure 5.2 Simulations of the natural and present day flows compared to 
the observed flow. 

 

Table 5.7 Simulation results compared with observed flows for sub-
basin D21E and gauge D2H012 (Q- values are in m3 * 106 
month-1, zero flow in percentages). 

 Natural simulation 

range 

P-day simulation 

range 

Observed 

Q10 6.555  to 12.275 6.07 to 11.80 7.46

Q50 1.002 to 2.363 0.76 to 2.04 1.10

Q90 0.064 to 0.359 0.0 to 0.18 0.08

Zero flow (%) 0.3 to 1.5 5.95 to19.41 5.94
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Figure 5.3 The best fit index versus the four objective functions for the 10 000 simulated 
present day flow ensembles in the sub-basin D21E. 

 

5.2.5.2 Present day results at D22B  

Gauge D2H034 was built in 1991, reflecting present day conditions, and observation data 

obtained from it was used to assess the results for the two quaternary catchments at the outlet 

of D22B. Both sub-catchments D22A and D22B have a large number of farm dams and 

apparently a substantial amount of irrigation. Most of the water use has been assumed to be 

extracted from farm dams, while the percentage catchment area contributing to the dams has 

been set to 90% and 85% for D22A and D22B respectively. This means that large volumes of 

water are abstracted as reflected by the quite extended periods of zero flows (Figure 5.4 and 

Table 5.8). It is possible that some of the irrigation requirements are satisfied by pumping 

directly from the river. Meulspruit Dam, with a full supply capacity of 2.6 * 106 m3 (Midgley et 

al., 1994), supplying water to Ficksburg has been included in the simulation at the outlet of 

D22B and has a significant impact on low flows and this is also reflected by the zero flows in 

the present day simulations as well as the observed flow records. The observed data values 

for Q10 and Q50 fall within a rather large uncertainty range for the present day flow simulations 

as show by both Figure 5.4 and Table 5.8. 
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Figure 5.4 Simulations of the natural and present day flows compared to the 
observed flow. 

 

Table 5.8 Simulation results compared with observed flows for 
D22B and D2H034 (Q- values are in m3 * 106 month-1, 
zero flow in percentages). 

 Natural Simulation 

range 

Present-day 

Simulation range 

Observed 

Q10 6.137 to 15.715 3.71 to 14.6 5.9 

Q50 0.426 to 2.167 0.0 to 1.0 0.30 

Q90 0.057 to 0.293 0.00 0.00 

Zero flow(%) 0  32.65 to 77.16 38.0 

 

As with the other gauges in the Caledon River Basin, the high flows are not well-gauged due 

to limitations of the rating curve and therefore the high flow simulations are not expected to 

follow the observed data (Figure 5.4). In other respects, the simulated present day flows 

bracket the observed, but with a high degree of uncertainty. It is therefore possible that the 

higher estimates of water use and farm dam volumes are excessive, despite being substantially 

lower than the WRP estimates (Table 5.5). 
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Figure 5.5 The best fit index versus the four objective functions for the 10 000 simulated 
present day flow ensembles in the sub-basin D22B. 

 

Figure 5.5 indicates that a large number of the ensembles fall within the region of a relatively 

high ‘best fit’ index (0 – 2) and a significant number with relatively high NSE values close to 

0.5. The figure also shows that there is quite substantial bias (both negative and positive) based 

on untransformed flows. The NSE{ln} and %Bias{ln} values are more difficult to interpret given 

the quite large differences in the number of months with zero flows (not used in the calculations 

based on log transformations) between the observed data and some of the ensembles. Figure 

5.5 also suggests that the best ensembles are not clearly identifiable, unlike in the above case 

of D21E.  

 

5.2.5.3 Present-day and natural results at D23D 

The observed record at D2H003 is an old record (1934-1954) and it is not expected to reflect 

present-day conditions. It also has very poor high flow observations with many periods when 

the daily flow measurements are truncated at the maximum rating curve value. Figure 5.6 

clearly indicates that there are huge differences between the simulation of the medium and low 

flow and the observed records (Table 5.9). It is most likely that the current water uses in 

catchments D23C and D23D have substantially increased since the 1950’s. As might be 

expected in this intensively cultivated area, the differences between natural and present day 
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are very large, even for the very high (Q10) flows, indicating substantial water use mainly for 

irrigation. There are a number of major reservoirs in this part of the Caledon River Basin. These 

include Newbury Dam (constructed in 1892) with a maximum capacity of 5.587 * 106 m3 and 

Armenia Dam which was constructed in 1954 with a full supply capacity of 14.2 * 106 m3. There 

are also other smaller reservoirs with capacities of less than 1 * 106 m3. 

 

Figure 5.6 Simulations of the natural and present day flows compared to the 
observed flow.  

 

With respect to comparisons between the simulated and observed data, it is more difficult to 

be conclusive as the records are from 1935 to 1954 when there would have been some water 

use but much less than today. It is also unlikely that high flows have been measured with a 

great deal of accuracy, leading to under-representation of flow volumes at Q10 (as illustrated 

in Figure 5.6). Most of the observed flow is much higher than the bounds of the present day 

simulation. This is the only region of the basin with such a severe mismatch and bias between 

the modelled and the observed records (Table 5.9). As with D21E, there is not enough 

information to validate the model results adequately, or to reduce the uncertainty any further. 

However, it is interesting to note that there is much more agreement between the different 

sources of information about irrigation areas for these catchments than in most of the other 

parts of the basin.  
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Table 5.9 Simulation results compared with observed flows for 
D23D and D2H003 (all values given in m3 * 106 month-1). 

 Natural simulation 
range 

Present-day 
Simulation range 

Observed 

Q10 3.189 to 13.853 0.16 to 6.23 3.61 

Q50 0.274 to 1.734 0.011 to 0.140 0.360 

Q90 0.035 to 0.258 0.001 to 0.017 0.088 

Zero flow (%) 0.1 to 2.6 5.5 to 47.16 2.5 

 

It can be seen from Figure 5.7 (based on comparisons between observed and the natural flow 

simulations) that for D23D, the best fit index is highly insensitive to variations of all the four 

objective functions. While relatively fewer natural flow ensembles show a slight negative bias, 

a large number are highly positively biased. It is also evident from Figure 5.7 that there is a 

quite distinct correlation between the two NSE and the two %bias statistics. The reduced 

scatter for similar values of the index (horizontal axis) is largely a consequence of using the 

constrained natural flow simulations. All of the other example sub-basins include the 

independently uncertain water use that will increase the scatter. However, there are also high 

NSE values (close to 0.6) that are coupled with relatively lower NSE{ln} values, as well as not 

very good bias statistics. This implies that some ensembles may simulate some parts of the 

hydrograph well, but not others. There are rapid changes of both objective functions at low 

values of the index, which tend to flatten out with increasing values of the index. This is a very 

positive result in terms of supporting the constraint ranges for natural flows, something that 

could not be tested at the other gauging sites. A more detailed examination of these results 

could be used to reduce the range of some of the constraint values. However, it is impossible 

to determine whether such changes could be considered equally applicable to the other sub-

basins within this group.  
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Figure 5.7 The best fit index versus the four objective functions for the 10 000 
simulated natural flow ensembles in the sub-basin D23D. 

 

5.2.5.4 Present-day results at D23F 

Sub-basin D23F and gauge D2H001 in the downstream part of the basin, and is the nearest 

gauge to Welbedacht Dam which is the lowest part of the basin covered by this study. It 

therefore represents the combinations of water use activities and natural runoff uncertainties 

for almost the entire basin. The gauging record appears to be of reasonably good quality and 

represents the longest record period of all of the flow gauging stations in the basin. The 

observed data record used represents data that has been partially patched for high flows using 

the nearby high flow rated section (gauge D2H020) that was operational from 1983 to 2010.  

Figure 5.8 illustrates that apart from the lower flows, the correspondence between the lower 

uncertainty bound and the observed flows is reasonably good. This is also indicated by the 

comparisons given in Table 5.10.  
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Figure 5.8 Simulations of the natural and present day flows compared to 
the observed flow.  

 

Table 5.10 Simulation results compared with observed flows for D23F and D2H001 
(all values given in m3 * 106 month-1). 

 Natural Simulation 
range 

Present-day 
Simulation range 

Observed 

Q10 188.04 to 241.81 169.47 to 226.64 221.7 

Q50 30.20 to 46.99 22.97 to 39.30 28.12 

Q90 4.47 to 8.77 0.321 to 3.87 0.114 

Zero flow (%) 0 0 to 3.14 6.88 

 

Despite the assumed limitations of the observed data in terms of representing present-day 

conditions it is nevertheless useful to look at the range of objective functions of the full 

ensemble sets (Figure 5.9). Given the very large uncertainties that have been included as part 

of the model, the results at this downstream sub-basin are quite good. All the flow ensembles 

occupy a high range of NSE (normal) values (0.7 to 0.8). The best fit index appears to increase 

with improving values of %bias. The much lower NSE{ln} values are partly associated with all 

of the combined uncertainties in water use within the upstream basin (coupled with unknown 

non-stationarity effects in the observed data series). Unfortunately, it is not possible to separate 

these uncertainties from those associated with the simulations of natural low flows. 
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Figure 5.9 The best fit index versus the four objective functions for the 10 000 simulated 
present day flow ensembles in the sub-basin D23F. 

 

Figures 5.10 to 5.12 illustrate some of the outputs of the model for the Caledon River Basin 

using frequency distributions of standardized indices of three of the constraints (MMQ, Q10 

and Q90). The standardized indices on the horizontal axes are based on the fractional 

deviations of the simulated values for all of the 10 000 ensembles from the ensemble mean for 

the natural flow simulations for that sub-basin. The graphs include the simulations of natural 

conditions as well as present day conditions which are largely based on uncertainty in the 

volume and abstractions from farm dams. The observed values are also indicated by arrows 

on the graphs.  

 

The uncertainty bounds shown by mean of flow duration curves show the full range of 

uncertainty, but not how the uncertainty is distributed throughout the entire set of ensembles. 

Figures 5.10 to 5.12 provide more details of the frequency distributions of certain key flow 

indices and compare them to the observed data. 

The observed values for the constraints do not always fall within the simulated present day 

frequency distributions, partly because of the uncertainty in terms of what conditions the 
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observed data represent, as well as other problems with the observed data and, of course, the 

combined uncertainties in all of the upstream flow simulations. 

 

Figure 5.10 Example outputs using standardized flow indices for Q10 (high flows) at a 
downstream (D23F) sub-basin. 

 

 

Figure 5.11 Example outputs using standardized flow indices for MMQ at D23F. 
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Figure 5.12 Example outputs using standardized flow indices for Q90 (low flows) at 

D23F 

In general terms, the Pitman model simulates the hydrology of the Caledon River Basin 

sufficiently. Modelling results for the four example sub-basins indicate that the both the present 

day and the natural flow simulations are comparable to the observed flow from the various flow 

gauging records in the basin. There still remains a challenge with regard to flow records, which 

are fraught with missing data and short records. It is recognised that high flows (Q10) are mostly 

not well simulated and the observed flows are generally not within the simulated uncertainty 

bounds. One possible explanation for this is the high degree of error in measuring high river 

flows. While most of the uncertainty ranges for the natural flows are satisfactorily narrow, there 

is still a need to improve on the present day simulations. This might prove to be a challenging 

task as most of the developments within the basin are not adequately quantified.    

  

5.3 COMPARISONS OF THE PITMAN AND WEAP MODELS 

For both models it is possible to examine the time series of internal storage or flux components 

so that not only can the final result be compared in terms of downstream runoff, but the reasons 

for any differences between the two models can also be identified. The detailed comparisons 

are based on sub-basin D21E in the upper parts of the Caledon River Basin. The simulation 

comparisons are for the major hydrological processes common to both models, namely: 

evapotranspiration, surface flow, soil moisture flow and groundwater flow. The rainfall inputs 

are based on the WR2005 data used for the Pitman model for the period October 1920 to 

September 2004.  
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The comparisons are aimed at identifying any possible quantitative links between the 

parameters of the two models, with the objective of developing guidelines for the transfer of 

parameters from existing Pitman model setups to establish the WEAP model. Another aim is 

to detect the differences in their functionalities and to establish possible reasons for differences 

in the resultant simulations of the two models. Table 5.11 lists the initial parameter values that 

were used in the comparison tests, which were mainly designed to assess the sensitivity of the 

WEAP model outputs (compared to the Pitman model outputs) to changes in the WEAP model 

parameters. 

 

5.3.1 Actual Evapotranspiration (ETa) 

Actual evapotranspiration will vary with the crop factor (Kc) as well as with many of the 

parameters that affect the water balance in the upper layer of the WEAP model. Within the 

Pitman model, parameter R controls ETa, as well as any other parameters that affect the main 

moisture storage. Figure 5.13 illustrates the effects of changing the Kc value from 0.9 to 0.7 

while keeping all the other WEAP parameter values fixed at values listed in Table 5.11.  

 
Table 5.11 Initial parameter values of the two models (some of the groundwater 

parameters of the Pitman model are not listed and were not changed during 
the model runs). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 illustrates that the WEAP model generally produces a smaller range of ETa than 

the Pitman model with an R value of 0.5. Using a Kc value of 0.9, yields results which are more 

similar to the Pitman simulations (Figure 5.13). Figure 5.14 indicates that the WEAP model 

Pitman WEAP 

ZMIN (mm) 50.0 Min Rain (mm) 50.0

ZAVE (mm) 300.0 Nominal RRF 0.7

ZMAX (mm) 600.0 Kc  0.9

ST (mm) 150.0 Upper Zone Max. (mm) 150.0

R 0.5 Lower Zone Max. (mm) 200.0

FT (mm) 4.0 Ks1 (mm) 16.0

POW 3.0 Ks2 (mm) 2.0

GW (mm) 15.0 f 0.5

GPOW 5.0  

Riparian Factor 0.5  
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simulates generally lower moisture levels than the Pitman model, but the variations in actual 

evapotranspiration are much more similar. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.13 Comparison of Pitman and WEAP model estimates of actual 
evapotranspiration for WEAP Kc = 0.9 and 0.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 5.14 Comparison of Pitman and WEAP model estimates of relative 

moisture storage (Using parameter values listed in Table 5.11). 
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5.3.2 Surface Runoff  

The surface runoff function of the Pitman model is controlled by the three parameters: ZMIN, 

ZAVE and ZMAX. There is no surface runoff generated at low monthly rainfalls less than ZMIN, 

while at higher rainfalls the triangular distribution defined by the three parameters determines 

the proportion of the rainfall that will be generating surface runoff and at what rate. Additional 

surface runoff can be generated when the part of the rainfall that is assumed to infiltrate the 

soil is added to the soil moisture storage and when this additional water results in the maximum 

storage depth (parameter ST) being exceeded. The parameter AI represents the impermeable 

portion of the catchment that will immediately generate runoff even at very low rainfall amounts. 

However, AI was set at zero throughout the simulations for this study. Figure 5.15 illustrates 

the surface runoff output from the Pitman model (with no exceedence of ST) for the ZMIN, 

ZAVE and ZMAX values given in Table 5.11. Within the WEAP model, the default surface runoff 

function is based on the rainfall input (P), a runoff resistance factor (RRF) and the current 

relative content (Z) of the upper moisture storage using the equation: 

 

Surface runoff = P * ZRRF 

 

However, this approach could generate quite substantial depths of surface runoff even at low 

rainfalls. In this study the function was modified so that RRF varies more directly with rainfall 

depth. This was achieved by adding a rainfall threshold, below which the RRF parameter is 

assumed to be very high (say 20) and above which it is expressed by a conditional natural 

logarithmic equation (Equation 5.1), which makes RRF less dependent on Z.  

 

If(P-Pmin<0.6,20,N+(Pmax/(P-Pmin))^(Ln(P)/5))… Equation 5.1 

 

Where: P - monthly rainfall (mm) 

Pmin - monthly rainfall (mm) below which surface runoff is not expected 

N - nominal RRF parameter 

Pmax -  rainfall scale factor (mm) 

  

Figure 5.15 clearly suggests that the general shape of the surface runoff relationship is very 

different when the standard WEAP function is used, but that it can be made more similar to the 

Pitman model with the revised approach (Equation 5.1). The assumption that surface runoff 

varies only with storage (Z) in the default WEAP model makes it impossible to establish 

parameter values for a constant RRF value that will give similar outputs as the Pitman model. 

It is also evident that surface runoff simulated by WEAP is substantially sensitive to changes in 
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the value of Z (Figure 5.15). The WEAP model allows the relative soil moisture to exceed 1.0 

and this implies that all outputs, including surface runoff, can increase significantly during very 

wet periods. 

  

Figure 5.16 repeats some of the WEAP model relationships from Figure 5.15, but the Pitman 

model simulations now include the surface runoff generated from the exceedence of the 

maximum soil moisture parameter (ST) as well as from the triangular absorption function. It is 

clear from Figure 5.16 that the two models can produce very similar variations of surface runoff. 

However, it is evident that the WEAP model tends to over-estimate surface runoff relative to 

the Pitman model, for the set of parameters used in Equation 5.1. An RRF value of 0.7 for the 

standard WEAP equation has been used in Figures 5.15 and 5.16 and the results suggest that 

the approach to scaling the RRF (Equation 5.1) is more consistent with the outputs of the 

Pitman model than using a constant (default) RRF value. 

 

 

Figure 5.15 Differences in simulation of surface runoff between the two models. Values 
in the brackets for WEAP stand for rainfall scale factor, minimum rainfall, 
relative moisture, nominal RRF respectively. 
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Figure 5.16 Comparison of Pitman and WEAP model estimates of surface runoff 
  time series. Values in the brackets for the WEAP model refer to rainfall 

scale factor, minimum rainfall, relative moisture, nominal RRF 
respectively. 

 
5.3.3 Interflow and Groundwater Discharge  

Figure 5.17 illustrates the results for interflow and groundwater outflows using the parameter 

values given in Table 5.11 and it is apparent that the Pitman model groundwater outputs are 

much more variable than the WEAP model drainage flows from the lower (deep) storage zone. 

This is related to the very high storage used for this zone (200 mm) which was therefore 

identified as unlikely to realistically represent groundwater storage. Additional runs of the 

WEAP model were therefore made with the other parameters remaining at the same values, 

but reducing the lower zone or deep storage depth. While, the rather high and very variable 

groundwater outflows from the Pitman model are not necessarily realistic, the purpose of this 

comparative exercise was to identify which WEAP model parameter values should be used to 

match the Pitman model outputs. 
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Figure 5.17 Comparison of Pitman and WEAP model estimates of interflow and 

groundwater flow (original parameter values). 
 

Though simulations of interflow variations for the two models match closely (Figure 5.17), the 

differences in groundwater simulations are substantial. For this reason, it is almost impossible 

to get the WEAP model to emulate comparable patterns of groundwater outputs as the Pitman 

model. However, adjusting some of the WEAP parameter values from the original set yields 

slightly improved results relative to the Pitman model. Figure 5.18 illustrates the situation using 

values of Ks1 = 20, Ks2 = 10 and f = 0.25 with a deep zone capacity of 25 mm. The WEAP 

model interflow remains similar to the Pitman model and the groundwater outflow is much more 

variable. However, the groundwater outflow always remains above 0.45 mm in the WEAP 

model, while it drops down to 0 mm in the Pitman model, mainly because groundwater drainage 

is the only loss from the deep storage zone in the WEAP model, while the Pitman model 

includes a component of riparian evapotranspiration from groundwater. What can be inferred 

from these results is that if lateral drainage from the storage zones is assumed to be non-

continuous, then the effects of the deep storage part of the model should be minimised.  
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Figure 5.18 Comparison of Pitman and WEAP model estimates of interflow and 
groundwater flow (WEAP: Ks1 = 20, Ks2 = 10, f = 0.25 and deep zone 
capacity = 25). 

 
 

Figure 5.19 illustrates one result with the deep storage zone effectively turned off by reducing 

the rate of drainage from the upper layer and making the Ks2 value as small as possible. The 

full range of total Pitman baseflow (interflow and groundwater flow) is not reproduced, but the 

pattern of variation of the two sets of simulations yielded a close match which is a great 

improvement, particularly with regard to low flows. This could be important in terms of 

eventually getting zero flows after the effects of water-use scenarios, such as small farm dams 

and direct abstractions from the river, are accounted for. Since there is extensive use of water 

from the main Caledon channel as well as within its tributaries, these are very important effects 

within the Caledon River Basin. 
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Figure 5.19 Comparison of Pitman and WEAP model estimates of total baseflow 
(WEAP: Ks1 = 16, Ks2 = 0.1, f = 0.99, deep zone capacity = 25). 

 

5.3.4 Natural Streamflow Outputs 

The ultimate objective of the application of hydrological models is to reliably estimate the 

quantity and timing of river discharge. This is attained by analysing and quantifying the storages 

and fluxes embedded in various components of the models. One of the problems with testing 

the individual components of the WEAP model against the Pitman model equivalents is that 

changes made to one part of WEAP will inevitably affect other parts. This is because all the 

WEAP components, such as surface runoff, depend on the content of the upper root zone soil 

moisture storage, while the surface runoff in the Pitman model is independent of soil moisture 

store. Figure 5.20 illustrates this problem and the final comparison of stream flow outputs for 

the two models, under natural conditions. The Pitman model simulations are based on 

uncertain model parameters, while the WEAP simulations are based on the parameter values 

given in Table 5.12 and discussed in the sections above.   It is clear from the flow duration 

curve shown in Figure 5.16 that the moderate to low flows simulated by WEAP are very similar 

to the uncertainty range simulated by the Pitman model. However, the changes made to the 

interflow parameters have clearly had a major secondary impact on the WEAP surface runoff 

results and it was initially thought that these parameters could be further adjusted to reduce 
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the very high runoff values. However, this was not very successful as it also affects the interflow 

results as more water is added to storage. The other notable point is that the default version of 

the WEAP model cannot simulate zero stream flow even for short periods of time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.20 Comparison of simulated stream flows at the outlet of D21E by the 

WEAP model and the uncertainty range simulated by the Pitman 
model (natural conditions). 

 
 

 
Table 5.12 Final parameter values used for the two models. Parameter values for 

the Pitman model are ranges for the uncertainty version.     
 

 

 

 

Pitman WEAP 

ZMIN (mm) 10:150  Min Rain (mm) 50.0 

ZAVE (mm) 300  Rainfall Scale Factor 250 

ZMAX (mm) 200:2000 Nominal RRF 1.2 

ST (mm) 60:300  Z 0.6 

R 0.3:0.7  Kc  0.9 

FT (mm) 2:20  Upper Zone Max. (mm) 150 

POW 1.5:5.0 Lower Zone Max. (mm) 25 

GW (mm) 0:100   Ks1 (mm) 16 

GPOW 4.0:6.0 Ks2 (mm) 0.1 

Riparian 0.2:2.0 f 0.99 
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5.3.5 Incorporating Farm Dams and Direct Run-of-River Abstractions 

The Pitman model includes a function that allows a proportion of the runoff from each 

incremental sub-basin to contribute to storage in small farm dams, while the remainder of the 

simulated runoff is unaffected by that specific type of development impact. The WEAP model 

does not include such a function and the farm dams have to be dealt with using the normal on-

channel reservoir function. Therefore, in practice, this means that all of the catchment nodes 

need to be divided into two, those that contribute to reservoir farm dam inflow and those that 

do not. To achieve this without doubling the catchment nodes, pairs of quaternary catchments 

in the Pitman model setup have been combined.  

 

One of these catchments is used to represent the part of the combined catchment area that is 

assumed to contribute to the total farm dam storage, while the other is assumed to be 

downstream of the farm dam and thus does not contribute any water to it. Any direct run-of-

river abstractions for irrigation or other uses are assumed to be from the downstream 

catchment and therefore will also be impacted by the effects of the farm dams. This is thought 

to be the most realistic way in which these development effects can be incorporated into the 

WEAP model. 

 

The WEAP model has been set up using the mean of the uncertainty ranges of the water 

demands as used in the Pitman model, in terms of estimated farm dam volumes and rates of 

water abstraction. These are the data sets that were used in a present-day uncertainty run of 

the Pitman model. A comparison between the natural and present-day situations for the WEAP 

model is given in Figure 5.21. The effects of the demands from farm dams and direct 

abstraction appear to be smaller for the WEAP model than the Pitman model.  
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Figure 5.21 Comparison of simulated stream flows at the outlet of D21E by 

the WEAP model for natural and present-day demand conditions. 
 
 
 
Figure 5.22 shows the WEAP model results compared to the Pitman flow simulation uncertainty 

bounds for the present-day demand situation and the observed stream flow records at  both 

the upstream (D21E) and further downstream (D23F) sub-basins. It is observed from Figure 

5.22 that the WEAP model simulates substantially higher streamflow values compared to the 

observations and over-simulates high and very low flows relative to the Pitman model. For 

D21E sub-basin, WEAP suggests that there will not be any zero flows, whereas Pitman and 

the observed records indicate dry conditions for at least 5% of the time. On the other hand, an 

opposite scenario is observed for the downstream sub-basin (D23F), whereby the WEAP 

model consistently under-simulates streamflow relative to both Pitman and the observations 

(except for the very high flows).  
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Figure 5.22a Comparison of simulated stream flows at the outlet of D21E by the 
WEAP model and the uncertainty range simulated by the Pitman 
model (present-day demand conditions). 

 
 

 
Figure 5.22b Comparison of simulated stream flows at the outlet of D23F by the 

WEAP model and the uncertainty range simulated by the Pitman 
model (present-day demand conditions). 
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5.4 SUMMARY 

5.4.1 Uncertainties in Hydrological Modeling for the Caledon 

In the Caledon River Basin there are many sources of uncertainty and very little observed data 

to resolve the uncertainties. The sub-sections below summarise the main uncertainties as well 

as the attempts that have been made in this study to reduce them. 

Rainfall: There are many uncertainties in the rainfall inputs for the mountainous Lesotho parts 

of the basin, but these have not been dealt with as there are no additional data to either define 

the uncertainties or reduce them. 

 

Evapotranspiration demands: There are also very few data to define the uncertainties in 

evapotranspiration. However, it would be useful to try and apply some of the remote sensing 

techniques such as MODIS to this basin to establish if it is possible to identify spatial variations 

in actual evapotranspiration that could be linked to either natural processes or the use of 

irrigation water.  

 

Natural hydrology parameter values: The report has detailed a three-stage process that 

involved the use of four constraints on the model outputs and a detailed examination of the 

parameter space for behavioural and non-behavioural ensembles. The initial parameter ranges 

could be reduced quite significantly and the number of behavioural ensembles increased. 

Examining the outputs at downstream sub-catchments is much more complex because of the 

large number of sub-catchments and the interactions between them. This process was, 

however, made slightly easier by grouping the sub-basins on the basis of their physical 

properties and expected hydrological response. 

 

Present-day water use: The data that are available to quantify farm dam volumes, water use 

from these dams, as well as direct abstractions from the river (for irrigation, rural domestic use 

and town use) are not adequate to properly define the necessary parameter values of the 

model. While uncertainty in most of these has been included, it is very difficult to know if the 

range of uncertainty is appropriate or not. 

 

Observed flow data: In many catchments, the practical reduction of uncertainty can be achieved 

by using local observed data to constrain the model outputs. However, this is complicated by 

the short record lengths of most gauges, the inaccuracies in the observation of high flows (or 

high flows simply not measured) and the poor knowledge of actual water use. Thus, it is almost 

impossible to understand exactly what the gauge records represent in terms of the mix of 
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natural and impacted conditions. The records are expected to be highly non-stationary, but 

there is not enough additional information to define the variations over time. 

 

The above section concentrated on detailed uncertainty reduction attempts in the Caledon 

River (31 sub-basins) basin. It is essential to note that these assessments resulted in some 

reduction in uncertainty but involved a considerable amount of detailed analysis of the 

simulation ensembles (both parameter space and output results). There is simply a large 

uncertainty space (even without uncertain climate inputs) that resolving the interactions and 

the inter-dependencies is almost impossible.  One of the main deductions is that, while there 

are approaches that can be used to reduce uncertainty, they can be quite time-consuming and 

would involve substantial amounts of field data collection which was beyond the scope of this 

desktop study.  

 

5.4.2 Comparisons of Pitman and WEAP Models 

The differences between the main processes and rainfall-runoff generation algorithms of 

Pitman and WEAP models were examined. The main purpose of the comparison was to 

establish possible links and therefore to suggest guidelines for setting the WEAP model 

parameters on the basis of the already existing Pitman model setup for the Caledon River 

Basin, with the possibility of applying these parameters elsewhere in similar physical and 

environmental conditions. The analysis revealed that there are some components of the WEAP 

model where such guidelines can be suggested. However, there are other parts of the model 

where there were no guidelines established. These would likely require more trial runs of the 

models and more vigorous comparisons of their component outputs because of the interactions 

between the storage and output functions, which will be different between the two models. 

 

There appear to be a number of similarities in the way in which the two models operate, but 

there are also some important differences that need to be taken into account: 

 

 The surface runoff function of the WEAP model partly depends on the storage state of 

the upper zone, while the Pitman model function depends entirely on rainfall. This is 

important, not only because of the effects on simulated surface runoff, but also because 

any changes made to the WEAP parameters related to this function will affect other 

parts of WEAP as well (evapotranspiration and interflow). This adds an additional 

component of equifinality (parameter interaction) to the WEAP model compared to the 

Pitman model. 
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 The drainage from storage functions (interflow and groundwater) of the WEAP model 

do not allow for the simulation of zero flows implying that there will always be a small 

amount of water draining from both the upper and lower zones, even if their storage 

states are very low. This could be solved by the use of an expression for the conductivity 

parameters for both storage zones that includes the storage (in the last time interval) 

and therefore sets the conductivity parameters to zero below a certain storage state. 

 

The results of model comparisons indicate that there are many similarities between the two 

models that can be very useful in setting up the WEAP model based on existing Pitman model 

setups. Hence, there is a potential for WEAP to be incorporated as part of hydrological 

assessment and water resource availability investigations in the region. Compared to the 

Pitman model, WEAP is relatively easy to implement because of its rather parsimonious 

structure and user-friendly interface. The model also requires less data and information to run, 

which makes it appropriate, especially in this data-scarce region. WEAP has several other 

advantages including the analysis of water use management and development options. It also 

incorporates many functions representing the engineered components (e.g. reservoirs, water 

treatment works) of the water system relevant to the region. In addition to the water resources 

evaluation, WEAP includes a water quality component and financial cost-benefit function.  
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6 CLIMATE CHANGE SCENARIOS FOR CALEDON BASIN 

6.1 INTRODUCTION 

This chapter discusses the future climate scenarios in the Caledon River Basin as predicted by 

the downscaled global circulation models outputs from the Climate System Analysis Group 

(CSAG) based at the University of Cape Town. Nine GCMs (based on availability) are used in 

this study which are part of the coupled model inter-comparison project (CMIP3) multi-model 

datasets used during the fourth assessment report of the Intergovernmental Panel on Climate 

Change (IPCC, Solomon et al., 2007). The model outputs used are based on the high A2 carbon 

emission scenario (Nakicenovic et al., 2000) and consist of empirically downscaled daily 

temperature (maximum and minimum) and rainfall data. The climate conditions were computed 

for three scenario periods: baseline (1961-2000), the near future (2046-2065) and the far future 

(2081-2100). Other meteorological variables were derived from the temperature data.  

 

The chapter is divided into three sections. The first section deals with the analysis of observed 

data and the models’ baseline monthly rainfall data. Four sample quaternary catchments, 

namely: D21B, D22A, D23C, D23H are used for discussion and illustration and are selected to 

represent the different climate and hydrological conditions of the Caledon River Basin. In this 

section, the statistical bias of rainfall simulated by the climate models is established and an 

appropriate bias correction methodology is introduced. The second section deals with the 

statistical analysis of daily rainfall in order to determine any changes in the future climate 

conditions with reference to current climate patterns, and considers  uncertainties associated 

with the prediction outputs of the climate models. The bias-corrected future rainfall and future 

evaporative demands are then used to force the Pitman hydrological model (established in 

chapter 5 using historical observed data) to evaluate the impacts of climate change on the 

hydrology and water availability of the Caledon River Basin.  

 

6.1.1 Climate Model Data and Observations 

The historical rainfall data used in this study were obtained from the South African surface water 

resources assessment study (WR2005) of Middleton and Bailey (2008) and consist of monthly 

totals for each of the quaternary catchments for the whole of South Africa, Lesotho and 

Swaziland. The rainfall data from the WR2005 study are the best available historical data series 

in the country, although they are not perfect because the density and coverage of the gauging 

network are not adequate in many regions. The observed historical data set used in this study 
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spans the period from 1920 to 2005 and has been accepted to represent the long term climate 

patterns of the region (Middleton and Bailey, 2008). 

        

The downscaled climate data sets comprise daily maximum and minimum temperatures and 

rainfall at the quinary catchment scale. Within the South African hydrological and water 

management system, there are at least three quinary points within each quaternary catchment. 

The GCM climate simulation data was scaled down using an empirical statistical procedure 

(Hewitson and Crane, 2006). The model simulations used here cover three climate scenario 

periods: baseline (1961-2000), near-future (2046-2065) and far-future (2081-2100). The 

quinary scale baseline daily rainfall data were interpolated to the quaternary catchment scale 

using the inverse distance squared method and then summed to monthly values for comparison 

with the historical WR2005 data. The climate model data do not represent real historical 

sequences of rainfall and each model depends on the initial boundary conditions. It is therefore 

not possible to compare the climate model time series data with each other, nor with the 

historical WR2005 data. The comparisons and bias correction methods (Chapter 4) are 

therefore mainly based on calendar month statistical properties (means, standard deviations 

and skewness).  

 

The GCM-simulated baseline annual rainfalls for the four sub-basins are substantially biased 

relative to the observed rainfall. The bias varies significantly in both magnitude and direction. 

Table 6.1 shows that while some GCMs are biased by as much as 68% others severely 

under-simulate rainfall, by up to -35%. The annual rainfall bias of the GCMs seems to increase 

with increasing rainfall amounts. While the GCMs show a generally negative bias in the wettest 

region (D21B), the opposite is true in the driest part (D23H). However, rainfall simulations by 

CCCMA and IPSL show a consistent negative bias across all sub-basins, whereas GISS 

consistently show the highest positive bias in the four sub-basins.  

 

Figure 6.1 provides more detailed comparisons of the calendar month mean rainfall values and 

the deviations from the observations for the baseline simulations of the nine GCMs. One 

immediate observation is that the percentage deviation varies in both time and space. There is 

higher deviation during the dry winter period (May to September), as well as in the drier sub-

basins, with the high summer rainfall amounts being generally under-estimated and the lower 

winter rainfalls being over-estimated. The deviation values range between approximately 250% 

(in June) to about -50% (in January). Figure 6.1 suggests that there is generally a negative 

deviation during the rainy season and that the range of uncertainty appears to be greater in the 

drier area (D23H) than in the wetter parts of the basin (D21B and D22A). However, the general 
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differences in percentage bias between the nine GCMs appear to be quite consistent across 

the four example sub-basins.  

 

Table 6.1 Percentage bias (PBIAS) of the annual rainfall simulated for the baseline 
scenario by the climate models relative to the observed.   

Catchment  D21B D22A D23C D23H

Historical 
rainfall (mm)

1013 679 633 517

CCCMA -35.8 -23.9 -19.52 -2.0

CNRM -13.2 2.3 11.24 35.3

CSIRO -15.5 -11.3 10.53 22.8

GFDL -13.6 -7.0 8.62 21.3

GISS 4.5 23.9 31.64 68.6

IPSL -31.9 -20.0 -17.54 -9.7

MIUB -24.7 -11.8 -3.58 18.6

MPI -23.1 -9.1 -1.54 19.5

MRI -27.7 -15.3 -6.60 17.4

 

  Figure 6.1 Percentage deviation of the simulated baseline monthly rainfall from the observed 
rainfall. 
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6.1.2 The Bias Correction Method 

In the preliminary analysis of the GCM baseline rainfall data, several calendar month statistical 

measures were used to compare the characteristics of the climate models with the observed 

WR2005 rainfall records. The analyses indicate that the GCM baseline data differ significantly 

against the observations, in terms of the various statistical indicators used (see Table 6.1 and 

Figure 6.1). These discrepancies indicate that the outputs of the future climate scenarios 

cannot be directly applied for any impact assessment without some form of bias correction if 

sensible results are to be attained from a model previously established using climate forcing 

data based on historical data.    

 

In the current study, a bias correction method introduced by Hughes et al. (2014b) is used to 

adjust the statistically downscaled precipitation data sets (see Chapter 4). The bias correction 

method is based on the use of the calendar month means and standard deviations and relies 

to a certain extent on the frequency distributions of the rainfall data to be near-Normal.  

Preliminary analyses of all of the rainfall data sets suggested that a square root transformation 

would produce the closest approximation to Normal distributions in all cases. There are some 

situations where the requirement for low skewness values after transformation is still not met 

in the dry winter months, however, this was not considered to be a critical problem as the rainfall 

values are almost always very small and have little influence on the hydrological modelling 

results. In the bias correction method the future rainfall estimates are expressed in terms of 

standard deviates of the baseline scenario monthly distributions and the standard deviates are 

scaled with the monthly distributions of the historical rainfall data. The bias correction method 

was presented in detail in Chapter 4. 

 

The application of the bias correction removes bias in the monthly rainfall means and standard 

deviations between the historical and the GCM simulated baseline data. At the same time, the 

bias correction method is able to preserve the differences between the GCM baseline and 

future scenario predictions.  

 

6.1.3 Performance of the Bias Correction Method 

The results of applying the square root transformation bias correction method to the future 

climate scenario is demonstrated using the observed, control baseline and future climate 

simulation for the four example quaternary catchments of the Caledon Basin. For this purpose, 

precipitation simulations of the two climate models namely, CCCMA and CNRM are used to 

show how the application of the bias correction methodology impacts the future rainfall 



140 
 

predictions (Figure 6.2a and b). It was demonstrated in Figure 6.1 that the seasonal 

distributions of the historical and baseline data differ significantly and Figure 6.2 further 

reinforces this fact. It is also evident from Figure 6.2 that the distributions of the mean monthly 

raw (uncorrected) future scenario rainfall are not very different to that of the equivalent baseline 

distributions for these two climate models, suggesting relatively small climate change effects 

on rainfall. Further details of the future predicted rainfall patterns for all of the GCMs are 

provided within the next section of this chapter. 

 

It would generally be expected that the differences between the baseline and uncorrected near-

future distributions would be reflected in similar differences between the historical and 

corrected near-future distributions. However, there are some month/GCM/quaternary 

combinations where this is not the case (e.g. Nov, Dec and Jan for CCCMA and D21B or Jan, 

CNRM and D21B). This is almost certainly associated with inadequacies in the square root 

transformation of one or more of the rainfall time series leading to adverse effects of some 

rainfall outliers. While the baseline time series are 40 years in length, the near-future 

predictions are based on a 20 year time series, within which single outlier rainfall values can 

have a substantial effect on the distribution statistics. Fortunately, this does not occur very 

frequently in the full set of results for all climate models and quaternaries, but does highlight a 

potential problem with this relatively simple bias correction method. This problem was noted to 

be far worse if a logarithmic transformation was used for all of the rainfall rime series. As noted 

in Hughes et al. (2014b), alternative bias correction techniques (such as quantile-quantile 

transformations) were not able to preserve the seasonality and the changes in the statistical 

properties of the rainfall between the baseline and near-future scenarios and it was concluded 

that the simple bias correction method used here, in combination with a square-root 

transformation, achieved the most realistic results. 
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  Figure 6.2a Comparison of observed (WR2005, 1961-2000), Baseline climate scenario 
(Baseline, 1961-2000), raw future rainfall (Near-U, 2045-2065) and the corrected 
future rainfall (Near-C, 2045-2065) from the downscaled CCCMA model 
simulations. 
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Figure 6.2b Comparison of observed (WR2005, 1961-2000), Baseline climate scenario 
(Baseline, 1961-2000), raw future rainfall (Near-U, 2045-2065) and the corrected 
future rainfall (Near-C, 2045-2065) from the downscaled CNRM model 
simulations. 

 

 

6.1.4 Future Climate Conditions 

Future climate conditions (temperature and rainfall) are predicted by nine climate models for 

the near-future and far-future climate scenarios of the period spanning from 2046–2065 and 

2081-2100 respectively. Future evaporative demands of the basin were estimated by using the 

derived temperature component of the Hargreaves equation.  

 

6.1.4.1 Future Rainfall 

The results of the predicted future rainfall of the study area are illustrated using the four sample 

quaternary catchments in the basin. According to Figure 6.3, the bias-corrected data from the 

set of nine climate models of the predicted future rainfall (2046–2065) display a fairly consistent 

seasonal variation across the four sample catchments. The seasonal variation also closely 
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matches the observed historical rainfall (WR 2005, 1961-2000). However, it is also evident that 

there is a wider margin of uncertainty in the projected rainfall during the wet summer season. 

Although the uncertainty seems to diminish during the winter season when lower rainfall is 

experienced, the GCMs do not agree on the magnitude and direction of change of rainfall, 

relative to the historical records.  

 

There is an indication that the driest region of the basin (D23H) will be drier during the period 

2046–2065, with the majority of the models predicting decreased amounts of summer rainfall 

(Figure 6.3). The opposite is true for the wetter mountainous part of the basin (D21B) where 

most models predict increased rainfall during the summer season. For the two intermediate 

rainfall catchments, D23C and D22A, some models predict increased summer rainfall, while 

almost the same number suggests a decrease. The models do not provide a clear trend in 

terms of magnitude and direction of change in winter rainfall for all four catchments. All the 

models appear to indicate a stationary seasonal variation in future rainfall, although there is a 

suggestion of a slight delay of peak rainfalls in catchment D23H where most models predict 

highest rainfalls will occur in February–March instead of January.    
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Figure 6.3 Monthly rainfall variation of the corrected GCM near future scenario (2045–2065) 

and the observed rainfall (1961–2000). 
 
 
The predicted amounts of rainfall in terms of maximum, minimum and median of future rainfall 

relative to the observed amounts for each calendar month from all the GCMs are shown in 

Figure 6.4. There is a significant disparity amongst the GCMs with regard to both the 

magnitude and signs of the predicted rainfall changes (Figure 6.4). The GCMs generally 

indicate that the highest percentage increase in future rainfall will occur during the winter 

season in all the catchments, except D22A which will occur in September. According to Figure 

6.4 some models suggest more than a 100% increase in rainfall for the month of July. 

Relatively smaller increases are also suggested for the rainy months. However, given the low 

values of the historical rainfall data for the dry winter season, the large percentage changes 

are unlikely to be important from a hydrological response perspective.  
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Quaternary catchments receiving lower annual rainfall amounts appear to be the ones 

expected to experience the highest changes, with one GCM predicting a decrease of 25% in 

D23H and one indicating an increase of 20% in D23C. On the other hand, the wetter 

catchments (D21B and D22A) are expected to have a narrower range of rainfall change. The 

models indicate that both catchments are expected to receive between -5% and +15% 

increase in annual rainfall. In general, there is a higher degree of change in future rainfall in 

low rainfall months than in the wetter season. Additionally, there is no indication of significant 

changes in total annual rainfall amounts between the observed data and the bias corrected 

near-future GCM simulations. If the median value is used as a statistic indicator, as is the case 

in many studies (e.g. Murphy et al., 2004; Schulze, 2012), the immediate observation would 

be that catchments D23C, D21B and D22A will receive a slightly increased (<10%) total rainfall 

amount, while only D23H will experience reduced amounts of future rainfall.  

 

The nine climate models used in this study predict varying future changes in the amount of 

rainfall within the Caledon Basin. Monthly rainfall probability curves in Figure 6.5 present the 

range of expected changes across the nine GCMs expected to occur at given probabilities. 

Most of the time, the observed rainfall falls between the projected range of change. This 

indicates that for almost all of the time there is at least one climate model that predicts a 

decreased future rainfall amount and one an increase in rainfall.  
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Figure 6.4 Percentage change of corrected future (2045-2065) from the historical (1961-2000) 
rainfall aggregated for all the nine GCMs. 

 

Figure 6.5 also shows that the probability curve of the observed rainfall lies below the predicted 

range of change at rainfall depths of about 10 mm and below. This suggests that the climate 

models unanimously agree that there will be a slight increase in the low rainfall amounts that 

are equalled or exceeded about 75 to 99% of the time. The degree of discrepancy amongst the 

models appears to vary across the catchments as the uncertainty bands (difference between 

the minimum and the maximum) of predicted rainfalls appear to be narrower in the wettest 

catchment (D21B) and widest in the drier part of the basin (D23H).        
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Figure 6.5 Comparison of the observed (1920-2005) monthly rainfall to the range of future climate 

scenario (2045-2065) aggregated from the nine climate models.   
 

6.1.4.2 Temperature and Evapotranspiration 

The historical runs of the hydrological model are based on fixed mean monthly evaporation 

demands (PE: potential evapotranspiration) taken from studies such as WR90 or WR2005 and 

no allowance for time series variations in PE were included (although these can be catered for 

by including time series inputs of deviations from the monthly means, if such information is 

available).  

 

There are several methods for estimating evapotranspiration developed over many decades. 

The methods are generally classified into different groups including: water-budget (Guitjens, 
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1982), mass-transfer (Harbeck, 1962), radiation (Priestley and Taylor, 1972), and temperature-

based methods (Thornwaite, 1948; Hargreaves, 1975).  A relatively simple approach has been 

adopted here. Maximum and minimum temperature data for the baseline and future climate 

model scenarios were used to determine the temperature component of the temperature-

based Hargreaves method (Allen et al., 1998) as explained in Chapter 4. The percentage 

increases in these values, from baseline to future, were then used to scale the historical 

seasonal distributions of potential evaporation when running the Pitman hydrological model for 

future scenarios. 

 

The approach adopted in this methodology ignores the other components of the Hargreaves 

equation (relative humidity and wind speed), which are assumed to remain unchanged 

between the baseline and future scenarios. While this assumption may not be valid, no 

information is currently produced through the standard downscaled meteorological variables 

to estimate the differences between baseline and future conditions. The daily values are used 

to compute mean monthly values for all calendar months and a seasonal scaling factor 

computed for changes for the individual GCMs from baseline to near-future scenarios (see 

Chapter 4 for further details).  

 

Figure 6.6 illustrates the results for two of the GCMs (CCCMA and CNRM) and compares the 

Hargreaves-based evaporation demand results with the change results based on mean 

temperature only. For the four quaternary catchments used as examples, the variations and 

increases in both temperature and evaporation are generally close to each other, with the 

exception of minor differences between the two variables. However, some differences are 

noted in the patterns of temperature change between the two models. There is an indication 

from Figure 6.6, as suggested by both climate models, that the Caledon Basin is likely to 

experience substantial increases in both temperature and evaporation demands.  

 

The climate models predict an increase of evaporation of up to 30% during the dry winter 

season, while the rainy season is expected to experience lower increases (12–18%). Even 

though only two GCMs and four sample sub-basins are used here to represent the spatial 

variability of both climatic and physiographic conditions over the Caledon, there is an indication 

that the entire basin is likely to become drier and warmer in the near future (2046–2065). One 

of the possible consequences of such a condition is a decrease in the magnitude of streamflow 

and hence less water resources available in an already water-scarce region of southern Africa. 

The increases in evaporative demand during the dry season may have little impact on the 

stream flow simulations as actual evapotranspiration is more likely to be determined by water 
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availability than evaporative demand. However, higher dry season temperatures and 

evaporative demand might heavily impact on water demands for irrigation. 

  
 

 
 

Figure 6.6 Change in future (2046-2065) mean monthly temperature and evapotranspiration predicted 
by CCCMA and CNRM climate models.          

 

 

6.2 DAILY RAINFALL ANALYSES 

In the previous section of this chapter, future climate change scenarios were discussed in terms 

of monthly variations in keeping with the monthly time-step hydrological models used 

throughout this study. However, monthly data sets can potentially mask some possible changes 

and signals in climate signatures that may occur at shorter temporal scales. This section 

therefore analyses the original daily rainfall data sets (at the quinary scale) for the nine GCMs 

to identify if there are any predicted changes that might be obscured by the use of a monthly 

hydrological model. These assessments are based on the differences predicted by the nine 
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GCMs between their baseline and future scenarios without any reference to historical observed 

data. 

 

The CSAG downscaled rainfall data from the 9 GCMs, for the near-future (2046–2065) and the 

far-future (2081–2100) climate scenarios are compared to the equivalent climate model 

baseline data (1961-2000). Because the objective of this section is to compare the rainfall 

changes predicted by each of the GCMs, in this analysis, rainfall data sets are used in a raw 

format and have not been corrected for bias with reference to the WR2005 rainfall 

characteristics. The raw CSAG data are based on quinary catchments and two sample quinary 

catchments are selected from the different quaternary catchments of the Caledon Basin 

referred to in the previous section of this chapter.   

 

The two quinary catchments are 1749 and 1676 located in quaternary catchments D23C and 

D21B, respectively. Quinary 1749 lies within the more arid westerly parts, while 1676 is within 

the wetter mountainous Lesotho parts of the basin in the northeast. These quinaries do not in 

any way fully represent the climate situation in the Caledon River Basin as a whole but are 

used to illustrate any diversity in the predictions from the climate models, as well to showcase 

the degree of uncertainty in their outputs. 

 

Three analytical methods were used to detect any statistical variation in the daily rainfall 

characteristics of the baseline and near future climate scenarios as predicted by the nine 

climate models. The three methods are: annual and seasonal threshold analysis, probability of 

exceedence analysis, frequency of occurrence of dry spells.  

 

6.2.1 Annual and Seasonal Threshold Analyses 

For hydrological studies as well as water resources planning purposes, different rainfall 

thresholds represent different issues of importance. While low rainfalls and the amount of time 

between their exceedance may be used to represent agricultural drought conditions, higher 

rainfall thresholds are likely to be more important with respect to stream flow droughts.  In this 

part of the study the maximum number of days of ‘dry spells’, defined as cumulative rainfall 

below several prescribed thresholds of 2, 5, 10, 15, 20 and 50 mm were determined for all the 

models for the three climate scenarios. The maximum lengths of the dry spells were analysed 

using all the data (annual time scale) as well as separate seasonal analyses, based on summer 

(October– March) and winter (April–September).  
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Quinary 1676 

Analysis of the results for this region of the Caledon Basin revealed that 6 out of 9 models 

predict a decrease in the maximum number of consecutive days with rainfall less than the 

prescribed thresholds of 2, 5 and 10 mm, for the two future scenarios. IPSL predicts the highest 

rate of decrease for most of the thresholds in the near-future (Figure 6.7). On the other hand, 

the majority of the models predict a reduced maximum period of dry days below 10 and 15 mm 

(Figure 6.7). On the annual scale, there is a trend amongst the GCMs that the dry spell 

durations may decrease in the near-future and more into the far-future, with an exception for 

the 50 mm threshold where the durations are shown to mostly increase from the near-future to 

the far-future.  

 

While the dry spell durations are shorter for the wet season compared to the dry season 

(Figures 6.8 and 6.9), there is a similar general trend of decreasing length of dry spells from 

the baseline to the two future scenarios (with few exceptions). This trend does not persist from 

the near to the far future, in which case there is a substantial disagreement amongst the GCMs.  
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Figure 6.7 Length of dry spells with rainfall below the specified thresholds for an annual 
time scale at Quinary 1676. 
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Figure 6.8 Duration of dry spells below the specified rainfall thresholds at Quinary 1676 for 
the wet summer season. 
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Figure 6.9 Duration of dry spells below rainfall of the specified thresholds at Quinary 1676 for 

the dry winter season. 
 
 
 
Quinary 1749 

For this portion of the Caledon basin, eight out of nine GCMs predicted that the duration of the 

maximum number of consecutive days with rainfall less than 2 and 5 mm would decrease 

during the far-future climate scenario. MRI indicates a progressive prolonged dry-day durations 
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for the 2 mm and 5 mm thresholds, from the baseline to the near future and more to the far-

future (Figure 6.10). Similarly, CNRM is the only model that consistently suggested that such 

dry periods would be marginally increased in either of the two future climate scenarios for 

almost all of the rainfall thresholds. For the higher rainfall threshold of 15, 20 and 50 mm the 

models do not clearly depict which direction the dry day durations would adopt in the future. It 

is however, noticeable that IPSL consistently indicated the sharpest decreases in the lengths 

of dry day duration periods and that GFDL showed a remarkable decrease in dry days for the 

15 mm threshold.  

 

Within the Caledon Basin, the data for Quinary 1749, which is in the drier part of the basin, 

suggested a reduction in the duration of dry spells below the low rainfall thresholds of 2 and 

5 mm during the wet season (Figure 6.11). However, it is very difficult to make any 

generalisations for either of the Caledon sample points. The general trend of decreased lengths 

of dry spells indicated in the annual and the wet season analyses appeared to prevail even in 

the dry winter season (Figure 6.12) although there was some degree of uncertainty where some 

models appeared to predict an increase in the duration of the dry spells. The overall conclusion 

is that there are few consistencies in the direction and magnitude of change in maximum spells 

below defined rainfall thresholds. This lack of consistency applies across the different GCMs.  
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Figure 6.10 Duration of dry spells below rainfall below the specified thresholds at Quinary 
1749, on the annual time scale.  
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Figure 6.11 Duration of dry spells with rainfall below the specified   thresholds at Quinary 
1749 for the wet season. 
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Figure 6.12 Duration of dry spells with rainfall below the specified thresholds at Quinary 
1749 for the dry season. 

 
 

6.2.2 Frequency of dry spells 

This analysis involves quantifying the frequency of dry spells, defined by cumulative rainfall 

below thresholds of 5, 10, 20, 50 mm, with durations of 10, 30, 60, 180, 270, 360, 720, 1440, 

1800, and more than 1800 days. The results shown in Figure 6.13 are for the quinary 1676. 

The results indicate that the frequency of relatively short dry spells below the rainfall thresholds 

of 5 and 10 mm could increase slightly in the two future climate scenarios. The trends of 



159 
 

predicted changes for dry spells below higher rainfall thresholds of 20 and 50 mm are 

somewhat inconsistent. Some models predict increased occurrence, while at the same time, 

others predict contradictory results. 

 

Results for the quinary 1749 (not shown), in a drier portion of the basin, indicate generally 

similar trends, with a rather clear trend and agreement with regard to the occurrence of dry 

spells below the threshold of lower rainfall. Similarly, the pattern of predicted change for the 

20 and 50 mm threshold are inconsistent with significant differences between the climate 

models for the near and far future scenarios. 

 

As with the previous assessments of dry spells, there is little agreement between the different 

GCMs. However, within individual GCMs there is some level of consistency, such that a 

predicted increase (or decrease) in frequency of occurrence of dry spells for the near-future 

typically continues into the far-future. 

 

Figure 6.13 Frequency of occurrence of dry spells for prescribed rainfall thresholds for quinary 
1676. 
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Figure 6.13 (cont.) Frequency of occurrence of dry spells for prescribed rainfall thresholds 
for quinary 1676.  

 

 

6.2.3 Probability of Exceedence of Rainfall 

This part of the analysis addresses the issue of potential changes in high daily rainfalls and is 

focussed on the changes in the rainfall depths for two percentiles (0.5 and 1.0%) of the 

exceedance frequency curves of daily rainfall. Two additional percentage points (10 and 15%) 

have been added to represent moderate to low daily rainfalls, Table 6.2 illustrates that the 

percentage change of rainfall exceeded in the four percentiles from baseline to near-future and 

baseline to far-future for quinaries 1676 and 1749. The table shows a substantially high degree 

of disagreement amongst the climate models. While some models suggest significant 

increases in the extreme and high rainfalls (exceeded 0.5 and 1% of the time), other GCMs 

suggest decreases. For the relatively wetter part of the basin (quinary 1676) most of the models 

predict a slight decrease of up to 10% in both extreme and high rainfall levels. However, there 

are a few which predict that quinary 1676 may experience an increase in extreme rainfalls, 
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with the highest increase predicted being about 16%. All the climate models agree on an 

increase in rainfalls exceeded 10% and 15% of the time in the far-future, while there is only 

one model (GFDL) that indicates a small decrease within the near-future climate scenario. 

 

Quinary 1749 is located on the drier portion of the Caledon Basin than quinary 1676. The 

rainfall predictions for this sample point show a rather similar trend in terms of changes during 

the two future scenarios compared to the baseline. Nevertheless, Table 6.2 shows that the 

predicted increases in all categories of rainfall are of a much larger magnitude. Some models 

predict as much as a 40% increase in both moderate and low rainfalls in the near-future 

scenario, while some models predict about 100% increase in low rainfall for the far-future.   

 

As with the previous assessments of dry spells, there is little agreement between the different 

GCMs, especially with regard to changes in extreme and high rainfalls in terms of direction 

and magnitude of rainfall change. Conversely, with regard to moderate and low rainfall 

amounts, the models tend to be unanimous that there will be an increase, though they differ 

when it comes to the magnitude of the increase. However, there is more consistency within 

individual GCMs, such that a predicted increase (or decrease) in extreme rainfall for the near-

future typically continues into the far-future. It is also of great interest to note that two models, 

IPSL and MIUB, have almost constantly predicted increases across all rainfall categories, for 

both future scenarios and within both quinary catchments.    

 

The daily rainfall probability curves for the two quinary catchments simulated by the nine 

climate models for the three climate scenarios are shown in Figures 6.14 and 6.15.  The figures 

clearly depict that there are more rainy days in quinary 1676 than 1749 and this will persist into 

the near-future and far-future periods. This prediction is also in line with the historical data 

records for the two zones which indicate that quinary 1676 receives the highest amount rainfall, 

whereas quinary 1749 is located in one of the driest parts of the basin.     
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Table 6.2 Percentage change of rainfall exceeded 0.5, 1, 10 and 15% of the time 
for near-future and far-future climate scenarios relative to the baseline 
scenario.  

  Quinary 1676 

       NEAR‐ FUTURE    

 
 
 

 
 

FAR‐ FUTURE 
% 
Exceedence  0.5  1 10 15 0.5 1 10  15

CCCMA  5.9  ‐2 7.7 9.6 ‐2.3 ‐4.5 11.9  14.8

CNRM  ‐2.4  ‐0.1 11.2 6.6 1.4 0.8 19  13.6

CSIRO  0.3  2 8 8.4 ‐2 2.3 18.9  16.5

GFDL  ‐1.4  ‐0.3 ‐7.7 ‐6.2 0.4 ‐1.1 5.5  1.7

GISS  ‐0.8  ‐2 1.7 3.7 ‐5.9 ‐2.8 7.3  8.1

IPSL  15.8  7.7 15.8 14 17.8 6.9 14.1  14.9

MIUB  ‐6.2  1.9 11.5 12 1.1 5 18.1  18

MPI  ‐4.6  ‐11.5 5.2 7.4 2.5 ‐1.6 9.3  13.8

MRI  2.6  6.4 4.2 3.9 ‐0.3 2.7 4.8  5.6
 
 

Quinary 1749 

                          

      NEAR‐ FUTURE    FAR‐ FUTURE 
% 
Exceedence  0.5  1 10 15 0.5 1 10  15

CCCMA  0.6  2.8 11.8 # ‐3.3 5 13.8  #

CNRM  3.6  0.7 17.6 46.2 2.2 3.5 29.8  103.8

CSIRO  ‐0.4  ‐7.2 14.3 21.1 ‐0.7 ‐2.5 26.4  64.5

GFDL  3.7  1.2 ‐2.6 11.6 0.6 ‐0.3 9.2  32.6

GISS  ‐0.6  ‐4.6 6.7 32.3 1 ‐0.1 7.3  45.3

IPSL  10.3  13.3 41.5 # 3.8 5.6 30.2  #

MIUB  1.5  6 25.2 # 0.03 1.5 46.1  #

MPI  2.6  ‐5.2 3 # ‐0.3 1 9.6  #

MRI  6.4  4.9 15.1 # 3.8 4 12.9  #

# Represents calculations involving zero rainfall values. 
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Figure 6.14 Probalility charateristics of daily rainfall simulated  by a set of climate models for 
baseline and near- and far-future climate scenarios in quinary 1676. 
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Figure 6.15 Probalility charateristics of daily rainfall simulated  by a set of climate models for 
baseline and near and far-future climate scenarios in quinary 1749. 

 

 

There is a great deal of uncertainty in the analysis of the occurrence and lengths of dry spells, 

such that there is no decisive conclusion on whether and how the hydrological conditions of 

the Caledon River Basin will change  in the future or not. The GCMs do not predict a 

unanimously clear pattern of the characteristics of the future occurrence of dry spells. Similarly, 

the GCMs also disagree on the amount of change of heavy rainfall (occurring at 0.5 and 1.0% 

of the time) of future (near and far) climate scenarios relative to the baseline. However, the 

GCMs consistently agree that moderate and low rainfalls (occurring at 10 and 15% of the time) 

will increase in the future, though they differ on size of the change. There is no clear indication 

about such changes from the near to the far-future. Generally speaking, the daily rainfall 

analyses do not seem to provide any more significant information of hydrological relevance 



165 
 

than the monthly rainfall analyses. This is mainly due to the fact that there is a great deal of 

uncertainty in the rainfall output of the GCMs.      

 

6.3 CLIMATE CHANGE IMPACTS ON HYDROLOGY 

Prediction of future hydrological conditions of the Caledon River Basin involves the use of 

predicted climate change data (rainfall and evaporative demands) as inputs to the hydrological 

models that have already been parameterised for current climate and water use conditions. 

The first step in this procedure entailed establishing a set of behavioural parameter uncertainty 

bounds using the historical data sets (as discussed in chapter 5). This is then followed by 

replacing the historical climate inputs with time series representing possible future conditions, 

and assuming (at this stage of the analysis) that water use demands will remain stationary into 

the future. While the assumptions that both the model parameter values and the water use will 

remain the same into the future are almost certainly not valid, it was beyond the scope of this 

study to speculate on how these would change in response to future climate regimes. It would 

be necessary to add further information on crop growth under different temperature and soil 

moisture regimes in order to determine how natural vegetation (Gao et al., 2014) and irrigation 

demands might change into the future. Some of this information may be obtained from the 

climate change simulations presented below and used to change the uncertainty bounds of 

some of the natural hydrology and water use model parameters. This issue will be further 

addressed in the final chapter of the thesis.  

 

6.3.1 Predictions of Future Streamflow 

There are substantial uncertainties in the prediction of future stream flow and water resources 

availability in the Caledon River based on the projections of climate change used. Stream flow 

simulation results and observed records from the four example sub-basins across the basin 

are presented in Figures 6.16 and 6.17. The results indicate that the majority of GCMs used in 

the current study predict a slight decrease, though they do not agree on the amount of this 

decrease (Figure 6.16), with GFDL projecting the largest decrease across all the flow levels. 

On the other hand, only two GCMs (IPSL and MIUB) project a significant increase of low and 

medium stream flows and slight increases in high flows relative to the historic present day 

flows (Figure 6.16). As might be expected the variations across the GCM projections are 

greater for the lower flows than for the higher flows. The effects of these low flow changes are 

exacerbated when the present day water uses are included in the modelling and within the 

drier sub-basins (see Figures 6.16b and 6.16c for the high percentiles). Where the future 

climate impacts suggest lower and zero flows at high percentiles it is likely that some of the 
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required water uses will not be met and therefore the impacts on water resources might be 

even greater than is indicated by Figures 6.16 and 6.17. Even though some of the climate 

models had projected increased rainfall amounts, the effects have been offset by increased 

rates of evapotranspiration resulting from increased temperatures. It is worth noting that while 

there is a strong disagreement amongst the GCMs on direction and magnitude of change of 

rainfall, they are far more consistent in their projections of increases in temperature, and hence 

evaporative demands. The combined uncertainties across all of the GCM predictions are 

shown in Figure 6.17. It is evident from Figure 6.17 that the uncertainty margin of GCM 

predictions is much wider than the historical uncertainties. For example, if the outputs of all the 

GCMs are considered to be equally plausible, there is a possibility that median flows (occurring 

at least 50% of the time) can increase by as much as 50% relative to present day simulations, 

as predicted by the MIUB model, or might decrease by the same amount according to GFDL 

(Figure 6.16).  
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Figure 6.16 Uncertainty bands of selected quantiles of the flow duration curves for flow simulations 

at sub-basins D21E(A), D22B(B), D23D(C) and D23F(D) . The natural and present day 
simulations are for 1920 to 2005, while those based on the GCMs are for 2046 to 2065. 
The blue horizontal lines represent the uncertainty bounds of the present day simulations. 
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Figure 6.17 Current and predicted future streamflows at four quaternary catchments simulated 

by the Pitman model, under possible future evaporatranspiration and rainfall 
regimes projected by 9 climate models.  

 
 

6.4 SUMMARY 

The bias-corrected future monthly rainfall predictions from all the nine GCMs showed 

inconsistent results. The models disagree on the magnitude and direction of change in future 

rainfall for the study area. While some of the models predict decreased rainfall, others indicate 

an increase in the future rainfall. Similarly, the analysis of daily rainfall did not yield a consistent 

change of rainfall patterns for the future climate scenarios compared to the baseline. However, 

the models are unanimous on two issues: firstly, the occurrence of short-duration (10 days) 

dry spells below 5 and 10 mm rainfall is likely to increase by approximately 5%; secondly, that 

low daily rainfalls (that is, those which are exceeded 10 and 15% percent of the time) are likely 

to increase in the two future scenarios. However, they disagree on how much this increase will 

be. 

 
In spite of the possible increase in rainfall predicted by some GCMs, the general trend across 

all of the GCMs is for somewhat lower stream flow volumes and this is related to the effects of 

higher evaporation demand resulting from increased temperatures. Converse to these 
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findings, a study by Graham et al. (2011) suggests an annual increase of runoff for the Thukela 

River Basin, which is located relatively close to the Caledon River in Kwazulu-Natal province 

of South Africa. For the same evaluation period (2046 – 2065), the South Africa Risk and 

Vulnerability Atlas of Archer et al. (2010) predicts the annual stream flow in the region of the 

Caledon River Basin to potentially decrease by 10% in some sub-basins and increase by about 

more than 30% in others. Their study compared the future stream flow to the baseline period 

(1971 – 1990). Kusangaya et al. (2014) reviewed several climate change studies for southern 

Africa and concluded that stream flow will generally decrease by the middle of this century. 

These varying inferences bring attention to the degree of uncertainty in the future status of 

water resource under the influence of climate change.   

 

The results indicate that evapotranspiration in the Caledon River Basin is likely to increase in 

the future as a result of increased temperatures. There will be more increase during the dry 

winter seasons than in summer. The assumption that evaporation demand will increase in 

close relation to temperature is not totally supported by some measurements of evaporation 

from various parts of the globe. For instance, Roderick and Farduhar (2002; 2004; 2006) 

reported a decreasing trend in pan evaporation observations over New Zealand and Australia. 

Similarly, Eamus and Palmer (2004, 2007) and Hoffman et al. (2011) reported declining 

evaporative demands in South Africa. The best explanation for the decreasing pan evaporation 

can be attributed to decreased wind speed, solar radiation caused by increased cloud cover 

and atmospheric aerosol content (Roderick et al., 2007). These components of the relationship 

between meteorological conditions and evaporative demand have not been included in this 

study as data for both past and future conditions were not available. This therefore constitutes 

an additional source of uncertainty in the prediction of future water resources availability..   

 

The basic assumption made in the analysis of future stream flow simulations under the 

influence of climate change is the stationarity of the factors influencing the hydrological 

processes in the basin. It has been assumed that the parameter ranges established for 

historical conditions will also be applicable in the future and are not affected by the changing 

climate patterns in the basin. Additionally, it is assumed that the current rate of water use, 

monthly distribution and abstractions will remain the same. However, it has been argued that 

hydrological response, as well as the associated model parameters depends on the climatic 

conditions (Wagener, 2007; van Werkhoven, 2008; Gao et al., 2014).  

 

While it is acknowledged that the rate of water use might increase to meet the possible 

increase in irrigation demand due to increased evapotranspiration rates, it is not possible to 
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accurately quantify such increases. Similarly, some parameters used in the Pitman model are 

related to factors such as land use and cover, both of which are likely to change in adapting to 

climate change. This will, in turn, have an impact on the parameters used. At this stage it is 

also not possible to establish the new parameter sets under the influence of climate change. 

Even though the results indicate a general decreasing tendency, the overall indication is that 

the estimated stream flow and future water resources availability in the Caledon River Basin is 

substantially uncertain. Many previous studies have clearly demonstrated the importance of 

uncertainties in rainfall and evapotranspiration demand data and have attempted to improve 

the quantification of climate variables through analysis of the existing data (Lynch, 2004) or 

using satellite observations (Hughes and Mallory, 2008; Sawunyama and Hughes, 2008). 

However, the fact remains that it is very difficult to reduce the uncertainties without additional 

data and, unfortunately, these are simply not available. 
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7 DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

7.1 INTRODUCTION  

The Caledon River Basin is located in a generally water-stressed region of the South Africa, 

with sporadic rainfall patterns and high evaporative losses. The basin and the region as a whole 

are prone to frequent occurrence of droughts with prolonged periods of rainfall shortage 

(Rouault and Richard, 2003; Reid and Vogel, 2006). It is widely expected that the area will 

experience more frequent and severe droughts in the future as a result of climate change 

(Reason et al., 2005; Stringer et al., 2009; Mirza, 2011). Thus, shortage of available water 

resources in the basin is expected to be exacerbated. This will potentially lead to negative 

impacts on, and deterioration of, various socio-economic activities such as agriculture and 

domestic (rural and urban) water supply. Proper planning for future water resources in the basin 

requires a comprehensive quantification of the hydrological impacts of climate change, as well 

as the uncertainties associated with any future predictions.  

     

With adverse hydrological impacts of climate change envisaged, it is necessary to fully 

understand the current hydrological dynamics and characteristics of the Caledon River Basin 

in order to obtain sensible predictions for the future. While assessing the current hydrological 

status and predicting future hydrological changes, there are uncertainties related to various 

stages of the modeling process. There are also uncertainties introduced by the different 

projections of future climate conditions from different GCMs. It is therefore essential that such 

uncertainties be identified, evaluated, quantified and possibly reduced so that they can be 

incorporated into the decision-making process. This task necessitates the use of appropriate 

modelling tools and advanced methodological approaches to achieve realistic results. While 

this study is entirely focused on the Caledon River Basin, the issues of uncertainty in water 

resources assessments in relatively data scarce areas are common to many other basins, not 

only in South Africa, but also in many other parts of southern Africa.  

 

7.2 HYDROLOGICAL AND CLIMATE CHANGE MODELLING TOOLS 

The Caledon River Basin is a relatively large basin in South Africa and consists of more than 

30 sub-basins of varying areal extent, topography and physiographic, as well as water use 

characteristics. For this reason, it is a considerable task to represent the basin in the form of a 

hydrological model. Selection and identification of appropriate hydrological models for 

investigation of water resources of the Caledon River Basin is a critical issue. The study used 
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two hydrological models namely, Pitman and WEAP for the hydrological and water resources 

assessment of the basin. The Pitman model has been successfully applied in South Africa for 

more than 40 years (Hughes, 2013) and it incorporates the known major hydrological 

processes relevant to the Caledon Basin. It is also available in different formats, including those 

that allow for the incorporation of uncertainty ensemble modelling using simple Monte Carlo 

sampling of the feasible parameter space.  On the other hand, the WEAP model presents a 

rather simpler conceptual structure with fewer parameters to quantify, but includes more 

components to allow for the simulation of water resources development infrastructure than are 

available in the Pitman model. This model has not been substantially applied in the region.  

 

The study demonstrated the potential for the WEAP model to be calibrated based on existing 

Pitman model setups for the Caledon River Basin. The two models performed reasonably well 

against the available stream flow observations, however, it has to be recognised that these 

observations are very limited and therefore the quality of the simulations remains highly 

uncertain. The somewhat reasonable performance of the parsimonious WEAP model was not 

unexpected as it has been demonstrated by several studies (e.g. Jones et al., 2006) that simple 

models can yield comparable, and sometimes better, results than more sophisticated models. 

However, the choice of a hydrological model constitutes another source of uncertainty in 

hydrological modelling. The use of more than one model for hydrological assessment has the 

advantage of offering more robust results and it has been demonstrated that multi-model 

predictions are more accurate than individual models (Duan et al., 2007). Establishing the 

WEAP model also offers an additional advantage because of its additional functionalities (which 

are not present in the Pitman model) that are essential from the water resources management 

and planning perspectives.    

   

The 2-step approach of the uncertainty version of the Pitman model used in the current study, 

which is based on a progressive reduction of uncertainty, ensures that all of the simulated 

natural incremental flows are behavioral, according to the established local and regional 

constraints and reflect a catchment’s hydrological responses. Thus, the resultant downstream 

flows comprise only behavioral upstream ensembles. One of the advantages with the 2-step 

approach is that it enables the constraints can be set with very narrow uncertainty bounds 

where there is a good quality of observed data. However, there is still substantial uncertainty 

in ungauged and poorly gauged sub-basins. The approach therefore allows for different levels 

of uncertainty to be included in basins where the hydrological response in some areas is well 

understood and known.  The approach yielded satisfactory results and was successful in 

constraining the model parameter ranges. Though the simulated natural stream flow 
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uncertainty bounds were narrow for many sub-basins, they were much wider in others. This is 

a reflection of the lack of observed stream flow data to represent either the natural or present 

day development flow regimes of some parts of the basin. One of the critical issues in the 

approach is the dependence on observed data to set the output constraints. Data quality, 

quantity and spatial representation still remain a major challenge in the basin. Most of the 

stream flow records are of relatively poor quality, some with a lot of missing data, most with 

inadequate recording of high flows and with non-stationary and largely unquantified water 

abstraction impacts. These limitations make it very difficult to establish appropriate constraints 

on the model outputs and to assess the validity of the model outputs. High flows have been 

identified as being poorly quantified as a result of limitations of the stream-discharge rating 

curves, while assessments of the simulations of low flows are affected by the large 

uncertainties in water uses.  

 

In estimating the water use within the Caledon River Basin, the study carried out a detailed 

investigation of the extent of irrigation demands for the main crops cultivated within the basin. 

This involved estimating the cultivated area using satellite imagery (from Google Earth). One 

of the major limitations with this approach was the lack of a means of verification and 

confirmation. For instance, in some areas it was difficult to distinguish between rain-fed and 

irrigated areas as they both appear the same.  Other water abstractions were estimated based 

on population and assumed water demands for the towns and rural areas on both sides of the 

South Africa/Lesotho border. This approach is also uncertain and it could be improved by field 

work, data collection surveys and information gathering from the responsible local authorities. 

However, this would have been expensive and time-consuming.  

  

The study reveals that the water resources of the Caledon River are heavily impacted by a 

number of water use activities in the basin. The main water uses in the basin are artificial 

impoundments in the form of a few large dams and many ubiquitous small farm dams. Both 

kinds are used for various purposes such as municipal and industrial water supplies as well as 

irrigation. Such impoundments in the Caledon River Basin have affected the natural hydrology 

of the watershed as they decrease the magnitude and timing of the stream flow. The major 

challenge in this regard is an inadequate quantification of the amount of water abstracted from 

the streams and the main river channel. As a result stream flow characteristics change over 

time even if the meteorological inputs and other natural processes in the basin remain the 

same. 
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There are some situations where the observed data lie outside the simulated present day 

uncertainty bounds and these are mostly at very high flows or at very low flows. To improve 

the confidence (and reduce the uncertainty) in the model outputs, it would be necessary to 

obtain more observed data of flood flow events through extension of the rating curves at the 

gauging sites. In terms of low flows, improvements in the model outputs would mostly rely on 

improved quantification of the patterns of water use. 

 

7.3 DATA QUALITY AND ANALYSES 

Modelling a large river basin such as the Caledon requires an extensive amount of observation 

data collected over a sufficiently long period, covering as much of the basin as possible and 

without gaps. Data required by the Pitman and WEAP models include meteorological inputs to 

force the models and catchment land surface and sub-surface data to help quantify model 

parameters. Stream flow and groundwater data are also important to evaluate the final model 

output and to ensure that sub-surface water storages and fluxes are simulated appropriately.  

One of the major challenges facing hydrological investigations and modelling of the Caledon 

River Basin was found to be inadequate spatial distribution of meteorological and stream flow 

gauging stations. As with many developing areas in the region and globally, maintenance of 

monitoring networks in the basin appears to be declining, with several gauges either ceasing 

to operate or having substantial data gaps and incomplete records. The required data sets and 

information were obtained from various databases and previous studies undertaken in the 

basin, particularly the Groundwater Resource Assessment-GRAII (DWAF, 2005), Agricultural 

Geo-Referenced Information System (AGIS, 2007), Water Resources of South Africa-WR2005 

(Middleton and Bailey, 2008), stream flow observation data from the Department of Water and 

Sanitation (DWS) official website, and the downscaled climate change data from the Climate 

System Analysis Group (CSAG) of the University of Cape Town. Though such data sets are 

not perfect and are uncertain, they are the best available. 

 

During the course of the study, the raw climate change data was subjected to a series of 

modifications and transformations to attain suitability and to meet the intended use. It is 

common practice for point rainfall measurements to be spatially interpolated to area data, when 

using a semi-distributed hydrological model such as the Pitman model. The inverse distance 

weighting interpolation method was used in this study. This approach is one of the widely used 

spatial interpolation methods and it has provided reliable results (Willmott and Robeson, 1995; 

Yasrebi et al., 2009). However, like any other approach of this type, there is always a degree 

of uncertainty involved. The uncertainties are even more severe in the northern parts of the 
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basin (highlands region of Lesotho) where the density of the rainfall gauging network is sparse. 

The high spatial and temporal rainfall variability is not adequately reflected in the rainfall data 

used as input to the hydrological models.  

 

The study demonstrated that rainfall data from the GCMs’ baseline rainfall data for the Caledon 

River Basin are biased relative to the observed rainfall (WR2005). The bias properties of 

climate model outputs are generally well-known. For this reason a bias correction method 

(Hughes et al., 2014b) was applied to the downscaled near-future rainfall data. The bias 

correction was considered essential as the future rainfall and evaporation demand data were 

used with a model calibrated against the historical data (Andersson et al., 2006). However, it 

is also noted that the bias correction method is based on some assumptions about the statistical 

properties of the square root transformed rainfall data that are almost certainly not met for all 

of the data sets used. While this introduces some additional uncertainties in the validity of the 

future climate inputs to the hydrological model, these are expected to be relatively small 

compared to the differences between the projections across the nine GCMs.  The alternative 

approach would have been to calibrate the model nine times using the individual GCM baseline 

data and then run the model with each GCM near-future data. This would have involved a 

substantial amount of additional work and would have added uncertainties related to the 

differences in the calibrations based on the nine baseline outputs of the GCMs. It is therefore 

concluded that the bias correction approach used in this study is appropriate for the purposes 

of quantifying the future uncertainties in water resources availability in the Caledon River Basin.   

 

7.4 UNCERTAINTIES IN THE PREDICTION OF FUTURE HYDROLOGICAL CHANGES 

The amount of water resources available within the Caledon River Basin is likely to decrease in 

the future as a result of increased evapotranspiration caused by rising temperatures, even 

though many GCMs predict increased rainfall amounts. The GCMs substantially disagree on 

the amount and direction of change of future rainfall. They do however, consistently predict rising 

temperatures and consequent evaporative demands during the middle and end of the century.  

The study concludes that uncertainties in the predictions of hydrological and water resources 

availability emanate from several sources at various levels of hydrological and climate change 

modelling. Uncertainties in hydrological modelling output originate from the imperfect climate 

inputs and imperfect structures and parameter sets of the Pitman and WEAP hydrological 

models which do not adequately represent the complicated hydro-climatic system of the basin. 

Further uncertainties are related to the model representation of existing water uses and the lack 

of sufficiently reliable observed stream flow data to calibrate and evaluate the model outputs.  
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Predictions of the future water resources availability in the Caledon River Basin involved two 

stages. The first step was to establish an appropriate range of behavioural parameter sets using 

historical data and then replacing historical data with GCM-predicted future climate data as input 

(rainfall and evapotranspiration) to the Pitman model. This is a rather standard approach. 

However, it has several uncertainties and limitations. Perhaps the most important of the 

uncertainties stems from the rainfall outputs of the climate models.  One of the important 

observations in this study is that there is large uncertainty in the prediction of rainfall, with some 

models predicting an increase while others suggest a decrease compared to the observed. The 

study concurs with the general view within recent and contemporary literature that GCMs 

constitute the largest uncertainty in future hydrological predictions (Giorgi and Francisco, 2000; 

Tebaldi et al., 2005; Deque et al., 2007; Buytaert et al., 2009; Kay et al., 2009; McMahon et al., 

2014; Peel et al., 2014).  The absence of consensus amongst climate models in terms of change 

of future rainfall is inevitably reflected in the uncertainty in the estimations of predicted stream 

flow.  

 

While it is assumed in this study that projections of individual GCMs are equally likely, some 

climate change impact assessment studies have selected only those which are deemed to be 

more credible than others, based on their ‘skills’ to simulate past climatologies (Min and Hense, 

2006; Hughes, et al., 2014b; Watanabe et al., 2014); others have used an unequal weighting 

approach (Klocke et al., 2011; Sunyer et al., 2014).. Some of these studies have also found a 

small difference in outcomes when using all models, only skilful ones and a weighted approach 

(Hughes et al., 2014b). Multi-model means have also been applied in studies such as Thomson 

et al. (2006), and Wolski et al. (2012). A disadvantage with the ensemble mean approach is that 

it ignores the uncertainty inherent in the various climate models and it is highly susceptible to 

extreme model simulations. The advantage of using several GCMs over a single model is that 

uncertainties in projections are better quantified as more GCMs provide additional information. 

Considering many possible outcomes should lead to robust decision making for future climate 

change impacts. As one of the objectives of the study was to quantify the uncertainties, the 

assumption of equal likelihood for individual GCM projections was considered to be the most 

appropriate approach. 

 

The predictions of future stream flows presented in this study are mainly based on the current 

state of the basin’s physical characteristics, as well as current water uses. The basin`s physical 

characteristics are primarily subject to land use (and cover) changes, while the rate of water 

uses depend on factors such as population, irrigation requirements and socio-economic 
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development. Land use and cover changes have been shown to affect hydrological regimes and 

stream flow in many catchments throughout the world, including South Africa (Schulze, 2000). 

It is possible that in the Caledon River Basin there will be significant changes in land use 

practices and cover in the future and this will affect some of the Pitman model parameters. For 

example, urbanisation will increase the portion of impervious portion of the basin thereby 

affecting the value of the parameters that determine surface runoff, while changes in land cover 

would lead to changes in the interception storage and actual evapotranspiration parameters. 

While these are some of the more obvious likely changes, there is insufficient knowledge or 

information available to predict the extent of such changes within the basin, as well as to 

sufficiently establish new parameter sets under changed conditions. While, the general physical 

characteristics of the Caledon River Basin and its response to climate inputs are likely to change 

in future, these changes could not be quantified with sufficient confidence to warrant their 

inclusion in this study. Whether or not the current uncertainty bounds of the model output 

constraints and the model parameters are wide enough to include the effects of climate induced 

physiographic changes therefore remains a question for future research.     

 

Another critical aspect and an additional source of uncertainty in the prediction of future stream 

flow is the rate of population change and related water uses. The current domestic water use 

estimates are based on approximate estimates of the number of people living in various sub-

basins. Domestic water use constitutes a significant portion of the total water use within the 

basin. Therefore more precise data on the current rate of domestic use and the demographics 

are crucial in simulating the present day stream flows.  However, there still remains significant 

uncertainty in the estimations of the two variables. This problem escalates when future water 

resources availability is evaluated. Though change in population growth (rate per annum) is 

normally established through census and other methods, it becomes more difficult to make 

projections in time scales similar to those used in climate change particularly in this study. 

Additional uncertainty in such estimates is brought about by migration. Changes in population 

might also reflect in the intensity of agriculture to meet the changed demands, this in turn affects 

the magnitude of water use for agricultural purposes. Such issues impose more complications 

in the prediction of water resources availability in the Caledon and in any other basin for that 

matter.  

 

The predicted stream flows of the Caledon River Basin are based on current irrigation water 

use, which is a major consumer of water in the basin. It is assumed in this study that climate 

change will likely cause the evaporative demands within the basin to increase in future as a 

result of increased temperatures. This change will result in increased irrigation water 
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requirements for optimum crop production. From this premise, it is therefore conceivable that 

there will be more (than current) water allocated for irrigation. On the other hand, it has been 

argued by agronomists, among others, that enhanced concentrations of carbon dioxide in the 

atmosphere stimulate a reduction in plants stomatal conductance and hence reduced water loss 

by transpiration (Doll, 2002; Fischer et al., 2007). These two issues clearly result in opposing 

effects on the consequent water use and highlight one of the challenges in predicting 

hydrological impacts of climate change. It is not yet clear which of the two will have more impact. 

Though the assumption of stationary irrigation water is somewhat flawed, it forms a credible 

basis until more research can be carried out with regards to implications of climate change on 

plant growth.       

 

The issue of irrigation is closely related to that of evapotranspiration (ET) which the present 

study estimates an increase of up to 30% for the climate scenario 2046-2065, as result of rising 

air temperature. This deduction is in line with the findings of several other studies (e.g. 

Andersson et al., 2011) that southern Africa will be faced with more severe droughts and is going 

to be increasingly drier, worsening the water situation in the region. Though the assumption that 

evapotranspiration will increase with increasing air temperature is plausible, it is contrary to 

several studies which reported that observed pan evaporation has been decreasing 

simultaneously with increasing temperatures in many part of the world (Nicholls, 2003; Roderick 

and Farquhar, 2004; 2005) and more importantly in some parts of South Africa (Eamus and 

Palmer,  2007). While ET correlates with temperature, there are also other important variables 

which affect the rate of ET. These include: net radiation (which is affected by cloudiness and 

aerosol concentrations), humidity and wind speed. Doll (2002) suggests that ET would also be 

affected by decreased plant transpiration due to decreased stomatal conductance in response 

to increased CO2 concentration.  

 

Results of the current study are based on the assumption that other factors affecting ET (other 

than temperature) will remain constant into the future and were therefore factored out of the 

calculations. This is one of the most serious limitations of the study as ET constitutes a major 

component of the hydrological cycle in the Caledon River Basin. However, the contention is that 

even if these omitted variables were included in the estimation of ET, it would be extremely 

difficult to predict them and as such would constitute additional uncertainties in hydrological 

predictions. This would be exacerbated by lack of or inadequate observations in this part of the 

world to bias correct predictions and it would be almost impossible to establish credible 

estimations.           
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7.5 CONCLUSIONS   

The study presented an assessment of the uncertainties related to modelling the natural 

hydrology as well as the impacts of various water use activities affecting the quantity of flow in 

the basin. These include farm dams, irrigation and domestic water supply. This was to attain 

sensible model outputs with results comparable to the observed flows. The two-step approach 

was used to generate flow ensembles based on regional and local constraints of mean monthly 

flow, groundwater recharge and three flow duration curve quantiles. The constraints were 

basically aimed at limiting the parameter sets to those that generate model results that can be 

considered behavioral under natural conditions. The approach led to the establishment of 

appropriate parameter uncertainty ranges for individual sub-basins and the results are 

generally satisfactory except for very high and low flows. The study achieved reasonably low 

ranges of uncertainty that can be assimilated as part of decision-support for water resources 

planning and management.  

 

The study demonstrated that there are substantial variations in the projections of future climate 

based on the downscaled rainfall and temperature outputs from nine climate models. While 

the climate models tend to agree that temperature will increase in the future, they contradict 

on the direction and magnitude of change in future rainfall patterns. This observation has also 

been reported in many other studies (Hughes et al., 2014b; Klutse et al., 2015). The 

contradicting projections of rainfall from the climate model tend to be reflected in the 

characteristics of projected stream flow. The majority of the climate models predict a decline 

in stream flow at the outlets of the four sub-basins (D21E, D22B, D23D and D23F) used to 

illustrate the results. On the other hand, only two models (IPSL and MIUB) consistently 

predicted increased water resources availability for the four sub-basins in the Caledon River 

Basin. The stream flow uncertainty range (of all GCMs) indicates increased high flows 

(occurring more than 90% of the time) and decreased moderate and low flows relative to the 

present day flow simulations.  

  

Though there still remains a large degree of uncertainty in the prediction of future stream flow 

in the Caledon River Basin, it is concluded that the study used regionally appropriate modelling 

tools. It should be further emphasised that the quality and length of observation data are major 

limiting factors in undertaking modelling exercises in this basin. Some of the uncertainties 

could be reduced in the future through improved hydro-climatic monitoring together with some 

targeted detailed field investigations, particularly to address the uncertainties in water use. 

However, there will always be remnants of ‘unknowable’ uncertainties.  
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7.6 RECOMMENDATIONS 

The study`s focus was on understating the hydrological dynamics and characteristics of the 

Caledon River Basin during the past, current and possible future climatic conditions, while 

recognizing and evaluating the related uncertainties. Predictions of the future hydrology and 

water resources availability is particularly important for sound water resources planning and 

management. During the tenure of the study there are a number of observations and 

contemplations that were recognized, and based upon these the following recommendations 

are made: 

 

 One of the major challenges the study encountered was availability, quality and length of 

recorded data which proved to be inadequate to fully yield credible information. It is 

therefore recommended to the relevant authorities in South Africa and Lesotho that there 

be financial investments aimed at upgrading and improving data gathering facilities 

(meteorological and hydrological stations) within the basin.  

 

 The two governments, regional organizations such as ORASECOM and SADC-HYCOS 

may invest more into the new technology of acquiring data. There has recently been 

innovative developments in science and technology with regard to remote sensing products 

(e.g. MODIS) that can be used to collect more accurate and spatially representative 

meteorological, data and information on physical catchment properties. These can improve 

the parameter estimation process which is based on physical basin characteristics (for the 

Pitman model). The use of such products will certainly yield fruitful results (Sharma et al., 

2015, and references therein), and will likely improve the results of predictions of future 

water resource availability and hence sound planning and management.     

 

 It is advisable that decisions on water resources planning based on the findings of this thesis 

should account for the uncertainty ranges that have been simulated. Considering all the 

known possibilities when making decisions on the future state of water resources would 

avert the situation whereby the excluded outcomes manifest and is much safer than 

considering only one outcome. Additionally, the possibility of a decision to fail is relatively 

low if all uncertainties are borne in mind. For this approach to succeed, it will be necessary 

to adopt decision-making processes that can account for uncertainty (Matrosov et al., 2013; 

Usitalo et al., 2015).  
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 The current study identified climate change data as a major limiting factor in predicting 

future water resources availability in the Caledon River Basin. The climate change data 

used in the study were produced and downscaled several years ago (Hewitson and Crane, 

2006). Since then there have been subsequent generations of more complex climate 

models which are expected to provide improved climate projections (Knutti et al., 2013; 

Arnell and Lloyd-Hughes, 2014). For this reason it is recommended that future climate 

change impact studies use the most recent climate change data available.     

 

 The current hydrological investigations of the Caledon River Basin has brought to light some 

of the pertinent issues. These issues require more resources and further research and as 

such could not be resolved during the present study. This section provides a brief 

recommendations on the additional investigations and approaches that can be carried out.  

 

i. Further studies may investigate approaches that would more accurately estimate future 

evapotranspiration using temperature and perhaps other climate model products. The 

temperature-based Hargreaves approximation approach used in this study ignores 

several other important factors that affect evapotranspiration. Therefore the implication 

here is that evapotranspiration will increase due to increase in climate change-induced 

air temperature. This conclusion is however, contrary to observations made by some 

researchers (Roderick and Farquhar, 2004; 2005) that evaporation has actually been 

decreasing while temperatures are increasing. Thus, there is a need for more precise 

estimations that would reduce such uncertainties.  

ii. It is also recommended that further studies for hydrological and water resources 

investigations consider customising the structure of the Pitman model to suit the 

individual quaternary catchments of the Caledon River Basin with highly contrasting 

physical features such topography, land cover and climate. This approach is likely to 

improve the hydrological simulations at various points of the basin and the main outlet. 

iii. The observed stream flow data for many gauges in the entire Caledon River Basin are 

substantially uncertain. It is therefore recommended that future studies for the basin 

assess the degree of uncertainty of the observed flow and apply an approach such as 

the limits-of-acceptability such that the uncertainty in the observed flow is included as 

part of the modelling procedure. 
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