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Abstract

ABSTRACT

The coastal transition zone (CTZ), which links therrestrial and marine

environments, has been identified as a regiongif biological diversity and elevated
production. Results of studies conducted in théheon hemisphere indicate that the
links between estuaries and the adjacent maringogmuent is critical to ecological

functioning within the CTZ. This study assessed itifeience of selected estuaries
with different hydrodynamic characteristics on #tgacent marine environment along
the south-eastern coastline of southern Africa. rFestuaries were examined,
including two permanently open systems, the freatewdeprived Kariega and fresh
water dominated Great Fish, and two temporarilynégdesed estuaries (TOCE), the

Kasouga and East Kleinemonde.

Results of the study indicated that outflow of estie water from the Great Fish
Estuary contributed to a plume of less saline whaé&ng evident within the adjacent
marine environment. The plume of water was assettiaiith increased zooplankton
biomass and particulate organic matter (POM) anibrophyll-a concentrations.
Adjacent to the Kariega Estuary, no evidence adHrevater outflow into the marine
environment was observed. However, in the sea ttirepposite the mouth of the
estuary an increase in zooplankton abundance andalss was evident. Results of
numerical analyses indicated that the increaseooplankton abundance observed
adjacent to the mouth of both permanently openagstsi could not be attributed to
the export of zooplankton from the estuary, buheatthe accumulation of marine
species within the region. The mechanisms resplanfabthis accumulation were not
determined, but it was thought to be associatel initreased food availability in the
estuarine frontal zone. A similar, but less dramadtiological response was also
observed in the marine environment adjacent tawlee TOCES. It is suggested that
the increase in biological activity within thesgimns could be ascribed to seepage of
estuarine or ground water through the sand barstyadrates these estuaries from the

sea.
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Results of stable carbon isotope analyses indicttat both the Great Fish and
Kariega estuaries exported carbon to the nearstmamgne environment. The area
influenced by estuarine derived carbon was depdnderthe volume of estuarine
outflow to the marine environment. Adjacent to thesh water dominated Great Fish
Estuary, estuarine derived carbon was recorded ul?km from the mouth, while
adjacent to the fresh water deprived Kariega, estaderived carbon was only

evident directly opposite the mouth.

The recruitment of macrozooplankton (> 2cm) inte fresh water deprived Kariega
Estuary was in the range recorded for other perntne@pen southern African

estuaries with higher fresh water flow rates. Th@cates that the mechanisms which
allow estuarine dependent larvae to locate and estearies are not related to fresh

water inflow.

In conclusion, this study has demonstrated thapitkesheir small size relative to
European and North American systems, South Afripgmmanently open and
temporarily open/closed estuaries also influencelogical activity within the

adjacent nearshore marine environment.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

The Coastal Transition Zone (CTZ) has been deflme&chaefer (1972) as “the sea
and the land adjacent to the interface, encompgd$iat region where terrestrial
activities importantly impinge on the marine enwimeent, marine resources and
marine activities and where marine activities intgaotly impinge on the environment,
resources and activities of the land”. The CTZ 8 @nportant area both
anthropogenically and biologically. Leviet al. (2001) consider the CTZ as
biologically important as it is an area of intens&eractions resulting in enhanced
species richness, biodiversity and productivityst@aozaet al. (1997) describe the
CTZ as being a “keystone” habitat, providing botles/stem and human services out
of proportion to its areal extent. The provisiorecbsystem services out of proportion
of the CTZ's areal extent is well demonstrated by ket al. (2000) who have
determined that the CTZ provides approximately 20%the world’s oceanic
production, yet represents or% of the earths total surface area. Costaatzal.
(1997) state that globally, coastal habitats cbata ecological services with a total
economic value of US$12.568 trillion per year, wdbtuaries providing economic
services that amount to a global total of US$0 #illion per year. Due to the limited
surface area of estuaries, on a per hectare basigcological services they perform
contribute the greatest economic value out of amgystem on the planet, at a global
average of US$22 832 per hectare per year (Costarz®aly, 1992; Costanz al,
1997). The areal extent of the CTZ is dependerd wariety of factors, including the
width of the continental shelf and local hydrogmaplas well as the size and

hydrodynamics of adjacent estuaries.

In terms of human services, different authors haoresidered the CTZ important due
to high anthropogenic use of this zone (Bruton,8198touseket al, 1997; Talleyet
al., 2003). Vitouseket al. (1997) and Talleyet al. (2003) have calculated that
approximately 60% of the world’s human populatiariptal of 3.8 billion people, live
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within 100km of the coastline. The high densitidshamans within the coastal
regions of the world can be related to severabfactncluding the provision of bulk
transportation services, production of energy (jmesly hydrocarbon sources and
currently renewable electricity), the abundancdoofd resources and in more recent
times, the recreational potential of the zone @halet al, 2003). Pauly and
Christensen (1995) analysed the consumption obtean’s primary productivity by
fisheries and determined that globally, 8% of thaltprimary productivity was used.
However, when coastal shelf systems were viewasbiation, approximately 35% of
shelf primary productivity was used by human figgr This study did not consider
estuarine and fresh water fisheries that would r@orributed to productivity used
within the CTZ. Exploitation of the CTZ is very igand therefore an understanding
of the ecological and biotic links within this zoreeurgently required (Leviet al,
2001; Talleyet al, 2003). Estuaries are considered critical as la lhatween the
interactions occurring in the CTZ and particulablgtween the sea and fresh water
aquatic habitats (Costaned al, 1997; Levinet al, 2001; Gillanders and Kingsford,
2002).

It has long been hypothesised that due to thettreof flow through estuaries being
predominantly seaward, the net transport of mdiguaticularly phytoplankton and
detrital biomass is similarly in a seaward direct{®ame and Allen, 1996; Roegner
and Shanks, 2001). Odum (1968; 1980) proposedah®velling hypothesis”, which
states that estuaries (and associated habitatg) d@reater rate of production than
consumption and decomposition. As a result, expesguction will be exported to
the nearshore marine environment. This hypothesssbieen examined in terms of a
variety of components of estuaries (different forofi<carbon, nitrogen, phosphorus,
sediments and metals) throughout the world (Bletcll, 1981; Boto and Bunt, 1981,
Miller and Shanks, 2004; Newton and Stephen, 20@anet al, 2005), and in South
Africa (carbon and particulate matter: Baied al, 1987; Winteret al, 1996;
inorganic nutrients: Baird and Winter, 1989; Wintard Baird, 1991). The general
trends resulting from these studies have been glgsive, with the primary finding
being that the degree of interaction between asiand the sea appears to be reliant

on the fresh water flow rates entering the speesiwary.
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Several international studies have investigatddslivetween estuaries and the marine
environment in terms of larval and adult exportfoectivity and chlorophyib export
(Sanchez-Velascet al, 1996; Roegner, 1998; Roegner and Shanks, 200#; d>al
Prego, 2003; Espinosa-Fuentes and Flores-Coto,) 288Achez-Velascet al.(1996)
and Espinosa-Fuentes and Flores-Coto (2004) ideshtidn estuarine larval fish
community in the marine environment adjacent tonfiros Lagoon, a permanently
open estuarine lagoon on the southern Gulf of MeX8oth of these studies identified
a shifting larval community offshore of the lagotivat was dependent on the fresh
water flow rate through the system. Similarly, Roeg(1998) identified a continuous
seaward flow of chlorophyth from the Eel River in Nova Scotia, with the rate o
chlorophylta export into the adjacent marine environment beirgportional to the
magnitude of fresh water flow into the system. bntcast, a study on the South
Slough arm of Coos Bay (west coast of the UnitesteS) found that there was a
continual import of marine derived chlorophgllinto the estuary (Roegner and
Shanks, 2001). Finally, Dale and Prego (2003) ifledta seasonal nature in nutrient
fluxes between the Chupa Estuary and the White 8igla,low autumnal flow rates
resulting in an influx of nutrients and higher suernflow rates resulting in nutrient
export. The importance of fresh water flow cannbégrefore, be underestimated in
terms of connectivity within the CTZ.

When considering the biological connectivity of usstes and the marine
environment, a large number of studies have focusethe ichthyofauna, and to a
lesser extent, invertebrate use of estuaries aenuareas. Several authors (Wicker
al., 1988; Vanceet al, 1998; Herzkeet al, 2001; Gillanderst al, 2003; Herzka,
2005; Able, 2005) have reviewed available studiedish and invertebrate species
that enter estuaries during their juvenile phase$ accumulate biomass in these
systems before leaving to the marine environmepty\ew studies have, however,
attempted to quantify the export of biomass by eéhtsina from estuaries to the
marine environment. Deegan (1993) investigatednglesiestuarine-dependent fish
species in an attempt to identify the estuarinewmearansfer of nutrients and energy
by fish migration. The study demonstrated that @uthe use of Fourleague Bay as a
nursery area, Gulf Menhaden were responsible fppoeg between 5 and 10% of

the system’s primary production.




Chapter 1 Introduction

In addition to the movement of biotic material beém estuaries and the marine
environment, the influence of estuarine water émgethe marine environment needs
to be considered. The zone of interaction betwestnaene and marine water is
termed an “estuarine front” (Largier, 1993; Jasmsko93; Gillanders and Kingsford,
2002). Estuarine fronts may occur in the adjaceatime environment or the lower
reaches of an estuary and are considered hightjuptive zones due to the continual
supply of nutrients and well oxygenated water testhareas (Largier, 1993). The
temporal and spatial scales of estuarine frontsiesys vary depending on the fresh
water flow rates of the adjoining estuary and rig@ilanders and Kingsford, 2002).
For example, the Amazon River provides 200 098Mof water to a frontal system
extending for over 120km offshore and 500km alohg toast (Curtin, 1986).
Alternatively, in the Burdekin River in Australisshich is characterised by low fresh
water inflow rates (5rhs?), the front is occasionally within the estuaryeatends, at
most, 0.3km directly offshore (Thorrold and McKinmd 992).

Despite these large spatial variations in estudriometal systems, O’'Donnell (1993)
and Largier (1993) consider these areas to be @bitance for inshore marine
productivity. Largier (1993) noted that despite somstuarine fronts being short lived,
their recurrent periodic nature allowed biota sashzooplankton and nekton, with
longer reproductive cycles, to congregate in thgiore where the frontal system
develops and benefits from the increased produgtitiat occurs. The higher trophic
levels either actively enter the frontal regions exploit the increased levels of
primary and secondary productivity within thesetdieas, or are passively transported
into the frontal region due to convergent surfaloevé (Largier, 1993). Estuarine
frontal systems have been considered importantonigtdue to the localised area of
higher productivity and increased food availabjlifyut due to the benefits of
deposition of detritus, particulate organic matiad sediment to deposit feeders on
continental shelves, and as a cueing system tw ditkhh and invertebrates to navigate

to estuarine nursery areas (Gillanders and Kingsf002; Gillandergt al, 2003).

The international literature, therefore, indicatestrasting results when considering
estuarine to marine transport and interaction, \lig volume of biological matter
moving between these environments largely beinguégnt on the mouth status and

the magnitude of fresh water outflow from theseays.
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1.1.1 Estuaries and the CTZ in South Africa

Pritchard (1967) defined an estuary as “a semiemec body of water which has a
free connection with the open sea and within wiieh water is measurably diluted
with fresh water derived from land drainage”. Thefinition is limiting for South
African estuaries due to two phrases, “a free cotmme with the open sea” and “sea
water measurablgiluted with fresh water”. Many South African systems areler
natural conditions separated from the sea for mgryjeriods of time and several
systems may have hypersaline conditions or be catelglmarine due to high rates of
evaporation or low fresh water inputs (Day, 1983).a result, Day (1980) suggested
a revised definition that would include South A#mcsystems with low fresh water
flow rates (whether naturally or due to anthropagémfluences) and those that close
from the sea for varying periods. Day’s (1980) digibn states that: “An estuary is a
partially enclosed body of water which is eitherrpanently or periodically open to
the sea, and within which there is a measurabliat@n of salinity due to the mixture

of sea water with fresh water derived from landrdrge”.

This definition identifies 258 bodies of water ajothe South African coastline as
estuaries (Whitfield, 2000). Despite the inclusicof a broad range of
geomorphological and physico-chemical charactesstWhitfield (1992a) devised a
classification system which allows grouping of $muwh African estuarine systems
based on their physiographical, hydrographical salthity characteristics into five
basic estuarine classes. The five classes areri@stuzays, river mouths, estuarine
lakes, permanently open systems and temporarily/ojesed estuaries (otherwise
known as intermittently open/closed estuaries)mReently open estuaries are those
systems that retain their connectivity to the seaalh times, while temporarily
open/closed estuaries (TOCES) are separated frerm#rine environment, forming
small lagoons at different times and for varyingrigpis throughout the year
(Whitfield, 1992a).

The marine borders of the CTZ along the South Africoast are relatively narrow
due to the boundary currents along both the eakivast coast of the country. Along
the northern half of the Eastern Cape coastline dhetinental shelf is narrow,

allowing the Agulhas Current to meander betweear&d30km offshore (Lutjeharms,
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1998; Lutjeharms, 2005), restricting the influenoé any terrestrially derived
constituents within this region. Temporal pattewithin the CTZ are dominated by
annual seasonal changes, with the biological cybkisg strongly linked to the
seasonal patterns in temperature and rainfall @@astet al, 1997; Levinet al,
2001). The degree of interaction between the teraésnd marine zones of the CTZ
in southern Africa is also strongly linked to theasonal rainfall patterns as many of
the estuaries in this region rely on rainfall to im@n a link to the marine
environment (Whitfield and Bruton, 1989; Whitfiedthd Wooldridge, 1994; Whitfield
and Lubke, 1998).

1.2 MANAGEMENT IMPLICATIONS

As discussed earlier, estuaries and the CTZ areriapt in biological terms due to
the services they provide to surrounding commusifi@ostanzat al, 1997; Vitousek

et al, 1997; Talley et al, 2003). Lamberth and Turpie (2003) attempted to
demonstrate the economic importance of fisherigbimvisouthern African estuaries.
They estimated that estuarine based fisheries taraletotal catch valued at
approximately R433 million per year (US$62.75 roitl), and inshore marine
fisheries targeting estuarine dependent fish speotalled an additional R490 million
(US$71.01 million) per year. The total value ofuesine and estuary-dependent
fisheries during the 2002 financial year was editiao have been approximately
R1.251 billion (US$181.30 million) (Lamberth and rpie, 2003). Other estuarine
dependent fisheries including the estuarine anshofe based penaeid prawn fishery,
which is estimated at a total value of R10 milli@#nS$1.45 million) per year (De
Villiers et al, 1999) were not considered in this study. In addito the recreational
and commercial fisheries on southern African estgardue to the impoverished
nature of the region, the CTZ, and estuaries itiquaar, provide important resources
for subsistence to communities living close toghere (Breert al, 2004).

Southern Africa is considered a water-poor regiwith a mean annual runoff of
~450mm.yt, approximately half the world average of 860mm,ycoupled with
relatively high evaporation rates (DWAF, 2004a).dAidnally, there are no large or
navigable rivers in the region and the total rix@moff in the country equates to less
than half the flow of the Zambezi River in Mozamieg(DWAF, 2004a). To meet the

increasing demands for fresh water, water manage¥sconsidering constructing




Chapter 1 Introduction

additional impoundments along the major river systan the sub-region (DWAF,
2004a). However, the National Water Act of 1998 t(A%6) established the
requirement that all river systems should be carsd in terms of two Water
Reserves, a basic human needs reserve and an ieablagserve. The ecological
reserve relates to “the water required to proteetaquatic ecosystems of the water
resource”, including river systems, estuaries amel mnarine environment. South
African water managers have been slow to acknowelgt estuaries are a legitimate
user of water and prior to the National Water A€t1998, water running into

estuaries was considered wasted (Burman, 1970;i¥aral Quinn, 1999).

Despite this legislation, water supplies to estgdre under increasing threat. South
Africa’s economy is growing at a relatively highteeof 4.2% per annum (Reuters,
2006), which is associated with increased waterimgbe industrial and agriculture
sectors (Reddering and Rust, 1990; Co@bexl, 1999). Furthermore the provision of
basic sanitation services and potable water to eatgrof the population that were
disadvantaged under the previous dispensationxseated the increased demand
for fresh water (ETU, 2002). In addition to theedt of reduced fresh water runoff
into the CTZ, current global climate trends threateertidal wetland areas due to sea
level rise and corresponding decreases in the exéanht of intertidal wetlands as well
as the tidal gradients within these systems (Wa&eial, 1996).

As a result of increased demands for fresh wat@yraber of national programmes
have been initiated to assess water requirementsairal ecosystems, including
rivers and estuaries. To date, limited work hagstigated the potential influence of
fresh water on the marine nearshore environmerdgul8hiresh water flow into the
marine environment be seen to influence the neeeshiductivity or ecology, then
the ecological reserve would have to be calculameatcommodate this. To date there
is one report linking fresh water flow rates tosbibre productivity. The DWAF
(2004b) report demonstrated that fresh water flaes of rivers into the marine
environment along the east coast of South AfricavgKulu-Natal) affected the
productivity of the adjacent Thukela Banks, wittgtiflow rates providing good
recruitment to the adjacent linefishery, while yeaf low flows corresponded to poor

recruitment into the fishery. More studies are mglion the effect of fresh water
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inflow into the marine environment, and particwathe nearshore environment, to

allow water managers to adequately understandfibet @f reduced river runoft.

1.3 ESTUARINE-MARINE INTERACTIONS

To date, South African estuarine research has ewamithe physico-chemical
environment and general ecology of these systemkjding specific components of
the flora or fauna (e.g. the ichthyofauna: Cyrud &aber, 1987; Whitfield, 1996;
zooplankton: Wooldridge and Erasmus, 1980; Fronen2@@4a; or macrophytes:
Wortmannet al, 1998; Collotyet al, 2001), ecological interactions within individual
estuaries (Schlacher and Wooldridge, 1996a), casgres between different systems
(Vorwerk, 2000; Vorwerlet al, 2001; Perissinottet al, 2003; Thoma®t al, 2005)
and in more recent times, the river-estuary interf@Vhitfield and Wooldridge, 1994;
Grange and Allanson, 1995; Grangeal, 2000; Whitfield and Wood, 2003). The
current research has highlighted dissimilaritiesvieen estuaries with different flow
rates and therefore the importance of fresh wdter frates in determining the

structure of these systems.

High fresh water flow rates are considered impdrtarforming structured salinity
gradients within estuaries, which, in combinatioithwhigher turbidity, is considered
a crucial cue to estuarine dependent marine spéCiasis and Blaber, 1987; Cyrus
and Blaber, 1992; Harris and Cyrus, 1996). Thedgichl community structure
within estuaries has been strongly related to thesmging salinity and turbidity
regimes that are associated with fresh water infl@nange and Allanson, 1995; Ter
Morshuizenet al, 1996a and b), indicating the importance of floates to the

structuring of these communities.

Several authors have debated the influence of fnegbr flow rates and the resultant
physico-chemical cues in aiding fish larval reaneént into South African estuaries
(Beckley, 1985; Bennett, 1989; Whitfield, 1989a dndnhitfield, 1996; Harris and
Cyrus, 1996; Whitfield, 1998; Vorwergt al, 2001; Harriset al, 2001; Bellet al,
2001). It is currently uncertain which physico-cheah variable fish larvae use to
locate an estuarine nursery area, with some authdrisating turbidity preferences
amongst larvae, while others indicate salinity ggats and olfactory cues as driving
forces for larval recruitment (Cyrus and Blaber829Whitfield, 1989a; Whitfield,
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1998). However, most authors agree that fish lad@&ongregate in the surf zone
adjacent to estuaries, with a distinctly estuargwruiting community existing in this
area (Whitfield, 1989a; Harrist al, 2001; Cowleyet al, 2001). Accumulations of
estuarine dependent marine larvae have also beerdezl adjacent to the mouths of
TOCEs (Whitfield, 1989a; Harris and Cyrus, 1996heve the larvae remain awaiting
a recruiting opportunity such as a breaching orrtopping event (Cowleyet al,
2001; Bellet al, 2001; Kemp and Froneman, 2004). Most of the caiseudies agree
that the fish larval accumulations in the surf zoraljacent to estuaries are for
recruiting purposes, but authors have generallycansidered the potential of feeding
aggregations as the degree and sources of primmagugtivity adjacent to South

African estuaries is currently unknown.

In conjunction with structuring the physico-chenhicanvironment and fish
communities within estuaries, fresh water inflons Hzeen identified as promoting
production within these systems. Froneman (200@1ap recorded lower primary
production (18.1 — 37.7mg C “tu') and chlorophyla concentrations (1.12 —
2.13mg chla m?) in the fresh water deprived Kariega Estuary thad been recorded
in neighbouring fresh water dominated systems aglthe Great Fish Estuary by
other authors (Table 1.1). The low production ie tkariega Estuary has been
confirmed by several authors (Grange and Alland®95; Grangeet al, 2000) and
attributed to very low fresh water inflow reducitige nutrient availability within this
system. Similar results have been recorded witl@CEs, with Froneman (2002a)
and Gameet al. (2005) both recording higher chlorophgliconcentrations in these
systems during high riverine flow rates. Thonssal. (2005) similarly related the
high chlorophylta concentrations in the TOC Mhlanga and Mdloti esés along
the east coast of southern Africa, to high baswdl@nd nutrient concentrations
entering these systems due to waste water treatnweks in their catchments.

The abovementioned relationship between fresh watienw and primary production
has been identified as having a secondary effe¢cherzooplankton biomass within
estuaries. Froneman (2002a), Kibirige and Perisgin(?003) and Nozia®t al.
(2001) have identified a substantial increase i@ #ooplankton biomass within
TOCEs during flood phases relative to closed omneash phases. The large increase

in zooplankton was primarily associated with theincment increase in food
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(phytoplankton) availability as well as temperataned salinity changes. Reduced

fresh water inflow has also been demonstrated tiseca shift in the phytoplankton

cell size, to smaller phytoplankton species (Froam@n2000; Froneman, 2001a; Gama

et al, 2005). The smaller phytoplankton cells are regmiyt not available to copepods

(dominant zooplankton group) for grazing and assalt can affect the abundance of

these primary consumers in estuaries as well agiegl the abundance of secondary

and tertiary consumers (Froneman, 2000; Kibirigeé Berissinotto, 2003; Froneman,

2004b). In some instances the copepods within eetuhave been demonstrated to

switch diets in these systems, and the food welmgd®s from an autochthonous

phytoplankton driven system to one that is drivgralbochthonous detrital inputs and

benthic algae (Froneman, 2001a and b; Perissiebti 2002).

Table 1.1: Water column chlorophy values published for South African estuaries

(after Adamset al, 1999). PO indicates permanently open, while TQdicates a

temporarily open/closed system.

Chlorophyll-a (ung.I'")  Mean Annual
Estuary Runoff _I?stuary Reference
Minimum  Maximum  (x10° m?) ype
Van Stadens 0.8 14.2 Unknown TOC Garhal, 2005
Maitland 7.29 138 Unknown TOC Gamhal, 2005
Hilmer and Bate, 1990;
Sundays 12 >100 202.26 PO Hilmer and Bate. 1991
Kariega 1 8 5 PO Allanson and Read, 1995
Kasouga 0.19 5.68 Unknown TOC Froneman, 2002a
. Lucas, 1986; Allanson
Great Fish 0 210 224 PO and Read, 1995
Keiskamma O 19 142.7 PO Allanson and Read, 1995
Nyara <0.01 4.1 Unknown TOC Perissinogtoal, 2000
. Modified 8Ml.d* Thomaset al, 2005
Mdloti 0.869 111 TOC
Sewage Effluent
Modified 20MI.d* Thomaset al, 2005
Mhlanga 0.732 303 TOC

Sewage Effluent

Considering the amount of information available tbe impact of fresh water on

estuaries and its coincident ecological importatioe relative lack of information on

the effect that estuarine or fresh water has omthene environment is surprising. It

is generally accepted that there is a paucity fafrmation in South Africa on links
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within the CTZ and particularly those biologicatks between estuaries and the sea
(Fennessyt al, 1997; SANCOR, 2003; NRF, 2003).

In terms of biomass, several authors support th&welling” theory and have
hypothesised a net export from southern Africamasts due to the use of these
systems as nursery areas for fish and invertebra®dting in the emigration of
juvenile/sub-adult individuals, which have accuntetbbiomass within estuaries, to
the marine environment (Cyrus and Forbes, 1996;|68oet al, 2001; Bellet al,
2001; Bernard and Froneman, 2005). Of particulgroitance commercially are the
penaeid prawns, which Forbesal. (1994) and Forbes and Demetriades (2005) have
identified as requiring an estuarine phase dutieg juvenile development. Reducing
the ability of the penaeids to use estuaries whalck disastrous consequences for the
fishery on the adjacent Thukela Banks (Forbeal,1994; Cyrus and Forbes, 1996;
Fennessyet al, 1997). Alternatively, some studies have indicatesibstantial import
of biomass during overtopping events into TOCEs #msl use of this imported
biomass by a variety of predators in the estuampr®man, 2004a; Kemp and
Froneman, 2004).

To date there has been a single South African studgstigating the influence of
estuarine water on the biology in the nearshoreim@agnvironment. Harriet al.
(2001) investigated the changes in the ichthyopgtamkommunities along the ocean-
estuarine gradient in the nearshore environmeiatcadj to Lake St Lucia (north-east
coast of South Africa) and demonstrated distinchrmmnities related to each of these

zones, which appeared to separate based on theityidzcurring within each zone.

The productivity in the continental shelf watersf &outh Africa is generally
considered to be fuelled by nutrient-rich watercheag the photic zone through
upwelling (Brown and Hutchings, 1987; Richardsziral, 2003). This appears to be
on a pulsing basis with upwelling events beingegithind-driven or occurring due to
shear-edge eddies upwelling colder water at theres (McMurrayet al, 1993;
Lutjeharmset al, 2000). Alternatively, in the marine inshore zo@gmpbell and
Bate (1998) suggested the productivity of diatomghie surf zone adjacent to the
Alexandria dunefields was sustained by groundwatmpage from dune aquifers.

Fennessyet al. (2000) suggested that adjacent to the ThukelarRibe inshore

11
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phytoplankton productivity was limited due to thghly turbid nature of the estuarine
water flowing from this system. However, the higlendity of rocky inshore
invertebrates along the coast adjacent to the TauReer was ascribed to the high
concentration of terrigenous outputs from this eys{Fennessgt al, 2000). To date
no studies have investigated the nearshore redpetween the surf zone and the
coastal ocean, to attempt to identify the sourcéiomass and productivity in this

region.

1.4 OBJECTIVES

The influence of estuaries on the nearshore biol@ygains largely unclear. This
study attempts to address the paucity of inforrma#igailable regarding the estuarine
component of the CTZ in South Africa. The main chje of the study was to
attempt to identify specific biological interact®metween estuaries and the marine
environment and to investigate the applicabilitytiod outwelling hypothesis in terms
of biological export or import from/to these systerthe study focused on specific
physico-chemical and biological components, inaigdivater temperature, salinity,
particulate organic matter, chlorophwll the zooplankton community structure and

the food web structure between estuaries and thimena@nvironment.

1.5 THESIS STRUCTURE

This thesis is structured in such a way that ehepter is independent (i.e. deals with
its own topic), although all the chapters are Ishke one another in dealing with
estuarine-marine links. Each chapter has its owef brtroduction, the materials and
methods used in answering the relevant questibaggesults and a brief discussion. If
the same materials and methods have been usedrenth@n one chapter the initial

mention of those methods will be referred to.

Chapter 2 — Study Area: A complete description of the study sites (i.eecsfic
estuaries) where the study was conducted is prdyideluding a detailed description

of the Eastern Cape coastal zone.

Chapter 3 — The effect of two permanently open estwies with contrasting fresh
water flow rates on zooplankton in the adjacent neahore environment: This

chapter aims to identify links between the biolafytwo estuaries with contrasting

12
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fresh water flow regimes, the Kariega and Greah Fastuaries, and the adjacent

nearshore environment.

Chapter 4 — The effect of temporarily open/closed stuaries on zooplankton
communities in the adjacent nearshore environmentChapter 3 examined the
effect of permanently open estuaries on the zoépdanin the nearshore environment
as these systems are more likely to have an inthacto the open condition of their
mouths. This chapter deals with the effect of semadistuaries on the zooplankton
communities in the nearshore environment, to ifenthether they have an impact
despite the predominantly closed nature of theintms

Chapter 5 — The importance of estuarine derived cdron for the nearshore
marine environment: A stable carbon isotope approdat on two permanently
open Eastern Cape estuariesChapter 5 examines the importance of estuarine
derived carbon for the nearshore environment. Tiaedyswas conducted in two
permanently open estuaries with contrasting flogimes, the Kariega and Great Fish

estuaries.

Chapter 6 — Tidal import of macrozooplankton into a fresh water deprived,
permanently open Eastern Cape estuaryThis chapter presents the results of a
study that documented the recruitment of macrozoogbn into the Kariega Estuary

to identify diurnal and seasonal patterns of reéorent.

Chapter 7 — General DiscussionThe final chapter discusses the results from the
various experimental chapters in a combined forasatvell as comparing the results
presented in the individual chapters to work comeldicinternationally. Finally,
suggestions for future research on estuarine-marteeactions are provided.

13
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CHAPTER 2

STUDY AREA

2.1 INTRODUCTION

This study was conducted in four estuaries alob@kan stretch of the Eastern Cape
coastline, between the town of Kenton-on-Sea (83%3.5' S, 26° 4027.9' E) in the
south-east and Fish River Mouth (33° 29.2' S, 27° 0811.9' E) in the north-west
(Figure 2.1). This area was selected due to thgimpity of different estuaries with
varying physico-chemical and hydrodynamic charasties. The four estuaries
studied included the Kariega, Kasouga, East Kleorae and Great Fish estuaries
(Figure 2.1).

Eastern Cape

South O

Africa

East

Kleinemond

Port Alfred

33°36'55.5' S =

N

i

Scale: m—
Kenton-on-Sea 26° 52|' 1.4"E km

Figure 2.1: The study area showing the location of the foudgtestuaries along the

Eastern Cape coast (adapted from Walton, 1984).

Three of the study estuaries, the Kariega, Eagh&monde and Great Fish estuaries,
were classified as being in a good condition by tiédid (2000), indicating a
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moderate anthropogenic impact. The Kasouga Estweayg, classified as excellent,
indicating minimal human impacts. All four systeare affected by the narrowing of
their channels due to road bridges from the maasi@b route (R72). In addition, all
four estuaries have housing developments of vargings in close proximity to the
lower reaches (Lubke, 1988; Whitfield, 2000). Lamgk in the catchments of these
systems includes private game reserves and ayafietgricultural uses, mostly beef

and pineapple farming.

This chapter provides a description of the coasthtong the Eastern Cape and the
estuaries studied. The methodology used to cdllexphysico-chemical data can be
found in Chapter 3.

2.1.1 Climatic conditions

The climate in the Eastern Cape coastal zone isidered subtropical according to
the Kopen system of climate classification (Lubk@88; Kopke, 1988; Lubke, 1998).
The weather patterns in this region are primaréyedmined by the synoptic weather
to the south and west, typically reaching the Hastéape one to two days after
landfall on the west coast of South Africa (Stal@88).

The temperatures along the coastline typically eabgtween 9.5°C and 26.0°C, with
the minimum occurring in July and the maximum inbkeary (Figure 2.2).
Fluctuations in the air temperatures are reduckdive to the hinterland due to the
regulating effect of the sea (Stoee al, 1998). The maximum and minimum air
temperatures recorded at Port Alfred from 1996 G852were 38.5°C (March 2003)
and 1.9°C (July 2002), respectively (as measure@Bh00, South African Weather
Bureau recordsin litt.). These temperatures can, however, be consideteeires
(Stone, 1988; Stone et al.,1998).

The mean annual rainfall recorded at Port Alfredrahe corresponding period was
604mm, with a maximum of 731mm in 1998 and a mimmaof 396mm in 1999
(South African Weather Bureau records|itt.). The rainfall observed in the coastal
region demonstrates an autumn spring bimodal pafteigure 2.3), with a spring
peak (Kopke, 1988). In addition to the annual pattecorded, Granget al. (2000)
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have described a cyclical wet and dry climatic mmeana of between 12 and 20 years
duration.
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Figure 2.2: Daily air temperatures (°C) averaged per month oredsat Port Alfred
between 1996 and 2005 (South African Weather Bureeardsjn litt.).
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Figure 2.3: The mean monthly rainfall at Port Alfred betwe&9@ and 2005 (South
African Weather Bureau records,litt.).

2.1.2 Description of the coast
The 60km long coastline that forms the study amasists of sandy beaches and
rocky headlands and promontories with a predomipahine thicket vegetation type

near the coast, and coastal grasslands or savartharfinland (Lubke, 1998). The
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sandy beaches are backed by large vegetated ddsefied separated by rocky
headlands, which often extend into the inshorerenment as reefs (Lubke, 1988).

The seafloor is predominantly sandy, with dune-rankl Aeolinite reefs in a patchy
distribution to a depth of 50m. The continental IEhe this region is relatively

narrow, with the 100m isoline approximately 25knfshbre (Lutjeharms, 1998). The
mean spring tidal range along the coastline isr.&hd predominantly semi-diurnal

with a small diurnal inequality (Mackay and Schumah990).

2.1.3 Coastal hydrography

The area of the Eastern Cape coastline that incatgxb the study estuaries is within
the warm-temperate biogeographic region that isidated by the Agulhas Current
(Whitfield, 2000). This current system has two mawources of water, the South
Equatorial Current and recirculation from the Sowtast Indian Ocean subgyre, and

extends from the tropics to the subtropical coneecg (Lutjeharms, 2005).

The contribution from the South Equatorial Curremises on the east coast of
Madagascar, where the water separates into thehamortand southern East
Madagascar Current (Figure 2.4). The northern Wbranands the tip of Madagascar
and upon reaching the east coast of Africa spyjtsra contributing northwards to the
Somali Current and southwards to the Mozambiqueredtrin the Mozambique

Channel (Lutjeharms, 2005). The southern arm ofgtast Madagascar Current and
the Mozambique Current then converge at approximnag®S and flow in a southerly

direction along the edge of the continental shélayhe and Crawford, 1989;
Lutjeharms, 2005). Along most of the KwaZulu-Natabst and the northern half of
the Eastern Cape coastline this equates to a destah 20 — 30km (Payne and
Crawford, 1989; Lutjeharms, 1998).

In the region of Port Alfred, in the centre of tharrent study site, the Agulhas
Current begins moving offshore due to the broadgnointhe continental shelf (Ross,
1988; Payne and Crawford, 1989). A system of medesaddies form inshore of the
current, especially when the core of the Agulhas heeandered offshore of the
continental shelf (Lutjeharms, 1998). These eddrespmbination with wind-driven

surface water movement, can result in the net mewtmof inshore water in a north-
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easterly direction (Ross, 1988; Lutjeharms, 2006g Agulhas Current continues in a
south-westerly direction along the outside edghefAgulhas Bank until the force of
the current can no longer be controlled and théeaysetroflects in an anticlockwise
direction to form the Agulhas Return Current (Payaed Crawford, 1989;
Lutjeharms, 2005).
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Figure 2.4: A general view of the Agulhas Current system shgwts sources and

40°S

the return current (after Lutjeharms, 2005). Cordaepresent depths (x 100m). The

overlaid star indicates the position of Port Alfred

Within the Agulhas Current system two regions ofvafiing have been recorded, one
off northern KwaZulu-Natal, where the continenthel widens due to the Tugela
Banks and one, of more relevance to this study,, Red Alfred, in the centre of the
study area (Lutjeharmst al, 2000). The presence of cold upwelled water was
recorded in the Port Alfred region 45% of the ticheing a study covering a six year
period and was suggested to be due to the widesfitige continental shelf and the
coincident moving of the Agulhas Current furthefsbbre (Lutjeharmst al, 2000).
Both of these upwelling cells occur due to the widg of the continental shelf and
the jet effect on the inshore edge of the curredliny deeper waters towards the

surface.
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Smaller recorded upwelling events in the coastshane zone include wind-driven
and shear-edge eddy events (Lutjeharms, 2005). MfArndn upwelling is caused
when persistent easterly winds move surface watarsing upwelling of colder water
that is already on the continental shelf to repkheesurface waters (Schumaeinal,
1982). Intense shear-edge eddies occur along thiéneatal shelf edge due to the
passing Agulhas Current and these systems upwédl w@ter in their cores
(Lutjeharmset al, 1989a). All these upwelling events have a markédence on the
physical water bodies in the inshore zone, as waglthe nutrients and biological
primary productivity due to the upwelled water lgpiseveral degrees centigrade
cooler and having considerably higher nutrient emiations than the surface waters
(Lutjeharmset al, 2000).

2.2 STUDY ESTUARIES

2.2.1 Great Fish Estuary

The Great Fish River Estuary (Figure 2.5) enters $ka at 33° 228 S and
27° 08 06" E (Vorwerk et al, 2001) and is considered a permanently open egstuar
(Whitfield, 1992a). Land use along the east bankefestuary is farmland, while a
nature reserve is situated on the west bank. Inotlier reaches a small camping site
has been developed below the region where the caaistal road crosses the estuary
(Vorwerk, 2000).

This system has a catchment size of 30 366fmducing a mean annual runoff of
525 x 16 m*.yr! (NRIO, 1987). Prior to 1975, the system had a lgighriable flow
regime with extended periods of low flows resultioig occasion in mouth closure
(Ter Morshuizenet al, 1996a and b). However, in 1975 the flow ratesewer
augmented by a transfer scheme from the Orange Bygéem, resulting in near flood
level flow rates reaching the estuary continuoy$lgr Morshuizeret al, 1996a and
b). The Orange River transfer scheme was introdubgdthe South African
Government to augment water supplies to the iniBastern Cape farming districts.
The average daily flow rate during the current gtwas 14.2ms* (SD=16.5) with a
range from 2.8fhs’ to 137.2m.s® (Figure 2.6) (Department of Water Affairs and
Forestry flow datajn litt.). The spring tidal prism is approximately 1.6 x° 18",
resulting in a tidal to river volume ratio of on:1 (Strydomet al, 2002). The

interaction between the tidal forcings and the Higwv rates produce a distinct salt
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wedge to a distance of 10km from the mouth of thieay (Ter Morshuizeet al,
1996a and b; Strydoet al, 2002).
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Figure 2.5: Map of the Great Fish River Estuary showing the @amg stations, salt
marsh areas (hatched), protected areas (stippledi)r@ad bridge (after Vorwerk,
2000).

The Great Fish Estuary is approximately 12km lorthva width of 180m in the
lower reaches and 50m in the head-waters (Vorvetrkl, 2001). Large intertidal
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mudbanks are present throughout the system, mnaguttian average depth of 1.37m;
however, the maximum depth of the main channel ezacth 6.4m. The large
mudbanks are due to the system slowly silting upabse of heavy sediment loads
from the water transfer scheme and the erodiblds soi the catchment (Ter
Morshuizenet al, 1996a and b).

Aquatic vegetation in this system is sparse, wibhsnbmerged macrophytes, most
likely due to high turbidity. There are two larg@tanarshes on the west bank in the
mouth region covering a combined area of 199ha, @edls and sedges occur
intermittently along the banks for the entire léngf the estuary, covering a total of
16.6ha (Collotyet al, 2001).
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Figure 2.6: Average daily flow rate in the Great Fish River sy on a monthly
basis (Error bars indicate standard deviation). a& are averaged across 2001 to

2005 (Department of Water Affairs and Forestry diatditt.).

Harrisonet al. (2000) considered the status of the ichthyofawaamhmunity in the
Great Fish to have an overall moderate rating, e#bh of the components of species
diversity, presence/absence and percentage abundalhcbeing moderate. The
aesthetic rating that Harrisaet al. (2000) awarded the estuary was moderate, with
human impact evident on the east bank and in twerleeaches of the estuary. The
water quality was considered good, with excellenophic status and moderate

suitability for human contact and aquatic healthrgi$onet al, 2000).
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2.2.2 Kariega Estuary

The Kariega Estuary (Figure 2.7) is classified darge permanently open estuary
(Whitfield, 1992a) and is situated approximatelk@0south-west of Port Alfred with
the mouth meeting the sea at 33°4® 6’ S and 26° 467.9' E. The town of Kenton-
on-Sea is situated on the west bank in the lowashes, with a few houses on the east

bank and the coastal road (R72) crossing the gs@@fm from the mouth.

The main body of the estuary is approximately 15kmg (Figure 2.7) before it
reaches a highly constrictive causeway, above wikhehestuary continues for a
further 3km. In the upper reaches the channel is @0m in width, while in the lower
reaches the estuary widens to approximately 100ran@e and Allanson, 1995), and

the system has an average depth between 2.5 afidlaterson, 1998).

The Kariega Estuary has a catchment size of 686kawever, due to the fresh water
flow restrictions of three large dams, river flos megligible (mean monthly flow
during the study period was 0.01381) for extended periods (Figure 2.8) and the
system is marine dominated (Allanson and Read, ;1@88ngeet al, 2000). The
anthropogenic influences are aggravated by a lonfad&ito runoff conversion in the
Eastern Cape of between 3% and 12% (Whitfield anddd, 1989).A 106:1 ratio of
tidal prism volume to river volume (Grangéal, 2000) indicates the major influence
the marine environment exerts on this system. Thama dominance and low fresh
water inputs result in a system that is well-mieettl has a uniform marine salinity
through the middle and lower reaches, with hypersatonditions occurring in the

upper reaches (Allanson and Read, 1995; Pater868).1

The major marine influence on the Kariega Estuargvident by the deposition of
marine sandy sediments up to 3.5km upstream, apdrag tidal prism of 1.9 x £m°
(Grangeet al, 2000). In addition, the continuing shallowing tbe estuary in the
lower reaches and the extension of the flood-til#dia up the estuary is indicative of
the tidal dominance (Ter Morshuizen, 1995).

The marine dominance in the estuary has led torasdgbedsZostera capensjs

occurring along the entire length of the estuarg agoral band around the spring low
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tide level (Ter Morshuizen and Whitfield, 1994). eTlkelgrass beds vary in width
from approximately 5.2m in the lower reaches ton8.8 the upper reaches. Salt
marshes are significant contributors to the aquaégetation, with salt marshes
occurring in an intertidal band along most of tkeuary length, which in conjunction
with the four large salt marshes represent appratein 24% of the estuarine surface
area (Taylor, 1987).
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Figure 2.7: A map of the Kariega Estuary showing the studyssée well as salt
marsh areas (hatched areas), conservation arpplésti and road constrictions on the

channel (after Paterson, 1998). Surrounding laed ase also indicated.
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Figure 2.8: The mean average daily flow rate of the Kariegai&st for each month
in a calendar year (Error bars indicate standakdatien). Based on Department of
Water Affairs and Forestry Data for 2001 to 2005.

In terms of the South African State of the Envir@minreport for Estuaries, the
Kariega was assessed as in a good condition instesithe ichthyofaunal
communities and water quality and in a moderatalitiom aesthetically (Harrisoat
al., 2000). For the ichthyofaunal communities Harrigral. (2000) considered the
results for the three components they examinedhi@rKariega Estuary, namely the
species richness, presence/absence and the pegeatiandance of species, to be
among the highest calculated for the warm tempdriageographic region. Similarly
when considering the three components used to saskesestuarine water quality,
namely suitability for aquatic health, suitabilitgr human contact and the trophic
status, Harrisoret al. (2000) considered all three components to be goad to
excellent range. The aesthetic characteristicshef dstuary were rated based on
various human use parameters such as litter and taftood plain land use, and the
Kariega Estuary was considered to have a modeesthetic impact, scoring 8.5 out

of ten.

2.2.3 Kasouga Estuary
The Kasouga Estuary (Figure 2.9) is located at33847" S and 26° 4416" E and
lies approximately 20km from Port Alfred along tbeastal road. This system is a

temporarily open/closed estuary that remained tedlérom the sea throughout the
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sampling period. The Kasouga was considered tm laa iexcellent condition and an

important conservation and recreational estuarywhitfield (2000).

26°|44' E

Figure 2.9: Map of the Kasouga Estuary, showing the sampltagosis within the
estuary, salt marsh areas (hatched) and the locaficghe R72 road bridge (after
Tweddle, 2004).

The catchment area of this system is approxim&eknt (Froneman, 2002a and b)
with limited anthropogenic alterations. There ismaall residential development on
the east bank of the estuary and cattle farmirtgespredominant activity (Tweddle,
2004). The streams and river valleys within thecloatent are, however, in a

relatively pristine state and undisturbed (Fronen2®92b; Froneman, 2004a).
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The estuary surface area is approximately 22haidix the salt marsh areas that are
normally inundated during periods of high waterdlsv(Froneman, 2004a and b). The
system is navigable for 3km and varies in widthaesstn 10m and 150m (Froneman,

2002a; Froneman, 2004b). The average channel depis\between 0.5m and 2m,

with the depth being below 0.5m during breachingrnes (Tweddle, 2004).

The Kasouga Estuary contains large areas of agwatetation, including large
submerged macrophyt&(ppiaspp.) beds and salt marshes in the lower and middle
reaches (Tweddle, 2004). In addition, there areeresite reed bedsPhiragmites
australig along the west bank in the middle and upper resemd occasional patches

in the lower reaches (Tweddle, 2004).

The State of the Environment report for estuariesdrdhe Kasouga as good in all
three components examined, namely the ichthyofastetus, water quality and
aesthetics (Harrisoat al, 2000). The three ratings for the ichthyofaunahownity,
namely, the species compositions, presence/absamdepercentage composition,
were all considered good. In terms of the watelityueatings, suitability for human
contact and trophic status of the system were lwothsidered good, while the
suitability for aquatic health was moderate to g@ddrrisonet al, 2000). The rating
of the aesthetics of the system was considered gedhke estuary is in a near pristine

State.

2.2.4 East Kleinemonde Estuary

The East Kleinemonde Estuary (Figure 2.10) is a umdiized temporarily

open/closed system situated at 33°42 S and 27° 005" E (Vorwerk, 2000). The

lower reaches of this system are surrounded bygrtadl township of Seafield and the
coastal road (R72) bridge crosses the system ajopaitely 500m from the mouth.
The remainder of the catchment of the estuarylaively pristine with agriculture,

mostly beef farming, predominating (Cowley, 1998).

The estuary is approximately 3km long with a swefacea of 17.5ha (Vorwest al,
2001) and a catchment size~af6knf (NRIO, 1987; Badenhorst, 1988). The lower
and middle reaches have a width of approximatel@ni,Owhile the upper reaches
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narrow down to 25m. The system has an average ddpthSm, with a shallow

littoral area along most of the estuary (Cowley @itfield, 2002).

3332 42" S=—

27 O?i' 05" E

Figure 2.10: Map of the East Kleinemonde Estuary showing thepdimg stations,
salt marsh areas (hatched) and the coastal road) (Ritige (after Vorwerlet al,
2001).

Information is available on the mouth dynamicsto$ tsystem, which indicate that it
interacts with the sea frequently through mouthnapg events and overwash events
(Cowley, 1998; Cowley and Whitfield, 2001). Theussy is open to the sea 2.6% of
the time, while overwash conditions were eviden62b of the time (Cowley, 1998).

These marine interactions occurred frequently, wiibn mouth conditions occurring
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during every month, except March and July for teequ 1993 — 1998 (Cowley and
Whitfield, 2001; Cowleyet al, 2001).

Adams (1997) conducted a botanical survey in thst Edeinemonde Estuary,
revealing two species of submerged macrophytesaasghall salt marsh above the
bridge on the west bank. The dominant species bfmsuged macrophytes was
Ruppia cirrhosa which occurred in a continuous band along bothkbaof the
estuary, and the second species Wabkphila ovalis The salt marsh contained four
different plant species in bands along the depthtaros, namelySarcocornia
perennis Sporobolus virginicus Sarcocornia decumbenand patches ofluncus
kraussii(Adams, 1997). There are also small stand3hwhgmites australislong the

entire length of the estuary, particularly in tbevér and middle reaches.

Harrisonet al (2000) rated the species richness, presencefadsend percentage
abundance of the fish species as good within tist Kl@inemonde. Similarly, all the
components of the water quality index were rategaasl, including the suitability for
aquatic health and human contact, and the tropatasof the system. However, the
aesthetic rating for the estuary was consideredenavel (Harrisoret al, 2000).
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CHAPTER 3

THE EFFECT OF TWO PERMANENTLY OPEN
ESTUARIES WITH CONTRASTING FRESH WATER
FLOW RATES ON ZOOPLANKTON IN THE ADJACENT
MARINE ENVIRONMENT

3.1 INTRODUCTION

Various biological matter, in the form of partictdamatter as well as living
organisms, are exchanged between estuaries anse#hewith the net fluxes being
dependent on physical and biological processesmitie estuary concerned and the
adjacent coastal ecosystem (Dame and Allen, 1986 exchange of material
between estuaries and the sea can be classifedwntcategories, those that are the
active result of organism behaviour or that whishpassively driven by physical

forces (Jansson, 1988).

Material and non-motile organism (such as phytdgiam) exchange differs between
river dominated and tidally dominated systems. fbe flux of material through a
river dominated estuary is in a seaward directioa tb the direction of water flow,
while in a lagoonal or tidally dominated system tig material transport tends to be
in a terrestrial direction (Postma, 1981; Kjerfi®89). This has been attributed to
time-velocity asymmetry, where the peaks in botlodl and ebb tidal flow are nearer

to the low slack water, resulting in net landwaehsfer of material (Postma, 1967).

The exchange of larger organisms between estuanéghe marine environment is
considered to occur in both a passive and activenera Passive exchange occurs in
forms of larvae that are not sufficiently develogedmaintain their position in the
water column. In the Wadden Sea, de Wolf (1973)nlex] barnacle larvae being
passively transported upstream due to the flocal-t@bmination of the currents.
Similar arguments have been made by other autiiccdurt, 1982; Stancyk and

Feller, 1986) to explain the movement of a numbenwertebrate larvae.

An alternative strategy is for invertebrate anch flarvae to either actively swim

relative to currents, or migrate up and down inwitager column to take advantage of
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tidal currents (Dame and Allen, 1996). An exampldudesRhithropanepeus harrisii
larvae (Sandifer, 1975) that move upward in theewablumn on the flooding tide
and downward on the ebbing tide to maximise the afsthe fast flowing surface
currents and therefore maximise upstream transpdtie estuary (Epifanio, 1988).
Active swimmers include penaeid prawn postlarvakiclv recruit into estuaries by
swimming along the slower moving bottom waters (Boig, 1977; Forbest al,
1994).

Several international studies have demonstrategriésence of offshore zooplankton
communities occurring adjacent to estuaries (Sandtetascoet al, 1996; Espinosa-
Fuentes and Flores-Coto, 2004), as well as therrahteansport of phytoplankton
and particulate organic matter from these systemts the marine environment
(Roegner, 1998; Dale and Prego, 2003). Howeverappdicability of these results to
the South African environment is uncertain. As dgsed above, physical
characteristics and hydrodynamics appear to be diinang force in terms of
biological transport between estuaries and the Bea.to the relatively small size of
South African estuaries, coupled with the high afaitity in flow rates, the
applicability of the trends from the internatiotiéérature to South African estuaries

needs to be assessed.

Several studies in the South African literatureehagsessed the use of estuaries by
various organisms at different stages of their Idgcles, including fish and
invertebrates (specifically the penaeid prawns)weler, to date only one study has
been conducted on a South African estuary to aseessfluence of estuarine water
on the inshore marine biology. Hares al. (2001) examined the fish communities
along a gradient from the St Lucia Estuary (eaastof South Africa) into the marine
environment. This study did identify a continuumfish communities between the
estuary and the marine environment and attributesl to turbidity and salinity
gradients. The St Lucia Estuary is, however, a teamly open/closed estuary
(TOCE), and is not necessarily representative ®fpdrmanently open estuaries along

the South African coastline.

The aim of this chapter is to examine the biologammnectivity of two permanently
open estuaries with contrasting flow regimes ared dtljacent marine environment.

The aims of this study were:

30



Chapter 3 Permanently Open Estuaries

1. Assess if the estuaries have an impact on the byapby (including water
quality parameters such as salinity, temperatur@ @ensity) and biology
(chlorophylla concentration and zooplankton) in the adjacent imear
environment;

2. Determine the geographic extent of the influencéheftwo estuaries on the
adjacent marine environment;

3. Establish whether the proximity of an estuary letmlshe accumulation of
zooplankton in the adjacent marine environment; and

4. Determine if there is a relationship between therriflow volumes entering
the estuaries and the extent of the impact theesysthave on the adjacent

marine environment.

The two estuaries studied were the fresh water dat@d Great Fish Estuary (see
2.2.1 in the previous chapter for details) andKheega Estuary, a tidally dominated
estuary with very low fresh water flow rates (se2.2 in the previous chapter for

details).

3.2 MATERIALS AND METHODS

3.2.1 Sampling protocol

Estuarine samples were collected from ten statwitisin the Kariega Estuary and
eight stations within the Great Fish Estuary, whiaére established approximately
1.75km apart (see Figures 2.5 and 2.7 for a diagyam representation of station
positions). Offshore of the estuary mouth, 20 stetiwere occupied in a sampling
grid of five transects that weréb00m apart. One transect was established north-east
of the mouth (upstream relative to the Agulhas éuti; one opposite the mouth and
three transects at500m intervals south-west of the estuary (downstreglative to
the Agulhas Current). The first station in eacm$ect was occupied 250m offshore,
with an additional three stations @00m intervals (see Figure 3.1 for the grid
details). The entire sampling grid was consideresbita, and could have been
switched to sample the majority of stations nowristeof the estuary mouth, however,
wind conditions consistently allowed the sampliagptcur as presented in Figure 3.1
(see section 3.3.1 below). The surveys were coedumh a seasonal basis (see Table

3.1 for sampling dates, tide times and types). diig survey that was not uniformly
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conducted on a tide between spring and neap wasvitmeh survey. Weather

conditions and boat availability prevented sampbnghe preferred tides.

.\’\/./.13

Direction of flow of the Agulhas Current .

Trans 2 Trans 4
Trans 1 Trans 3 Trans 5
Y @3 ® 12 ® 16 ® 20
®3 Qo7 @ 11 ® 15 ® 19
}200m
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vﬁ\@“/}z%
AN

coastline

river mouth

Figure 3.1: A stylised layout of the marine sampling grid usadthe nearshore

marine environment off the Kariega and Great F&tharies.

3.2.2 Physico-chemical parameters

Flow data for the water entering both estuarie®rpto each sampling trip was
obtained from the Department of Water Affairs amidstry (DWAF) based on weirs
close to the head of each system. Temperatureaimitys measurements were taken
at the surface and bottom2m depth) for estuarine stations and at the suidackat
5m for the marine stations. The 5m depth for sampléhe marine environment was
used to target the low salinity water plume and ititerface region between this
plume and marine waters. Temperature and salingyewneasured using a YSI
600XL water quality probe that had been calibrdtedestuarine and marine waters.
Salinity readings during December were measureagusn optical refractometer due
to technical problems with the YSI 600XL water qgtyaprobe.
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Table 3.1:Listing of the dates on which sampling took plasenell as the relevant
tide times and types on those dates (Tide typestmmels given for the marine

sampling day). Tide type is represented by a sptithg or a tide that is between
spring and neap tide (mid).

Estuary Marine
Month Estuary Tide Type H.Igh Tide
Name Start Start Time
Date . Date .
Time Time
June Kariega 23/06/04 13H55 24/06/04  08H40 Mid 07H28
Great Fish 23/06/04  08H35 22/06/04  08H40 Mid 05H58
September Kariega 22/09/04  09H15 23/09/04  08H18 Mid 12H12
Great Fish 22/09/04  13H57 21/09/04  07H45 Mid 08H14
December Kariega 02/12/04 13H50 03/12/04  07HOO Mid 07H52
Great Fish 02/12/04  10H10 01/12/04  08H15 Mid 06H20
March Kariega 10/03/05  13H10 09/03/05  06H56 Spring 16H03
Great Fish  10/03/05  08H55 08/03/05  07H40 Spring 2Z55H

3.2.3 Chlorophyll -a and particulate organic matter determination

Chlorophylta concentrations were determined for surface antbfmtvaters (or 5m
depth for the marine stations, see Section 3.2a¥elfor determination of sampling
depth) for each station by collecting 200ml watamples. These samples were
vacuum filtered (<5cm Hg) through GF/F filters wihiwere subsequently extracted in
90% acetone for 24hrs in the dark at -20°C. Therophylla concentrations were
then determined using a 10AU-Turner fluorometerin@gsa 10-051 filter:
wavelength=665nm) before and after acidificationcading to the method of Holm-

Hansen and Riemann (1978).

The particulate organic matter (POM) concentraiiothe surface and bottom waters
(or 5m depth for marine stations) for both estumriand marine waters was
determined for each station by collecting andriiftg a 300ml water sample through a

pre-weighed GF/F filter. The filter and filtered teaal were then oven-dried at 60°C
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for a period of 24hrs prior to initial weighing an Sartorius microbalance. The
organic matter was subsequently burnt off at 5a0tG period of 24hrs prior to re-
weighing the filter. The POM was determined by okdting the difference between
the post-60°C and post-500°C weights.

3.2.4 Zooplankton sampling

Due to logistical constraints in terms of safety saa during night time hours,
zooplankton samples were only collected during taytime from the marine
environment. For comparison purposes, the estuaameples were similarly only
collected during daytime. Three replicate zooplanksurface tows (depth.5m)
were conducted at each station using a WP-2 natavBOpm mesh size and a 47cm
mouth diameter. The net was fitted with a flow mei@eneral Oceanics) to allow
volumetric standardisation of the samples. All semollected were stored in 10%
buffered formalin for later identification in thadoratory. For each replicate sample
the zooplankton dry biomass was determined byrifiigea 1/2 to 1/32 sub-sample,
obtained using a Folsom plankton splitter, throagtre-weighed GF/F filter and then
oven drying at 60°C for a period of 24hrs. The dasywere then weighed on a
Sartorius microbalance and dry biomass calculadeti@difference between the filter
weight and the combined dry weight. Abundance anthass values were expressed
as ind.n and mg dwt i, respectively.

Where possible, zooplankton were identified to sggmetevel. All zooplankton were
counted to allow for density estimates which wedrent averaged across the three
replicate samples. The average community abunddateefor each station was then
entered into the PRIMER (Plymouth Routines in Mutiate Ecological Research
version 5.2.4; Clarke and Warwick, 1994) softwaaekage for comparison between
the stations. The data was transformed (log x+1)ninimise the effect of less
abundant species and input into a group-averageg-Burtis Similarity analysis
from which a cluster diagram was generated. The FEHR routine was then
employed to identify which species were contribgtto the differences between the
groupings identified with the numerical analysifieTBIOENV routine in PRIMER
was then used to try to identify correlations betwéhe biotic and physico-chemical
data (Clarke and Warwick, 1994).
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For the purposes of comparing the marine to esteasiations two diversity indices

were used, Shannon-Weiner Diversity and Margal&ishness Index. Margalef's

Richness (d) was calculated using Equation 1 belod Shannon-Weiner Diversity

(H) was determined employing Equation 2. MargadRichness is a measure of the
number of species and a limited indication of thenber of individuals of each

species, while Shannon-Weiner Diversity incorpaagguitability and is a more

comprehensive measure as it indicates whether ancoity is dominated by a few

individuals (Zar, 1996).

d=(S-1)/(Log(N)) (Eq. 1)

Whered is Margalef's RichnessS is the total number of species aNds the total
number of individuals (Clarke and Warwick, 1994).

H' =- Zi pi (log pi) (Eq. 2)

Where:H’ is the resultant diversity,is the sample number apdis the proportion of

the total count represented by ttiespecies (Clarke and Warwick, 1994).

3.2.5 Analysis

The contour plots of the various hydrological anibldgical parameters were
produced in SigmaPlot (version 8.0). This softwaaekage processes regular spaced
grid data into a two dimensional plot. Water dgnsg presented as:;. The o;
calculation is determined according to Fofonoff ahtlllard (1983) from the

temperature and salinity data collected at theaserfind at 5m depth.

Non-parametric statistical analyses were used dsrvepality data tends to have a
log-normal distribution (Grange and Allanson, 1993he differences between
offshore surface and bottom (or 5m depth for mastagions) salinities, temperatures,
POM and total chlorophyth concentration were tested using a two-tailed tt-tes

Microsoft Excel. Similarly, a t-test executed indvbsoft Excel was used to compare
particular transects to the remaining sites as waeltesting for seasonal variation.
Significance was determined at a p-value of 0.0®nil&ly, the non-parametric

Spearman Rank Correlation was used to observaomdaips between the various
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parameters measured. This was conducted on thagevealues for each parameter

within the estuary and marine environment durincheseason.

3.3 RESULTS

3.3.1 Seas state, current and wind speed direction at titeéne of sampling

The swell size during all sampling surveys was tess: 2.5m, causing moderate to
slight sea states on all occasions (South Africazatver Service, unpublished data).
The depths below the sampling stations ranged 8endm for the inshore stations to
9 — 12m for the offshore stations. The longshomeetu in the swash and surfzones
was in a south-westerly direction adjacent to bestuaries during all sampling

surveys (personal observation). This occurs dukedocation of rip currents adjacent
to rocky promontories to the south-west of the dangpgrids in the marine

environment off both estuaries.

Based on observed wind speed and direction (SofribaA Weather Service Data,
Port Alfred Station), the wind on the evening priorsampling and on the sampling
date was predominantly an easterly or northerlydwiilowing towards the south or
west) (see Appendix 1, Table Al1.1 and Al.2). Tlesutted in surface currents that
were westerly, permitting the establishment of saenpling grid as presented in
Figure 3.1. The only sampling occasion when thedwiras in a westerly direction
was on 21 September 2004 (the Great Fish Estuapye®ber sample), but the
decision was made to keep the grid survey in itsectl alignment due to the visible

turbidity plume (as supported by the density plyresented in Figure 3.4).

3.3.2 Physico-chemical and hydrological variables

Flow rates

The average daily flow rate in the Great Fish Bsty&igure 2.8) demonstrated a
bimodal pattern, with spring and autumn peaks. &hesaks do not relate to the
rainfall pattern within the catchment, with the wmatransfer scheme being the main
source of fresh water to the estuary. The speftte rates on the dates that sampling
took place on the Great Fish demonstrated veryvalues for the September 2004
sampling trip (3.46 and 3.35ta") and high values for the March 2005 samples
(32.92 and 10.40fsY) (Table 3.2). Intermediate flow rates were recdrda
September and December 2004.
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Table 3.2: Flow rates (ms?) for the days that sampling was carried out onGheat
Fish and Kariega Estuary and in the adjacent mamweronments. Data provided by
DWAF.

Great Fish Kariega
) Sampling the ) Sampling the
Sampling the _ Sampling the )
Marine Marine
Estuary ] Estuary ]
Environment Environment
June 2004 8.45 9.34 0.003 0.003
September 2004  3.46 3.35 0.003 0.003
December 2004  4.98 4.67 0.003 0.003
March 2005 32.92 10.40 0.005 0.005

The Kariega Estuary has a significantly lower fl@ate (p<0.05; t=2.8) than the Great
Fish as it is highly regulated due to the presesfceumerous impoundments along
the main channel and its tributaries. For ten memththe year, the average monthly
flow rate for the last five years was less tharbfi’ls®, with August and September
being the only exceptions (Figure 2.6). Throughtwt investigation, the mean flow

rate of the Kariega River into the estuary was feas 0.005ms* (Table 3.2).

Salinity

The surface salinity within the Great Fish Estuanyged between O (practical salinity
units) in the upper reaches during December to @amuan of 34.93 near the mouth
during September (Table 3.3). Similarly, the bottsatinity ranged between 0.34 in
March to a maximum of 34.93 during September (TaéhB). A salt wedge was
evident penetrating up the bottom waters of theaegtduring all seasons (Figure
3.2).
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Great Fish Estuary Kariega Estuary
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Figure 3.2: Salinity profiles (practical salinity units) foréhGreat Fish (left) and Kariega (right) Estuariesirty June 2004 (A), September
2004 (B), December 2004 (C) and March 2005 (D) eNbe different scales on the contour plots.
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Table 3.3: Salinity measurements (practical salinity unitg)tfee surface and bottom

waters within the Great Fish Estuary.

June September December March
Surface Average 7.56 15.50 9.38 0.68
Std Dev. 5.15 14.02 7.31 0.30
Maximum 13.13 34.93 19.00 1.28
Minimum 0.76 0.97 0.00 0.40
Bottom Average 20.68 24.52 19.50 6.29
Std Dev. 11.24 10.19 10.94 5.28
Maximum 33.88 34.93 31.00 15.49
Minimum 1.30 3.33 5.00 0.34

The salinities within the Kariega Estuary were #igantly higher than those
recorded in the Great Fish Estuary in both theasarfwaters (p<0.01; t=-8.7) and
bottom waters (p<0.01; t=-4.7). The salinities I tkariega Estuary demonstrated
very little variation between surface and bottontess with the maximum variation
at any one site being <4 (practical salinity unfiSpure 3.2). The difference between
the averages for the surface and bottom waterslegasthan 1 in all seasons except
September, where the bottom waters in the healleokstuary had a relatively low
salinity of 26.5. This resulted in the average toe bottom waters being 2.5 units

lower than that for the surface waters (Table 3.4).

Table 3.4: The average, maximum and minimum salinities (pcattsalinity units)

measured in the Kariega Estuary during each season.

June September December March
Surface Average 36.69 36.41 34.6 35.48
Std Dev. 0.99 0.78 1.26 0.85
Maximum 37.92 37.51 36 37.05
Minimum 35.34 35.38 32 34.6
Bottom Average 36.73 33.92 34.9 34.58
Std Dev. 0.92 3.84 0.74 2.37
Maximum 37.93 36.94 36 36.79
Minimum 35.35 26.48 33 30
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As expected the seasonal variation in salinitiethiwi the Kariega Estuary was
extremely low (<6) due to the highly regulated mataf the river flow. The surface
salinities fluctuated between a June maximum d®3and a December minimum of
32, while the bottom salinities ranged between aeJmaximum of 37.93 and a
September minimum of 26.48 (Table 3.4).

Marine salinities were recorded near the mouth iwithe Kariega Estuary, with a
reverse salinity gradient occurring and hypersatioeditions being recorded towards
the head of the estuary. Hypersaline conditionsiwed from approximately 7.5km
upstream and continued towards the head of theargstiuring all seasons (Figure
3.2). An exception was recorded during the Septerabhd December surveys, with
lower salinity water recorded at the highest estgastation, although this did not
penetrate downstream to any extent, and hypersabneitions were still evident
eight kilometres from the mouth (Figure 3.2). Ird@idn, lower salinity water was
recorded on three occasions lower downstream (tmideicember and one in March),
at positions that coincided with the mouths of-sadtrshes along the estuary (Figure
3.2).

The average surface and 5m salinities recordeldeiméarshore environment adjacent
to the Great Fish Estuary demonstrated little seaswariation (Table 3.5). The
minimum surface salinity was recorded in March 48%, while the maximum was
recorded during September (35.24). The maximum &mity was 35.33 (June) and

the minimum was 28 (December).

Although variable, spatial trends in the nearstsaknity adjacent to the Great Fish
Estuary were evident, with the surface salinityuesl in transects two, three and four
indicating a pool of significantly (p<0.005) lowesalinity water (¥26) than the
remaining transects during all seasons (Appendix Fijure A2.1 — A2.4).
Stratification of the water column was also apparearing three seasons, with
significantly lower salinities recorded in the g waters during June (p=0.007),
September (p=0.001) and March (p=0.008) (Table 3.5)
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Table 3.5: Salinity measurements (practical salinity units) the surface and 5m
waters in the nearshore environment opposite tleatGfish Estuary, including t-test
results for comparisons between the values recdatetthe surface and 5m waters (*

indicates significant p-values).

June September December March
Surface Average 32.58 35.14 31.47 33.18
Std Dev. 3.10 0.13 2.52 243
Maximum 34.98 35.24 35.00 34.73
Minimum 25.95 34.73 26.00 25.45
5m Average 35.27 35.20 32.00 34.86
Std Dev. 0.06 0.08 1.94 0.12
Maximum 35.33 35.27 34 34.96
Minimum 35.13 34.99 28 34.67
t-test Deg. Of Freedom 13 15 18 17
t Stat -3.27 -4.10 -1.69 -2.98
P value 0.007* 0.001* 0.109 0.008*

Fairly uniform salinities were recorded acrossoélthe nearshore stations adjacent to
the Kariega Estuary during all seasons and nofggni differences were identified
between surface waters and 5m depth (p>0.05 inagks) (Table 3.6; Appendix 2,
Figures A2.1 to A2.4). During December, a refractten was used, resulting in
rounding of all salinity measurements to the ndaneg, and all stations registered
exactly 35 (Appendix 2, Figure A2.3). During Marah anomaly was recorded when
relatively low salinities were measured upstreanthaf estuary mouth in both the
surface waters and at 5m. The maximum salinityndExbin the nearshore adjacent to
the Kariega Estuary was 35.35 during June 2004tlaaninimum was 34 recorded
during March 2005 (Table 3.6).

The surface salinities in the marine environmenga@eht to the Great Fish and
Kariega Estuaries were significantly different (88 t=-2.35), while no significant
differences were observed in the bottom salinife=0.05). The significantly higher
salinities adjacent to the Kariega Estuary relativehose recorded adjacent to the
Great Fish are due to the low salinity estuarinem@ occurring offshore of the Great
Fish.
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Table 3.6: The average, maximum and minimum surface and 5Smitsas (practical
salinity units) recorded during each sampling timpthe nearshore environment

adjacent to the Kariega Estuary.

June September December March

Surface Average 35.33 35.29 35 34.57
Std Dev. 0.02 0.02 0 0.42
Maximum 35.35 35.32 35 34.95
Minimum 35.28 35.23 35 34

5m Average 35.34 35.29 35 34.61
Std Dev. 0.01 0.07 0 0.45
Maximum 35.36 35.33 35 34.95
Minimum 35.32 35 35 34

Temperature

The temperatures in the Great Fish Estuary reffleat@rine water incursion in a
wedge during all seasons. This was evidenced thretaymer water in June (Figure
3.3a Great Fish) and colder water during all otbessons (Figure 3.3b — d Great
Fish). The surface waters in the estuary rangeadmst a December maximum of
26.20°C to a June minimum of 13.57°C (Table 3.Fg Bottom waters similarly had a
December maximum of 25.2°C and a June minimum &7PC (Table 3.7). During
all seasons except June, the average temperafutes estuarine surface waters were
warmer than the bottom waters due to warm freslementering the estuary, while
during June this trend was reversed, with the neanaters entering along the estuary

bottom being warmer than the riverine inflow.

The temperatures within the Kariega Estuary dennatest a marine dominance in the
lower reaches, with warmer marine water evideninguthe winter months (June) and
cooler marine water evident during all other seagéiigure 3.3). Seasonal trends in
temperature were evident with the minimum tempeeatbeing recorded in June
(16.03°C — 17°C) and a steady increase to a sumasamum in December (23.5°C —
28°C) (Table 3.8). The water column was well-mixiding all seasons with the

average surface and bottom waters being withirCldefring all seasons (Table 3.8).
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Figure 3.3: Temperature profiles (°C) for the Great Fish (lefidd Kariega (right) Estuaries during June 2004, @gptember 2004 (B),
December 2004 (C) and March 2005 (D). Note thestffit scales on the contour plots.
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Table 3.7: Temperature measurements (°C) for the surface attonb waters within

the Great Fish Estuary.

June September December March
Surface Average 14.09 18.65 25.58 24.04
Std Dev. 0.42 0.58 0.41 0.20
Maximum 14.63 19.61 26.20 24.21
Minimum 13.57 17.88 25.00 23.65
Bottom Average 15.10 17.99 23.91 23.70
Std Dev. 0.35 0.46 0.93 0.60
Maximum 15.44 18.62 25.2 24.46
Minimum 14.37 17.42 225 22.7

No significantly different trends were evident beem the temperatures in the Kariega
Estuary and the Great Fish Estuary due to the sahs@riation evident in both

systems. Similarly, no significant differences smperatures were evident in the
adjacent marine environments, largely due to theenfed seasonality masking any

differences.

Table 3.8: The average seasonal temperatures (°C) within thee¢a Estuary.
Maximum and minimum temperatures for each seasamelisas standard deviations

are presented.

June September December March
Surface Average 16.41 21.86 26.81 23.29
Std Dev. 0.32 0.99 15 2.03
Maximum 17 23.04 28 24.94
Minimum 16.03 19.85 235 19.74
Bottom Average 16.12 20.29 26.5 23.35
Std Dev. 0.36 0.46 1.35 2.09
Maximum 16.77 21.06 27.9 25.2
Minimum 15.84 19.35 23.6 19.72

In the nearshore environment adjacent to the GFesti Estuary no statistically
different spatial trends in temperature were ewvidéumring each season (p>0.05)
(Appendix 2, Figure A2.5 — A2.7). The largest vaada across all sites was recorded

in March 2005, where differences between the lowaest highest temperatures were
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approximately 2°C. However, a t-test indicated thatobserved differences were not

significant (p>0.05) (Appendix 2, Figure A2.8).

The temperatures in the nearshore environment edljdo the Great Fish Estuary
indicated strong seasonal trends, with maximum &atpres at the surface and in 5m
waters being recorded in December (21.7°C and Q1.68spectively) and the
minimum temperatures being recorded in June (16.%4% 15.79°C, respectively)

(Table 3.9). Intermediate temperatures were recbmd&eptember and March.

Stratification of the water column adjacent to @weeat Fish was evident during three
seasons, with cooler 5m water recorded during $dpte, December and March
(Table 3.9). During June, the difference in temhembetween the surface and 5m
layers was minimal with the average surface tentperg15.86°C) being only 0.04°C

cooler than the 5m temperature (15.9°C).

Table 3.9: Temperature measurements (°C) for the surface amdvaters in the
nearshore environment adjacent to the Great FishaBs Delta temperature (°C)
values are provided for surface differences betwseface and bottom waters (+ =

5m water is warmer, - = 5m water is cooler)

June September December March
Surface Average 15.86 17.25 21.48 18.77
Std Dev. 0.19 0.15 0.10 0.38
Maximum 16.11 17.62 21.70 19.78
Minimum 15.54 17.09 21.30 18.24
5m Average 15.90 17.21 21.30 18.51
Std Dev. 0.07 0.14 0.24 0.24
Maximum 16.06 17.50 21.60 18.79
Minimum 15.79 17.00 20.70 17.83
A Temperature Average -0.01+0.22SD  -0.0%0.05SD  -0.1%0.1SD -0.260.40SD
Maximum 0.52 0.12 0.3 0.94
Minimum 0. 0 0 0.03

The seasonal variations in temperatures recordedthi® sites in the nearshore
environment adjacent to the Kariega Estuary dematest a June minimum of

16.06°C and a December maximum of 22.5°C (Tablé)3The water column was
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well-mixed with a variation in the average temperes between surface waters and
5m depth being less than 0.1°C during all seasbaklé 3.10). No spatial trends in
water temperature were evident during the four eygvconducted in the marine

environment (Appendix 2, Figures A2.5 — A2.8).

Table 3.10:The average, minimum and maximum temperaturesré&yrded during
each season in the nearshore marine environmeateadjto the Kariega Estuary.

Standard deviations of the mean are provided.

June September December March
Surface Average 16.34 18.03 22.08 20.19
Std Dev. 0.19 0.05 0.23 0.16
Maximum 16.68 18.1 225 20.43
Minimum 16.09 17.88 21.7 19.93
5m Average 16.26 18.02 22.05 20.1
Std Dev. 0.13 0.06 0.25 0.07
Maximum 16.48 18.1 22.5 20.22
Minimum 16.06 17.83 21.6 19.96

Marine water densities (o)

The marine water densities offshore of the Greah Estuary ranged from a March
minimum of 17.55 on the surface to a June maxim#éir@6o05 on the bottom. The
surface densities were consistently lower tharbtittorn densities during all surveys,
with the average deti; ranging from 0.06 to 2.19 (Table 3.11). The averdgltac;
demonstrated weak water column stratification @ejtbetween 0.00 — 0.05) during
the September survey, while during the DecembemMdardh surveys moderate (delta
o; between 0.05 — 2.00) water stratification was emid The surface estuarine plume
across most of the stations during June resultdudgh stratification (deltay;>2.00)
between the surface and 5m depth. The spatialrpattef water densities, closely
matched that of salinity throughout the offshorevey grids, with deltas; showing a

density plume in the surface waters during JuneebBder and March (Figure 3.4).
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Table 3.11: The water densityd;) and deltac; values calculated in the marine
environment adjacent to the Great Fish Estuary. aherage, standard deviation,

maximum and minimum values are presented.

June September December March
Surface Average 23.80 25.57 21.68 23.66
Std Dev. 2.29 0.13 1.98 2.03
Maximum 25.71 25.66 24.36 24.88
Minimum 18.86 25.16 17.56 17.55
5m Average 25.99 25.63 22.26 25.04
Std Dev. 0.04 0.08 141 0.06
Maximum 26.05 25.69 23.68 251
Minimum 25.92 25.39 19.07 24.87
Deltao, Average 2.19 0.06 1.04 1.37
Std Dev. 2.28 0.05 1.00 2.00
Maximum 7.13 0.23 3.74 7.32
Minimum 0.32 0.00 0.00 0.17

Adjacent to the Kariega Estuary the water colums wery stable, with the average
surfaceo; only slightly lower (<0.07) than the bottom watiensities (Table 3.12).
Similarly, deltac; was always <0.11 demonstrating very weak stratitc@ between
surface and 5m depth (Table 3.12). The seasondltioar in o; was similarly very
low, with the minimum recordedy; of 23.97 recorded during March and the
maximum recordedo; of 25.99 occurring during June (Table 3.12). Natsp

patterns in the surface or 5m water densities apparent (Figure 3.4).

The water density at 5m depth was similar adjadenboth systems, while the
recorded surface water density opposite the Karegjaary was significantly higher
than that recorded adjacent to the Great Fish Bs{pa0.05; t=-2.25). In addition, a
correlation analysis comparing the surface watesities adjacent to both estuaries to

the recorded salinities produced a significantlt€ss=0.92; p<0.05).
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Figure 3.4: Delta o; plots for the marine environment adjacent to theaG Fish (left) and Kariega (right) Estuaries dgrdune 2004 (A),
September 2004 (B), December 2004 (C) and Marct ZD). NE (north-east) and SW (south-west) havenhaserted along the x-axis to
indicate compass direction.
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Table 3.12:The water densitydf) and deltao; calculated in the marine environment
adjacent to the Kariega Estuary. The average, atdndeviation, maximum and

minimum values are presented.

June September December March

Surface Average 25.92 25.49 24.20 24.38
Std Dev. 0.04 0.02 0.06 0.29
Maximum 25.98 25.55 24.30 24.64
Minimum 25.85 25.45 24.08 23.97

5m Average 25.95 25.49 24.21 24.44
Std Dev. 0.03 0.05 0.07 0.33
Maximum 25.99 25.52 24.33 24.70
Minimum 25.91 25.32 24.08 23.98

Deltac; Average 0.03 0.03 0.03 0.1
Std Dev. 0.02 0.05 0.04 0.16
Maximum 0.09 0.23 0.14 0.65
Minimum 0.01 0.01 0.01 0.01

Particulate organic matter (POM) concentration

The particulate organic matter (POM) concentratioeasured within the Great Fish
Estuary demonstrated no spatial pattern during season (Figure 3.5). The POM
concentrations measured during September werdismmtly lower (p=0.012; df=62;
T-statistic=-2.58) than those determined for aleotseasons, with a surface and
bottom minimum of 0.67mg:t and maximum of 6.67mgt and 8.00mg.L,
respectively (Table 3.13). The maximum surface bottom POM concentrations
were measured during March (97.67 and 59.00fg.while the minimum surface
value of 0.67mg.l! was measured during September and March. The minim

bottom value (0.67mg:t) was measured during September (Table 3.13).

The particulate organic matter concentrations @®rwithin the Kariega Estuary,
although variable, demonstrated no longitudinatgesats along the estuary (Figure
3.5). The seasonal trends in POM within the estiragicated a March minimum of
0.33mg.L*! and a December maximum of 26.00my.(Table 3.14). During March,
the average POM concentration for both the suréackebottom waters was relatively
low (3.87 and 2.60mg:t, respectively) when compared to the other seasbins.

POM concentrations recorded during June and Semtembre intermediate, with
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average surface values of 8.00my.L(+6.30SD) and 8.90mgl (+1.43SD),
respectively, and POM concentrations of 6.40rfg{3.03SD) and 9.63mgt
(x1.97SD), respectively, for bottom waters (Tabl&43. The water column was well-

mixed during all seasons (Figure 3.5).

Table 3.13: Particulate organic matter concentrations (rify.in the surface and

bottom waters of the Great Fish Estuary.

June September December March
Surface Average 4.58 3.29 8.21 38.54
Std Dev. 2.20 2.07 2.57 33.23
Maximum 7.33 6.67 12.33 97.67
Minimum 1.67 0.67 4.33 0.67
Bottom Average 8.38 5.04 11.88 28.33
Std Dev. 5.2 2.27 5.23 15.37
Maximum 21.00 8.00 21.00 59.00
Minimum 5.67 0.67 6.33 14.00

Table 3.14: The average, minimum and maximum particulate acganatter

concentrations (mg:t) recorded within the Kariega Estuary during eazdssn.

June September December March
Surface Average 8.00 8.90 16.13 3.87
Std Dev. 6.30 1.43 2.03 1.63
Maximum 18.67 11.33 19.33 8.00
Minimum 2.67 6.67 12.67 2.33
Bottom Average 6.40 9.63 16.47 2.60
Std Dev. 3.03 1.97 4.10 1.27
Maximum 11.00 11.67 26.00 4.33
Minimum 2.67 5.67 12.00 0.33
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Figure 3.5: Particulate organic matter concentration profiles).L?) for the Great Fish (left) and Kariega (right) @&sies during June 2004
(A), September 2004 (B), December 2004 (C) and Maao5 (D). Note the different scales on the conpbots.
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Seasonal patterns in the POM concentrations weirdemtvy within the nearshore
environment adjacent to the Great Fish Estuaryh witie June values being
significantly lower than all other seasons (p<0D0df=132) and March being
significantly higher than all other seasons (p<0X@f=132). The minimum surface
POM concentration of 1.33mg'Lwas recorded during June, while the maximum
(42.67mg.L") recorded during March (Table 3.15). Similarlye tmaximum 5m POM
concentration of 34.67mg:Lwas recorded during March, but the minimum of
0.67mg.L* was recorded during September (Table 3.15). Ther no significant
differences in POM concentration between surfacg @m waters during all four
seasons (Table 3.15; Appendix 2, Figure A2.9 — 2.1

No spatial trends in POM concentration were evidernthe nearshore environment
adjacent to the Great Fish Estuary during Decerb85 and March 2006 (Appendix
2, Figure A2.11 - A2.12). During June, however,ngigantly lower POM

concentrations (p=0.036) were recorded for tranteete relative to the remaining
transects. Similarly, the transects near the malfththe estuary (one and two)

contained significantly higher POM concentratiops@.014) during September.

Table 3.15:Particulate organic matter concentrations (ffy.in the surface and 5m
waters in the nearshore environment opposite theatGFish Estuary (* denotes

significant difference from a t-test between suefaod 5m waters).

June September December March
Surface Average 25 7.97 8.57 13.27
Std Dev. 0.93 1.93 6.13 8.43
Maximum 4 11.67 18.67 42.67
Minimum 1.33 4.67 3 1.67
5m Average 2.77 8.6 6.43 14.63
Std Dev. 1.23 1.27 5.73 6.53
Maximum 6.67 11 20.33 34.67
Minimum 1.67 6 0.67 1.33
t-test Deg. Of Freedom 14 15 17 17
t Stat -0.78 -1.1 1.83 -0.44
P value 0.45 0.29 0.08 0.66
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The POM concentrations in the nearshore environnagljcent to the Kariega
Estuary indicated no differentiation between thefame waters and those at 5m
during all seasons except December (Appendix QrEgA2.9 — A2.12; Table 3.16).
During December the average 5m POM concentratic0(dg.L") was significantly

greater than the surface POM concentration (2.28Mdp>0.05).

In the nearshore environment adjacent to the Karkegtuary no spatial trends in the
POM concentration were evident (Appendix 2, Figlva9 — A2.12). The POM

concentrations recorded during the March surveyewanificantly higher (p<0.0001;
df=137) than those recorded for all other seasavify a surface average of
11.37mg.* and a 5m average of 14.07mg.(Table 3.16). During the remaining
surveys POM concentrations in surface and 5m watene generally less than

5mg.L* (Table 3.16).

Table 3.16: The average, minimum and maximum POM concentrafiog.L™)
recorded for each season in the surface watersttaost at 5m in the nearshore

environment adjacent to the Kariega Estuary.

June September December March
Surface Average 3.10 2.17 2.23 11.37
Std Dev. 0.73 0.63 1.20 4.10
Maximum 4.33 3.67 4.67 17.33
Minimum 1.33 1.33 0.33 0.67
5m Average 3.23 2.43 4.30 14.07
Std Dev. 0.90 0.87 1.80 8.40
Maximum 4.67 4.33 7.33 42.33
Minimum 1.67 1.00 0.67 6.67
t-test Deg. Of Freedom 18 18 18 18
t Stat -0.56 -1.29 -3.78 -1.29
P value 0.58 0.21 0.001 0.21

No significant differences in the POM concentrasisacorded in the Kariega Estuary
relative to the Great Fish Estuary was noted. @iyil offshore of these systems the
high variability recorded for POM concentrationseygnted any significant

differences occurring between these two systems.
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Chlorophyll-a concentration

The mean total chlorophyd-(chl-a) concentration recorded within the Great Fish
Estuary ranged from 2.8@.L™* to 9.61ug.L™" and demonstrated distinct spatial trends
during all seasons (Figure 3.6). During June, Sepé and December the maximum
total chta concentration was recorded in the upper reacheshenminimum near the
estuary mouth. During March, an inverse pattern gxadent, with the highest cll
concentrations at the mouth of the estuary, assaciith marine water incursions
(Figure 3.6).

The total chla concentration recorded in the Great Fish Estuadycated seasonal
trends that appeared to be related to the magnibfideesh water input. June and
December demonstrated the highestalzioncentrations, and were associated with
medium flow rates of approximately 5 — 1Dst, while during September a
significantly (p<0.001; df=62) lower cfd concentration was recorded (Table 3.17),
associated with the lowest flow rates. The@lsbncentrations recorded during March
were also low (Table 3.17), but associated withsguttially higher flow rates of
32nt.st (Table 3.2).

Within the Great Fish Estuary all seasons except Jiemonstrated a well-mixed
water column in terms of total chl concentration, with very little differentiation
between the surface and bottom waters (Table Figure 3.6). During June, total
chl-a concentration in the bottom waters (average {g32' +3.62SD) was
significantly lower (p<0.001; df=7) than the sudaavaters, which averaged
9.61ug.L™ (Table 3.17).

The total chlorophyla concentration in the Kariega Estuary ranged frorduae
minimum of 0.04g.L™" to a March maximum of 5.3§.L™" (Table 3.18). Although
variable, no longitudinal trends were evident dgr8eptember and December (Figure
3.6). During June there was an increase in thd titha concentration from the
mouth towards the head of the estuary, while ineébDdmer the inverse relationship

existed, with a decrease from the mouth up theesy¢Figure 3.6).
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Figure 3.6: Total chlorophylla concentration profilesu.L™) for the Great Fish (left) and Kariega (right) @zsies during June 2004 (A),
September 2004 (B), December 2004 (C) and March PD] Note the different scales on the contoutslo
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Table 3.17: Total chlorophyla concentration (g.L™) for the surface and bottom

waters within the Great Fish Estuary.

June September December March
Surface Average 9.61 2.49 7.11 5.58
Std Dev. 4.25 1.82 5.04 2.18
Maximum 15.76 5.51 15.69 9.91
Minimum 3.32 0.62 1.55 3.54
Bottom Average 4.52 2.27 7.64 5.69
Std Dev. 3.62 2.58 5.53 2.71
Maximum 10.95 8.28 16.49 9.18
Minimum 0.69 0.75 2.63 0.98

The average surface and bottom total chlorophytioncentrations in the Kariega
Estuary during the June, September and Decembeeysuwere less than 21§.L"
(Table 3.18). The chlorophyd concentrations recorded during March were
significantly higher (p<0.001; df=78) than all otle=asons, with a surface maximum
value of 5.3@g.L™" and a bottom maximum value of 6.868L™" (Table 3.18).

Table 3.18: The average, maximum and minimum total chlorophytbncentrations
(ng.L™) recorded within the Kariega Estuary for surfand hottom waters during all

seasons surveyed.

June September December March
Surface Average 1.38 1.62 2.1 3.13
Std Dev. 0.95 1.05 0.79 11
Maximum 3.1 3.37 3.02 5.36
Minimum  0.04 0.31 0.58 1.39
Bottom Average 19 1.46 2.25 3.71
Std Dev. 0.84 0.38 1.13 1.82
Maximum 3.16 1.97 4.78 6.63
Minimum  0.27 0.78 0.74 1.75

The Kariega Estuary surface chlorophyll concerdrativas significantly higher than
that recorded within the Great Fish Estuary (p<0t83.16). The surface chlorophyll
concentration recorded within both estuaries wasvshto correlate significantly with

the river flow rate of the two systems=0.822; p<0.05) and negatively with the
particulate organic content of the estuarine waigrs0.791; p<0.05) (Table 3.19).
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Table 3.19:The Spearman Rank Correlation Coefficiegtdemonstrating the degree
of relationship between the various estuarine patara and river flow rates adjacent

to both estuaries studied. Significance (p<0.0%)dgcated with an * (n=8).

Zoopl_ankton Estuarine Surface Salinity River
Density POM Chlorophyll -a Flow
Zooplankton Density 1.000
Estuarine POM -0.414 1.000
Chlorophylta -0.116 0.079 1.000
Salinity -0.206 -0.413 -0.791* 1.000
River Flow -0.034 0.494 0.822* -0.945 1.000

In the nearshore environment adjacent to the Gfesdt Estuary total chlorophyéd
concentration in September and December demorstnade distinct vertical or
horizontal patterns. Alternatively, during the Jumed March surveys, total
chlorophylla concentrations in surface waters were signifigahther than those
recorded at 5m depth (p=0.03 and p<0.01 respegjiy&hble 3.20). The maximum
surface and 5m cfd concentrations were measured during March (11.88 a
8.26ug.L™, respectively), while the minimum concentratiorss Burface and 5m
waters were measured during June (0.09 anduf.D2 respectively) (Table 3.20).
Seasonal differences in chlorophgllconcentrations were identified adjacent to the
Great Fish, with the June total eotoncentration being significantly lower (p<0.001;
df=128) than those determined for all other seas@miilarly, the total chh
concentration in March was significantly higher rthduring all other seasons
(p<0.001; df=128).

Spatial trends in the total ealconcentration in the nearshore environment adjgoen
the Great Fish Estuary were only evident duringeJand September (Appendix 2,
Figure A2.13 — A2.16). During June, the surfaceewattal chda concentration in
transect three and four was significantly highemtthe remaining sites (Appendix 2,
Figure A2.13). Similarly, during September, theatothta concentrations at all
transects downstream of the mouth (transects 3)d45 were significantly higher
than those recorded upstream and adjacent to thargsnouth (Appendix 2, Figure
A2.14).
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Table 3.20: Total chlorophylta concentration |g.L™) for the surface waters and
those at 5m depth in the nearshore environment sifgpthe Great Fish Estuary,
including t-test results for comparisons betwees \thlues recorded for the surface

and 5m waters (* indicates significant p-values).

June September December March

Surface Average 0.48 1.51 1.74 8.37

Std Dev. 0.42 0.58 0.19 2.54

Maximum 1.39 3.31 2.2 11.83

Minimum 0.09 0.77 1.49 3.74
5m Average 0.21 1.48 1.84 6.52

Std Dev. 0.09 0.59 0.31 1.58

Maximum 0.35 2.54 2.63 8.26

Minimum 0.02 0.48 1.42 2.87
t-test Deg. Of Freedom 14 15 18 17

t Stat 2.35 0.1 -14 2.9

P value 0.03* 0.92 0.18 0.009*

The total chla concentration in the marine environment adjacenthe Kariega
Estuary was lower than that recorded in the estalamng all seasons, with the
exception of March, with a surface average durumge) September and December of
0.18, 0.62 and 0.79@.L" respectively (Table 3.21). The March surface and 5
concentrations of 9.0®.L™" and 8.8fg.L™* were significantly higher than any other
season (p<0.0001; df=182) and higher than thosaraed within the estuary during

the same period.

The total chlorophylla concentration recorded in the nearshore enviroh@mdjacent
to the Kariega Estuary indicates a well-mixed watelumn with the difference
between surface and 5m waters always being lessGlfag.L™" (Table 3.21). The
seasonal chd values demonstrated a steady increase from JubDedember, with a
large increase observed in March in both surfacé Zm waters. The June and
September surveys recorded a spatial trend offgigntly lower chla concentrations
in the transects near the mouth (p<0.002; df=36 @@ 001; df=36 respectively)
(Appendix 2, Figure A2.13 and A2.14). In Decembesimilar, but not significant
trend was observed (p>0.05), with lower concerdretionly at sites five and six
(Appendix 2, Figure A2.15).
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Table 3.21: The average, maximum and minimum chloroplayltoncentrations
(ng.L™) recorded in the nearshore environment adjacettiet&ariega Estuary during

all four surveys.

June September December March
Surface Average 0.18 0.62 0.79 9.02
Std Dev. 0.09 0.24 0.18 1.82
Maximum 0.47 1.04 1.13 12.04
Minimum 0.08 0.33 0.33 4.03
5m Average 0.16 0.62 0.84 8.86
Std Dev. 0.09 0.18 0.25 1.46
Maximum 0.42 0.94 1.25 11.31
Minimum 0.05 0.38 0.33 6.23

The surface chlorophyl- concentration in the marine environment adjacenthe
Kariega Estuary was significantly lower than thextarded adjacent to the Great Fish
during June, September and December (p<0.03; t=2[Ag marine surface
chlorophyll-a concentration was found to significantly correlaie¢he flow rate in the
adjacent marine environment H#0.762; p<0.05) (Table 3.22). Chlorophyll
concentrations were also shown to significantlyrelate with the zooplankton

densities and biomasses recorded in the marinecement (Table 3.22).

Table 3.22:The Spearman Rank Correlation Coefficiegt demonstrating the degree
of relationship between the various offshore patamnseand river flow rates adjacent

to both estuaries studied. Significance (p<0.0%)dgcated with an * (n=8).

Surface i .
Zooplankton  Zooplankton Chlorophvll - g?rg%?(l:ate River
Density Biomass phy M 9 Flow
a atter
Zooplankton Density 1.000
Zooplankton Biomass 0.738* 1.000
Chlorophylta 0.714* 0.738* 1.000
Particulate Organic 0.881* 0.738* 0.762+ 1.000
Matter
River Flow 0.708* 0.439 0.415 0.634 1.000
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3.3.3 Zooplankton density and biomass

Zooplankton density

The average total zooplankton densities within@Gneat Fish Estuary ranged from 72
to 10 244ind.rit during the study period (Table 3.23). During thime] September
and December surveys the maximum zooplankton demsitere recorded in the
upper reaches of the estuary, while during the NKlasturvey the maximum
zooplankton densities were recorded in the middie lawer reaches of the system
(Figure 3.7). Although seasonal trends were evidéet high degree of variability in
the total zooplankton densities resulted in diffeles not being significant (p>0.05).
March demonstrated the lowest densities of zooptemkwith a minimum of
16.04ind.nT and a maximum of 112.35indhfTable 3.23). Densities of zooplankton
during the remaining months were, on average, aeroof magnitude higher,
although the minimum values were in the same rasy¢the March values (Table
3.23). The highest densities within the Great FE$tuary were recorded in
September, with an average of 10 244.52ift(#15 111.13SD) (Table 3.23). During
the June and December surveys the total zooplardgosities ranged between 22.01
and 4 860.25ind.Mand 22.79 and 13 603.26indnrespectively (Table 3.23).

Table 3.23:The total zooplankton densities (ind*recorded within the Great Fish
and Kariega Estuaries during the study. Standavéhtiens, maximum and minimum

densities are shown for each month.

June September December March
Great Fish Average 1 389.30 10 244.52 3449.34 1723
Std Dev. 1815.76 15111.13 5160.47 36.93
Maximum 4860.25 42896.56 13603.26 112.35
Minimum 22.01 63.81 22.79 16.04
Kariega Average 1727.31 581.36 1031.89 966.29
Std Dev. 1148.62 474.32 740.28 630.91
Maximum 3785.73 1 550.20 2 748.28 2 464.23
Minimum 121.60 53.51 157.42 380.00
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Figure 3.7: The total zooplankton densities (ind)nrecorded in the Great Fish (left) and Kariegghtj Estuaries during June 2004 (A),
September 2004 (B), December 2004 (C) and March PDYPsurveys. Error bars represent standard dewiat
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The total zooplankton density recorded within thearigga Estuary generally
demonstrated a similar longitudinal pattern dumtigseasons, with peaks recorded in
the middle to upper reaches of the system (Figur¢. Ihe average zooplankton
densities in the mouth region during the June, &eper and December surveys were
121ind.m®, 127.73ind.i8 and 405.06ind.th respectively. The maximum
zooplankton densities recorded during June, Semendnd December were
3 785.73ind.rit, 1 550.20ind.ni and 2 748.28ind.i (Figure 3.7). During the March
survey the average zooplankton density in the moggion was higher at
approximately 823.44ind.h with a maximum density of 2 464.23ind’nfFigure
3.7). No seasonal trend in the average zooplankmsities recorded within the
Kariega Estuary was evident, with minimum densit@scurring in September
(581.36ind.nT) and maximum densities occurring in June (1 73ABM®) (Table
3.23). The average densities recorded in DecemterMarch were approximately
1 000ind. .

The mean total zooplankton densities within thel gurvey occupied adjacent to the
Great Fish Estuary ranged from 72 to 37 055irtl(fiable 3.24). Peaks in total
zooplankton abundance during the June, Septembdr March surveys were
associated with the plume of low salinity watervieg the estuary. Alternatively,
during December, the highest zooplankton densitiee recorded along Transect 1,

located upstream of the estuary mouth (Figure 3.8).

Table 3.24: Average total zooplankton densities (ind)mecorded in the nearshore
marine environment adjacent to the Great Fish amadea Estuaries, including

standard deviation, maximum and minimum values.

June September December March
Great Fish Average 694.11 276.53 2 091.36 15 713.15
Std Dev. 404.14 179.70 2104.51 8694.71
Maximum 1229.36  730.08 924291 37 055.95
Minimum 213.04 62.25 693.97 5663.31
Kariega Average 110.41 96.56 90.29 30513.20
Std Dev. 92.57 74.38 66.51 22 609.15
Maximum 412.69 307.33 264.06 91 589.50
Minimum 35.56 14.93 28.88 6 729.70
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63



Chapter 3 Permanently Open Estuaries

Variations in the total zooplankton densities ia tharine environment adjacent to the
Great Fish Estuary were strongly correlated to theflow of estuarine water
(r<=0.708; p<0.05) (Table 3.22). Significantly higex0.0001; df=57) zooplankton
density observed during March coincided with thghest flow rates recorded.
Similarly, the significantly lower (p<0.01; df=57@ensities observed during
September coincided with the lowest flow rates réed during the study (Table 3.2).
Total densities of zooplankton in the marine envinent ranged from 62.25ind’hto

1 229ind.n?. The minimum zooplankton density recorded in thearshore
environment during the study was 62.25ind.muring September, while the
minimum for March of 5 663.31ind.frwas higher than the maximum value for both
June (1 229.36ind.1) and September (730.08ind3n(Table 3.24).

The total zooplankton densities in the nearshoxgr@mment adjacent to the Kariega
Estuary ranged from 14.93 to 91 589.50ind.(Table 3.24). Densities during the
March survey (6729ind.thto 91 589.5ind.i) were significantly higher (p<0.0001;
df=73) than all other seasons (Table 3.24). Theswed trend demonstrated a
decrease in average densities from June (110.41the92.57SD) to December
(90.29ind.nT +66.51SD). Although no significant spatial pattein total zooplankton

density were evident during the surveys (Figurg,38aks in zooplankton densities

occurred in transect one and two during the Septenilecember and March surveys.

The spatial patterns in total zooplankton densitighe marine environments adjacent
to both estuaries correlated significantly with fihesh water flow rates £0.708;
p<0.05), total chlorophyll-a concentration=0.714; p<0.05) and particulate organic
matter concentrationss£0.881; p<0.05) (Table 3.22).

Zooplankton biomass

The total zooplankton biomass within the Great Hsltuary ranged between a June
minimum of 11.92mg dwt i (+15.09SD) and a March maximum of 184.87mg dwt
m* (#117.41SD) (Table 3.25). The total zooplanktoonass during the June to
December surveys broadly demonstrated a similaiasgmattern with highest values
generally being recorded in the upper reaches @fsifstem and the lowest at the

mouth. An exception was recorded during the Marahvey where maximum
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zooplankton biomass was recorded in the middlehesaof the estuary (Figure 3.9;
Table 3.25). Seasonal variations in the total zaition biomass were evident within
the Great Fish Estuary, with significantly lowerofmass (p=0.02; df=15) being
recorded in June and December relative to Septerabdr March. The highest
zooplankton biomass was recorded in the upper esaaluring September (1
010.58mg dwt ), while the lowest was recorded in the mouth regio June
(2.36mg dwt rif) (Table 3.25).

Table 3.25: Total zooplankton biomass (mg dwtraveraged across all sites within
the Great Fish and Kariega Estuaries for each se&andard deviation, maximum

and minimum values are presented.

June September December March
Great Fish Average 11.92 157.41 24.20 184.87
Std Dev. 15.08 350.55 25.72 117.41
Maximum 46.53 1010.58 83.71 408.42
Minimum 2.36 5.89 5.26 63.44
Kariega Average 21.59 12.57 33.29 145.89
Std Dev. 5.62 3.36 20.17 275.26
Maximum 34.23 16.11 80.31 887.08
Minimum 13.98 7.39 15.24 24.56

The total zooplankton biomass recorded within tlaeiéga Estuary ranged between a
September minimum of 7.39mg dwtno a March maximum of 887.08mg dwtm
(Table 3.25). During June and December a longitldittend of increasing
zooplankton biomass towards the middle reachelseoKariega Estuary from both the
head and mouth region was observed (Figure 3.9plN@mus longitudinal trend was
evident in September and March (Figure 3.9). Thyh iiomasses recorded in June
and December occurred at sites adjacent to thareakhes, while there was also a
high biomass at sites located at the mouth of gteaey during March. The lowest
zooplankton biomass was recorded in September, entier average zooplankton
biomass was estimated at 12.57mg dwt @fiable 3.25). The highest zooplankton
biomass was recorded in March, with an average d&ésmof 145.89mg dwt f(Table
3.25).
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The mean total zooplankton biomass within the feaesenvironment adjacent to the
Great Fish Estuary was highly patchy and rangeth fo60 to 45.12mg dwt th
Similar spatial trends were evident during Septemdned December with peak
biomass occurring close inshore in transects doeast of the estuary mouth (Figure
3.10). During June and March the peak zooplankiomass was recorded offshore,
but adjacent to the estuary mouth (transect 2). Higbest biomass was recorded in
transect one during March (163.14mg dwt)mwhile the lowest was recorded in
transect one during September (4.57mg di} (able 3.26; Figure 3.10).

The total zooplankton biomass in the nearshorerennient adjacent to the Great
Fish Estuary indicated the highest values closeoresand slightly downstream of the
mouth of the estuary during the September and Deeesurveys (Figure 3.10). This
corresponded to the inshore edge of the plumetahese water entering the marine
environment (as evident from density and salinajues) (Appendix 2, Figures A2.2,

A2.3 and A2.82). Similarly, peaks in total zooplaakbiomass identified during June
(156.60mg dwt rif) and March (163.14mg dwt fhwere closely related to the fresher
estuarine water entering the nearshore environiffgmpendix 2, Figures A2.1 and

A2.4).

The total zooplankton biomass in the nearshorermaagnvironment adjacent to the
Kariega Estuary demonstrated a similar patterrh& tecorded within the estuary,
with the lowest average zooplankton biomass recbrdm September
(7.82mg dwt rif) and the highest during the March survey (210.@9mgm®) (Table
3.26). Intermediate values were recorded in JuBe2{2ng dwt ¥ +24.55SD) and
December (27.04mg dwt #32.79SD). The zooplankton biomass recorded rrear t
mouth of the estuary (transect 1 and 2) was sianifly higher (p<0.05) than that at
the remaining stations during all seasons (Figut8)3
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Figure 3.10: The total zooplankton biomass (mg dwtymecorded offshore of the Great Fish (left) andiéga (right) Estuaries during June
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68



Chapter 3 Permanently Open Estuaries

Table 3.26: Total zooplankton biomass (mg dwtjraveraged across all sites in the
sampling grid in the nearshore environment adjaterihe Great Fish and Kariega

Estuaries. Standard deviation, maximum and mininuatues for each season are

presented.
June September December March
Great Fish Average 25.44 9.60 31.06 45.12
Std Dev. 35.53 4.29 20.01 35.24
Maximum 156.60 19.87 75.79 163.14
Minimum 10.31 4.57 13.81 9.36
Kariega Average 20.27 7.82 27.04 210.95
Std Dev. 24.55 4.36 32.79 123.80
Maximum 113.25 22.82 154.66 467.58
Minimum 8.14 2.80 7.20 46.93

3.3.4 Zooplankton community structure and numerical analysis

Great Fish Estuary and adjacent marine environment

A total of 58 species of zooplankton were recordedhe Great Fish Estuary and
adjacent marine environment. Fifty-seven speciesewecorded in the marine
environment, while 35 species occurred in the egtifaee Appendix 3 for the
recorded species lists). Margalef’'s species richinadex values for the estuarine
zooplankton ranged between 2.06 and 3.39, whil¢hé& marine environment the
values ranged between 2.48 and 7.16 (Table 3.2¥9. Shannon-Weiner diversity
values calculated for the marine environment rarfgeh 1.17 to 1.84, while in the
estuary, the diversity values varied between Or2d B53 (Table 3.27). During all
seasons, except for March, highest species rictaressliversity were recorded in the
marine environment, with maximum values recordedune 2004 (Table 3.27).

Results of numerical analyses conducted on Junglamokton abundance data (Figure
3.11) indicated the presence of two significantlyfedent (ANOSIM; p<0.05)
groupings of stations, designated Groups 1 and r@ugs 1 comprised stations
occupied in the marine environment, while Grouposisted of the stations located
within the estuary. Group 2 was further separatéd the upper (1 — 4) and lower
reach (5 — 8) stations. The observed pattern waerghty similar for the three
remaining surveys (Figure 3.12 to 3.14), with Sefiter indicating the only variation
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with the lower reach sites being more closely eglab the marine stations, possibly

due to the low flow conditions that predominate&eptember.

Table 3.27: The combined total number of species, speciemnesh and species

diversity for all estuarine and marine sites dusiagh season.

Number of Margalef's Shannon-Weiner
Species Species Richness Diversity
June Estuarine 22 2.90 0.42
Marine 48 7.16 1.89
September Estuarine 20 2.06 0.54
Marine 36 6.29 1.25
December Estuarine 24 2.82 0.24
Marine 35 4.45 1.84
March Estuarine 15 3.39 1.53
Marine 25 2.48 1.17
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Figure 3.11:Cluster diagram showing the grouping of sites basethe zooplankton

community structure sampled in the nearshore enment adjacent to the Great Fish

Estuary during June 2004. The coding of sites s@t@a number and a notation for

estuarine (E) vs marine (M) stations. The dotted fepresents a 35% similarity.
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Figure 3.12:Cluster diagrarrll showing the grouping of sites basethe zgoplankton
community structure sampled in the nearshore enment adjacent to the Great Fish
Estuary during September 2004. The coding of s&ies site number and a notation
for estuarine (E) vs marine (M) stations. The dbtiee represents a 35% similarity.
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Figure 3.13: Cluster diagram showing the grouping of sites basethe zooplankton

=

community structure sampled in the nearshore enment adjacent to the Great Fish
Estuary during December 2004. The coding of sgessite number and a notation for

estuarine (E) vs marine (M) stations. The dotted fepresents a 35% similarity.
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Figure 3.14:Cluster diagram showing the grouping of sites basethe zooplankton
community structure sampled in the nearshore enment adjacent to the Great Fish
Estuary during March 2005. The coding of sites Eta number and a notation for
estuarine (E) vs marine (M) stations. The dotted fepresents a 35% similarity.

The dominant species causing the separation bettixeeastuarine and marine sites
during all seasons are presented in Table 3.28uhe the differences in densities of
copepod nauplii (6.5%)Calanus agulhensis(De Decker, Kaczmaruk & Marska,
1991)(8.6%) andCalanus simillimugGiesbrecht, 1902) (7.77%) were responsible for
22.9% of the difference between estuarine and raaites. During September similar
species, nauplii (17.2%f{;. agulhensig14.0%) andOithonaspp. (13.2%), accounted
for 44.3% of the difference between the two gropable 3.28). The dominant
contributors to the community separation during €meber were Noctiluca (11.7%),
C. agulhensig8.2%) andOithonaspp. (9.5%). Finally, during March three species,
Oithona spp. (15.9%),C. agulhensis(14.9%) and unidentified zoeae (11.6%),
accounted for 42.3% of the separation between maaimd estuarine sites (Table
3.28).
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Table 3.28: The contribution of the 15 most important specmsards community separation into estuarine and maagroups during each
season. Included is the average abundance of #m@espwithin the estuary and the marine environnergach season. The analysis was

conducted in the SIMPER routine of the PRIMER statal package (Clarke and Warwick, 1994).

4 %) a o a
= E 2 £ 7] 2 3
3 T S s 2 2 2 2 s g &
. . c o 5 3 & £2 7 2 & s S = 8 3
Taxonomic Group/Species ° w@ L n 2 T c® 8 8 s &8 F 28
8 =i > S s TE S = 5 5 o 6 wa® 5 «© T
© c c c e} ot 58 85 = @ @ 52 00 92 o
S %3 = &§ £ ££3855 8§ ¢ 8 §285 § 5=
O O O T O xgd2as = N O <8352 O <&
June Average Estuarine Abundance 1280 5 0 4 19 21 4 0 04 0 4 12 0 0
Average Marine Abundance 270 197 41 45 60 0 0 6 0 320 1 0 14 2
Percentage Contribution to Dissimilarity 6.5 86 87.6.1 5.5 38 29 35 0 25 61 18 45 51 22
September Average Estuarine Abundance 8990 15 0.1 5 36 65 200 0 1 0 0 0 0
Average Marine Abundance 22 64 0.2 2 142 0 0 2 0 32 03 0.1 1 0.3
Percentage Contribution to Dissimilarity = 17.2 14.008 4.1 132 66 54 3.2 0 3.8 29 09 02 29 1
December Average Estuarine Abundance 3302 3 0 0 6 50 59 0 03 5 0 7 0 0
Average Marine Abundance 287 137 3 25 527 0 2 0.138 6 227 87 3 0 7 20
Percentage Contribution to Dissimilarity 7.4 8.2 32.58 9.5 47 36 01 1166 7.9 57 20 33 35 48
March Average Estuarine Abundance 1 0 0 4 0 17 30 0 0 1 00 0 0 0
Average Marine Abundance 232 5356 4 28 8061 2 7 207 12141 107 16 0 5 17

Percentage Contribution to Dissimilarity 8.7 149 90 24 159 27 48 05 537 116 82 3.2 0 1.1 34
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Kariega Estuary and adjacent marine environment

A total of 34 zooplankton species were collectethinithe Kariega Estuary, while in
the adjacent marine environment 51 species werdiiee (see Appendix 3 for the
recorded species lists). All species recorded withe estuary were recorded in the
adjacent marine environment. Similarly to the Gieéigh results, the highest species
diversity and richness was recorded within the neanvironment during all seasons
with the exception being March (Table 3.29). Thar@ton-Weiner diversity values
for the estuarine samples for June, September aogrbber was very low (0.28 —
0.55) indicating a dominance of these samples hgwa taxonomic groupsyiz.
copepod nauplii anfAcartia longipatella(Connell and Grindley, 1974). The relatively
low diversity indices recorded for the marine eamment in March could largely be
attributed to the numerical dominanceQithonaspecies within the total zooplankton
counts. The higher Margalef's richness values d¢aled in the marine environment
could be attributed to the higher number of specezorded in this environment

during all seasons.

Table 3.29: The total number of species, species richness civelsity for the

estuarine and marine environments during each sesssopled.

Number of Margalef's Shannon-Weiner
Species Species Richness Diversity
June Estuarine 24 3.08 0.28
Marine 47 9.69 2.45
September Estuarine 20 2.98 0.40
Marine 39 8.30 1.99
December Estuarine 27 3.75 0.55
Marine 33 7.03 2.50
March Estuarine 25 3.49 1.78
Marine 28 2.61 1.26

An analysis of the zooplankton data collected witthe estuary and the adjacent
marine environment indicated that two significandijferent groupings (ANOSIM;

p<0.05) were recorded during all seasons (Figurgs ® 3.18). Group 1 comprised
predominantly the marine stations, while Group Zwenerally comprised of the
estuarine stations. During the June, December aactiMsurveys the estuarine site

situated near the mouth of the estuary was inclugélde marine grouping (Group 1).
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This influence extended further up the estuaryrdufbecember and March, with the
lower two and three estuarine stations (respeglivgrouping with the marine

samples during these two seasons (Figures 3.13.484

The separation between the estuarine and maringgrmuring June, September and
December could largely be ascribed to differenceslansities of copepod nauplii
(>14% during all three seasons) relative to to@bptankton counts (Table 3.30).
Further species that contributed to the dissintylaof estuarine and marine groupings
during June and December surveys wAgartia longipatella(13.3% and 13.1%
respectively) and€. agulhensig9.5% and 7.8%, respectively). During Septem@er,
agulhensis (11.3%) was similarly important, whil®ithona sp. (10.6%) also
contributed to the estuarine/marine site separafi@ble 3.30). During the March
survey the separation of estuarine and marine sitas largely attributed to
differences at these stations of the total abureraf C. agulhensis(12.7%),

Noctilucasp (8.7%) anclausocalanusp (7.7%).
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Figure 3.15: Cluster diagram showing the grouping of sites basethe zooplankton

abundance data for June 2004. The coding of sitassite number and a notation for

estuarine (E) vs marine (M) stations. The dotted hepresents 35% similarity.
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Figure 3.16: Cluster diagram showing the grouping of sites basethe zooplankton

abundance data for September 2004. The codingtes & a site number and a
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similarity.

207

40 +

[s7]
=1

80 +

J LI

nEOISsmEBR2IsSsreIgygeegregegece
uw = = = = = = =2 =2 =2 =2 = =2
2 1

Figure 3.17:Cluster diagram showing the grouping of sites basethe zooplankton
abundance data for December 2004. The coding ef s& a site number and a
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Figure 3.18: Cluster diagram showing the grouping of sites basethe zooplankton
abundance data for March 2005. The coding of ssteéssite number and a notation

for estuarine (E) vs marine (M) stations. The dbtiee represents 35% similarity.

3.3.5 Combined zooplankton numerical analysis

The results of the numerical analyses conductel thi¢ combined data sets for both
estuaries is shown in Figure 3.19. A similar pattemerges in that the estuarine sites
form a distinct grouping from the marine sites adja to the two estuaries (Figure
3.19). Most of the estuarine stations separatedn frime marine stations at
approximately a 38% similarity level and formed ariéga Estuary group, a March
Great Fish Estuary group and a upper reach grouph# Great Fish during June,
September and December (Figure 3.19). The remagshgarine stations were lower
reach stations within the Great Fish that separditech the marine stations at
approximately a 45% similarity. As presented in thdividual systems analyses
above, some of the lower reach estuarine statia@me within the grouping of marine

sites.
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Table 3.30: The contribution of the 15 most important specmsards community separation into estuarine and maagroups during each

season. Included is the average abundance of gegespwithin the estuary and the marine environrimeaach season.
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Figure 3.19: The cluster diagram representing the numericalyaigafor all sites during all seasons. The blackesorepresent Great Fish
Marine sites, the white zones the Great Fish Esteagites. The light grey zones represent Kariegaid sites and the dark grey zones

represent Kariega Estuarine sites. The sites mankddan asterisk represent those estuarine sitdsnwthe marine zone. The dotted line

represents a 38% similarity.
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Several species were identified as important insicauthe observed separation of
sites when all the stations for both systems wetaméned, but three species
contributed a combined dissimilarity of 29.5%. Téé@scludeC. agulhensig10.7%),
Oithona sp (9.5%) and various copepod nauplii (9.3%) (€al®.31). Their
contribution to the separation is a result of margites having approximately two
orders of magnitude higher abundance€ofgulhensisand Oithonasp. relative to

the estuarine sites (Table 3.31).

Table 3.31: The three most important species in causing thenoamty separation
displayed in Figure 3.19, including their averagpeiredances in both environments

and their contribution to the cluster formation.

_ Ave Estuarine Ave Marine Contribution to
Species S
Abundance Abundance dissimilarity
Calanus agulhensis 13 1837 10.7
Oithonasp 32 3136 9.5
Nauplii 1969 150 9.3

3.4 DISCUSSION

Although the two estuaries examined during thiglgtare both classified as large
permanently open systems, they have very diffehgatrodynamic characteristics.
The flow rates within the Great Fish were at lghste orders of magnitude greater
than those recorded in the Kariega Estuary (TakIi2s As a result of the high base
flows due to the interbasin transfer scheme, andissalt wedge was evident within
the Great Fish Estuary throughout the study (Fig@r2). Alternatively, the
persistence of a reverse salinity gradient in theidga Estuary (Figure 3.2) reflected
the low fresh water flow rates into the system. ¢xding to Whitfield and Bruton
(1989) the presence of a reverse salinity gradetitin southern African estuaries
can be related to a combination of low fresh wat#ow and high evaporation rates.

The establishment of sampling grids upstream orrdtngam of the estuary mouth
(relative to the Agulhas Current) was determinedhenspecific survey dates. On all
occasions the prevailing winds, and therefore serfaurrents, were northerly or

easterly (blowing in a southerly or westerly dires}. In addition, the observed
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longshore drift in the swash and surf zones adjaden both systems was
predominantly south-westerly in nature. The contplats of salinity and deltay
adjacent to the Great Fish Estuary confirm thessgo@l observations, as the plume
of low salinity water leaving the estuary was releaf to the south-west of, or directly
adjacent to (September sample), the estuary mappendix 2, Figures A2.1 to
A2.4). It should be noted that the direction of gteme relative to the mouth of the
estuary may demonstrate a high degree of tempogaiahility reflecting
hydrodynamic processes (current and wind patterAisjis under conditions when
westerly winds prevail within the region, the pluofeestuarine water will most likely

be in an easterly orientation.

In the marine environment adjacent to the Greah Estuary, the outflow of fresh
water from the estuary was clearly evident as anplwf low salinity water (26
practical salinity units) adjacent to or immedigtelownstream of the mouth of the
estuary (Appendix 2, Figures A2.1, A2.3 and A2H)e occurrence of a small surface
plug of low salinity water adjacent to the estuduying the March survey can likely
be related to the survey being undertaken durigg tide due to logistical constraints.
The inflow of a tidal plug of marine water into tlestuary would have masked the
effect of a fresh water plume. The lack of low sy water recorded during
September is most likely a combination of sampbfagse to the high tide (including
time lag) and relatively low flow rates for thisrpel (Table 3.2). Adjacent to the
fresh water deprived Kariega Estuary, there wasewvidence of any fresh water
outflow to the marine environment. A body of reddicgalinity water was observed
adjacent to the Kariega Estuary during the Maratvesy but it is unlikely that this
water was derived from the estuary. Rather it afgpélaat it can be ascribed to
oceanographic processes upstream of the estuatjiehhtmset al. (2000) have
identified reduced salinity conditions associatethwpwelling centres along the
inshore edge of the Agulhas Current. In a studydooted in parallel to the current
study, Jennings (2005) identified an extraneoudemitsource that was not normally
evident in the nearshore environment adjacent ® Kariega Estuary. It was
suggested that the nutrients were derived fromparelling event centred around the
Port Alfred region, some 20km upstream from theiéGa Estuary.
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The deltac; values observed adjacent to the Great Fish Estuggorts the salinity
findings with stratification observed during albsens except September (Figure 3.4).
Lower density water is typically reported withint@sine plumes. For example,
Kingsford and Suthers (1994) identified a longihali density gradient between
Botany Bay and the plume front in the adjacent neenvironment. The observed
stratification evident in the delta; slightly offshore adjacent to the mouth of the
Great Fish Estuary in March is most likely the tesf flood tide dissipation of the
estuarine plume (Figure 3.4). Similarly, during ®epber the very slight stratification
demonstrated by delta; to the west of the study area, most likely a testilthe
dissipating estuarine plume on the flooding tiddisTeffect has been reported
adjacent to estuaries in Australia such as Botaay, Bvith incoming tidal currents
resulting in mixing between the estuarine waterm@uand marine waters (Kingsford
and Suthers, 1996). Botany Bay is, however, a anhatly larger estuary and with
the plume extending further offshore than was medrin this study and therefore
being more easily dissipated on flood tides. Tlo& laf any stratification in the water
column adjacent to the Kariega Estuary confirmslale& of fresh water outflow from
this system. The consistently higher stratificatbmcurring adjacent to the Great Fish
Estuary reinforces the greater impact that thidesyshas on the adjacent marine
hydrology relative to the Kariega Estuary. Duringnd and December 2004 the
westward direction of the stratification indicassonger inshore currents than were
observed during March 2005. The March survey shoeeidence of very little
surface current due to the density stratificati@ween surface and bottom water
occurring directly adjacent to the estuary mouthisTs supported by the reported low
wind speeds on the sampling date (1.4iméppendix 1, Table Al.1).

The temperatures within the Kariega Estuary dematesthe moderating influence of
the marine environment on the lower reaches, vatgd seasonal fluctuations only
being recorded in the upper reaches of the estgigure 3.3). The water

temperatures in the Great Fish Estuary indicatddmainance by fresh water derived
from the inter-basin transfer scheme, with maremgeratures penetrating into the
lower estuarine sites within the bottom waters (Feg3.3). The entry of fresh water
into the marine environment is similarly indicated the contour plots during each

season, with plumes of higher temperature wateingubecember and March, and
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lower temperature water during June and Septemfygpehdix 2, Figures A2.5 to
A2.7). Relatively low temperatures were recordedirdy March in the nearshore
environment adjacent to the Great Fish Estuary,clwvhlgould be related to the

abovementioned upwelling event (Jennings, 2005).

Although several studies have demonstrated thdicpkate organic matter (POM)
concentrations within estuaries are largely depende fresh water inflow (Baird and
Ulanowicz, 1993; Grange and Allanson, 1995; Baind &leymans, 1996; Grangs
al., 2000), during the present study POM concentratieithin the two estuaries were
with few exceptions, not significantly differenth@ observed pattern is surprising
given the marked differences in the hydrodynamidahe two systems and can likely
be attributed to the different origins of the PQiMe two estuaries. In the Great Fish
Estuary, the POM is most likely derived from théenbasin water transfer, while in
the Kariega Estuary, the extensive salt marshessabhtherged macrophytes in the
middle and lower reaches of the estuary form thenrsaurce of the POM (Chapter
5). The POM values recorded within the Kariega &stwuring June, September and
December were comparable to those recorded by adhénors (Lucas, 1986;
Allanson and Read, 1987; Grange and Allanson, 198%lor and Allanson, 1995)
(11 — 23mg.[), while the POM concentrations documented in theaGFish Estuary
during the same period were lower, although the fiates during this study were also
slightly depressed relative to the literature. Blsence of any significant difference
in the POM concentrations within the two estuarestributed to the marine
environment adjacent to the two systems havinglainllOM concentrations (Table
3.15 and 3.16). The occurrence of high POM coneaéntts in the marine
environment adjacent to both estuaries during tlaeckl survey is likely the result of

the abovementioned upwelling event (Jennings, 2005)

The total chlorophyla concentration in the Kariega Estuary was condistdass
than 2.;ug.L™" in both surface and bottom waters. In the Greah Hstuary, total
chlorophylla concentration was higher, ranging from 0.69 to9i6.L™"). A
Spearman Correlation indicated that total chlordiphyconcentration in the estuary
was significantly correlated to flow rates & 0.87; p < 0.05) (Table 3.22). Lucas
(1986) identified allochthonous import and hydrodymc trapping of riverine

phytoplankton as the main sources of the high olplayll-a concentrations recorded
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in the Great Fish Estuary, while Grange and Allan§t095) commented that the
tidally-mediated resuspension of phytoplankton veéid for the high chlorophyt
concentrations despite high turbidity reducingltbket penetration in this system. The
observed discrepancies in total chloroptayliconcentration between these two
estuaries is well documented and can be relatétetdifferent flow rates and nutrient
sources in these two systems (Lucas, 1986; Allarsswh Read, 1987; Grange and
Allanson, 1995; Taylor and Allanson, 1995).

Not surprisingly, the marine environment adjacemtthe Great Fish Estuary was
characterised by significantly higher total chldmgip-a concentrations than that
recorded adjacent to the Kariega Estuary. The totdbrophylla concentrations
adjacent to both estuaries were significantly dateel to the POM concentrationsg (r
= 0.762; p < 0.05) (Table 3.22). This relationshigs been identified by several
authors (Baircet al, 1987; Baird and Winter, 1989; Lutjeharmisal, 1989a; Winter
and Baird, 1991; Winteet al, 1996; Lutjeharmet al, 2000; Meyeret al, 2002) who
have related peaks in nutrients and particulatearoog to chlorophyla
concentrations. The observed pattern is likely tesult of a combination of
chlorophylta export from the Great Fish Estuary, as well as theognised
relationship between fresh water flow rates andsequoently higher nutrient
concentrations causing stimulated growth of phyoklon (Froneman, 2002a;
Perissinottoet al, 2002; Jennings, 2005; Garatal, 2005). It is likely that the POM
concentrations at the stations closest inshore vb&ased by wave action in the
surfzone, however, as demonstrated in the contlmiis this was not apparent along

the entire length of the shore during any individiavey.

Jennings (2005) completed a land ocean interfatieeirtoastal zone (LOICZ) model
for both these estuaries based on sampling caoigdon the same days as the
biological data collected during this study. Thesules from the LOICZ model

indicated consistently higher nitrate, nitrite agilicate levels at stations adjacent to
the Great Fish Estuary relative to those adjacerth¢ Kariega Estuary during all

seasons except March. The March sample indicatadasiranges adjacent to both
estuaries for these nutrients and this was atgtwd an upwelling event (Jennings
2005). These results support the concept thathlwraphyll concentrations recorded
during this study were related to the nutrient ¢oods prevailing adjacent to these
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rivers. Alternatively, it is possible that the irased chlorophyl: concentrations
recorded in the marine environment adjacent thealGfessh Estuary are the result of

increased phytoplankton production rates due tontreased water column stability.

The zooplankton sampling carried out during thigdgtis not strictly comparable to
previous research due to the fact that the sampliag only conducted during the
daytime and thus does not consider the markedvdiéical migrations patterns of the
zooplankton in the estuaries. This absence of #igtg zooplankton data is as a
result of the logistical constraints surroundingnpling in the marine inshore zone
after dark and the need for comparability betwelea marine samples and the
estuarine samples. Previous research has indidaettends in surface zooplankton
densities and abundances within estuaries due eovétical migration habits of
various zooplankters (Wooldridge and Erasmus, 198Upoldridge, 1986;
Wooldridge and Webb, 1988; Schlacher and Wooldrid@®94; Wooldridge, 1999;
Perissinottaet al, 2000; Perissinottet al, 2003).

The total estuarine zooplankton biomass and densityhe Great Fish Estuary
demonstrated little or no seasonal pattern (Figués and 3.9). The observed
temporal pattern in total zooplankton density ammass in the Great Fish Estuary
could be related to changes in hydrodynamic camutiand surface water retention
times. The lowest zooplankton biomass was recodigthg the periods of highest
fresh water outflow and lowest surface retentianes (<1 day; Jennings, 2005)
within the estuary. Seasonal trends in zooplankiomass and density were evident
within the Kariega Estuary, which could likely belated to seasonal changes in
physico-chemical conditions. The zooplankton bicsn@sorded in both systems, but
particularly the Great Fish Estuary, during thisdst was relatively low compared to
that recorded by Grang# al. (2000). The lower biomass values can be relatel to
change in community structure, as Graegel. (2000) recorded a mysid dominated
community, whereas during this study the commumigs dominated by calanoid
copepods. The seasonal trends in average zooptadktsity did not mirror those of
average biomass, mainly due to the different badgssof species caught in the
various seasons. For example, in March within tmeaGFish Estuary the highest
biomass was recorded, but the lowest zooplanktorsige This was due to the

predominance of nauplii in the samples during J@eptember and December, but
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the lack of these small bodied zooplankton in thardt sample. The zooplankton
recorded in March demonstrated a dominance of thegef-bodied mysid,
Rhopalophthalmus terranataligWooldridge, 1986), and the copepodcartia

longipatella

The offshore zooplankton densities adjacent td<dwgega Estuary demonstrated little
or no seasonal trends (Figure 3.8). The large aserén zooplankton density recorded
adjacent to the estuary during March was mirromredhie nearshore environment
adjacent to the Great Fish Estuary and is likelg do an upwelling event that
occurred immediately prior to the March survey (legs, 2005). This rapid response
in zooplankton density and biomass has been rapdageother authors in terms of
tidal fronts adjacent to estuaries (e.g. Largi€93). Largier (1993) suggests that
certain species of phytoplankton and zooplanktencancentrated in the area of tidal
fronts that last for no longer than an hour or t¥Was also possible that advection of
fauna from surrounding waters could account foritloeeased densities in the plume
during this study. Kingsford and Suthers (1996 pré&gd advection of adjacent marine
water into the Botany Bay plume front, despite mgvagainst the prevailing winds
on occasion. The advection of animals into the gldront at high rates was used by
Rissik and Suthers (1996) to explain the varigbilit gut fullness index of larvae
captured in the estuarine water plume. Evidencarolipwelling event during the
period of the March survey is provided from satellimagery of the region
(www.rsmarinesa.org.za) that shows water 3 — 4°@elothan the average
temperatures three days prior to the March sundy NMarch 2005). Similarly,
maximum zooplankton biomass was observed in Mamdjacant to both these
systems, with identical seasonal trends of mininneocorded biomasses in September,
followed by June and December, offshore of bothseéhestuaries. The average
biomasses and densities were higher adjacent tGitbat Fish, but the seasonal and

spatial trends observed were similar off both estga

The total chlorophyla and POM concentrations in the nearshore envirohmene
found to correlate significantly (= 0.762; p < 0.05) with one another (Table 3.22).
Chlorophylta and POM peaks did not overlay the reduced temperatnd salinity
values that would indicate a fresh water plume itite marine environment.

However, the trends in these two parameters wernadfdo closely track the salinity
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and temperature trends observed. Several authars idntified higher primary

productivity along the edges of tidally inducee (ishort term) estuarine fronts (Tyler
and Seliger, 1978; Garcaet al, 1986; Martin and White, 1988). This productivity
has been explained by phytoplankton species witht @mough time scales as well as

physical entrainment and concentration of individua these zones.

The highest total zooplankton biomass and densitghe nearshore environment
adjacent to the Great Fish Estuary were shown tadssciated with plumes of
estuarine water in the marine environment. Altewedf, maximum biomass and
density values were recorded directly adjacenh® rhouth of the Kariega Estuary
during all seasons except March (Figure 3.8 an@)3Ih addition, the zooplankton
density results were shown to significantly coebaith the chlorophyta and POM
concentrations in the nearshore environment (T&#22). Both the zooplankton
densities and chlorophydl concentrations were shown to correlate signifigawith
the river flow rates entering the adjacent estga(leable 3.22). This demonstrates
that the zooplankton communities in the nearshorarenment adjacent to these
estuaries are reliant to some degree on the watdraaged (in the case of the
Kariega) or leaving (in the case of the Great Fidtgse systems as well as the
productivity of the mixing fronts associated withst water. The fact that the Kariega
Estuary demonstrates a localised effect on thecadjazooplankton communities
(increase in biomass and densities), indicatesftealh water is not imperative to the
influence an estuary may have on the nearshoreladdpn community. However,
the significantly larger values observed offsharéhe Great Fish Estuary do indicate
that increased fresh water flow rates can sigmtigaaffect zooplankton biomass and

density.

Numerical analyses indicated the existence of twgingt zooplankton groupings

corresponding to estuarine and marine stationsnduail seasons for both systems
(Figures 3.11 — 3.14 and 3.15 — 3.18). The presehd¢be two groupings suggests
limited exchange of plankton between estuariesthadnarine environment. The low
densities of estuarine fauna occurring within tharine habitat indicates that the
zooplankton within the estuaries generally appedrave evolved retention strategies
to reduce flushing into the marine environment.sThs supported by a study by

Wooldridge and Erasmus (1980), who identified vasieaopepods and mysids in the
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Sundays River Estuary that changed their positrothe water column and river
channel depending on the tidal state to preveshihg from the estuary. Of interest is
the fact that the majority of the zooplankton specaiecorded in the estuarine samples
were also identified in the marine environment eeljd to both estuaries although in
very low densities. This is not common due to theemtion strategies described for
zooplankton species, which allow them to retain itpms within an estuary
(Wooldridge, 1999). The occurrence of most esteamooplankton species from
within the Kariega Estuary in the adjacent maringi®nment is explained by the
marine nature of the Kariega, therefore allowinginespecies to enter the estuarine
area. Alternatively, the occurrence of the est@aspecies in the marine environment
adjacent to the Great Fish is most likely due &séhspecies being flushed from the

estuary into the adjacent marine environment.

The clear separation between the estuarine anchenadmmunities identified with
numerical analyses was due to differences in amindpecies within the two
groupings. Within the estuariescartia longipatellaand Pseudodiaptomus hessei
(Jerling, 1988) were numerically dominant, and @lih these species did occur in
the marine environment it was generally in very kmambers (Table 3.28 and
3.131). These copepod species are recognised asepigpecies within estuaries
(Wooldridge, 1999; Froneman, 2004a). In the magngironment adjacent to both
systems, the dominant zooplankton species @aagulhensiswhich was virtually
absent within the estuarine samplé€s. agulhensisis the dominant copepod in
Agulhas Bank waters, accounting for between 50 &8% of total copepod biomass
(Verheyeet al, 1994; Huggett and Richardson, 2000). During cebsdf surveys in
the Port Alfred region in 1989, the recorded déesiofC. agulhensisanged between
1 and 1 000ind.f with biomasses in the region ©700mg dwt rit (Verheyeet al,
1994; Huggett and Richardson, 2000). The denafi€s agulhensisluring this study
thus compared favourably with the abovementionedlighed results, ranging
between an average of 27ind*miuring September and a March average of 4
850ind.n’.

While the numerical analyses identified a clearasafoon of estuarine and marine
stations, it was evident that marine waters wetre &b penetrate into the estuary,

resulting in lower estuarine stations in the Kaaidgstuary, grouping with marine
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sites. The observed pattern was particularly evigdren sampling was undertaken
during the upwelling event in March. The groupiriglee lower estuarine sites within
the marine stations was largely attributed to tieuision ofC. agulhensignto the
estuarine waters. The observed pattern suggestbéenecotone between the estuary
and the marine environment, which appears to berddgmt on the flow rate and tidal
state. Sanchez-Velasa al. (1996) recorded a similar situation in the fishvid
distribution in the inshore environment off the m@mos Lagoon (Gulf of Mexico),
with a mobile estuarine community which extended reduced its distribution
depending on the rainy or dry season. Similarlytridaet al. (2001) recorded three
larval fish communities occurring along an estuarhmarine gradient between the
estuary lower reaches and the nearshore envirorexgatent to the St Lucia Estuary.
One group occurred within the estuary and was cimeghrof predominantly estuarine
species, with a surf zone grouping of some estaamd some nearshore species, and
a nearshore grouping of distinctly nearshore sge¢i@rriset al. (2001) and Harris
and Cyrus (1995; 1996) have recorded different fipacies using all three of the
identified environments as nursery areas and s@meeies using these zones as a

transit route into the estuary.

The clear separation between the estuarine andnenawoplankton communities
observed in this study for both estuaries indicdted the elevated zooplankton
biomass generally recorded in the nearshore enwieoh adjacent to the estuaries is
not derived from the estuarine community. The zaokion within the region of
elevated biomass appear to be accumulating adjazeéhé mouth of the estuaries to
feed on the high chlorophy#l and POM concentrations that prevail in the regidre
cues that promote these aggregations do not apgpedre salinity related, as
aggregations were found to occur adjacent to tleshfrwater deprived Kariega
Estuary. Largier (1993) has commented that theraatation of biota associated with
estuarine fronts is not unusual, with higher troplavels being attracted to these
regions due to the enhanced food availability. dditon, Yanagiet al. (1992) and
Franks (1992a) have recorded various invertebrbtgeg passively collected in
mixing zones due to convergent surface flows. Tgassive collection of biota in
frontal mixing zones is considered important, esdlcin terms of short duration
frontal systems, such as those induced by tidalem@nt (Largier and Taljaard,

1992). Species have developed means of maintapusgion in areas frequented by
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tidally induced fronts that cycle over short pesd@ — 6hrs). For example, Franks
(1992a) recorded oyster larvae using vertical ntigna to maintain position in the

James River front.

3.4.1 Conclusions

Due to large variations in fresh water input, theeemanently open systems differed
in terms of their hydrographic impact on the adjcmarine environment. The
reasons for these differences related to the fle@r rates entering the systems, with
the fresh water deprived Kariega Estuary havingeay Mimited impact on the
hydrography in the adjacent marine environment,levthe fresh water rich Great
Fish Estuary influenced salinity, temperature anldrophyll regimes in the adjacent
marine environment. Despite the limited impact be tdjacent hydrography, the
Kariega Estuary was still shown to impact on theptankton biomass and density in
the adjacent marine environment. However, the effetthe estuarine water outflow
adjacent to the Great Fish Estuary were demondtratenfluence a substantially
greater area relative to the Kariega Estuary. diliisrence was most likely due to the
difference in the volume of water entering the marenvironment from these two

systems.

The availability of estuarine water in the nearghenvironment is influenced on
several temporal scales, including daily tidal eg¢l monthly lunar cycles and
stochastic upwelling events (Figure 3.20). In additthe impact of estuarine water
on the primary and secondary productivity in tregion is influenced by seasonal
trends (Adamst al, 1999). The shortest temporal scale is causeddyaily tidal
oscillations, from high to low tide, twice a dayt Bigh tide, marine water penetrates
into the lower reaches of the estuaries in a wedgel, therefore eliminates the
presence of estuarine water in the nearshore emagat. At low tide estuarine water
flows from these systems into the adjacent manmnrenment. The effect of the high
and low tide oscillations is heightened when vieviedhe context of the monthly
time frame of spring to neap tides. On a spring tite intrusion of marine waters into
the estuary is increased whereas during the logy tine outflow of estuarine water
into the marine environment is more prominent. Bgimeap tides, the role of a high

and low tide is reduced, with estuarine water @mgethe nearshore environment even
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on a high tide, albeit in reduced volumes, whillw neap tide does not permit as

much water outflow as a spring low tide.

The influence of estuary derived water on primang gaecondary productivity in the
nearshore environment appears to be seasonallyotiedt (Figure 3.20). In this

study, low chlorophyta and POM concentrations, as well as reduced zokigan

biomass and densities were recorded adjacent tdGteat Fish Estuary in June
despite the relatively high flow rates (Table 3.Rpduced temperature during the
winter months may have resulted in reduced levélsorimary and secondary
productivity. Several authors (Franks, 1992b; Adatal, 1999; Froneman, 2001a)
have identified this phenomena in estuarine enwi@ms and estuarine frontal

systems, with temperature as a controlling infl@éeoi phytoplankton productivity.
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Figure 3.20: A representation of the relative influx of freshteminto the marine
environment over different tidal and lunar cyclas,well as the varying ability of this

water to influence the biology in this zone seafipna
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In addition to tidal and seasonal influences oruaste water availability to the
nearshore environment, productivity in this regiappears to be significantly
influenced by stochastic upwelling events. The ltespresented above in terms of
temperatures, chlorophydl and POM concentrations all indicate an externaewa
source during the March sampling trip. Howevert thdernal source is not related to
estuarine outflow and appears to be a wide reactveqt (affects both the Kariega
and Great Fish estuaries). In addition, Jennin@®X indicated the presence of
upwelling when investigating the nutrient charastess in the nearshore environment
adjacent to these estuaries over the same peni@hiarmset al. (2000) has recorded
the presence of an upwelling cell in the Port Alfregion and has indicated that it
occurs randomly, but upwelled water was observel 45 the time between 1988
and 1994. Both the chlorophydl-and particulate organic matter concentrations as
well as zooplankton biomass and densities sampledngl this period were
significantly higher than those sampled during otinenths off both the Kariega and
Great Fish estuaries. This indicates the overwhegmifluence of an upwelling event

on the nearshore primary and secondary productivity
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CHAPTER 4

THE EFFECT OF TEMPORARILY OPEN/CLOSED
ESTUARIES ON ZOOPLANKTON COMMUNITIES IN
THE ADJACENT NEARSHORE ENVIRONMENT

4.1 INTRODUCTION

South African estuaries have been separated iméorfiain categories, permanently
open estuaries, temporarily open/closed estuafi@€ESs), estuarine bays, estuarine
lakes and river mouths (Whitfield, 1992a). Permdliyeopen estuaries and TOCEs
comprise over 98% of the 258 recognised estualoegydhe South African coastline
(Whitfield, 2000). Temporarily open/closed estuari@@ OCEs) are the dominant
estuary type in the country, comprising approxinyatg0% of all estuaries
(Perissinottoet al, 2000). The importance of these smaller estuddethe marine

environment is uncertain as it has not been ingatd previously.

Dame and Allen (1996) discussed how the net fluxbiological matter between
estuaries and the marine environment varies depgrah the estuary type due to the
different hydrological processes occurring. Permégeopen estuaries have a
permanent link to the marine environment and tlueegfeven if riverine flows are
extremely low, they interact significantly with tlsea on a daily basis due to tidal
flows (Postma, 1981; Kjerfve, 1989). This differerh TOCEs as these systems are
separated from the marine environment for varyiegaals of time (Cowleyet al,
2001; Bellet al, 2001; Froneman, 2002a). TOCEs, however, mayist#ract with
the nearshore environment due to import or expérbiological material during
overtopping or breaching events or nutrient exckathgough water seepage via the
sandbar during closed mouth conditions (Whitfiel@92b; Whitfield, 1998; Kemp
and Froneman, 2004). Overtopping refers to occaswmen, due to extremely high
spring tides or large coastal swells, marine watashes over the sandbar at the
mouth of a TOCE (Cowlegt al, 2001; Bellet al, 2001).
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A mouth opening event occurs in response to pratipn in the catchment and an
increase in volume of water in the lower estuagguiting in the system breaking
through the sandbar and establishing a link withgba (Cowley and Whitfield, 2001;
Froneman, 2002c). Fish and invertebrate larvae leen recorded recruiting into
TOCEs during both mouth opening events and ovemgppvents (Cowleyet al,
2001; Bellet al, 2001; Froneman, 2004a; Kemp and Froneman, 2004ddition,
sub-adult fish and on occasion invertebrates l¢lagse systems during both of these

types of marine interactions (Cowley, 1998).

Very few studies have investigated the importarfcBQCESs to the nearshore marine
environment. A major consideration of the imporamf these systems is the high
usage by large populations of estuarine-dependaninenfish species (Cowley and
Whitfield, 2002; Lukeyet al, 2006). Cowley and Whitfield (2002) conducted a
population estimate on the East Kleinemonde Estaarwo occasions and identified
a total population oRhabdosargus holul§Steindachner, 1881), a marine fish species
that uses estuaries as a nursery area, of 133r@DQ&000 individuals. Similarly, in
the smaller Grants Valley Estuary (3ha), Lukety al. (2006) identified a total
population of estuarine-dependent marine fish gseof 18 200. This indicates a
significant contribution from these smaller systetasthe marine environment in

terms of ichthyofauna.

In a study by Harrigt al. (2001) on the St Lucia estuarine lake (which vegy large
temporarily open/closed system), a continuum ofed#nt fish larval communities
was identified during an open mouth phase betwéenestuary and the marine
environment. Three communities were identified, egnthe estuarine community,
surf zone community and nearshore community. Speeiere identified that
overlapped between these communities, but genesmparate congregations of
species were identified that were using the diffemones for different purposes and
not just as a transit route to the estuary. Thes#ies identify biological contributions

by the marine environment to the estuaries condeasevell avice versa

This study addressed the interaction between themenanvironment and two TOCEs

on the Eastern Cape coastline. The specific aintiseo$tudy were to:
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1. Determine if TOCEs influence the specific variab{ésmperature, salinity,
particulate organic matter and chlorophyll) in tharine environment adjacent
to their mouths;

2. ldentify any changes in the zooplankton communitycture, density or
biomass in relation to the estuary mouth; and

3. ldentify the geographic extent of any impact on thdjacent marine

environment during different seasons and mouthgshas

The study estuaries were the Kasouga (see 2.ZBapter Two for details) and East
Kleinemonde (see 2.2.4 in Chapter Two for detailsyo estuaries were sampled to
include a greater range of mouth variability in TEXC The two study systems differ
substantially in terms of mouth phase and breackimayacteristics allowing for a
comparison of the effect of this important estuaramaracteristic on their interacton

with the marine environment.

4.2 MATERIALS AND METHODS

4.2.1 Sampling protocol

The estuarine samples were collected from sixastatiapproximately 0.5km apart,
within the Kasouga and East Kleinemonde estuades Figures 2.9 and 2.10 for a
diagrammatic representation of station positiorig).the nearshore environment
adjacent to the estuary mouth 12 stations werepedun a sampling grid of four
transects perpendicular to the coast. The transtatted 250m offshore and were
250m apart, with each of the three stations irmastect positioned 200m apart (Figure
4.1). One transect was established north-easteoéstuary mouth (upstream relative
to the flow of the Agulhas Current), one opposhe mouth and three transects at
250m intervals south-west of the estuary (downstra@lative to the Agulhas
Current). The sampling grid as described above emsidered mobile and could
have been moved to sample three transects norttoktdse estuary mouth and only
one south-west depending on prevailing current itimmd. The surveys were
conducted on a seasonal basis covering two moudisesh(see Table 4.1 for the

sampling dates, tides and mouth status).
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Figure 4.1: A stylised layout of the sampling grid used in thearshore marine

environment adjacent to the Kasouga and East Kizanele estuaries.

Table 4.1: Listing of the dates on which sampling took plasewall as the mouth

status and high tide times and tide types on tldages (Tide types and times given

for the marine sampling day). Tide type is représgiby a spring tide or a tide that is

between spring and neap tide (mid). Mouth statiserilees an open condition (O),

closed condition with no overtopping (C) and closmhdition with overtopping

occurring (C/OT).

Estuary Marine
. Tide Mouth
Month Estuary Name Start Start Tide Type Time  Status
Date . Date .
Time Time
June East Kleinemonde  08/06/2005 12H35 07/06/2005 O07H27 id M 03H40 C
Kasouga 21/06/2005 12H50 21/06/2005 07HO0 Mid 15H@S
September East Kleinemonde  09/09/2005 10HO00 08/09/2005 06H53 C
Mid 05H45
Kasouga 09/09/2005 07H35 08/09/2005 09H35 C
November East Kleinemonde  18/11/2006 09H40 17/11/2005 06H25 (0]
Spring 16H00
Kasouga 18/11/2006 09H10 17/11/2005 09H15 C/OT
March East Kleinemonde  01/03/2006 10H20 28/02/2006 09H10 /OTC
Spring 04h00
Kasouga 01/03/2006 09H35 28/02/2006 06H35 C/oT
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4.2.2 Physico-chemical parameters

Temperature and salinity measurements were tak#re aurface and bottornX.5m
depth) for the estuarine stations and at the seidad 5m for the marine stations. The
5m depth sample for the marine stations was use@rget any possible buoyant
salinity plume and the potential zone of interactlmetween the plume and marine
waters. Temperatures and salinities were measigied a YSI 600XL probe during
June, September and November 2005. Due to teclprichlems this was changed to
a YSI 610 probe during the March 2006 sample. 8wlwas measured using an

optical refractometer during this period.

4.2.3 Chlorophyll-a and particulate organic matter (POM) determination

See section 3.2.3 in Chapter Three as the metremtbwere identical.

4.2.4 Zooplankton sampling

See section 3.2.4 in Chapter Three as the metheeld were identical. Within the
East Kleinemonde the number of sampling stationzdomplankton were reduced in
November 2005 to those closest to the mouth dieegaching causing shallow water

conditions which prevented the towing of the zoogtan net.

4.2.5 Statistical analysis

See section 3.2.5 in Chapter Three as the methsmtswere identical.

4.3 RESULTS

4.3.1 Sea state, current and wind direction at the time fosampling

The predominant longshore swash zone and surfzameent direction on the
sampling dates was consistently in a south-westeiigction due to rip currents
adjacent to rocky promontories on the south-westh@fsampling grids. On the survey
dates and evenings prior to the surveys the wimdction, and therefore surface
current direction, was similarly consistently blogitowards the north or west (see
Appendix 1, Table A1.3 and Al.4 for specific dat@puth African Weather Service,
Port Alfred Station). The sea state during all sys/was light to moderate with
swells of 2.5m or less (South African Weather Smryunpublished data). The depth
below the study sites ranged from approximatelyatrthe stations 200m from shore

to 11m at the stations 800m from shore.
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4.3.2 Physico-chemical and hydrological variables

4.3.3 Kasouga Estuary

Mouth status

The Kasouga Estuary never breached during anyeage¢lasons studied; however, just
prior to the November 2005 and March 2006 surveysrtopping was noted. During

June and September 2005 the estuary was closedavigiidence of overtopping.

The East Kleinemonde Estuary was closed with nzcatdns of overtopping during
the June and September surveys. The estuary hachieck just prior to the November
survey and was still open with a link to the sethattime of the survey. Prior to the

March survey overtopping of the sand berm was noted

Salinity

The Kasouga Estuary demonstrated a mean salingy waried seasonally in
conjunction with rainfall patterns and evaporatiates. The lowest average salinities
were recorded in June 2005 (16.73 practical sglinitits £0.27) (Table 4.2), with
November 2005 being intermediate (22.83 +£1.17) &eptember 2005 (25.17 +0.41)
and March 2006 (26.00 £0.63) being significantlgher (p<0.005; df=46). The lower
salinities in June and November 2005 were a resiularge amounts of rainfall
(=150mm and=180mm respectively) in the region in the two monpihsceding the
samples. The elevated salinity values recordedavelber 2005 can be ascribed to

greater evaporation during the summer months.

Table 4.2: The average, maximum and minimum surface and mmotsalinity

(practical salinity units) recorded in the Kasoliguary during all seasons sampled.

June September November March

Surface Average 16.73 25.17 22.83 26.00
Std Dev. 0.27 0.41 1.17 0.63

Maximum 16.92 26.00 24.00 27.00

Minimum 16.22 25.00 21.00 25.00

Bottom Average 15.25 25.00 22.50 26.58
Std Dev. 2.23 0.00 1.87 1.80

Maximum 16.93 25.00 24.00 30.00

Minimum 12.30 25.00 19.00 25.00
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There was very little evidence of longitudinal tlenin salinity along the Kasouga
Estuary, with the salinity being relatively uniforuring June, September and
November 2005 (Figure 4.2). During March 2006 theswes a weak longitudinal
gradient in salinity, with salinities in the moutigion being=4 units higher than in
the upper reaches. There was no evidence of watema stratification during the

four seasons sampled (Figure 4.2).

Significantly lower salinities were recorded in bhdhe surface (p<0.02; t=2.11) and
bottom (p<0.03; t=2.1) waters in the East KleinedwrEstuary relative to the
Kasouga Estuary. Salinity values (practical safinmnits) within the East

Kleinemonde Estuary were low in November (3.25 &).Gnd moderate in June
(18.77 £0.62) and March (14.17 +1.17), with a pé&akSeptember (24.83 +0.41)
(Table 4.3). No horizontal patterns in salinity @eevident during the June and
September surveys (Figure 4.2). However, in Noverttiee system demonstrated low
salinity water throughout the estuary, with a dligitrease near the mouth. During
March a typical horizontal gradient in salinity wasgdent with high values recorded
at the mouth and lower values at the head of tiséesy. The patch of low salinity
water at Station 2 represents a stormwater entiyt poto the system (Figure 4.2).
There was no apparent water column stratificatioany stage during the sampling

trips conducted.

Table 4.3: The average, maximum and minimum salinity valygsdtical salinity
units) recorded on the surface and bottom withia Hast Kleinemonde Estuary

during the sampling period.

June September November March
Surface Average 18.77 24.83 3.25 14.17
Std Dev. 0.62 0.41 0.96 1.17
Maximum 19.81 25.00 4.00 15.00
Minimum 18.03 24.00 2.00 12.00
Bottom Average 19.26 24.83 3.50 14.17
Std Dev. 1.29 0.41 2.12 1.17
Maximum 21.68 25.00 5.00 15.00
Minimum 18.14 24.00 2.00 12.00
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Figure 4.2: Vertical profiles of the salinity (practical salipiunits) recorded within the Kasouga (left) andtBEéleinemonde Estuaries during
June 2005 (A), September 2005 (B), November 20008 March 2006 (D). Note the different scalesh@ncontour plots.
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The average salinities recorded in the nearshoreoement adjacent to the Kasouga
Estuary varied between a March 2006 minimum vafugsa+0.00SD) at the surface
and 5m to a September 2005 maximum value of 36:029SD) at the surface and
5m (Table 4.4). No significant seasonal trends vegrngarent. No spatial trends were
observed in the nearshore environment, with theatran across the sites during all

seasons being less than one practical salinity(Appendix 4, Figure A4.1 to A4.4).

Table 4.4: The average, minimum and maximum surface and 5mmityalvalues
(practical salinity units) recorded in the neargh@nvironment adjacent to the

Kasouga Estuary.

June September November March
Surface Average 35.38 36.92 35.83 35.00
Std Dev. 0.03 0.19 0.83 0.00
Maximum 35.43 37.00 37.00 35.00
Minimum 35.34 36.50 35.00 35.00
5m Average 35.40 36.92 36.18 35.00
Std Dev. 0.02 0.19 0.87 0.00
Maximum 35.43 37.00 38.00 35.00
Minimum 35.36 36.50 35.00 35.00

In the nearshore marine environment adjacent td&cts Kleinemonde no significant
(p>0.05) spatial trends in salinity values weredent during the study (Appendix 4,
Figure A4.1 to A4.4). A zone of low salinity wateas, however, observed at Station
1 or upstream of the estuary mouth during the J@eptember and November
surveys. The water column was well-mixed during s#hsons, with the average
variation between surface and 5m waters beingthess 0.2 (Table 4.5; Appendix 4,
Figure A4.1 to A4.4). No seasonal trends were aiida the nearshore marine
environment, with the average salinities duringe]Jueptember and March bemgb
(Table 4.5). The only sample that had an averagaitgaof less than 35 was
November, due to surface and bottom minima of 3de Do the uniform salinity

adjacent to both systems no significant differerweee noted at the surface or at 5m.
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Table 4.5: The average, minimum and maximum surface and 3mitga(practical
salinity units) values recorded in the nearshoreimaaenvironment adjacent to the

East Kleinemonde Estuary.

June September November March
Surface Average 35.26 36.75 34.88 35.00
Std Dev. 0.05 0.40 0.31 0.00
Maximum 35.30 37.00 35.00 35.00
Minimum 35.12 36.00 34.00 35.00
5m Average 35.28 36.96 34.83 35.00
Std Dev. 0.02 0.14 0.39 0.00
Maximum 35.31 37.00 35.00 35.00
Minimum 35.22 36.50 34.00 35.00

Temperature

The water temperatures recorded within the Kasdtgiaary show a non-significant
(p>0.05) seasonal trend with the lowest averageé¢eature being recorded in June
(15.19°C +0.27) and the maximum being recorded iardd (26.18°C +0.15).
Intermediate temperatures were evident in SeptemaéNovember (Table 4.6). The
estuary was well-mixed, with variations betweenfate and bottom waters being
within 1°C during all seasons (Figure 4.3; Tabl) 4The spatial temperature trends
in the estuary indicated well-mixed conditions, hwislightly lower temperatures

during all seasons in the mouth region and an asge¢owards the head of the estuary

(Figure 4.3).

Table 4.6: The average, maximum and minimum temperatures ré@€rded in the

Kasouga Estuary during the sampling period.

June September November March
Surface Average 15.19 17.40 23.17 26.18
Std Dev. 0.27 0.45 0.41 0.15
Maximum 15.54 18.00 23.50 26.40
Minimum 14.82 16.70 22.50 26.00
Bottom Average 14.92 17.38 22.92 26.02
Std Dev. 0.26 0.49 0.20 0.36
Maximum 15.38 18.00 23.00 26.40
Minimum 14.75 16.60 22.50 25.60
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Figure 4.3: Vertical profiles of the temperatures (°C) recordétthin the Kasouga (left) and East Kleinemondgh(t) Estuaries during the June
2005 (A), September 2005 (B), November 2005 (C)Madch 2006 (D) surveys. Note the different scaleshe contour plots.
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Water temperatures within the East Kleinemonde d&gtulemonstrated a non-
significant (p>0.05) seasonal trend. Water tempeeatincreased from a surface and
bottom minimum in June (surface=16.12°C +1.16; dott16.67°C +0.92) to a
maximum in March (surface=27.17°C +0.41; bottomZ37C +0.38) (Table 4.7). A
distinct horizontal pattern in water temperaturesswbserved during the June and
March surveys, with the highest values recorded theahead and the lowest near the

mouth. During the November survey the observecepatias reversed (Figure 4.3).

Table 4.7: The average, maximum and minimum temperaturesafP@e surface and

bottom within the East Kleinemonde Estuary duriagheseason sampled.

June September November March
Surface Average 16.12 20.07 21.63 27.17
Std Dev. 1.16 2.46 0.25 0.41
Maximum 17.64 25.00 22.00 27.50
Minimum 14.99 18.40 21.50 26.50
Bottom Average 16.67 19.35 21.25 27.13
Std Dev. 0.92 0.62 1.06 0.38
Maximum 17.71 20.00 22.00 27.50
Minimum 15.04 18.40 20.50 26.50

The average temperatures in the nearshore marigeoement adjacent to the

Kasouga Estuary demonstrated a non-significant.(®G0seasonal trend, except that
the minimum occurred during September rather thare JTable 4.8). The marine

environment maintained higher temperatures than eteiary during the winter

months (between 17.70°C and 18.84°C) and lower déeatyres during the summer
months (18.00°C to 22.00°C). No water column dication in terms of temperature

was evident during June and November surveys. DuBaptember and March a
small degree of stratification was evident witheanperature difference @f0.3°C

between surface and 5m waters at most sites (Appdnéfigures A4.5 to A4.8).
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Table 4.8: The average, maximum and minimum temperatures ré€jrded in the
nearshore environment adjacent to the Kasouga fystuaing all seasons sampled.

June September November March
Surface Average 18.67 17.83 19.06 21.98
Std Dev. 0.16 0.08 0.45 0.08
Maximum 18.84 17.90 19.50 22.10
Minimum 18.41 17.70 18.00 21.80
5m Average 18.67 17.78 19.24 21.79
Std Dev. 0.15 0.08 0.94 0.08
Maximum 18.84 17.90 22.00 21.90
Minimum 18.44 17.70 18.00 21.70

Seawater temperatures in the nearshore marineoanvent adjacent to the East
Kleinemonde Estuary were generally lowest adjatetihe estuary mouth during the
June, September and March surveys (Appendix 4r&ig4.5, A4.6 and A4.8). The

inverse was true for November, with a plug of wawmater adjacent to the mouth
(Appendix 4, Figure A4.7). No vertical water colursinatification in temperatures in

the nearshore environment adjacent to the Easnhé&ieonde Estuary was evident
(Appendix 4, Figure A4.5 to A4.8; Table 4.9). A seaal trend was evident with an
increase from a June minimum (17.32°C +0.18) to ardd maximum (21.58°C

+0.10) (Table 4.9). Due to seasonal variability temperatures no significant
differences were observed when the two estuaridsadjacent marine environments

were compared.

Table 4.9: The average, minimum and maximum surface and 5Snpeeatures (°C)
recorded in the nearshore environment adjacetiet&ast Kleinemonde Estuary.

June September November March
Surface Average 17.32 18.06 19.29 21.58
Std Dev. 0.18 0.16 0.63 0.10
Maximum 17.54 18.30 19.90 21.70
Minimum 16.95 17.80 17.50 21.50
5m Average 17.17 18.09 18.98 21.56
Std Dev. 0.16 0.62 1.53 0.05
Maximum 17.45 20.00 23.00 21.60
Minimum 16.85 17.70 17.00 21.50

105



Chapter 4 Temporarily Open/Closed Estuaries

Marine water densities (o)

Adjacent to the Kasouga Estuary no spatial patternsarine water density were
evident during any season (Figure 4.4). Very Iigiation in the surface (average:
25.4+0.05 to 24.22+0.02) and bottom (average: 2044 to 24.28+0.02¢; values
were recorded over all surveys (Table 4.10). Theraye deltao; values indicate
weak water column stratification stratification ohgy all the sampling surveys (0.02 —

0.55) (Table 4.10).

Table 4.10: The water densitya() calculated in the marine environment adjacent to
the Kasouga Estuary. The average, standard devjat@aximum and minimum

values are presented.

June September December March

Surface Average 254 25.25 24.75 24.22
Std Dev. 0.05 0.15 0.43 0.02
Maximum 25.47 25.35 25.27 24.28
Minimum 25.32 24.92 24.13 24.19

5m Average 2541 25.26 24.57 24.28
Std Dev. 0.04 0.14 0.45 0.02
Maximum 25.47 25.35 25.27 24.3
Minimum 25.34 24.96 24.13 24.25

Deltao; Average 0.02 0.02 0.55 0.06
Std Dev. 0.01 0.02 0.37 0.04
Maximum 0.05 0.05 0.89 0.11
Minimum 0 0 0 0

The average water density calculated adjacentad=tst Kleinemonde was slightly
elevated relative to that determined adjacent ¢okthsouga Estuary (Table 4.11). In
the marine environment adjacent to the East Kleorede theo; values ranged
between a March minimum of 24.3 at the surfaceaaBéptember maximum of 26.88
at 5m depth (Table 4.11). A spatial pattern waslevi in water density (deltay)
adjacent to the East Kleinemonde estuary duringltime, September and November
surveys (Appendix 4, Figure A4.2). Similarly to tK@souga Estuary, only weak
stratification was noted in water column densitrethe marine environment adjacent
to the East Kleinemonde (<0.5) (Table 4.11).
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Table 4.11: The water densitycf) calculated in the marine environment adjacent to
the East Kleinemonde Estuary. The average, standawation, maximum and

minimum values are presented.

June September December March

Surface Average 25.64 26.6 24.85 24.34
Std Dev. 0.05 0.3 0.13 0.03
Maximum 25.72 26.86 25.02 24.36
Minimum 25.56 26.01 24.59 24.3

5m Average 25.69 26.79 2491 24.34
Std Dev. 0.05 0.11 0.44 0.01
Maximum 25.77 26.88 25.52 24.36
Minimum 25.61 26.47 23.94 24.33

Deltao; Average 0.05 0.19 0.38 0.02
Std Dev. 0.04 0.26 0.32 0.01
Maximum 0.15 0.79 0.96 0.03
Minimum 0.01 0 0 0

Particulate organic matter

Particulate organic matter (POM) concentrationshinitthe Kasouga Estuary
demonstrated a large seasonal variation (Table).4TH2 June surface (11.11mg-.L
+13.68) and bottom (9.61mg'L +6.84) average POM concentrations were
significantly higher (p=0.005; df=46) than all otre=asons. The average November
surface (1.61mg.t +1.04) and bottom (1.56mg1+0.54) POM concentrations were
significantly lower (p=0.001; df=46) than the otlsasons surveyed. No longitudinal
trends in POM concentration were evident within K@souga Estuary during the four
surveys. The maximum POM concentrations during #ume, September and
November surveys were recorded at the surface ket®tations 3 and 4 (Figure 4.5),
which were adjacent to two salt marshes withingsieiary. There was no evidence of
any vertical stratification gradients in POM conitation during the study (Figure
4.5).
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Table 4.12: The average, maximum and minimum POM (mg.kecorded on the

surface and bottom of the Kasouga Estuary duringealsons sampled.

June September November March
Surface Average 11.11 6.72 1.61 6.28
Std Dev. 13.68 2.12 1.04 2.12
Maximum 39.00 11.00 2.67 10.00
Minimum 5.00 5.33 0.33 4.00
Bottom Average 9.61 7.22 1.56 5.83
Std Dev. 6.84 1.61 0.54 1.09
Maximum 23.00 9.00 2.33 6.67
Minimum 4.00 4.33 1.00 3.67
The average particulate organic matter (POM) comagons in the East

Kleinemonde Estuary varied seasonally (Table 4.18¢ lowest POM concentrations
were recorded during June (1.72m§+1.54) and November (3.50mg'1+1.77) and
the highest POM values were recorded during theeBdper survey, with an average
surface and bottom POM concentration of 8.56rg(t3.12SD) and 8.72mgl
(x2.22SD), respectively (Table 4.13). A distinct rirontal pattern in POM

concentrations was evident during the Septembereiber and March surveys, with

the highest values recorded near the mouth of ¢heary and the lowest near the

middle reaches (Figure 4.5).

Table 4.13: The average, maximum and minimum surface and totROM

concentrations (mg:t) recorded in the East Kleinemonde Estuary.

June September November March
Surface Average 1.72 8.56 3.50 5.00
Std Dev. 1.54 3.12 1.77 1.73
Maximum 4.67 14.67 5.33 7.67
Minimum 0.33 6.00 1.67 3.67
Bottom Average 7.89 8.72 1.67 6.22
Std Dev. 14.43 2.22 0.94 1.03
Maximum 37.33 10.33 2.33 8.00
Minimum 1.33 4.67 1.00 5.33
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Figure 4.5: Vertical profiles of the particulate organic mattencentrations (mg:t) recorded within the Kasouga (left) and East kéeionde
(right) Estuaries during the June 2005 (A), Sepem@®05 (B), November 2005 (C) and March 2006 (Dyeys. Note the different scales on

the contour plots.
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In the nearshore environment adjacent to the Kasdtsfuary, a strong vertical
gradient in POM concentrations was evident durihgeasons surveyed (Table 4.14;
Appendix 4, Figure A4.9 to A4.12). During the Jurgeptember and November
surveys, the surface waters consistently had I%@# concentrations (10.30mg'L
[+2.14SD], 2.31mg.I! [+1.01SD] and 2.58mg:t [+0.77SD] respectively) than
waters at 5m depth (12.93md.[+2.76SD], 3.31mg.L* [+1.12SD] and 2.92mg:t
[+0.97SD] respectively). During March, this trendsweversed with the highest POM
concentrations recorded in the surface (10.03thg6.59; 5m waters: 8.00mgL
+3.85). No spatial trends in POM concentration wesradent during June and
September (Appendix 4, Figure A4.9 to A4.10). PeakBOM concentration were,
however, evident opposite the estuary at a depnotiuring November and in the

surface waters during March (Appendix 4, Figureld4to A4.12).

Table 4.14: The average, maximum and minimum surface and 5m POM
concentrations (mg:l) recorded in the nearshore environment adjacenth&o

Kasouga Estuary.

June September November March
Surface Average 10.30 2.31 2.58 10.03
Std Dev. 2.14 1.01 0.77 5.59
Maximum 14.00 4.00 3.67 27.33
Minimum 7.00 0.33 1.33 7.33
5m Average 12.93 3.31 2.92 8.00
Std Dev. 2.46 1.12 0.97 3.85
Maximum 16.33 5.00 4.67 17.33
Minimum 7.00 1.67 1.33 0.33

The POM concentrations in the marine environmepdcaht to the Kasouga Estuary
indicated temporal trends with significantly highsncentrations recorded in June
and March (p<0.005; df=47) relative to the Septenamel November surveys (Table
4.14). The maximum recorded surface (27.33rip.land 5m concentrations
(17.33mg.L" occurred during the March survey, while the minimsurface and 5m
POM concentrations were recorded during Septem®&3ing.L") and November

(1.33mg.L") respectively.

There were no significant spatial trends in the P@Mcentration in the nearshore

marine environment adjacent to the East Kleinemoduakeng the September and
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March surveys (Appendix 4, Figure A4.10 and A4.12yring June and November
the highest POM concentrations-16mg.L’* and ~5mg.L* respectively) were
recorded along the transect occupied opposite thehrof the estuary (Appendix 4,
Figure A4.9 and A4.11). During November the inceeh®OM concentration could
be attributed to estuarine water inflow through ¢ipen estuary mouth, while during
June the high POM concentrations are anomalousPOM concentrations recorded
in the nearshore marine environment fluctuated betwa September minimum of
0.33mg.L.* and a March maximum of 27.33mg.L(Table 4.15). The June
(10.25mg.[* #1.94) and March (10.03mg’L+5.59) POM concentrations were
significantly higher (p<0.001; df=47) than thosecamled during September
(2.31mg.L* +£1.01) and November (2.58mg'L+0.77) (Table 4.15). Water column
stratification was only marginally evident, indiceg a well-mixed water body (Table
4.15). The high variability in the inshore and estobe POM concentrations resulted
no significant differences between the two estsarie

Table 4.15: The average, maximum and minimum POM concentratigng.L")
recorded in the nearshore environment adjacetiet&ast Kleinemonde Estuary.

June September November March
Surface Average 10.25 2.31 2.58 10.03
Std Dev. 1.94 1.01 0.77 5.59
Maximum 14.00 4.00 3.67 27.33
Minimum 7.00 0.33 1.33 7.33
5m Average 13.03 3.31 292 8.00
Std Dev. 2.24 1.12 0.97 3.85
Maximum 16.33 5.00 4.67 17.33
Minimum 7.00 1.67 1.33 0.33

Chlorophyll-a concentration

Temporal trends were observed in the total chloytidn concentration in the
Kasouga Estuary. Total chlorophglleoncentration during the September (L9
+1.53) and November (1.48.L™" +0.63) surveys were significantly lower (p<0.001;
df=23) than that recorded during the June (3" +1.10) and March (3.3@.L™
+0.7) surveys (Table 4.16). With the exception lté tlune maximum (6.88.L™%),
which was recorded in the estuary bottom wateracadt to the large salt marshes,
total chlorophylla concentration was highest in the upper reachethefestuary
(Figure 4.6). This resulted in a trend of incregsohlorophylta concentration from
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the middle to the upper reaches during Septembmreidber and March (Figure 4.6).
No significant differences in total chlorophyiconcentration were recorded between

surface and bottom waters during any season (p*0.@bcases). (Figure 4.6).

Table 4.16: The average, maximum and minimum surface and imottotal
chlorophylla concentration(g.L™) recorded within the Kasouga Estuary during all

seasons sampled.

June September November March
Surface Average 3.07 1.99 1.79 3.31
Std Dev. 1.10 1.53 0.63 0.70
Maximum 4.95 4.32 2.85 4.34
Minimum 2.05 0.46 1.03 2.17
Bottom Average 3.89 2.50 1.67 3.72
Std Dev. 1.77 1.50 0.76 1.00
Maximum 6.38 4.54 2.98 5.51
Minimum 1.95 0.55 0.76 2.73

The mean total chlorophyé concentrations in the East Kleinemonde Estuargeadn
from 0.3ug.L™ (+0.13SD) to 5.20g.L™ (+4.80SD) in surface waters and from
0.29u9.L™ (+0.03SD) to 4.94g.L™ (+5.20SD) in bottom waters (Table 4.17).
Seasonal variations in the chlorophglleoncentration were recorded, with June
(3.0ug.L* +0.61) and March (5.2@.L" +4.80) having significantly higher
(p<0.001;df=40) chlorophyl& concentrations than September (@@2* +0.34) and
November (0.38g.L™" +0.13) (Table 4.17). The estuary water column wal-mixed

in terms of chlorophydl, with bottom concentrations being less tham@.B™ lower
than the surface values (Table 4.17). Spatiallfiwithe system there was an increase
in chlorophylla from the mouth to the head of the estuary durihgeasons except
November, which indicated a chlorophwgllpeak near the estuary mouth and at
Station 4 in the middle reaches (Figure 4.6). Thgh tvariability in chlorophylla
concentrations resulted in no significant differehdetween these two estuaries in

either the surface or bottom waters.
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Figure 4.6: Vertical profiles of the total chlorophy#i-concentrationy(g.L™) recorded within the Kasouga (left) and East kdeimonde (right)

Estuaries during June 2005 (A), September 2005NBYyember 2005 (C) and March 2006 (D). Note th&edeht scales on the contour plots.
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Table 4.17: The average, maximum and minimum total chlorophytbncentrations

(ng.L™ recorded in the surface and bottom waters irEést Kleinemonde Estuary.

June September November March
Surface Average 3.00 0.92 0.39 5.20
Std Dev. 0.61 0.34 0.13 4.80
Maximum 3.77 1.47 0.50 13.60
Minimum 2.06 0.60 0.23 0.64
Bottom Average 2.96 0.75 0.29 4.94
Std Dev. 0.48 0.26 0.03 5.20
Maximum 3.71 1.06 0.31 15.20
Minimum 2.29 0.46 0.27 1.62

The total chlorophylla concentration recorded in the nearshore envirohagjacent

to the Kasouga Estuary demonstrated a temporad,trecreasing from June to
November and then decreasing to March (Table 4.I8)tal chlorophyHa
concentrations in the surface and 5m waters dutiveg November survey were
significantly higher than the remaining seasonsO(p%;, df=91) (Table 4.18;
Appendix 4, Figure A4.13 to A4.16). During Septemlamd March no apparent
spatial patterns in total chlorophdl concentration were evident in the nearshore
environment to the Kasouga Estuary. During Juneyelver, a body of water
containing higher total chlorophydl-concentrations protruded into the nearshore
environment from offshore, while in November theteva at 5m adjacent to the
estuary mouth contained high chloropkgliconcentrations (Appendix 4, Figure
A4.13 to A4.16).

Table 4.18:The average, maximum and minimum surface and 5ah ¢btorophylla
concentrations;(g.L‘l) in the nearshore environment adjacent to the gasdstuary

during all seasons sampled.

June September November March
Surface Average 0.19 0.38 1.18 0.70
Std Dev. 0.06 0.06 0.29 0.20
Maximum 0.31 0.47 1.38 1.05
Minimum 0.10 0.26 0.32 0.36
5m Average 0.21 0.40 1.54 0.86
Std Dev. 0.08 0.09 0.33 0.30
Maximum 0.36 0.61 2.47 1.61
Minimum 0.13 0.23 1.17 0.44
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The chlorophylla concentrations in the nearshore environment adfacethe East
Kleinemonde indicated a peak in Transect 3 in timase waters during the June,
November and March surveys, while during Septemlidee chlorophyHa
concentration peaked in both the surface and 5nergralose inshore (Appendix 4,
Figure A4.13 to A4.16). Water column stratificatisas evident during the June and
November surveys, with significantly higher (P<@p0df=11) chlorophyHa
concentrations in the surface water during botls@es Temporally the chlorophl
concentrations were significantly higher (p=0.02=98) during June (1.16.L™"
+0.46) and November (1.28.L™" +0.25) relative to the September (Qu§4.™" +0.14)
and March (0.94g.L™ +0.37) surveys (Table 4.19). The maximum recorded
chlorophylta was measured in June (L@6L"), while the minimum value of
0.3%g.L™ was recorded during September (Table 4.19).

Table 4.19: The average, maximum and minimum total chlorophytbncentrations
(ng.L™ in the surface waters and at 5m depth in thesheae environment adjacent

to the East Kleinemonde Estuary.

June September November March
Surface Average 1.16 0.64 1.22 0.94
Std Dev. 0.46 0.14 0.25 0.37
Maximum 1.96 1.02 1.69 1.76
Minimum 0.56 0.47 0.92 0.40
5m Average 0.81 0.67 0.90 1.00
Std Dev. 0.23 0.17 0.17 0.27
Maximum 1.25 0.99 1.13 1.46
Minimum 0.47 0.39 0.54 0.57

4.3.4 Zooplankton density and biomass

Zooplankton density

The total zooplankton abundances within the Kasodgtary ranged between a
November minimum of 6 472.16ind(+8 652.39SD) and a March maximum of
10 701.71ind.i (#*9 020.63SD) (Table 4.20). No consistent spaiiehds were
observed during the different seasons (Figure 4HHwever, during June and
September the highest densities were recordedtheagstuary mouth. No temporal
trends were evident, with similar zooplankton dgesi recorded during June,
September and November, and slightly higher dessiecorded during March (Table
4.20).
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Table 4.20: The average, maximum and minimum zooplankton tiessjind.n?’) in

the Kasouga Estuary during all seasons sampled.

June September November March
Average 5 463.98 4 999.10 6472.16 10 701.71
Std Dev. 5918.87 8 041.30 8 652.39 9 020.63
Maximum 16 019.19 21 246.94 2151793 24777.48
Minimum  337.65 330.73 164.60 1299.19

The total zooplankton abundance within the Eastni€lmonde Estuary demonstrated
a trend of decreasing abundance from June (5 9ihA.99° +7 679.55) to November
(43.82ind.nT +29.79), followed by a subsequent increase to acManaximum of
42 805ind.nt (+88 367SD) (Table 4.21). The spatial trends ipt&mber and March
indicate a peak in the lower to middle reachedefdstuary, with a decrease towards
the head and mouth of the system (Figure 4.7).rgudune a trend of decreasing
abundance from the mouth of the estuary to the bé#te system was observed.

Table 4.21: The average, maximum and minimum zooplankton tiessjind.n?’) in

the East Kleinemonde Estuary during the seasonggeql.

June September November March
Average 5917.99 1 165.60 43.82 42 805.77
Std Dev. 7 697.55 1015.15 29.79 88 367.94
Maximum 20876.76 2 589.69 64.88 223 053.01
Minimum 568.19 103.35 22.76 244474

In the nearshore marine environment adjacent ti&K#souga Estuary a general trend
of increasing mean zooplankton density was obsefvech June (364.37ind.th

+174.58) to March (27 228.65indm+49 760.58) (Table 4.22). The densities
recorded in March were significantly higher thanosther seasons surveyed (p<0.001;
df=45). Minor peaks in zooplankton density were eslied during all seasons
adjacent to the estuary mouth in Transect 2 ord3vév¥er, during June and November
the peak occurred offshore, while during Septendret March the peak occurred

closer inshore (Figure 4.8).
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Table 4.22: The average, maximum and minimum zooplankton tiess{ind.nt)
recorded in the nearshore environment adjacenhdoKiasouga Estuary during all

seasons sampled.

June September November March
Average 364.37 485.85 365.42 27 228.65
Std Dev. 174.58 930.63 338.49 49 760.58
Maximum  739.92 3418.30 1102.93 180 059.60
Minimum 169.18 57.36 12.82 2162.99

The mean zooplankton densities in the nearshoregcgmeent adjacent to the East
Kleinemonde Estuary demonstrated a similar seasmeatl to the biomass with a
steady increase in density from a June minimum @83.75ind.rt (+613.58SD) to a

March maximum of 30 132ind.fh (+16 873SD) (Table 4.23). Intermediate
zooplankton densities were recorded during the eBefper (3 990.7lind.th

+4 132.08SD) and November (8 232.11ind.a8 336.54SD) surveys. Peaks in the
total zooplankton density were recorded offshore downstream of the estuary
mouth during the June, September and March suratygmugh the position of these
peaks varied. During the November survey there avasak in zooplankton density
that occurred close inshore, extending from adjatethe estuary mouth to stations

slightly downstream (Figure 4.8).

Table 4.23: The average, maximum and minimum zooplankton tiessjind.n?) in

the nearshore environment adjacent to the Eashé&teonde Estuary.

June September  November March
Average 1033.75 3990.71 8232.11 30132.84
Std Dev. 613.58 4132.08 8336.54 16873.48
Maximum 2697.00 1515555 26216.01 56 745.85
Minimum 447.27 218.37 71259 8212.64

Zooplankton biomass

The total zooplankton biomass within the Kasougéu&ty demonstrated a non-
significant (p>0.05) temporal trend, with a steaayrease in the average zooplankton
biomass from June (23.48mg dwt®n*11.85) to November (83.96mg dwt™m
+67.23), followed by a slight decrease in March.@®ng dwt n? +43.21) (Table
4.24). Within the estuary there was a general tr@ndecreasing biomass from the

estuary mouth to the head of the system duringealsons (Figure 4.9).
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Table 4.24:The average, maximum and minimum zooplankton basngang dwt ri¥)

recorded within the Kasouga Estuary during all seasampled.

June September November March
Average 23.48 34.12 83.96 49.90
Std Dev. 11.85 26.62 67.23 43.21
Maximum 37.79 87.59 174.07 127.59
Minimum 10.79 18.35 17.48 20.27

The mean zooplankton biomass in the East Kleinem&sluary ranged from a June
minimum of 17.42mg dwt M (¥11.58SD) to a November maximum of
58.31mg dwt rif (+10.64SD) (Table 4.25). The observed seasonaidtri
zooplankton biomass was the reverse of that redofde the total zooplankton
densities (Table 4.25). The zooplankton biomasgeased between June and
November and subsequently decreased to 23.12mgnuiwi(+12.64SD) during
March. The longitudinal trend in zooplankton biomasas similar to that of the
zooplankton densities during the September and Matezveys, with a peak in the
lower to middle reaches (Stations 2 and 3) andcaedse in biomass to the head and
mouth of the estuary (Figure 4.9). During Juneorgitudinal trend was evident and
during November only the lower reach stations wsampled due to shallow water

depths at all other stations (Figure 4.9).

Table 4.25:The average, maximum and minimum zooplankton b#snfeng dwt 1)

recorded within the East Kleinemonde Estuary duathgeasons sampled.

June September November  March
Average 17.42 24.52 58.31 23.12
Std Dev. 11.58 20.06 10.64 12.64
Maximum 34.02 58.87 65.83 47.10
Minimum 5.44 4.93 50.79 13.50

The mean zooplankton biomass in the nearshore enanmironment adjacent to the
Kasouga Estuary demonstrated a temporal patteth,ami increase in biomass from
June (82.67mg dwt th+35.42) to November (174.81mg dwt’nt299.52), and a
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continued increase to March (637.98mg dw! m.633.07) (Table 4.26). The total
zooplankton biomass during November and March wgsfeantly higher than the

values recorded during the June and Septemberysu(pe0.001; df=44). The total
zooplankton biomass during the September and Nogemixveys were highest at
stations occupied downstream of the estuary mdtitjufe 4.10). During March the
highest biomass was recorded adjacent to the gstoauth (Transect 2). No clear

spatial patterns were evident during the June surve

Table 4.26:The average, maximum and minimum zooplankton basngang dwt ri¥)

recorded in the nearshore environment adjacehit&asouga Estuary.

June September November March
Average 82.67 61.86 174.81 637.98
Std Dev. 35.42 63.41 299.52 1633.07
Maximum 153.20 187.47 1059.37  5795.66
Minimum 33.37 10.62 10.71 16.61

The total zooplankton biomass in the nearshorenaanvironment adjacent to the
East Kleinemonde Estuary indicated an accumulaiforooplankton adjacent to the
mouth during all seasons (Figure 4.10). During Noler when the estuary mouth
was open the trend was heightened, with increagadass close inshore along the
coast. In addition, a seasonal trend was evidetit wisteady increase in average
zooplankton biomass from a June minimum of 26.2&wg m> (+17.19SD) to a
March maximum of 210.58mg dwt n(+144.21SD) (Table 4.27). The total
zooplankton biomass during the March and Novembeveys were significantly
higher than during the June and September surpeyq01; df=44).

Table 4.27: The average, maximum and minimum zooplankton bssnfeng dwt 1)

in the nearshore environment adjacent to the Eleshé&monde Estuary.

June September November March
Average 26.28 50.90 104.66 210.58
Std Dev. 17.19 23.12 82.52 144.21
Maximum 58.64 98.47 278.84 535.45
Minimum 10.35 22.47 12.77 60.18
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Figure 4.10: The mean zooplankton biomass (mg dwf)mecorded in the nearshore environment adjacemhdgokasouga (left) and East
Kleinemonde (right) Estuaries during the June 2085 September 2005 (B), November 2005 (C) and KMa&006 (D) surveys. Note the
different scales on each contour plot. NE (nortsbeand SW (south-west) have been used to desigmatompass points along the X-axis.
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4.3.5 Zooplankton community structure and numerical analysis

Seasonal community structure

A total of 44 zooplankton species were recordedhiwiand adjacent to the Kasouga
Estuary, while 43 were sampled in and adjacerieéddast Kleinemonde Estuary (see
Appendix 5 for the recorded species lists). Twesikyspecies were recorded within
the Kasouga Estuary, while 24 were recorded inBhst Kleinemonde Estuary (see
Appendix 5 for the recorded species lists). Alltlié 26 species recorded within the
Kasouga Estuary were recorded in the marine enwiesnt adjacent to this system.
Similarly, all 24 species recorded within the Bélginemonde Estuary were recorded
in the marine environment adjacent to this syst@ime nearshore environment
adjacent to the Kasouga had a higher species sshaed diversity relative to the
estuary during all seasons (Table 4.28). The opposas recorded in the East
Kleinemonde in terms of species richness, withdasiiary having a higher richness

during all seasons (Table 4.28).

Table 4.28: The total number of taxonomic groups, speciesrditye and species
richness for the nearshore and estuarine environmering all seasons in both

systems studied.

Estuary / Number of Margalef's Shannon-
Estuary Season Nearshore Species Species Weiner
Richness Diversity

June Estuarine 22 2.44 0.04
Nearshore 43 7.22 2.53

8 September Estuarine 14 1.53 0.07
3 Nearshore 25 4.30 1.26
& November Estuarine 14 1.48 0.20
X Nearshore 26 4.51 1.84
March Estuarine 16 1.62 0.18
Nearshore 23 2.15 1.69

) June Estuarine 18 1.96 0.17
S Nearshore 10 1.27 0.96

g September Estuarine 16 4.14 1.24
i Nearshore 12 1.03 0.79
2 November Estuarine 37 5.22 1.56
7 Nearshore 30 3.51 1.13
& March Estuarine 28 3.00 1.48
Nearshore 24 2.15 1.74
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A numerical analysis of each estuary and the adjan®arine stations resulted in
separate groupings of estuarine and marine stadiomsg each season. As a result the
analysis presented here combines both estuaries seasonal basis. The different
seasons resulted in similar community groupinguowoty when densities from all
the sites for both systems were analysed usingag-8urtis similarity. During the
June and November surveys the separation betweemdénine and estuarine sites
occurred at approximately 30% similarity, while igy the September and March
surveys the separation occurred at approximatedyg &bnilarity and 45% similarity,
respectively (Figure 4.11 to 4.14). A further sgpian of the marine sites into groups
representing the respective estuaries occurrep@brimately 60%, 50% and 40%
during June, September and November, respectivéiyule 4.11 to 4.13). This
separation did not occur in March, with the marsies adjacent to the estuaries
forming a mixed group (Figure 4.14). During the Mmber survey a very different
grouping was evident at the East Kleinemonde estiaites as they separated from

all other sites at approximately 20% similarity.

The dominant groups contributing to the differeniceveen the marine and estuarine
stations wereCalanus simillimug9.6 to 12% of the dissimilarity during the diféert
seasons), various copepod nauplii (8.7 to 11% efdiksimilarity during the June to
November surveys) ar@dithonasp. (8.3 to 11% dissimilarity during the Septentoer
March surveys) (Table 4.29). Four other taxonomrougs which contributed
approximately 5% to the dissimilarity during varsouseasons weréAcartia

longipatella various zoeae, appendicularians @tausocalanusp. (Table 4.29).

Combined community structure

A Bray-Curtis Similarity analysis of the combineatd for all seasons from both
systems gives a similar result to the individualssms, with the estuarine and marine
samples separating at approximately 30% simildatyel (Figure 4.15). A notable
exception was the Kasouga Estuary mouth sampleatetl during the June and
March surveys, which grouped within the marine istet (Figure 4.15). The
Kleinemonde Estuary sites for November grouped thithe Kasouga marine stations
at approximately 20% similarity, possibly due tar®o marine species in the East

Kleinemonde mouth region due to the open mouth itiong during this season.
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Table 4.29: The average estuarine and marine abundances angetibentage contribution to dissimilarity obserwedhe above cluster

diagrams for the 14 highest contributing taxonogrmups. The results are from the SIMPER subroutir®RRIMER.

3 . % a < 0
o = = Q c
N @ s | o | 2 |58 s | 8| | S| 88| a| | o
s | 2| 3| 5| %183 2| 5| ¢ | 5| |85 g
o (@) pzd @] < ac| O T N — 3 = o <
June Ave Estuarine Abundance 0.8 0.6 5580 0.0 74 114 0.18 16 |01 | 65| 03] 02| 0.0
Ave Marine Abundance 114 44 196 0.0 1.3 0.8 195 2[@2.3 80 | 3.7 2.9 1.3 95
Percentage Contribution to Dissimilarity 9.6 71 78.]0.0 6.0 11 | 56| 30| 16| 41 2.9 23 15 4
September Ave Estuarine Abundance 0.0 0.0 2703 0.1 14 6i3 085 |37 |00 | 393 02| 02| 0.0
Ave Marine Abundance 1070 13.8 190 673 1.9 12 2448260 |13 |56 | 76| 23| 4.0
Percentage Contribution to Dissimilarity 114 3.7 0.74 |11.1 |45 | 3.1 | 69| 50| 3.2 1.1 4.7 37 2p 19
November Ave Estuarine Abundance 0.2 0.0 4675 1.1 8§ 43 0.3.6 1181 00 | 16| 01| 21| 0.0
Ave Marine Abundance 969| 179 2118 34b 360 15 434 §127 |51 | 29.6| 42| 23 21.3
Percentage Contribution to Dissimilarity 100 3.1 1.0L | 8.3 7.3 26 | 48| 41| 55 17 39 22 3p 3J
March Ave Estuarine Abundance 13 11 16981 244 9179 3J.90 (054 15 | 0.0 | 0.0 | 390/ 3.1| 0.0
Ave Marine Abundance 6838 2269 4068 87p4 5305 3430 Q77 171 | 1.4 | 14 14 6.0 299
Percentage Contribution to Dissimilarity 11.0 11{2.7 112|162 | 64| 00| 28| 67/, 03 24 51 1) 6J7
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4.4 DISCUSSION

This study assessed the influence of two tempgrapken/closed estuaries (TOCES)
on the adjacent marine environment. Although the &stuaries are similar in size,
the mouth status of the two systems differed vhth East Kleinemonde breaching in
November 2005, while the Kasouga Estuary was stgghrfrom the marine
environment throughout the study. Overtopping evevdre recorded in both systems
during March 2006 and during November 2005 in thasdlga. The observed
difference in mouth status between the two sysisnmagreement with the published
literature. Bellet al. (2001) suggested that the East Kleinemonde Estwagched on
average 12% of the time over a period of 26 monitsle the Kasouga Estuary has
reportedly been separated from the marine envirohnfi@ periods of up to 21
months (Froneman, 2002a and c). The differencethenmouth status of the two
systems can be related to a variety of factorsudiop the extent of the sand bar that
separates the estuary from the marine environnoatthment size and the land use

patterns.

The majority of sampling transects in the marinevey grid were established to the
south-west of the mouths of both estuaries duehéoprevailing wind speed and
direction (Appendix 1, Tables A1.3 and Al.4). Thmdvpatterns were consistently
southerly or easterly (blowing towards the nortiwesst) at the time of sampling, and
in combination with the south-westerly longshoreasiwv and surfzone currents
resulted in the described establishment of theesugvids. This does not preclude the
current direction from alternating and turning todsthe north-east, however, this

situation did not materialise at the time of samgli

A key characteristic of both systems was the alsehenarked horizontal gradients
in salinity and temperature within the two estusr{€igures 4.2 and 4.3). Notable
exceptions were recorded in November 2005 and Ma26B6 in the East
Kleinemonde Estuary (Figure 4.2 and 4.3). The pres®f the gradients during these
months could be attributed to a combination of aigfainfall in the catchment area
and the open mouth conditions, which are correlatgd higher fresh water inflow
into the estuary. The absence of any notable hatatogradients in salinity and
temperature within Eastern Cape TOCEs is now wadldhented and can be related

to, amongst others, small catchment size, whichtdiffiesh water inflow into the
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estuaries, and strong coastal winds that facilitagth the horizontal and vertical
mixing of water within these systems (Cowley and itfi#id, 2001; Froneman,
2002a; Tweddle, 2004; Bernard and Froneman, 200key.et al, 2006). The extent
of the wind induced mixing is exacerbated by thallskv depth and large surface
areas of many of these estuaries (Froneman, 200Be)observed seasonal trends in
temperature within the two estuaries is consisweith the published literature
(Vorwerk et al, 2001; Froneman, 2004a; Bernard and Froneman,; 20y et al,
2006). An exception was recorded in November 20@&invthe East Kleinemonde
Estuary, which could be ascribed to the breachuenethat was associated with the
inflow of cooler marine waters into the estuary.rigions in salinity did not follow

any seasonal patterns.

The total chl-a concentrations and zooplankton dbopoe and biomass values
recorded within both estuaries during this study iarthe range reported for TOCEs
within the same region (Wooldridge, 1999; Fronen02a and c; Tweddle, 2004,
Gamaet al, 2005) and indeed for TOCEs in other regions aftlsern Africa
(Perissinottoet al, 2000; Walkeret al, 2001; Noziast al, 2001; Perissinottet al,
2003). The values are, however, considerably lems those recorded in the Mhlanga
and Mdloti estuaries along the east coast of sonthA&ica (Kibirige et al, 2006). In
these systems total chl-a concentrations and zokfgla biomass values may exceed
100mg chia m™ and 100mg dwt M respectively (Kibirigeet al, 2006). The
elevated chl-a concentrations and zooplankton kbssmaalues recorded in these
estuaries are the result of discharge of effluaet these systems that provides a

continuous supply of nutrients.

The importance of fresh water inflow into estuariaspromoting the growth of
phytoplankton is now well documented (Adares al, 1999; Froneman, 2002c).
During the present study, total chl-a concentratiam both estuaries attained the
highest levels when reduced salinities were evidieat high flow conditions within
the catchment areas) (Figure 4.6). A similar restds observed by Goblet al.
(2005), who recorded an increase in chl-a in thedeBay Estuary (Long Island)
during the closed phase and large reductions irchh@ concentration upon opening

of the inlet. In agreement with a number of presgictudies (see for example:
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Perissinotto et al, 2000; Froneman, 2002c; Kibirige and Perissinot2®03;
Froneman, 2004b), the total zooplankton biomadsvi@d similar trends to that of
the total chl-a with the highest values recordednduthose periods of fresh water
inflow into the two estuaries (Figure 4.9). Theregmse in the total zooplankton
abundance and biomass following rainfall is thoughbe the result of increased food
availability (phytoplankton) (Froneman, 2004a).

The breaching event that occurred in the East Klaonde Estuary during November
2005 was associated with a significant decreaghkdrtotal chl-a concentrations and
the zooplankton abundance and biomass values (p+#9.8ll cases). These observed
decreases in the chl-a concentrations and zoomlankbundance and biomass
following the breaching event is consistent withds¢s conducted within the same
geographic region (Wooldridge and Erasmus, 198€ss$teottoet al, 2000; Walker

et al, 2001; Froneman, 2002a; Froneman, 2004a; Kibeiga, 2006) and is thought

to be the result of the outflow of the biomass redtuarine waters into the marine

environment.

In the marine environment adjacent to both estaatte possibility of bias in the

particulate organic matter (POM) concentrationthatinshore marine stations exists
due to wave action at these sites. However, agdeddn the contour plots the only
occasion were the inshore sites maintained theesigROM concentrations along the

length of the coast sampled was adjacent to theuwssin June 2005.

In agreement with the study conducted in the sgecadt to the fresh water deprived
Kariega Estuary within the same geographic regi@hapter 3), the salinities and
temperatures in the marine environment adjacethiddwo TOCEs demonstrated no
clear vertical stratification during the four suygg Appendix 4, Figures A4.1 — A4.4,
A4.5 — A4.8). The marine water temperatures exdibdan expected seasonal pattern
with the highest values recorded in summer andldivest in winter. A consistent
spatial pattern in both salinity and temperatures vadbserved within the marine
environment, with the lowest values recorded immatally adjacent to or upstream of
the mouths of the two TOCEs. The presence of thwet salinity water in the sea
adjacent to both TOC systems suggests an unid=htdfource of fresher water. A
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previous study conducted in the Alexandria dunkl$idocated some 100km south-

west of the study estuaries, demonstrated thah frester is discharged from the

dunes into the sea at a rate =fm’® per running metre of the beach per day
(McLachlan and lllenberger, 1985; Campbell and Ba898). Due to the moderately-

sized dunefields surrounding the study estuariés likely that the less saline water

observed in the marine environment adjacent toettearies was derived from a

combination of seepage of water through the sasdibat separate the systems from
the sea and groundwater from the surrounding delaksti Unfortunately, there are no

data available to establish the exact source olbtler saline water observed adjacent
to the mouth of the estuaries.

The spatial patterns in delta values adjacent to the Kasouga Estuary did not
correspond to the observed salinities (Figuresa#h@ 4.4) with limited evidence of
any density variations in the region opposite theutihh or upstream (relative to the
Agulhas Current) of the mouth. Adjacent to the Ekinemonde the observed
spatial pattern in delta; values did show moderate stratification near ttoaitim of

the estuaries during June, September and Noverkizpiré 4.4). The spatial pattern
during June and November was likely a result ofugdwater seepage as well as
estuarine water seepage through the berm of thersy®uring September the more
extensive low density plume adjacent to the Eastri®imonde Estuary was a result of
fresh water outflow through the open mouth of tbiary.

The total chl-a concentrations and zooplankton danoe and biomass values within
the marine environments adjacent to the two essatid not demonstrate any clear
stratification (Appendix 4, Figures A4.13 — A4.lEgures 4.7, 4.9, 4.15 and 4.17).
Similarly to the physico-chemical variables, a oggiof increased total chl-a
concentration and zooplankton biomass was obsenvidte seawaters adjacent to the
mouth of the East Kleinemonde Estuary. This treras vamplified following the
November breaching event, with the higher zooplamkbiomass and density
extending further downstream in the inshore ardée dbserved spatial pattern in the
biology appears largely to be in response to thedalinity, higher nutrient content
waters which would likely promote the growth of mnar phytoplankton (Campbell
and Bate, 1998; Adanet al, 1999). The mechanisms responsible for generaitmuly
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retaining these patterns in the biology are narglalthough it is likely to be similar
to those described for large estuarine fronts dppgsermanently open systems
(Chapter 3; Largier, 1993). The accumulations af#ankton appear to be a response
to increased phytoplankton productivity resultingni nutrient rich fresh water

entering the marine environment (Largier, 1993).

The results of the numerical analyses conducteldl thiee zooplankton abundance data
indicated that the zooplankton communities withiia two estuaries and the adjacent
marine environments were distinct from one anofregures 4.11 — 4.15). This clear
separation is not surprising in light of the fabatt the two environments were
separated from one another by the presence ofdbaaat the mouth. The breaching
event that was observed within the East Kleinemdfstaary during November 2005,
resulted in a greater separation between the @stuand marine zooplankton
groupings despite the fact that a link was esthbtisbetween the estuary and the sea
(Figure 4.13). The clear separation between thenmand estuarine grouping during
November 2005 was largely the result of dramaticreise in the zooplankton
abundance values within the estuary, which couldaberibed to the outflow of
estuarine waters with high plankton biomass inte skea following the breaching
event (see above). Although Froneman (2004a) demnaved that the inflow of
seawater into TOCEs during overtopping events ed@tt with a shift in the
zooplankton community from an estuarine to a momime dominated plankton
community, this pattern was not evident during ghesent study. Overtopping events
were, however, associated with increases in zo&f@anbiomass and density at
stations occupied near the mouth of both estuéifigsires 4.7 and 4.9).

4.4.1 Conclusions

It is interesting to note that along this shoretth of coastline~x200km) Whitfield
(2000) recorded 27 TOCEs, which often breach senelbusly in response to large
rainfall eventsfers. obg. The combined effect of this large pulse of be@sinto the
marine environment is unknown at this stage, bontardy be assumed to contribute to
enhanced biological activity in the nearshore negnvironment. Lukegt al. (2006)
discussed similar trends when examining the fishupion of the Grants Valley

Estuary, which occurs within the same region. Lu&ewl. (2006) described a large
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build-up of ichthyofaunal biomass within the estyuduring the closed phase, which
would subsequently be released to the marine emwienit upon breaching.

The marine environment adjacent to estuaries shoawedence of an estuarine or
groundwater influence on salinities and temperatlirectly adjacent to the estuary.
In addition, a biological response, in terms of dmorophyll-a concentrations and
zooplankton biomass, was observed in the marind’@maent adjacent to the East
Kleinemonde Estuary during all seasons, even winenmouth was closed. The
marine environment adjacent to the Kasouga didnditate the same trends, with a
reduced biological response in the nearshore aujaoehis system. The geographic
extent of the influence of these estuaries was sitgovn to differ depending on the
mouth status of the respective estuary, with atgrehiological response evident

opposite the mouth of the East Kleinemonde duttregapen phase.

The observed response adjacent to the East Klem#enavas likely due to seepage
water from the estuary channel or adjacent groutelwsources and was magnified
during the recorded breaching event. Rainfall,Hrester flow into the estuary and
seepage are inextricably linked, with the volumeseépage from both the estuary
channel and groundwater sources reliant on the itgtemnal head of water.
Chlorophylta concentrations and zooplankton biomass and deapjtgar related to
the peaks in rainfall recorded prior to June andsévaber although they do not
correlate statistically (P>0.05). The predictedatienship is one of increased
chlorophylta concentrations and zooplankton biomass in thesheae adjacent to an
estuary as the rainfall or fresh water inflow itiv@ estuary and therefore the seepage

from the system and surrounding groundwater souncesases (Figure 4.16).
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Biological Respons

Rainfall / Fresh water flow rate / seepage

Closed — Low Open Mouth
Water Level Conditions

Figure 4.16: Stylised relationship between biological respomsethe nearshore
marine environment adjacent to the East KleinemoEkg&uary and the related
variables of rainfall, fresh water flow rate, seggpa@and mouth conditions. The dashed
line indicates chlorophyd response and the solid line indicates zooplankton

response.




Chapter 5 Stable Isotope Study

CHAPTER 5

THE IMPORTANCE OF ESTUARINE DERIVED
CARBON FOR THE NEARSHORE MARINE
ENVIRONMENT: A STABLE CARBON ISOTOPE
APPROACH ON TWO PERMANENTLY OPEN
EASTERN CAPE ESTUARIES

5.1 INTRODUCTION

The use of stable isotopes as a means of detegmuainous ecological pathways in
both terrestrial and aquatic systems has gainedipemce since the 1970’s (Peterson
and Fry, 1987). Stable isotopes of many elementsiroc differing amounts in the
natural environment, forming a very small part loé global pool of an element and
being slightly atomically heavier due to additiomeutrons on the isotopic atoms
(Robinson, 2001). Due to the different atomic wésglisotopes behave differently in
biogeochemical processes relative to the normainets and are preferentially
retained by an organism (Peterson and Fry, 198%¥.elements most commonly used
to trace food webs and food sources are carBbiC) and nitrogen&°N). These
elements are considered light isotopes and theopiop of §°N and §'°C in
biological tissues is influenced by biological pesses (Rubenstein and Hobson,
2004). All of these isotopes in consumer tissufleaethe isotope ratio in their food
sources with some degree of enrichment by tropénvelland are therefore useful

tracers of food webs.

5.1.1 Derivation of isotopes

Different biological and biogeochemical factorsluigince the natural abundance of
the different isotopes (Michener and Schell, 1994 example**C abundance is
influenced by the type of photosynthetic pathwalether G, C, or CAM, while >N
abundance is influenced by the means of nitrogeatifin, whether by a symbiotic
bacteria or directly from the atmosphere (Rubenstand Hobson, 2004).
Additionally, in the different environments, i.eertestrial, marine and to a degree
estuarine, different factors influence the différ@bements’ isotope ratios. In the

terrestrial environment, mesic habitats are momiclkeed in*C and*N than xeric
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habitats if the @ photosynthetic pathway is employed (Rubenstein Hotson,
2004). Similarly in the marine and estuarine enwvinents, benthic sources are more

enriched in"C than pelagic sources.

5.1.2 Potential problems and pitfalls in stable isotope @alysis

Stable isotope analysis is not a completely flasl@sethod of tracing organic
pathways, but if knowledge of the potential flawsconsidered this method becomes
a highly useful tool for ecological analyses. Soafethe potential pitfalls include
differential uptake of isotopes by different tisdypes (e.g. lipid versus muscle), the
collection and storage of isotope samples pricartalysis (Hobsomt al, 1997) and
the requirement to identify all potential food soes for an accurate analysis (Fry and
Sherr, 1984). The necessity for identifying allgtal sources of isotopes is due to
the potential to misinterpret the resultant data ifimited number of sources are
known (Fry and Sherr, 1984).

An additional potential pitfall with isotope analyss the possibility of fractionation
by different tissues and metabolites, such as dipidlative to muscle or bone
(Michener and Schell, 1994). For many animal grodips preferred tissue which is
most representative of the organisms diet can badon the scientific literature as
laboratory studies on this phenomenon have bearedasut (DeNiro and Epstein,
1978; Fry and Sherr, 1984; Peterson and Fry, 198fis problem arises due to
biochemical fractionation after the consumer hagstied its food source, with the
most significant problem being that of preferentigtake of">N and**C by lipids
within consumers (Peterson and Fry, 1987). An exanspthat reported by Pinnegar
and Polunin (1999), who observed a significantetéhce ir5**C ands™N of tissues
of juvenile trout that still contained lipids. Howex, after lipid removal these tissues
were statistically indistinguishable in terms &fC and >N content. In contrast,
DeNiro and Epstein (1978) reported that experinmgnivith different tissues and
biochemical fractions indicated that whole aninsdtope analysis provided a more

accurate means of identifying th€C ands*N of the animal and its diet.

Sample preservation and storage is an addition@ngal source of error for stable
carbon and nitrogen isotope analysis. Hobestoal. (1997) carried out an investigation
looking at a variety of storage media and techrsqaed identified the most accurate

methods being that of immediate freezing or if tisot possible then storage in 70%

139



Chapter 5 Stable Isotope Study

ethanol. Due to the relatively short duration of tigps and the accessibility of liquid
nitrogen and dry ice, this should not be a comgbeefor the current study.

5.1.3 Stable isotope uses

The use of stable isotopes in the aquatic, andcpéatly the marine environment, has
mostly been directed at describing food webs aadirtg food sources. There are
several examples of research articles using isetégethis in both estuaries (Kwak
and Zedler, 1997; Chongt al, 2001; Bouillon et al, 2002) and the marine
environment (Davenport and Bax, 2002; Mutchderl, 2004; Schmidet al, 2004).
Other uses include the tracing of pollutants (Md@iel et al, 1997; Morrisse\et al,
2004) and if using other stable isotopes suchrastaim and oxygen, authors have
been able to establish the different temperatunelssalinities that fish have moved
through by analysing their otoliths (Elsdon anddzitlers, 2002; Martiet al, 2004).

The use of stable isotopes in South African estearesearch is a relatively new tool,
with only a handful of researchers having emplotred technique to assess trophic
relationships within these food webs. Jerling anaoWridge (1995) employed stable
isotopes to identify the carbon sources used byorweplankton (mainly copepods)
in the permanently open Sundays River Estuary enstiuth-east coast of southern
Africa. Paterson and Whitfield (1997) similarly dsstable carbon isotopes as a tool
for identifying the food web structure in the pemaatly open Kariega Estuary in the
same region. Their efforts were, however, concédran the ichthyofauna. Several
authors have subsequently used carbon and nitregdie isotopes as a means of
assessing trophic pathways within the plankton camities of a variety of estuaries
(Schlacher and Wooldridge, 1996b; Froneman, 206tdmeman, 2002a; Kibiriget
al., 2002; Perissinottet al, 2003). To date no studies have used stable carbon
isotopes to examine the biotic links between essaand the marine environment in

southern Africa.

Several authors have hypothesised that due to itketidn of water flow through
estuaries into the marine environment, the bul&stéiarine productivity and biota are
exported from these systems into the adjacent magmvironment (Odum, 1980;
Dame and Allen, 1996; Roegner and Shanks, 20013. iypothesis suggests that the
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food webs in the marine environment adjacent toagsts will be driven by estuarine

derived productivity and biotic material ratherrreutochthonous marine sources.

This study was conducted within, and adjacentwm permanently open estuaries
with contrasting fresh water flow regimes along gswith-eastern coast of South
Africa. The two estuaries studied were the freskewdominated Great Fish Estuary
(see 2.2.1 in Chapter Two for details) and the meadominated Kariega Estuary,
which is fresh water deprived (see 2.2.2 in Chapteo for details). The aim of the
study was to assess the importance of estuaringedecarbon to the nearshore
marine ecosystem and highlight any difference$iendstuaries resulting from altered

flow regimes.

5.2 MATERIALS AND METHODS

5.2.1 Sample collection

Due to the continuous recycling of nitrogen witkistuarine ecosystems, this study
only focused on carbon stable isotopes (Fry andrSh@84; Peterson and Fry, 1987,
Mutchler et al, 2004). The study was conducted in autumn to mgenany possible
seasonal effects on the isotope signatures ofithta.Sampling of various vegetation
types (three replicates per vegetation type), @aete organic matter (POM) and
zooplankton was undertaken to obtain carbon staéope signatures for the
dominant components of the estuarine and marin& lmothese groups. In both the
Kariega and Great Fish estuaries, three replicGatgpkes were taken at three stations
within each of the upper and lower reaches. Theeupgaches corresponded to the
upper half of the estuary, above the direct infaeeof seawater, while the lower
reaches corresponded to the bottom half of theagstwhere seawater exchange
occasionally occurred. In the adjacent marine emvirent five replicate samples were
taken at each interval along the coast from theaegtmouth downstream relative to
the Agulhas Current (Figure 5.1).

The vegetation sampled included the dominant @paviegetation in each estuary as
well as salt marsh vegetation and submerged magtreghAll vegetation samples
were washed in distilled water or GF/F filtereduesine water (depending on origin)
to remove any excess salts. The collection of P@Wmes involved returning five

litres of estuarine or marine water for each rgpécto the laboratory for subsequent
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filtering through precombusted (500°C) GF/F filteasd removing of any faunal

matter manually using a dissecting microscope.

Direction of flow of the Aﬁulhas Curren.

0.5km Opposite 0.5km 1km 2km 4km 7km 12km
up mouth down down down down down down

250
i

river mouth coastline

Figure 5.1: A stylised diagram of the sampling stations in @m@jacent marine
environment. The notation of “up” or “down” indiest each transect’'s position
relative to the estuary mouth and the Agulhas Qurrddjacent to the Kariega

Estuary stations were only occupied for 4km dovaesstr of the mouth.

Filter feeders, either unidentified spongesRywura stolonifera(Heller, 1878) (red
bait), were collected in the marine environmentaédpt to the two estuaries by free-
diving the samples off rocky reefs. Both sponged Bn stoloniferasamples were
used, as neither type of animal was availablelditals. The range of isotope values
for animals from both groups from closely relatddtions showed no significant
difference. For theP. stoloniferasamples body muscle tissue was utilised for the
sample. The collection of different taxon was neitated as any individual taxon did
not occur on all the reefs at the different diseenérom the estuary mouth. These
samples were frozen and transported to the labgraZmoplankton were collected
from all sites during the day in a series of swefaows using a WP-2 net (0.17m
mouth area) with a mesh size of 8@ Samples were immediately frozen and
returned to the Ilaboratory for separation into teoroic groups. Individual
zooplankters were combined (£500 individuals fag ttopepods and +10individuals

for the mysids) to provide sufficient dry weightdthow stable isotope analysis.

142



Chapter 5 Stable Isotope Study

5.2.2 Sample preparation

All samples were oven dried at 60°C for a perio@4firs. Subsequent to drying, all
zooplankton and filter feeder samples were defaite@ solution of chloroform,
methanol and water (2:1:0.8) according to the neethfaBligh and Dyer (1959). This
process was carried out to remove any isotopeti@gsthat may have resulted from
differences in the proportions of fatty acids withihe fauna (Peterson and Fry, 1987;
Ganneset al, 1997). All samples were again oven dried for 24&ir 60°C prior to

being ground in a mortar and pestle.

5.2.3 Stable isotope analysis

Sample analysis was conducted in an online CarbaBrA1500 preparation unit and
8'*C determination was performed in a MAT 252 stahightl isotope mass
spectrometer in the Department of Archaeology at Wmiversity of Cape Town,
South Africa. Merck gelatine was used as an intest@ndard, calibrated against
several IAEA reference materials. The results wereressed a8'*C signatures in
units of parts per thousand (%o) relative to the Bee Belemnite solution using the

following formula (Peterson and Fry, 1987):

oX = ([@} —]_j x1000
Rstandard

where x = element concerned (in this case carbathRe= ratio of the heavy over the
light isotope t°C:*<C).

A two source mixing model (Phillips and Gregg, 2P®as utilised to attempt to
identify the particulate organic matter (POM) saubeing fed on by the filter feeders
and zooplankton directly adjacent to the mouthsheftwo estuaries as well as the
contribution of estuarine and upstream POM to #djacent to the estuary mouth.
The inputs were the mea@d3C ratios (and standard deviations) of the sousoesthe
consumers or derived POM. The assumption with riildng model is that the two

sources provided are the only ones being utilisetheé consumers.

5.2.4 Statistical analysis
The post hoc Tukey Test was performed to identifether there were any significant

differences in the isotopic signatures at differecations within the different biotic
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groups. The Statistica software package (Statswft, 2004) was used to conduct the
analysis.

5.3 RESULTS

5.3.1 The Kariega Estuary and adjacent marine environment

Primary producers and particulate organic matter (POM)

The riparian vegetation sampled demonstraté&@ ratio of between -28.05%o and
-21.07%o, while the salt marsh and littoral vegetatcovered a greater range from
-29.97%o to -14.29%o (Figure 5.2 and Table 5.1). Tinest depleted’°C signatures
were recorded for the salt marsh pl&srcocornia perennigMill. Scott, 1978) (-
29.97%0) and the riparian plagideroxylon inerméLinaeus, 1753) (-28.05%.). The
most enriched signatures were recorded for theasdg ostera capensiéSetchell) (-
16.88%0), and salt marsh plan§porobolus virginicus(Kunth, 1829) (-14.29%o)
(Table 5.1 and Figure 5.2). A post hoc Tukey Tesuited in two major groupings,
the first including all the riparian vegetation atiee salt marstChenolea diffusa
while the second group comprised the salt marsHitiadal plants, with the exclusion

of the highly deplete®. perennigind moderately depleté&d diffusa

Table 5.1: §*°C values (%) of the primary producers collectednfrthe Kariega
Estuary in April 2005. Different letters in the TelkTest (post hoc test after ANOVA
was performed) indicate significantly different gps (p<0.05; df = 8).

Grouping
Species Habitat Type ygg n StDev. Maximum  Minimum ?ocgr%rﬁ;;g

Test
Sarcocornia perennis Salt marsh -29.97 1.50 -28.91 -31.03 A
Sideroxylon inerme  Riparian -28.05 0.25 -27.87 -28.22 C
Sporobolus virginicus Salt marsh -14.29 0.92 -13.64 -14.94 D
Rhussp. Riparian -27.11 1.19 -26.26 -27.95 C
Chenolea diffusa Salt marsh -26.70 1.27 -25.80 -27.59 BC
Schotia affra Riparian -26.12 0.72 -25.61 -26.63 C
Portulacaria affra Riparian -21.07 -21.07 -21.07 CD
Spartina maritima Salt marsh -24.28 0.82 -23.70 -24.86 D
Zostera capensis Littoral -16.88 1.33 -15.94 -17.83 D
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Figure 5.2: The 8'C (%) ratios and standard error for the primarydoiers, POM,
marine filter feeders (sponges aRdstoloniferd and zooplankton collected from the

Kariega Estuary and adjacent marine environmewtpnl 2005. The samples in the

marine environment are designated with distancesregam (east) and downstream

(west) of the estuary mouth relative to the AgulGasrent.
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The §%°C signature of the particulate organic matter (PONl)the estuary was
dependent on the reach, with the upper reaches’ BiQhatures being more depleted
(-26.19%0) than the lower reaches (-20.90%0) (Figbi/2 and Table 5.2). Th&"C
ratios for the POM from the adjacent marine enviment were more enriched than
that from the estuary, ranging from -15.15%. near iouth to -17.30%. upstream of
the mouth (Table 5.2). The POM signatures in clasximity to the estuary mouth
(opposite and within 1km downstream) were moreckied than the POM signatures
upstream of the mouth and further downstream (2KRijure 5.2). Thes'C
signatures for the upper estuarine POM were samfly different (p<0.01; df = 10)
from all other samples, while tH°C ratios of the lower estuary POM grouped with
the sites upstream of the estuary mouth. The postTiukey Test resulted in a final
grouping of8'C signatures for the POMs of all the marine stati¢fiable 5.2).
Mixing models demonstrated that the POM oppositeKhariega Estuary mouth was
almost entirely derived from the POM in the adjdcerarine environment (100%
+0.47SE).

Consumers (zooplankton and filter feeders)

The marine filter feeders collected were eitler stolonifera (red bait) or an
unidentified sponge species. A post hoc Tukey Tdshtified two significantly
different groupings, with thé°C ratios of the filter feeders near the estuary tmou
being more depleted than those further along thastc¢Table 5.3). This was
confirmed by a trend of increased enrichment wittreased distance from the estuary
(Figure 5.2).

The &%C ratios for the copepods (predominantyalanus agulhensisand
Clausocalanusp.) ranged from highly depleted in the upper meacf the estuary (-
26.78%0) to moderately depleted values in the lowaches of the system (-21.46%o).
In the marine environment th&°C signatures of the copepods were moderately
enriched and ranged from -16.26%o. t0 -16.82%0 (T&beand Figure 5.2). A Tukey
Test identified two significantly different grouptie estuarine copepods and the

marine copepods (Table 5.4).
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Table 5.2: 8'°C ratios (%.) of the POM collected from the KarieBatuary and
adjacent marine environment in April 2005. The si@®pn the marine environment
are designated with a distance up or downstreatimeofnouth, which is relative to the
Agulhas Current. Different letters in the Tukey T@®st hoc test after ANOVA was
performed) indicate significantly different groufps<0.05; df = 10).

Grouping
Location Mears’®C StDev. Maximum  Minimum according

to Tukey

Test
Upper Estuary -26.19 0.88 -25.56 -26.81 A
Lower Estuary -20.90 1.62 -19.76 -22.05 B
0.5km upstream of mouth -17.30 1.92 -16.00 -19.50 BC
Opposite mouth -15.64 0.45 -15.14 -16.01 C
0.5km downstream of mouth -15.66 0.23 -15.40 -15.84 C
1km downstream of mouth -15.15 0.10 -15.07 -15.22 C
2km downstream of mouth -16.13 1.02 -15.34 -17.28 C

Table 5.3:8"C values (%o) of the filter feeders (sponges Bndtoloniferd collected
from the Kariega Estuary and adjacent marine enwment in April 2005. The
samples in the marine environment are designatdd avdistance up or downstream
of the mouth, which is relative to the Agulhas @uitr Different letters in the Tukey
Test (post hoc test after ANOVA was performed) d¢atle significantly different
groups (p<0.05; df = 11).

Grouping
Location Mears®*C St Dev. Maximum Minimum  2ccording

to Tukey

Test
Opposite mouth -17.98 0.88 -16.93 -19.03 A
0.5km upstream of mouth -17.77 0.22 -17.51 -17.91 A
1km downstream of mouth  -17.64 0.06 -17.60 -17.69 A
2km downstream of mouth  -16.82 0.13 -16.71 -16.94 B
5km downstream of mouth  -16.74 -16.74 -16.74 B

Two source mixing models identified that the filfeeders™*C ratios opposite the
mouth were derived from a combination of the PONheeht to the estuary mouth
(56% +0.12SE) and that in the lower estuary (44%128E). The copepod:C
values adjacent to the estuary mouth were derivedgminantly from the POM
adjacent to the system (78% +0.17SE) and to arlessent from the estuarine POM
(22% +0.17SE).
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Table 5.4: 3'3C values (%o) of the zooplankton collected from Heriega Estuary

and adjacent marine environment in April 2005. Témmples in the marine

environment are designated with a distance up andtyeam of the mouth, which is

relative to the Agulhas Current. Different letterdhe Tukey Test (post hoc test after

ANOVA was performed) indicate significantly differegroups (p<0.05; df = 30).

Grouping

Taxon Location Meadl®c St Maximum  Minimum 2ccording
Dev to Tukey

Test
Copepod Upper Estuary -26.78 0.22 -26.62 -26.93 A
Copepod Lower Estuary -21.46 141 -20.49 -23.08 A
Copepod 0.5km upstream of mouth -16.26 0.17 -16.14 -16.38 B
Copepod Opposite mouth -16.82 145 -15.12 -18.19 B
Copepod 0.5km downstream of -16.45 011 -16.32 -16.58 B

mouth

Copepod 1km downstream of mouth  -16.47 0.35 -16.12 -16.82 B
Copepod 2km downstream of mouth  -16.44 1.25 -14.54 -18.05 B

5.3.2 The Great Fish Estuary and adjacent marine environrent

Primary producers and particulate organic matter (POM)

The vegetation sampled in the Great Fish Estugsgraged into two distinct groups,
one with highly depleted*’C ratios (-29.94%o to -26.88%0) and the other conipgis
only S. virginicus(-14.43%o0) (Figure 5.3 and Table 5.5). The highgpléted group
was a mix of riparian species, reeds and sedges,oap salt marsh specieS. (
perennid. The riparian vegetation covered the full ranfi@é'dC ratios (-29.94%. to -
26.88%0) in the initial grouping, while the reedgdges and salt marsh vegetation
covered a greater range, incorporatiBgvirginicus(-29.60%. to -14.43%.) (Table
5.5).

The §*3C ratio for the POM (-19.22%0) recorded within thee@ Fish Estuary was
enriched relative the vegetation sampled, with ékeeption ofS. virginicus(Table

5.6). Thes'>C ratios for the POM in the adjacent marine envitent ranged between
a depleted -20.16%0 upstream of the estuary moutintenriched ratio of -18.25%o
12km downstream of the estuary mouth (Table 5.6 Biire 5.3). Thes'C

signatures of the POM from the adjacent marinerenment fluctuated around the
recorded value for the estuarine environment antdodstrated a trend of slight
enrichment with distance from the estuary mouthb(@&.6; Figure 5.3). This was
confirmed by mixing models demonstrating that 3% ratios of the POM adjacent
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to the estuary was derived from an approximatelyakanix of estuarine derived
(46% +0.55SE) and marine derived POM (54% +0.55SE).

Table 5.5: 8"°C values (%) of the primary producers collectedrfrthe Great Fish
Estuary in April 2005. Different letters in the TejkTest (post hoc test after ANOVA
was performed) indicate significantly different gps (p<0.05; df = 8).

Grouping
Species Habitat type MeaC Stdev Maximum  Minimum 2¢¢0rding

to Tukey

Test
Acaciasp. Riparian -29.28 0.37 -29.02 -29.54 A
Brachylena elliptica Riparian -29.33 3.49 -26.87 -31.80 A
Brachylena illicifiora  Riparian -29.94 1.99 -28.54 -31.34 A
Erythrina sp. Riparian -26.88 2.40 -25.19 -28.58 A
Juncus kraussi Reed/Sedge -29.60 0.39 -29.32 -29.88 A
Phragmites australis Reed/Sedge -26.88 0.05 -26.85 -26.92 A
Sarcocornia perennis  Salt Marsh -27.67 0.75 -27.14 -28.20 A
Sporobolus virginicus  Salt Marsh -14.43 0.22 -14.27 -14.59 B

Table 5.6: 8'°C ratios (%o) of the POM collected from the GreastFEstuary and

adjacent marine environment in April 2005. The si@®pn the marine environment
are designated with a distance up or downstreatimeofnouth, which is relative to the
Agulhas Current. Different letters in the Tukey T@®st hoc test after ANOVA was
performed) indicate significantly different groufps<0.05; df = 29).

Grouping
Location Mears™C St dev Maximum Minimum  according to
Tukey Test
Estuarine -19.22 0.34 -18.88 -19.53 AB
0.5km upstream of mouth -20.16 1.11 -19.36 -21.77 A
Opposite mouth -19.73 0.64 -19.23 -20.85 AB
0.5km downstream of -19.42 0.67 -18.63 -20.26 AB
mouth
1km downstream of mouth -18.46 0.19 -18.32 -18.60 B A
2km downstream of mouth -18.76 0.33 -18.52 -18.99 B A
4km downstream of mouth -18.75 0.56 -18.15 -19.35 B A
7km downstream of mouth -18.86 0.97 -17.87 -20.23 B A
12km downstream of mouth  -18.25 0.81 -17.30 -1950 AB
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Figure 5.3: The 8*3C (%o) ratios and standard error for the primarydoicers, POM,
marine filter feeders (sponges aRdstoloniferd and zooplankton collected from the
Great Fish Estuary and adjacent marine environnmeApril 2005. The samples in

the marine environment are designated with disunpstream or downstream of the

mouth, which is relative to the Agulhas Current.
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Consumers (zooplankton and filter feeders)

There were relatively few rocky reefs adjacenti® Great Fish Estuary and therefore
the collection of filter feeders for each transeeis not possible. The three samples
that were collected demonstrated no real trends, thé most enrichedf*C signature
recorded 2km down the coast and the most depletfde vecorded 4km down the
coast (Table 5.7 and Figure 5.3). Upstream of tteagy mouth &5°C ratio of

-17.73%0 was recorded fét. stoloniferasamples.

Table 5.7:8%C ratios (%o) of the filter feeders (sponges &dstolonifera collected
from the Great Fish Estuary and adjacent maringr@mwient in April 2005. The
samples in the marine environment are designatédandistance up and downstream
of the mouth, which is relative to the Agulhas @uitr Different letters in the Tukey
Test (post hoc test after ANOVA was performed) cate significantly different
groups (p<0.05; df = 6).

Grouping
Location/Habitat type Meadi°C St dev Maximum Minimum  according to
Tukey Test
0.5km upstream of mouth -17.73 0.49 -17.21 -18.19 A
2km downstream of mouth -16.56 0 -16.56 -16.56 B
4km downstream of mouth -18.30 0.19 -18.14 -18.51 A

There were no significant differences in th¥C signatures of the zooplankton
between the Great Fish Estuary and marine sampte&(5; Table 5.8). Th&*C
signatures for copepods (predominar@iglanus agulhensjganged from -20.37%o. to
-16.84%0, while the signatures for mysids (predomilya Rhopalophthalmus
terranatali ranged between -18.02%o and -19.73%. (Table 5.8 5f°C ratios of
the copepods collected within the Great Fish Egtuare more enriched (-16.84%o)
than any of the zooplankton collected in the adjacearine environment, while the
813C signatures for copepods collected at all maritess,sexcept 0.5km downstream
of the mouth, fell within a range of less than 1%alfle 5.8 and Figure 5.3). TREC
ratios for mysids collected opposite the estuaryutmo(-19.73%p were slightly
depleted relative to thé°C signatures of mysids collected 2km downstream (-
18.02%o0) and 0.5km upstream (-18.18%o) of the est(ibaple 5.8).
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Table 5.8:5"C values (%o) of the zooplankton collected from @wat Fish Estuary
and adjacent marine environment in April 2005. Témmples in the marine
environment are designated with a distance up amdtream of the mouth, relative
to the Agulhas Current. Different letters in thek@&y Test (post hoc test after
ANOVA was performed) indicate significantly differegroups (p<0.05; df = 31).

Grouping
Species Location g/llfg n St dev Maximum  Minimum f:)cgr%rlfé;g
Test
Copepod Estuary -16.84 0 -16.84 -16.84 A
Copepod 0.5km upstream of mouth  -18.21 1.26 -15.90 -19.59 A
Copepod Opposite mouth -17.85 0.90 -17.01 -19.37 A
Copepod ~ 0:okmdownstreamof 57 1.58 -18.78 -21.73 A
mouth
Copepod 2km downstream of mouth18.30 0.40 -17.75 -18.65 A
Copepod 4km downstream of mouth  -17.58 0.31 -17.36 -17.79 A
Copepod 7km downstream of mouth  -18.42 0.22 -18.09 -18.64 A
Copepod ~ L2kmdownstreamof ;455 ges  -17.41 -18.80 A
mouth
Mysids 0.5km upstream of mouth  -18.18 0.40 -17.90 18.46 A
Mysids Opposite mouth -19.73 0.64 -19.23 -20.85 A
Mysids 2km downstream of mouth  -18.02 0.36 -17.76  18.27 A

Mixing models demonstrated that ti&C ratios of the copepods adjacent to the Great
Fish Estuary were feeding almost entirely on estealPOM, while, not surprisingly,
the carnivorous mysids adjacent to the estuary moutre feeding entirely on

copepods.

5.3.3 Comparison between Kariega and Great Fislé**C isotope values

Primary producers and particulate organic matter (POM)

The comparative results from primary producers thaturred in the riverine
vegetation adjacent to both estuaries demonsteatethimal variability between the
two systems (Figure 5.4). The observed variability5'*C values forS. perennis

samples was 2.3%o0 (Kariega: -29.97%o; Great Fish:62%o.), while the variability in

S. virginicuswas only 0.2%. (Kariega: -14.29%o; Great Fish: -B4%).
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Figure 5.4: The comparativé’>C (%o) ratios and standard error for specific sample
that were collected in and adjacent to both estgan April 2005. The samples in the
marine environment are designated with distancedregm or downstream of the

mouth, which is relative to the Agulhas Current.
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Consumers (zooplankton and filter feeders)

The ranges o6™*C values for the filter feeders occurring in thgaadnt marine
environment were similar (Figure 5.4). T8f&C values of the filter feeders occurring
adjacent to the Kariega Estuary ranged betweerv4%6.and -17.9%o., while those
adjacent to the Great Fish Estuary ranged betw2érb6%. and -18.30%. (Figure
5.4). Alternatively, thed'*C values of the copepods in the marine environment
adjacent to the Kariega (range: -16.17%. to —16.82%eye consistently more
enriched than those occurring adjacent to the Gfesdt Estuary (range -17.85%o to
—20.37%0). The3™*C values of the copepods within the estuary dematest a large
variation, with thes*C values of the copepods within the Kariega Estuzing
—26.78%0 (upper estuary) and —21.46%. (lower estuang) the5'°C values of the
Great Fish copepods being —16.84%. (Figure 5.4).

5.4 DISCUSSION

Results of previous studies have demonstratedhkanain carbon source assimilated
by primary and secondary consumers within soutidrican estuaries appears to be
dependent on the volume of fresh water flowing itite system (De Villiers, 1990;
Jerling and Wooldridge, 1995; Schlacher and Wodgkj 1996b; Froneman, 2002b).
In those systems characterised by sustained frasér wflow, phytoplankton appear
to be the main carbon source used by the zooplarfderling and Wooldridge, 1995).
Alternatively, in those estuaries which are regdr@es fresh water deprived, the
plankton food web is sustained by detrital carban ndcrophytobenthic algae
(Schlacher and Wooldridge, 1996b).

5.4.1 The Kariega Estuary

The results of stable isotope analysis within tlagi&ga Estuary indicated two distinct
carbon pathways that were spatially separated froenanother. Th&'C signatures
of the POM in the upper reaches of the estuary vetsely linked to the3™*C
signatures of the group of plants comprising thganan vegetation, while in the
lower reaches th&"*C signatures of POM were closely relatedSmartina maritime
(Fernald, 1916)Z. capensisandS. virginicus(Figure 5.2). Assuming an enrichment
of 1 — 1.5%0 per trophic level (DeNiro and Epstel®78; Monteiroet al, 1991;
Sholto-Douglaset al, 1991), it appears that the zooplankton withinupper reaches
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of the estuary are largely consuming POM derivednfriparian vegetation (Figure
5.2). In the lower reaches of the system, the cogepappear to be assimilating

carbon derived mainly from the extensive salt masshithin the region (Figure 5.2).

The identification of two separate carbon pathwaythin the Kariega Estuary
concurs with Paterson and Whitfield (1997), whoodisund two carbon pathways
that they termed “channel” and “littoral” within ighsystem. The channel pathway
they identified is similar to the upper reach pagwecorded in this study, being
derived from riparian vegetation. The littoral pa#ty they describe is similar to the
lower reach pathway identified in this study asytheth rely on macrophytes and salt
marsh vegetation for the majority of carbon. Froaenm(2002b) and Froneman
(2001b) also identified two carbon pathways wheregtigating the Kariega Estuary,
except that he found that the channel or upperrgathway was reliant on carbon
derived from benthic algae rather than phytoplankidweddle (2004) similarly
identified a benthic algae driven food web in theighbouring temporarily
open/closed Kasouga Estuary, which is supporteithdyesults of studies by Kibirige
et al. (2002) and Perissinottet al. (2003) in estuaries along the south coast of
southern Africa.

The different pathways identified within the Kargegstuary can be explained by a
combination of food preference and food availapi{iDoi et al, 2005), as, although
the same primary consumers were sampled at diffesiées, the changes i#1°C
ratios may be due to selective feeding at eithahefsites, rather than different food
availability. International studies have descridmath pathways identified by this
study within the Kariega Estuary. The importancenaicrophytes as carbon sources
for estuarine fauna has been identified in studiesducted by Loneragaet al.
(1997) and Créackt al. (1997) in tropical Australia, while Smét al (2005) and
Bouillon et al. (2002) identified autochthonous inputs such ashterand pelagic
macroalgae as the main carbon source for food wadbspite the availability of

extensive seagrass beds and terrestrially deriadabo.

The 8*3C ratios of the POM in the marine environment aglicto the Kariega
Estuary demonstrated a strong association gitbapensigFigure 5.2). This pattern

can likely be attributed to the fact that largewnés of detached. capensisare
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exported to sea during the outgoing tide (unpublisdata). However, despite this
strong correlation, mixing model results indicdtattthe POM adjacent to the estuary
is derived primarily from marine POM sources and ao estuarine oZ. capensis
source. The two marine POM signatures least likelpe influenced by an estuarine
source, namely the site upstream (relative to theltdas Current) and the site furthest
downstream from the estuary mouth, demonstratedntist depleted'C signatures
of the marine POM (Figure 5.2). The observed dapiedf POM §°C ratios with
distance from the estuary mouth indicates the scfu of additional unidentified
carbon sources, which are most likely a varietynafcro-algal species which occur
along the coast in this region. Deegan and Ggfi®7) have reported that ocean
sources are typically enriched 1iC due to the dissolution of dissolved inorganic
carbon into seawater and it is therefore unlikbBt tit is an open ocean source that is
causing the depletion. Similarly, Megesisal. (2001) identified the extent of mixing
between near/offshore waters as having a largetedfe suspended particulate matter
composition. The low flow rates within the Kariegatuary suggest that export of
estuarine derived carbon to the marine environneeiikely to be restricted to the
region immediately adjacent to the mouth of theimst With increasing distance
from the mouth, the POM is likely to be comprisddaomixture of carbon derived

from estuarine, marine and rocky shore sources.

The POM derived from the lower reaches of the Kgxi€stuary appeared to be the
main carbon source assimilated by the marine fikeders and copepods adjacent to
the mouth of the estuary (Figure 5.2). With inceghdistance from the estuary mouth
the §'°C ratios of the filter feeders and copepods bec#meeasingly enriched,
indicating an as yet unidentified carbon sourcgiptaa more important role in their
diet. Authors have identified different isotopeiaatfor different species feeding on
the same diet, which could have contributed pdytitd the difference between
estuarine and marine samples. However, considehagthe samples in both the
estuarine and marine stations were comprised predotty of C. agulhensisand

Clausocalanusp. the variation derived from this component $thdwe minimal.

5.4.2 The Great Fish Estuary
Similarly to the Kariega Estuary, the vegetatioomgked within the Great Fish
Estuary grouped into a highly depleted group (-2%9to -26.88%0) and a group
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comprising the relatively enriche8l. virginicus(-14.43%o.) (Figure 5.3). The highly
depleted group was comprised of riparian vegetadiwhtwo species of reeds as well
as the salt marsh plas. perennis The §'*C ratio values of the POM within the
estuary (-19.22%.) appeared to be closely alignéd thiat of the terrestrial vegetation
(Figure 5.3). However, previous studies have detnatesl that the residence time of
water within the estuary is less than one day (dgsn 2005), indicating that the
POM within the system is unlikely to be derived nfraerrestrial vegetation. In
addition, a number of studies conducted within éistuary have demonstrated that
chl-a concentrations within the system may attain levglgo 200mg chh m*, with
values >20mg ckh m not uncommon (Grange and Allanson, 1995; Graetgal,
2000). Analyses of the published literature indisathat the5**C values for fresh
water phytoplankton are highly variable (rangingnfr -5 to -30%o.) reflecting
seasonality, species composition, nutrient avditgland dissolved inorganic carbon
sources (Fry and Sherr, 1984; De Villiers, 1990¢iiner and Schell, 1994; Jerling
and Wooldridge, 1995). All of these factors indecdhat the food web within the
Great Fish Estuary is maintained by allochthonouslgrived fresh water
phytoplankton that is transported into the estuaaythe interbasin transfer scheme.
This is supported by a previous study within theuay which demonstrated that
phytoplankton were the primary source of carbonsoamed by the numerically

dominant zooplankton within the system (Mesher, 5300

The absence of any significant differencéifC POM signatures between the marine
and estuarine environments suggests a similar soafccarbon for the POM
signatures from these different areas (Figure 5B 5°C signatures of the marine
POMs demonstrate a trend of increasing enrichmatfit evstance from the estuary
mouth, which implies mixing between the POM derivieoim the estuary and an
unidentified, enriched carbon source. This is sujggbby the mixing model results,
which indicate that the POM adjacent to the estusirglerived from approximately
equal contributions of estuarine and marine souredk et al. (2006) recorded the
inshore POM in this region being in the range d&%d to -17%.. The5'*C ratios
recorded for the copepods in the adjacent maring@mment demonstrate a similar
trend to that of the POM in the marine environmemth slight enrichment with

distance from the estuary mouth (Figure 5.3).

157



Chapter 5 Stable Isotope Study

The concept of the Great Fish Estuary food web dosunstained by allochthonous
carbon (riverine phytoplankton) is supported byirgernational study. Melville and
Connoly (2005) identified high productivity in Auatian estuaries being supported

by imported organic matter.

5.4.3 General discussion

The food webs within the two estuaries investigaiedhis study appear to be
sustained by different carbon sources. In the GFesth Estuary the zooplankton
appear largely to be sustained by allochthonousopignkton derived from the

greater riverine inflow. This result is in agreementh work by Froneman (2002b)

and Mesher (2005) within this system. Furthermogsults are consistent with a study
on the nearby Sundays River Estuary, a permanep#yn system with moderate flow
rates, which also identified phytoplankton as thainmcarbon source for primary
consumers (Jerling and Wooldridge, 1995). In theshr water deprived Kariega
Estuary, carbon derived from a combination of altioenous phytoplankton and

allochthonous vegetation sources appears to sub@plankton food web.

The generally more enrichéd®C values for POM offshore of the Kariega Estuary
relative to the Great Fish is evidence of a redwestdarine influence, due to oceanic
carbon sources being traditionally more enricheahtterrestrial or coastal sources
(Deegan and Garritt, 1997). Results of a mixing eh@thowed that the POM adjacent
to the Great Fish Estuary was derived from a metfrestuarine and marine sources,
while that adjacent to the Kariega Estuary wasveerientirely from marine POM
sources. The influence of estuarine derived carloon the adjacent marine
environment has been extensively studied by Damd@805) and Darnaudst al.
(2004), who identified that the productivity of higy trophic levels, such as secondary
consumers, in the marine environment adjacentédRimone River is affected by the
riverine flow rates. High flow rates were assodatéth higher productivity due to
increased prey (filter and detrital feeding polyetes) biomass attributable to raised
concentrations of riverine POM. A similar result sveecorded by Cauwedt al.
(1990), with large contributions to the organichmar pool in the adjacent marine
environment by the Rhéne River and fluctuationthigse contributions being related
to varying flow rates. A study by Chorgg al. (2001) showed that estuarine derived
detritus formed up to 25% of the diet of marinewma up to 2km away from the
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estuarine source. Finally, Lonerageinal. (1997) identified estuarine and terrestrial
sources as supporting the penaeid prawn populatwihgn and adjacent to estuaries

in tropical Australia.

5.4.4 Final conclusions

The outwelling hypothesis states that due to threctlon of water flow through
estuaries into the marine environment, estuarioeymstivity and biota are exported
from these systems into the marine environment (Qdi980; Dame and Allen,
1996; Roegner and Shanks, 2001). This has ledratmra to assume that food webs
in the marine environment directly adjacent to agas are sustained by estuarine
derived productivity and biotic material. This hypesis seems to be validated by this
study, with a reliance on estuarine derived POMath the zooplankton and filter
feeders in the marine environment adjacent to,gntb 12km from, the Great Fish
Estuary. The high flow rates (in excess of*&H) recorded within this estuary create
a flow through system, transporting riverine PON @hlorophylta into the adjacent
marine environment. Alternatively, in the Kariegstiary, the carbon is derived from
a variety of sources due to the longer water resieldimes allowing degradation of a
variety of plant material as well as autochthonqisytoplankton production.
Although some export of estuarine derived POM ®rtiarine environment adjacent
to the Kariega Estuary was evident, due to theflow rates, it was restricted to the

sites in the vicinity of the estuary mouth.

Further study is required to clarify the processesurring adjacent to these large
permanently open estuaries. Components that neadficgltion include studies
incorporating other isotopic elements, particulaslyiphur (MacAvoy and Macko,
1998; Herzka, 2005), which would allow a better ssapon between marine,
estuarine and terrestrial carbon sources, andlehsgpatial and temporal resolution
study in the marine environments adjacent to bo#isé¢ estuaries to identify potential

marine sources of carbon.

159



Chapter 6 Recruitment Study

CHAPTER 6

TIDAL IMPORT OF MACROZOOPLANKTON INTO A
FRESH WATER DEPRIVED, PERMANENTLY OPEN
EASTERN CAPE ESTUARY

6.1 INTRODUCTION

Estuarine faunal communities comprise species aviariety of life history patterns,
including those that complete their entire life leywithin estuaries, and those that
have a marine or fresh water phase in their lifeleyreviews by Whitfield, 1998;
Wooldridge, 1999; Able, 2005). The use of estuaags nursery environment by a
range of ichthyofaunal (Pottet al, 1990; Neira and Potter, 1992; Whitfield, 1992b;
Ray, 1997; Strydonet al, 2003) and invertebrate (Forbesal, 1994; Cyrus and
Forbes, 1996; Kemp and Froneman, 2004; BernardFaodeman, 2005) species is
now well documented. To date, however, limited effbas been applied to
determining the recruitment trends of invertebrdites the marine environment into

estuaries.

The South African scientific literature indicatesiited information available about
the temporal recruitment patterns of invertebraggecges into estuaries. Forbes and
Benfield (1986a and b) demonstrated no diurnaldsdan the densities of the penaeid
prawn,Penaeus indicugH. Milne Edwards, 1837), recruiting into estuaraong the
east coast of southern Africa (KwaZulu-Natal). Casting results were reported by
Wooldridge and Loubser (1996), who showed a sigaifi nocturnal increase in the
mud-prawn, Upogebia africana(Ortmann, 1894), larvae recruiting into estuaries
along the south coast of southern Africa (Easteape]. Researchers do, however,
agree that densities of recruiting larvae on fltidds are significantly higher than on
ebb tides (Forbes and Benfield, 1996a and b; Walgdrand Loubser, 1996; De
Villiers et al, 1999). Records of seasonal trends in recruitrimehtate that for the
penaeid species, highest densities of larval recraiie evident entering estuaries
during late summer or early autumn (Forbes and €£ytQ91; Forbest al, 1994).

Evidence exists indicating that larvae accumuladgacent to southern African
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estuaries in response to an unknown cue, thoughe tealinity or turbidity gradients
(Whitfield, 1989a; Cowleet al, 2001).

The current research on recruitment mechanismeviertebrates indicates that their
ability to enter estuaries is due to vertical migmas in response to changing tidal
pressures (Epifanio, 1988; Rothlisbeegy al, 1995; Dame and Allen, 1996; De
Villiers et al, 1999). Rothlisberget al. (1995) demonstrated that as pressure
increased, penaeid prawns migrated to surface syaisrsumably to use the incoming

tidal currents to enter estuaries.

Anthropogenic influences have been credited witluceng the ability of invertebrate
and vertebrate fauna to recruit into South Afrieastuaries. For example, Wooldridge
(1994) attributed the reducédl africanapopulations within the Great Brak Estuary,
along the south-east coast of southern Africaimddd recruitment opportunities due
to the extended closure of the mouth resulting frompoundments. Similarly,
Hanekom and Baird (1992) attributed the limitedruément of U. africanainto a
permanently open system within the same regiomedoiced olfactory and turbidity
cues entering the marine environment as well apénmdic inlet closure as a result
of impoundments in this system’s catchment. In geghichthyofaunal recruitment,
similar results have been recorded, particularlthwespect to alterations in mouth
phase of estuaries (Whitfield and Bruton, 1989; gty 1989; Whitfield and
Wooldridge, 1994; Russell, 1996; Vorwezkal, 2003).

South Africa is considered an arid region, recevapproximately half the world
average rainfall of~450mm.yi* (DWAF, 2004a). To meet the ever increasing
demands for fresh water to sustain socio-econoeweldpment, large impoundments
have been constructed along the main channel ofnthprity of the large river
systems in the region. This has contributed to @edese in the magnitude of fresh
water flowing into southern African estuaries. Véhdonsiderable research has been
conducted on the biological consequences of thacestl fresh water inflow within
estuaries (Whitfield and Bruton, 1989; Whitfielddawooldridge, 1994; Grange and
Allanson, 1995; Ter Morshuizest al, 1996b; Strydonet al, 2002), no studies have
assessed the influence of these reductions onitreent of marine invertebrates into

these systems. The main aim of this study was anee the recruitment patterns in
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the macrozooplankton (>1cm) entering the Kariegtudty (see section 2.2.2 of
Chapter Two for details), a fresh water depriveztnpanently open estuary along the

south-east coastline of southern Africa.

6.2 MATERIALS AND METHODS

6.2.1 Sample collection

Samples were collected from a station occupietiénmiiddle channel at the mouth of
the estuary using a net with a 05mouth area and a mesh size of approximately
500pum funnelled to a removable cod-end with auh@@nesh size. The net was fitted
with a General Oceanics analogue flow meter toutale filtered volumes. The net
was anchored to the estuary floor in mid-channg@ni from the mouth facing in a

seaward direction. See Figure 6.1 for a stylisadmim of the equipment.

Figure 6.1: Schematic diagram of the net design from the f(éytand the side (B).

Dashed lines represent anchor ropes.

Sampling took place monthly over a one year per@dring each sampling trip,
samples were collected every two hours during tigerning tide (timed to coincide

with the change in tidal regime) for a period oh&tto establish diurnal as well as
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seasonal variations in recruitment of macroinveetds into the estuary (see Table
6.1 for the sampling dates and tide type). Tidedion (ebb or flood) was determined
by the direction of flow of water at the site. Afeach two hour period, the cod end
was removed and the flow meter readings noted.s@naples were filtered through a
300um mesh to remove excess sediment and then placacsample jar and fixed
with 10% buffered formalin for analyses of the ziamxton community structure and
biomass in the laboratory. Salinity was recorde@aath two hour interval using an

optical refractometer.

Table 6.1: The dates that sampling was conducted includingdidaé situation (spring

or neap tide and whether full or new moon on thenggides).

Month Date Tide Season
March 1 March 2006 Neap Austral Autumn
April 31 March 2006 Spring New Moon

May 15 May 2005 Spring Full Moon

June 1 June 2005 Neap Austral Winter
July 19 July 2005 Spring Full Moon

August 17 August 2005 Spring Full Moon

September 2 September 2005 Spring New Moon Austral Spring
October 14 October 2005 Spring Full Moon

November 1 November 2005 Spring New Moon

December 7 December 2005 Neap Austral Summer
January 13 January 2006 Spring Full Moon

February 3 February 2006 Neap

6.2.2 Laboratory analysis

An Olympus dissecting microscope, operated at anifiagtion of 100 to 200, was
used to identify and count the invertebrates ctdlgcAll mysids and decapods were
identified to the species level using Boltovsky 9429 Gibbons (2001) and Braneh
al. (1999). Biomass was determined by weighing subpsessnon a Sartorius
microbalance. Values were expressed as iridamd mg wwt rif (milligrams wet-
weight per metre cubed), respectively.

6.2.3 Data analysis
Species richness and diversity during each sampiipgvere calculated according to
the Margalef’'s and Shannon-Weiner equations predantChapter 3, Section 3.2.4.
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After Log transforming the data and testing for mality using a Kolmogorov-
Smirnov Test, an ANOVA was used to test for sigumifit differences between
seasonal and diel recruitment. Samples collectathglunight and daytime were
pooled to allow diel comparisons in recruitmeninffarly, data for each season was
pooled to allow for a seasonal comparison in régremt patterns. All analyses were
conducted using the computer package Statisticsioret6 (Statsoft Inc., 2004). A
Spearman Correlation was conducted in MS Excekterchine if observed temporal

patterns related to recorded salinity or tempeeatur

6.3 RESULTS

Salinity was measured on every occasion that tlieeca was removed throughout
the sampling period and ranged between 35 and 4Ipsuaverage salinity over the
sampling period was 35.60pstl.44. All correlations between physico-chemical
variables (temperature and salinity) and the olexkertemporal trends were not
significant (p>0.05).

6.3.1 Recruitment analysis

Twenty macrozooplankton species were recorded itergunto the Kariega Estuary

between April 2005 and March 2006. The highest remdf species in any one
month was recorded during autumn (13 during Maghb{& 6.2). The highest species
richness (10.64) and diversity (0.82) values wenmailarly recorded during the

autumn and winter months. During spring and suntimenumber of species sampled
ranged between five and eight, with species richmess than 1.6 and diversity only
exceeding 0.45 on one occasion (Table 6.2). A totad6 341 macrozooplankton

were captured recruiting into the Kariega Estuanyirdy the sampling period. The

total wet weight of these macrozooplankton total@di6g.
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Table 6.2: The number of species sampled, Margalef's spembaass and Shannon-
Weiner Diversity recorded for each month duringshenpling period.

Number of Margalef's Shannon Weiner

Species Richness Diversity

March 7 1.57 0.26
April 9 1.84 0.82
May 13 2.48 0.37
June 12 10.64 0.49
July 8 1.41 0.04
August 11 1.25 0.26
September 8 1.59 0.55
October 6 0.56 0.25
November 6 0.68 0.31
December © 0.86 0.43
January 8 1.34 0.13
February 5 0.59 0.3

The single most numerous species in the samplésctad during this study was the
mysid, Gastrosaccus brevifissurd@ attersall, 1952), with an average monthly densit
of 931.18ind.if (+1 889.07SD), which represented approximately 86f6the
average monthly catch (Table 6.3). The other dontirspecies included the surf
shrimp, Macropetasma africanun{Balss, 1913) (76.66ind.th +250.42SD), the
penaeid prawn,P. indicus (31.79ind.n¥ +67.78SD), the mysidMesopodopsis
wooldridgei (Wittmann, 1992) (39.06ind.Hh+59.25SD) and the swimming prawn,
Metapenaeus monocerogFabricius, 1798) (23.83indifn +74.70SD). The
contribution of any of these species on any onasioa did not exceed 7% of the

total invertebrates sampled (Table 6.3).

In terms of biomass, the dominant species recguitito the Kariega Estuary w&s
brevifissura (average monthly biomass 1 457.85mg wwi #8 250.90SD). Other
species that were recorded recruiting in high b&sea includedP. indicus
(176.17mg wwt 7 +474.24SD), Gastrosaccus psammodytgattersall, 1958)
(97.13mg wwt it +335.80SD) andVl. africanum (78.52mg wwt it +265.20SD)
(Table 6.3). Not many individuals d&olenocera comatur(Stebbing, 1915) were
recorded, but they contributed a relatively highnthty average of 42.41mg wwt i
(x85.62SD) to the recorded biomass due to thegeldody size.
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Table 6.3: The average monthly density and biomass for maomaokton collected during the study. Day and nightindances and

biomasses are also presented with standard deviatio

Average Monthly Density (ind.f)

Average Monthly Biomass (mg:f

Species Total Day Night Total Day Night

Ave Std Dev. Ave Std Dev. Ave Std Dev. Ave Std Dev. Ave Std Dev. Ave Std Dev.
Callianassa kraussi 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 0.00 0.00 .030 0.09
Euphasid sp. 2.32 6.95 0.01 0.04 2.31 6.95 11.68 .9537 0.01 0.03 11.67 37.95
Gastrosaccus brevifissura 931.18 1889.07 0.44 1.31 930.74 1887.82 1457.85 0.95 0.45 1.38 1457.40 3249.62
Gastrosaccus olivae 1.90 4.30 0.00 0.00 1.90 4.30 0.75 1.92 0.00 0.00 .750 1.92
Gastrosaccus psammodytes 8.40 25.47 0.00 0.00 8.40 25.47 97.13 335.80 0.00 .000 97.13 335.80
Gonodactylus chiragra 0.00 0.01 0.00 0.00 0.00 0.01 0.20 0.69 0.00 0.00 .200 0.69
Leptochela robusta 3.28 11.04 0.00 0.00 3.28 11.04 2.08 7.11 0.00 0.00 2.08 7.11
Lucifer penicillifer 0.51 1.74 0.00 0.00 0.51 1.74 0.00 0.01 0.00 0.00 .000 0.01
Macrobrachiumsp. 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.26 0.00 .000 0.08 0.26
Macropetasma africanum 76.66 250.42 2.48 8.59 74.17 250.88 78.52 265.20 00 0. 0.00 78.52 265.20
Mesopodopsis wooldridgei  39.06 59.25 5.24 11.87 33.82 51.80 14.92 34.86 0.17 0.50 14.75 34.41
Metapenaeus monoceros 23.83 74.70 0.36 1.24 23.47 74.79 20.45 62.93 0.15 0.50 20.30 62.97
Ogyrides saldanhae 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.15 0.00 0.00 .040 0.15
Palaemon peringueyi 6.13 20.70 0.00 0.00 6.13 20.70 20.85 66.27 0.00 00 0. 20.85 66.27
Penaeus indicus 31.79 67.78 0.58 1.45 31.21 67.41 176.17 47424 919 5.96 174.18 474.07
Pontophilus megalocheir 2.48 8.59 2.48 8.59 0.00 0.00 0.02 0.05 0.00 0.00 .020 0.05
E?;ﬁ’g?;’lgha'mus 1.34 4.64 0.00 0.00 1.34 4.64 0.74 2.55 0.00 000 740 255
Solenocera comatum 12.50 21.61 0.26 0.64 12.24 21.09 42.41 85.62 1.05 3.16 41.36 84.89
Thysanopodap. 0.01 0.03 0.00 0.00 0.01 0.03 0.00 0.02 0.00 0.00 0.00
Upogebia africana 0.02 0.06 0.00 0.00 0.02 0.06 0.04 0.13 0.00 0.00 0.04
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6.3.2 Diurnal cycle

A comparison of the densities of recruiting maca@ankton during incoming day-

time versus night-time tides resulted in significaifferences on a seasonal basis
(F=22.35; p<0.001) (Figure 6.2). Similarly, the roi@ss recorded recruiting during

daylight hours was significantly lower (F=21.59; Q®01) than that recorded

recruiting during the night during all seasons (Fey6.3).
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Figure 6.2: The average seasonal densities of recruiting raaomankton into the
Kariega Estuary (n=3 for each period). Total deesiand densities for daylight and

night-time hours are presented.

Figures 6.4 and 6.5 indicate that the monthly diltrends concur with the seasonal
trends, with maximum recruiting densities and biesaeing recorded during
darkness. Only September is anomalous, with réeguibiomass during daytime
hours being higher than after dark for this mofithis was due to a swarm of large-
bodiedP. indicusjuveniles recruiting into the estuary at dawdgh00).
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Figure 6.3: The average seasonal biomass of macrozooplanktouitieg into the
Kariega Estuary (n=3 for each period). Averagel tbtamass, daytime biomass and

nocturnal biomasses are presented.

6.3.3 Monthly trends

The general monthly trends in recruitment densitiese less than 190ind ¥rfrom
December through to July (range: 2.86ind.to 186.37ind.i), with increasing
densities (>1 400ind.f) recorded from August to November (range: 1 488@&8n°

to 3 067.96ind.i) (Figure 6.4). Anomalies included a slightly eldrecruitment
during February (856.31ind:fh and reduced recruitment during September
(82.55ind.n).

Similar monthly trends were recorded in terms ointass, with relatively low values
ranging between 0.22mg wwt hand 334.86mg wwt mrecorded from December to
July and higher biomasses between 582.67mg wivtand 11 952.25mg wwt th

recorded from August to November (Figure 6.5). &y to the densities, February

was anomalous, with a relatively high biomass be@uprded (590.76mg wwt Th
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Figure 6.4: The monthly densities recorded during daylightispwaluring darkness

and overall.

6.3.4 Seasonal trends

The seasonal trends in recruitment indicate lowragye densities during summer
(381.73ind.n? +413.13SD) and autumn (57.18ind®m63.18SD), with an increasing

trend through winter (1 071.23ind 1 730.64SD) and spring (3 055.47inm

+3 997.59SD) (Figure 6.2). The observed increaswimter is mainly due to the

higher densities recorded in August (Figure 6.4)e o the high degree of variability
in recruitment patterns observed during the sttigigre were no significant seasonal

trends in recruitment of invertebrates into theiast (p>0.05).

The seasonal trends in biomass are similar to thexserded for the densities during
each season, with lowest values recorded duringmmm(329.54mg wwt MM

+263.92SD) and autumn (37.29mg wwt>m35.47SD), with an increasing trend
through winter (2 936.63mg wwt tnt4 888.74SD) and spring (4 392.36mg wwt m
+6 547.13SD) (Figure 6.3). The summer biomass laively high compared to the
density, as a result of a large swarm of a@ulbrevifissurarecruiting into the estuary

during February (Figure 6.5). A similar result oged in winter due to a large swarm
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of G. brevifissuraadults andP. indicusjuveniles recruiting during August. Similarly
to the seasonal densities, no significant diffeesno seasonal biomass were detected

using an ANOVA due to large variability in each sga (p>0.05).
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Figure 6.5: The monthly biomass recorded during daylight hodrging darkness

and overall.

6.4 DISCUSSION

The trends in macrozooplankton recruitment into Keriega Estuary indicate a
spring, nocturnal peak in recruitment (Figures .6™)e peak in recruiter densities
observed during the spring months is similar ta dieserved for macrozooplankton in
other estuaries in southern Africa, with severathars identifying a bimodal
recruitment pattern of late summer/early autumn gehg (Forbe®t al, 1994; De
Villiers et al, 1999; Forbes and Demetriades, 2005). Crocos amnd (K983) related
the bimodal pattern in penaeid recruitment to teakpspawning periods for these
species. Emmerson (1986) identified a slightlyedight pattern when examining the
caridean shrimpPalaemon peringueyiStebbing, 1915). The peak in recruitment of
this species occurred during summer in three BasBape estuaries. This study

identified a corresponding peak period of recruittrfer this species in December.
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The relatively high winter and summer recruiter siees (Figures 6.2 and 6.4)
recorded during this study can be attributed toirgles shoal of the mysidG.
brevifissurain selected months. In winter they recruited dgirantwo hour period in
August, which accounted for more than 85% of theltocatch by density during that
month, while in summer they recruited during Febyu@ontributing=75% of the
total catch in that month. The high recruitmentsiges recorded during October and
November could be attributed to a combination afcsgs, includings. brevifissura
and G. psammodytesyhich accounted for80% of recruiters during both months.
Large shoals of mysids such as those reported ahawe been previously recorded,
with authors reporting shoals of up to 20 000ind.recruiting into estuaries on
nocturnal flood tides (Wooldridge, 1983). There was relationship between
temperature and recruiter densities or biomasd) thié intermediate densities and
biomass occurring during the two seasons with teatpee extremes, i.e. summer and

winter.

The fluctuations in seasonal recruiter biomass siamlarly be attributed to single
shoals of species recruiting into the Kariega Estu@he relatively high average
winter biomass (Figures 6.3 and 6.5) was a regudtswarm of adulG. brevifissura
and to a lesser extemR, indicus recruiting into the estuary during August. Swaohs
adult G. brevifissurarecruiting during January and February similaggulted in a
high average biomass, relative to density, beiegnaed during summer (Figure 6.5).
Alternatively, the high average biomass recruitilging spring was contributed to by
a variety of species across all three of the résmemonths.

The abovementioned dominance of most months byootwo species is reflected in
the low calculated diversity indices (Table 6.2hisTis a result of diversity indices
considering the distribution of individuals acrdabe recorded species (Zar, 1996).
The slightly higher diversity recorded during Det®m March and April was as a
result of additional species (eB8hopalophthalmus terranatali§Vooldridge, 1986]
and Gastrosaccus olivagBacescu, 1970]) contributing to the recorded dmss
Margalef’'s Species Richness considers primarilyrtheber of species recorded and
secondly the densities recorded (Zar, 1996). Thigraction accounts for the
relatively high richness recorded during April addne despite these months not

dominating in terms of species numbers (Table 6.2).
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Some of the species recorded recruiting into theega Estuary during this study are
beyond their natural range (e.B. indicusand M. monoceros Both species are
recorded in the current literature as subtropigacges, while the study estuary is
considered to be in a warm-temperate biogeograpime (Branctet al, 1999). The
recruitment of these individuals is most likelyesult of warm water pulses into the
region through the Agulhas Current, which flows nirothe tropical northern

Mozambique coastline down the eastern coast ohsoutAfrica.

In all months, with the exception of September,titag recruitment densities and
biomasses were significantly lower than those medduring the night time (p<0.05;
Figure 6.2 and 6.3). The anomalous result duringte®eber was attributed to a
swarm of P. indicusrecruiting into the estuary shortly after sunri¥éooldridge
(1991) and Wooldridge and Loubser (1996) recordedcimum recruiter densities
during nocturnal hours fd?. peringueyiandU. africang respectively. Alternatively,
Forbes and Benfield (1986b) recorded two differeatturnal patterns ifPenaeus
japonicus(Bate, 1888) andP. indicus with P. japonicusrecruitment being recorded
predominantly during the night-time, whik. indicusoccurred in similar numbers
during both the daytime and night-time samples.sTooncurs with the results
observed during this study, with the only large toag recruiting event being
recorded folP. indicus(Table 6.3).

Few studies examining invertebrate recruitment i8twth African estuaries have
been conducted to date. Wooldridge (1991) and Walgd and Loubser (1996)
examined the tidal exchange Bf peringueyiandU. africanaacross the mouth inlets
of two east coast estuaries, the Swartvlei and Gasntrespectively. The study by
Wooldridge and Loubser (1996) identified a maximofapproximately 90ind. of
U. africana postlarvae entering the Gamtoos Estuary on thedfltide, while
Wooldridge (1991) recorded a maximum of 8ind.of P. peringueyand 9ind.r¥ of
U. africanaentering the Swartvlei Estuary. This study hasiified a similar number
of P. peringueyientering the Kariega Estuary at a monthly averafg6.79ind.n?
(Table 6.3). Other decapods, however, were recameladiting at substantially higher
densities, e.g.P. indicus (47.12ind.rii¥), M. monoceros(30.07ind.nt) and M.
africanum(76.70ind.r).

172



Chapter 6 Recruitment Study

Due to the lack of salinity cues from the Kariegeuary, this high recruitment of a
number of decapod species indicates that saligityot the primary cue that triggers
recruitment of these species into estuaries. hvasth noting that a recent study
showed that the recruitment of the spaRtiabdosargus holulinto southern African
estuaries is the result of cues other than sal{daynes, 2006). Selection experiments
demonstrated that this fish species had a preferkmderrestrial and estuarine water
over marine water despite standardising of sali@igmes, 2006). Alternatively it is
possible that the recruitment of macrozooplankiatio ithe estuary is the result of
passive movement of individuals through the modttne estuary on tidal currents.

Previous studies on specific species, have recotdedmajority of recruitment
occurring on incoming tides (Forbes and Benfie@B@b; Epifanio, 1988; Dame and
Allen, 1996; Wooldridge and Loubser, 1996; Forbed Bemetriades, 2005). This is
explained by the theory of tidal pressure induasgpbonses in zooplankton assisting
these animals in recruitment into estuaries. Foraed Benfield (1986b) and
Rothlisberget al. (1995) have reported a pressure induced responteipenaeid
prawns as postlarvae near the coast. The respaonsdves a greater relative
difference in pressure between ebb and flow tiddswing the animals to identify in
which direction the water is flowing. As pressunereases the postlarvae move into
faster flowing surface waters, which results inraager likelihood of the postlarvae

being imported into estuaries (Little and Epifarii®91; Rothlisbergt al, 1995).

6.4.1 Final conclusions

This study has presented results on a variety féérdint temporal scales, including
seasonal and diurnal scales, which indicate diftecentrolling factors that interact in
terms of macrozooplankton recruitment to cause &aradl maximum during
nocturnal spring tides. Temperature and spawnirggae influences the seasonal
patterns (Wooldridge, 1999; De Villieet al, 1999), resulting in a spring maximum
in recruitment. Additionally, the diel trends indte a general preference for nocturnal
recruitment amongst the majority of species, whilsuggested to be a predator
avoidance mechanism (Grindley, 1972; Hart and Alem 1975; Jerling and
Wooldridge, 1992; Wooldridge, 1999).
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CHAPTER 7

GENERAL DISCUSSION

The aquatic habitats in the Coastal Transition Z¢@&Z) include the nearshore
marine environment and the estuaries along thetlowagSchaefer, 1972). These
habitats are considered important both anthropegéwniand biologically due to this
zone providing both ecosystem and human servicésobproportion of its areal
extent (Costanzat al, 1997; Levinet al, 2001). Productivity within the CTZ
accounts for approximately 20% of all oceanic pwoidun, with 30% of this
productivity being used by human fisheries (Paulg &hristensen, 1995; Liet al,
2000). Approximately 60% of the world’s human paidn live within 200km of the
coastline, and the economic value of ecological hathan services that the CTZ
provides is estimated to be US$12.568 trillion penum globally (Costanzet al,
1997; Vitouselet al, 1997; Talleyet al, 2003). Due to the above mentioned high use
of the CTZ, it is imperative that a better underdiag is gained of the ecological
links in this zone (Costanzd al, 1997; Levinet al, 2001; Talleyet al, 2003).

In South Africa the ecological functioning of th&Z has come under threat directly
from human activity in this area, and indirectlyedio modifications of the riverine
systems that feed estuaries and the adjacent manwieonment with fresh water
(Morant and Quinn, 1999; Grangéal, 2000). Human activity in the CTZ includes a
variety of recreational, commercial and subsistesewices (Bruton, 1988; Breest
al., 2004). In addition, there has been an increagmpoundments as well as several
inter-basin transfers on some of South Africa’®rsvdue to the high anthropogenic
demand for fresh water (DWAF, 2004a).

Due to the generally uni-directional flow of watdmrough estuaries, it has been
hypothesised that there is a net export of biokgicoductivity to the marine inshore
area (Dame and Allen, 1996; Roegner and Shankd,)20@ernational studies have
demonstrated differential biological export and aripbetween estuaries and the

marine environment in the form of chlorophglland larval and adult invertebrates
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and fish (Sanchez-Velasai al, 1996; Roegner, 1998; Roegner and Shanks, 2001;
Espinosa-Fuentes and Flores-Coto, 2004). Studiethisf nature have not been
conducted in South Africa to date, or indeed iraiomally in similar sized estuaries,
and our understanding of the biological links betweestuaries and the marine
environment is, therefore, limited. The lack ofamhation, in particular baseline data
is a matter of serious concern as estuaries and wWeter supplies come under

increasing developmental pressures (Avis, 1998).

7.1 FINDINGS FROM THIS STUDY

The “Outwelling Hypothesis” by Odum (1968; 1980atst that the productivity in
estuaries is too high to be used within these sysi@nd therefore excess production
will be exported to the adjacent marine environmblat research has been carried out
examining the impact of biological export from esias on the marine environment
in the southern African region to date. The intdomal literature has begun to
examine this effect, but the research efforts lmeen concentrated on relatively large
estuaries in the Americas and Europe. South Afritzgrs are relatively small, with
no large or navigable systems in the region anditiee runoff totalling less than half
the flow of the Zambezi River (DWAF, 2004a). Othegions in the world with
comparable estuaries include Australasia and adgstems on the west coast of
South America (Potteet al, 1990). To date only one study of this nature Ieasn
conducted on any estuary within these regions, @xag the effect of the
temporarily open/closed (TOC) St Lucia Estuary be fish communities in the
adjacent marine environment on the north-east colaStouth Africa (Harriset al,
2001). Due to the relatively low fresh water floates entering the estuaries along the
South African coastline, the applicability of thetwelling hypothesis in terms of

biotic components of estuaries is uncertain.

This study is the first to examine the effect oftlw export from both permanently
open and temporarily open/closed estuaries (TOQH#) w fresh water flow rates.
The study took place along a short strete®Okm) of the Eastern Cape coastline in
South Africa. The permanently open systems examinetiided the Great Fish
Estuary, which is regarded as a fresh water domihaystem, and the fresh water
deprived Kariega Estuary. In addition, two TOCEsravalso studied, namely the

Kasouga and East Kleinemonde estuaries.
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The examination of the biotic interactions betwde® marine environment and the
permanently open estuaries (Chapter 3) identifigdoe of chlorophyHa and
particulate organic matter (POM) from both estumwdeiring all seasons. The fresh
water dominated Great Fish Estuary did, howeveasyige a greater contribution to
the marine environment than the fresh water degrikariega Estuary. Similarly,
zooplankton congregations were noted adjacenteortbuths of both these estuaries
during all seasons, but they were in greater canattons adjacent to the Great Fish.
A similar finding was noted by Espinosa-Fuentes &ores-Coto (2004), who
identified a variety of fish communities in the n&@ore environment off different
rivers and coastal lagoons in the Gulf of MexicbeTextent and distribution of the
different communities was found to be dependenttlten volume of fresh water
outflow from each individual system (Espinosa-Fesrdnd Flores-Coto, 2004). This
result is in agreement with that presented by datral. (2001) for the TOC St Lucia
Estuary, where separate fish communities were iitkshtat different distances
offshore relating to changes in salinity and tuitgidiuring the open mouth phase of
this system. Roegner (1998) and Roegner and ShHa0kd) identified contrasting
results in terms of chlorophyd flow between the marine environment and Eel River
(Nova Scotia) and the marine environment and S8tghgh (Oregon). The Eel River
was characterised by higher flow rates and conliynexported chlorophyita to the
marine environment (Roegner, 1998). Alternatively, South Slough Estuary
chlorophyltka was imported into the system due to the high dpbyll-a
concentrations, derived from upwelling, in the adja marine environment (Roegner
and Shanks, 2001).

An isotope study (Chapter 5) conducted within, adghcent to the two permanently
open systems, indicated a contribution of estuadigr@ved biological material to the
adjacent marine environment. The distance along dbestline that the estuary
influenced was highly dependent on the magnitudé&esh water flowing into the
estuary. Thé™*C signature from the Great Fish Estuary POM anetaipn could be
detected in filter feeders and the marine insh@&IB up to 12km downstream of the
estuary mouth. Alternatively, th&°C values of the POM and vegetation from the
Kariega Estuary were traced in the inshore marmarenment for less than 1km

from the mouth. These results are supported bynat®nal studies which have
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identified different export rates of terrestriallerived POM under varying flow
regimes (Darnaudet al, 2004; Darnaude, 2005). Darnaude (2005) indic#bed
terrestrially derived biotic material was crucial productivity in European coastal
waters. Mulkinset al. (2002) similarly related seasonal changes instfié ratios of
mysids in Cow Bay (British Columbia) to changeddiat due to variability in fresh
water flow rates of the adjacent creeks affectimg availability of terrestrial food

sources.

An examination of the interactions between the TOCHd the inshore marine
environment (Chapter 4) demonstrated that duriegctbsed phase, these systems had
a reduced impact on the adjacent marine environnizumting the open phase this
interaction increased significantly. While the TOOkere separated from the marine
environment there was some evidence to suggestliagthad an influence on the
biology in the adjacent marine environment due he increase in chlorophy#l
concentrations and zooplankton biomass and dedsigctly adjacent to the East
Kleinemonde Estuary mouth. This is likely due teage of nutrient rich water along
the bedrock of the estuary causing a localiseceas® in biological activity adjacent
to the estuary mouth. No studies have been condumethe potential export or
import of biotic material from estuaries of thigesiand longer term work is needed to
provide greater clarity on the seasonal fluctuationthese interactions. In addition,
the impoundment of many river systems in the soutAdrican region may result in a
change in the nature of the associated estuaaesjng longer term closure of these
systems and therefore reduced direct interactioite e marine environment
(Whitfield and Wooldridge, 1994; Schlacher and Winmlge, 1996a; Whitfield,
2005). A greater understanding of the role of theswaries in inshore marine
ecology is needed prior to altering these systéhastis et al. (2001) represents the
only study of biotic marine-estuarine interactioms a TOCE, albeit a very large
system, unlike the small estuaries examined inghidy. The study did not examine
the biological components of chlorophglland particulate organic matter, but the
findings indicated that during the open phase,Shéucia estuarine lake influenced
the composition of fish communities in the adjacerarine environment, with four
different communities forming at different distarcom the estuary, related to

salinity and turbidity variations (Harret al, 2001).
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One stochastic feature which seems to overrideptiogluction exported into the
adjacent nearshore environment by estuaries istatioapwelling. The biological
activity recorded in the nearshore environment rafée upwelling event is
substantially greater than that derived by the expbnutrients and biological matter
from the estuaries themselves. The overriding erfae of an upwelling event was
evident in this study during the March 2005 maisoevey on the permanently open
estuaries, with higher chlorophyll and zooplanktmamass and densities occurring
off both the Kariega and Great Fish Estuaries (@ha}). Proof of an upwelling event
is evident in satellite imagery for that period (wwsmarinesa.org.za), which
demonstrates water temperatures 3 — 4°C lower dliarage three days prior to the
survey. Similar results have been identified in tNohkmerica, with larger estuarine
embayments importing chloropmdl from the marine environment due to high
upwelling derived productivity occurring adjacerd the estuary (Roegner and
Shanks, 2001). Due to the large spatial separatiampwelling cells along the east
coast of South Africa and the unpredictable natdirdnese cells, their contribution to
coastal primary productivity is uncertain. There avo main upwelling cells along
the east coast of South Africa, one in northern Rwa-Natal, and the second centred
on Port Alfred (Lutjeharmet al, 1989b; Lutjeharms, 1998; Lutjeharms, 2005). The
periodicity of these upwelling events is continydbleing reviewed, but the current
literature indicates that upwelling or its effeate evident in the Port Alfred region on
45% of days (Lutjeharmst al, 2000). The biotic matter exported to the inshore
marine environment adjacent to the Great Fish hadresh water deprived Kariega

Estuary likely supports the biota in the intervgnperiods between upwelling events.

In addition, although TOCEs do not continuouslygymutrients and biotic material

to the marine inshore environment, this type ofi@st is numerically dominant along
the east coast of South Africa, with 27 occurritgng a 150km stretch of coastline
between Woody Cape and East London (Whitfield, 2008e proliferation of these

estuaries combined with their simultaneous breaghiesults in an overall pulse of
nutrients and biotic matter into the marine envinemt that is likely to be substantial.
This agrees with similar comments by Luketyal. (2006) when observing the mass

export of sub-adult fish into the marine environtnapon breaching of TOCEs.
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The recruitment of larval macrocrustaceans intoKheega Estuary was examined
monthly over a period of one year (Chapter 6). &dvmacrozooplankton species
were recorded recruiting into the estuary that werteexpected due to the lack of any
records of these species in the region. These swuthnge extensions may be due to
biota being trapped in warm water cells moving ddha east coast in the Agulhas
Current (Norton, 2005; Tesket al, 2006). Surveys along the entire length of the
Kariega Estuary did not demonstrate persisting canities of many of the species
that were recorded recruiting into the system. Alogal information from fishermen
supports the recorded data due to reports of amtalsschools of these larger species
occurring in the upper reaches of the estuary. Wewehis study indicated that the
recruitment of macrocrustaceans of all speciesrsctwoughout the year, with peak
densities recruiting during the spring months. Aiddally, the majority of
recruitment occurs during nocturnal hours and @nititcoming tides, and is likely to
be a passive process, with the juveniles and lamaeing into the surface waters
after dark and being imported into the estuary lood tidal currents. The large
numbers of individuals recorded recruiting into tkariega Estuary and not being
subsequently recorded supports the notion thatabe web within this system may
be driven by both marine and estuarine sourceh, tése recruiting crustaceans most
likely being predated upon by fish using the estw@er a nursery area.

The interactions between estuaries and the insinarene environment are complex
and dependent on the volume of fresh water entedhegstudy estuary as well as
coastal processes. Largier (1993) has describedarest fronts in the marine
environment as being very important to both comimaéend recreational fishes due
to the high productivity associated with these zonéAdjacent to the large
permanently open estuaries with high fresh watew ftates along the South African
coast, this is likely to be even more applicablee do the otherwise temporally

variable nutrient sources available in the mamshore zone.

Harrison (2004) has related the physico-chemicalatteristics and mouth status of
estuaries to the catchment size and biogeograggomr in which they occur.
Similarly, the importance of terrestrially derivéelstuarine) contributions to inshore
marine ecology most likely varies with geographaegion along the South African

coast due to the varied width of the continentadlfshnd the frequency of river
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mouths along the coastline. On the west coast offSafrica there are relatively few
estuaries (Whitfield, 2000; Harrisat al, 2000) and a narrow continental shelf, with
frequent shelf-wide upwelling events extending rigito the inshore environment
(Lutjeharms, 2005). Alternatively, along the soatfast of the country the continental
shelf extends for up to 200km, moving the Agulhasrént and associated upwelling
events offshore (Lutjeharms, 1998), and therebyremsing the importance of
estuarine contributions to the nearshore marindoggoOn the east coast (north of
Port Elizabeth) the frequency of estuaries increaaéstantially (Whitfield, 2000;
Harrison, 2004) and the continental shelf narrosvapgproximately 30km wide, but
there are only two recorded upwelling cells, onsitimned off Port Alfred and the
other in the Natal Bight (Lutjeharnet al, 2000; Meyeret al, 2002). The upwelling
cells located off Port Alfred and in the Natal Biglesult in increased nutrient
concentrations in the surface waters, which pronpoteluction during an upwelling
event (Lutjeharms, 1998; Meyat al, 2002; Lutjeharms, 2005). However, these
upwelling cells represent a relatively small aréshe coastline and are substantially
more stochastic in nature than the upwelling tltauos on the west coast. Estuarine
derived biological matter is therefore likely to begreater importance in the marine
inshore zone on the south and east coast of SduiteAelative to the west coast of
the country due to the predominance of estuarids@tiuced frequency of upwelling
in these regions. Along the west coast of the agunihe frequency and volume of
upwelling derived biotic matter in the inshore marienvironment supersedes the

importance of terrestrially derived biotic matefiad this region.

7.2 MANAGEMENT IMPLICATIONS

In South Africa the economic benefits of the CTXdnanly been analysed in terms of
fisheries. Lamberth and Turpie (2003) reported #séilarine and estuarine-dependent
ichthyofaunal fisheries yielded approximately R1L2llion ($181.30 million) during
the 2002 financial year and De Villieet al. (1999) estimated the value of the
estuarine-dependent penaeid prawn fishery to beogippately R10 million ($1.45
million) per year. As of yet there are no real emoit estimates for the financial
benefits of the tourism and recreational industiieat are prolific along South

Africa’s coastline.
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The implications for environmental managers resgltirom this study relate to the
water resources in South Africa. A DWAF report B86 reported that approximately
90% of Mean Annual Runoff in South Africa does redch the coastal zone (DWAF,
1986). The true degree of this impact was descriipe®avieset al. (1993) in the
following statement: “There are few rivers in sarth Africa that have not been over-
exploited, degraded, polluted, or regulated by iomgbnents, and we know of many
that were once perennial, but which now flow ordasonally or intermittently”. Due
to the water poor nature of South Africa, impoundtaeare required to meet the
future anthropogenic water needs of the countrye National Water Act of 1998
protects the water resource and recognises theahanvironment as a legitimate
water user. This recognition of the natural envinent as a water user leads to the

management implications of this study.

The future establishment of impoundments and reéignlaf fresh water supplies to
estuaries and therefore to the adjacent marineramient will have to take into
consideration these downstream ecological users Jthdy demonstrates that the
marine environment is reliant on the nutrients hiadic input derived from estuaries
and the impacts of reducing fresh water must bsidered for these ecological water

users.

The results from this study on the Kariega Estudgmonstrated that despite
substantial fresh water abstraction this systeh r&tsults in increased biological
activity in the adjacent marine environment dué&ganouth being kept open by tidal
currents and the rocky substrate (Chapter 3). Hewethe impact of the Kariega
Estuary on marine inshore biology is consideraldguced relative to the other
permanently open study estuary, the Great Fish. rébalts from this study have
demonstrated that the influence on marine biol@ggimilar to that recorded during
the breaching of the nearby, substantially smallemporarily open/closed East

Kleinemonde Estuary (Chapter 3, Chapter 4).

If in the future water is abstracted from most bé tcountry’s permanently open
estuaries, it seems unlikely that the ecologicaicfions they provide can be
maintained by the TOCEs along our coastline. Téidue to the stochastic nature of

the breaching of TOCEs, which does not provide shene continual supply of
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nutrients and biotic material to maintain the marinshore environment. Further
work is required to establish if during dry yearsexcessively wet years this will
change, but the present study indicates that ifdvioe preferential for inshore marine
ecological functioning to abstract water from TOC#an from permanently open
estuaries. However, this has not considered theemurfunctions that the TOCEs
provide, but only considers the current knowledfjéhe impact of these systems on

inshore marine biological activity.

7.3 FUTURE RESEARCH

Costanzaet al. (1997), Talleyet al. (2003) and Vitousekt al. (1997) have stated that
the understanding of the connectivity of differemhbitats within the CTZ is
fundamental to the ongoing maintenance of the gowdd services that this zone
provides. In addition, Gillandeet al. (2003) have stated that the understanding of the
connectivity of juvenile and adult habitats is galidor the long term conservation of

species, as it will allow for more targeted manageinstrategies.

In attempting to address some of these issuessthdy has started addressing the
interaction between fresh water input and the near@mvironment as well as
indicating the potential importance of estuarineivé® biological material for the
marine environment. South African researchers agenming to investigate the use of
different habitats within the CTZ by individual spes (Naesjeet al, 2005; Kerwath
et al, 2005; Pottset al, 2005). To better appreciate the complex biolddickages
between estuaries and the marine environment, rerdlly allow better management
of South Africa’s water resources, the followingrwshould be conducted.

» Pottset al.(2005), Naesjet al.(2005) and Kerwatlet al.(2005) are currently
concentrating on species that are of fisheries rmapce and this work should
be expanded to include additional species that rhewseen CTZ habitats.

e« The study described in this dissertation only exeui permanently open
estuaries at the extremes of fresh water flow. Wasgk needs to be expanded
to include permanently open estuaries throughoat dontinuum of flow
regimes to enable water managers to better under#ite@ implications for the
nearshore marine environment of altering the flegime of any individual

system.
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* In addition, permanently open estuaries in a wargétbiogeographic zones
should be investigated to identify if the responsethe inshore marine
environment differs within the various biogeographones along the southern
African coastline.

* Current research is investigating the link betwéemporarily open/closed
estuary (TOCE) flow rates and breaching frequeneih several studies
indicating the importance of mouth opening evemtsnaintaining natural
communities in these systems (Whitfield and Bruti®89; Wooldridge, 1991;
Whitfield and Wooldridge, 1994; Wooldridge, 1994p@dridge and Loubser,
1996; Whitfield, 1998; Froneman, 2002a). The wodnducted during this
study indicates that the biological and nutrienpax from TOCEs may be
important to the inshore marine biology. Furthemrkvehould be conducted
adjacent to different TOCEs in a variety of biogegdnic zones to identify if
there are different responses in the marine enmiemt in the various
biogeographic zones.

« Additional stable isotope studies including iso®mich as sulphuB{s)
should be conducted on the biotic and detrital comepts of estuaries and the
adjacent marine environment to enable a more detaplanation of the links
between estuaries and the nearshore marine enwrgnn analysis using
sulphur isotopes was not possible due to financaistraints during this
study, but sulphur has been identified as providindpetter separation of
marine derived sources from estuarine/fresh wataveld sources and a study
of this nature is therefore crucial.

* An examination of the productivity of estuarine/marfrontal systems in the
inshore zone needs to be conducted in southercaAfas there is a general
paucity of information on the functioning of thesgstems within the marine

environment and their role in energy dynamics @ndbntinental shelf.

7.4 FINAL CONCLUSIONS

This study is the first to examine the biotic lirketween the marine inshore zone and
relatively small estuaries with relatively low flomates. Similar work to date in the
scientific literature has focused on large systevith relatively high flow volumes
(e.g. Sanchez-Velascet al, 1996; Roegner, 1998; Roegner and Shanks, 2001;
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Espinosa-Fuentes and Flores-Coto, 2004). This stehtified a relationship between
estuaries and the marine inshore zone in termseabiblogical processes occurring in
these ecosystems. The influence of estuarine watethe biology in the adjacent
marine environment is determined by the volume atew transferred between the
two habitats, whether tidally or by riverine outplihe seepage of water through the
sand berm that separates temporarily open/closdédaress from the marine
environment also appeared to influence the marimdodical activity directly
adjacent to these systems. Although both tempgrapken/closed and permanently
open estuaries have been shown to influence thenenarshore biological activity,
stochastic upwelling events override this influefaeshort periods by contributing a
large pool of nutrients to the marine inshore zoHewever, permanently open
estuaries produce a continuous supply of nutriant biotic detritus to the marine
inshore zone and are therefore important in brigigire periods between upwelling
events. The biological activity in the inshore marenvironment appears to be driven
by a combination of upwelling events, continuoupak from permanently open
estuaries, and pulses of nutrients from temporailgn/closed estuaries, all of which
play an important role in maintaining the high protivity associated with the inshore

marine zone.

This study has indicated fresh water input as bemgortant to the ability of

estuaries, both permanently open and temporarilgnigbosed, to influence the
biological activity in the marine inshore zone. Fthould therefore be taken into
consideration by water managers in South Africateefeducing fresh water supplies
to coastal ecosystems. The impact of reducing freslter supplies to these
ecosystems could be detrimental to a variety ofsgsiem and anthropogenic
functions they serve. Managers need to make desisas to which ecological
functions, if any, can be removed from individuatuaries and thereby determine

how they will meet the growing anthropogenic wateeds of future generations.
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Appendices

APPENDIX 1

THE WIND SPEED AND DIRECTION ON THE
SAMPLING DATE AND EVENING PRIOR TO THE
MARINE SURVEYS OFF THE GREAT FISH, KARIEGA,
KASOUGA AND EAST KLEINEMONDE ESTUARIES

Table Al.1: The wind speed (Mm% and direction (compass point source) on the
sampling dates (at 08h00) and evening prior to §ampat 21h00) off the Great Fish
Estuary (according to South African Weather Seridega for Port Alfred).

On sampling date Evening prior to

Survey Samphng date

Date _ . _ .
Season wind wind wind wind

Speed Direction Speed Direction

June 22/06/2004 3.0 East 0.0 North
September 21/09/2004 3.3 West 2.8 East
December 01/12/2004 3.1 East 5.9 West
March 08/03/2005 1.4 North-east 1.6 East

Table A1.2: The wind speed (M™% and direction (compass point source) on the
sampling dates (at 08h00) and evening prior to samat 21h00) off the Kariega
Estuary (according to South African Weather Seridega for Port Alfred).

On sampling date Evening prior to

Survey Samphng date

Date _ . _ .
Season wind wind wind wind

Speed Direction Speed Direction

June 24/06/2004 2.4 East 1.7 East
September 23/09/2004 4.2 East 3.5 East
December 03/12/2004 0.3 East 4.2 West
March 09/03/2005 0.0 South 4.1 East
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Table A1.3: The wind speed (Mm% and direction (compass point source) on the

sampling dates (at 08h00) and evening prior to s#amdat 21h00) off the East

Kleinemonde Estuary (according to South African Wean Service Data for Port

Alfred).

Survey On sampling date SE;/renr;]Jilri]r?gp(;LOtgo
Season % Wind Wind wind Wind

Speed Direction Speed Direction
June 07/06/2005 2.9 East 2.2 East
September 08/09/2005 2.7 East 2.0 South-east
November 17/11/2005 4.2 East 7.7 South
March 28/02/2006 3.7 East 1.3 South

Table Al.4: The wind speed (M™% and direction (compass point source) on the

sampling dates and evening prior to sampling off Kasouga Estuary according to

observations on the coast in Port Alfred.

On sampling date

Evening prior to

Survey sampling date

Date ] _ ] _
Season Wind Wind Wind Wind

Speed Direction Speed Direction

June 21/06/2005 3.3 South-east 1.8 East
September 08/09/2005 2.7 East 2.0 South-east
November 17/11/2005 4.2 East 7.7 South
March 28/02/2006 3.7 East 1.3 South
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APPENDIX 2

CONTOUR PLOTS OF THE PHYSICALAND
BIOLOGICAL DATA FROM THE MARINE
ENVIRONMENT ADJACENT TO THE GREAT FISH
AND KARIEGA ESTUARIES
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Figure A2.1: Salinity (practical salinity units) adjacent to tGeeat Fish and Kariega
Estuaries at the surface (A) and at 5m (B) durimgeJ2004. NE (north-east) and SW

(south-west) have been used to designate the cerppags along the X-axis.
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Figure A2.2: Salinity (practical salinity units) adjacent to tBeeat Fish and Kariega
Estuaries at the surface (A) and at 5m (B) duriegt&mber 2004. NE (north-east)
and SW (south-west) have been used to designateothpass points along the X-

axis.
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Figure A2.3: Salinity (practical salinity units) adjacent to tGeeat Fish and Kariega
Estuaries at the surface (A) and at 5m (B) duriegddnber 2004. NE (north-east) and

SW (south-west) have been used to designate thpasmpoints along the X-axis.
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Figure A2.4: Salinity (practical salinity units) adjacent to tGeeat Fish and Kariega
Estuaries at the surface (A) and at 5m (B) durirgrdt 2005. NE (north-east) and
SW (south-west) have been used to designate thpasmpoints along the X-axis.
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Figure A2.5: Water temperature (°C) adjacent to the Great Fishkariega Estuaries
at the surface (A) and at 5m (B) during June 20{&.(north-east) and SW (south-

west) have been used to designate the compass ptong the X-axis.
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Figure A2.6: Water temperature (°C) adjacent to the Great Fishkariega Estuaries
at the surface (A) and at 5m (B) during Septemi@42 NE (north-east) and SW

(south-west) have been used to designate the cerppads along the X-axis.
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Figure A2.7: Water temperature (°C) adjacent to the Great Fishkariega Estuaries
at the surface (A) and at 5m (B) during Decembdy42INE (north-east) and SW

(south-west) have been used to designate the cerppads along the X-axis.
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Figure A2.8: Water temperature (°C) adjacent to the Great Fishkariega Estuaries
at the surface (A) and at 5m (B) during March 209k. (north-east) and SW (south-

west) have been used to designate the compass ptong the X-axis.
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Figure A2.9: Particulate organic matter concentrations (rifyy.&djacent to the Great
Fish and Kariega Estuaries at the surface (A) amd(B) during June 2004. NE
(north-east) and SW (south-west) have been usetksmnate the compass points

along the X-axis.

215



Distance offshore (m)

Distance offshore (m)

Appendices

Great Fish Estuary

B

0 500

Figure A2.10: Particulate organic matter concentrations (rffyy.ladjacent to the

1000

1000

1500 -500
SW NE

Distance from Mouth (m)

Kariega Estuary
B

1500 -500
SW NE

Distance from Mouth (m)

T
500

500

1000

Il 50
55
Il 50
55
Il 70
75
I 80
B 85

9.0

95

10.0
" 105
B 110
Bl 115

1500
SW

Bl 1.00
125
Bl 150
175
Hl 2.00
225
Bl 250
B 275

3.00

3.25

3.50

3.75
B 4.00
B 425

1500
Sw
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Figure A2.11: Particulate organic matter concentrations (rify.ladjacent to the
Great Fish and Kariega Estuaries at the surfacea) 5m (B) during December
2004. NE (north-east) and SW (south-west) have bised to designate the compass

points along the X-axis.
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Figure A2.12: Particulate organic matter concentrations (rify.ladjacent to the
Great Fish and Kariega Estuaries at the surfacea(®l)5m (B) during March 2005.
NE (north-east) and SW (south-west) have been tsddsignate the compass points

along the X-axis.
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Figure A2.13: Total chlorophyl#a concentration |(g.L™") recorded adjacent to the
Great Fish and Kariega Estuaries at the surfacea() 5m depth (B) during June

2004. NE (north-east) and SW (south-west) have bised to designate the compass

points along the X-axis.
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Figure A2.14: Total chlorophyla concentration |(g.L™") recorded adjacent to the
Great Fish and Kariega Estuaries at the surface a#g 5m depth (B) during
September 2004. NE (north-east) and SW (south-vieest® been used to designate

the compass points along the X-axis.
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Figure A2.15: Total chlorophyla concentration |(g.L™") recorded adjacent to the

Great Fish and Kariega Estuaries at the surface a#g 5m depth (B) during

December 2004. NE (north-east) and SW (south-weste been used to designate

the compass points along the X-axis.
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Figure A2.16: Total chlorophyla concentration |(g.L™") recorded adjacent to the
Great Fish Estuary at the surface (A) and 5m déB)hduring March 2005. NE
(north-east) and SW (south-west) have been usatks@mnate the compass points

along the X-axis.
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APPENDIX 3

THE LIST OF ZOOPLANKTON SPECIES RECORDED
WITHIN AND ADJACENT TO THE GREAT FISH AND

KARIEGA ESTUARIES

P indicates presence in the environment, whiledicaites absence.

Taxonomic Group/Species

Great Fish

Kariega

Marine  Estuarine

Marine  Estuarine

Acartia africana
Acartia longipatella
Acartiaspl.
Acartiasp2.

Acartia natalensis
Aetideussp.
Amphipods
Appendicularians
Barnacles
Calanoides acutus
Calanus agulhensis
Calanus simillimus
Calocalanussp.
Candaciasp.
Chaetognaths
Clausocalanus breviceps
Clausocalanus laticeps
Clausocalanuspp.
Copilia sp1.

Copilia sp2.
Corycaeidae
Ctenocalanusp.

Cumaceans

P P
P P
P A
P A
P P
A A
A A
P P
= P
P A
P P
= =
P A
= A
P P
P A
= A
= P
P A
P A
P P
P A
A P

A A
P P
= A
= P
A A
P A
P A
P

A A
P P
P P
P A
= A
P P

A A

A A
p

A

A
P P
A A
= P
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_ _ Great Fish Kariega
Taxonomic Group/Species

Marine Estuarine Marine Estuarine
A A

Drepanopus forciputus
Eucalanussp.
Gammarids
Gastrosaccus brevifissura
Genocalanusp.
Harpacticoidasp.
Isopods

Labidocera acuta
Labidoceraspl.
Labidocerasp?2.
Limacinasp.
Medusasp.
Mesopodopsis wooldridgei
Microsetella norvegica
Microsetella rosea
Mussels

Nauplii

Noctiluca

Oithonasp.

Oncaeasp.
Ophiplutussp.
Ostracods
Paraeuchaetap.
Pontella gaboonensis
Pontellina plumata

Pseudodiaptomus hessei

t 999D ,» 10U U U g PP TV 0vou U 50> 4o

Pterapoda

Rhincalanus cornutus

> >» 5, 909 Y v 49090909V UVvT Vg PV TV v U v UV VgV T VY 450U

A
P
P
A
A
P
P
A
A
P
P
P
P
P
A
P
P
P
P
P
A
P
A
P
P
P
A
A
Rhincalanus giga A
P

-U>>>-U>-U>-U>'U'UU-U-U>-U-U'U'U'U-U>-U'U>-U-U>

Rhopalophthalmus terranatalis P
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Taxonomic Group/Species Grefat Fish : Kari.ega :
Marine  Estuarine Marine Estuarine

Salps P A P A
Sapphirinasp. A A P A
Schapocalanusp. P A A A
Scolocithricela minor P A A A
Siphonaria P P P P
Unidentified sp1. A A P P
Unidentified sp2. P P P P
Unidentified sp3. A P A A
Subeucalanus pileatus P A P A
Temora stylifera P A P A
Temora turbinata P P P P
Zoea P P P P
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APPENDIX 4

CONTOUR PLOTS OF THE PHYSICALAND
BIOLOGICAL DATA FROM THE EAST KLEINEMONDE
AND KASOUGA ESTUARIESAND ADJACENT MARINE

ENVIRONMENT
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Figure A4.1: The surface (A) and 5m (B) salinity (practical sayi units) recorded in
the nearshore environment adjacent to the KasondeEast Kleinemonde Estuaries
during the June 2005 survey. NE (north-east) and(SWth-west) have been used to

designate the compass points along the X-axis.
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Figure A4.2: The surface (A) and 5m (B) salinity (practical sayi units) recorded in
the nearshore environment adjacent to the KasondeEast Kleinemonde Estuaries
during the September 2005 survey. NE (north-easl) 3W (south-west) have been
used to designate the compass points along thasX-ax
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Figure A4.3: The surface (A) and 5m (B) salinity (practical sayi units) recorded in
the nearshore environment adjacent to the KasondeEast Kleinemonde Estuaries
during the November 2005 survey. NE (north-east) 8 (south-west) have been

used to designate the compass points along thasX-ax
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Figure A4.4: The surface (A) and 5m (B) salinity (practical sayi units) recorded in
the nearshore environment adjacent to the KasondeEast Kleinemonde Estuaries
during the March 2006 survey. NE (north-east) aWd (South-west) have been used
to designate the compass points along the X-axis.
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Figure A4.5: The surface (A) and 5m (B) temperatures (°C) resxbiid the nearshore
environment adjacent to the Kasouga and East Kieinele Estuaries during the June
2005 survey. NE (north-east) and SW (south-weste Heeen used to designate the

compass points along the X-axis.
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Figure A4.6: The surface (A) and 5m (B) temperatures (°C) rezxbiid the nearshore
environment adjacent to the Kasouga and East Kieanele Estuaries during the
September 2005 survey. NE (north-east) and SW l{seast) have been used to

designate the compass points along the X-axis.
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Figure A4.7: The surface (A) and 5m (B) temperatures (°C) rezxbiid the nearshore
environment adjacent to the Kasouga and East Kieanele Estuaries during the
November 2005 survey. NE (north-east) and SW (sout$t) have been used to

designate the compass points along the X-axis.
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Kasouga Estuary
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Figure A4.8: The surface (A) and 5m (B) temperatures (°C) resmbid the nearshore
environment adjacent to the Kasouga and East Kieanele Estuaries during the
March 2006 survey. NE (north-east) and SW (soutbtieave been used to designate

the compass points along the X-axis.
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Figure A4.9: The surface (A) and 5m (B) particulate organic srationcentrations
(mg.L™) in the nearshore environment adjacent to the ¥gs@nd East Kleinemonde
Estuaries during the June 2005 survey. NE (norsityeend SW (south-west) have

been used to designate the compass points alontyaixes.
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Figure A4.10: The surface (A) and 5m (B) particulate organic eratbncentrations

(mg.L™) in the nearshore environment adjacent to the ¥gs@nd East Kleinemonde

Estuaries during the September 2005 survey. NEtHreast) and SW (south-west)

have been used to designate the compass points thierX-axis.
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Figure A4.11: The surface (A) and 5m (B) particulate organic Bratboncentrations
(mg.L'") in the nearshore environment adjacent to the ¥gs@nd East Kleinemonde
Estuaries during the November 2005 survey. NE (reast) and SW (south-west)
have been used to designate the compass points thierX-axis.
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Figure A4.12: The surface (A) and 5m (B) particulate organic eratbncentrations
(mg.L™) in the nearshore environment adjacent to the ¥gs@nd East Kleinemonde
Estuaries during the March 2006 survey. NE (nodsteand SW (south-west) have

been used to designate the compass points alontyaixes.
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Figure A4.13: The surface (A) and 5m (B) total chlorophglieoncentrationy(g.L™)
in the nearshore environment adjacent to the Kasoaigd East Kleinemonde
Estuaries during the June 2005 survey. NE (norsityeend SW (south-west) have

been used to designate the compass points alontyaixes.
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Figure A4.14: The surface (A) and 5m (B) total chlorophglieoncentrationy(g.L™)
in the nearshore environment adjacent to the Kasoaigd East Kleinemonde
Estuaries during the September 2005 survey. NEtHreast) and SW (south-west)

have been used to designate the compass points thierX-axis.
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Figure A4.15: The surface (A) and 5m (B) total chlorophglieoncentrationy(g.L™)
in the nearshore environment adjacent to the Kasoaigd East Kleinemonde
Estuaries during the November 2005 survey. NE (reast) and SW (south-west)

have been used to designate the compass points thierX-axis.
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Figure A4.16: The surface (A) and 5m (B) total chlorophglieoncentrationy(g.L™)

in the nearshore environment adjacent to the Kasoaigd East Kleinemonde
Estuaries during the March 2006 survey. NE (nodsteand SW (south-west) have

been used to designate the compass points alontyaixes.
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APPENDIX 5

THE LIST OF ZOOPLANKTON SPECIES RECORDED
IN AND ADJACENT TO THE EAST KLEINEMONDE

AND KASOUGA ESTUARIES

“P” indicates presence in that enironment, whilé iddicates absence.

Taxonomic Group/Species Kasouga East Kleinemonde
Marine Estuarine Marine Estuarine
Acartia longipatella P P P P
Acartiaspl P P P A
Appendicularians
Barnacles P
Calanus agulhensis P P P A
Calanus simillimus P P P P
Calocalanussp. P P P A
Candaciasp. P A P A
Chaetognaths P A A
Clausocalanusp. P P P P
Corycaeidae P
Cumaceans
Eucalanussp. P A P A
Gammarids P P P P
Gastrosaccus brevifissura A A P A
Harpacticoida P
Isopods P
Labidocerasp. A P A
Limacinasp. P P P
Medusa P P =] P

Mesopodopsis wooldridgei P
Microsetella norvegica

Microsetella rosea
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Taxonomic Group/Species

Kasouga

East Kleinemonde

Marine

Estuarine Marine

Estuarine

Mussels

Naupli

Noctiluca

Oithonasp.

Oncaeasp.

Ostracods
Paramacrochiron sewelli
Paraeuchaetap.
Pontella gaboonensis
Pontellina plumata
Pseudodiaptomus hessei

Rhincalanus cornutus

-

U U U U U U U U U jm T

Rhopalophthalmus terranataliB

Salps

Sapphirinasp.
Schapocalanusp.
Siphonaria
Unidentified sp1.
Subeucalanus pileatus
Temora stylifera
Temora turbinata

Zoea

P

T T U

T U T T

> > »>» > > > T > > T > T U UV g U g

>

T U >» >

'U'U'U'U'UJ>'UJ>'U'UJ>'U'U'U-U'U.U

e

T W U T

>>» > >0 > 9> >»» P 000 T 4

>

T v > T
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