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ABSTRACT 

Low availability of soil phosphorus (P) caused by strong sorption of P is a major constraint to 

agricultural production in most South African soils, particularly those from the high rainfall 

areas. The aim of this study was therefore to investigate whether combined addition of goat 

manure with inorganic P fertilizers could enhance P availability in some P fixing soils of the 

Transkei region, South Africa. The study addressed the following specific objectives (i) to 

assess P sorption capacities and requirements of selected soils and their relationship with 

selected soil properties and single point sorption test, (ii) to assess the effects of goat manure 

and lime addition on P sorption properties of selected P fixing soils (iii) to assess the temporal 

changes in concentration of inorganic and microbial biomass P fractions following application 

of inorganic fertilizer P with goat manure in a laboratory incubation experiment, and, (iv) to 

assess the effects of goat manure application with inorganic phosphate on inorganic and 

microbial biomass P fractions, P uptake and dry matter yield of maize.  

Sorption maxima (Smax) of seven soils examined ranged from 192.3 to 909.1 (mg P kg-1) and 

were highly and positively correlated with sorption affinity constant (r = 0.93, p = 0.01) and 

organic C (r = 0.71, p = 0.01). The amount of P required for maintaining a soil solution 

concentration of 0.2 mg P l-1 ranged from 2.1 to 123.5 mg P kg-1 soil. Soils collected from 

Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane (a Luvisol) and Bethania (a Ferralsol) had 

lower external P requirement values and were classified as lower sorbers, whereas soils from 

Ntlonyana (a Planosol), Chevy Chase (a Ferralsol) and Flagstaff (a Ferralsol) were classified 

as moderate sorbers. The results suggested that P availability could be compromised in 43% 
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of the soils studied and that measures to mitigate the adverse effects of P sorption were 

needed to ensure that P is not a limiting factor to crop production, where such soils are found.  

Goat manure addition at varying rates (5, 10 and 20 tha-1 dry weight basis) to two of the 

moderately P fixing soils from Chevy Chase and Flagstaff, reduced P sorption maxima (Smax) 

compared to the control treatment. Phosphate sorption decreased with increasing amounts of 

goat manure in both soils but the extent of reduction was greater on Chevy Chase soil than on 

Flagstaff soil. The relative liming effects of the different rates of goat manure followed the 

order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1. In a separate experiment, addition of 

inorganic P at varying rates (0, 90, 180, and 360 kg P ha-1) to Flagstaff soil increased labile P 

fractions (resin P, biomass P and NaHCO3-Pi) and the increases were greater when goat 

manure was co-applied. The control treatments contained only 17.2 and 27.5 mg P kg-1 of 

resin extractable P in the un-amended and manure amended treatments, respectively which 

increased to 118.2 and 122.7 mg P kg-1 on day 28 of incubation. Biomass P concentration was 

increased from 16.8 to 43.9 mg P kg-1 in P alone treatments but the fraction was greatly 

enhanced with manure addition, increasing it from 32.6 to 97.7 mg P kg-1. NaOH-Pi was the 

largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 

mg P kg-1 in the unamended and manure amended treatments, respectively.  

Dry matter yield and P uptake by maize grown in the glasshouse were highly and significantly 

(p = 0.05) correlated with the different P fractions in the soil. The correlations followed the 

order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) 

for dry matter yield at 6 weeks after planting. At 12 weeks after planting, goat manure had 
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highly significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and 

NaOH–Pi. The combination of biomass P, resin P and NaHCO3-Pi explained 75.8% of the 

variation in dry matter yield of which 63.0% of the variation was explained by biomass P 

alone. The greatest increase in biomass P occurred when added P was co-applied with 5 or 10 

tha-1 goat manure. The predictive equation for maize dry matter yield (DM) was: DM (g) = 

1.897 biomass P + 0.645 resin P (r = 0.73). Resin P was the fraction that was most depleted 

due to plant uptake and decreased by 56 to 68% between the 6th week and the 12th week of 

sampling indicating that it played a greater role in supplying plant available P. The results 

therefore suggested that the use of goat manure may allow resource poor farmers to use lower 

levels of commercial phosphate fertilizers because of its effect to reduce soil P sorption. In 

addition, higher increases in biomass P due to manure addition observed at lower rates of 

added P indicated that goat manure has potential for enhancing bioavailability and fertilizer 

use efficiency of small inorganic P applications.  
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PREFACE 

 

This dissertation is composed of six chapters preceded by an introduction, general hypotheses 

and presents objectives to be achieved. Chapter 1 is a general literature review which 

establishes the context of the study. The review focuses on complementarities and synergies 

between organic and mineral phosphate inputs in relation to P availability in soils. The next 

six chapters constitute the body of the thesis. Chapter 2 reports results on phosphate sorption 

properties and relationships of derived sorption values to selected soil parameters in selected 

soils from the Transkei region of South Africa. An assessment of P requirements for the soils 

based on the external P requirement values calculated from the Langmuir equations and from 

a glasshouse pot experiment is also reported in Chapter 2. Chapter 3 reports results on the 

effects on goat manure addition on P sorption. Results on the dynamics of soil P fractions and 

their relationships with soil inputs are presented in Chapters 4 and 5 and with plant growth 

(Chapter 5). A brief summary is provided in the general discussion and conclusions at the end 

of the dissertation, followed by suggested future research which outlines needed additional 

studies (Chapter 6). 
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1 

INTRODUCTION 

The key roles played by phosphorus (P) compounds in the transformation of solar to chemical 

energy during photosynthesis and as a provider of chemical energy for biosynthesis in plants 

make P a singularly important nutrient element. For most smallholder farmers with limited 

resources, high P deficiency is a factor most limiting to crop productivity and has a profound 

impact on food security (Warren, 1994; Nziguheba et al., 1998). High P deficiency is most 

prevalent mainly where strong sorption of P by aluminum and iron oxides and amorphous 

materials occurs resulting in poor mobility of soil inorganic P (Hinsinger, 2001). Therefore, 

only a small proportion of soil P is present in the soil solution and available for plant uptake. 

This leads to the need for large applications of fertilizer P to achieve high yields of arable 

crops (Warren, 1994; Agbenin and Tiessen, 1995). However, experience gained from 

temperate regions indicate that long-term use of inorganic and inorganic fertilizers may lead 

to high accumulation of P in soil with a consequent increase in P loss to surface waters 

(Kleinman et al., 2003; Haygarth and Jarvis 1999; Haygarth and Sharpley 2000).  

High levels of P accumulation in soil have been reported under intensive farming systems in 

parts of Europe and North America, together with consequent increases in P losses to surface 

waters (Sims et al., 2000). The accumulation of P in soil from imported feed is particularly 

important in areas of intensive livestock production (e.g. pigs, poultry, dairy) where large 

quantities of manure are applied to land (Sharpley et al., 2000; Sharpley and Tunney, 2000; 

Heathwaite 2003). An additional factor that may contribute to the potential for P loss is 

nitrogen (N)-based nutrient management systems where manures are applied. Currently 

recommended rates for manure applications to soil are typically based on the N requirement of 



 
 

 

2 

the crops to be grown and the plant-available N content of the manure, while the amount of P 

applied with the manure has not usually been considered when determining recommended 

application rate (Reddy et al., 1980; Simard et al., 1995). It is therefore crucial to tailor 

recommendations on manure rates based on P rather than plant N requirements. 

In South Africa, crop production levels under the smallholder systems of agriculture are 

reported to be low, due to poor natural soil fertility coupled with low usage of inorganic 

and/or organic fertilizers with P being one of the nutritional factors limiting production 

(Mandiringana et al., 2005). Many of them are also suspected to have high P sorption 

capacities particularly those from the high rainfall areas which tend to be acidic. Studies on P 

sorption for soils from the neighbouring provinces of KwaZulu Natal and Mpumalanga 

reported by Bainbridge et al. (1995) and Henry and Smith (2002) indicated that highly 

weathered soils in those provinces had high sorption capacities ranging from 500 to 1197 mg 

P kg-1.  

The practice of liming acid soils, in order to raise soil pH and precipitate exchangeable Al as 

insoluble hydroxy-Al has long been recognized as necessary for optimum crop production 

(Haynes and Mokolobate, 2001). However, in many acid soils large quantities of lime are 

commonly required to achieve adequate growth of many crops. For both logistic and 

economic reasons, it is often not practical for resource-poor farmers to apply high rates of 

lime and fertilizer P to their soils to optimize crop production. There is, therefore, a need to 

develop more practical and affordable alternatives.  
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Studies reported in the literature indicate that when manure and fertilizer P are applied 

together, a synergistic effect occurs whereby available P is increased more than the sum of the 

increase from either applied singly (Iyamuremye et al., 1996; Nziguheba et al., 1998). 

Combined application of inorganic P with organic materials is reported to result in larger 

increases in yields than if either is applied singly (Nziguheba et al., 1998; Ayaga et al., 2006). 

Besides constituting a source of P as well as other nutrients, organic materials also provide an 

energy substrate for microbial activity (Palm et al., 1997). Ayaga et al. (2006) postulated that 

addition of manures stimulates the synthesis of soil microbial biomass resulting in increased 

demand for P, which is immobilized in labile forms, both in the cells of the living soil micro-

organisms and their associated pool of metabolites. The turnover of this pool would provide a 

slow release of inorganic P which the plants can use more efficiently (Ayaga et al., 2006) 

with a consequent reduction of possibilities of P leaching in soils. There is, however, little or 

no information available on P dynamics and turnover of the microbial biomass P pool and 

other P fractions in soils receiving inorganic fertilizer P with animal manures in South African 

soils and more specifically soils of the Eastern Cape.  
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STUDY HYPOTHESES AND OBJECTIVES 

 

The specific hypotheses of this study were: 

(i) Soils of the Transkei region of South Africa are deficient in P due to their high P 

sorption capacities and have high P requirements 

(ii)  Goat manure application decreases P sorption and requirement in these soils 

(iii)  The concentrations of the more labile P fractions (resin P, microbial P and 

NaHCO3-Pi) and the moderately labile forms (NaOH-Pi) increases more with co-

application of inorganic P and goat manure in soils than when applied singly 

(iv) Increased concentrations of the more labile P fractions in soil amended with 

inorganic P and goat manure improve P uptake and dry matter yield of maize  

To test the above hypotheses, the study was undertaken with the following objectives: 

(i) to assess the P sorption capacities and requirements of selected soils from the 

Transkei region of South Africa and their relationship with soil properties  

(ii)  to assess the effects of goat manure and lime addition on P sorption properties of 

selected soils of the Transkei region of South Africa 

(iii)  to assess the temporal changes in concentration of soil inorganic and microbial 

biomass P fractions following application of inorganic fertilizer P with goat manure 

in a laboratory incubation experiment;  

(iv) to assess the effects of goat manure application with inorganic P on inorganic and 

microbial biomass P fractions, P uptake and dry matter yield of maize in a 

glasshouse pot experiment.  
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CHAPTER 1 

 

1.1 GENERAL LITERATURE REVIEW  

Phosphorus (P) is an essential component of all living cells where P compounds are involved 

in reactions and processes required for the accumulation and release of energy for cellular 

metabolism, seed formation and root development in plants (Fairhurst et al., 1999). Thus, P 

deficiency results in reduced plant growth, delayed maturity and a reduction in the quality and 

quantity of crop yield. The interval from planting to crop canopy closure is prolonged under P 

deficiency and this may result in increased soil and P losses due to erosion from exposed soil 

at the onset of the season in tropical regions (Fairhurst et al., 1999).  

Compared to other major nutrients, P is by far the least mobile and least available nutrient to 

plants. It is therefore frequently a major or the prime limiting factor for plant growth 

(Hinsinger, 2001). Therefore, in most agricultural systems in the tropics the concentration of 

P in the soil is insufficient for crop growth and must be additionally provided as an external 

input.  

1.1.1 Soil fertility status of South African soils 

Crop production levels under the smallholder systems of agriculture in the Eastern Cape 

Province of South Africa are reported to be low, due to poor natural soil fertility coupled with 

low usage of inorganic and/or organic fertilizers with P being one of the nutritional factors 

limiting production (Mandiringana et al., 2005). Many of the soils are also suspected to have 

high P sorption capacities particularly those from the high rainfall areas which tend to be 
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acidic with low to medium base status. Mandiringana et al. (2005) reported that almost 100% 

of the garden and field soils in three Transkei districts (Elliotdale, Umatata and Mt Fletcher 

districts) were acidic, indicating that they had the potential to fix added P.  

Studies on P sorption for some South African soils and reported by Bainbridge et al. (1995) 

and Henry and Smith (2002) indicated that majority of the soils had high sorption capacities 

ranging from 500 to 1197 mg P kg-1 of soil. Their studies showed that the highest sorbers 

were weathered red or yellow-brown clays with high oxalate (amorphous) aluminum content 

especially in soils with a humic-horizon (Figure 1.1) such as Inanda, Kranskop and Magwa 

forms. Therefore, only a small proportion of added P is present as P ions in the soil solution 

and available for plant uptake. Limited use of commercial fertilizers, because of their high 

cost and limited accessibility by smallholder farmers in the communal areas, exacerbates P 

deficiency in the soils (Mandiringana et al., 2005). 
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Fig. 1.1 Generalized soil patterns of South Africa (Samadi et al., 2005). The legend is given on page 8 
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(Source: Samadi et al. (2005) 



 9 

1.1.2 Soil fertility inputs 

Commercial farmers in the Eastern Cape Province of South Africa use both chemical and 

organic fertilizers to maintain the fertility of their soils and thus their farm soils have 

relatively high nutrient status (Mandiringana et al., 2005). On the other hand, the small-scale 

farmers, most of who reside in the communal areas of the province, are risk averse and rarely 

invest in chemical fertilizers. However, a large proportion of them do use kraal manure to 

some extent to replenish nutrients in their home gardens and field plots (Mandiringana et al., 

2005).  

Surveys conducted in four districts of the Transkei (Lusikisiki, Mthatha, Elliotdale, and 

Mount Fletcher) showed the external sources of nutrients available in the province to include 

(i) chemical and processed organic fertilizers that can be purchased from dealers (ii) kraal 

manure that is available in most homesteads in the communal areas, and (iii) other organic 

wastes such as municipal refuse, logging and wood processing wastes, food processing wastes 

and sewage sludge found in urban and peri-urban areas of the Province (Mnkeni and Mkile, 

2006). In 1998, the Eastern Cape Province had about 1.73 million cattle, 3.28 million sheep 

and 2.23 million goats in the communal areas (Yoganathan et al., 1998). The animals are 

communally grazed but most are penned in kraals at night for security allowing the 

accumulation of large quantities of animal manure (Mnkeni and Mkile, 2006).  

The three types of livestock are usually penned separately, except in a few instances where 

goats and sheep are penned together. This practice affords farmers the opportunity to choose 

the type of manure they wish to use on their lands. It is estimated that about 1.6 million tons 
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of dry manure are produced in the province each year based on the 1998 livestock census 

figures (Mnkeni and Mkile, 2006). The surveys also revealed that livestock-keeping 

households could on average have up to 15 and 19 t of cattle, goat and sheep manure at their 

disposal every year, respectively. These amounts of manure would be adequate for 2-3 ha of 

land, which, coincidentally, is the amount of arable land available to most homesteads in the 

communal areas of Eastern Cape (Mnkeni and Mkile, 2006).  

1.2 PHOSPHATE RETENTION IN SOILS 

Phosphate retention in soils involves both adsorption and precipitation reactions; but the 

adsorption is considered to be the most important process controlling P availability in soils 

over a short period (Lajtha and Harrison, 1995). Specific adsorption (ligand exchange) occurs 

when P anions replace the hydroxyl groups on the surface of Al and Fe oxides and hydrous 

oxides (Haynes and Mokolobate, 2001). Precipitation reactions occur when insoluble P 

compounds form and precipitate. A distinction between adsorption and precipitation was 

pointed out by Zheng (2001). Adsorption requires the structure of sorbent to remain 

essentially unchanged as the process progresses even though its surface activity decreases. 

This leads to a higher concentration maintained in solution at a greater surface-saturation than 

that at a lower saturation. In the precipitation process, the surface activity remains constant. 

However, where precipitates are heterogeneous solids, with one component restricted to a thin 

outer layer because of poor diffusion (Zheng, 2001), it is difficult to distinguish between the 

two processes of slow adsorption and precipitation. Therefore, for the purpose of this study, P 

sorption is defined as the loss of orthophosphate from the soil solution which can occur by 

either adsorption or precipitation. 
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1.2.1 Adsorption reactions 

Adsorption reactions take place on the surfaces of soil colloids (Tan, 1998) and are one of the 

reactions attributed to the surface chemistry of soil colloids. An important characteristic of the 

adsorption of P, and other specifically adsorbed anions, is that adsorption increases the 

negative charge on the surface of the soil (Barrow, 1984). Added P is usually rapidly adsorbed 

on the surfaces of Al and Fe oxides, which is followed by much slower reactions (Raven and 

Hossner, 1994). At low pH a strong inverse relationship between soluble P and extractable Al 

and Fe oxides in acid soils has been reported, (Warren, 1994; Agbenin and Tiessen, 1995) 

indicating sorption of P on Al and Fe oxides.  

Adsorption of P onto Ca-P minerals is considered to dominate in both alkaline and calcareous 

systems where carbonates are present (Lajtha Harrison, 1995). However, calcareous soils may 

still have significant levels of Fe and Al oxides, either as discrete components or as coatings 

on other soil particles, and thus P sorption may be controlled by the presence of metal oxides 

as in more acidic soils (Lajtha and Harrison, 1995). P sorption studies in calcareous soils 

derived from limestone have found stronger relationships between P sorption capacity and 

hydrous oxides of Fe and Al than with soil CaCO3 content (Solis and Torrent, 1989). 

1.2.2 Precipitation reactions 

As successive increments of soil are contacted by the moving front of the fertilizer solution, 

dissolving increasing amounts of Fe, Al, Mn, Ca, Mg, and soil derived cations, the solution 

becomes supersaturated relative to a variety of P compounds (Sample et a., 1980). These 

compounds slowly precipitate in the soil matrix and the nature of the precipitating compounds 
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are dependent on the kinds and amounts of cations and anions supplied by both the fertilizer 

and the soil, pH and soil moisture (Sample et al., 1980).  

At low soil pH, additions of P to soils can result in precipitation of Al and Fe phosphates, 

whilst at high pH insoluble calcium phosphates can form (Haynes and Mokolobate, 2001). In 

many situations, however, specific adsorption reactions are the main regulators of soil 

solution P concentrations (Barrow, 1984; Warren, 1994). Fertilizer P addition to the soil leads 

to the formation of strongly concentrated P solution and often a low pH in the vicinity of the 

fertilizer granule (Sample et al., 1980). This acidification effect could cause degradation of 

clay mineral structure, dissolution of CaCO3 and subsequent precipitation of amorphous Al-

phosphates and Ca-phosphates (Zheng, 2001). 

1.2.3 P fixing soils 

High P fixing soils are identified as those with clayey topsoils having red colours indicative of 

high contents of Al and Fe oxides, usually accompanied by a strong granular structure 

(Sanchez et al., 1997). These can be collectively termed oxidic soils and are mainly classified 

as Oxisols, clayey Ultisols, rhodic, oxic groups, or sub-groups of clayey Alfisols and 

Inceptisols in the soil taxonomy (Soil Survey Staff, 1992). In the FAO taxonomy they are 

classified as Nitisols, clayey Ferralsols and clayey Acrisols (FAO, 2006).  

The International Centre for Research in Agroforestry (ICRAF) estimates there are about 530 

million hectares of high sorbing soils in Africa, which represents 25% of tropical Africa’s 

land area of which the bulk are smallholder farms (Sanchez et al., 1997).  Soils with the 

highest P requirements include Andosols, Ultisols and Oxisols which make up 43% of the 
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land area, of the tropics (Sanchez and Salinas, 1981). These soils have the potential to 

produce high yields if the main chemical constraints to plant growth are alleviated (Sanchez 

and Salinas, 1981). 

1.3 ASSESSING FERTILIZER P REQUIREMENTS IN SOILS  

Plant and soil analysis are used extensively to diagnose the P status of farming systems. 

Adequate P nutrition at the seedling stage is important for plant development. Insufficiency of 

P at this stage cannot be remedied by side-dressed P because of the lack of mobility of P in 

soils (Hedley et al., 1995). Therefore, pre-plant soil tests offer a better method of predicting P 

requirements for establishing crops.  

Indices of the abilities of soils to supply P to plants can be determined (a) by extractive tests 

that measure the concentration of P in solution and the amount of P in a labile form or (b) 

from the soils phosphate sorption characteristics (Hedley et al., 1995). In both cases P 

response trials are required to establish the relationship between crop yield and the P supply 

index. These relationships vary with the crop, climate and soil type. Thus, large numbers of 

trials are required before soil tests can be used to estimate P fertilizer requirements with any 

accuracy (Hedley et al., 1995). 

1.3.1 Extractive tests  

The availability of nutrients to plants depends, among others, on the quantity and the rate at 

which it is released and replenished in soil solution as it is withdrawn by plants (Raven and 

Hossner, 1994). In chemical extraction analysis procedures, P availability in soils is normally 

described by the quantity factor alone (Fairhurst et al., 1999). These procedures extract 
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variable proportions of available and non-available forms of P depending on the extracting 

agent (Fairhurst et al., 1999). The form of soil P extracted by each test is determined by its 

solution pH and the reaction of the ions present in the extractant with sorbed or mineral P. For 

instance, the HCO3
- and OH- in the bicarbonate extract promote desorption of P from CaCO3 

and Fe and Al hydrous oxide surfaces (Hedley et al., 1995). Bray 1-P and Truog-extractable P 

are highly correlated to Al-P and Fe-P in acid soils. Hedley et al. (1995) showed that pigeon 

pea and upland rice, respectively, can mobilize Fe-P in their rhizospheres. In such situations, 

Bray-1-P or Truog-P could be expected to be effective indices of P availability.  

Despite their widespread use, chemical extractants are not well understood in terms of their 

mode of action and selectivity. The pH changes caused by the extractants undoubtedly modify 

the organic P by changing its solubility or by hydrolyzing it (Rubaek and Sibbesen, 1993). 

Another major disadvantage of chemical extractants is that they might mobilize some stable 

and non-labile soil P forms other than those that are truly plant available (Menon et al., 1989). 

1.3.2 Sorption isotherms  

Adsorption isotherms describe the adsorption of solution ions by solids at constant 

temperature in quantitative terms. An adsorption isotherm shows the amount of solute 

adsorbed by an adsorbent as a function of the equilibrium concentration of the adsorbate (Tan, 

1998). To generate adsorption data, a known amount of adsorbent is added to a system 

containing a known amount of adsorbate. The amount of the adsorbate removed from soil 

solution is assumed to be adsorbed. Equilibrium conditions must prevail and secondary 

reaction (such as precipitation) must be eliminated or corrected (Harter and Smith, 1981). 
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Quantitative description of P sorption by soils has more often been done with the Langmuir 

(1918), the Freundlich (1926) and Temkin (Bache and Williams, 1971) equations. Although 

these equations were originally derived to describe the adsorption of gases by solids 

(Villapando and Graetz, 2001), in many cases these models are able to provide adequate 

mathematical descriptions of P sorption in soils. The most widely used model is the Langmuir 

equation, which has a distinct advantage over Freundlich and Temkin equations in that it 

allows estimation of a sorption maximum and a constant that is related to the P binding 

strength (Sposito, 1982; Villapando and Graetz, 2001). 

Langmuir equation 

The Langmuir equation was initially derived for the adsorption of gases by solids. Derivation 

was based on three assumptions: (1) constant energy of adsorption, which is independent of 

the extent of surface coverage (homogenous surface), (2) adsorption on specific sites with no 

interaction between adsorbate molecules, (3) maximum adsorption possible is that of a 

completely monomolecular layer on all reactive adsorbed surfaces (Harter and Smith, 1981). 

A common form of the Langmuir equation is  

S = b *Ceq*Smax /1+b*Ceq    

The linear form after rearrangement: 

Ceq/S = 1/b*Smax + Ceq / Smax   

Where: Ceq = equilibrium concentration of adsorbate in question (µg ml -1P) 

S = the quantity of P sorbed per unit absorbent (µg P g-1 soil),  

Smax = is the adsorption maximum for a monolayer (µg P g-1) 

b= is the binding energy or sorption affinity constant (ml µg-1) 
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The adsorption maximum (Smax) is calculated from the reciprocal of the slope of the 

adsorption isotherms. This parameter reflects the numbers of adsorption sites available for P 

adsorption. The sorption affinity constant (b) is derived from the slope and the intercept 

values of the isotherm. Parameter b reflects the strength with which the phosphate is bonded 

to the surfaces (Harter and Smith, 1981; Sposito, 1982). 

Freundlich equation 

The adsorption isotherm in many dilute solutions was formulated by Freundlich (1926) and 

takes the form; 

S = k*Ceq
 1/n     

Where; k and 1/n are constants dependent on soil type. The constant k defines the intensity of 

sorption whereas n is related to the energy of sorption, which decreases logarithmically in 

proportion to the fraction of the surface covered; S and Ceq are defined similarly as in the 

Langmuir equation. 

The equation can be transformed linearly using log 10: 

Log S= (1/n) log Ceq + log k.   

The implication of this relationship is that adsorption energy decreases exponentially as the 

extent of covered or reacted surface increases during adsorption (Sposito, 1980). This 

empirical equation applies to large amounts of adsorbed P but it is not possible to calculate an 

adsorption maximum. In contrast, the Langmuir equation applies to relative smaller amounts 

of adsorbed P and consequently at more dilute equilibrium P concentrations (Sposito, 1980). 

The major advantage of the Langmuir equation over the Freundlich equation is that an 
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adsorption maximum can be related to various soil properties which supply information about 

the nature of reaction between soil and P fertilizer. 

1.3.3 Application and limitations of sorption isotherms relationships 

Phosphate sorption relationships have been used successfully to compare the sorption of P by 

different soils and to determine the P requirements for crops in some highly weathered 

tropical soils (Warren, 1994; Nziguheba et al., 1998; Duffera and Robarge, 1999). The P 

requirements estimated from sorption isotherms aim at building up the status of soil P by a 

single application to a level which thereafter only requires maintenance application to 

replenish losses owing to plant uptake, removal by erosion or continuing slow reactions 

between phosphate and soil. It is also assumed that all the P recommended from sorption 

isotherms is broadcast and incorporated (Henry and Smith, 2003).  

1.3.3.1 External P requirement 

An approach which uses the external fertilizer P requirement (EPR) concept represents an 

effort of improving the empirical processes of calibrating soil P tests for fertilizer P 

recommendations based on the soil P status. The hypothesis of this approach to estimating P 

requirements is that fewer costly field experiments are required if EPR values can be 

successfully predicted from the sorption data. The EPR of crops has been defined as the 

concentration of P in solution known to be non-limiting to plant growth (Henry and Smith, 

2004). Hernandez et al. (1987) postulated that for a given climate and provided that the soil 

contains sufficient clay (5% or more) to ensure adequate reserves of labile P, the external P 

requirement is a crop constant and independent of soil texture and clay mineralogy. Henry and 
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Smith (2003) showed that the external P requirement decreases with increasing additional P. 

This shows that P-isotherms are useful for making fertilizer recommendations, as they are 

sensitive enough to differentiate between low and high P status in the same soil, and respond 

to build-up of the soil P content by fertilization. The data obtained from P isotherms may 

therefore, be used to optimize P applications based on plant needs while at the same time 

minimizing possible P loss to surface waters through leaching. 

The amount of P required to be added to maintain an equilibrium concentration of 0.2 mg P l-1 

(P0.2) in soil solution has been shown to be a threshold for many crops, over which no 

response to P is observed (Beckwith, 1965; Nziguheba et al., 1998). Even though the P 

concentration required by plants varies, P0.2
 (mg P kg-1) has been used as a standard for 

comparing P requirement of different soils (Duffera and Robarge, 1999). In some instances, 

however, it is necessary to determine fertilizer P requirement at other P concentrations besides 

0.2 mg P l-1 as the critical value is dependent on plant species and agronomic factors (Fox, 

1981). In South Africa, for example, an external P requirement factor of 0.11 mg P l-1 has 

been shown to be suitable for the low to moderately P fixing soils of the tobacco growing 

areas of Kwa-Zulu-Natal (Henry and Smith, 2006).  

1.3.3.2 Limitations of sorption isotherms 

Though P sorption relationships have been used successfully to assess the preliminary 

fertilizer requirements (Warren, 1994; Nziguheba et al., 1998; Duffera and Robarge, 1999), 

the labour and time involved in constructing P sorption curves make it too expensive for 

routine soil testing laboratories. Henry and Smith (2003) proposed a single point sorption test 
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procedure for obtaining an index of the P requirement in soils that bypasses the need for 

constructing multiple point sorption isotherms. 

1.4 INFLUENCE OF MANAGEMENT ON P TRANSFORMATIONS IN  SOIL 

Changes in tillage and fertilizer application practices can alter the dynamics of soil organic 

matter turnover and the rate of nutrient cycling (O’Halloran, 1993). Transformations of P in 

the soil are functions of soil texture, pH, organic matter, CaCO3, Fe- and Al-oxides, 

temperature, moisture and reaction time (Zheng, 2001). However, cropping and fertilization, 

which alter the status of organic matter and P concentration in the soil solution, are the most 

important factors that influence P cycling in the soil (Zheng, 2001).  

1.4.1 Cultivation 

Cultivation of crops depletes soil P through removal of P in the crop, soil erosion (Tiessen et 

al., 1983) and smaller leaching losses (Sharpley et al., 1995). As most soil P is associated 

with fine and light soil fractions, accelerated soil erosion may lead to accelerated P loss 

(Tiessen et al., 1983; Sharpley et al., 1995). Cultivation normally results in the mineralization 

of soil organic matter and associated organic P (Po) (Frossard et al., 1995). In general, Po 

mineralization rates are more rapid in tropical soils where Po is an important source of 

available P (Hedley et al., 1995).  

In tropical soils initial net Po mineralization rates may range from 27 to 50 kg P ha-1 yr-1 for 

the first year of cultivation after scrub or grass fallow, which is sufficient to provide P for two 

crops per year (Hedley et al., 1995). In cooler climates where Po mineralization rates are 

slower, not enough P may be mineralized during one growing season. A cultivated fallow 
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may be used to provide enough mineral P, N and S for the crop and to conserve moisture 

(Sharpley, 1985). However, this period of net mineralization is followed by a net 

immobilization phase as roots and crop residues with high C: P ratios decompose (Hedley et 

al., 1995).  

1.4.2 Fertilization 

Variable effects of fertilizer P and manure application of soil P forms are reported in the 

literature. Long-term cropping of soil without fertilizer addition results in the depletion of soil 

P (Hedley et al., 1982), whereas fertilization could result in accumulation of P in the soil with 

the extent of accumulation dependent on both fertilizer rate and years of application (Zheng, 

2001).  

1.4.3 Organic materials  

Among the most promising organically based soil nutrient practices are: animal manure, 

compost, incorporation of crop residues, natural fallowing, improved fallows, relay or 

intercropping of legumes, and biomass transfer. Initially, organic resources were merely seen 

as sources of nutrients, mainly nitrogen (N) (Palm et al., 2001). However, more recently, 

other contributions of organics extending beyond fertilizer substitution have been emphasized 

in research, such as the provision of other macro and micro-nutrients, reduction of P sorption 

capacity, increase in soil organic matter, reduction of soil borne pest and disease spectra in 

rotations, and improvement of soil moisture status.  

Organic and mineral inputs cannot be substituted entirely by one another but both are required 

for sustainable crop production (Vanlauwe et al., 2002). One key complementarity is that 



 21 

organic resources enhance soil organic matter status and the functions it supports, while 

mineral inputs can be targeted to key limiting nutrients. Several attempts to quantify the size 

of added benefits and the mechanisms involved have been made. Vanlauwe et al. (2002), for 

example, reported positive interactions between urea and use of stover and other organic 

applications. Direct enhancement of phosphate rock solubility was demonstrated by Ikerra et 

al. (1994) with compost and animal manure amended soils in Tanzania. 

1.4.3.1 Effects of additions of organic residues on soil pH and Al activity 

In acid soils, high levels of exchangeable Al and Fe play a significant role in controlling 

orthophosphate concentration in the soil solution (Iyamuremye and Dick, 1996; Haynes and 

Mokolobate, 2001; Erich et al., 2002). Therefore, crop production on these soils can be 

improved greatly by adjusting the pH to near neutrality (Whalen et al., 2000). Soil acidity is 

conventionally corrected by application of lime, which raises pH, precipitates Al and can 

provide Ca (Hue, 1992).  

Addition of organic residues to soils has been shown to cause increases in soil pH (Hue, 1992; 

Noble et al., 1996). The magnitude of the rise in soil pH varies depending on the type of 

residue, its rate of application and the buffering capacity of the soil. For additions of about 20 

t ha-1, increases in soil pH have generally been in the range of 0.2–0.6 pH unit and, with rates 

of 40–50 t ha-1, increases of 0.8–1.5 pH units have been recorded (Iyamuremye et al., 1996; 

Noble et al., 1996). Whalen et al. (2000) reported higher pH and lower oxalate extractable Al 

after cattle manure application to the soil and the effect persisted during the 8-week 

incubation period. An increase in pH confers a greater negative charge on adsorption surfaces 
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and thus tends to reduce P sorption (Iyamuremye et al., 1996). Thus a decrease in P sorption 

when manure is added to the soil may partially be attributable to the increased soil pH 

(Iyamuremye et al., 1996).  

Mechanisms involved 

There are several mechanisms that have been suggested to explain the initial rise in soil pH 

when organic amendments are applied to soils. These include oxidation of organic-acid anions 

present in the decomposing residues, ammonification of organic N in the applied residue, 

specific adsorption of organic molecules produced during residue decomposition and 

reduction reactions induced by anaerobiosis (Haynes and Mokolobate, 2001). Plant material 

and animal wastes generally contain an excess of cations over inorganic anions and the 

balance is maintained by synthesis of organic acid anions, e.g. oxalate, citrate, malate (Haynes 

and Mokolobate, 2001). Oxidation of these organic acid anions during decomposition of plant 

material and animal wastes is likely to be a major contributor to an increase in pH (Noble et 

al., 1996). It has been shown that increases in soil pH following the addition of malate and 

citrate are highly correlated with CO2 evolution during the decomposition of these two anions 

(Noble et al., 1996).  

The added organic-acid anions are able to complex protons and these accounts for any 

immediate rise in soil pH (Yan et al., 1996). That is, if soil pH is less than the dissociation 

constants (pKa) for the weak organic acids in the added residues, there will be an increase in 

soil pH due to association of H+ from the soil with some of the organic anions (Haynes and 

Mokolobate, 2001). It has been shown that increases in soil pH following the addition of 
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malate and citrate are highly correlated with CO2 evolution during the decomposition of these 

two anions (Noble et al., 1996; Yan et al., 1996).  

1.4.3.2 Effects of organic residues addition on P sorption and availability  

Soil organic matter management through conservation tillage, use of mulches, manures and 

crop residues plays a key role in efficient utilization of fertilizer P, especially on acid, P 

deficient soils of the tropics (Hedley et al., 1995). Increased soil organic matter content 

enhances soil productivity through improvement of soil structure, provision of N, S and P, 

increased cation exchange capacity, increased soil water holding capacity and alleviation of 

Al toxicity. All these factors impact negatively on plant growth.  

There is considerable evidence in the literature to suggest that the application of organic 

material to soil may increase P solubility and thus significantly increase the availability of P 

to plants and decrease P adsorption capacity of soils (Iyamuremye et al., 1996; Nziguheba et 

al., 1998; Whalen et al., 2000). Erich et al. (2002) reported increased plant available P and 

resin de-sorbable P in soils amended with cattle manure.  

The reduced P sorption and increased P availability following application of organic 

amendments to soils is thought to be due to the cumulative effect of several mechanisms 

(Iyamuremye and Dick, 1996; Erich et al., 2002). These include release of inorganic P from 

decaying residues, blockage of P sorption sites by organic molecules released from the 

residues, a rise in soil pH and complexation of soluble Al and Fe by organic molecules 

(Iyamuremye and Dick, 1996). Iyamuremye et al. (1996) demonstrated that the P sorption 

capacity of five high P fixing soils in Rwanda was reduced when amended with cattle manure 
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and alfalfa. Sharpley et al. (1984) also reported increased resin-P, bicarbonate-P, NaOH-Pi 

and microbial P in soils following application of tithonia (Tithonia diversifolia) with or 

without triple super phosphate, with a concomitant reduction in P sorption.  

Adsorption reactions for organic acids are concentration dependent and adsorption generally 

increases with decreasing pH (Jones and Brassington, 1998). As a result of specific adsorption 

reactions, organic acids can compete with P for sorption sites on soil surfaces (Violante and 

Gianfreda, 1993). Maximum reduction in P adsorption is reported to occur when organic acids 

are added before P, and their effectiveness in inhibiting P sorption generally increases with 

decreasing pH (Violante and Gianfreda, 1993). However, whilst some of the newly-added 

humic material may be adsorbed to oxide surfaces thus reducing P sorption, some of it may 

react with soluble and exchangeable Al forming new P sorption sites (Haynes and 

Mokolobate, 2001).  

1.4.4 Biological mechanisms of soil P dynamics 

Over the years, the effect of organic amendments alone and in combination with mineral 

fertilizer on P availability and P adsorption/desorption have been investigated but most of the 

research has mainly focused on the importance of inorganic P (Pi) for plant nutrition. 

However, organic P (Po) can account for 20 to 80% of the total P in most mineral soils and 

contribute significantly to plant nutrition (Sharpley, 1985).  
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1.4.5 Soil microbial biomass P 

Soil microbial biomass consists mainly of bacteria, fungi and other microbiota and has been 

defined as the living part of the soil organic matter excluding plant roots and soil animals 

larger than 5x103 µm3 (Goyal et al., 1992). Microbial biomass constitutes the active fraction 

of soil organic matter, plays a central role in the biochemical processes and is important in 

determining the quality and health of soil (Belay et al., 2002).  

In addition to mediating the turnover of organic P, soil micro-organisms may also constitute a 

significant reservoir of P (Brookes et al., 1984; Tiessen et al., 1994). Microbial P is reported 

to range between 6 and 100 kg ha-1 (Brookes et al., 1984) with the highest values found in 

woodland and grassland soils and the lowest in cultivated soils (Brookes et al., 1984). 

Microbial processes are said to be driven by the availability of decomposable organic carbon, 

which highlights the importance of sustaining and improving soil organic matter 

concentrations if large populations of microbes are to be active in the soil. Organic 

amendments such as manures and plant residues are a major source of organic substrate in the 

soil (Tiessen et al., 1983).  

Various effects of organic manures and mineral fertilizer P on different soil P pools have been 

reported and they depend mainly on the rates of P applied, P removal by crops, inherent soil 

properties and climatic conditions. O’Halloran (1993) observed increased labile inorganic P 

contents in soils receiving manure and triple superphosphate additions compared with just 

superphosphate additions. In addition to facilitating the turnover of P and being a significant 

reservoir of P (Brookes et al., 1984; Tiessen et al., 1994), the incorporation of P into 

microbial cells prevents its strong sorption to soil constituents (Brookes et al., 1984). 
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Improvement in mobilization of soil P requires a better understanding and management of soil 

biological processes, particularly how P immobilization and turnover in soils are controlled by 

environmental (e.g. climate, soil type, topography) and anthropogenic factors e.g. fertilizers, 

pesticides, crops and tillage (He et al., 2003). However, there is little or no information 

available on the sizes of microbial biomass and turnover in soils receiving inorganic P 

fertilizer with manures in South African soils, specifically those from the Eastern Cape. 

Indeed, very little is known about the long-term effects of manure and fertilizer P on soil P 

transformations in these soils. 

1.4.6 Effects of soil management on P fractions 

Several studies have related different P fractions in tropical soils to plant growth (Goyal et al., 

1992; Guo and Yost, 1998) or showed the influence of land use and the fate of applied 

fertilizers (Iyamuremye et al., 1996). There has been success in relating different P fractions 

to P pools of different plant availability. Iyamuremye et al. (1996) found an increase in resin-

Pi, NaHCO3-Pi and -Po, as well as NaOH-Pi
 after addition of manure or alfalfa (Medicago 

sativa L.) residues to acid low-P soils from Rwanda. In the study of Guo and Yost (1998) in 

Hawaii, resin-Pi, NaHCO3-Pi, and NaOH-Pi were most depleted by plant uptake on highly 

weathered soils. NaOH-Pi was important in buffering available P supply while significant 

depletion of organic fractions could rarely be measured. Bühler et al. (2002), summarizing 

results from various experiments, pointed out that in tropical soils, the amount of different 

rates of P fluxes are controlled both by physio-chemical factors (mainly sorption–desorption) 

and by biological reactions (immobilization–mineralization).  
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1.4.7 Limitations and environmental implications of organic manure use  

A major constraint regarding the use of organic inputs is their bulkiness and scarcity. Large 

quantities are required to provide even a fraction of that required to maintain agricultural 

production at a desirable level (Nziguheba et al., 1998). For example, 5 Mg of manure 

containing 0.3% P contains only 15 kg P. The labour required for moving such quantities can 

be enormous. Production of large quantities of manure may become more difficult as the sizes 

of farms become smaller in the coming years due to population growth and farm subdivision 

that will lead to reduction in sizes of herds. Thus low P content, low availability, competing 

uses and labour will generally preclude exclusive use of manure for P fertilization 

requirements in smallholder farming. Despite the shortcomings, manures are likely to remain 

a key resource for soil fertility management in the mixed livestock-arable farming systems 

which characterize the agricultural sector in most parts of Africa and more so on smallholder 

systems of South African agriculture. Combining organic and inorganic nutrient sources may 

provide an efficient use of these scarce resources for maintaining high yields (Nziguheba et 

al., 1998).  

Transport of P by subsurface flow pathways can be an important mechanism of P transfer 

from land to water, particularly in manured soils (Kuo and Baker, 1982; Eghball et al., 1996; 

Kleinman et al., 2003; Butler, and Coale, 2005). Data from a wide range of field and 

catchment studies have shown that, higher rates of transfer (2-6 kg P ha-1 yr-1, up to 17 kg P 

ha-1 yr-1) have been recorded from soil under intensive pastoral or arable farming, especially 

when animal manure is applied (Gillingham and Thorrold, 2000;  McDowell et al., 2001; 

Nash et al., 2000). Elsewhere, Mozaffari and Sims (1994) and Kuo and Baker (1982) reached 
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similar conclusions after comparing P profile data from unmanured and manured plots of 

various mineral and organic soils (Aquic Hapludults, Typic Umbraquults, Typic Fluvaquents, 

Terric Medisaprists).  

1.5 METHODS FOR STUDYING P TRANSFORMATIONS IN SOILS  

1.5.1 Ion exchange resins 

Resin extraction methods have been favourably employed to estimate plant-available P for 

soils with large variations in physical and chemical properties. In contrast chemical tests are 

not always reliable over all soil types (Myers et al., 2005). The ion sink P testing method has 

an advantage over conventional chemical extractants such as Bray (Bray and Kurtz, 1945), 

and Mehlich-3 (Mehlich, 1984) because the ion-sink methods function similarly to a plant-

root surface adsorbing available P ions from the in situ labile P pools in the soil (Myers et al., 

2005). The rate of resin P sorption is dependent solely on the rate of P desorption or 

dissolution from the soil matrix and not on the properties of the resin itself (Cooperband and 

Logan, 1994).  

Ion-exchange materials can be viewed as competitive exchangers with the soil solids that are 

in dynamic equilibrium with soil solution dissolved species (Cooperband and Logan, 1994). 

Over time, anion exchange material behaves as either sinks or exchangers of P depending on: 

(i) the intrinsic anion-exchange capacity of the resin material; (ii) the amount of time in 

contact with the soil; and (iii) the soil’s P retention capacity (Cooperband and Logan, 1994). 

Raven and Hossner (1994) reported that the rate of P release was correlated well with plant 
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growth stages. The resin Pi tests have been found to be less sensitive to soil type than the 

other P tests and they can be used in acid, alkaline and calcareous soils (Menon et al., 1989). 

The ability of this method in predicting the amount of fertilizer P needed to achieve maximum 

crop yield is however often limited, since it estimates only a small portion of labile P and 

ignores the slow release of sorbed P and soil organic P mineralization (Zheng, 2001). As a 

growing plant continuously removes phosphate ions from the soil solution, evaluating the 

capacity of the soil to maintain solution P from all labile pools is therefore important.  

1.5.2 Sequential fractionation  

Soil P exists in many complex chemical forms, which differ markedly in their behaviour, 

mobility and bioavailability in the soils. One way of characterising the different P forms 

present in soils is to consider their role in the soil P cycle and to differentiate these forms in 

relation with their turnover rate.  

Chemical sequential extraction procedures developed by Hedley et al. (1982) and Cross and 

Schlesinger (1995) have been and still are widely used to divide extractable soil P into 

different inorganic and organic fractions. The underlying assumption in these approaches is 

that readily available soil P is removed first with mild extractants, while less available or 

plant-unavailable P can only be extracted with stronger acids and alkali.  

The P fractions in order of extraction resulting from the fractionation procedure developed by 

Hedley et al. (1982) and modified by Tiessen and Moir (1993) are interpreted as follows: 

Resin-Pi represents inorganic P (Pi) either from the soil solution or weakly adsorbed on (oxy)-
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hydroxides or carbonates, 0.5 M Sodium bicarbonate (pH 8.5) also extracts weakly adsorbed 

Pi and easily hydrolysable organic P (Po)-compounds like ribonucleic acids and 

glycerophosphate (Hedley et al., 1982). 0.1 M sodium hydroxide extracts Pi
 associated with 

amorphous and crystalline Al and Fe (oxy)hydroxides and clay minerals and Po associated 

with organic compounds (fulvic and humic acids). 1 M Hydrochloric acid extracts Pi 

associated with apatite or octacalcium P (Frossard et al., 1995). Hot concentrated HCl extracts 

Pi and Po from more stable pools. Organic P extracted by concentrated HCl may also come 

from particulate organic matter (Tiessen and Moir, 1993). Residual P that remains after 

extracting the soil with the above extractants represents very recalcitrant Pi and Po forms. 

Resin and bicarbonate fractions represent soil P that is both exchangeable and easily 

mineralizable (Cross and Schlesinger, 1995), which is a minute fraction of the total P pool 

that is plant available. 

1.5.3 Measurement of microbial biomass P in soil  

Direct measurement of the P content of the soil biomass is essential for an accurate 

assessment of the importance of the microbial biomass in P cycling and in crop nutrition 

(Brookes et al. 1982). The usual microbial biomass P determination consist of measuring the 

difference in inorganic P extracted in 0.5 M NaHCO3 (pH = 8.5) (Brookes et al. 1982) or 

mixed exchange resin membranes (Ayaga, et al. 2006) between a control sample and a soil 

sample fumigated for 24 hours with alcohol free CHCl3. A correction factor (Kp = 0.4) is used 

to correct for incomplete release of P from microbial cells during fumigation (Brookes et al. 

1982). Organic P in the microbial cells is easily hydrolysed after cell death and rapture, 
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resulting in the release of mostly inorganic P upon chloroform fumigation of soil microbes 

(Brookes et al. 1982). 

Biomass P (Bp) is calculated as:  

Bp (mg kg-1 soil) = (Pf – Pnf)/(Kp * 100/R)   

Where:  

Pf  = P extracted from CHCl3 fumigated samples 

Pnf = P extracted from non-fumigated samples 

Kp = 0.4, the fraction of biomass P extracted after fumigation (Brookes et al., 1982). 

R   = % Recovery of added P = 100(Ps-Pnf)/50 (Brookes et al., 1982) where: 

Ps  = P extracted by exchange resins from non-fumigated soil spiked with P  

 

1.6 CONCLUSIONS 

From this review of the literature, it is evident that the P cycle in the soil system is complex. 

The discussion indicates that chemical, physical and biological processes influence the fate of 

P fertilizer added to soils. Transformation of P in the soil not only involves many inorganic P 

(Pi) and organic P (Po) compounds but is also affected by soil properties, cropping and 

fertilization rate. An understanding of these processes, the measurement of the size of the 

various fractions or pools of P in soils and the rate at which P transfers from one pool to 

another are all important if we are to help farmers make the most economic use of P fertilizer. 

Management practices should be developed with agronomic and environmental consequences 

in mind. 
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CHAPTER 2 

 

ASSESSMENT OF PHOSPHATE SORPTION AND REQUIREMENT FOR 

SOME SOILS OF THE TRANSKEI REGION, SOUTH AFRICA 

  

2.1 ABSTRACT  

A good understanding of a soil’s P sorption capacity is important for predicting crop response 

to added P and for identification of appropriate P management strategies. There is, however, 

little or no information in this regard for soils of the Eastern Cape. This study was therefore 

conducted to determine the P sorption properties of selected soils from the Transkei region of 

South Africa and to relate the derived sorption values to selected soil parameters. A further 

objective of the study was to estimate and verify the external P requirements for the soils 

estimated from the Langmuir equations. Phosphate sorption characteristics were adequately 

described by the Langmuir model, with coefficients of determination (r2) values > 0.95 

observed for all the soils investigated. Sorption maxima (Smax) ranged from 192.3 to 909.1 

(mg P kg-1) and were highly and positively correlated with sorption affinity constant (r = 0.93, 

p = 0.01) and organic C (r = 0.71, p = 0.01). The sorption affinity constant, b, ranged from 

0.051 to 0.786 mg P l-1 and was low for Bethania, Qweqwe and Qunu suggesting that P was 

more loosely bound to the soil surfaces and should be more available to plants. The amount of 

P required for maintaining a soil solution concentration of 0.2 mg P l-1 ranged from 2.1 to 

123.5 mg P kg-1 soil. Soils collected from Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane 
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(a Luvisol) and Bethania (a Ferralsol) had lower external P requirement values and were 

classified as lower sorbers, whereas soils from Ntlonyana (a Planosol), Chevy Chase (a 

Ferralsol) and Flagstaff (a Ferralsol) were classified as moderate sorbers. The results showed 

that a soil solution P concentration of 0.2 mg P l-1 (P0.2) was optimal for plant growth in these 

soils and that the single point test function could be successfully used to predict the external P 

requirement (P0.2) for the soils from Ntlonyana, Ncihane, Qweqwe, Qunu, Bethania and other 

soils with similar chemical and mineralogical characteristics.  

Key words:  External P requirement, P-sorption, Single point sorption test 
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2.2 INTRODUCTION 

Phosphorus deficiency in soils is most prevalent where strong sorption of P by aluminum and 

iron oxides and amorphous materials occurs, resulting in poor mobility of soil inorganic P 

(Hinsinger, 2001). This is a major contributing factor to reduced effectiveness of added 

phosphates necessitating the need for larger applications of fertilizer P to achieve good crop 

yields (Warren, 1994). Many South African soils are suspected to have high P sorption 

capacities, particularly those from high rainfall areas which tend to be acidic. Phosphate 

sorption studies on soils from the neighbouring provinces of KwaZulu-Natal and 

Mpumalanga have shown that highly weathered soils have high sorption capacities ranging 

from 500 to 1197 mg P kg-1 soil (Beinbridge et al., 1995; Henry and Smith, 2002). The 

highest sorbers are weathered red or yellow-brown clays with high oxalate (amorphous) 

aluminum content especially those with a humic-horizon such as Inanda, Kranskop and 

Magwa forms from high rainfall areas. There is presently little or no information on the P 

sorption behaviour of soils from the Eastern Cape Province, South Africa. Given the role of P 

sorption in influencing the availability of soil applied fertilizer P, the need for such 

information cannot be overemphasized. 

Phosphate sorption relationships are commonly used in the determination of the external P 

requirement (EPR) of crops. According to Fox (1981), EPR is the minimum concentration of 

P in solution that is non-limiting to plant growth. For most crops, the amount of P in 

equilibrium with 0.2 mg P l-1 (P0.2) has been shown to be the threshold over which no response 

to P is observed (Beckwith, 1665; Iyamuremye et al., 1996). Phosphate sorption isotherms 

are, therefore, used for estimating the P fertilizer requirements of soils by interpolating the 
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amount of P needed to achieve in solution the non-limiting concentration of 0.2 mg P l-1. In 

some instances, however, it is necessary to determine fertilizer P requirement at other P 

concentrations than 0.2 mg P l-1, as the critical value is, in some cases, dependent on plant 

species and agronomic and nutritional factors (Raven and Hossner, 1994).  

The labour and time involved in constructing P sorption curves makes the use of sorption 

isotherm technique too expensive for routine soil testing laboratories. Henry and Smith (2003) 

proposed a single point sorption test procedure for obtaining an index of the P requirement in 

soils that bypasses the need for constructing multiple point sorption isotherms. It would, 

therefore be of interest to determine if the single point sorption procedure could be used as an 

index for estimating the P requirement of soils in the Eastern Cape. 

In view of the above, the objectives of this study were: (i) to quantify and compare the P 

sorption characteristics of selected soils from the Transkei region of South Africa and to 

establish their relationship with other soil parameters, and (ii) to estimate and verify the soil 

external P requirements estimated from the Langmuir equations and to relate those indices 

with single point sorption test values. 
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2.3 MATERIALS AND METHODS 

2.3.1 Experiment 1. Assessment of phosphate sorption and external P requirement of 

some soils from the Transkei region using sorption isotherms 

2.3.1.1 Soil preparation 

Surface soil samples (0-15 cm) were collected from cultivated farmers’ fields from four 

districts (Elliotdale, Umtata, Lusikisiki and Mt. Fletcher) in Transkei, South Africa (Appendix 

1). The districts were selected to represent low altitude (0-600 meters above sea level (masl)), 

medium altitude (700-1100 masl) and high altitude (1500-3000 masl). Detailed sites and soils 

descriptions of the study area are given in Appendices 2 and 3, respectively. 

Most of the soils are dominated by quartz, mica and kaolinite in the clay fraction and contain 

trace to low amounts of feldspars in the clay fraction (Table 2.1). Some of the soils have 

chlorite-vermiculite interstratifications in the clay fraction. Quartz is by far the dominant 

mineral in the silt fraction of all soils examined, followed by feldspars. The dominance of the 

low-activity clay kaolinite in these soils suggests that the soils could be highly weathered. 

Table 2.1 Clay mineralogy of some topsoils from the Transkei region  

Site Quartz Mica Kaolinite Feldspars Chl-Verm Hematite 

Ncihane  ++ ++ ++ + + - 

Ntlonyana  + + ++ + + - 

Qunu  +++ ++ (+) (+) - + 

Qweqwe  + ++ + ++ - - 

Bethania  ++ ++ + (+) - + 

Chevy Chase ++ + ++ - (+) - 

Flagstaff NA NA NA NA NA NA 

 
Chl-Verm = chlorite-vermiculite mixed-layer clays, +++ = very high, ++ = high, + = low, (+) = trace, - 
= absent. NA = Data not available (Adapted from Mandiringana et al., 2005) 
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2.3.1.2 Soil characterization 

Soil pH was measured both in water and 1.0 M KCl (soil: solution ratio of 1:2.5) using a pH 

meter with a glass and reference calomel electrode (Model pH 330 SET-1, 82362) after the 

soil suspensions were shaken for 30 minutes and left standing for 1 hour.  Electrical 

conductivity was measured in water (1: 2.5 soil: water ratio) using a conductivity meter 

(Model Cond.330i/SET 82362). Organic C and N were determined by dry combustion using a 

LECO TRUSPEC C/N auto-analyzer (LECO Corporation, 2003). Total P was estimated 

following wet digestion with H2O2/H2SO4 (Okalebo et al., 2002). Exchangeable  Ca2+, Mg2+, 

K+, and Na+ were extracted with 1.0 M ammonium acetate at pH 7 (Okalebo et al., 2002) and 

determined by atomic absorption spectrophotometer. Exchangeable acidity (Al3+ + H+) was 

determined by extraction with 1.0 M KCl and titration with 0.05 M NaOH (Okalebo et al., 

2002). Cation exchange capacity was estimated by the summation of exchangeable cations 

and exchangeable acidity.  

Amorphous Fe and Al (Feox and Alox) were determined in 0.2 M acidified ammonium oxalate 

adjusted to pH 3.0 with oxalic acid (Warren, 1994). Dithionite citrate bicarbonate-extractable 

Fe and Al (FeCDB and AlCDB) were determined by the method of Mehra and Jackson (1960) as 

cited by Agbenin (2003). Exchangeable Al and Fe (AlKCl and FeKCl) were extracted with 1.0 

M KCl as outlined by Okalebo et al. (2002). The extracts were separated by centrifuging at 

3000 rev min-1 for 10 min and filtered with Whatman No.42 filter paper to get a clear solution. 

Al and Fe in all the extracts were measured by atomic absorption spectrophotometery. All 

results are the means of triplicate analyses. Particle size analysis was done by the pipette 

method as described by Kettler et al. (2001). 
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2.3.1.3 Phosphate sorption isotherms 

Three replicate (3.0 g) air-dried milled soil samples (<2 mm) were weighed into 50 ml 

centrifuge tubes and suspended in 30 ml of 0.01 M CaCl2 of supporting electrolyte containing 

0 to 100 mg P l-1 as KH2PO4 with increments of 10 mg P l-1 . Three drops of toluene were 

added to each container to inhibit microbial activity. The tubes were then stoppered and 

shaken in an end to end shaker for 24 hours at a room temperature (25 ± 1 0C) at 100 

oscillations per minute (Warren, 1992). Following equilibration, the soil suspensions were 

centrifuged at 3000 rev min-1 for 10 minutes and filtered through Whatman No. 42 filter paper 

to obtain a clear solution. Phosphorus in the supernatant was then determined by the method 

of Murphy and Riley (1962). The amount of P sorbed was calculated as the difference 

between the amount of P added and that remaining in solution (Fox and Kamprath, 1970).  

Evaluation of phosphate sorption data 

The linear form of the Langmuir one surface equation was used to calculate parameters that 

are indices of the capacity for, and the intensity of, P sorption by the soil. The Langmuir 

model was selected because of its simplicity of estimating P sorption maxima and sorption 

affinity constant.  

Sorption of added P, Si (mg kg-1) was calculated as 

   Si = [(Co - Ceq)V]/ Ws     

Where; Si is P sorbed, (mg kg-1), Co is the initial concentration of P added (mg l-1), Ceq is the 

concentration in solution after the 24 hour equilibration (mg l-1), V is the volume of P solution 

added (l), and Ws is the oven-dry weight of soil (kg). 
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Sorption data were then fitted into a linearized Langmuir equation  

Ceq * S
-1 = (Smax * b)-1 + Ceq * Smax

-1 

where Ceq is the concentration of P remaining in solution after 24 hours equilibration (mg l-1), 

S is the total amount of P sorbed (mg kg-1), b is a constant related to the binding energy (l mg-

1) and Smax is the adsorption maximum (mg kg-1).  

The sorption maximum (Smax) was calculated from the reciprocal of the slope of the 

adsorption isotherms. This parameter reflects the magnitude of sorption sites available for P 

adsorption. Soil external P requirements were determined by substituting the desired P 

concentration into the fitted Langmuir equations (Dodor and Oya, 2000).  

2.3.1.4 Single point sorption test 

The single point sorption test (SI) was determined as described by Henry and Smith (2006). 

Simply, 50 ml of solution containing 10 mg P l-1 as KH2PO4, in 0.002 M CaCl2, and three 

drops of toluene were added to 2 g of air dried soil (< 2 mm). The suspensions were shaken 

for 24 hours on an end-over-end shaker, rotating continuously at 100 oscillations per minute. 

Following equilibration the suspension was centrifuged at 5000 rev min-1 for 10 minutes and 

then filtered through Whatman paper No 42. Phosphorus in the supernatant was then 

determined by the method of Murphy and Riley (1962). The amount of P sorbed was 

computed as the difference between the initial P concentration of the additional solution and 

the final concentration in the supernatant. The single point sorption test was taken as the 

amount of P sorbed expressed as a percentage of added P (Henry and Smith, 2003). 
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2.3.2 Experiment 2 Evaluation of external P requirements of two soils in a glasshouse 

pot experiment 

Flagstaff and Qunu soil representing high and low fixing soils, respectively were selected for 

this study to evaluate the validity of using a soil solution P concentration of 0.2 mg P l-1 in 

these soils for P recommendation. Triple super phosphate containing 20% P was applied in 

pots containing 7 kg of soil to obtain a range of soil solution P concentrations (EPRfactor) of 

between 0 to 0.35 mg P l-1 for both soils.  

The treatments were applied by uniformly mixing the added P with the soil in each pot.  

Nitrogen and K were applied as ammonium nitrate (28 % N) and KCl (53 % K), respectively 

to all pots at rates equivalent to 200 kg N ha-1 and 100 kg K ha-1. In addition, each pot 

received the equivalent of 5.7 kg Zn ha-1, 2.5 kg Cu ha-1, 4.0 kg Mn ha-1, 0.1 kg Mo ha-1, 1.1 

kg B ha-1 and 56.1 kg S ha-1 after the plants had established. Nutrient carriers were; 

ZnSO4.7H2O, CuSO4.5H2O, MnCl2.4H2O, Na2MoO4.2H2O, Na2B4.O7.10H2O and elemental 

sulphur, respectively. Treatments were applied assuming that the plough layer (0 -15 cm 

depth) contained 2 * 106 kg ha-1.  

The pots were placed on benches in the glasshouse and arranged in a randomized complete 

block design in a split plot arrangement with four replications. The soils were the main plots 

whilst the P rates were the sub plots in a split plot design experiment. Twenty four seeds of 

oat (Avena sativa L.) were then sown in each pot at a depth of 2.5 cm. The plants were 

thinned after establishment to 16 plants per pot. Tap water was added to the pots to maintain 

adequate soil moisture for the growing plants as required throughout the growing period.  
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The shoots were harvested 10 weeks after planting by cutting the shoots 0.5 cm above the soil 

surface then oven dried at 65oC to a constant weight and dry matter yield determined. The 

samples were then ground to < 1 mm and analyzed for total P in the whole plant using a 

H2SO4/H2O2 wet digestion procedure (Okalebo et al., 2002). Phosphorus in the digest was 

then determined by the method of Murphy and Riley (1962).  

2.3.3 Statistical analysis 

Relationships between P sorption parameters and P sorbed to obtain solution P concentration 

of 0.2 mg l-1 (P0.2) with selected soil chemical properties were analyzed with simple 

regression and correlations and tested for significance at p = 0.05 using GenStat statistical 

software (GenStat Release 4.24DE, 2005). Relationships between sorption maxima (mg kg-1), 

parameter b (l. mg-1) related to the energy of adsorption and external P requirements with soil 

properties were determined. The contribution of soil properties to sorption parameters were 

examined using the maximum r2 improvement stepwise model-building procedure (SAS 

Institute, 2001).  The effects of critical P concentration on dry matter yield and plant P uptake 

were evaluated using GenStat statistical software (GenStat Release 4.24DE, 2005). 

Regression analyses were conducted to find models best describing the relationships between 

critical P concentration (EPRfactor) and dry matter yield and plant P uptake.  
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2.4 RESULTS  

2.4.1 Soil characterization 

The soils differed in their P status and characteristics expected to affect P retention and 

release (Table 2.2). All the soils were acidic and their pHwater values ranged from 4.6 to 5.6 

and 3.9 to 4.9 for pHKCl. Soil pH values in 1 M KCl were lower than those measured in water, 

indicating that all the experimental soils were negatively charged at their natural pH. The soils 

were low in organic carbon contents, which ranged from 3.97 to 25.7 g kg-1. The clay in the 

soils ranged from 12.5 to 33%. 

2.4.2 Al and Fe forms 

The soils varied greatly in the amounts of exchangeable Al and Fe, oxalate and dithionite 

extractable Al and Fe oxides (Table 2.3). Exchangeable Al (AlKCl) was highest in the soil 

from Flagstaff (76.27 mg kg-1) and was not detected in soils from Qweqwe and Bethania, 

whereas exchangeable Fe was detected in all soils and ranged from 3.20 to 11.00 mg kg-1. 

Oxalate Al (Alox) ranged from 0.11 to 3.54 g kg-1 of soil. Oxalate Fe (Feox) was high in soils 

collected from Flagstaff, Ncihane and Ntlonyana, ranging from 3.47 to 3.94 g kg-1 of soil 

whereas all the other soils ranged from 0.27 to 0.69 g kg-1 of soil (Table 2.3). Dithionite 

extractable Al (AlCDB) had a similar trend to Al extracted with acidified ammonium oxalate. 

The difference between AlCDB and Alox was assumed to be due to the Al3+ substituted for Fe3+ 

in the crystalline Fe oxides (Fecrys), which ranged from 0.40 to 2.23 (mg kg-1). 
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Table 2.2 Selected chemical properties of soils used in the study 

Sampling Sites and Grid References 
Ntlonyana Ncihane Qweqwe Qunu Chevy Chase Bethania Flagstaff 

 
Properties 

3104612711 S 
2803811611 E 

3200010411 S 
2804213311 E 

3104114211 S 
2804210911 E 

3104612711 S 
2803811611 E 

3005015411 S 
2803211211 E 

3003914111 S 
2801614511 E 

NDδ 

pH H2O 5.0 4.9 5.6 5.5 4.6 5.6 4.7 
pH KCl 4.3 4.1 4.9 4.9 3.9 4.9 4.0 
Total P (g kg-1) 0.18 0.18 0.21 0.14 0.17 0.18 0.42 
Total N (g kg-1) 1.93 0.87 0.81 0.70 0.83 0.16 1.30 
Organic C (g kg-1) 25.7 11.3 12.3 10.4 15.4 3.97 21.9 
Bulk density (kg m-3) 1351 1449 1471 1492 1515 1698 1429 
Exchangeable acidity 
(cmol (+) kg-1) 0.93 0.83 0.07 0.10 1.27 0.10 1.73 

CEC (cmol (+) kg-1) 16.53 11.28 15.80 7.39 6.34 4.64 16.19 
% sand 21.1 39.0 53.2 40.6 74.7 54.7 21.8 

% silt 56.4 45.2 30.3 38.5 12.8 28.0 45.2 

% clay 22.5 15.8 16.5 20.9 12.5 17.3 33.0 

Soil Form* Klapmuts Cartref Glenrosa Westleigh Hutton Hutton Inanda 

Corresponding FAO 
Soil units** 

Planosol Luvisol Cambisol Acrisol Ferralsol Ferralsol Ferralsol 

*South Africa Soil Classification Working Group (1991); **Corresponding FAO (2006) soil units; δ = data not available 
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Table 2.3 Forms of Al and Fe oxides in soils used in the study 

Exchangeable  Oxalate Dithionite 

Al Fe Al Fe Al Fe 

Crystalline 

Al 

Soil  

mg kg-1 g kg-1 

Ntlonyana (Nt) 12.50 11.00 0.41 3.47 2.28 9.24 1.87 

Ncihane (Nc) 19.03 9.70 0.42 3.49 1.68 10.12 1.26 

Qweqwe (Qw) 0.00 3.63 0.11 0.33 0.51 5.55 0.40 

Qunu (Qu) 0.77 3.47 0.12 0.27 1.31 9.91 1.19 

Chevy chase (Cc) 48.73 10.40 0.77 0.66 3.00 12.73 2.23 

Bethania (Bt) 0.00 3.30 0.18 0.69 1.56 13.20 1.38 

Flagstaff (Fs) 76.27 3.20 3.54 3.94 5.70 50.50 2.16 

 

2.4.3 Phosphate sorption  

2.4.3.1 Sorption isotherms 

Sorption behavior was adequately described by the linearized Langmuir sorption model, with 

regression coefficient (r2) values > 0.95 observed for all the soils under study. Sorption 

isotherms for the seven soils showed that the soils differed considerably in sorption 

characteristics (Table 2.4). Sorption maxima ranged from 192.3 to 909.1 mg P kg-1 and 

sorption affinity constant ranged from 0.051 to 0.786 (l mg-1) and was smaller for Bethania 

and Qweqwe. The amount of P required to maintain a soil solution concentration of 0.2 mg P 

l-1 (P0.2) ranged from 2.1 to 123.5 mg P kg-1 soil (Table 2.4) and as expected the trend was 

similar to that of the sorption maxima.  
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2.4.3.2 Single point sorption test 

The values for SI, expressed as a percentage, ranged from 9.5 to 86.5% (Table 2.4) and were 

highly and significantly correlated (r = 0.93) with P0.2 (mg P kg-1) values. The SI values were 

also highly correlated with Smax (r = 0.92) and sorption affinity constant b (r = 0.81) (Table 

2.4). 

2.4.3.3 Relationship between P sorption parameters with soil properties 

The correlations of these relationships are given in Table 2.5. AlCDB gave the highest 

correlations with sorption parameters. Organic C did not show significant correlation with any 

of the P sorption parameters. However, the general trend showed that organic C was 

positively correlated to sorption maxima (r = 0.71), the sorption affinity constant b (r = 0.63), 

and to P0.2 (r = 0.70). Soil pH was only significantly and negatively correlated with sorption 

maxima and the external P requirement parameters (Table 2.5). Exchangeable Al (AlKCl) was 

positively correlated with sorption maxima (r = 0.93) and the single point soil test (r = 0.93). 

A regression of P sorption maxima on AlCDB indicated that 89% of the variance of P sorbed 

was explained by AlCDB (Table 2.6). Similarly, regressing P sorption maxima with FeCDB 

showed that FeCDB explained 69.8% of the observed variance in sorption maxima, whereas 

79.7% of the variation in P sorbed was explained by differences in pH. Similarly, regression 

of sorption maxima with AlKCl showed that exchangeable Al explained 83.9% of the observed 

variance. By contrast, only 62.8 and 40.5% of the variance in sorption maxima were 

accounted for by the changes in Alcrys and Fecrys respectively (Table 2.6). 
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Using stepwise regression procedure (p = 0.05), a combination of organic carbon, AlKCl, 

AlCDB and Alox explained 93.2% of the variation in Smax, of which 87.8% of the variation was 

explained by AlCDB alone whereas soil organic C and AlCDB jointly accounted for 91.1% of 

the variation in Smax. The functions best fitting the data were the following: 

Smax = 85.87 + 150 AlCDB (r2 = 0.88) 

Smax = 46.73 + 128 AlCDB + 78.73 C (r2 = 0.91) 

Where; Smax = sorption maxima, CDB = citrate dithionate bicarbonate, C = organic carbon,  

 

Table 2.4 Phosphate sorption parameters 

Soil series Linearized Langmuir 

 Equations 

Smax 

(mg kg-1) 

b 

(l mg-1) 

 

(r2) 

SI 

(%) 

EPR (P0.2)  

(mg kg-1) 

Ntlonyana  Y = 0.0019x + 0.0077 526.3 0.247 0.98 49.4 24.8 

Ncihane  Y = 0.0021x + 0.0133 476.2 0.158 0.96 48.1 14.6 

Qweqwe  Y = 0.0049x + 0.0961 204.1 0.051 0.96 9.5 2.1 

Qunu  Y = 0.0052x + 0.0426 192.3 0.122 0.98 25.5 4.6 

Chevy Chase  Y = 0.0018x + 0.0067 555.6 0.269 0.97 79.2 28.4 

Bethania  Y = 0.0035x + 0.0368 285.7 0.095 0.96 33.5 5.3 

Flagstaff  Y = 0.0011x + 0.0014 909.1 0.786 0.98 86.5 123.5 

 
Smax  = sorption maxima, b = sorption affinity constant, SI = Single point sorption test,  
EPR = external P requirement 
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Table 2.5 Correlation coefficients describing relationships of P sorption parameters with selected soil variables for soils studied 

 

 

 

Parameters Parameters 

 SI Smax b Organic C Alcrys Fecrys AlCDB FeCDB AlKCl Alox Feox 

Smax 0.916           

b 0.812 0.931          

Organic C 0.533 0.706 0.626         

Al crys 0.923 0.828 0.737 0.609        

Fecrys 0.670 0.789 0.940 0.349 0.568       

AlCDB 0.848 0.936 0.986 0.597 0.797 0.928      

FeCDB 0.695 0.831 0.959 0.411 0.582 0.995 0.940     

AlKCl 0.928 0.930 0.916 0.542 0.833 0.828 0.951 0.839    

Al ox 0.725 0.876 0.977 0.526 0.627 0.969 0.970 0.979 0.893   

Feox 0.533 0.771 0.638 0.741 0.408 0.449 0.568 0.534 0.515 0.570  

pHwater -0.934 -0.842 -0.662 -0.621 -0.854 -0.439 -0.703 -0.478 -0.851 -0.565 -0.569 

 
Smax  = sorption maxima, b = sorption affinity constant, KCl = potassium chloride, ox = ammonium oxalate, CDB = citrate dithionate 
bicarbonate, crys = crystalline   
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Table 2.6 Relationships of sorption maxima (Smax) with selected soil independent variables 

Variable (x) Functions best fitting data r2 

pHwater (1:2.5) Y = 195560e-1210lx 0.797 

AlKCl Y = -0.04x2 +10.99x +257.91 0.839 

Al ox Y= 117.75x2 + 627.34x + 164.93 0.855 

Feox Y = 44.03x2 – 67.60x + 316.33 0.607 

AlCDB Y = -23.04x2 + 310.05x – 115.20 0.894 

FeCDB Y = -0.26x2 + 28.96x + 107.95 0.698 

Al crys Y = 95.87e0.8836x 0.628 

Fecrys Y = 275.13e0.025lx 0.405 

Y = sorption maxima, KCl = potassium chloride, ox = ammonium oxalate, CDB = citrate 
dithionate bicarbonate, crys = crystalline   

 

2.4.3.4 Relationship between single point sorption tests (SI) with P0.2 

Plots of P0.2 (mg P kg-1) for the soils showed that the relationship was non-linear (Figure 2.1a 

and b) and the functions best fitting the data were; P0.2 = 19.157e0.026SI (r2 = 0.89) when all the 

seven soils were included in the model (Figure 2.1a) and P0.2 = 12.868e0.040SI (r2 = 0.97) when 

the soils from Flagstaff and Chevy Chase were excluded from the prediction model (Figure 

2.1b). 
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2.4.4  The effects of external P requirements on dry matter yield and plant P uptake 

Dry matter yield was increased significantly (p = 0.05) by addition of fertilizer P when 

compared with the control. Yields ranged from 1.58 to 3.35 (g plant-1) for Flagstaff soil and 

from 0.32 to 3.30 (g plant-1) for Qunu soil, respectively (Table 2.7). The yields in the control 

pots were approximately 47.3% and 9.6% of the maximum yields of the Flagstaff and Qunu 

soils, respectively. Maximum dry matter yields were achieved at equilibrium P concentrations 

of 0.20 and 0.25 mg P l-1 for Flagstaff and Qunu soils (Table 2.7). Plant P-uptake ranged from 

0.09 to 0.89 and 0.01 to 0.82 g plant-1 in the Flagstaff and Qunu soils, respectively. 

 

Fig. 2.1 Relationship between P0.2 with SI for all seven soils (a) and five soils excluding 

Chevy Chase and Flagstaff (b) 
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Table 2.7 Effects of soil solution equilibrium P concentrations on dry matter 

yield and plant P uptake 

*EPR factor 
(mg P l-1) 

Dry matter 
(g plant-1) 

P-uptake  
(g plant-1) 

Flagstaff soil   
0.00 1.58 ± 0.15 0.09 ± 0.01 
0.05 2.34 ± 0,14 0.41 ± 0.05 
0.10 2.76 ± 0.12 0.59 ± 0.06 
0.15 2.91 ± 0.20 0.75 ± 0.05 
0.20 3.35 ± 0.10 0.87 ± 0.01 
0.25 3.16 ± 0.07 0.89 ± 0.05 
0.30 3.04 ± 0.06 0.73 ± 0.05 
0.35 2.98 ± 0.14 0.79 ± 0.07 
Qunu soil   
0 0.32 ± 0.03 0.01 ± 0.01 
0.05 1.66 ± 0.22 0.17 ± 0.02 
0.10 2.54 ± 0.18 0.37 ± 0.03 
0.15 2.90 ± 0.11 0.55 ± 0.03 
0.20 3.15 ± 0.21 0.61 ± 0.05 
0.25 3.33 ± 0.22 0.75 ± 0.05 
0.30 3.23 ± 0.13 0.76 ± 0.02 
0.35 3.21 ± 0.17 0.82 ± 0.04 
Lsd (p = 0.05) 0.22 0.06 
s.e. 0.16 0.04 
Cv (%) 5.9 7.3 

 

 

 

 

*EPRfactor = soil solution P concentrations, s.e. = standard error of treatment means, Cv = 
Coefficient of variation, Lsd = least significant difference ± = standard deviations 
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2.5 DISCUSSION 

Low soil pH values observed in this study confirm earlier reports on data from the Transkei 

region that showed that a sizeable number of soils were of low to medium pH (Mandiringana 

et al., 2005; Bühmann et al., 2006). The soils are low in exchangeable bases which could 

mainly be attributed to the higher rainfall and warm temperatures that are normally observed 

in the region leading to intense leaching of bases and accumulation of exchangeable Al in 

these soils. The low levels of organic carbon are in agreement with observations made by 

Mandiringana et al. (2005) who reported that a large proportion (62-100%) of cultivated field 

soils in the region had low organic carbon. The organic carbon levels were comparable to the 

low to very low amounts of organic matter of cultivated soils in other parts of South Africa. 

These low levels of organic matter have been attributed largely to cultivation practices that 

tend to accelerate the oxidation of organic matter and hence its depletion (Mandiringana et al., 

2005).  

The sorption behavior of the soils studied was adequately described by the Langmuir model, 

with coefficients of determination (r2) values > 0.95 observed for all the soils under study. 

The observed differences in sorption maxima among the soils were most likely due to the 

large variations in the amounts and nature of Al and Fe components present in the soils as 

shown by positive correlations between the sorption maxima and different forms of Fe and Al 

extracted. Simple regression analysis showed that the contributions of the various forms to the 

variance of sorption maxima were in the order AlCDB > Alox > AlKCl >FeCDB > Alcrys >Feox > 

Fecrys. Stepwise regression analysis further showed that, a combination of organic carbon, 

AlKCl, AlCDB and Alox explained 93.2% of the variation in Smax of which 87.8% of the 
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variation was explained by AlCDB alone. Soil organic C and AlCDB jointly accounted for 91.1% 

of the variation in Smax.  

The rather high correlation of AlCDB with P sorption maxima could be attributed to the fact 

that the citrate dithionite bicarbonate solubilizes both amorphous and crystalline Al and Fe 

oxides.  The stepwise regression coefficients indicated that a unit change in AlCDB (g kg-1) 

changes P sorbed by 128 mg P kg-1 (r2 = 0.91, p = 0.05) when organic carbon, and AlCDB were 

included in the stepwise model. This dependence of P sorption on AlCDB therefore seems to 

explain the low amounts of P sorbed by soils from Qweqwe, Qunu and from Bethania that had 

lower amounts of AlCDB and organic C. The function best fitting the data was:  

Smax = 46.73 + 128 AlCDB + 78.73 C (r2 = 0.91). 

The use of this equation could offer a rapid estimation of P sorption in these soils. The results 

also suggest that citrate dithionite bicarbonate could be the most suitable single extractant for 

indicating the potential of P sorption in these soils. These findings are in agreement with those 

of Agbenin (2003), Henry and Smith (2002) and Duffera and Robarge (1999) who also 

observed that AlCDB had a greater influence on P retention than other Al forms in some 

tropical soils. Organic C was not significantly correlated with any of the P sorption 

parameters but it was positively correlated to sorption parameters, and together with AlCDB, 

explained 91% of the variations in Smax in the stepwise regression model referred to earlier. 

This suggested an active participation of organic matter in P sorption in the experimental 

soils, possibly through Al-organo complexes as suggested by Haynes and Swift, (1989).  
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The amounts of P required to obtain a concentration of 0.2 mg P l-1 (P0.2) in solution were in 

the range found for other soils in the tropics (Warren, 1994; Iyamuremye et al., 1996; Mehadi 

and Taylor, 1988; Dodor and Oya, 2000). Duffera and Robarge (1999) for example reported 

values ranging from 50 to 201 mg P kg-1 for surface samples from two Vertisols, an Andosol 

and an Alfisol collected from farmers’ fields, research station farms, and from non-cultivated-

non-fertilized areas in Ethiopia. Soils taken from Qweqwe, Qunu, Ncihane and Bethania had 

lower external P requirement values and thus could be classified as lower sorbers whereas 

soils from Ntlonyana, Chevy Chase and Flagstaff were moderate sorbers based on the scale of 

P sorption of Juo and Fox (1977). Therefore 57% of the soils studied were low P fixers while 

the remaining 43% were moderate P fixers. Since the seven samples used in the study came 

from only three districts in the former Transkei there is need for a broader study involving 

soils from other agroecologies in the Province in order to confirm the proportions. 

Nevertheless, the results suggest that P availability could be compromised in the 43% of soils 

with moderate P sorption capacity and that measures to mitigate the adverse effects of P 

sorption may be necessary to ensure that P is not a limiting factor to crop production where 

such soils are found.  

Maximum dry matter yield of oat grown in the glasshouse was achieved at equilibrium P 

concentrations of 0.20 and 0.25 mg P l-1 for Flagstaff and Qunu soils. Apparently, the yields 

obtained at these concentrations were not significantly different from those obtained at a soil 

solution P concentration of 0.2 mg P l-1 (P0.2) reported in the literature to be a threshold for 

many crops, after which no response to P is observed (Duffera and Robarge, 1999). These 

results thus showed that a soil solution P concentration of 0.2 mg P l-1 (P0.2) could be optimal 
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for oats and possibly other crops in these soils. It should, therefore, be given serious 

consideration as an index for P recommendations for the soils studied. The predictive 

equations for dry matter yield (DM) were:  

DM = [13.28EPRfactor – 27.78(EPRfactor)
2 + 1.66] (r2 = 92.33%) (Flagstaff soil) 

DM = [21.98EPRfactor – 41.99(EPRfactor)
2 – 0.52] (r2 = 95.25%) (Qunu soils) 

The single point sorption test (SI) was highly correlated with P0.2 (r = 0.93) which, coupled 

with the high values of the determination coefficient (r2 = 0.97) observed in this study, 

suggest that the SI function (P0.2 = 12.87e0.04SI) could successfully be used to predict the 

external P requirement (P0.2) for the soils from Ntlonyana, Ncihane, Qweqwe, Qunu and 

Bethania, which are considered to be low P sorbers. Henry and Smith (2003) also found high 

coefficients of determination (r2 = 0.98) in the relationship between SI and P0.11 for low to 

moderate fixing soils of the tobacco growing areas of Kwa-Zulu Natal. They also concluded 

that SI can be used advantageously as a time saving measure to obtain an index of the external 

P requirement of soils instead of having to produce a full P isotherm. 

2.6 CONCLUSIONS 

The seven soils studied varied widely in their capacities to sorb P and would therefore react 

differently to applied P. About 57% of the soils could be classified as low P fixing and the 

remaining 43% as moderate P fixers. There is thus a need to investigate measures to mitigate 

against P sorption in the moderately P fixing soils to ensure that P availability is not 

compromised in these soils. The differences in the P sorption observed between the different 

soils appeared to be largely related to variations in their citrate dithionite bicarbonate 
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extractable aluminum contents. A soil solution P concentration of 0.2 mg P l-1 (P0.2) was found 

to be optimal for plant growth in these soils and could therefore be used as a basis for 

interpolating external P requirement (P0.2) from sorption isotherms. The results further 

showed that the single point test function could successfully be used to predict the external P 

requirement (P0.2) for the soils from Ntlonyana, Ncihane, Qweqwe, Qunu and from Bethania 

that are considered to be low P sorbers, thus obviating the need to use multiple point sorption 

isotherms for the estimation of EPR. Since the sample size used in the present study was 

small, there is need to carry out a broader sorption study involving more soils from different 

agroecologies in the province in order to get a more reliable picture of the P sorption status of 

soils in the Eastern Cape. 
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CHAPTER 3 

 

EFFECTS OF GOAT MANURE AND LIME ADDITION ON PHOSPHA TE 

SORPTION OF TWO SOILS FROM THE EASTERRN CAPE PROVIN CE, SOUTH 

AFRICA 

 

3.1 ABSTRACT 

The effects of rate of goat manure and lime addition on P sorption by two moderately P fixing 

soils from Chevy Chase and Flagstaff in the Transkei region of the Eastern Cape Province, 

South Africa were investigated in a laboratory study. Five treatments consisting of four rates 

of goat manure (0, 5, 10 and 20 tha-1) and lime were applied to 200 g of soil. The lime 

treatment was applied to raise soil pH to 6.5. The amended soils were mixed, moistened to 

80% field capacity and incubated for 84 days. Treatments were sampled on days 1, 7, 14, 28, 

56 and 84 for determination of P sorption and other parameters. Addition of manure reduced 

P sorption maxima (Smax) compared to the control treatment in both soils but the extent of 

reduction was greater on Chevy Chase soil than in Flagstaff soil. For example, addition of 20 t 

ha-1 of goat manure reduced Smax by 25.4% in Chevy Chase soil but Smax was reduced by 

only 16.4% in Flagstaff soil after 28 days of incubation. These results suggest that the use of 

goat manure may allow resource poor farmers to use lower levels of commercial P fertilizer 

because of its ability to reduce soil P sorption. Lime addition to Flagstaff soil initially 

increased the amount of P sorbed for the first 28 days of incubation but after 56 days of 
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incubation it had the opposite effect of reducing P sorption. By contrast, reduced P sorption 

was observed soon after lime was added to the Chevy Chase soil. The management 

implications of these results are that for Flagstaff soil and other similar soils, lime may need 

to be applied before planting while for soils such as the one from Chevy Chase, lime could be 

applied at the time of planting for maximum added P availability.  

Key words: Exchangeable Al, Goat manure, Lime, P sorption  
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3.2 INTRODUCTION 

Preliminary P sorption studies on seven soils from the Transkei region of the Eastern Cape 

(Chapter 2) indicated variable P retention capabilities of the soils ranging from 192.3 to 909.1 

mg P kg-1. Therefore some of the soils had sufficiently high P retention capacities to 

significantly decrease the availability of added P to plants. This implies that if no measures 

are taken to minimize P sorption in the soils, large quantities of P fertilizer will need to be 

added in order to achieve adequate P concentration in the soil solution for optimal plant 

growth.  

There is considerable literature evidence suggesting that the application of animal manure and 

other organic materials such as plant residues to soil may decrease its P sorption capacity 

thereby increasing the availability of P to plants (Easterwood and Sartain, 1990; Haynes and 

Mokolobate, 2001). The reduced P sorption and increased P availability following application 

of organic amendments to soils is thought to be the result of the cumulative effects of several 

mechanisms. These include: blockage of P sorption sites by organic products released from 

the decomposing residues, a rise in soil pH and complexation of soluble Al and Fe by organic 

acids and reduction of their concentrations in soils (Hue, 1992). The latter mechanism is 

essentially a liming effect but no information could be found comparing the relative liming 

effectiveness of organic materials added to soils to that of agricultural lime.  

Goat manure is readily available on most smallholder farms in the Eastern Cape Province of 

South Africa, being second only to cattle manure in terms of availability (Yoganathan et al., 

1998). Ownership of goats is estimated to be 43%. It would be expected that its addition to soil 
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could result in increased P availability through reduced P sorption like other organic materials 

reported by Hue (1992) and Iyamuremye et al. (1996). Understanding the role of goat manure 

in reducing P sorption in high P fixing soils may provide information that could contribute to 

its effective use in increasing the efficiency of soil P and added P utilization by crops. This 

would allow farmers, especially those who operate at subsistence level, to reduce their costs of 

production by using less P fertilizer.  

The objective of this study was therefore; to evaluate the effects of goat manure and lime 

addition on the P sorption of two high P fixing soils from the Transkei region of the Eastern 

Cape, South Africa.  

3.3 MATERIALS AND METHODS 

3.3.1 Soil and goat manure preparation 

Surface soil samples (0-15 cm) from cultivated fields in Flagstaff and Chevy Chase in the 

Transkei region of the Easter Cape, South Africa (herein after referred to as Flagstaff and 

Chevy Chase) were used in this study. The two soils belong to the Inanda and Hutton forms, 

respectively (Soil Classification Working Group, 1991), and were selected because of their 

higher P sorption capacities (Chapter 2). The goat manure used was collected from a goat 

shed at the University of Fort Hare, Lovedale Research Farm.  

3.3.2 Soil and manure characterization 

Selected soil properties are presented elsewhere in Chapter 2 (see Table 2.1). Manure pH was 

measured in water (soil: solution ratio of 1: 5) using a pH meter with a glass and reference 

calomel electrode (Model pH 330 SET-1, 82362) after the suspensions were shaken for 30 



 75 

minutes and allowed to stand for 1 hour. Electrical conductivity was measured in water at a 1: 

5 soil: water ratio using a conductivity meter (Model Cond.330i/SET 82362). Organic C and 

N were determined by dry combustion using a LECO TRUSPEC C/N auto-analyzer (LECO 

Corporation, 2003). Total soil P, K, Ca, Mg and N were estimated following wet digestion 

with H2O2/H2SO4 (Okalebo et al., 2002). Total Ca2+, Mg2+, and K+ were determined by atomic 

absorption spectrometry and P measured as described by Murphy and Riley (1962). All 

results are the means of triplicate analyses. 

3.3.3 Incubation of amended soils 

Five treatments consisting of four rates of goat manure (0, 5, 10 and 20 tha-1) and lime were 

applied to 200 g of soil. Lime was applied to raise soil pH to 6.5, is reported to be optimal for 

P availability for most plants (Haynes and Swift 1985). The amounts of lime required were 

determined by incubating 100 g of moist soils amended with different rates of lime for four 

weeks and then measuring the pH of the samples. The rate that raised the soil pH to 6.5 was 

selected. The amounts require were 12 and 3.5 t CaCO3 ha-1, for Flagstaff and Chevy Chase, 

respectively.  The amended soils were then each mixed thoroughly and moistened to 80% 

field capacity or 19% moisture content (Griffin et al., 2003). Two small holes were made in 

each container lid to maintain aerobic conditions. The treatments were replicated three times 

and incubated at 25 ± 1 oC in the dark to simulate soil conditions. Sufficient samples (18) 

were prepared for each treatment and for each soil to allow for sampling at 1, 7, 14, 28, 56, 

and 84 days of incubation. Soil moisture content was monitored weekly and adjusted to 80% 

field capacity. At each sampling, the amended soils were air-dried, sieved (<2 mm) and P 

sorption determined as described earlier in Chapter 2, section 2.3.1.3. 
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3.3.4 Statistical analysis  

Analyses of variance were conducted with GenStat statistical software (GenStat Release 

4.24DE, 2005) to determine the statistical significance of treatment effects on P sorption 

parameters. The analysis of variance was separately performed for each soil since the two 

soils received different amounts of lime. Where significant differences (p = 0.05) occurred, 

mean separation was done using least significant difference (LSD). Regressions were 

performed to evaluate the relationships between exchangeable Al and soil pH with P sorption 

maxima. Non-linear regression analyses were used to find the models best describing the 

relationships. Unless otherwise stated, mention of statistical significance refers to p = 0.05. 
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3.4 RESULTS  

3.4.1 Soil and manure characterization 

Selected chemical properties of goat manure are presented in Tables 3.1. The manure used in 

this study had pH of 8.2, a C: N ratio of 19 and a C: P ratio of 206. 

Table 3.1 Selected chemical properties the goat manure (GM) used in the study 

Chemical Properties Quantity 

pHwater (1:5)  8.2 
EC dS m-1 3.7 
C (g/kg) 498 
Total N (g kg-1) 25.6 
Total P (g kg-1) 2.4 
Total Ca  (g kg-1) 39.3 
Total Mg  (g kg-1) 18.6 
Total K  (g kg-1) 22.7 
C: P 206.6 
C: N 19.4 

 

3.4.2 Effects of manure and lime addition on soil solution pH and exchangeable Al 

Application of lime significantly increased the pH of both soils relative to the control. The pH 

of limed soils increased with time, reaching maximum values of 6.58 and 6.42 on day 28 for 

Chevy Chase and Flagstaff soils, respectively (Figure 3.1). Addition of goat manure (GM) to 

both soils also significantly increased the soil pH proportionately with increasing amounts of 

goat manure but the increases were all less than what was achieved with lime (Figure 3.1). 

The relative liming effects of the different rates of goat manure followed the order 20 t GM 

ha-1 > 10 t GM ha-1 > 5 t GM ha-1 (Table 3.2). The greatest liming effect on both soils was 

realized with the application of 20 t ha-1 goat manure which on day 28 was 62 and 52% as 

effective as the lime treatments on Chevy Chase and Flagstaff soils, respectively (Table 3.2). 
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Generally, the liming effects due to lime and goat manure addition was greater on Chevy 

Chase than Flagstaff soil (Figure 3.1, Table 3.2). The observed liming effects due to goat 

manure or lime addition persisted for the entire 84 days of incubation in the two soils (Figure 

3.1).  

Addition of lime to both soils decreased the amount of exchangeable Al as observed on day 

28 (Table 3.2). Day 28 was selected for interpretation of results because the greatest changes 

in soil pH and P sorption parameters were observed on this day (Figure 3.1, Table 3.3). 

Consistent with the observed liming effect of goat manure (Figure 3.1), corresponding 

decreases in exchangeable Al were observed in both soils when goat manure was applied 

(Figure 3.2). The relative reduction in exchangeable Al (RDAl) at different rates of goat 

manure followed the order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1 for both soils but these 

reductions were greater in Chevy Chase soil (Table 3.2).  The greatest decrease in 

exchangeable Al was realized with the application of 20 tha-1 goat manure on both soils which 

on day 28 was 89 and 72% as effective as the lime treatment in reducing exchangeable Al on 

Chevy Chase and Flagstaff soils, respectively (Table 3.2). Addition of goat manure at rates of 

10 and 20t ha-1 had similar effects on exchangeable Al to lime in Chevy Chase soil (Figure 

3.2b, Table 3.2). 
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Fig. 3.1 The effects of rate of goat manure (GM) and lime addition on soil solution pH (x-axis not to scale) (bars 

represent least significant difference p = 0.05) 
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Table 3.2  Relative liming effectiveness of different goat manure (GM) treatments after 28 

days of incubation 

Treatments pH Relative liming 
effectiveness (RLE) 

(%) 

Exchangeable 
Al 

(mg kg-1) 

Relative decrease in 
exchangeable Al (RDAl) 

(%) 
Chevy Chase soil 
Control 4.48 - 40.6 - 
5 t GM ha-1 4.97 23 30.0 46 
10 t GM ha-1 5.20 34 21.8 82 
20 t GM ha-1 5.79 62 20.2 89 
3.5 t lime ha-1 6.58 100 17.7 100 
LSD0.05 0.08 - 5.12 - 
s.e. 0.04 - 2.72 - 
Flagstaff soil 
Control 4.73 - 77.5 - 
5 t GM ha-1 4.90 10 59.2 28 
10 t GM ha-1 5.21 29 48.1 45 
20 t GM ha-1 5.6 52 30.0 72 
12 t lime ha-1 6.42 100 11.3 100 
LSD0.05 0.09 - 1.8 - 
s.e. 0.04 - 0.97 - 
For each soil: RLE = (GM Treat. pH – Control pH)/(Lime Treat. pH – Control pH)*100 
RDAl =   (GM Treat. Ex. Al – Control Ex. Al)/(Lime Treat. Ex. Al – Control Ex. Al)*100. Where 
Ex. Al = exchangeable Al, GM = goat manure, Treat. = treatment, s.e. = standard error of treatment 
means 

 

3.4.3 Effects of goat manure and lime addition on soil P sorption maxima  

The extent of P sorption varied within each soil depending on the amount and type of 

amendment applied (Table 3.3). Addition of goat manure consistently reduced P sorption 

maxima (Smax) compared to the control treatment in both soils (Table 3.3). P sorption 

decreased with increasing amounts of goat manure in both soils but the extent of reduction 

was greater on Chevy Chase soil than on Flagstaff soil. For example, addition of 20 t ha-1 of 

goat manure reduced Smax by 25.4% in Chevy Chase soil but Smax was only reduced by 16.4% 

on Flagstaff soil after 28 days of incubation (Table 3.3).  
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Lime addition to Flagstaff soil significantly increased the amount of P sorbed in the first 28 

days of incubation (Table 3.3). By contrast, reduced amounts of P were sorbed when lime was 

added to the Chevy Chase soil except on day one of incubation (Table 3.3). The greatest 

reduction in Smax (35.2%) was recorded on day 84 in Chevy Chase soil amended with lime 

(Table 3.3).  

Table 3.3 Effects of rate of goat manure (GM) and lime addition on P sorption maximum 

(mg P kg-1) during 84 days of incubation 

Treatments  Days of incubation 

Flagstaff soil 0 7 14 28 56 84 Pooled mean 

Control 892b 861b 868b 871b 883a 885a 877a 

5 t GM ha-1 862c 844c 843c 841c 859b 862b 852b 

10 t GM ha-1 855cd 821d 816d 817d 825d 829c 827c 

20 t GM ha-1 847d 820d 799e 728e 759e 775d 788d 

12 t Lime ha-1 911a 912a 916a 886a 836c 823c 881a 

LSD0.05 13.9 13.8 7.6 6.8 7.5 7.6 16.2 

Cv (%) 11.8 14.7 15.3 10.3 12.9 14.5 11.8 

Chevy Chase soil 

Control 579.6b 586.1a 581.8a 580.0a 586.3a 587.2a 583.5a 

5 t GM ha-1 577.2bc 570.6b 567.9b 563.9b 576.2b 575.3b 571.8a 

10 t GM ha-1 571.9c 538.6c 516.3c 510.4c 513.2c 520.3c 528.4b 

20 t GM ha-1 556.5d 480.4d 467.2d 432.9d 440.1d 455.2d 472.1c 

3.6 t Lime ha-1 593.6a 455.7e 426.1e 396.8e 389.0e 380.4e 440.3d 

LSD0.05 7.6 7.5 8.1 10.2 4.7 9.0 21.2 

Cv (%) 13.6 16.5 11.2 14.1 9.8 12.9 9.9 

Numbers followed by the same letter within columns for each soil are not statistically different 

(p = 0.05) 
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3.4.4 Relationship between exchangeable Al and pH with sorption maxima 

Exchangeable Al was positively correlated with sorption maxima whereas soil pH was 

negatively correlated with sorption maxima after 28 days of incubation (Figure 3.2). 

Regression analysis of sorption maxima with exchangeable Al indicated that 98.4 and 97.5% 

of the variations in sorption maxima were due to exchangeable Al in Flagstaff and Chevy 

Chase soils, respectively. Similarly, regressing sorption maxima with soil pH (Figure 3.2) 

showed that pH changes following addition of amendments accounted for 96.9% and 95.6% 

of the observed variance for the Flagstaff and Chevy Chase soils, respectively. 

 

 

 

 

 

 

 

 

Fig.  3.2 Relationship between exchangeable Al (a) and soil pH (b) with sorption 

maxima on day 28  
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3.5 DISCUSSION 

The extent of P sorption varied within each soil depending on the amount and type of 

amendment applied. Addition of goat manure consistently reduced P sorption maxima (Smax) 

compared to the control treatment in both soils but the extent of reduction was greater in 

Chevy Chase soil than in Flagstaff soil. For example, addition of 20 t ha-1 of goat manure 

reduced Smax by 25.4% in Chevy Chase soil but was only reduced by 16.4% on Flagstaff soil 

after 28 days of incubation. These results agree with those of Iyamuremye et al. (1996) who 

also observed reduced P sorption in high P fixing Rwandan soils amended with cattle manure 

and alfalfa residues.  

The reduction in P sorption observed with increasing amounts of goat manure could be 

attributed to the observed increase in soil pH and corresponding decrease in exchangeable Al 

in the soils following goat manure application. This effect is in agreement with findings of 

Whalen et al. (2000) who also reported higher pH and lower oxalate extractable Al after cattle 

manure addition to soil. Hue (1992) suggested that such pH changes could be attributed to 

hydroxyl ions from ligand exchange reactions between organic acids and hydroxyl groups of 

Al or Fe hydrous oxides and/or the high concentration of basic cations often found in organic 

materials. The pH increases observed following goat manure application were much higher in 

Chevy Chase soil than in Flagstaff soil possibly indicating that Flagstaff soil had a higher 

buffering capacity due to its higher clay content. 

Increases in soil pH as was observed in the manure treated soils has been reported to increase 

the cation exchange capacity of soil colloidal fractions providing extra sorption sites for Al 
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and Fe thus reducing their reactivity in the soil solution (Naidu et al., 1990; Iyamuremye et 

al., 1996; Ohno and Crannel, 1996). The decrease in exchangeable Al could also have been a 

result of the precipitation of Al3+ ions as aluminum hydroxide by OH- ions produced during 

manure decomposition and OH- ions released from the ligand exchange between organic acids 

and hydroxyls of Al and Fe oxides, thereby decreasing the number of P sorption sites (Naidu 

et al., 1990). Added goat manure had a greater relative effect in reducing exchangeable Al 

than in increasing soil pH suggesting that the observed decreases in P sorption following goat 

manure application could to a large extent have been due to the inactivation of exchangeable 

Al. This is further supported by the fact that a greater reduction in P sorption following goat 

manure application occurred in Chevy Chase soil than on Flagstaff soil, consistent with the 

greater relative decrease in exchangeable Al following goat manure application to this soil.  

The relative effects of goat manure in increasing soil pH, decreasing exchangeable Al and 

reducing P sorption of the experimental soils increased with rate of manure application. This 

suggests that repeated seasonal application of the goat manure or the application of higher 

rates of this level of manure could result in an enhanced expression of the observed effects. 

Therefore regular application of goat manure or other manures with similar properties to 

smallholder farms in the Eastern Cape could result in improved soil and fertilizer P use 

efficiency by crops partly as a consequence of reduced P sorption.  

Incorporation of P into the soil microbial biomass is reported to be another mechanism that 

could significantly increase the availability of P to plants (Harris et al., 1997). The microbial 

biomass apparently increases P availability by immobilizing soil inorganic P and releasing it 
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later through mineralization during biomass turnover (Iyamuremye et al., 1996). This P is 

released slowly and taken up by the crop more efficiently  and is believed to be one reason for 

observed synergistic effects on crop growth when organic materials are co-applied with 

inorganic fertilizer P (Ayaga et al., 2006). It is probable that the application of goat manure to 

soil would stimulate a large microbial population in soil and thus improve the cycling of soil 

and fertilizer P. This aspect was the subject of another study (Chapters 4 and 5).  

Unlike Chevy Chase soil, lime addition to Flagstaff soil initially increased the amount of P 

sorbed. Haynes and Swift, (1985) suggested that the initial increase in P sorption following 

liming could be a result of the formation of new adsorbing surfaces due to the precipitation of 

exchangeable Al as hydroxy-Al polymers as the pH is raised. The hydroxyl-Al polymers are 

highly active adsorbing surfaces which can increase P adsorption considerably (Haynes and 

Swift, 1985). With time, however, crystallization of the amorphous hydroxyl-Al polymers 

takes place leading to increased negative charges on the lime induced surfaces with a 

consequential reduction of P retention (Haynes and Swift, 1985; Curtin and Syers, 2001). This 

could explain the observed reduction in P sorption on day 56 in the Flagstaff soil following 

the initial P sorption increase of the limed soil. The differing effects of liming on the P 

sorption of the two soils could be partly because they contained different initial levels of 

exchangeable Al. Flagstaff soil had a higher concentration of exchangeable Al (76.3 mg Al 

kg-1) than Chevy Chase soil (48.7 mg kg-1) in the un-amended soils.  

The effectiveness of lime in reducing P sorption of Flagstaff soil with a high initial 

exchangeable Al content was greatly affected by the length of time the lime had reacted with 
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the soil. The reduction in P sorption following lime application was only observed 56 days 

after the lime was applied while this effect was observed almost immediately on Chevy Chase 

soil. The management implications of these results are that for Flagstaff soil and other similar 

soils, P application may need to be delayed following lime addition while for soils of the 

Chevy Chase type lime could be applied at the time of planting or at the time of P addition to 

the soil.  Since the present study was done under controlled laboratory conditions, the exact 

timing of lime application will need to be determined under field conditions on a wider range 

of soils. 

3.6 CONCLUSIONS  

This study demonstrated that addition of goat manure reduced P sorption in both soils. This 

implies that combined application of goat manure and inorganic fertilizer P may enable 

resource poor farmers to use lower levels of commercial P fertilizer and lime in strongly P 

fixing soils. The highest reduction in P sorption in the manure treatments was recorded on day 

28 suggesting the need to synchronize P addition to coincide with the peak periods of 

maximum reduction in P sorption following amendment addition. The results also showed 

that the two soils differed with respect to the time when lime effected maximum reduction in 

P sorption. This effect was observed immediately on Chevy Chase soil but only after about 

two months following lime application on Flagstaff soil. Therefore, for improved P use 

efficiency, lime addition to the Flagstaff soil and possibly other soils with similar properties 

may need to be applied before planting while for soils of the Chevy Chase type, lime could be 

applied at the time of planting.  The exact timing of lime application will need to be 

determined under field conditions on a wider range of soils.  
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CHAPTER 4 

 

CHANGES IN INORGANIC AND MICROBIAL BIOMASS P FRACTI ONS 

FOLLOWING GOAT MANURE AND INORGANIC PHOSPHATE ADDIT ION TO 

FLAGSTAFF SOIL 

 

4.1 ABSTRACT 

Phosphorus (P) transformations in untreated and manure treated soils at increasing inorganic 

P application rates were assessed under controlled laboratory conditions using a sequential 

fractionation procedure. Triple superphosphate was added at rates of 0, 90, 180, 270 and 360 

kg P ha-1 with or without 20 t ha-1 of goat manure (dry weight) and incubated moist for 12 

weeks. Resin P, soil microbial biomass P (biomass P), 0.5 M NaHCO3 extractable inorganic P 

(NaHCO3-Pi) and 0.1 M NaOH extractable inorganic P (NaOH-Pi) concentrations were 

determined on days 1, 7, 14, 28, 56 and 84. Addition of inorganic P increased all P fractions 

but the increases were greater when goat manure was co-applied. The control treatments 

contained 17.2 and 27.5 mg P kg-1 of resin extractable P in the un-amended and manure 

amended treatments, respectively which increased to 118.2 and 122.7 mg P kg-1 at the highest 

rate of P application (360 kg P ha-1) on day 28 of incubation. NaOH-Pi was the largest 

extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 mg P kg-1 

in the unamended and manure amended treatments, respectively. Inorganic P addition 

increased the biomass P concentration from 16.8 to 43.9 mg P kg-1 in P alone treatments but 
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the fraction was greatly enhanced with manure addition, increasing it from 32.6 to 97.7 mg P 

kg-1. The largest increase in biomass P due to manure occurred at lower rates of added P 

indicating the potential of goat manure to enhance the fertilizer use efficiency of small 

inorganic P applications. This increase in biomass P following goat manure addition implies 

that it increased the proportion of added P immobilized in microbial cells that would be 

subsequently released into the soil solution and be available for plant uptake following 

biomass P turnover.  

Key words: P fractionation, goat manure, biomass P, resin-P, NaHCO3-Pi, NaOH-Pi,  
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4.2 INTRODUCTION 

Soil P is the least mobile and least available of the major plant nutrients. Its low availability 

has been described as `the bottle-neck of world hunger' (Rorty, 1946) and is a major 

constraint to agricultural production in most South African soils (Henry and Smith, 2006) as 

well as other highly weathered tropical soils (Warren, 1994). Phosphorus deficiency is mainly 

caused by strong sorption of P by aluminum (Al) and iron (Fe) oxides and hydroxides and 

other amorphous materials (Hinsinger, 2001). This necessitates large applications of fertilizer 

P to overcome P sorption (Bainbridge et al. 1995, Henry and Smith, 2002) and to achieve 

high crop yields (Warren, 1994) unaffordable by resource poor smallholder farmers. Limited 

nutrient inputs by smallholder farmers, because of their high cost, and limited accessibility, 

exacerbates soil P deficiency. It is therefore important to investigate affordable P management 

systems that optimize the integrated use of all nutrient sources (e.g., fertilizers, organic 

manures, waste materials) suitable for the maintenance of soil fertility and crop productivity. 

Incorporation of P into the soil microbial biomass is also reported to be another mechanism 

that significantly increases the availability of P to plants and which forms a significant pool of 

plant nutrients (Harris et al., 1997). This pool is said to play a key role in P dynamics in soils 

by immobilizing inorganic P which is later mineralized (Rubaek and Sibbesen, 1993). The 

soil microbial biomass (defined as the mass of all soil micro-organisms < about 5000 µm3) 

may be considered as a labile reservoir of potentially plant-available nutrients, including P 

(Brookes, 2004). During the process of biomass turnover, this P may be released slowly and 

taken up by the crop more efficiently (Parham et al., 2003; Brookes, 2004). For example, 

Nziguheba et al. (1998) reported increased soil microbial biomass P (biomass P) and 



 93 

decreased P sorption following incorporation of Tithonia diversifolia (Tithonia) as green 

manure into an acid soil in western Kenya. This increased P in the soil microbial biomass 

presumably enhanced turnover and biological cycling of P between labile pools of soil P. 

These investigators also measured a larger biomass P pool following joint addition of Tithonia 

with triple superphosphate compared to triple superphosphate alone. Application of inorganic 

P with organic manures also resulted in larger crop yields than when either were applied 

singly (Griffin et al., 2003; Ayaga et al., 2006).   

Combined application of goat manure and inorganic P in the soil would be expected that its 

addition to soil as an organic manure would result in increased P availability to plants. 

Therefore, understanding the role of goat manure in increasing P availability may lead to the 

development of better soil management systems that could increase the efficiency of soil P 

cycling and decrease P sorption, so allowing farmers to apply less inorganic P fertilizer. The 

aims of this study were therefore to evaluate the effects of combined addition of inorganic P 

and goat manure on the size and distribution of biomass P and inorganic P pools (resin P, 

NaHCO3-Pi and NaOH-Pi) in a moderately P fixing soil from the Transkei region of South 

Africa. 
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4.3 MATERIALS AND METHODS   

4.3.1 Incubation of amended soils 

The topsoil (0-15 cm) of a soil from Flagstaff, Eastern Cape, South Africa and goat manure 

which were earlier characterized and reported in Chapters 2 and 3, respectively (see Tables 

2.1and 3.1) was used in this experiment. The Flagstaff soil was selected for this study because 

it had the highest P fixing capacity among the seven soils studied and reported earlier (see 

Chapter 2, Table 2.4). Two hundred and fifty grams of air-dry soil (< 2 mm) were weighed 

into plastic containers and five rates of triple super phosphate applied at 0, 90, 180, 270 and 

360 kg P ha-1 (sieved < 1 mm) was applied as powder with or without goat manure 

(equivalent to 20 t ha-1 on a dry weight basis). The P rates were selected to be multiples of the 

highest P rate which was determined to maintain a P concentration of 0.2 mg l-1 in the soil 

solution. The amended soils were then mixed thoroughly and moistened to 80% field capacity 

or 19% moisture content (Griffin et al., 2003). Two small holes were made in each container 

lid to permit aerobic conditions during incubation. Sufficient replicates were prepared for 

each treatment to allow sampling at 7, 14, 28, 56, and 84 days. The samples were replicated 

three times and incubated in the dark at 25 ± 1 oC. The moisture level of the samples was 

monitored and corrected weekly. At each sampling, resin P, biomass P and inorganic P 

fractions (NaHCO3-Pi, and NaOH-Pi) were determined in moist, fresh soil samples as outlined 

below.  
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4.3.2 Fractionation of resin P, biomass P, NaHCO3-Pi, and NaOH-Pi 

The Hedley et al. (1982) fractionation scheme, modified to include biomass P, was used to 

investigate the sizes and the distribution of soil inorganic P and biomass P fractions (Figure 

4.1). 

 

 

 

 

 

 

 

 

 

 

Fig.  4.1 Modified Hedley sequential P fractionation procedure 
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packaged sheets and washed 4 times in distilled water then 4 times in 0.5 M HCl. The anion 

resins were then transferred to a beaker containing 0.5 M NaHCO3 (pH = 8.5), while the 

cation resin membranes were transferred to a beaker containing 0.5 M NaCl. The contents in 

the beakers were stirred and the solutions replaced hourly, five times. 

4.3.2.2 Extraction procedure  

Resin-P and biomass P 

The resin strip method of Kouno et al. (1995) was used.  Portions of moist soil, each 

containing the equivalent of 2 g oven-dry soil were prepared in three sets. The first set was 

treated with 1 ml of alcohol free CHCl3 and fumigated for 24 hours at room temperature. The 

CHCl3 was then allowed to evaporate for 4 hours at room temperature in a fume chamber. 

Two anion and two cation exchange resin strips, prepared as described above, and distilled 

water (20 ml) were then added and shaken for 16 hours at room temperature at 175 

oscillations per minute (Nziguheba et al., 1998). The second set of soils received distilled 

water, 2 strips of anion and cation exchange and was then shaken, as described above. The 

third set received P (spiked P) equivalent to 50 ug P g-1 soil as KH2PO4 (20 ml), resin strips 

and was then shaken, again as above. After shaking, the resin strips were removed from the 

soil extracts with tweezers and thoroughly rinsed with distilled water. The P adsorbed by the 

resins strips was recovered in 20 ml of 0.5 M HCl after shaking for 30 minutes. The inorganic 

P in the eluents was then determined by the method of Murphy and Riley (1962). The 

analyses were done in triplicates. 
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P-Fractions (NaHCO3
 - Pi and NaOH - Pi) 

The soil suspensions remaining after the resin strips were removed from the CHCl3 treated 

sets were centrifuged at 10,000 rev min-1 for 10 minutes and the supernatants discarded. 30 ml 

0.5 M NaHCO3 (pH 8.5) was then added to the residue and shaken for 16 hours at 175 

oscillations per minute (Nziguheba et al., 1998). The suspensions were then centrifuged at 

10,000 rev min-1 for 10 minutes and the solutions decanted into plastic containers. To the 

remaining soil residue of each sample, 30 ml 0.1 M NaOH was added and shaken for 16 

hours, centrifuged at 10,000 rev min-1 for 10 minutes and the solution decanted into plastic 

bottles. The P in the supernatant was then determined by the method of Murphy and Riley 

(1962).  

Calculation of biomass P 

Biomass P (Bp) was calculated from:  

Bp (mg kg-1 soil) = (Pf – Pnf)/(Kp * 100/R)   

Where:  

Pf  = P extracted from CHCl3 fumigated samples 

Pnf = P extracted from non-fumigated samples 

Kp = 0.4, the fraction of biomass P extracted after fumigation (Brookes et al., 1982). 

R   = % Recovery of added P = 100(Ps-Pnf)/50 (Brookes et al., 1982) where: 

Ps  = P extracted by exchange resins from non-fumigated soil spiked with P  
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4.3.3  Statistical analysis 

Statistical analysis was done using GenStat statistical software (GenStat Release 4.24DE, 

2005) by running a full model (60 treatments, 59 df), which was further split into a P rate 

effect (4 df), manure effect (1 df), incubation time effect (5 df), P rate * manure effect (4 df), 

P rate * incubation time effect (20 df), manure * incubation time effect (5 df), and P rate * 

manure * incubation time effect (20 df). Differences at p ≤ 0.05 were considered significant. 

Net treatment effects were calculated as the differences between the combined inorganic P 

and manure treatments and the inorganic P alone treatments.    
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4.4 RESULTS 

4.4.1  Soil and manure characterization 

Selected soil and manure properties are presented elsewhere in Chapter 2 and Chapter 3, 

respectively (see Tables 2.1 and 3.1). The soil solution pH was acidic with high 

concentrations of exchangeable Al, oxalate Al and exchangeable acidity. The concentrations 

of total organic carbon and nitrogen were low in this soil. The manure used in this study had a 

pH of 8.2 and had higher concentration of total carbon with a C: N ratio of 19.4 and a C: P 

ratio of 206.6. 

4.4.2  Effects of combined application of inorganic P and goat manure on inorganic P 

fractions 

All P fractions were influenced by P application rate, manure addition and incubation time 

and interactions were common (Table 4.1). Analysis of variance indicated that all extractable 

soil Pi fractions changed over time and most differences between the P rates, manure by time 

interaction were statistically significant (Table 4.1). 

The distribution of P pools as determined by sequential extraction following incubation of 

amended soils up to day 28 is given in Table 4.2. Day 28 was selected for interpretation of 

results because higher concentrations of biomass P which is considered a significant fraction 

influencing P availability in soils were observed on this day. Inorganic P (Pi) addition with or 

without manure significantly (p = 0.05) increased the P concentration of all fractions with 

larger concentrations generally found in manure treatments (Table 4.2). The control 

treatments where inorganic P was not applied had 17.2 and 27.5 mg P kg-1 of resin extractable 
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P in the non-amended and manure amended treatments, respectively. This P fraction increased 

to 118.2 and 122.7 mg P kg-1 at the highest added P rate (360 kg P ha-1). The resin P was 

about twice the NaHCO3-Pi concentration. The NaHCO3-Pi fraction ranged from 11.8 to 41.7 

mg P kg-1 and 13.9 to 41.4 mg P kg-1 in the unamended and manure treatments, respectively. 

The NaOH-Pi was the largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 

and 107.5 to 213.2 mg P kg-1 in the same treatments respectively (Table 4.2). The sum of 

resin-P, NaHCO3-Pi and biomass P (labile P) ranged from 24.1 to 44.8% in the unamended 

soils and 40.5 to 54.9% in manure amended soils.  The labile Pi comprised between 10.9 to 

34.0% in the unamended and between 17.1 and 42.5% of the added P in the manure amended 

soils. Goat manure addition increased the concentrations of biomass P and resin-P but the 

largest effect was with biomass P. NaOH-Pi fraction decreased with increasing rate of manure 

addition and there were minimal effects on NaHCO3-Pi fractions (Figure 4.2). Biomass P 

ranged from 16.8 to 43.9 mg kg-1 in the soils treated with inorganic P alone and from 32.6 to 

97.7 mg kg-1 in the manure plus inorganic P treatments, respectively (Table 4.2). The 

interactions between inorganic P and manure addition on biomass P were significantly (p = 

0.05) different (Figure 4.3). 
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Table 4.1 Summary of analysis of variance (F values) of the effects of inorganic P and goat 

manure application on different P fractions during 84 days of incubation 

Factor Df Resin-P NaHCO3-Pi NaOH-Pi Biomass P 

Replication 2 2.3 n.s 0.6 n.s 1.4 n.s 2.3 n.s 

Manure 1 596.9*** 56.9*** 1.1 n.s 250.9*** 

P rate 4 6502.2*** 854.8*** 591.7*** 51.5*** 

Time 5 1484.2*** 92.5*** 44.38*** 162.1*** 

Manure * P rate 4 1.7 n.s 1.2 n.s 3.43** 15.4*** 

Manure * time 5 8.0*** 1.2 n.s 27.2*** 5.01*** 

P rate * time 20 103.8*** 11.8 *** 11.4*** 56.3*** 

Manure * P rate * time 20 4.7*** 0.7 n.s 2.5*** 1.5 n.s 

Residual (MSE) 118 12.2 5.3 65.3 126.3 

Cv (%)  4.3 8.7 4.8 29.6 

n.s, not significant, **, *** significant at 0.01 and 0.001 probability level, respectively 
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Table 4.2  The effects of inorganic P and goat manure (GM) addition on the distribution of P 

fractions after 28 days of incubation 

P fractions (mg P kg-1) Treatment Total Pф 

(mg P kg-1) 

(T) 
Resin P 

(a) 

Biomass P 

(b) 

NaHCO3 -Pi 

(c) 

NaOH-Pi 

(d) 

Biomass P 
as a % 

of total P 
b/T *100% 

Without manure     
 

0 420 17.2 j 16.8 b 11.8 g 144.3 f 4.0 d 

90 465 39.6 h 30.7 b 17.9 f 164.3 e 6.6 cd 

180 510 59.2 f 45.9 b 24.9 d 193.5 d 9.0 cd 

270 555 93.6 d 49.6 b 34.3 b 227.9 b 8.9 cd 

360 600 118.2 b 43.9 b 41.7 a 250.6 a 7.3 cd 

With manure      

0 434 27.5 i 32.6 b 13.9 g 107.5 g 7.5 cd 

90 479 54.6 g 50.2 b 21.1 e 149.5 f 10.5 bc 

180 524 73.5 e 87.7 a 28.3 c 171.0 e 16.7 ab 

270 569 103.9 c 97.7 a 35.6 b 196.0 d 17.2 a 

360 614 122.7 a 96.9 a 41.4 a 213.2 c 15.8ab 

LSD(0.05) - 4.0 34.5 3.1 13.3 6.7 

Cv (%) - 3.3 36.7 6.7 4.3 8.5 

s.e.d - 1.8 16.5 1.5 6.4 3.2 

Means followed by the same letters within columns are not statistically different (p ≤ 0.05). ф Soil 
total P + added goat manure and inorganic P (mg kg-1), LSD = Least significant difference, Cv = 
Coefficient of variation, s.e.d = standard error of the difference of treatment means 
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Fig. 4.2 Net effects of the co-application of goat manure with inorganic 

P to the various P fractions after 28 days of incubation.  
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Fig. 4.3 Effects of combined addition of goat manure and inorganic P on biomass P 

fraction during 84 days of incubation (bar represents least significant difference at p = 

0.05, s.e = standard error of treatment means) 
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4.4.3 Effects of incubation time on P fractions 

The P concentrations in the different fractions varied considerably between treatments and 

incubation times (Table 4.1, Figure 4.4). The interactions between inorganic P derived from 

manure addition and incubation time were significantly (p = 0.05) different for resin-P, 

biomass P and NaOH-Pi fractions (Table 4.1). The resin-P fraction declined shortly after 

inorganic P addition, with or without goat manure (Figure 4.4). Biomass P significantly (p = 

0.05) increased following inorganic P addition up to day 28 but declined thereafter (Figure 

4.4). The largest increase occurred between 90 and 180 kg added P ha-1 P by day 28.  Manure 

amended soils contained more biomass P than soils amended with inorganic P alone (Figure 

4.4).  

4.4.4 Relationship between added P with different P fractions 

All soil P fractions were positively correlated with the rate of addition of added P (Table 4.3). 

The NaHCO3-Pi was the fraction most strongly correlated (r = 0.93) with added P whereas 

biomass P was the least correlated (r = 0.55). Addition of P accounted for 90.4% of the 

variation in the sum of labile P fractions (Table 4.3) whereas 94.8% of the variance in the sum 

of the labile P fractions was accounted for by the resin P concentration in the soil. Among the 

P fractions, biomass P was significantly (p = 0.05) correlated with resin P (r = 0.62) only. 
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Fig. 4.4 Effects of inorganic P without or with goat manure (GM) on the distribution of P 

fractions at different incubation periods. (Bars represent standard deviations).  
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Table 4.3 Correlation coefficients for added P, inorganic-P and biomass P fractions 

P fractions Properties Added P 

Resin P NaHCO3 -Pi NaOH-Pi Biomass P Sum of labile 

P fractions 

Added P 1.000      

Resin P  0.904 1.000     

NaHCO3-Pi 0.931 0.716 1.000    

NaOH-Pi 0.893 0.855 0.780 1.000   

Biomass P 0.551 0.624 0.429ns 0.478ns 1.000  

Sum of labile 

P fractions 

0.904 0.948 0.761 0.821 0.819 1.000 

ns = not significant at P = 0.05 
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4.5 DISCUSSION 

The P recovered in the different fractions was strongly dependent on the P added to the soil 

suggesting that an external source of inorganic P was necessary to increase their pool sizes. 

The proportions of the three inorganic P fractions extracted were in the order NaOH–Pi > 

Resin-P > NaHCO3 –Pi (Figure 4.4). The NaOH-Pi was the largest extractable Pi fraction and 

thus was the major sink for the applied P. According to Hedley et al. (1982) this fraction is 

less plant-available and usually associated with humic compounds and amorphous and some 

crystalline Al and Fe oxides in soils.  

The resin extractable P concentration is considered to be an indicator of freely exchangeable 

soil P, either already in solution or in rapid equilibrium with soil solution (Henrίquez and 

Killorn, 2005).  It is therefore one of the most plant available soil P fractions. Resin 

extractable P declined during incubation following P addition to the soil (Figure 4.4), as 

reported by Agbenin and Tiessen (1995). In contrast, NaOH Pi tended to increase with time 

(Figure 4.4) seemingly at the expense of resin extractable P, suggesting that the observed 

decline in resin extractable P with time was a result of P sorption.  Daroub et al. (2000) 

reported a similar transfer of added inorganic P from the resin-Pi fraction to the NaOH-Pi 

fraction.  

The results further showed that the NaOH-Pi fraction was relatively smaller in soils where 

added P was applied with goat manure than when added P was applied alone (Figure 4.4, 

Table 4.2) indicating that the presence of goat manure helped to minimize the sorption of 

added P in the soil. This confirms results reported in Chapter 3 of this thesis and other work 
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(e.g. Iyamuremye et al., 1996; Erich et al., 2002) showing that addition of organic materials to 

soil decreases P sorption.  Erich et al. (2002) reported increased plant available P and resin P 

in soils amended with cattle manure in a potato cropping system while O’Halloran (1993) 

observed increased labile inorganic P in soils receiving manure and triple superphosphate 

compared with triple superphosphate alone. Similarly, Sharpley et al. (1984) and Nziguheba 

et al. (1998) observed decreased P sorption and concomitant increases in resin P, NaHCO3-P 

and biomass P in soils following application of manure and Tithonia, respectively. The 

decreased P sorption following application of organic materials is believed to be due to 

production of organic acids during the decomposition of organic material, which temporarily 

bind to the oxides and the hydroxides on the surfaces of clay particles (Iyamuremye et al., 

1996).  

Inorganic P addition increased the biomass P fraction which was further enhanced by manure 

addition (Table 4.2 and Figure 4.4). Biomass P ranged from 16.8 to 43.9 mg kg-1 and 32.6 to 

97.7 mg kg-1 in the inorganic P alone and manure plus inorganic P treatments, respectively 

(Table 4.2). There was, however, a significant time x P rate interaction (Table 4.1) so that the 

size of the biomass P fraction varied with time at all rates of P application (Figure 4.4). 

Biomass P increased with time at all rates of added P, peaking on day 28 and declining 

thereafter. The largest increases on day 28 occurred between 90 and 180 kg P ha-1 (Figure 

4.4).  Kouno et al. (2002) attributed such increases to uptake of inorganic P from added 

fertilizer P into the biomass and conversion into other forms of P such as polyphosphates and 

metaphosphates that serve as cellular storage products. The biomass P fraction was 

significantly (p = 0.05) correlated with added P (r = 0.56) suggesting that biomass P has a 
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great potential to protect added P from sorption by soil constituents. The decrease in biomass 

P after day 28 coincided with an increase in the proportion of the NaHCO3 -Pi fraction (Figure 

4.4) suggesting that the observed decrease in biomass P was a result of its mineralization and 

conversion to inorganic P. The fact that the biomass P peaked at day 28 in the present study 

suggests that in order to derive maximum benefit from the P protected in biomass P, planting 

may have to be synchronized such that the peak period for biomass P decline, whereby P may 

be released, coincides with the period of maximum P demand by the target crop. However, 

before this can be implemented the peak period for biomass P and its subsequent 

mineralization will need to be established under actual field conditions. 

Although biomass P increased following addition of P added as fertilizer or in goat manure 

applied singly, a greater total increase occurred when they were applied together. The increase 

in biomass P in the presence of goat manure seems to have occurred at the expense of the 

NaOH-Pi fraction (Figure 4.4) showing the protective effect of biomass P on added P. The 

increased biomass P is assumed to be due to increased synthesis of biomass P in soil 

following goat manure addition. Previous studies e.g. Iyamuremye et al. (1996); Hinsinger, 

(2001) have shown that soil biomass is increased to a greater extent with combined addition 

of manure and inorganic P than by inorganic fertilizer alone.  More recently, Ayaga et al. 

(2006) reported similar results following manure application to soil in field experiments in 

Kenya. They postulated that addition of manure stimulated the synthesis of soil microbial 

biomass resulting in increased demand for P, which becomes immobilized in labile forms in 

the cells of the living soil micro-organisms and in the associated pool of microbial 

metabolites. Thus manure further protects the added P from fixation by soil. The turnover of 
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the biomass P pool may therefore provide a slow release of inorganic P that plants can use 

more efficiently than a single large pulse of P fertilizer, which may otherwise be fixed and 

removed from the available P pool before plants can use it efficiently (Brookes et al., 1984; 

Ayaga et al., 2006).   

A significant manure x P rate interaction on biomass P was observed (Table 4.1) in that the 

effect of goat manure on biomass P varied with rate of P application (Figure 4.3). The largest 

proportional increases in biomass P due to manure addition (Figure 4.3) occurred at the lower 

rates of P application (90 and 180 kg P ha-1). This implies that application of goat manure 

together with small inputs of P fertilizers could be a cost effective way of increasing P 

fertilizer use efficiency in smallholder farms in South Africa, where goat manure and other 

animal manures are available. Since only one rate of manure application (20 t ha-1) was used 

in this study a follow up study (Chapter 5) investigated, among other things, if similar 

improvements in added P availability could be achieved with lower rates of manure 

application.  

4.6 CONCLUSIONS 

Addition of inorganic P to soil increased all soil P fractions examined but the increases were 

greater when goat manure was co-applied. Application of goat manure alone marginally 

increased soil labile Pi fractions and biomass P, whilst greater increases were obtained with 

the combined application of P fertilizer with goat manure. The quantities of P recovered in the 

different fractions were closely related to the amounts of P added to the soil; increasing 

proportionately with increasing amounts of added P.  Manure addition increased soil biomass 
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P with 17.8 to 24.2% of the added P immobilized by the biomass. This indicates that goat 

manure provided an energy source for microbial activity that stimulated an increased biomass 

in the soil, resulting in increased demand for P. The immobilized P would therefore be 

maintained in labile forms that become potentially plant-available following microbial 

turnover and mineralization. The largest increase in biomass P following manure addition 

occurred at smaller rates of added P indicating the potential of goat manure to enhance the 

efficiency of small rates of P fertilizers.  Biomass P peaked on day 28 under laboratory 

conditions and declined thereafter seemingly due to mineralization and conversion to 

inorganic P. Further work is now required to determine if this also occurs under glasshouse 

and/or field cropping conditions. Should this also hold under field conditions, there may be a 

benefit of synchronizing planting such that the peak period of P demand by the target crop 

coincides with maximum mineralization of biomass P. The plant availability of the different P 

fractions as influenced by added goat manure was the subject of a separate study reported in 

Chapter 5. 
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CHAPTER 5 

 

EFFECTS OF GOAT MANURE AND PHOSPHATE ADDITION ON IN ORGANIC P 

AND MICROBIAL BIOMASS P FRACTIONS AND THEIR RELATIO NSHIP WITH 

PLANT P UPTAKE AND DRY MATTER YIELD 

 

5.1 ABSTRACT 

Results of a previous laboratory incubation study indicated that when goat manure and 

fertilizer P were applied together, a synergistic effect occurred whereby labile P and biomass 

P were increased more than when fertilizer P was applied alone. It, however, remained to be 

established whether the observed effects would translate to improved P availability and plant 

growth. The objectives of this study were therefore to investigate the effects of the combined 

applications of different rates of inorganic P and goat manure on (i) the concentration and 

distribution of soil inorganic and biomass P fractions in the presence of growing plants and, 

(ii) to relate the P concentrations in these fractions to plant growth and P uptake by maize 

(Zea maize) in a glasshouse pot experiment. Four rates of goat manure (0, 5, 10 and 20 t ha-1 

dry weight basis) and four rates of inorganic P (0, 90, 180 and 360 kg P ha-1) as triple super 

phosphate were applied to 7 kg soil portions and maize sown immediately thereafter. Resin-P, 

soil microbial biomass P (biomass P), 0.5 M NaHCO3 extractable inorganic P (NaHCO3-Pi), 

and 0.1 M NaOH extractable inorganic P (NaOH-Pi) concentrations were determined at the 6th 

and 12th week after maize planting and related to dry matter yield and P accumulation in 

plants. Biomass P was significantly increased by each increment of goat manure up to 20 t ha-
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1 but manure had no effect on resin P, NaHCO3–Pi, or NaOH–Pi fractions. Addition of 

inorganic P significantly increased the concentration of all P fractions and followed the order 

NaOH-Pi >> resin P > biomass P > NaHCO3–Pi. With each increment of added P the largest 

increases in extractable P were observed in the resin P and NaOH–Pi fractions and only 

marginal increases in NaHCO3-Pi. At 12 weeks after planting goat manure had highly 

significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and NaOH–Pi. A 

significant manure*P rate interaction was observed between all P fractions at 12 weeks after 

planting. Resin P was decreased by 56 to 68% between the 6th week and the 12th week of 

sampling and was the most depleted fraction. Dry matter yield and P uptake were highly and 

significantly (p = 0.05) correlated with the different soil P fractions. The correlations followed 

the order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 

0.56) for dry matter yield at 6 weeks after planting. The combination of biomass P, resin P 

and NaHCO3-Pi explained 75.8% of the variation in dry matter yield of which 63.0% of the 

variation was explained by biomass P alone. The predictive equation for maize dry matter 

yield was: DM (g) = 1.897 biomass P + 0.645 resin P (r = 0.73). The synergistic benefits to 

maize growth realized with co-application of lower rates of goat manure with inorganic P 

indicate the potential of goat manure application in the manipulation of the microbial biomass 

to improve P cycling and increasing the effectiveness of added P. 

Key words: Goat manure, biomass P, resin-P, NaHCO3-Pi, NaOH-Pi, dry matter yield, plant 

P uptake 
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5.2 INTRODUCTION 

The need to identify efficient plant nutrient management practices to increase and sustain food 

production is a priority for most African countries mainly due to their rapidly growing 

populations and limited availability of productive land. Phosphorus is one of the nutrients that 

cause major limitations in crop production in the tropics and subtropics and which requires 

management interventions for improved crop yields, especially in the smallholder farming 

sector. 

Phosphorus deficiency is mainly caused by strong sorption of P by aluminium (Al) and iron 

(Fe) oxides and hydroxides and other amorphous materials (Hinsinger, 2001). This 

necessitates large applications of fertilizer P to overcome P sorption and to achieve high crop 

yields (Warren, 1994; Henry and Smith, 2002), unaffordable by resource poor smallholder 

farmers. Limited nutrient inputs by smallholder farmers, because of their high cost, and 

limited accessibility exacerbates soil P deficiency. It is therefore important to investigate 

affordable P management systems that optimize integrated use of all nutrient sources (e.g., 

fertilizers, organic manures, waste materials) suitable for the maintenance of soil fertility and 

crop productivity. 

Goat manure is readily available on most smallholder farms in the Eastern Cape Province of 

South Africa, being second only to cattle manure in terms of availability (Yoganathan et al., 

1998). It would be expected that addition of goat manure to soil would result in increased P 

availability through reduced sorption of added P, as found with other similar organic materials 

(e.g. Hue, 1992; Iyamuremye et al., 1996). Understanding the role of goat manure in 
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enhancing P availability of added P in high P fixing soils may lead to the development of cost 

effective soil management systems that could increase the efficiency of soil P utilization by 

crops. This would allow subsistence farmers in the Eastern Cape to apply less inorganic P 

fertilizer. 

The soil microbial biomass is an important reservoir of P in soils (Brookes et al., 1984; 2001) 

and therefore its manipulation may possibly provide a means to improve the availability of 

both soil P and added P. A preliminary laboratory incubation study (Chapter 4) showed that 

addition of inorganic P increased labile inorganic P and microbial biomass P fractions and the 

increases were greater when goat manure was co-applied.  Enhanced P availability following 

combined addition of organic material and fertilizer P was reported previously (e.g. 

Nziguheba et al., 1998; Griffin et al., 2003; Laboski and Lamb, 2003). This was considered to 

be because, besides being a source of P and other nutrients, organic materials provide an 

energy source for microbial activity (Parham et al., 2003). Thus, the application of manure or 

other organic materials stimulates the growth of the soil microbial biomass with a 

corresponding increase in its demand for P.  The biomass then acts as a labile pool of P which 

is protected from P fixation, and which is potentially plant available (Brookes et al. 1984).   

The objectives of this study were therefore to investigate the effects of the combined 

applications of different rates of inorganic P and goat manure on (i) the concentration and 

distribution of soil inorganic and biomass P fractions in the presence of growing plants and, 

(ii) to relate the P concentrations in these fractions to plant growth and P uptake by maize in a 

glasshouse pot experiment. 
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5.3 MATERIALS AND METHODS 

5.3.1 Experimental details 

Combinations of four rates of goat manure (0, 5, 10 and 20 t ha-1) and four rates of inorganic 

P (0, 90, 180 and 360 kg P ha-1) as triple super phosphate were applied by uniformly mixing 

the added P and manure with 7 kg of air-dry soil in each pot. To ensure other nutrients were 

non-limiting N and K were applied as ammonium nitrate (28 % N) and KCl (53 % K), 

respectively to all pots at rates equivalent to 200 kg N ha-1 and 100 kg K ha-1. In addition, 

each pot received the equivalent of 5.7 kg Zn ha-1, 2.5 kg Cu ha-1, 4.0 kg Mn ha-1, 0.1 kg Mo 

ha-1, 1.1 kg B ha-1 and 56.1 kg S ha-1 after the plants had established. Nutrient carriers were; 

ZnSO4.7H2O, CuSO4.5H2O, MnCl2.4H2O, Na2MoO4.2H2O, Na2B4.O7.10H2O and K2SO4, 

respectively. Treatments were applied assuming that the plough layer (0 -15 cm depth) of 1 

hectare contained 2 x 106 kg of soil. The pots were placed on saucers in a randomized 

complete block design and replicated three times. Two sets were prepared to allow sampling 

on the 6th and 12th week after planting. They were watered approximately to field capacity and 

left to incubate overnight to remove the effects of sample handling (sieving, drying and 

mixing). Maize seeds (DKC 6125) were sown at 4 seeds per pot at a depth of 5 cm and 

covered with soil. Plants were thinned to 2 plants per pot at 7 days after germination. Water 

was added to the pots to maintain adequate soil moisture for the growing plants as required.  

The shoots were harvested at 6 and 12 weeks after planting to examine changes in P in the 

different P pools over time, and oven-dried at 65 oC to a constant weight for dry matter 

determination. The samples were then ground to pass though a 1 mm sieve and analyzed for 

total P in the whole plant at week 6 and in the ear leaf blade at week 12. Determination of 
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tissue P concentration was done using a H2SO4/H2O2 wet digestion procedure (Okalebo et al., 

2002). The concentration of P in the digests was determined by the method of Murphy and 

Riley (1962).  

Soil samples were collected at each harvest to determine sequentially the concentrations of 

various P fractions (resin P, biomass P, NaHCO3-Pi and NaOH-Pi). The method of Kouno et 

al. (1995) was used as described in Chapter 4 for these analyses. Phosphorus uptake was 

estimated by multiplying the maize P concentration by the respective dry matter yield.  

5.3.2 Statistical analysis 

Statistical analysis was done using GenStat statistical software (GenStat Release 4.24DE, 

2005) by running a full model (16 treatments, 15 df), which was further split to a P rate effect 

(3 df), manure effect (3 df) and P rate x manure effect (9 df). Differences with p ≤ 0.05 were 

considered significant. Simple regressions and correlations were also conducted to obtain 

relationships between different P fractions, dry matter yield and plant P concentration in the 

plant. The contributions of P fractions to dry matter yield and total plant P concentrations 

were examined using the maximum r2 improvement forward stepwise model-building 

procedure (SYSTAT, 2000).  
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5.4 RESULTS 

5.4.1 Soil and manure characterization 

Selected soil and manure properties are presented in Chapters 2 and 3, respectively (see 

Tables 2.1 and 3.1). The soil solution pH was acidic with high concentrations of exchangeable 

Al, oxalate Al and exchangeable acidity. The concentrations of total organic carbon and 

nitrogen were low in this soil. The manure had a pH of 8.2, a C: N ratio of 19.4 and a C: P 

ratio of 206.6. 

5.4.2 Effects of the co-application of goat manure with fertilizer P on sequentially 

extracted P fractions.  

Goat manure had no effect on resin P, NaHCO3–Pi, or NaOH–Pi but biomass P was 

significantly increased by each increment of goat manure up to 20 t ha-1 at six weeks after 

planting (Figure 5.1 and Table 5.1). Added inorganic P, however, had a highly significant 

effect on all P fractions (Table 5.1). As there was no significant manure*P rate interaction 

(Table 5.1) the effects of added P at different rates on each P fraction were averaged across 

manure rates (Figure 5.2). The P concentrations in the different fractions followed the order 

NaOH-Pi >> resin P > biomass P > NaHCO3–Pi. Biomass P did not significantly increase 

above 90 kg P ha-1.  However, the resin P and NaOH-Pi fractions increased almost linearly 

with each increment of added P. With each increment of added P the largest increases in 

extractable P occurred in the resin P and NaOH–Pi fractions (Figure 5.2). Only marginal 

increases in NaHCO3-Pi occurred with each increment of added P.  
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At 12 weeks after planting, addition of goat manure significantly increased resin P and 

biomass P but had no effect on NaHCO3-Pi and NaOH–Pi (Table 5.2).  In contrast to results 

obtained at 6 weeks after planting (Table 5.1) a significant manure*P rate interaction was 

observed for all P fractions at 12 weeks after planting (Table 5.2). The interaction effect was 

highly significant for resin P and biomass P but only marginally so for NaHCO3-Pi and 

NaOH–Pi. Increasing rates of manure application significantly increased the concentration of 

resin-P but this effect was only significant when goat manure was applied at 10 and 20 t ha-1 

(Figure 5.3a). When no P was added, goat manure increased biomass P slightly when it was 

applied at rates ≥ 10 t ha-1 but large increases in biomass P occurred at all rates of added P 

with 5 to 10 t ha-1 goat manure (Figure 5.3b). Addition of goat manure increased the 

concentration of NaHCO3-Pi only at the highest rate of added P (Figure 5.3c) and had 

inconsistent effects on NaOH–Pi (Figure 5.3d).  

Table 5.1  Summary of analysis of variance (F values) of the effects of agoat manure and 

inorganic P application on different P fractions and dry matter yield 6 weeks after planting 

Factor Df Resin P Biomass P NaHCO3-Pi NaOH-Pi Dry matter yield 

Replication 2 0.7n.s 0.7n.s 1.4n.s 0.4n.s 19.0ns 

Manure rate 3 2.7n.s 31.9*** 2.4ns  0.4ns 2.1ns 

P rate 3 288. 8*** 28.1*** 169.5*** 94.8*** 188.9***  

Manure * P rate 9 0.3n.s 1.1n.s 0.7ns 0.8ns 1.1ns 

Residual (MSE) 30 - - - - - 
a-dry weight basis, n.s, not significant, *, **, *** significant at 0.05, 0.01 and 0.001 probability level, 
respectively 
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Table 5.2 Summary of analysis of variance (F values) of the effects of agoat manure and 

inorganic P application on different P fractions and dry matter yield 12 weeks after planting 

Factor Df Resin P Biomass P NaHCO3-Pi NaOH-Pi Dry matter 

yield 

Replication 2 0.6n.s 2.4n.s 1.3n.s 0.5n.s 0.74n.s 

Manure rate 3 50.2*** 30.1*** 2.5n.s 0.2n.s 41.9 ***  

P rate 3 1077.2*** 117.3*** 90.3*** 185.1*** 219.2***  

Manure * P rate 9 3.2** 6.9*** 2.4* 3.0* 3.11**  

Residual (MSE) 30 - - - - - 
a-dry weight basis, n.s, not significant, *, **, *** significant at 0.05, 0.01 and 0.001 probability level, 
respectively 
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Fig. 5.1  Effects of different rates of goat manure application on soil biomass P at week 6 (Bar 

represent least significant difference at p = 0.05, s.e = standard error of treatment means). 
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Fig. 5.2 Effects of rate of added inorganic P on soil P fractions at week 6. (Bars 

represent least significant difference at p = 0.05). 
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Fig. 5.3 Interaction effects of added goat manure (GM) and inorganic P on resin P (a), 

Biomass P (b), NaHCO3-Pi (c) and NaOH-Pi (d) 12 weeks after planting. (Bars represent least 

significant difference at p = 0.05, s.e = standard error of treatment means). 
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5.4.3 Changes in the P concentration of the various P fractions between sampling 

periods when inorganic P was co-applied with 5 t ha-1 goat manure. 

The combined effect of applying 5 t ha-1 goat manure with different rates of added P on the  

concentration and relative distribution of the different P fractions at 6 and 12 weeks after 

planting is shown in Figure 5.4. At six weeks after planting the concentrations of the P 

fractions followed the order NaOH–Pi >> resin P > biomass P >> NaHCO3–Pi (Figure 5.4a).  

After a further 6 weeks of plant growth the distribution of the P fractions changed 

considerably, notably that of resin P (Figure 5.4b). Resin P was decreased by 56 to 68% 

between the 6th week and the 12th week of sampling and was thus the most depleted fraction 

(Table 5.3). By contrast, biomass P was only marginally depleted at P rates < 180 kg P ha-1 

while at the highest P application rate it was substantially increased (Table 5.3). The 

NaHCO3–Pi was increased at all rates except at 180 kg P ha-1 where it was slightly depleted. 

The NaOH–Pi was moderately depleted at P rates < 180 kg P ha-1 but tended to increase at a 

rate of 360 kg P ha-1. Consequently at 12 weeks after planting, the order of magnitude of the 

different fractions changed to NaOH–Pi > biomass P > resin P > NaHCO3–Pi (Figure 5.4b). A 

similar pattern of P depletion was observed at the other rates of goat manure application (data 

not shown). 
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Fig. 5.4  Relative distributions of sequentially extracted P fractions in soil at 6 (a) and 12 (b) 

weeks after planting as influenced by added P at a manure rate of 5 t ha-1 

 

 

Table 5.3 Changes in P concentrations of the various P fractions between the 6th and 

12th week sampling periods at a manure rate of 5 t ha-1 

Percent P change Added P 

(kg ha-1) Resin P Biomass P NaHCO3-Pi Labile Pi 

 

Moderately labile Pi  

(NaOH-Pi) 

0 -56 -7 37 -19 -20 

90 -68 -5 10 -58 -15 

180 -66 -14 -2 -68 -13 

360 -62 55 30 -32 8 
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5.4.4  Effects of goat manure and inorganic P addition on dry matter yield and 

plant P uptake 

Maize dry matter yield at 6 weeks after planting was increased significantly (p = 0.05) by 

added fertilizer P but it was not influenced by goat manure addition or its interaction with 

fertilizer P (Table 5.1, Figure 5.5a). However, at 12 weeks the dry matter yield was increased 

significantly (p = 0.05) by both fertilizer P and goat manure, and was significantly influenced 

by their interaction (Table 5.2, Figure 5.5b). The largest increases in maize dry matter yield 

were observed when fertilizer P at different rates was co-applied with 5 t ha-1 goat manure. 

Increasing the manure rate to 10 t ha-1 produced a further increase in dry matter yield at the 

lowest rate of added P (90 kg P ha-1) but not at higher P rates (Figure 5.5b).  Co-application of 

fertilizer P with 20 t ha-1 goat manure did not result in further dry matter yield increases. 

Phosphorus accumulation in the plant tissue followed a pattern similar to that of dry matter 

yield (Figure 5.6).  
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Fig. 5.5 Effects of combined manure and inorganic fertilizer P addition on dry matter yield at 

6 weeks (a) and 12 weeks (b) after planting, respectively. (Bars represent least significant 

difference at p = 0.05, s.e. = standard error of treatment means). 
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Fig. 5.6 Effects of combined goat manure and inorganic P addition on plant tissue P 

concentration 12 weeks after planting. (Bar represents least significant difference at p = 0.05, 

s.e. = standard error of treatment means).  

(b)

40

60

80

100

120

140

160

180

200

220

240

260

0 5 10 20

Goat manure (t ha-1)

0 mg P kg-1
90 kg P ha-1
180 kg P ha-1
360 kg P ha-1
LSD (interaction = 14.4, s.e = 4.9)

(a)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 5 10 20

Goat manure (t ha-1)

D
ry

 m
at

te
r 

yi
el

d
 (

g 
p

la
n

t
-1

)

0 mg P kg-1
90 kg P ha-1
180 kg P ha-1
360 kg P ha-1
LSD (P rate = 1.2), s.e = 0.4



 130 

5.4.5. Relationship between added inputs and soil P fractions with dry matter yield 

The correlation coefficients between soil P fractions and dry matter yield at the 6 and 12 

weeks harvests are given in Tables 5.4 and 5.5, respectively. Dry matter yield and P uptake 

were highly and significantly (p = 0.05) correlated with the different P fractions in the soil. 

The correlations followed the order: resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 

0.84) >> biomass P (r = 0.56) for dry matter yield at 6 weeks after planting. Correlations with 

plant P uptake followed the same trend (Table 5.4).  The order, however, changed at week 12 

in that biomass P had the highest correlation coefficient. The correlation coefficients of the P 

fractions and dry matter yield followed the order: biomass P (r = 0.84) > resin P (r = 0.79) > 

NaOH P (r = 0.73) > NaHCO3-Pi (r = 0.64) (Table 5.5).  

Table 5.4 Correlation coefficients for added P, dry matter yield and different P 

fractions 6 weeks after planting 

P Fractions Properties 

Resin P Biomass P NaHCO3-Pi NaOH-Pi 

Dry 
matter 
yield 

Resin P 1     

Biomass P 0.406** 1    

NaHCO3-Pi 0.964*** 0.422** 1   

NaOH-Pi 0.943*** 0.409** 0.970*** 1  

Dry matter yield 0.853*** 0.557*** 0.836*** 0.847***  1 

Plant P uptake 0.900*** 0.571*** 0.872*** 0.873***  0.984*** 

 *, **, *** significant at 0.05, 0.01 and 0.001 probability levels, respectively 
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Table 5.5 Correlation coefficients for added P, dry matter yield and different P fractions 12 

weeks after planting 

P Fractions Properties 

Resin P Biomass P NaHCO3-Pi NaOH-Pi 

Dry 
matter 
yield 

Resin P 1     

Biomass P 0.839*** 1    

NaHCO3-Pi 0.920*** 0.726*** 1   

NaOH-Pi 0.933*** 0.776*** 0.906*** 1  

Dry matter yield 0.791*** 0.841*** 0.639*** 0.733*** 1 

*, **, *** significant at 0.05, 0.01 and 0.001 probability level, respectively 

 

Regression analysis between dry matter yield and different P fractions showed curvilinear 

relationships (Figure 5.7 and 5.8). The mean dry matter yield increased with increasing P 

concentrations in all P fractions, with resin P accounting for much of the variation in dry 

matter accumulation (r2 = 0.81). The value of the simple regression coefficient of biomass P 

with dry matter yield generally increased in the second harvest with 80% of the yield variation 

being accounted for by changes in biomass P as compared to 39% in the first harvest (Figure 

5.7). Phosphorus accumulation in the plants followed a pattern similar to that of dry matter 

yield (data not shown). Since all P fractions were individually highly correlated with dry 

matter yield and P uptake, forward stepwise multiple regressions were used to determine the P 

fraction or combination of fractions that had the most influence on plant growth. The 

combination of biomass P, resin P and NaHCO3-Pi explained 75.8% of the variation in dry 

matter yield of which 63.0% of the variation was explained by biomass P alone. Biomass P 

and resin P jointly accounted for 73.3% of the variation in dry matter yield (Table 5.6). The 

predictive model for percent P concentration in the plant was only significant when biomass P 
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was included in the model and accounted for 63.0% of the variance of P concentration in the 

plant tissue (Table 5.6). 

Table 5.6 Stepwise multiple regression equations between P fractions and dry matter yield 

(DM) and P concentration in the plant ear leaf blade 12 weeks after planting 

Predictive dry matter yield (DM) equations r2 

DM (g) = 2.535 biomass P  0.63 

DM (g)= 1.897 biomass P + 0.645 resin P 0.73 

DM (g)= 1.609 biomass P + 1.632 resin P – 1.691 NaHCO3-Pi + 68.527 0.76 

Predictive plant P concentration (%P) equation  

% P = 0.002 biomass P + 0.113 0.63 
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Fig. 5.7 Relationships between dry matter yield and Resin P, biomass P and NaHCO3-Pi, at 6 and 12 weeks 

after planting, respectively  
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Fig. 5.8 Relationships between dry matter yield and NaOH-Pi at 6 and 12 weeks after 

planting respectively  
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5.5 DISCUSSION 

The application of inorganic P fertilizer to soil generally increased the Pi fractions extracted 

by resin, 0.5 M NaHCO3 (pH 8.5) and 0.1 M NaOH. The P concentrations were in the order 

NaOH–Pi > resin P > NaHCO3–Pi at 12 weeks after planting (Figure 5.3). The P fractions 

removed by exchange resins and NaHCO3 constitute the labile fraction and it is considered to 

be biologically and plant available in the short term, because it rapidly desorbs from the 

surface of soil colloids (Hedley et al., 1982). A larger increase in the sum of these labile P 

fractions was observed in the fertilizer P plus manure treated soils than in the fertilizer P alone 

treatments (Figure 5.3). The higher P concentrations in these labile fractions was attributed 

partly to the addition of P through manure and partly to the effect of organic material added to 

soil which may have decreased P sorption. The decrease in P sorption was attributed to the 

possible effect of organic acids produced during the decomposition of organic materials that 

compete for sorption sites and formation of stable chelates with Fe and Al (Laboski and 

Lamb, 2003).  

At each rate of added P, resin P was the most depleted fraction (56 to 68%) between the 6th 

and 12th week of planting. As resin P is the most labile P fraction (Bowman et al., 1987) it is 

possible that its depletion was a result of much of it being taken up by plants. It is also likely 

that some of it was transformed into NaHCO3 extractable Pi as this fraction tended to 

increase between the 6th and 12th week after planting (Figure 5.4, Table 5.5). The largest 

proportion of added P was recovered in the NaOH-Pi fraction, accounting for an average of 

63.0% and 69.3% of the sum of all P fractions at 6 and 12 weeks after planting, respectively. 

According to Beck and Sanchez (1994) and Iyamuremye et al. (1996) the NaOH-Pi fraction 
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is bound to Al and Fe or their oxides in soils so the generally large concentration of P 

recovered in this fraction could be attributed to the high concentrations of exchangeable Al in 

this soil (Table 5.3). The much higher proportion of NaOH-Pi observed at 12 weeks after 

planting could be attributed to increased sorption of the added P over time while observed 

increases in this fraction with increasing fertilizer P additions could be attributed to sorption 

of the P added in excess of plant removal (Hedley et al. 1982).  

The NaOH extractable Pi was only moderately depleted (13 to 20%) at lower rates of P 

application (≤ 180 kg P ha-1 ) and slightly increased at the 360 kg ha-1 rate of P application. 

Saleque et al. (2004) also reported some depletion of the NaOH-Pi fraction from a surface 

soil and suggested that this P fraction could have become mobilized when NaHCO3-Pi 

became depleted. However, in the present study the resin P, considered the most labile 

fraction (Bowman et al., 1987), was not exhausted (Figure 5.4) and the NaHCO3-Pi fraction 

generally increased (Table 5.5) so the observed depletion may have been the result of the 

conversion of some of the P in the NaOH-Pi fraction to recalcitrant P fractions that were not 

extracted rather than due to mobilization of the labile P pools.  

Addition of inorganic P increased the biomass P fraction which was further enhanced by goat 

manure addition (Figure 5.2 and 5.3b). The greatest increase in biomass P occurred when 

added P was co-applied with 5 or 10 t ha-1 goat manure (Figure 5.3b).  These results confirm 

those reported in the literature (e.g. Nziguheba et al., 1998; Peacock et al., 2001; Ayaga et al., 

2006) indicating that addition of manure to soil stimulates growth of microorganisms which, 
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in turn, increases their demand for P. The net effect is an increased soil biomass P and an 

enhanced capacity of the biomass to compete for P with sorption sites.  

Maize dry matter yield after 12 weeks of growth was increased significantly (p = 0.05) by 

both fertilizer P and goat manure and by their interaction (Table 5.4, Figure 5.5b). The largest 

increases in maize dry matter yield were observed when fertilizer P at a rate of 90 kg P ha-1 

was co-applied with 10 t ha-1 goat manure whereas for rates of added P > 180 kg P ha-1 only 5 

t ha-1 goat manure was needed for maximum yield increases (Figure 5.4b). Co-application of 

fertilizer P with 20 t ha-1 goat manure did not result in further dry matter yield increases. 

These results indicated that the synergistic effects on crop growth observed when other animal 

manures are co-applied with inorganic fertilizer (Iyamuremye et al., 1996; Ayaga et al., 2006) 

can be realized with goat manure. The results further indicated that under the experimental 

conditions of the present study, lower rates of added P required larger quantities of goat 

manure and vice versa for maximum benefits to be derived from the synergistic effects.   

Correlation and regression analysis showed that  maize dry matter yield and plant P uptake 

were dependent to varying extents on the amount of added P and its effects on the 

concentrations of labile P (resin P and NaHCO3-Pi) and biomass P in the soil. Both the resin 

strip and 0.5 M NaHCO3 do not alter the soil properties and their extraction power better 

mimics the extraction power of plant roots than other reagents commonly used during 

fractionation (Guo et al., 2000). At six weeks after planting, P derived from these extractants 

was better correlated with dry matter yield and plant P uptake and explained more of their 

variations than biomass P. However, when plant growth was terminated after 12 weeks of 
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growth, biomass P emerged as the P fraction most responsible for the observed variations in 

maize dry matter yield.  

Forward stepwise multiple regression revealed that the combination of biomass P, resin P and 

NaHCO3-Pi explained 75.8% of the variation in dry matter yield of which 63.0% of the 

variation was explained by biomass P alone whilst biomass P and resin P jointly accounted for 

73.3% of the variation.  These results suggest that resin P, being the most labile fraction, plays 

a greater role in supplying plant available P in the early stages of growth.  However, when its 

concentration is severely reduced in later stages of plant growth as demonstrated in this study 

(Figure 5.4, Table 5.5) other P fractions, notably biomass P, play a greater role in supplying P 

to plants.  It would seem, therefore, that resin P and biomass P in combination would give 

better prediction of a soil’s P supplying potential than when either is used alone. Ayaga et al. 

(2006) did not recognize the significant role of resin P in this regard presumably because they 

did not evaluate the contributions of the different fractions in earlier stages of crop growth and 

did not use stepwise regression in the evaluation of their results. The results of the present 

study, nevertheless, support their findings that biomass P has a great potential in predicting 

soil P-supply to crops in sub-Saharan Africa and that it is therefore a potentially useful  

biological index of P availability, especially in P-fixing soils. 

Application of goat manure increased biomass P in soils more than any of the other P 

fractions extracted (Figure 5.2 and 5.3). Therefore, the observed synergistic effects on maize 

growth as a result of the co-application of goat manure and P fertilizer could have been to a 

large extent due to enhanced P cycling through the increased biomass P pool. These results 

concur with others in the literature showing that manure addition increases the availability of 
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P in soil, resulting in greater plant growth (e.g. Iyamuremye et al., 1996; Nziguheba et al., 

1998). Organic P (Po) not determined in the present study is reported to account for 20 to 80% 

of the total P in most mineral soils and can be a significant source of plant P when organic 

materials decompose and the P mineralizes. Thus, the contribution of organic P to P cycling 

following goat manure addition with inorganic P in these soils needs to be evaluated. Also 

required are measurements of mineralization rate of soil Po to determine the supplying 

potential of Po to P nutrition to enable more accurate fertilizer P recommendations. 

5.6 CONCLUSIONS 

The results of this study showed that the distribution of the different P fractions extracted was 

influenced by plant growth. At the early stage of plant growth (6 weeks after planting) the 

concentrations of the different fractions followed the order: NaOH-Pi >> resin P > biomass P 

> NaHCO3–Pi but six weeks later the order changed to:  NaOH–Pi > biomass P> resin P > 

NaHCO3–Pi. Of the different P fractions extracted, resin P was depleted to the greatest extent 

during the course of plant growth possibly because it is the most labile and plant available 

fraction but in later stages of plant growth biomass P played a greater role in supplying P to 

plants. The two P fractions therefore deserve consideration as parameters for predicting P 

supply to crops. The results further showed that biomass P alone explained 63% of the 

variations in dry matter yield at 12 weeks and thus has great potential as a biological indicator 

of P availability for this soil. Consistent with literature reports, the co-application of fertilizer 

P with goat manure had synergistic effects on maize dry matter yield and P uptake. This effect 

was apparently due to improved P cycling as goat manure increased the concentration of 

biomass P at each level of added P to a greater extent than any of the other P fractions. The 
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synergistic benefits to maize growth were realized with the co-application of 90 kg P ha-1 with 

10 t ha-1 of goat manure but the amount of manure could be reduced to 5 t ha-1 when higher 

rates of added P (> 180 kg ha-1) are used. Goat manure, therefore, may be used in the 

manipulation of the microbial biomass for purposes of improving P cycling and increasing the 

effectiveness of added P. This work was conducted under glasshouse conditions using 

relatively small pots.  The results therefore now need to be validated under field conditions 

and using a wider range of soils.  
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CHAPTER 6 

 

GENERAL DISCUSSION, CONCLUSIONS AND FUTURE RESEARCH 

 

6.1. General Discussion  

Soil P is the least mobile of the major plant nutrients and as earlier stated, its low availability 

is a major constraint to agricultural production in most South African soils (Henry and Smith, 

2006) as well as other highly weathered tropical soils (Warren, 1994). For most smallholder 

farmers with limited resources, high P deficiency is a factor most limiting productivity and 

has a profound impact on food security (Warren, 1994). High P deficiency is most prevalent 

mainly where strong sorption of P by aluminum and iron oxides and amorphous materials 

occurs resulting in poor mobility of soil inorganic P (Hinsinger, 2001). Therefore, only a 

small proportion of soil P is present in the soil solution and available for plant uptake. This 

leads to the need for large applications of fertilizer P to achieve high crop yields (Warren, 

1994).  

In South Africa, crop production levels under the smallholder systems of agriculture are 

reported to be low, due to poor natural soil fertility coupled with low usage of inorganic 

and/or organic fertilizers with P being one of the nutritional factors limiting production 

(Mandiringana et al., 2005). Earlier reports on data from the Transkei region show that a 

sizeable number of soils are of low to medium pH (Mandiringana et al., 2005; Bühmann et 

al., 2006). The soils are low in exchangeable bases which could mainly be attributed to the 
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higher rainfall and warm temperatures that are normally observed in the region leading to 

intense leaching of bases and accumulation of exchangeable Al in these soils. Many of the 

soils in the surrounding districts of KwaZulu Natal and Mpumalanga are reported to have 

high P sorption capacities (Bainbridge et al., 1995; Henry and Smith, 2002).  

Identifying appropriate P management strategies requires a good understanding of the fate of 

applied P and estimating plant available P in different P pools. A review of available literature 

(Chapter 1) indicated that soil P dynamics are characterized by interaction between 

physicochemical and biological processes: the immobilization of inorganic P (Pi) by the 

microorganisms constitutes a withdraw of Pi from the soil solution, while at the same time, P 

is delivered to the soil solution through mineralization of microbial P and organic P (Po) 

(Seeling and Zasoski, 1993; Oberson, 1996). In addition, organic anions released from added 

organic materials, can affect P sorption and the exchangeability of added P through 

competition for sorption sites (Iyamuremye et al., 1996). An understanding of these processes 

and the measurement of the sizes of the various P fractions in soils is important if we are to 

help farmers make the most economic use of P fertilizer.  

Combined application of inorganic P with organic materials is reported to result in larger 

increases in yields than if either is applied singly (Nziguheba et al., 1998; Ayaga et al., 

2006). Besides constituting a source of P as well as other nutrients, organic materials also 

provide an energy substrate for microbial activity (Palm et al., 2001). Ayaga et al. (2006) 

for example, postulated that addition of manures stimulates the synthesis of soil microbial 

biomass resulting in increased demand for P, which is immobilized in labile forms, both in 
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the cells of the living soil micro-organisms and their associated pool of metabolites. The 

turnover of this fraction provides a slow release of inorganic P which the plants can use 

more efficiently (Ayaga et al., 2006). Little or no information is available on P dynamics 

and turnover of the microbial biomass P fraction and other P fractions in soils receiving 

inorganic fertilizer P with animal manures in South African soils and more specifically soils 

of the Eastern Cape. The main aim of this study was therefore to investigate whether 

combined addition of goat manure with inorganic P fertilizers would enhance P availability 

in some strongly P fixing soils of the Transkei region, South Africa.  

The study was undertaken to address the following specific objectives (i) to assess P 

sorption capacities and requirements of selected soils and their relationship with selected 

soil properties and single point sorption test, (ii) to assess the effects of goat manure and 

lime addition on P sorption properties of selected high P fixing soils (iii) to assess the 

temporal changes in concentration of inorganic and microbial biomass P fractions following 

application of inorganic fertilizer P with goat manure in a laboratory incubation experiment, 

and, (iv) to assess the effects of goat manure application with inorganic P on inorganic and 

microbial biomass P fractions, P uptake and dry matter yield of maize.  
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6.1.1 Phosphate sorption characteristics and external P requirements and their 

relationships with selected soil properties and single point sorption test 

The seven soils studied varied widely in their capacities to sorb P and would therefore react 

differently to applied P necessitating different approaches to P management in terms of 

placement and amounts applied. The sorption behavior of the soils studied was adequately 

described by the Langmuir model, with coefficients of determination (r2) values > 0.95 

observed for all the soils under study. The observed differences in sorption maxima among 

the soils were most likely due to the large variations in the amounts and nature of Al and Fe 

components present in the soils as shown by positive correlations between the sorption 

maxima and different forms of Fe and Al extracted. Stepwise regression analysis showed that, 

a combination of organic carbon, exchangeable Al (AlKCl), citrate dithionite bicarbonate 

extractable Al (AlCDB) and ammonium oxalate extractable Al (Alox) explained 93.2% of the 

variation in sorption maxima (Smax) of which 87.8% of the variation was explained by Al CDB 

alone. Soil organic C and AlCDB jointly accounted for 91.1% of the variation in Smax.  The 

stepwise regression coefficients when organic carbon and AlCDB were included in the stepwise 

model indicated that a unit change in AlCDB (g kg-1) changes P sorbed by 128 mg P kg-1 (r2 = 

0.911, p = 0.05). This dependence of P sorption on citrate dithionite bicarbonate Al therefore 

seems to explain the low amounts of P sorbed by soils from Qweqwe, Qunu and from 

Bethania that had low amounts of citrate dithionite bicarbonate Al with corresponding lower 

levels of organic C. Similar observations have been made in previous reports indicating that 

citrate dithionite bicarbonate Al contributes more to the retention of P in most soils. Henry 

and Smith (2002) for example reported from studies conducted on soils from tobacco growing 
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areas of South Africa that citrate dithionite bicarbonate Al had a greater influence on P 

retention than other Al forms. Similarly, Singh and Gilkes (1990) reported that P sorption 

capacity in Australian soils was predictable by measurements of citrate dithionite bicarbonate 

Fe and Al. Citrate dithionite bicarbonate solution could therefore be used as a single 

extractant to estimate the potential P sorption in these soils. 

Maximum dry matter yield of oat was achieved at equilibrium P concentrations of 0.20 and 

0.25 mg P l-1 for Flagstaff and Qunu soils. Apparently, the yield obtained from these 

concentrations were not significantly different from those obtained at a soil solution P 

concentration of 0.2 mg P l-1 (P0.2) reported in the literature to be a threshold for many crops, 

over which no response to P is observed (Iyamuremye et al., 1996; Nziguheba et al., 1998; 

Duffera and Robarge, 1999). These results thus showed that a soil solution P concentration of 

0.2 mg P l-1 (P0.2) could be optimal for oats and possibly other crops in these soils. The single 

point sorption test (SI) was highly correlated to P0.2 (r = 0.93) and the high values of the 

coefficient of determination (r2 = 0.97) observed suggest that the SI function (P0.2 = 

12.87e0.04SI) could successfully be used to predict the external P requirement (P0.2) for the 

soils from Ntlonyana, Ncihane, Qweqwe, Qunu and Bethania, which are considered to be low 

P sorbers. Henry and Smith (2003) also found high coefficients of determination (r2 = 0.98) in 

the relationship between SI and P0.11 for low to moderate fixing soils of the tobacco growing 

areas of Kwa-Zulu Natal. They also concluded that SI can be used advantageously as a time 

saving measure to obtain an index of the external P requirement of soils instead of having to 

produce a full P isotherm. 
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6.1.2 Effects of goat manure and lime addition on phosphate sorption  

The results of preliminary P sorption evaluation reported in Chapter 2 revealed that the soils 

used represent a wide range of reactivity towards fertilizer P and that some soils had 

sufficiently high P retention capabilities to seriously decrease the availability of added P to 

plants and thus required intervention to minimize the effect. One proposed way of mitigating 

the effects of P sorption on P availability is to increase soil pH and reduce the activity of 

exchangeable Al in soil solution through addition of organic materials (Haynes and Swift, 

1985). A study conducted to address the question of whether goat manure addition could 

reduce P sorption in the moderately P fixing soils from Chevy Chase and Flagstaff (Chapter 

3) showed that addition of goat manure consistently reduced P sorption maxima in both soils. 

Phosphate sorption decreased with increasing amounts of goat manure in both soils but the 

extent of reduction was greater on Chevy Chase soil than on Flagstaff soil. For example, 

addition of 20 t ha-1 of goat manure reduced Smax by 25.4% in Chevy Chase soil but was only 

reduced by 16.4% on Flagstaff soil after 28 days of incubation.  

Regression analysis of sorption maxima with exchangeable Al indicated that 98.4 and 97.5% 

of the variations in sorption maxima were due to exchangeable Al in both soils, respectively. 

Added goat manure had a greater relative effect in reducing exchangeable Al than in 

increasing soil pH suggesting that the observed decreases in P sorption following goat manure 

application could to a large extent have been due to the inactivation of exchangeable Al. This 

is further supported by the fact that a greater reduction in P sorption following goat manure 

application occurred in Chevy Chase soil than in Flagstaff soil, consistent with the greater 

relative decrease in exchangeable Al following goat manure application to this soil. Other 
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studies have reported similar effects after application of fresh or composted animal manure 

(Eghball, 1999; Whalen et. al., 2000; Erich et al., 2002).  

The relative effects of goat manure in decreasing exchangeable Al and reducing P sorption of 

the experimental soils increased with rate of manure application. This suggests that repeated 

seasonal application of the goat manure or the application of higher rates of manure could 

result to an enhanced expression of the observed effects. Therefore regular application of goat 

manure or other manures with similar properties to smallholder farms in the Eastern Cape 

could result in improved soil and fertilizer P use efficiency by crops partly as a consequence 

of reduced P sorption. The results therefore indicate that use of goat manure may allow 

resource poor farmers to use lower levels of commercial P fertilizer because of the reduced P 

sorption by the soils.  

Although P is considered to be relatively immobile in the soil system, there are mechanisms 

for P to leave the soil through loss in surface runoff, erosion of sediments and leaching 

through the soil profile (Zhang et al. 2005). Increased saturation of soil binding sites with P 

ions may reduce sorption and increase potential P leaching losses (Magdoff et al., 1999; 

Sharpley et al., 2000; Zhang et al. 2005).  Land application of animal manures often results in 

increased mobilization of P and leaching into ground water (Daniel et al., 1998). In these 

situations, the environmental fate of P must be assessed. 

The effects of liming the two soils on the amount of P sorbed were very variable. Lime 

addition to Flagstaff soil increased the amount of P sorbed in the first 28 days of incubation 

but a reduction in P sorption was observed after 56 days of incubation. By contrast, reduction 
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in P sorption following lime application was observed almost immediately on Chevy Chase 

soil. The initial increase in P retention following lime addition to Flagstaff soil followed by a 

decrease on day 56 indicated that the effectiveness of lime in reducing P retention is affected 

by the length of time it reacts with the soil.   

The differing effects of liming on the P sorption of the two soils could be partly attributable to 

the fact that they had different initial levels of exchangeable Al. Flagstaff soil had higher 

concentration of exchangeable Al (76.27 mg Al kg-1) than Chevy Chase soil (48.73 mg kg-1) 

in the un-amended soils. Haynes and Swift, (1985) suggested that the initial increase in P 

sorption following liming could be a result of the formation of new adsorbing surfaces due to 

the precipitation of exchangeable Al as hydroxy-Al polymers as the pH is raised. The 

hydroxyl-Al polymers have highly-active adsorbing surfaces which can increase P adsorption 

considerably (Haynes and Swift, 1985). With the passage of time, however, crystallization of 

the amorphous hydroxyl-Al polymers takes place leading to increased negative charge on the 

lime induced surface with a consequential reduction of P retention (Haynes and Swift, 1985; 

Curtin and Syers, 2001). This could explain the observed reduction in P sorption on day 56 in 

the Flagstaff soil following the initial P sorption increase of the limed soil. This implies that, 

for the Flagstaff soil and other similar soils, lime may need to be applied before planting 

while for soils of the Chevy Chase type, lime could be applied at the time of planting. 

Synchronizing P addition to coincide with peak periods of maximum benefit of added 

amendments would be necessary for greater reduction in P sorption by the soils.  
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6.1.3 Effects of goat manure and phosphate addition on soil inorganic and microbial 

biomass P fractions and their relationship with P uptake and dry matter yield 

Incorporation of P into the soil microbial biomass is reported to be another mechanism that 

increases the availability of P to plants and which forms a significant pool of plant nutrients 

(Harris et al., 1997). This fraction is said to play a key role in P dynamics in soils by 

immobilizing inorganic P which is later mineralized (Rubaek and Sibbesen, 1993). During the 

process of biomass turnover, this P may be released slowly and taken up by the crop more 

efficiently (Brookes, 2001; Parham et al., 2003). Two experiments reported in Chapters 4 and 

5 investigated this aspect. The results showed that biomass P was significantly increased by 

each increment of goat manure up to 20 t ha-1 but manure had no effect on resin P, NaHCO3–

Pi, or NaOH–Pi fractions. Addition of inorganic P significantly increased the concentration of 

all P fractions and followed the order NaOH-Pi >> resin P > biomass P > NaHCO3–Pi. With 

each increment of added P the largest increases in extractable P were observed in the resin P 

and NaOH–Pi fractions and only marginal increases in NaHCO3-Pi.  

The results further indicated that resin P most depleted to the greatest extent during the course 

of plant growth possibly because it is the most labile and plant available fraction but in later 

stages of plant growth biomass P played a greater role in supplying P to plants. The NaOH-Pi 

was the dominant P fraction and changed little in response to plant P removal from the soil.  

The increase of the NaOH–Pi fraction following inorganic P addition to the soil could be 

explained by the adsorption of Pi through ligand exchange with hydroxyl groups located on 

the surfaces of Fe and Al hydroxides (Buehler et al., 2002).  The resin P, NaHCO3–Pi and 

NaOH-Pi fractions appeared to be in equilibrium. When resin P and NaHCO3–Pi were high, 



 153 

NaOH-Pi
 accumulated or remained stable despite plant P removal; when resin P and 

NaHCO3–Pi were reduced by plant removal, NaOH-Pi
 decreased, and then further declines in 

resin P and NaHCO3–Pi
 occurred. The NaOH-Pi appeared to act as a buffer for resin P and 

NaHCO3–Pi in the soil. The increase in resin P fraction due to addition of inorganic fertilizer 

P is in agreement with the findings of Nziguheba et al., (1998) and Ayaga et al., (2006). 

Inorganic P addition increased the biomass P fraction and the fraction was greatly enhanced 

with manure addition. This was in agreement with other reports (e.g. Iyamuremye et al., 1996; 

Nziguheba et al., 1998; Ayaga et al., 2006) indicating increased biomass P following manure 

addition in the soil. The largest improvement in biomass P due to manure occurred at lower 

rates of added P indicating the potential of goat manure to enhance the efficient use of small 

inorganic P applications. This increase in biomass P following goat manure addition implies 

that it increased the proportion of added P immobilized in microbial cells that would be 

subsequently released into the soil solution and be available for plant uptake following 

biomass P turnover. Major increases in biomass P were observed on day 28 after incubation 

which coincidentally was the time when the highest reduction in P sorption following manure 

addition to the soil was recorded. This indicates high immobilization of P in the microbial 

biomass and hence a means of protecting it from fixation during this period (Chapter 4). 

Dry matter yield and P uptake were highly and significantly (p = 0.05) correlated with the 

different soil P fractions. The correlations followed the order resin P (r = 0.85) > NaOH-Pi (r 

= 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) for dry matter yield. The statistically 

significant relationships between resin P with plant growth and P uptake confirms previous 
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reports in the literature (Raven and Hossner, 1994; Myers et al., 2005) that support the use of 

exchange resins as extractants to assess P availability in soils. The combination of biomass P, 

resin P and NaHCO3-Pi explained 75.8% of the variation in dry matter yield. Biomass P alone 

explained 63% of the variations in dry matter yield indicating that changes in biomass P 

contributed substantially to the synergetic benefits realized from the co-application of goat 

manure with inorganic fertilizer P. Therefore the manipulation of this fraction through the 

application of goat manure with P fertilizers can be profitably exploited to enhance added P 

use efficiency in the Eastern Cape. 

 The observed positive relationship between dry matter yield and biomass P found in this 

study, was in agreement with other reports (e.g. Iyamuremye et al., 1996; Belay et al., 2002; 

Ayaga et al., 2006). This further confirms its potential as a biological indicator of P 

bioavailability in soils. Increases in crop yield as a result of incorporating manure may be due 

not only to its biological properties but also due to its nutritional value and improvements in 

the soil physical properties (Sanchez and Salinas, 1981). Nevertheless, the synergetic benefits 

to maize growth realized with co-application of low rates of goat manure with inorganic P 

indicated that the benefits realized were largely due to the effect of the goat manure on 

microbial biomass P.  
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6.2 General Conclusions  

1. The seven soils studied varied widely in their capacities to sorb P and would therefore 

react differently to applied P necessitating different approaches to P management in terms 

of placement and amounts applied.  

2. Citrate dithionite bicarbonate extractable Al had greater influence on P retention than 

other Al forms in the soils examined and therefore could be used to indicate the degree of 

potential P sorption in these soils and others with similar properties. 

3. The single point sorption test (SI) was highly correlated with external P requirement (P0.2) 

suggesting that the SI functions could successfully be used to predict P0.2 for the soils 

from Ntlonyana, Ncihane, Qweqwe, Qunu and Bethania, which are considered to be low P 

sorbers. 

4. Addition of goat manure consistently reduced P sorption maxima in both soils. This 

implies that use of goat manure may allow resource poor farmers to use lower levels of 

commercial P fertilizer because of the reduced P sorption and P requirement by the soils. 

5. Added goat manure had a greater relative effect in reducing exchangeable Al than in 

increasing soil pH suggesting that the observed decreases in P sorption following goat 

manure application could to a large extent have been due to the inactivation of 

exchangeable Al. Thus, the choice of manure rates should be aimed at reducing the 

amounts exchangeable Al in acid soils rather than raising the soil pH.  
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6. Large increases in biomass P due to manure application observed at lower rates of added P 

indicates the potential of goat manure to enhance the fertilizer use efficiency of small 

inorganic P applications. The turnover of the biomass P pool may provide a slow release 

of inorganic P that plants can use more efficiently than a single large pulse of P from 

organic or inorganic fertilizer, which may otherwise be fixed and removed from the 

available P pool before plants can use it efficiently. 

The evidence presented above indicates that indeed there are important biochemical synergies 

from integrating goat manure with inorganic P fertilizer. Therefore, combining goat manure 

and inorganic Ps will be a cost-effective strategy for improving fertilizer use efficiency in P 

fixing soils of the Eastern Cape where goat manure is readily available.  

6.3 Recommendations for future research  

Significant findings have been made in this research. However, future studies should consider 

the following: 

1. The trends of P sorption and requirements reported in this study are based on a limited 

number of soil forms and therefore there is need to carry out a broader sorption study 

involving more soils from different agroecologies in the province in order to obtain a 

more reliable picture of the P sorption status of soils in the Eastern Cape. 

2. The fact that the biomass P peaked at day 28 in the present study suggests that in order to 

derive maximum benefit from the P protected in biomass P, planting may have to be 

synchronized such that the peak period for biomass P decline, whereby P may be released, 

coincides with the period of maximum P demand by the target crop. However, before this 
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can be implemented the peak period for biomass P and its subsequent mineralization will 

need to be established. 

3. Organic P (Po) was not determined in the present study. However, it is reported to account 

for 20 to 80% of the total P in most mineral soils and a significant source of plant P when 

organic materials decompose and the Po mineralizes (Sharpley, 1985; Tarafdar, and 

Claasen, 1988). The contribution of Po to P cycling following goat manure addition with 

inorganic P in these soils needs to be assessed. Also required are measurements of 

mineralization rate of soil Po to determine the supplying potential of Po to P nutrition to 

enable a more accurate fertilizer P recommendation. 

4. Field studies need to be conducted to validate the laboratory and glasshouse studies 

reported in this thesis. This will have direct applicability to fertilizer P and goat manure 

uses to farmers.  

5. Monitoring studies to determine when manure amended soils become P saturated and pose 

danger for P losses to surface waters though leaching need consideration. This would be 

useful in identifying soils with increased risk for P loss and provide information about the 

risk of leaching P in soils. This will also aid in developing sustainable agricultural systems 

that optimize the use of agricultural resources for increased yields and at the same time 

maintaining the quality of the environment. 
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APPENDIX 1 MAP OF THE EASTERN CAPE SHOWING THE STUD Y LOCATIONS (1- 4) 
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APPENDIX 2 DESCRIPTION OF STUDY SITES  
 

Grid Ref Parent Material Topography 
Degree of weathering 

Site 
Latitude Longitude 

Altitude  
m (ASL) 

Climate 
No. Of 
kinds 

Lithology of  
underlying 
material 

Mode of 
accumulation Physical Chemical 

*TMU Slope Kind Aspect 

Qunu 3104612711 S 2803811611 E 880 Sub- 
humid 

One Shale Insitu 
weathering 

Moderate Advanced TMU 3 
Upper  

4% Straight SW 

Qweqwe  3104114211 S 2804210911 E 947 Sub- 
humid 

One Shale Insitu 
weathering 

Weak Weak TMU 3 
Upper 

10% Straight E 

Bethania 3003914111 S 2801614511 E 1747 Sub- 
humid 

Two Sandstone/ 
Dolerite  

Insitu 
weathering 

Advanced Advanced TMU 3 
Upper   

12% Concave N 

Chevy  
Chase 

3005015411 S 2803211211 E 1514 Sub- 
humid 

One Sandstone Insitu 
weathering 

Advanced advanced TMU 3 6% Convex N 

Ncihane 3200010411 S 2804213311 E 631 Sub- 
humid 

One Shale Insitu 
weathering 

Advanced Advanced TMU 1 2% Convex N 

Ntlonyana 3200010211 S 2804911711 E 415 Sub- 
humid 

One Shale Insitu 
weathering 

Moderate Moderate TMU 3 8% Straight N 

Flagstaff - - - Sub- 
humid 

One Dolerite Insitu 
weathering 

Advanced Advanced TMU 4 10% Straight N 

*TMU = Topographical morphological unit 
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APPENDIX 3 PROFILE DESCRIPTION FOR SOILS USED IN TH E STUDY 
 

Colour Consistence Site Horizon Depth 
Dry Moist 

Texture Structure 
Dry Moist 

Coarse fragments/ 
Roots 

Diagnostic 
Horizon 

Soil Form 

A 0 - 50 10 YR 4/2  10 YR 3/2 Sandy clay Weak, fine 
subangular 
blocky 

Hard Friable Few coarse fragments 
Few coarse/fine roots 

Orthic A 

AB 50 - 76 5 YR 3/3 5 YR 3/3 Sandy clay Weak, 
subangular 
blocky 

Extremely  
hard 

Friable Few small coarse fragments 
Few fine roots 

Soft plinthic 

B 76 103 5 YR 3/3 5 YR 3/3 Sandy Single grain Hard Loose 
 

Abundant small coarse 
fragments 

Soft plinthic 

Qunu 

B 40 - 124 5 YR 4/6 5 YR 4/6 Sandy clay Fine 
subangular 
blocky 

Hard Friable Few small coarse fragments 
Few fine roots, no 
concretions 

Red apedal B 

  
  
 
Westleigh 
 
(Acrisol) 

A 0 - 53 10 YR 5/1 10 YR 3/2 Sandy clay 
loam 

Weak 
subangular 
blocky 

Very hard Slightly 
firm 

Few small coarse fragments 
Many fine roots 

Orthic A Qweqwe  

B 53 - 84 10 YR 5/3 10 YR 3/2 Sandy clay 
loam 

Weak 
subangular 
blocky 

Very hard Firm Very many large coarse 
fragments 
Few fine roots 

Lithocutanic B 

 
 
Glenrosa 
 
(Cambisol) 

A 0 - 25 5 YR 4/3 5 YR 3/3 Sandy Moderate 
subangular 
block 

Hard Friable Few small coarse fragments 
Many fine roots 

Orthic A Bethania 

B 25+ 2.5 YR 3/6 2.5 YR 5/8 Loamy sand Moderate fine 
subangular 
block 

Hard Slightly 
firm  

Few small coarse fragments 
Many fine roots 

Red apedal B 

 
 
Hutton 
 
(Ferralsol) 

A 0 - 50 10 YR 4/3 10 YR 4/3 Sandy Very weak 
subangular 
block (fine) 

Soft Friable Very few small coarse 
fragments 
Many fine roots 
No concretions 

Orthic A Chevy 
 Chase 

B 50+ 5 YR 4/5 10 YR 4/3 Sandy Very weak 
subangular 
block (fine) 

Soft Friable Very few small coarse 
fragments 
Many fine roots 
No concretions 

Red apedal B 

 
 
Hutton 
 
(Ferralsol) 

(………) Corresponding FAO (2006) soil units 
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APPENDIX 3 continued ……………… 

Colour Consistence Site Horizon Depth 
Dry Moist 

Texture Structure 
Dry Moist 

Coarse fragments/ 
Roots 

Diagnostic 
Horizon 

Soil Form  

A 0 - 48 10 YR 4/1 10 YR 3/1 Sandy clay Massive Hard Friable Very few fine coarse 
fragments 
Few fine roots 

Orthic A 

E 48 - 60 10 YR 4/2 10 YR 3/2 Sandy Single grain Extremely 
hard 

Slightly 
firm 

Dominant coarse fragments, 
few roots 

E 

Ncihane 

B 60 - 83 5 YR 4/6 5 YR 3/4 Sandy clay Massive Extremely 
hard 

Firm Few coarse fragments 
No roots 

Lithocutanic B 

 
 
 
Cartref 
 
(Luvisol) 

A 1 0 - 48 10 YR 3/1 10 YR 2/1 Sandy clay Moderate 
subangular 
block 

Hard Friable Few fine coarse fragments, 
many fine roots, few coarse 
roots 

Orthic A 

A 2 48 - 65 10 YR 3/2 10 YR 3/2 Sandy clay Moderate 
angular block 

Very hard Friable Few fine coarse fragments, 
many fine roots, 

Orthic A 

E 65 - 84 10 YR 3/1 10 YR 3/2 Loamy 
sand 

Single grain Extremely 
hard 

Firm Many fine coarse 
fragments, few fine roots 

E 

 Ntlonyana 

B 84 - 
116 

5 YR 3/2 5 YR 4/6 Clay Moderate 
medium 
subangular 
block 

Extremely 
hard 

Friable Few fine coarse fragments, 
No roots 

Pedocutanic B 

 
 
 
Klapmuts 
 
 
(Planosol) 

A 0 -  64 5 YR 3/4 5 YR 3/2 Sandy clay 
loam 

Moderate fine 
subangular 
block 

Hard Friable Few fine coarse fragments, 
many fine roots, few coarse 
roots 

Humic A Flagstaff 

B +64 5 YR 5/3 5 YR 4/3 Sandy clay 
loam 

Very weak 
subangular 
block (fine) 

Hard Friable Few small coarse fragments 
Many fine roots 

Red apedal B 

 
 
Inanda 
 
Hutton 
 
(Ferralsol) 

(………) Corresponding FAO (2006) soil units 


