
A DETAILED INVESTIGATION OF
INTEROPERABILITY FOR WEB

SERVICES

Thesis submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

of

RHODES UNIVERSITY

by

MADELEINE WRIGHT

December, 2005

 ii

ABSTRACT

The thesis presents a qualitative survey of web services' interoperability, offering a snapshot of

development and trends at the end of 2005. It starts by examining the beginnings of web

services in earlier distributed computing and middleware technologies, determining the distance

from these approaches evident in current web-services architectures. It establishes a working

definition of web services, examining the protocols that now seek to define it and the extent to

which they contribute to its most crucial feature, interoperability.

The thesis then considers the REST approach to web services as being in a class of its own,

concluding that this approach to interoperable distributed computing is not only the simplest but

also the most interoperable. It looks briefly at interoperability issues raised by technologies in

the wider arena of Service Oriented Architecture. The chapter on protocols is complemented by

a chapter that validates the qualitative findings by examining web services in practice. These

have been implemented by a variety of toolkits and on different platforms. Included in the study

is a preliminary examination of JAX-WS, the replacement for JAX-RPC, which is still under

development. Although the main language of implementation is Java, the study includes

services in C# and PHP and one implementation of a client using a Firefox extension.

The study concludes that different forms of web service may co-exist with earlier middleware

technologies. While remaining aware that there are still pitfalls that might yet derail the

movement towards greater interoperability, the conclusion sounds an optimistic note that recent

cooperation between different vendors may yet result in a solution that achieves interoperability

through core web-service standards.

 iii

ACM Categories and Subject Descriptors

Categories

D.2.12 [Interoperability]: Data Mapping, Distributed Objects, Interface Definition

Languages

I.7.2 [Document Preparation]: Markup languages

H.3.5 [Information Storage and Retrieval]: On-line Information Services – Web-based Services

D.2.11 [Software Engineering]: Software Architectures

H.5.3 [Web-based Interaction] Group and Organization Interfaces

H.5.4 [Hypertext/Hypermedia]: Architectures

General Terms

Design, Standardization, Languages

Additional Key Words and Phrases

Web Service, Representational State Transfer, World Wide Web

 iv

ACKNOWLEDGEMENTS

The writer wishes to acknowledge with much gratitude the generous help and support she has

received from the Computer Science Department at Rhodes University and from those in the

Department of Information Systems who had expertise in areas where she had none, and were

willing to share it with her. She would particularly like to single out her supervisors, George

Wells and Peter Clayton, for their wise words, expert guidance and attempts to keep her focused

when she was awash in a sea of information. George Wells is owed an extra debt of gratitude for

making timetable spaces in which this work could be brought to conclusion. Through the Centre

for Excellence in the department, her supervisors also provided the resources that made much of

this research possible and she is therefore indebted also to the sponsors of the Centre for

Excellence:

• Business Connexion

• Comverse

• Telkom

• Thrip: Technology and Human Resources Industry Program

• Verso Technologies

The writer is indebted to the following companies for the use of their commercial software:

• to Parasoft (especially James Sun), for allowing her to use evaluation versions of SOA

Test well beyond the normal evaluation period and then negotiating an affordable one-

year licence.

• to Mindreef (especially Cheryl Bosquet), for also allowing her to extend evaluations of

SOAPScope and then generously giving her a year's complementary licence.

• to Snowtide Informatics (especially Chas Emerick), for allowing her a free, extended

licence for their PDFTextStream API, used in the indexing service in Chapter 7.

• to Altova for their education partner program which enabled her to use freely tools such

as XMLSpy and MapForce.

 v

Thanks are also due to contributors to the various forums on which she posted queries (perhaps

especially the Apache Axis forums), and to the following expert developers who were patient

and kind enough to give of their time to answering questions and solving problems, specifically:

• Russel Butek for correspondence following on from his article on the interpretation of

arrays in XML, referred to in section 3.4.2 ;

• Steve Loughran for his insight into JAX-RPC and for allowing the author to read his

paper on that subject prior to publication in 2005, referred to in section 4.2.4.3;

• Dmitri Stogov (one of the creators of the SOAP extensions for PHP 5) for his helpful

articles on the Zend site and for responding to a query made by the author concerning

the creation of a server for the document/wrapped literal SayHello service, mentioned

in section 7.2.9;

• Conrad O'Dea for his help with Celtix, referred to in section 3.4.4;

• Jerome Dochez (now the project leader for GlassFish) for his help with GlassFish,

mentioned in section 7.2.6.

• Christian Weyer of ThinkTecture for his help with the jWSCF plugin for Eclipse,

mentioned on page 93;

• Jeff Barr of Amazon for replying to a query about the relative speed of REST versus

SOAP, mentioned in section 5.3.

 vi

TABLE OF CONTENTS
A DETAILED INVESTIGATION OF INTEROPERABILITY FOR WEB SERVICES i
ABSTRACT.. ii
ACM Categories and Subject Descriptors ... iii

Categories .. iii
General Terms.. iii
Additional Key Words and Phrases ... iii

ACKNOWLEDGEMENTS... iv
TABLE OF CONTENTS... vi
LIST OF FIGURES .. x
LIST OF GRAPHS AND TABLES .. xi
NOTES.. xii

Note 1: References Used... xii
Note 2: Acronyms .. xiii
Note 3: Capitalization .. xiii
Note 4: US versus British Spelling Conventions... xiv

CHAPTER 1: INTRODUCTION... 1
1.1 Introduction: the Issues ... 1
1.2 Interoperability as the Distinguishing Feature of Web Services .. 2
1.3 Research Methods... 5
1.4 The Design .. 5

CHAPTER 2: FOUNDATIONS OF WEB SERVICES... 8
2.1 Introduction... 8
2.2 Similarities and Differences.. 8
2.3 Client/Server: the Beginnings of Distributed Computing... 9
2.4 Middleware Communication Architectures.. 10

2.4.1 The Remote Procedure Call (RPC).. 10
2.4.2 The Distributed Object Model ... 12

2.4.2.1 CORBA... 14
2.4.2.2 Component Object Models ... 14
2.4.2.3 Transactional Component Middleware... 15
2.4.2.4 Integrating Legacy Systems.. 15
2.4.2.5 Web Services versus Distributed Objects ... 17

2.4.2.5.1 Comparisons Between Web Services, CORBA and RMI 18
2.4.2.6 Recognizing the Remoteness of Distributed Objects.. 22

2.4.3 Message-Oriented Middleware.. 23
2.4.4 Summary.. 26

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 28
3.1 Introduction: Definition Problems .. 28

3.1.1 The Web in Web Services.. 34
3.1.2 The Distinction between Web Services and Service-Oriented Architecture 35
3.1.3 A Working Definition .. 37

3.2 Advantages of Web Services .. 38
3.3 Adoption of Web Services .. 40
3.4 Barriers to Interoperability.. 43

 vii

3.4.1 Transport Issues ... 43
3.4.2 User-Defined Data Types .. 46
3.4.3 Exception-Handling: java.rmi.RemoteExceptions and SOAP Faults 49
3.4.4 Toolkits .. 52

3.5 Summary ... 56
CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS
AND THEIR CONTRIBUTION TO INTEROPERABILITY FOR WEB SERVICES 58

4.1 Introduction... 58
4.1.1 Interoperability-Testing Frameworks .. 60

4.2 SOAP: no longer an acronym ... 61
4.2.1 Defining SOAP: Versioning Issues ... 61
4.2.2 SOAP as a Requirement for Web Services.. 63
4.2.3 Problems with SOAP ... 64
4.2.4 The SOAP Message Structure ... 68

4.2.4.1 Service Styles and their Encodings... 71
4.2.4.1.1 RPC.. 73
4.2.4.1.2 Document... 74
4.2.4.1.3 Wrapped... 75

4.2.4.2 SOAP Programming Models.. 77
4.2.4.2.1 RPC.. 78
4.2.4.2.2 Document... 79

4.2.4.3 Advantages and Disadvantages of the RPC Processing Model 80
4.2.4.4 Advantages and Disadvantages of the Document-Style Programming Model..... 83
4.2.4.5 Different Types of Soap Client ... 84

4.2.4.5.1 Static Stub Client ... 84
4.2.4.5.2 Dynamic proxy client... 85
4.2.4.5.3 Dynamic invocation client ... 85
4.2.4.5.4 Application Client.. 85
4.2.4.5.5 Summary of SOAP Client Approaches.. 86

4.3 WSDL: Web Services Description Language... 87
4.3.1 WSDL: a simple description of a web service... 89

4.3.1.1 The Abstract Section... 90
4.3.1.2 The Concrete Section.. 92

4.3.2 WSDL Data-Typing... 93
4.3.3 WSDL First.. 95
4.3.4 Conclusions Regarding WSDL.. 99

4.4 UDDI – Dead in its Tracks?.. 100
4.5 Summary ... 101

CHAPTER 5: REST – AN ALTERNATIVE... 104
5.1 Introduction: the Revolt against Complexity.. 104
5.2 Representational State Transfer .. 105
5.3 Advantages of REST over Conventional Web Services... 109
5.4 Disadvantages of REST over Conventional Web Services .. 110
5.5 Summary ... 111

CHAPTER 6: WEB-SERVICES COORDINATION .. 113
6.1 Introduction... 113

 viii

6.2 Orchestration and Coordination.. 113
6.2.1 Web Services Choreography Interface (WSCI)... 115
6.2.2 BPEL.. 116

6.3 The Enterprise Service Bus... 119
6.4 A First Look at WCF .. 120
6.5 Summary ... 122

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS... 123
7.1 Introduction... 123

7.1.1 The Platforms... 124
7.1.1.1 Apache Axis 1.2 (Java) ... 124
7.1.1.2 GlassFish (Java) .. 125
7.1.1.3 Sun Application Server 8.1 (Java) .. 125
7.1.1.4 BEA WebLogic 9.0 (Java).. 126
7.1.1.5 Web Matrix (C#)... 127
7.1.1.6 Visual Studio 2005 (C#).. 127
7.1.1.7 Apache 2 (PHP) .. 127
7.1.1.8 Mozilla Firefox (JavaScript) ... 128

7.2 Web Services .. 129
7.2.1 The Simple Calculator Service .. 129
7.2.2 An Even Simpler Date Service .. 130
7.2.3 The Indexing Application: Java ... 132

7.2.3.1 A Firefox Front End.. 134
7.2.4 The Dictionary Service: Java ... 135

7.2.4.1 Using Exceptions in the Dictionary Service ... 137
7.2.4.2 Testing on Other Servers .. 139
7.2.4.3 C# Clients for the Dictionary Service... 139
7.2.4.4 Metadata and WSDL Generation.. 143

7.2.5 The Enumeration Service... 146
7.2.6 A Simple Hello Service ... 148
7.2.7 A Different Programming Style with JAX-WS Provider and Dispatch.......... 150
7.2.8 REST-Style Messaging.. 152
7.2.9 A Simple HelloWorld Service: PHP.. 155
7.2.10 A CheckNumbers Service.. 159

7.3 Implementations of SOAP 1.2 .. 161
7.4 Different Types of Java Client.. 163

7.4.1 Static Stub Client ... 163
7.4.2 Dynamic Proxy Client.. 163
7.4.3 Dynamic Invocation Client .. 164

7.5 Summary: a Synthesis of Findings ... 165
CHAPTER 8: CONCLUSION ... 168

8.1 Introduction: the Changing Scene... 168
8.2 No Single Solution.. 169
8.3 Problems Still Needing Solutions ... 172
8.4 Changing Requirements.. 173
8.5 Summary of Achievements in this Study.. 173
8.6 Future Work .. 174

 ix

APPENDIX A: List Of Acronyms Used In The Text... 176
APPENDIX B: Creating A Firefox Extension.. 179
APPENDIX C: The Complexity Of Web-Service Specifications [Jeon, c2005] 181
APPENDIX D: The Inner Workings of the Indexing Service.. 182
APPENDIX E: An Example WSDL File.. 184
REFERENCES ... 188
INDEX .. 207

 x

LIST OF FIGURES
Figure 2-1: A Web-Centric View of Distributed Computing ... 9
Figure 2-2: The Remote Procedure Call ... 12
Figure 2-3: The Main Components of the ORB Architecture and their Interconnections [Keahey,
1998] ... 13
Figure 2-4: Generation of Client and Server Components from Interface for Web Services,
CORBA and Java-RMI [adapted from Gray, 2004] ... 19
Figure 2-5: The Point-to-Point MOM Option... 24
Figure 2-6: The Publish/Subscribe MOM Option .. 25
Figure 3-1: Web-Service Protocols [adapted from Wilkes, 2004] .. 30
Figure 3-2: Accessing and Composing Services in a SOA [adapted from Lomow and Newcomer,
2004] .. 36
Figure 3-3: Redrawn from Web Service Projects, Forrester Report, 2004................................... 41
Figure 3-4: The Architecture of JAXB [redrawn from the J2EE 1.4 Tutorial] 46
Figure 4-1: Overall Design of a Web Service... 58
Figure 4-2: The SOAP Process [adapted from Microsoft, date unknown]................................... 62
Figure 4-3: A representation of the basic SOAP Message Structure.. 69
Figure 4-4: An RPC Programming Model [adapted from Tyagi, 2004a] 78
Figure 4-5: Document-Style Interaction [Adapted from Tyagi, 2004a] 79
Figure 4-6: JAX-RPC Client Invocation Models [redrawn from Joseph, 2003] 84
Figure 4-7: XML Infoset Diagram of WSDL 2.0 [Booth and Liu, 2005] 87
Figure 5-1: REST Web-Service Structure [Hinchcliffe, 2005] .. 106
Figure 6-1: The relationship between WSDL and WSCI [adapted from Arkin et al, 2002] 115
Figure 6-2: Schematic of a BPEL Process for Handling a Purchase Order [Andrews et al., 2003]
... 117
Figure 6-3: The Role of the Service Bus in SOA [adapted from Weerawarana et al, 2005]...... 119
Figure 7-1: UML Diagram of the Index and Query Application.. 132
Figure 7-2: A Graphical Rendering of the Web-Service WSDL.. 134
Figure 7-3: Graphical Depiction of the Schema for the Dictionary Service............................... 136
Figure 7-4: XMLSpy Graphical Representation of the WSDL for the Dictionary Service......... 137

 xi

LIST OF GRAPHS AND TABLES

Table 2-1: Gray's results for a single (simple) exchange.. 20
Table 2-2: Packet Numbers for the Different Technologies [Jeckle et al., 2004] 21
Table 2-3:Package sizes with a payload first of 0 bytes and then with a payload of 10,000 bytes
[Jeckle et al., 2004]... 22
Table 3-1: Page-Count of Web-Services Specifications Available in Late 2004 [Bray, 2004b] . 33
Table 3-2: Economic Advantages of Paperless Trade [redrawn from Australian Government,
2001] ... 39
Table 3-3: Loose and Tight Coupling [redrawn from Slama et al, 2004] 39
Table 3-4:JAXB Mapping of XML Schema Built-in Data Types [Sun, 2005a] 47
Table 4-1: WSDL-to-Java Mappings, with WSDL 2.0 names in blue ... 88
Table 5-1: Differences between REST and SOAP in terms of process integration.................... 110
Table 7-1: Findings from the Experimental Services ... 167
Table 8-1:Performance Differences Between SOAP and RMI [Adapted from IBM Software
Group, 2003] ... 171

 xii

NOTES

Note 1: References Used

Extensive use has been made of Safari Online, and several other Computer Science publisher

sites where the writer has membership and where the content is not only refereed and edited but

also sometimes consists of chapters from recently published books. One such site is InformIT,

an offshoot of Pearson Educational Publishers who are also partners with other major Computer

Science publishing companies. O'Reilly publishers, who run Safari Online, also manage

XML.com and On Java. Weblogs (or blogs) are usually considered too informal for inclusion in

a serious academic study. References drawn from the very few blogs that have been included are

by writers (such as Anne Thomas Manes) who have already made a significant contribution to

some aspect of web-services technology and whose opinions are founded in experience. A brief

description, indicating the experience of less well-known authors, has been appended to

references other than those for published books and specification documents.

The writer has included this note because it might be argued that equal weight should not be

given to unpublished or informal writing and other unrefereed material, alongside refereed

papers such as conference proceedings and contributions to, for example, ACM and IEEE

journals. The writer has found nothing in refereed journals that would insubstantiate the findings

in the unrefereed material and has found, further, some of the refereed material referencing the

same unrefereed sources1 that she has used. She has also been extremely careful in that the

unrefereed material used has been authored by practitioners in the field of web services who

have either (a) written the standards and specifications, (b) been major driving forces in the

implementation of successful and widely-used web services, or (c) contributed to the approved

literature on the subject through books published by well-known publishers in the field.

1 See Kumar, Das and Padmanabhuni, WS-I Basic Profile: A Practitioner's View, Proceedings of the IEEE
Conference on Web Services, 0-7695-2167-3/04, which cites two papers published on the IBM Developer Works
site. See also Vinoski, WS-Nonexistent Standards, IEEE Internet Computing, November/December, 2004 which
references an article the MSDN site and even mentions blogs. See also Goth, Critics Say Web Services Need a
REST, IEEE Distributed Systems Online, December, 2004, which refers to several papers published on xml.com.

 xiii

Copies of all the online references cited in the work are included on the accompanying CD under

their short reference title, and are hyperlinked within the text.

Note 2: Acronyms

Web services suffer not only from a proliferation of standards but also from a proliferation of

acronyms. Except when it appears in a citation, the first time an acronym is used in the text it is

accompanied by its full form in italics. For ease of reading, a list of acronyms and their

meanings has been included at the end of the text. Terms such as XML, HTTP, HTML and

J2EE are considered to have passed into common use and have not therefore been listed. After

its first use the WS-I (Web Services Interoperability Organization) Basic Profile is referred to by

its shorter name of Basic Profile. Although Sun has recently officially removed the "2" from

J2EE, it is still common practice to include it in the acronym, and it has therefore been retained.

Note 3: Capitalization

Although the term "web service" is frequently capitalized as "Web Service" or "Web service" in

normal use, the less intrusive non-capitalized "web service" form has been used throughout this

thesis. This decision was based not only on personal preference but also on the argument put

forward in the June 2004 draft addition to the current Oxford English Dictionary: "Originally

written with a capital initial, web compounds are now increasingly written with a lower-case w.

Since it is difficult to make an objective judgement about the dominant capitalization in

particular cases and the evidence is changing too rapidly for such a judgement to be of any

lasting value to the reader, the compounds below have been routinely presented with a lower

case w irrespective of the quotation evidence" [OED, 2004].

RPC as the name of a technology is, like RMI, usually given in upper-case, although the norm

for its use as a style value inside WSDL is lower-case. Because it is difficult in some cases to

 xiv

separate the two, the upper-case form has been used throughout the text, except in quotation style

(Courier New) referring to the WSDL value, where it appears in small capitals.

Note 4: US versus British Spelling Conventions

Where words such as marshalling and unmarshalling were concerned, British lexicographical

practice has been followed and the double "-ll-" version has been used.

CHAPTER 1: INTRODUCTION

1.1 Introduction: the Issues

The focus of this thesis is a survey of interoperability, the crucial and necessary feature of web

services if they are to succeed where earlier attempts at interoperable distributed systems have

foundered. Focus in business enterprise is currently shifting onto wider issues of web-services

integration and choreography, as discussed in Chapter 6, but this scaffolding is built on top of the

core standards and cannot escape any difficulties still inherent in them. This thesis examines

these core standards in the light of the issue of interoperability, considers features of selected key

web-service implementations that might be a barrier to interoperability and attempts to answer

the question: does genuine interoperability make web services succeed in the arena of distributed

computing where middleware systems have failed?

The thesis does not take into account features that might otherwise be associated with web-

service performance such as transaction management, security, load-balancing, concurrency and

speed. As is mentioned in the conclusion to this thesis, it would not, for instance, be sensible, to

use a web service to handle large numbers of small SOAP messages where the XML overheads

would be disproportionately large and would adversely affect performance. Such a point needs

to be made in the context of the usefulness of web services but does not impinge on their

interoperability.

Writing a thesis about web services is like chasing a rapidly moving target. Web services

constitute a computing landscape that is constantly being modified, reshaped and extended, not

only through the proliferation of standards and specifications produced by the various working

groups, but also by the marketing pitches of major web services tool vendors, each of which

wants to reap the gains of developing the definitive product. An editorial published in the

October 2004 issue of the Web Services Journal states the problem very clearly: "There are too

many standards, at too granular a level, and too much competition" [Rhody, 2004a].

CHAPTER 1: INTRODUCTION 2

In addition to this, there are even major divisions in approach between the web-services

marketing and the web-services technology arms of the same vendor, as pointed out by Birman

[2004]. Also in the Web Services Journal, but in a different issue, the significant point was

raised that there are virtually no human interfaces into web services: "Even though a large

number of Web services are designed solely for computer to computer communication the

continuing reality is that more Web services are designed to interact directly or indirectly with

human beings" [Rhody, 2004b]. (Examples cited in texts on web services bear this out in their

references to holiday booking applications, banking applications or customer orders. The

Amazon and Google web services, possibly the most well-known, widely used and truly global

web services, are intended for human interaction.) Representative definitions of web services

discussed in Chapter 3 are, however, unconditional in their requirement of machine-to-machine

communication as a defining feature.

1.2 Interoperability as the Distinguishing Feature of Web Services

The term interoperability is itself capable of several definitions. Guest derives his formal

definition from his study of the ISO Information Technology Vocabulary:

Interoperability enables communication, data exchange, or program execution among

various systems in a way that requires the user to have little or no awareness of the

underlying operations of those systems… this is the ultimate goal of building a solution

today [2003].

Here Guest distinguishes interoperability (enabling communication and data exchange between

different platforms) from the concepts of migration (rewriting a component to run on another

platform) and portability (moving a component to a different vendor's implementation but using

the same platform). Guest also cites two advantages of interoperability: it enables the reuse of

existing systems, and uses to best advantage the technical merit of the platform on which the

component has been developed.

Senior (Sun) Java Architect Tyagi also points out that there are several possible meanings for the

term interoperability but the one he favours is this:

CHAPTER 1: INTRODUCTION 3

… the functional characteristics of the service should remain immutable across differing

application platforms, programming languages, hardware, operating systems and

application data models. Web services by definition should be interoperable and the

service consumer should not be tied to the service implementation [Tyagi, 2004b].

Tyagi makes clear recommendations concerning requirements for interoperability in web

services, which may be summarized as follows:

• web services must comply with existing agreed standards, and their compliance with

these standards must be tested against the Web Services-Interoperability (WS-I) Basic

Profile (the Basic Profile is discussed in Chapter 4 and used as a testing agent in Chapter

7);

• toolkits used to develop web services must not:

• conform only to a subset of the standards and depend on the implementation either of

optional specifications or of ambiguities in the specifications;

• have proprietary extensions;

• have any customization of SOAP messages (e.g. for compression or security reasons);

• services must be tested against multiple client types;

• application integration services must be open to the need to use an intermediate data

model to resolve the differences between systems;

• the creator of a web service must be aware that any complex, application-defined data

types may not be fully interoperable, even though they can be represented as schema data

types, because they may need custom handlers for serialization and deserialization2;

• extensions to the Web Services Description Language (WSDL) should be avoided.

The features listed by Tyagi are discussed in later chapters, where factors that detract from web-

services interoperability are examined. Some of these features, such as proprietary extensions

for web services and the customization of SOAP messages, would fall foul of the Basic Profile,

to which most vendors are anxious to show conformity (Visual Studio 2005 even has a new web-

2 serialization is sometimes defined as the process of converting from a language-specific data type into XML, with
deserialization being the reverse process. It is also used to refer to the conversion of, for example, a SOAP message
into a TCP/IP buffer stream and its transportation between the client and the server.

CHAPTER 1: INTRODUCTION 4

service header to display conformity), and proprietary extensions are becoming increasingly

unlikely as a result, although, in recent contradiction of that, Sun are now planning proprietary

extensions to WSDL with JAX-WS (see page 152).

Chapter 4 mentions the limitations of the Basic Profile in its lack of support for recent standards

but also discusses current web-service implementations that use only a subset of W3C Schema.

Chapters 3 and 4 include some discussion of the increasingly less proprietary wrapped extension

to WSDL message styles. Chapter 7 looks at testing against multiple client types and the

problems of user-defined data types. Of all these concerns, the most significant is data-typing, a

language issue (discussed in Chapter 3, 4 and 7). As Tyagi points out, too often it is assumed

that because a data type may be expressed in a schema, it may also be adequately converted to

another language on another system. Chapter 2 also discusses semantic problems arising from

the need to map the types from one schema onto another that may be very different.

A further feature, central to interoperability but not raised by Tyagi, became significant from the

beginning of 2005, with the publication of the SOAP Message Transmission Optimization

Mechanism (MTOM) by the World Wide Web Consortium (W3C), which defines binary

representations in XML. This issue is discussed in Chapter 4.

Java was chosen as the main language of implementation for this thesis and, wherever possible,

either open-source, non-commercial or freely-available APIs and software were used for trial and

development because it was felt that such products were more likely to be standards-compliant,

and less driven by the need to create proprietary features. The other languages of

implementation were C#, against which Java programs have been tested both as clients and

servers, and PHP. A free editor (SharpDevelop) was used to create C# programs and they were

run on a free C# web server, Web Matrix. Both these applications were chosen for their

convenience, small footprint, ease of use in development and because their simplicity was closer

to the tools chosen for Java development. Some testing was also done using Visual Studio 2005

because of its very recent release and its support for version 2.0 of the .NET Framework. The

PHP development was carried out both with a simple text editor and with an evaluation version

of the latest Zend Studio because of its new support for WSDL generation. The latest version (5)

CHAPTER 1: INTRODUCTION 5

of PHP was used and tested on the latest version (2) of the open-source Apache server. PHP is a

fairly recent arrival on the web-services scene but its different status as an interpreted scripting

language widened the scope of the testing.

1.3 Research Methods

This thesis presents a comparative survey of the features and functions of web services from the

viewpoint of interoperability. Its aim is a synthesis and assessment of the issues surrounding

these features and functions and therefore it omits consideration of such matters as security and

load-testing which might otherwise have been included. To arrive at a systematic assessment,

Chapter 4 sets out a qualitative analysis of the basic components of web services and some

different approaches towards building web services. Statements on web services from leaders in

the field, whose often contradictory positions are validated by their considerable practical

experience, are included to illustrate the contested state of the field. The contradictions inherent

in the subject matter are the substance of the problem: to what extent are web services really

interoperable? The conclusions arrived at are the result of a combination of analyzing web-

service features and functions qualitatively and of validating the findings through practical

experiments with web services in Chapter 7. A summary of the main problem areas and the

experimental findings may be found in Table 7-1.

1.4 The Design

Chapter 2 of this thesis aims to place web services in the context not only of the evolution of

distributed computing but also of contemporary and future distributed computing requirements.

It outlines the major middleware systems that might be considered forerunners of web services,

and attempts to show the extent to which web services might or might not be considered a

development of these systems. Some of these systems still coexist with web services and the

chapter includes a discussion of one system which attempts to combine middleware systems with

web services.

CHAPTER 1: INTRODUCTION 6

Chapter 3 formulates a working definition of web services. As the arguments demonstrate, such

a definition is itself a moving target. There are different interpretations and definitions of nearly

all the components of a web service. We are told by Vogels that, "One of the key architects in

the W3C’s Web Services Architecture working group stated quite bluntly that they did not have

the luxury of describing Web services in a simple manner because none of the participating

vendors could agree on a single definition" [Vogels, 2003]. Chapter 3 also examines the extent

to which web services have already been adopted as a business strategy, or are likely to be in the

near future, and discusses the advantages offered to businesses by web-service implementations.

Such an examination requires consideration of the advantages and drawbacks of some currently

available web-services toolkits. Lastly, a definition of web services would not be complete

without placing it in the context of Service-Oriented Architecture (SOA), a necessary companion

to web services in the enterprise, enabling the reuse of service components and the orchestration

of complex interactions between them.

As indicated above, Chapter 4 moves towards creating a taxonomy of web services by making a

qualitative analysis of its constituent parts. It examines in some detail the core accepted

components of web services, SOAP, WSDL and the standard for Universal Description,

Discovery, and Integration of web services (UDDI). Each of these standards is discussed in the

light of their contribution to web services' interoperability. With regard to SOAP, the chapter

makes a clear distinction between messaging formats and programming models, which are

sometimes confused through their identical naming. Included in this chapter is a survey of the

more controversial elements of SOAP implementations and also of the implications of some of

the SOAP client models. The chapter presents a fresh approach to issues and problems

associated with emerging versions of several key technologies.

Chapter 5 is concerned with Representational State Transfer (REST), an alternative to the

commonly accepted web-services model, which uses XML over HTTP both with, and more

especially without, benefit of SOAP and WSDL. Because of the extreme simplicity of its model,

REST web services assure interoperability. The chapter demonstrates this and examines its

feasibility.

CHAPTER 1: INTRODUCTION 7

Although web-services orchestration and choreography are outside the major focus of this thesis

in that they are systems or architectures for coordinating web services as a larger whole, they

involve user and service interactions requiring interoperability. Chapter 6 therefore includes a

brief description of the currently competing standards, Web Services Choreography (WSC), a

recommendation by the W3C, and Business Process Execution Language for Web Services

(BPEL), standardized by the Organization for the Advancement of Structured Information

Standards (OASIS). The chapter also includes a brief discussion of the Enterprise Service Bus

(ESB) and takes a brief look at the Windows Communication Foundation (WCF, formerly code-

named Indigo), the new Microsoft framework for integrating web services.

Chapter 7 presents a validation snapshot of the qualitative findings in the earlier chapters,

looking at web services in practice and examining sample services implemented in different

ways and with different clients as a means of assessing the comparative interoperability of

varying approaches to web services. One service sets out to provide means of indexing and

searching web pages that might be required in the course of a research programme. In addition

to the more usual types of SOAP client, a Mozilla Firefox extension has been implemented,

which may be used to access the service. C# and PHP clients were also written for the service.

Further service samples were written as clients and servers in both C# and Java, as well as in

PHP, a more recent arrival on the web-services scene. The interactions in these services were

much simpler but some of the data types used were more complex to illustrate the issues raised

by datatyping and XML serialization and deserialization from the viewpoint of different

languages. A further section in this chapter examines the new JAX-WS web-service framework,

currently still under development. Also included in Chapter 7 are conclusions regarding

interoperability reached with the aid of commercial testing frameworks such as Parasoft's SOA

Test and Mindreef's SOAPScope.

The Conclusion draws the thesis together, offering an assessment of the extent to which web

services may accurately be seen as interoperable, suggesting credible directions and solutions,

and listing possible future extensions to the work.

CHAPTER 2: FOUNDATIONS OF WEB SERVICES

2.1 Introduction

While the focus of this chapter is on the differences between web services and the technologies

that preceded them, it aims to keep in view the fact that web services can complement earlier

methods of distributed computing. The chapter examines different client/server and middleware

architectures including CORBA, RPC, RMI and Message-Oriented Middleware, comparing them

with features of web services that offer similar functionality.

2.2 Similarities and Differences

Past and present solutions to the problems of distributed computing necessarily have much in

common. Slama et al. point out that a successful web services architecture will need to

"embrace existing and upcoming technologies instead of replacing or excluding them" [2004].

Indeed, as Slama et al. go on to demonstrate, the modes of communication adopted by all types

of distributed computing are variants on either synchronous or asynchronous mechanisms and,

whatever the approach, additional runtime features are required such as "security support, fault

tolerance, load balancing, transaction handling, logging, usage metering, and auditing".

Slama et al. also discuss a major difference between older and newer approaches. While the

earliest attempts at distributed computing were very network-dependent in that they necessarily

took a low-level approach to details such as socket programming, later attempts benefited from

the availability of higher-level protocols, such as TCP/IP, which abstracted that dependence

away until it is today possible to use a toolkit to "write" distributed programs without any

knowledge of how the network actually works or of what is taking place when the code is

executed. The problem with this situation is, of course, that when something goes wrong, it can

be very difficult even to locate the problem, much less fix it. Slama et al. warn: "…it is the

experience of the recent two decades that the developer's awareness of the distribution is still

crucial for the efficient implementation of distributed software architecture."

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 9

2.3 Client/Server: the Beginnings of Distributed Computing

Servers

Clients

Client-Server Silos Web-based Computing Web Services
A device may be

either client or
server
or both

Workstation

PDA

Web
Server

Servers

Clients

Internet

Cell-phone

Figure 2-1: A Web-Centric View of Distributed Computing

Distributed computing began with the client/server model, with a local machine as a client which

requested some kind of processing from another local machine as a server on an intranet. Later,

client browsers requested processing from web servers across the internet, using the universally

accepted standards of HTML, HTTP and TCP/IP. Distributed applications, distinct from

browsers, also requested processing from servers across the internet. Such requests could not

always be fulfilled by the computing power of one machine alone and multiple servers worked

(and still work), processing in parallel, reaching solutions through distributing the processing.

The development of a web-service model can partly be illustrated in the much simplified

diagram in Figure 2-1, redrawn from Kleijnen and Raju [2003], where the earliest silo pattern (a

tightly-coupled system with dedicated hardware and software) is shown as the beginning of a

movement to web-based computing. The arrow linking the second and third parts of this

diagram suggests the same kind of evolutionary pattern as that evident between client-server

silos and web-based computing, but hides a greater distance between these later systems, which

differ from one another to a greater extent.

Although this diagram is drawn from a rather narrow, web-centric view of distributed

computing, which includes neither the significant features of middleware, to be discussed later in

this chapter, nor the development of parallel computing, it does illustrate the movement away

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 10

from the tightly-coupled, client-server model towards a peer-to-peer model, in which any

network node may be a server and any network node may be a client; in which a network node

does not have to be a desktop computer to assume either role but may be a cell-phone or a PDA

or, in the future, perhaps a fridge, a car or even a house; and in which multiple nodes may be

involved in the same service.

2.4 Middleware Communication Architectures

2.4.1 The Remote Procedure Call (RPC)

At its most basic level, RPC can loosely be defined as the exchange of network packets between

two physically remote systems which have no shared memory but appear to operate transparently

as one "local" system by which the programmer is shielded from the mechanics of the message

passing.

A tighter definition of RPC is provided by the Open Group [The Open Group, 1997] which

provides two complementary aspects of the RPC model:

1. the client/server paradigm in which the meeting-place for both client and server is the

programming interface, and

2. the "program/stub/run-time system", which spreads the responsibility for implementing an

RPC call between application code and a number of RPC components, many of them

invisible to the programmer. For example, stubs (or proxies) on both the client and the server

carry out processes which are not actually generated by the programmer, but are controlled

by the specifications of an interface definition language, to handle the interface between code

and the run-time system. This approach conceals the communication process from the

programmer and is closer to the CORBA (Common Object Request Broker Architecture) or

RMI (Remote Method Invocation) model.

Because there must be a run-time binding between client and server, RPC by its nature is not

loosely-coupled. Such a binding involves the knowledge by a client, also known as a "requester

agent" [Booth and Liu, 2005], of the service endpoint or network address. The Open Group

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 11

explains: "In order for an RPC to occur, a relationship must be established that ties a specific

procedure call on the client side with the manager code that it invokes on the server side" [The

Open Group, 1997].

At the start, many incompatible RPC systems were developed with equally incompatible

protocols. RFC3 1057 [Sun Microsystems, 1988] was originally drawn up in June 1988 by Sun

Microsystems, with input from IBM and BEA, partly as a response to the need for platform-

independent communication structures that might access file systems across the Internet. An

Open Standards version (or Version 2) was later produced by Sun, in 1995, as RFC 1831. Of

particular interest is section 7.4 of this second version which describes "Other Uses of the RPC

Protocol" and states:

The intended use of this protocol is for calling remote procedures. Normally, each call

message is matched with a reply message. However, the protocol itself is a message-

passing protocol with which other (non-procedure call) protocols can be implemented

[my italics] [Srinivasan, 1995].

At an equivalent point in the earlier version, RFC 1057, this feature had been presented

apologetically as a possibly erroneous use of the protocol. The movement away from the

original meaning of RPC was further evidenced in a technical article on document-based web

services, on the Sun Developer website, which explained:

Although JAX-RPC [Java API for XML-based RPC] and its name are based on the RPC

model, it offers features that go beyond basic RPC. It is possible to develop web services

that pass complete documents and also document fragments [Tyagi, 2004a].

An even more recent article explains almost apologetically: "JAX-RPC is somewhat of a

misnomer, since it supports both RPC-style and document-style web services" [Panda, 2005].

And in May 2005 the final apparent repudiation of RPC came in the announcement on an official

Java site that "JAX-RPC 2.0 has been renamed to JAX-WS 2.0 (Java API for XML-Based Web

Services)" [Kohlert et al, 2005].

3 RFC is incorporated in the names of a series of documents about network computing standards and is an acronym
for Request for Comments.

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 12

Service
Program

Machine A Network Machine B

Client
Program

callrpc()

Program
suspends
while awaiting
response

call service
Service
executes and return() answer
returns
answer

Program
continues

Figure 2-2: The Remote Procedure Call

The processes involved in a Remote Procedure Call can best be illustrated by the sequence

diagram in Figure 2-2, redrawn from Thomas et al. [2003]. Here a program on a distant machine

may be invoked by a local program through a process in which the network appears transparent

to the caller. RPC calls are usually synchronous but the Java API for XML-RPC 1.1 standard

specifically allows for asynchronous messaging as well. The diagram illustrates the synchronous

pattern of RPC calls, in which the calling program blocks until a reply is received. RPC

represents tight-coupling in that it needs to be implemented on both ends of a service call and

because the client blocks until a response is received from the service, leaving wide open the

possibility of delay occasioned by network problems.

2.4.2 The Distributed Object Model

RPC was widely adopted in the 1980s. A similarly prominent position in the 1990s, in terms of

programming style, was occupied by object orientation, which created a need to find the means

of exchanging distributed objects across the Internet. Raj makes the connection between object

orientation and distributed-object systems in an OMG (Object Management Group) paper:

"Distributed object computing extends an object-oriented programming system by allowing

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 13

objects to be distributed across a heterogeneous network, so that… these distributed object

components interoperate as a unified whole" [1998].

Figure 2-3: The Main Components of the ORB Architecture and their Interconnections [Keahey, 1998]

Britton and Bye define the difference between earlier middleware systems and the distributed

object model: "Instead of client and server, there are client and object" [2004]. The need for

change was also fuelled by the movement away from 2-tier client/server systems to 3-tier and

eventually n-tier systems, in which typically the application logic is divided across several

layers, including a database layer, and in which the system is composed of reusable, discrete

components. Systems developed to enable the exchange of distributed objects included the

Common Object Request Broker Architecture (CORBA) developed by the Object Management

Group (OMG), a non-profit consortium. Implemented differently (and expensively) by different

vendors, it experienced major interoperability problems and its history is surely an object lesson

(in the more general sense of the word) for web-service tool vendors.

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 14

2.4.2.1 CORBA

A CORBA application includes an Object Request Broker (ORB), a client in one location and a

service implementation in another. Figure 2-3 shows the interconnections of the ORB

architecture. The ORB is crucial to interoperability because it matches the client to the server

and provides the communication mechanisms needed by each in order for the other to be

understood. Interoperability problems arose initially in the lack of a defined protocol to be used

between ORBs, but the development of first the Internet Inter-ORB Protocol (IIOP) and then of

an interface in terms of the Portable Object Adapter (POA) went some way towards solving

these problems. The development process, however, took too long and was bedevilled by the

addition of vendor extensions to the basic standards, by the lack of implementation by vendors of

later OMG specifications, and possibly also by the interaction complexity that arises from the

use of multiple interfaces.

2.4.2.2 Component Object Models

At the same time that the OMG was presenting CORBA as the solution for distributed systems,

Microsoft was developing the Component Object Model (COM), with interoperable, reusable

components which, in the case of object-oriented programming, could create objects and make

them available to external clients. After COM came the Distributed Component Object Model

(DCOM), which allowed for objects or components to be accessed across a network. These

components were proprietary in that their use was limited to Microsoft Windows operating

systems and they cannot therefore be considered interoperable in a wider sense.

Microsoft was not alone in developing a component model: Sun's simpler component model was

the JavaBean which runs inside a Java Virtual Machine (JVM) and has therefore the added

advantage of platform independence. JavaBeans are still a crucial part of the interoperability of

Java-based web services in that they provide the means for serializing and deserializing complex

objects to and from XML. Sun also developed the Java-specific (and therefore not interoperable

across some platforms) Remote Method Invocation (RMI), which established mechanisms

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 15

whereby an object inside a JVM running on a distant machine might be manipulated. RMI was

preferred by Sun to RPC, because "RPC… does not translate well into distributed object

systems, where communication between program-level objects residing in different address

spaces is needed" [Sun–RMI, 2004].

2.4.2.3 Transactional Component Middleware

Both Microsoft and Sun went on to develop what Britton and Bye first termed transactional

component middleware [2004], a term describing the use of a container for the components,

which provides extra services such as transaction management and resource pooling. Neither

Microsoft nor Sun, however, solved the interoperability problem that had troubled distributed

computing almost from its outset. It might even be said that object-orientation exacerbated the

problem by requiring tighter coupling between the systems. For the object on a distant machine

to be accessed, the program on the local machine must first have a reference to the object, in the

same way that a program must have a pointer to the address of a local object it wishes to use.

Such a system does not work well across language and platform boundaries, and web services

have replaced object references with endpoints4 as the definition of a service.

2.4.2.4 Integrating Legacy Systems

A major focus for current web services, as well as a significant reason for their attractiveness to

the corporate mind, is the legacy system, usually an earlier form of middleware, which needs to

be made more widely accessible through integration into a more modern distributed system.

Integration problems can arise because of the differences between the old and the new systems.

As has been seen, legacy middleware frequently suffers from a tight coupling of client and

server. Vinoski argues that the process of integrating such systems into web services is

fraught with problems. One of the worst is that it causes inappropriate details (about

protocols, type systems, interaction models, and so on) to show through the Web services

4 An endpoint is the combination of a network address and a port at which a service may be accessed.

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 16

level from the underlying systems, destroying the service encapsulation and isolation that

Web services are supposed to provide [Vinoski, 2002].

He argues that while a web service, such as one that might handle purchase-order documents, is

coarse-grained, stateless and loosely-coupled, legacy systems that might be integrated within it

will more likely be fine-grained, stateful and closely coupled. His example of an integrated

legacy system is a credit-card authorization process, which would run naturally over RPC

because further purchase-order procedures could not continue without receiving that response.

Medicke and Pack argue on similar lines to Vinoski, using for their illustrations of coarse-

grained web services the processes of ordering a meal in a restaurant, and using a High Street

ATM: " How would the restaurant-goer's experience be if there [were] a different process for

ordering each part of the meal, or when withdrawing cash at an ATM, there were a hundred

different menu options. Service interfaces are expected to be simple and intuitive" [Medicke and

Packe, 2003]. It was the complexity of fine-grained systems that was partly responsible for

preventing their wide adoption: fine-grained systems lay themselves open to proprietary

techniques for dealing with the details.

A related issue for interoperability with legacy systems is raised by Halevey [2005] in his

discussion of the problems of semantic heterogeneity for database schema. Because legacy

systems were built sometimes haphazardly, and some of the data required to be used may not

even be structured, data views may have to be assembled from multiple sources which require

mappings to preserve the semantics. These mappings are difficult to create and, according to

Halevey, prone to errors. One example Halevey cites is that of Amazon. Companies whose

products are exposed on the Amazon website are required to conform to a particular schema

which may bear little correspondence to any schemas used internally by the companies. In such

a situation, multiple mappings may be possible and there is room for confusion. Halevey points

out that:

Resolving schema heterogeneity is inherently a heuristic, human-assisted process. Unless

there are very strong constraints on how the two schemas you are reconciling are

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 17

different from each other, one should not hope for a completely automated solution

[Halevey, 2005].

Because such processes are difficult to automate, simply wrapping such a system as a web

service may not achieve interoperability. There is the added difficulty that the complexity of

such a system may not lend itself to exposure through a web-service registry, when method and

parameter names "do not capture the underlying semantics of the Web service". Halevey cites an

attempt to resolve that problem in the form of a search engine, Woogle5, which:

is based on analyzing a large collection of Web services and clustering parameter names

into semantically meaningful concepts. These concepts are used to predict when two Web

service operations have similar functionality [Halevey, 2005].

Halevey does not consider it ultimately impossible for the complicated mappings to be

automated but he does argue that the tools necessary to accomplish this are not yet available and

that it will take time for them to be developed. Like the examples cited by Vinoski and Medicke

and Pack, the problem for web services lies in the fine-grained nature of legacy systems and the

data they expose.

2.4.2.5 Web Services versus Distributed Objects

A further difference between web services and traditional distributed object middleware lies in

the design approach of the two types of system. Web services are best thought of as "top-down",

aiming first to identify the business process to be modelled, while distributed model architectures

can be thought of as "bottom-up" in their emphasis on technical details at a low level. Legacy

system integration can also be considered a "bottom up" approach in that it can start from an

existing low-level application. In a pure "top-down" approach, WSDL is supposed to be the

starting point of a web service, although many web-service toolkit vendors, anxious to pre-empt

the learning curve that WSDL requires, ignore this requirement and attempt to generate the

WSDL for each service from the code written for it. The problems caused by this approach are

discussed in Chapters 4 and 7.

5 See www.cs.washington.edu/woogle.

http://www.cs.washington.edu/woogle

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 18

With object-oriented languages such as Java, C# and, more recently, PHP, objects form the base

of the coding and creation of a web service, but web-service programming objects are not passed

between the client and the service. Only public methods are exposed in a service interface and

only a data representation of the public fields may be exchanged. An object has state, but web-

service messaging is stateless (there is no way of defining state in WSDL). Objects have

traditionally been serialized in a binary encoding, while web services serialize data in XML.

Recent technology may make both these approaches available to web services, although whether

such methods are counter to the interoperability objectives of web services remains to be seen.

The original developers of XML certainly thought so [Bray, 2001], at least in terms of message

transmission between PCs, though it would be contrary to the principles of interoperability to

think only in terms of one platform, particularly when there is currently a great expansion of

possible platforms across multiple devices.

Vogels is in no doubt about the differences between web services and distributed object systems,

itemizing his reasons as follows:

Web services share none of the distributed object systems’ characteristics. They include

no notion of objects, object references, factories, or life cycles. Web services do not

feature interfaces with methods, data-structure serialization, or reference garbage

collection. They deal solely with XML documents and document encapsulation [Vogels,

2003].

Of interest in this context is that JAX-WS has removed the need for web services to create an

interface, relying now wholly on the implementation class and thereby possibly acknowledging

that WSDL is a sufficient interface.

2.4.2.5.1 Comparisons Between Web Services, CORBA and RMI

In contrast to Vogels, Gray's comparative study of web services, CORBA and Java-RMI [2004]

makes a convincing argument that there are more than superficial similarities between distributed

object systems and the static stub client model for web services (discussed in Chapter 4). His

diagram in Figure 2-4 illustrates the similarities by showing how a client-side stub can be

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 19

generated from an interface definition in web services, in CORBA and in Java-RMI. The

similarity between Java-RMI and web services is particularly significant in that the J2EE 1.4

implementation of web services is built upon the earlier technology of servlets and RMI.

All three approaches here are shown by Gray to start with a type of interface from which a client

stub may be produced – although the interface type differs between Java-RMI, where it is an

interface in code, and web services which ideally should start not with code but with a WSDL

definition, the focus of section 4.3.3 in Chapter 4.

Web Service CORBA Java-RMI

Java Remote
Interface

WSDL IDL

Figure 2-4: Generation of Client and Server Components from Interface for Web Services, CORBA and

Java-RMI [adapted from Gray, 2004]

Burner emphasizes a similar difference between web services and CORBA when he explains:

"Making the messages and the service contracts the design centre of web services is the

fundamental difference between the web-services architecture and CORBA" [Burner, 2003].

Gray offloads the blame for ignoring this architectural ideal onto the JAX-RPC and .NET

development environments, which not only permit but also encourage the model to be developed

in reverse, and adds: "This bottom-up approach is easier for most developers" [2004]. He also

dismisses the differences between a WSDL file and a remote interface definition with the

comment that: "The inclusion of the service end point's URI6 is really the only major semantic

6 Uniform Resource Indicator

Server (base)
– class or
interface

client
stub

Implementation

client
stub

POA
skeleton

Implementation

idl compilerwsdl processing
Implementation

client
stub

rmi compiler

server
skeleton

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 20

difference from an IDL or java.rmi.Remote interface declaration", making light of the

significance of the encoding and the focus on message passing crucial to web services.

Technology Total Latency Total Packets Total data transferred in bytes

WS 0.11s 16 3338

CORBA 0.48s 8 1111

CORBA & name

server

0.86s 24 3340

Java RMI 0.32s 48 7670

Table 2-1: Gray's results for a single (simple) exchange

Further differences between the three approaches begin to appear in the communication process.

While all three employ connection-oriented protocols, CORBA and Java-RMI use tightly-

coupled methods that require state to be maintained, while web services need statelessness in

order to be loosely coupled.

Gray's comparative findings on speed and efficiency vary, depending on the complexity of the

data transferred in the examples he uses. For a single exchange with simple data, the web-

services technology was both faster and more efficient, unless CORBA was run without a name

server, as Table 2-1 above illustrates.

Gray pinpointed a significant difference in the payload size for his web-services example as

opposed to that for CORBA and Java-RMI. Web services can be and frequently are used for the

transmission of much more data than is usual in the other two technologies, and the transmission

of text with XML tags further increases the size of the data to be transmitted. He found that the

number of packets transmitted was much greater for web services in all cases, as can be seen

from his statistics in Table 2-2.

Gray's simple "Calculator" example, with four arithmetic methods accepting and returning

integers, transferred only numerical data. His "iterator" example repeatedly invoked the service

inside a loop. The "data" service returned a data structure, while the "large data" example

modeled the retrieval of potentially much more complex data from a database.

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 21

Even with the use of a Serial API for XML (SAX) parser, which does not have the considerable

memory overhead of a Document Object Model (DOM) parser, there was still significantly

greater system-resource usage for the web-services "data" and "large data" examples. Gray

found the average memory usage for the "large data" example were (for web services) 4.75MB,

(for Java-RMI) 2.6MB and (for CORBA) 2.0MB. With the "iterator example", however, the

web-service system performed at a level closer to CORBA (~2.1MB), when it was adapted to

become a hybrid of web services and CORBA. This greater economy was achieved by a

sacrifice of statelessness and loose coupling, both necessary features in web services.

Packets transmitted for the different technologies

49
10 10

56
10 10

1,144

475

1,354

501

1,258

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

Web
Services

CORBA Java-RMI Web
Services

CORBA Java-RMI Web
Services

CORBA Java-RMI CORBA Web
Services

"Calculator" "Calculator" "Calculator" "data" "data" "data" "large data" "large data" "large data" "iterator" "iterator"

Th
ou

sa
nd

s

Technology with example

N
um

be
r o

f p
ac

ke
ts

 tr
an

sm
itt

ed

Table 2-2: Packet Numbers for the Different Technologies [Jeckle et al., 2004]

With a package size of nil, similar results were initially demonstrated in a DaimlerChrysler

presentation, illustrated in Table 2-3, which aimed to compare Java-RMI, CORBA and SOAP

[Jeckle et al., 2004]. Jeckle et al., however, found that, with large payload sizes, the package

size differences virtually disappeared, with CORBA ultimately displaying the heaviest package

size. They came to the conclusion that "package size scales linear with payload size", but that

response times grew exponentially with package size, almost evening out the higher cost of the

HTTP overhead for SOAP. Larger payload sizes produced a better performance for SOAP sent

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 22

directly over TCP rather than over HTTP. They reached the conclusions that the SPEC 20007

value of the server correlated well with web-service performance; that HTTP, rather than SOAP,

was the performance bottleneck; and that there was plenty of room for optimizing web services

to increase their performance further.

Table 2-3:Package sizes with a payload first of 0 bytes and then with a payload of 10,000 bytes [Jeckle et al.,

2004]

In other sections of his investigation [2004], Gray tossed aside the central question of data

representation in web services with a casual: "Tiresome practical details like common data

representations are avoided through the use of textual representations." His major concerns were

comparative message transmission times, CPU and memory usage, and his testing was all local

and Java-based. His study raised interesting questions about the usefulness of session state, a

feature of both CORBA and Java-RMI, and he produced helpful data on both latency and system

resource consumption, but his omission of the interoperability and data representation issues

made his study significantly incomplete. RMI works properly only when there is a JVM on both

the web server client and the server machines. Because the central issue of web services is

interoperability, RMI is an inappropriate tool for making web-service calls.

2.4.2.6 Recognizing the Remoteness of Distributed Objects

Half a decade before the term "web service" was first used, Waldo et al. explained the error of

considering it possible to treat remote objects as if they were local objects:

7 SPEC 2000: SPEC is an acronym for the Standard Performance Evaluation Corporation, which aims to produce
fair computer benchmarking. See http://www.spec.org/.

http://www.spec.org/

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 23

There are fundamental differences between the interactions of distributed objects and the

interactions of non-distributed objects. Further, work in distributed object-oriented

systems that is based on a model that ignores or denies these differences is doomed to

failure, and could easily lead to an industry-wide rejection of the notion of distributed

object-based systems [Waldo et al., 1994].

Waldo et al. argue that it is impossible to separate the interface of an object from the context in

which it is used. They also give an all too familiar description of a ten-year cycle in which a new

distributed computing paradigm is proclaimed, alongside a new programming model, without

any real change in the numbers of distributed applications because the real problems are left

unsolved: "partial failure and the lack of a central resource manager". Interestingly, from the

viewpoint of web services, they suggest that part of the solution might lie in greater awareness of

communication patterns and argue for transparency of boundaries between local and remote

objects. This might be represented in web service terms as the boundary between client and

service.

It is, however, the issue of interoperability, together with the related issue of data representation,

which pose the most significant problems for distributed computing. The distributed object

model failed to find effective solutions for either. The vendors of products implementing the

model defeated themselves with proprietary systems that became too costly to implement on a

large scale and did not interoperate with each other. It can even be argued that the vendors did

not actually want interoperability because they each wanted their product to be the only one to

succeed.

2.4.3 Message-Oriented Middleware

With the precursor to IBM's WebSphere in the mid 1990s came the beginnings of Message-

Oriented Middleware (MOM). While the focus of RPC is on the method call, the focus of

messaging software is on the message and its delivery. The messaging mode adopted by MOM

is loosely coupled and therefore has the advantage of being usually, but not exclusively,

asynchronous. It includes not only messages (each consisting of a header, used for network

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 24

routing, and a payload of business information to be exchanged, sometimes formatted in XML)

but also message queues which may be described as a generalized type of mailbox. The function

of the queue is as a decoupling mechanism, in that it is a repository for the messages – a truly

middleware system – that makes it possible for sender and recipient to be disjoined and for the

recipients to be individual or multiple, as in email. (The distinction between modern MOM

systems and email is that, while email may be used either for person-to-person communication or

for application-to-application communication, MOM is used purely for the latter.) MOM also

moves away from the client-server paradigm into a peer-to-peer model in which one message

may be sent to any number of recipients by multiplexing.

Figure 2-5: The Point-to-Point MOM Option

There are two different messaging subsystems: point-to-point, where one queue is used for one

sender and one recipient, as illustrated in Figure 2-5, redrawn from the J2EE (1.4) Tutorial

[Armstrong et al., 2005], and publish-subscribe, where one publisher can send data to those who

have subscribed to the topic and who will probably be unknown to the publisher. This system is

illustrated in Figure 2-6, also redrawn from the J2EE Tutorial.

The queues can be chained as they are in an email system, where queues feed into each other,

and different quality of service levels may be activated depending on the services supported by a

particular system.

MOM provides a bridge to web services, not only because of its loosely-coupled and

asynchronous mechanisms and its focus on the exchange of messages or documents, but also

because of the promise it offers of reliable message delivery. It differs considerably from

distributed object technologies in its loose-coupling and asynchronous mode. As the emphasis in

the web services world moves away from traditional RPC and closer to the idea of a messaging

contract, far from being only a precursor to web services, MOM technologies are increasingly

Acknowledges

Consumes Client 1 Client 2 Queue

Msg
Msg

sends

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 25

being coupled with the web-services protocol stack, particularly as a way of handling legacy

systems and applications. A July, 2005 newsletter from O'Reilly Network's ONJava.com

questioned:

Is the era of the Remote Procedure Call (RPC) fading?.. the nature of network activity

with its latency, unreliability, and potential for asynchronicity, make it ideally suited for a

different approach. This explains the growing interest in messaging-oriented systems

[O'Reilly, 2005].

Figure 2-6: The Publish/Subscribe MOM Option

The current Java Messaging technology is Java Message Service (JMS), first made available in

1998. It differs from earlier MOM systems in that it supports both the point-to-point and the

publish/subscribe messaging subsystems, making it possible for them to be combined within one

application. Apache Axis incorporates the use of JMS as a transport protocol. Although the

asynchrony of message-oriented web services looks very attractive, it is more tightly coupled

than it appears, in that the client needs to use the same implementation as the service provider.

Vinoski [2002] focuses on the similarity between messaging systems and web services in his

statement that: "Messaging-based systems essentially let data travel from one service to another,

allowing each to process the data as necessary without tightly coupling the services". He argues,

however, that web services, far from reinventing the wheel of message passing, have a

Delivers

Subscribes

Topic Msg

Msg

publishes Client 3

Delivers

Subscribes
Client 2

Msg

Client 1

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 26

significant difference in their implementation of open standards which promote scalability and

interoperability, not present in the earlier, proprietary messaging systems.

2.4.4 Summary

The discussion so far has attempted to sketch the background for the emergence of web-services

technologies over the last few years. The situation is confirmed by Manes, who summarizes her

version of the reasons that have driven the search for an improvement upon traditional

middleware frameworks [Manes, 2003]:

• Traditional middleware doesn't support heterogeneity.

• Traditional middleware doesn't work across the Internet.

• Traditional middleware isn't pervasive.

• Traditional middleware is hard to use.

• Traditional middleware is expensive.

• Traditional middleware maintenance costs are outrageous.

• Traditional middleware connections are hard to reuse.

• Traditional middleware connections are fragile.

Manes argues that web services potentially solve all of these problems in that they are not only

language-, device- and platform-neutral but they are also more efficient and reusable through

their loosely-coupled architecture. Web services are also cheaper and faster to implement than

traditional middleware solutions. Manes' approach suggests that web services are indeed the

next step. Vogels, however, defines web services as distinct from what has gone before in that,

far from being the next step, they are messaging technologies, or "distributed systems

technologies…now sometimes deployed in areas where distributed object applications have

failed in the past [author's italics]" [Vogels, 2003].

Vogels' refutation of the idea that web services developed out of distributed object systems is

supported by the naming change for the SOAP protocol, one of the key web-services protocols,

discussed in Chapter 4. SOAP began its life as an acronym for Simple Object Access Protocol

but this was changed in the most recent 1.2 specification document, which declared somewhat

CHAPTER 2: FOUNDATIONS OF WEB SERVICES 27

tersely: "In previous versions of this specification the SOAP name was an acronym. This is no

longer the case" [Gudgin et al., 2003]. Vogels is thinking specifically of distributed object

technologies rather than the message-oriented middleware mentioned in the previous section, so

in a sense he is both right and wrong in his claim. Such arguments naturally lead on to the

question discussed in the next chapter: how are web services to be defined?

CHAPTER 3: DEFINING WEB SERVICES AND THEIR
CURRENT STATUS

3.1 Introduction: Definition Problems

It might seem surprising that, nearly six years into web-service development, finding a definition

is still a problem. That this is the case is confirmed in the latest draft release (October, 2005) of

JSR 109, Implementing Enterprise Web Services v. 1.2, in which it is stated that "There is no

commonly accepted definition for a Web service" [Pandey, 2005]. This chapter aims to reach a

working definition of web services and to explain the various problems encountered on the way,

some of which are semantic but others of which are founded in different approaches to

distributed computing. A good place to start is with the W3C Web Architecture Group's

definition of web services:

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards [Booth

et al., 2004].

There is nothing controversial about this definition except, perhaps, its inclusion of "Web-related

standards", not surprising in a document from the W3C, but open to challenge from those who

see the "web" in web services as more of a starting point for less web-focused, service-oriented

architectures. The definition is wedded to SOAP and WSDL (both standards also released as

recommendations by the W3C), as well as (more conditionally) to HTTP, but it includes no

mention of UDDI, the third member of the usual web-services triumvirate, suggested reasons for

the absence of which will be discussed at the end of Chapter 4. It is unconditional in its

requirement of interoperability and that the interaction will be between machines, not the human

interface sought by Rhody and mentioned at the start of Chapter 1. One of the members of the

working group that produced it later described the definition as, "vaguely interesting but not

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 29

really that useful (at least not as the independent, industry-wide definition of a Web service and

its associated architecture I was hoping we'd produce)" [Newcomer, 2005]. Vinoski, who was a

charter member of the group, states:

I knew early on that the group was doomed when it took two iterations, each

approximately three months long, to reach agreement on a basic definition for a web

service [2004].

The W3C definition given above was actually a revised version of an earlier one which read:

A Web service is a software system identified by a URI [RFC 2396], whose public

interfaces and bindings are defined and described using XML. Its definition can be

discovered by other software systems. These systems may then interact with the Web

service in a manner prescribed by its definition, using XML based messages conveyed by

Internet protocols [Booth et al.., 2002].

It is interesting to see how much more loose and open this earlier definition is, not tied to

specific protocols (something lost in the current version) – but also without the requirement for

interoperability or for machine-to-machine interaction (something now gained), although it does

specify that its definition is machine-discoverable.

A more concrete but paradoxically more open definition is that given by Lomow and Newcomer:

A service is a location on the network that has a machine-readable description of the

messages it receives and optionally returns. A service is therefore defined in terms of the

message exchange patterns it supports [2005].

Here a service is not defined by the protocols it uses but through a location and the messages it

can exchange. It is not even confined in this definition to the "web" but more broadly placed on

the "network". Although its message description must be "machine-readable", the messaging

sources are not so limited.

When seeking a definition of web services, it is important to remember that the term is used in

two different senses, embodied in the singular and plural nouns web service and web services.

On the one hand a web service, also known as a "provider agent" [Booth and Liu, 2005], is a

piece of software which offers business logic that may be useful to other processes. Most

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 30

developers agree that a web service is a "resource… designed to be consumed by software rather

than by humans" [Manes, 2003]. On the other hand, as mentioned in Chapter 2 (page 26),

Vogels argues that web services are a messaging technology. This puts the focus on the message

exchanges between the applications, not on the business logic that the messages contain or on

what is done with the messages before they are sent and after they are received. Shah and Apte

take this view one step further in their contention that web services are a "packaging strategy" for

business logic [2004] (although the idea that web services are a "wrapping technology" is

challenged by Provost, for whom their strength is that they offer "component interoperability

based on progressively more vertical standards" [2003]). Shah and Apte support their argument

with the claim that the core of web services is the business module which must be seen as

independent from the technologies used to package it because these will change.

The technology and the business module can be seen as distinct entities. It is the technology

encapsulating a business process that is designed for application interoperability and that must be

platform- and language-independent. While this study uses individual services as examples, its

focus is on the technology. Business processes can be as diverse as the businesses they represent

and interoperability is no more a feature of a business process than a mail system is a feature of a

letter, or an aeroplane of an individual air passenger. The one exists for a while in the context of

the other but they are distinct.

Figure 3-1: Web-Service Protocols [adapted from Wilkes, 2004]

MAINSTREAM

SOAP
WSDL
UDDI

[W3C + OASIS
recommendations]

EARLY ADOPTION

WS-SECURITY
WSRP

[OASIS
specifications]

EXPERIMENTATION

ASAP

SPECIFICATION

SOAP MTOM
WS-Addressing BPEL
WS-CAF
WS-Choreography
WSDM

WS-Coordination
WS-Policy

 WS-Eventing
 WS-Federation

WS-IL
WS-Provisioning

WS-Reliable Messaging

[OASIS specifications]

[W3C recommendations
+ OASIS specifications +
proprietary 'standards']

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 31

Lest the impression be given that web services are a technology that has been carefully crafted, it

is important to remember Loughran's statement that "Web Services grew by accretion, not

planning" [2003]. The truth that web services "just grew" can be seen in any timeline of web

services and web-service standards and recommendations. It can be argued, for example, that

the initial WSDL standard was released in September 2000 by Microsoft and IBM because the

W3C's Schema Language, which might well have pre-empted it, was not ready for official

recommendation status until the following year. Such ad hoc development does make for

potentially richer web-services standards, in that it allows for more than one approach to a

particular aspect of the technology, but it also makes for duplication, confusion and

interoperability problems. That the accretion continues is evidenced in the 2004 diagram of

web-service protocols [Wilkes, 2004] contained in Figure 3-1 and even more in the larger

diagram of specifications contained in Appendix C [Jeon, c2005].

Wilkes used his diagram to illustrate how only the "Mainstream" protocols had been fully

implemented and adopted. At his time of publishing, those in the "Specification" column existed

only in draft format, while the columns in-between listed those protocols that had

implementations with greater or lesser degrees of stability. This diagram illustrates only the tip

of the iceberg of the related specifications that are now available. Indications of the sources of

the specifications have been added to it. It is interesting to note that, while the earliest and most

stable standards are those that come from the W3C, OASIS has become the standardizing body

of choice for the major vendors to push specifications through at a faster pace without the loss of

rights to potential royalties. There have been recent rumblings at OASIS about the development

of specifications such as WS-Federation that compete with existing standards.8 That Microsoft

and Sun have more recently come to an agreement about the joint use of the competing

specification does nothing to detract from the fact that Microsoft is currently retaining possession

of it.9

In late 2004 Bray counted the pages of the then existing specifications and came up with the

totals listed in Table 3-1. It is interesting to note the high proportion (almost 70%) of

8 See: http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci993124,00.html [Mimoso, 2004].
9 See: http://channels.microsoft.com/presspass/press/2005/may05/0513MSSunFS.asp [Microsoft, 2005].

http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci993124,00.html
http://channels.microsoft.com/presspass/press/2005/may05/0513MSSunFS.asp

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 32

specifications for which Microsoft (listed as "M": Oasis is "O" and the W3C is "W") is

responsible.

Group Specification Page Count
Security Web Services Security (O) 56
 UsernameToken Profile (O) 15
 X.509 Certificate Token Profile (O) 16
 Policy Language (M) 13
 Trust Language (M) 41
 Secure Conversation Language (M) 17
 Web Services Federation Language (M) 28
 WS-Federation: Active Requestor Profile (M) 14
 WS-Federation: Passive Requestor Profile (M) 13
 Kerberos Binding (M) 17
Reliable Messaging Reliable Messaging (M) 21
Transactions Coordination (M) 16
 Atomic Transaction (M) 10
 Business Activity Framework (M) 13
Metadata WSDL 1.1 (W) 32
 Policy Framework (M) 15
 Policy Attachment (M) 10
 Policy Assertions Language (M) 9
 Dynamic Discovery (M) 22
 Metadata Exchange (M) 23
Messaging SOAP 1.2 Primer (W) 39
 SOAP 1.2 Messaging Framework (W) 47
 SOAP 1.2 Adjuncts (W) 25
 Addressing (M) 15
 MTOM (W) 13
 Enumeration (M) 27
 Eventing (M) 21
 Transfer (M) 17
 SOAP-over-UDP (M) 7
Management Web Services for Management (M) 23

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://msdn.microsoft.com/ws/2002/12/ws-security-policy/
http://msdn.microsoft.com/ws/2004/04/ws-trust/
http://msdn.microsoft.com/ws/2004/04/ws-secure-conversation/
http://msdn.microsoft.com/ws/2003/07/ws-federation/
http://msdn.microsoft.com/ws/2003/07/ws-active-profile/
http://msdn.microsoft.com/ws/2003/07/ws-passive-profile/
http://msdn.microsoft.com/ws/2003/12/wsskb/
http://msdn.microsoft.com/ws/2004/03/ws-reliablemessaging/
http://msdn.microsoft.com/ws/2003/09/wscoor/
http://msdn.microsoft.com/ws/2003/09/wsat/
http://msdn.microsoft.com/ws/2004/01/wsba/
http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/ws/2004/09/policy/
http://msdn.microsoft.com/ws/2004/09/policyattachment/
http://msdn.microsoft.com/ws/2002/12/PolicyAssertions/
http://msdn.microsoft.com/ws/2004/02/discovery/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-metadataexchange.pdf
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://msdn.microsoft.com/ws/2004/08/ws-addressing/
http://www.w3.org/TR/soap12-mtom/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/ws/2004/08/ws-eventing/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://msdn.microsoft.com/ws/2004/09/soap-over-udp/
http://msdn.microsoft.com/ws/2004/10/ws-management/

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 33

Business Process BPEL4WS (M) 74
Specification Profiles Devices Profile (O) 24
 WS-I Basic Profile (O) 50
 TOTAL PAGES: 783

Table 3-1: Page-Count of Web-Services Specifications Available in Late 2004 [Bray, 2004b]
Morgenthal believes that a generic web service can be described in terms of five simple

requirements. A web service, he says, must be [2003]:

• atomic

• self-describing

• accessible

• declarative

• composite.

It should be atomic in that no part of a service must interfere with any other part and in that it

must be complete in itself; self-describing in terms of the interface definition language used to

define each service which, as XML, contains everything needed to understand and process it10;

accessible in terms of the transport protocols that might be used, such as HTTP or SMTP;

declarative in that related standards state what is required in a general sense without prescribing

implementation details; and composite because it will be made up of several parts.

So far, with the exception of those provided by Lamow and Newcomer, the definitions have been

rather abstract. Expanding on Morgenthal's requirements brought in concrete aspects in terms of

transport protocols and XML. It is now time to examine a more concrete definition of a web

service to see if it conforms to the conditions and notions so far described. For this we can turn

again to Vogels, whose definition of a web service embraces four key constituents [2003]:

1. The service is software that can process an XML document it receives through some

combination of transport and application protocols;

2. The XML document is the Web service’s keystone because it contains all the application-

specific information that a service consumer sends to the service for processing;

3. The address, also called a port reference, is a protocol binding combined with a network

address that a requester can use to access the service;

10 See de hÓra, 2002.

http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/bpel1-1.asp
http://schemas.xmlsoap.org/ws/2004/08/devprof
http://schemas.xmlsoap.org/ws/2004/05/devprof

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 34

4. The envelope is a message-encapsulation protocol that ensures that the XML document to

be processed is clearly separated from other information the two communicating

processes might want to exchange.

Vogels muddies the waters by confusing the service definition not only with the messaging

technology but also with the application handling the message. His first point does, however,

fulfil Morgenthal's requirement that a web service should be accessible and declarative, in its

inclusion of transport protocols and XML. The second point also concerns the declarative aspect

of a web service, giving pre-eminence to the data contained in the XML document that is

exchanged and therefore to the business logic that it encapsulates. Vogels' third point is a

definition of a web-service endpoint, which is an integral part of an individual service. In his

fourth point, hinting at SOAP in his use of the term "envelope", Vogels deals with the atomic

and composite aspects of web services which are embodied in the messaging. Here he is more

concerned with the technology than with the business logic.

3.1.1 The Web in Web Services

It is important to distinguish web services (increasingly embraced by the term service-oriented

architecture (SOA)) from the web of pages and hyperlinks. This distinction is nicely made by

Apte and Mehta, who argue that the main differences are encapsulated in the form of service

interactions. A web service, they maintain, is an "active component… an active program or a

software component in a given environment that provides and manages access to a resource [my

italics] that is essential for the function of other entities in the environment… whereas a Web

page is a static, one-time representation of some information" [Apte and Mehta, 2002]. While

serving as a pointer to a useful distinction – that web services, unlike conventional web pages,

are software components – this definition is limited. Web pages are increasingly thought of as

dynamic and can also function as part of a larger application, particularly, perhaps, involving

user input to a larger service. The default starting point for Microsoft web services in Visual

Studio 2005 is a web page.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 35

Many of the arguments that broke out over the nature of web services, before the release of

SOAP 1.2 in 2003, had their basis in the concept of the web in web services. Those supporting

the web philosophy propounded by Fielding (discussed in Chapter 5), and with a proprietary

interest in the HTTP standards (Fielding was one of the developers of HTTP 1.1), took great

objection to SOAP because they felt it violated long-held principles which, they believed,

underpinned the success and freedom of the Internet. Over the last two years there has been a

movement away from the term "web services" towards another term, "Service-Oriented

architecture", examined in the next section, which arouses less controversy and does not limit the

transmission of SOAP messages to HTTP.

By contrast, Neward argues for keeping the two terms together to ensure interoperability. He

makes a distinction between "web" and "services" that he thinks is fundamental to defining a

term that he states causes great confusion even in 2005:

in the term "Web services", there are two basic concepts we keep mixing up and

confusing. "Web", meaning interoperability across languages, tools and platforms, and

"services", meaning a design philosophy seeking to correct for the flaws we've

discovered with distributed objects and components. These two ideas, while definitely

complementary, stand alone, and a quick examination of each reveals this… By

combining interoperability with services, we create "things" that can effectively stand

alone for the foreseeable future. [2005].

Service-oriented architecture is a design methodology for the organization and reuse of services

viewed as components within a larger system. While in current usage service-oriented

architecture and web services are often linked, the major distinction between them is that SOA is

an architecture, while web services are a technology, an implementation of an architecture.

Manes considers a web service, as distinct from SOA, to be a resource that may be a business

process, accessed through an API, over loosely-coupled connections, located by means of a

registry and based on XML technologies [Manes, 2003]. Implementations of a service-oriented

3.1.2 The Distinction between Web Services and Service-Oriented
Architecture

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 36

architecture may use earlier middleware components such as MOM, and are not necessarily

confined to web services. Service-oriented architecture is a necessary companion to web

services in the enterprise where complex interactions between service units may need to be

carefully orchestrated. Chapter 6 discusses the technologies created to enable the choreography

of such interactions.

Service-oriented architecture works at a higher and more abstract level than web services, as an

infrastructure which focuses, not on the technologies which implement a web-services system,

but on the ways in which the units of which such a system is composed may interact with each

other across a variety of environments. The significance of SOA is in its emphasis upon service

as a means of interaction. Lomow and Newcomer give a diagram (Figure 3-2) illustrating a

service-oriented architecture applied to the requirements customers have of a banking service.

(Notice how this is an example involving user interaction.) In the diagram the organizing

Figure 3-2: Accessing and Composing Services in a SOA [adapted from Lomow and Newcomer, 2004]

principle is expressed through the interactions with and between services, not on the means or

technology of any single interaction. Message exchanges are the heart of SOA.

Newcomer asserts that the major difference between current and previous IT systems is the

movement away from

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 37

specific implementation environments such as object orientation, procedure orientation,

and message orientation to solve these business problems, resulting in systems that were

often tied to the features and functions of a particular execution environment technology

such as CICS [Customer Information Control System], IMS [IP Multimedia Subsystems],

CORBA, J2EE, and COM/DCOM [Lomow and Newcomer, 2004].

A service-oriented system is not confined in this way.

It is possible that there is currently a greater acceptance of SOA than of web services per se.

While some might see this as the next stage for web services, it might also be seen as a

restriction of the original vision of the universal applicability of web services, which, under

SOA, are seen more as the means of exposing and integrating existing applications within a

corporate intranet.

3.1.3 A Working Definition

Of all the available definitions of web services, probably the clearest and simplest is that given

by Newcomer in mid-2005:

It's the action of sending an XML document to a receiving system that understands how

to parse the XML and map it to an underlying execution environment, and optionally

receiving a reply, also in the form of an XML document… A Web service must exist

independently of any programming language's view of it. If it didn't, we would not

achieve the benefit of universal interoperability… The whole thing really has to start and

end with the XML, not the Java or the C# or the Perl or the Python or the COBOL, SQL,

or whatever [Newcomer, 2005].

This definition places XML solidly at the heart of web services, regardless of language, platform

or protocol, stressing their interoperability, and it also broadens the scope in that web services

are not tied to any set of specifications. The writer does not consider that she can improve on

this definition and she is in complete agreement with it.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 38

The current accumulation of complex specifications not only narrows the general acceptability of

web services but also forms a barrier to interoperability. If the accumulation continues at the

present rate, web services will either become the province of the few who can afford the

expensive tools to implement them, because mastering the Babel of specifications will be beyond

the scope of any normal developer – or the simmering revolution already evident in the ranks of

those who work with XML on a daily basis11 will take hold and another, simpler solution will be

found. An apt illustration of the complexity of the specifications may be seen in the image

incorporated into this thesis as Appendix C because of its size. It displays all too evidently the

"spaghettification" of specifications, in which organizations contend with each other by

producing different ways of solving the same problem and in which there is continual overlap

and redundancy. It is hard to see how anyone can view such a proliferation of specifications

without incredulity.

3.2 Advantages of Web Services

A major advantage of web services lies in the promise of integration. Earlier distributed systems

used binary encodings for their data, which made them platform-, application-, and language-

dependent. Web-services technologies such as XML offer platform-independence. Regardless

of how the web service XML "message" is sent or of how it is handled at its destination, the

message itself is not only comprehensible to any system but also has a life expectancy unlimited

by the currency of a particular binary encoding. A web service may expose the functionality of

legacy code without having to make any alterations to the code in order to make it reusable,

thereby enabling interactions with it that could not have been foreseen when the code was

written.

11 An example of this approach is a column written by Bray, one of the authors of the XML Specification, in which
he writes: " No matter how hard I try, I still think the WS-* stack is bloated, opaque, and insanely complex. I think
it’s going to be hard to understand, hard to implement, hard to interoperate, and hard to secure."
(http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo.) [Bray, 2004] This view has also been reflected
in the trade press – see the article at http://news.com.com/Trying+to+make+Web+services+make+sense/2100-
7345_3-5242747.html?tag=nefd.lede [LaMonica, 2004], which issues a warning note: "Without clear direction on
standards, the payoff of the massive industry bet on Web services could be delayed – or derailed – because
customers are sitting on the sidelines of a politicized and contentious standards process." Sun's President and COO
recently admitted: "[Web services have] either got to be simplified, or radically rethought… today's web services
initiatives are in danger of vastly overcomplicating a very simple (really simple) solution." [Schwartz, 2005].

http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
http://news.com.com/Trying+to+make+Web+services+make+sense/2100-7345_3-5242747.html?tag=nefd.lede
http://news.com.com/Trying+to+make+Web+services+make+sense/2100-7345_3-5242747.html?tag=nefd.lede

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 39

There is no question of the financial advantage of web services. Bosak reproduces a table (Table

3-2) of the savings estimated from the use of paperless systems [Bosak, 2004].

Savings by product (in U.S. dollars) estimated from use of paperless systems.

Item

Volume Value (CIF) Saving Estimate

Coal — bulk by sea 10,000 tons $520,000 $7,800 or 1.5 percent

$810,000 $17,820 or 2.2 percent Rice — bulk by sea 1,500 tons

Machine parts — by sea

Table 3-2: Economic Advantages of Paperless Trade [redrawn from Australian Government, 2001]

20-foot container $175,000 $5,425 or 3.1 percent

Sugar — bagged by sea 1,500 tons $273,000 $12,012 or 4.4 percent

Fresh asparagus — by air 45 kg $1,370

A major benefit of web services and a major contributor to web services' interoperability is that

of loose coupling. When different types of program running on different platforms, beyond an

intranet, are required to interact, loose coupling is essential. Slama et al. list several

requirements for loose coupling, among them dynamic binding and a weak type system [2004] .

$206 or 15 percent

Level Tight Coupling Loose Coupling

Physical coupling Direct physical link required Physical intermediary

Communication style Synchronous Asynchronous

Type system Strong type system (e.g., interface

semantics)

Weak type system (e.g., payload semantics)

Interaction pattern OO-style navigation of complex

object trees

Data-centric, self-contained messages

Control of process logic Central control of process logic Distributed logic components

Service discovery and binding Statically bound services Dynamically bound services

Platform dependencies Strong OS and programming

language dependencies

Table 3-3: Loose and Tight Coupling [redrawn from Slama et al, 2004]

OS- and programming language independent

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 40

They suggest that the price to be paid for loose-coupling, which might include a more complex

and even more expensive system overall, plus "[a]dditional efforts for development and higher

skills …to apply the more sophisticated concepts of loosely coupled systems", will balance out in

the long term if the flexibility of such a system is fully utilized. Their table, shown in Table 3-3,

illustrates the suitability of web services to meet the challenges of loose coupling: every item in

the "Loose Coupling" column can be expressed as a feature of web-services technology, which is

at its best asynchronous, message-oriented (with the messaging helping to perform the function

of an intermediary), distributed, dynamic and platform and language-independent and, ideally,

independent, too, of strong data typing.

In addition to the more general benefits offered by web services, the SOAP protocol in particular

offers the benefits of simplicity of use, extensibility, flexibility, loose coupling and a foundation

in XML [Loughran and Smith, 2005]. SOAP, its benefits and drawbacks, will be discussed in

more detail in Chapter 4.

3.3 Adoption of Web Services

There is little doubt that the competing aims of the major vendors, and more particularly of the

major standardization bodies, have been a major stumbling-block to the acceptance of web

services, as has been the proliferation of different, and not always interoperable, web-services

tool implementations. As the key standards have solidified, however, the situation has begun to

change. It was significant that in August 2004 five of the major competing organizations, BEA

Systems, IBM, Microsoft, SAP and Sun Microsystems, jointly submitted the latest version of

WS-Addressing to the W3C and not to OASIS.

Microsoft and IBM in particular have in the recent past turned to OASIS for the ratification of

standards they wished to push through without either the lengthy discussion process sometimes

involved in ratification by the W3C, or the royalty-free stipulation enjoined by the W3C.

Significantly, towards the end of February, 2005, a group of signatories wrote an open letter to

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 41

OASIS, protesting about the current, supposedly "reasonable and non-discriminatory" (RAND)

licensing policy adopted by the organization. This policy, they claimed, would actually

"..discriminate against open source and free software to the point of prohibiting them

entirely… This is not a new issue for us. We fought hard for a royalty-free patent policy

in W3C and encouraged that standards organization to commit its members to open

standards. But some W3C member companies, steadfast opponents of software freedom,

moved their efforts to OASIS. Without consulting the free software/open source

community, they produced a patent policy designed so that we cannot live with it."

[Rosen et al., 2005].

Whether the companies so stigmatized will react positively to such a complaint remains to be

seen.

Figure 3-3: Redrawn from Web Service Projects, Forrester Report, 2004

0 5 10 15 20

1,000 - 5,000

5,000 – 20,000

20,000 or More

Em
pl

oy
ee

s

Web Services

In Production
In Development

In spite of the acrimony around the standards for web-service technologies, Leavitt was in no

doubt about the future growth of web services:

"IDC estimates that worldwide spending on Web services-based software projects will

reach $11 billion by 2008, compared to $1.1 billion in 2003. A Gartner survey of 110

companies also indicated that 54 percent are already working on Web services projects

this year or have plans to begin soon. [Figure 3-3] shows results from a 2004 Forrester

Research survey of about 280 large North American firms. Survey respondents identified

a total of 66 Web services that are either in production or in development… An Evans

Data survey indicated that one out of every 10 companies is investing in Web services

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 42

development and integration this year. About 13 percent of the respondents said that a

majority of their development funds are going to Web services, and IBM is investing

more than $1 billion a year" [Leavitt, 2004].

Another Gartner study [Cantera, 2004] reported the web-services software market was $6.2

billion in 2003, and predicted that it would grow to $44.5 billion by 2007 when web-services

software would comprise 41% of the overall market.

Smaller examples of the fulfilment of this growth potential, eBay and PayPal in 2004 joined

Amazon and Google in exposing SOAP web services using WSDL. According to Iverson, "eBay

processes over a billion web-service requests a month" [Iverson, 2004]. While not using SOAP

and WSDL, both Yahoo and O'Reilly's Safari OnLine in mid 2005 also went public with web-

service APIs.

Late in 2005, an e-commerce analyst sounded a cautious note, however, when he depicted

current usage and development of web services as follows:

• 75% of all web-services projects are purpose-built for database and data warehouse

integration projects.

• 65% are developed to support integration to legacy or mainframe applications.

• 60% are developed for internal portal integration efforts with legacy systems and

typically three or fewer databases internal to the company.

• One manufacturer of complex pumps and valves focused on headcount reductions

equaling $500,000 the first year, only to find that the two engineers who would be let

go were actually needed for integration work for the web service aimed at

streamlining complex order capture. Net result: The web service worked and another

application server engineer needed to be added to the project.

• One manufacturer of computer equipment uses web services to integrate order

capture and pricing systems that are part of their SAP ERP instance—and the result is

the ability to publish price updates to worldwide channels within 48 hours. The web

service will also add Oracle pricing integration—yet that will be over a year away and

require months of internal development [Columbus, 2005] .

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 43

All of this points to the costs of the development of web services and to their current deployment

on the intranet rather than on the internet, which suggests that they are not currently being seen

widely as a solution to real, interoperable distributed computing. According to Columbus, web

services have contributed largely in the area of application integration, particularly database

integration, where companies have used web services to design solutions for the automation of

order processing and transaction tracking, sometimes without the companies themselves even

being aware that a Service-Oriented Architecture is what has actually been implemented.

3.4 Barriers to Interoperability

So what are the barriers to interoperability inherent in web services, that go beyond or, more

accurately, underlie problems with toolkits and vendor lock-in, and that contribute to the cost of

development mentioned in the previous section? They can be divided into three main categories:

transport issues, data-typing and exception handling, although a further category could be

labelled "mistakes" for problems such as misunderstandings arising from the complications of

WSDL namespace scoping or schema versioning.

3.4.1 Transport Issues

Several transport issues may be found in the current standards. In the SOAP standard, one

difficulty is caused by the generally deprecated SOAPAction header, which is required under

version 1.1 but discouraged under some circumstances by the WS-I Basic Profile, and includes

no specification for how its value should be represented in the WSDL file. Kumar, Das and

Padmanabhuni report that:

Practitioners have found out that a valid SOAP request message to a sample web service

may result in different responses, ranging from a fully valid correct response to a SOAP

fault response, depending on the value of the SOAPAction header [2004].

In the past, some toolkits have allowed it to be ignored, assuming a default empty string value

but others (specifically those based on .NET code) require more detail. Some XML tools (e.g.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 44

Stylus Studio version 4.5) will even refuse to validate a WSDL file that does not contain it.

Chapter 7 takes a closer look at the current implementations of SOAP, examining the benefits

that will arise from changing from SOAP 1.1 to SOAP 1.2.

An earlier transport issue, still alive in those SOAP toolkits which do not yet support SOAP 1.2,

concerns the use of HTTP POST, given in earlier versions as the definitive method for sending

SOAP requests and responses12. SOAP 1.2, more logically in the context of information

retrieval, allows the use of the idempotent GET method through the use of Message Exchange

Patterns (MEPs), the SOAP Web Method, and the HTTP Accept header, in which a SOAP

response may be the result of a non-SOAP request. For information retrieval, the default action

in SOAP 1.2 is in fact a simple HTTP request. The 1.2 specification chastises as "counter to the

spirit of the Web" SOAP/RPC implementations which conceal the identity of a web resource

behind "some intermediate entity" and states:

The SOAP response message exchange pattern with the HTTP GET method is used when

an application is assured that the message exchange is for the purposes of information

retrieval… [T]he HTTP SOAP GET usage does not allow for a SOAP message in the

request [specifically where all the arguments can be represented in the URI]… [T]he

response to [an] HTTP GET request from a requesting SOAP node is a SOAP message in

the HTTP response [Mitra, 2003].

Such a message exchange embraces both the SOAP technology and the more simple approach

embodied in the REST philosophy for web services. However, even in late 2005,

implementations of SOAP 1.2 are tentative. Microsoft's Visual Studio 2005, which offers a

default implementation, is only just emerging from its beta version, and JAX-WS, which also

supports it, is still under development and therefore not officially part of a J2EE platform. The

SOAP 1.2 documentation for JAX-WS admits: "Currently the support is limited and not tested

extensively" [Sun, 2005b]. Although there was documented support for SOAP 1.2 in WebLogic

8.1, it came with a health warning that it was suitable only for development environments and it

is not included in the documentation for WebLogic 9.0 where the Ant tasks have been

completely reformulated. Systinet Server 6 for Java does include an implementation of it, but

12 See Box et al., 2000, section 6.1. The document nowhere mentions the GET method.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 45

the Basic Profile does not yet "permit" the use of SOAP 1.2, and section 7.3 in Chapter 7 shows

what happens in interoperability testing with web services that do use it.

A further transport issue involves the use of cookies to maintain state during a prolonged

exchange – although SOAP is intended to be stateless. JAX-RPC, which allows state in web

services, recommends the use of cookies in this way, but of course cookies may be turned off

inside a communicating browser, rendering state maintenance unusable, except through visible

URL-rewriting, and web services are not confined to browsers. The disadvantages of

maintaining state in web services include problems of recovery after failure, memory

consumption and scalability.

An issue which can become a problem is the supremacy of the declared HTTP encoding over any

declared XML encoding when XML is sent over HTTP. The creators of the XML Specification

were aware of this, as may be seen from (the non-normative) Appendix F of the

Recommendation [Bray et al., 2004]. RFC 3023 was written to handle this problem [Murata,

2001], as is explained by Pilgrim [2004]:

According to RFC 3023, if the media type given in the Content-Type HTTP header is

application/xml, application/xml-dtd, application/xml-external-parsed-entity, or any one

of the subtypes of application/xml such as application/atom+xml or application/rss+xml

or even application/rdf+xml, then the character encoding is determined in this order:

1. the encoding given in the charset parameter of the Content-Type HTTP header, or

2. the encoding given in the encoding attribute of the XML declaration within the

document, or

3. utf-8.

On the other hand, if the media type given in the Content-Type HTTP header is text/xml,

text/xml-external-parsed-entity, or a subtype like text/AnythingAtAll+xml, then the

encoding attribute of the XML declaration within the document is ignored completely,

and the character encoding is:

1. the encoding given in the charset parameter of the Content-Type HTTP header, or

2. us-ascii.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 46

The upshot of all this is that in some cases the XML-encoding will be ignored, with the potential

for severe interoperability problems for those needing non-ASCII character sets. According to

Pilgrim [2004], although Apache now recognizes XML encoding accurately, IIS does not. He

also points out that, unnervingly, none of the popular XML parsers at that point (mid-to-late

2004) supported RFC 3023. Pilgrim concludes that the only truly workable encoding is US-

ASCII and he has a parting shot directed at both clients and servers who ignore Postel's law13

and accept virtually anything: "The entire world of syndication only works because everyone

happens to ignore the rules in the same way. So much for ensuring interoperability."

Web-service testing in Chapter 7 reveals that while "text/xml" is still usually given as the mime

type in the HTTP headers generated by various toolkits using SOAP 1.1, the charset parameter

usually contain the correct encoding for the XML. Those toolkits with support for SOAP 1.2

provide a more accurate mime type.

3.4.2 User-Defined Data Types

Figure 3-4: The Architecture of JAXB [redrawn from the J2EE 1.4 Tutorial]

Still a major challenge to web-service developers is the issue of complex data typing. The

serialization of complex data types can be managed with varying degrees of efficiency by

13 See RFC 793: "be conservative in what you do, be liberal in what you accept from others."

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 47

toolkits. A hand-coded approach with Java would first define the complex data type in schema

notation and then create a JavaBean-type class corresponding to the schema. A serialization

class might then be written to perform the type conversion between Java and XML.

Aware of the seriousness of this issue, Sun has focused its current Web Service Developer

Tutorial (1.6) on data binding [Sun, 2005a]. Some impression of the complexity of the issue may

be conveyed by Figure 3-4, which is a diagrammatic representation of the Java Architecture for

XML Binding (JAXB), Sun's proposed solution to this problem, which includes a special

compiler and a flexible API enabling the developer to "tweak" results to solve particular

problems. The diagram reveals the level of processing necessary for the marshalling and

unmarshalling of XML.

The mapping in JAXB between Java and XML is illustrated in the following table of data types

that may be automatically serialized into XML:

XML Schema Type Java Data Type
xsd:string java.lang.String
xsd:integer java.math.BigInteger
xsd:int int
xsd.long long
xsd:short short
xsd:decimal java.math.BigDecimal
xsd:float float
xsd:double double
xsd:boolean boolean
xsd:byte byte
xsd:QName javax.xml.namespace.QName
xsd:dateTime java.util.Calendar
xsd:base64Binary byte[]
xsd:hexBinary byte[]
xsd:unsignedInt long
xsd:unsignedShort int
xsd:unsignedByte short
xsd:time java.util.Calendar
xsd:date java.util.Calendar
xsd:anySimpleType java.lang.String

Table 3-4:JAXB Mapping of XML Schema Built-in Data Types [Sun, 2005a]

It is easy to see from this that only a limited number of Java data types have made it into this

default list, although customized bindings for other data types may be built. JAXB does not

currently support the whole schema specification, omitting less-used features such as the

redefinition of a declaration, the notion of keys and keyrefs, the AnyAttribute wildcard and

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 48

substitution groups. While there are cogent reasons for these omissions (for example, the lack of

an available data binding and complexity [see Fialli and Vajjhala, 2003]), the omissions

theoretically pose an interoperability problem for implementations in other programming

languages. Schema constructs other than data types, such as choice and sequence do not map

well into programming languages. Kumar, Das and Padmanabhuni point out that different W3C

Schema versions produce unpredictable results and are a source of interoperability which is

addressed by the Basic Profile's recommendation that only the later (2001) version be used

[2004]. Kumar, Das and Padmanabhuni also discuss problems still not addressed by the Basic

Profile, involving the lack of precision, not only in the representation of infinity but also in the

representation of time, where some vendors employ nanoseconds while others support only

milliseconds. They state:

These issues can be of utmost importance in transactions like credit card validations and

single sign on situations across heterogeneous security mechanisms [2004].

Although issues of data typing are discussed in a more detailed context in Chapters 4 and 7,

general interoperability problems including data typing were outlined in a 2005 video featuring a

Microsoft web-services self-styled "evangelist". Guest argues that the exchange of complex data

types causes problems in situations where the following apply [2005]:

1. The returning of "empty" arrays.

2. The use and comparison of e.g. Date data types which are handled differently in Java

and .NET. The incompatibility here will not always be realized until something goes

wrong. If the developer starts with a java.util.Date object, it will be converted

into a schema dateTime data type, but any future mapping back again to Java will

produce a java.util.Calendar object, causing a NumberFormatException to be

thrown. Nearly all of the methods of java.util.Date are deprecated, however, so it

would be unlikely to be used by a developer with any knowledge of Java. The simple

Date service described in section 7.2.2 of Chapter 7 shows some experimentation

with these issues.

3. The generation by a toolkit of schema types from programming types, when these

should preferably be designed by the programmer before the coding takes place

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 49

(Guest suggests using a wizard or toolkit to generate the code from the schema to

ensure interoperability). This issue is the subject of section 4.3.3 in Chapter 4.

Point (1.) above is of particular interest as a source of much confusion. The reason for this is an

inaccurate mapping between an XML version of an "array", which is usually represented by an

element which may have a minimum occurrence of zero and a maximum occurrence of

"unbounded", and a Java array, which can be both "null" – uninitialized – and "empty",

initialized to contain elements but where each element is without content. Butek and Scheuerle

point out, that " an empty instance of a Java array and a null instance of a Java array map to the

same XML instance" [2004]. Because an XML "array" is really a number of elements without a

"container", the solution argued by Butek and Scheuerle is the provision of a "wrapper" element.

Butek and Scheuerle make the further comment that, while an XML Schema will provide an

appropriate structure, that structure does not conform to any currently recognized standard and is

likely to be misunderstood by web-service toolkits, although BEA's WebSphere has made

provision for its use. Section 7.2.4.3 of Chapter 7 takes this issue further in examining problems

arising from the use of array types.

The concept of notations (or annotations) with which web services may be configured (used for

some time in C# and a more recent arrival in Java) might be said to tie the WSDL more tightly to

the code implementation of a service and therfore contradict the essential function of a web

service, which is to be language-independent. Vinoski points out that it is almost impossible to

avoid including language-specific styles and idioms when the starting point for a service is the

code [Vinoski, 2005]. Section 7.2.4.4 of Chapter 7 examines the use of annotations as a

programming model for web services that can provide a middle way between the Scylla of a

language-restricted, code-first approach and the Charybdis of the complexities of WSDL First.

3.4.3 Exception-Handling: java.rmi.RemoteExceptions and SOAP Faults

Major problems arise when the web service fails. If the eight fallacies of distributed computing

[Deutsch, c1991] are correct, the service will fail at some point. What sort of a response should

the client receive when an error occurs? In Java, errors may theoretically be handled by

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 50

exceptions. Not all languages, however, are as well equipped as Java or C# to handle

exceptions14. Exceptions were introduced into PHP, for example, only this year with PHP 5.

Possible exceptions that may be thrown in Java are:

• java.lang.RuntimeException

• java.rmi.RemoteException

• javax.xml.rpc.soap.SOAPFaultException

• javax.xml.rpc.JAXRPCException

• a user defined exception.

According to the Axis User Guide [2005], (and this applies to any other JAX-RPC 1.1

conformant server) only server methods that throw java.rmi.RemoteException will have their

exceptions encoded within SOAP responses as SOAP faults. Exceptions that are not

RemoteException or descendents of RemoteException can alternatively be mapped to WSDL

faults. Automatic generation of a WSDL document within, for example, Axis, produced a

document that could not cope adequately with faults and omitted them entirely. The only ways

to have them included in the WSDL was either to hand-code the WSDL or to amend it after

generation.

Services monitored with the Axis SOAP Monitor appeared to produce no SOAP response if the

service failed, even when the server method did throw a RemoteException. HTTP monitoring,

however, did reveal that a SOAP message had been returned, containing a SOAP fault, even

though this had not been displayed in the SOAP Monitor that Axis provides. If problems like

this are encountered with one language on one platform inside one toolkit, it is not surprising that

there are problems across toolkits. Changes coming in the new JAX-WS, however, include the

removal of the mandate for methods to throw RemoteException (as well as the need for the

service method to implement java.rmi.Remote) which should help.

Wang and Butek specifically recommend against throwing a RemoteException from the server

because of the difficulties of interoperability even within different JAX-RPC runtimes, much less

across different language barriers [Wang and Butek, 2004]. They recommend instead the use of

14 Difficultites are more likely for older languages such as C or Pascal.

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 51

a specific RuntimeException, a javax.xml.rpc.soap.SOAPFaultException, because of the

features of this exception that enable it to return more information to the client. They do not

recommend, however, that the remote method should itself throw this exception: rather they

believe it is more usefully thrown by handler classes which will map SOAP faults to whichever

exception is most appropriate.

Despite the warning against the use of RemoteException, it was found that classes extending

RemoteException were in fact correctly interpreted by Axis as SOAP Faults – but the version of

Axis used was Java-based and the language of implantation was also Java. In general

RemoteException is not considered to be portable. Instances of RuntimeException are not

easily caught by a non-Java client and their mapping to other types of exception depends upon

the client runtime, creating potential problems for interoperability.

A SOAP fault returned from a server method is converted to an exception that should be able to

be understood by a SOAP client for a web service. The nature of that exception appears

ambiguous and its handling appears to depend on the SOAP toolkit that is being employed.

Much information is available detailing the steps that must be taken with particular toolkits but

such information does not necessarily translate meaningfully across toolkit boundaries. Seely,

for example, refers to toolkit settings that may be tuned, and to proprietary code [Seely, 2002].

Many writers agree that the best kind of exception that may be thrown is a user-defined

exception which is then mapped in the WSDL to a wsdl:fault. The major advantage of a user-

defined exception is that, because it is visible inside the WSDL, the client may prepare for it and

it is therefore more interoperable.

There seems little that a client may do to rectify a network fault. Recovery from partial failure

on a network is beyond the scope of this thesis but is a very significant problem for all

distributed interactions. With application failures, the need is not so much for the client to be

able to rectify a fault that occasioned an exception but for the client to understand that it did

occur and, if at all possible, why, so that the error may not be repeated during a future exchange.

Because the indexing service (to be described in section 7.2.3 of Chapter 7) returns strings to the

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 52

client, it was easy to develop a way of dealing with JAXRPCException instances that returned a

short message to the client, explaining what problem had been encountered, depending on the

exception that had been thrown. This would be more difficult to implement for service methods

that did not return a string.

3.4.4 Toolkits

Many current web-service toolkits promote distributed object technologies, particularly on the

RPC-style of web-service exchanges (discussed in Chapter 4), at the expense of a data- or

document-centric approach, perhaps because it is felt that developers will feel more comfortable

in a familiar environment than in dealing with raw XML. Provost draws an only partly

humorous picture of such vendors:

"Web services are a cinch," they'll say. "Just write the same code you always do, and then

press this button; presto, it's now a web service, deployed to the application server, with

SOAP serializers, and a WSDL descriptor all written out."…Sales and marketing folks

want to be able to demonstrate that little or no coding and a lot of code generation add up

to a complete web service. [Provost, 2003].

Problems arise not only from this thin disguise of the very different distributed-object

technologies sometimes used to implement web services, but also from different

implementations of standards in different web-service toolkits. These are pinpointed in a serious

comment made by the company MindReef, the developers of SOAPscope (a Java-based tool for

testing SOAP services) and winners of the InfoWorld 2005 Technology of the Year Award:

Microsoft broke rank from the other toolkit vendors when they introduced the notion of a

Wrapped Document/Literal message having the name of the operation as the root element

of the message content. They also stepped outside of the schema specification for

serializing their DataSet type. Other toolkits have had to reverse engineer the techniques

to remain compatible. With the behavior of toolkits diverging in various ways,

interoperability has become a major concern [MindReef, 2004].

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 53

The significance of the different message types, including the wrapped and document/literal

styles, will be discussed in greater detail in Chapter 4, but it is worth emphasizing at this point

that the behaviour of major companies responsible for web-service toolkits has in the past been

to try to force the web-service community to adopt their standards rather than to conform to

those ratified by the standardizing bodies.

Apart from the servers and toolkits used in this study, which will be discussed at greater length in

Chapter 7, other web-services toolkits available in late 2005 and freely available for non-

commercial development include:

• SUN's Java Web Service Developer Pack15 (in late 2005 at version 1.6), which

is meant to be installed within either a (Sun-configured, non-current) version of Tomcat

or one of the available Sun web servers. Reasons for not including this toolkit in the

study are given in section 7.1.1 of Chapter 7.

• MICROSOFT's Office XP Web Services Toolkit16, which may be used from

an Office 2003 program and uses the inbuilt VB Editor to create a proxy object.

• KAPOW's RoboSuite17, linked to BEA WebLogic, which uses a point and click

wizard to send and return objects and their attributes, stored in a database-type format,

using existing web sites as a handle for the web-service creation. The demo does not

even mention the use of a WSDL file, although it displays the SOAP messages that it

constructs and sends.

• CAPE CLEAR's free SOA Editor18, renamed from their earlier WSDL Editor

(the renaming indicating the shift of emphasis towards SOA, which is more clearly

15 See http://java.sun.com/webservices/jwsdp/index.jsp [Sun, 2005a].
16 See http://www.microsoft.com/office/previous/xp/webservices/toolkit.asp [XP Toolkit, 2005].
17 See http://kdc.kapowtech.com/presentations/IntegrationBEA_viewlet_swf.html for an interactive demo [Kapow,
2005].
18 See http://www.capescience.com/soa/index.shtml [Cape Clear, 2004].

http://java.sun.com/webservices/jwsdp/index.jsp
http://www.microsoft.com/office/previous/xp/webservices/toolkit.asp
http://kdc.kapowtech.com/presentations/IntegrationBEA_viewlet_swf.html
http://www.capescience.com/soa/index.shtml

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 54

embodied in their commercial offering, Cape Clear 6, advertised as the latest version of

their Enterprise Service Bus). The editor enables graphical WSDL editing, still biased

towards the SOAP encoding of SOAP version 1.1, towards RPC-style, and with a

customized SOAPAction element. It has not been updated since 2004 and it produces

indecipherably complex error messages, sometimes the length of a page. The errors it

lists do not appear as errors in more recent validating XML editors such as XMLSpy and

the Java-based Oxygen, but it does offer a basic starting point for WSDL creation, the

files created through its graphical interface are fully editable elsewhere and its help files

are excellent. It also observes the requirement (discussed in section 4.3.1.1) that the

WSDL targetNamespace be dereferencible to a WSDL document.

• ORACLE offers several free and commercial products which include web-

service toolkits, such as its Application Server 10g19.

• IONA has a free product, Celtix20 which, like Cape Clear 6, is a

version of an Enterprise Service Bus. It is a companion to their commercial offering,

Artix, which replaced their original XMLBus, a toolkit specifically for web services. It is

a work in progress, requiring Java 5, Apache Ant and the latest available release of JAX-

WS. It is therefore one of the most standards-compliant toolkits, providing

implementations of SOAP 1.2 and MTOM. The developers have produced an Eclipse

plugin and are collaborating with the Apache Synapse project (still in its very early

stages) which aims to provide a framework for web services.

• The Apache Beehive Project, contributed by BEA, which

uses the metadata facilities offered by Java 5 to construct web services and offers a

simpler approach to enterprise applications. It uses metadata to turn any Java class into a

web service, but does not yet implement JAX-WS.

19 See http://www.oracle.com/appserver/java_edition.html [Oracle, 2005]
20 See http://celtix.objectweb.org/ [Celtix, 2005]. The CTO of Celtix is Eric Newcomer, a prolific writer on SOA
and referenced elsewhere in this thesis.

http://www.oracle.com/appserver/java_edition.html
http://celtix.objectweb.org/

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 55

• IBM is a major contributor to web-services development Although normally

a commercial product, WebSphere is freely available to educational institutions.

• Systinet is also a major contributor to web-service development and

its Server for Java version 6 includes an implementation of SOAP 1.2. It has also

produced a verision of Eclipse bound to this server. It does not yet implement JAX-WS.

As may be seen from the products listed above, many of the toolkits form part of a complete

web-services development environment, that often comes linked to or including a server.

A general problem with toolkits is that some of them rely on versions of classes which, as

versions change, may differ from those used in the web server, resulting, in Java, in an

IncompatibleClassChangeError, which was experienced when switching, in May, 2005, from

Axis 1.2 RC3 to version 1.2 Final inside Tomcat. The solution was to upgrade Tomcat to the

latest version. The error showed itself only when calls were made by different client programs

and not when the application was actually deployed on Tomcat.

Are toolkits to be dismissed out of hand because some of them flout the standards and others

(probably all of them) have versioning issues? Not necessarily. Interoperability is not the only

feature that should be considered in this context. The present state of web-services technology

means that it is highly desirable that, in industrial use, the time to development be not protracted

while developers come up to speed with current specifications, not to mention the APIs and type

systems. Standards-compliant toolkits are one way of achieving this. Although they are aware

that those who believe a web service should be created from code will not agree with them, the

authors of the Overview to the Cape Clear SOA Editor emphasize the need for service designers

to be able to "define the service interface without reference to existing technical APIs" [Cape

Clear, 2005a]. They consider the advantages of starting from a schema, over a code-first

approach, to be a more strongly-typed WSDL end-product and significantly greater chances of

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 56

interoperability21. The advantages of a WSDL-first approach are discussed in more detail in

section 4.3.3. Chapter 4 considers the significance of starting from a schema, which is also a

natural approach when creating a REST web service, described in more detail in Chapter 5.

A balance between machine-generation of code and hand-coding is, of course, desirable, in

which fine-tuning may be enabled without too steep a learning curve. Shah and Apte suggest a

workable compromise:

Auto-generating a key artifact such as the interface should not be an option for systems in

production because this technique forces the enterprise to depend on the convenience

tools for service interfaces. On the contrary, a process must be put in place by the

enterprise to manage interface definitions and their future enhancements. The auto-

generated WSDL merely serves as a starting point to build the WSDL manually for

production-ready services [Shah and Apte, 2004a].

3.5 Summary

Consideration of the preceding issues reveals that interoperability is not lightly achieved, and

that there is a significant distinction between the ability to communicate and the meaningfulness

of the communication. Meaning depends greatly on context. Shirky contended in 2001 that

most of the web services available then already had a shared context and that the instances of

web services given as examples in the specifications either depended upon a context that was

already widely known or were too trivial to require one. He gave a whimsical but telling

depiction of this problem with the following account:

Two old men were walking down the street one day, when the first remarked to the

second, "Windy, ain't it?"

"No," the second man replied, "It's Thursday."

"Come to think of it," the first man replied, "I am too. Let's get a coke" [Shirky, 2001].

21 Formerly known as the WSDL Editor and built for the Java platform, the renamed SOA Editor offers no support
yet for WSDL 2.0

CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS 57

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE
WEB-SERVICE COMPONENTS AND THEIR

CONTRIBUTION TO INTEROPERABILITY FOR WEB
SERVICES

4.1 Introduction

This chapter examines the core web-service components: SOAP, WSDL and (to a lesser degree,

for reasons which will be explained in section 4.4) UDDI. It explores the different aspects and

implementation features of each standard in order to determine how much each contributes

towards web-services interoperability. These findings are validated in Chapter 7 by practical

examples of web services.

Figure 4-1: Overall Design of a Web Service

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 59

Figure 4-1 illustrates the wide view that this chapter encompasses. The image is also a graphical

representation of the "WSDL-First" philosophy (explored in section 4.3.3) in that it depicts the

starting point for a web service seen as business interface semantics embodied in the

combination of a schema and a WSDL document. What it does not display is the service

programming interface and implementation which are behind the WSDL and the schema (or may

be generated from them) and with which the client ultimately communicates. The rest of this

chapter examines the details captured in this image, but it may be helpful at this point to give a

brief overview of the different elements here represented.

The natural beginning for a SOAP-based approach to interoperable web services is the

combination of an XML schema and a WSDL document which defines the interface for the

service. Although earlier versions of JAX-RPC required a service endpoint interface, the latest

version, JAX-WS, omits this requirement, possibly in recognition of the fact that WSDL is a

sufficient interface. The schema is necessary in method-based services because it provides XML

definitions for data types used in the service. The reason for this as the starting point for a

service, rather than a coded implementation, is discussed later in section 4.3.3. Choices in the

WSDL determine the nature of the SOAP messages that are sent back and forth between the

client and the service, and may also determine the transport protocol used to convey the message

exchanges. One of these choices, the message exchange patterns (MEPs) or service styles

(document or RPC), is discussed in section 4.2.4.1. Whether the MEPs are synchronous or

asynchronous has depended in the past on the choice of protocol, although the latest toolkits such

as BEA's WebLogic 9.0 and Visual Studio 2005 offer both styles by default, regardless of

protocol.

The WSDL 2.0 specification is not expected to become a recommendation until 2006 (WSDL

2.0 differed so markedly from its earlier draft, WSDL 1.2, that it was given a new version

number). Toolkit and web-server implementations do not yet incorporate the new version but it

forms part of the discussion because of the indications it gives of trends and developments in

web services. SOAP appears the more controversial specification and has therefore been

handled at greater length.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 60

4.1.1 Interoperability-Testing Frameworks

While not in itself an integral web-services specification, the Basic Profile should be considered

at this point. The vast number of competing web-service specifications have made it necessary

for some kind of arbitration to preserve interoperability. Even the accepted standards do not

provide implementation details. For these reasons, in 2002, the Web-Services Interoperability

Organization was founded by Microsoft, IBM and a number of other industry partners (not for

the first eight months including Sun Microsystems).

In 2003 this consortium produced the Basic Profile 1.0, which consisted of a series of

recommendations for combining standards and specifications so that interoperability would not

be compromised and vendors could produce toolkits that would not conflict with each other. In

particular it laid down mechanisms for handling web-services messaging, discovery, description

and security, making HTTP 1.1 the only transport protocol and making mandatory both the

HTTP POST method and the HTTP SOAP binding. In 2004, the Basic Profile 1.0 was

superseded by the Basic Profile 1.1, which was based on the earlier version but resolved

technical issues that had arisen from it, such as MIME bindings, and the need to include

attachments in SOAP messages, as outlined, for example, in the specification for SOAP

Messages with Attachments (SwA). This new version also made possible the later inclusion of

binary attachments as specified in the SOAP Message Transmission Optimization Mechanism

(MTOM).

The WS-I organization have produced an interoperability testing toolkit that may be used by

vendors and implementors of web services alike. The testing mechanisms have been

incorporated into most of the latest web-services toolkits and alert the user to violations that have

been detected so that they may be corrected before the service is employed.

In this context, it should also be mentioned that the Basic Profile is not the only available

interoperability-testing apparatus. Bertolino and Polino have put forward a mechanism for

testing that they name the Audition Framework, which takes the form of a Protocol State

Machine [2005]. It relies heavily, however, upon the presence of a UDDI Service Broker.

(UDDI is discussed further in section 4.4 of this chapter.) Jiang and Systä suggest a WSDL

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 61

validation model, based on UML Profiles, which will enforce Basic Profile recommendations

and which they have demonstrated to be more accurate than the Basic Profile alone for detecting

errors [2005].

Yu, Huang and Ye recommend an approach different from the Basic Profile and based on an

ontology library which creates "reasoning rules for error analysis and communication data

control", based on data which has been captured and stored in the library [2005]. Theirs is a

distributed, Java-based system which uses a Petri-net to replay the operations as an aid to

understanding errors that may have arisen. The system tests interoperability against items such

as erroneous method calls, loss of data, data format errors, and semantic errors such as might

occur in "the composition process of Web services, such as complex workflow integration"

[2005]. Unlike the Basic Profile, their viewpoint is the basic web service on the wire, using the

core specifications of SOAP 1.1, WSDL 1.1 and UDDI. They do not attempt to prescribe or

proscribe the use of different specifications or versions or to examine the implementation

problems inherent in the specifications. Theirs is a work in progress.

4.2 SOAP: no longer an acronym

4.2.1 Defining SOAP: Versioning Issues

As may be inferred from Figure 4-2Error! Reference source not found., SOAP is an XML

message format. The diagram suggests that SOAP merely contains XML, when SOAP is

actually itself an XML "language", but the whole SOAP specification describes much more than

a message format in that it includes, for example, message exchange patterns and an illustrative

binding to the HTTP protocol. As mentioned in Chapter 2, while SOAP version 1.1 used the

name as an acronym for Simple Object Access Protocol, the inappropriate acronymic meanings

were removed in version 1.2 with the laconic sentence "SOAP 1.2 will not spell out the

acronym" [Mitra, 2003].

In the light of this it might be thought curious that, under the glossary heading Simple Object

Access Protocol (SOAP), Microsoft, one of the original designers of SOAP, still in 2005 offers

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 62

the following definition, in an apparent attempt to emphasize the protocol's interoperability while

at the same time confining its use to HTTP:

 SOAP defines a message format in XML that travels over the Internet using Hypertext

Transfer Protocol (HTTP). By using existing Web protocols (HTTP) and languages

(XML), SOAP runs over the existing Internet infrastructure without being tied to any

operating system, language, or object model [Microsoft, 2005a].22

Figure 4-2: The SOAP Process [adapted from Microsoft, date unknown]

One of the significant changes between versions 1.1 and 1.2 of SOAP that is not taken into

account in the glossary definition above is that the concrete binding to HTTP was provided not

as a proscription but as an illustration of what was possible. As version 1.2 states:

 SOAP enables exchange of SOAP messages using a variety of underlying protocols…

The HTTP binding in SOAP 1.2 Part 2 illustrates [my italics] the specification of a

binding. Additional bindings can be created by specifications that conform to the binding

framework introduced in this chapter [Gudgin et al., 2003].

22 A surprisingly disorganized Microsoft (2005) webcast on interoperability between .NET and Apache Axis, given
by a Microsoft Regional Director, also defined SOAP in terms of its acronymic sense [Ruebush, 2005]. (Ruebush
also consistently interpreted the "I" in "WS-I" as standing for Integration rather than for Interoperability.) Microsoft
are not alone, however. The latest Systinet web-services primer also uses the acronymic sense, despite the fact that
Systinet's latest server implements SOAP 1.2 [Systinet, 2005].

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 63

Over two years after version 1.2 was ratified, a 2005 webinar on interoperability, jointly

produced by Microsoft and Systinet, still uses SOAP 1.1 "for interoperability" [Guest, 2005a].

An article written later in 2005 for the O'Reilly online publication On Java, says much the same:

"JAX-RPC 1.1 mandates the use of SOAP 1.1" [Panda, 2005], and the first sentence on the Sun

Developer Network site for JAX-RPC, in May 2005, reads as follows: "You can use the Java

API for XML-based RPC (JAX-RPC) to build Web applications and Web services, incorporating

XML-based RPC functionality according to the SOAP 1.1 specification" [Sun, 2005].

In all fairness it should be added that the original version of JAX-RPC 1.1 preceded SOAP 1.2

and is also about to be superseded by version 2.0 (already in late November, 2005, it is in public

review release) which fully supports SOAP 1.2. It should further be noted that the Windows

Communication Foundation (WCF), the new Microsoft web-services framework, which is to be

released in the later part of 2005 (discussed in section 6.4 of Chapter 6), is based on SOAP 1.2.

The coexistence of these offerings with the statements given above reveals something of the

muddle surrounding standards and versions in web services. It will be interesting to see whether

the Basic Profile updates its support for SOAP. Currently it supports only SOAP 1.1 .

4.2.2 SOAP as a Requirement for Web Services

Based not only on XML 1.023 but also on the W3C specifications for XML Schema and XML

Namespaces, SOAP is seen by many as an essential part of web services. Its popularity may be

explained by a list of its advantages given by Daniels et al. [2004], who represent it generously

as:

• A mechanism for defining the unit of communication…

• A processing model ...

• A mechanism for error handling...

• An extensibility model...

• A flexible mechanism for data representation...

• A convention for representing Remote Procedure Calls (RPCs) and responses as SOAP

messages...

23 SOAP 1.2, like WSDL 2.0, is based on the XML Infoset.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 64

• A protocol binding framework.

The requirement that SOAP should be used as the messaging format for web services cannot

easily be divorced from the requirement that WSDL should be employed as its definition

language, and not only because WSDL contains named extensibility elements that refer to

SOAP. It might be argued (and indeed is – see Chapter 5) that XML schema can by itself

replace the functionality of SOAP and WSDL, with messages in the form of schema-conformant

XML documents sent across the wire. Daniels et al. [2004] have a response to such a

suggestion: if you formalize your business logic only in a schema, the schema will have to be

extensible to cope with change, and you then run the risk of violating the principle of loose

coupling by forcing client business processes to change along with them. Viewed from this

standpoint, a schema alone may be seen as too fine-grained. In contrast, SOAP, they argue, has

"vertical" extensibility built into its framework through the presence of SOAP headers, and

"horizontal" extensibility through the concept of intermediaries or applications that may:

• process parts of the message while it is still in transit;

• help to increase the scalability of a distributed service;

• provide value-added services such as security.

The use of SOAP, they conclude, enables the creation at the outset of processing methods that

future changes will not break.

4.2.3 Problems with SOAP

Initially and sometimes still defined as "simple" and "lightweight" [Gudgin at al, 2003], SOAP

turns out to be neither. It needs XML parsers on client and server, and the overheads of using it

can hardly be described as lightweight: examples of such overheads were illustrated in Section

2.4.2.5.1, and the following SOAP message contains a payload of a mere 24 bytes (in bold

below) in a declared message-content total of 756 bytes.

POST /axis/services/DictServiceImpl HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.2RC3
Host: 127.0.0.1:1234
Cache-Control: no-cache

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 65

Pragma: no-cache
SOAPAction: ""
Content-Length: 756

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:storeEntryInDB

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="dct">
 <de href="#id0"/>
 </ns1:storeEntryInDB>
 <multiRef id="id0" soapenc:root="0"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/

 encoding/"
 xsi:type="ns2:DictEntry"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns2="urn:dct">
 <headword xsi:type="xsd:string weirdness</headword> ">
 <plural xsi:type="xsd:string">weirdnesses</plural>
 <pos xsi:type="xsd:string">noun</pos>
 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

Although the declared encoding for the XML is UTF-8, the message given above has been sent

in that encoding only because the declared HTTP character set has been set to utf-8: the SOAP

1.1 content-type of text/xml causes the XML document encoding to be ignored, for reasons that

were explained on page 45. Complexities of character encoding thus further detract from the so-

called simplicity of SOAP.

With this example, the source of the problem is that the version of SOAP supported in the release

of Axis that was used for the service is still 1.1. Axis 1.3 has more support for SOAP 1.224,

which requires the content-type to be more specifically application/soap+xml as a means of

avoiding the confusion of a SOAP message with any other type of XML content. Because even

Axis 1.3 is still an implementation of JAX-RPC 1.1, and defaults still to SOAP 1.1, it uses HTTP

POST for nearly all its SOAP requests, despite the inclusion in version 1.2 of the safer,

idempotent HTTP GET. (Section 7.2.1, however, contains a simple example of the way in which

it is possible to use HTTP GET with Axis 1.2.)

24 The API in Axis 1.3 offers more opportunities to choose SOAP 1.2, although there is virtually nothing in the
documentation, most of which has not been upgraded from Axis 1.2.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 66

The standard language bindings for SOAP 1.2 are for XML Schema data types but, where more

complex data types are involved, the situation becomes correspondingly more complicated, even

with the use of standard JavaBean representations. There are considerable differences between

simple JavaBean classes that a programmer might write to represent a complex type, and those

generated from a schema referenced in a WSDL by, for example, Apache Axis. (WebLogic

generated JavaBean classes are actually simpler.) The Axis-generated beans contain methods for

serialization and deserialization as well as for complex type descriptions using the XML Schema

QName data type, which refers to a namespace-qualified name required in WSDL. The

following example was generated from a hand-written WSDL for a web service:
static {
 typeDesc.setXmlType(new javax.xml.namespace.QName("urn:dct",

 "DictEntry"));
 org.apache.axis.description.ElementDesc elemField = new

 org.apache.axis.description.ElementDesc();
 elemField.setFieldName("headword");
 elemField.setXmlName(new javax.xml.namespace.QName("urn:dct",

 "headword"));
 elemField.setXmlType(new

 javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",
 "string"));

 elemField.setNillable(true);
 typeDesc.addFieldDesc(elemField);
 elemField = new org.apache.axis.description.ElementDesc();
 elemField.setFieldName("plural");
 elemField.setXmlName(new javax.xml.namespace.QName("urn:dct", "plural"));
 elemField.setXmlType(new

 javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",
 "string"));

 elemField.setNillable(true);
 typeDesc.addFieldDesc(elemField);
 elemField = new org.apache.axis.description.ElementDesc();
 elemField.setFieldName("pos");
 elemField.setXmlName(new javax.xml.namespace.QName("urn:dct", "pos"));
 elemField.setXmlType(new

 javax.xml.namespace.QName("http://www.w3.org/2001/XMLSchema",
 "string"));

 elemField.setNillable(true);
 typeDesc.addFieldDesc(elemField);
 }

The level of complexity can be appreciated by a comparison between the JavaBean, partially

rendered above, and the simpler schema construct below, from which it was generated:
 <xs:complexType name="DictType">
 <xs:sequence>
 <xs:element name="headword" type="xs:string" nillable="true"/>

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 67

 <xs:element name="plural" type="xs:string" nillable="true"/>
 <xs:element name="pos" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="noun"/>
 <xs:enumeration value="verb"/>
 <xs:enumeration value="adjective"/>
 <xs:enumeration value="adverb"/>
 <xs:enumeration value="article"/>
 <xs:enumeration value="preposition"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Levels of code complexity vary with WSDL code-generators. It could be argued that potential

code complexity is one more reason for starting a web service with a WSDL and a schema,

rather than with interface and implementation classes. This issue is discussed at greater length in

section 4.3.3.

Although SOAP has been widely adopted in industry applications and especially in vendor

toolkits, not all SOAP implementations are created equal, not least in which version of SOAP

they support, although that problem should be resolved as newer toolkit versions are released and

more vendors scramble to comply with the Basic Profile. Even when the versioning is taken care

of, there could still be interoperability problems if vendors were to insert proprietary details that

would lock customers in to their product. The SOAP header inside the SOAP envelope, for

example, is an extensibility element capable of modifying the message in many implementation-

dependent ways. The standards compliance of implementations tested (see Chapter 7) suggests

that most vendors are currently anxious to conform to the requirements of the Basic Profile and

to be seen to be interoperable.

A source of confusion is that rules for SOAP messages are distributed across both WSDL and

SOAP specifications. SOAP messaging styles, for instance, rely on protocol bindings which are

usually given as SOAP extensibility elements in WSDL documents, for example:
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="tns.storeEntry">
 <wsdlsoap:operation soapAction=""/>

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 68

 <wsdl:input name="tns.storeEntryRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

where the wsdlsoap elements are the commonly used extensibility elements for SOAP.

A further interoperability problem that neither SOAP nor WSDL addresses is occasioned by the

lack of granularity in message sequencing that does not extend beyond single message pairs. Zur

Muehlen, Nickerson and Swenson point out that "complex business scenarios that require the

sequencing of several message pairs cannot be described sufficiently using SOAP and WSDL,

but an additional standard is needed". They suggest that:

an information system needs to keep track not only of the individual request–response or

notify–response message pairs, but it also needs to correlate the different message pairs to

an overall context, so that it can identify messages that are duplicates or out of sync. In

essence, the description of the overall interaction requires a process model [2004].

4.2.4 The SOAP Message Structure

SOAP is both a messaging protocol and a message specification. Although it may seem useful to

examine SOAP separately from these two different viewpoints, there are areas in which the two

cannot be isolated. The messaging specification is first briefly considered. Figure 4-3 gives a

graphical representation of the XML structure of a simple SOAP message.

SOAP 1.2 changes the message structure slightly in that it no longer permits elements inside the

Envelope but outside the SOAP body. Another version change, which is really more of a

clarification, rests on the SOAP messaging style as determined in the WSDL file [Gudgin et al.,

2003a]. If the style is given as RPC, only one child element is allowed within the SOAP body

apart from the SOAP fault – although that "child" may have any number of "grandchildren"

elements. By default and by convention, if the style is given as document, any number of

parallel "child" elements are allowed within the SOAP body. The word "document", used in

apposition to the binding to "RPC", actually appears nowhere in that sense even in SOAP 1.2.

The concept of style arose in the WSDL specification and is discussed in Section 4.2.4.1 below.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 69

Figure 4-3: A representation of the basic SOAP Message Structure

SOAP Envelope
SOAP Header

Other Headers

SOAP Body
XML Content

SOAP Fault

A more complex SOAP message may also include binary attachments following the specification

for SOAP with Attachments (SwA) [Barton et al., 2000], originally developed by Microsoft who

then rejected it as a failure. The position with regard to binary attachments changed at the

beginning of 2005 when the W3C granted recommendation status to the SOAP Message

Transmission Optimization Mechanism (MTOM) [Gudgin et al., 2005], which looks set to

replace both the SwA model and the Microsoft proprietary alternative, Direct Internet Messaging

Extensions (DIME), also later rejected as a failure [see McMillan, 2003]. While SOAP with

Attachments permitted binary files to be carried outside the SOAP message infrastructure,

MTOM makes these binary elements part of an XML information set within the SOAP envelope.

In doing this, it complies with WS-I security requirements because, as part of the message, the

attachment may now be signed.

MTOM goes even further: it not only allows for the binary encoding of XML within a SOAP

message but it also permits the encapsulation of binary-encoded XML within an HTTP message,

regardless of whether or not SOAP is being used for the message exchange. The

recommendation aims to solve the problems of interoperability arising from the use of binary

attachments and will help in circumstances which involve, for example, the transmission of a

binary image file between different platforms.

MTOM is a solution that will enable developers to make full use of existing binary formats such

as GIF, JPEG and PDF within an XML context. MTOM makes this possible by using an

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 70

alternative serialization of XML known as XOP or XML-binary Optimized Packaging. XOP is

explained briefly by one of the XML Protocol Working Group:

..XOP is an alternate serialisation of XML ... with an XML document as the root part.

…This allows you to avoid the bulk and overhead in processing associated with

encoding, the only way that you can fit binary data directly into an XML world…XOP

can be used for any XML-based format; MTOM is just a description of how XOP is

layered into the SOAP HTTP transport [Nottingham, 2004].

Bray's response to Nottingham's views on MTOM and XOP represents the suspicions concerning

interoperability and the possible balkanization of XML shared by much of the XML community:

..it's reasonable to be nervous about MTOM or any other kind-of-XML-but-not-quite,

because there's the potential that when someone says "I'll send you XML" it won't be

clear any more that you can expect Unicode-with-angle-brackets, and that's a real loss.

I'm prepared to be convinced that the way MTOM is presented and packaged will

ameliorate that risk enough [to] give it a positive return on investment; but it is

reasonable to be worried [Bray, 2004a]25.

A tangible interoperability issue is whether the vendors will support MTOM or deliver their own

proprietary binary formats, as the Windows Communication Framework (see section 6.4 in

Chapter 6) already does alongside the MTOM standard [Microsoft, 2005b], but misuse of, or the

failure to comply with, a standard can hardly be attributed to the existence of that standard!

JAX-WS supports it, as does Visual Studio 2005. A matter of interest is whether (or when) the

WS-I Basic Profile, which currently supports SwA will switch to supporting MTOM26.

25 See also Bray's comments: "The question is, should there be an official binary encoding that is labeled as 'Binary
XML'? The World Wide Web Consortium is looking pretty intensely at that. A lot of us are pretty dubious at that
idea. You’d like it to be smaller, easier to parse and be self-describing in the same way that XML is. But it is far
from clear that you can have one binary encoding that will meet all these objectives" [Bray, 2005].
26 The idea of encoding binary data is not new to XML. XML Schema defines a value space for base64Binary and
hexBinary data, representing them as the actual octets [Biron and Malhotra, 2004], and XML itself allows for non-
text items such as image files to be represented by URI values as attributes where the specification defines an
unparsed entity as "a resource whose contents may or may not be text, and if text, may be other than XML... Beyond
a requirement that an XML processor make the identifiers for the entity and notation available to the application,
XML places no constraints on the contents of unparsed entities" [Bray et al, 2004].

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 71

4.2.4.1 Service Styles and their Encodings

Many Java implementations of SOAP, even those which are not commercial such as Apache

Axis, still use a default messaging style of RPC/encoded. Loughran and Smith go so far as to

state that: "The bias is such that, for Java development, it is widely seen that JAX-RPC is SOAP"

[2005a]. The emphasis looks set to change for Java toolkits, however, when JAX-WS is

officially released, because its default messaging style is document/wrapped literal.

Experimentation in late November, 2005, with the latest Java SOAP toolkits which use this style

as their default may be seen in Chapter 7, especially section 7.2.7.

Document/wrapped literal is the default .NET style and Microsoft implementations are explored

further also in Chapter 7, sections 7.2.2 and 7.2.4.3.

The WSDL specification defines the difference between an RPC messaging style and a

document messaging style as follows:

The style attribute [the <wsdlsoap:binding> style attribute] indicates whether the

operation is RPC-oriented (messages containing parameters and return values) or

document-oriented (message containing document(s)). This information may be used to

select an appropriate programming model. The value of this attribute also affects the way

in which the Body of the SOAP message is constructed… [Christensen et al., 2001].

This definition makes it very clear that the distinction is between SOAP messaging styles, which

do not necessarily dictate the programming style.

RPC and document are the two possible named values in the WSDL specification for the style

attribute but, through the separate style attribute in its descriptor file, Axis follows the mandate

in the JAX-RPC 1.1 specification [Chinnici et al., 2003], as well as adopting the proprietary

Microsoft format, in introducing a third possibility, wrapped, which is a variant of document.

RPC style was initially the more popular despite the fact that document style was given as the

default in the WSDL specification27, but RPC has lost popularity as the move towards document-

27 "If the soap:binding element does not specify a style, it is assumed to be 'document'" [Christensen et al., 2001].

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 72

style has gained momentum over the last two years, exemplified by the most recent systems

examined in Chapter 7. Newcomer says of the document-oriented style:

As the simplest and most abstract form of Web services, the document oriented style has

the advantage of preserving more of the characteristics of XML that make it so helpful -

namely its independence from any one particular programming language and [its] unique

type system. Because XML can be used as an independent data type system, it can be

used to solve one of the biggest problems in integration and interoperability, data type

compatibility [Newcomer, 2005].

The second part of the service style is set in the <wsdlsoap:body> use attribute, which

determines the XML encoding that will be used for any data types in the message that cannot be

interpreted simply as literal string values. The two possible values for the use attribute are

encoded and literal. The choice of encoded (still the default for some toolkits, including even

Apache Axis 1.3, but now beginning to change, as evidenced in Chapter 7) was the usual

combination with RPC, and is now heavily discouraged by the Basic Profile [section 4.7.4,

Ballinger et al., 2004]. [E]ncoded means that data types will be encoded into XML according to

the SOAP version 1.1 section 5 encoding, which preceded the use of W3C Schema and includes

a very limited set of data types. Because the data types are so limited, the potential for

interoperability problems is greater with this encoding, as was recognized by the Basic Profile.

The other choice, literal, usually but not exclusively means that the data types will be encoded

into XML according to W3C Schema rules and is now the popular choice, supported by the

Basic Profile. SOAP version 1.2 is more liberal than its predecessor, allowing for the use of

other schema types, including the increasingly popular RELAX NG (Regular Language

Description for XML, Next Generation). The potential to use a variety of schema types does not

detract from interoperability because schema namespaces are clearly indicated in the WSDL

namespace sections.

Because the style and use attributes are generally considered together to form a service model,

it may be helpful to consider briefly these pairs of options before going on to look at the

messaging styles they indicate:

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 73

• RPC/encoded is specifically disallowed in the Basic Profile because it is thought to

duplicate the function of XML namespaces, as well as provide too limited a set of data

types.

• rpc/literal means that the encoding rules are specified by a schema and this option is

permitted in the Basic Profile but tends to be a rarer choice, perhaps because of the

lessening in popularity of the RPC binding. The PHP service in Chapter 7 (section 7.2.9)

was implemented with this style, as was the Date service within Axis (section 7.2.2).

• document/literal carries overheads for the developer of schema design and validation,

on top of WSDL construction, plus any time it might take to negotiate the terms of the

schema with service clients. This approach, which usually starts with the Schema and the

WSDL, is considered a top-down approach, also referred to as a WSDL-First approach,

and is discussed later in section 4.3.3 of this chapter as well as throughout Chapter 7.

• document/encoded is not an option required to be implemented in JAX-RPC, although

examples of it apparently occur in the literature [see Tyagi, 2004a]. The Basic Profile

does not permit the encoded option and so this alternative is unlikely to be implemented

in the future. No attempt to implement it was made in this study.

• document wrapped is a further style option (not included in either the SOAP or WSDL

specifications) that was created originally by Microsoft to deal with identification

problems arising from the use of straight document style, details of which are given later

in this section.

The rest of this section examines the different style choices, together with their implications for

the structure and interoperability of SOAP messages.

4.2.4.1.1 RPC

If the WSDL style value appears as RPC, defining "a uniform representation of remote

procedure calls and responses" [Box et al., 2000], the first and only "parent" XML element

inside the SOAP Body element is named after the method request (or response). Child sub-

elements are used to represent the parameters or arguments to this method, usually encoded after

the SOAP section 5 encoding, now disallowed by the Basic Profile. Together the parent element

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 74

(add) in the example that follows, and its child elements (two integers), are taken to be a

rendering in XML of a method call and will produce the following SOAP message:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <oxy:calc.add xmlns:oxy="urn:calc"

Parent element giving
the method name

 SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <i1>15</i1>
 <i2>9</i2>
 </oxy:calc.add>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The advantage of the RPC- style, as may be seen in the SOAP message given above, is that it

clearly names the method, useful for identification to a service handling a number of different

methods which may take similar parameters. The PHP sayHello service described in section

7.2.9 of Chapter 7 and the Java Calculator service described in section 7.2.1 both illustrate why

identification is necessary. When more than one method call is possible, a document-style

service cannot easily distinguish between the methods. A disadvantage of RPC style, whether

the encoding is encoded or literal, is that the only parts of a schema that appears in the

message are the method parameters, making XML validation more limited. Butek argues against

the RPC/encoded style with the complaint that "The type encoding info… is usually just

overhead which degrades throughput performance" [2005]. (Using literal in place of encoded

removes the need for type encoding information inside a message.)

4.2.4.1.2 Document

If a WSDL style value is set to document, any valid XML may be contained by the <SOAP-

ENV:Body> element. A document-style SOAP message in which an actual document is being

included as the message content might look like this:
< SOAP-ENV:Body>
 <ns:someDocument xmlns:ns="appropriateURI">
 ...[XML document to be passed]
 </ns:someDocument>
</ SOAP-ENV:Body>

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 75

When document-style services are used for method calls (RPC programming style), the WSDL

should contain a <types> element, defining or referencing any schema data types used, and these

types become the direct child elements of the SOAP body element, as shown in the example

below, which uses the W3C Schema encoding to send integer parameters to the calculator

service and method that were used in the first illustration:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <i1 xmlns="urn:calc">15</i1>

No method name
given for this style

 <i2 xmlns="urn:calc">9</i2>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This style is less appropriate for method calls because it loses the method name and is therefore

less interoperable. Sections 7.2.1 and 7.2.9 in Chapter 7 examines what actually happens with

services when this messaging style is chosen. An example such as the one given above also

contravenes the WS-I prohibition against having more than one top-level element inside the

SOAP body, excluding a fault element [see section 4.7.10 in Ballinger et al., 2004] . For XML

documents, however, this style is ideal because everything inside the SOAP body element may

be validated against a schema.

4.2.4.1.3 Wrapped

The "wrapped" style is meant for use with method calls, was developed initially for .NET web

services and is supported by JAX-RPC version 1.1, which describes it as "wrapping" the

parameters to a method call inside "an xsd:sequence [or XML Schema complexType] element

named after the operation [element in the WSDL]" [Chinnici et al., 2003].

Manes explains that the wrapped style "produces document/literal services, and yet it supports an

RPC-style programming interface" [Manes, 2005a]. A calculator service wrapped example

illustrates how the wrapped style is more useful for method calls in its inclusion of a method

name:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>

Method name supplied <SOAP-ENV:Body>

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 76

 <add xmlns="urn:calc">
 <i1>15</i1>
 <i2>9</i2>
 </add>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Where a complex data type is involved, the wrapped style goes even further and "unwraps" a

complex type into its constituent parts, which are then supplied as parameters inside the SOAP

message, as the example below illustrates:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <storeEntry
xmlns="http://localhost:8080/axis/services/DictServiceImpl">

Method name supplied

 <de>
 <headword>weirdness</headword>
 <plural>weirdnesses</plural>

Name of the complex type

 <pos>noun</pos>
 </de>
 </storeEntry>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Here the complex data type de is decomposed into its parts, which are headword, plural and

pos. These parts are enclosed inside an element bearing the name given to the data type in the

types section of the WSDL, and that element is itself enclosed inside an element with the

method name storeEntry. As with the calculator service example, it can be seen that this style

ensures that the method name is not lost, a clear advantage over the straight document style for a

method invocation.

At a first glance, the wrapped style looks very similar to the RPC style. Butek explains the

difference:

In the RPC/literal SOAP message, the [element named for the method] child of

<soap:body> was the name of the operation. In the document/literal wrapped SOAP

message, the [element named for the method] clause is the name of the wrapper element

which the single input message's part refers to. It just so happens that one of the

characteristics of the wrapped pattern is that the name of the input element is the same as

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 77

the name of the operation. This pattern is a sly way of putting the operation name back

into the SOAP message [Butek, 2005].

Method overloading would not work with a wrapped-style service. Method overloading is in any

case not permitted by the Basic Profile stipulation that operation names must be unique [section

4.5.3, Ballinger et al., 2004].

In addition to automatic construction of SOAP messages from the WSDL style attribute,

Apache Axis provides another approach, based on the SOAP with Attachments API for Java

(SAAJ) and sent over JMS, in which the user programmatically constructs a SOAP message.

JMS is a Sun API, not supported by Microsoft, but bridges linking the two are available and

implementers of message queues such as IBM have created .NET-specific implementations that

will interoperate with JMS.

4.2.4.2 SOAP Programming Models

It is important to note that, although service styles dictate the format of SOAP messages that will

be sent over the wire and are intended to correlate with the programming approaches or message

exchange patterns that handle the actual sending and receiving of the messages, messaging and

programming styles should be seen as distinct. It is, for instance, possible to format a message as

document style and then send it over a protocol that uses RPC.

Haas and Brown define the required binding of a SOAP message to a protocol as a "formal set of

rules for carrying a SOAP message within or on top of another protocol (underlying protocol) for

the purpose of exchange" [2004]. It is usually the choice of a protocol that determines the MEP,

although the latest toolkits such as BEA's WebLogic and Visual Studio 2005 have mechanisms

for both synchronous and asynchronous messaging which are protocol-neutral and conform to

the Web Services Addressing (WS-Addressing) specifications, two of which are currently at the

W3C "Candidate Recommendation" stage [see Gudgin and Hadley, 2005, Gudgin and Hadley,

2005a, Gudgin and Hadley, 2005b]28.

28 Although not one of the core specifications such as SOAP and WSDL, the WS-Addressing specification needs to
be mentioned, not only because it is one of the areas in which Sun and Microsoft have recently (2005) joined forces
but also because of the significant effect that its implementation will have on the SOAP protocol bindings. WS-

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 78

Figure 4-4: An RPC Programming Model [adapted from Tyagi, 2004a]

4.2.4.2.1 RPC

The choice of protocol is usually determined by the toolkit. RPC is still the protocol most widely

used for SOAP messages and in many RPC-based toolkits the MEPs are hidden from the user. A

toolkit such as Axis will, for example, interpret an RPC messaging style choice as a call to create

a service proxy stub on the client side which looks like the real procedure, but prepares and

transports data across the interface. It actually marshals or gathers procedure-call parameters into

a SOAP message resembling the one given on page 74. The serialization of the message into

XML (determined by the WSDL use attribute) will be handled by the underlying protocol,

which is usually HTTP in the case of RPC.

The reverse process happens on the server, where a listener process, such as a servlet or JSP

page, deserializes the transported buffer stream and calls on another stub to unmarshal and

decode the parameters and then bind them to internal variables and data structures, after which

the called procedure is invoked. (Section 7 in SOAP 1.1 (or Adjuncts in SOAP 1.2) defines rules

Addressing aims to include the service endpoint inside a specially designed SOAP header, rather than at the
transport level, so that protocols other than HTTP may carry it efficiently, particularly when a message is designed
to be carried over several "hops" by more than one protocol. The downside of the specification is that it does not sit
well beside those sections of SOAP 1.2 (quoted on page 44) intended to assure transparency of URIs, and that it
contradicts the earlier, more generalized definition of web services given by the W3C (quoted on page 29).

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 79

for marshalling and encoding SOAP messages but gives no details containing serialization [Box

et al., 2000].) Figure 4-4 illustrates the interactions of a service with an RPC programming

model.

Figure 4-5: Document-Style Interaction [Adapted from Tyagi, 2004a]

4.2.4.2.2 Document

With a document style programming model, the assembling or marshalling of the data is left to

the programmer's choice, because a document-style message is a wrapper for any plain XML

content that is sent over the wire using any transport protocol of choice. The message may use

namespaces either on a SOAP element or, in the case of an embedded document, on the

document root element, to indicate schemas that will aid the recipient to interpret it, as may be

seen from the document-style examples in the previous section. If no namespaces are provided,

the client and server must agree on the procedures to be followed, which makes for closer

coupling in that the client has to know the service in advance. (WSDL 2.0 requires namespaces,

to preempt such a situation.) The handling of the message may be done in a variety of ways,

with parsers, for example, or XSLT processors. It is possible that the client and server will use

different technologies to serialize/deserialize and marshal/unmarshal the message.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 80

The interactions of a service using a document style programming model should normally follow

those illustrated in Figure 4-5, although many RPC-based toolkits conceal from their users that,

even for a document-style message, they are still employing RPC for the message transmission.

4.2.4.3 Advantages and Disadvantages of the RPC Processing Model

SOAP over RPC was widely adopted at the outset of web services, probably because RPC had

been conventionally used in distributed-object applications, looked more like CORBA and

DCOM, and was therefore familiar. RPC is identified with object- and component-oriented

technologies and, as was seen in Chapter 2, suffers from the problems of tight coupling and

synchronicity (blocking on a remote call can be disastrous for an application).

The combination of RPC with XML has become increasingly controversial – hence the name

change for the next JAX-RPC specification to JAX-WS. If web services are a messaging

technology, a remote procedure call is more of a proscriptive command. Various other arguments

put forward against sending SOAP messages over RPC are its tight coupling, its reliance on

synchronous technology, its slowness, verbosity and requirement of heavy processing on both

client and server. Possibly the strongest argument is given by Shah and Apte, who explain:

RPC [programming] -style services attempt to exchange technology-specific data objects

and APIs by serializing the data objects into XML and de-serializing again at the other

end. Since web services are technology- and platform-neutral, de-serialization on the

client side (based on the web services engine) to convert back to the data objects may not

re-create the exact signature of the objects as defined by the provider [2004a].

Shah and Apte argue that even using the same technology on the server and the client (for

example, the Java2WSDL and WSDL2Java tools within Axis) will produce different versions of

an API, while different technologies will produce an even greater variance, resulting in a

possibly damaging loss of control over the business interface. (Experimental results testing this

assertion may be found throughout Chapter 7 and especially in section 7.2.4.4.) Shah and Apte

concede, however, that the RPC-style may still be the best choice for converting legacy systems

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 81

into web services [2004a]. Butek and Scheuerle stress that the success of "round-tripping"29

depends on proper adherence to Java coding conventions in the first place [Butek and Scheuerle,

2004a], although findings in section 7.2.2 might indicate some engineering taking place behind

the scenes to make incompatible types appear compatible. Increasingly tools such as Altova

MapForce are easing data type conversions. An example of the use of MapForce as an aid to

code generation is given in section 7.2.5 of Chapter 7.

Loughran and Smith offer some similar arguments against using RPC with SOAP (in this case

referring to the use of XML for method calls), when they illustrate the mismatch between XML

and Java objects, contending that the semantic mappings underlying the terms "serialization" and

"deserialization" are at the base of the problem. They term it the O/X (Object to XML) mapping,

along the lines of the infamous O/R (Object to Relational Database) mapping, to emphasize the

intractable nature of the problem:

Undermining it all is a fundamental difference between the type systems of XML

(especially that of XML Schema) and that of Java, making any mapping both

complex and brittle [2005a].

Among their examples of mainly data-typing incompatibilities not listed elsewhere are:

• the way that XML Schema can define new types by restriction while Java classes use

inheritance to define new types only by extension (for example, an ISBN-type might be

seen as a restriction of a schema string type, whereas an ISBN Java class would inherit

from String and could not limit the use of normal String functionality).

• The related problem of representing XML schema enumerations, even with Java 1.5:

"The enumeration names in the Java source no longer contain any informative value at

all, other than a position number in the set. Any change to the enumeration could reorder

the values, without this change being detected by code that used the enumeration. The

defect would only show up in interoperability testing" [Loughran and Smith, 2005a].

Schema enumerations are restrictions on any kind of values other than boolean, and,

unlike Java enum values, have no underlying order. The problem described here could

29 Defined as "the process of mapping from one representation to another and back again" [Butek and Scheuerle,
2004b], it is concerned mainly with the accuracy of server-side code.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 82

occur, but only as the result of gross negligence on the part of those altering the service

code, without maintaining some kind of versioning indication.

• The non-trivial difficulty in mapping the much broader set of XML-permissible names to

the narrower set of Java identifiers, along with the problem that newer versions of Java

may break existing structures by including as keywords names that have been used (enum

being one example of this, already seen as a problem in earlier versions of Axis after Java

5 was released).

• The difficulty of representing XML namespaces as package names, for the same reasons

that bedevil identifier-mapping, mentioned above, although Loughran and Smith admit

that Java 1.5 annotations will help to solve this by enabling the association of metadata

with generated types.

• Problems arising from the common non-validation of the serialized XML message that is

received, that have the potential to prevent interoperability (there is no requirement that

messages or their content be validated).

• The inability (at least of JAX-RPC 1.1) to handle non-serializable data, despite the ability

that SOAP gives to include it. MTOM offers one possible solution to this problem.

Many of the above data-typing issues might be perceived as extreme cases to be avoided in web-

service implementation. In section 7.2.4.4 of Chapter 7, round-tripping is explored as one

solution to data-type problems. However, it is difficult to consider SOAP data-typing issues in

isolation from WSDL. While the source of the problem is the RPC-style programming model

which requires the exchange of data types between programming languages and XML, it should

be seen in the context of the WSDL document in which the data types are declared. This issue is

therefore taken up from a slightly different angle later in this chapter in section 4.3.2.

JAX-RPC 1.1 has other interoperability problems, among them the difficulties of using the

mandatory java.rmi.Remote and java.rmi.RemoteException classes that were discussed in

Chapter 3. Method parameters must also be JAX-RPC-supported Java language types. Tyagi

phrases carefully, if ambiguously, the relationship between the Basic Profile and JAX-RPC:

J2EE containers "must … satisfy all the interoperability requirements from WS-I Basic Profile

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 83

outlined in JAX-RPC [my italics]"[2004a]. Loughran and Smith go even further by suggesting

that JAX-RPC tries to make SOAP look like RMI [2005a].

RPC is, however, acknowledged to be the better approach for incorporating non-XML legacy

systems into web services and might therefore be said to perform better in a hybrid environment.

It works well on an intranet, where the problems of treating remote objects as if they were local

ones are not so obvious or serious. It also has the advantage of following well-known and

standardized procedures and offers optimizations for the overheads of marshalling and

serialization. Neither client nor server is left in the dark about what to do with an RPC call.

4.2.4.4 Advantages and Disadvantages of the Document-Style Programming

Model

If the RPC-style programming model has the disadvantages outlined in the previous section,

what are the advantages of the document-style programming model? One obvious advantage is

that the document-style programming model is using XML as it was originally intended: it

exchanges data not object-oriented code and, because the messaging format can be seen as a

packaging strategy for actual documents, the interface can be much more coarse-grained than is

needed for a method call. The document-style programming model is more suited to being

asynchronous and may therefore be much more loosely-coupled. Because a document-style

messaging format is also mapped onto a schema, it can be easier to process and validate.

The document-style programming model is excellent for passing complex business documents

such as purchase orders, receipts and invoices – the kinds of documents for which schema-

processing is essential. It is also an excellent choice when a service is broken into a subset of

services, each of which handles a particular type of processing. Unlike the RPC programming

model, it tolerates change better because of the type of processing that can be done by, for

example, XSLT, which can accept details it wants from a document, and ignore the rest. The

document-style programming model also works equally well for synchronous and asynchronous

messaging.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 84

Services following the document-style programming model are, however, often more complex to

create and process. Because there is no standard way of handling a document-style message,

some negotiation regarding the schema to be used is required in advance, which does not make

for loose coupling. Document-style programming carries the same, if not greater overheads for

marshalling and serialization, because more data may be transferred.

4.2.4.5 Different Types of Soap Client

The subject matter of this thesis is web services. To get a fuller picture of the issues surrounding

interoperability it is helpful also to examine typical implementations of SOAP clients and how

they interoperate with the services they target. The clients need to be able both to address the

service in the way it expects and also to handle the details of any response that is returned. JAX-

RPC 1.1 defines three different types of client, as may be seen from Figure 4-6: static stub,

dynamic proxy and dynamic invocation interface. There is also the possibility of creating a

SOAP client through the programmatic assembly of a SOAP message in an application client or

a REST-style client through the programmatic exchange of XML messages directly over HTTP.

Each of the three former client types can be represented as method calls, tied to RPC.

Figure 4-6: JAX-RPC Client Invocation Models [redrawn from Joseph, 2003]

4.2.4.5.1 Static Stub Client

A static stub client is an RPC version of RMI, a local object that acts as a proxy for the remote

service, created at development time, not at runtime. It relies on an implementation-specific

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 85

class and needs to know either the WSDL or the interface in advance. Toolkits usually enable

static stub client generation from the WSDL file. With Axis, one example of static stub client

code generation produced approximately 170 lines of supporting code (excluding the static client

itself, which had to be hand-coded) and generated four files. Programmatically, through a

service locator object, a service object was retrieved, by which calls could be made on the

remote service. An example of a static stub client may be seen in section 7.4.1 of Chapter 7.

4.2.4.5.2 Dynamic proxy client

Dynamic proxy clients are classes created at runtime, usually from the service interface, not from

an implementation-specific class. They need to know either the WSDL or the interface in

advance. They are not easy to autogenerate because their methods are hard-coded. Dynamic

clients were created in files with approximately 44 lines of code, as opposed to the 170 lines of

their static stub counterparts. An example of a dynamic proxy client may be seen in section 7.4.2

of Chapter 7.

4.2.4.5.3 Dynamic invocation client

With a dynamic invocation interface, a client can call a remote procedure even if the signature of

the remote procedure or the name of the service is unknown until runtime, when the details may

discovered through some kind of broker (an original function of UDDI). An example of this

style of client that attempts to call a service written in another language is discussed in Chapter 7,

in section 7.4.3.

4.2.4.5.4 Application Client

As outlined briefly at the end of section 4.2.4.5, it is also possible simply to write, for example, a

SAAJ client, in which it is the programmer who constructs the SOAP message. This method is

more programming-intensive, relies on prior knowledge of the service and hard-codes the

interface details, which could be a source of difficulties, should the client not be aware of later

changes to the interface. Such an approach does not usually rely on a toolkit. No SAAJ clients

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 86

were written for this study. The only application client that was created was for a REST service

and appears in section 7.2.8 of Chapter 7.

4.2.4.5.5 Summary of SOAP Client Approaches

Most of these different approaches to creating SOAP clients are predicated on the same object-

oriented, method-call foundation and suffer from the same drawbacks as services built using the

older technologies in that they are not truly loosely-coupled. Their focus is less on a service

contract, with message-exchange patterns, and more on the transmission of object types. In SOA

the boundaries between service and client should be distinct, with each side handling its own part

of the contract. The RPC approach tends to hide those boundaries, making it seem, as did

distributed-object technologies in the past, that the service sits in the same process as the client,

the pitfalls of which were examined in section 2.4.1 in Chapter 2.

Welcome changes, however, look set to appear with the new JAX-WS, which introduces two

new interfaces, javax.xml.ws.Dispatch and javax.xml.ws.Provider, with the explanation

that "in some cases operating at the message level is desirable" [Hadley and Chinnici, 2005].

This will provide an alternative to other JAX-RPC APIs which "are designed to hide the details

of converting between Java method invocations and the corresponding XML messages".

Dispatch will also provide support for asynchronous and for one-way messages. The results of

some experimentation with the Provider interface is discussed in section 7.2.7.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 87

4.3 WSDL: Web Services Description Language

The concept of a description (or definition) language did not begin with WSDL. CORBA and

DCOM both used interface definition languages (IDLs), which the OMG had borrowed from

Common Business-Oriented Language (COBOL). COBOL had used the term to define a

declarative language that made it possible to describe a programming interface. WSDL,

however, goes further than its predecessors. Like a SOAP message, each WSDL is an XML

instance document that must be capable of being validated against its W3C schema by an XML

processor, and from there it may become the basis for automatic code generation on both the

client and the server.

Figure 4-7: XML Infoset Diagram of WSDL 2.0 [Booth and Liu, 2005]

The primer to WSDL 2.0 describes the purpose of the specification in terms of language theory

as defining the "sentences" available to the language (of web services) and also the meaning of

each "sentence". Instead of using literal symbols and characters in that definition, however,

WSDL 2.0 uses the XML Infoset (see Figure 4-7), which gives an abstract model of the data, as

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 88

distinct from the syntax, that may be found in a well-formed XML document [Cowan and Tobin,

2004]. (SOAP 1.2 also uses the Infoset.) Some dissenting voices in the XML community

believe, however, that the interoperability of XML lies rather in its standardized syntax than in

its data model:

…describing data structures in a straightforward, interoperable way is really hard to get

right and very often fails. At the end of the day, if you really want to interoperate, you

have to describe the bits on the wire. That's what XML does [Bray, 2000].

Table 4-1 gives a generalized graphical representation of the WSDL-to-Java mappings for a

service that may be reached through one or more ports (service endpoints, or network addresses,

renamed as endpoints in WSDL 2.0), defined by a portType (an interface, appropriately

renamed as interface in WSDL 2.0). The portType includes the operations (the class

methods) which link the message exchange patterns to the messages that will represent the

operations, along with the message fault, input and output parameters (the parts) for each

method. Although the top-level message constructs were part of WSDL 1.1, these have been

dropped in version 2.0 in favour of using the types section to define the messages. This has

implications for details in other specifications that refer to them, but is no more of a versioning

problem than for any other specification.

WSDL ELEMENT JAVA CORRESPONDENCE
(Definitions [Description]) targetNamespace attribute Package
Types Data Types
PortType [Interface] Interface
(Operation) name attribute Method
Input Message: Part (only version 1.1) Method Input Parameter
Output Message: Part (only version 1.1) Method Output Return Value
Fault: Part (only version 1.1) Exception
Binding
Port [Endpoint] Network Address
Service Interface

Table 4-1: WSDL-to-Java Mappings, with WSDL 2.0 names in blue

Like SOAP, WSDL is not the simplest of specifications. As evidence that its complexity was

confusing even to its own developers, some of the examples in the WSDL 1.1 specification are

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 89

inaccurate [Pasley, 2001]. [W]sdl:import statements are used incorrectly in place of

xsd:import statements, as the Basic Profile points out [section 4.2.2, Ballinger et al., 2004]. On

top of that, Peeters noted that the WS-I-suggested corrections for these statements were incorrect

in terms of the W3C Schema specification [2003]!

Despite its own complexity, WSDL greatly simplifies the automated creation of SOAP-based

clients in terms both of time and of code. WSDL enables programmers to use their own data

types (within certain restrictions – see section 4.3.2 below) and have them serialized into XML,

from which they may be deserialized on the client side into the data types of other programming

languages – although this approach (Code First, as opposed to WSDL First) is not considered

interoperability-friendly. Through WSDL, the service interface needs to be defined only once,

not for each programming language that might access the service [see Ruby, 2002]. This is a

great advance on the old distributed models such as CORBA and DCOM, which required binary

protocols linked to object-specific models, and required proprietary interface definition

languages.

4.3.1 WSDL: a simple description of a web service

It may be helpful at this point to mention that a full WSDL file has been included in APPENDIX

E: An Example WSDL File, which may be used as a reference to the explanations in this section.

To avoid confusion, in the text that follows the changed WSDL 2.0 element names have been

highlighted and placed in square brackets after the current WSDL 1.1 names. Exceptions to this

occur in newer quotations containing WSDL 2.0 names. In these exceptional cases, while the

WSDL 2.0 name is still highlighted, it is the WSDL 1.1 name which is given inside the square

brackets. WSDL 2.0 might be seen as a simplification of the earlier version in that element

names correspond more directly to their functions and there are overall fewer elements (the

message elements are omitted and the binding elements have been made shorter).

WSDL documents can be divided into an abstract and a concrete section, with the concrete

section coming last and making explicit reference to structures in the abstract section. The

abstract section comprises the definitions of a web service and includes the types, the top-level

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 90

message elements, the top-level operation and the portType [interface] elements. The

concrete section is bound to the abstract section through the binding element and comprises the

port [endpoint] and service elements. In what follows, the focus is on the Java

implementations of WSDL.

4.3.1.1 The Abstract Section

The latest working draft of the WSDL 2.0 Primer gives clear general

definitions of the main elements that compose a WSDL document.

According to this Primer, "The types element describes the kinds of

messages that the service will send and receive" and "[t]he interface

[portType] element describes what abstract functionality the Web service provides" [Booth and

Liu, 2005]. The grouping of elements that make up this section is often defined as abstract in that

they are not tied to a protocol binding. According to JAX-WS, there should be a direct mapping

between the overarching WSDL <definitions> [description] element, and especially the

targetNamespace attribute, to the Java package that contains the web service:

A wsdl:definitions [description] element and its associated targetNamespace

attribute is mapped to a Java package…Implementations MUST provide a means for the

user to specify the Java package name corresponding to the value of a

wsdl:definitions [description] element’s targetNamespace attribute when mapping a

WSDL definitions [description] element to a Java package" [Hadley and Chinnici,

2005].

According to the WSDL 2.0 Core Language Draft,

The value of the targetNamespace attribute information item SHOULD be a

dereferencible IRI [Internationalized Resource Identifier]… It SHOULD resolve to a

human or machine processable document that directly or indirectly defines the intended

semantics of those components. It MAY resolve to a WSDL 2.0 document which

provides service description information for that namespace [Chinnici et al., 2005].

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 91

(Although this was not actually spelt out in WSDL 1.1, all the examples of target namespaces

given there do resolve to WSDL documents.) The significance of the targetNamespace

attribute is made even clearer in the primer for version 2.0, which describes it as comparable to

an XML schema target namespace and states:

The value of the WSDL target namespace MUST be an absolute URI. Furthermore, it

SHOULD be dereferenceable to a WSDL 2.0 document that describes the Web service

that the WSDL target namespace is used to describe [Booth and Liu, 2005].

The targetNamespace is now considered so important that it has been made a required attribute

in WSDL 2.0.

There is a direct mapping between a WSDL portType [interface] element and a Java interface

and the two are tied more closely together in WSDL 2.0 by the name change from portType to

interface. The request and (optional) response messages to the service are mapped in both

WSDL versions as input and output sub-elements on a parent operation element inside the

portType [interface] element.

There is also a direct mapping from the name attribute of an operation element, which must be

unique, to a programmed service method and, within the WSDL, the name attribute cross-

references a schema definition element within the types section. The operation elements each

specify a message exchange pattern, as well as the type of message each may send or receive.

While these are URI-identified in WSDL 2.0 as "in-out", "out-in", "in-only" and "out-only",

WSDL 2.0 does not exclude the future possibility of other patterns but cautions against the

interoperability problems the indiscriminate use of these might create. Although the messages in

the operation input and output attributes are essentially the same as the elements defined in

the types section, they are distinguished from these by a different namespace that identifies

them as components inside message exchange patterns.

To maintain naming uniqueness, the Basic Profile specifies that there must be no method

overloading in the interface methods, as was mentioned in section 4.2.4.1 above. JAX-WS

prevents method overloading that might arise from a code-first approach by providing a

RequestWrapper annotation to resolve naming conflicts. Similarly, while the .NET SDK allows

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 92

method overloading in the base class, it insists on the presence of a differentiating MessageName

attribute which ultimately translates overloaded methods into differently named operations.

WSDL 2.0 also supports the Basic Profile prohibition on method overloading.

4.3.1.2 The Concrete Section

In the more concrete section of a WSDL document, the binding element

combines the abstract description of a portType [interface] with a specific

transmission protocol. Where WSDL 1.1 defined extensibility elements (e.g.

wsdlsoap), WSDL 2.0 defines namespace-specified protocol attributes for

binding, operation and fault elements. Booth and Liu define the functions of the binding

and service element respectively as describing "how to access the service" and "where to access

the service" [2005]. WSDL 2.0 provides explicit bindings to SOAP 1.2 as a message format and

to HTTP 1.1 as a protocol, with a further attribute (e.g. whttp:method="GET") determining

whether POST or GET is used with HTTP. It also provides for alternative bindings to SOAP 1.1.

As with the message exchange patterns, WSDL 2.0 allows for the possibility of other formats,

and bindings to other transmission protocols, but again cautions against their indiscriminate use

if interoperability is required.

The service element contains the web-service name and, depending on the binding, may also

contain the service endpoint, thus giving the service a specific network address and binding. The

port [endpoint] element describes the binding with the portType [interface].

WSDL must be capable of being read by a remote machine (see the web-service definition on

page 28 and the quotation from Christensen in the following paragraph), which may then

construct from it a client for the service it describes, in whatever programming language the

client determines. The generation of many service clients was carried out in this study. Client

code generation appears particularly in section 7.2.4.4, which talks of general conversions

between WSDL and code and vice versa. Much of the generated client code was in the form of

supporting classes or libraries, which aided in the creation of a client, rather than directly

generating an actual client.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 93

Tools provided by Parasoft's SOA Test, BEA's Test Client, and Visual Studio 2005 all have the

ability to generate SOAP messages (as opposed to programmed clients) directly from a WSDL, a

feature that is also present in specialist XML editors such as Oxygen and XMLSpy. Axis has a

WSDL2Java tool (as well as a Java2WSDL tool), which generates Java classes from a WSDL

file, similar to .NET's wsdlc tool. BEA also provides a means of generating a service from a

WSDL file. ThinkTecture starts the generation process at an earlier stage by providing a generic

tool for generating a WSDL file from a schema. The tool may be used either with .NET

languages as an addition to Visual Studio (but not yet the 2005 version) or with Java as a plugin

for Eclipse. These tools are discussed further, with supporting examples, in Chapter 7.

Cerami highlights the significance of WSDL when he describes it as a platform- and language-

neutral contract between those providing and those requesting services, representing “a

cornerstone of the web-service architecture, because it provides a common language for

describing services and a platform for automatically integrating those services [my italics]"

[2004]. WSDL was designed to be used by tools that might automate web-service creation, as is

confirmed by the following statement from the WSDL 1.1 Specification: "WSDL service

definitions… serve as a recipe for automating the details involved in applications

communication" [Christensen et al, 2001].

4.3.2 WSDL Data-Typing

Issues of data-typing are usually first encountered in the creation of a WSDL document which

requires definitions of data types so that a client may be able to provide them as input parameters

to a service with an RPC programming style, or receive them from it as returned values. This is

particularly true of the document/wrapped messaging style that is becoming the norm, as

discussed in section 4.2.4.1. Those writing services in object-oriented languages cannot safely

use features such as method overloading (as discussed on page 91), polymorphism and

inheritance (not yet tested for in the Basic Profile testing kit and so potentially dangerous) which

might not be understood by clients written in non-object-oriented languages [see Manes, 2005].

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 94

Kumar, Das and Padmanabhuni point out that, while the W3 Schema mandates a minimum

number of digits (18) to represent the decimal datatype, it imposes no maximum value, which

can result in a lack of precision, and also that "not mentioning the datatype on [the] wire leads to

interoperability issues across applications" [2004]

In Java, collection types need to be converted to arrays (the new Axis 1.3 automates such

conversions) and, curiously, the primitive char type is not supported [see Chiesa, 2005]. In C#,

while a DataSet can be serialized as XML, DataTable and DataRow cannot [see MacDonald,

2002]. Manes makes the salient point that, with web services, as opposed to distributed object

technologies, "…the client's object may be different from the server's object…When the client

communicates with the server, it simply passes data, not behavior. It's much more loosely

coupled" [2005].

Although in Java arrays should be used instead of other collection types, arrays are not without

their own problems and are widely considered to be the most complex aspect of WSDL data-

typing. Problems with arrays were outlined in section 3.4.2 and are further discussed in section

7.2.4.3. WSDL 1.1 recommends the use of the deprecated SOAP encoding for array types,

depending on whether the WSDL style is RPC (ArrayOfXXX) or document

(maxOccurs=unbounded), but in its use of SOAP section 5 encoding the first approach is

forbidden by the Basic Profile [section 4.3.3, Ballinger et al., 2004] and is not touched on at all

in WSDL 2.0, leaving a vacuum in which developers use arrays at their own risk. (WSDL 1.1

did state that the suggested array style should be eschewed in favour of any schema revision that

might offer a better solution [section 2.2, Christensen et al., 2001].) Pasley points out that the

example given in the WSDL 1.1 specification for the WSDL arrayType element is invalid

[Pasley, 2001] – the reason, he speculates, is an unnoticed change in the schema specification

that occurred between WSDL version 1.0 and version 1.1.

Where Axis data typing is concerned, Gibbs et al. [2003] argue for a mix of Axis and Castor, an

XML binding tool that can convert between schema and Java more consistently than the Axis

WSDL2Java tool. The effective use of this tool requires a working knowledge of XML Schema

and, while the creation of a simple schema is not difficult, the learning curve necessary to write

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 95

the kind of schema that will underlie complex data types is fairly steep. Because Castor is Java-

specific, there remains the problem of language interoperability: Castor can guarantee a

conversion between XML and Java but that is all.

There are various other open-source data-binding frameworks for Java and XML, including

Sun's JAXB, and XMLBeans, created by BEA and donated in 2004 to the Apache Foundation.

All of these frameworks will generate JavaBean interfaces from a well-formed W3C XML

Schema. For C#, the .NET Framework SDK includes a W3C XML Schema Definition Tool

(xsd), which generates C# code from a schema. C# does not have an exact equivalent to the

JavaBean with its getter and setter methods30, and C# objects generated from the schema are

named after the schema types – including in their names a "type" suffix.

4.3.3 WSDL First

It has not been possible to ascertain the exact origin of the phrase "WSDL First" but its first

appearance is considered to be as the title of an O'Reilly XML.com article [see Provost, 2003].

It is the driving force for the tool, WSCF or Web Services Contract First, developed by

ThinkTecture and mentioned in section 4.3.1.2 above. Many, if not most, web-service

developers now argue that the WSDL for a potential service should be created first and only after

that should the programming code and configuration files be written or generated. The Axis-

users mailing list, for example, is full of exhortations to novices to start the web-service cycle by

designing the WSDL. Ewald puts the reason for this very clearly: "Anyone in the trenches

actually building systems knows that deriving the details of your contract from your

implementation is a sure fire way to cause interop issues" [Ewald, 2005].

This is echoed by Loughran and Smith who explain precisely why the price of not starting with

Schema and WSDL is a diminution of interoperability:

..the act of writing an IDL description forces the author to define the system in terms of

the portable datatypes and operations available in the restricted language of the IDL. This

can effectively guarantee portability, and is a significant improvement over interfaces

30 C# does have a "property" feature which includes getters and setters.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 96

defined in the implementation languages themselves, which invariably contain constructs

which are not portable [2005a].

Interfaces derived from code may need to be changed every time the code changes. Conclusions,

drawn from experiments of starting from different vantage points, are detailed throughout

Chapter 7, especially in section 7.2.4.4.

Ponnekanti and Fox discuss the interoperability problems of client applications adapting

themselves to services offered by different, competing service-providers who employ different

WSDL documents [Ponnekanti and Fox, 2004]. Ponnekanti and Fox approach the problem of

interoperability from the viewpoint of a static application, which will not be able to adapt itself

to change, unless the service providers agree amongst themselves to adopt a single WSDL from

which each may derive required operations. This is a much more limited take on interoperability

and relies on a programming-first standpoint. If, however, the client application may be at least

in part dynamically generated from the WSDL of whichever provider is chosen, interoperability

problems of the kind detailed in the paper need not arise.

Although WSDL is crucial in that it represents the service contract between a web service and its

clients, and aims to incorporate an interoperable type system through the use of XML Schema,

toolkits offer somewhat different methods of arriving at a web service, including most commonly

generating the WSDL from previously written program code. Provost gives these reasons for

opposing such a position:

a WSDL descriptor should be the source document for your web-service build process,

for a number of reasons, including anticipating industry standardization, maintaining

fidelity in transmitting service semantics, and achieving the best interoperability through

strong typing and WXS [W3C Schema] [2003].

It might be argued that the WSDL-First approach derives from CORBA, for example, where

code was generated from the IDL which was written first. Certainly, both systems need the

neutrality of an initial independence from coding paradigms to achieve interoperability. WSDL-

First goes a long way towards removing language-specific data-typing problems. Provost also

argues:

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 97

Under the WS-I Basic Profile, and in all typical practice, web services rely on WXS as

the fundamental type model. This is a potent choice. WXS offers a great range of

primitive types, simple-type derivation techniques such as enumerations and regular

expressions, lists, unions, extension and restriction of complex types, and many other

advanced features [2003].

A dissenting voice is provided by a Microsoft web-services developer, Obasanjo, who claims

that the WSDL-First approach is actually the source of some interoperability problems because

of the incomplete implementations of XML Schema in many SOAP toolkits, including the one

incorporated in the .NET framework, which does not support schema features such as

substitution groups and namespace-based wildcards:

A core fact of building XML Web services that use WSDL/XSD as the contract is that

most people will use object XML mapping technologies to either create or consume

the web services. However there are fundamental impedance mismatches between the

W3C XML Schema Definition (XSD) Language and objects in a traditional object

oriented programming language that ensure that these mappings will be problematic

[Obasanjo, 2005].

If WSDL First is the choice, Obasanjo suggests writing the WSDL based on a "minimal subset of

XSD", although Skonnard prefers the alternative of collaboration between the parties involved as

a means of solving interoperability problems [Skonnard, 2005], not exactly a feature of loose-

coupling. Obasanjo promotes the alternative of code-first design because starting from an

object-oriented viewpoint makes for the creation of less-complicated contracts – not necessarily

the case with schema-object mappings for complex types, not to mention the overheads and

complexity of converting data into objects to send it over the wire, only to have to convert it

from objects again at the receiving end.

The writer found it initially more natural to start by creating the programming interface, and then

move on to schema construction for the user-defined types, before beginning the construction of

the WSDL. Only at that point, did she feel there would there be enough concrete detail to begin

creating the WSDL file. WSDL First, however, offers an abstract conceptualization of a web

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 98

service that may then be fleshed out in programming details, in much the same way that a UML-

First approach encourages a programmer to begin with an abstract notation for application

classes and their interactions. Both of these approaches might be considered extremes and

neither of them is necessarily always the best strategy. WSDL is a definition of a contract

between a service and its clients. The writer began from the assumption that it would be difficult

to have a contract between entities that did not pre-exist in code.

In the course of examining these issues, however, her conviction solidified, for all the reasons

given above, that the only approach to creating web services that will confer interoperability is

WSDL-First. The objective stated in the first chapter of the Java Web Services Tutorial that

schema should be bound to "Java representations, making it easy for Java developers to

incorporate XML data and processing functions in Java applications" [Sun, 2005a] must be, on

reflection, considered to be back-to-front.

Loughran and Smith object in part to the WSDL-First policy, but for a reason that differs

importantly from that put forward by Obasanjo. While still supporting the notion of WSDL

First, Loughran and Smith claim that the length and complexity of WSDL and schema make

web-service development very difficult, having recently (2005) themselves completed a project

in which:

the XSD file … [was] approximately 2000 lines, including all the comments and

annotations needed to make it comprehensible. That it takes so many lines to describe a

relatively simple service is clearly one reason why this approach is so unpopular

[2005a].

The WSDL-First approach raises a further issue. It is expensive in terms of time for a web-

service developer to become familiar with a web-service toolkit (even one as apparently

transparent as Apache Axis) – time that might instead be used to become familiar with the

essential constructs of WSDL. It is not entirely an either/or situation. Ideally the web-service

developer should be familiar with both the standards and whatever toolkit(s) he or she may have

chosen: WSDL is intended to be machine- and toolkit-readable. To have any control over the

generated WSDL constructs is impossible without at least a basic understanding of WSDL and

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 99

XML. The creation of web services with the use of metadata annotations, described in Chapter

7, offers a possible compromise.

A further issue is the need for accurate interpretation and validation of WSDL by the available

tools. Those used for WSDL validation included Altova XMLSpy, Parasoft SOA Test, Mindreef

SOAPscope, Oxygen, CapeClear WSDL Editor and Stylus Studio. One of the WSDL examples

contained in the WSDL specification was copied into each of these editors in turn, with the

discovery that, while most validated it correctly, one considered the document invalid. The same

editor removed the default values for the SOAPAction header, required for interaction with .NET

services and by the current JAX-RPC specification as well as by the Basic Profile. Namespace

scoping in WSDL, while entirely logical when understood, is not intuitive and a surprising

number of supposedly accurate WSDL representations, used in online tutorials, were marked as

invalid by many of the editors for namespace reasons. At least one program declared that a

WSDL was valid before presenting a "run-time" problem when attempting to generate a SOAP

message from it. WSDL 1.1 and the Basic Profile do not agree about whether an RPC/literal

message part should reference a type or an element.

4.3.4 Conclusions Regarding WSDL

WSDL has been criticized for being too complex but is perhaps the best available solution for the

difficult task of defining a web service in a way that is independent of platform and language.

Although very closely linked to SOAP, WSDL can exist without it. WSDL 2.0 provides an

HTTP binding which does not use SOAP [see section 2.5.6, Booth and Liu, 2005] and section

5.3.3 of the specification gives an illustration of a REST style service. REST is the subject of

Chapter 5 and is illustrated in section 7.2.8 of Chapter 7.

In the last section of this chapter, focus turns to UDDI, the third leg of the web-services

triumvirate.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 100

4.4 UDDI – Dead in its Tracks?

UDDI is an acronym for Universal Description, Discovery, and Integration. As an

implementation, a UDDI registry service is itself a web service which is intended for the use of

other web services. As the specification for a discovery mechanism, its development was

spearheaded early in 2000 by Ariba, Microsoft and later IBM, who saw in it a means of

providing a business repository or registry for their web services. Microsoft may also have seen

it as an extension to its Active Directory technology, which is its current use inside the

organization. The MSDN defines a Microsoft-specific implementation under the heading of

Active Directory:

Microsoft.Uddi provides a Microsoft-specific extension that applies only to Microsoft

Active Directory environments. This extension enables applications to discover Microsoft

Enterprise UDDI Services servers and their entry points in Active Directory servers on an

intranet [Microsoft, 2005c].

UDDI versions 2 and 3 make use of both SOAP and WSDL. UDDI defines SOAP messages

that may be used by web-service providers to advertise their services, and by consumers to make

queries about them, and it uses WSDL to define its own interfaces. Unlike SOAP and WSDL,

UDDI was not brought to the W3C for standardization but was instead submitted to OASIS, the

first significant web-service specification to go that route. Although UDDI 3 was made available

in 2003, it was approved as an OASIS Standard only in January, 2005. UDDI 2 has the blessing

of the Web Services Interoperability Organization [section 5, Ballinger et al., 2004], but has not

been mandated by the Basic Profile.

It is significant that the W3C Web Services Glossary [Haas and Brown, 2004] does not once

include a reference to UDDI, though references to SOAP and WSDL abound. Lomow and

Newcomer comment: "It's safe to say that the original vision of UDDI has not been realized"

[Lomow and Newcomer, 2004]. They give one reason as the unwillingness of companies to

enter into transactions with unknown business entities that have not been approved as trading

partners. Lamow and Newcomer also argue that UDDI was intended to function within the

intranet, where indeed it does operate but in so proprietary a manner that companies are unlikely

to want to use other companies' systems for their own.

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 101

The reason for the unwillingness of companies to enter into transactions with business entities

unknown to them is a lack of trust in the anonymity of machine-only communication.

Wainewright supports Bray in his criticism of the origins of UDDI, which is that standards

organizations exist to standardize what is already known to work, rather than to be in the

business of inventing technology [Wainewright, 2004]. A further criticism of UDDI is that it

works against the loosely-coupled features of web services by being too centralized.

A recent Gartner report describes the current landscape: "most UDDI implementations are

locked into a proprietary database management system (DBMS) — for example, IBM uses DB2,

Microsoft uses SQL Server or Microsoft Data Engine, and Oracle uses DBMS" [Plummer et al.,

2004]. Wainewright also believes that UDDI has been sidelined into a proprietary registry with a

home on the intranet rather than on the internet, and that it "has stopped attempting to be a

blueprint for a universal services registry. It is now targeted for internal use by enterprises that

have large numbers of services and want to track them" [2004].

In an attempt to resolve the issue of trust, the more lightweight WSIL (Web Services Inspection

Language) was developed (again by Microsoft and IBM) to provide a technology to complement

UDDI in the form of an intermediary mechanism through which companies might advertise their

own services. This specification, however, seems to have met with no more success than UDDI.

No attempt has been made to implement UDDI for the purposes of this study.

4.5 Summary

It is not surprising, in the light of the last section, that the web-service standards that were put

together, however awkwardly, as an attempt to solve a real problem – interoperability – have

developed to a point where they cannot be ignored even if they are criticized. NetKernel, a

REST web server31, even has a SOAP interface and methods to verify WSDL documents, but

makes no mention of UDDI. It may not be a coincidence that UDDI 1 was pushed through

31 See http://www.1060.org/.

http://www.1060.org/

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 102

OASIS, while SOAP and WSDL took much longer to achieve W3C Recommendation status and

with a wider consensus.

As a concept, however, UDDI is no less significant to web-service interoperability than SOAP or

WSDL. By providing a means of discovery that theoretically anyone could use, it may be seen

as a means of enabling companies to interoperate at a higher level and may become significant to

SOA. It does not, however, take into proper consideration the issue of trust.

Perhaps it is asking too much of the specifications that they be perfect. Skonnard lays the blame

for non-interoperability at their door:

If interoperability is the main promise of Web services, why is it that so many developers

and organizations have a difficult time achieving it in practice? With all due respect to

our hard-working standards bodies, the primary culprits are the imperfect specifications

guiding today's implementations. Ambiguities and too many choices often lead to

differing interpretations, resulting in incompatible implementations [Skonnard, 2004].

With the specifications delivering imperfect standards, Skonnard believes it is the responsibility

of the developer not only to identify the problem areas and take steps to avoid them but also to

follow the guidelines of the Basic Profile, which attempt to clarify ambiguities in the

specifications. His advice does not take into account the problems of specification versioning

and he specifically recommends, for example, following the Basic Profile advice always to use

HTTP POST rather than GET [section 3.4.2, Ballinger et al., 2004] despite the fact that SOAP 1.2

allows it. Skonnard further states, "Using cookies to implement stateful Web services

interactions is another area that wasn't explicitly defined in the original SOAP messaging

specifications", ignoring the requirement that, if they are to be loosely coupled, web services

need to be stateless.

Despite imperfections and ambiguities, SOAP and WSDL do provide a means of achieving

interoperability, especially for complex services which cannot be reliably delivered in any other

way and, as the most mature web-service specifications, they provide the groundwork for much

that has followed them. There is no doubt that other versions and other specifications will

CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS 103

continue to be developed. As long as the versions are indicated in the service details (usually

through the namespaces), interoperability problems should not arise from version co-existence.

It is very encouraging to see the gradual improvement in interoperability of the two main

specifications discussed in this chapter.

CHAPTER 5: REST – AN ALTERNATIVE

5.1 Introduction: the Revolt against Complexity

This study has shown that, although there is some consensus that the conventional web-services

"stack" based on SOAP and WSDL can be made to succeed, there is a matching degree of

confusion and uncertainty about its future. Bosworth, former Chief Architect at BEA, the

original architect of XML and MS Access at Microsoft, a major contributor to the HTML basis

of Internet Explorer, now employed by Google, said recently: " I'm trying, right now to figure

out if there is any real justification for the WS-* standards and even SOAP in the face of the

complexity when XML over HTTP works so well… So, I'm kind of a skeptic of the value apart

from the toolkits. They do deliver some value, (get a WSDL, instant code to talk to service), but

what I'm really thinking about is whether there can't be a much simpler [kinder] way to do this"

[Bosworth, 2004].

Many of the developers who were in at the birth of XML deplore the complexity of the current

realization of web services. They designed XML so that message exchange over the internet

would be both simple and capable of encapsulating complexity where needed, and they find the

specification proliferation irksome at the very least. Bosworth is well positioned to be the

spokesman for simplicity. He cites it as the major benefit of XML over HTTP: "You don't have

to worry about any of the complexity of WSDL or WS-TX [Web Services Transactions Project]

or WS-CO [Web Services Coordination]. Since most users of SOAP today don't actually use

SOAP standards for reliability (too fragmented) or asynchrony (even more so) or even security

(too complex), what are they getting from all this complex overhead[?]. ...How do you keep it

really simple, really lightweight, and really fast[?]. Sure, you can still support the more complex

things, but the really useful things may turn out to be simplest ones" [Bosworth, 2004a].

The history of software systems to date teaches that rigid, over-elaborate systems do not survive,

not only because they do not have the flexibility to adapt to change but also because people do

not like to be constrained by them. Web services in their current state seem to be at the mercy of

CHAPTER 5: REST – AN ALTERNATIVE 105

those who want to control and regulate for every possible eventuality, to such an extent that the

whole becomes unmanageable, even incomprehensible – worlds away from the creative,

innovative spirit that produced the Internet, HTTP and HTML, and later simplified SGML into

XML. A theme that echoes frequently in the writings of those who decry conventional web

services is the need to wrest control of web services away from IT departments and give it back

to those concerned with business logic. This balance of control is a significant issue. Whereas

IT departments might focus on control and regulation of the processes, businesses (and people in

general) are more concerned with content, with why the software is used in the first place.

This also touches on interoperability. There is no point in building a system so technically

"perfect" that no one can interoperate with it, because no one knows how.

5.2 Representational State Transfer

One of the alternatives to the conventional web-services stack is REST, an acronym for

Representational State Transfer, a term coined by Roy Fielding in his PhD dissertation to

describe the architectural style of the World Wide Web [Fielding, 2000]. Fielding, one of the

principal writers of the HTTP specification and a co-founder of the Apache Group, defines the

term as follows:

Representational State Transfer is intended to evoke an image of how a well-designed

Web application behaves: a network of web pages (a virtual state-machine), where the

user progresses through an application by selecting links (state transitions), resulting in

the next page (representing the next state of the application) being transferred to the user

and rendered for their use [2000].

Fielding and Taylor explain the advantages of such a system:

"REST is a coordinated set of architectural constraints that attempts to minimize latency

and network communication, while at the same time maximizing the independence and

scalability of component implementations. This is achieved by placing constraints on

CHAPTER 5: REST – AN ALTERNATIVE 106

connector semantics, where other styles have focused on component semantics" [Fielding

and Taylor, 2002].

This approach uses mechanisms for message transmission that pre-date web services: XML,

HTTP and URIs (Uniform Resource Indicators), as may be seen in Figure 5-1. One of the early

problems with SOAP in the minds of many XML developers, particularly at the W3C, lay in the

fact that version 1.1 did not permit the use of HTTP GET, choosing POST instead, regardless of

the fact that GET is both less dangerous in its side-effects, and cacheable. This has been remedied

in SOAP 1.2, as has the exposure of the URIs in the HTTP headers (they had been concealed in

SOAP 1.1). SOAP 1.2 recommends that, where practical, particularly when using the HTTP

binding, separate resources are identified by separate URIs, so that SOAP endpoints fit into the

web architecture in the same way as other web accessible resources. This has the added

advantage that SOAP resources are now suitable for use with the HTTP GET method instead of

being tied to HTTP POST (see Section 4.1 of Mitra, 2003).

HTTP packet

HTTP Verb:
GET |PUT|POST|DELETE

REST XML Payload:
Data Representation

with entity URIs

Stateless Web Service
Conversation via REST

HTTP/SHTTP/S

HTTP
Client

HTTP
Server

REST-
aware
Client

REST-
Aware
Application

SSL and
HTTP
Authentication

Figure 5-1: REST Web-Service Structure [Hinchcliffe, 2005]

SOAP 1.2 narrowed the gap, at least between SOAP and REST. Zur Muehlen, Nickerson and

Swenson take the changes in SOAP 1.2 to mean that "SOAP can be used, but used in such a way

that it does not violate REST principles" [2004] The escalation both in complexity and in the

number of specification releases since SOAP 1.2 has, however, prompted individuals such as

Bosworth (cited on page 104) to question the current nature of web services. Companies such as

CHAPTER 5: REST – AN ALTERNATIVE 107

Amazon have actively developed REST-based interfaces for their clients as alternatives to those

based on SOAP.

Barr, of Amazon.com, explained in an interview that: "we put up both the SOAP and the REST

or XML-over-HTTP interface and the experience so far has been that the REST interface is

definitely in the lead. Probably close to 80% of the calls we process are REST-style calls" [Barr,

2003]. Its popularity he attributed to its simplicity: "…people go towards the simplest solution."

He did share his belief, however, that SOAP interfaces might become more popular as web-

service transactions became more complex.

REST with its basis in the URI is particularly well suited for operations requiring browser

access. REST is excellent for simpler operations but where features such as transaction

processing and authentication are required, SOAP may still have an edge. Fortunately, there

does not have to be a situation in which only SOAP or only REST is chosen. Each may be seen

to have complementary uses. Zur Muehlen, Nickerson and Swenson characterize the difference

between them in terms not of technology but of style: "REST.. represent[s] a navigational style

of design, and .. SOAP.. represent[s] a procedural style [2004].

Another enthusiast for REST is Butterfield, the CEO of Flickr32, a new, different and very

popular tag-based, photo-sharing program exposed as a web service. When asked in an

interview published on the O'Reilly Network whether Flickr was a next-generation web service,

Butterfield replied:

On the strictly practical side, I think we had one person inquire about using the SOAP

version of the API. I don't know if any apps were actually built. There is at least one

application built on XML-RPC. But all the others – I don't even know how many there

are – are built on the REST API. It's just so easy to develop that way; I think it's foolish

to do anything else [Butterfield, 2005].

As with Amazon, the user interface is web-based and therefore particularly suited to a REST

style.

32 See http://www.flickr.com/.

http://www.flickr.com/

CHAPTER 5: REST – AN ALTERNATIVE 108

In March of 2005, Yahoo decided to expose its services through a REST interface, explaining

that "REST based services are easy to understand and accessible from most modern

programming languages… We believe REST has a lower barrier to entry, is easier to use than

SOAP, and is entirely sufficient for these services" [Yahoo, 2005]. In July of 2005, Safari Books

Online, a venture shared by O'Reilly Media Inc. and The Pearson Technology Group, joined

Yahoo, Amazon and Flickr by publishing their web service also through a REST interface, which

now enables users to browse not only bibliographic details but also a book's contents, giving

limited access to the text in much the same way that Google Print now offers.

What companies as successful as Amazon and Flickr have to say about the popularity of their

REST interfaces is particularly interesting in the light of the conflict that arose in the W3C TAG

[Technical Architecture Group] when supporters of SOAP-based web services like Manes

ridiculed REST as a purely academic pursuit:

W3C is, at heart, an academic organization. And its perfectly reasonable for W3C to

pursue its academic goals (REST and the Semantic Web). But if W3C wants to play a

major role in business systems, and if W3C wants to continue receiving funding from the

big software vendors, then the W3C TAG must be willing to [accommodate] the

requirements of big business. If the REST faction continues to try to undermine the

existing Web services architecture, it will alienate big business [Manes, 2002].

Fielding's response to this posting is as pointed as it is obviously angry, not only in its rebuttal of

the idea of REST as a purely academic pursuit but in its placing of SOAP in the context of failed

distributed-object architectures:

The only reason SOAP remains in the W3C for standardization is because all of the other

forums either rejected the concept out of hand or refused to rubber-stamp a poor

implementation of a bad idea. If this thing is going to be called Web Services, then I

insist that it actually have something to do with the Web. If not, I'd rather have the WS-I

group responsible for abusing the marketplace with yet another CORBA/DCOM than

have the W3C waste its effort pandering to the whims of marketing consultants [Fielding,

2002].

CHAPTER 5: REST – AN ALTERNATIVE 109

5.3 Advantages of REST over Conventional Web Services

It need hardly be said that the main advantage of REST-based services is that they are

completely interoperable. All that is required for the client is that it be able to send information

to the web server hosting the service and receive information from it in the simplest language of

all – text-based XML. There is no problem with data binding and serialization in terms of the

message transmission because there are no objects to be transmitted. There are no language or

platform issues, no complex specifications to incorporate, no Basic Profile to satisfy.

Significantly, of course, no toolkits are required to translate innumerable complex specifications

into terms a lay person can understand. An example of a REST service, illustrating its simplicity

and interoperability, may be found in section 7.2.8 of Chapter 7.

Most of these are negative advantages. What are the positive ones?

A major advantage lies in the expressive power of XML itself, which goes beyond current

programming languages in enabling, for example, the conveyance of precise meaning through

inheritance by restriction, as well as by extension. A schema data type for an ISBN, for

example, is a restriction on the normal string schema data type. All of the normal

expressiveness of strings is stripped away and confined to a regular expression representing the

numerals, alphabetic characters and hyphens which compose an ISBN.

A second major advantage of working directly with XML is that the processes are seen to be

data-centric, rather than object-centric, concerned with data rather than with processes. Thirdly,

it is no insignificant advantage for REST-based web-service styles that they are also seen to

conform to the principles described in the W3C's recommendation, Architecture of the World

Wide Web [Jacobs and Walsh, 2004]. Fourthly, there is some evidence that, depending on

client implementations, REST has some advantage of speed over SOAP-based services in that it

does not carry the data type conversion and greater textual overheads that SOAP usually

necessitates [Barr, 2005].

CHAPTER 5: REST – AN ALTERNATIVE 110

5.4 Disadvantages of REST over Conventional Web Services

The simplicity of REST-based styles means that they may not directly offer features such as

authentication and transaction management which more complex web services may require.

Smaller REST-based web services may be chained as part of a larger "application" through the

inclusion of their URIs within XML messages which enable the client to move dynamically

between services as, for example, in booking an airline ticket as part of a holiday package. But

REST-based services do not offer the same potential for enabling legacy applications to be

incorporated into more modern systems that SOAP-based services do, precisely because REST

eschews objects in favour of data, while SOAP may be at home with either or both (legacy

systems tend to be distributed-object systems). It can also be seen as a limitation that REST

seems to apply exclusively to the web "world" of HTTP or HTTP-similar protocols, and not to

other means of transmission.

Zur Muehlen, Nickerson and Swenson give a useful summary of some advantages and

disadvantages of REST versus SOAP as they apply to process integration, but the comparisons

can be seen to have wider application as well [2004]:

 REST SOAP
Characteristics • Operations are defined in the

messages
• Unique address for every process

instance
• Each object supports the defined

(standard [HTTP]) operations
• Loose coupling of components

• Operations are defined as WSDL ports
• Unique address for every operation
• Multiple process instances share the

same operation
• Tight coupling of components

Self-declared
advantages

• Late binding is possible
• Process instances are created

explicitly

• Client needs no routing information

beyond the initial process factory
URI

• Client can have one generic listener
interface for notifications

• Debugging is possible
• Complex operations can be hidden

behind façade
• Wrapping existing APIs is

straightforward

• Increased privacy

Possible
disadvantages

• Large number of objects

• Managing the URI namespace can be

cumbersome

• Client needs to know operations and
their semantics beforehand

• Client need dedicated ports for
different types of notification.

Table 5-1: Differences between REST and SOAP in terms of process integration

CHAPTER 5: REST – AN ALTERNATIVE 111

Zur Muehlen, Nickerson and Swenson continue with the fascinating suggestion that the lack of

absolute testing of the advantages of one technology (or design) over the other suggests that the

conflict between the supporters of each is not a purely technical issue. They conclude that the

differences are cultural but leave to a further study an examination of this phenomenon [2004].

5.5 Summary

Inasmuch as REST defines the structures by which the web might be said to have become the

most popular technology ever, REST can lay claim to interoperability through its set of simple

principles. Fielding's claim is that REST "scales well with large numbers of clients, enables

transfer of data in streams of unlimited size and type, supports intermediaries (proxies and

gateways) as data transformation and caching components, and concentrates the application state

within the user agent components" [Fielding, 1998], all of which support the notion of

interoperability.

Web services call for multiple solutions. There will probably not emerge only one victorious

scheme of web services to rule all the rest, despite the ambitions of tools vendors to make this so.

In a situation where flexibility obtains, it is possible for REST-based services to coexist with

SOAP-based services, as indeed they do today on sites such as Amazon and Flickr. One of the

architects of SOAP has even argued that the best combination for web services may be the use of

REST to describe how objects might be accessed along with the use of SOAP to describe how

both state and objects might be represented [Ruby, 2003], although such an approach moves

back into the world of distributed objects, as opposed to that of distributed data, where XML

excels.

Perhaps the strongest argument in favour of REST is the visible movement away from RPC-style

web services to more document-oriented, message-passing styles within a conventional web-

services approach, as evidenced in all the latest versions of the main toolkits, whether C#- or

Java-based. This represents some convergence of opinion. It is unfortunate that the convergence

is still accompanied by a specification bloat (see the diagram in APPENDIX C: The Complexity

CHAPTER 5: REST – AN ALTERNATIVE 112

Of Web-Service Specifications [Jeon, c2005]) which works against simplicity and, ultimately,

against interoperability, especially where competing specifications are concerned.

CHAPTER 6: WEB-SERVICES COORDINATION

6.1 Introduction

Although concepts and issues belonging to Service-Oriented Architectures work at a meta-level

above web services, and are in the main beyond the scope of this project, they raise some of the

same issues, which therefore deserve consideration. This chapter will briefly examine some

SOA developments where they encounter similar problems to web services, or have a bearing on

web-services interoperability. The topics discussed in this chapter are a selection of the main

approaches towards coordinating web services so that they work together into the bigger whole

that SOA comprises. The selection does not claim to be exhaustive. The technologies described

here are intended to be distinct from traditional middleware solutions because, according to the

Web Services Choreography Interface, (which will be described in section 6.2.1) traditional

middleware assumes a less dynamic participation and "a different, more tightly linked and

controllable environment, which is not the nature of the Web" [Arkin et al., 2002]. Traditional

middleware systems "normally call for centralized engines, while the nature of the Web is

decentralized" [Arkin et al., 2002]. As the remainder of this chapter will show, not all the

solutions proposed maintain this clear distinction.

6.2 Orchestration and Coordination

Web-services orchestration and coordination work at the level of SOA, creating a context for

services and their cooperation with each other. They aim to provide a "conversational model"

[Pelz 2003] between different web services, which will therefore be loosely coupled. Pelz

considers that the current models are not sufficiently distanced from the business process or

individual company and that for them to be really useful, a more objective peer-to-peer approach

should be achieved. He cites an analogy offered in an IBM research paper

to illustrate the difference between the business process standards and the conversational

model for web services. The current web-services model is analogous to a vending

CHAPTER 6: WEB-SERVICES COORDINATION 114

machine. There are a set number of buttons that can be pressed in a pre-defined order. A

conversational model is more analogous to a telephone call, involving a series of

exchanges between the parties at each end in a more flexible, dynamic fashion [Pelz

2003].

The intention of such an approach, he argues, is to give control back to business management

and wrest it away from IT management.

Pelz makes a distinction between the terms "orchestration" and "coordination". Orchestration,

he defines as describing "an executable business process that may interact with both internal and

external web services. For orchestration, the process is always controlled from the perspective of

one of the business parties". A commonly used analogy for orchestration is of a conductor in

charge of an orchestra, which suggests the more centralized control of traditional middleware.

Orchestration might also be said to be closer to the imperative nature of object-oriented

middleware. Choreography, however, is more descriptive, following the paradigm of messaging

technologies, and "is more collaborative in nature, in which each party involved in the process

describes the part they play in the interaction"[Pelz 2003]. An analogy for choreography might

be from dance, where everyone follows the rules which are individual for each dancer and there

is no "conductor" apart from the design. Here choreography is similar to a protocol.

Pelz describes ideals for the execution of web-service processes, which aim to prevent lengthy

sequential processing. Asynchrony comes to the fore not only at the service level but also at this

meta level. Familiar paradigms are seen to be no longer workable. Long-term transaction

processing, for example, cannot rely upon the traditional principles of ACID (database systems

being atomic, consistent, isolated and durable), when, for instance, locking a resource across the

internet might cause more problems than it is intended to prevent.

Improved exception handling is no less an issue at this level than it has been seen to be for

individual web services and Pelz cites a Hurwitz study which claims that it consumes 80% of the

time used to create business processes.

CHAPTER 6: WEB-SERVICES COORDINATION 115

6.2.1 Web Services Choreography Interface (WSCI)

Arkin et al. position the web-services choreography efforts in relation to the notion of

interoperability as follows:

A "stack" of layered standards is emerging that aims to ensure semantic and technical

interoperability of Web Services. This stack, developed by the W3C, is still in its early

stages and is currently being built from the ground up; several additional layers are

needed in order to enable true Web Service collaborations [2002].

In mentioning the significance of the W3C in developing this "stack", Arkin et al. do not omit

mention of other efforts which are "building semantics and interoperability for business

processes and collaborations in a top-down approach" [Arkin et al., 2002], an allusion to

orchestration technologies. Whether these efforts include non-W3C initiatives is not clear, but

the focus on interoperability is central, if slightly different from the notion of interoperability for

individual web services. Collaborative interoperability relates to the meaningful interactions of

services with other services, not just that between client and service.

Figure 6-1: The relationship between WSDL and WSCI [adapted from Arkin et al, 2002]

Although WSCI considers the message exchange from the viewpoint of only one of the

collaborating partners at a time, it does, however, also offer a global model, which describes "a

multi-participant view of the overall message exchange" [Arkin et al., 2002]. WSCI takes over

CHAPTER 6: WEB-SERVICES COORDINATION 116

where WSDL leaves off, extending the interactions beyond client and service to inter-service

collaboration. Created initially by Sun, SAP, and BEA, and then submitted to the W3C in 2002,

the WSCI choreographs the interactions between collaborating web services (and even the

interactions between different parts of the same web service) by defining the series of XML

messages that will be exchanged between them, their order, sequencing, relationships and

behaviour. Each series of messages WSCI terms a process. As may be seen in Figure 6-1, it re-

uses the operation elements defined in the WSDL for a service.

6.2.2 BPEL

Originally termed BPEL4WS (Business Process Execution Language for Web Services), BPEL

was created in 2002 by IBM, Microsoft and BEA and taken to OASIS for standardization at

approximately the same time that the WSCI was going through the W3C. The vendors' choice of

OASIS was probably a reaction to the demand by the W3C that all patents should be royalty-

free. BPEL extends programming languages by providing ways in which they may work

together but its primary concern is with business processes. It has inherited some features from

its forerunner, BPML (Business Process Management Language). Verner [2004] describes both

systems as being built on the π calculus33. Version 2.0, renamed as WS-BPEL but not

significantly different from its earlier version, was released in 2004 by OASIS.

The BPEL specification argues compellingly for the necessity of a meta-level integration

standard above web services which will enable the exciting and dynamic service interactions so

far available only in science-fiction:

 Systems integration requires more than the ability to conduct simple interactions by using

standard protocols. The full potential of Web Services as an integration platform will be

achieved only when applications and business processes are able to integrate their

complex interactions by using a standard process integration model [Andrews et al.,

2003].

33 A process algebra, developed by Hoare and Milner. See Pucella, 2001.

CHAPTER 6: WEB-SERVICES COORDINATION 117

One of the differences between this kind of model and web services is that the former needs to be

stateful in order to keep track of message sequences and process interactions. BPEL is proposed

partly as a solution to the problem of maintaining state – in fact state maintenance is mentioned

throughout as crucial. BPEL aims to specify the "visible message exchange behavior of each of

the parties involved in the protocol, without revealing their internal implementation" [Andrews et

al., 2003]. BPEL offers itself both as a "model" for business interactions and as a "grammar" to

define them. It seeks to create relationships, but in doing so it may be returning to an earlier

model and obscuring the loosely-coupled nature of web-service interactions in which it is the

messages, not the participants, which are defined.

While WSCI uses WSDL, the role of BPEL is to attempt to extend WSDL. Like WSCI, BPEL

builds upon the WSDL definition of operations, but BPEL attempts to organize their sequence,

without making any assumptions about the messaging technology (e.g. SOAP) that will be used.

Its focus is on the abstract sections of WSDL, not the concrete ones in which the bindings are

made, although it also, separately, describes executable business processes.

Figure 6-2: Schematic of a BPEL Process for Handling a Purchase Order [Andrews et al., 2003]

The BPEL specification gives an example of a BPEL process in terms of the handling of a

purchase order, as illustrated in Figure 6-2, in which the dotted lines "represent sequencing", the

grouping (shown here in the yellow rectangle) represents a concurrent sequence, and the two

CHAPTER 6: WEB-SERVICES COORDINATION 118

solid arrows represent data dependencies which arise from the necessity of determining both the

shipping price, before a final price calculation may be achieved, and shipping data, before the

production schedule can be finalized. In the WSDL document used by this service, these

operations are embraced in the abstract by a number of port types or interfaces. BPEL then

extends WSDL by introducing a number of extensible elements, the most significant of which

for this discussion are PartnerLinks (defining the role and the functionality that must be

provided by whoever assumes the role) and variables elements (for maintaining state).

Defining roles and maintaining state is all too reminiscent of object-oriented middleware. As if

that were not enough, the specification continues: "Finally, it is important to observe how an

assignment activity is used to transfer information between data variables. The simple

assignments shown in this example transfer a message part from a source variable to a message

part in a target variable" [Andrews et al., 2003] and goes on to describe "switch" and "while"

elements. The language appears to concern messages but the concepts are closer to

programmatic code sequences.

BPEL's focus on the functionality of the role is a key difference between it and WSCI. Where

BPEL sees roles, WSCI sees messages. Where BPEL sees hierarchy, employing a central

process "engine" controlled by one of the players, WSCI sees equals. BPEL is concerned with

constructing a "fractal-like" [Verner, 2004] meta-service out of smaller services, whereas WSCI

is more about services collaborating with each other. BPEL and WSCI are not necessarily

competing technologies in that they each deal with different aspects of web-service coordination,

but of the two, WSCI seems closer in spirit to the aims of web services.

The weaknesses of BPEL according to Verner, are that it "addresses only processes composed

exclusively of Web services" (one of the strengths of web services is that it provides the

possibility of incorporating legacy systems), that its processes cannot be rendered graphically,

that its design cannot be performed in a top-down fashion, that a BPEL process cannot be

analyzed, and, most tellingly, that it is "a vendor-driven process definitions language that has not

yet been reflected in a royalty-free standard published by a recognized standards group" [2004].

CHAPTER 6: WEB-SERVICES COORDINATION 119

6.3 The Enterprise Service Bus

Originally defined by analysts at Gartner (see [PolarLake, 2003]34), the Enterprise Service Bus

(ESB) is a broker infrastructure which offers an alternative integration of legacy business

systems by converting them all to services. The proprietary nature of its existing

implementations suggest that it may encounter the same problems as CORBA and a recent

Gartner survey pointed to the fact that industry had greeted its arrival with a certain amount of

suspicion, a state of mind not alleviated by the common release of some so-called ESB products

which are really legacy applications under the wraps (Cape Clear have even created a tool for the

detection of such forgeries [see Cape Clear, 2005]).

Figure 6-3: The Role of the Service Bus in SOA [adapted from Weerawarana et al, 2005]

An ESB implementation is composed of a network of servers. As a system ESB is message-

based and it claims to replace message-queuing middleware. As an architecture it is a model that

is closely associated with web services and service-oriented architectures, and its role in the

latter is illustrated in Figure 6-3. There is still a certain amount of confusion around its

definition, about whether it is a product or an architecture and it seems that the term may apply

34 See e.g. http://www.webservices.org/index.php/ws/content/view/full/39605 [PolarLake, 2003].

http://www.webservices.org/index.php/ws/content/view/full/39605

CHAPTER 6: WEB-SERVICES COORDINATION 120

to both equally. Its concerns are with infrastructures and control and its aim is to integrate

distributed business processes in a way that makes them loosely coupled. Although it is not

confined to web services, it shares design features of coarse granularity, asynchronicity and loose

coupling in a distributed environment. Its purpose is to achieve at a meta-level what web

services seek to accomplish at a lower level.

6.4 A First Look at WCF

The Windows Communication Foundation (now known as WCF, until July 2005 code-named

Indigo), unlike the other SOA components featured in this chapter is a product or a series of

technologies for service integration, rather than a specification or a protocol. It is included in

this chapter because of what it reveals about current trends in distributed computing and SOA. It

demonstrates a serious commitment to the principles and values embodied in web services but it

is a vendor-specific product, integrated into the new Microsoft Visual Studio 2005. Despite its

assurances of interoperability with web services generated on other platforms, it is built for

Windows and its use locks the developer into .NET technologies.

A challenge to this issue of vendor lock-in might come in the form of the JBI (Java Business

Integration) Java Specification Request (JSR) 208, which seeks to build a vendor-neutral

framework for service integration. Both IBM and BEA decided to withdraw their support for it

during 2004 and it is not clear at this stage what other support it will find beyond the Java

community35. It is significant that, of the ten technologies listed as being related to JBI, seven

are W3C specifications [JCP, 2005]. Integrated into WCF, on the other hand, are many

specifications and technologies that have been processed by OASIS.

35 At the vote taken on June 20th, 2005, to ratify JBI, both IBM and BEA abstained for similar reasons. IBM said:
"Many technologies and open specifications are available to the Java programmer today with more compelling
interoperability and better mechanisms for component composition." They also thought the specification too
complex. BEA were briefer: "BEA believes that the JBI specification is an incomplete attempt to standardize the
interfaces between multi-vendor infrastructure and contributes little to the usefulness of the Java platform for
business application integration, one of the real pain point for our customers. It's unfortunate that [its] name alone
will result in significant confusion in the marketplace" [JCP, 2005a].

CHAPTER 6: WEB-SERVICES COORDINATION 121

WCF is a connected-systems framework that is built solidly on SOAP 1.2 and aims to integrate

different types of technology for distributed computing with a federation model. Chappell

explains:

.. with the universal agreement among vendors on Web services, the long-standing

problem of application interoperability can .. be solved. Because Indigo's fundamental

communication mechanism is SOAP, Indigo applications can communicate with other

software running in a variety of contexts" [2005].

One of the most encouraging features is the clear adherence by WCF to the standards that

differentiate web services from distributed object technologies. Box points out that WCF is built

on the following four cornerstones [2004]: that

• boundaries are explicit (a movement away from technologies such as RPC, which aimed

to make the boundaries transparent)

• services are autonomous (the service and the client are independent, using the WSDL as

their interface)

• services share schema and contract, not class (the object-oriented behaviour of passing

classes and methods across boundaries was a feature of distributed object technologies)

• service compatibility is determined based on policy (choices are determined according to

agreed web-service standards).

WCF offers two different interfaces, one internal and one for communication with non .NET-

based services. The internal interface is "optimized" to use a binary format of XML for message

exchanges, while the external interface will use a normal text-based XML SOAP format.

Officially Microsoft's BizTalk server implementation (which uses BPEL but transforms it

internally into Microsoft's own XLANG) will still function as the main Microsoft service

integration model, but there is talk of integrating this too into WCF further down the line.

Microsoft emphasizes that its new approach towards web services, as embodied in WCF, will

involve the developer in writing much less code because the heavy work is carried out by means

of the annotations and XML configuration files. As with other, less sophisticated, toolkits, this

removes the developer even further from what is actually happening at a lower level and

CHAPTER 6: WEB-SERVICES COORDINATION 122

contradicts the advice from Slama et al. [2004], cited in Chapter 2, that problems arise when the

developer is too far removed from the distribution. What is refreshing, however, is that there is a

stated aim and effort to interoperate with other platforms.

6.5 Summary

This very brief look at web-service integration ventures and specifications has demonstrated that

many of the attempts at a meta-level unsurprisingly echo the problems that are often found at the

root-level: tight-coupling and vendor-competitiveness. It is difficult at this stage to measure the

likely success of integration technologies and specifications because of competing approaches

and versioning problems, and also because the web-service technologies upon which they are

built are still in flux.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS

7.1 Introduction

The services described in this chapter are a validation of the qualitative findings expressed in

Chapters 4 and 5. The services described below were constructed for a variety of platforms, and

clients for each of them were also run from a variety of platforms. Mindreef's SOAPscope and

Parasoft's latest SOA Test tools, were also used. As well as testing the services for

interoperability against the Basic Profile 1.1, SOA Test also created unit tests for each method of

a service. The services were developed to supply proofs-of-concept and were not intended to be

of production quality. While the Hello World service and the calculator service are versions of

examples that will be found in many places, the others were developed by the author.

A choice was taken not to implement these services with the Java Web Services Developer Pack

(JWSDP) because of its lack of transparency: in the past its WSDLs and web-service methods

have been automatically generated (with no WSDL-First policy), and the numerous generated

files are not only very lengthy but also not user-friendly. A general observation, which applies to

all the tested frameworks and kits is that the further the developer is removed from what is

actually happening on the wire, the greater the potential for problems introduced by complexities

in the environment.

After giving an overview of the platforms used for development, this chapter will examine in

turn each of the web services and the clients used to make calls on them. The focus of the

chapter will be on any interoperability problems that arose from the implementations, the efforts

that were made to resolve them and the conclusions that it was possible to draw concerning

interoperability. The chapter will conclude with a brief survey of the findings presented as a

table to draw them together.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 124

7.1.1 The Platforms

This section provides some explanatory details about the web servers used in the development

and testing of web services and the reasons for choosing them.

7.1.1.1 Apache Axis 1.2 (Java)

A desire to avoid environment-introduced complexity was one of the reasons for the selection of

Axis (Apache Extensible Interaction System) as the initial Java testbed. Axis is an open-source

SOAP engine or "framework for constructing SOAP processors such as clients, servers,

gateways" [Axis user-guide, 2005], originally donated to the Apache foundation by IBM as

SOAP4J.36 Axis is a specialized servlet that can run inside a servlet container such as Apache

Tomcat. An earlier version of Axis was part of the reference implementation of JAX-RPC. Axis

is moving towards a fuller implementation of SOAP 1.2, for which it currently has some support.

While release 1.2 Final of Axis was used for most of the Axis development, features of version

1.3 (released in October, 2005) were examined for changes.

The main advantages of Axis, according to its 1.2 user-guide, are that it is easily-configurable,

flexible, stable, component-oriented, standards-compliant and fast, providing extensive WSDL

support and a transport framework, while being essentially transport-neutral – not a paltry list by

any standard. Axis may run as a server in standalone mode or within a web server. The latter

was the form chosen, with Jakarta Tomcat as the chosen web container because it is open-source,

easily configurable and standards-compliant. Many vendors of SOAP web services claim that

Axis is supported by them. It might be said to represent the best that is available in SOAP

toolkits in that it aims to incorporate current standards and specifications without commercial

interests.

The only significant drawback of using Axis for the creation of interoperable web services is that

the service proxies it generates are compatible only with Axis, a drawback that would probably

be replicated in other systems and toolkits, although Sun's announcement in section 7.1.1.3

below sets its artefacts aside as portable. Some versions of Axis before version 1.2 Final did not

36 IBM was co-author of SOAP 1.1 [Box et al., 2000].

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 125

implement the Basic Profile requirement of a SOAPAction WSDL attribute and therefore omitted

the SOAPAction header in the SOAP message structure, but this is not the case with the current

version. The default WSDL style even in Axis 1.3 is still RPC/encoded.

7.1.1.2 GlassFish (Java)

GlassFish is the name given to the source-code release of Sun's Application Server 9, not yet

commercially released, but made available to the Java Community for their contribution to its

development. What puts GlassFish apart from earlier releases of Sun's AppServer is its

inclusion of state-of-the-art Java technology including an early-access release of the JAX-WS

(formerly called JAX-RPC). The default WSDL style in GlassFish is document/literal.

As with many toolkits, GlassFish offers two approaches to creating web services. The first,

closer to earlier versions of J2EE, is code-based and uses annotations to create the mappings

between Java and XML. While this approach is clearly opposite to that encouraged by those

who support the theory of WSDL First for interoperability, it does have the advantage of saving

the developer from having to write, and rewrite, boilerplate code and configuration files. The

second approach, following the WSDL-First policy, starts with the WSDL file and from that

generates an interface. The documentation for the JAX-WS describes the trade-off that each

approach involves:

If you start from a Java class, you can make sure that the endpoint implementation class

has the desirable Java data types, but the developer has less control of the generated XML

schema. When starting from a WSDL file and schema, the developer has total control

over what XML schema is used, but has less control over what the generated service

endpoint and the classes it uses will contain [Sun, 2005b].

7.1.1.3 Sun Application Server 8.1 (Java)

Although version 8.1 of the Sun Application Server was designed to use JAX-RPC 1.1, it is

possible to build into it the functionality of the early-access release of JAX-WS. Because JAX-

WS introduces support for SOAP 1.2, as well as for the use of metadata annotations, it was

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 126

possible to examine the extent to which the new developments aid web-service interoperability

either with or without the SOAP stack. Sun announced that the artefacts generated by its new

tools were portable and might therefore be run on any J2EE-compliant server. Sun's (former)

technical lead for JAX-WS recently announced the achievement in JAX-WS of a 52% reduction

in the number of files generated and a 77% reduction in the size of these files [Kohlert, 2005].

With JAX-WS, the creation of a web service becomes more transparent – not just a point and

click exercise. Ant tasks may be used as aids in the development process and the possibility

exists of starting a web service either from a Java class or from a WSDL. A change is that no

service endpoint interface needs to be created. Notably, the structure of the samples bundled

with JAX-WS reveals that, even when a service is created from a Java class, the implementation

should include a schema as a joint starting point. The default WSDL style is document/literal.

A close examination of the code generated for clients by the Application Server engine reveals

the creation of a client proxy or stub for the client, along with the generation of interface

artefacts and extensive use of java.rmi.Remote. The AddNumbersImpl sample interface

extends Remote and the client class throws a RemoteException. This is not the only type of

client that may be created, however. JAX-WS offers a Dispatch API which allows the

developer to work at the level of the XML messages, but at the expense of more complexity in

terms of the APIs involved.

7.1.1.4 BEA WebLogic 9.0 (Java)

This latest version of the WebLogic server (released in November, 2005) comes with an

extensive implementation of the web-services metadata specification, not surprisingly because

the head for the specification was from BEA [see Zotter, 2005]. The server documentation

explains clearly how it is possible easily to customize the generation of the WSDL file without

the user having to know exact WSDL details, although he or she would need to know something

of WSDL files in order to take advantage of the metadata facilities. It rapidly became evident

that, for a developer working from code, the metadata features are the next best option to WSDL

First in that they invite him or her to step outside the code and think in terms of the XML

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 127

elements that will be created. Code and WSDL may be developed in parallel. While most of the

new metadata annotations are present, the WebFault metadata annotation has not yet been

implemented and so exception-handling falls back to the earlier JAX-RPC 1.1 model. Unlike

GlassFish and the Sun AppServer, the default WSDL style for WebLogic is document/wrapped

literal.

7.1.1.5 Web Matrix (C#)

Web Matrix is an older free development tool, based on the Microsoft .NET 1.1 framework and

Software Development Kit (SDK). It is also a lightweight alternative server to IIS. It was

chosen for C# development, not only because it was free, but also initially because the learning

curve for using it to create C# web services was not as steep as that for learning Visual Studio

2005 which at the time of initial development was still in Beta 2. A further advantage of Web

Matrix is that it is not project-based and has a small footprint. It does not implement the "code

behind" features of Visual Studio and its web-service creation is more transparent. It uses the

default Microsoft WSDL style of document/wrapped literal.

7.1.1.6 Visual Studio 2005 (C#)

Although Visual Studio 2005 (released in November, 2005) cannot be described as open-source,

it offers Microsoft's latest implementation of web-service standards and was therefore useful for

both comparison and development. It is based on version 2.0 of the .NET Framework and SDK.

Its default service style is document/wrapped literal.

7.1.1.7 Apache 2 (PHP)

Apache was used as the web server for the PHP implementations. The latest version of PHP (5,

released in 2005) was used because of its new support for web services. Some development was

done with the recently released (November, 2005) Zend Studio 5, which has introduced a WSDL

generator. The default WSDL style for both PHP 5 and Zend Studio appears to be RPC/encoded,

although this is not explicitly stated.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 128

7.1.1.8 Mozilla Firefox (JavaScript)

Firefox was chosen as the browser because its open-source code makes it possible to create

extensions to use with it. There are a number of different technologies involved in the creation

of Firefox extensions, the most prominent of which are XUL (XML User Interface Language),

RDF (Resource Description Framework) and JavaScript. The difficulty in creating this

extension lay in the fact that, while some sources did describe the creation of simple extensions,

these extensions did not involve web services. Further exploration of the Mozilla SOAP API

produced a sample application [Rosenberg, 2003] (though not an extension) that used the API to

call a web service. Even better, there was a reference to a sample web service call, which made

it possible to determine that Firefox did support the Mozilla SOAP API. Further details on the

development of the extension may be found on page 179 in Appendix B.

Although no service development was carried out with JavaScript, it was used to create a client

in the form of an extension to the Mozilla browser, Firefox. The Mozilla JavaScript API offers

support for SOAP 1.1, with a default style of RPC/encoded. JavaScript SOAP browser

implementations are more limited in that they require special permissions in order to be able to

run. Extended details of the Firefox extension described below are given in APPENDIX B:

Creating A Firefox Extension.

A recent (2004) excellent addition to the Mozilla APIs is ECMAScript for XML (E4X),

originally created by BEA as a means of incorporating literal XML into JavaScript, and the basis

of a technology with a new (2005) name but ancient roots, Ajax (Asynchronous JavaScript and

XML). It is possible to create web services with Ajax that may be deployed within Axis on the

basis of a deployment descriptor file containing Ajax script, without any further code. The

WSDL generated by Axis from this descriptor does not need a types section because the XML

is incorporated into the language directly and therefore needs no conversion. Some

experimentation was done, but Ajax web-service implementations are not at a mature stage and

were not developed for this study.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 129

7.2 Web Services

7.2.1 The Simple Calculator Service

The calculator service was one of the samples built into Axis and was used for basic testing.

Because of their simplicity, SOAP messages generated by this service were used to illustrate the

different messaging styles in section 4.2.4.1 of Chapter 4. This service was implemented in each

of the three styles, RPC, document and wrapped. While the RPC and wrapped style

implementations behaved as expected, returning appropriate responses to a programmed client,

the document style implementation encountered problems:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <in0 xmlns="http://calc">7</in0>

Method name omitted

 <in1 xmlns="http://calc">8</in1>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope

The service had difficulty interpreting the SOAP message without the method name which it was

expecting and kept returning an IllegalArgumentException, whichever method was invoked.

Other SOAP implementations (for example WebLogic) have also followed Microsoft's example

in making all document style services wrapped, which makes sense in terms of including the

method name for identification.

That this was the case was confirmed when another approach was tried, in the form of generating

the WSDL file with the Axis Java2WSDL tool. Using the tool with the document option caused a

warning to be generated that problems might be encountered and, when the WSDL so created

was used as the basis for SOAP messages generated within XMLSpy and Oxygen, the form of the

message was identical to the previous document-style SOAP message that had been intercepted

on the wire:
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <in0 xmlns="urn:calc">INT</in0>

Method name omitted

 <in1 xmlns="urn:calc">INT</in1>
 </SOAP-ENV:Body>

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 130

</SOAP-ENV:Envelope>

and the same error message was received in the SOAP response.

Although SOAP 1.1 does not support the HTTP GET method, there is elementary support for it

within Axis. After invoking, for example, a document/literal version of the calculator service in

a browser with the URL,
 http://localhost:8080/axis/services/Calculator?method=add&in0=6&in1=2

the following successful SOAP message appears as a response in the browser window:
<soapenv:Envelope>
 <soapenv:Body>
 <addResponse>

 <ns1:addReturn>8</ns1:addReturn>
</addResponse>

 </soapenv:Body>
</soapenv:Envelope>

An interesting feature of the GET method here is that, even with a document/literal style, it

enables the use of the method name, bypassing the confusion about which method was being

called that was experienced with the SOAP 1.1-compliant and WSDL-generated POST method.

7.2.2 An Even Simpler Date Service

Because of the confusion caused by using an inappropriate Date object in Java (mentioned on

page 48), the simplest possible Java RPC/literal service was created using this code based on the

java.util.Date class:
public class Timings {
 private aDate = new Date();

 public Date getTime(Date d)throws JAXRPCException{
 aDate = d;
 return aDate;
 }
}

Axis generated a WSDL which did, as expected, make the conversion to a dateTime schema

date type:
<wsdl:part name="getTimeReturn" type="xsd:dateTime"/>

and calling the service with a canonical schema dateTime rendering of a date:
1994-11-05T13:15:30Z

produced an accurate response:

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 131

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <getTimeResponse xmlns="http://myTime">
 <getTimeReturn>1994-11-05T13:15:30.000Z</getTimeReturn>
 </getTimeResponse>
 </soapenv:Body>
</soapenv:Envelope>

Inserting into the SOAP message anything other than the canonical rendering of the schema

dateTime data type caused the service, as expected, to throw an exception. It was still surprising

that a normally formatted dateTime worked, when it had been anticipated that it would fail

because of an expected conversion, on the server side, of the XML dateTime type into a

java.util.Calendar object, which should have been incompatible with the java.util.Date

object required by the service. It is possible that behind the scenes Axis deserializers make a

correct conversion, but this assumption has not been substantiated.

The service was also deployed into WebLogic with the same correct result. When the WebLogic

version was called with a .NET 1.1 client having a C# DateTime object set to the current date

and time, an accurate response was also received, again showing that correct conversions to and

from XML had been made. Using a .NET 1.1 client to call the Axis service caused a different

problem when a message appeared warning that .NET 1.1 did not support the RPC/literal style

which had been used. This was in spite of the fact that the WSDL for this service had been run

through SOA Test and had received a clean bill of health in terms of the Basic Profile, as had the

WSDL for the WebLogic version.

A C# version was also created in Visual Studio 2005, this time with the service class making a

comparison between the date that was received and a date that had been hard-coded. This time a

java.util.Calendar object was used to create a date and the WSDL, which used the default

Microsoft style of document/wrapped literal, defined the date object that was sent inside a

schema complexType representing the method. Java clients were tested against this service. As

before, when an actual date (or in this case Calendar) object was sent, there was no problem.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 132

But, as anticipated37, when the Calendar object was set to null and sent across, exceptions were

thrown on the server side.

7.2.3 The Indexing Application: Java

This service was based on SOAP 1.1 and WSDL 1.1, developed for Axis, and built to display

more complex interactions inside the service. The purpose of the indexing web service was to

make it possible for a user both to maintain a record of significant web pages, independent of the

machine on which he or she was browsing and also to query that record with keywords. The

index was maintained on a web server to which the user was identified before either indexing a

file or querying an index.

WebIndexer

doIndex(String address, String name) : String

<<Interface>>

WebIndexerImpl
url : String
indexDir : String
testFile : boolean = false
success : String

doIndex(String address, String name) : String
WebIndexerImpl()
indexHTML(InputStream is, String url) : void
indexText(String input, String url) : void
indexPDF(InputStream is, String url) : void
getStops() : String[]

WebQuery

doQuery(String q, String n) : String

<<Interface>>

WebQueryImpl

WebQueryImpl()
doQuery(String q, String n) : String

Figure 7-1: UML Diagram of the Index and Query Application

The UML diagram in Figure 7-1 outlines the main service classes for the indexing and query

service. The query class was very simple, accepting a query as a string and then returning a

response, which either stated that the query term could not be found in the user's index or

37 This is a well-known problem, arising from the fact that in Java a Calendar object is a reference variable which
may be set to null, while in C# DateTime is considered a value type which may not be null.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 133

contained hyperlinks to the web pages on which the query term could be located. Essentially the

messages for the indexing service were also simple, accepting a hyperlink and an indexing

directory name as input strings and returning confirmation of the index creation or extension, but

the inner workings of the service were more complex in that the page to be indexed had first to

be fetched in memory, its file type deciphered, a conversion to text format achieved, and then it

had to be indexed. Conversions to text from HTML and PDF formats were written, but the

application could easily be extended to include the conversion of, for example, MS Word and

PowerPoint formats.

Although the indexing service was a fairly straightforward SOAP service, with SOAP messages

passed over HTTP, there was a secondary need for web access so that the web pages with input

URLs might be obtained from host servers and cached in memory, in order for them to be

processed. For simplicity and efficiency, the Jakarta Commons HttpClient API was chosen to

implement the HTTP calls to the external web servers. These calls were idempotent, as were the

service calls. The HttpClient API also provided an easy means of accessing remote files

through the university proxy server. The mime content-type HTTP header delivered by the

HttpClient instance determined the kind of processing for each file type.

Apache Lucene is another open-source API, also developed under the Jakarta project, for text

indexing and querying. A Lucene index is a data structure, stored in a series of files, which

permits fast random access and may also be mapped to any type of database. Because the web

service must run independently of the machine used for browsing, the index files were stored on

the web server which responded to user requests: they could, of course, be stored on a server

independent of the web server processing the service calls. The more intricate details of how this

service was constructed may be found on page 182 in Appendix D.

Different ways of implementing the application as a service, and of clients to consume it, were

tested. For this service, which was a learning experience because it was the first to be developed,

the application classes were written first, with Apache Axis then being used to generate as many

different WSDL files as was possible for all the different service types, with the WSDL files

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 134

being refined and changed as the process continued. Figure 7-2 gives the XMLSpy graphical

rendering of the document/wrapped version of the WSDL for the indexing service

Figure 7-2: A Graphical Rendering of the Web-Service WSDL

Because of the simplicity of the input and return parameters, the indexing service was also able

to be called successfully from a PHP client running on Apache, and from a C# client running on

the internal web server provided with Visual Studio 2005. Although it was possible to

implement the service with either RPC or document programming styles, the nature of the

application meant that it was closer to RPC in that it required a method call that passed and

returned parameters. The WSDL file was very easy to use in the machine generation of clients

because of its use of strings as parameters.

7.2.3.1 A Firefox Front End

One way of testing the interoperability of the service was to create a client as an extension for the

Firefox browser, in which calls to web services are made in JavaScript with the Mozilla SOAP

APIs that support it written in C++.

The extension worked as successfully as had the web service run using Axis, going some way to

prove that calling the service in another language was of no consequence, and that it was

interoperable. Although the sequence of interactions for this service was not simple, the

parameters to the service method and the return values were simple, no interoperability

difficulties with the use of text strings was either anticipated or found.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 135

7.2.4 The Dictionary Service: Java

The dictionary service was much simpler in its interactions than the indexing service. The focus

of exploration with this service was data-type serialization. For the initial Java version of this

service, which involved a user-defined data type, the starting point was a W3C Schema and

JavaBeans, as a means of comparison against the classes generated by data-binding tools such as

the Axis WSDL2Java tool, Castor and XMLBeans.

There have been complaints about the .NET wsdl.exe code generated for multidimensional

arrays or arrays of complex types, particularly when the complex types are themselves nested

inside a schema [Ingalls, 2004]. The complaints were refuted in the same listing but it was

pointed out that constructs such as jagged arrays38 require "a particular style of XSD type

definition in the WSDL" for them to be compatible with .NET, with "different programming

models" on the client and the server – not exactly interoperability!

With this service, the first step was to create a schema for the data type required:
<xs:schema targetNamespace="http://dct"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="DictType">
 <xs:sequence>
 <xs:element name="headword" type="xs:string" nillable="true"/>
 <xs:element name="plural" type="xs:string" nillable="true"/>
 <xs:element name="pos" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="noun"/>
 <xs:enumeration value="verb"/>
 <xs:enumeration value="adjective"/>
 <xs:enumeration value="adverb"/>
 <xs:enumeration value="article"/>
 <xs:enumeration value="preposition"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Here a DictType was defined as being composed of a sequence of three other elements, a

headword, a plural and a pos or part of speech. Because the part of speech may have a limited

38 .NET arrays which have arrays for elements and where the elements may be of varying dimensions and sizes

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 136

number of values, it was made into a simple type that was a restriction on a basic string in its

enumeration of six possible values. The element structure is illustrated in Figure 7-3. It was

believed originally that the availability in Java 5 of the enum data type would make the

programming language-to-XML translation easier for both Java and C# clients – but there are

problems with enumerated types in that they are treated differently in programming languages

and XML. (Page 146 takes this discussion further.)

Figure 7-3: Graphical Depiction of the Schema for the Dictionary Service

The bean class to represent this type was designed as follows:
public class DictEntry {
 private String headword;
 private String plural;
 private enum PartOfSpeech {noun, verb, adjective, adverb, article,

 preposition};
 private PartOfSpeech pos;

 public DictEntry () { }

 public String getHeadword(){return headword;}
 public void setHeadword(String head) {headword = head;}
 public String getPlural() {return plural;}
 public void setPlural(String pr) {plural = pr;}
 public String getPos(){return pos.toString();}

 public void setPos(String s) throws Exception{
 for (PartOfSpeech sp : PartOfSpeech.values()){

 if (s.equals(sp.toString())){
 pos = PartOfSpeech.valueOf(s);
 }

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 137

 }
 if (pos == null)
 throw new Exception("Constant does not exist");
 }
}

With this service a mixture of approaches was employed, approximating to the WSDL-First

approach recommended by many developers. The Axis wsdd architecture39 was first used to

generate a WSDL, with the output being tweaked initially with as many wsdd input parameters

as were available. A graphical representation of that WSDL appears as Figure 7-4.

Figure 7-4: XMLSpy Graphical Representation of the WSDL for the Dictionary Service

Because of inexperience, a schema that would represent the whole service, including the

messages, was not at first implemented. This would have been much more useful and was

implemented later. The omission illustrates the problems caused by thinking in a programming

language (Code First) and thinking of Java-data-type-to-XML conversion, rather than thinking

more abstractly in terms of a contract (WSDL or Schema First) in which the messages

exchanged may also be represented in XML as types. The omission was later rectified by the

creation of a schema that represented the service more fully.

7.2.4.1 Using Exceptions in the Dictionary Service

Experiments were made with exception throwing, included in section 3.4.3 of Chapter 3 as one

of the hindrances to interoperability. First a new TransportFault class was created that

extended RemoteException and implemented java.io.Serializable. The fault was thrown

within the implementation class. The fault details were included in the Axis wsdd file and from

this a SOAP fault was generated in the WSDL file, which should have provided (and to a limited

extent did indeed provide) a portable means of returning an exception. A coherent SOAP

39 The Axis wsdd (web service deployment descriptor) file is an XML configuration file which allows the user to
give specific instructions to the Axis WSDL generation engine.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 138

faultstring was, however, difficult to generate by this means. All that was returned initially

was the name of the fault, which would be of little assistance to a user on a service failure.

Following the suggestions of Wang and Butek [2004], the next fault generation was through the

use of a simple javax.xml.rpc.JAXRPCException which was thrown from the main service

method. Because JAXRPCException inherits from Exception (which inherits from Throwable),

a Java (or C#) client class may simply enclose the attempted service call in a try..catch block

for the all-embracing Exception and use the Throwable method getMessage() to discover a

wide range of runtime problems. JAXRPCException has a constructor which takes a simple

String message outlining the reason for the problem. A further advantage of JAXRPCException

is that it is automatically translated by the Axis runtime into a SOAP fault which is returned in

the body of the SOAP response as follows:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
<soapenv:Fault>

 <faultcode>
 soapenv:Server.userException
 </faultcode>
 <faultstring>
 javax.xml.rpc.JAXRPCException: Unable to make connection
 </faultstring>
 <detail>
 <ns1:hostname xmlns:ns1="http://xml.apache.org/axis/">
 Mad
 </ns1:hostname>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

A third experiment with exceptions was the use of a simple user-created exception,

DictException, for this service. Later experimentation in WebLogic was carried out using a

SOAPFaultException. Although the DictException was automatically included in a

generated WSDL file, changing this to a SOAPFaultException meant that it was excluded from

the WSDL, even though the functionality within the method was essentially the same.

Exceptions are the focus of section 7.2.10 below.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 139

7.2.4.2 Testing on Other Servers

The dictionary service was tested on all the servers, including WebLogic. A feature in

WebLogic that differs from the other Java servers is its handling of arrays, which is close to the

Microsoft approach in that it models an array of user-defined data types as a separate, "wrapped"

data type in itself, which makes for good interoperability with Microsoft. When WSDLs used

with the Web Logic service were tested against the Basic Profile, using Parasoft's latest version

of its SOA Test tool, a fault found was the use of "the convention ArrayOfXXX", which caused a

warning, but not a failure, to be issued. (Parasoft uses the latest (June, 2005) version of the WS-I

Test Assertion Document.) The "fault" was actually a mistake: assertion BP2110 [Lauzon and

Wagh, 2005] is meant to apply to RPC-style WSDL documents and the style of the WebLogic

WSDL was document. BEA have also created their own testing tool which may be used for any

web service, including those run on other servers. When run against the Axis services, it found

fault with the omission of the SOAPAction header from the WSDL files, but otherwise had no

problem.

An inspection of the message request and response flow to and from WebLogic revealed that the

HTTP Content-Type header was text/xml but, because it carried a charset=utf-8 addition,

the XML content, had it required non-ASCII characters, would have been correctly interpreted.

What the Content-Type header also revealed was an adherence to SOAP 1.1, which was to be

expected in an implementation adhering to the current Basic Profile.

All the unit tests on this service, generated by SOA Test, succeeded, with the exception of the

attempt to store a DictEntry that was actually empty of data, which was expected to fail and did

so. An attempt to store multiple entries succeeded where it should have failed (there was, again,

no content) – perhaps because the array wrapper was there even though it contained nothing.

7.2.4.3 C# Clients for the Dictionary Service

In order to create a C# client for a service, the .NET SDK wsdl executable has to be given the

location of the service WSDL file as follows:

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 140

wsdl /l:CS /protocol:SOAP
http://localhost:8080/axis/services/DictServiceImpl?WSDL

where the "l" (language) "CS" refers to C# and the "protocol" is the default, "SOAP".

Theoretically it is also possible to use "HttpGet" or "HttpPost" with the wsdl tool as alternatives

for this protocol, but neither with .NET 1.1 nor with .NET 2.0 is any code generated if either of

these options is selected. Choosing the "SOAP12" option with .NET 1.1 generates a message

that it is not yet supported and with .NET 2.0 the message just that no classes were generated and

that warnings were encountered – though it does not say what these were. Choosing "SOAP"

causes the wsdl tool in both versions to generate a proxy class, which contains details of the

service methods and any user-defined service types, in the case of this Axis service the

DictEntry type. Although the methods for the dictionary service were designed to be

synchronous, the proxy class, even with the early .NET 1.1, makes it possible for calls to be

made asynchronously, providing "begin" and "end" methods which correspond to the outbound

service call, and the collection of the response, for each synchronous method in the original.

This is also the case with WebLogic code generation.

The proxy class, which contains no Main() method, may then be turned into a .dll file with the

following command:
csc /t:library /r:System.Web.Services.dll /r:System.Xml.dll
DictServiceImplService.cs

A simple client which uses the proxy class by creating an instance of it must then be written:
using System;

namespace TestDictServiceImpl {
 public class Client {

 public Client() {
 }

 public static void Main () {
 // Create a proxy
 DictServiceImplService dsis = new DictServiceImplService();
 DictEntry de = new DictEntry();
 de.headword="class";
 de.plural = "classes";
 de.pos = "noun";

 // Invoke storeEntryInDB(de) over SOAP and get the result
 string result = dsis.storeEntryInDB(de);

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 141

 // Print out the value
 Console.WriteLine ("The result is :"+ result);
 }
 }
}

Compiling and running this class with a reference to the linked library produced a successful

result and the efficiency of the process and the detail in the generated files was impressive. In

this simple instance, everything was left to the system defaults, but it is possible to customize

every facet of the client, including the details of the SOAP messages.

Running the C# client with a more complex data type inside the dictionary service, however,

produced some discrepancies and outlined the truth of the claims that developing a web service

from code, rather than from the WSDL, introduced the potential for interoperability errors. The

returnMultiple() method of the dictionary service requires access to the class variables inside

the DictEntry class, in order for the entry to be decomposed into its parts. When the methods

were called that gave access to these (programmatically private) variables inside the C# client,

they were found to be absent and the contents of the array returned from the service could not be

accessed. In the end it transpired that this was not the real problem. The C# generated proxy

class should have given straight access to them in its representation of the DictEntry type, as it

had converted them to public variables, in accord with the service WSDL, as they were revealed

inside its embedded schema, and types so revealed are assumed to be public.

Examination of the SOAP messages on the wire revealed that all the data was being transmitted:
<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <returnMultipleResponse xmlns="http://dct">
 <returnMultipleReturn>
 <ns1:headword xmlns:ns1="urn:dct">man</ns1:headword>
 <ns2:plural xmlns:ns2="urn:dct">men</ns2:plural>
 <ns3:pos xmlns:ns3="urn:dct">noun</ns3:pos>
 </returnMultipleReturn>
 <returnMultipleReturn>
 <ns4:headword xmlns:ns4="urn:dct">woman</ns4:headword>
 <ns5:plural xmlns:ns5="urn:dct">women</ns5:plural>
 <ns6:pos xmlns:ns6="urn:dct">noun</ns6:pos>
 </returnMultipleReturn>
 <returnMultipleReturn>

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 142

 <ns7:headword xmlns:ns7="urn:dct">child</ns7:headword>
 <ns8:plural xmlns:ns8="urn:dct">children</ns8:plural>
 <ns9:pos mlns:ns9="urn:dct">noun</ns9:pos>
 </returnMultipleReturn>
 </returnMultipleResponse>
 </soapenv:Body>
 </soapenv:Envelope>

The problem lay in the conversion of the WSDL representation of the method, which was as

follows:
<element name="returnMultipleResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" name="returnMultipleReturn"
type="impl:DictEntry"/>
 </sequence>
 </complexType>
</element>

A sequence of an element marked as maxOccurs="unbounded" is the XML signature for an

array. It can be seen from this therefore that what is contained inside a

returnMultipleResponse is an array of DictEntry elelments. DictEntry is itself represented

as a complex type, without an array signature, although it does contain an element sequence,

which is part – but not usually the whole – of the XML representation of an array:
<complexType name="DictEntry">
 <sequence>
 <element name="headword" nillable="true" type="xsd:string"/>
 <element name="plural" nillable="true" type="xsd:string"/>
 <element name="pos" nillable="true" type="xsd:string"/>
 </sequence>
</complexType>

In the SOAP message it may be seen that what was actually returned did not carry the name

DictEntry but was represented as a sequence of DictEntry contents. C# interpreted this to

mean that what was returned was one array element (DictEntry[0]), which itself contained

three array elements (DictEntry), each of which was itself represented as an array containing

elements represented by headword, plural and pos. This was a practical example of the array

difficulties mentioned on pages 48 and 94, which explain the reasons for this problem. With the

use of the sophisticated debugging features available in Visual Studio 2005, it was possible to

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 143

track down what was happening, but machine generation of a proxy and the construction of a

client did not bring the expected result.

It was only through the creation of a C# service corresponding to the Java service that the

problems encountered in the previous client were illuminated. There was only one difference

between the .NET generation of types and that in Axis, but it was a very significant difference

and it concerned the data-typing of arrays. Whereas Axis had described an array of DictEntry

as just that – an array of a previously defined type, in a typical schema declaration:
<element maxOccurs="unbounded" name="returnMultipleReturn"
type="impl:DictEntry"/>

.NET separated out the definition of an array into the now-deprecated SOAP 1.1 encoding:
 <s:element minOccurs="0" maxOccurs="1" name="returnMultipleResult"

 type="tns:ArrayOfDictEntry" />

with the ArrayOfDictEntry type being given its own complexType definition:
<s:complexType name="ArrayOfDictEntry">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="DictEntry"

nillable="true" type="tns:DictEntry" />
 </s:sequence>
</s:complexType>

This was one example of the confusion that may arise from the autogeneration of artifacts

mentioned by Shah and Apte on page 80. As has been mentioned many times, arrays are

problematic in web services and it was not surprising that the problem arose in this context.

7.2.4.4 Metadata and WSDL Generation

New metadata features in WebLogic were particularly helpful in the ability they gave to control

the generation of the WSDL file. The class declaration was preceded by:
@WebService (name="DictPortType", serviceName="DictService",

 targetNamespace="http://logdct")
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,

 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath="dict", serviceUri="DictService",
 portName="DictServicePort")

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 144

Here the parameters supplied to the annotations enabled the developer to define values for

WSDL elements without having to trip up over namespace issues. There was also the ability to

define input to the SOAPAction header and to give user-defined names to return values through

the use of annotations on methods:
@WebMethod(operationName="StoreEntryOp", action="")
@WebResult(name="StoreEntryOutputString",

 targetNamespace="http://logdct")

Even though only one namespace was specified in the selections given above, the generator was

able to make distinctions where they were needed, using different namespace prefixes in some

cases and creating a new, related namespace java:logdct to refer to types that had been

defined in their own classes, such as the DictException and the DictEntryBean. These two

types were allocated their own schema in the WSDL types section, which was distinct from the

schema used for the methods and parameters.

As mentioned in the previous section, Shah and Apte are cited on page 80 as arguing that using

toolkit technologies to generate a WSDL on the server, from which a proxy could be

automatically generated for the client, would produce different versions of the API, resulting in a

loss of control over the business interface. Experimentation was made with the WSDL2Java and

Java2WSDL tools in the Axis release and specifically mentioned by Shah and Apte [2004a]. It

was not possible to use this approach to generate a WSDL for the indexing service, but the

procedure worked for all the other clients and services, with the exception of the PHP

implementation of SOAP, which contains no tools for generating clients.

The usually unsatisfactory results of using a WSDL that was completely auto-generated have

already been mentioned in the earlier sections of this chapter. They give the developer no

control over the service contract and, as was seen on page 48, may even produce a WSDL that

may not be accepted as valid. The current trend in favour of WSDL or Contract First is at the

other end of the spectrum, requiring detailed knowledge of the specification, not impossible to

achieve but time-consuming and error-prone for less experienced developers.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 145

Gauging the accuracy of the conversion from WSDL to implementation code was a more

complicated task. Code produced by various WSDL generators was often lengthy and complex,

reflecting a necessity to produce serializers and deserializers for complex data types, particularly

for the array of DictEntry types. There was a surprising level of accuracy in the generated code

which remained true to the original WSDL file.

When the WSDL was being generated from the annotations that may be used in programs

written for WebLogic, the array of DictEntry types appeared as a separate entity, as it had in

the C# implementation,
<xs:complexType name="ArrayOfDictEntryBean_literal">
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0"
name="DictEntryBean" nillable="true" type="java:DictEntryBean"
xmlns:java="java:logdct"/>
 </xs:sequence>
 </xs:complexType>

The singly defined DictEntry was implemented afresh and without enumerations in WebLogic:
 <xs:complexType name="DictEntryBean">
 <xs:sequence>
 <xs:element minOccurs="1" name="Headword" nillable="true"

 type="xs:string"/>
 <xs:element minOccurs="1" name="Plural" nillable="true"

 type="xs:string"/>
 <xs:element minOccurs="1" name="Pos" nillable="true"

 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

Only one of the toolkits, MapForce, generated all of the code that was required for a client or a

service. In varying degrees, the others required user input in terms of filling in the business

logic, with the most being required by PHP. The Axis Java2WSDL was just a WSDL generator,

while WSDL2Java created the classes necessary to construct a client, but not the actual client, and

created more of a service template. The user-guide comments on this: "It is intended that the

service writer fill out the implementation from this template" [Axis user-guide, 2005]. There is,

therefore, no loss of control over the business interface in round-tripping with Axis.

The same is true for WebLogic, where the wsdl2service Ant task generates only partial code,

leaving the business logic to be written by the programmer. When the .NET wsdl tool is run,

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 146

code is generated that acts as a library to enable client code to be written. The programmer must

write the actual code him- or herself. It is possible to run an auto-generated client from a web

page but this is intended for testing purposes and would not be used to perform any serious

business function.

7.2.5 The Enumeration Service

Various tools for code generation from WSDL were tested, such as the Axis WSDL2Java tool and

the ThinkTecture jWSCF tool, both implemented as plugins inside Eclipse. For one test, a schema

was developed as the basis for an enumeration service, which was a shortened variant of the

dictionary service:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:nextEnum"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:tns="urn:nextEnum">
 <xs:element name="storeEnum">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="de" type="tns:posType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="posType">
 <xs:restriction base="xs:integer">
 <xs:enumeration value="2"/>
 <xs:enumeration value="4"/>
 <xs:enumeration value="6"/>
 <xs:enumeration value="8"/>
 <xs:enumeration value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="storeEnumResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="storeEnumReturn" type="tns:posType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The reason for the change in the schema enumeration value to integers was partly to test the

accuracy of the code representation of schema enumerations, which may be of any basic schema

data type except boolean and, whatever their typing inside a schema, are handled in Java as

strings. It may be seen from Table 3-4 in Chapter 3 that schema enumerations are not included

in JAXB mappings and that serialization and deserialization for them must be custom-built. The

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 147

reason for starting with the schema was not only that this is good practice. It also meant that the

WSDL could be generated from the schema, which was achieved with the jWSCF Eclipse plugin,

and that then service code could be generated in a completely separate process, so that the two-

stage disjunction of business logic and code might be some test of the Shah and Apte criticism

already cited twice in this chapter.

The Java code generation from the WSDL file was achieved with the aid of Altova MapForce

2006, which takes a WSDL file (plus a schema and an instance document of the schema), and

requires some mappings to be made before the code is generated, then compiled and deployed to

Axis running on Tomcat (the default for MapForce) with the aid of a generated Ant build file.

An examination of the generated code revealed that integer enumerations had indeed been

converted to string data types represented as an array. Regardless of this, when the service was

deployed via Axis on Tomcat, and SOAP request messages constructed for it, the string

conversions were transparent and both the request and response messages contained integer

representations of the enumeration types:
<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:storeEnumResponse xmlns:ns1="urn:nextEnum">
 <storeEnumReturn>8</storeEnumReturn>
 </ns1:storeEnumResponse>
 </soapenv:Body>
</soapenv:Envelope>

Although the generated WSDL file contained no exceptions, these were correctly generated for

the service and were returned appropriately if numbers outside those assigned to the

enumerations were posted to the service. All this confirms the findings that, if the business logic

is carefully constructed in the form of accurate WSDL and schema files, and these (not code) are

used as the starting point for building a service, reputable code-generation mechanisms will

succeed. If there are inaccuracies in the types section of the WSDL or the schema instance

document (usually checked by the program before code generation), the code will be inaccurate

and will not compile.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 148

A concern with this kind of code generation, which does not involve interoperability, is the

length of the generated code. The directory size for the small, generated service just described

was 448KB against handwritten service directory sizes ranging from 1KB (the calculator

service), to 7.94KB (the BEA service), to 63KB (the indexing service) and to 158KB (the

dictionary service). Code generated to enable the construction of clients on Axis was only

33KB. Code generation does have the advantage of satisfying the requirement mentioned on

page 28 that a web service should be capable of being machine processed.

Starting from WSDL or schema is one way of avoiding the potential for conversion difficulties

such as those listed on page 81. The developer then has to think not in code but in terms of the

service contract. REST-style web services, along with document-style programming models,

offer another kind of solution by avoiding or at least reducing the hazards of data typing. Many

of the concerns regarding RPC, raised in Chapter 4, were the result of research carried out before

the release of the Basic Profile which "outlawed" RPC/encoded. The current rejection of RPC

may be seen as a confirmation of qualitative findings about RPC made in Chapter 4 and typified

in statements such as this by Hasan:

Web services are not optimized for RPCs. This is not what they are best at. Web services

work best when they respond to messages, not to instructions [2004].

7.2.6 A Simple Hello Service

This service was built within GlassFish on lines suggested by Dochez in his presentation at

JavaOne, 2005 [Dochez, 2005]. The code could hardly have been simpler, consisting merely of:
package endpoint;

import javax.jws.WebService;

@WebService
public class Hello {

 public String sayHello(String param) {
 return "Hello " + param;
 }
}

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 149

Apart from the use of metadata, this simple class differs greatly from the kind of web-service

classes that would have been deployed into earlier Sun Application Servers. The class no longer

implements java.rmi.Remote, nor does it throw a RemoteException. The parameters and

return types must now comply with JAXB 2.0 mapping schema elements, given in Table 3-4 of

Chapter 3. The service was deployed immediately into GlassFish's autodeploy directory and the

annotation, @WebService, made it possible for the WSDL file to be automatically generated

from the URL: http://localhost:8080/Hello/HelloService?WSDL.

At this point, however, the situation became more complicated. Most of the web services were

initially tested by opening the WSDL in the XML editors Oxygen and XMLSpy. Both these

editors will create and send to the service SOAP messages based entirely on the WSDL file and

then display the SOAP response. When, however, the generated WSDL for the Hello service

was pasted into these editors, they were unable to generate the SOAP messages from it, because

the schema referenced as an import in the WSDL file was unreachable and could not at first be

discovered programmatically. After some correspondence with the developer, this problem was

located and fixed and found to be an issue with proxy settings in the application. Although the

separation of the schema file from the WSDL (making it an import) follows the practice of loose

coupling, schema and WSDL are so tightly bound that making changes to the one will

necessarily impact on the other and it might make more sense to clients for the whole service

definition to be in one location.

Although, with the schema properly discovered, a SOAP request message could now be sent, an

error was generated on the server, as it was also subsequently when an attempt was made to run

the equally simple client. It was discovered from a developer that this might be related to an

updated version of JAX-WS, and to some changes in the APIs, so an even more recent nightly

build of GlassFish was downloaded and installed, only for similar errors to be discovered when

there was another attempt either to send a SOAP message directly in the XML editors, or to run

the client. This situation has been mentioned in detail because, although whatever occasioned

these problems will be fixed as the development continues, it does illustrate the issue of

versioning changes (referred to by many as "versioning hell") and the difficulties these can

create.

http://localhost:8080/Hello/HelloService?WSDL

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 150

Because the rapid development of GlassFish makes it difficult to use for stable development40,

testing of JAX-WS was transferred to an earlier and stable build of the Sun Application Server.

While WebLogic 9.0 implements the metadata annotations of Java 1.5 which are a significant

part of JAX-WS, it is still an implementation of JAX-RPC and makes no use, for example, of the

Provider object mentioned in the next section.

7.2.7 A Different Programming Style with JAX-WS Provider and Dispatch

This section's testing with the JAX-WS libraries and samples was necessarily tentative because

of problems caused by versioning issues. The samples that were most stable were those of the

early access release but these did not contain the functionality of later (nightly) builds which did

not claim to be bug-free. The reason for studying these builds was that they contained Sun's

latest web-service development, including a potentially REST-style interface, discussed below,

and they also provided a means for studying cutting-edge interoperability.

The JAX-WS programming style with the Provider and Dispatch interfaces differs from the

styles so far defined for JAX-RPC. Implementing the Provider interface means creating a class

that does not act as a service endpoint. Whereas before in Java we have seen a web-service class

that implements the service methods and is defined by a @WebService annotation, the different

annotations used by Provider for services (Dispatch is an API mainly intended for clients)

offer the opportunity to work with XML messages, depending on the Provider style selected

(the choices are between Source for XML messages and SOAPMessage):
 @ServiceMode(value=Service.Mode.PAYLOAD)

@WebServiceProvider(wsdlLocation="WEB-INF/wsdl/AddNumbers.wsdl")

The programming constructs for this style are not always straightforward. If, in an attempt to

test round-tripping, an attempt to generate a WSDL file from the sample class implementing

Provider is made, the JAX-WS wsgen tool complains rightly that it has not been given a service

endpoint interface. The provided WSDL is valid, passes all the Basic Profile tests, and captures

40 A late November release was also tried – this time the Ant build file setting up the application contained
numerous inaccuracies making the correct installation impossible. The filename mistakes were easy to fix, but
indicated that more serious problems might be encountered – and they were.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 151

the service operations which do not appear in the Provider implementation class. In line with

the principles of WSDL First, it is intended that the WSDL should be the starting-point not only

for the generation of clients but also for the actual service classes, including a service endpoint

interface named as a ..PortType class. All of these classes are generated by the wsimport tool.

Unlike the other WSDLs described in this chapter, this one may not be used by a SOAP message

generator to cause an accurate response to be received. Both Oxygen and SOAPScope used the

WSDL to generate what looked like appropriate SOAP request messages – their wording was

identical to SOAP messages revealed by a TCP Monitor in a successful C# programmed request

– but both received the same error: Error in provider endpoint. Even when the exact message

sent from the programmed request was copied into the generated SOAP output message dialog

within Oxygen, it still received: Unable to create envelope from given source, whereas the

original programmed request had received an accurate response.

The Provider sample from the JAX-WS release comes with its own client class, which uses the

generated classes to call the service and receive the expected response. More insight into its

workings was provided by the Dispatch interface, which can be seen as the distinct client side

of Provider. The given Dispatch client class was altered to make its request, not of a

Dispatch service at which it was originally aimed, but of the Provider service and this worked.

The construction of a C# SOAP client from the WSDL was achieved through the use of the .NET

wsdl tool, which constructs a client-side proxy from the WSDL it is given. As was mentioned in

section 7.2.4.3, it is then up to the programmer to use this proxy file, later compiled into a .dll

file, to create the actual client. This proxy file contained three classes, two of them used for the

XML serialization of the addNumbers and addNumbersResponse data types given in the WSDL:
<complexType name="addNumbersResponse">
 <sequence>
 <element name="return" type="xsd:int" />
 </sequence>
</complexType>
<element name="addNumbersResponse" type="tns:addNumbersResponse"/>

 <complexType name="addNumbers">
 <sequence>
 <element name="arg0" type="xsd:int" />
 <element name="arg1" type="xsd:int" />

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 152

 </sequence>
 </complexType>
 <element name="addNumbers" type="tns:addNumbers"/>

and the third for the service class, AddNumbersService, so named in the WSDL. All the client

class was required to contain was the initialization of three object instances from each of these

classes and the final casting of the response to an integer type:
using System;

namespace TestNumbers {
 public class Client {

 public Client() {
 }

 public static void Main () {
 AddNumbersService ans = new AddNumbersService();
 addNumbers anum = new addNumbers();
 anum.arg0 = 6;
 anum.arg1 = 3;

 addNumbersResponse anr = new addNumbersResponse();
 @anr = ans.addNumbers(anum);
 int result = (int) anr.@return;
 Console.WriteLine ("The result is :"+ result);
 }
 }
}

This may be seen as proof of the interoperability of this new style of programming, even though

the C# implementation knew only of the WSDL and nothing of the Provider interface

implemented on the server. JAX-WS suggests an optional customized Java Provider binding in

the WSDL file (or in another file), which would be picked up only by other Java

implementations able to handle it, but this would not be interoperable across languages [Sun,

2005c].

7.2.8 REST-Style Messaging

A REST-style service was constructed using a schema similar to that already created for the

dictionary service, and XML documents were created that conformed to that schema. The

schema was extended slightly to enable it to function as the basis for instance documents, not

just for data types.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 153

The schema document functions as an alternative to WSDL. As was mentioned on page 31,

WSDL was conceived before the W3C Schema model had been properly standardized and it may

be argued that WSDL might not have come into being had the W3C Schema pre-dated it. The

first WSDL specification was released by IBM and Microsoft in September 2000, but the W3C

Schema proposal did not achieve Recommendation status until 2001, although the idea of an

XML schema had been in discussion from at least 1997, even before XML itself had been

formally recognized as a standard.

W3C Schema was chosen because it is the most widely adopted schema language, despite its

complexity and a growing use, even by W3C specifications, of schema alternatives particularly

RELAX NG. In REST-style applications, the XML content which forms the body of the HTTP

message is an alternative to SOAP and provides the arguments to the service. If an XML

document conforms to a schema, it is as easily understood by its recipient as any SOAP message,

and applications may be built to consume it. A schema can be exposed over the internet in the

same way as a WSDL. It is no more difficult to send a document that conforms to a known

schema than to send a SOAP message that conforms to a WSDL. The schema is no more subject

to extension, change and revision than is the WSDL. WSDLs that are the contracts for

document/literal service types must in any case incorporate schemas in their types sections.

Shah and Apte argue for using "the XSD Schemas for the business module as the API signature

in the web services" [Shah and Apte, 2004a]. They insist that the use of schemas and their

validation in the business module (as opposed to the web-services infrastructure) puts the

ownership and validation of the exchange solidly in the hands of those responsible for the

business logic, where they believe it belongs, and not in the hands of IT specialists.

The basis for the implemented REST web service was a servlet, HandleInputServlet, which

handled both HTTP POST and GET requests. There was also a schema for a dictionary model.

There were no SOAP messages and no WSDL. A difference from the other services discussed

here was the need to code the marshalling and unmarshalling of the XML content passed

between the client and the service. There are no toolkits for REST-style web services, although

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 154

Axis2 includes a REST model41. The StAX (Streaming API for XML) pull parser was chosen

because it does not have the memory overheads of a DOM parser and, unlike SAX parsers,

which require callback handlers, it leaves the programmer in complete control. StAX was

originally a Java Community Process parser that, according to its specification lead, "grew out of

the need to read and write XML in an efficient manner in the context of XML Binding and Web

Services" [Fry, 2004]. The BEA reference implementation (BEA provided the specification lead

for StAX) was chosen as being currently the most stable and user-friendly.

In the web service, the servlet is capable of responding to both POST and GET requests. If a GET

request is received, the servlet simply returns an XML document in the body of the response

message, much as something as mundane as a purchase order or catalogue might be returned by

a manufacturing company. If a POST request is received, containing XML content, the content is

parsed for some of its content and an XML message confirming the content is sent in response.

In a more realistic context, the message might be parsed for details needed by, for example, a

manufacturing company, and this would result in further external processing.

The reference implementation of StAX does not handle XML document validation. In the

simple documents exchanged in this application, no errors would usually be caused by faulty

documents, because the service looks for only those XML structures it needs to use. The

approach of the StAX parser is closer to that of the XML Infoset, upon which the latest versions

of SOAP and WSDL are built, in its concern with the presence of particular XML events, or

elements, rather than with document structure. It is particularly suited to the parsing of

documents where the document structure is known in advance, as is usually the case with web-

service document exchanges. It is also particularly well suited to situations in which only

sections of the document need to be processed, and also, as with the present web service, to

situations in which XML needs to be both read and written.

Clients for this service may be written either as simple applications or as web pages with form

input. Both the service and the client applications are extremely simple. Because the data being

41 Axis2 (version 0.92) was installed within Tomcat (version 5.5.9), but attempts to use it failed because of
configuration problems within Tomcat that could not be resolved.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 155

exchanged is basic XML and not programmed objects, there is no question of misrepresenting

data types or of incompatible serialization. Any platform, language or program that can send and

receive text over HTTP may use this application and it is therefore considered to be the most

interoperable service developed in this study.

7.2.9 A Simple HelloWorld Service: PHP

Although technically a scripting language, PHP offers much wider control and functionality than

its competitors largely because of the development of community libraries and its popularity

with developers of the most widely used, open-source web server, Apache. The involvement of

PHP in web services is a recent development in that only in the latest version (version 5, released

in 2005) is SOAP incorporated as a core PHP module, although at earlier stages PEAR (the PHP

Extension and Application Repository), and other library modules offered (and still offer) web-

service functionality.

With first attempts at web services in PHP, the findings of Maynard, Charters and Peters [2005]

were confirmed, that the information returned from the getTypes() method of the PHP

SoapClient object was insufficient to construct an acceptable method call. Although a PHP call

to the simpler Java indexing service was correctly interpreted and both sent and received

accurately constructed SOAP messages, the more complex DictEntry type used in the Java

dictionary service created initial SOAP encoding problems. The WSDL for the service had to be

examined in more detail and a PHP class representation of DictEntry created before the client

could access the service successfully.

Although the core PHP distribution contains no toolkits that will automatically enable the

creation of a SOAP client from a WSDL file, SourceForge hosts a project named NuSOAP

which aims to fill the gap by providing a means of building SOAP clients and servers in PHP,

but NuSOAP predates PHP 5 and is based on a different set of modules, so was not included in

this study. In November, 2005, Zend Studio 5 introduced some basic support for SOAP 1.1 web

services in the form of a WSDL generator. Despite the prohibitions of the Basic Profile, Zend

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 156

Studio 5 still offers the old SOAP encoding format (its default) as an alternative to "literal". It

offers no possibility of choice between document and RPC, making all services RPC by default.

The document/literal, wrapped, and RPC styles of WSDL were each tested for a very simple

PHP HelloWorld server. The service took the input of a name and returned that name

concatenated with ", Hello". The following document/wrapped-style WSDL was created by

hand:

1.<?xml version="1.0" encoding="UTF-8"?>
2.<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="urn:SayHelloPHP"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:SayHelloPHP"
 xmlns:tns1="http://data"
 name="SayHelloPHP">
3. <wsdl:types>
4. <schema targetNamespace="http://data" xmlns="http://www.w3.org/2001/XMLSchema">
5. <element name="sayHello">
6. <complexType>
7. <sequence>
8. <element name="user" type="xsd:string"/>
9. </sequence>
10. </complexType>
11. </element>
12. <element name="sayHelloResponse">
13. <complexType>
14. <sequence>
15. <element name="return" type="xsd:string"/>
16. </sequence>
17. </complexType>
18. </element>
19. </schema>
20. </wsdl:types>
21. <wsdl:message name="sayHelloRequest">
22. <wsdl:part name="parameters" element="tns1:sayHello"/>
23. </wsdl:message>
24. <wsdl:message name="sayHelloResponse">
25. <wsdl:part name="parameters" element="tns1:sayHelloResponse"/>
26. </wsdl:message>
27. <wsdl:portType name="SayHelloPHPPortType">
28. <wsdl:operation name="sayHello">
29. <wsdl:input name="sayHelloRequest" message="tns:sayHelloRequest"/>
30. <wsdl:output name="sayHelloResponse" message="tns:sayHelloResponse"/>
31. </wsdl:operation>
32. </wsdl:portType>
33. <wsdl:binding name="SayHelloPHPSoapBinding" type="tns:SayHelloPHPPortType">
34. <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
35. <wsdl:operation name="sayHello">
36. <soap:operation/>
37. <wsdl:input>
38. <wsdlsoap:body use="literal"/>
39. </wsdl:input>
40. <wsdl:output>
41. <wsdlsoap:body use="literal"/>
42. </wsdl:output>
43. </wsdl:operation>
44. </wsdl:binding>
45. <wsdl:service name="SayHelloPHP">
46. <wsdl:port name="SayHelloPHPPort" binding="tns:SayHelloPHPSoapBinding">

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 157

47. <soap:address location="http://localhost/SayHelloExampleServer.php"/>
48. </wsdl:port>
49. </wsdl:service>
50.</wsdl:definitions>

As was outlined in Chapter 4, document-style WSDLs usually contain or reference a schema

within a types section (ll.3-20 above). A wrapped document style schema represents a method

call and its response as parent elements (ll.5-11,12-18), with input and return parameters as child

elements (ll.8, 15). Any schema element that contains child element(s) is represented as a

complexType (ll.14-18, 21-25), containing, in this case, a sequence (ll. 15-17, 22-24) of

parameter or return elements, regardless of the fact that only one may be required. The client

code has a level of complexity, as some lines from the actual method call illustrate:
 $sayHelloParams = array('userName' => $userName);
 $sayHelloResponse = $soapClient->sayHello($sayHelloParams);
 $sayHelloReturn = $sayHelloResponse->sayHelloReturn;
 print $sayHelloReturn;

while the server code looks like this:
function sayHello($sayHello) {
 return array('sayHelloReturn' => $sayHello->userName . ", Hello");
}

With the earliest attempts at creating code for this service, although an accurate SOAP call could

be made to the service, and a well-formed SOAP message was received in response, it was not

possible to incorporate into the reply the user name that had been sent. The writer is grateful to

Dmitri Stogov, one of the writers of the PHP 5 SOAP extension, for examining the code she sent

to him and for making suggestions, but it was still not possible to make a working client and

server for the wrapped service unless they were both in the same file, which did not qualify as a

web service. The wrapped WSDL did pass the SOA Test interoperability tests (as did both of

the other WSDL files for this service) and the conclusion was drawn that the PHP 5

implementation does not yet handle wrapped-style services.

When an attempt with the much simpler code, given below, was used with this WSDL, SOAP

messages were sent and returned, but the response contained an object rather than a string and a

way was not found of "unwrapping" the object:
<?xml version="1.0" encoding="UTF-8"?>

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 158

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://data">
 <SOAP-ENV:Body>
 <ns1:sayHelloResponse/>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The WSDL was then converted to document style, by simplifying the types section to include

only elements for the input and return parameters. Even though this style does not include the

method name in the SOAP message,
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <user xmlns="http://data">Horace</user>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

because there was only one possible method, it received an appropriate response:
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="http://data">
 <SOAP-ENV:Body>
 <ns1:return>Hello, Horace!</ns1:return>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The document and RPC services both used a much simpler method call:
 $s->sayHello('Gandalf');
based on a similarly simplified service method:

function sayHello($user) {
 if (strlen($user)) {
 return "Hello, {$user}!";
 } else {
 throw new SoapFault("Server", "No name sent as input");
 }
 }

Later, simplifying the WSDL even further, by converting it to RPC-style, meant removing the

types section altogether plus other minor changes appropriate to this style, such as using the

type attribute rather than the element attribute for the part sub-element for each message

element.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 159

It would be naïve to expect that the popularity of the document and wrapped styles will

completely supersede RPC style, especially on the corporate internet, where legacy systems

demand method calls. The PHP RPC example displays one advantage of this style, which is the

greater simplicity it enables in both client and server code. Quite apart from the coding

complexities involved with the wrapped service, each of the other styles was seen to be adequate.

The possibility of confusion between methods in document style could not be tested with only

one method. A further method, sayGoodbye, was therefore added to the WSDL and to the code,

with the same input parameters, and messages were sent to the service using both coded clients

and generated SOAP messages, this time from XMLSpy. As expected, the document-style

service was unable to distinguish between the two. When the same approach was tried with the

RPC service, the method was detected accurately both by the generated SOAP message inside

XMLSpy and by the client code. Without the possibility of the wrapped style, therefore, the RPC

(literal) style has definite advantages for method calls.

Currently the only toolkit for working with the PHP 5 SOAP extension is that provided by Zend

Studio in terms of its WSDL generator, which currently supports only RPC encoded or literal.

There is, however, built-in use and interpretation of WSDL files in PHP 5 which greatly

simplifies the creation of PHP web services and clients and appears to be an acknowledgment of

the significance of the WSDL-First position, although alternative constructors do make it

possible to create a SOAP client without a WSDL file.

7.2.10 A CheckNumbers Service

Section 7.2.4.1 examined exception-throwing in Java. It is easier to think of throwing and

catching exceptions with services and clients in the same language because they resolve to the

same object. The CheckNumbers service was therefore written to examine what happens when

exceptions are thrown in one language and caught in another. The service was extremely simple

by design because its focus was on the exception and not on the programming logic. The first

version was written in C# and deployed on Web Matrix. The service took an int input

parameter. If the number was less than 10, the service returned a string message. If, however,

the number was greater than 10, a SoapException was thrown. SoapException is the main

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 160

inbuilt exception class for web services in .NET and it is used automatically by the framework to

wrap any other exception class that may be chosen or created [Microsoft, 2003]. Despite this,

SoapExceptions do not appear as faults in the WSDL file generated for a service that uses them,

on either .NET 1.1 or .NET 1.2. They are, however, correctly interpreted by both C# and Java

clients. In Oxygen the SOAP response to a number larger than 10 was:
org.apache.commons.httpclient.HttpException :
<?xml version="1.0" encoding="utf-8"?>
 <soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Client</faultcode>
 <faultstring>System.Web.Services.Protocols.SoapException: Your

 number was greater than 10 at
 CheckMyNumberService.Check(Int32 a)</faultstring>

 <detail />
 </soap:Fault>
 </soap:Body>
 </soap:Envelope>

When the Axis WSDL2Java tool was used to help generate a static stub client in Java, the

implementation stub class was shown to throw a RemoteException, as a result of the JAX-RPC

catch-all requirement that RemoteException must be thrown by service methods. Because JAX-

WS does not include this requirement, JAX-WS client classes were generated with the wsimport

tool and a reference to the online WSDL. An examination of these pre-compiled classes in a

decompiler revealed that, as in Axis, the service method was made to throw a RemoteException.

The service was also implemented in Java on WebLogic, where a

javax.xml.rpc.soap.SOAPFaultException was used instead of the C# SoapException. As

with the C# service, no mention of a fault appeared in the WSDL file. .NET does not

automatically generate an exception when a web service proxy class is being generated from the

service WSDL, unless the WSDL actually mentions the exception as a fault. When the

WebLogic service was used by a C# client, no problems occurred when correct parameters were

sent to the service, but, when a parameter greater than 10 was sent, the service returned a

message that there was an unhandled SOAPHeader exception. The exception did contain the fault

string but was easier to understand when the message was trapped on the wire than when it was

received programmatically.

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema-instance

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 161

Another C# client (.NET 2.0) version was then written which used a try..catch block round

the service call with a SOAPException. This returned the exception to the client

programmatically and in the SOAP message on the wire. It is perhaps a little obvious to say that

a client program must be prepared to catch an exception, but the last example was an illustration

of the fact that a generated client may not always do this if the fault is not included in the WSDL

file which is used. This was only a simple example and the unhandled exception caused no

problem, but it could have been more serious in a production service. This is one example in

which the default behaviour of Java stub-creation tools, by including exceptions automatically,

pre-empt difficulties better than those for C# and are therefore more interoperable.

7.3 Implementations of SOAP 1.2

Because SOAP 1.2 is not yet supported by the Basic Profile, its implementations are few and

often still buggy. Visual Studio 2005 offers default support for SOAP 1.2 in tandem with support

for SOAP 1.1 by including two different bindings and ports inside automatically generated

WSDL files, so that a basic example Hello World service has two bindings:
<wsdl:binding name="ServiceSoap" type="tns:ServiceSoap">

<wsdl:binding name="ServiceSoap12" type="tns:ServiceSoap">

and two related port definitions:
<wsdl:port name="ServiceSoap" binding="tns:ServiceSoap">

<wsdl:port name="ServiceSoap12" binding="tns:ServiceSoap12">

Either binding may be switched off inside a web configuration file. Because both bindings are

present, either of them may be used by SOAP messages.

The Visual Studio environment makes a comparison possible between the SOAP messages sent

as a result of each of the example bindings. For SOAP version 1.2, the HTTP request content

was:
POST /WebSite3/Service.asmx HTTP/1.1
Host: localhost
Content-Type: application/soap+xml; charset=utf-8
Content-Length: …

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 162

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap12:Body>
</soap12:Envelope>

while for version 1.1 the equivalent message was:
POST /WebSite3/Service.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: …
SOAPAction: "http://tempuri.org/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <HelloWorld xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

Here it can be seen that in SOAP 1.2 the SOAPAction header has been replaced with a more

useful definition of the Content-Type header, solving the HTTP encoding problems mentioned

on page 45. Apart from the namespace differences, the messages are otherwise identical.

Running the service through SOA Test produced no interoperability problems (it discounted the

extra binding), but the program complained that it could not read the schema from the namespace

given for the 1.2 binding, although the namespace, http://schemas.xmlsoap.org/wsdl/soap12/ is

correct according to the WSDL 1.1 binding for SOAP 1.2 [XMLSOAP, 2002].

Using Oxygen to generate SOAP clients produced only a SOAP 1.1 client, with the 1.2 binding

being completely ignored by the program, although the development team have said that they

will consider including handling mechanisms in a later release. XMLSpy did recognize the

bindings as distinct and asked the user to choose between them, but then ignored the 1.2

namespace, possibly for the same reason as SOA Test above.

http://schemas.xmlsoap.org/wsdl/soap12/

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 163

7.4 Different Types of Java Client

7.4.1 Static Stub Client

As was mentioned in section 4.2.4.5.1 of Chapter 4, static stub clients rely on the prior

generation of classes from a WSDL or a service endpoint interface, usually with a tool such as

the Axis WSDL2Java. One of the generated classes will usually include the word "stub" in its

name, and will act as a go-between for the client and the client's representation of the service

class, so that the client looks as though it is communicating with the service directly when this is

not the case. This RPC programming style suffers from the RPC problems of tight-coupling and

the deceptive blurring of the distinction between local and remote methods outlined in section

4.2.4.3.

A static stub client was written for a C# version of the dictionary service running on Web Matrix.

The stub classes were first generated with the Axis WSDL2Java tool and then used to create the

client logic. As the following few lines of client code show, this style of client has the advantage

of being brief because most of the working code lies in the generated classes:
public class CSharpStubClient {
 public static void main(String args[]) throws Exception {
 DictEntry de = new DictEntry("song", "songs", "noun");
 ExceptService dict = new ExceptServiceLocator();
 ExceptServiceSoap port = dict.getExceptServiceSoap();
 String ret = port.storeEntry(de);
 System.out.println(ret);
 }
}

This code made a successful call on the C# service and demonstrates that this style of client is

likely to be interoperable with services written in other languages. It is also very easy to write

because it is so brief.

7.4.2 Dynamic Proxy Client

As was mentioned in section 4.2.4.5.2 of Chapter 4, dynamic proxy clients differ from static stub

clients in that the proxy class is created at runtime and requires no pre-generated code.

Otherwise the procedure is much the same as the static stub in that the client appears to be

communicating with the service but is actually exchanging messages with a proxy through which

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 164

contact with the real service is made. This type of client is even more tightly coupled in that its

creation depends not only on an awareness of details in the WSDL file but also on a knowledge

of the service endpoint interface and of any data types represented as JavaBeans. It cannot

function without an interface written and compiled in Java and so can no more interoperate with

non-Java services than can RMI.

A not very serious attempt was made to interact with a C# service, using its service class as an

interface, but, as expected, the client code would not even compile because of the language

difference in the supporting classes. A dynamic proxy client was able to be created for the Axis

version of the dictionary service and the significant parts of its code, illustrating its use of the

service interface appear in bold below:
String UrlString =
 "http://localhost:8080/axis/services/DictServiceImpl?wsdl";

 String nameSpaceUri =
 "http://localhost:8080/axis/services/DictServiceImpl";
 String serviceName = "DictServiceImplService";
 String portName = "DictServiceImpl";
 URL dictUrl = new URL(UrlString);
 ServiceFactory serviceFactory = ServiceFactory.newInstance();
 Service dictSve = serviceFactory.createService(dictUrl, new
 QName(nameSpaceUri, serviceName));
 DictService myProxy = (DictService) dictSve.getPort(new
 QName(nameSpaceUri, portName), dp.DictService.class);
 System.out.println(myProxy.storeEntry(de));

7.4.3 Dynamic Invocation Client

As mentioned in section 4.2.4.5.3, dynamic invocation clients are meant to be able to be

generated at runtime, although a method of achieving this has not been discovered. What makes

these clients different from static stub clients is that there is no generation of stub classes, and

they differ also from dynamic proxy clients in not calling upon a service interface. They are

similar to both previous client types in that they do need a knowledge of the service WSDL.

Complexity is introduced, however, with the use of user-defined data types, as with the

dictionary service DictEntry type, for which the only available definition was the WSDL file.

An attempt to fudge the difficulty by creating a DictEntry class as an inner class within the

client succeeded in compiling, but received a message from the service that the Server did not

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 165

recognize the value of HTTP Header SOAPAction. Checking the SOAP messages that went

back and forth on the wire revealed the usual Axis style of an empty SOAPAction header, but this

was considered unlikely to be the real problem when the static stub client messages, also

generated by Axis, had worked. Further examination revealed that the DictEntry parameter had

not been sent, which was not surprising when its source had been an inner class lacking the real

namespace required for the construction of the SOAP message.

The conclusion drawn was that, while this style of client would interoperate with a service using

simple built-in schema types as parameters, it would not work for a service in another language

that required the use of a user-defined data type for a parameter. The line of code that makes it

work for Java classes,
call.registerTypeMapping(DictEntry.class n, new , q
 BeanSerializerFactory(DictEntry.class,qn), new
 BeanDeserializerFactory(DictEntry.class,qn));

requires a Java class to work, as may be seen from the three references to a class file.

7.5 Summary: a Synthesis of Findings

This chapter has presented findings from practical implementations of different web services and

clients in a variety of styles. Each of the implementations has made a contribution to the survey

of interoperability for web services, either by providing an opportunity to examine a feature

marked as problematic for interoperability, such as the use of array types, or, as in the case of the

REST-style service, by demonstrating that a simpler, alternative approach using pre-existing

technologies might pre-empt such problems altogether. The following table presents a brief

summary of findings with regard to problematic features made in this chapter:

PROBLEM OUTCOME
Data Types
Array types There were problems with the representation of array types.

Microsoft systems created a "packing" system for an array
of user-defined types which made it difficult to access the
actual data if the service it was reaching had not also used
this technique. PHP had no mechanisms for handling this.

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 166

WebLogic also uses a packing strategy for arrays,
increasing its interoperability with other systems. This
representation of arrays is frowned on by the Basic Profile,
but not totally disallowed. Testing of wrapped arrays made
it appear that the sending of an empty array to a method
that was expecting content succeeded where it should have
failed because of the wrapper.

Date Java/C# data types Surprisingly date objects (even the java.util.Date
object) turned out to be more portable than had been
expected, and no interoperability problems were
encountered.

Custom data types While each of the systems was able to handle complex data
types internally, there were cross-system problems and
these were probably the most significant failures for all the
systems.

Enumeration types No problem with the internal representation of XML
enumerations as strings.

Exceptions 1. Difficult to generate a fault string that could be captured
using RemoteException.

2. Using JAXRPCException was more successful in
capturing the fault string for a Java Client.

3. SOAPFaultException was efficient.

SOAP features
SOAPAction header 1. Default rendering of WSDL with beta versions of Axis

did not include it: Stylus Studio will not validate the
WSDL. Later versions include it as an empty value.

2. The WebLogic testclient program refused to validate
a service that did not contain it.

SOAP versioning Currently not an issue because so few of the toolkits

implement SOAP 1.2. This is an issue to watch.

HTTP XML headers 1. Used text/xml but carried a charset indicator.
2. Good support for SOAP version 2 content-type headers.

Toolkit features
Proprietary features Planning to introduce proprietary WSDL headers that will

not be used by other platforms.

Versioning problems Not the only culprit but by far the most noticeable, as might

CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS 167

be expected when looking at nightly builds.

Customization of SOAP
messages

None found.

Different language
interpretations

The fact that the service was in a different language per se
made no difference to simple service calls from clients
written in different languages. Language difference in itself
(apart from language-specific data types, dealt with above)
is no barrier to web services.

WS-I interoperability None of the generated or hand-created WSDL files failed
the tests, despite the fact that very different approaches
were used.

RPC-Style
Run-time binding Difficult to reproduce the automatic generation of a client at

runtime.

Different method signature on
the client from the one on the
server

Either not found or not a problem. Axis client code
generation sometimes produced method names run together
with a namespace but even this did not produce an error
when the service was called.

Code First
Flaws in the WSDL file Running WSDL files through a validation engine should be

a requirement before they are used to create a web service.
No flaws were found in the WSDL files used. Problems
experienced with document-style method invocations where
there was more than one method with a similar number and
type of parameters could be avoided by using the wrapped
style.

Limited perception of types The metadata features can give the developer the
opportunity to step outside his code and enable code and
WSDL construction in parallel, which is much less likely to
result in data-type mismatches. Simpler data types are the
better choice and REST, using plain text, is perhaps best of
all.

Table 7-1: Findings from the Experimental Services

The final chapter draws conclusions from the findings represented in this table and suggests that

different styles of web service may coexist and complement each other.

CHAPTER 8: CONCLUSION

8.1 Introduction: the Changing Scene

It is not possible to examine the table given at the close of the previous chapter and still consider

that web-service interoperability has been achieved. There is no doubt that it is a work in

progress. The evidence drawn together in the previous chapter, validating the concerns raised in

Chapter 4, points to the fact that, while interoperability is a widely-held ideal, its realization rests

on fragile foundations and also indicates that it may be demolished by such incidental factors as

versioning problems or by the inclusion of proprietary extensions. It is also true that small

details can create havoc, such as naming capitalization in WebLogic, and how generating

JavaBeans from a schema which contains a boolean type can cause an isXxxx method to be

generated in place of a getXxxx method42[Guest, 2004].

Despite the fragility (and often complexity) of the foundations currently underpinning

interoperability, what cannot be ignored is the will to interoperate, evidenced in all the latest

toolkits – a phenomenon not seen before in the history of middleware. Although this study was

begun with the expectation that SOAP and WSDL might fail in the way that earlier middleware

technologies such as CORBA can be said to have done, through being too complex and over-

specified, it has ended on a note of surprised optimism and cautious anticipation that cooperation

might yet turn web services into something workable.

Implementations now available are making it easier to write web services. The shift in attitude

described in this thesis away from the view that web services are a distributed object technology

and towards the perception that document exchange is a better model has taken place gradually

over the last two years. It should be noted that the author's discussion of the disadvantages of

RPC pre-dated this shift. There is no longer such a chasm between the proponents of REST and

web-service "evangelists" and it will be interesting to see what further developments will arise

from greater emerging support for SOAP 1.2. The writer's conclusions about the benefits of the

42 A default code style setting in the 3.1 Eclipse IDE is: "use 'is' prefix for getters that return boolean".

CHAPTER 8: CONCLUSION 169

REST approach also pre-dated both the support it now has from the major companies that use it

(see page 107) and the more frequent discussion of its advantages in general online forums, as

opposed to those in which the original REST/SOAP debate took place43. Late 2005 has also

seen developers of, for example, Python and of the Rails framework showing an interest in

REST44.

The introduction to this study asserted that web services are a rapidly moving target, with

implementations, modifications and specification releases following fast on one another. This

study has been completed at a significant point for web services. Not only are the vendors of

web-service implementations trying to ensure greater interoperability45, but also the end of 2005

has seen major new releases of many web-service platforms which offer testing against the Basic

Profile and, looking to the future, implementations of both versions of SOAP and, in Axis2, a

tentative implementation of REST.

8.2 No Single Solution

Web services promise an ability to deliver the same functionality regardless of platform,

language or device, and present a combination of new and legacy code in unexpected ways.

Seen this way, it is no wonder that the hype over web services has been so great over the last two

or three years. Of course terming it "hype" implies a form of deception or misinformation. It

suggests deception surrounding a publicity stunt that does not really warrant the amount of

attention generated. The concrete fact about web services is that they are just that: services, not

meant themselves to be the focus of attention. Shah and Apte were very insistent that web

services are a packaging technology or a messaging technology (see page 30). The significance

43 A Google search, for REST 'web services' 2005, on December 13th, 2005, produced 2,650,000 results. See, for
example: http://www.newsgator.com/forum/shwmessage.aspx?ForumID=8&MessageID=8170,
http://groups.yahoo.com/group/rest-discuss/message/5065.
44 For Python, see: http://www.xml.com/lpt/a/2005/08/17/restful-web.html; and for Rails see
http://www.xml.com/lpt/a/2005/11/02/rest-on-rails.html.
45 Sun and Microsoft have cooperated in the arena of web services more than ever this year and have been official
guests at each other's major conferences. A press release on November 4th, 2005, reveals that Sun is planning to
create open-source implementations of specifications needed for interoperation with the WCF. This comes hard on
the heels of the joint venture to use a single sign-on specification that will work for systems created by both vendors
(see http://today.java.net/today/archive/index_11112005.html) .

http://www.newsgator.com/forum/shwmessage.aspx?ForumID=8&MessageID=8170
http://groups.yahoo.com/group/rest-discuss/message/5065
http://www.xml.com/lpt/a/2005/08/17/restful-web.html
http://www.xml.com/lpt/a/2005/11/02/rest-on-rails.html
http://today.java.net/today/archive/index_11112005.html

CHAPTER 8: CONCLUSION 170

of the service, however, is in the way it may be used to package – or "message" – anything, in

other words its interoperability. A postal system, for instance, that worked in one location but

not in another, that conveyed pink parcels but not green ones, that baulked at manila packaging

but loved greaseproof paper, that interfaced with courier service X but not Y, would not be very

useful. Web services without major interoperability run the risk of not justifying the hype.

Unlike universal postal systems, web services are not really a "one size fits all" solution.

Because web services provide an integration technology, they can in fact be mixed with

middleware technologies that have preceded them. Lomow and Newcomer explain very clearly

that web services should not be viewed merely as a replacement technology:

Web services are not just adding more technology to the problems of IT; they are

proposing a different approach to solving some of the problems of IT, especially around

integration, because of new capabilities offered by the technology. Web services are not

really a replacement technology; … Web services are not really a new middleware

system in the sense that J2EE, CORBA, and the .NET Framework are middleware

systems. Web services are XML-based interface technologies; they are not executable;

they do not have an execution environment—they depend upon other technologies for

their execution environments… Using Web services successfully requires a change in

thinking about technology, not simply learning a new grammar for the same old way of

building and deploying systems. Web services currently and will always require a mix of

technologies. Therefore, Web services need to be understood in terms of what they add to

the picture, not only in the context of what they replace [Lomow and Newcomer, 2004].

The conclusion is clear: although web services bring interoperability to distributed computing in

ways that earlier technologies could not, they represent not a replacement of the earlier

technologies but a paradigm shift.

However, their centrality should not be overestimated. Especially within the enterprise, they are

not the only solution for distributed computing. Inside an intranet, where assumptions about

language, platform and proprietary mechanisms may be made that would not hold good in a

wider context, middleware solutions might perform better, as Table 8-1 suggests. There are

CHAPTER 8: CONCLUSION 171

definitely situations in which the use of web-services technology would be inappropriate, e.g.

where large numbers of small web-service messages would carry a disproportionably verbose

overhead, with multiplied serialization and parsing requirements. A white paper from Intrisync

(a vendor with an alternative integration product to sell), published in mid 2005, stated that:

"Web Services can introduce known risks in deployment, complexity and scalability. The

primary disadvantage is the performance overhead. With applications that have timing

requirements and/or large amounts of data to transmit, Web Services is clearly not the best

option" [Intrisync, 2005]. If, within an intranet, both systems are running, for example, Java,

there would be performance advantages to using RMI with Enterprise JavaBeans, as Table 8-1

demonstrates. Interoperability is usually not a problem for an intranet.

SOAP/HTTP vs RMI/IIOP

1393

1333

371

206

135

1250

0 200 400 600 800 1000 1200 1400 1600

1K RMI/IIOP

1K AXIS/HTTP

5K RMI/IIOP

5K AXIS/HTTP

10K RMI/IIOP

10K AXIS/HTTP

C
om

pl
ex

ity
 o

f P
ay

lo
ad

Operations per Second

Table 8-1:Performance Differences Between SOAP and RMI [Adapted from IBM Software Group, 2003]

There are also situations in which simple XML over HTTP, as used in REST, may be all that is

required to access the functionality of a fairly simple service and in these cases the extended

protocol paraphernalia that has attached itself to web services (as witness the change in the W3C

definitions on page 28) would be overkill. The vast majority of service applications probably lie

somewhere in-between and for them combinations of SOAP and WSDL together with quality-of-

service additions such as security and transaction management provide a useful solution.

CHAPTER 8: CONCLUSION 172

Such exceptions aside, the paradigm shift represented by web services, as discussed in this study,

represents significant potential for the entire IT enterprise; but only if interoperability is assured

in future developments.

8.3 Problems Still Needing Solutions

It is just because web services do not present a "one size fits all" solution that the multiple

layering of specifications upon specifications can be seen as a drawback to their acceptance and

use. This multiple layering might be compared to a badly designed computer language, in which

the desire to cover all eventualities swamps comprehensibility. There is a point beyond which

adding to the basic functionality of web services can be seen as counter-productive, even

indigestible. A greater and still unfulfilled need is for proper standardization at the

implementation level. Lomow and Newcomer argue that what damaged CORBA at the outset

was a failure to design a standard for interoperability. Irresponsible actions by major companies

and consortiums that aim to play one group off against another for their own profit might still

cause the web-services initiative to be sidelined into something that "fits" no one, although

current vendor cooperation is making this look less likely. If the key to web-service

functionality is interoperability, this thesis has shown that it is in everyone's long-term interest to

agree upon a set of supporting standards in the same way that agreement has been reached over

the core standards of SOAP and WSDL, which are, in fact, standards for interoperability.

Just as it is not possible to foresee every use (or misuse) of an application that will cause it to do

unintended things, so it is not possible to say with absolute conviction that any particular

implementation of a web service is truly interoperable. The WS-I Profile goes a long way

towards guaranteeing interoperability and increasingly other testing tools are becoming popular

in a way which signals serious problems for those who flout existing standards. A problem

inherent in standards such as SOAP and WSDL is their extensibility, a core feature of XML

languages. While this feature leaves room for future growth, it must not become the breeding

ground for proprietary extensions which are by definition not interoperable.

CHAPTER 8: CONCLUSION 173

8.4 Changing Requirements

The enterprise domains in which interoperability is currently required are different from those

that were originally and perhaps naively envisaged. Instead of an open market in which services

are sought and provided on the basis of a requirements "fit" rather than on source credibility,

companies prefer to have dealings with other entities previously known to them. The ideal

perpetuated by Sun in its slogan, "The Network is the computer" still exists as an increasingly

realizable vision for the future of web services in a more general sense. In this ideal, we all have

access not only to more information than we could ever hope to use but to increasing

functionality exposed through services which form a web of opportunity and which, to be

universally accessible, will need to conform to standards that ensure interoperability.

The corporate world is not the only domain for web services. The vision is potentially much

larger. It may be that the human interaction component mentioned in the introduction to this

thesis (see page 28) will grow as we live in an increasingly "intelligent" world and the objects we

see around us as inanimate communicate in ways that have so far been the province of science

fiction but may in the future enlarge our perception of what web services can do.

8.5 Summary of Achievements in this Study

This study has achieved what it set out to accomplish in providing

a. a survey of factors contributing to or detracting from interoperability in web services

and

b. a snapshot of current progress towards achieving it, in terms of available implementations

of and approaches to web services, particularly with reference to Java.

The qualitative findings of Chapters 4 and 5 have been validated by the experimental work in

Chapter 7.

Failure to achieve interoperability has been shown to be a contributing factor in the relative

failures of some middleware technologies. Interoperability is a feature that vendors claim

increasingly for their own implementations of services, but less attention has been paid to the

CHAPTER 8: CONCLUSION 174

significance of interoperability in client styles, as presented in Chapters 4 and 7. Chapter 5 was

succinct in its presentation of REST, which in its simplicity and efficiency may yet turn out to be

the winning approach, particularly if the SOAP stack becomes further enmeshed.

This study has been completed so hard on the heels of new developments in terms of JAX-WS,

that it can claim to be one of the earliest studies of these new specifications and implementations.

No other critique of the new web-services implementations in PHP 5 has been found. While no

other web-service implementations in Mozilla's XUL and JavaScript were to be found at the time

of the creation of the Firefox extension for the indexing service, this work can be seen to

foreshadow the Ajax development that has exploded in the course of 2005.

The study also demonstrates a paradigm shift from the viewpoint encouraged by many

implementations that code must be the starting point of a web service, to the understanding that,

for interoperability, such a position can be held only by the service contract. The shift was an

unforeseen conclusion derived from examining and experimenting with both starting points and

is validated not only by an increasing consensus on this matter but also by the end results as

discussed throughout Chapter 7. The study offers a new critique of the compromise achieved in

this area through the use of Java web-services metadata annotations.

Finally the study clarifies the vexed question of definitions by presenting in section 3.1.3

Newcomer's working definition of web services [2005] which, unlike the latest provided by the

W3C, is as applicable to the REST approach as it is to that targeting SOAP and WSDL, and is

based on the notion of interoperability.

8.6 Future Work

An important extension of this work would focus on REST technologies and their

implementations in a variety of languages across a variety of platforms: trends mentioned in

section 8.1 suggest potential and exciting growth in that area. Other extensions could include an

examination of value-added services on top of the basic SOAP/WSDL design, such as security

CHAPTER 8: CONCLUSION 175

and maintaining the integrity of transaction processing. In section 7.1.1.8 it was suggested that

there might be potential web-service development with the Ajax technologies, which hold out a

promise of asynchrony plus a direct incorporation of XML into JavaScript. Still further

extensions might focus on load-testing and on the speed and efficiency of the various approaches

to web services, among them the development of asynchronous web services, possibly over

messaging protocols.

One extension of particular interest to the writer is the development of web services in mobile

form. With the number of mobile phones far exceeding the number of computers on the African

continent, mobile computing through web services offers an interesting and relevant challenge in

this particular environment.

It is accepted that the feasibility of many of the possible research paths sketched here, involving

the uptake and implementation of web services, will depend in part on future implementations

and what happens within the current Babel of specifications.

APPENDIX A: List Of Acronyms Used In The Text

ACID Systems that are atomic, consistent, isolated and durable

AJAX Asynchronous JavaScript and XML

AXIS Apache Extensible Interaction System

BPEL Business Process Execution Language for Web Services

BPML Business Process Management Language

CICS Customer Information Control System

COBOL Common Business-Oriented Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DIME Direct Internet Messaging Extensions

DOM Document Object Model

E4X ECMAScript for XML, an extension for JavaScript

EA Early Access (release)

ESB Enterprise Service Bus

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IMS IP Multimedia Subsystems

IRI Internationalized Resource Identifier

JAXB Java Architecture for XML Binding

JAX-RPC Java API for XML-Based RPC

JAX-WS Java Api for XML-Based Web Services

JBI Java Business Integration

JCP Java Community Process

JMS Java Message Service

JVM Java Virtual Machine

JSR Java Specification Request

JWSDP Java Web Services Developer Pack

APPENDIX A: LIST OF ACRONYMS USED IN THE TEXT 177

MEP Message Exchange Pattern (in SOAP version 1.2)

MOM Message-Oriented Middleware

MTOM SOAP Message Transmission Optimization Mechanism

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

ORB Object Request Broker

OSI Open Systems Interconnect

PEAR The PHP Extension and Application Repository

POA Portable Object Adapter

RAND reasonable and non-discriminatory (of patent licensing policies)

RDF Resource Description Framework

RELAX Regular Language Description for XML, Next Generation

REST Representational State Transfer

RFC Refer for Comments

RMI Remote Method Invocation

RPC Remote Procedure Call

SAAJ SOAP with Attachments API for Java

SAX Serial API for XML

SOA Service-Oriented Architecture

SOAP Although originally considered an acronym for Simple Object Access

Protocol, its acronymic status was removed in the 1.2 Specification, at

which point it became simply a name.

SPEC Standard Performance Evaluation Corporation

STAX Streaming API for XML (Parser)

SWA SOAP with Attachments

TAG The W3C Technical Architecture Working Group

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Indicator

W3C World Wide Web Consortium

WCF Microsoft's Windows Communication Foundation (formerly code-named

Indigo)

APPENDIX A: LIST OF ACRONYMS USED IN THE TEXT 178

WSC Web Services Choreography

WSCF Web Services Contract First; the acronym is also used as the name for a free

tool which may be used with Visual Studio

WSCI Web Services Choreography Interface

WSDD (Axis) Web Service Deployment Descriptor – also used as a file extension

and usually not capitalized

WSDL Web Services Description Language

WS-I Web Services-Interoperability Organization

WSIL Web Services Inspection Language

WXS W3C Schema (sometimes also known as "xsd")

XOP XML-binary Optimized Packaging

XUL XML User Interface Language, also used as a file extension

APPENDIX B: Creating A Firefox Extension

A sequence of files has to be created in a directory structure that looks like this [2004 Duff]:

c:\Firefox Extensions\

+- indexFile

 +- install.rdf

 +- content

 +- contents.rdf

 +- indexFile-Overlay.xul

The .rdf (Resource Description Framework) file tells Firefox what the extension is, its

identifying package (in our case indexFile), its name, its unique id, what versions of Firefox will

support it and the application (e.g. Firefox or Thunderbird) inside which it is meant to run. The

file also refers to user interface components (known as "chrome") which are described by an

interface definition language termed XML User Interface Language (XUL)46). A very

convenient feature of Firefox is that it is possible to modify visible components of the browser,

e.g. a toolbar or context menu, without modifying the original configuration files but by adding

extra XUL files which the Firefox installer can read and interpret. Firefox uses a type of zipped

file with an .xpi (cross platform installer47) extension, which contains files in a particular order

e.g. indexFile.xpi will contain at the following levels:

+- install.rdf

+- chrome/

 +- indexFile.jar

In its turn the jar file contains the files inside the content directory:

+- content/

 +- contents.rdf

 +- indexFile-Overlay.xul

46 pronounced zool.
47 pronounced zippy.

APPENDIX B: CREATING A FIREFOX EXTENSION 180

The indexFile-Overlay.xul imports a JavaScript file which contains the function to call the web

service. An overlay file is, as its name suggests, something that "overlies" the original window

or control. It is an addition to the browser (or mail client) but its addition does not involve

changing any of the original installation files.

Appendix B-1:Invoking the Indexing Service

Appendix B-2: Message Confirming that the Indexing Service has Finished

APPENDIX C: The Complexity of Web-Service Specification

APPENDI fications
[Jeon, c2005

X C: The Complexity Of Web-Service Speci
]

The graphical insert overleaf is Appendix C.

APPENDIX D: The Inner Workings of the Indexing Service

APPENDIX D: The Inner Workings of the Indexing Service

The web service required an index writer (for storing data), an index searcher (for querying

ata), and an analyzer (responsible for tokenizing the data to be indexed), all of which were

rovided in the Lucene API. Lucene prevents race conditions by creating two possible "lock"

les, one while an index is being written to or deleted from (write.lock) and the other when it

 being either searched or updated (commit.lock). If this latter lock is not released by the

losing of the IndexSearcher, any process that tries to delete files the IndexSearcher has

arched (even if the program instance has terminated) will throw an IOException. While

Lucene gives careful directives about closing the IndexWriter instance (no index will be written

unless the writer is closed), no such emphasis is given to the closing of the IndexSearcher, as

was discovered through trial and error.

Part of the analysis of a web page that can be carried out by Lucene involves the exclusion from

the index of common words (known as stop words) that will not be required in a search. The

StandardAnalyzer class contains a brief list of stop words but a simple test was first run to

determine the difference of adding to this list. Running the test (which involved creating an

index and then running a simple query) on two files without additional stop words took 911 ms

and produced an index of 26 KB in size. With an added list of 541 words48, the time came down

to 832 ms and the index was reduced to 22 KB. Increasing the list to a total of 1762 common

words49 reduced the time to 812ms and the index size to 19KB, which was considered a

worthwhile advantage: a saving of around 14% on index size is not inconsiderable when the file

sizes and indices grow. The choice of words on the list was governed by the decision to limit the

articles chosen for the test suite to those within the Computer Science subject area. Many

common words like "aunt" or "bread", "drink" or "continent" were removed from the list as

neither being likely to be found in such articles nor required in a search, and therefore not

necessary for inclusion. Of course, if the choice of articles were to be broadened by more

d

p

fi

is

c

se

48 The list was originally the String Array SMART_STOP_WORDS contributed to Lucene by John Caron.
49 Additional words were selected from a list of 3000 words in common use in the USA found at:
http://www.paulnoll.com/China/Teach/English-3000-common-words.html.

APPENDIX D: The Inner Workings of the Indexing Service 183

general guidelines, such words might need to be included. The stop words were not hard-coded

int

he index was optimized by supplying the text content of the files through a Reader (in this case

 it.

ther,

 by

on,

ise

o the service but were read in from a file at runtime.

T

a FileReader), which indexes and tokenizes the character content of a file but does not store

Storing the content would increase the index size. String fields were stored instead. Fields

which need to be included in a search must be indexed and transformed into tokens, as in a

parser. Text analyzers are actually parsers.

The choice of an analyzer is crucial because the analyzer controls how text is tokenized; whe

for instance, words are converted all to lower case; whether terms are made more searchable

having their endings stripped through the use of a stemming algorithm, thus allowing e.g. "lose",

"losing" and "lost" to be returned from a single search; and also how term boundaries (e.g. a

URL or an email address) are defined.

Snowtide Informatics PDFTextStream API was used for converting PDF files to text. This API

reads PDF Metadata attributes describing, for example, the title and the date of the file's creati

and also enables the developer to change these attribute names so that they may be given the

same names as attributes in text and HTML files. Otherwise, null pointer problems would ar

from searching on fields belonging to one file type but not to others included in the same search.

Snowtide Informatics were generous in their gift of a free, time-limited academic licence for the

project.

APPENDIX E: An Example WSDL File

APPENDIX E: An Example WSDL File

g/wsdl/soap/"
chema">

 <wsdl:types>

 </element>
e="DictEntryBean">

 <element name="storeEntryReturn" type="xsd:string"/>
 </sequence>

 </complexType>
 </element>
 </schema>
 <schema elementFormDefault="qualified" targetNamespace="http://newdct"
xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://newdct"/>
 <element name="storeMultiple">
 <complexType>
 <sequence>
 <element minOccurs="0" maxOccurs="1" name="da"
type="impl:ArrayOfDictEntryBean" />
 </sequence>
 </complexType>
 </element>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://newdct"
xmlns:apachesoap="http://xml.apache.org/xml-soap" xmlns:impl="http://newdct"
xmlns:intf="http://newdct" xmlns:tns1="http://newdct"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.or
xmlns:xsd="http://www.w3.org/2001/XMLS

 <schema elementFormDefault="qualified" targetNamespace="http://newdct"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="storeEntry">
 <complexType>
 <sequence>
 <element name="de" type="impl:DictEntryBean"/>
 </sequence>
 </complexType>

 <complexType nam
 <sequence>
 <element name="headword" nillable="true" type="xsd:string"/>
 <element name="plural" nillable="true" type="xsd:string"/>
 <element name="pos" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="storeEntryResponse">
 <complexType>
 <sequence>

APPENDIX E: An Example WSDL File 185

 <complexType name="ArrayOfDictEntryBean">
 <sequenc
 <eleme

>

="xsd:string"/>

e="returnEntryReturn" type="impl:DictEntryBean"/>

ultipleResponse">

nOccurs="0" maxOccurs="1" name="returnMultipleResult"

esponse" name="parameters"/>

rs"/>

oreEntryRequest">

e>
nt minOccurs="0" maxOccurs="unbounded" name="DictEntryBean"

nillable="true" type="impl:DictEntryBean" /
 </sequence>
 </complexType>
 <element name="storeMultipleResponse">
 <complexType>
 <sequence>
 <element name="storeMultipleReturn" type

uence> </seq
 </complexType>
 </element>

 <element name="returnEntry">
 <complexType/>

 </element>
 <element name="returnEntryResponse">
 <complexType>
 <sequence>

ent nam <elem
 </sequence>

pe> </complexTy
 </element>
 <element name="returnMultiple">
 <complexType/>
 </element>
 <element name="returnM
 <complexType>
 <sequence>

i <element m
type="impl:ArrayOfDictEntryBean" />
 </sequence>
 </complexType>
 </element>

 </schema>
 </wsdl:types>

nse"> <wsdl:message name="returnMultipleRespo
tipleR <wsdl:part element="tns1:returnMul

 </wsdl:message>

 <wsdl:message name="storeEntryResponse">
 <wsdl:part element="impl:storeEntryResponse" name="paramete
 </wsdl:message>

ame="st <wsdl:message n

APPENDIX E: An Example WSDL File 186

 <wsdl:part element="impl:storeEntry" name="parameters"/>

se">
t="tns1:storeMultipleResponse" name="parameters"/>

eturnMultipleRequest">
"tns1:returnMultiple" name="parameters"/>

oreMultipleRequest">
ent="tns1:storeMultiple" name="parameters"/>

eturnEntryResponse">
se" name="parameters"/>

tns1:returnEntry" name="parameters"/>

y">

message="impl:storeEntryRequest" name="storeEntryRequest"/>
onse" name="storeEntryResponse"/>

e="storeMultiple">

"/>
reMultipleResponse" name="storeMultipleResponse"/>

"returnEntry">

message="impl:returnEntryRequest" name="returnEntryRequest"/>
essage="impl:returnEntryResponse" name="returnEntryResponse"/>

tion>
 <wsdl:operation name="returnMultiple">

 name="returnMultipleRequest"/>

 </wsdl:operation>

e="NewDict" type="impl:NewDict">
 <wsdlsoap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 </wsdl:message>

 <wsdl:message name="storeMultipleRespon
 <wsdl:part elemen
 </wsdl:message>

 <wsdl:message name="r
 <wsdl:part element=
 </wsdl:message>

 <wsdl:message name="st
 <wsdl:part elem
 </wsdl:message>

 <wsdl:message name="r
 <wsdl:part element="tns1:returnEntryRespon
 </wsdl:message>

 <wsdl:message name="returnEntryRequest">
 <wsdl:part element="
 </wsdl:message>

 <wsdl:portType name="NewDict">
 <wsdl:operation name="storeEntr
 <wsdl:input
 <wsdl:output message="impl:storeEntryResp
 </wsdl:operation>
 <wsdl:operation nam
 <wsdl:input message="impl:storeMultipleRequest" name="storeMultipleRequest
 <wsdl:output message="impl:sto
 </wsdl:operation>
 <wsdl:operation name=
 <wsdl:input
 <wsdl:output m
 </wsdl:opera

 <wsdl:input message="impl:returnMultipleRequest"
 <wsdl:output message="impl:returnMultipleResponse"
name="returnMultipleResponse"/>

 </wsdl:portType>

 <wsdl:binding nam

 <wsdl:operation name="storeEntry">

APPENDIX E: An Example WSDL File 187

 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="storeEntryRequest">

 <wsdlsoap:body use="literal"/>

body use="literal"/>
 </wsdl:output>

eration soapAction=""/>
 <wsdl:input name="storeMultipleRequest">

name="storeMultipleResponse">
 <wsdlsoap:body use="literal"/>

 name="returnEntry">
 <wsdlsoap:operation soapAction=""/>

 <wsdl:output name="returnEntryResponse">

returnMultiple">

e">

ame="NewDict">
ation="http://localhost:8080/axis/services/NewDict"/>

/wsdl:service>

 </wsdl:input>
 <wsdl:output name="storeEntryResponse">
 <wsdlsoap:

 </wsdl:operation>
 <wsdl:operation name="storeMultiple">
 <wsdlsoap:op

 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation

 <wsdl:input name="returnEntryRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>

 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>

 <wsdl:operation name="
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="returnMultipleRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="returnMultipleRespons
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="NewDictService">
 <wsdl:port binding="impl:NewDict" n
 <wsdlsoap:address loc
 </wsdl:port>
 <

</wsdl:definitions>

REFERENCES
 were necessarily captured from

 rapidly, with implementations being

ents are to be found only online and items such as specifications,

rnals are published online and have been

, all of the references below are

e been hyperlinked within the text.

 Curbera, Hitesh Dholakia, Yaron Goland,
nnes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,

tish Thatte, Ivana Trickovic, Sanjiva Weerawarana, Business Process
Web Services, Version 1.1, 5 May 2003,

 PDF document from sites such as:
es/BPEL4WS.html

As mentioned in the Notes section to this study, many references

the web. Web services are evolving and changing so

reworked, that recent developm

conference proceedings and contributions to some jou

captured in that format. With the exception of published books

available on the accompanying CD to which they hav

Andrews et al., 2003 Tony Andrews, Francisco
Joha
Sa
Execution Language for
available for download as a
http://dev2dev.bea.com/webservic .

resh Apte, Toral Mehta, Web Services: A Java Developer's Guide to

in, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi,
David Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal
Takacsi-Nagy, Ivana Trickovic, Sinisa Zimek, Web Service

CI) 1.0, W3C Note 8 August 2002,
ww.w3.org/TR/wsci/

Apte and Mehta, 2002 Na

Using e-Speak Prentice Hall, 2002.

Arkin et al., 2002 Ark

Choreography Interface (WS
available online at: http://w .

Ball, Stephanie Bodoff, Debbie Bode Carson,
 Evans, Dale Green, Kim Haase, Eric Jendrock, Basic JMS

 1.4 Tutorial, available online at:
.4/docs/tutorial/doc/JMS3.html

Armstrong et al., 2005 Eric Armstrong, Jennifer

Ian
Concepts, from Chapter 33 of the J2EE
http://java.sun.com/j2ee/1 .

stralian Government. Paper written on the Advantages of Paperless
Trade, available online at:
http://www.dfat.gov.au/publications/paperless/paperless_trading.pdf

Australian Government, Au
2001

.

Keith Ballinger, Foreword to Jeffrey Hasan, Expert Service-Oriented
Architecture in C#: Using the Web Services Enhancements 2.0, Apress,
2004, ISBN: 1-59059-390-1.

allinger et al., 2004 Keith Ballinger, David Ehnebuske, Christopher Ferris, Martin Gudgin,
Canyang Kevin Liu, Mark Nottingham and Prasad Yendluri, Basic

Axis user-guide, 2005 Axis user-guide.

Ballinger, 2004

B

REFERENCES 189

Profile Version 1.1, Final Material, 2004-08-24, available online at
http://ww rofile-1.1-2004-08-24.htmlw.ws-i.org/Profiles/BasicP .

-1.html

Barr, 2003 Jeff Barr of Amazon.com in an interview with Doug Kaye, transcript
available online at:
http://www.itconversations.com/transcripts/31/transcript-print31 .

line at:
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211

Barr, 2005 Jeff Barr in an email to the writer in response to a query concerning the

relative speed of REST over SOAP.

Barton et al., 2000 John J. Barton, Satish Thatte, Henrik Frystyk Nielsen, SOAP Messages
with Attachments, W3C Note 11 December 2000, available on

.

2005

Birman, 2004 uted objects, in
ommunications of the ACM, Volume 47, Number 12, pages 60-62.

M Transactions on Computing
ystems (1993-1998).]

Biron and Malhotra,
2004 ailable

Bertolino and Polini, Antonia Bertolino and Andrea Polini, The Audition Framework for
Testing Web Services Interoperability, Proceedings of the 31st.
EUROMICRO Conference on Software Engineering and Advanced
Applications, IEEE 0-7695-2431-1/05.

Kenneth Birman, Like it or not, web services are distrib
C
[Professor, Computer Science, Cornell University; among other
positions, that of Editor-in-Chief: AC
S

Paul V. Biron and Ashok Malhotra, XML Schema Part 2: Datatypes
Second Edition, W3C Recommendation 28 October 2004, av
online at: http://www.w3.org/TR/xmlschema-2/#base64Binary.

Booth and Liu, 2005 avid Booth and Canyang Kevin Liu, Web Services Description

0-

D
Language (WSDL) Version 2.0 Part 0: Primer. W3C Working Draft 3
August 2005. Available online at: http://www.w3.org/TR/wsdl2
primer/.

Booth et al., 2002 avid Booth, Michael Champion, Chris Ferris, Eric Newcomer, David

/cvsweb/~checkout~/2002/ws/arch/wsa/wd-

D
Orchard, Web Services Architecture Working Draft, 2002, available
online at: http://dev.w3.org
wsa-arch-review2.html?rev=1.3&content-type=text/html#N1010B.

Booth et al., 2004 David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
hampion, Chris Ferris, David Orchard, Web Services Architecture C

W3C Working Group Note 11 February 2004, available online at:
http://www.w3.org/TR/ws-arch/.

Bosak, 2004 an Bosak, cited in XML 2004 paper, UBL: Ready for Prime Time, J
available online at:

http://www.w3.org/TR/wsci/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS3.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMS3.html
http://www.dfat.gov.au/publications/paperless/paperless_trading.pdf
http://www.dfat.gov.au/publications/paperless/paperless_trading.pdf

REFERENCES 190

http://www.idealliance.org/proceedings/xml04/papers/27/UBL.html.

Bosworth, 2004 dam Bosworth, blog at: A
http://www.adambosworth.net/archives/000025.html, September 21st .

Adam Bosworth, quoted in Linux World, August 30, available online at:

Bosworth, 2004a
ttp://www.linuxworld.com/story/46025.htmh .

Box et al., 2000 kivaya, Andrew Layman, Noah
endelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer,

D. Box, David Ehnebuske, Gopal Ka
M
Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000,
available online at: http://www.w3.org/TR/2000/NOTE-SOAP-
20000508.

Box, 2004 D. Box, A Guide to Developing and Running Connected Systems wit
Indigo, published on the MSDN website at:

h

aulhttp://msdn.microsoft.com/longhorn/understanding/pillars/indigo/def
t.aspx?pull=/msdnmag/issues/04/01/Indigo/default.aspx.

4

Bray et al., 200 Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, Extensible Markup Language (XML) 1.0 (Third Edition)
W3C Recommendation 04 February 2004, available online at:
http://www.w3.org/TR/REC-xml.

Bray, 2000 . Bray, 2000. Mailing on the XMLDev List, 25th July. Available
l

T
online at: http://lists.xml.org/archives/xml-dev/200007/msg00789.htm .

Bray, 2001 v, Mon,
 Apr 2001 15:32:55 -0700, available online at:

T.Bray, contribution to the XML developers mailing list, xml-de
09
http://lists.xml.org/archives/xml-dev/200104/msg00205.html.

T. Bray, blog, available online at: Bray, 2004

w.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppohttp://ww .

Bray, 2004a T. Bray, response to a blog entry on MTOM and XOP from Mark
Nottingham. Available online at:
http://www.mnot.net/blog/2004/05/05/boo.

Bray, 2004b . Bray, WS-Pagecount, article available online at: T
http://www.tbray.org/ongoing/When/200x/2004/09/21/WS-Research.

T. Bray, interviewed by Government Computer News, November 1
2005, available online at:

Bray, 2005 3th,
w.gcn.com/24_32/interview/37449-http://ww

1.html.

Britton and Bye, 2004 ter Bye, IT Architectures and Middleware:
Strategies for Building Large, Integrated Systems, Addison Wesley

Chris Britton and Pe

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.itconversations.com/transcripts/31/transcript-print31-1.html
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211
http://www.w3.org/TR/xmlschema-2/#base64Binary
http://www.w3.org/TR/xmlschema-2/#base64Binary
http://www.w3.org/TR/xmlschema-2/#base64Binary
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/
http://dev.w3.org/cvsweb/~checkout~/2002/ws/arch/wsa/wd-wsa-arch-review2.html?rev=1.3&content-type=text/html#N1010B
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

REFERENCES 191

Professional, Second Edition, ISBN: 0-3212-46942. The term
transactional component middleware was coined in the first edition of

Burner, 2003 ike Burner, The Deliberate Revolution: Transforming Integration

this book.

M
With XML Web Services, ACM Queue vol. 1, no. 1, available online at:
http://www.acmqueue.org/modules.php?name=Content&pa=showpage
&pid=32. [Burner is a .NET architect at Microsoft.]

Butek, 2005

s-

Russell Butek, Which style of WSDL should I use?, article on IBM
Developer Works, 24th May, 2005 (updated), available online at:
http://www-128.ibm.com/developerworks/webservices/library/w
whichwsdl/. [Butek is an IBM WebSphere developer and was also one

f the original Axis developers.]

Butek and Scheuerle,
2004

, Array gotcha—null array

o

Russell Butek and Richard Scheuerle, article
vs. empty array, published on the DevX SkillBuilding, March 9, 2004,
available online at: http://www.devx.com/ibm/Article/20265.

Butek and Scheuerle,
2004a

,
ble

Russell Butek and Richard Scheuerle, article on IBM Developer Works
2nd April, 2004, Roundtrip issues in Java coding conventions, availa
online at: http://www.ibm.com/developerworks/library/ws-tip-
roundtrip2.html.

Butek and Scheuerle,
2004b

orks,

ttp://www-128.ibm.com/developerworks/library/ws-tip-

Russell Butek and Richard Scheuerle, article on IBM Developer W
18th March, 2004, Roundtrip issues, an introduction, available online at:
h
roundtrip1.html.

Stewart Butterfield, interviewed by Richard Koman on O'ReillyButterfield, 2005

etwork, 2 April, 2005, Stewart Butterfield on Flickr, interview

l

N
available online at:
http://www.oreillynet.com/pub/a/network/2005/02/04/sb_flckr.htm .

 s
ces, January 27, available online as

erence, at:
ttp://www.radview.com/products/WebServices.pdf

Cantera, 2004 Michelle Cantera, writing for Gartner, Inc., IT Professional Service

Forecast and Trends for Web Servi
Web Services Testing, The RadView Diff
h .

Cape Clear, 2005
p://www.esbtruthtest.com/

Cape Clear. The test is available online at:
htt .

Cape Clear, 2005a
.

'Reilly

Cape Clear SOAEditor Help Files, Overview, available with the editor
download

Cerami, 2004 Ethan Cerami, Web Services Essentials ISBN:0-596-00224-6, O

http://www.linuxworld.com/story/46025.htm
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://msdn.microsoft.com/longhorn/understanding/pillars/indigo/default.aspx?pull=/msdnmag/issues/04/01/Indigo/default.aspx
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://lists.xml.org/archives/xml-dev/200104/msg00205.html
http://lists.xml.org/archives/xml-dev/200104/msg00205.html
http://lists.xml.org/archives/xml-dev/200104/msg00205.html
http://www.tbray.org/ongoing/When/200x/2004/09/18/WS-Oppo
http://www.gcn.com/24_32/interview/37449-1.html
http://www.gcn.com/24_32/interview/37449-1.html
http://www.gcn.com/24_32/interview/37449-1.html

REFERENCES 192

& Associates.

David ChaChappell, 2005 ppell, Introducing Indigo: An Early Look, article on the

SDN, available online at: M
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnlong/html/introindigov1-0.asp?frame=true&hidetoc=true.

Dino Chiesa, Interoperability Notes on Apache Axis Chiesa, 2005 1.1 and Microsoft

ET Framework 1.0/1.1 FAQ available online at: .N
http://wiki.apache.org/ws/FrontPage/Axis/DotNetInterop. [Chiesa i
Microsoft product manager for the .Net developer platform.]

Roberto Chinnici, Maintenance Lead. (Expert Group members: Mark
Stewart, Manoj Cheenath, Krishn

s a

Chinnici et al., 2003
a Sankar, Waqar Sadiq, Kazunori

sa, Pankaj Kumar, Russell Butek, Jim Knutson, Miroslav Simek,

ndluri, Matt
untz, James Strachan, Shawn Bayern.) Java™ API for XML-based

Iwa
Dan Kulp, Miles Sabin, Shailesh Bavadekar, Glen Daniels, Steve Jones,
Pierre Gauthier, Bjarne Rasmussen, Jeff Mischkinsky, Umit Yalcinalp,
Amit Khanna, Dietmar Gaertner, Steve Marx, Prasad Ye
K
RPC, JAX-RPC 1.1, available from:
https://sdlcweb3a.sun.com/ECom/EComActionServlet/LegalPage:~:co
m.sun.sunit.sdlc.content.LegalWebPageInfo;jsessionid=5BA0E9D9F0C
C8AD2F7E01C6A52A21003;jsessionid=5BA0E9D9F0CC8AD2F7E01
C6A52A21003.

i et al., 2005
L) Version

anguage, W3C Working Draft 3 August 2005,
ailable online at: http://www.w3.org/TR/wsdl20/

Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, Sanjiva
Weerawarana, Web Services Description Language (WSD
2.0 Part 1: Core L

Chinnic

av .

Christensen et al., 2001
Services Description Language (WSDL) 1.1, W3C

Eric Christensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana, Web
Note 15 March 2001, available online at: http://www.w3.org/TR/wsdl.

5 d

=409137

Columbus, 200 Louis Columbus, Cutting Through the Hype: Where Web Services an

SOA Are Really Working, article published on InformIT, September
16th, available online at:
http://www.informit.com/articles/printerfriendly.asp?p .

olumbus is an academic who has written many articles and books on

Cowan and Tobin, 2004 ohn Cowan and Richard Tobin, XML Information Set (Second Edition),

w3.org/TR/xml-infoset/

[C
computer science topics.]

J
W3C Recommendation 4 February 2004, available online at:
http://www. .

004

Daniels et al., 2 Steve Graham, Doug Davis, Simeon Simeonov, Glen Daniels, Peter

http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=32
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=32
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www.ibm.com/developerworks/library/ws-tip-roundtrip2.html
http://www.ibm.com/developerworks/library/ws-tip-roundtrip2.html
http://www.ibm.com/developerworks/library/ws-tip-roundtrip2.html
http://www.oreillynet.com/pub/a/network/2005/02/04/sb_flckr.html
http://www.radview.com/products/WebServices.pdf

REFERENCES 193

Brittenham, Yuichi Nakamura, Paul Fremantle, Dieter Koenig, Claudia
entner, Building Web Services with Java: Making Sense of XML,

 3. Available online to InformIT members

3;2004-

Z
SOAP, WSDL, and UDDI, 2nd Edition, Sams Developer's Library,
ISBN: 0672326418, Chapter
at:
http://www.informit.com/articles/article.asp?p=328640&f1=nl;1
09-07. (While Graham's name appears first for the printed book,

de hÓra, 2002
ializes in

eb services and XML enterprise systems.]

Deutsch, 1991 see

Daniels' comes at the top for the online article.)

Bill de hÓra. Correspondence on the xml-dev mailing list, 15th Jan.,
2002. [de hÓra is Technical Architect at Propylon, which spec
w

Peter Deutsch (and James Gosling), internally published inside Sun;
JamesGosling, http://today.java.net/jag/Fallacies/attibution.html.

Jerome Dochez, joint-author of a presentation given at JavaOne, 29Dochez, 2005 th
June, 2005, and referenced in his blog, 30th June, 2005, Web Services
and vi, available online at: http://blogs.sun.com/roller/page/dochez. A
PowerPoint presentation of the talk, Sun JavaTM

Server 9.0 and the Java

 System Application

Duff, 2004 rian Duff, Writing an Extension for Firefox, 2nd October, blog
.html

TM Enterprise Edition 5 SDK, is referenced
below. [Dochez is a Senior Staff Engineer in the Application Server
group, who works mainly on the Web Services container.]

B
available at: http://www.orablogs.com/duffblog/archives/2004_10 .

Ewald, 2005 line
3/04/6336.aspx

Tim Ewald, Risks to the success of Web services, blog available on
at: http://pluralsight.com/blogs/tewald/archive/2005/0 .

wald is a former .NET developer who now works for MindReef.]

Fialli and Vajjhala, 2003

or,
2002 ,

 Pages 115–150, available online at:
pdf

[E

Joseph Fialli and Sekhar Vajjhala, The Java™ Architecture for XML
Binding (JAXB), Final, V1.0, January 8th, 2003, available online at:

Fielding and Tayl Roy T. Fielding, Richard N. Taylor, Principled Design of the Modern
Web Architecture, article, ACM Transactions on Internet Technology
Vol. 2, No. 2, May 2002,
http://www.ics.uci.edu/%7Etaylor/documents/2002-REST-TOIT. .

Fielding, 1998 PowerPoint presentation entitled
epresentational State Transfer: An Architectural Style for Distributed

Roy Fielding, abstract for a
R
Hypermedia Interaction, (the abstract) available online at:
http://roy.gbiv.com/talks/ and cited on the RestWiki Front Pag

e.

Fielding, 2000 oy Fielding, Architectural Styles and the Design of Network-based R
Software Architectures, PhD. Thesis, UCLA, Irvine, Chapter 6.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/introindigov1-0.asp?frame=true&hidetoc=true
https://sdlcweb3a.sun.com/ECom/EComActionServlet/LegalPage:%7E:com.sun.sunit.sdlc.content.LegalWebPageInfo;jsessionid=5BA0E9D9F0CC8AD2F7E01C6A52A21003;jsessionid=5BA0E9D9F0CC8AD2F7E01C6A52A21003
https://sdlcweb3a.sun.com/ECom/EComActionServlet/LegalPage:%7E:com.sun.sunit.sdlc.content.LegalWebPageInfo;jsessionid=5BA0E9D9F0CC8AD2F7E01C6A52A21003;jsessionid=5BA0E9D9F0CC8AD2F7E01C6A52A21003
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.informit.com/articles/printerfriendly.asp?p=409137
http://www.informit.com/articles/printerfriendly.asp?p=409137
http://www.informit.com/articles/printerfriendly.asp?p=409137
http://www.w3.org/TR/xml-infoset/

REFERENCES 194

Roy Fielding, contribution to the TAG mailing list, in response to A
Thomas Manes, 23

Fielding, 2002 nne
rd April, available online at:

http://lists.w3.org/Archives/Public/www-tag/2002Apr/0235.html.

Christopher Fry, Pull Parsing XML, article on the dev2dev web site,
30

Fry, 2004

g.html
th January, available online at:

http://dev2dev.bea.com/pub/a/2004/01/pullparsin .

03

r, article on IBM
eveloper Works site, available online at: http://www-

Gibbs et al., 20 K. Gibbs, Brian D Goodman, Elias Torres, Create Web services using

Apache Axis and Castor: How to integrate Axis and Castor in a
Document-style Web service client and serve
D
106.ibm.com/developerworks/webservices/library/ws-castor/.

Gray, 2004 .A.B. Gray, Comparison of Web Services, Java-RMI, and CORBA N
service implementations, paper delivered to the Fifth Australasian
Workshop on Software and System Architectures, available online at:
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf. [Gray is a
Associate Professor of Computer Science at the University of
Wollongong, New South Wales, Australia.]

Martin Gudgin and Marc Hadley, Web Services Addressing

n

Gudgin and Hadley,
2005

 1.0 - SOAP
inding, W3C Candidate Recommendation 17 August 2005, available

17/
B
online at: http://www.w3.org/TR/2005/CR-ws-addr-soap-200508 .

Gudgin and Hadley,

artin Gudgin and Marc Hadley, Web Services Addressing 1.0 – Core,

2005a
M
W3C Candidate Recommendation 17 August 2005, available online at:
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/.

Gudgin and Hadley, artin Gudgin and Marc Hadley, Web Services Addressing 1.0 - WSDL
2005b

M
Binding, W3C Working Draft 13 April 2005, available online at:
http://www.w3.org/TR/ws-addr-wsdl/.

Gudgin et al., 2003 Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau
Henrik Frystyk Nielsen, SOAP Version 1.2 Part 1: Messaging
Framework, available online at:

,

-part1/http://www.w3.org/TR/soap12 .

Gudgin et al., 2003a artin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
vailable

M
Henrik Frystyk Nielsen, SOAP Version 1.2 Part 2: Adjuncts, a
online at: http://www.w3.org/TR/2003/REC-soap12-part2-20030624/.

Martin Gudgin, Noah Mendelsohn, Mark Nottingham, Hervé RueGudgin et al., 2005 llan,
OAP Message Transmission Optimization Mechanism, available online S

at: http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/.

http://www.informit.com/articles/article.asp?p=328640&f1=nl;13;2004-09-07
http://www.informit.com/articles/article.asp?p=328640&f1=nl;13;2004-09-07
http://today.java.net/jag/Fallacies/attibution.html
http://today.java.net/jag/Fallacies/attibution.html
http://blogs.sun.com/roller/page/dochez
http://www.orablogs.com/duffblog/archives/2004_10.html
http://www.orablogs.com/duffblog/archives/2004_10.html
http://pluralsight.com/blogs/tewald/archive/2005/03/04/6336.aspx
http://www.ics.uci.edu/%7Etaylor/documents/2002-REST-TOIT.pdf
http://www.ics.uci.edu/%7Etaylor/documents/2002-REST-TOIT.pdf
http://roy.gbiv.com/talks/

REFERENCES 195

Guest, 2003 imon Guest, Microsoft® .Net and J2EE Interoperability Toolkit,

Guest, 2004 ility
uidance (WSIG): IBM WebSphere Application Developer 5.1.2,

/default.asp?url=/library/en-

S
published by Microsoft Press, ISBN: 0-7356-1922-0, April 02, 2003.

Simon Guest, article on MSDN entitled: Web Services Interoperab
G
available online at:
http://msdn.microsoft.com/library
us/dnbda/html/wsinteroprecsibm-final.asp.

Guest, 2005 Simon Guest, Video presentation: Top 10 Tips for Web Services
Interoperability, available online at:
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/2005
0210WebServicesSG/manifest.xml (viewable on Intern
only). A (poorly rendered) transcript is available at:

et Explorer

tp://msdn.microsoft.com/msdntv/transcripts/20050210WebServicesSht
GTranscript.aspx.

Hugo Haas and Allen Brown, Web Services Glossary, available online
at:

Haas and Brown, 2004
http://www.w3.org/TR/ws-gloss/.

Hugo Haas, Allen Brown, Web Services GlosHaas and Brown, 2004 sary, W3C Working

roup Note 11 February 2004. Available at: G
http://www.w3.org/TR/ws-gloss/.

Marc Hadley & Roberto Chinnici, The Java API for XML-Based RPC Hadley and Chinnici,

2005 AX-RPC) 2.0, Early Draft, March 15, available as a download from: (J
http://jcp.org/aboutJava/communityprocess/edr/jsr224/.

Alon Halevey, Why Your Data Won't Mix, ACM Queue, OcHalevey, 2005 tober, 2005,

ailable online at: av
http://www.acmqueue.com/modules.php?name=Content&pa=showpage
&pid=336.

Hasan, 2004 effrey Hasan, Expert Service-Oriented Architecture in C#, Apress,

Hatzidakis, 2003
resentation at Colorado Software Summit, Oct.26-31, available online

J
2004, ISBN: 1-59059-390-1.

Dennis Hatzidakis, The Web Services Programming Model,
P
at:
http://www.softwaresummit.com/2003/speakers/HatzidakisJAXRPC.pd
f.

Hinchcliffe, 2005 Dion Hinchcliffe, The hidden battle between web services: REST and
SOAP, blog available online at:
http://hinchcliffe.org/archive/2005/02/12/171.aspx. [Hinchcliffe co-
uthored Software Engineering: A UML Pattern Language, Sams, a

http://dev2dev.bea.com/pub/a/2004/01/pullparsing.html
http://dev2dev.bea.com/pub/a/2004/01/pullparsing.html
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://www-106.ibm.com/developerworks/webservices/library/ws-castor/
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://mercury.it.swin.edu.au/ctg/AWSA04/Papers/gray.pdf
http://www.w3.org/TR/2005/CR-ws-addr-soap-20050817/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/ws-addr-wsdl/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

REFERENCES 196

2000.]

Ingalls, 2004 ruce Ingalls, query on TheServerSide.NET, available online at: B
http://www.theserverside.net/tss?service=direct/0/DiscussionThread/thr
eadViewer.markNoisy.link&sp=l30330&sp=l148280.

white paper from Intrisync, Interoperability between Java and
Microsoft, available online at:

Intrisync, 2005

tp://wp.bitpipe.com/resource/org_985156716_958/Intrinsyc_Whitepaht
per_031805_In-Network.pdf?track=DED_TSSCOM_5.18.

Will Iverson, Real World Web Services, O'Reilly, 2004, ISBN:
059600642X.

Ian Jacobs, Norman Walsh, Architecture of the World Wide Web, W3C
Recommendation 1

Iverson, 2004

Jacobs and Walsh, 2004
5 December 2004, available online at:

tp://www.w3.org/TR/webarch/ht .

JCP, 2005 ocess JBI Specification, available
nline at: http://www.jcp.org/en/jsr/detail?id=208

Home Page of the Java Community Pr
o .

JCP, 2005a l Approval Ballot,
n given by IBM and BEA, available

nline at: http://www.jcp.org/en/jsr/results?id=3226

JCP. JavaTM Business Integration (JBI), Fina
containing the reasons for abstentio
o .

 et al., 2004 e
atik.uni-

Mario Jeckle, Ingo Melzer, Michael Himsolt, presentation, Performanc
of Web Services, available online at:

Jeckle
http://www.mathem

ulm.de/sai/ws03/webserv/PerfWS.pdf.

Jeon, c2005 eb-service specifications road-map (image).

Jong-Hong Jeon. W
Published online at: http://blog.webservices.or.kr/hollobit/roadmap/ws-
specs/map.htm. [Jeon is a member of the W3C Korean Office staff and

researcher at the Korean Electronics and Telecommuncations

Jiang and Systä, 2005 uanjuan Jiang and Tarja Systä, UML-Based Modeling and Validity
EE

.

Joseph, 2003 oseph, A developer's introduction to JAX-RPC, Part 2: Mine the
X-RPC specification to improve Web service interoperability, article

a
Research Institute.]

J
Checking of Web Service Descriptions, Proceedings of the IE
International Conference on Web Services (ICWS'05) 0-7695-2409-
5/05

J. J
JA
on IBM Developer Works site, available online at: http://www-
106.ibm.com/developerworks/webservices/library/ws-jaxrpc2/

Keahey, 1998

Kate Keahey, A Brief Tutorial on CORBA, page available at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/wsinteroprecsibm-final.asp
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://msdn.microsoft.com/msdntv/episode.aspx?xml=episodes/en/20050210WebServicesSG/manifest.xml
http://jcp.org/aboutJava/communityprocess/edr/jsr224/
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=336
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=336
http://hinchcliffe.org/archive/2005/02/12/171.aspx
http://hinchcliffe.org/archive/2005/02/12/171.aspx
http://hinchcliffe.org/archive/2005/02/12/171.aspx
http://hinchcliffe.org/archive/2005/02/12/171.aspx

REFERENCES 197

http://www.cs.indiana.edu/~kksiazek/tuto.html. [Currently employed at
e Argonne National Laboratory, Keahey was the chair of the Grid

obal

e co-authored
e WS-Agreement draft specification.]

Kleijnen and Raju, 2003 u, An Open Web Services Architecture,

showpage

th
Economic Services Architecture (GESA) working group at the Gl
Grid Forum (GGF) and also a member of the GGF Grid Resource
Allocation Protocol (GRAAP) working group, where sh
th

Stan Kleijnen and Srikanth Raj
ACM Queue, Vol.1, Issue 1, available online at:
http://www.acmqueue.org/modules.php?name=Content&pa=
&pid=26.

Kohlert, 2005 rt, announcements page for development of the JAX-WS
pecifications, available online at: http://weblogs.java.net/blog/kohlert/

Douglas Kohle
s .

chnical lead

l., 2005
roject, available

nline at: https://jax-rpc.dev.java.net/

[Kohlert cites that he is "a staff engineer in the Web Technologies and
Standards division of Sun Microsystems where he is the te
for JAXRPC".]

Kohlert et a D. Kohlert, K. Kohsuke, ? Mode, E. Pelegri, M. Rameshm, introductory
page for the JAX-RPC Reference Implementation P
o .

Kumar, Das and
Padmanabhuni, 2004 s of the IEEE

ternational Conference on Web Services (ICWS'04) 0-7695-2167-

Lauzon and Wagh, 2005 rs, Attachments Profile [1.0]
ith Basic Profile [1.1] and Simple Soap Binding Profile [1.0]) Test

om

K.M. Senthil Kumar, Akash Saurav Das, Dr. Srinivas Padmanabhuni,
WS-I Basic Profile: A Practitioner's View, Proceeding
In
3/04

David Lauzon and Shrikant Wagh, Edito
(w
Assertions Version 1.0, Final Material, June 13, 2005, available fr
the WS-I site at: http://www.ws-
i.org/Testing/Tools/2005/06/AP10_BP11_SSBP10_TAD.htm.

Neal Leavitt, Are WeLeavitt, 2004 b Services Finally Ready to Deliver? in Computer,

EE Computer Society, November, available online at:
.ht

IE
http://www.computer.org/computer/homepage/1104/technews/index
m.

Greg LLomow and Newcomer,

2004
omow, Eric Newcomer, Understanding SOA with Web Services,

ddison Wesley Professional, 2004, ISBN: 0321180860.

Loughran and Smith,
2005 rvices,

s a
chnical paper for Hewlett Packard under the title: Rethinking the Java

A

Steve Loughran and Edmund Smith, What’s wrong with the Java SOAP
API?, Paper prepared for the 2005 IEEE Conference on Web Se
sent to me by email at my request. (Published with permission a
te
SOAP Stack, available online at:

http://hinchcliffe.org/archive/2005/02/12/171.aspx
http://wp.bitpipe.com/resource/org_985156716_958/Intrinsyc_Whitepaper_031805_In-Network.pdf?track=DED_TSSCOM_5.18
http://blog.webservices.or.kr/hollobit/roadmap/ws-specs/map.htm
http://blog.webservices.or.kr/hollobit/roadmap/ws-specs/map.htm

REFERENCES 198

http://www.hpl.hp.com/techreports/2005/HPL-2005-83.pdf.)

Steve Loughran, The Wondrous Curse of Interoperability, presentation
given to Padnug Org, January, recommended reading on the Axis
website, available online at:

Loughran, 2003

rop/http://www.iseran.com/Steve/papers/inte .

ne at:

MacDonald, 2002 Matthew MacDonald, Web Services: Objects or XML Endpoints?,

article on O'Reilly ONDotnet.com, available onli
http://www.ondotnet.com/pub/a/dotnet/2002/09/03/webservices.html.
[MacDonald is the co-author of Programming .NET Web Services,

'Reilly, 2002.]

Manes, 2002

O

Anne Thomas Manes, contribution to the TAG mailing list, 22nd April,
available online at: http://lists.w3.org/Archives/Public/www-
tag/2002Apr/0229.html.

Manes, 2003 nne Thomas Manes, Web Services: A Manager's Guide, Addison

Manes, 2004c tion in the series Ask The Web
ervices Expert on SearchWebServices.com, available online at:

A
Wesley Professional, ISBN: 0321185773, Chapter 1.

Anne Thomas Manes, replying to a ques
S
http://searchwebservices.techtarget.com/ateQuestionNResponse/0,2896
25,sid26_cid596451_tax289201,00.html.

2005,Manes, 2005 blog online at: http://atmanes.blogspot.com/2005/03/web-
services-are-not-distributed.html.

Maynard, Charters and
Peters, 2004

Available online at: http://www-

Caroline Maynard, Graham Charters and Matthew Peters, Access an
enterprise application from a PHP script, article published on IBM
developerWorks, 25th February.
128.ibm.com/developerworks/library/os-phpws/.

McMillan, 2003
arta Tomcat),

e, available at: http://www-

Robert McMillan, interview with Sam Ruby (former IBM employee and
contributor to several open-source projects, including Jak
published as Web services visionary, on IBM developerWorks, 17th
Jun
106.ibm.com/developerworks/webservices/library/ws-samruby.html.

ke and Pack, 2003 s with
oarse-Grained Service-Oriented Architecture, article in the online

John Medicke and Thomas Pack, Future-Proofing SolutionMedic
C
Web Services Journal, 19th August, available online at:
http://webservices.sys-con.com/read/39848.htm.

Microsoft. The source for this image is Microsoft. It may be found on a
number of MSDN European Lan

Microsoft, ?
guage sites e.g.

http://www.cs.indiana.edu/%7Ekksiazek/tuto.html
http://www.cs.indiana.edu/%7Ekksiazek/tuto.html
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=26
http://weblogs.java.net/blog/kohlert/
http://weblogs.java.net/blog/kohlert/
http://www.ws-i.org/Testing/Tools/2005/06/AP10_BP11_SSBP10_TAD.htm
http://www.hpl.hp.com/techreports/2005/HPL-2005-83.pdf

REFERENCES 199

http://msdn.microsoft.com/library/default.asp?url=/library/ITA/cpguide/
html/cpconalteringsoapmessageusingsoapextensions.asp.

Microsoft, 2005
rary/default.asp?url=/library/en-

Microsoft. Glossary definition online, available at:
http://msdn.microsoft.com/lib
us/dsml/dsml/glossary.asp.

Microsoft, 2003 Microsoft, How to Apply the Basic Profile, on the MSDN website,
available at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsvcinter/html/wsi-bp_chapter3.asp.

Microsoft, 2005b icrosoft, Why Use MTOM? under the topic MTOM Encoding on the

ary/en-

M
MSDN website available at:
http://winfx.msdn.microsoft.com/library/default.asp?url=/libr
us/indigo_con/html/1243a070-6e5d-4cbc-919c-90727f96eae3.asp.

5c
rary/en-

Microsoft, 200 Microsoft. Explanation in the MSDN Library. Available online at:

http://msdn.microsoft.com/library/default.asp?url=/lib
us/uddi/uddi/active_directory.asp.

Mindreef, 2004 dReef

apers/whitepaper-2.html

Microsoft, Interoperability: the Key to Quality Web Services, Min
whitepaper available at:
http://www.mindreef.com/products/whitep .

ailable online at:
ttp://www.w3.org/TR/soap12-part0/

Mitra, 2003 N. Mitra, SOAP Version 1.2 Part 0: Primer, W3C Proposed

Recommendation 07 May 2003, av
h . (Part 0, the Primer, was followed

Mitra, 2003 tion
rg/TR/soap12-part0/

by Part 1, the Messaging Framework and Part 3, Adjuncts.)

Nilo Mitra, SOAP Version 1.2 Part 0: Primer, W3C Recommenda
24 June 2003, available online at: http://www.w3.o .

Morgenthal, 2003 J.P. Morgenthal, presentation, available online at:
http://seminars.seyboldreports.com/2003_san_francisco/files/i/ix3_jp_m
orgenthal.ppt.

M. Murata, XML Media Types, available online at: Murata, 2001

tp://www.ietf.org/rfc/rfc3023.txtht .

Neward, 2005
0525#11170117

Ted Neward, Web + Services, blog available online at:
http://www.neward.net/ted/weblog/index.jsp?date=2005
54831. [Neward is a software architect who has written many books on
ava.]

Newcomer, 2005 2005, available

J

Eric Newcomer, Eric Newcomer's Blog, 16th June

http://www.hpl.hp.com/techreports/2005/HPL-2005-83.pdf
http://www.iseran.com/Steve/papers/interop/
http://www.iseran.com/Steve/papers/interop/
http://www.ondotnet.com/pub/a/dotnet/2002/09/03/webservices.html
http://www.ondotnet.com/pub/a/dotnet/2002/09/03/webservices.html
http://lists.w3.org/Archives/Public/www-tag/2002Apr/0229.html
http://lists.w3.org/Archives/Public/www-tag/2002Apr/0229.html
http://searchwebservices.techtarget.com/ateQuestionNResponse/0,289625,sid26_cid596451_tax289201,00.html
http://www-128.ibm.com/developerworks/library/os-phpws/
http://www-106.ibm.com/developerworks/webservices/library/ws-samruby.html
http://www-106.ibm.com/developerworks/webservices/library/ws-samruby.html
http://webservices.sys-con.com/read/39848.htm
http://webservices.sys-con.com/read/39848.htm

REFERENCES 200

online at:
http://www.iona.com/blogs/newcomer/archives/2005_06.html.

ewcomer served on the W3C Web Services Architecture working
b services and

rvice

 e at:
not.net/blog/2004/02/14/xop

[N
group and has written many books and articles on we
SOA. He is also the CTO of Iona, the producers of the web-se
toolkit, Celtix.]

Nottingham, 2004 Mark Nottingham, XOP and MTOM, blog, 14th Feb, available onlin
http://www.m . [Nottingham works for BEA

p that

e at:
b8

and is one of the members of the XML Protocol Working Grou
released MTOM and XOP.]

Obasanjo, 2005 Dare Obasanjo, Contract-First XML Web Service Design is No
Panacea, blog available onlin
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=e1a
978-f0a9-4913-bee3-badc1cbefbe5. [Obasanjo is a prominent web-
services developer at Microsoft and was formerly the program manager

OED, 2004 ailable at:
tp://dictionary.oed.com/cgi/entry/50282140

for XML Schema technologies in the .NET Framework.]

draft addition to the OED online, av
ht , Draft Editions June 2004,

O'Reilly, 2005 va.com Newsletter, 29 July.

Panda, 2005 ebu Panda, article on O'Reilly On Java, Constructing Services with

web n..
O'Reilly Networks ONJa th

D
J2EE, available online at: http://www.onjava.com/lpt/a/5868. [Panda is
a principal product manager of the Oracle Applicatio
development team. The Oracle Application Server supports the J2EE
1.4 standard.]

n Server

tp://jcp.org/aboutJava/communityprocess/maintenance/jsr109/index.ht

Pandey, 2005 Dhiru Pandey, Specification: JSR-000109 Implementing Enterprise Web

Services v. 1.2 ("Specification"), downloadable in PDF format from:
ht
ml.

James Pasley. CPasley, 2001 ommon WSDL Errors at:
ttp://www.capescience.com/articles/commonerrors/index.shtmlh ,

Peeters, 2003 ohan Peeters, WSDL Tales From the Trenches, Part 3, published online

particularly the section on declaring arrays.

J
by XML.com at:
http://webservices.xml.com/lpt/a/ws/2003/08/05/wsdl.html.

Chris PPelz, 2003 elz, Web services orchestration and choreography, IEEE

omputer, October, 2003. C

http://msdn.microsoft.com/library/default.asp?url=/library/ITA/cpguide/html/cpconalteringsoapmessageusingsoapextensions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-bp_chapter3.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-bp_chapter3.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/wsi-bp_chapter3.asp
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/indigo_con/html/1243a070-6e5d-4cbc-919c-90727f96eae3.asp
http://winfx.msdn.microsoft.com/library/default.asp?url=/library/en-us/indigo_con/html/1243a070-6e5d-4cbc-919c-90727f96eae3.asp
http://www.w3.org/TR/soap12-part0/
http://seminars.seyboldreports.com/2003_san_francisco/files/i/ix3_jp_morgenthal.ppt
http://seminars.seyboldreports.com/2003_san_francisco/files/i/ix3_jp_morgenthal.ppt
http://seminars.seyboldreports.com/2003_san_francisco/files/i/ix3_jp_morgenthal.ppt
http://www.neward.net/ted/weblog/index.jsp?date=20050525#1117011754831

REFERENCES 201

Pilgrim, 2004 im, article on XML.com, XML on the Web Has Failed,
.html

Mark Pilgr
available online at: http://www.xml.com/pub/a/2004/07/21/dive .

Plummer et al., 2004 L

Ponnekanti and Fox, hankar R. Ponnekanti and Armando Fox, Interoperability Among

, New York, Inc.

ble

D. Plummer, et al., Strategic Planning, SPA-23-4754, Consider WSD
a Critical Standard, Gartner Research Note. Source unavailable.

2004
S
Independently Evolving Web Services, in H.A. Jacobsen (ed.),
Middleware, 2004, LNCS 3231, Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware,
published by Springer-Verlag

Provost, 2003 Will Provost, WSDL First, article on O'Reilly XML.com, availa
online at:
http://webservices.xml.com/lpt/a/ws/2003/07/22/wsdlfirst.html.
[Provost is a regular contributor to XML.com and this article was al
published by CapeScience at:

so

lhttp://www.capescience.com/articles/wsdlfirst/index.shtm .]

1

w.cs.cornell.edu/riccardo/pdf/sangiorgi-pi-calc.pdf

Pucella, 200 Riccardo Pucella, The π-calculus: A Theory of Mobile Processes,

review. Available online at:
http://ww .

Raj, 1998 opalan Suresh Raj, A Detailed Comparison of CORBA, DCOM and
t:

G
Java/RMI, Object Management Group (OMG) whitepaper, available a
http://my.execpc.com/~gopalan/misc/compare.html. [Raj is a developer
and the author and co-author of several books on distributed an
enterprise computing.]

d

Rhody, 2004a ean Rhody, Web Services, Part II: The Search for the Optional S
Standards in Web Services Journal, October 1, article published online
at: http://www.sys-con.com/story/?storyid=46556&DE=1. [Rhody is
editor-in-chief of Web Services Journal and managing editor of
Web

the

Logic Developer's Journal.]

 rvices Journal, October 28,

Rhody, 2004b Sean Rhody, Going the Last Mile, Web Se
article published online at: http://www.sys-
con.com/story/?storyid=46862&DE=1.

Rosen et al., 2005
le online at: http://perens.com/Articles/OASIS.html

Laurence Rosen and 28 other signatories, A Call to Action in OASIS,
open letter availab .

n Source
itiative and was formerly its executive directory.]

Rosenberg, 2003 Netscape Gecko-based Browsers, Netscape
evedge, 14 March, available online at:

[Rosen was the first general counsel and secretary of the Ope
In

Doron Rosenberg, SOAP in
D

http://www.iona.com/blogs/newcomer/archives/2005_06.html
http://www.iona.com/blogs/newcomer/archives/2005_06.html
http://www.iona.com/blogs/newcomer/archives/2005_06.html
http://www.iona.com/blogs/newcomer/archives/2005_06.html
http://www.iona.com/blogs/newcomer/archives/2005_06.html
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=e1ab8978-f0a9-4913-bee3-badc1cbefbe5
http://www.25hoursaday.com/weblog/CommentView.aspx?guid=e1ab8978-f0a9-4913-bee3-badc1cbefbe5
http://dictionary.oed.com/cgi/entry/50282140
http://www.onjava.com/lpt/a/5868
http://jcp.org/aboutJava/communityprocess/maintenance/jsr109/index.html
http://www.capescience.com/articles/commonerrors/index.shtml
http://www.capescience.com/articles/commonerrors/index.shtml

REFERENCES 202

http://devedge.netscape.com/viewsource/2003/soap/01/.

Ruby, 2002 am Ruby, in: S
http://intertwingly.net/stories/2002/12/17/aBusyDevelopersGuideToWs
dl11PartIii.html.

Ruby, 2003 Sam Ruby, an IBM developer much involved in open-source web
service development and contributor to the Apache AXIS and Ja
Tomcat projects: see the interview with him at:

karta
w-http://ww

106.ibm.com/developerworks/webservices/library/ws-samruby.html.

Ruebush, 2005 itch Ruebush, a Microsoft Regional Manager. A curiously

is. Available to Microsoft-passport logged-in users on the

Seely, 2002 ts, an article in the MSDN Library,

ttp://msdn.microsoft.com/library/default.asp?url=/library/en-

M
disorganized MSDN webcast: Interoperability Between .NET and
Apache Ax
Microsoft site.

Scott Seely, Using SOAP Faul
available online at:
h
us/dnservice/html/service09172002.asp. This is only one example
the way in which steps given
useful information for those using other toolkits.

 of
to handle exceptions do not translate into

pte, 2004a

Shah and A Rajal Shah, Naresh Apte, Definition and Ownership of Web Service
Interfaces: WSDL or XSD? Prentice Hall Professional Technical
Reference, June 4, available online at:
http://www.phptr.com/articles/article.asp?p=174203.

Shah and Apte, 2004b ajal Shah, Naresh Apte, Performance and Load-Testing of Axis with
al

R
Various Web Services Styles, Prentice Hall, Professional Technic
Reference, 16 July. Available at:
http://www.phptr.com/articles/article.asp?p=177376.

Rajal Shah, Naresh Apte, Web SeShah and Apte, 2004 rvices: A Business Module Packaging
trategy, available online at: S

http://www.informit.com/articles/article.asp?p=170421. [Rajal Shah is
an Enterprise Architect at Cisco; Naresh Ap
solutions at Hewlett Packard and has pub

te works with mobile
lished extensively in the area

f web services.]

Shirky, 2001

ttp://webservices.xml.com/lpt/a/ws/2001/10/03/webservices.html

o

Clay Shirky, Web Services: It's So Crazy, It Just Might Not Work,
article published on the O'Reilly XML.com, 3rd October, available
online at:
h .

Skonnard, 2004 ember, article Improving Web

Aaron Skonnard, MSDN Magazine, Nov

http://www.xml.com/pub/a/2004/07/21/dive.html
http://www.cs.cornell.edu/riccardo/pdf/sangiorgi-pi-calc.pdf
http://www.cs.cornell.edu/riccardo/pdf/sangiorgi-pi-calc.pdf
http://www.cs.cornell.edu/riccardo/pdf/sangiorgi-pi-calc.pdf
http://my.execpc.com/%7Egopalan/misc/compare.html
http://www.sys-con.com/story/?storyid=46556&DE=1
http://www.sys-con.com/story/?storyid=46862&DE=1

REFERENCES 203

Service Interoperability, available online at:
http://msdn.microsoft.com/msdnmag/issues/04/11/ServiceStation/.

Skonnard, 2005
om/blogs/aaron/archive/2005/04/25/7729.aspx

Aaron Skonnard, The virtue of contract-first, blog available online at:
http://pluralsight.c .

konnard is the author of books on XML and a contributing editor to

Slama et al., 2004 ice-

314-65759.

Srinivasan, 1995 ure

archive.org/getrfc.php?rfc=1831

[S
the MSDN magazine.]

Dirk Slama, Dirk Krafzig, Karl Banke, Enterprise SOA: Serv
Oriented Architecture Best Practices, Prentice-Hall PRT, ISBN: 0-
1

Raj Srinivasan, Request for Comments 1831, RPC: Remote Proced
Call Protocol Specification Version 2, available online at:
http://www.rfc- .

stems, 1988
ble online at: http://www.rfc-

Sun Microsy Sun Microsystems, RPC: Remote Procedure Call Protocol

Specification, availa
editor.org/rfc/rfc1057.txt.

Java API for XML-Based RPC (JAX-RPC) Sun Developer Network Site
page, available online (in May) at:

Sun, 2005

tp://java.sun.com/xml/jaxrpc/index.jspht .

Sun, 2005a loper
d with the JWSDP. The tutorial

tp://java.sun.com/webservices/downloads/webservicestutorial.html

Sun, The Java Web Services Tutorial for Java Web Services Deve
Pack, v.1.6. The tutorial comes bundle
is available online at:
ht .

Sun, 2005b f the
 found online at: https://jax-

Sun, JAX-WS 2.0 Early Access User's Guide, which comes as part o
download bundle but may also be
rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html. [In late November,
005, this has moved to a public review release.]

Sun, 2005c er, which comes as part of the jaxws-ri

Sun-RMI, 2004
 J2SE 1.5, under the following directory structure in a

indows installation: INSTALLDIR/Java/

Systinet, 2005 rver for Java, 6.0, Primer, available from the Systinet site.

The Open Group, 1997 he Open Group, CAE Specification, DCE 1.1: Remote Procedure Call,

2

Sun, JAX-WS 2.0 Beta, Provid
download bundle.

the RMI specification that is bundled with the documentation
accompanying the
W
jdk1.5.0/docs/guide/rmi/spec/rmi-intro2.html.

Systinet Se

T
referenced details available online at:

http://intertwingly.net/stories/2002/12/17/aBusyDevelopersGuideToWsdl11PartIii.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp
http://www.phptr.com/articles/article.asp?p=177376

REFERENCES 204

http://www.opengroup.org/onlinepubs/9629399/chap2.htm#tagcjh_05_0
1.

03
 110,

ibrary/tpl/cgi-

Thomas et al., 20 Susan Thomas, Jed Hartman, Judith Radin, Helen Vanderberg, Terry
Schultz, Julie Boney, IRIX Network Programming Guide, Revision
Chapter 4: Introduction to RPC Programming, available online at:
http://techpubs.sgi.com/l
bin/getdoc.cgi/0650/bks/SGI_Developer/books/IRIX_NetPG/sgi_html/c
h04.html.

Sameer TyagiTyagi, 2004a , Patterns and Strategies for Building Document-Based

eb Services, Sun Developer Network Article, September, page 1 .

patterns/

W
Available at:
http://java.sun.com/developer/technicalArticles/xml/jaxrpc .

Tyagi, 2004b meer Tyagi, Lessons from the Front Line - Building Interoperable
vailable

proceedings/xml04/papers/7/Interoperability

Sa
Web Services, paper given at XML 2004 (November), and a
online at:
http://www.idealliance.org/
.html. [Tyagi is a senior Java Architect at Sun Microsystems.]

Yu, Huang and Ye, 2005 , Web Services Interoperabilitiy
f the (IEEE) 2005 Fifth

ternational Conference on Computer and Information Technology

Verner, 2004 he Promise and the Challenge, in ACM Queue,

ttp://www.acmqueue.org/modules.php?name=Content&pa=showpage

Ying Yu, Ning Huang and Ming Ye
Testing Based on Ontology, Proceedings o
In
(CIT'05) 0-7695-2432-X/05.

Laury Verner, BPM: T
March, Vol.2, No.1, p.3/9, available online at:
h
&pid=132&page=5.

Steve Vinoski, Web Services Interaction Models, Part 2, Article in
IEEE Internet Computing, July-August, 2002.

Vinoski, 2002

4

log 10th

/000141.html

Vinoski, 200 Steve Vinoski, WS-Nonexistent Standards, IEEE Internet Computing,

November-December, 2004.

Vinoski, 2005 Steve Vinoski, Middleware Matters – Focus on the Contract, B
Feb, available online at:
http://www.iona.com/blogs/vinoski/archives . [Vinoski is

dvanced CORBA
rogramming with C++, and has written numerous articles on

erves on the W3C Web Services Architecture Working Group.]

Vogels, 2003 Distributed Objects, in IEEE

the co-author of Addison Wesley Longman's A
P
Computer Science. He works with Newcomer at Iona and currently
s

Werner Vogels, Web Services are not

http://msdn.microsoft.com/msdnmag/issues/04/11/ServiceStation/
http://msdn.microsoft.com/msdnmag/issues/04/11/ServiceStation/
http://pluralsight.com/blogs/aaron/archive/2005/04/25/7729.aspx
http://www.rfc-archive.org/getrfc.php?rfc=1831
http://www.rfc-archive.org/getrfc.php?rfc=1831
http://www.rfc-editor.org/rfc/rfc1057.txt
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html
https://jax-rpc.dev.java.net/jaxws20-ea2/docs/UsersGuide.html

REFERENCES 205

Distributed Internet Computing, Nov-Dec issue, viewable online at:
http://weblogs.cs.cornell.edu/AllThingsDistributed/archives/000343.ht
ml. [Formerly a research scientist at Cornell University, Vogels is now

Wainewright, 2004
l

Chief Technology Officer at Amazon.com.]

Tim Bray quoted by Phil Wainewright in a blog (recommended by
Adam Bosworth - http://www.adambosworth.net/archives/000030.htm)

.looselycoupled.com/blog/lc00aa00071.html
available online at:
http://www . The original

om Bray himself is no longer available at the source Wainewright

e-
ecture in the enterprise.]

Waldo et al., 1994 im Waldo, Samuel C. Kendall, Ann Wollrath, Geoff Wyant, A Note on
ms
-

fr
cites. [Wainewright is the President of a strategy consultancy and the
founder of LooselyCoupled.com, a media site with a theme of servic
oriented archit

J
Distributed Computing, research report, published by Sun Microsyste
and available online at: http://research.sun.com/techrep/1994/abstract
29.html.

 Ping Wang, Russell Butek, Web services programming tips andWang and Butek, 2004 tricks:

xception Handling with JAX-RPC, 6 Feb, published online at: E
http://www-106.ibm.com/developerworks/xml/library/ws-tip-
jaxrpc.html.

Sanjiva Weerawarana, FranciWeerawarana et al.,

2005
sco Curbera, Frank Leymann, Tony

torey, Donald F. Ferguson, Web Services Platform Architecture:

: 0-13-148874-0.

Wilkes, 2004 e Web Services Protocol Stack, part of the CBDI
eb Services Roadmap, available online at:

S
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More, Prentice Hall PTR, ISBN

Lawrence Wilkes, Th
W
http://roadmap.cbdiforum.com/reports/protocols/.

XMLSOAP, 2002 his document, available online at T
http://schemas.xmlsoap.org/wsdl/soap12/soap12WSDL.htm, provides
WSDL mappings to SOAP 1.2 as well as the binding schema and an
xample WSDL. It is one of the documents provided as a link at the

rg/wsdl/soap12/

e
SOAP 1.2 namespace address:
http://schemas.xmlsoap.o .

Yahoo, 2005 Yahoo
et/faq/

Frequently Asked Questions [concerning its web services] on the
Developer Network, available online at: http://developer.yahoo.n .

Zotter, 2005 oup
onsisting of: Alexander Aptus, John Bossons, Charles Campbell, Alan

Zotter (then joint Specification Lead, with an Expert Members Gr
c
Davies, Ted Farrell, John Harby, RajivMordani, Michael Morton,

http://www.opengroup.org/onlinepubs/9629399/chap2.htm#tagcjh_05_01
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/0650/bks/SGI_Developer/books/IRIX_NetPG/sgi_html/ch04.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/0650/bks/SGI_Developer/books/IRIX_NetPG/sgi_html/ch04.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/0650/bks/SGI_Developer/books/IRIX_NetPG/sgi_html/ch04.html
http://www.idealliance.org/proceedings/xml04/papers/7/Interoperability.html
http://www.idealliance.org/proceedings/xml04/papers/7/Interoperability.html
http://www.iona.com/blogs/vinoski/archives/000141.html
http://www.iona.com/blogs/vinoski/archives/000141.html
http://www.iona.com/blogs/vinoski/archives/000141.html
http://www.iona.com/blogs/vinoski/archives/000141.html
http://www.iona.com/blogs/vinoski/archives/000141.html
http://www.iona.com/blogs/vinoski/archives/000141.html

REFERENCES 206

Simon Nash, Mark Pollack, Srividya Rajagopalan, Krishna Sankar,
Manfred Schneider, John Schneider, Kalyan Seshu, Rahul Sharma,
Michael Shenfield, Evan Simeone), Web Services Metadata for the
JavaTM Platform, JSR-181 Java Community Process (JCP), Proposed

inal Draft Specification, Version 1.0 June 1, 2005. Specification Lead:
:

F
Brian Zotter of BEA Systems. Available as a downloadable PDF at
http://jcp.org/aboutJava/communityprocess/final/jsr181/index.html.

Michael zur Muehlen, Jeffrey V. Nickerson and Keith D. Swenson,
Developing web services choreography standards – the case of REST
vs. SOAP, Decision Support Systems, July, 2005. Available from the
Elsevier Science Direct database.

Zur Muehlen, Nickerson
and Swenson, 2004

http://www.adambosworth.net/archives/000030.html

Ajax ..
annotations......49, 82, 98, 99, 121, 1

174
arrays v, 48, 49, 94, 135, 139, 141, 1

165, 191, 200
4
66

4, 128,
133, 134, 135, 137, 138, 139, 14
147, 148, 160, 163, 164, 165, 16
192, 194, 198, 202

xis2...154, 169
binary encoding ..18, 38, 69, 70
binary representation...4
binding 10, 33, 39, 47, 48, 61, 62, 64, 67, 68, 71, 73, 77, 89,

90, 92, 94, 95, 99, 106, 109, 135, 152, 156, 161, 162,
167, 205

C# ii, 4, 7, 18, 37, 49, 50, 94, 95, 111, 127, 131, 132, 134,
136, 138, 139, 140, 141, 142, 143, 145, 151, 152, 159,
160, 161, 163, 164, 166, 188

choreography .. 1, 7, 36, 114, 115
client ...3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 22, 23, 24,

25, 46, 49, 51, 55, 59, 64, 73, 78, 79, 80, 83, 84, 85, 86,
87, 89, 92, 93, 96, 98, 107, 109, 110, 111, 115, 116,
121, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136,
138, 139, 140, 141, 143, 144, 145, 146, 148, 149, 150,
151, 152, 153, 154, 155, 157, 159, 160, 161, 162, 163,
164, 165, 167, 174, 180, 194

client/server ..8, 9, 10, 13, 24
component 2, 5, 6, 10, 13, 14, 15, 30, 34, 35, 39, 58, 80, 90,

91, 105, 111, 120, 124, 173, 179, 190
container ... 15, 39, 49, 124, 193
CORBA 8, 10, 13, 14, 18, 19, 20, 21, 22, 37, 80, 87, 89, 96,

108, 119, 168, 170, 172, 176, 194, 196, 201, 204
data-typing....4, 7, 18, 22, 23, 40, 43, 46, 48, 63, 81, 82, 93,

94, 96, 143, 148
data type3, 4, 7, 46, 47, 48, 59, 66, 72, 73, 75, 76, 81,

82, 89, 93, 95, 109, 125, 131, 135, 136, 139, 141,
145, 146, 147, 151, 152, 155, 164, 165, 166, 167

deserialization........................... 3, 7, 14, 66, 78, 79, 81, 146
distributed computing 1, 5, 8, 9, 15, 23, 28, 43, 49, 120,

121, 170
distributed object . 12, 13, 15, 17, 18, 23, 24, 26, 35, 52, 80,

86, 94, 108, 110, 111, 121, 168, 189
document iii, v, 11, 18, 21, 26, 28, 33, 34, 37, 44, 45, 50,

52, 53, 54, 59, 65, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77,
79, 80, 82, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 99,
111, 118, 125, 126, 127, 129, 130, 131, 134, 139, 147,
148, 153, 154, 156, 157, 158, 159, 167, 168, 176, 188,
194, 204, 205
document style...84, 194
document-style 11, 68, 72, 74, 75, 76, 79, 80, 83, 84,

129, 148, 157, 159, 167
wrapped-style v, 4, 49, 52, 53, 71, 73, 75, 76, 77, 79, 93,

127, 129, 131, 134, 139, 156, 157, 159, 165, 167
Eclipse v, 54, 55, 93, 146, 147, 168
eight fallacies of distributed computing............................49

endpoint 10, 15, 34, 59, 78, 90, 92, 125, 126, 148, 150, 151,

.................................v, 125, 127, 148, 149, 150
granularity ...16, 17, 64, 83, 120
HTTP GET... 65, 106, 130
HTTP POST ... 106, 153
integration .. 1, 3, 7, 15, 17, 37, 38, 42, 43, 72, 93, 116, 119,

120, 121, 122, 170, 171, 194
interface.... 10, 14, 18, 19, 23, 28, 33, 39, 54, 55, 56, 59, 67,

75, 78, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 97,
101, 107, 108, 121, 125, 126, 144, 145, 150, 151, 152,
163, 164, 170, 179

interoperability ...ii, 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18,
22, 23, 26, 28, 29, 30, 31, 35, 37, 38, 39, 40, 43, 45, 46,
48, 49, 50, 51, 52, 56, 58, 59, 62, 63, 67, 69, 70, 72, 73,
75, 81, 82, 84, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102,
105, 109, 111, 112, 113, 115, 120, 121, 123, 124, 125,
126, 134, 135, 137, 139, 141, 148, 150, 152, 155, 157,
161, 162, 163, 165, 166, 167, 168, 169, 170, 172, 173,
174, 196

Java ii, xii, 2, 4, 7, 11, 12, 14, 18, 19, 20, 21, 22, 25, 37, 44,
47, 48, 49, 51, 52, 53, 54, 55, 56, 63, 71, 74, 77, 81, 82,
86, 88, 90, 91, 93, 94, 95, 98, 111, 120, 123, 124, 125,
126, 130, 131, 132, 135, 136, 137, 138, 139, 143, 146,
147, 150, 152, 154, 155, 159, 160, 161, 163, 164, 165,
166, 171, 173, 174, 176, 177, 188, 191, 192, 193, 194,
195, 196, 197, 199, 200, 201, 203, 204, 205

JAX-WS... ii, 4, 7, 11, 18, 44, 50, 54, 55, 59, 70, 71, 80, 86,
90, 91, 125, 126, 149, 150, 151, 152, 160, 174, 176,
197, 203

jWSCF.. v, 147
language-independence .. 30, 40, 49
legacy system 15, 16, 17, 25, 42, 80, 83, 110, 118, 159
loose coupling 10, 16, 20, 21, 23, 24, 26, 35, 39, 40, 64, 83,

84, 86, 94, 101, 102, 113, 117, 120, 149
loosely coupled... 24
machine-readable ... 29
MapForce .. iv, 81, 145, 147
marshalling...................................... xiv, 47, 79, 83, 84, 153
MEP ..44, 59, 77, 78, 177
Message-Oriented Middleware8, 23, 24, 25, 36, 177
messaging... 6, 12, 18, 23, 24, 25, 26, 29, 30, 34, 40, 64, 67,

68, 71, 72, 75, 77, 78, 80, 83, 93, 102, 114, 117, 129,
169, 175

Microsoft.... 7, 14, 15, 31, 32, 34, 40, 44, 48, 52, 53, 61, 62,
63, 69, 70, 71, 73, 77, 97, 100, 101, 104, 116, 120, 121,
127, 129, 131, 139, 153, 160, 165, 169, 177, 191, 192,
195, 196, 198, 199, 200, 202

INDEX
........ 128, 174, 175, 176
25, 127, 144, 145, 150,

42, 143, 145, 147, 157,

encapsulation.. 16, 18, 34, 69
encoding... 18, 20, 38, 45, 46, 54, 65, 69, 70, 72, 73, 74, 75,

79, 94, 131, 141, 143, 146, 147, 155, 156, 157, 158,
160, 162

asynchronous 8, 12, 23, 2
Axis v, 25, 50, 51, 55, 62, 64, 65,

82, 85, 93, 94, 95, 98, 12

, 40, 59, 77, 83, 86, 175
, 71, 72, 73, 77, 78, 80,

129, 130, 131, 132,
0, 143, 144, 145, 146,
6, 167, 178, 188, 191,

163, 164
Enterprise Service Bus 7, 54, 119, 176
exceptions....... 33, 43, 50, 51, 114, 127, 131, 132, 137, 138,

139, 144, 147, 159, 160, 161, 172, 188, 202
Firefox.....................................ii, 7, 128, 134, 174, 179, 193
GlassFish....

A

INDEX 208

middleware5, 8, 9, 13, 15, 17, 24, 26, 27, 36, 113, 114, 118,
119, 170, 190

MOM .. 8, 23, 24, 25, 36, 177
MTOM....4, 30, 32, 54, 69, 70, 82, 177, 178, 190, 194, 1

200

Ox
PH ,

,

,
,

seriali 1,

SO
SO ,

167, 168, 169, 171, 172, 174, 177, 189, 190, 192, 194,
195, 197, 199, 201, 202, 205

SOAPScope... iv, 7, 151
fications xii, 1, 3, 10, 14, 26, 30, 31, 37, 38, 43, 44, 47,
2, 55, 56, 59, 61, 62, 63, 67, 68, 69, 70, 71, 73, 77, 80,

sta 33,

tra
UD
un
UR
Vi ,

WC
We ,

WS 7,

XM

99, speci
5

namespace.......43, 47, 66, 72, 73, 79, 82, 90, 91, 92, 97, 99,
103, 140, 144, 152, 162, 165, 167, 205

Oasis ...32
object orientation . 12, 13, 14, 15, 17, 18, 23, 24, 26, 35, 37,

52, 80, 83, 86, 93, 97, 108, 110, 111, 114, 118, 121, 189
open source4, 41, 95, 124, 127, 128, 133, 155, 169, 198,

201, 202
orchestration 6, 7, 113, 114, 115, 200

ygen 54, 93, 99, 129, 149, 151, 160, 162
P.ii, v, 4, 7, 18, 50, 73, 74, 127, 134, 144, 145, 155, 156
157, 159, 165, 174, 177, 198

platform independence..14
platform-independence ...11, 38
proprietary3, 4, 14, 16, 23, 26, 30, 35, 51, 67, 69, 70, 71,

89, 100, 101, 119, 124, 166, 168, 170, 172
REST ii, iii, v, 6, 44, 56, 84, 86, 99, 101, 104, 105, 106,

107, 108, 109, 110, 111, 148, 150, 152, 153, 165, 167,
168, 169, 171, 174, 177, 189, 193, 195

RMI .. xiii, 8, 10, 14, 18, 19, 20, 21, 22, 49, 50, 82, 84, 126
149, 164, 171, 177, 194, 201, 203

RPC .. ii, v, xiii, 8, 10, 11, 12, 15, 16, 19, 23, 24, 25, 44, 45,
50, 52, 54, 59, 63, 65, 68, 71, 72, 73, 74, 75, 76, 77, 78,
80, 81, 82, 83, 84, 86, 93, 99, 107, 111, 121, 124, 125,
127, 128, 129, 130, 131, 134, 139, 148, 150, 156, 158,
159, 160, 163, 167, 168, 176, 177, 192, 195, 196, 197,
203, 204, 205
JAX-RPC ii, v, 11, 18, 19, 45, 50, 59, 63, 65, 71, 73, 75

80, 82, 84, 86, 99, 124, 125, 127, 150, 160, 176, 192
195, 196, 197, 203, 205

proxy .53, 78, 84, 85, 126, 133, 140, 141, 143, 144, 149,
151, 160, 163, 164

RPC-style ..11, 52, 54, 75, 78, 80, 82, 83, 111, 134, 139,
158

stub .10, 18, 19, 78, 84, 85, 126, 160, 161, 163, 164, 165
schema3, 4, 16, 43, 47, 48, 52, 55, 59, 64, 66, 67, 72, 73,

74, 75, 81, 83, 84, 87, 91, 93, 94, 95, 97, 98, 109, 121,
125, 126, 130, 131, 135, 137, 141, 143, 144, 146, 147,
148, 149, 152, 153, 156, 157, 162, 165, 168, 205

zation...3, 7, 14, 18, 28, 46, 52, 66, 70, 78, 79, 80, 8
83, 84, 109, 135, 145, 146, 151, 155, 171

server ..5, 8, 9, 10, 13, 14, 15, 20, 22, 24, 42, 50, 51, 52, 55,
59, 64, 78, 79, 80, 83, 87, 94, 101, 109, 121, 124, 132,
133, 134, 135, 155, 194

SharpDevelop ...4
SOA ...iv, 6, 7, 28, 34, 35, 36, 37, 43, 53, 54, 55, 56, 86, 93,

99, 102, 113, 119, 120, 123, 131, 139, 157, 162, 177,
188, 192, 197, 198, 199, 203, 205
A Test iv, 7, 93, 99, 123, 131, 139, 157, 162
AP..v, 1, 3, 4, 6, 7, 21, 26, 28, 30, 32, 34, 35, 40, 42, 43
44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 58, 59, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 97,
99, 100, 101, 102, 104, 106, 107, 108, 109, 110, 111,
117, 121, 124, 125, 128, 129, 130, 131, 132, 133, 134,
137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 151,
153, 154, 155, 157, 158, 159, 160, 161, 162, 165, 166,

87, 88, 90, 91, 94, 99, 100, 101, 102, 104, 105, 106,
109, 111, 116, 117, 118, 120, 122, 124, 126, 144, 153,
154, 169, 172, 174, 175, 188, 196, 197, 203
ndards ...ii, xiii, 1, 3, 4, 6, 7, 9, 11, 14, 26, 28, 30, 31,
35, 38, 40, 41, 43, 52, 53, 54, 55, 63, 67, 98, 101, 102,
104, 113, 115, 118, 121, 124, 127, 172, 173

state maintenance16, 18, 20, 21, 22, 45, 102, 117
Sun ...iv, xiii, 2, 4, 11, 14, 15, 31, 38, 40, 44, 47, 53, 63, 77,

95, 98, 116, 124, 125, 127, 149, 150, 152, 169, 173,
193, 197, 203, 204, 205

Sun Application Server125, 127, 149, 150
synchronous8, 12, 59, 77, 80, 83, 140

upltight co ing9, 10, 15, 20, 25, 39, 80, 164
...Tomcat53, 55, 124, 147, 154, 198, 202

toolkit ... 1, 3, 6, 8, 13, 17, 40, 43, 44, 47, 48, 49, 50, 51, 52,
53, 54, 55, 67, 71, 72, 78, 80, 85, 94, 96, 97, 98, 104,
109, 119, 121, 124, 135, 153, 155, 202

toolkits.... ii, 1, 3, 6, 8, 13, 17, 22, 40, 43, 44, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 59, 67, 71, 72, 77, 78, 80, 85, 93,
94, 95, 96, 97, 98, 104, 109, 111, 119, 121, 124, 125,
127, 129, 135, 139, 140, 144, 145, 146, 150, 151, 153,
155, 159, 160, 163, 166, 168, 178, 199, 202

nsactional component middleware 15, 190
DI............. 6, 28, 30, 58, 85, 99, 100, 101, 102, 177, 192

marshalling.. xiv, 47, 153
I...................... 19, 29, 44, 70, 78, 91, 106, 107, 110, 177

sual Studio 2005.....3, 4, 34, 44, 59, 70, 77, 93, 120, 127
131, 134, 142, 161

W3C ... 4, 6, 7, 28, 29, 30, 31, 32, 40, 41, 63, 69, 72, 75, 77,
78, 87, 89, 95, 96, 97, 100, 102, 106, 108, 109, 115,
116, 120, 135, 153, 171, 174, 177, 178, 188, 189, 190,
192, 194, 195, 196, 199, 204
F..............................7, 63, 120, 121, 169, 177, 190, 192
b Logic 44, 53, 59, 66, 77, 126, 129, 131, 138, 139, 140
143, 145, 150, 160, 165, 166, 168, 201

Web Matrix .. 4, 127, 159, 163
web server 4, 9, 22, 55, 59, 101, 109, 124, 132, 133, 134,

155
WSCF... 95, 178
WSDLxiii, 3, 4, 6, 17, 18, 19, 28, 30, 31, 32, 42, 43, 49, 50,

51, 52, 53, 55, 56, 58, 59, 63, 64, 66, 67, 68, 71, 72, 73,
74, 75, 76, 77, 78, 79, 82, 85, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 115, 116,
117, 118, 121, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
166, 167, 168, 171, 172, 174, 178, 189, 191, 192, 194,
200, 201, 202, 205
WSDL-First 49, 56, 59, 73, 89, 95, 96, 97, 98, 123, 125,

126, 137, 151, 159, 201
-I Basic Profile ..xiii, 3, 4, 33, 45, 63, 67, 70, 72, 73, 7
82, 89, 91, 93, 94, 97, 99, 100, 102, 109, 123, 125, 131,
139, 148, 150, 155, 161, 165, 169, 188, 197, 199
LSpy iv, 54, 93, 99, 129, 134, 137, 149, 159, 162

	A DETAILED INVESTIGATION OF INTEROPERABILITY FOR WEB SERVICES
	ABSTRACT
	
	ACM Categories and Subject Descriptors
	Categories
	General Terms
	Additional Key Words and Phrases
	ACKNOWLEDGEMENTS
	
	LIST OF FIGURES
	
	LIST OF GRAPHS AND TABLES
	

	NOTES
	Note 1: References Used
	Note 2: Acronyms
	Note 3: Capitalization
	Note 4: US versus British Spelling Conventions

	CHAPTER 0:
	CHAPTER 1: INTRODUCTION
	1.1 Introduction: the Issues
	1.2 Interoperability as the Distinguishing Feature of Web Services
	1.3 Research Methods
	1.4 The Design

	CHAPTER 1:
	CHAPTER 2: FOUNDATIONS OF WEB SERVICES
	2.1 Introduction
	2.2 Similarities and Differences
	2.3 Client/Server: the Beginnings of Distributed Computing
	2.4 Middleware Communication Architectures
	2.4.1 The Remote Procedure Call (RPC)
	2.4.2 The Distributed Object Model
	2.4.2.1 CORBA
	2.4.2.2 Component Object Models
	2.4.2.3 Transactional Component Middleware
	2.4.2.4 Integrating Legacy Systems
	2.4.2.5 Web Services versus Distributed Objects
	2.4.2.5.1 Comparisons Between Web Services, CORBA and RMI

	2.4.2.6 Recognizing the Remoteness of Distributed Objects

	2.4.3 Message-Oriented Middleware
	2.4.4 Summary

	CHAPTER 2:
	CHAPTER 3: DEFINING WEB SERVICES AND THEIR CURRENT STATUS
	3.1 Introduction: Definition Problems
	3.1.1 The Web in Web Services
	3.1.2 The Distinction between Web Services and Service-Oriented Architecture
	3.1.3 A Working Definition

	3.2 Advantages of Web Services
	3.3 Adoption of Web Services
	3.4 Barriers to Interoperability
	3.4.1 Transport Issues
	3.4.2 User-Defined Data Types
	3.4.3 Exception-Handling: java.rmi.RemoteExceptions and SOAP Faults
	3.4.4 Toolkits

	3.5 Summary

	CHAPTER 3:
	CHAPTER 4: A QUALITATIVE ANALYSIS OF CORE WEB-SERVICE COMPONENTS AND THEIR CONTRIBUTION TO INTEROPERABILITY FOR WEB SERVICES
	4.1 Introduction
	4.1.1 Interoperability-Testing Frameworks

	4.2 SOAP: no longer an acronym
	4.2.1 Defining SOAP: Versioning Issues
	4.2.2 SOAP as a Requirement for Web Services
	4.2.3 Problems with SOAP
	4.2.4 The SOAP Message Structure
	4.2.4.1 Service Styles and their Encodings
	4.2.4.1.1 RPC
	4.2.4.1.2 Document
	4.2.4.1.3 Wrapped

	4.2.4.2 SOAP Programming Models
	4.2.4.2.1 RPC
	4.2.4.2.2 Document

	4.2.4.3 Advantages and Disadvantages of the RPC Processing Model
	4.2.4.4 Advantages and Disadvantages of the Document-Style Programming Model
	4.2.4.5 Different Types of Soap Client
	4.2.4.5.1 Static Stub Client
	4.2.4.5.2 Dynamic proxy client
	4.2.4.5.3 Dynamic invocation client
	4.2.4.5.4 Application Client
	4.2.4.5.5 Summary of SOAP Client Approaches

	4.3 WSDL: Web Services Description Language
	4.3.1 WSDL: a simple description of a web service
	The Abstract Section
	The Concrete Section

	4.3.2 WSDL Data-Typing
	4.3.3 WSDL First
	4.3.4 Conclusions Regarding WSDL

	4.4 UDDI – Dead in its Tracks?
	4.5 Summary

	CHAPTER 4:
	CHAPTER 5: REST – AN ALTERNATIVE
	5.1 Introduction: the Revolt against Complexity
	5.2 Representational State Transfer
	5.3 Advantages of REST over Conventional Web Services
	5.4 Disadvantages of REST over Conventional Web Services
	5.5 Summary

	CHAPTER 5:
	CHAPTER 6: WEB-SERVICES COORDINATION
	6.1 Introduction
	6.2 Orchestration and Coordination
	6.2.1 Web Services Choreography Interface (WSCI)
	6.2.2 BPEL

	6.3 The Enterprise Service Bus
	6.4 A First Look at WCF
	6.5 Summary

	CHAPTER 6:
	CHAPTER 7: VALIDATION OF QUALITATIVE FINDINGS
	7.1 Introduction
	7.1.1 The Platforms
	7.1.1.1 Apache Axis 1.2 (Java)
	7.1.1.2 GlassFish (Java)
	7.1.1.3 Sun Application Server 8.1 (Java)
	7.1.1.4 BEA WebLogic 9.0 (Java)
	7.1.1.5 Web Matrix (C#)
	7.1.1.6 Visual Studio 2005 (C#)
	7.1.1.7 Apache 2 (PHP)
	7.1.1.8 Mozilla Firefox (JavaScript)

	7.2 Web Services
	7.2.1 The Simple Calculator Service
	7.2.2 An Even Simpler Date Service
	7.2.3 The Indexing Application: Java
	7.2.3.1 A Firefox Front End

	7.2.4 The Dictionary Service: Java
	7.2.4.1 Using Exceptions in the Dictionary Service
	7.2.4.2 Testing on Other Servers
	7.2.4.3 C# Clients for the Dictionary Service
	7.2.4.4 Metadata and WSDL Generation

	7.2.5 The Enumeration Service
	7.2.6 A Simple Hello Service
	7.2.7 A Different Programming Style with JAX-WS Provider and Dispatch
	7.2.8 REST-Style Messaging
	7.2.9 A Simple HelloWorld Service: PHP
	7.2.10 A CheckNumbers Service

	7.3 Implementations of SOAP 1.2
	7.4 Different Types of Java Client
	7.4.1 Static Stub Client
	7.4.2 Dynamic Proxy Client
	7.4.3 Dynamic Invocation Client

	7.5 Summary: a Synthesis of Findings

	CHAPTER 7:
	CHAPTER 8: CONCLUSION
	8.1 Introduction: the Changing Scene
	8.2 No Single Solution
	8.3 Problems Still Needing Solutions
	8.4 Changing Requirements
	8.5 Summary of Achievements in this Study
	8.6 Future Work

	APPENDIX A: List Of Acronyms Used In The Text
	APPENDIX B: Creating A Firefox Extension
	APPENDIX C: The Complexity Of Web-Service Specifications [Jeon, c2005]
	APPENDIX D: The Inner Workings of the Indexing Service
	APPENDIX E: An Example WSDL File
	REFERENCES
	INDEX

