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Abstract

The relationship between the convergence of a sequence of self mappings of a metric

space and their fixed points, known as the stability (or continuity) of fixed points has

been of continuing interest and widely studied in fixed point theory. In this thesis

we study the stability of common fixed points in a Hausdorff uniform space whose

uniformity is generated by a family of pseudometrics, by using some general notions

of convergence. These results are then extended to 2-metric spaces due to S. Gähler.

In addition, a well-known theorem of T. Suzuki that generalized the Banach Contrac-

tion Principle is also extended to 2-metric spaces and applied to obtain a coincidence

theorem for a pair of mappings on an arbitrary set with values in a 2-metric space.

Further, we prove the existence of coincidence and fixed points of Ćirić type weakly

generalized contractions in metric spaces. Subsequently, the above result is utilized

to discuss applications to the convergence of modified Mann and Ishikawa iterations

in a convex metric space. Finally, we obtain coincidence, fixed and stationary point

results for multi-valued and hybrid pairs of mappings on a metric space.

Keywords: Fixed points, coincidence points, endpoints, stability, metric and 2-

metric spaces, uniform spaces and multi-valued mappings.
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R The set of real numbers
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Introduction

0.1 General Background

Let X be a non-empty set and T a mapping of X into X (resp. into a collection of

non-empty subsets of X). Then a point z ∈ X is called a fixed point of T if Tz = z

(resp. z ∈ Tz). A topological space is said to have a fixed point property if every

continuous self mapping on it has a fixed point. The problem of investigating suffi-

cient conditions for the existence of a fixed point is one of the most vigorous among

the fundamental branches of topology and functional analysis. In particular, fixed

point theorems have extensive applications in proving existence and uniqueness of

solutions of various functional equations. These theorems have found applications in

the theory of differential and integral equations, dynamical systems, theory of games

and mathematical economics among others. The relevance of fixed point theorems,

with those of existence theorems for functional equations could be found in Banach

[20], Nemyckii [95], Saaty [110] and Zeidler [145] while applications to game theory

and mathematical economics could be found in Kim C and Border [73], Neumann

and Morgenstern [96] and Efe A. Ok [97].

Broadly speaking, the study of fixed points (or fixed point theory) may be classi-

fied into two categories, namely, the Topological Fixed Point Theory and the Metric

1



2

Fixed Point Theory. However, the two classes are not mutually exclusive in a true

sense due to the proof techniques involved. The former one largely involves the study

of spaces with the fixed point property while the latter one involves the study of fixed

points depending on the mapping conditions on the spaces under consideration.

Regarding the topological fixed point theory, it began with the classical fixed point

theorem of Brouwer [31] in 1912 which states that every continuous mapping from a

closed unit ball in Rn to itself has at least one fixed point. In R the above theorem

means that every continuous mapping on unit interval has a fixed point. This one

dimensional case of the above theorem is an easy consequence of the familiar mean

value theorem. For various generalizations of Brouwer’s theorem, including the in-

finite dimensional case due to Schauder [111, 112, 113, 114] and others, we refer to

Smart [127]. The above celebrated result has tremendous applications in game theory

and mathematical economics and the famous works of Neumann and Morgenstern [96]

and John F. Nash Jr. [93, 94] fall in this area.

Regarding the metric fixed point theory, we recall an early work of Banach [20]

in 1922 which states that every contraction mapping T of a complete metric space

(X, d) into itself has a unique fixed point (recall that T is a contraction if d(Tx, Ty) ≤

kd(x, y) for all x, y ∈ X and 0 ≤ k < 1). The above theorem is constructive in its

nature and provides a mechanism to arrive at the required fixed point. This is essen-

tially done by using the convergence of Picard iterates. Again, this theorem has been

extensively used in the study of solutions of various operator equations, including

numerical approximations cf. Agarwal et al. [6, 7], Kirk and Sims [76] and Zeidler
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[145]. Some notable generalizations of the above theorem are contractive mappings

(mappings T satisfying the condition that d(Tx, Ty) < d(x, y) for all x, y ∈ X, x 6= y)

by Edelstein [42] and nonexpansive mappings (mappings T satisfying the condition

that d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X) by Browder [32]. These mappings have

again found a wide range of applications to the theory of monotone operators and

variational inequalities (cf. Zeidler [146, 147]). Another interesting generalization in

this direction is due to Boyd and Wong [30] where the right hand side in each of

the above inequalities is a function φ, from positive reals into itself satisfying certain

properties. These mappings are called nonlinear contractions or φ-contractions. The

minimum common denominator for the above classes of mappings is that they are

all continuous. For an excellent discussion on metric fixed point theory, we refer to

Goebel and Kirk [47].

Contractive fixed point theory falls within the area of the metric fixed point theory

which is guided by the following fact that was noticed by R. Kannan [64]. Requiring

a mapping to be a contraction mapping, amounts to demanding a strong continuity

condition. Based on this fact, R. Kannan [64] - [68] obtained a series of results in

which the mappings under investigation were not necessary required to be contin-

uous and a fixed point can again be approximated by using the same convergence

procedure as by Banach [20]. The above results of Kannan [64] - [68] lead to several

contractive conditions in metric fixed point theory which are captured in Rhoades

[104]. Out of 125 contractive conditions listed by Rhoades [104], 25 are independent

and one of the most general contractive condition included in these 25 conditions is

due to Ćirić [34]. Subsequent refinements can be found in J. Kincses and V. Totic
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[74], Jachymski [56] and Collaco and Carvalho E silva [36]. However, regarding the

continuity requirement, it is now settled that all contractive mappings as listed in

Rhoades [104] and others are, in fact, continuous at the fixed point (see Rhoades

[108]).

There have been several extensions of the known fixed point theorems for single-

valued mappings to the case of point to set mappings or multi-valued mappings. An

analogue of the Banach contraction principle was obtained by Nadler [90] which states

that every multi-valued contraction mapping on a complete metric space with closed

bounded values has a fixed point. This result still occupies an important place in fixed

point theory of multi-valued mappings. For a comprehensive collection of results we

note Nadler [90]. The corresponding fixed point theory using various contractive

conditions as mention earlier for multi-valued mappings is now well-developed. For

useful references we refer to Hicks and Rhoades [49] among others. Hybrid fixed point

theory for nonlinear mappings is relatively a new development within the ambit of

the fixed point theory of point to set mappings (multi-valued mappings) with a wide

range of applications (see for instance Granas and Dugundji [48]).

0.2 The Present Thesis

The problem of investigating sufficient conditions under which the convergence of a

sequence of mappings on a metric space implies the convergence of the sequence of

their fixed points has been of continuing interest. In fixed point theory the problem

is known as stability (or continuity) of fixed points. The origin of this problem seems
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into a result of Bonsall [28] where he proved that pointwise convergence of a sequence

of contraction mappings on a complete metric space to a contraction mapping implies

convergence of the sequence of their fixed points to a fixed point of the limit mapping,

which is again a contraction mapping. This result has been applied to solve certain

initial value problems. For a related result, we refer to Sonnenschein [129]. Subse-

quently, Nadler [89] (see also Fraser and Nadler [44]) by replacing the completeness

of the space by the existence of fixed points proved a similar result under uniform

convergence. For related results in this direction using various contractive conditions

on different settings we refer to [78, 116, 124, 126].

It is well known that fixed points can be viewed as solutions of various operator

equations and in many cases a localized version (where the domain of definition of

a given operator is a nonempty subset of the given space) of a particular theorem is

found to be more useful. In respect of stability, uniform convergence and pointwise

convergence play an important role. However, when the domain of definition of all

mappings in question is not the same space nor a unique nonempty subset of it, the

above notions do not work. This difficulty has recently been overcomed by Barbet

and Nachi [22] where some new notions of convergence have been introduced and uti-

lized to obtain stability results in a metric space. These results generalize the earlier

results of Bonsall [28] and Nadler [89].

Uniform spaces form a natural extension of metric spaces and include locally con-

vex spaces as special cases. Therefore, it is interesting to investigate the stability

problem in uniform spaces. Here, our intention is to study the stability of common
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fixed points for a pair of sequence of mappings on a uniform space using the Barbet -

Nachi type convergence. In Chapter 1 of this thesis, using the above ideas of Barbet

and Nachi [22] and a result of Jungck [60] on common fixed points of commuting con-

tinuous mappings, we obtain stability results for common fixed points in a Hausdorff

uniform space whose uniformity is generated by a family of pseudometrics. These re-

sults generalize the results of Mishra and Kalinde [86] among others and include the

results of Barbet and Nach [22], Bonsall [28] and Nadler [89] as special cases when

the space under consideration turns out to be metrizable. For related references on

stability of fixed points in uniform spaces, we refer to [5, 13, 82, 84, 86, 105, 118, 119].

In 1928 Menger [81] introduced the notion of generalized metric spaces. Many

mathematicians had not paid much attention to Menger theory about the generalized

metric spaces. A new development began in 1962 when S. Gähler [46] introduced

the notion of 2-metric spaces. The concept of a metric abstracts the properties of

distance function, while the concept of a 2-metric abstracts the properties of area

function for a triangle determined by a triplet in Euclidean spaces. This notion has

been considered by several authors (see Freese and Cho [45]), who have notably gen-

eralized Banach’s contraction principle to obtain fixed point theorems, for example

Abd El-Monsef, Abu-Donia, Abd-Rabou [4], Ahmed [8], Iseki [51, 52, 53, 54], Khan

[71], Mishra [83], Naidu [91], Naidu and Prasad [92], Rhoades [106], Singh, Tiwari and

Gupta [122], White [141], Zhang [148] and others. The basic philosophy is that since

a 2-metric measures area, a contraction should send the space towards a configuration

of zero area, which is to say a line (see Aliouche and Simpson [11]). In Chapter 2,

we further extend the results of Barbet and Nachi to 2-metric spaces due to Gähler
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[46]. We note the results so obtained are significant in the sense that 2-metric spaces

differ substantially in terms of their topological properties from those of metric spaces.

Now, we turn our attention again back to the Banach contraction principle. Suzuki

[134] proved a fixed point theorem which is a generalization of the above principle.

The novelty in his theorem is that a contractive condition is assumed to hold not

for all elements of the domain of the mapping under consideration, but only for ele-

ments satisfying an additional condition. The above result of Suziki [134] has been

generalized further by several authors (see, for instance [10], [38], [40], [99], [135])

with some interest in applications on the existence of common solutions of certain

functional equations (see Singh and Mishra [120]). In Section 2.4 of Chapter 2 we

proved an analogue of the Suzuki theorem in a 2-metric space. As an application we

obtain a coincidence theorem for a pair of mappings in an arbitrary set with values

in a 2-metric space.

Weakly contractive mappings introduced by Alber and Guerre-Delabriere [9],

forms a wider class of mappings which contains the classical Banach contraction as

a special case and is closely related to the nonlinear contractions of Boyd and Wong

[30]. Alber and Guerre-Delabriere [9] obtained certain fixed point theorems in Hilbert

spaces for weakly contractive mappings and acknowledged that their results were true

at least for uniformly smooth and uniformly convex Banach spaces. Subsequently,

Rhoades [109] extended some of their results to complete metric spaces under less re-

strictive conditions and thus establishing that their results are still valid for arbitrary

Banach spaces.
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Recently, Dutta and Choudhury [41] generalized the weak contractive condition

and introduced the notion of (ψ, φ) weak contractive mappings, where ψ and φ are

functions from positive reals into itself satisfying certain conditions. They proved a

fixed point theorem for a self mapping, which in turn generalizes the above result of

Rhoades [109]. Beg and Abbas [24] obtained a common fixed point theorem extending

weak contractive condition for two mappings. In this direction, Zhang and Song [149]

introduced the concept of a generalized φ-weak contraction condition and obtained a

common fixed point for two mappings, while Doric [39] proved a common fixed point

theorem for generalized (ψ, φ)-weak contractions . In Chapter 3, we study the notion

of Ćirić [34] type weakly generalized contraction mappings in a metric space and prove

theorems concerning the existence of coincidence and fixed points of such mappings.

Further, applications regarding the convergence theorems for modified Mann iterations

[79] and modified Ishikawa iterations [55] in a convex metric space are also considered.

The existence of stationary points (or endpoints) of multi-valued mappings have

been studied by several authors (cf. [2, 12, 16, 17, 26, 50, 59, 88, 140, 142, 143, 144]

and others). In Chapter 4 we obtain fixed and stationary point theorems in metric

spaces without using the completeness of the space and continuity conditions. These

mappings satisfy the well-known (E.A) property introduced and studied by Aamri and

Moutawakil [1] for the first time. It is interesting to note that the above property

presents a nice generalization of non-compatible mappings, for compatibility condi-

tions we refer to Jungck [61]. In addition, we also obtain results on stationary points

for generalized hybrid pairs of single-valued and multi-valued mappings. The results



9

so obtained extend and generalize certain results of Amini-Harandi [12], Moradi et

al. [88] and others.

In Chapter 5 we introduce the notion of set-valued generalized asymptotic contrac-

tion of Meir-Keeler type, which includes the known notions of asymptotic contractions

due to Fakhar [43], Kirk [75] and Suzuki [131]. Subsequently, this notion is utilized

to obtain coincidence and fixed point theorems for such contractions which generalize

and unify a number of known results due to Fakhar [43], Wlodarczyk et al. [142]

among others.

Definitions, theorems, corollaries and remarks are numbered per Chapter and se-

quentially per section, for example, Definition 1.2.6 means the sixth definition of the

second section of Chapter 1.

To the best of our knowledge, the results stated below are our own major results

in this thesis:

Theorem 1.4.2, Theorem 1.4.3, Theorem 1.4.4, Theorem 2.3.1, Theorem 2.3.2,

Theorem 2.3.4, Theorem 2.3.6, Theorem 2.3.7, Theorem 2.4.2, Theorem 3.3.1, Theo-

rem 4.3.1, Theorem 4.3.4 and Theorem 5.3.3.



Chapter 1

Stability Results in Uniform Spaces

1.1 Introduction

In this Chapter stability results for a pair of sequences of mappings and their common

fixed points in a Hausdorff uniform space using (G)-convergence and (H)-convergence

are proved. We first present some preliminary notions and results that are needed in

the sequel.

1.2 Preliminaries

We start this section by recalling Barbet - Nachi [22] convergence in metric spaces

and some basic concepts from the theory of uniform spaces. We then present the

above mentioned notions of convergence in the setting of uniform spaces.

1.2.1 Barbet - Nachi Convergence in Metric Spaces

Definition 1.2.1. [22] Let (X, d) be a metric space, {Xn}n∈N a family of nonempty

subsets of X and {Tn : Xn → X}n∈N a sequence of mappings. Then:

10
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(i) T∞ is called a (G)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N satisfies

the property (G), where

(G) Gr(T∞) ⊂ lim inf Gr(Tn): ∀x ∈ X∞, ∃{xn}n∈N in
∏
n∈N

Xn such that

lim
n
d(xn, x) = 0 and lim

n
d(Tnxn, T∞x) = 0,

and Gr(T ) stands for the graph of T .

The following notion of (G−) convergence is weaker than (G)-convergence.

(ii) T∞ is called a (G−)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N satisfies

the property ((G−), where

(G−) Gr(T∞) ⊂ lim inf Gr(Tn): ∀x ∈ X∞, ∃{xn}n∈N ∈
∏
n∈N

Xn which has a

subsequence {xnj
} such that

lim
n
d(xnj

, x) = 0 and lim
n
d(Tnj

xnj
, T∞x) = 0.

(iii) T∞ is called an (H)-limit of the sequence {Tn}n∈N or equivalently {Tn}n∈N sat-

isfies the property (H), where

(H) If ∀{xn}n∈N ∈
∏
n∈N

Xn, ∃{yn}n∈N ⊂ X∞ such that

lim
n
d(xn, yn) = 0 and lim

n
d(Tnxn, T∞yn) = 0.

1.2.2 Discussions and Examples

Remark 1.2.1. We note the following essential features of the above limits.

(i) pointwise convergence⇒ (G) - convergence. However, the above implication is not

reversible unless {Tn}n∈N is equicontinuous on a common domain of definition

(see Example 1.2.1).
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(ii) a (G)-limit need not be unique (see Example 1.2.2). However if Tn is a k-

contraction (resp. k-Lipschits) for each n ∈ N, then it is so (see Theorem 1.4.1

and its Corollary 1.4.1).

(iii) an (H)-limit need not be unique.

(iv) when T∞ is continuous and the condition X∞ ⊂ lim inf Xn is satisfied, then the

following implications hold ([22, Proposition 9]):

(H)⇒ (G)⇒ (G−).

However, without the two restrictions above, we have the relationship.

(G)⇒ (G−), (H)⇒ (G−).

Further, a (G)-limit is not necessarily an (H)-limit (see Example 1.2.3).

(v) the interrelationship between the (H) convergence and uniform convergence is

captured in [22, Proposition 10].

Example 1.2.1. [22] Consider the family {Tn : Xn → X}n∈N defined by Tnx = nx
1+nx

and T∞(x) = 1 for all x ∈ R+. Then the map T∞ is a (G)-limit of {Tn} but pointwise

convergence is not satisfied.

Example 1.2.2. [22] Consider Xn = R(n ∈ N) and the sequence {Tn : R → R}n∈N

of mappings defined by Tnx = nx
1+nx

for all x ∈ R. Then T∞(x) = 1 for any x ∈ R+,

T∞(0) = 0. Clearly T∞ is a (G)-limit of {Tn}. Let T ′∞ : R → R be defined by

T ′∞(x) = T∞(x) if x 6= 0 and T ′∞(0) = 1
2
. Then T ′∞ is also a (G)-limit of {Tn}, indeed

the point x = 0 is the limit of the sequence {xn = 1
n
}n∈N such that {Tnxn} converges

to T ′∞(0).
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Example 1.2.3. [22] Let {Tn : R+ → R}n∈N be defined by Tnx = nx
1+nx

and T∞x = 1

for all x ∈ R+. Then T∞ is a (G)-limit of {Tn}. But the property (H) is not satisfied,

since for the null sequence {xn} we get |Tn0 − T∞yn| = 1 for any sequence {yn}

converging to 0.

1.2.3 Uniform Spaces

Definition 1.2.2. Let X be a set. A subset U of X ×X is called a relation on X.

i.e.

U = {(x, y) : x, y ∈ X}.

In particular

∆ = {(x, x) : x ∈ X}

is called the diagonal relation. If

U = {(x, y) : x, y ∈ X}

is a relation on X, then

U−1 = {(y, x) : (x, y) ∈ U},

if U = U−1, then U is said to be symmetric. For any two relations, U and V we define

a composition by:

U ◦ V = {(x, z) ∈ X ×X : (x, y) ∈ V and (y, z) ∈ U for some y ∈ X}.

To every subset A ⊂ X we can assign the set

U [A] = {y : (x, y) ∈ U for some x ∈ A},

and if x is a point of X, then U [x] = U [{x}].
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Definition 1.2.3. A uniformity on a Set X is a nonempty family U consisting of

subsets of X ×X which satisfy the following conditions:

1. every element U ∈ U contains ∆,

2. if U ∈ U then U−1 ∈ U ,

3. if U ∈ U then V ◦ V ⊂ U for some V ∈ U ,

4. if U, V ∈ U then U ∩ V ∈ U ,

5. if U ∈ U and U ⊂ V ⊂ X ×X then V ∈ U .

The ordered pair (X,U) is called a uniform space and the elements of U are called

the entourages.

Every uniform space can be considered as a topological space with a natural

topology induced by the uniformity. The usual uniformity of the real line is the

family U of all subsets U of X × X such that {(x, y) : |x − y| < r} ⊂ U for some

positive number r. Other examples of uniform spaces are metric spaces, topological

groups and topological vector spaces.

Definition 1.2.4. A uniform space (X,U) is said to be Hausdorff if and only if

∩{U : U ∈ U} = ∆.

Definition 1.2.5. A subfamily B of a uniformity U is a base for U iff each member

of U contains a member of B. A Subfamily S is a subbase for U iff the family of finite

intersection of members of S is a base for U . A base for U is said to be countable

iff it is finite or it can be put into one-to-one correspondence with the set of natural

numbers.
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Definition 1.2.6. The collection {U [x] : x ∈ X}, where U ∈ U and U [x] = {y ∈ X :

(x, y) ∈ U} constitutes a neighborhood base for U that generates a unique topology

τu on X, called the uniform topology on X.

Definition 1.2.7. A topological space (X, τ) is called uniformizable if there exists a

uniformity U in X such that τ = τu.

Definition 1.2.8. A uniform space (X,U) is said to be pseudo-metrizable (metriz-

able) if and only if there is a pseudo-metric (metric) ρ such that U is the uniformity

generated by ρ.

1.2.4 Associated Families of Pseudo-Metrics

Let(X,U) be a uniform space. A family P = {ρα : α ∈ I} of pseudo-metrics on X,

where I is an indexing set is called an associated family for the uniformity U if the

family

B = {V (α, ε) : α ∈ I, ε > 0}

where

V (α, ε) = {(x, y) ∈ X ×X : ρα(x, y) < ε}

is a subbase for the uniformity U . We may assume B itself to be a base for U by

adjoining finite intersections of members of B if necessary. The corresponding family

of pseudo-metrics is called an augmented associated family for U . An augmented

family for U will be denoted by P ∗. (cf. Kelley [70] and Thron [139]). In view of

Kelley [70], we note that each member V (α, ε) of B is symmetric and ρα is uniformly

continuous on X ×X for each α ∈ I.

We note the following well known result (cf. Kelley [70]).
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Theorem 1.2.1. Every uniformity on a given set X is generated by a family of

pseudo-metrics which are uniformly continuous on X ×X.

Remark 1.2.2. The uniformity U is not necessary pseudo-metrizable (resp. metriz-

able) unless B is countable, and in that case, U may be generated by a single pseudo-

metric (resp. metric) ρ on X (see Kelley [70]). For an interesting motivation, we

refer to Reilly [103, Example 2] (see also Kelley [70, Example C, p. 204]). For further

details on uniform spaces and a systematic account of fixed point theory there in

(including applications), we refer to Kelley [70] and Angelov [14] respectively.

Example 1.2.4. [70] Let Ω0 be the set of all ordinals which are less than the first

uncountable ordinals Ω, and for each member a of Ω0 let

Ua = {(x, y) : x = y or x ≥ a and y ≥ a}.

Then the family of all sets of the form Ua is a base for a uniformity U for Ω0 (observe

that Ua = Ua ◦ Ua = U−1a ). The topology of this uniformity is the discrete topology

and hence metrizable, but the uniform space (Ω0,U) is not metrizable.

1.2.5 Convergence and Completeness in Uniform Spaces

Definition 1.2.9. Let (X,U) be a uniform space and {xn} a sequence in X. Then

{xn} is said to converge to x ∈ X if for all U ∈ U there is a natural number M such

that (xn, x) ∈ U for all n ≥M .

Definition 1.2.10. A sequence {xn} in X is said to be a Cauchy sequence if for all

member U ∈ U , there exists M > 0 such that (xn, xm) ∈ U for all n,m ≥M .

Definition 1.2.11. The space (X,U) is said to be sequentially complete if all Cauchy

sequence in X converges to a point in X.
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Throughout this work, by completeness, we shall mean the sequential complete-

ness.

1.2.6 Banach Contraction Principle in Uniform Spaces

Definition 1.2.12. [138] Let (X,U) be a uniform space and P ∗ = {ρα : α ∈ I}.

A mapping T : X → X is called a P ∗-contraction or simply contraction if for each

α ∈ I, there exists a real k(α), 0 < k(α) < 1 such that ρα(T (x), T (y)) ≤ k(α)ρα(x, y)

for all x, y ∈ X.

Remark 1.2.3. It is well known that T : X → X is P ∗-contraction if and only if it

is P -contraction (see Tarafdar [138, Remark 1]). Hence, now onward, we shall simply

use the term k-contraction (resp. contraction) to mean either of them. In case the

above condition is satisfied for any k = k(α) > 0, T will be called k-Lipschitz (of

simply Lipschitz).

The following result due to Tarafdar [138] (see also Acharya [5]) presents an exact

analog of the well-known Banach contraction principle.

Theorem 1.2.2. Let (X,U) be a Hausdorff complete uniform space and let {ρα : α ∈

I} = P ∗. Let T be a contraction on X. Then, T has a unique fixed point a ∈ X such

that T nx→ a in τu (the uniform topology) for all x ∈ X.

Definition 1.2.13. Let (X,U) be a uniform space, P ∗ = {ρα : α ∈ I} and S, T :

Y ⊆ X → X. Then the pair (S, T ) will be called J-Lipschitz (Jungck Lipschitz) if

for each α ∈ I, there exists a constant µ = µ(α) > 0 such that

ρα(Sx, Sy) ≤ µρα(Tx, Ty) for all x, y ∈ Y (1.2.1)
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The pair (S, T ) is generally called Jungck contraction (or simply J-contraction)

when 0 < µ < 1, and the constant µ in this case is called a Jungck constant (see

for instance [116] ). Indeed, J-contractions and their generalized versions become

popular because of the constructive approach of proof adopted by Jungck [60]. Now

onwards, a J-Lipschitz map (resp. J-contraction) with Jungck constant µ will be

called a J-Lipschitz (resp. J-contraction) with constant µ.

The following example illustrate the generality of J-Lipschitz maps.

Example 1.2.5. Let X = (0,∞) with the usual uniformity induced by

ρ(x, y) = |x− y| for all x, y ∈ X. Define S : X → X by

Sx =
1

x
for all x ∈ X.

Then,

ρ(Sx, Sy) =
1

xy
ρ(x, y) for all x, y ∈ X.

Since 1
xy
→ ∞ for small x or y ∈ X, S is not a Lipschitz map. However, if we

consider the map T : X → X defined by

Tx =
1

Lx
for all x ∈ X and some L > 0,

then

ρ(Sx, Sy) = Lρ(Tx, Ty)

and S is Lipschitz with respect to T or the pair (S, T ) is J-Lipschitz.

1.2.7 Barbet - Nachi Convergence in Uniform Spaces

Throughout, by a uniform space (X,U) we shall mean that the uniformity is defined

by the family of pseudo-metrics P ∗ = {ρα : α ∈ I}.
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Now, we present the following extension of Barbet-Nachi convergence to uniform

spaces by Mishra and Kalinde [86].

Definition 1.2.14. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn : Xn → X}n∈N a sequence of mappings. Then:

(i) S∞ is called a (G)-limit of sequence {Sn}n∈N or equivalently {Sn}n∈N satisfies the

Property (G), where

(G) Gr(S∞) ⊂ lim inf Gr(Sn): for all x ∈ X∞, there exists a sequence {xn} in∏
n∈N

Xn such that for all α ∈ I,

lim
n
ρα(xn, x) = 0 and lim

n
ρα(Snxn, S∞x) = 0,

and Gr(S) stands for the graph of S.

(ii) S∞ is called an (H)-limit of sequence {Sn}n∈N or, equivalently {Sn}n∈N satisfies

the property (H), where

(H) for all sequences {xn} in
∏
n∈N

Xn, there exists a sequence yn in X∞ such

that for any α ∈ I,

lim
n
ρα(xn, yn) = 0 and lim

n
ρα(Snxn, Snyn) = 0.

1.3 Stability of Fixed Points in Metric Spaces

In this section, we first recall some fundamental results in stability of fixed points by

Bonsall [28] and Nadler [89] followed by their generalizations by Barbet and Nachi

[22] for sequences of mappings in variable domains.
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Theorem 1.3.1. [28] Let (X, d) be a complete metric space and T and Tn(n = 1, 2, ...)

be contraction mappings of X into itself with the same Lipschitz constant k < 1, and

with fixed points u and un(n = 1, 2, ...), respectively. Suppose that limn Tnx = Tx for

every x ∈ X. Then, limn un = u.

We have the following remarks with respect to Theorem 1.3.1:

(a) The condition that all the contraction mappings Tn(n = 1, 2, ...) have the same

Lipschitz constant k is too restrictive as one can easily see by the remarks and

examples given in Nadler [89].

(b) The assumption that T is a contraction mapping is superfluous as this follows

from the fact that Tn(n = 1, 2, ...) is a contraction and d is continuous.

(c) the completeness condition may be replaced by the assumption of the existence

of fixed points for the mapping T and Tn(n = 1, 2, ...). Because there exist

contraction mappings on spaces which are not complete and have a fixed point.

Under uniform convergence of the sequence {Tn} to T and retaining the essence

of (a), (b) and (c) the following stability result was obtained by Nadler [89].

Theorem 1.3.2. Let (X, d) be a metric space and Tn : X → X be a mapping with

at least one fixed point un, for each n = 1, 2, ... and let T : X → X be a contraction

mapping with fixed point u. If the sequence {Tn} converges uniformly to T , then the

sequence {un} converges to u.

The above theorems were generalized by Barbet and Nachi [22] using (G) and

(H)-convergence where a number of supporting results were also obtained to arrive

at the desired conclusions.
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The following are the main stability results of Barbet and Nachi [22].

Theorem 1.3.3. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (G) and

such that, for all n ∈ N, Sn is a k-contraction from (Xn, d) into (X, d). If, for all

n ∈ N, xn is a fixed point of Sn then the sequence {xn}n∈N converges to x∞.

Theorem 1.3.4. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (H) and

such that S∞ is a k∞-contraction. If, for any n ∈ N, xn is a fixed point of Sn then

the sequence {xn}n∈N converges to x∞.

1.4 Stability of Common Fixed Points in Uniform

Spaces

In this section, we shall study the stability of common fixed points for a pair of

mappings in a uniform space. The results so obtained extend Theorems 1.3.3 and

1.3.4 of Barbet and Nachi [22]. During the process a number of supporting results

will be obtained.

1.4.1 G-Convergence and Stability in Uniform Spaces

As noted earlier in Example 1.2.2 a (G)-limit need not be unique. First, we shall

prove the following theorem which gives a sufficient condition for the existence of a

unique (G)-limit.
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Theorem 1.4.1. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn : Xn → X}n∈N a sequence of J-Lipschitz maps relative to a

continuous map T : X → X with Lipschitz constant µ. If S∞ : X∞ → X is a G-limit

of the sequence {Sn}, then S∞ is unique.

Proof. Let U ∈ U be an arbitrary entourage. Then, since B is a base for U , there

exists V (α, ε) ∈ B, α ∈ I, ε > 0 such that V (α, ε) ⊂ U . Suppose that S∞ : X∞ → X

and S∗∞ : X∞ → X are G-limit maps of the sequence {Sn}. Then, for every x ∈ X∞,

there exist two sequences {xn} and {yn} in
∏
n∈N

Xn such that for any α ∈ I:

lim
n
ρα(xn, x) = 0 and lim

n
ρα(Snxn, S∞x) = 0,

lim
n
ρα(yn, x) = 0 and lim

n
ρα(Snyn, S

∗
∞x) = 0.

Further, since Sn is J-Lipschitz, for any α ∈ I, there exists a constant µ = µ(α) > 0

such that

ρα(Snxn, Snyn) ≤ µρα(Txn, T yn).

Therefore, for any n ∈ N and α ∈ I,

ρα(S∞x, S
∗
∞x) ≤ ρα(S∞x, Snxn) + ρα(Snxn, Snyn) + ρα(Snyn, S

∗
∞x)

≤ ρα(S∞x, Snxn) + µρα(Txn, T yn) + ρα(Snyn, S
∗
∞x)

≤ ρα(S∞x, Snxn) + µ[ρα(Txn, Tx) + ρα(Tx, Tyn)] + ρα(Snyn, S
∗
∞x).

Since T is continuous and xn → x and yn → x as n → ∞, it follows that

Txn → Tx, Tyn → Tx. Hence the R.H.S of the above expression tends to 0 as n→∞

and so, ρα(S∞x, S
∗
∞x) < ε for all n ≥ N(α, ε). Therefore (S∞x, S

∗
∞x) ∈ V (α, ε) ⊂ U

and since X is Hausdorff, it follows that S∞x = S∗∞x.
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Corollary 1.4.1. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn : Xn → X}n∈N a sequence of J-contraction maps relative to a

continuous map T : X → X with contraction constant 0 < µ < 1. If S∞ : X∞ → X

is a G-limit of the sequence {Sn}, then S∞ is unique.

The following result is due to Mishra and Kalinde [86, Proposition 3.1], follows as

a special case of Theorem 1.4.1.

Corollary 1.4.2. Let (X,U) be a Hausdorff uniform space, {Xn}n∈N a family of

nonempty subsets of X and Sn : Xn → X a k-contraction(resp. k-Lipschitz) mapping

for each n ∈ N. If S∞ : X∞ → X is a (G)-limit of {Sn}n∈N then S∞ is unique.

Proof. It comes from Theorem 1.4.1 when T is the identity map and µ ∈ (0, 1)

(resp. µ > 0).

The following result of Barbet and Nachi [22] is also obtained as a consequence of

Corollary 1.4.2 when X is metrizable.

Corollary 1.4.3. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X} a sequence of k-Lipschitz mappings. If S∞ : X∞ → X is a

(G)-limit of {Sn} then S∞ is unique.

Now, we present our first stability result.

Theorem 1.4.2. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn, Tn : Xn → X}n∈N two sequences of mappings each satisfying

the property (G) and such that for all n ∈ N, the pair (Sn, Tn) is J-contraction with

constant µ and Tn is continuous. If for all n ∈ N, zn is a common fixed point of Sn

and Tn then the sequence {zn} converges to z∞, the common fixed point of S∞ and

T∞.
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Proof. Let W ∈ U be arbitrary. Then, there exists V (λ, ε) ∈ B, λ ∈ I, ε > 0

such that V (λ, ε) ⊂ W . Since zn is a common fixed point of Sn and Tn for each n ∈ N,

the property (G) holds and z∞ ∈ X∞, there exists a sequence {yn} such that yn ∈ Xn

(for all n ∈ N) such that for any λ ∈ I and Condition 1.2.1,

lim
n
ρλ(yn, z∞) = 0 , lim

n
ρλ(Snyn, S∞z∞) = 0 and lim

n
ρλ(Tnyn, T∞z∞) = 0.

Using the fact that the pair (Sn, Tn) is J-contraction, for any λ ∈ I, we have

ρλ(zn, z∞) = ρλ(Snzn, S∞z∞)

≤ ρλ(Snzn, Snyn) + ρλ(Snyn, S∞z∞)

≤ µ(λ)ρλ(Tnzn, Tnyn) + ρλ(Snyn, S∞z∞)

≤ µ(λ)ρλ(Tnzn, T∞z∞) + µ(λ)ρλ(Tnyn, T∞z∞) + ρλ(Snyn, S∞z∞).

This gives

ρλ(zn, z∞) ≤ 1

1− µ(λ)
[µ(λ)ρλ(Tnyn, T∞z∞) + ρλ(Snyn, S∞z∞)].

Since µ(λ) < 1, it follows that ρλ(zn, z∞) → 0 as n → ∞. Hence, ρλ(zn, z∞) < ε for

all n ≥ N(λ, ε) and so (zn, z∞) ∈ V (λ, ε) ⊂ W and the conclusion follows.

When for each n ∈ N, Tn is the identity map on Xn in Theorem 1.4.2, we have

the following result due to Mishra and Kalinde [86, Theorem 3.3] as a special case.

Corollary 1.4.4. . Let (X,U) be a Hausdorff uniform space, {Xn}n∈N a family of

nonempty subsets of X and {Sn : Xn → X}n∈N a sequence of mappings satisfying the

property (G) and Sn is a k-contraction for each n ∈ N. Then the sequence {xn}n∈N

converges to x∞.

When X is a metrizable uniform space, then we obtain Theorem 1.3.3 of Barbet

and Nachi [22].
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Again, when Xn = X, for all n ∈ N, we obtain, as a consequence of Theorem

1.4.2, the following result.

Corollary 1.4.5. . Let (X,U) be a uniform space and Sn, Tn : X → X be such that

the pair (Sn, Tn) is J-contraction with constant µ and with at least one common fixed

point zn for all n ∈ N. If the sequences {Sn} and {Tn} converge pointwise respectively

to S, T : X → X, then the sequence {zn} converges to z∞.

We remark that under the conditions of Theorem 1.4.2 the pair (S∞, T∞) of G-

limit maps is also a J-contraction. Indeed, we have the following stability result.

Theorem 1.4.3. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn, Tn : Xn → X}n∈N two families of mappings each satisfying

the property (G) and such that for all n ∈ N, the pair (Sn, Tn) is J-contraction with

constant {µn}n∈N a bounded (resp. convergent) sequence. Then, the pair (S∞, T∞) is

J-contraction with constant µ = sup
n∈N

µn (resp. µ = lim
n
µn).

Proof. Let x, y ∈ X∞. Then, by the property (G), there exist two sequences

{xn} and {yn} in
∏
n∈N

Xn such that the sequences {Snxn}, {Snyn}, {Tnxn} and {Tnyn}

converge respectively to S∞x, S∞y, T∞x and T∞y.

Therefore, for any n ∈ N and each α ∈ I,

ρα(S∞x, S∞y) ≤ ρα(S∞x, Snxn) + ρα(Snxn, Snyn) + ρα(Snyn, S∞y)

≤ ρα(S∞x, Snxn) + µnρα(Tnxn, Tnyn) + ρα(Snyn, S∞y).

Since

lim sup
n
µnρα(Tnxn, Tnyn) ≤ µρα(T∞x, T∞y),
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the above inequality yields ρα(S∞x, S∞y) ≤ µρα(T∞x, T∞y) and the conclusion fol-

lows.

Theorem 1.4.3 includes, as a special case, the following result of Mishra and

Kalinde [86, Proposition 3.5] for uniform spaces when Xn = X and Tn is an identity

mapping for each n ∈ N.

Corollary 1.4.6. Let X be a Hausdorff uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn : Xn → X}n∈N a sequence of mappings satisfying the property

(G) and that Tn is a Lipschitz mapping with Lipschitz constant kn for all n ∈ N and

{kn} is bounded (resp. convergent). Then S∞ is k-Lipschitz with k = lim
n

sup kn (resp.

k = lim
n
kn).

Now, when X is metrizable in the above Corollary, we have the following result

of Barbet and Nachi [22, Proposition 4].

Corollary 1.4.7. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings satisfying the property (G) and

such that for all n ∈ N, Sn is a kn-Lipschitz with {kn}n∈N a bounded (resp. convergent)

sequence. Then S∞ is k-Lipschitz with k = sup
n
kn (resp. k = lim

n
kn).

1.4.2 H-Convergence and Stability in Uniform Spaces

In this section, we extend Theorem 1.3.4 to a pair of mappings in a uniform space.

Theorem 1.4.4. Let (X,U) be a uniform space, {Xn}n∈N a family of nonempty

subsets of X and {Sn, Tn : Xn → X}n∈N be two families of mappings each satisfying

the property (H). Further, let the pair (S∞, T∞) be a J-contraction with constant µ∞.

If, for every n ∈ N, zn is a common fixed point of Sn and Tn, then the sequence {zn}
converges to z∞, the common fixed point of S∞ and T∞ .
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Proof. The property (H) implies that there exists a sequence {yn} in X∞ such

that for any α ∈ I,

lim
n
ρα(zn, yn) = 0, lim

n
ρα(Snzn, S∞yn) = 0 and lim

n
ρα(Tnzn, T∞yn) = 0.

Then

ρα(zn, z∞) = ρα(Snzn, S∞z∞)

≤ ρα(Snzn, S∞yn) + ρα(S∞yn, S∞z∞)

≤ ρα(Snzn, S∞yn) + µ∞ρα(T∞yn, T∞z∞)

≤ ρα(Snzn, S∞yn) + µ∞[ρα(T∞yn, Tnzn) + ρα(Tnzn, T∞z∞)].

So, we get

ρα(zn, z∞) ≤ 1

1− µ∞
[ρα(Snzn, S∞yn) + µ∞ρα(T∞yn, Tnzn)].

Since the right hand side of the above inequality tends to 0 as n → ∞, we deduce

that zn → z∞ as n→∞.

As a consequence of Theorem 1.4.4, we have the following result due to Mishra

and Kalinde [86, Theorem 3.13].

Corollary 1.4.8. Let (X,U) be a Hausdorff uniform space, {Xn}n∈N a family of

nonempty subsets of X and {Sn : Xn → X}n∈N a family of mappings satisfying the

property (H) and such that S∞ is a k-contraction. If for any n ∈ N, xn is a fixed

point of Tn, then {xn}n∈N converges to x∞.

Proof. It comes from Theorem 1.4.4 by taking Tn to be the identity mappings

for each n ∈ N.

If X is metrizable, then we get a stability result of Barbet and Nachi [22, Theorem

11] as follows.
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Corollary 1.4.9. Let (X, d) be a metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings satisfying the property (H) and

such that S∞ is a k∞-contraction. If, for all n ∈ N, zn is a fixed point of Sn then the

sequence {xn}n∈N converges to x∞.

Remark 1.4.1. We note that Theorem 1.3.2 follows as a direct consequence of Corol-

lary 1.4.8 when Xn = X for each n ∈ N with X being metrizable.

1.5 Extension to Locally Convex Spaces

Remark 1.5.1. Every locally convex topological vector space X is uniformizable

being completely regular (cf. Kelley [70], Shaefer [115]) where the family of pseu-

dometric {ρα, α ∈ I} is induced by a family of seminorms {pα, α ∈ I} so that

ρα(x, y) = pα(x − y) for all x, y ∈ X. Therefore, all the results proved previously

for uniform spaces also apply to locally convex spaces.



Chapter 2

Fixed Point Theory in 2-Metric
Spaces

2.1 Introduction

In Chapter 1 we extended to uniform spaces the results of Barbet and Nachi [22] on

the stability of fixed points in metric space using new notions of convergence. In this

chapter (Subsection 2.2.3 and Section 2.3), we extend these notions to 2-metric spaces

and obtain the stability of common fixed points. We note that these results may be

considered as significant in the sense that the 2-metric spaces differ topologically from

metric spaces in many ways (see Remark 2.2.1).

In addition, in Section 2.4 we obtain an analogue in 2-metric spaces of the Suzuki

contraction theorem [134], which is a generalization of the classical Banach contraction

theorem in metric spaces and it characterizes the metric completeness. We then apply

this theorem to prove a coincidence theorem for a pair of non-self mappings.

29
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2.2 Preliminaries

In this section we present the notion of 2-metric spaces and some related properties

to these spaces and extension of Barbet - Nachi Convergence in 2-Metric Spaces.

2.2.1 2-Metric Spaces

The following notion of 2-metric spaces is due to Gähler [46].

Definition 2.2.1. A 2-metric space is a space X with a real valued function ρ on

X ×X ×X satisfying the following conditions:

(G1) for two points x, y ∈ X there is a point z ∈ X such that ρ(x, y, z) 6= 0,

(G2) ρ(x, y, z) = 0 if at least two of the three points are equal,

(G3) ρ(x, y, z) = ρ(z, x, y) = ρ(y, z, x) (symmetry about three variables),

(G4) ρ(x, y, z) ≤ ρ(x, y, u) + ρ(x, u, z) + ρ(u, y, z) (triangle area inequality or simply

TA-inequality).

2.2.2 Convergence, Completeness and Continuity in 2-Metric

Spaces

Definition 2.2.2. Let {xn} be a sequence in a 2-metric space (X, ρ). Then:

(i) {xn} is said to be convergent with limit z ∈ X if

lim
n→∞

ρ(xn, z, a) = 0 for all a ∈ X.
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Notice that if the sequence {xn} converges to z, then

lim
n→∞

ρ(xn, a, b) = ρ(z, a, b) for all a, b ∈ X.

(ii) {xn} is said to be Cauchy if

lim
m,n→∞

ρ(xm, xn, a) = 0 for all a ∈ X.

(iii) (X, ρ) is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.2.3. A 2-metric space (X, ρ) is said to be bounded if there is a constant

K such that ρ(a, b, c) ≤ K for all a, b, c ∈ X.

Remark 2.2.1. The following remarks capture some distinct features of topological

properties of 2-metric spaces which differ from those of metric spaces.

(i) Given any metric space which consist of more than two points, there always exists

a 2-metric compatible with the topology of the space. But the converse is not

always true as one can find a 2-metric space which does not have a countable

basis associated with one of its arguments (see Gähler [46, page 123]).

(ii) It is known that a 2-metric ρ is continuous in any one of its arguments. Generally,

we cannot however assert the continuity of ρ in all three arguments. But if it is

continuous in any two arguments, then it is continuous in all the three arguments

(see Gähler [46, Theorem 20 and example on page 145]).

(iii) In a complete 2-metric space a convergent sequence need not be Cauchy (see

Example 2.2.1).

(iv) In a 2-metric space (X, ρ) every convergent sequence is Cauchy whenever ρ is

continuous. However, the converse need not be true (see Example 2.2.2)
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Example 2.2.1. [92] Let X = {0, 1, 1
2
, 1
3
, ...}. Define ρ : X ×X ×X → [0,∞) as

ρ(x, y, z) =

 1 if x, y, z are distinct and { 1
n
, 1
n+1
} ⊂ {x, y, z} for some positive integer n

0 otherwise.

Then (X, ρ) is a complete 2-metric space. The sequence { 1
n
} converges to 0, but { 1

n
}

is not Cauchy.

Example 2.2.2. [92] Let X = {a}∪{an : n = 1, 2, ...}∪{b}∪{bn : n = 1, 2, ...}, where

a = (1, 0), b = (0, 0), an = (1 + 1
n
, 0) and bn = (0, 1

n
). Define ρ : X ×X ×X → [0,∞)

as

ρ(x, y, z) =


1 if {x, y, z} = {an, bn, a} or {an, bn, b} for some n ∈ N or {an, bn, am}

or {an, bn, bm} for some m,n ∈ N with m 6= n

∆ x y z otherwise,

where ∆ x y z is the area of the triangle formed by the points x, y and z. Then (X, ρ)

is a complete 2-metric space and every convergent sequence in it is Cauchy. But ρ is

not continuous on X, for {an} converges to a, {bn} converges to b and {ρ(an, bn, a)}

does not converge to zero.

Definition 2.2.4. Let (X, ρ) be a 2-metric space. A mapping S : X → X is called

k-Lipschitz (or simply Lipschitz ) if there exists a real k > 0 such that:

ρ(Sx, Sy, a) ≤ kρ(x, y, a) for all x, y, a ∈ X. (2.2.1)

In case the above condition is satisfied for k ∈ (0, 1), T is called k-contraction (or

simply contraction)(cf. [54], [77]).

Remark 2.2.2. It is well known that a contraction mapping on a 2-metric space

X has a unique fixed point. Initially, an additional requirement of boundedness was
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placed on X by Iséki et al. [54] and which was dispensed with subsequently by

Rhoades [106] and Lal and Singh [77] independently.

Definition 2.2.5. Let (X, ρ) be a 2-metric space, S, T : Y ⊆ X → X. The the pair

(S, T ) will be called J-Lipschitz (Jungck Lipschitz) if there exists a constant µ > 0

such that:

ρ(Sx, Sy, a) ≤ µρ(Tx, Ty, a) for all x, y, a ∈ Y . (2.2.2)

If T is an identity mapping on X, then we recover definition 2.2.4.

The other comments made there in Subsection 1.2.6 apply.

2.2.3 Extension of Barbet - Nachi Convergence to 2-Metric

spaces

We now extend the various notions of convergence due to Barbet and Nachi [22]

mentioned in Subsection 1.2.1 to 2-metrics paces.

Definition 2.2.6. Let (X, ρ) be a 2-metric space, {Xn}n∈N a sequence of non-empty

subsets of X and {Sn : Xn → X}n∈N a sequence of mappings. Then:

(i) S∞ is called a (G)-limit of sequence {Sn}n∈N, or equivalently {Sn}n∈N satisfies the

property (G), where

(G) Gr(S∞) ⊂ lim inf Gr(Sn): for all x ∈ X∞, there exists a sequence {xn} in∏
n∈N

Xn such that for all a ∈ X,

lim
n
ρ(xn, x, a) = 0 and lim

n
ρ(Snxn, S∞x, a) = 0,

and Gr(S) stands for the graph of S.
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(ii) S∞ is called a (G−)-limit of sequence {Sn}n∈N, or equivalently {Sn}n∈N satisfies

the property (G−), where

(G−) Gr(T∞) ⊂ lim supGr(Tn): for all z ∈ X∞, there exists a sequence {xn}

in
∏
n∈N

Xn and which has a subsequence {xnj
} such that

lim
j
ρ(xnj

, z, a) = 0 and lim
j
ρ(Tnj

xnj
, T∞z, a) = 0, for all a ∈ X.

(iii) T∞ is called an (H)-limit of the sequence {Sn}n∈N or equivalently {Sn}n∈N sat-

isfies the property (H), where

(H) For all sequence {xn} in
∏
n∈N

Xn, there exists a sequence {yn} in X∞ such

that for all a ∈ X

lim
n
ρ(xn, yn, a) = 0 and lim

n
ρ(Snxn, S∞yn, a) = 0.

2.3 Stability of Common Fixed Points in 2-Metric

Spaces

In this section we generalize the results of Barbet and Nachi [22] to a pair of sequences

of mappings in 2-metric spaces.

Throughout, unless stated otherwise, X will denote a 2-metric space (X, ρ) with

ρ continuous.

2.3.1 (G)-Convergence and Stability

The following theorem gives a sufficient condition for the existence of a unique (G)-

limit.
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Theorem 2.3.1. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn : Xn → X}n∈N a sequence of J-contraction mappings relative to a

continuous mapping T : X → X with constant µ. If S∞ : X∞ → X is a (G)-limit of

the sequence {Sn}, then S∞ is unique.

Proof. Suppose that S∞, S
∗
∞ : X∞ → X are (G)-limit mappings of the sequence

{Sn}. Then for every x ∈ X∞, there exist sequences {xn} and {yn} in
∏
n∈N

Xn such

that for any a ∈ X,

lim
n
ρ(xn, x, a) = 0 and lim

n
ρ(Snxn, S∞x, a) = 0,

lim
n
ρ(yn, x, a) = 0 and lim

n
ρ(Snyn, S

∗
∞x, a) = 0.

Further, since Sn is a J-contraction for each n ∈ N, there exist a constant µ ∈ (0, 1)

such that for any a ∈ X,

ρ(Snxn, Snyn, a) ≤ µρ(Txn, T yn, a).

Therefore for any n ∈ N and a ∈ X,

ρ(S∞x, S
∗
∞x, a) ≤ ρ(S∞x, S

∗
∞x, Snxn) + ρ(S∞x, Snxn, a) + ρ(Snxn, S

∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + ρ(S∞x, Snxn, Snyn) + ρ(S∞x, Snyn, a)

+ρ(Snyn, Snxn, a) + ρ(Snxn, S
∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + µρ(S∞x, Tnxn, Tnyn) + ρ(S∞x, Snyn, a)

+ρ(Snyn, Snxn, a) + ρ(Snxn, S
∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + µ[ρ(S∞x, Tnxn, Tx) + ρ(S∞x, Tx, Tnyn)

+ρ(Tx, Tnxn, Tnyn)] + ρ(S∞x, Snyn, a) + ρ(Snyn, Snxn, a)

+ρ(Snxn, S
∗
∞x, a).
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Since T is continuous and xn → x, yn → x, it follows that Txn → Tx, Tyn → Tx.

Hence the R.H.S. of the above expression tends to 0 as n → ∞. Therefore S∞x =

S∗∞x.

Corollary 2.3.1. Let X be a 2-metric space, {Xn}n∈N a family of non-empty sub-

sets of X and {Sn : Xn → X}n∈N a sequence of J-Lipschitz mappings relative to a

continuous mapping T : X → X with constant µ. If S∞ : X∞ → X is a (G)-limit of

the sequence {Sn}, then S∞ is unique.

The following result is an extension of Barbet and Nachi [22, Proposition 1] to

2-metric spaces and it also includes a result of Mishra et al. [87, Proposition 3.1]).

Corollary 2.3.2. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and Sn : Xn → X a k-contraction (k-Lipschitz) mappings relative to a continuous

mapping T : X → X with constant µ. If S∞ : X∞ → X is a (G)-limit of {Sn}n∈N,

then S∞ is unique.

Proof. it comes from Theorem 2.3.1 when T is the identity mapping and µ ∈ (0, 1)

(resp. µ > 0).

Now we present our first result on stability of common fixed points.

Theorem 2.3.2. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn, Tn : Xn → X}n∈N two sequences of mappings, each satisfying the

property (G) and such that for all n ∈ N, the pair (Sn, Tn) is a J-contraction with

constant µ and Tn continuous. If for all n ∈ N, zn is a common fixed point of Sn and

Tn, then the sequence {zn} converges to z∞.

Proof. Since {zn} is a common fixed point of Sn and Tn for each n ∈ N, the

property (G) holds and z∞ ∈ X∞, there exists a sequence {yn} with yn ∈ Xn (for all
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n ∈ N) such that for any a ∈ X,

lim
n
ρ(yn, z∞, a) = 0 , lim

n
ρ(Snyn, S∞z∞, a) = 0 and lim

n
ρ(Tnyn, T∞z∞, a) = 0.

Using the fact that the pair (Sn, Tn) is a J-contraction for all n ∈ N, we have for any

a ∈ X,

ρ(zn, z∞, a) = ρ(Snzn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + ρ(Snzn, Snyn, a) + ρ(Snyn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + µρ(Tnzn, Tnyn, a) + ρ(Snyn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + ρ(Snyn, S∞z∞, a) + µ[ρ(Tnzn, Tnyn, T∞z∞)

+ρ(Tnzn, T∞z∞, a) + ρ(T∞z∞, Tnyn, a)].

The R.H.S. of the above expression tends to 0 as n→∞ and the conclusion follows.

When for each n ∈ N, Tn is an identity mapping on Xn in Theorem 2.3.2, we have

the following result as an extension of Barbet and Nachi [22, Theorem 2] to 2-metric

spaces.

Corollary 2.3.3. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (G) and

Sn is a k-contraction for each n ∈ N. If xn is a fixed point of Sn for each n ∈ N, then

the sequence {xn}n∈N converges to x∞, the fixed point of S∞ .

The following result gives a comparison with Rhoades [106, Theorem 2] and

presents a 2-metric space version of Theorem 1.3.1 of Bonsall [28].

Corollary 2.3.4. Let X be a complete 2-metric space and {Sn : X → X}n∈N a family

of contraction mappings with the same Lipschitz constant k < 1 and such that the
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sequence {Sn}n∈N converges pointwise to S∞. Then, for all n ∈ N, Sn has a unique

fixed point xn and the sequence {xn}n∈N converges to x∞.

Proof. This comes from Corollary 2.3.3 and the fact that X is complete.

Again, when Xn = X, for all n ∈ N, we obtain, as a consequence of Theorem 2.3.2

the following result.

Corollary 2.3.5. Let X be a 2-metric space, Sn, Tn : X → X be such that the

pair (Sn, Tn) is a J-contraction with constant µ, Tn continuous and with at least one

common fixed point zn for all n ∈ N. If the sequences {Sn} and {Tn} converge

pointwise respectively to S∞, T∞ : X → X then the sequence {zn} converges to z∞.

We remark that under the conditions of Theorem 2.3.2 the pair (S∞, T∞) of (G)-

limit mappings is also a J-contraction. Indeed, we have the following stability result.

Theorem 2.3.3. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn, Tn : Xn → X}n∈N two sequences of mappings, each satisfying the

property (G) and such that for all n ∈ N, the pair (Sn, Tn), with Tn continuous is a

J-contraction with constant {µn}n∈N, a bounded (resp. convergent) sequence. Then

the pair (S∞, T∞) is a J-contraction with constant µ = sup
n∈N

µn (resp. µ = lim
n
µn)

Proof. Let x, y ∈ X∞. Then by the property (G), there exists two sequences {xn}

and {yn} in
∏
n∈N

Xn such that:

lim
n
ρ(xn, x, a) = 0 , lim

n
ρ(Snxn, S∞x, a) = 0 , lim

n
ρ(Tnxn, T∞x, a) = 0,

lim
n
ρ(yn, y, a) = 0 , lim

n
ρ(Snyn, S∞y, a) = 0 , lim

n
ρ(Tnyn, T∞y, a) = 0.

for all a ∈ X. Since for any n ∈ N and each a ∈ X,

lim sup
n
µnρ(Tnxn, Tnyn, a) ≤ µρ(T∞x, T∞y, a),



39

the above inequality yields

ρ(S∞x, S∞y, a) ≤ µρ(T∞x, T∞y, a),

and the conclusion follows.

Corollary 2.3.6. Theorem 2.3.3 with J-contraction replaced by J-Lipschitz.

When for each n ∈ N, Tn is an identity mapping in Theorem 2.3.3, we have the

following extension of Barbet and Nachi [22, Proposition 4] to 2-metric spaces.

Corollary 2.3.7. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings, satisfying the property (G) and

such that for any n ∈ N, Sn is J-Lipschitz (resp. J-contraction) with constant {kn}n∈N

a bounded (resp. convergent) sequence. Then S∞ is J-Lipschitz (resp. J-contraction)

with constant k := sup
n∈N

kn (resp. k := lim
n
kn).

The existence of a fixed point for a (G)-limit mapping is characterized by the

following result when it is a contraction mapping.

Theorem 2.3.4. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn, Tn : Xn → X}n∈N two sequences of mappings, each satisfying the

property (G) and such that for all n ∈ N, the pair (Sn, Tn) is a J-contraction with

constant µ and Tn continuous. Assume that for any n ∈ N, xn is a common fixed

point of Sn and Tn. Then:

S∞ and T∞ admit a common fixed point ⇔ {xn} converges and lim
n
xn ∈ X∞

⇔ {xn} admits a subsequence converging

to a point of X∞ .
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Proof. In view of Theorem 2.3.3, we only have to prove the sufficiency part. Let

{xnj
} be a subsequence of {xn} such that limj xnj

= x∞ ∈ X∞. By (G), there exists

a sequence {yn} in
∏
n∈N

Xn such that

lim
n
ρ(yn, z∞, a) = 0 , lim

n
ρ(Snyn, S∞x∞, a) = 0 and lim

n
ρ(Tnyn, T∞x∞, a) = 0, for all a ∈ X.

First we show that S∞x∞ = x∞. For any a ∈ X and n ∈ N, we have

ρ(x∞, S∞x∞, a) ≤ ρ(x∞, Snj
xnj

, a) + ρ(Snj
xnj

, S∞x∞, a) + ρ(x∞, S∞x∞, Snj
xnj

)

≤ ρ(x∞, Snj
xnj

, a) + ρ(Snj
xnj

, S∞x∞, Snj
ynj

) + ρ(Snj
xnj

, Snj
ynj

, a)

+ρ(Snj
ynj

, S∞x∞, a) + ρ(x∞, S∞x∞, Snj
xnj

)

≤ ρ(x∞, Snj
xnj

, a) + ρ(Snj
xnj

, S∞x∞, Snj
ynj

) + µρ(Tnj
xnj

, Tnj
ynj

, a)

+ρ(Snj
ynj

, S∞x∞, a) + ρ(x∞, S∞x∞, Snj
xnj

).

The R.H.S. of the above expression tends to zero as n→∞ and hence S∞x∞ = x∞.

Next, by the triangle inequality we have:

ρ(x∞, T∞x∞, a) ≤ ρ(x∞, Tnj
xnj

, a) + ρ(Tnj
xnj

, T∞x∞, a) + ρ(x∞, T∞x∞, Tnj
xnj

).

The R.H.S. of the above expression tends to zero as n→∞ and hence S∞x∞ = x∞.

Therefore S∞x∞ = T∞x∞ = x∞ and x∞ is a common fixed point of S∞ and T∞.

Remark 2.3.1. Under the assumptions of Theorem 2.3.4 and if

(i) lim inf Xn ⊂ X∞ (i.e, the limit of any convergent sequence {xn} in
∏
n∈N

Xn is in

X∞), then:

S∞ and T∞ admit a common fixed point ⇔ {xn} converges .
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(ii) lim supXn ⊂ X∞ (i.e, the cluster point of any sequence {xn} in
∏
n∈N

Xn is in

X∞), then:

S∞ and T∞ admit a common fixed point ⇔ {xn} admits a convergent subsequence .

Under certain compactness assumptions, we have the following.

Theorem 2.3.5. Let {Xn}n∈N be a family of non-empty subsets of a 2-metric space

(X, ρ) , {Sn, Tn : Xn → X}n∈N two sequences of mappings, each satisfying the property

(G) and such that for any n ∈ N, the pair (Sn, Tn) is a J-contraction with constant µ

and Tn continuous. Assume that, lim supXn ⊂ X∞ and ∪n∈NXn is relatively compact.

If for any n ∈ N, xn is a common fixed point of Sn and Tn, then the pair (S∞, T∞) of

(G)-limit mappings of Sn and Tn admits a common fixed point x∞ and the sequence

{xn}n∈N converges to x∞.

Proof. Let {xn}n∈N be a common fixed point of Sn and Tn. Then by the com-

pactness assumption,{xn}n∈N has a convergent subsequence {xnj
}. Now by Remark

2.3.1, S∞ and T∞ admit a common fixed point x∞ and by Theorem 2.3.2, {xn}n∈N

converges to x∞.

Remark 2.3.2. By choosing Xn and Tn suitably in Theorem 2.3.4 and Theorem

2.3.5, we obtain the extensions of the corresponding results of Barbet and Nachi [22,

Corollary 6 and Theorem 7]

2.3.2 (G−)-Convergence and Stability

We shall establish in the next result that a fixed point of a (G−)-limit map is a cluster

point of the sequence of common fixed points of a pair of sequences of mappings

(Sn, Tn).
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Theorem 2.3.6. Let {Xn} be a family of nonempty subsets of a 2-metric space X

and {Sn, Tn : Xn → X}n∈N be two sequences of J-contraction mappings with constant

µ and Tn continuous, each satisfying the property(G−). If, for any n ∈ N, xn is a

common fixed point of Sn and Tn, then x∞ is a cluster point of the sequence {xn}n∈N.

Proof. By the property (G−), there exists a sequence yn in
∏
n

Xn which has a

subsequence ynj
such that:

lim
j
ρ(ynj

, x∞, a) = 0, lim
j
ρ(Snj

ynj
, S∞x∞, a) = 0 and lim

j
ρ(Tnj

ynj
, T∞x∞, a) = 0

for all a ∈ X. Since the pair (Snj
, Tnj

) is a J-contraction for each j ∈ N, for any

a ∈ X we have:

ρ(xnj
, x∞, a) = ρ(Snj

xnj
, S∞x∞, a)

≤ ρ(Snj
xnj

, Snj
ynj

, a) + ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

≤ µρ(Tnj
xnj

, Tnj
ynj

, a) + ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

≤ µ[ρ(Tnj
xnj

, Tnj
ynj

, Tnj
x∞) + ρ(Tnj

xnj
, Tnj

x∞, a) + ρ(Tnj
x∞, Tnj

ynj
, a)]

+ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

The R.H.S of the above expression tends to zero as j →∞ and hence {xnj
} converges

to x∞, the common fixed point of S∞ and T∞.

When for all n ∈ N, Xn = X and Tn is an identity mapping, we get the following

analogue of Barbet and Nachi [22, Theorem 8] to 2-metric spaces.

Corollary 2.3.8. Let{Xn} be a family of nonempty subsets of a 2-metric space X

and {Sn : Xn → X}n∈N a family of k-contraction mappings satisfying the property

(G−). If, for any n ∈ N, xn is a fixed point of Sn, then x∞ is a cluster point of the

sequence {xn}n∈N.
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2.3.3 (H)-Convergence and Stability

The following theorem presents another stability result.

Theorem 2.3.7. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and let {Sn, Tn : Xn → X}n∈N be two sequences of mappings each satisfying the

property (H). Further, let the pair (S∞, T∞) be a J-contraction with constant µ∞ and

T∞ continuous. If, for any n ∈ N, zn is a common fixed point of Sn and Tn, then the

sequence {zn} converges to z∞.

Proof. The property (H) implies that, there exists a sequence {yn} in X∞ such

that for any a ∈ X,

lim
n
ρ(zn, yn, a) = 0 , lim

n
ρ(Snzn, S∞yn, a) = 0 and lim

n
ρ(Tnzn, T∞yn, a) = 0. Then

ρ(zn, z∞, a) = ρ(Snzn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a) + ρ(S∞yn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a) + µ∞ρ(T∞yn, T∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a) + µ∞[ρ(T∞yn, T∞z∞, Tnzn)

+ρ(T∞yn, Tnzn, a) + ρ(Tnzn, T∞x∞, a)].

Since the right hand side of the above inequality tends to 0 as n→∞, we deduce

that zn → z∞ as n→∞.

The following result of Mishra et al. [87, Theorem 3.4] which also extends a result

of Barbert and Nachi [22] to 2-metric spaces follows as corollary of Theorem 2.3.7.

Corollary 2.3.9. Let X be a 2-metric space, {Xn}n∈N a family of non-empty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (H)and
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such that S∞ is a k∞-contraction. If, for any n ∈ N, xn is a fixed point of Sn then

the sequence {xn}n∈N converges to x∞.

Proof. It comes from Theorem 2.3.7 when for all n ∈ N, Tn is an identity

mapping.

When Xn = X, for all n ∈ N in corollary 2.3.9, we get a special case of Rhoades

[106, Theorem 3] which in turn presents a 2-metric space version of Nadler [89, The-

orem 1].

Corollary 2.3.10. Let X be a 2-metric space, {Sn : X → X}n∈N a sequence of

mappings which converges uniformly to a contraction mapping {S∞ : X → X}. If,

for any n ∈ N, xn is a fixed point of Sn then the sequence {xn}n∈N converges to x∞.

2.4 Suzuki Theorem in a 2-Metric Space

In this section, we first present Suzuki theorem in metric spaces and then obtain its

analogue in 2-metric spaces.

Suzuki [134, Th. 2] obtained the following remarkable generalization of the Banach

contraction theorem in a metric space.

Theorem 2.4.1. Let (X, d) be a complete metric space and let T be a mapping on

X. Define a non-increasing function θ from [0, 1) onto (1
2
, 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2

,

(1− r)r−2 if
√
5−1
2
≤ r ≤ 2−

1
2 ,

(1 + r)−1 if 2−
1
2 ≤ r < 1.
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Assume that there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) impies d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover limn T
nx = z

for all x ∈ X.

To extend the above theorem to 2-metric spaces we shall need the following result

due to Singh [117].

Lemma 2.4.1. Let {yn} be a sequence in a complete 2-metric space X. If there exists

h ∈ (0, 1) such that ρ(yn, yn+1, a) ≤ hρ(yn−1, yn, a) for all n ∈ N and all a ∈ X, then

{yn} converges to a point in X.

Theorem 2.4.2. Let (X, ρ) be a complete 2-metric space and T : X → X. Define a

non-increasing function θ from [0, 1) onto (1
2
, 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5−1
2

,

(1− r)r−2 if
√
5−1
2
≤ r ≤ 2−

1
2 ,

(1 + r)−1 if 2−
1
2 ≤ r < 1.

Assume that there exists r ∈ [0, 1) such that

θ(r)ρ(x, Tx, a) ≤ ρ(x, y, a) impies ρ(Tx, Ty, a) ≤ rρ(x, y, a) (2.4.1)

for all x, y, a ∈ X. Then there exists a unique fixed point z of T . Moreover, limT nx =

z for any x ∈ X.

Proof. Pick x ∈ X. Construct a sequence {xn} in X such that

x1 = Tx, x2 = Tx1,..., xn+1 = Txn, n = 1, 2, ...
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Note that

θ(r)ρ(xn, Txn, a) ≤ ρ(xn, xn+1, a) for all a ∈ X.

Therefore by (2.4.1),

ρ(Txn, Txn+1, a) ≤ rρ(xn, xn+1, a)

that is

ρ(xn+1, xn+2, a) ≤ rρ(xn, xn+1, a)

for all a ∈ X. Since this is true for all n ≥ 1, by Lemma 2.4.1, the sequence {xn}

converges to a point z ∈ X. By (2.4.1) for any a ∈ X, we have,

ρ(Tx, T 2x, a) ≤ rρ(x, Tx, a). (2.4.2)

Next we show that

ρ(Tx, z, a) ≤ rρ(x, z, a) (2.4.3)

for all x ∈ X \ {z} and all a ∈ X.

For x ∈ X \ {z}, there exists n0 > 1 such that

ρ(xn, z, a) ≤ 1

5
ρ(x, z, a)

for all n ≥ n0 and all a ∈ X. Then we have by TA-inequality,

θ(r)ρ(xn, Txn, a) ≤ ρ(xn, Txn, a) = ρ(xn, xn+1, a)

≤ ρ(xn, z, a) + ρ(xn+1, z, a) + ρ(xn, xn+1, z)

≤ 3

5
ρ(x, z, a) = ρ(x, z, a)− 2

5
ρ(x, z, a)

≤ ρ(x, z, a)− ρ(xn, z, a)− ρ(x, z, xn)

≤ ρ(xn, x, a).
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Hence by (2.4.1), ρ(xn+1, Tx, a) ≤ rρ(xn, x, a) for all n ≥ n0 and all a ∈ X. As

a 2-metric ρ is always continuous with respect to any one of the three arguments,

making n→∞ yields (2.4.3).

We observe from (2.4.3) that if z is a fixed point of T then it is unique, since given

two fixed points u and v with u 6= v we have from (2.4.3), ρ(u, v, a) = ρ(Tu, v, a) ≤

rρ(u, v, a), for u ∈ X \ {v}, then ρ(u, v, a) = 0 , hence u = v .

Indeed, if T kz = z for some positive integer k then z is the unique fixed point of

T . so, we can assume that T kz 6= z for all k ∈ N. Then (2.4.3) yields

ρ(T k+1z, z, a) ≤ rkρ(Tz, z, a) (2.4.4)

for all k ∈ N and all a ∈ X.

We consider three cases of θ(r) as in [134]

Case1: 0 ≤ r ≤
√
5−1
2

. This implies r2 + r ≤ 1 and 2r2 < 1.

If we assume that that ρ(T 2z, z, a) < ρ(T 2, T 3, a) for some a ∈ X, then

ρ(z, Tz, a) ≤ ρ(z, T 2z, a) + ρ(z, T 2z, Tz) + ρ(T 2z, Tz, a)

< ρ(T 2z, T 3z, a) + ρ(T 2z, T 3z, Tz) + ρ(Tz, T 2z, a).

So by (2.4.4) and (2.4.3),

ρ(z, Tz, a) ≤ r2ρ(z, Tz, a) + r2ρ(z, T 2z, Tz) + rρ(z, Tz, a)

= (r2 + r)ρ(z, Tz, a) ≤ ρ(z, Tz, a).

a contradiction. So we have for all a ∈ X,

ρ(T 2z, z, a) ≥ ρ(T 2z, T 3z, a) = θ(r)ρ(T 2z, T 3z, a) (2.4.5)
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Therefore by TA-inequality,(2.4.4) and (2.4.1),

ρ(z, Tz, a) ≤ ρ(T 3z, Tz, a) + ρ(z, T 3z, a) + ρ(T 3z, z, Tz)

≤ r2ρ(z, Tz, a) + rρ(T 2z, z, a) + r2ρ(Tz, z, Tz)

≤ r2ρ(z, Tz, a) + r2ρ(Tz, z, a) + 0 = 2r2ρ(z, Tz, a)

< ρ(z, Tz, a)

for all a ∈ X. This contradiction proves that Tz = z.

Case2:
√
5−1
2
≤ r ≤ 2−

1
2 . We note that 2r2 < 1. If we assume ρ(T 2z, z, a) <

θ(r)ρ(T 2, T 3, a) for some a ∈ X, then we have by TA-inequality and (2.4.2),

ρ(z, Tz, a) ≤ ρ(z, T 2z, a) + ρ(T 2z, Tz, a) + ρ(z, Tz, T 2z)

< θ(r)ρ(T 2z, T 3z, a) + rρ(Tz, z, a) + rρ(z, z, Tz)

≤ θ(r)r2ρ(z, Tz, a) + rρ(z, Tz, a) = (1− r)ρ(z, Tz, a) + rρ(z, Tz, a)

= ρ(z, Tz, a),

a contradiction, and so ρ(T 2z, z, a) ≥ θ(r)ρ(T 2, T 3, a) for all a ∈ X. Hence by TA-

inequality, (2.4.4) and (2.4.1),

ρ(z, Tz, a) ≤ ρ(z, T 3z, a) + ρ(T 3z, z, Tz) + ρ(T 3z, Tz, a)

≤ r2ρ(z, Tz, a) + r2ρ(Tz, z, Tz) + rρ(T 2z, z, a)

= 2r2ρ(z, Tz, a) < ρ(z, Tz, a)

for all a ∈ X. This yields Tz = z.

Case3: 2−
1
2 ≤ r < 1. By TA-inequality and (2.4.3),

ρ(x, Tx, a) ≤ ρ(x, z, a) + ρ(z, Tx, a) + ρ(z, Tx, x)

≤ ρ(x, z, a) + rρ(x, z, a) + rρ(x, z, x).
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so that 1
1+r

ρ(x, Tx, a) ≤ ρ(x, z, a) for all a ∈ X.

This implies by (2.4.1) that

ρ(Tx, Tz, a) ≤ rρ(x, z, a) (2.4.6)

for any x ∈ X and all a ∈ X. Taking x = xn in (2.4.6) and making n → ∞, we

obtain ρ(z, Tz, a) ≤ 0. Consequently Tz = z. This completes the proof.

As an application of Theorem 2.4.2, we have the following coincidence theorem

for a pair of non-self mappings.

Theorem 2.4.3. Let Y be an arbitrary set, (X, ρ) a 2-metric space and S, T : Y → X

such that T (Y ) is contained in S(Y ), and T (Y ) or S(Y ) is a complete subspace of

X. Assume that there exists r ∈ [0, 1) such that

θ(r)ρ(Sx, Tx, a) ≤ ρ(Sx, Sy, a) impies ρ(Tx, Ty, a) ≤ rρ(Sx, Sy, a) (2.4.7)

for all x, y, a ∈ Y . Then there exists a point v ∈ Y such that Sv = Tv

Proof. Let Ha = T (S−1a) for each a ∈ S(Y ), where S−1 denotes the inverse

image of a under S. Therefore Ha ⊂ S(Y ) for every a ∈ S(Y ). Suppose b1, b2 ∈ Ha.

Then there exist x1, x2 ∈ S−1a such that b1 = Tx1 and b2 = Tx2. Now

ρ(b1, b2, z) = ρ(Tx1, Tx2, z) ≤ rρ(Sx1, Sx2, z).

Hence b1 = b2, thus the set Ha contains only one point. Moreover if a, b ∈ S(Y )and

x ∈ S−1a, y ∈ S−1b then:

ρ(Ha,Hb, z) = ρ(Tx, Ty, z) ≤ rρ(Sx, Sy, z) = rd(a, b, z).

This means H is a contraction on S(Y ). By Banach contraction principle (with the

assumption that S(Y ) is a complete subspace of X), there exists k ∈ S(Y ) such that
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k = Hk. Finally if v is an arbitrary point in S−1k,

Tv = T (S−1k) = Hk = k = Sv.

Corollary 2.4.1. Theorem 2.4.3 with Y = X. If T and S commute at (one of) their

coincidence points then T and S have a unique common fixed point.

Proof. Suppose v ∈ X is such that Sv = Tv and SSv = STv = TSv. Then for

all a ∈ X,

θ(r)ρ(Sv, Tv, a) = 0 ≤ ρ(Sv, SSv, a),

and, by the assumption (2.4.7),

θ(r)ρ(Sv, SSv, a) = ρ(Tv, TSv, a) ≤ rρ(Sv, SSv, a).

Consequently, T and S have a common fixed point. It is easy to see that the common

fixed point is unique.



Chapter 3

Fixed Point Theorems with Weak
Contractive Conditions

3.1 Introduction

In this Chapter, we study the notion of Ćirić type weakly generalized contraction

mappings in metric spaces and prove theorems concerning the existence of coincidence

and fixed points of such mappings.

We further discuss applications regarding the convergence theorems for modified

Mann iterations and modified Ishikawa iterations in a convex metric space.

In all that follows X will represent a metric space (X, d).

3.2 Preliminaries

Alber and Guerre-Delabriere [9] introduced the notion of weakly contractive as fol-

lows:

Definition 3.2.1. A self mapping T of X is weakly contractive if for all x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)), (3.2.1)

51
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where φ : [0,∞)→ [0,∞) is continuous and nondecreasing such that φ(t) > 0 for all

t > 0 and φ(0) = 0.

Further, they proved that every weakly contractive mapping on a Hilbert space

has a unique fixed point. They noted that this result is still true for uniformly

smooth and uniformly convex Banach spaces (see [109]). The above result of Alber

and Guerre-Delabriere [9] was generalized by Rhoades [109] where he showed that in

fact the result holds in an arbitrary complete metric space. Precisely, he obtained the

following result.

Theorem 3.2.1. Let (X, d) be a complete metric space, T a weakly contractive map-

ping. Then T has a unique fixed point in X.

Notice that weakly contractive mappings contain the Banach contraction as the

special case when (φ(t) = (1 − k)t). Taking another self mapping into considera-

tion, the concept of weakly contractive mappings was extended to two self mappings

independently by Beg and Abbas [24] and Song [128].

Definition 3.2.2. [128]. A self-map T of X is f -weakly contractive if for each

x, y ∈ X,

d(Tx, Ty) ≤ d(fx, fy)− φ(d(fx, fy)), (3.2.2)

where f is a self mapping of X and φ : [0,∞)→ [0,∞) is lower semi-continuous from

the right such that φ is positive on (0,∞) and φ(0) = 0.

We remark that Definition 3.2.2 with φ continuous is due to Beg and Abbas [24].

Further, if f is the identity map on X, and φ is a continuous and nondecreasing

function in Definition 3.2.2 then a f -weakly contractive map reduces to a weakly



53

contractive mapping and if φ(t) = (1 − k)t, for a constant k with 0 < k < 1, then a

f -weakly contractive map is an f -contraction(see [19] and [128]). Notice that if f = I

( the identity map on X) and φ is a lower semi-continuous map from the right then

ϕ(t) = t− φ(t) is upper semi-continuous from the right, then (3.2.2) becomes

d(Tx, Ty) ≤ ϕ(d(x, y)). (3.2.3)

Therefore, weakly contractive mappings for which φ is lower semi-continuous from

the right are of Boyd and Wong [30] type (see also [19] and [128]). Further, notice

that with f = I, if we define k(t) = 1− φ(t)
t

for t > 0 and k(0) = 0 then the condition

(3.2.2) is reduced to the following Reich type [101] contractive condition:

d(Tx, Ty) ≤ k(d(fx, fy))d(fx, fy). (3.2.4)

Indeed, for a suitable choice of k(t), for t > 0 and k(0) = 0, weakly contractive

mappings reduce to (3.2.4). The following result is due to Beg and Abbas [24].

Theorem 3.2.2. Let T and f be self mappings of X such that TX ⊆ fX and (3.2.2)

holds for all x, y ∈ X, where φ : [0,∞) → [0,∞) is continuous and nondecreasing

such that φ is positive on (0,∞) and φ(0) = 0. If f(X) is a complete subspace of X

then T and f have a common fixed point provided that T and f are commuting at

their coincidence points.

Azam and Shakeel [18] obtained a similar result for three self mappings of X

satisfying the following condition for each x, y ∈ X,

d(Sx, Ty) ≤ d(fx, fy)− φ(d(fx, fy)), (3.2.5)

where φ : [0,∞)→ [0,∞) is continuous and nondecreasing such that φ is positive on

(0,∞) and φ(0) = 0.
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The following generalized contraction for a self mapping T of X is essentially due

to Ćirić [34]:

d(Tx, Ty) ≤ km(x, y), (3.2.6)

where 0 < k < 1 and

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]}.

Now, let us consider the following Ćirić type weakly generalized contraction for a self

mapping T of X

d(Tx, Ty) ≤ m(x, y)− φ(m(x, y)), (3.2.7)

where φ : [0,∞) → [0,∞) is lower semi-continuous from the right such that φ is

positive on (0,∞) and φ(0) = 0. Zhang and Song [149], have shown the existence of

a unique common fixed point of self mappings S and T of a complete metric space X

satisfying the following condition for each x, y ∈ X:

d(Sx, Ty) ≤ m′(x, y)− φ(m′(x, y)), (3.2.8)

where φ is as in (3.2.7), and

m′(x, y) = max{d(x, y), d(x, Sx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Sx)]}.

See also the remark following Theorem 3.3.2 below. Notice that (3.2.8) with S = T

is the condition (3.2.7).

Using an additional function ψ : [0,∞)→ [0,∞) and a quadruplet of maps Abbas

and Doric [3] obtained the following common fixed point theorem in a complete metric

space.

Theorem 3.2.3. Let S, T, f and g be self mappings of a complete metric space (X, d)

such that
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(i) TX ⊆ fX, SX ⊆ gX,

(ii) one of the ranges SX, TX, fX and gX is closed, and if for each x, y ∈ X,

(iii) ψ(d(Sx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)) where

M(x, y) := max{d(fx, gy), d(fx, Sx), d(gy, Ty),
1

2
[d(fx, Ty) + d(gy, Sx)]},

φ is as in (3.2.7) and ψ : [0,∞)→ [0,∞) is continuous and nondecreasing with

ψ(t) = 0 if and only if t = 0.

Then S, T, f and g have a unique common fixed point in X provided that the pairs

(S, f) and (T, g) are weakly compatible.

We remark that completeness of the space X in Theorem 3.2.3 implies that closed

ranges considered in (ii) are also complete.

In the next section, first we obtain two variants of Theorem 3.2.3. Indeed, we ob-

tain coincidence and common fixed point theorems for a pair, triplet and quadruplet

of Ćirić type weakly generalized contractions on a metric space, wherein the com-

pleteness of the metric space X is replaced by much weaker alternative hypotheses.

This is shown, as another alternative, that if the space X is complete in Theorem

3.2.3, the requirement (ii) is not needed provided that one of the maps S, T, f and g

is continuous (cf. Theorem 3.3.2). Usefulness of the results is illustrated by examples

to clarify underlying strength and distinctions.
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3.3 Coincidence and Fixed Point Theorems

Throughout this section, let C(S, f) = {v : Sv = fv} denote the collection of coinci-

dence points of self mappings S and f of a metric space X:

M(x, y) := max{d(fx, gy), d(fx, Sx), d(gy, Ty),
1

2
[d(fx, Ty) + d(gy, Sx)]},

M(f, T ) := max{d(fx, fy), d(fx, Tx), d(fy, Ty),
1

2
[d(fx, Ty) + d(fy, Tx)]},

m(f, T ) := max{d(fx, fy), d(fx, Tx), d(fy, Ty)},

Φ = {φ|φ : [0,∞)→ [0,∞) is lower semi-continuous from the right such that

φ is positive on (0,∞) and φ(0) = 0} and

Ψ = {ψ|ψ : [0,∞)→ [0,∞) is continuous and nondecreasing with ψ(t) = 0

if and only if t = 0}.

The following is our first result for a quadruplet of maps on a metric space.

Theorem 3.3.1. Let S, T, f and g be self mappings of a metric space X such that

TX ⊆ fX and SX ⊆ gX. (3.3.1)

If for each x, y ∈ X,

ψ(d(Sx, Ty)) ≤ ψ(M(x, y))− φ(M(x, y)), (3.3.2)

where φ ∈ Φ and ψ ∈ Ψ. If one of fX, gX, SX or TX is a complete subspace of X

then:

(I) C(S, f) and C(T, g) are nonempty. Further,

(II) S and f have a common fixed point provided that they commute just at a coin-

cidence point;
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(III) T and g have a common fixed point provided that they commute just at a coin-

cidence point;

(IV) S, T, f and g have a unique common fixed point provided (II) and (III) are true.

Proof. Pick x0 ∈ X. As TX ⊆ fX, we can choose a point x1 ∈ X such that

Tx0 = fx1, and for this point x1, there exists a point x2 in X such that Sx1 = gx2.

Continuing in this manner, we define two sequences {xn} and {yn} in X such that

y2n = Tx2n = fx2n+1 and y2n+1 = Sx2n+1 = gx2n+2, n = 0, 1, 2, ....

In view of Abbas and Doric [3], the sequence {yn} is Cauchy. Assume that fX is

complete. Notice that the sequence {y2n} is contained in fX and has a limit in fX.

Call it u. Let v ∈ f−1u. Then fv = u. The subsequence {y2n+1} also converges to u.

Now we show that Sv = fv = u. By (3.3.2),

ψ(d(Sv, y2n)) = ψ(d(Sv, Tx2n)) ≤ ψ(max{d(fv, gx2n), d(fv, Sv), d(gx2n, Tx2n),

1

2
[d(fv, Tx2n) + d(gx2n, Sv)]})− φ(max{d(fv, gx2n),

d(fv, Sv), d(gx2n, Tx2n),
1

2
[d(fv, Tx2n) + d(gx2n, Sv)]}).

Making n→∞,

ψ(d(Sv, u)) ≤ ψ(max{d(fv, u), d(fv, Sv), d(u, u),
1

2
[d(fv, u) + d(u, Sv)]})

−φ(max{d(fv, u), d(fv, Sv), d(u, u),
1

2
[d(fv, u) + d(u, Sv)]}).

that is

ψ(d(Sv, fv)) = ψ(d(Sv, u)) ≤ ψ(d(fv, Sv))− φ(d(fv, Sv)),

a contradiction.
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Therefore, Sv = fv = u. This proves that C(S, f) is nonempty.

Since SX ⊆ gX, Sv = u implies u ∈ gX. Let w ∈ g−1u. Then gw = u. Now we

show that Tw = u. If Tw 6= u,

ψ(d(u, Tw)) = ψ(d(Sv, Tw)) ≤ ψ(max{d(fv, gw), d(fv, Sv), d(gw, Tw),
1

2
[d(fv, Tw)

+d(gw, Sv)]})− φ(max{d(fv, gw), d(fv, Sv), d(gw, Tw),

1

2
[d(fv, Tw) + d(gw, Sv)]}).

Therefore, ψ(d(Sv, Tw)) ≤ ψ(d(Sv, Tw))− φ(d(Sv, Tw)), a contradiction.

Hence Tw = u. So Tw = gw = u = fv = Sv. This proves that C(T, g) is

nonempty. If gX is complete then an analogous argument establishes (I). If SX is

complete then u ∈ SX ⊂ gX and we see that C(T, g) is nonempty. Similarly if TX

is complete then u ∈ TX ⊂ fX, and C(S, f) is nonempty. Thus (I) is completely

established.

Now suppose that S and f are commuting at their coincidence point v. Then

SSv = Sfv = fSv = ffv. So, by (3.3.2), we have

ψ(d(Sv, SSv)) = ψ(d(SSv, Tw)) ≤ ψ(max{d(fSv, gw), d(fSv, SSv), d(gw, Tw),

1

2
[d(fSv, Tw) + d(gw, SSv)]})− φ(max{d(fSv, gw), d(fSv, SSv),

d(gw, Tw),
1

2
[d(fSv, Tw) + d(gw, SSv)]})

= ψ(d(SSv, Tw))− φ(d(SSv, Tw)),

a contradiction. This proves (II). Analogously, if T and g are commuting at their

coincidence point w, then w is a common fixed point of T and g. This proves (III).

Now, (IV) is immediate.

In order to see the uniqueness part of (IV), assume that there are two distinct

common fixed points y and z, that is fy = gy = Sy = Ty = y and fz = gz = Sz =
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Tz = z. Using (3.3.2),

ψ(d(y, z)) = ψ(d(Sy, Tz)) ≤ ψ(max{d(fy, gz), d(fy, Sy), d(gz, Tz),

1

2
[d(fy, Tz) + d(gz, Sy)]})− φ(max{d(fy, gz),

d(fy, Sy), d(gz, Tz),
1

2
[d(fy, Tz) + d(gz, Sy)]})

≤ ψ(d(y, z))− φ(d(y, z)) < ψ(d(y, z)),

a contradiction. This completes the proof.

Self mappings S and f of a metric space X are compatible (see Jungck [61])

if lim
n→∞

(Sfxn, fSxn) = 0 whenever {xn} is a sequence in X such that lim
n→∞

Sxn =

lim
n→∞

fxn = t for some t ∈ X. For a detailed comparison of various weaker forms of

commuting maps, one refer to Singh and Tomar [123] and Stofile [130].

The following result is another variant of Theorem 3.2.3.

Theorem 3.3.2. Let S, T, f and g be self mappings of a complete metric space (X, d)

such that conditions (3.3.1) and (3.3.2) of Theorem 3.3.1 are satisfied. If the pairs

(S, f) and (T, g) are compatible and one of the mappings S, T, f and g is continuous

then S, T, f and g have a unique common fixed point in X.

Proof. As in Theorem 3.3.1, the sequence {yn} defined by

y2n = Tx2n = fx2n+1 and y2n+1 = Sx2n+1 = gx2n+2, n = 0, 1, 2, ...

is a Cauchy sequence. By completeness of X, sequence {yn} converges to a point

u ∈ X. Also

y2n = Tx2n = fx2n+1 → u , y2n+1 = Sx2n+1 = gx2n+2 → u.
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Suppose that f is continuous. Then ffx2n → fu , fSx2n → fu, and the compatibility

of (S, f) implies Sfx2n → fu. Using (3.3.2), we have

ψ(d(Sfx2n, Tx2n)) ≤ ψ(M(fx2n, x2n))− φ(M(fx2n, x2n)).

Making n→∞,

ψ(d(fu, u)) ≤ ψ(max{d(fu, u), d(fu, fu), d(u, u),
1

2
[d(fu, u) + d(u, fu)]})

−φ(max{d(fu, u), d(fu, fu), d(u, u),
1

2
[d(fu, u) + d(u, fu)]}),

that is ψ(d(fu, u)) ≤ ψ(d(fu, u))− φ(d(fu, u)), a contradiction.

So fu = u. Further, from (3.3.2),

ψ(d(Su, Tx2n)) ≤ ψ(M(u, x2n))− φ(M(u, x2n)).

Making n→∞,

ψ(d(Su, u)) ≤ ψ(max{d(fu, u), d(fu, Su), d(u, u),
1

2
[d(fu, u) + d(u, Su)]})

−φ(max{d(fu, u), d(fu, Su), d(u, u),
1

2
[d(fu, u) + d(u, Su)]})

= ψ(d(Su, u))− φ(d(Su, u),

a contradiction. Therefore, Su = u. Since SX ⊆ gX, there exists a point v ∈ X

such that u = fu = Su = gv. We claim that u = Tv. If not, then using (3.3.2),

ψ(d(Su, Tv)) ≤ ψ(max{d(fu, gv), d(fu, Su), d(gv, Tv),
1

2
[d(fu, Tv) + d(gv, Su)]})

−φ(max{d(fu, gv), d(fu, Su), d(gv, Tv),
1

2
[d(fu, Tv) + d(gv, Su)]})

= ψ(d(u, Tv))− φ(d(u, Tv)),

a contradiction. Hence u = Tv = gv.
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Now compatibility of (T, g) implies that Tu = Tgv = gTv = gu. From (3.3.2), we

get

ψ(d(Su, Tu)) ≤ ψ(max{d(fu, gu), d(fu, Su), d(gu, Tu),
1

2
[d(fu, Tu) + d(gu, Su)]})

−φ(max{d(fu, gu), d(fu, Su), d(gu, Tu),
1

2
[d(fu, Tu) + d(gu, Su)]}),

that is ψ(d(u, Tu)) ≤ ψ(d(u, Tu))− φ(d(u, Tu)), a contradiction. So u = Tu = Su =

fu = gu. This proves that S, T, f and g have a common fixed point. This result

holds if g is continuous instead of f . Suppose S is continuous then the compatibility

of (S, f) gives Sf2n = SSx2n = fSx2n → Su.

Using (3.3.2), we get

ψ(d(SSx2n, Tx2n)) ≤ ψ(M(Sx2n, x2n))− φ(M(Sx2n, x2n)).

Making n→∞,

ψ(d(Su, u)) ≤ ψ(max{d(Su, u), d(Su, Su), d(u, u),
1

2
[d(Su, u) + d(u, Su)]})

−φ(max{d(Su, u), d(Su, Su), d(u, u),
1

2
[d(Su, u) + d(u, Su)]})

= ψ(d(Su, u))− φ(d(Su, u)),

a contradiction. Hence u = Su. Since SX ⊆ gX, there exists a point v in X such

that u = Su = gv. We now show that Tv = gv. By (3.3.2),

ψ(d(SSx2n, T v)) ≤ ψ(M(Sx2n, v))− φ(M(Sx2n, v)).

Letting n→∞,

ψ(d(Su, Tv)) ≤ ψ(max{d(Su, gv), d(Su, Su), d(Su, Tv),
1

2
[d(Su, Tv) + d(Su, Su)]})

−φ(max{d(Su, gv), d(Su, Su), d(Su, Tv),
1

2
[d(Su, Tv) + d(Su, Su)]}),
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that is ψ(d(u, Tv)) = ψ(d(u, Tv))− φ(d(u, Tv)),

a contradiction. Therefore, u = Tv = gv = Su, and the compatibility of (T, g)

yields Tu = Tgv = gTv = gu. Now using (3.3.2), we get

ψ(d(Sx2n, Tu)) ≤ ψ(M(x2n, u))− φ(M(x2n, u)).

Making n→∞,

ψ(d(u, Tu)) = ψ(d(u, Tu))− φ(d(u, Tu)). So u = Tu = gu.

As TX ⊆ fX, there exists a point w in X such that u = Tu = gu = fw. We now

show that u = Sw. Using (3.3.2) with x = w and y = u, we have

ψ(d(Sw, Tu)) = ψ(M(w, u))− φ(M(w, u)) = ψ(d(u, Sw))− φ(M(u, Sw)

a contradiction. Therefore, u = Sw = fw = Tu = gu. Compatibility of the pair

(S, f) implies u = Sw = Sfw = fSw = fu. Hence u = Su = Tu = gu = fu. Thus u

is a common fixed point of S, T, f and g. If T is continuous then analogous argument

establishes the existence of common fixed point of S, T, f and g. Uniqueness of the

fixed point follows.

In case f = g in Theorem 3.3.1, we obtain a slightly improved version which we

state below.

Theorem 3.3.3. Let S, T and f be self mappings of a metric space X such that

SX ∪ TX ⊆ fX, and the condition (3.3.2) with f = g holds. If one of SX, TX or

fX is a complete subspace of X, then S, T and f have a common coincidence point.

Further, if f commutes with each of S and T at one of their coincidence points, then

S, T and f have a unique common fixed point.
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We remark that Theorem 3.3.3 with f as the identity map on X is a common

fixed point theorem for two self mappings S and T of a complete metric space due to

Doric [39]. Further, Theorem 3.3.3 with f as the identity mapping on X and ψ(t) = t

for all t ∈ [0,∞) is a common fixed point theorem for two self mappings S and T

of a complete metric space due to Zhang and Song [149]. The following example

demonstrates the generality of Theorem 3.3.3 over results of Azam and Shakeel[18],

Doric [39] and Zhang and Song [149].

Example 3.3.1. Let X = {1, 2, 3, 4, 5} be endowed with the usual metric. Let f = g

and S1 = S3 = S4 = 1, S2 = S5 = 2, T1 = T3 = 1, T2 = T4 = T5 = 2 and f1 = 3,

f2 = 2, f3 = 5, f4 = 4, f5 = 1. Notice that SX and TX are contained in fX,

and the condition (3.3.2) of Theorem 3.3.3 is satisfied, when ψ : [0,∞)→ [0,∞) and

φ : [0,∞) → [0,∞) are respectively defined as ψ(t) = 2t and φ(t) = 1
5
t. So all the

hypothesis of Theorem 3.3.1(or Theorem 3.3.1 with f = g) are true.

Evidently, S, T and f have a unique common fixed point at x = 2. Notice that

the condition (3.2.5) used by Azam and Shakeel [18] is not satisfied for x = 2 and

y = 1. Further, it can be easily verified that the condition (3.2.8) of Zhang and Song

[149] and condition used by Doric [39] are not satisfied for x = 2 and y = 1 with f

as identity map.

We remark that under the hypotheses of Theorem 3.3.1, the pairs (S, f) and (T, g)

may have different coincidence points. Further, if f = g in Theorem 3.3.1, then maps

S, T and f have a common coincidence point(cf. Theorem 3.3.3). However, it is

interesting to note that if f and g are distinct and S = T in Theorem 3.3.1, then

maps f, g and S need not have a common coincidence point. The following examples

authenticate these remarks.
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Example 3.3.2. Let X = [0,∞) be endowed with the usual metric and define

ψ, φ : [0,∞)→ [0,∞) as ψ(t) = t and φ(t) =
1

6
t.

Let SX = x2 + 5
9
, TX = x3 + 5

9
, fX = 6x2, gX = 6x3, x ∈ X. Then:

ψ(d(Sx, Ty)) = ψ(|x2 − y3|) = |x2 − y3| < ψ(6|x2 − y3|)

− φ(6|x2 − y3|) = ψ(d(fx, gy)− φ(fx, gy),

for all x, y ∈ X. So, (3.3.2) and other hypotheses of Theorem 3.3.1 are satisfied. We

see that S(1
3
) = f(1

3
) = 6

9
and T (1

9
)
1
3 = g(1

9
)
1
3 = 6

9
, that is, S and f have a coincidence

at x = 1
3
, while T and g have a (different) coincidence at x = (1

9
)
1
3 .

The following example shows that if f = g in Theorem 3.3.1, then mappings S, T

and f have a common coincidence point as guaranteed by Theorem 3.3.3. The exam-

ple also shows that the requirement of commutativity in Theorem 3.3.3 is imperative

and cannot be relaxed.

Example 3.3.3. Let X = {1, 2, 3, 4} be endowed with the usual metric. Let f = g

and S1 = S2 = S3 = S4 = 1, T1 = T2 = T3 = 1, T4 = 2 and f1 = 3, f2 = 2,

f3 = 1, f4 = 4. Then S, T and f satisfy all the hypotheses of Theorem 3.3.3 with

ψ(t) = 2t and φ(t) = 1
3
t. Evidently, S, T and f have a common coincidence at x = 3,

while f does not commute with either S or T . So the only common coincidence point

3 of S, T and f is not their common fixed point.

The following example shows that if S = T in Theorem 3.3.1, then mappings f, g

and S need not have a common coincidence point.

Example 3.3.4. Let X = {1, 2, 3} be endowed with the usual metric and S1 = S2 =

S3 = 1, f1 = 2, f2 = 3, f3 = 1 and g1 = 3, g2 = 1, g3 = 2. It is easy to see
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that S, f and g satisfy all the hypotheses of Theorem 3.3.1 with S = T , ψ(t) = t and

φ(t) = 1
2
t. Notice that S3 = f3 = 1 = S2 = g2, that is, S and f have a coincidence

at x = 3 and S and g have a (different) coincidence at x = 2.

From Theorem 3.3.1 we derive the following result which generalizes fixed point

theorems of Chang [33], Jachymiski [57], Jungck and Pathak [62], Kang and Rhoades

[69], Song [128], Tan [137] and others.

Corollary 3.3.1. Let S, T, f and g be self mappings of a metric space X such that

the condition (3.3.1) of Theorem 3.3.1 and the following is satisfied:

d(Sx, Ty) ≤ ϕ(M(x, y)), (3.3.3)

for all x, y ∈ X, where ϕ : [0,∞) → [0,∞) is upper semi-continuous from the

right such that ϕ is positive on (0,∞) and ϕ(0) = 0. If one of fX, gX, SX or TX is

a complete subspace of X then the conclusions of Theorem 3.3.1 hold.

Proof. Let φ(t) = t− ϕ(t). Then from (3.3.3), we have

d(Sx, Ty) ≤M(x, y)− φ(M(x, y)), for all x, y ∈ X.

Then φ : [0,∞)→ [0,∞) is lower semi-continuous from the right such that φ(t) > 0

for t > 0 and φ(0) = 0. The result follows from the proof of Theorem 3.3.1 with

ψ(t) = t.

For a pair of self mappings T and f of X, we obtain the following result which

generalizes certain results of Beg and Abbas [24], Dutta and Choudhury [41] and Song

[128].

Corollary 3.3.2. Let T and f be self mappings of a metric space X such that

TX ⊆ fX, (3.3.4)
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if for each x, y ∈ X,

ψ(d(Tx, Ty)) ≤ ψ(M(f, T ))− φ(M(f, T )), (3.3.5)

where φ ∈ Φ and ψ ∈ Ψ. If one of TX or fX is a complete subspace of X then

C(T, f) is nonempty. Further, T and f have a unique common fixed point provided

T and f commute at a coincidence point.

Proof. It comes from Theorem 3.3.3 when S = T . Indeed, if v ∈ C(T, f), then

Tv = fv = u (say). If T and f commute at v then u is their unique common fixed

point.

We remark that if f is the identity map on X and ψ(t) = t in Corollary 3.3.2

then we obtain [149, Cor. 2.2] as a special case. From Corollary 3.3.2 we immediately

obtain the following result.

Corollary 3.3.3. Let T and f be self mappings of a metric space X such that the

condition (3.3.4) of Corollary 3.3.2 and the following are satisfied:

ψ(d(Tx, Ty)) ≤ ψ(m(f, T ))− φ(m(f, T )) (3.3.6)

for all x, y ∈ X, where φ ∈ Φ and ψ ∈ Ψ. If one of TX or fX is a complete subspace

of X, then conclusions of Corollary 3.3.2 are true.

The following example shows that maps T and f satisfy all the conditions of

Corollary 3.3.2 but the condition (3.2.2) due to Beg and Abbas [24] and Song [128]

is not satisfied.

Example 3.3.5. Let X = {1, 2, 3, 4, 5} with the usual metric and T1 = T3 = T4 = 1,

T2 = T5 = 2 and f1 = 3, f2 = 2, f3 = 5 f4 = 4, f5 = 1. Notice that the condition
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(3.3.5) of Corollary 3.3.2 is satisfied if ψ, φ : [0,∞)→ [0,∞) are defined as ψ(t) = t

and φ(t) = 1
5
t. It can be verified that T and f satisfy all the conditions of Corollary

3.3.2. Further, it is easy to see that condition (3.2.2) of Theorem 3.2.2 is not satisfied

for x = 2 and y = 1.

3.4 Convergence Theorems

In this section we obtain certain convergence theorems for modified Mann iterations

and modified Ishikawa iterations in a convex metric space. Takahashi [136] introduced

a varient of the notion of convexity in metric spaces. He obtained some interesting

generalizations of fixed point theorems in Banach spaces (see, for instance [23], [25],

[37], [85] and [100]). The following definition is essentially due to Takahashi [136] (see

also Agarwal et al. [7], Mishra [85] and Rafiq and Zafar [100]).

Definition 3.4.1. Let X be a metric space. A mapping W : X ×X × [0, 1]→ X is

a convex structure on X, if for all x, y ∈ X and λ ∈ [0, 1], the condition

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

is satisfied for all u ∈ X.

A metric space with a convex structure is called a convex metric space. A

nonempty subset C of a convex metric space X is convex if W (x, y, λ) ∈ C for all

x, y ∈ C and λ ∈ [0, 1]. Notice that all normed spaces and each of their convex sub-

sets are convex metric spaces. However, there are examples of convex metric spaces

which are not embedded in a normed space. For details, one may refer to Takahashi

[136] and Rafiq and Zafar [100].
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Definition 3.4.2. Let X be a convex metric space and T, f self mappings of X such

that TX ⊆ fX. Let f(X) be a convex subset of X. Define a sequence {yn} in f(X)

as follows:

yn = fxn+1 = W (Txn, fxn, αn) = (1− αn)fxn + αnTxn, x0 ∈ X,n ≥ 0,

where 0 ≤ αn ≤ 1 for each n ≥ 0. The sequence {yn} so obtained is called modified

Mann iterative scheme.

Definition 3.4.3. If we take f the identity mapping on X in Definition 3.4.2, then

the sequence {xn} is called the Mann sequence of iterates.

Definition 3.4.4. Let X be a convex metric space and T, f self mappings of X such

that TX ⊆ fX. Let f(X) be a convex subset of X. Define two sequences {zn} and

{yn} in f(X) as follows:

zn = fxn+1 = W (Tpn, fxn, αn) = (1− αn)fxn + αnTpn,

yn = fpn = W (Txn, fxn, βn) = (1− βn)fxn + βnTxn, x0 ∈ X,n ≥ 0,

where 0 ≤ αn, βn ≤ 1 for each n ≥ 0. The sequence {zn} so obtained is called the

modified Ishikawa iterative scheme.

Now we present a convergence theorem for modified Mann iterations in a convex

metric space.

Theorem 3.4.1. Let T and f be self mappings of a convex metric space X such

that conditions of Corollary 3.3.3 are satisfied. If TX or fX is a complete convex

subspace of X, then the modified Mann iterative scheme converges to a common fixed

point of T and f provided that T and f commute at their coincidences.
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Proof. From Corollary 3.3.3 (see also the proof of Corollary 3.3.2), we suppose

that v ∈ C(T, f) and Tv = fv = u. Suppose T and f commute at their coincidence

point v. Then u is their unique common fixed point. Now consider:

ψ(d(yn, u)) = ψ(d(fxn+1, fv)) = ψ(d(W (Txn, fxn, αn), fv))

≤ ψ[(1− αn)d(fxn, fv) + αnd(Txn, fv)]

= (1− αn)ψ(d(fxn, fv)) + αnψ(d(Txn, T v))

≤ (1− αn)ψ(d(fxn, fv)) + αn[ψ(max{d(fxn, fv), d(fxn, Txn), d(fv, Tv)})

−φ(max{d(fxn, fv), d(fxn, Txn), d(fv, Tv)})]

= (1− αn)ψ(d(fxn, fv)) + αn[ψ(m(f, T ))− φ(m(f, T ))]. (3.4.1)

Now we consider the following two cases.

Case 1: m(f, T ) = d(fxn, fv). Then from (3.4.1),

ψ(d(yn, u)) ≤ (1− αn)ψ(d(fxn, fv)) + αn[ψ(d(fxn, fv))− φ(d(fxn, fv))]

= ψ(d(fxn, fv))− αnψ(d(fxn, fv)) + αnψ(d(fxn, fv))− αn(φ(d(fxn, fv)))

= ψ(d(fxn, fv))− αn(φ(d(fxn, fv))) (3.4.2)

≤ ψ(d(yn−1, u)).

Case 2: m(f, T ) = d(fxn, Txn). Then from (3.4.1),

ψ(d(yn, u)) ≤ (1− αn)ψ(d(fxn, fv)) + αn[ψ(d(fxn, Txn))− φ(d(fxn, Txn))]

= ψ(d(fxn, fv))− αnψ(d(fxn, fv)) + αn(ψ(d(fxn, Txn)))

−αn(φ(d(fxn, Txn)))

≤ ψ(d(fxn, fv))− αnψ[d(fxn, Txn) + d(Txn, fv)] + αnψ(d(fxn, Txn))

−αn(φ(d(fxn, Txn)))
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= ψ(d(fxn, fv))− αn(ψ(d(Txn, fv)))− αn(φ(d(fxn, Txn)))

≤ ψ(d(fxn, fv))− αn(φ(d(fxn, Txn)))

≤ ψ(d(fxn, fv))− αn(φ[d(fxn, fv) + d(fv, Txn)])

= ψ(d(fxn, fv))− αn(φ(d(fxn, fv))) (3.4.3)

≤ ψ(d(yn−1, u)).

Therefore, in both cases, by monotonic nature of ψ, d(yn, u) ≤ d(yn−1, u). This shows

that {d(yn, u)} is a monotone non-increasing sequence of real numbers and tends to

a limit r ≥ 0. So, lim
n→∞

d(yn, u) = r ≥ 0. Now if r > 0, then from (3.4.2) and (3.4.3),

using the lower semi-continuity of φ, we have

ψ(r) ≤ ψ(r)− lim
n→∞

inf φ(d(fx2n, fv)) ≤ ψ(r)− φ(r), i.e., φ(r) ≤ 0,

a contradiction. Therefore, the modified Mann iterative scheme converges to a

common fixed point of the mappings T and f .

We remark that Theorem 3.4.1 (under the weak contractive condition (3.3.6))

substantially improves certain results of Azam and Shakeel [18], Beg and Abbas [24],

Bose and Roychowdhury [29] and Rhoades [109]. Notice that the requirement
∑
αn =

∞ on the sequence {αn} in Theorem 3.1 is not needed.

The following is the convergence result for modified Ishikawa iterations in a convex

metric space.

Theorem 3.4.2. Let T and f be self mappings of a convex metric space such that

condition (3.3.4) of Corollary 3.3.2 and the following condition is satisfied:

ψ(Tx, Ty)) ≤ ψ(d(fx, fy))− φ(d(fx, f)) (3.4.4)

for all x, y ∈ X, where φ ∈ Φ and ψ ∈ Ψ. If TX or fX is a convex and complete
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subspace of X, then the modified Ishikawa iterative scheme with
∑
αnβn = ∞ con-

verges to a common fixed point of T and f provided that T and f commute at their

coincidences.

Proof. From Corollary 3.3.2, as in the proof of Theorem 3.4.1, T and f have a

coincidence point v and a unique common fixed point u in X such that Tv = fv = u.

We consider:

ψ(d(zn, u)) = ψ(d(W (Tpn, fxn, αn), u)) ≤ αn(ψ[d(Tpn, u) + (1− αn)d(fxn, u)])

≤ αnψ(d(Tpn, T v)) + (1− αn)ψ(d(fxn, u))

≤ αn[ψ(d(fpn, fv))− φ(d(fpn, fv))] + (1− αn)ψ(d(fxn, u))

= αnψ(d(fpn, u))− αnφ(d(fpn, u)) + (1− αn)ψ(d(fxn, u))

= αnψ(d(W (Txn, fxn, βn), u))− αnφ(d(fpn, u)) + (1− αn)ψ(d(fxn, u))

≤ αn(ψ[βnd(Txn, u) + (1− βn)d(fxn, u)])− αnφ(d(fpn, u)) +

(1− αn)ψ(d(fxn, u))

= αnβn(ψ(d(Txn, Tu))) + αn(1− βn)ψ(d(fxn, u))− αnφ(d(fpn, u))

+(1− αn)ψ(d(fxn, u))

≤ αnβn[ψ(d(fxn, u))− φ(d(fxn, u))] + αn(1− βn)ψ(d(fxn, u))

−αnφ(d(fpn, u)) + (1− αn)ψ(d(fxn, u))

= αnβnψ(d(fxn, u))− αnβnφ(d(fxn, u)) + αnψ(d(fxn, u))− αnβnψ(d(fxn, u))

−αnφ(d(fpn, u)) + ψ(d(fxn, u))− αnψ(d(fxn, u))

≤ ψ(d(fxn, u))− αnβnφ(d(fxn, u))− αnφ(d(fpn, u)) ≤ ψ(d(fxn, u)).

Therefore, the sequence {d(zn, u)} is nonincreasing nonnegative sequence which con-

verges to the limit r ≥ 0. Suppose that r > 0. Then for a fixed integer N , we



72

have

∞∑
n=N

αnβnφ(r) ≤
∞∑
n=N

αnβnφ(d(zn, u)) ≤
∞∑
n=N

(d(zn, u)− d(zn+1, u)) ≤ d(zN , u).

This is a contradiction to
∑
αnβn = ∞. Hence, the iterative scheme {zn} con-

verges to the common fixed point u. This completes the proof.



Chapter 4

Fixed and Stationary Points of
Generalized Weak Contractions

4.1 Introduction

In this Chapter, we introduce the notions of quasi weak contraction and multi valued

quasi weak contraction. Under the assumption of these notions we obtain some results

on stationary points for a multi valued mapping on a metric space satisfying the

property (E.A). We further, extend and generalize the results of Amini-Harandi [12]

and Moradi and Khojasteh [88] to a hybrid pair of single-valued and multi-valued

mappings.

4.2 Preliminaries

In this section we recall definitions of fixed and stationary point for multi-valued map-

pings and for a hybrid pair of mappings, approximate endpoint property, compatible

mappings, property (E.A) and quasi-contraction . The relationship between com-

patibility and property (E.A) is discussed and supported with examples. We further

73
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introduce the notion of quasi weak and multi valued quasi weak contraction.

Definition 4.2.1. Given a metric space (X, d), let

CL(X) = {A ⊆ X : A 6= ∅ and closed},

CB(X) = {A ⊆ X : A 6= ∅, closed and bounded},

for A,B ∈ CL(X), define

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
.

Then the map (A,B)→ H(A,B) is a metric except that it can possibly take infinite

values. This situation could be rectified by restricting attention to the subcollection

of nonempty closed and bounded subsets or by considering an equivalent bounded

metric. This metric H is called the Hausdorff metric induced by d on CL(X) and the

space (CL(X), H) is called hyper space of (X, d).

Definition 4.2.2. Let T : X → CL(X). A point z ∈ X is called a fixed point of T

if z ∈ Tz and is called a stationary point (or endpoint) of T if Tz = {z}.

The above definition can be extended to a hybrid pair of mappings as follows.

Definition 4.2.3. Let S : X → X and T : X → CL(X). A point z ∈ X is

called a coincidence point of the mappings S and T if Sz ∈ Tz and a fixed point if

z = Sz ∈ Tz. Further, z ∈ X is called a stationary point (or endpoint) of S and T if

Tz = {Sz} = {z}.

Notice that every stationary point of T is a fixed point of T , but not conversely.
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Example 4.2.1. Let X = [0,∞) with the usual metric and T : X → CL(X) be

defined by

Tx =

 {1/4} if x = 0,

[0, x] if x 6= 0.

Then every point of (0, x] is a fixed point of T but T has no stationary point.

Definition 4.2.4. Let S : X → X and T : X → CL(X). We say that S and T have

approximate endpoint property if

inf
z∈X

sup
y∈Tz

d(Sz, y) = 0.

Furthermore, T has an approximate endpoint property if

inf
z∈X

sup
y∈Tz

d(z, y) = 0.

Example 4.2.2. Let X = [0, 1] endowed with the usual metric. Let S : X → X and

T : X → CL(X) be defined by

Sx = x for all x ∈ X and Tx =

 {1/2} if x = 0,

[0, x] if x 6= 0.

Then

inf
z∈X

sup
y∈Tz

d(Sz, y) = 0.

So S and T have approximate endpoint property. Again, the mappings S and T have

no stationary points.

The well known notion of compatible mappings due to Gerald Jungck [61] was

introduced as a weaker form of commutativity. First, we recall the above notion of

compatibility.
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Definition 4.2.5. Self mappings S and T of a metric space (X, d) are said to be

compatible if

lim
n
d(TSxn, STxn) = 0,

whenever {xn} is a sequence in X such that

lim
n
Sxn = lim

n
Txn = z, for some z ∈ X.

Example 4.2.3. [130] Let X = R with the usual metric. Define S, T : X → X by

Sx = ex − 1 and Tx = x2

then

d(Sxn, Txn) = |exn − 1− x2n| → 0 iff xn → 0

d(TSxn, STxn) = |(exn − 1)2 − (ex
2
n − 1)| = |e2xn − 2exn + 2− ex2n| → 0 iff xn → 0

so that S and T are compatible. But they are not commuting since

d(TSx, STx) = |e2x − 2ex + 2− ex2| = |e2 − 3e+ 2| 6= 0 for x = 1 ∈ X.

Subsequently, the notion of (E.A) property has been introduced by Aamri and

Moutawakil [1] as a generalization of noncompatible mappings as follows.

Definition 4.2.6. Let X be a metric space. Two mappings S, T : X → X satisfy

the property (E.A) if there exits a sequence {xn} in X such that

lim
n
Sxn = lim

n
Txn = z, for some z ∈ X.

It is clear from the above definition that compatible mappings satisfy the prop-

erty (E.A). The following example shows that the converse is not necessarily true in

general.
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Example 4.2.4. Consider X = [0, 1] equipped with the usual metric. Define S, T :

X → X by

Sx =

 1− x if x ∈ [0, 1
2
],

0 if x ∈ (1
2
, 1].

and Tx =


1
2

if x ∈ [0, 1
2
],

3
4

if x ∈ (1
2
, 1].

Then, for the sequence {xn} = {1
2
− 1

n
}, n ≥ 2, we have lim

n
Sxn = lim

n
Txn = 1

2
. So that

S and T satisfy the property (E.A) but are not compatible since lim
n
d(STxn, TSxn) =

d(1
2
, 3
4
) 6= 0.

Remark 4.2.1. We notice from the above example and Definition 4.2.5 that two self

mappings S and T of a metric space X are noncompatible if there exists at least one

sequence {xn} in X such that

lim
n
Sxn = lim

n
Txn = z, for some z ∈ X,

but limn d(TSxn, STxn) is either zero or does not exist. Therefore, two noncompatible

self mappings of a metric space satisfy the property (E.A) which shows that the

property (E.A) is a generalization of noncompatible mappings.

The following example shows that there are mappings which satisfy the property

(E.A) and also compatible.

Example 4.2.5. [1]. Let X = [0,∞) endowed with the usual metric. Define S, T :

X → X by Sx = x
4

and Tx = 3x
4

for all x ∈ X. Consider the sequence xn = 1
n
, n ∈ N.

Clearly lim
n→∞

Sxn = lim
n→∞

Txn = 0, and S and T satisfy the property (E.A) and are

clearly compatible since lim
n
d(STxn, TSxn) = 0

There are mappings which do not satisfy the property (E.A).
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Example 4.2.6. [1]. Let X = [2,∞) endowed with the usual metric. Define S, T :

X → X by Sx = x + 1 and Tx = 2x + 1, for all x ∈ X. Suppose S and T satisfy

the property (E.A), then there exists a sequence {xn} in X satisfying lim
n→∞

Sxn =

lim
n→∞

Txn = t, for some t ∈ X. Therefore lim
n→∞

xn = t − 1 and lim
n→∞

xn = t−1
2

. Then

t = 1, which is a contradiction since 1 /∈ X. Hence S and T do not satisfy the

property (E.A).

Commutativity ⇒ Compatibility ⇒ Property(E.A).

Definition 4.2.6 can be extended to a hybrid pair of mappings as follows:

Definition 4.2.7. [63] Let X be a metric space. Two mappings S : X → X and

T : X → CL(X) satisfy the property (E.A) if there exists a sequence {xn} in X such

that

lim
n→∞

Sxn = z ∈ A = lim
n→∞

Txn

for some z ∈ X and A ∈ CL(X).

When S is an identity mapping on X, we obtain the corresponding definition for

a (single) mapping satisfying the property (E.A) (see [98]).

Example 4.2.7. Let X = [0, 1] endowed with the usual metric. Define S : X → X

and T : X → CL(X) by Sx = x/2 and Tx = [0, x]. Consider the sequence xn =

1
n
, n ∈ N. Then,

lim
n→∞

Sxn = 0 ∈ {0} = lim
n→∞

Txn.

Therefore, S and T satisfy the property (E.A).

We shall use the following notations. Let

1. Φ denote the class of functions: ϕ : [0,∞)→ [0,∞) satisfying:
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(a) ϕ is continuous and monotone nondecreasing,

(b) ϕ(t) = 0⇔ t = 0.

2. Ψ denote the class of functions: φ : [0,∞) → [0,∞) is upper semicontinuous,

φ(t) < t for each t > 0 and

lim
n→∞

inf
n

(t− φ(t)) > 0.

3. MT (x, y) := max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

4. m(x, y) := max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

5. MS,T (x, y) := max

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

d(Sx, Ty) + d(Sy, Tx)

2

}
.

The following notion of quasi-contraction is due to Ćirić [35]. We note that it is

one of the most general contractive conditions used in fixed point theory (cf. Rhoades

[104] )

Definition 4.2.8. A self mapping T of a metric space X is said to be a quasi-

contraction if there exists k, 0 ≤ k < 1 such that for all x, y ∈ X,

d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty)d(x, Ty), d(y, Tx)}. (4.2.1)

Definition 4.2.9. [41] Let X be a metric space and T : X → X. The mapping T is

said to be (ψ, ϕ)-weak contraction if

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)) (4.2.2)

for all x, y ∈ X, where ψ, ϕ ∈ Φ.

We extend Definition 4.2.9 and introduce the notion quasi weak contraction as

follows:
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Definition 4.2.10. Let X be a metric space and T : X → X. The mapping T will

be called a quasi weak contraction if

ψ(d(Tx, Ty)) ≤ ψ(MT (x, y))− ϕ(MT (x, y)) (4.2.3)

for all x, y ∈ X, where ψ, ϕ ∈ Φ.

Remark 4.2.2. When ψ(t) = t and ϕ(t) = (1 − k)t with k ∈ (0, 1), in Definition

4.2.10, we recover Definition 4.2.8.

In case T is a multi-valued mapping, we have the following definition.

Definition 4.2.11. Let X be a metric space and T : X → CL(X). The mapping T

will be called multi-valued quasi weak contraction if

ψ(H(Tx, Ty)) ≤ ψ(MT (x, y))− ϕ(MT (x, y)) (4.2.4)

for all x, y ∈ X, where ψ, ϕ ∈ Φ.

4.3 Results concerning stationary points and

approximate endpoint property

This section is about the existence theorem for stationary points of a multi-valued

quasi weak contraction satisfying the property (E.A) and the relationship between

the existence of a unique endpoint and approximate endpoint property for a hybrid

pair of mappings satisfying certain conditions.

Theorem 4.3.1. Let X be a metric space and T : X → CL(X) a multi-valued quasi

weak contraction satisfying the property (E.A). Then T has a unique stationary point

in X.
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Proof. Since T satisfies the property (E.A), there exists a sequence {xn} in X

such that

lim
n→∞

xn = z ∈ A = lim
n→∞

Txn

for some z ∈ X and A ∈ CL(X). By (4.2.4), we get

ψ(H(Tz, Txn)) ≤ ψ(MT (z, xn))− ϕ(MT (z, xn)). (4.3.1)

Notice that

lim
n→∞

MT (z, xn) = lim
n→∞

max{d(z, xn), d(z, Tz), d(xn, Txn), d(z, Txn), d(xn, T z)}

= max{d(z, z), d(z, Tz), d(z, A), d(z, A), d(z, Tz)} (4.3.2)

= max{0, d(z, Tz), 0, 0, d(z, Tz)}

= d(z, Tz).

Since ψ, ϕ ∈ Φ, (4.3.1) and (4.3.2) implies

lim
n→∞

ψ(H(Tz, Txn)) = ψ(H(Tz,A)) ≤ ψ(d(z, Tz))− ϕ(d(z, Tz)),

a contradiction, unless H(Tz,A) = 0. Thus Tz = A = {z}.

To prove the uniqueness, we suppose that T has two distinct stationary points u and

v in X.

Again notice that

MS,T (u, v) = max{d(u, v), d(u, Tu), d(v, Tv), d(u, Tv), d(v, Tu)}

= max{d(u, v), d(u, u), d(v, v), d(u, v), d(v, u)}

= d(u, v). (4.3.3)

Since ψ, ϕ ∈ Φ, by (4.2.4) and (4.3.3)

ψ(d(u, v)) = ψ(H(Tu, Tv)) ≤ ψ(MT (u, v))− ϕ(MT (u, v))

= ψ(d(u, v))− ϕ(d(u, v)),
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a contradiction, unless d(u, v) = 0.

If T is a single valued mapping on X, we have the following result.

Corollary 4.3.1. Let X be a metric space and T : X → X a quasi weak contraction

satisfying the property (E.A). Then T has a unique fixed point in X.

When ψ(t) = t in Theorem 4.3.1, we have the following corollary.

Corollary 4.3.2. Let X be a metric space and T : X → CL(X) a multi-valued

mapping satisfying the property (E.A) such that

H(Tx, Ty) ≤MT (x, y)− ϕ(MT (x, y)) (4.3.4)

for all x, y ∈ X, where ϕ ∈ Φ. Then T has a unique stationary point.

Corollary 4.3.3. Let X be a metric space and T : X → CL(X) a multi-valued

(ψ, ϕ)-weak contraction mapping satisfying the property (E.A). Then T has a unique

stationary point.

Proof. It comes from Theorem 4.3.1, when MT (x, y) = d(x, y).

When MS,T (x, y) = d(x, y), ψ(t) = t and ϕ(t) = 0, then we have the following

result for nonexpansive mappings.

Corollary 4.3.4. Let X be a metric space and T : X → CL(X) a multi-valued

mapping satisfying the property (E.A) such that

H(Tx, Ty) ≤ d(x, y) (4.3.5)

for all x, y ∈ X. Then T has a unique stationary point.

Now we present an example to illustrate our results.
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Example 4.3.1. Let X = [0, 1) endowed with the usual metric. Define T : X →

CL(X) by Tx = [0, x/2]. Let ψ(t) = 2t and ϕ(t) = t
2
.

Consider the sequence {xn} defined by xn = 1
n
, n ∈ N. Clearly,

lim
n→∞

xn = 0 ∈ {0} = lim
n→∞

Txn,

and T satisfies the property (E.A). For all x, y ∈ X

ψ(H(Tx, Ty)) = |x− y| ≤ 2|x− y| − |x− y|
2

.

Therefore T satisfies all the hypotheses of Corollary 4.3.3 and T0 = {0}. It is inter-

esting to note that X is not complete.

Recently, extending nonlinear contraction of Boyd and Wong [30] for a multi-

valued mapping, Amini-Harandi [12] obtained the following stationary point theo-

rems.

Theorem 4.3.2. Let X be a complete metric space and T : X → CB(X) such that

H(Tx, Ty) ≤ φ(d(x, y)) for all x, y ∈ X. (4.3.6)

Then T has a unique endpoint if and only if T has approximate endpoint property.

Moradi and Khojasteh [88] extended the above theorem to a multi-valued gener-

alized weak contraction as follows:

Theorem 4.3.3. Let X be a complete metric space and T : X → CB(X) such that

H(Tx, Ty) ≤ φ(m(x, y)) for all x, y ∈ X. (4.3.7)

Then T has a unique endpoint if and only if T has approximate endpoint property.
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The following result may be considered as an extension of Theorems 4.3.2 and

4.3.1.

Theorem 4.3.4. Let X be a metric space, S : X → X and T : X → CB(X) such

that

(A1) TX ⊆ SX;

(A2) H(Tx, Ty) ≤ φ(MS,T (x, y)) for all x, y ∈ X;

(A3) SX or TX is a complete subspace of X.

Then S and T have a unique endpoint if and only if S and T have approximate

endpoint property.

Proof. It is obvious that if S and T have an endpoint then they have approximate

endpoint property. Conversely, suppose that S and T have approximate endpoint

property. Then there exists a sequence {xn} ∈ X such that lim
n→∞

H(Sxn, Txn) = 0.

We shall show that the sequence {Sxn} is Cauchy. For all m,n ∈ N

MS,T (xn, xm) = max

{
d(Sxn, Sxm), d(Sxn, Txn), d(Sxm, Txm),

d(Sxn, Txm) + d(Sxm, Txn)

2

}

≤ max

{
d(Sxn, Sxm), H(Sxn, Txn), H(Sxm, Txm),

H(Sxn, Txm) +H(Sxm, Txn)

2

}
≤ d(Sxn, Sxm) +H(Sxn, Txn) +H(Sxm, Txm)
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= d(Sxn, Sxm)−H(Sxn, Txn)−H(Sxm, Txm) +

2H(Sxny, Txn) + 2H(Sxm, Txm)

≤ H(Txn, Txm) + 2H(Sxn, Txn) + 2H(Sxm, Txm)

≤ φ(MS,T (xn, xm)) + 2H(Sxn, Txn) + 2H(Sxm, Txm).

Therefore for all m,n ∈ N, we have

MS,T (xn, xm)− φ(MS,T (xn, xm)) ≤ 2[H(Sxn, Txn) +H(Sxm, Txm)]. (4.3.8)

Since φ is upper semicontinuous, φ(t) < t for each t > 0 and limn→∞ inf(t−φ(t)) > 0,

by (4.3.8) we conclude that

lim sup
m,n

MS,T (xn, xm) = 0,

and {Sxn} is Cauchy sequence.

Suppose SX is complete subspace of X then {Sxn} being contained in SX has a

limit in SX. Call it z. Let Su = z for some u ∈ X. Now we have

MS,T (xn, u) = max

{
d(Sxn, Su), d(Sxn, Txn), d(Su, Tu),

d(Sxn, Tu) + d(Su, Txn)

2

}
≤ max

{
d(Sxn, u), H(Sxn, Txn), H(Su, Tu),

H(Sxn, Tu) +H(Su, Txn)

2

}
≤ d(Sxn, Su) +H(Sxn, Txn) +H(Su, Tu),

and

lim
n→∞

MS,T (xn, u) ≤ H(Su, Tu).

Since φ is upper semicontinuous

lim
n→∞

supφ(MS,T (xn, u)) ≤ φ(H(Su, Tu)). (4.3.9)
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By the triangle inequality and using (A2), we have

H(Sxn, Tu) ≤ H(Sxn, Txn) +H(Txn, Tu)

≤ H(Sxn, Txn) + φ(MS,T (xn, u)).

Making n→∞ and using (4.3.9), we get

H(Su, Tu) ≤ φ(H(Su, Tu)),

and φ(t) < t for all t > 0, implies that H(Su, Tu) = 0. It follows that Tu = {Su}

and u is an endpoint of S and T .

In case TX is a complete subspace of X, the condition TX ⊆ SX implies that the

sequence {Sxn} converges in SX and the previous argument works. The uniqueness

of endpoint follows easily.

Corollary 4.3.5. Theorem 4.3.1.

Proof. It comes from Theorem 4.3.4 when S is an identity mapping on X.

Corollary 4.3.6. Let X be a metric space, S : X → X and T : X → CB(X) such

that

(C1) TX ⊆ SX;

(C2) H(Tx, Ty) ≤ q MS,T (x, y) for all x, y ∈ X, where 0 < q < 1;

(C3) SX or TX is a complete subspace of X.

Then S and T have a unique endpoint if and only if S and T have approximate

endpoint property.

Proof. It comes from Theorem 4.3.4 when φ(t) = qt.



87

Corollary 4.3.7. Theorem 4.3.2.

Proof. It comes from Corollary 4.3.5 when m(x, y) = d(x, y).

The following example shows the generality of our Theorem 4.3.4.

Example 4.3.2. Let X = [0,∞) endowed with the usual metric. Let S : X → X

and T : X → CB(X) be defined by

Sx = 2x for all x ∈ X and Tx =

 {0} if x = 0,

[0, x] if x 6= 0.

Let φ(t) = 3
4
t for t > 0.

Then for x, y > 0

H(Tx, Ty) = |x− y| > 3

4
|x− y|,

and the condition (4.3.6) ( of Theorem 4.3.2) and condition (4.3.7) (of Theorem

4.3.1) are not satisfied. However, the mappings S and T satisfy all the conditions of

Theorem 4.3.4 and S0 ∈ T0 = {0}, showing that 0 is the unique endpoint of S and

T .



Chapter 5

Fixed Point Theorems for
Set-valued Generalized Asymptotic
Contractions

5.1 Introduction

In this chapter we introduce the notion of set-valued generalized asymptotic contrac-

tion of Meir-Keeler type, which includes the known notions of asymptotic contractions

due to Kirk [75], Suzuki [131] and Fakhar [43]. Subsequently, this notion is utilized to

obtain coincidence and fixed point theorems for such contractions which generalize,

and unify a number of known results due to [43], [142] and others.

5.2 Preliminaries

One of the generalizations of the well-known contraction principle of Banach [20] is

due to Meir-Keeler [80]. We first recall the above notion as follows:

Definition 5.2.1. Let (X, d) be a metric space. A mapping T on X is said to be a

88
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Meir-Keeler contraction if for any ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε+ δ implies d(Tx, Ty) < ε for all x, y ∈ X.

Meir-Keeler [80] proved the following fixed point theorem which is a generalization

of the Banach contraction principle [20].

Theorem 5.2.1. Let (X, d) be a complete metric space and let T be a Meir-Keeler

contraction on X. Then T has a unique fixed point.

Kirk [75] introduced a new class of mappings known as asymptotic contractions on

a metric space and obtained a fixed point theorem (see Definition 5.2.2 and Theorem

5.2.2) below.

Definition 5.2.2. Let (X, d) be a metric space. A self mapping T of X is an asymp-

totic contraction on X if

d(T nx, T ny) ≤ ϕn(d(x, y)) for x, y ∈ X,

where ϕ is a continuous function, from [0,∞) into itself, ϕ(t) < t for all t > 0 and

{ϕn} is a sequence of functions from [0,∞) into itself such that ϕn → ϕ uniformly

on the range of d.

Theorem 5.2.2. Let (X, d) be a complete metric space and T an asymptotic contrac-

tion on X with {ϕn} and ϕ as in Definition 5.2.2. Assume that there exists x ∈ X

such that the orbit {T nx : n ∈ N} of x is bounded, and that ϕn is continuous for

n ∈ N. Then there exists a unique fixed point z ∈ X. Moreover limn T
nx = z for all

x ∈ X.

Remark 5.2.1. We remark that:
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1. Theorem 5.2.2 is an asymptotic version of Boyd and Wong contraction [30] (see

[58]).

2. Jachymski and Jóźwic [58] showed that the continuity of the map T is essential

for the conclusion of Theorem 5.2.2 to hold.

3. In respect of Definition 5.2.2, it has been observed that ϕ(0) = 0 (cf. [15, 58,

131, 132, 133]).

Recently Suzuki [131] combined the ideas of Meir-Keeler contraction and Kirk’s

asymptotic contraction and introduced the following notion of asymptotic contraction

of Meir-Keeler type.

Definition 5.2.3. Let (X, d) be a metric space. A self-map T of X is called an

asymptotic contraction of Meir-Keeler type if there exists a sequence ϕn of functions

from [0,∞) into itself satisfying the following conditions:

(S1) lim supϕn(ε) ≤ ε for all ε ≥ 0;

(S2) for each ε > 0, there exists δ > 0 and ν ∈ N such that ϕν(t) ≤ ε for all

t ∈ [ε, ε+ δ];

(S3) d(T nx, T ny) < ϕn(d(x, y)), for all n ∈ N and x, y ∈ X with x 6= y.

Definition 5.2.4. Let (X, d) be a metric space. We say that the set-valued dynamic

system T : X → 2X satisfies condition (C), if one of the following conditions hold:

(I) For each 0 < α < β <∞, there exist maps ϕα,β;m, ϕα,β : [α, β]→ [0,∞),m ∈ N,

such that ϕα,β;m, m ∈ N, are continuous on [α, β], ϕα,β(r) < r for any r ∈ [α, β],

ϕα,β;m → ϕα,β uniformly on [α, β] and, for any A ∈ B(X) and m ∈ N, if

α ≤ δ(A) ≤ β, then δ(T [m](A)) ≤ ϕα,β;m(δ(A)).
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(II) For each α > 0, there exist maps ϕα;m, ϕα : [α,∞) → [0,∞), m ∈ N, such

that ϕα;m, m ∈ N, are continuous on [α,∞), ϕα(r) < r for any r ∈ [α,∞),

ϕα;m → ϕα uniformly on [α,∞) and, for any A ∈ B(X) and m ∈ N, if δ(A) ≥ α,

then δ(T [m](A)) ≤ ϕα;m(δ(A)).

(III) There exist maps ϕm, ϕ : [0,∞) → [0,∞),m ∈ N, such that ϕm,m ∈ N, are

continuous on [0,∞), ϕ(0) = 0, ϕ(r) < r for any r ∈ [0,∞), ϕm → ϕ uniformly

on [0,∞) and, for any A ∈ B(X) and m ∈ N, δ(T [m](A)) ≤ ϕm(δ(A)).

We call maps which satisfy condition (C) set-valued asymptotic contractions.

5.3 Generalized Asymptotic Contractions

Motivated by Suzuki [131], Fakhar [43] and Wlodarczyk et al. [142], we now introduce

the notion of generalized asymptotic contraction for a hybrid pair of mappings, but

first we recall certain notions that will be used in the sequel.

Throughout this section, Y denotes an arbitrary nonempty set, (X, d) a metric

space, CB(X) the collection of all nonempty closed bounded subsets of X, ϕn as in

Definition 5.2.3 and H the Hausdorff metric induced by d.

Further, let

m(x, y) : = max

{
d(x, y), d(x, Tx), d(y, Ty),

1

2
[d(x, Ty) + d(y, Tx)]

}
;

M(x, y) : = max

{
d(fx, fy), d(fx, Tx), d(fy, Ty),

1

2
[d(fx, Ty) + d(fy, Tx)]

}
.

Now, we have the following:
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Definition 5.3.1. Let (X, d) be a metric space f : Y → X and T : Y → CB(X).

The map T will be called a generalized asymptotic contraction of Meir-Keeler type

with respect to f if the following hold:

(G1) lim supn ϕn(ε) ≤ ε for all ε ≥ 0;

(G2) for each ε > 0 there exists δ > 0 such that ϕk(t) < ε for all t ∈ [ε, ε + δ] and

k ∈ N;

(G3) H(T nx, T ny) < ϕn(M(x, y)) for all n ∈ N and x, y ∈ Y with M(x, y) > 0.

As a special case of the above definition, we have the following:

Definition 5.3.2. Let (X, d) be a metric space and T : X → CB(X). The map T

will be called a generalized asymptotic contraction of Meir-Keeler type if the following

hold:

• lim supn ϕn(ε) ≤ ε for all ε ≥ 0;

• for each ε > 0 there exists δ > 0 such that ϕk(t) < ε for all t ∈ [ε, ε+ δ] and k ∈ N;

• H(T nx, T ny) < ϕn(m(x, y)) for all n ∈ N and x, y ∈ X with m(x, y) > 0.

Remark 5.3.1. We remark that a set-valued asymptotic contraction of Meir-Keeler

type is the set-valued generalized contraction of Meir-Keeler type when m(x, y) =

d(x, y). Further it includes the set-valued asymptotic contraction given in Definition

5.2.4.

Now, we recall the following results:
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Theorem 5.3.1. [43] Assume that T is a uniformly continuous multi-valued asymp-

totic φ-contraction. Then T has a unique endpoint if and only if T has the approxi-

mate endpoint property. Furthermore, the fixed point problem is well posed for T with

respect to H.

Theorem 5.3.2. [142] Let (X, d) be a metric space and let T : X → 2X . Suppose

that:

(a) X is complete;

(b) T is closed;

(c) there exists u1 ∈ X and um+1 ∈ T [m](u1) for m ∈ N such that the sequence {um}

is bounded;

(d) T satisfies condition (C).

Then the following hold:

(i) T has a unique endpoint u in X and

(ii) each sequence {wm}, where w1 ∈ X and wm+1 ∈ T [m](w1) for m ∈ N, converges

to v.

The following theorem is our main result.

Theorem 5.3.3. Let (X, d) be a metric space, f : Y → X and T : Y → CB(X)

such that TY ⊆ fY . Let T be a generalized asymptotic contraction of Meir-Keeler

type with respect to f .

If T (Y ) or f(Y ) is a complete subspace of X then T and f have a coincidence

point.
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Further, if Y = X, then T and f have a common fixed point provided that ffu =

fu and T and f commute at a coincidence point.

Proof. Pick x0 ∈ Y . We construct a sequence {xn} in the following manner.

Since TY ⊆ fY , we may choose a point x1 ∈ Y such that fx1 ∈ Tx0. If Tx0 = Tx1

then x1 = x0 is a coincidence point of T and f and we are done. So assume that

Tx0 6= Tx1 and choose x2 ∈ Y such that fx2 ∈ Tx1 and

d(fx1, fx2) ≤ H(Tx0, Tx1).

If Tx1 = Tx2, i.e., x2 is a coincidence point of T and f , we are done. If not continuing

in the same manner we have

d(fxn+1, fxn+2) ≤ H(Txn, Txn+1).

By (G3),

d(fxn, fxn+1) ≤ H(Txn−1, Txn) < ϕn(M(x0, x1)).

First we show that

lim
n→∞

d(fxn, fxn+1) = 0. (5.3.1)

It initially holds if x1 = x2. In the other case of x1 6= x2, we assume that

α := lim sup
n
d(fxn+1, fxn+2) > 0.

From the condition (G2), we can choose k ∈ N satisfying ϕk(d(fx1, fx2)) < d(fx1, fx2).

By (G3) and (G1),

d(fxk+1, fxk+2) ≤ H(Txk, Txk+1) < ϕk(M(x0, x1)) < M(x1, x2). (5.3.2)
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Now, we have

α : = lim
n→∞

sup d(fxk+n+1, fxk+n+2) ≤ lim
n→∞

supH(Txk+n, Txk+n+1)

≤ lim
n→∞

sup ϕn(M(xk, xk+1)) ≤M(xk, xk+1)

= max{d(fxk, fxk+1), d(fxk, Txk), d(fxk+1, Txk+1),

1

2
[d(fxk, Txk+1) + d(fxk+1, Txk)}

= max{d(fxk, fxk+1), d(fxk, fxk+1), d(fxk+1, fxk+2),

1

2
[d(Txk, Txk+2) + 0)}

= max{d(fxk, fxk+1), d(fxk+1, fxk+2),

1

2
[d(fxk, fxk+1) + d(fxk+1, fxk+2)}

= max{d(fxk, fxk+1), d(fxk+1, fxk+2)}.

If

max{d(fxk, fxk+1), d(fxk+1, fxk+2)} = d(fxk+1, fxk+2)

then

d(fxk+1, fxk+2) ≤ H(Txk, Txk+1)

< ϕ1(M(xk, xk+1)) < M(xk, xk+1)

= max{d(fxk, fxk+1), d(fxk, Txk+1), d(fxk+1, Txk+1),

1

2
[d(fxk, Txk+1) + d(fxk+1, Txk)]}

= max{d(fxk, fxk+1), d(fxk, fxk+1), d(fxk+1, fxk+2),

1

2
[d(fxk, fxk+1) + 0]}

= max{d(fxk, fxk+1), d(fxk+1, fxk+2)}

= d(fxk+1, fxk+2),



96

a contradiction. Therefore

max{d(fxk, fxk+1), d(fxk+1, fxk+2)} = d(fxk, fxk+1)

and we conclude that M(xk, xk+1) = d(fxk, fxk+1).

By (5.3.2),

d(fxk+2, fxk+3) ≤ H(Txk+1, Txk+2)

< ϕk(M(x1, x2)) < M(x1, x2)

= max{d(fx1, fx2), d(fx1, Tx2), d(fx1, Tx2),

1

2
[d(fx1, Tx2) + d(fx1, Tx2)]}

= d(fx1, fx2).

So α < d(fx1, fx2). By a similar argument, we obtain α < d(fxk+1, fxk+2) for all

k ∈ N. Hence {d(fxn, fxn+1} converges to α.

Since 0 < α < d(fx1, fx2) <∞, there exists δ2 > 0 and l ∈ N such that

ϕl(t) ≤ α for all t ∈ [α, α + δ2].

We choose p ∈ N with d(fxp+1, fxp+2) < α + δ2. Then we have

d(fxl+p+1, fxl+p+2) ≤ H(Txl+p, Txl+p+1) < ϕld(fxp, fxp+1) ≤ α,

a contradiction. This proves that lim
n→∞

d(fxn, fxn+1) = 0. Now following the proof of

Theorem 3.1 [121], it can be easily shown that {fxn} is a Cauchy sequence.

Suppose f(Y ) is complete. Then {fxn} being contained in f(Y ) has a limit in

f(Y ). Call it z. Let u ∈ f−1z. Then fu = z. Using (G2),

d(fu, Tu) ≤ H(Txn, Tu) < ϕ1(M(u, xn))

= ϕ1(max{d(fu, fxn), d(fu, Tu), d(fxn, Txn),

1

2
[d(fu, Txn) + d(fxn, Tu)]}).
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Making n→∞, d(fu, Tu) ≤ ϕ1(d(fu, Tu)) < d(fu, Tu). This yields fu ∈ Tu.

Further, if Y = X, ffu = fu, and the maps f and T commute at their coincidence

point u then fu ∈ fTu ⊆ Tfu and fu is a common fixed point of f and T .

In case TY is a complete subspace of X, the condition TY ⊆ fY implies that the

sequence {fxn} converges in fY and the previous argument works.

Now in the view of Definition 5.3.2 and Remark 5.3.1 we have the following remark.

Remark 5.3.2.

1. Let (X, d) be a complete metric space and T : X → CB(X) a generalized

asymptotic contraction of Meir-Keeler type. Then T has a fixed point in X.

2. Let (X, d) be a complete metric space and T : X → CB(X) an asymptotic

contraction of Meir-Keeler type. Then T has a fixed point in X.

The following example shows the generality of Theorem 5.3.3 over Theorem 5.3.2

and Theorem 5.3.1.

Example 5.3.1. Let Y = (−∞,∞) and X = [0,∞) endowed with the usual metric

d. Let f : y → X and T : Y → CB(X) be defined by

fx =

 −2x if x < 0,

2x if x ≥ 0
and Tx =


{−x} if x < 0,

[0, x] if 0 ≤ x ≤ 1,

{x} if x > 1

for all x ∈ Y . Let ϕn(t) = 3
4
t for t > 0.

Then for x > 1 and y > 1,

H(T nx, T ny) =| x− y |> 3

4
| x− y |= ϕn(d(x, y)),
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and the contractive condition of Theorem 5.3.1 is not satisfied.

Further, δ(T n([0, 1])) = δ([0, 1]) and condition (d) of Theorem 5.3.2 is not satis-

fied. It can be verified that the maps f and T satisfy all the hypotheses of Theorem

5.3.3. Notice that TY ⊆ fY and f and T commute at 0. Hence f0 ∈ T0 is a common

fixed point of f and T .



Appendix

List of Published papers

1. Stability of common fixed points in uniform spaces, Fixed point theory and Appli-

cations, 2011 : 36 (with S. N Mishra and S. L Singh).

2. Suzuki theorem on a 2-metric space, Journal of Advanced Mathematical Studies,

5(1) (2012) 71-76 (with S. L. Singh and S. N. Mishra).

3. Some new notions of convergence and stability of common fixed points in 2-metric

spaces, Advances in Fixed Point Theory, 2(1) (2012), 64-78 (with S. N Mishra,

S. L Singh and Rajendra Pant).

4. Fixed and stationary points of generalized weak contractions, Journal of Advanced

Mathematical Studies, 5(2) (2012), 46-53 (with S. N. Mishra and Rajendra

Pant).

5. Coincidence and fixed points of weakly contractive maps, Journal of Advanced

Mathematical Studies, 5(2) (2012), 68-81 (with S. L. Singh and Ashish Kumar).
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