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ABSTRACT 

This thesis attempts a synthesis of two important and fast developing 

branches of mathematics, namely universal algebra and fuzzy set theory. 

Given an abstract algebra [X,F] where X is a non-empty set and F is a set of 

finitary operations on X, a fuzzy algebra [IX,F] is constructed by 

extending operations on X to that on IX, the set of fuzzy subsets of X (I 

denotes the unit interval), using Zadeh's extension principle. 

Homomorphisms between fuzzy algebras are defined and discussed. Fuzzy 

subalgebras of an algebra are defined to be elements of a fuzzy algebra which 

respect the extended algebra operations under inclusion of fuzzy subsets. 

The family of fuzzy subalgebras of an algebra is an algebraic closure system 

in IX. Thus the set of fuzzy subalgebras is a complete lattice. A fuzzy 

equivalence relation on a set is defined and a partition of such a relation 

into a class of fuzzy subsets is derived . Using these ideas, fuzzy functions 

between sets, fuzzy congruence relations, and fuzzy homomorphisms are 

defined. The kernels of fuzzy homomorphisms are proved to be fuzzy 

congruence relations, paving the way for the fuzzy isomorphism theorem. 

Finally, we sketch some ideas on free fuzzy subalgebras and polynomial 

algebras. In a nutshell, we can say that this thesis treats the central 

ideas of universal algebras, namely subalgebras, homomorphisms, equivalence 

and congruence relations, isomorphism theorems and free algebra in the 

fuzzy set theory setting. 

Subject classification : AMS(MOS) 

Primary OBA99, 03E72 

Secondary OBA30, OBA02 

Key words Fuzzy universal algebras, fuzzy subalgebras, homomorphisms, 

fuzzy congruence relations and free fuzzy algebras . 
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PR~FACE 

Universal Algebrasstarted to evolve when mathematics departed from the 

traditional study of operations on real numbers only. Hamilton's 

quaternions, Boole's symbolic logic and so forth , brought to light 

operations on objects other than real numbers and operations which are very 

different from the traditonal ones . Thus Universal Algebra is the study of 

finitary operations on a set. On the other hand, during the 60's fuzzy 

sets were introduced by Zadeh and others (see [43], [44], [17]), as a 

mathematical basis for multivalued logic. Since its inception the theory 

of fuzzy subsets has developed in many directions and is finding applications 

increasingly in a wide variety of fields. For example, in [38] Rosenfeld 

used this concept to develop the theory of fuzzy groups and subgroups, in 

[23] Katsaras and Liu discusses fuzzy subspaces of vector spaces and others 

[ 29], [22] have considered fuzzy ideals and .fuzzy subrings, not to mention 

the explosion of papers on fuzzy topological spaces. 

In this thesis, we attempt a synthesis of the above two important 

concepts and produce the idea of fuzzy universal algebra to unify certain 

s imilar studies made in fuzzy subgroups, fuzzy rings and fuzzy vector spaces 

etc. from the purely algebraic point of view. As far back as 1975, 

Negoita and Relescu in their book [33] made a scanty sketch of such ideas 

and suggested that one could make a serious study of those concepts. The 

purpose of this thesis is to give a systematiC treatment of the most 

important results in the field of fuzzy universal algebras. Thus we define 

and discuss several notions central to universal algebr~such as subalgebras, 

homomorphism, quotients, equivalences, congruences, isomorphism theorems and 

free algebras in the fuzzy universal algebra setting. 



(v ) 

Even though the language of category theory would have been more 

convenient in some ways, we have avoided categorical terms for basically 

three reasons. Firstly, we did not want to bring another theory into our 

synthesis. The second reason is to preserve the directness and simplitiy of 

presentation of universal algebraic concepts. Thirdly, we believe that a 

full length study (a separate thesis) can profitably be taken up to tie up 

category theory (theory of monads and triples) and fuzzy universal algebra. 

Power algebras have been studied in the 50's by Jonsson and Tarski [21] 

Foster [10], [11] although in a different context. They tried to unite 

universal algebra with Boolean algebras. This thesis can also be 

considered as 

unit interval 

a study of power algebras. Given a non-empty set X and the 
X I, I , the power set consists of all the fuzzy subsets of X, 

finitary operations on X are then extended from X to IX using Zadeh's 

extension principle [44]. E.G. Manestackles the problem of fuzzy universal 

algebra in his paper "A class of fuzzy theories" [30] along a different line. 

Since each chapter has its own introduction in some detail we present 

here only a brief general descripition of each chapter. 

In chapter one, we collect the basic concepts of fuzzy set theory and 

universal algebras. We show how to extend operations from a given set to 

that of the set of fuzzy subsets of the given set . We consider 

homomorphisms and their fuzzy extensions . Chapter two deals with the 

definition of fuzzy subalgebras of an algebra . We prove some simple 

consequences. Homomorphisms between fuzzy subalgebras and crisp a-level 

(0~a~1) cuts of fuzzy subalgebras are also studied in the same chapter. 
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Closure systems are just as important in fuzzy set theory as in crisp set 

theory of universal algebra. In Chapter 3 we define and study closure 

systems in fuzzy set theory in brief . We apply algebraic closure systems 

that were defined in Chapter 3 to the lattice of fuzzy subalgebras and prove 

that the class of fuzzy subalgebras of X is an algebraic closure system in IX. 

In that process, we also describe the method to generate the smallest fuzzy 

subalgebra containing a given fuzzy subset. These are the results of 

Chapter 4. In Chapter 5, fuzzy equivalence relations are defined and 

studied. They were first defined in Goguen [17] and later taken up by 

Kaufmann [24]. The results obtained are analogous to the crisp case and 

reduce to the usual definitions used in crisp set theory if considered in 

2X. Using the characterisation of a partition of fuzzy equivalence 

relations into a class of fuzzy subsets, fuzzy functions are defined. They 

are basically fuzzy relations satisfying certain properties . Composition 

of fuzzy functions, converse or inverse fuzzy functions, the kernel of a fuzzy 

function are defined and studied in Chapter 6. The main result is that the 

kernel of a fuzzy function is a fuzzy equivalence relation. Fuzzy congruence 

relations are fuzzy equivalence relations on algebras which respect the 

algebraic operations in a certain sense. In Chapter 7, we define and study 

fuzzy congruence relations. Chapter 8 deals with isomorphism theorems. 

Fuzzy homomorphisms between universal algebras are defined and studied in 

section 8.2. These are different from fuzzy extensions of crisp 

homomorphisms studied in Chapter 1. The kernel of a fuzzy homomorphism is 

proved to be a fuzzy congruence relation . Using this, we prove the first 

isomorphism theorem . Finally, in the appendix we briefly discuss the 

question of freeness of algebras in fuzzy set theory and polynomial algebras. 
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In conclusion, I wish to quote P. Freyd [12]. "In a new subject it 

is often very difficult to decide what is trivial, what is obvious, what is 

hard, what is worth bragging about. A man learns to think categorically 

(fuzzy set theoretically), he works out a few definitions, perhaps a 

theorem, more likely a lemma, and then he publishes it. Very often his 

exercise,though unpublished, has been in the folklore from the beginning. 

Very often it has been published faithfully every year .. .. " I hope the 

work in this thesis proves to be significant and stimulating for further 

research . 

The Theorems, Definitions, Propositions etc. are numbered serially 

within the chapter and section. For example Proposition 2.4.5. refers to 

5th article in section 4 of Chapter 2. 
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CHAPTER 1 

FUZZY ALGEBRAS 

1.1 Introduction 

In this thesis, we accept the intuitive concept of a set. In 

section 1.2, we define what is meant by a fuzzy subset of a set and 

introduce such concepts as union, intersection, complement, e~pty fuzzy 

set etc. In section 1.3, algebras are considered. They are sets 

together with a set of finitary operations defined on them. A certain 

amount of familiarity with universal algebras is assumed, see [3], [19]. 

Using Zadeh's extension principle (44], finitary operations on an 

algebra are extended to finitary operations defined on the set of fuzzy 

subsets of the set underlying the given algebra. Such algebras are 

called fuzzy algebras. In section 1.4, we consider the extensions of 

homomorphisms between given algebras to fuzzy algebras. Such extensions 

are proved to be homomorphisms. Finally in section 1.5, the notion of 

fuzzy points are considered. They were first defined by Zadeh [45] as 

fuzzy singletons. Using this notion, an embedding theorem is proved 

where a given algebra is identified as a subalgebra of the fuzzy algebra 

associated with it. 
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1.2 Fuzzy sets and mappings 

We accept the intuitive concept of a set (an ordinary set or crisp 

set as opposed to fuzzy set) as a collection of objects, called elements 

or members of the set. The notation xEX(xiX) means that x is (is not) 

an element of the set X. The void set is denoted by 0. If X and V are 

sets, then XcV (inclusion), X=V (equality), XcV (proper inclusion) are 

defined in the usual way. Also the set theoretic operations u,n, ',
(they are called union, intersection, complement and difference 

respectively) have their usual meaning. If X is a set, then p(X) 

called the power set of X, denotes the set of all subsets of X. If 2 

denotes the 2-element set {0,1} with the ordering 0~1, every subset Y of 

X can be identified with the charactersitic function Xv defined by, 

for any XE X 
XE V 

XV(x) = 
x¢V 

Thus p(X) can be identified with 2X, the set of functions from X to 

2={0,1}. 

Now let 1=[0,1] be the unit interval of real numbers with the 

usual ordering. Let X be a set. A fuzzy subset of X is characterised 

by a function ~ from X to I. That is ~:X-I . ~ is called the 

membership function and ~(x) is thought of as the degree of membership 

of the element x to the fuzzy subset of X defined by~. Thus vie 

identify a fuzzy subset of X with its membership function ~ . In this 

thesis, fuzzy subsets are denoted by lower case Greek letters ~,V,'Y 

etc. The power set IX, the set of all functions from X to I is 

the set of all fuzzy subsets of X and is denoted by F(X). 

lattice (see [1, p50]) with the pointwise ordering induced by the 
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ordering of I. Using this ordering, the notions of inclusion, 

equality, strict inclusion, union, intersection and complement of fuzzy 

subsets are defined in the following way. 

For ~,vEF(X) and for every XEX, 

(i) ~~v (inclusion)if and only if ~(x)~v(x) 

(ii) ~ =v (equalitylif and only if ~(x) =v(x) 

(iii) ~<v (strict inclusion) if and only if l J~V and ~J(X) < v\X) for at 
least one x. 

(iv) ~¥v (union) is defined as (~v v) (x)=sup(~ (x),v (x)) where 

sup stands for supremum. 

If (~j)j(J is a collection (finite or infinite) of fuzzy 

subsets V ~. (arbitrary union) is defined as 
j E J J 

( V ~.)(x)= sup (~J. (x)) 
jEJ J jEJ 

(v) ~ /Iv (intersection) is defined as (~/lv)(x)=inf(~(x),v(x)) 

where inf stands for infimum. 
.. 

If ~. 's are as in (iv) then II ~J. (arbitrary intersection) 
J jEJ 

is defined as ( II ~j)(x) = inf (~j(x)) 
jEJ jEJ 

(vi) ~c (complement) is defined as (~c)(x)=1_~(x) 

(vii) The whole fuzzy set ~X of X is defined as ~X(x)=1 for all 

XEX and the void or empty fuzzy set ~0 of X is defined as 

~0(x) =O for all XEX. 
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Crisp (ordinary) subsets of X are fuzzy subsets of X when identified 

with characteristic functions of these subsets. 

We now turn our attention to defining mappings between fuzzy 

subsets of two sets. So I et X and Y be two non-empty sets and let f 

be a mapping from X to Y. Then f extends to a mapping from F (X) to 

F (Y) in the following way . 

For each ~EIX, f(~)EIY is defined as 

f(~)(y) = 

o if yl"f(X) 

sup ~(x) if Yff(X), YEY 
y=f (x) 

f(~) is referred to as the image of the fuzzy set ~ under f. Conversely, 

given a vEI Y,f- 1(v)EI X is defined by the equation 

r 1(v)(x) = v(f(x)) for XEX . 

f- 1(v) is the Inverse image of v under f. 
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1.3 Fuzzy algebras 

If X and Yare sets. the Cartesian product XxV of X and Y is 

defined as the set of all ordered pairs (x.Y) with XEX and YEY . 

XxY={(X.y) :XEX.YEY} . 

with XiEX for each i=1.2 •...• n. We define XO to be {0}. For a 

positive integer n and for a set X. we define an n-ary relation r on X 

as a subset of Xn. If r is an n-ary relation on X and x1.x2 •...• XnEX. 

if and only if (x 1.x2 . . ... xn)Er. An n-ary operation on X is defined as 

a mapping f of Xn into X. In both cases. n is called the type of f 

(of r). Thus an n-ary operation assigns to every n-tuple (x1.x2 . . ... xn) 

of elements of X' a unique element of X which will be denoted by 

f(x 1.x2 ••.•• xn). Since such an operation is a mapping of Xn into X. we 

xn 
can also say that an n-ary operation is an element of X 

Moreover. we define a O-ary (nullary) operation as a constant 

mapping on X. i.e. f assigns to every x E X a unique element e EX. So a 

nullary operation on X can be seen as a constant unary operation on X. 

An n-ary operation f on X can also be described by an (n+1)-ary relation 

r defined by r(x 1.x2 .... Xn.X) if and only if f(x 1.x2 . . ... Xn)=X. 
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We shall also refer to an n-ary operation (for n a non-negative integer) 

as a finitary operation. In the definition below, n(a) denotes the 

integer associated with a finitary operation f on S. 
a 

Definition 1.3.1: An universal algebra (or an abstract algebra) 

or briefly an algebra A is a pair [S , F] where S is a non-empty set and 

F is a specified family of finitary operations {f } c on S. 
ex etc.a 

F is not 

necessarily finite and it may be void. 

Each operation f ,aw induces a corresponding operation n on F (S) as a a 

follows: 

na: F(S)x F(S)x ••• x F(S) - F(S) 

is defined as 

Supremum being taken over all n(a)-tuples (x 1,x2, ... ,xn(a)) for which 

fa (xl ,x2'··· ,xn(aY=x. If there exists no such n(a)-tuples 1.1 (x) is 

defined as O. As before, we denote 1.I=6",(1.I'1,1.I2, ... ,l.I n(a))' If 

n(a)=O then f is defined as 
a 

f -: S-S, x-e for all XE.S, e is a fixed element of S. 
a 

In this case 6 is defined as 6 : F(S) -F(S), l.I~e where the fuzzy 
a a 
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{ 

0 if x#e 

sup ~(x) x=e 
XES 

If F={6 :for every f EF), then [IS,F] is an abstract algebra. It is 
'" at 

usually denoted by A. 

S A = [I ,F] is called the fuzzy universal algebra (fuzzy abstract algebra) 

or briefly fuzzy algebra associated with the given algebra A = [S,F]. 

Remark 1.3.2: Together with the fuzzy universal algebra A =[IS,F], 

one can consider [2S,F]. Then the extended n-ary operation 6 EF on 2S 
C< 

simply becomes 

where X1,X2, ... ,X n(at) are crisp subsets of S. Jonsson and Tarski [21] 

introduced and studieo such objects in the 50's. They called [2S,F] 

Boolean algebra with operators. Brink [2], Henki, Monk and Tarski [20] 

and Foster [ 9] al so studied such al gebras . 

Example 1.3.3 : A semigroup [S,.] is an algebra with one binary operation 

such that (a.b).c = a.(b .c) for all a,b,cE S. The fuzzy semigroup 

associated with [S,.J is defined as [lS,.] where 

Note that it is easy to check the associative law, namely 

(~1.~2) . ~3 = ~1 · (~2·~3) for ~1'~2'~3E IS, holds in [IS,.]. 
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Example 1.3.4: A group is an algebra G=[S,.,e] with one binary operat ion 

. and one nullary operation e. The fuzzy group associated with [S,.,e] is 

defined as [rS,.,e] where 111. 112 is defined as in 1.3.3 and 

if x#e 

sup Il(x) if x=e. 
XES 

Such objects were first defined and studied by Rosenfeld [38] and 

subsequently by D. Foster [11]. 

Example 1.3.5: Vector spaces may be regarded as algebras. A vector 

space V over a field F is an abelian group V with scalar multiplications 

regarded as unary operations. Fuzzy vector spaces were first defined 

and studied by Katsaras and Liu [23]. 

Example 1.3.6: Rings are algebras with two binary operations and a 

nullary operation. Fuzzy rings were studied by LiI1 [29]. 

More concretely one can give the following example: 

Example 1.3.7: A = [R,F] where R is the set of real numbers and F is 

the set operations (+,X,O) where + is the addition, X is the multiplication, 

° is the nullary operation 0. The fuzzy real line from the algebraic point 

of view is taken up by Rodabaugh [37], Lowen [28] and others [ 6], [22]. 
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1.4 Fuzzy morphisms: 

Two algebras A =[ S,F] and B = [T,F'] are called similar if 
F = If :a tcC), F' 

a 
f~ are the same. 

= If ~ : oxC o:.} and for each a Ed'. the types of f 
a 

Definition 1.4.1: Let A=[S,F] and B=[T,P] be two similar algebras. 

A function ~:5-T is called a homomorphism of A into B if and only if 

for all faEF and XiE5, i=1,2, ... ,n(a), 

f~(~(X1),'(X2),···,~(xn(a))) 

='" ( fa (X 1 ,X 2' ... ,X n ( a) ) ) 

Epimorphism, monomorphism, isomorphism, automorphism and endomorphism 

are defined in the usual way. 

Remark 1.4.2: We retain the same symbol", for the given mapping 

between the algebras A and B, and its extension (see 1.2) between the 

fuzzy al gebras A ='IP(S ).f] and B=[FtT) ,Fj . 

and 

Proposition 1.4.3: Let A,B be two similar algebras; '" be a homomorphism 

of A into B. Then the extension, from A=[ F (5) ,F) to B =[ 11' (T) ,F) is a 

homomorphism of the fuzzy algebras A into B. 

Proof: Let R={", (x):xE5). Then [R,F] is a subalgebra of B since, 

is a homomorphism. 

Suppose 

and 

It is enough to show that ,(~)=v. That is, to show that 

,(I1)(y)=v(y) for all YET. We distinguish betl'leen two cases. 
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then at least one of Yi • i=1.2 •...• n(a) does not belong to R. Otherwise 

YER. since R is a subalgebra. Let for some j with 12J~.n(a). Yji!R. 

= 0 

Therefore q>(\l)(Y) = v(y) for Y ~ R. 

Case ii: Let YER. Then (q>(\l))(Y)=sup \l(x)= a say. Without 
Y=q>(x) 

loss of generality. we can assurrea>O. (If a=O. an argument similar to 

case i will suffice). Given E>O such that a-t>O. there exists an XES 

with q>(x)=y and \l(x»a-E. 

This implies that there exist x1.x2 •...• Xn(a)ES such that 

x=fa (x1.x2.···.xn(a)) and 111(X 1)A \l2(X2 ) A • •• A \In(a)(Xn(a))>a-E. 

Since q> is a homomorphism Y = q>(x) 

= q>(fa(x1·x2·····xn(a))) 

= f a(q>(x 1)·q>{x2)····q>(xn(a))) 
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Now we have 

> a-E 

= (<p()J) )(Y)-E 

As E>O is arbitrary v(Y)~(CP()J)) (y). 

On the other hand, given 0>0 there exist Y1'Y2' ... Yn(a)(T with 

TakingO<o<v.(y) (if v(y) = 0 then<p ()J) (y) ~v(y)), we have 

Y1' Y2' ... , Yn(a)61L 

cp()J)(Y»v(y)-o 

cp()J)(y)~v(y) since 0 is arbi t rary. 

Therefore cp()J)(Y)=v(y) for all YER. 

Remark 1.4 .4: The above argument is similar to the one in [23] . 
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1.5 Embedding of A in A 

A fuzzy point in X, denoted by ~~, is defined as the following 

fuzzy subset in X. 

r y=x 

O<r::.1, y,,- X 

o yf-x 

If r=1 we write Xx for ~' In this way the singleton crisp subset x· 

{x} is identified with the fuzzy point Xx. The set FP (S) consists of 

all fuzzy pOints of the form {Xx:XES}. It is a subset of F (S). Each 

6 corresponding to f , on F(S) defines an operation on FP(S) by 
a' a 

re st r i ct i on. It is well-defined. For 

where ~1 '~2'··· '~n(,,) are elements of FP(S), ~EF(S). 

There eXists x i ,i=1,2, ... ,n(,,) such that ~i = Therefore if 

6 (xx ,xx'··· ,xx )=~ then II is given by, for XES, 
a 1 2 n(,,) 

~(x) 

if f,,(x 1,x2 , .. . ,xn(a))# 

if f a (x 1,x 2 , ... ,xn(a))=x 
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That is Thus we have 

Theorem 1.5. 1: The algebra F lP'A=[FP (S) ,F] is a subalgebra of A. 

Proof : Straightforward. 

Theorem 1.5.2 : The algebra A=[S,F] is isomorphic to the algebra 

FlP'A=[FlP'(S) ,F]. 

Proof : Consider the mapping S-FlP'(S) given by x-Xx . Then it is 

easy to check that this mapping is an isomorphism . 

Remark 1.5 .3 : There are controversial arguments in the way fuzzy pOints 

a,'e defined and in deal ing with fuzzy pOints belonging to fuzzy subsets. 

Fuzzy pOints were used in the separation axioms of fuzzy topological 

spaces. See [8], [26], [40], [42]. 

We need not concern ourselves with the controversies here . 
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CHAPTER 2 

FUZZY SUBALGEBRAS 

2.1 Introduction 

In Chapter 1, we were concerned with extending the algebraic 

operations defined on an algebra to fuzzy algebra. Fuzzy subalgebras 

of an algebra are certain elements of fuzzy algebras which respect the 

extended algebraic operations under inclusion. This is defined in 

section 2.2 and some simple consequences are derived. These have been 

defined and studied in particular cases, for example, by Katsaras and 

Liu [23], Rosenfeld [38]. In section 2.3, we study union and inter

section of fuzzy subalgebras. In the crisp case, if B is a subalgebra 

of A and if ~ is a homomorphism from A to C, then ~(8) is a subalgebra 

of C. Analogues of such results in the fuzzy case are studied in 

section 2.4. In section 2.5 and 2.6, we study the cuts of fuzzy 

subalgebras and the effect of a fuzzy subalgebra on the constants of 

the algebra. It turns out that fuzzy subalgebra takes the maximum 

value at a constant of an algebra and if there are more than one constant 

present in an algebra, then the fuzzy subalgebra takes the same value at 

all the constants of the algebra. 
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2.2 Fuzzy subalgebras 

Definition 2.2.1. A fuzzy subset ~ of S is called a fuzzy subalgebra 
of an algebra A = [S,F] if 

6 (~,~, ... ,~) <~. 
,,~-

n(a)-times 

for every induced operation 6 , f E F. 
a a 

Remark 2.2.2. It is easily seen that the above definition coincides 
with the definition of subalgebra of an algebra in the crisp case: 

For consider [2S,F] as defined in Remark 1.3.2. By 

the usual definition, a crisp subset X of S is a subalgebra of S if X 

i s closed under the operations of F. That is 6 (X,X, ••• ,X) sX. 
\ a I 

n(a)-times 

Thi s is precisely the above definition 2.2.1 applied to [2S,F]. 

2.2.3. Every crisp subalgebra is a fuzzy subalgebra. 

2.2.4. Every constant fuzzy subset is a fuzzy subalgebra. 

Theorem 2.2 .5. Let fa E F and ~1 '~2' ... '~n(a) and ~ be (n(a )+l) fuzzy 

subsets of an algebra A = [S,F]. Then 

tla(~l '~2'· ·· '~ n(a))'::' ~ 

if and only if for all n(a)-tU PleS(X 1,x2, ... ,xn(a))E Sn(a) the following is 

true . 

Proof: Let n(a) # O. Assume 6a(~1'~2' .. "~n(a))'::'~. 

Then 6a(~1'~2' .. "~n(al)(x),::, ~(x) for all XES. 

That is, 
sup 

x = f a (x 1,x2, ... ,xn(a)) 
(min ~.(x.))<~(x) 

1 1 -l<i< n(a) 

( ) Sn(a) the supremum being taken over all such n(a)-tuples x1,x2, ... ,xn(a) E 



16 

> min Il.(x.). 
= I~i.;n(a) 1 1 

Conversely. suppose ll(fa( x1.x2 •...• xn(a)))~ . mint )Ili(x i ) for all 
1<I<n a 

n(a)-tuples (x 1.x2 •... • xn(a)) in Sn(a) . 

Let x = f a(x 1.x2•··· .xn(a)) 

Since min (Ili(x.)) < Il(x) 
12.i~n (a) 1-

for all x = f a(x 1.x2 •. ..• xn(a)) 

Sup (min (Il · (x.)) 2. Il(x). 
x 1<i<n(a) 1 1 

2.2.6. 

But the left hand side is precisely 6a(1l1.1l2 •...• ~n(a)) at x. Since 

this is true for al l x of the form as in 2.2.6. 

6a(~1.~2 •...• ~n(ay(x) 2. ~(x). On the other hand. if for some x there 

exists no such n(a)-tuples for which 2.2.6. is true. then 

6a(1l1'~2' ... '~n(a))(x)=0 which is 2 Il(x) trivially. Therefore in this 

case 6a(1l1'~ 2' ... '~n(a))2.~. 

Now. if n(a) = O. then f (x) = e for a fixed element eES and for 
a 

all XE S. We have to show that 6 (v) < ~ if and only if ~(f (x)) > v(x) 
ex - ex -

for all XES. Indeed 6a(v) 2. ~ if and only i f 

6a (v) (x) 2. 11 (x) for a II XES. 

But by def i nit i on. 6,.{") (x) = 1 0 x # e 
sup ,,(x) x = e 
XES 

Therefore 6a(")(x) 2. Il(x) if and only if ~(e) ~ ba(v) 

That is. if and only if 11(6 (x)) > ,,(x) for all XES. 
a -

This completes the proof. 

(e) = sup v(x) . 
XES 



17 

Corollary 2.2 .7. A fuzzy subset ~ of an algebra A is a fuzzy 

subalgebra of A if and only if 

~(f (x 1.x2 •...• xn(c.))) ~ min ~(xi) for all f E F and for all 
a 1'::'12.n(a) a 

( ) ( ) . n(a) n a -tuples x1.x2 •...• xn(a) belonglng to S . 

Proof: Straightforward from the definition and the proposition above. 

Example 2.2.8: A fuzzy subgroup of a group G is a fuzzy subset 

~ : G~I such that ~(xy) ~ ~(x) A ~(y) 

~(x-1) = ~(x) for all x. YEG. 

See Rosenfeld [38] . 

Example 2.2.9: A fuzzy subspace of a vector space V is a fuzzy subset 

~: V~I such that ~(x+y) ~ ~( x) A ~(y) 

~(aX) > ~(x) for all x. ye X. aE K. 

See Katsaras and Liu [23]. 

Remark 2.2.10: The proof in Theorem 2.2.5 is analogous to one in [23] . 
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2.3 Intersection and union of fuzzy subalgebras 

Theorem 2.3.1. If {~t }t€, is a family of fuzzy subalgebras of an 

algebra A, then the intersection inf ~t is a fuzzy 
tE' 

subalgebra of A. 

Proof: Consider for any f E F and for the corresponding 
'" 

> inf (min ~t(xi)) since each 
t<T 1<i<n(",) 

~t is a fuzzy subalgebra and by Theorem 2.2.5 . 

= 

= 

min (inf ~t(x.)) 
l~i~n(",) tET I 

min (~(xi)) 
l~i~n(", ) 

Another application of Theorem 2.2.5., shows that ~ is a fuzzy 

subalgebra of A. 

Corollary 2.3.2. The fuzzy subalgebras of any algebra A form a 

complete lattice in which the meet operation is the intersection of 

fuzzy subalgebras. 

Proof: See [3]; also see Proposition 3.2.3. 

The join operation is given as fol lows: 

Given a fuzzy subset v of an algebra A, the set of all fuzzy subalgebras 

of A which contain v is not empty. For example Xs is in the set. Then 

the intersection w of all fuzzy subalgebras in thi s set is a fuzzy 
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subalgebra and w contains v. Moreover, w is the smallest fuzzy 

subalgebra that contains v. w is called the fuzzy subalgebra generated 

by v. An explicit construction of a fuzzy subalgebra generated by a 

fuzzy subset of an algebra will be given later. The join of a class 

of fuzzy subalgebras is defined as the subalgebra generated by the 

union of the fuzzy subalgebras belonging to the given class. The fact 

that the fuzzy subalgebras form a complete lattice follows from general 

lattice theoretical constructions which are standard in lattice theory 

(see [3 ]). We shall prove later on, that this complete lattice is an 

algebraic closure system in IS. They are the analogues of corresponding 

notions in the crisp set theory of universal algebras (see [19]). 
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2.4 Fuzzy subalgebras and homomorphisms between fuzzy algebras 

Let A = [S,F] and B = [T,F] be two given similar al gebras, and 

let ~:S-T be a homomorphism between A and B. Then ~ extends to a 

homomorphism between fuzzy algebra A = [IS,F] and B = [ IT,F]. We wish 

to determine the effect of ~ on fuzzy subalgebras . In particular we have 

Theorem 2.4.1. If ~ is a fuzzy subalgebra of A, then ~(~) i s a 

fuzzy subalgebra of B. Similarly, ~-I(v) is a fuzzy subalgebra of A 

whenever v is a fuzzy sub algebra of B. 

Lemm a 2. 4 . 2 . If ~,v ( IS such that ~ ~ v, then ~(~) ~ ~(v) in IT . 

Proof: For al l XES,~(X) ~ v(x) . 

= 0 = ~(v) (y) if y¢ ~(A) . 

~(~) (y) = 

< -

= 

Therefore for all y E B, ~(~) (y) < -

That is ~(~) ~ ~(v). 

For any YE B, 

If y E~ (A), then 

sup ~(x) 
~(x) = Y 

sup v(x) 
~(x)=y 

~(v) (y) 

~(v) (y) 

Proof of theorem: Since ~ i s a f uzzy subalgebra of A for each 

Therefore ~(6 (~ , ~, . .. ,~)) ~ ~(~) by the Lemma . 
'" 

The LHS is 6 (~(~)'~(~)""'~(~)) ' 
'" 

That is ~(~) is a subalgebra of A. 

For the second part , consider for f EF and for every 
'" 

( ) t I ( ) Sn ("') 
n '" - up es xl'x2" " ,xn(",) l 
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q> - 1 ( v) (f ,,( x l' x2 •...• xn (,,) )) 

= v(q>(fa (x 1·x2·····xn(a)))) 

= v(fa (q>(X 1)·'(x2)· · ···'(xn(a)))) 

~ v(,(x 1))A v(,(x2)) A . •. A v(,(xn(a))) 

= (,-1(v))(X
1
) A(,-1(v))(X

2
) A ... A(,-1(v))(X

n
(a)) 

Now from Theorem 2.2.5 .• 

That is -1 
, (v) is a fuzzy subalgebra of B. 
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2.5 Cuts of fuzzy subalgebras 

For any crisp subalgebra B = [T,F] of an algebra A = [S,F], define a 

fuzzy subset ~r, T of 5 as follo;Js: For 0 ~ r ~ 1, 

if x E T 
= 

if xi T 

It is easily seen that ~r,T is a fuzzy subalgebra of A. 

have the following: 

Further, we 

Proposition 2.5.1. Suppose ~ is a fuzzy subalgebra of an algebra 

A = [S,F]. Let, for any 0 < r < 1, T be defined as 
- - lJ" r 

Then T r is a crisp subalgebra of A. 
~, 

Moreover ~ can be represented 
1 

That is ~ = r~OrXT 
~,r 

as the union of the fuzzy subsets rx 

Proof: Let f E F. 
0; 

Suppose xl ,x2"" ,xn(o;) E T r' 

Then ~(x.) > r for each i = 1,2, ... ,n(",). 
1 -

Therefore min ~(xi) > r. 
l~i~n(o;) 

By Theorem 2.2.5., 

min (ll(xi))Lr. 
l~i~n(o;) 

T~, r. 

That is, Tr is a crisp subalgebra of A. The second part follows from 

the remarks from section 1.1. 
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Corollary 2.5.2. T~,O = ~1 = Xs = A and T~,1 is the smallest 

subalgebra contained in T r for every 0 < r < 1. T c:T for 
~, 1 ~ , r ~, 

aIIO<r<1. (T 1 can be void). 
~, 

From the above it is easy to see that T r c: T r for 
~, 1- ~, 2 

r-1 Thus {T~,r)r~O from a complete chain of crisp 

subalgebras in the complete lattice of all subaigebras of A. 

Remark 2.5.3: In the finitely generated algebras, especially finite 

groups and finite dimensional vector spaces, there are useful forms of 

representations of the complain chain {T ) . 
~,r 

See [4J, [28J. 

1 
Remark 2.5.4: Representing a fuzzy subset ~ in the form r¥OrXT is 

~,r 

sometimes very useful. It was exploited in the study of compactness 

in fuzzy topological spaces [13J,[14]. 
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2.6 Fuzzy subalgebras and constants of an algebra 

Proposition 2.6.1. Let A = [S,FJ be an algebra. Suppose {fj)jEJ 

is a subset of F consisting of all nullary operations of A and 

(ej)jEJ are the corresponding constant elements of S. That is, for 

each j E J, there is a fixed element e j E S such that fj(x) = e j for all 

XES. If J.l is a fuzzy subalgebra of A, then 

(i) there is a constant c such that 0 < C < 1 and J.l(e j ) = C for 

alljlJ. 

(ii) J.l(x).:': c for all XES. 

(iii) The ordinary subset T = (XES:J.l(X) = c) is a crisp subalgebra 

of A. 

Proof:(i) Since J.l is a fuzzy subalgebra of A, by Theorem 2.2.5., for 

each kE J, J.l(fk(x)) ~ J.l(x) for all Xl S. This implies J.l(e k ) ~ J.l(x) for 

all HS. J.l(ej ).:': J.l(e k ) for all jEJ. By interchanging the rolls 

j and k, we have J.l(e j ) = J.l(e k ) for every j E J. 

then we have J.l(e j ) = c for all j l J. 

(ii) Fix a jEJ; then fj(x) = e j for all XES. 

Then J.l(fj(x)) ~ J.l(x) for all X E X as in (I). 

Therefore J.l(X) .:': J.l(e j ) = c. 

(i i i) Again by Theorem 2.2.5., for each f l F and for all n(ex)-
ex 

( ,) sn(ex) 
tuples x1 ,x2 ' . ·· ,Xn(exyl , 
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Il(X i ) = c for = 1,2, . . ,n(a) 

min Il(x.) = c . 
l.s.t~n(a ) I 

Therefore c.s. \.1(f ,,(xl ,x2' ··· 'Xn(a))).s. c 

Therefore, \.1(fa(x 1,x2' ... 'Xn(a))) = C which implies 

Thus T is a subalgebra. 

Remark 2.6.2: Gerla & Tortora [15J have proposed concepts of fuzzy 

algebras . They assume fuzzy subalgebras take highest value at the 

constants of the given algebra. 
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CHAPTER 3 

CLOSURE SYSTEMS IN FUZZY SET THEORY 

3.1 Introduction 

Closure systems in lattice theory are well-known and have been 

studied in depth by several authors [3], [1 ], [41]. In this chapter 

we define and study closure systems in the lattice of fuzzy subsets F(X) 

of a set X. Most of the resul ts are standard and can be found with 

some modification in [3J. Closure systems ari.se in two different 

contexts, viz. topology and algebra. Our interests lie in algebraic 

closure systems. These are defined in section 3.4. They are analogues 

of algebraic closure systems in crisp set theory. The connection between 

closure systems and closure operators is studied in section 3.3. We give 

some examples of closure systems in fuzzy set theory. 
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3.2 Closure systems in Fuzzy set theory 

Let F (X) = IX be the set of all fuzzy subsets of a non-empty 

crisp set X. Let C be a non-empty collection of fuzzy subsets of X. 

That is C c:: F (X). 

Definition 3.2.1: C is said to be a closure system in F (X) if for 

any subcollection D) of fuzzy subsets in C, inf 11( = II \l)¢C 
\lE D \l ED 

Remark 3.2.2: (i) A closure system is also known as "Moore family" 

of fuzzy subsets. 

(ii) If D = <p, the empty collection in c, then by 

definition, inf \l = Xx and thus Xx E C. 
\lE D) 

Proposition 3.2.3: 

complete lattice. 

If C is a closure system in F(X), then C is a 

Proof: Let D be a subcollection of fuzzy subsets in C. Then II \lEC. \ltD) 

Also, let If be the collection of fuzzy subsets {v} in C such that 

v .:: \l for every )l in D. Let inf v = A v = v1. Then any element 
vEE vEE 

11 of D is a lower bound of E. Therefore 11':::' v1 for all )lED. 

Moreover, if )l':::' v2 for every \lED, then v2EE and hence v1 .:::. v2. 

Therefore v1 = sUp)l = V \l exists in C. Thus C is a complete 
\lE D \ltD 

lattice. This completes the proof. 

We note that the orderi ng inc is the same as in T (X) . But C 

need not be a sublattice of F(X) . This is so because, in general, 
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Example 3.2.4: Let JR' be the two dimensional 
. , 

plane. Define ).Ix(x)=Z 

for all XEX, the X-axis and).lX(x)=O for xr/.X. Similar ly ).IV(x)=! for 

all x E V, the V-axis and ).Iv(x)=O for x r/. V. Then).lx and ).IV are fuzzy 

subspaces of JR'. ).IX V).Iv takes i on the X-axis except the origin and 

takes! on the V-axis and 0 everywhere else . On the other hand the 

fuzzy subspace generated by Pox and ).IV takes! on the V-axis and i 
everywhere else. Therefore).lX IJ).IV ~ the fuzzy subspace generated by 

).IX and ).IV· That is sUPF().IX' ).IV) ~ sUPc().IX').IV) where c denotes the 

cl ass of fuzzy subspaces of JR'. 

If p(X) denotes the set of all crisp subsets of X, then p(X) is 

a closure system in F(X), with every element of p(X) identified with 

characteristic function of that element. Moreover, in the same way, 

every closu re system c of crisp subsets is a closure system of fuzzy 

subsets in F (X). Some more examples are the following. 

(i) Let (X,T) be a fuzzy topological space; 'If' be the collection 

of T-closed fuzzy subsets of X. Then T is a closure system. 

(ii) The collection of all fuzzy subalgebras of an algebra is a 

closure system. Thus, in particular, the collection of all fuzzy 

subspaces (Katsaras and liu [23])" fuzzy subgroups (D.H. Foster [11]), 

fuzzy ideals (liu [29]) are closure systems. These are algebraic 

closure systems (see definition 3.4.4). 

Definition 3.2.5: A closure system 'If' in F(X) is said to be a 

topological closure system if for any ).I,vEr , ).IVvE'If'. P in example 

(i) is a topological closure system. Conversely, with every topological 

closure system, we can associate a fuzzy topology in a natural way, namely, 

take every element of the topological closure system to be the closed 

fuzzy subsets of X. See [27J. 

We shall define algebraic closure system in F(X) later. 
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3.3 Closure operators in fuzzy sets 

A closure operator J on F (X) is a mapping of F (X) into F(X) 

with the following properties. 

(i) If).1 2. ", then J().1) 2. J(,,) for all ).1,,,E F(X), 

(ii) ).12.J().1) for all ).1EF(X), 

( iii) J (J ().1)) = J ().1) for a II ).1 E F (X) . 

An element ).1EF(X) is said to be closed if and only if J().1) = ).1. 

There is a close connection between closure systems in and closure 

operators on F(X). It is given in the following 

Theorem 3.3.1: Every closure system C in F(X) defines a closure 

operator J on F (X) by the rule 

J(v) = II {).1Ee : "2.).1} for "EF (X). 

Conversely every closure operator J on IF' (X) defines a closure system 

defined by 

and the correspondence C ~ J between the closure systems and closure 

operators thus defined is bijective. 

Proof : Let C be a closure system in IF' (X) . Let J be as defined in 

the theorem . Suppose" 1 2. "2 in IF' (X) . Let Jll) "1 and Jll) "2 be the 

subcollections of C defined by the set of all ).1Ee' such that "1 2. ).1 

and "2 2 ).1 respectively . Then D <. is conta i ned in D 
v2 "1 
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= 1,2, we see that J(v1) ~ J(v2). Thus J 

satisfies the condition (i) of closure operator. By definit i on of the 

closure system J(Il) EC and clearly, Il ~ J(Il), thus satisfying the 

condition (ii). Further, we note that J(Il) =Il if and only if IlE.C, 

since C is a closure system . Hence, J(J(Il)) = J(Il) for all IlEIF'(X) 

proving condition (iii) of closure operator. 

Conversely, let J be a Closure operator on IF'(X) and C be the 

collection of fuzzy subsets as defined in the theorem. 

Let D = {Ili : itO n be a subcollection of c . 

Let Il = f\~. = inf ~i; 
iEIl iEI 

then ~ < ~. for each iEI. 
- I 

By property (i) 

of closure operator, J(~) ~ J(~i) = ~i . Therefore J(~) < A ~. = ~. 
- itOI 1 

By property (ii) of closure operator ~ ~ J()i). Therefore ~= J(~) 

implying ~EC. Finally, let c be any closure system and J be the 

operator associated with C. Let c' be the closure system associated with J. 

Since J(J(~)) = J(~), C = C'. 

Finally, let J be a closure operator on IF'(X) and let C be the closure 

system associated with J and J' be the closure operator associated with 

c . By the above . C is also the closure system associated with J' . 

Hence J(~) = ~ if and only if J'(~) = ~. But J(J(~)) = J(~) by 

property (iii) of closure operator. Hence J' (J(~)) = J(~) . But 

~ ~ J(~) and applying J' we obtain J' (~) ~ J' (J(~)) = J(~). By 

symmetry we can show that J(~) ~ J'(~). Therefore we have J(~) = J'(~) 

for any IltOlF'(X). This shows thatc~>J is a bijection from the set 

of all closure systems in F (X) and onto the set of all closure 

operators on IF' (X). Th is completes the proof. 
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3.4 Algebraic closure systems in F (X) 

In this section, we define and study algebraic closure system in 

F (X). First we have the following well~known proposition on an ordered 

set. We I eave out the proof, see [3]. 

Proposition 3.4.1: Let A be a partially ordered set; then the 

following three conditions on A are equivalent. 

(i) Every non-empty directed subset of A has a supremum. 

(ii) Every non-empty chain in A has a supremum. 

(iii) Every non-empty well-ordered chain of A has supremum. 

Definition 3.4.2: A non-empty collection C of fuzzy subsets of X 

is called inductive if every non-empty chain in C has a supremum in C. 

Rema rk 3.4 .3: We could replace the condition "Every non-empty chain 

in C has a supremum in C " by the equivalent condition "Every directed 

set in C has a supremum in C " by the above proposition. 

Definition 3.4.4: A closure operator J on F (X) is said to be an 

algebraic operator if for any I1E F (X), we have 

the union being taken over all l1/,F (X) wherel1j~11 has finite support and 

I1
j

(X)<I1(X) if IJ
j

(x»O. 

A closure system in F(X ) is said to be an algebraic closure system if 

the associated closure operator is algebraic. 
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Theorem 3.4.5: A closure system in ,(X) is algebraic if and only if 

it is inductive. 

Proof : Let C be an algebraic closure system in , (X) and ll. be a 

non-empty chain in c. Let 11 = supI in , (X). It is enough to 

show that IlEC in order to show that C is inductive. 

a fuzzy subset with a finite crisp subset of X as support and let Il
f 
~ 11. 

Since 11 = sup 1C and I is a chain, there exists a vElK such that 

Il
f 
~ v ~ 11. Therefore, J(ll

f
) ~ J (v) = v ~ 11, since J is a closure 

operator. Hence V J(ll
f

) ~ 11, and since J is algebraic, J(Il) 2 11 • 

f 

But for any IlE, (X), 11 ~ J(Il). Therefore J(Il) = 11 implying IlE C. 

Conversely, suppose c is an inductive closure system in F (X) and J is 

the associated closure operator corresponding to c. We have to show 

that 

where Il
f 
~ 11 

Let IlE, (X) . 

J(Il) = V J(ll
f

) for any IlE' (X) 
f 

and Il
f 

is a 

Denote by 

fuzzy subset with a finite support . 

K the set of all such J( Il
f

) where Il
f 

2 11· 

If Il
f 

and v
f 

are two fuzzy subsets with finite support and Il
f 
~ 11 

and v
f 
~ 11, then Ilfv v

f 
is again a fuzzy subset with finite support and 

Moreoever, 

and 

imply J(ll
f

) ~J(llfvvf) 

J(v
f

) ~ J(ll
f

v v
f

) 
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Therefore IC is a 

directed system and hence has a supremum inc say To Si nce 

As this is true for every J(ll
f

) in IC, 

Therefore 

11 ~ T. This implies that J(Il) ~ J(T) = T. Hence T = J(Il). Thus 

J(Il) = t = V J(ll
f

). Therefore J is algebraic implying C is an 
f 

algebraic closure system. 

Collollary: If c is an algebraic closure system in F (X) and IC 

is a directed subsystem in e, then sup IC is in C. 
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CHAPTER 4 

LATTICE OF FUZZY SUBALGEBRAS 

4.1 Introduction 

We apply the results of the last chapter on algebraic closure 

systems to prove that the lattice of fuzzy subalgebras of an algebra 

is an algebraic closure system of fuzzy subsets of the algebra. In 

section 4.2. we give a method by which to generate a fuzzy subalgebra 

from a given fuzzy subset of an algebra. This is an extension of the 

method used to generate a subalgebra from a given subset of an algebra 

in the crisp case. 
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4.2 Generation of fuzzy subalgebras 

Let A = [S.F] be an algebra. For each f E F and XE S. define 
a 

C~ = {c = (X1'X2 •...• Xn(a))ESn(a):fa(X1.X2 •...• Xn(a)) = x}. Given a 

fuzzy subset ~ of S. define. for each ' non-negative integer k. a fuzzy 

subset ~k of S as follows: Let 

~o = ~ on Sand for each XE:S 

~k+1(x) = max\:k(x), sup min ~k(Xi)}-
C€Cx 

l~i~n(a) a 

00 

Theorem 4.2.1: ~ = k~O ~k= sup ~k is the smallest fuzzy subalgebra 
k 

of A contain ing ~. 

00 

Proof: By definition ~ = ~O 2. k~O ~k =,.. Therefore ii contains ~. 

Next we show that ii is a fuzzy subalgebra of A. For this. 

() ( ) _n(a) 
faEF. consider an n a -tuple c = x1.x2 •... xn(a) E~ 

to show 

min 

l~i~n(a) 

given any 

We have 

.- --- ----::;-~......:.. --

Let 0 < ii(x
i
) for all i. Since ~k+1~ ~k' there exists k such that 

> min 
i 
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That is p (x) > 

where 

By Theorem 2.2.5, P is a .fuzzy subalgebra. Lastly , we show that P is 

the smallest fuzzy subalgebra of A containing~. So, let v be a fuzzy 

subalgebra of A containing~. Since by definition ~O = ~, ~O 2 v. 

Suppose ~k 2 v for some positive integer k, then for any 

since v is a fuzzy subalgebra of A. 

Now 

Therefore, 1.I. < v . 
kt1 

sUPx 
CEe 

" f E F 
" 

~ v(x) 

By induction on k, ~k 2 v for k=O,1,2, .. . 

and so 

Thus P is the smallest fuzzy subalgebra of A containing ~. 
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4.3 Lattice of fuzzy subalgebras 

In this sect ion we prove that the lattice of fuzzy subalgebras 

form an algebraic closure system in the lattice of all fuzzy subsets of 

an algebra. 

Let A = [S.F] be an algebra. Consider the set of all fuzzy 

subalgebras of A denoted by FA(S). By Theorem 2.3.1. we know 

that FA(S) is a closure system and hence a complete lattice. Let 

JFA be the closure operator on IS associated with the closure system 

FA(S). Thus 

JFAI :.1"(5) -.1"(5) 

~ ... A{dA(S) ~ < v} 

By Theorem 4.2.1, JFA(~) = ii. 

Theorem 4.3.1: .I" A (5) is an algebraic closure system. 

Proof: 

By Theorem 3.4.5 it suffices to show thatlF A(S) is inductive. So. let II< be 

a chain inFA(S) and let~ = sup K (union in .1"(5)) . Then ~ is a fuzzy 

subalgebra. In fact. let fa.E F. XiE S. i = 1 •.. . nea.). x = f(x 1.···.Xn(ct)) · 

We must show that ~(x)2: 8= min ~(xi) ' This is clearly true if 8 = o. 

Then ~(x) >v (x» min 
i 

1 

v(Xi»S' . This clearly completes the proof. 
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Remark 4.3.2: The notion of algebraic lattice was discovered by 

Birkhoff and Frink 11], to describe the lattice of subalgebras of an 

algebra in the crisp set theory . Let L = [L '.:':] be a complete 

lattice. Let aE L. The element a is called compact if the following 

condition is satisfied. 

If a<V(x
j
. :iEI) where x.EL for each iEI, an indexing set, then 

- j 

there exists 11c I such that 11 is finite and a2.V(xi: iE 11), 

The adjective compact is used in analogy with the concept of compact 

subspaces in topology. A complete lattice is called algebraic if every 

a in the lattice can be written as a join of compact elements [1]. Now 

it is a classical result that given a lattice L , the following 

conditions are equivalent, see [19, p25]. 

(i) L is an algebraic lattice. 

Oi) L is isomorphic to some ideal lattice I(L') where L ' is a 

semilattice with O. 

o i i) There exists an algebraic closure system ...u in 2X such that L 

is isomorphic to (...u, s). 

Continuous lattices are generalisation of algebraic lattices in the 

context of the power lattices of the form IX, see [16]. It will be 

interesting to study whether the lattice of fuzzy subalgebras of an 

algebra is a continuous lattice and whether a proposition similar to 

the above classical result holds in the fuzzy set theory. 
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Remark 4.3.3: We conjecture that if A is a finitely generated 

algebra and ~is a fuzzy subalgebra of A, then ~ takes only a 

finite number of distinct values in I on A. We are not able to 

prove it. The basis for this conjecture is a representation 

theorem proved by Lowen [28] for finite dimensional vector 

spaces. 
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CHAPTER 5 

FUZZY EQUIVALENCE RELATIONS 

5.1 Introduction 

L.A. Zadeh in his paper [43] first proposed a fuzzy relation 

between two sets X and Y to be a fuzzy subset of the product set X x Y. 

Subsequently J.A. Goguen [17), A. Kaufmann [34], E. Sanchez [39] and 

others have studied fuzzy relations in various contexts. In this 

Chapter, we define and study fuzzy equivalence relations. Kaufmann 

[24] calls it a relation of similitude. In section 5.2, we define a 

fuzzy equivalence relation and derive some simple consequences. Cuts 

of fuzzy equivalence relations are crisp eq~ivalence relations. Section 

5.4 describes these results. In section 5.5 a partition of a fuzzy 

equivalence relation is given. Conversely, starting with a class of 

fuzzy subsets satisfying conditions similar to those satisfied by the 

class given in section 5.5 associated with a fuzzy equivalence relation, 

can one construct a fuzzy equivalence relation such that its partition 

coincides with the given class? The answer is yes and these are discussed 

in section 5.6. Section 5.3 is devoted to the lattice theoretical 

properties of fuzzy equivalence relations. 
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5.2 Fuzzy relations 

Let X1,X 2""'Xn be non-empty sets. A fuzzy n-ary relation 

on X l ' X2, ... , Xn was defi ned as a fuzzy subset of the product set 

In particular, a fuzzy binary relation on X and Y is a 

fuzzy subset ~ on XxV. We are only interested in the case in which 

Y=X in this section. Accordingly, unless otherwise stated, by a fuzzy 

relation, we mean a fuzzy binary relation given by ~ : XxX-I. 

Definition 5.2.1: A fuzzy relation ~ on X is said to reflexive" if ' 

~(x,x) = 1 for all xeX and said to be symmetric if ~(x,y) = ~(y,x) for 

all X,YEX. 

Definition 5.2.2: Suppose ~1 and ~2 are two fuzzy relations on X. 

Then their composition, denoted by ~10~2' is defined as 

(~10~2)(x,y) = sup (~2(x,z) A~1(z,y)). 
ZEX 

If ~1 = ~2 = ~ say, and 

~o~~~, then the fuzzy relation ~ is called transitive. 

A fuzzy relation ~ on X is said to be a fuzzy equivalence relation 

if ~ is reflexive, symmetric and transitive. 

Proposition 5.2.3: Composition of fuzzy relations on a set X is 

associative. 

Proof: Suppose ~1'~2'~3 are three fuzzy relations on X. Consider 

for any x,y~X, 



(().I '1 0).12) 0).13) (x,y) = sup (().I10).l2)(x,z) A).I3(z,y)) 
zeX 

= sup (suP().I1(x ,t) A).I2(t,z)) A).I3(z,y)) 
zeX tEX . 

= sup sUP(().I1(x,t) A ).I2(t,z)) A ).I3(z,y)) 
zeX te X 

= SUp sUP().I1(x,t) A ().I2(t,z) A ).I3(z,y))) 
tEX zeX 

= SUp ().I1(x,t) A sUP().I2(t,z) A ).I3(z,y))) 
teX zeX 

= SUp ().I1(x,t) A ().I2 0).l3) (t,y)) 
teX 

= ().I1 0().I2 0).l3)) (x,y) 

Therefore ().I1 0112) 0).13 = ).I1 O ().I2 O).l3)· 

Definition 5.2.4: The identity relation Id x on X is defined as for 

any x,yeX, Idx(x,y) = 0 if x # y and IdX(x,y) = 1 for x=y. 

The zero relation and the equality relation are defined as 

O(x,Y) = 0 

I(x,y) = 1, for all x,yeX, respectively. 

A partial orderingJ ~ In the set of all fuzzy relations on X is given 

by 1l1~).12 if and only if ).I1(x,y)~).I2(x,y) for all x,yeX. 

Proposition 5.2.5: The set of all fuzzy relations on a set X denoted 

by R (X) fOrfl1s a complete, completely distributive lattice under the 

ordering ~, with the universal bounds given by 0 and I. Moreover, 

under the composition ° defined above, R(X) is a monoid with 

identity Id X. 



Proof: Since R(X) ~ jXxX with the pointwise ordering ~ on jXxX 

induced by the usual ordering of j, R(X) is a complete, completely 

distributive lattice under <. The other assertions are straightforward. 

Remark 5.2.6: M.Erceg in [8] also made a study of equivalence 

relations and functions in fuzzy set theory. They are different 

from the results obtained in this chapter. ,ie do not know whether 

there are any connections between the tvlO studies. 
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5.3 Lattice of fuzzy equivalence relations 

Let E(X) denote the subset of R(X) consisting of all fuzzy 

equiva lence relations on a nonempty set X. We introduce a partial 

ordering 2 on E(X) as the partial ordering on E(X) induced by the 

orderi ng on R( X) . 

Proposition 5. 3.1: (E(X),2) is a complete lattice. 

Proof: Firstly we note that both relations I and IdX are in E(X) and 

that IdX is the least element of E(X) and I is the greatest element of 

E(X) with respect to the ordering 2. Let {~j}jEJ be a non-empty family 

of fuzzy equivalence relations in E(X). Then the relation ~ defined by 

~(x,y) = inf ~ . (x,y) for all X,YEA 
j (J J 

is a fuzzy equivalence relation on X. For 

(i ) ~ (x, x) = i nf ~ j (x, x) = 
jEJ 

for XEX 

(ii) ~(x,y) = inf ~j(x,y) = inf ~j(Y'x) = ~(y,x) for 

x,yeX 

(iii) ~o~(x,y) = sup (ll(x,Z) A Il(Z,y)) 
ZtX 

% sup (inf ~ . (x,z) A inf ~.(z,y)) 
ZE X jE J J jEJ J 

= sup ( inf (i nf (Ilj (x,z) A Ilk(z ,y)))) 
ZEX jEJ kE J 

< sup (inf (~j(X,Z)A Ilj(Z'y))) - ZEX jEJ 

;; i nf (sup (~j(x,z) A Ilj(Z' y))) 
jEJ za 
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= inf 1l·(X.Y) 
j EJ J 

Also 11<11 ' for every jEJ by definition. Moreover if llJ'~V. again by the 
- J 

definition of infimum. V~ll. This shows that ll=jtJ llj. Hence by 3.2.2. 

(E(X).~) is a complete lattice. 

We shall now describe the join V in (E(X).~). 

Let ll.vEE(X). Then llV v is the smallest fuzzy equivalence relation 

containing both 11 and v in the ordering~. That is 

11 Vv = 1\ hE E (X) : 1l,;'Y and v~'Y}; at least one such 'Y ex i sts. for 

example. ld x. Consider 

l'o = 11 

111 = lleV 

112 = lloVo l.l 

113 = lloVoJJoV 

It is immediate that 

and also. it is easy to check that 

lln-9'VV for all n=O.1.2 •... 

We claim that llVV = n¥O lln . For 

( i ) for XEX. 
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(ii) n~O ~n(x,y) = n~o ~n(Y'x) is straightforward. 

( iii) Lt V e 'Y = n=O ~n' For transitivity of 'Y, we have to show that 

'Yo'Y::'J' That is, for any x,Y( X, we have to show that 

'Yo'Y(x,y) = sup h(x,z) A'Y(Z,y)) 
ZE X 

~ n~o ~n(x,y) since for any m,n 

Therefore 'Yo'Y(x,y) ~ 'Y(x,y), implying the transi tivity of 'Y. 

More generally, suppose $ = {vj}j(J is a class of fuzzy equivalence 

., 
relations on X, then V Vj = 'Y is defined as 'Y = sup ~n where 

jEJ n=O 

sup n ( sup n+1 (min (v.(z . 1'z , )))) 
( )$ ( )X 1'--1 ton 11- 1 v1,v2"",vn E ZO=x'~""'Zn=y E 

It is straightforwahd, though tedibus, to check that 

1. ~O~~1~~2~"" 

3. 'Y is a fuzzy equivalence relation on X. 

4. 'Y is the smallest fuzzy equivalence relation on X such that (2) 

is true . 

Hence 'Y = V v . 
jEJ J 

in E(x). 
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Final ly, we require the following proposition later. 

Proposition 5.3.2: If ~ is a fuzzy equivalence relation on X, then ~ 

is an idempotent element of E(X). That is, ~o~ = ~ . 

Proof: For any x ,YEX, (~o~)(x,y) 2.~(x,y). On the other hand, 

(~o~) (x,y) = sup (Il(X,Z) II Il(Z,y)) 
ZEX 

~ Il(X,X) t> Il(X,y) 

= ~(x,y) since ~(x,x) = 1. 

Therefore (~oll)(X,y) = ~(x,y) implying ~o~ = ll · 
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5.4 Cuts of fuzzy equivalence relations 

In this section, we study cuts of fuzzy equivalence relations 

on a non-empty set X. The cuts are proved to be crisp equivalence 

relations on X. In particular, the 1-cut equivalence relation 

proves to be an important one from the point of view of the partition 

associated with a fuzzy equivalence relation. See section 5.5. 

Given a fuzzy equivalence relation ~ on X, two crisp relations on X 

are defined for each aE[O,1] as follows: 

Definition 5.4.1: A weak a-relation denoted by w is defined on _a 
X as 

x w Y if and _a 
only if ~(x,y) ~ a and a strong a-relation denoted 

is defined on if and only if ~(x,y»a, x,y~X. 

Proposition 5.4.2: If ~ is a fuzzy equivalence relation on X, then the 

following are crisp equiva lence relations on X. 

(i) 

(i i ) 

Proof : 

w for each aE[O,1]. 
_a 

a for each aErO, 1). 
_0. 

( i ) Let O<a< 1 . For each XEX, ~(x ,x) = 1'::a; hence x w x. 
_a 

Also x w y implies ~(x,y).::a,and so ~(y,x) = ~(x,y).::a , implying y w x. _cx _ CL 

Finally suppose x wyand y w z, then 
a _ 0. 

~( x ,z) = ~ o ~(x,z) = sup (~(x,t) A ~(t,z» 
tEX 

> ~(x,y) A ~(y,z) 

> c:t. A ct = ct . 



Therefore x w Z. _'" 
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That is w is indeed a crisp equiva l ence relation on X. 
_'" 

(ii) is proved simi l arly. 

For each XEX, let [x] denote the cr isp equiva l ence class 
w _'" 

containing x with respect to the weak ",-relation w . _'" 

Proposition 5.4 .3: (i) [x] c: [x] for 1~",~a~0 w - ~a _'" 

( i i ) n [x] = [x] 0<",<1 w ~ 1 _'" 

(i i i ) U [x] = [x] 0<",<1 w ~O _'" 

Proof: ( i ) Then ~(x,y)~",~a. 

This implies ~(x,y)~a and in turn implies YE[X] . 
~a 

(ii) Let YE o<0<1[X]w Then ~(x'Y)~'" for every ",E[0,1]. 
_'" 

Therefore ~(x'Y)2_ 1 implying ~(x,y) = 1. That is ye[x] . 
W, 

Conversely, let YE[X]w 'l' Then ~(x,y) = 1>", for every "'E[O,1] . 

Therefore YE[X] for ",e[O,1]. 
w _'" 

So YEO n 1 [x] . <C1< W 

(iii) [x]w C;;;:0<~<1 [x]w . 
_0 _ct 

_'" 

Conversely if YE[X] for some 
w 
_'" 

Therefore YE[X] 
w 
_0 

A similar proposition holds for the equivalance classes in X with 

respect to ",-strong relation. Moreover" for every 0<",<1, [x] c: [x] 
cr - w 
_ct _CL 
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Theorem 5.4.4: Let x1,X2E[X]w and y is any element of X such that 
_a 

Proof : 

Hence they are equal. 

Corollary 5.4.5: Let [x] 
w 
_C> 

sup (j.l(X 1, Z) A j.l(Z,y)) 
ZEX 

and [y] 
w _a 

be two distinct crisp a-weak 

equivalence classes in X to which x and y belong respectively, with 

O<a< 1 . If there exists a ~ such that O<B<a with j.l(x,Y)~B, then for 

all X'E[X] 
w _a 

Proof: By the theorem, 

Therefore j.l(x' ,y' )~. 

j.l(x,y) = j.l(x' ,y) = j.l(x,y') = j.l(x' ,y'). 

This corollary shows that every [x] ,O<B<l consists of union of some w -_B 

crisp a-weak equivalence classes for each B<a<1. 

is a refinement of [x] 
~~ 

That is each [x] 
w _a 
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5.5 Partition associated with a fuzzy equivalence relation 

Given a fuzzy equivalence relation on X, we generate fuzzy 

subsets of X which form a "partition" of X in the sense that the union 

of these subsets is nx. This is analogous to representing a crisp 

equivalence relation on X as a partition of X. Let ~ be a fuzzy 

equivalence relation on X. 

Consider the crisp equivalence classes [x] for XEX. Let us 
"" 

denote [x] = x . 
"" 

Define a fuzzy subset ~ on X corresponding to 

x = [x] as follows: 
"" 

~x(z) = ~(x,z) for all ZEX . 

Proposition 5.5.1: ~x:X-I is well-defined . 

Proof: Since ~x is defined in terms of ~, o<~ (z)<1 for all ZEX. - x -

Suppose yo.:. Then ~\X,y) = 1, ~x(z) = ll(y,z).:::.1 and llx(Z) = Il(X,Z)':::'1. 

Therefore by Theorem 5.4.5, 

defined. 

Il(X,Z) = ll(y,Z) implying llx is well-

For a fuzzy subset 11 : X-I; I et the cri sp subsets of X denoted by W( 11, "') 

and 5(11,,,,),0.:::.,,,.:::.1, called the weak ",-cuts and strong ",-cuts respectively 

of ~ be defined as 

W(ll,"') = {X(X Il(X)~a} 

and 5(11,"') = {XEX Il(X»a}. 

Proposition 5. 5. 2: For each fixed cr such that 0<",<1, the col lection of 

subsets {W(ll ,cr):XEX} form a crisp partition of X. ::: 
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Proof: every x E X belongs to W(1l '''). Therefore Ux W(1l ,,,) = X. 
x Xt x 

Let x,y€X, X€x and y€y. Suppose x#y. Then we claim that either 

W(llx.''') n W(1l ,,,) = 0 or if there exists a ZEW(1l ,,,) n W(1l ,,,) then . y x y 

W(llx,") = W(lly ,a). For if ZEW(llx ''') n W(lly ''') then Ilx(z)~" and 

Ily(z)~a. These imply that Il(x ,z)~" and Il(Y'z)~". By transitivity 

( 1 ) 

If teW(llx '''), then Il(x,t)~a. By symmetry 

ll(t,X)~" (2) 

Combining (1) and (2) we get ll(t,Y)~a. That is Il(y , t)~a implying 

lly(t)~a. Therefore tEW(ll y,a). Hence W(llx ,a) ~W(lly,a). 

Interchanging the roles of x and y,we get W(ll y''') ~ W(llx ,a). That is 

W(llx ,a) = W(ll y'''). This completes the proof. 

The next proposition shows that a fuzzy equivalence relation 11 on X is 

such that Il(x,y) = a for some X,YEX, then Ilx and Ily are a-disjoint. 

That is IlxA lly~a. The corollary is if Il(X,y)=O for some x,yeX, then 

Ilx and Ily are totally disjoint. That is, the supports of Ilx and Ily 

are disjoint as crisp subsets. 

Proposition 5.5.3: If for some (x,yj(XxX, Il(X,y)=a, then Ilx A 1l1(~a. 

Proof: Suppose not. Then for some tEX, 



That is inf(~ (t),~ (t))>". x y 
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~x(t»" and ~y(t»". By transitivity, ~(x,y»". 

to the fact that ~(x,y)=". 

This completes the proof. 

Corollary 5.5.4: If ~(x,y) = Othen~ A~=O. x y 

This is a contradiction 

In the above we constructed the class of fuzzy subsets {~ },XEX, on X 
x 

associated with a fuzzy equivalence relation~. We call this collection 

t he fuzzy partition of X with respect to~. It is uniquely determined 

by ~. 

-- - -- - - ,-- -- ~-~ 
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5.6 Fuzzy partition and fuzzy equivalence relations 

In this section, we construct a fuzzy equivalence relation 

associated with a class of fuzzy subsets on X. Let (~j}jEJ' J an 

indexing set, be a class of fuzzy subsets on X. It is called a 

fuzzy partition of xX' if the following are true. 

(i) For each XEX, there is an unique jEJ such that ~j(x)=l. 

(ii) For each ~E[O, lJ,{W(~j,~)}(jEJ) form a crisp partition of X. 

Proposition 5.6.1 For each~such that 0 <~-s.1, (W(~j' ~), j E J} is a 

refinement of (W(I)' ~), j EJ} with Osa~~'S.1. 

Proof: Let x t W[~j' aJ. There exists j 'E J such that x ( W[ ~ j I ,~](since 

there exists jo with~. (x) = 1). For any such j I we have 
JO 

In this case, we can associate an unique fuzzy equivalence relation 

~ on X as follows: 

Theorem 5.6. 1 : 

~(x,y) = sup (~j(x) A~j(Y)) for all X,YEX. 
jEJ 

~ is a fuzzy equivalence relation on X. 
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Proof: By condition (i) of fuzzy partition, for each X~X, ~(x,x)=1. 

By definition of ~, ~(x,y)=~(y , x) for all X,YEX. That is ~ is symmetric. 

Now we shall prove that ~ is transitive. For this consider, 

(~o~)(X,y) = sup (~(x,z) A ~(z,y)) 
ZEX 

= sup (sup((~ . (x) A~ . (Z)) ASUP(~J.(Z)A ~J.(Y))) 
z j J J j 

~ sup (sup (~j(X) A ~j(z) A ~j(Y))) 
z J 

< sup (~j(X)A~j(Y)) 
- j 

= ~(x,y) for all X,YEX. 

Therefore ~ is transitive. This completes the proof. By condition 

( i ) of fuzzy partition, each XEX determines a unique jxEJ such that 

Now consider X={YEX:~. (x)=1}.By condition (ii) on ~J'.S, 
J x 

the class of subsets (x)XEX of X form a crisp partition of X. 

Proposition 5.6.2: For each X~X, x as defined above is equal to the 

set [x] ,the crisp equivalence class containing x with respect to the 
w, 

weak 1-relation w, of the fuzzy equivalence relation ~. 

Proof : [x] = {YEX:~(x,y)=1} . 
W 

I 

Suppose ~j (y)#1. 
x 

Then ~. (y)=y say,which is such that y<1. Consider 
Jx 

Since {W(~j,a),jEJ} form a crisp partition 

of X, y does not belong to [x] the class containing x. Conversely, 
w, 

an a such that y<a<1. 

it is easy to see that x c [x] 
- w, 

Therefore x=[x] 
w, 

We next prove that the class of fuzzy subsets {~j} on X is the same 

as the fuzzy partition associated with ~. 
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Proposition 5.6.3: For each XEX, the fuzzy subset ~x defined by 

~x(Y)=~(X,y) for all YEX is equal to the fuzzy subset ~ .. 
J x 

Proof: We have to show that ~x(Y)=~· (y) for all YEX. For any 
J x 

YEX, ~x(y)=~(x,y)=sup (~.(x) A ~.(y))>~. (x) A~· (y)=~. (y) . (1) 
j J J - Jx Jx Jx 

On the other hand, given E>O, there exists a j'EJ such that 

IIj (x) A IIj I (Y»~(X,Y) - E=lIx(Y)-E. 

prove) . 

(If II(X,Y) =O then there is nothing to 

That is IIjl(X»II(X,Y)-E=lIx(Y)-E=a say 

IIj I (Y»II(X,Y)-E=lIx (Y)-E=a. 

This implies that X,YEW(lIj I ,a). But {W(~j,a), jEJ} form a crisp 

partition of X. Therefore, either W(II·"a) nW(~. ,a)=0 or 
J J x 

W(lIj ,a)=W(lIj ,a). Certainly W(~j I,a) nW(lIj ,a)#0 since x is a common 
x x 

element. 

Therefore W(II."a)=W(II
J
. ,a) 

J X 

That is II· (Y»a=1I (Y)-E. J x - x 

As E>O is arbitrary, IIj (Y)~lIx(Y). 
x 

From (1) and (2) we get~. (Y)= IIx (Y). 
J x 

As YEX is arbitrary, II· =~ as fuzzy subsets on X. 
Jx x 

the proof. 

(2 ) 

This completes 
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CHAPTER 6 

6.1 Introduction 

In Chapter 5 we defined fuzzy relations and fuzzy equivalence 

relations. A fuzzy relation on X and Y, satisfying certain properties 

is called a fuzzy function from X to Y. This is defined in section 

6.2 In section 6.3 the relationship between fuzzy functions and 

fuzzy equivalence relations is explored. We prove that the composition 

of a fuzzy function and its converse is a fuzzy equivalence relation. 

Similar results were obtained by W. C. Nemitz [34] recently, although 

in a different context. 
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6.2 Fuzzy functions 

Let X and Y be two crisp non-empty sets. Let f be a fuzzy relation from 

X to Y. That is f ER (X, y) such that f: XxV - l. 

Each y eY determines a fuzzy subset of X as follows: 

Ily: X-I 

x-f(x,y) for all xt X, Y is a fixed element in Y. 

The fuzzy relation is said to be a fuzzy function from X to Y if 

(i) For each x in X, there exists a unique yt Y such that f(x,y) =1. 

(ji) For eachext[0,1], the weak ex-cuts {W(lly 'ex ): YE YJ form a crisp 

partition of X. 

It follows (see Proposition 5.6.1) 

that for each exnO,1], {W(lly ' ex): YE Yl is a refinement of 

{W(lly ' 8): y E Y} for 0:,:8:5ex:5 ·. 1. 

If for each y, there exists an XE X such that f(x,y) =1, then f is said to 

be an onto function from X onto Y. If each pair x1 ,x2 E X such that 

f(x 1,y) = f(x 2,y) =1 implies that x1=x2, then f is said to be a one-to-one 

function from X to Y. 

It is easy to check that the above definitions reduce to the usual 

definitions in the case of crisp set theory. 

v 
Given a fuzzy function f:XxY -I, its converse (transpose) denoted by f is 

v " 
defined as f:YxX-I, f(y,x) = f(x,y), XEX and YEY. 
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In the following, the image of a fuzzy subset of X under a fuzzy 

function f from X to Y is defined . (see J.A. Goguen [171) . Let 

y:X-I be a given fuzzy subset. Then f(y) :Y-I is defined as 

f(y)(y) = sup (y(x) IIf(x,y)) for YEY. 
XE X 

If y:Y-I is a fuzzy subset of Y, then its pre image under f denoted by 

f-1(y) is defined as a fuzzy subset of X as follows 

r 1(y)(x) = sup (y(Y)IIf(Y,x)) for XEX. 
YEY 

A fuzzy function f: X-V is said to be of finite type if f(XxY) is 

a finite subset of I. 

For example all crisp functions between X and Y, and all fuzzy functions 

between finite crisp sets are of finite type. 

If f 1:X-Y and f 2:Y-Z are two fuzzy functions, then their 

composition denoted by f2of1 is defined as f 2of 1:X-Z 

f 2of 1:XxZ-I 

(f2of 1)(x,z) = sup (f 1(x,y) Af2(y,z)) for all xU" ZEZ. 
'yE Y 

This is the usual composition of fuzzy relation. 
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6.3 Fuzzy function and fuzzy equivalence relations 

Given a fuzzy function f:XxV-!, consider the following composition 
v 

of f:X-V and f:V-X, given by 

v v 

f of(x 1,x2) = sup (f(x1,y) Af(y,x2)) for all x1,X2EX 

v v 

Let ~ be the relation fof. That is ~(x1,x2)=fof(x1,x2). 

Proposition 6.3.1: The fuzzy relation ~ on X as defined above is a 

fuzzy equivalence relation. 

Proof: By condition (i) of fuzzy function, ~(x,x)=1 since f is a fuzzy 

function. That is ~ is fuzzy reflexive on X. That ~ is fuzzy 

symmetric is straightforward. 

as follows: For X,X'€X 

Finally ~ is fuzzy transitive is proved 

L t ( ) ( ') >0 There eXl'sts ZE X such that ,,(x ,z) ," (z,x'»",.£, e a = ~o~ X,X ,£ • ~ ~ 

Thus, there are y, wE V with f(x,y) 1\ f(z,y»",.£ and f(z,w) 1\ f(x' ,w»"'.£. 

Thus x' E W[ ~, ",-d = W[l'y' ",·d and so f(x', y»",.£. 

Thus ~(x,x') ~ f(x,y) 1\ f(x' ,y) > "'-£ . Since £> 0 was arbitrary, we get 

~(x,x') ~'" 

This completes the prooL 
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The fuz zy equivalence relation ~ associated with the fuzzy 

function f as above, is called the kernel of f. 

We have the following analogue of Theorem 3.1 [3 ]. 

Theorem 6.3.2: Suppose f:X-Y is a fuzzy function from X t o Y. 

Let ~ be the kernel of f. Then there is a decomposition of f given 
g 

by the following diagram. X Y 

E j I i 
X/~ J Xf f' 

where X/~ denotes the class of fuzzy subsets {~x)x~X assoc iated with ~, 

Xf is the crisp subset of Y given by {YEY: there exists a XEX with 

f{x,y)=l} and E is the natural mapping given by E{X,~ )=~ (x). 
X x 

f' and i are crisp mappings given by f'{~ )=y where ' x is the class given by 
x 

x such that f{x,Y)=l and i is given by the inclusion , 

i:Xf "-> Y, i:y-y. and where g{x) = y is defined by f{x,y) = 1. 

Proof: First we showthat f' is well-defined. Suppose ~(x,x') = 1. and 

y,y ' f T are such that f{x,y) = f{x' ,y') = 1. 

We have to show that y = y ' . 

Let x= [x] where f{x,y) = 
!!'t , 

and x ' = [x' ] where f{x' ,y ') = 1. 
!!'t 

Since ~(x,x') = 1, we have x = x' . 

That is f{x,y) = f{x,y') = 1 which implies y = y'. 

Everything else is clear. 
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CHAPTER 7 

FUZZY CONGRU ENCE RELATIONS 

7.1 Introduction 

If A = [S,FJ is an algebra and if R(S) denotes the set of all 

fuzzy relations on A, then the algebraic operations f € F on A can be 
~ 

extended to algebraic operation f on R(S). Thus (R(S),F) is an algebra. 

It is called the relation algebra of A. This algebra is studied in 

section 7.2. The subset E(S) of R(S) consisting of all fuzzy equivalence 

relationsis a subalgebra of (R(S),F). In section 7.3, a fuzzy congruence 

relation is defined as a fuzzy equivalence relation which is at the same 

time a fuzzy subalgebra of R(S). Fuzzy congruence relation is studied 

in section 7.3. The behaviour of a fuzzy congruence relation under a 

homomorphism between algebras is studied in section 7.4. In the last 

section, the set of all fuzzy congruence relationson an algebra is proved 

to be a complete lattice and an algebraic closure system . 
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7.2 Algebraic operations on relations and equivalence relations 

In this section we define what is meant by a fuzzy congruence 

re lation on an algebra A=[S,F] and derive some simple consequences. 

We al ready noted in section 5.1, that R(S) and E (S) are complete 

lattices. Here we extend the algebraic operations F on A to 

1" on R(S) as follows: 

Definition 7.2.1: Let f EF be given. 
a 

For any n(a)-tuples 

to be an element of R(S) given by fa(~1'~2' ... '~n(a~(x,y) 

= sup (min ~i(xi'Yi)) 
x=f a(x 1 ,x2'··· ,xn(a)) l.'5.i .'5.n(a) 

where t he supremum is taken over all representations of x and y of the 

form indicated above. 

Thus [R (5) ,1"] is an algebra. It is called the relational algebra. 
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7.3 Fuzzy congruence relations 

In the previous section we extended algebraic operations from a 

given algebra to the relation algebra, namely, the set of all relations 

defined on the algebra. Here we define fuzzy congruence relation to 

be a fuzzy subalgebra of the relational algebra. Precisely, 

Definition 7.3 . 1: Let A=[S,F] be an algebra. An element ~t( E(S),y) 

is said to be a fuzzy congruence relation on A if and only if, for each 

f tY, 
a 

f (~,~, ... ,~)<~. 
a -

In other words, if the algebraic structure of A is preserved by the 

fuzzy equivalence relation in A, then we call it a fuzzy congruence 

relation. This is a generalisation of ordinary congruence relation, in 

the sense that if a ~(x,y) on Stakes only the values 0 and 1, then the 

above definition reduces to ~ being an ordinary congruence relation. 

Definition 1.3.1 can be thought of as the "substitution property" 

normally satisfied by the crisp congruence relation. 

Proposition 7.3 .2: If ~ is a fuzzy congruence relation on an algebra 

A=[S,F], then ~r' the weak r-cut relation is a crisp congruence relation 

on A for each O<r<1. 

Proof : Since ~ is a fuzzy equivalence relation ~r is a crisp 

equivalence relation on A. So we need to check only that w satisfies _a 

the substitution property . Let fatF and let x=fa (xl'x2' .. ' ,xn(a)) and 

y=(Y1 'Y2'··· 'Yn(a))for X,YES and for two n(a)-tuples (x 1 ,x2'· ·· ,xn(a)) and 



i=1.2 •...• n(,,). 

Since 
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Then J.! (x . . y . ) >r for O<r<1. 
I 1-

J.!(x.y) ~ sup 

x=f,,(x 1·x2·····xn(,,)) 

y=f,,(Y1· Y2· ····yn(")) 

> r 

Thi s completes the proof. 

In particular. w1 is a crisp co ngruence relation on A. We shall make 

use of this fact in isomorphism theorems. The following proposition 

is similar to Theorem 2.5.1. 

Proposition 7.3.3: A fuzzy equivalence relation J.! on an algebra A is 

a fuzzy congruence relation if and only if 

Proof: Similar to 2.5.1. 

For the following proposition we recall from 6.1 that J.! is defined x 

as J.!x(y) =J.!(x.y) where J.! is a fuzzy equivalence relation and J.!x is an 
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associated fuzzy subset. If e is a crisp congruent relation on an 

algebra and if there exists a single element subalgebra {e} in A, then 

the subset {xEA :xee} is a subalgebra of A. For instance, normal 

subgroups in groups, ideals in rings and ideals in lattices etc. We 

prove a similar result in the following : 

Proposition 7.3.4 : Let A=[S,F] be an algebra with a single element 

subalgebra {e}. Let ~ be a fuzzy congruence relation on A. Then, 

if e=[e] ~e is a fuzzy subalgebra of A. 
~1 

Proof: First we observe that f (e,e, . .. ,e)=e for every f tF. Also 
~ ~ 

e=(e] ={XES:~(x,e)=1}. Now by def inition ~e(x)=~(x,e) for all xES. 
~1 

( ) Sn(~) For any f~EF and n(~)-tuples x1,x2, ... ,xn(~ E we have 

> min ~(xi,e) 
1>I:~n(~) 

by Proposition 7.3.3 

Therefore by Theorem 2.5.1, ~e is a fuzzy subalgebra of A. 
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7.4 Fuzzy congruence relations under a homomorphism 

In this section we examine fuzzy congruence relations under a 

homomorphism between two similar algebras . 

Let A=(S,F] and o=[T,F] be two similar algebras and ~:A-a be a 

homomorphism. Let ~ and v be relations on the algebras A and 0 

respectively. We define the inverse image of v, denoted by ~-1(v) to 

be a relation on A given by ~-1(v)(x,y)=v(~(x),~(y)) for all x,y(S, 

and the image of ~, denoted by ~(~) to be a relation on B given by 

sup ~(x,y) if ~-1(X')~0 and 

x<~-1( XI) ~-1(yl)~0. 
yE ~ -1 (y I ) 

o i f ~ -1 (x) =~ or ~ -1 (y) =0 

for all x I ,Y'ET. 

Since ~(S)c=T and B'=[~(S),F] is a subalgebra of B, we can restrict 

ourselves to ~ being a homomorphism of A onto B. Thus 

~(~) (x I ,y ') = sup ~(x,y) with x I ,y 'E~(S) 
XE 'P - 1 ( X I ) 

YE'P-1(yl) 

In general we note that v~~(~-1(v))and also ~~~-1(~(~)), if ~ is onto. 

If ~ is one-to one and onto, i.e . if ~ Is an isomorphism of A onto B, then 

~ = ~ - 1(~(~)) for every ~E R(A) and v=~(~-1(v)) for every vER(B). 

Proposition 7.4.1: Let ~ be a homomorphism between two similar algebras 

A=[S,F] and B[T,F]. If v is a fuzzy congruence relation on B, then 

~ -1 (v) is a fuzzy congruence relation on A. 

Proof: ~-1(v)(x,x)=v(~(x),~(x))=1 for all XES . Also 



68 

<p-1(v)(X,y)=v(<p(x) ,<p(y))=v(<p(y) ,<p(x))=<p-1(v)(y,x) for al l X,YES . Thus 

<p-1(v) is reflexive and symmetric. We shall next show that <p-1(v) is 

transitive. Consider for any X,YES, 

-1 -1 -1 - 1( )( {<p {v) o<p (v)){x,y) = sup (<p (v)(x,z) A <p v z,y)) 
ZES 

= sup (v{<p(X),<p{Z)) A v{<p{z),<p{y)) 
Z( S 

< sup (v(<p(xl,Z')Av{z',cp{y))) 
- z'ET 

= (vov) (cp{x) ,<p{y)) 

= v(cp(x) ,<p(y)) 

= <p-1(v)(x,y ) 

Therefore, cp-1{v) is transitive. 

Thus cp-1{v) is a fuzzy equivalence relation. Lastly we show that 

<p-1(v) has the "substitution property". 

= sup (min (v(<p{x·),<p(Y·))) 
1<i<n{m) I I 

x=fm(X 1'X2 '···'Xn(m)) --

y=fm(Y1' Y2' • .• 'Yn{m)) ( 1) 
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homomorphism, we have 

L.H . S. of (1) < sup (min v(<p(xi),<p(Yi)) 

() ( ( ) ( ) 1< i <n ( ,,) 
'I' X =f" q> x1 ,'I' x1 , .•• ,q>(xn(,,)) --

q>(y)=f,,(cp(Y1),cp(Y2),···,q>(Yn(,,)) 

= (f (v,v, ... ,v))(q>(x),cp(Y)) 
" 

= q>-1(v)(x,y) 

implying the "substitution property" for q>-1(v). Thus q>-1(v) is a 

fuzzy congruence relation on A. 

This completes the propf. 

The next proposition deals with the image of a fuzzy congruence relation 

under a homomorphism. 

Proposition 7.4.2: Let 'I' be a ~ ;one~ ane epiinorphism of an algebra A onto an 

algebra B. If ~ is a fuzzy congruence relation on A, then q>(~) is also 

so on B. 

Proof: For any X'ES, q>(~)(X' ,X') = sup ~(x,y)=1 since ~ is 

x,yeq>-1(x' ) 

reflexive. So q>(~) is reflexive on B. It is easy to check that q>(~) 

is symmetric. Next we prove that q>(~) is transitive. For any x',y'eB, 

(q>(~)oq>(~)Xx',y') = sup (q>(~)(X',Z')Aq>(~)(Z',y')) 
z 'EB 
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= sup (sup (\l(X.Z)) A SUp (Il(Z.Y))) 

Z • E B Xc 'I' -1 (X I ) ZE 'I' -1 (Z I ) 

Z E 'I' -1 ( Z I ) Y( 'I' -1 (y I ) 

< sup (sup (Il(X.Z) A \l(Z.Y))) Since 'I' is one-one 
zlEB XE'I'-1(xl) 

ZE1p-1(Z') 

Yf1p-1(y l ) 

~ sup 

XE'I'-1(xl) 

YE'I'-1(yl) 

(sup (\l(X.Z) A \l(Z.Y))) 
ZE A 

= sup (\l(x.y)) = 1p(\l)(x.y) 

XE 'I' -1 (x I ) 

YE1p-1(yl) 

Finally. we show that 1p(\l) has substitution property . 

Let f EF and f be the corresponding operation on R(B). 
CY. CY. 

Consider for any x I .y 'EB. 

= sup 

X I -f (x I X I X I ) 
- CY. l' 2····· n(a) 

(min (1p(\l) (xi,yjl)) 
1~i~n(a) 

y'=fa(yl·y2·· ·· ·y~(a)) 
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= sup (min (sup 

< 

1::.i~(,,) 
x, -f (x' x' x' ) -" l' 2····· n(,,) 

y , =f" (y ;. y 2. •...• y ~ ( ,,) ) 

sup (min 
1<i<n(a) 

x'=f,,(q>(x,),q>(x2)·····cp(xn(a))) --

y '=f ,,( cp (y 1 ) • 'I' (y 2) ••••• cp (y n (,,) )) 

= sup (min (ll(x i 'Yi))) 

x' ='1' (f ,,( x 1 • x2 •...• xn (,,))) 

y '='1' (f ,,(Y 1 .y 2' ...• y n (,,) )) 

1::.i::.n(,,) 

::. ll(q>-1(x').q>-1(y')) since II is a fuzzy congruence relation 

Thus '1'(11) is a fuzzy congruence relation on B. 
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7.5 Lattice of fuzzy congruence relations 

In this section we consider the set of all fuzzy congruence 

relations on an algebra A. We prove that this set is a complete 

lattice. Moreover, they form an algebraic closure system in IAXA. 

Proposition 7.5.1: Let A = [S,F] be an algebra and let ~j(jEJ) be a 

family of fuzzy congruence relations on A. Then J.~J ~. = inf ~J. is a 
J j 

fuzzy congruence relation on A. 

Proof: Recall that from Proposition 5.3.1, if ~j are fuzzy equivalence 

relations on a set, then A~j is also so. Since fuzzy congruence relations 

are fuzzy equivalence relations, we have already j~J ~j is a fuzzy 

equivalence relation. We need only check that .A
J 

~J. satisfies the 
. . J E 

substitution property. Let jtJ ~j =~. Consider for any faE.F, and 

d( ) n(a) any two n(a)-tuples (x 1,xZ, ... ,xn(a)) an Y1'YZ' ... 'Yn(a) ES , 

= 

> inf (min 
j 1~i~n(a) 

~.(x,y.)) 
J 1 · 1 

= min 
1~i~(a) 

(inf ~.(x,y.)) 
j J 1 1 

= min (].1(x i 'Yi)) 
1~i~n(a) 

since each ~j is a fuzzy congruence relation. 
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Now. by Proposition 7.3.3. it follows that ~ satisfies the substitution 

property. 

Let etA) denote the set of all fuzzy congruence relations on A. 

By Proposition 3.2.2 and the above Proposition 7.3.3. it follows that 

etA) is a complete lattice in which the meet operation is given by the 

infinimum. We also defined the join operation. that is the union. 

in the lattice of fuzzy equivalence relation in section 5.3. We shall 

now show that the join operation in etA) is the same as the one defined 

in section 5.3. Let r=("j)jW be a set of fuzzy congruence relations 

on A. 'Y=j~J" j was defined as 

~n(x,y) = sup 

= 'Y = sup ~ n where 
n=O 

= sup "j 
jEJ 

where Zo = x, zn = y . 

Now if faEF and x = fa(x 1,x2 ... ·,xn(a)) 

y = fa(Y1'Y2'···'Yn(a))· 

(min (".(z. 1'z.)))) 
i = 1 to n I I - I 

Lemma 7.5.2: If ~ and" are two relations on an algebra A=[S.F] 

satisfying the substitution property, when ~o" also satisfies the 

substitution property on A. 

Proof : 
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By Proposition 7.3.3, we have to show that 

).lov(f (x 1'x", ... ,xn( )),f (Y1'YZ' ... 'Yn( )));~min ).lov(xj'Y i )· 
ex '- ex ex a 1212n(ex) 

That is 

sup().l(x,Z) A v(Z,y)) 
ZES 

> min 
- 12i2n(ex) 

(SUp().l(X.,Z)Av(Z,Y·)))· 
ZE s 1 1 

Suppose not. Then there exists an ex> 0 such that 

mi n ( sup ().l (x . ,z) A v (z ,Y i) ) ) > ex > sup ().l (x, z) Av (z, y) ) 
12i2n(a) ZES 1 ZES 

This implies that for each 12i2n(a), 

sup ().l(X,Z)A v(Z,Y i )) >ex. 
ZE.S 1 

That is, for each 12 i2n(a) there exists an zi such that 

).l(x i 'Zi) A v(Zi ,Y i) >a. 

Since ).l and v satisfy the substitution property, 

).l(x,z) > min ).l(x i ,zi) >a 
12i2n(ex) 

and 

v(z,y»min v(zi'Yi»a. 
- 12i .9l(a) 

Hence ).l(X,Z) A v(z,y) >a. 

Therefore sup ().l(X,Z) A v(z,y)) >a. 
ZES 

This is a contradiction, and the proof of the Lemma is complete . 

Now, we note that ).l1 is built up from a composition of "j 's taken two 

at a time. ).In is built up from a composition of "j 's taken (n+1) at 

a time. Since "j 's are congruence relations, we have 
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ilO(fex (x1 ,x2'·· .,xn(ex)) ,fex(Yl 'Y2'· .. 'Yn(ex))) > min (ilO(x i 'Yi)) 
- l~I:::n(ex) 

Using the above Lemma 7.5.2, and an induction on n, gives 

for all n=l ,2, . .. . 

Now 

Therefore 

Thus r is a fuzzy congruence relation. 

Corollary 7.5.3: e(A) is a complete sublattice of E(A), the lattice of 

all fuzzy equivalence relations . 

Lemma 7.5.4: Let{vj)jEJ be a directed family of fuzzy congruence 

relations on A. Then sup Vj = j¥J Vj where j¥J denotes the union 
jeJ 

taken in the lattice E(A) . 

Proof : 

For the reverse inequality, we observe that iln is built up from a 

composition of Vj 's taken (n+l) at a time. Since Vj 's are directed, 

each composition of (n+l) congruence relationsis majorised by one of v j • 

That is 

il n ~ sup Vj for n=1,2, ... 
J€J 

and trivially 

That is, 
00 

sup iln < sup Vj 
n=O - j eJ 
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• implying . ¥ J \J. < sup \J .• 

J J - ~ E J J 

This comp, etes the proof . 

Finally, Theorem 3.4.5, together with the above Lemma 7.5.4, implies 

the following important result. , 
TheQrem 7.5 .5: CIA) is an algebraic closure system in jAxA. 
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CHAPTER 8 

ISOMORPHISM THEOREMS OF FUZZY ALGEBRAS 

8.1 Introduction 

The three isomorphism theorems of groups, rings and · other algebraic 

structures are well-known. They have been generalised and proved in 

the setting of universal algebras. In this chapter, we examine the 

relevance of these three theorems in fuzzy algebra~ We are able to 

properly state these three theorems in the context of fuzzy algebras 

and prove these theorems . In section 8.2, we define fuzzy 

homomorphisms between algebras. These are different from the 

extensions of ordinary homomorphisms discussed in Chapter 1. In 

section 8 .3 we discuss the first isomorphism theorem, and in sect ion 

8.4, the second and third isomorphism theorems. 
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8.2 Fuzzy homomorphisms and fuzzy subalgebras 

Let A=[S,FJ and B=[T,FJ be two similar algebras. In section 7. 1, 

we definedthe relational algebra R(A,B) . In this section, we study 

certain fuzzy subalgebras of R(A,B). Such objects are called fuzzy 

homomorphism from A to B. A fuzzy function ~ f rom A to B is said to be 

a fuzzy homomorphism from A to B if and only if for each f EF, 
'" 

f (~,~, ... ,~)< ~ That is, ~ is a fuzzy subalgebra ofAxB in the induced '" -

operation f. If A=B, then a fuzzy homomorphism from A to A t s also 
'" 

called a fuzzy endomorphism: . 

For the next proposition we recall the definition in 6.2 of an image of 

fuzzy subset y under a fuzzy function ~ as ~h)=suph(x) II ~(x,y)) . 
XES 

Proposition 8.2.1 : If y is a fuzzy subalgebra of A and ~ is a fuzzy 

homomorphism from A to B, then the image ~(y) is a fuzzy subalgebra of B. 

Proof: Let f EF. We have to show that 
'" 
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Since ~ i s a fuzzy homomorph i sm, 

~(x,y»min (~(x.,y . )) 
-l~)~n (" ) I I 

and since y is a fuzzy subalgebra, 

Let 9 < min v (y i ) . 
i 

There are X·f S with y(x . )!\~(x., y . » Et. If x = f (x1), ... xn( )), then 
I I II " " 

v(y) ~y(x)!\ ~(x,y) ~ [ min y(xi)l}\ [min,,(x i , Yi)l > fl. 
I I 

This clearly proves that v(y)~ min v(Yi) · 
I 

By Theorem 2.2.5, we have 

That is,v is a fuzzy subalgebra of B. 

L (v,v, ..• ,v)<v. II" _ 

Proposition 8 . 2 .~: If v is a fuzzy subalgebra of 8 and ~ is a fuzzy 

homomorphism from A to 8, then the inverse image ~-l(v) is a fuzzy 

subalgebra of A. 

Proof : Similar to proposition 8.2.1. 

. \ 
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8.3 Fuzzy homomorphism theorem and First isomorphism theorem 

Given an algebra A = [S,F] and j.l a fuzzy congruence relation, S/j.l 

is made into an algebra of fuzzy subsets on A similar to A by 

defining suitable algebraic operations on S/j.l.We also prove that the 

kernel of a fuzzy homomorphism between two similar algebras is a 

fuzzy congruence relation on A. Finally, using the above results 

we establish the first isomorphism theorem of fuzzy algebras. 

Let A = [S,F] be an algebra and j.l be a fuzzy congruence relation on A. 

Then S/j.l consisting of all fuzzy subsets of S of the form j.lx where 

x= [x] 
W1 

X fS, can be made into an algebra similar to A as follows. 

It is denoted by A/j.l . Let f ex E F. Consider ) J.l X , ••• 
2 

Then the algebraic operation f' on S/j.l is defined as ex 

f' ex ()Jx ,Ilx ' 
1 2 

.. . j.l:r ) = j.lzwith 
n ( ex) 

j.lz(t) =j.l(z,t) andz is the class given by z = [z] where 
Ja 

z = f ex (x 1, x2' ... xn(ex)) with XiE xi for each i = 1,2, ... n(ex). 

We have to verify that this is well-defined. 

Suppose xi E:lJ. for i = 1,2, ... , n(ex) . Then xt xi for i = 1,2, .. . ,n(ex). 

As the weak 1-cut ofj.l is a crisp congruence relation by Proposition 

7.3 , 2, we have f ex (x1, x2' ... Xn(ex))!!\fex (x'1' X'2, .•. X'n(a). 

That is z!t'l z' where 

j.l , (t) =j.l(z' ,t) = j.l(z,t) = j.l (t). 
z z 

Thus A/j.l = [S/j.l, F' ] is an algebra similar to A = [S,F]. 
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Theorem 8.3.1: Let E be a mapping from A to AI)!. defined by dx) =)!. >E' 

Then ds a homomorphism. 

Proof: By definition df a(x 1, xZ •... Xn(a» 

= )!.g where z = [.fa (x 1• xZ• •••• xn(a)] l!!l • 

=f ()!.x.)!.a; . ••••• )!.a; ) 
a l ' Z n(a) 

= fa (E (x 1), d XZ) •••• dXn(a») 

Therefore E is a homomorphism. 

Given a fuzzy homomorphism f from an algebra A=[S.F] to B=[T.F]. 

we associate with f the fuzzy equivalence relation)!. on A as in section 
v 

6.5. known as the kernel of f; that is )!. = fof. 

Proposition 8.3.2: If f:A-B is a fuzzy homomorphism. then the kernel 

)!. of f is a fuzzy congruence relation on A. 

Proof: We know that)!. is a fuzzy equivalence relation on A. Therefore 

it is enough to check that)!. satisfies the substitution property. So 

consider for any faEF. two n(a)-tuples (x 1.X 2 ••..• Xn(a» and 

( ) Sn(a) 
Y1' YZ' ····yn(a) ( . 

We have to show that 

)!.(fa (X 1·X2•·· · 'Xn(a»·~(Y1·Y2· ·· · ·yn(a»)~ min )!.(x i 'Yi)' 
1.::: I:::.n ( a ) 

Now 
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Also Il(x i .y i ) = fof(xi.y
i

) 

Suppose 

= SUP(f(xi·z)Af(z.y)) 
zET I 

ll(x i 'Yi) = SUp (f(xi.z)Af(Yi'Z)). 
zeT 

then there exists a a such that 

for i=I.2 •.•.• n(a). 

That is 

and for each i=I.2 • ••. • n(a). sup (f(x i .z) A f(y .• z)) > a. 
zeT I 

Now there exists a zi for each i=I.2 •.••• n(a) such that f(x i .zi) > B 

Since f is a fuzzy homomorphism we have 
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Therefore f(fa (xl'x2,·· .,xn(a))'Z) Af(fa (Yl'Y2'··. 'Yn(a)) ,z) > e 
hence 

sup (f(f)x 1,x2, ... ,xn(a))'Z) Af(fa(Yl'Y2' ... 'Yn(a))'Z)) > e. 
zET 

This is a contradiction, and the result follows. 

Theorem 8.3.3. (First isomorphism theorem): 

Suppose f:A-B is a fuzzy homomorphism from an algebra A=[S,F) to B=[T,F). 

Let ~ be the kernel of f. Then there is a decomposition of f given by 

the following diagram g 
A --"..-~> B 

A/Il ---~) Af 
f' 

i 

where all the symbols have the same meaning as in Theorem 6.5.2 . 

Proof : Everything is clear from Theorem 6.5.2 and Proposition 8.3.2. 

So we have only to check that f' is an isomorphism. 

x = (X E S: f(x,Y) = 1 } • f' is clearly bijective and is a homomorphism 

since f' (f (11 . , 
a xl 

II , ••• , 
x2 

11 ) 
Xn(a) 

= f a 
(f'(11 ), f'(11 ), .. • , f'(11 )l 

xl x2 x-n(a) 
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8.4 The Second and Third isomorphism theorems 

Remark 8.4.1 The second isomorphism theorem of universal 

algebra in crisp case states that if A = [S,F] is an algebra, B a 

subalgebra of A and 9 is a congruence relation on A, then Ale ~ 

BIBB provided [B]e = A where es is the restriction ofe to B. 

In fuzzy case, we tried the following. 

Let A = [S, F) ; ~ a fuzzy congruence re I ation and v a fuzzy subal gebra 

of A. We need to define the restriction of~ tov . A natural candidate 

for such a fuzzy congruence relation is 

v(x,y) = v(X) A v(Y) A ~(x,y) X, YES. 

Then" satisfies properties of symmetry, transitivity and substitution 

but not reflexivity as we defined it. If we define artificially 

v(x,y) = 1 if x = y and v(x,y) = v(X) A v(Y) A ~(x,y) if x # y 

then we do have reflexive, symmetric and transitive properties, 

but the substitution property breaks down. So there seems to be no 

natural way of defining the restirction of a fuzzy congruence relation 

to a fuzzy subalgebra. Thus at present we do not have a second 

isomorphism theorem in the fuzzy case. 

Now we turn to the third isomorphism theorem. We recall from Definition 

5.2, that a partial ordering ".::" of two fuzzy relations ~ and v on X is 

given by v.::~ if and only if v(x,y) .:: ~(x,y) for all X,YE X. Let 

A = [S,F] be an algebra and let ~,v be two fuzzy congruence relations 

on A, with v < ~. If ~1(v) and ~1(~) denote the weak 1-equivalence 

classes of v and ~ respectively, then we observe that ~1(v) is a 

refi nement of 'H 1 (~) . We define below a congruence relation on 

A/v = {v : XEw1 (v), XES}. 
x -
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II/V : A/v x A/v -. I x 

Il/v(v ,v ) = Il(x,y) for XEX,YE.y. x y 

II/vas defined above is called the quotient fuzzy congruence relation. 

Theorem 8.4.3: II/vas defined above is indeed a fuzzy congruence 

relation on A/v. 

Proof: Firstly, II/V is well-defined. For suppose x,x' Ex and 

y,y' Ey. Since ~,(v) is a refinement of w,(Il), x,x' belong to the 

same class of the I- partition associated with II. Similarly y,y' 

belong to the same class. By Corollary 5.4.6, Il(x,y) = Il(x',y'). 

Thus Il/v(vx'vy) = Il(x,y) = Il(x',y'). 

That Il/v is reflexive and symmetric, is straightforward to check. We 

now prove that Il/v is transitive. Put Il/v = y. We have to show that 

Consider YoY(v ,v ) = x y sup h(v ,v ) A y(v ,v)) 
E() xa ay a W, v 

= sup ((1l(X,Z) A Il(Z,y)) 
aE!9,(v) 

< sup(Il(X,Z) A Il(Z,y)) 
- ZES 

= lloll(X,y) 

.:::. Il(X,y) 

= y(v ,v ) x y 

ZEa, XEX,YEY} 

Finally, Il/v satisfies the substitution property as follows: 

Let fCL EF. Then we have to show that for any two n(CL)-tuples 

(v ,vx , • •• ,vx ) and (vy,VY' ••• 'v ) belonging to (A/v)n(c.), x, 2 n(",) , 2 Yn(",) 
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"( (f (v • v •.•.• v ). f J Vy • vY ..... v )) >_ min ~ ( v • v ) . 
a x, x 2 xn(a) - , 2 Yn(a) i=' to n' Xi Yi 

Suppose not. Then there exists a 6 > 0 such that 

"((f (v .v ••..• v ). f (v .v ••..• v )) < 6 and 
a x, x 2 xn(a) a Y, Y2 Yn(a) 

6 < "( (vx : .v,,) for each i = '.2 •...• n(a) . 
. 1 "1 

First. we notice that from the definition preceeding Theorem 8.3.' 

f (v .v •...• v ) = v and 
a x, x2 xn(a) x 

f (v .v •...• v ) = v 
a Y, Y2 Yn(a) Y 

where x = [x] 
"'l(v) 

and Y = [y] 
~1 (v) 

with 

X = fa (x 1·x2·····xn(a)) xi EX i i = 1 .2 •. . .• n ( a) 

and y = fa (yl· y2····· yn(al) Y i E Y i i=1.2 •...• n(a). 

Since "(Iv .v ) = pIx .• y.) > 6 for each x· y. 1 1 
1 1 

i=1.2 •...• n(a). 

since p is a fuzzy congruence relation. 

That is. p(x.y) > 6. 

But ~(v v) is, tlY'definition p(x.y). 
I x' y 

Therefore "(If (v .v •...• v ). f (v .v • .•.• v I»~ 6. 
a xl x2 xn(a) a Yl Y2 Ynla) 

This is a contradiction. and the proof is complete. 
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Corollary 8.4.4: (Third isomorphism theorem) . 

With ~ anq v as in the Theorem, we have 

A/v; I "A/~. 
~ v - . 

Proof: 

Then by definition of ~/v in terms of ~, we see that [vx]~1 (~/v) = x 

as crisp sets . 

That is A/vi I "A/~. 
~ v -

= ~ as fuzzy subsets. x 
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APPENDIX 

FUZZY POLYNOMIAL ALGEBRAS AND FREE FUZZY SUBALGEBRAS 

These are additional thoughts on free subalgebras and polynomial 

algebras. The discussion is sketchy, but hopefully leaves ideas for 

further research. 

Let A = [S,F] be an algebra. Let n be a non-negative integer. 
S S S Fuzzy n-ary polynomials over A are certain mappings from.I xl ~ ... xI, 

n-times 

to IS defined as follows: 

Definition A.1: (i) Elementary fuzzy n-.ary polynomials over A are 

defined as 

for each i = 1,2, ... ,n(a) 

where II(X) = sup (min (IIi (xi))' the supremum being 
(x1,x2, ... ,xn) i=1 to n 
X.=X 

1 

taken over all n-tuples (x1,x2' .. . ,xn) E Sn l'iith xi=x at the ith place. 

(ii) If "1'"2' ... '"n(a ) are fuzzy n-ary polynomials 

over A, then so is na (n 1"2' ... '"n(a)) defined by 

( na ('1 ' • 2 ' ... , " n ( a)))( 111 ,112 ' ... lin) = 6 a (" (11 1,112, ... , II n) , ... ,~ n (a ) ( 111 ,II 2' ... ,II n) ) 

(iii) Fuzzy n-ary polynomials are those and only those 

which we get from (i) and (ii) in a finite number of steps. 
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Remark A.2: Every fuzzy nullary polynomial is a fuzzy n-ary 

polynomial for every n. If f : S - S is a nullary operation the fuzzy 

nullary polynomial is defined as f : IS - IS, with ~-f(~) where 
f(~)( x) = sup ~(x) . 

XES 

Example A.3: Let (G, . ) be a group. An example of an elementary 
G fuzzy binary polynomial is, for ~1'~2 E. I 

where 

Example A.4: 

~(x) = sup (~1 (x) A ~2(x2)) 
(x 1,x2) 
x1=x 

= sup 
Xz 

(~1 (x) A ~2 (x2) ) 

= sup (~l(x) A~Z(Y)) 
YEG 

Let (L,A,V) be a lattice. 

1 E 1 (~1) = ~ where ~ (x) = sup ~l(xl) = ~l(x) ---
x1=x 

1 1 
(E1vEl)(~1)(x) = sup 

x=x 1vx 1 
~ 1 (x 1) = sup ~ 1 (x 1) = ~ 1 (x) 

x1=x 

and other fuzzy binary polynomials are defined similarly. 

The collection of all fuzzy n-ary polynomials over A is denoted by 

p(n)(A). The n-ary operations on p(n)(A) are def ined as in I-l(ii). 

Then [~n)(A), F J is an algebra. It is denoted by rr(n)(A) and i s called 

t he algebra of fuzzy n-ary polynomials over A. 

Let A = [S,FJ and B = [T,FJ be two similar algebras. Since the 
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fuzzy n-ary polynomials over B are built up in the same way as the 

fuzzy n-ary polynomials over A. we can use certain symbols for n-ary 

polynomial symbols and use them to generate the fuzzy n-ary polynomials 

over A or B or any other similar algebra. 

symbols of certain types as follows. 

Thus we define polynomial 

Definition A.S: (i) "1.£2 ..... £n are n-ary polynomial symbols. 

(ii) 111.112 •...• 11n(a) are n-ary polynomial symbols 

and fa E F. then 0a("1 ' ''2' "'''n(a)) is also a n-ary po lynomial symbol. 

(iii) n-ary polynomial symbols are those and only 

those which we get from (i) and (ii) in a finite number of steps. 

Now. we connect the notion of n-ary po.1ynomial symbols as defined 

above with the earlier notion of fuzzy n-ary polynomials over an algebra 

A by the following: 

Definition A.6: The fuzzy n-ary polynomial, over an algebra A 

associated with or induced by the n-ary polynomial symbol, is defined 

as follows: 

(i) ei induces £~. i=1.2 •...• n on A. 

(ii) If. = 0a(.1 •• 2 ...... n(a)) and. i induces 'i for i=1.2 •...• n 

then" induces 0,,/·1.·2·· .. ··n (a) ). 

The following Proposition describes the action of fuzzy n-ary polynomials 

on fuzzy pOints of A. 
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Proposition A.7: 

where 

Also 

where 

Proof: 

.. ... , 

n 

r n r 
xn ) = x i 

r = A r i = 1 i . 

x = • 
r = 

r n r 
xn ) = x. .. .... , .. 

.(x 1,x2' ... , xn) 

n 
A 

i = 1 
r i 

\l(X) = sup 
(x 1,x2,···,xn) 

0 if 

= min r i 
i = 1 to n 

for i=1,2, ... ,n 

(min (\l ' (x,)) 
i = 1 to nIl 

xi;x 

xi=x 

Therefore \l(x) is the fuzzy point X~. 

. n r 1 r2 r n r 
That IS E i (X 1 ,x2 , ... ,xn ) = Xi· 

The other assertion follows similarly. 

More generally if "1'"2' ... "n(tt) are fuzzy n-ary polynomials over A, 

fuzzy point 
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n 
r = A r i . 

i=1 

Since a fuzzy subset ~ can be thought of as x~X ~~(x), we can restrict 

ourselves to fuzzy n-ary polynomials' actions on fuzzy pOints only. 

If Kh) is a species of similar algebras of certain type~, then the 

n-ary polynomial algebra of type ~ is ntn)(T) = [p(n)(T),F] where 

p(n)(T) consists of all n-ary polynomial symbols and F consists of 

operations 6 on p(n)(T) as defined in A.5(ii). 
'" 

Defin ition A.8: Let K(T) be a species of algebra. Let 

A = [S,F]E K. Let X~S be a free generating set of A. That is, Ais 

a free algebra over X in K. Let ~ : x~I be -a fuzzy subset of X. The 

fuzzy subalgebra of A generated by ~ is called a free fuzzy subalgebra 

in K. 

Remark A.9: We have proposed the above definition with the idea that a 

fuzzy subalgebra of a free algebra represents in some sense the - most 

general fuzzy subalgebra one can generate from a given fuzzy subset. 

We do not know whether such a definition proves to be the right one from 

the poi.nt of view of universal property of category theory. Also we do 

not know at present whether there are other suitable definitions of "free 

algebra" concept in fuzzy algebras. Also, we conjecture that a suitable 

fuzzy congruence relation ~(T) can be defined on lI(n)(T) such that if a 

free fuzzy subalgebra exists in K, then it is isomorphic to the quotient 

TI( n)(T) /~h). Further research is necessary to study thoroughly the actions 

which polynomial symbols have on a fuzzy algebra and to study fuzzy algebras 

of varieties or equational classes of algebras. 
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