

RADGIS – An improved architecture for

runtime -extensible, distributed GIS applications

Thesis

Submitted in fulfilment of the

requirements for the Degree of

DOCTOR OF PHILOSOPHY

of Rhodes University

by

Richard Michael Preston

November 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South East Academic Libraries System (SEALS)

https://core.ac.uk/display/145046362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
A number of GIS architectures and technologies have emerged recently to facilitate the
visualisation and processing of geospatial data over the Web. The work presented in this
dissertation builds on these efforts and undertakes to overcome some of the major problems
with traditional GIS client architectures, including application bloat, lack of customisability,
and lack of interoperability between GIS products. In this dissertation we describe how a
new client-side GIS architecture was developed and implemented as a proof-of-concept
application called RADGIS, which is based on open standards and emerging distributed
component-based software paradigms. RADGIS reflects the current trend in development
focus from Web browser-based applications to customised clients, based on open standards,
that make use of distributed Web services.

While much attention has been paid to exposing data on the Web, there is growing
momentum towards providing “value-added” services. A good example of this is the
tremendous industry interest in the provision of location-based services, which has been
discussed as a special use-case of our RADGIS architecture. Thus, in the near future client
applications will not simply be used to access data transparently, but will also become
facilitators for the location-transparent invocation of local and remote services. This flexible
architecture will ensure that data can be stored and processed independently of the location of
the client that wishes to view or interact with it.

Our RADGIS application enables content developers and end-users to create and/or
customise GIS applications dynamically at runtime through the incorporation of GIS services.
This ensures that the client application has the flexibility to withstand changing levels of
expertise or user requirements. These GIS services are implemented as components that
execute locally on the client machine, or as remote CORBA Objects or EJBs. Assembly and
deployment of these components is achieved using a specialised XML descriptor. This XML
descriptor is written using a markup language that we developed specifically for this purpose,
called DGCML, which contains deployment information, as well as a GUI specification and
links to an XML-based help system that can be merged with the RADGIS client application’s
existing help system. Thus, no additional requirements are imposed on object developers by
the RADGIS architecture, i.e. there is no need to rewrite existing objects since DGCML acts
as a runtime-customisable wrapper, allowing existing objects to be utilised by RADGIS.

While the focus of this thesis has been on overcoming the above-mentioned problems with
traditional GIS applications, the work described here can also be applied in a much broader
context, especially in the development of highly customisable client applications that are able
to integrate Web services at runtime.

Acknowledgements*

I would like to express my utmost thanks to my supervisors Prof. Peter Clayton and Dr

George Wells for their constant support and valuable guidance while still allowing me to find

my own way through the techno-jungle. Their open-door philosophy and constant

willingness to help no matter what crisis or time constraints they were facing at the time were

noted with much appreciation.

I would like to thank Prof. Peter Wentworth and Gillian McGregor for their enthusiastic

willingness to join the team of proofreaders and for their valuable technical expertise. Henry

Holland for his useful insights, and the many hours of thought-provoking discussion on GIS

over coffee that would have dissolved the teaspoon if left in the cup too long.

A big thank you to Tina and Cheryl, as well as the rest of the members of the Rhodes

University Computer Science department for all the small things that often get taken for

granted, and for ensuring that I will always look back on my days in the department with fond

memories.

Finally a warm word of thanks to my parents, my sister, and to all my very special friends for

their support, especially during the writing of this thesis. This would not have been possible

without you!

* This work was undertaken in the Distributed Multimedia CoE at Rhodes University, with

financial support from Rhodes University and the NRF.

“Thanks to the Internet, back when you started reading this sentence …”

Found on “thought of the second” banner on Sun’s Java Developer web site.

 i

Table of Contents

List of Figures ... iv

List of Tables ...v

Chapter 1 Introduction ..1

1.1. Problems associated with current GIS Applications ...3

1.1.1. Application Bloat ..4

1.1.2. Interoperability..6

1.1.3. Location transparency...7

1.2. Motivation..8

1.3. State-of-the-art ... 10

1.3.1. GIS Standardisation... 10

1.3.2. Component-Based Software Development ... 12

1.3.3. Technology convergence (Where is GIS heading?) .. 13

1.4. How does our research address these problems? ... 16

1.5. Thesis Organisation ... 18

Chapter 2 Component-Based Software Development ... 21

2.1. CBSD Basics ... 22

2.1.1. Terminology.. 23

2.1.2. Granularity of components.. 24

2.1.3. Components and Objects... 24

2.1.4. Component Interoperability .. 25

2.1.5. Components and Scripting languages ... 28

2.1.6. Component Customisation and Re-use ... 29

2.2. Expected Benefits of CBSD .. 30

2.3. Expected problems and limitations .. 30

2.4. Components and Distributed Systems ... 31

2.4.1. CORBA... 33

2.4.2. Enterprise JavaBeans ... 38

2.5. Summary.. 39

Chapter 3 XML - Enabling CBSD and Deployment.. 41

3.1. XML Basics ... 42

3.1.1. DTD versus Schema.. 44

 ii

3.1.2. SAX versus DOM ... 45

3.2. XML for Wiring Components ... 46

3.2.1. XwingML .. 47

3.2.2. Bean Markup Language (BeanML) .. 48

3.3. XML for deploying applications ... 50

3.3.1. OSD ... 51

3.3.2. JNLP and Java Web Start.. 53

3.4. Our Distributed GIS Component Markup Language (DGCML) 56

3.5. Summary.. 58

Chapter 4 Factors influencing the design of RADGIS .. 59

4.1. GIS Architectures .. 61

4.1.1. Server-side GIS Applications.. 64

4.1.2. Client-side GIS Applications .. 67

4.2. OpenGIS® .. 71

4.2.1. The Abstract Specifications .. 72

4.2.2. The Implementation Specifications... 74

4.2.3. Simple Features Specification... 75

4.3. Exposing data efficiently – The future of geospatial data access? 76

4.3.1. The .geo proposal.. 77

4.3.2. A standardised spatial data transfer format - GML... 78

4.4. Interoperable Geospatial Services ... 81

4.4.1. Motivation for the development of distributed implementations of interoperable

Geospatial Services ... 82

4.5. GIS and Location Services .. 87

4.5.1. Searching location-based data ... 89

4.6. Exposing GIS Services efficiently... 90

4.6.1. LDAP .. 91

4.6.2. UDDI... 92

4.7. RADGIS - Our Approach .. 92

4.7.1. Use-case scenarios ... 98

4.8. Summary.. 99

Chapter 5 Implementation of the RADGIS Application..101

5.1. 3D Visualisation of Geospatial information ...102

5.1.1. Rendering of 3D spatial information..102

 iii

5.1.2. RADGIS: Data sets and Visualisation ...106

5.2. Location-transparent GIS Services ...113

5.2.1. Standardised Metadata for Efficient Integration..113

5.2.2. The Distributed GIS Component Markup Language (DGCML)114

5.2.3. Adding and Invoking a Service – A Use-case Example ..121

5.2.4. Creation of a Location Service...122

5.3. Invocation of methods at runtime ...124

5.3.1. Invocation on local objects using Reflection ...124

5.3.2. Invocation on Remote Objects ...125

5.4. Summary...127

Chapter 6 Discussion..128

6.1. Design considerations for the object developers ..129

6.2. Design considerations for the component integrators ..130

6.3. Implications for the client ...131

6.4. Combining GIS tools and data to create location services...132

6.5. Runtime discovery of remote implementations of GIS services133

6.6. Benefits ...135

6.7. Implications of distributed CBSD for a Commercial implementation of RADGIS138

6.7.1. Charging Mechanisms for distributed objects..138

6.7.2. Potential parallelism issues ..140

6.7.3. Dynamic Interface Development ...142

6.8. Summary...143

Chapter 7 Concluding Remarks..144

7.1. Assessment of the RADGIS client architecture..145

7.1.1. Limitations of the research undertaken ..150

7.2. Thesis contributions ..152

Appendix A – Mobile Agents ...154

Appendix B - VRML Optimisations ...161

Appendix C – GeoVRML Nodes..168

Appendix D - Dynamic Interface Development ...170

Appendix E – DGCML listing of a location service for finding restaurants172

Glossary of Terms and Acronyms ..174

References...184

 iv

List of Figures
Figure 1.1. The new trend towards distributed interoperable GIS components [Alameh

2001] ..9

Figure 1.2. Potential value chain for the future GIS marketplace [Alameh 2001] 13

Figure 2.1. Compatibility versus Substitutability ... 26

Figure 2.2. CORBA ORB Architecture [Schmidt 2001] .. 34

Figure 2.3. Simplified Object Management Architecture ... 36

Figure 2.4. The basic EJB Model [Raj 1998] ... 38

Figure 3.1. The Java Web Start architecture [Rohaly 2000] ... 55

Figure 4.1. Server-side Architecture ... 64

Figure 4.2. Dependencies between Abstract Specification topics .. 72

Figure 4.3. Displaying GML data in an XML-enabled Web Browser 79

Figure 4.4. The intended use of GML in the RADGIS architecture 80

Figure 4.5. Viewshed Analysis Example .. 83

Figure 4.6. The Geospatial Services Segment Vision [Ekins and Davis 1999]...................... 95

Figure 4.7. RADGIS: A highly distributed component-based GIS .. 97

Figure 5.1. Screenshot of scenes developed using GeoVRML [Reddy 2000]105

Figure 5.2. Screenshot of Extrude utility...110

Figure 5.3. A snapshot of selected buildings on the Rhodes University campus (looking

towards the Grahamstown Monument)..111

Figure 5.4. A snapshot of the Grahamstown City Hall(Left) and Cathedral(Right)..............112

Figure 5.5. The DGCML DTD hierarchy ..114

Figure 5.6. Use of JavaHelp to display help data from different GIS Services120

Figure 5.7. CORBA SQL query tool example ...121

Figure 5.8. Example of a location service for finding restaurants ...123

Figure 6.1. Advertising GIS services using Web pages...134

Figure 6.2. Advertising GIS services using a searchable registry ...135

Figure 6.3. Example showing how more than one DGCML descriptor could make use of a

distributed GIS tool ..137

Figure 6.4. Contrived Example of Process Equivalence..141

Figure 7.1. Example of a distributed GIS architecture ..148

 v

List of Tables
Table 4.1. Advantages and disadvantages of Server-side GIS [Gifford 1999] 65

Table 4.2. Advantages and disadvantages of Client -side GIS [Gifford 1999] 68

Table 4.3. Abstract Specification overview as of July 2001 [Öhrström 2001] 74

Table 4.4. Implementation specifications as of July 2001 [Öhrström 2001] 75

Table 4.5. RADGIS Architecture advantages and disadvantages ... 94

Table 5.1. DTD for GIS Service (describeService)...115

Table 5.2. DTD for GUI specification (describeGUI) ...117

Table 5.3. DTD for Help specification (describeHelp) ..119

 1

Chapter 1

Introduction

"All truth passes through three stages. First, it is ridiculed.

Second, it is violently opposed. Third, it is accepted as being self-evident."

Arthur Schopenhauer (1788-1860)

Geographic Information Systems (GIS) provide the user with the ability to explore

geographic, or location-based data visually, allowing specialised searches on, and analysis of,

both spatial and a-spatial (attribute) data. Traditional GIS applications provide a wide variety

of tools for manipulating this data, from the digitising of spatial data to complex spatial

analysis tools, conversion utilities, statistical analysis, as well as charting and presentation

functionality.

A number of books and papers have been published that highlight the many advantages of

digital mapping, and the ability of GIS applications to mine geospatial data effectively

[Robertson et al. 1984] [Panel-GI 2000]. These advantages include increased speed,

analytical and visualisation capabilities, as well as efficiency of data storage, integration of

spatial and attribute data, and the ability to perform "finer-grained" spatial analysis [CTRE

1998] [Niemeier et al. 1993].

 2

How ever, there are also a number of problems that hamper its effective deployment and use

within organisations. These include problems associated with the resource-intensive nature

of GIS applications due to the large data sets that are used, and the complexity of the

algorithms used to process the data, as well as problems associated with the design of

traditional GIS applications, such as application bloat and lack of interoperability between

GIS software packages.

The work presented in this thesis describes our solution to these problems through the

creation of an extensible client-side framework that provides the user with the ability to add

distributed interoperable geospatial services to the client application at runtime. This new

client-side GIS architecture was implemented as a proof-of-concept application called

RADGIS (Runtime Application Development of GIS), and is based on open standards and

emerging distributed component-based software paradigms.

The RADGIS architecture enables the creation of small, highly specialised GIS clients that

are easily extensible should the user’s needs change, or if the user requires a once-off or

seldom-used service. This has been achieved through the creation of GIS services that are

implemented by wiring together local and distributed objects using an XML-encoded

descriptor language we have developed called DGCML (Distributed GIS Component Markup

Language).

GIS applications typically provide extensive functionality, most of which is very specific to

the field of geospatial data analysis, although some of it is more general in application.

While the focus of this thesis is on the development of an improved client-side GIS

architecture, much of the work presented in this thesis can be applied to the development of

component-based applications in general. However the benefits of using our approach are

maximised when applied to a domain that has been the focus of large-scale standardisation

efforts, such as GIS. It is also easier to expound the virtues of an approach when one is able

to provide concrete examples of how such an approach is able to solve specific problems

identified within that domain.

 3

If our objectives for the research presented in this dissertation were to be summarised in a

single sentence it would be:

To develop runtime -extensible, highly-customisable, distributed-component based GIS

and Location-based Service clients.

The remainder of this chapter expands on some of the problems associated with current GIS

applications that can be attributed to the resource intensive nature of GIS, as well as the large

number of diverse operations that may be performed. In particular, it focuses on two driving

forces that have been the motivation for our approach to component-based GIS applications,

namely reducing application bloat by disaggregating GIS applications into interoperable

components (rather than interoperable software suites), and providing a high level of

location-transparency for accessing local and remote data and services

.

1.1. Problems associated with current GIS Applications
One of the biggest challenges that organizations face today when deploying and using

software-intensive systems is managing the complexity inherent in such systems, while being

able to rapidly adapt to change, without a breakdown in the transfer of knowledge and

experience when moving from one system to another [Brown 2000].

Monolithic Geographic Information Systems (GIS) packages of today are being replaced by

new forms of geo-processing, based on new interoperable principles and standards. These

changes are necessary due to the non-interoperability of current GIS products, which has lead

to conceptual diversity, product specificity and the limited transfer of knowledge when a user

changes from using one particular GIS package to another [Heywood et al. 1998][Open GIS

Consortium, 1998a].

Traditional GIS applications are generally very large applications that are expensive to

license, have a very steep learning curve [Albrecht 1996], and are difficult to use. Traynor et

al. [1995] argue that proficient use of traditional GIS applications requires a solid

understanding of the fields of geography, cartography and database management systems, as

well as being computer literate, and that they very often require specialist knowledge.

 4

Traditional GIS applications are well-suited to GIS experts. However there is a growing

realisation that there are a number of users, in a variety of fields, who require spatial analysis

tools similar to those found in GIS applications. These users generally require only a small

subset of the functionality provided by traditional GIS applications, and do not necessarily

wish to become experts in GIS in order to make use of GIS applications.

While there is no denying that traditional GIS applications fulfil an extremely valuable role,

many problems associated with these GIS applications have been identified. The following is

not meant to be an exhaustive list, but are described in more detail below due to their

relevance to the research presented in this dissertation:

?? “Application bloat” – many GIS applications attempt to provide as much functionality

as possible. As a result, these GIS applications have become extremely complex

systems that are prone to serious application bloat.

?? Lack of Interoperability – In the past, due to the lack of standards, GIS software from

one vendor would not work with software from another. This lack of interoperability

between software products from different vendors has been a major stumbling block

to sharing geospatial data, particularly across the Web.

?? Location Transparency – while many GIS applications do provide access to data sets

located on various different platforms with a large degree of location transparency,

the ultimate goal is to extend location transparency to incorporate both data and

services. This will allow processing of data to be performed wherever it makes most

sense without requiring the user to be aware of the physical location of either the data

set being processed, or the tool that is performing the processing.

1.1.1. Application Bloat

Classic application bloat within major software packages is becoming more and more

common as developers try to add functionality to cater for every eventuality to their

applications. However, different users have very different requirements, and may end up

using very little of the overall functionality provided by an application. This is particularly

true in GIS, where users typically only make use of a fraction of the available functionality

found in most traditional GIS applications [Gunther and Muller 1999]

 5

Ironically, it is also likely that an advanced user will require functionality not provided by the

core application, even though it contains many features that will never be used. Such a user

must then install additional modules, which may integrate with the original application, but

are often stand-alone tools that must be executed outside the core application.

This is not entirely the developer’s fault as it is impossible for developers to provide systems

tailored to each individual’s requirements. Most applications are developed based on

generalised requirements, i.e. for groups of users with similar core requirements, but differing

application environments that require specialized features. In addition, many end-users only

discover what functionality they require once they start working on a particular project.

Application bloat is not unique to GIS applications. According to Dey et al. [1997a], the

main downfall of most current software suites is their poor ability to integrate individual

tools/services. They point out that tightly integrated suites of tools/services currently

available are unsatisfactory because:

?? They require designers to predict how end users will want to integrate the

tools/services provided; and

?? They force users to use particular tools/services with no opportunity to replace or add

tools/services to the application.

The latter is mainly due to vendors wishing to capitalize on vendor “lock-in” and customer

loyalty, by making it extremely difficult or costly for a user to change tool or service

provider. The result is a large application, written by a single software house with general

expertise, rather than individual components, written by experts in that field, that can be

integrated into larger applications.

A solution to this problem would be to allow users to decide which tools they require for the

job at hand. Should they determine, at any stage, that they do not have the necessary tools for

a task, they should have the opportunity to locate implementations of these tools, and

integrate them in their existing application, rather than having to purchase an additional

package or separate stand-alone utility.

 6

1.1.2. Interoperability

Interoperability has been a major stumbling block within the computing industry as a whole

in the last decade. Until recently, the lack of standards within GIS hindered the widespread

adoption of GIS applications because organisations were reluctant to buy into software from

a vendor that did not provide a simple migration path, or interoperate with software from

other vendors [Ferris 1998].

However, it is clear from the numerous standardisation efforts presently underway,

particularly within the many XML dialects, that a high priority has been placed on

developing interoperable systems based on open standards. In addition, the OpenGIS®

Specification being developed by the Open GIS Consortium represents an evolution in GIS

solutions, in which proprietary data models and software functions are made interoperable

and extensible.

The term “interoperability” is used to describe the ability of software (possibly distributed on

multiple machines) from multiple vendors to freely exchange data between systems. This is

possible when each system has knowledge of the other systems’ proprietary formats, but is

guaranteed when data is transferred between systems that support an open standards format.

The use of open data standards, i.e. data formats whose internal structures have been openly

published, allows developers to create “small” interoperable components independently of

each other. This permits GIS users to perform tasks that require functionality from more than

one vendor, based on the integration of these software components.

According to Goodchild et al. [1997], the adoption of open standards will lead to the

development of “similar” systems that make use of the same vocabulary, follow the same

conventions and ensure that interoperability over a wide range of systems becomes possible.

This will, in turn, result in a simplification of data formats, improve interaction between the

user and a particular system, and reduce the amount of knowledge required by a user to be

effective with respect to that type of system. Therefore users could achieve the same

outcome with less knowledge, and training in one system, e.g. ARC/INFO, would not be

wasted if the user was transferred to another similar system, e.g. MapInfo.

 7

Open systems facilitate interoperability by allowing vendors to produce competing products

that are interchangeable with existing components. This healthy competition ensures that end

users are able to replace the implementation of a particular service with another, possibly

superior service, without changing the base application code. The use of interoperable

components also facilitates the development of highly scalable systems, and the packaging of

particular services, resulting in lower costs and products tailored for specific end-users’

requirements.

The ability to utilise interoperable services in the creation of task-oriented clients is of great

benefit to the GIS community [Albrecht 1996]. Application developers have the flexibility to

select services based on the requirements of the end-user by choosing the service

implementations that are best suited to the task at hand. In addition, developers of

applications for traditionally non-GIS users can implement small, customised applications

that require a small subset of a traditional GIS application’s functionality, by combining

interoperable services rather than developing them from scratch.

This can only be achieved through the development of vendor-neutral, standards-based

frameworks that enable the discovery and integration of multiple online geodata sources and

services distributed over the Web. According to Kenn Gardels [current], the future success

of GIS as a technology, and as a paradigm of spatial understanding, will depend on the

seamless integration of these diverse methods into a comprehensive system for scientific

investigation and environmental planning.

1.1.3. Location transparency

Goodchild et al. [1997] describe transparency as the ability to work at a conceptual level

rather than having to be aware of the implementation issues, thus providing “a uniform view

of multiple, heterogeneous, distributed, and autonomous participating systems”.

The ability to provide a high level of location transparency within GIS applications allows

users to utilise geospatial data and services without necessarily being aware of where the

datasets are stored or where the geoprocessing is being performed. This reduces the

 8

complexity of using distributed data and services, which might otherwise prove

unmanageable for all but expert users.

Location transparency is an extremely important feature of new applications that embrace the

trend towards a highly-networked model of computing. This has a dramatic impact on the

architecture of applications, and as technology improves, the distinction between accessing a

local or remote resource will slowly fade altogether.

1.2. Motivation
While there will always be a need to provide the bundled functionality found in traditional

GIS applications, there is a growing need to enable non-specialist users to make use of GIS

operations in a more user-friendly manner, and customised to their particular field of interest.

At a specialist meeting held in December 1997, under the auspices of the Varenius Project,

the workshop agreed that in the future GIS applications would become [Goodchild et al.

1997]:

?? Distributed – enabling a user to access data and processing, as well as collaborate

with other users located throughout the world. For example it would be possible for a

user at location A to send data from location B to a server at location C to be

processed, and have the results returned to location A for display.

?? Disaggregated – as the use of interoperable, standards-based Commercial-off-the-

Shelf (COTS) software components, developed by different vendors, replaced

monolithic applications developed by a single vendor.

?? Decoupled – as disaggregated components are no longer part of a single application,

but are distributed over many networked systems.

?? Interoperable – a clear precondition for all three of the above-mentioned points.

This vision of the future of GIS applications addresses most of the problems that we outlined

earlier with respect to GIS software, including reducing application bloat, lack of

interoperability and location transparency. Of particular importance to the success of this

vision are the recent developments in component-based architectures and distributed-object

 9

computing which encourage flexible plug and play systems that are extensible, and allow

heterogeneous components to interoperate across diverse platforms and network protocols.

The successful integration of these technologies will lead to the creation of GIS applications

composed of distributed services, implemented as interoperable components (see figure 1.1).

Figure 1.1. The new trend towards distributed interoperable

GIS components [Alameh 2001]

The problems with GIS applications that we outlined in section 1.1, as well as the vision

expressed by Goodchild et al. [1997] for the future of GIS applications, are not restricted to

the domain of GIS applications, but are in fact general application development issues for

most resource-intensive Internet-based applications.

However, we have focussed our research on the field of GIS for three main reasons:

?? an overriding interest in the field of GIS,

?? the large amount of standardisation which has occurred within this discipline over the

past few years, and

Degree of
Interoperability

Degree of
Distribution

Degree of
Componentisation

1

2

1. Local non - interoperable GIS package
2. Fully interoperable distributed GIS components

Degree of
Interoperability

Degree of
Distribution

Degree of
Componentisation

1

2

1. Local non - interoperable GIS package
2. Fully interoperable distributed GIS components

 10

?? by constraining our discussion to the field of GIS, we are able to address particular

issues and provide a more pertinent way to discuss the benefits of our approach by

looking at specific scenarios.

Our approach to solving these problems does not make use of GIS-specific technology.

Instead we have applied emerging computing principles and technologies, such as

component-based software development, XML and distributed-object technologies to the

field of GIS.

1.3. State-of-the-art
GIS applications have undergone many architectural changes over the past two decades that

have been in keeping with advances in tiered application development in general. This

initially saw GIS applications evolve from a single, tightly-coupled or single -tier application

to a two-tier client-server architecture. This change was made to separate the data

management duties from the operations and analysis logic, and the rendering and user

interface, allowing a database other than the GIS vendor’s proprietary database to be used.

More recently, GIS application development has progressed to using the N-tier architecture,

primarily to facilitate distributed processing, Web-based mapping and “thin-client” spatial

data viewers.

Another trend worth noting is the increasing prevalence of Java-based GIS applications and

location-based services, which is evidence of the wide-spread industry adoption of Java as a

powerful tool for developing platform-independent distributed GIS software.

1.3.1. GIS Standardisation

A number of standardisation bodies are currently working on different aspects of GIS, most

noticeably the Open GIS Consortium [1998a] and ISO Technical Committee 211 [ISO/TC

211 2000]. In general, the OGC is concerned with software specifications, while ISO/TC 211

concentrates more on data standards. However, in order to ensure that their work, which is

often complementary (e.g. the work done in defining the geometry model), does not result in

competing standards these two standardisation organisations are fully coordinated [Open GIS

 11

Consortium, 1998a]. The OGC has agreed to submit their specifications for ISO approval via

ISO/TC 211, and a “Class A Liaison” between the ISO and the OGC ensures that their efforts

are harmonized, and that mutual experiences and results are shared.

The Open GIS Consortium (OGC) has dedicated much time and effort towards solving the

interoperability issues outlined previously. Its major objective was to produce a single

operational model for all spatiotemporal applications that would enable an application

developer to combine geospatial data, and any geospatial function or process, available on the

Web.

To date, the major achievements of OGC include [Cox 2000]:

?? the Simple Features Specification – a subset of the ISO/TC 211 data model required

to support basic GIS systems;

?? the Geographic Markup Language (GML) – an XML encoding of the Simple

Features Specification; and

?? the Web Map Server Interface Specification – for producing maps of georeferenced

data, based on a standardised request mechanism.

In addition, the OGC has defined geospatial domain-specific business objects to ensure that

the OpenGIS® Services Architecture1 can be realized with standards-based, Commercial-Off-

The-Shelf (COTS) products available from multiple vendors [Open GIS Consortium 2001a].

These OpenGIS® standards, developed by the Open GIS Consortium, are being closely

followed and adopted by all the major GIS vendors including Integraph, ESRI, Bentley, and

MapInfo. Therefore, by developing open standards for geoprocessing, the OGC is actively

shaping the future of GIS applications and enabling “geoprocessing to become an integral

part of the evolving distributed computing paradigm in which applets, middleware,

components, e-commerce tools, and object request brokers give any networked computing

device real-time access to a huge universe of data and processing resources” [Open GIS

Consortium, 1998a].

1 The OpenGIS® Service Architecture is a framework of services that are required for the

development and execution of geospatial applications.

 12

1.3.2. Component-Based Software Development

Component-Based Software Development (CBSD) allows systems to be developed from a

number of existing interoperable system elements with exposed interfaces and hidden

implementations. Therefore a system no longer needs to be built from scratch, but can be

developed by selecting, reconfiguring, adapting, assembling and deploying encapsulated,

replaceable, interoperable components [Barroca et al. 2000] [Clements et al. 2000].

The development of systems using existing, pre-tested components has a number of tangible

and intangible benefits, including shortened system development cycles, increased

productivity through component reuse, higher quality systems, reduced time-to-market, as

well as reduced development and maintenance costs. See section 2.2 for a more

comprehensive list of benefits.

The integration of the Web and component-based systems implemented using distributed

object technology provide a number of additional benefits, which include the ability to share

computing and data resources, platform and operating system independence, increased

efficiency by distributing the workload across multiple machines, and the ability to use the

same distributed resources on a number of different devices [Fan et al. 2000] [Fingar et al.

1997]. See section 2.4 for a more comprehensive list of benefits associated with the use of

distributed component technologies.

There are three major distributed component or component-oriented middleware technologies

that are currently used for developing enterprise-scale component-based applications, namely

the OMG’s CORBA Specification [OMG 1999] [Siegel 2000], Sun’s Enterprise JavaBeans

(EJBs) [Sun Microsystems 2000b] [Roman 2000] and Microsoft’s Distributed Common

Object Model (DCOM1) [Sessions, 1998a]. We have decided to focus on the use of CORBA

objects and EJBs because of the platform-independent nature of CORBA and Java (see

section 2.4).

1 DCOM, COM, COM+, information available at http://www.microsoft.com/com/

 13

1.3.3. Technology convergence (Where is GIS heading?)

The convergence of the Web and distributed object technology has resulted in a multitude of

new applications and services. Just as the value of a fax machine increases with use and with

an increase in the number of other fax machines to which it can connect and communicate,

each distributed application and service added to the Web increases the value of the Web

directly in terms of the functionality it provides, and indirectly by increasing the value of

other interoperable applications and services.

David Schell, acting president and CEO of the Open GIS Consortium, believes that in the

future data content providers, connectivity service providers, platform providers, service

technology providers, and vertical service providers will slowly replace the traditional GIS

provider [GeoInformatics 2001]. This view is shared by a number of people including

Alameh [2001] (see figure 1.2), and Brox and Kuhn [2001] who argue that the future market

for geographic information will be a market of geographically referenced information

products generated by technical and organizational services applied to data. Indeed this can

already be seen in the increasing number of stand-alone GIS services, location-based

services, and the integration of geospatial information into mainstream IT applications,

particularly through the use of Oracle Spatial database technology.

Figure 1.2. Potential value chain for the future GIS marketplace [Alameh 2001]

Infrastructure
Providers

Data
Producers

Service
Providers Integrators

Service
Brokers

Frequently refreshed
data, large number of

small transactions

Specialised services for
niche markets. Most rely
on integrators and service
brokers to distribute their

products.

Integrated/cascaded
services, can be
customised for

individual clients

Search engine -like services,
enable clients to search and
locate services, and mix and

match them to solve their
problem.

MCI, AT&T

Infrastructure
Providers

Data
Producers

Service
Providers Integrators

Service
Brokers

Frequently refreshed
data, large number of

small transactions

Specialised services for
niche markets. Most rely
on integrators and service
brokers to distribute their

products.

Integrated/cascaded
services, can be
customised for

individual clients

Search engine -like services,
enable clients to search and
locate services, and mix and

match them to solve their
problem.

MCI, AT&T

 14

The work undertaken by the Open GIS Consortium aims to make interoperability easier and

more powerful by defining open standards for storing, delivering and processing geospatial

data [Lake 2001b]. The following emerging technologies, which are currently the focus of

much of the OGC’s efforts, are very likely to become the foundation of future GIS:

?? GML – a geospatial data standard that is likely to be widely adopted as an exchange

format for GIS services.

?? The OpenGIS® Service Architecture – a framework of interoperable services required

for the development of geospatial applications.

?? Web Map Servers and Web Feature Servers – for the efficient access to geospatial

data, especially when serving the requested map as GML.

?? Catalog and Registry Servers – extremely valuable services that allow users to register

and locate data or services, based on associated metadata stored about that data source

or service.

While certainly not the focus of this thesis, it would be a gross oversight if one neglected to

mention the huge impact that wireless communication is having on Internet applications and

mobile E-commerce in general, and within the field of GIS in particular. Of specific interest

to us is the relatively recent emergence of location-based services, born out of the

convergence of wireless communication, the Web and GIS technologies.

In contrast to GIS applications, location services are particular applications of spatial and

analytic functions found in GIS applications, which filter their content or change their

behaviour, based on the user’s (specified) location. Location services hide the complexity of

GIS tools by providing an easy-to-use interface for a specific service. This interface makes

use of one or more GIS tools behind the user’s back in order to provide the location-based

service, and thus no longer requires that the user be knowledgeable in geography or

cartography. In fact, if the user interface is simple enough, very little computer literacy is

required for a user to be able to make use of complex GIS operations transparently through

location services.

Mobile phones are the most widely used form of wireless device, and therefore offer the

greatest potential market for location services. While some mobile device manufacturers

have embedded, or pla n to embed, GPS devices in their mobile devices, existing mobile

 15

phone users will be able to benefit from an increasing variety of location-based services as

the accuracy with which a service provider is able to triangulate their position improves.

The ability to accurately determine the location of a mobile phone user opens up a plethora of

new services and business opportunities which were previously unavailable, or limited in

their efficiency and effectiveness, because they were dependent on the location of the user.

However, it may be surprising to learn that the main impetus behind increasing the accuracy

with which a mobile phone user’s position may be calculated in the United States is not

commercial, but rather the provision of emergency services. This took the form of a US

Federal Communication Commission E911 mandate requiring that by the 1st of October

2001, wireless service providers in the US must be able to provide the location of mobile

handset users to within approximately 125m, 67 percent of the time [Lopez 2000]1.

However, the relatively limited accuracy currently available has not deterred a growing

number of industries from providing location services that deliver Web mapping, street

routing, traffic reports and electronic yellow pages to Web and wireless devices.

According to the International Data Corporation [IDC 2000], the GIS market has realised

fairly linear growth in the range of 10-15% annually since its establishment, centred primarily

on providing mapping and spatial analysis tools to specialist users. However, despite its

infancy, the rate of growth for location services has already exceeded that of the traditional

GIS market.

Location-based services are of interest to us for two reasons: the first is that the introduction

of location services is moving the GIS community towards component-based GIS

applications, based on open systems; and secondly because the provision of location services

over the Web gives us another GIS-related application against which we can evaluate our

research into building applications at runtime.

1 Due to the complexity, lack of equipment and cost of implementing the necessary

technology in the base-stations, this deadline has subsequently passed without a single

wireless service provider meeting this requirement.

 16

Other topical research areas within the field of GIS that are receiving much attention are the

display of 3D geospatial information [Dykes et al. 1999] [Preston et al. 1997, 1999c] [Reddy

et al. 1999-2000], the use of mobile agents in distributed GIS [Conde 1998] [Preston et al.

1999b], and the inclusion of time-based data and operators to provide spatiotemporal or 4D

GIS support [Langran 1992] [Pequet and MacEachren 1998] [Preston et al. 1998a, 1998b]

[Snodgrass et al. 1998].

1.4. How does our research address these problems?
A number of distributed GIS-related research projects are currently being undertaken,

including DisGIS (Distributed GIS) [Berre et al. 2000], plug-and-play GIS components

[Lemmens 2001], [Tsou and Buttenfield 1998] and CommonGIS [Voss and Birlinghoven

2000]. Each of these systems aims to address one or more of the problems outlined

previously. However, the RADGIS provides an improved client architecture because it is a

runtime-extensible architecture, based on open GIS standards, that allows a user to determine

what functionality is provided by their client application as well as how the client application

integrates the interoperable GIS services.

This ability to add functionality, as and when required, rather than attempt to provide built-in

functionality for every eventuality, ensures that the RADGIS architecture does not suffer

from the “application bloat” associated with traditional GIS clients. It also guarantees that

the user does not have to change to a different client application when additional

functionality, not provided by the current client, is required.

One of our design goals was to create a system that is extensible through the asynchronous

addition of, or upgrade to, system components. The ability to facilitate tight integration of

software components, without the need for unnecessary component adapters, requires

consensus on the names, types, and the semantics of components’ input and output.

Interoperability of GIS components is assured through the adoption of open GIS standards,

which are currently the focus of a number of standardisation bodies, most noticeably the

Open GIS Consortium and ISO/TC 211.

 17

The use of Web mapping services and online geoprocessing tools that allow users to access

remote geospatial data and to process their data sets over the Web, is both possible and highly

desirable. Autonomous components and services are the easiest to integrate into the

RADGIS client application, due to their ability to work independently of the client

application. However, through the use of standardised naming conventions we are able to

demonstrate the ability for the RADGIS architecture to facilitate “tight” integration of

distributed services with the core client application and other services.

Interoperability, according to [Goodchild et al. 1997], also means commonality in user

interaction, which can be achieved through the development of interfaces that can be

customized to provide a familiar ‘look and feel’ to the user. RADGIS allows the user to

make use of a single customisable client application, which improves upon the limited

transfer of knowledge inherent in switching from software developed by one vendor to

another. This is achieved by allowing the user to make use of new services within a familiar

client framework, and by allowing the user or service developer to customise the GUI of a

service to provide a familiar “look and feel”.

One of the problems with implementing a distributed GIS application, which is addressed by

the RADGIS architecture, is the problem of invoking distributed GIS tools for which no

compile-time knowledge exists. This is particularly true for complex operations that require

the user to interact with distributed objects using a GUI. However, rather than download

compiled GUI classes, we have decided to create easily modifiable XML documents that

provide meta-information about the GIS service and allow one to wire-together Java objects

to create a GUI or specify batch processes. A few XML-based scripting languages have been

developed that allow one to wire together JavaBeans (including Swing components), e.g.

Bean ML, or to specify Swing GUI’s in XML, e.g. XwingML. However, we have developed

our own wiring language (DGCML) that goes beyond the functionality provided by these

scripting languages, and which serves four main purposes:

?? the deployment of GIS services for integration with the RADGIS client at runtime;

?? the specification of a GUI for the GIS service;

?? the ability to specify remote method calls to CORBA objects and EJBs; and

?? the provision of links to the associated help files which can be integrated into the

RADGIS client’s help system.

 18

Another issue addressed by the RADGIS architecture is that of location transparency. The

ability to specify GIS services using DGCML allows the user to make use of a service

without necessarily knowing where the processing is taking place. The method-calls invoked

by a particular service may be made on objects executing locally or on objects implemented

as CORBA objects or EJBs residing on remote machines. If alternate codebases are provided

for a particular service, it is possible for the RADGIS system to elect which codebase to use

based on the location of the data to be processed. Therefore RADGIS affords the user of a

service a high level of location transparency when performing geoprocessing operations.

During the course of our research, we have observed the tremendous industry attention that is

being given, especially within the field of GIS, to the provision of location-based services.

We have therefore used location-based services as an example to show how our RADGIS

architecture can be extended to other application domains. We also believe that the Location

Services model reflects the future of GIS applications in terms of being distributed,

disaggregated, decoupled and interoperable.

Our approach focuses on a number of architectural issues currently being addressed by the

GIS community, and in doing so, provides a flexible and extensible solution that caters both

for the novice and expert user, in a wide range of GIS-related tasks. Not only will this

improve the level of geospatial data access and use among traditional GIS users such as

cartographers, planners, scientists, and environmental protection agencies, but it will also

enable non-technical users to access this information as well (especially through the use of

location services).

1.5. Thesis Organisation
This introductory chapter mapped out the problems inherent in current GIS architectures,

particularly monolithic GIS client applications, that are to be addressed in this thesis. It then

proceeded to provide a concise overview of current developments within the field of GIS, as

well as future trends, providing some examples of research that is being undertaken in similar

areas.

 19

The RADGIS architecture was introduced briefly in order to explain how we intended

solving the problems with current GIS architectures outlined previously. This chapter also

explained why we decided to constrain our focus to GIS applications even though many of

the problems with current GIS architectures that have been identified are also inherent in

other resource-intensive applications. However, because our solution makes use of general

component-based software development techniques and distributed object technologies, the

work described here can still be applied in a much broader context.

The remainder of this thesis is structured as follows:

Chapter 2 (CBSD): The RADGIS architecture relies heavily on distributed Component-

Based Software Development (CBSD) techniques and the use of distributed-

object technologies such as CORBA Objects and EJBs to implement distributed

geospatial services. This chapter provides background information required by

the reader to fully understand the implications (both the inherent problems as well

as the intended benefits) of the chosen component-based design.

Chapter 3 (XML – Enabling CBSD and Deployment): The specification and deployment of

GIS services that can be integrated with the RADGIS client at runtime, is done

using a meta language we developed called DGCML. This chapter provides some

background on XML, and provides some examples of its use as a deployment

language and as a wiring language, before describing our DGCML vocabulary and

the functionality it provides.

Chapter 4 (Factors influencing the design of RADGIS): This chapter presents a

classification of GIS application architectures as well as a brief overview of the

work that has been undertaken by the Open GIS Consortium in the standardisation

of GIS, in order show the relevance of our work and where it integrates with this

global view of where GIS is headed. It concludes with a description of what our

RADGIS architecture does and what it hopes to achieve.

Chapter 5 (Implementation of the RADGIS Application): Provides a detailed description of

how our the RADGIS client application was implemented, including the ability to

visualise 3D geospatial data and integrate distributed GIS services developed and

deployed using DGCML.

 20

Chapter 6 (Discussion): This penultimate chapter highlights some design considerations for

distributed object developers and component integrators, as well as the

implications of using the RADGIS architecture on end-users. It then lists the

qualitative benefits of using the RADGIS architecture before taking a brief look at

some of the technological and business-related issues that would need to be

addressed in a commercial implementation of the RADGIS architecture.

Chapter 7 (Concluding Remarks): The final chapter of this thesis is devoted to providing a

critical assessment of the RADGIS architecture, including its limitations, and

motivates the contributions that the research undertaken in this dissertation has

made to the field of distributed GIS.

This thesis describes an architecture that is made up of a number of new and emerging

technologies. Therefore, instead of providing background chapters and then detailing our

work separately, each chapter contains some background material necessary for explaining

the design considerations that were taken into account in the development and

implementation of the RADGIS client.

The reader’s attention is also drawn to the Glossary of Terms, located immediately after the

appendices. This should provide a useful and convenient resource for locating concise

definitions of various technical terms and acronyms used in this dissertation.

 21

Chapter 2

Component-Based Software Development

As a common witticism goes,

“the only difference between a software component and a virus is the author”.

A Gartner Group study [Gartner Group] estimates that the market for pre-built components

will have grown from $1.4 billion in 1997, to more than $8 billion in 2002. Furthermore, it is

estimated that by 2003, at least 70 percent of all new applications will be deployed as a

combination of pre-assembled and/or newly created components, integrated to form complex

business systems.

According to Stojanovic [2000], component-related research can be also found under various

subjects such as module interconnection languages (MILs) [Prieto-Diaz and Neighbors

1986], module interface specification and analysis [Perry 1989], megaprogramming

[Wiederhold et al. 1992], domain-specific software architectures (DSSAs) [Fischer 1994],

software generators [Batory and Geracy 1996], object-oriented frameworks and patterns

[Gamma et al., 1995] [Fayad et al. 1999] and architecture description and configuration

languages (ADLs) [Garlan and Perry 1995].

 22

This provides a clear indication of the importance placed on CBSD, and illustrates the

paradigm shift from developing relatively small, centralised monolithic systems to complex

enterprise systems composed of distributed components that may accessed across a corporate

intranet or the Internet.

This chapter will present a brief introduction to some of the work currently being done in the

field of Component-Based Software Development (CBSD) in order to highlight the benefits

and the complexity involved in developing reusable components that are compatible and

substitutable with other components within a component framework.

We then present two distributed component technologies, CORBA and EJBs, that have been

used in our RADGIS application to implement distributed GIS tools that can be used together

with our DGCML vocabulary to develop and deploy customised GIS services.

2.1. CBSD Basics
Component-Based Software Development (CBSD), and the concept of ‘Commercial Off-

The-Shelf’ (COTS) components, is generating tremendous interest from industry and

researchers alike, because of the many potential benefits to be gained from developing

applications using plug-and-play reusable software components, rather than building the

whole system from scratch [Hernandez et al. 2000] [Brown 1997] [Brown and Wallnau 1998]

[Szyperski 1998].

In theory, developing an application using the CBSD paradigm is a simple task of browsing a

component catalogue or library, selecting the appropriate components, and then

reconfiguring, adapting, assembling and deploying them [Barroca et al., 2000]. However, in

practice, CBSD is very seldom simply a matter of plug-and-play development, and

component re-use is often difficult to achieve across application domains.

 23

2.1.1. Terminology

Looney et al. [1998] state that the lack of an agreed definition of what comprises a software

component has led to some confusion as to how to identify and re-use components.

Therefore we will briefly introduce some CBSD terminology to clarify what we mean by

software components, componentware, and component frameworks.

2.1.1.1. Software Component

According to [Schneider and Nierstrasz 1999], software components are static

abstractions with plugs, i.e. they encapsulate their implementation and only interact with

their environment through well-defined interfaces

A software component or, for the purposes of this dissertation, simply a component, has a

number of characteristic properties, including [Booch et al., 1999] [Schneider and

Nierstrasz 1999] [Szyperski 2000]:

?? it is a unit of independent deployment;

?? it has no observable state;

?? it must be instantiated in order to be used;

?? it is a replaceable part of a system; and

?? it should come with clear specifications of the services/events it provides and the

services/events it requires.

2.1.1.2. Componentware

The term componentware [Gartner Group 1997][Sessions 1998b] defines applications

assembled from a set of software components [Ring and Ward-Dutton 1998] [Bergner et

al. 1999]. These software components are not used in isolation, but are elements of a

component framework .

 24

2.1.1.3. Component Framework

A component framework is an architectural template that facilitates the efficient

development of complex systems using components. It determines the interfaces that

components may have, and how the components are plugged together, i.e. a component

framework is a collection of collaborating software components and architectural styles

[Schneider and Nierstrasz 1999].

2.1.2. Granularity of components

Components can be divided into two major categories [Hurwitz 1998]:

?? large-grained components that implement complete units of business functionality;

and

?? fine-grained components that implement small units of functionality. Fine-grained

components are generally combined with other fine-grained components to provide a

large-grained component.

By working at the higher level of abstraction provided by large-grained components, it is

possible to start working with business processes rather than having to deal with the inner

workings of fine-grained components. Therefore, large-grained components have the

potential to deliver greater productivity to developers than fine-grained components [Hurwitz

1998].

2.1.3. Components and Objects

Although both components and objects increase software reusability and simplify the

software development process, they are not the same, but may be considered to be orthogonal

concepts [Hernandez et al. 2000]. Components capture software’s static nature, whereas

objects capture its dynamic nature, i.e. components come to life through objects.

If one is using an object-oriented programming language to implement components, then in

the simplest case, a component is simply a class, although in general a component would

normally contain one or more classes or immutable prototype objects. However, for non-

object oriented programming languages, a component could also be implemented using

 25

traditional procedures, functional programming constructs, assembly language, or any other

approach [Szyperski, 2000].

In contrast to components (see 2.1.1.1), objects are units of instantiation that have a unique

identity, they have state that can be persisted, and they encapsulate both state and behaviour

[Szyperski, 2000]. Another significant difference between objects and components revolves

around the use of inheritance [Hurwitz 1998], as the focus of component technology is not on

inheritance, but the combination and integration of different software components [Fan et al.

2001]. For a more complete discussion on the distinction between components and objects,

refer to [Leavens and Sitaraman 2000][Szyperski 1998][Szyperski 2000].

2.1.4. Component Interoperability

Interoperability is a major challenge for software developers in general, and within

component-based software development in particular.

However, due to the development of standardised interfaces by the Open GIS Consortium, in

their Abstract and Implementation Specifications, many these requirements for component

interoperability will be easier to fulfil than in other application domains that have not

undergone rigorous standardisation.

In the development of our RADGIS architecture we have not implemented automated

component substitution, but have rather left the choice of component selection up to the

application developer, or the end-user, who would be able to query a Trader or Directory

Service and receive a list of equivalent components that suited his/her particular

requirements. It would therefore be up to the component developer to ensure that a particular

component fulfils its intended role.

There are three types of component interoperability [Hernandez et al. 2000]: signature

interoperability, semantic interoperability and protocol interoperability. While the research in

this thesis is not concerned with determining equivalence for compatibility and

substitutability of components (see figure 2.1), we wish to briefly draw the reader’s attention

to these issues.

 26

Figure 2.1. Compatibility versus Substitutability

2.1.4.1. Signature Interoperability

Component interoperability at the signature level is based on the names, parameter types

and return types of the components’ operations (methods), and is used for determining the

compatibility and substitutability of components. The compatibility of two components is

determined by their ability to work together properly if connected, i.e. determined by

whether or not the data and messages exchanged between them are correctly understood.

Checking the substitutability of component A by component B, at the signature level, is

an attempt to determine whether all the services offered by component A are also offered

by component B. The only differences allowed, in the services offered by component B,

are more specific inputs and more general outputs, i.e. it works on the principle of object

subtyping.

However, without standardisation, there is no guarantee that the same naming

conventions for methods, parameter types and return types, will be used by different

vendors. There is also no guarantee that two methods that have equivalent signatures will

perform the same operation, or handle the same boundary conditions equivalently, or

perform the same algorithm with the same accuracy, and thus it is impossible to perform a

complete comparison of two components simply on the signature level.

Compatibility SubstitutabilityCompatibility Substitutability

 27

2.1.4.2. Semantic Interoperability

The term semantic interoperability was first introduced by [Heiler 1995]. In contrast to

signature interoperability, which simply checks for compatibility and substitutability of

components based on method signatures, semantic interoperability is an attempt to ensure

that both requesting and providing components share a common understanding of the

meaning of the requested services and data. Thus semantic interoperability includes

ensuring agreement on, for example, the algorithms for computing the requested values,

the side effects of methods, or the source or accuracy of requested data elements

[Hernandez et al. 2000].

At the semantic level, compatibility is now determined by whether or not the behaviour

provided by a component is the same as that required by the client component. This can

be approached, for example, by showing that the pre-conditions of a component’s

methods are met by the calling components when invoking them, and that the methods’

post-conditions satisfy the calling component’s expectations.

Substitutability at the semantic level is based on “behavioural subtyping” [America

2000], and means that the behaviour of the subclass instances must be consistent with that

of the superclass instances. This includes associating behaviours to signatures and

identifying subtypes that conform to their supertypes both syntactically and semantically.

Computing semantic interoperability is undecidable in the formal sense. Therefore

semantic interoperability is far more difficult to compute than signature interoperability,

since it is not simply reliant on operational or behavioural semantics, but may also be

dependent on the context in which the components are used. For a more in-depth look at

semantic interoperability and behavioural subtyping, the reader is referred to works by

[America 2000][Liskov and Wing 1994][Dhara and Leavens 1996].

 28

2.1.4.3. Protocol Interoperability

The protocol interoperability level, first identified by [Yellin and Strom 1997], builds on

top of the signature level and deals with the relative order in which an object expects its

methods to be called, the order in which it invokes other objects’ methods, and the

blocking conditions and rules that govern the object interactions.

Two components are considered compatible at the protocol level if the restrictions

imposed on the interaction of each component when they call each other are preserved

and their communication is dead-lock free [Hernandez et al. 2000].

Substitutability at the protocol level is determined by two main issues [Canal et al. 2000]

[Yellin and Strom 1997]:

?? All operations of component A are supported by component B, i.e. all messages

accepted by component A are also accepted by component B, and component B’s

outgoing messages when implementing component A’s services are a subset of

component A’s outgoing messages; and

?? The relative order of incoming and outgoing messages of both components is

consistent.

2.1.5. Components and Scripting languages

Thus far we have introduced the concepts of components and frameworks, but have not

indicated how components can be wired together to express compositions.

Scripting-languages have become increasingly popular for configuring and connecting

components to develop small flexible applications quickly and easily. Indeed, according to

[Szyperski 2000], “wiring” components is surprisingly productive for relatively simple

applications.

Although these languages typically offer high-level abstractions for connecting components

in a flexible manner, they generally support a single, specific architectural style, and are

designed with a specific application domain in mind (e.g. graphical user interfaces – see

XwingML, section 3.2.1) [Ousterhout 1998] [Schneider and Nierstrasz 1999] .

 29

2.1.6. Component Customisation and Re-use

In our discussion of CBSD up to this point, we have focussed on integrating COTS

components directly into the component framework, and have given little consideration to the

possibility of customising the component first. This is sometimes necessary to allow a

component to better fit the requirements of a particular system in which it is to be integrated.

Conventional CBSD approaches do not generally support the ability to adapt, tailor and

customise components in order to provide tight integration based on the user’s specific

requirements [Stojanovic 2000]. While this does not present as many problems for

components that have been developed based on widely-accepted standards in a specific

domain, and that have agreed-upon interface specifications, it does pose many problems for

CBSD in general.

An inability to adapt, tailor and customise components means that components can only be

reused in very specific cases, and reduces the ability to reuse components that could

otherwise be reused. This results in a number of similar components that provide the same

underlying functionality, but that have been rewritten for different applications, clearly

defeating the goals of CBSD.

If one has access to the source code of a particular component, it is possible to modify

components before reusing them. However, this is not generally possible or advisable

because it increases the possibility of errors occurring in the component code, and very few

vendors would be prepared to release the source code for their components. Therefore, the

parameterisation and configuration of components provides an extremely valuable

mechanism to facilitate the tailoring of a component according to application-specific

requirements and the environment in which it is to be deployed. This also removes the

requirement that the component integrator have access to the source code of the components.

These two techniques increase the ability of a component to be reused in different

applications and illustrate the spectrum of reuse possible, which Basili et al. [1994]

characterise as: reused verbatim, slightly modified, extensively modified and new.

 30

2.2. Expected Benefits of CBSD
The additional work required initially to develop reusable components is well worthwhile.

The ability to rapidly assemble complex systems, based on well-defined interfaces, using

existing, pre-tested components results in a number of quantitative and qualitative benefits,

including [Fan et al. 2000] [Herzum and Sims 2000] [Szyperski 1998]:

?? shortened system development cycles;

?? increased productivity through reuse of software;

?? increased customisation;

?? increased performance;

?? increased maintainability;

?? improved reliability due to the use of higher quality components that have been

reused in a number of different applications, reducing the probability that they have

errors;

?? reduced time-to-market;

?? reduced development costs;

?? reduced maintenance costs; and

?? since components are encapsulated, it is possible to make changes to their

implementation without affecting all the systems that rely on them.

It is because of these numerous benefits that GIS applications are slowly becoming

disaggregated, component-based applications. As an extension to this paradigm, one of the

core aims of this research is to provide GIS and Location Service integrators with an

extensible architecture that will allow them to select, configure, customise and then deploy

tightly integrated assemblies of (local and/or remote) components, based on standardised

frameworks, rather than build whole systems from scratch.

2.3. Expected problems and limitations
While we have highlighted the many benefits to be derived from the use of CBSD, many of

these benefits also add to the complexity of creating component-based applications, for

example the necessity to be able to integrate components developed at different times, by

different people, and possibly with different end-users in mind. One of the greatest potentials

 31

for problems to arise is that one cannot always foresee the incompatibilities that might arise

when components are used in combination. Therefore one of the key issues for building

applications from reusable components is that of interoperability.

There has been much debate about whether it is better to create very specific components

with well-defined, reasonably-scoped functionality, or more flexible general-purpose

components [OMG 1999]. More specific components are generally economic to design and

reuse, whereas more abstract (generic) components can be reused in a wider range of

applications, possibly across different application domains. However, the trade-off of

generality is an increase in the cost of development, and the time taken to understand the

additional requirements, document the component, as well as to test the component in a range

of applications. For in-depth discussions on the merits of both approaches, please refer to

[Niagara 2000] [Veryard 2000] and [Stojanovic 2000].

Another potential problem with the use of software components, especially distributed

components that are integrated into the client application at runtime, is the issue of trust. The

use or reuse of a software component entails an implicit trust relationship that the component

will do what its specification says - nothing more and nothing less [Looney et al. 1998]. This

emphasises the value of trademarks and brand names in the absence of secure mechanisms to

ensure that the data that is being provided is accurate, and the services that are being invoked

are providing the correct results.

Providing solutions to these problems fall outside the scope of this thesis, but is currently the

subject of much research within the field of CBSD in general. This section has briefly

outlined some of the potential issues that should be borne in mind when developing

distributed component-based software in order to ensure that the reader is able to assess the

merits of such an approach.

2.4. Components and Distributed Systems
IBM has recently announced plans to invest $4 billion to build 50 computer server farms

around the world [Associated Press 2001]. They believe that pay-per-use, on-demand

computing power and storage-capacity, will become a household commodity such as

 32

electricity. Although IBM are initially marketing the ability to obtain extremely large

amounts of processing power for resource intensive applications, such as climate prediction,

server farms may one day provide the ability for users and service providers to make use of

them as temporary sites for processing intermediate results before returning the final result of

a request that required services and data from a number of disparate locations.

Thus it is no longer necessary for a complex computational operation to be handled by a

single service provider, or for the originating client to process intermediate results. The client

may issue a set of requests (similar to the idea of an itinerary for mobile agents, or service

chaining) which access remote services and data, and all the intermediate results are

processed (in a location transparent manner) on a server farm.

This model of operation may be a little “futuristic” at the moment, but still emphasises the

usefulness of distributed object technology that allows one to implement distributed services.

These services may one day make use of processing power obtained from the above-

mentioned server farms in a location transparent manner, which if implemented correctly,

would not require any change to client applications.

Distributed object technologies enable the invocation of methods on distributed objects

residing anywhere on a network, possibly running on heterogeneous platforms and operating

systems, as if they were local objects. With the development of “bridging” technologies, e.g.

CORBA’s IDL mappings, it is also possible for clients to access distributed objects

irrespective of the programming language and compiler used to create the distributed objects.

Distributed object technology encompasses not only the original object-oriented model, but

also component technology [Fan et al. 2000]. Unlike objects that execute locally as part of a

client-application, distributed objects live within their own dynamic library outside of an

application, and are considered to be components because of the way they are packaged

[Asaipillai 1997]. This distinction is made clearer when one considers the definition of a

software component by Szyperski [1998] as “a unit of composition with contractually

specified interfaces and explicit context dependencies that can be deployed independently

and is subject to third-party composition”.

 33

The use of distributed object computing provides a number of solutions to problems

associated with existing monolithic applications, including [Fan et al. 2000] [Fingar et al.

1997]:

?? The ability to share (expensive) resources;

?? Platform and operating system independence, which allows one to distribute

components of an application to computing platforms that best fit the task of each

object;

?? The ability to leverage legacy code as part of new applications, or on different

platforms;

?? The ability to use the programming language best suited for a particular task;

?? Increased efficiency, because the workload can be distributed across multiple

machines;

?? Applications can be deployed internally on a company’s intranet or globally across

the Internet; and

?? The same distributed resources can be made use of by a number of different devices

such as desktops, workstations, PDAs, and mobile phones. This means that one no

longer needs to implement the same business logic multiple times for use by different

devices.

Thus many organisations are beginning to implement component-based n-tier applications

based on popular distributed object technologies such as CORBA, Enterprise JavaBeans

(EJB), and DCOM [Morais 2000]. We have chosen to restrict our research to the use of

CORBA objects and EJBs because both of them are platform independent solutions that

provide tight integration with the Java programming language (reasons why we chose to use

Java, based on the RADGIS application’s need to integrate a number of diverse emerging

technologies, are given throughout the thesis).

2.4.1. CORBA

The Common Object Request Broker Architecture (CORBA) is a distributed, object-oriented,

middleware specification developed by the Object Management Group (OMG) that aims to

facilitate portability and interoperability of objects across heterogeneous networks [Fan et al.

2000]. Possibly the biggest advantage that CORBA has over other distributed object

 34

technologies such as EJB’s and DCOM is that the programming language and compiler used

to create the server objects may be different from the programming language used to

implement the client objects, thus providing programming language independence. In

addition, the location of distributed CORBA objects as well as the specific platform and

operating system they execute on, are totally transparent to clients. CORBA therefore

provides an ideal mechanism for creating 3-tier (or n-tier) distributed applications, which

goes beyond providing simple interoperability [Orfali and Harkey 1998].

Figure 2.2. CORBA ORB Architecture [Schmidt 2001]

Five of the main components of CORBA are [Asaipillai 1997] [Fan et al. 2000] [Orfali and

Harkey 1998]:

?? The Object Request Broker (ORB) – ORBs are the core of the CORBA specification.

They intercede on the client and server objects’ behalves, handling the flow of

messages between the client application and the distributed object(s) using the

General Inter-ORB Protocol (GIOP), the Environment-Specific Inter-ORB Protocols

ORB
Interface

IDL
StubsDII

DSI
Object

Adapter

ORB CORE

Client Object
(Servant)

Interface
Repository
Interface

Repository

IDL
Compiler

IDL
Compiler

Implementation
Repository

Implementation
Repository

ORB-specific interface

Standard interface

GIOP/IIOP

IDL
Skeleton

OBJ
Ref

operation ()

in args

out args + return value

Standard language mapping

Standard protocol

ORB
Interface

IDL
StubsDII

DSI
Object

Adapter

ORB CORE

Client Object
(Servant)

Interface
Repository
Interface

Repository

IDL
Compiler

IDL
Compiler

Implementation
Repository

Implementation
Repository

ORB-specific interface

Standard interface

GIOP/IIOP

IDL
Skeleton

OBJ
Ref

operation ()

in args

out args + return value

Standard language mapping

Standard protocol

 35

(ESIOPs) for interoperation over specific networks, or most often the Internet Inter-

ORB Protocol (IIOP).

?? The Interface Definition Language (IDL) – is a programming language independent,

declarative language used to define the services provided by objects independent of

their implementation, i.e. the IDL is used to specify the modules, interfaces, data

types, methods, argument types and return types of the distributed objects.

?? The Interface Repository (IR) – is a searchable, persistent storage mechanism for IDL

interface declarations. It allows client applications to navigate an object’s inheritance

hierarchy and provides descriptions of all operations that an object supports as well as

type information necessary for issuing requests using the Dynamic Invocation

Interface.

?? The Dynamic Invocation Interface (DII) – is a generic client-side stub capable of

forwarding any request to any object, using runtime interpretation of request

parameters and operation identifiers to perform the marshalling and unmarshalling of

requests. The DII is therefore often used together with information obtained from the

IR, and is extremely useful for making use of distributed objects for whic h compile-

time knowledge of their interfaces was unknown1.

?? Object Adapters (OA) – act as an interface between various object implementations

and the ORB, providing services such as the generation and interpretation of object

references, mapping object references to implementations, object method invocation,

and the activation and deactivation of objects and implementations (see figure 2.3)

Of particular interest to us, with respect to the integration of GIS services into the RADGIS

client at runtime, is CORBA’s capability to perform dynamic discovery of objects and

services, because CORBA objects are self-describing and introspective. CORBA's dynamic

facilities, including the Trader Service, Dynamic Invocation Interface (DII), and the Interface

Repository, allow the creation of extremely flexible systems that allow runtime discovery and

late-binding [Orfali and Harkey 1998]. This is especially useful in the distributed Web

1 This is in contrast to the normal mode of operation whereby IDL declarations are compiled

into programming language-specific stubs, allowing clients to invoke operations on known

objects.

 36

environment where a user is able to discover new services and then make use of them

transparently.

Figure 2.3. Simplified Object Management Architecture

2.4.1.1. CORBA Trader Service

The CORBA Trader Service offers a brokerage facility, i.e. it allows objects to publicise

their services and bid for jobs. Clients may specify queries in a formalised constraint

language, and the trader responds by providing zero, one or more matching CORBA

object references that the client can use to bind to a server object of its choice. Traders

are particularly useful in systems where there are many objects offering the same service.

In this case it becomes impractical to insist that every object be uniquely identified by

name [Resnick 1996]. The Trader Service therefore provides a mechanism to

differentiate services implemented as CORBA objects by their properties, e.g. cost,

implementation algorithm, platform on which it is running, type of input data set, and

output type.

Currently, the CORBA Trader specification supports only passive self-registration of

objects with the Trader Service. However, it is not unlikely that in the future, the trader

will be able to actively seek out server objects in a manner similar to that of current Web

search engines. Orfali and Harkey [1998] and Resnick [1996] describe an Object Web

environment containing spiders, crawlers, and bots, that will dynamically discover

CORBA objects and store them in up-to-date Traders.

Client Objects

Object Services

Server Objects

Object Request Broker (ORB)

Client Objects

Object Services

Server Objects

Object Request Broker (ORB)

 37

2.4.1.2. CORBA Component Model

The vendor-neutral CORBA Component Model (CCM) forms part of the CORBA 3

Specification developed by the OMG. It is an enhancement to the current, widely-

adopted CORBA 2 Specification that extends the basic architecture defined in the EJB

Specification, providing a framework for building, assembling and deploying

components, referred to as CORBAcomponents [ScreamingMedia 1999].

The CCM specification defines two level of component: basic and extended [Pharoah et

al. 2000]. Basic components have the same capabilities as EJBs (as defined by release

1.1 of the EJB Specification), and interoperability between basic CCM components and

EJBs is possible using the IIOP protocol. This also means that it will be possible to

seamlessly access EJBs using CORBA CCM clients implemented in a wide range

programming languages, including Java, COBOL and C++.

According to Jon Seigel [2001], the 3 major features of CORBAComponents are:

?? A container environment that provides support for transactions, security, and

persistence, and as well as interface and event resolution.

?? Integration with Enterprise JavaBeans. It will be possible for Enterprise

JavaBeans (EJBs) to act as CORBAcomponents, and therefore EJBs can also be

deployed in a CORBAcomponent container. The advantage of using

CORBAcomponents, as opposed to using EJBs, is that they can be written in

multiple languages and support multiple interfaces.

?? A multi-platform software distribution format, including an installer and XML-

based configuration tool.

While we have not made use of the CORBA Component Model in our research, because

an implementation of this standard was not yet available, it holds much potential for the

development of distributed applications, which are composed of components that are

independent of implementation language and platform.

 38

2.4.2. Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard defines a component architecture for deploying

components called enterprise beans, in an EJB container. The EJB container provides

runtime services to the components, such as life-cycle management, threading, transaction

support, security and persistence. Thus the Enterprise JavaBeans model is simpler than the

CORBA model because the EJB container is responsible for the provision of these services

[Sun Microsystems 2001b]. (Hence the introduction of the CORBA Component Model, see

section 2.4.1.2).

Figure 2.4. The basic EJB Model [Raj 1998]

An enterprise bean is never accessed directly by the client, but rather through the EJB

container, which intercepts the method calls and provides the required services. This means

that components are implemented without the complexity of explicit middleware code

required to implement these services. Instead, should transaction support or security be

Enterprise services and APIEnterprise services and API

N
am

ing Service
(JN

D
I)

T
ransaction

Service (JT
S)

Security

M
essaging

Home
Interface

Remote
Interface

EJB Container

Enterprise
Bean

Home
Object

EJB
Object

Databases

EJB Server

EJB
Client

Locate, Create
and Remove,

instance of EJB

Invoke Business
methods
Of EJB

Enterprise services and APIEnterprise services and API

N
am

ing Service
(JN

D
I)

T
ransaction

Service (JT
S)

Security

M
essaging

Home
Interface

Remote
Interface

EJB Container

Enterprise
Bean

Home
Object

EJB
Object

Databases

EJB Server

EJB
Client

Locate, Create
and Remove,

instance of EJB

Invoke Business
methods
Of EJB

 39

required by a particular component, they could be specified declaratively at the method level

at deployment time.

In contrast to CORBA, which is implementation language independent, EJBs are based on

the Java programming language. However, just like CORBA, EJBs can be deployed on any

platform and operating system that supports the EJB standard. Interoperability between EJBs

and CORBA objects is made possible through the use of the Internet Inter-ORB Protocol

(IIOP), which is now supported by Java RMI. This is particularly useful for allowing non-

Java clients to make use of EJBs.

The EJB architecture therefore simplifies the development of highly scalable, distributed,

component-based, enterprise systems that have strong transaction and security support [Fan et

al. 2000].

2.5. Summary
In this chapter we have provided some background information on CBSD issues that were

taken into consideration when building our RADGIS architecture and specifically in the

development of the DGCML meta language for creating and deploying GIS services based on

local and distributed components.

It provided insight into issues of compatibility and substitutability of components, as well as

factors affecting the reuse of components. The overriding benefits of CBSD as well as the

inherent problems and limitations of this approach were discussed, and once again we

stressed the need for interoperability, which is best achieved through the specification of and

rigid adherence to standards.

 “Stand-alone” GIS services (large-grained components) require very little integration with

the client application. This is advantageous as it reduces potential complexity for the end-

user, who would generally not have any programming skills, who wishes to “tightly”

integrate new GIS services with the client application. However, it is also possible to

simplify the integration of components that have dependencies on other components or on the

 40

client application if both the client and the component(s) conform to agreed-upon standards,

such as the OpenGIS® Specification defined by the OGC.

Two distributed object technologies used in the development of our proof of concept

RADGIS client were discussed briefly. Both the CORBA and EJB specifications are fairly

similar. CORBA is an open standard that provides programming language independence,

whereas the EJB specification is Java specific and was developed as part of the Java

Community Process. The most important feature of these distributed object technologies is

the ability for client applications to make use of distributed objects as though they were local.

This in turn allows a large degree of location transparency when working with distributed

resources, increasing the efficiency and flexibility of applications while reducing unnecessary

complexity through the use of high-level distributed object programming constructs.

Thus we are now armed with an understanding of CBSD and the additional functionality

provided by distributed object technologies. This will allow us to keep in mind the

requirements that must be considered when developing the components and the component

framework that are to become the extensible distributed GIS based on interoperable services.

 41

Chapter 3

XML - Enabling CBSD and Deployment

“Make everything as simple as possible, but not simpler.”

Albert Einstein (1879-1955)

This chapter will introduce some background information about XML in order to demonstrate

how we have used it to develop a wiring language, called DGCML, which can be used in the

development and deployment of component-based software. It also provides a description of

what DGCML has been designed to achieve and, together with section 2.4 on distributed

component-based software development, provides our approach to generating applications

dynamically at runtime.

Although the use of DGCML to create applications by wiring together components is a

generic approach, which is not restricted to the GIS domain, there are a number of problems

with trying to integrate components that have been developed by different vendors, possibly

using different naming conventions. Therefore this approach will be most successful when

used in a specific application domain, such as GIS, in which there has been a tremendous

focus on standardisation and interoperability. This is the focus of the next chapter in which

we explain how the development of our RADGIS application was influenced by different

GIS architectures and the standardisation efforts undertaken by the Open GIS Consortium.

 42

3.1. XML Basics
The Extensible Markup Language (XML) [Bray 1998], developed by the World Wide Web

Consortium (W3C), is a standard for encoding data in plain text (i.e. not a binary format) that

has seen rapid adoption by industry. It is a subset of the Standard Generalised Markup

Language (SGML) that was specifically designed for ease of implementation, and for

interoperability with both SGML and HTML.

While there has been a lot of hype surrounding the usefulness of XML (see [Kamthan 2000]),

it does have a number of tangible benefits that make it an extremely valuable tool for

developing distributed applications where high levels of interoperability are required. These

are primarily due to the nature of XML which is self-describing, can accommodate both

document and data structures, and allows one to define customized markup languages. Other

important advantages include [Software AG (current)] [St. Laurent 1999]:

?? Clear separation of content from presentation. XML is not a presentation grammar –

the tags in an XML document provide contextual information that can be used to

interpret the meaning of the data. However, an XML document can be displayed in

any number of different ways by simply applying different stylesheets to it.

?? Providing portable data. XML-encoded documents do not require a (vendor-) specific

application for viewing or editing the data.

?? Support for multilingual documents and Unicode. This is an important consideration

for the internationalisation of applications.

?? Ability to embed multiple data types. There is no limitation on the type of data that

can be stored in an XML document. Thus it is possible for XML documents to

contain a wide range of possible data types, from multimedia data (image, audio,

video) to active components (Java applets, ActiveX).

?? Separation of file handling from application architecture. The parsing of XML

documents tends to be assigned to a pre-built component, leaving the application

developer to concentrate on processing the data.

?? Clean integration with OOP. The hierarchical structures of XML map well to objects

and properties. This is particularly true of XML documents based on the XML

Schema language, which supports data-types and namespaces. However, one must be

 43

aware of mapping issues such as when to aggregate elements or when to use

references, and how to represent references between items.

?? Program composition based on document content. Mapping XML content to object

structures, together with late-binding permits the runtime construction of programs

based on XML document content. This has been shown to be useful for simplifying

repetitive programming chores like GUI construction. (See relevant sections on

BeanML, XwingML and our DGCML)

However, there are also some disadvantages associated with the use of XML. These include:

?? the verbose nature of XML – because XML is a plain text markup language, and there

is a lot of structural/meta-information associated with XML documents, the XML-

encoded information is less efficient than binary formats in terms of size and

performance. The larger XML representations also impact on bandwidth

requirements when transferring XML documents across a network/the Internet.

?? (tongue firmly in cheek) not being able to lock customers into a proprietary software

solution and inscrutable file format. However, this is clearly not an issue if one is

committed to the development of open systems.

The issue regarding the performance of XML, as a text-based representation as opposed to a

binary representation, will not severely limit XML’s usefulness and application as disk space,

network bandwidth, and CPU’s are constantly getting cheaper/faster. In addition, the use of

compression techniques, such as XMLZip, allows for a significant reduction in the size of

XML-encoded data. Compression techniques can also be used effectively in the end-to-end

transmission of XML data, for example using HTTP/1.1, which can compress data on the fly,

thus saving bandwidth as effectively as a binary format. Alternatively, if one makes use of

the XML DOM API, XML files can be compressed based on the node level in the XML

document. This allows the XML file to be uncompressed on the client side according to the

specific node the user is referencing, rather than uncompressing the entire document

[Kamthan 2000].

 44

3.1.1. DTD versus Schema

A DTD is a set of rules, written using the DTD language, that specify which elements are

allowed in an XML document, the order in which they can appear, and which of the elements

have attributes [Maler 2000]. The DTD language, however, has two major short-comings:

the lack of datatypes, and the inability to support the use of namespaces [Radiya and Dixit

2000].

The XML Schema specification, which was developed subsequent to the DTD, is a much

richer and more extensible way to describe the rules for the content of a document than using

a DTD. The benefits of using the XML Schema language as opposed to the DTD language

include:

?? XML schema are written in XML as opposed to requiring the user to learn a separate

XML Schema language. Therefore XML schema may be edited and processed with

the same tools as XML documents. In contrast, DTD’s are written in a non-XML,

DTD-specific language.

?? The XML Schema language supports the definition of data types, the specification of

numeric ranges, sets (not possible in a DTD), regular expressions and checks on text

content. It also allow element content to be specified as unique through the use of

keys.

?? Multiple elements may be defined with the same name but different content.

?? The XML Schema language provides support for Namespaces [Bray et al. 1999],

which makes the reuse of entire XML vocabularies and/or individual structure

definitions easier. (Although the development of the XML Namespace specification

was carried out independently of the XML Schema specification, it is not possible to

make use of XML Namespaces using the DTD language.)

Many of the benefits listed above are a direct result of the XML Schema having much in

common with programming languages, e.g. object-reuse through inheritance, the creation of

user-defined types, and namespace scoping. Despite the complexity introduced by the XML

Schema, the overwhelming benefits listed above ensured that after a lengthy debate on the

merits of the DTD versus XML Schema specifications, the W3C formally accepted the XML

Schema specification as a W3C Recommendation on 1 May 2001 [Whitlock 2001].

 45

At the time of writing this thesis, our DGCML grammar (see section 3.4 and section 5.2.2)

was specified using a Document Type Definition (DTD) file. While the advantages of using

the XML Schema, as well as namespaces and linking, will provide additional flexibility to

DGCML, there is currently no compelling reason, or additional functionality required that

can only be achieved by using XML Schema. Therefore, although we will probably convert

our DTD to an XML Schema representation at a later stage, once more mature products and

support for this new standard become available, it currently adds little value to our proof-of-

concept system.

3.1.2. SAX versus DOM

Two dominant standards exist for XML processing, namely the Simple API for XML (SAX)

developed by members of the XML-DEV mailing-list, under the coordination of David

Megginson [Megginson 2000], and the Document Object Model (DOM) which is currently

being developed as a W3C specification [W3C DOM WG 2001].

SAX is an event-driven model that “reads” the document, and is supported by almost all Java

XML parsers [St.Laurent 1999]. The module using the SAX reader supplies “callback”

methods that are invoked as the SAX parser encounters tags, elements and properties in the

XML document. It is up to the developer to supply the implementation of the “callback”

methods to perform the desired operation, for example, to build an in-memory structure

corresponding to the document.

SAX requires more programming that the DOM, and is limited in processing functionality in

comparison with the DOM because the parser only knows about the current node, and can

only process nodes that are children of the current node, i.e. it does not inherently provide a

mechanism to access information about previous nodes. However, it is faster and more

memory efficient than the DOM as it does not store the entire document model in memory at

one time.

DOM, in contrast, is a tree-based model of the document, i.e. a DOM parser creates a

hierarchical tree representing the entire data structure in memory, and passes this

representation back to the application for manipulation as a Document Object. This can

obviously cause problems when the document is large. However, this is a trade-off against

 46

the ability to perform more sophisticated processing than would be available using the SAX

[Cagle 2000].

Our DCGML interpreter currently makes use of the DOM parser (as does BeanML), although

it could just as easily have been implemented using a SAX parser because the DGCML

interpreter simply reads the document from start to finish, building the GUI, and keeping

hashtables of components and objects that may be referenced later in the document, or by

components in a DGCML descriptor of another service, i.e. it is a single-pass interpreter.

The size of the DGCML files is relatively small because they are intended to be easy to read

and modify. Complex operations, which might otherwise cause the DGCML file to become

unwieldy, would normally encapsulate some programming concept that would be best

implemented as a Java class. That Java class would then be referenced in the DGCML

descriptor to provide the desired functionality, simply and efficiently. Thus the performance

issues associated with keeping the entire document in memory using the DOM parser are

negligible.

3.2. XML for Wiring Components
The use of XML has not been limited to simply formatting documents, but has also been used

to create vocabularies that allow one to compose applications with XML by wiring together

components. One example is IBM’s BeanML, which allows one to wire JavaBeans, and

create GUI’s by wiring together GUI components. Another example is XwingML, which

allows the specification of GUI’s composed of Swing components.

While both of these wiring languages were discovered subsequent to the development of our

DGCML wiring language, they confirm the validity of our approach. Feature comparisons

show the strengths of our language, which provides a superset of the operations available in

these competing technologies. This is because DGCML was designed with three main goals

in mind, the ability to deploy services composed of local and remote components, together

with an easily-configurable GUI and an easily-integrated help system.

 47

3.2.1. XwingML*

XwingML (pronounced "zwing-M-L"), developed by HP Bluestone Software, enables users

to build XML documents that define a complete Java Swing GUI [BlueStone 1999].

Although XwingML is similar to BeanML (see section 3.2.2), it is a more specific vocabulary

aimed at a particular area of Java development, i.e. GUI development, as opposed to

BeanML, which is a more general vocabulary for wiring JavaBeans [StLaurent 1999].

A simple example of XwingML, taken from [Bluestone 2000], illustrates the sort of

information stored in a XwingML descriptor file.

<JMenuBar>

 <JMenu text="File" mnemonic="F">

 <JMenuItem icon="open.gif" text="Open"

 actionListener="OpenFile"/>
<JMenuItem icon="save.gif" text="Save"

 actionCommand="save"

 actionListener="SaveFile"/>

 <JMenuItem text="Exit"

 actionListener="com.bluestone.xml.swing.XwingMLExit"/>
 </JMenu>

</JMenuBar>

XwingML comes with an XML DTD that defines the full set of Swing/Java Foundation Class

(JFC) classes and properties, as well as support for all Swing/JFC Listeners [BlueStone

1999]. It also includes templates for making a wide variety of GUI interfaces, including

menus, frames, and dialog boxes [WebTechniques 1999]. The XwingML allows GUI’s to be

easily specified by simply editing an XML document. The XML document is then read in by

the XwingML parser, which dynamically generates the Java GUI.

* XwingML is no longer supported/available for download from BlueStone

 48

Specifying the GUI of an application separately as an XML document has a number of

benefits, including [BlueStone 1999] [WebTechniques 1999]:

?? Java GUI creation without Java coding or compile cycle,

?? Java GUI defined in human-readable XML, which is closer to plain English and take

less time to learn than Java,

?? Ease of code maintenance and re-use because there is a clear separation of the GUI

code from the application logic.

XwingML’s focus on representing Java Swing GUIs has enabled it to provide a fairly easy to

use syntax for specifying relatively complex Swing GUIs. However, it is limited to using

Swing components, and does not allow one to specify more general operations, such as

working with non-GUI objects, as possible with BeanML and our DGCML. If the XwingML

syntax were to be extended to allow the more generic operations provided by BeanML and

DGCML, it would require the specification of a very detailed DTD or schema because of the

use of element and attribute tags to represent the name and properties of each class.

3.2.2. Bean Markup Language (BeanML)

IBM Alphaworks’ Bean Markup Language (BeanML) is an XML-based component

configuration or wiring language that is customised for the JavaBean component model. It is

not a full scripting language, but instead serves only to describe how JavaBean components

relate to one another in terms of their configuration.

A simple example of BeanML, illustrates the sort of information stored in a BeanML

descriptor file1.

<bean class="javax.swing.JMenuBar">

 <add>

 <bean class="javax.swing.JMenu">

1 In order to allow a syntactic comparison of BeanML, XwingML and DGCML, the simple

code extracts implement the same trivial task of setting up part of a menu. The code extracts

should not, however, be considered a reflection on the power and flexibility of the wiring

languages.

 49

 <args> <string value="File"/> </args>

 <property name="mnemonic" value="F"/>

 <add>

 <bean class="javax.swing.JMenuItem">

 <args> <string value="Open"/> </args>

 <property name="icon" value="open.gif"/>

 <property name="mnemonic" value="O"/>

 <event-binding name="action">

 <script>

 … open file dialog, etc.

 </script>

 </event-binding>

 </bean>

 <bean class="javax.swing.JMenuItem">

 <args> <string value="Save"/> </args>

 … Additional details for Save MenuItem omitted for brevity …

 </bean>

 <bean class="javax.swing.JMenuItem">

 <property name="text" value="Exit"/>

 <property name="mnemonic" value="x"/>

 <event-binding name="action">

 <script>

 … tidy up, and exit gracefully

 </script>

 </event-binding>

 </bean>

 </add>

</bean>

 </add>

 </bean>

There are many conceptual similarities between BeanML and our DGCML, as they both

attempt to facilitate similar behaviour. However, there are also some fundamental

differences, the most important of which is that BeanML does not support distributed

application development. In addition, BeanML is a very general solution to wiring beans

together, whereas our DGCML was built specifically for marking up descriptions of

distributed GIS services, including deployment information, a description of the service, its

GUI, and its associated help system.

 50

BeanML is extensible1, and is a more general solution for developing applications

declaratively than our system. While it may have been possible to extend/customise BeanML

to provide similar functionality, we have kept our original design rather than adopting and

extending the BeanML approach in order to avoid the complexity of BeanML due to its

generalised approach. Our system was developed to solve the specific problems associated

with the development of a dynamic interface for GIS components, based on the inclusion of

remote services implemented as EJB or CORBA Objects. In addition, one of the

requirements was that it should be simple to modify, so that non-programmers could

understand, and customise, any part of the GIS service descriptor by simply editing the XML

text.

3.3. XML for deploying applications
With the rapid growth of the Internet, there can be little doubt that we are moving away from

the standalone, or "unconnected," model of operation, and migrating towards a highly

networked environment. This has resulted in the network becoming a powerful medium for

software distribution. No longer does the distribution of software have to incur the cost

overhead of producing CDs or floppy disks. Instead, wherever possible the network may be

used to allow end-users to download software. This may be done actively using the “pull”

paradigm, or passively though the “push” paradigm [van Hoff et al. 1997]. This clearly has

an impact on how software is deployed and requires new deployment software technologies

to be developed that support this new distribution medium [Hall et al. 1999].

Part of the functionality provided by our DGCML is the deployment of GIS services that may

execute locally on the client machine, or remotely on a server, or as a combination of local

and remote components. Therefore we have included a brief overview of two popular

deployment mechanisms to illustrate the similarities in the information stored by each of

them as well as the information stored in our DGCML descriptor file.

1 BeanML allows one to develop special classes for event-handling, performing type

conversion, and to overload the <add> operation for adding different beans.

 51

3.3.1. OSD

The Open Software Description (OSD) specification is an XML-based, open industry data

format for the automation of software distribution over the Internet or corporate intranets. It

has been included here because there is overlap between the functionality that has been

included in our DGCML wiring language, and information stored about software

components/applications deployed using the OSD specification.

The OSD vocabulary is used to describe deployment-related information about software

packages and their inter-dependencies, and can be used to deploy Java packages, Java

standalone applications and platform native code [van Hoff et al. 1997]. Deployment occurs

when the client, usually a browser, parses the OSD file and then downloads and installs the

necessary components.

OSD was discovered when our DGCML design was already in an advanced stage. It has

capabilities for identifying metadata beyond those in our DGCML description, such as

operating system and version, processor, and language requirements as well as dependency

information. Incorporating these capabilities into DGCML would be beneficial if our

language were to become more than simply a mechanism to implement our proof-of-concept

system RADGIS. However, DGCML could easily be extended to include such metadata

without affecting its core structure.

The OSD specification provides an XML-encoded vocabulary that can be used to describe

software components, their versions, their underlying structure, and their interdependencies

with other components. Our DGCML also contains deployment information, but is aimed at

finer-grained components that facilitate the development and deployment of GIS services. In

addition, DGCML specifies the GUI for invoking the components as well as information

necessary to integrate help for that service into the client application’s help system.

 52

A simple example of OSD, taken from a specification submitted to the W3C (see [van Hoff et

al. 1997]), illustrates the sort of information stored in an OSD descriptor file.

<SOFTPKG NAME="com.foobar.www.Solitaire" VERSION="1,0,0,0">

 <TITLE>Solitaire</TITLE>

<ABSTRACT>Solitaire by FooBar Corporation</ABSTRACT>

 <LICENSE HREF="http://www.foobar.com/solitaire/license.html" />

 <!-- FooBar Solitaire is implemented in native code for Win32, Java

 code for other platforms -->

 <IMPLEMENTATION>

 <OS VALUE="WinNT"><OSVERSION VALUE="4,0,0,0"/></OS>

 <OS VALUE="Win95"/>

 <PROCESSOR VALUE="x86" />

 <LANGUAGE VALUE="en" />

 <CODEBASE HREF="http://www.foobar.org/solitaire.cab" />

 </IMPLEMENTATION>

 <IMPLEMENTATION>

 <IMPLTYPE VALUE="Java" />

 <CODEBASE HREF="http://www.foobar.org/solitaire.jar" />

 <!-- The Java implementation needs the DeckOfCards object -->

 <DEPENDENCY>

 <CODEBASE HREF="http://www.foobar.org/cards.osd" />

 </DEPENDENCY>

 </IMPLEMENTATION>

</SOFTPKG>

While most of the above example is fairly self-explanatory, it is worth pointing out that the

Solitaire software package specifies that there are two different implementations of Solitaire

available. The first version is packaged in a standard windows CAB file, and requires

Windows 95 or WinNT version 4.0 to run. The second version is a Java version, which does

not have particular operating system requirements (for obvious reasons), but has a

dependency on another piece of software whose deployment is specified by the cards.osd file.

Should the software specified in the cards.osd file not be installed on the local machine at the

time of installing the Java version of solitaire, it will be installed before the solitaire

installation begins.

 53

3.3.2. JNLP and Java Web Start

Due to the overwhelming emphasis being placed on making everything Web browser-

enabled, there has been a strong drive by Sun to develop Java-based server-side technologies,

as seen in the development of the Servlet and J2EE specifications, while the client-side has

remained relatively neglected. In fact, according to [Rohaly 2000] “it’s been accepted for

some time now that client-side Java is dead”.

Many people are slowly realising that trying to make many different types of applications fit

the Web browser style is not always possible or prudent, particularly due to browser

limitations such as the limited graphics capabilities, relatively primitive GUI, and

incompatibilities between different browsers and versions. Thus there is still a very real

demand for client-side applications, as opposed to browser-based front-ends, that interact

with server-side processes.

It was the simplicity of the web-browser and the built-in security that have made it such a

popular development platform. However, with the help of the recently launched Java Web

Start and Java Network Launch Protocol (JNLP), these same benefits, together with a number

of others mentioned below, may yet ensure that Java becomes a viable client development

platform.

Java Web Start, developed by Sun and its partners under the Java Community Process, is a

client-side helper application that is invoked when a browser encounters a link with a MIME

type application/jnlp and file extension .JNLP [Rohaly 2000]. Clients therefore no longer

require a browser with a JVM in order to run these applications or applets. Instead, the Java

Web Start Application Manager can be used to launch the applications or applets (and

perhaps launch an external JVM if required), install the applications so that they may be

executed through icons on the desktop, or even launch these applications when offline.

This approach allows one to launch client-side applications that provide richer functionality

than HTML, without the need for a browser or applets. In addition, the use of JNLP provides

a number of runtime features that make JNLP-based apps more attractive than applets, such

as [Rohaly 2000] [Sun MicroSystems 2001a] [Liron 2000]:

 54

?? guaranteeing platform compatibility by automatically detecting, installing, and using

the correct version of the Java Runtime Environment for a particular application.

?? providing the ability to launch applications or applets from the browser or the

desktop. (applet integration is built into Java Web Start, allowing existing applets to

be deployed without modification.)

?? version checking ensures that newer versions of the application are downloaded as

they become available.

?? classes used by the application are automatically cached and updated locally so that

the start-up time is dramatically reduced after the first time the application is used.

?? enhanced security, which goes beyond the Applet sandbox model, ensures that local

resources, such as the file -system, may be used in a secure manner without the need

for signed code. However, it is also possible to grant additional permissions to signed

code.

?? the ability to finely control how applications are downloaded. For example, it is

possible to load one small JAR immediately, and the others on demand.

?? A jardiff mechanism facilitates incremental updates such that only the classes in a

JAR that differ from the locally-cached copies are downloaded. Thus updates to an

application need not require the entire new version to be downloaded.

Once again, the best way to illustrate what sort of information is stored in a .JNLP file is to

provide a simple example. The .JNLP example below is Sun's "Draw" example application,

available at http://java.sun.com/products/javawebstart/demos.html:

<jnlp>

<information>

<title>Draw</title>

<vendor>Sun Microsystems, Inc.</vendor>

<description>Draw</description>

<description kind="short">A minimalist drawing Application

along the lines of Illustrator.</description>

<icon ref="http://www.swingteam.com/jumpjars/draw.jpg"/>

<offline/>

</information>

<jre version="1.3.0 1.3 1.2"/>

 55

<codebase>

<jar ref="http://www.swingteam.com/jumpjars/draw.jar"/>

</codebase>

<application mainclass="Draw"/>

</jnlp>

The .JNLP descriptor file is read by the Java Web Start Application Manager which then

decides whether the application needs to be downloaded or updated, then runs the

application. Figure 3.1 provides a pictorial overview of the entire process, from selecting a

link to a .JNLP file, to the launching of the application once all the necessary checks have

been made and files downloaded.

Figure 3.1. The Jav a Web Start architecture [Rohaly 2000]

 56

3.4. Our Distributed GIS Component Markup Language

(DGCML)

In the development of our proof-of-concept system, we have made use XML to transfer

metadata about the implementations of individual GIS services. DGCML allows the

developer of GIS services to make use of local and/or remote objects, and contains a

description of the service, what components make up its GUI (if there is one associated with

that service) as well as links to the necessary help files for that service1. DGCML has been

designed specifically to be easy to understand and edit, and its programming style is close to

Java.

The extract of DGCML below, based on the example used in XwingML and BeanML,

illustrates the sort of information stored in a DGCML descriptor file

 … deployment information …

 <GUI>

 … other GUI components …

 <Component name="defaultMenuBar" type="MenuBar">

 <Component name="fileMenu" type="Menu">

 <Property name="text" value="File"/>

 <Component name="OpenMI" type="MenuItem">

 <Property name="text" value="Open"/>

 <MethodCall ReturnValueDest="_openIcon"

 ReturnType="javax.swing.ImageIcon"

 name="constructor">

 <Param DataType="java.lang.String" Source="open.gif"/>

 </MethodCall>

 <Property name="icon" value="_openIcon"/>

 <Event type="action">

 … MethodCalls …

 </Event>

1 Further implementation-specific details are provided in Chapter 5, which deals with the

implementation of the RADGIS application.

 57

 </Component>

 <Component name="SaveMI" type="MenuItem">

 <Property name="text" value="Save"/>

 … additional details for Save MenuItem omitted for brevity …

 </Component>

 <Component name="ExitMI" type="MenuItem">

 <Property name="text" value="Exit"/>

 <Event type="action">

 … MethodCalls …

 </Event>

 </Component>

 </Component>

 </Component>

 </GUI>

 … help system inform ation …

Although DGCML was originally developed to support GIS services implemented as remote

objects, it also supports the use of local GIS services that have downloaded to, and are

executed on, the client machine as part of the client GIS application.

We have chosen to implement the local components as Java objects, deployed as JARs, and

the remote components, as Enterprise JavaBeans (EJBs) and CORBA Objects. It should be

noted that some services are implemented as a combination of finer-grained obje cts that may

be local or remote. Thus, like BeanML, our DGCML facilitates the creation of hierarchies

whereby one “complex” DGCML descriptor may contain a reference to one or more

DGCML files that contain descriptions of “simple” components that may reside locally or

remotely.

The idea of using XML to specify how JavaBeans may be wired together to create an

application, is not novel (see section 3.2.2 which describes BeanML). However our approach

to the creation of an XML descriptor for GIS services, that includes application metadata and

the ability to wire Java objects and Swing components to provide a GUI, that facilitates the

invocation of local and/or remote methods, and can be incorporated into a client GIS

application at runtime, is novel.

 58

3.5. Summary
In this chapter we have presented four XML technologies that overlap with, or have

influenced, the development of our DGCML. BeanML and XwingML are markup languages

that enable a user to compose applications based on JavaBeans, and develop GUI’s based on

the Swing/JFC classes respectively. OSD and JNLP are deployment descriptor vocabularies

that allow applications to be deployed across the Internet.

Our DGCML can therefore be best described as being a combination of a deployment

descriptor and a wiring language for components that implement GIS services, or even stand-

alone applications. All that is required on the client-side is the DGCML interpreter that reads

in the DGCML descriptor, downloads the necessary support classes, and builds the GIS

service using Java Reflection and JavaBean APIs.

 59

Chapter 4

Factors influencing the design of RADGIS

“I can't understand why people are frightened by new ideas.

I'm frightened of old ones.” John Cage (1912-1992)

With the explosion of the Internet, one has seen a shift in focus from commodity-based

economies to data-driven economies. Many companies have invested heavily in systems that

will allow them to perform data mining, for example data visualisation and trend analysis, in

order to retain competit ive advantage. However, with the exception of specific industries that

rely heavily on GIS functionality, e.g. mining, telecommunications, forestry and

conservation, most businesses have not made use of spatial analysis to support business

decisions, or in the derivation of income.

This is surprising when one considers that according to studies [Daisey 2000], including “GIS

in business” conducted by Dutch-based Ravi Business Platform in collaboration with the

Vrije Universiteit, Amsterdam and Manchester Metropolitan University, UK, an estimated 80

to 90 percent of business-related information, particularly business support systems, is

geographical in nature [GeoEurope 2000]. However, as industry is made aware of the

 60

intrinsic value of location, through innovative developments such as Mobile Location

Services1, this is rapidly going to change.

Many GIS vendors and spatial data providers, on the other hand, have been quick to realise

the potential of the Internet as the next-generation GIS platform and geospatial data

distribution tool, and have moved with the times to ensure that they are able to tap into this

particularly lucrative new market [Toon 1997][Gifford 1999].

There are two main areas where the development of GIS applications have benefited most

from the explosion of the Web and Web technologies. These are the development of

Web/Image Mapping Servers and browser-based front-ends that provide access to maps and

geospatial data, as well as the development of sophisticated client-side GIS applications that

integrate geospatial services and data, distributed across the Web, in a transparent manner.

Web browser-based GIS applications and Web/Image Mapping Servers have been criticised

for their lack of functionality because they do not provide tools for performing analysis on

the geospatial data, i.e. they are generally no more than data viewers or data explorers. The

focus of our research has therefore been on the development of an extensible client-side GIS

application. It is here that we have developed a novel approach towards allowing the user to

create, and customize, their own component-based client-side GIS application, which has the

ability to make use of distributed services and data. Our work therefore fills an important

niche that has been neglected, or at best only partially addressed, until now.

The relatively new concept of Location (Based) Services has brought with it the promise of

individual services that provide user-friendly applications of GIS operations. The

introduction of location services has also added much value to our research. Not only does it

add to the industry impetus to create re-usable GIS services, it also provides another

application within the field of GIS for demonstrating the flexibility of our approach, i.e. in the

development of an extensible client-side framework for utilising location services.

1 The Location Services industry is currently the most rapidly expanding sector of GIS. Its

growth rate has already exceeded that of the traditional GIS market [International Data

Corporation 2000].

 61

This chapter provides an overview of different GIS architectures currently available, as well

as work done by the Open GIS Consortium, in order to illustrate the synergy between our

approach and the work that is being undertaken by major developers and standardization

bodies. It also discusses the following topics that form the theoretical foundation of our

approach to RADGIS, which is introduced at the end of the chapter:

?? The origin of a standardised, XML-encoded data transfer format called GML, based

on the OGC’s Simple Features Specification. Components developed for our

RADGIS application must, in addition to any proprietary formats, support GML so

that geospatial data transfer between distributed components within the RADGIS

application can be standardised on GML, simplifying interoperability.

?? Work done by the OGC with respect to the provision of interoperable geospatial

services (OpenGIS® Service Architecture), which forms the basis for implementing

our local and distributed services.

?? Location (Based) Services, which are being considered as a special application of our

RADGIS architecture, as well as fuelling the market for re-usable GIS components.

4.1. GIS Architectures
It is generally accepted that GIS applications can be logically disaggregated into three main

functions [Morais 2000], namely:

?? data management – the storage and retrieval of spatial and a-spatial attribute data,

generally via a database management system.

?? operations and analysis – the “business logic” that implements the logical processing

of the data, including things like feature overlay, image manipulation and analysis,

and map projection.

?? rendering and user interface – the software components that the user interacts with

that support the presentation of data.

GIS applications have undergone many architectural changes over the past two decades that

have been in keeping with advances in tiered application development in general. GIS

systems developed during the late 1970s and early 1980s were based on the single

unconnected workstation model, and did not separate the tasks of data management,

 62

operations and analysis , and the rendering and user interface . Instead, these components

were tightly coupled and sold as part of a single entity (or single-tier application).

However, with the emergence of the client-server systems architecture in the early 1990s,

aided by the introduction of relational databases and relatively inexpensive desktop

computers, GIS applications slowly disaggregated the data management duties from the

operations and analysis, and rendering and user interface.

This facilitated the use of a database from a vendor other than the GIS application vendor, as

well as the ability to make use of remote data access, i.e. accessing data from a machine other

than the machine on which the GIS application was running. Remote Data Access (RDA)

provides an effective and scaleable way to distribute processing and storage over a network,

separating the data repositories from client applications [Grady, current]. Thus, a single copy

of the dataset could be accessed by multiple users simultaneously (according to the

transaction rules of the database), reducing the possibility of data inconsistency due to

keeping multiple copies of a dataset up-to-date. Many of today’s GIS installations still make

use of this “two-tier” architecture, for example storing their spatial data on a central server,

such as ArcSDE or Oracle Spatial database, and using a client such as ArcView or Arc/Info

to manipulate this data.

The most recent evolutionary stage in systems architecture is the three-tiered architecture,

also referred to as the n-tiered approach. In n-tiered architectures, there is an explicit

decoupling of the operations and analysis (business logic) component of GIS applications

from the user interface and data management components.

One of the key benefits derived from separating application functionality into multiple tiers,

is the ability to replace the implementation of a particular tier without affecting the

implementation of the other tiers, e.g. changing the database used to store the data should not

affect the operations and analysis, and user interface tiers.

The focus of our research is on the development of re-usable GIS operations and analysis

components, such that the business logic of our GIS applications is made up of

interchangeable components, possibly developed by different vendors at different times.

 63

One of the biggest challenges is how these components are to interact with other software

components, about which they have no compile-time knowledge. Thus during the design of

the components, the emphasis should be on non-specialised and non-proprietary interaction,

to ensure extensible, yet robust components that result in the greatest possible level of reuse.

The successful implementation of an n-tiered component-based application can therefore

derive much benefit from the use of industry standards, and improvements in component

software technology [Morais 2000]. Fortunately, within the field of GIS, there have been a

number of standardisation efforts seeking to create industry standards for:

?? geospatial data representation and transfer formats, e.g. the OGC’s Simple Features

Specification and GML, ISO/TC 211’s geospatial data model, the Federal Information

Processing Standard (FIPS 173) - Spatial Data Transfer Standard (SDTS), and various

others by the Federal Geographic Data Committee (FGDC) and the US Geological

Survey (USGS) Group; and

?? the implementation of services based on open standards, e.g. the OGC's OpenGIS®

Service Architecture, Web Mapping Server, Web Feature Server, and Catalog

services, and the ISO/TC 211’s geospatial services.

Emerging GIS software varies widely in performance, quality, feature set, cost and, most

importantly, fundamental system architectures. These architectural differences have a

significant impact on how the software performs in an Internet-based computing environment

[Gifford 1999]. Therefore, before taking a look at the standardisation that is being

undertaken by the OGC, we briefly describe the different GIS architectures and types of GIS

applications currently available in order to categorise our RADGIS application, and explain

why our approach is novel.

The applications have been divided into two categories: client-side GIS applications and

server-side GIS applications. The classification of a GIS application as server-side or client-

side, is based on where GIS services are executed as opposed to where the resultant map is

visualized. Thus a client-side application that simply provides an interface for viewing a

geospatial image generated by a GIS server is not considered to be a client-side GIS

application, as the complex GIS calculations and data remain on the server.

 64

4.1.1. Server-side GIS Applications

Server-side GIS, and in particular Internet Mapping, is a relatively simple and cost-effective

method of allowing anyone with access to the Web to access maps and GIS-based data and

services, based on easy-to-use browser-based formats or thin clients. In addition, the server-

side architecture centralises control over the geospatial data and services, which significantly

simplifies the deployment, security/access control permissions and maintenance of server-

side GIS applications.

Figure 4.1. Server-side Architecture

Table 4.1 below summarises some the advantages and disadvantages of the server-side

architecture. For a more comprehensive discussion on server-side and client-side GIS

architectures, the reader is referred to [Gifford 1999].

Client Web Server

HTTP

Data

GIS
ApplicationWeb

Browser

Client Web Server

HTTP

Data

GIS
ApplicationWeb

Browser

 65

Advantages to Server-Side GIS

Adherence to Standards

?? Can adhere to all Internet/Web standards

?? Can be accessed with standard Web browser

?? Eliminates platform issues as much as possible

Performance
?? Significant GIS functionality can reside on the server

?? Large GIS databases can be accessed on the server

?? Low bandwidth requirements

?? Performance per request is predictable

Cost of Ownership

?? Centralised administration of data and GIS application
software

?? User support is minimal

Disadvantages to Server-Side GIS

Adherence to Standards

?? No viable vector formats

?? One-click functionality from Web clients 1

?? Low graphics quality

?? Primitive GUI

Performance

?? Creates many requests

Information re-transferred for each request

Table 4.1. Advantages and disadvantages of Server-side GIS [Gifford 1999]

1 It is often necessary to allow the user to select multiple features before executing an

operation.

 66

4.1.1.1. Web Map Servers (WMS)

A number of Web/Image Mapping Servers have been developed recently that address the

need for out-of-the-box, GIS and mapping solutions for publishing GIS maps on the

WWW. These include products like ArcIMS, Internet Mapper, Autodesk MapGuide

Server and MapObject IMS.

Traditional Web Map Servers obtain geospatial data from a spatial database, in response

to a Web browser request, and then return the resultant map as an image that can be

viewed by the Web browser, using standard HTTP. This provides an easy to use,

automated interface for obtaining maps, but is very limited in terms of traditional GIS

capability, as all the complex and proprietary software, in addition to the spatial and

tabular data, remain on the server.

The use of a Web-browser provides a simple, standard mechanism for viewing the

resultant maps, but there are also number of drawbacks to this approach, including the

relatively primitive GUI, low graphics quality and one-click functionality of browsers.

The maps generated by WMSs are generally static images that do not contain any

geospatial encoding. This is because most standard Web browsers only support GIF and

JPEG images. Thus, even though one may be able to perform simple pan, zoom and

navigation-type operations, it is not generally possible to perform any form of spatial

analysis, query any information about points or areas on the maps, or use the resultant

image as a data source for further geospatial processing. In addition, if the image needs

to be modified, e.g. during a pan/zoom operation, turning a layer on or off, etc, it requires

a request to be sent to the WMS to regenerate the image from the original dataset using

the new set of parameters. This may result in many requests and responses being

generated, which in turn could cause poor performance [Gifford 1999].

However, a growing number of WMS are now equipped to provide far more than static

images. WMS that implement the Open GIS Consortium’s WMS Specification (see

[Open GIS Consortium 2000b] for more information) also have the ability to produce, for

 67

example, georeferenced images (geoTIFF) or Features1 (GML), allowing the resultant

map to processed further, for example using chaining, or directly in a client-side GIS

application. However, once again we must reiterate that these formats are not supported

by current Web browsers, and are therefore intended for use by more sophisticated

clients.

Web Mapping Servers fulfil a very useful role within GIS, particularly for serving data on

the Web. Thus, the restrictions mentioned above are not criticisms of their architecture,

but simply illustrate their intended use as static image servers for viewing spatial data on

the web, and not as full-blown distributed GIS application servers. However, it is worth

noting their potential use as data servers in distributed GIS applications.

4.1.2. Client-side GIS Applications

Client-side GIS requires the installation of pre-packaged or downloaded GIS-enabled

software on the client machine, such as traditional GIS applications or GIS Java applets,

ActiveX components, or plug-ins for a Web browser [Marshall 2000].

Client-side architectures that interact directly with the geospatial data, as opposed to static

map images, enable a large set of graphic and GIS operations to be performed locally. Thus

unlike the WMS (see section 4.1.1.1), changes to the display, caused by operations such as

panning or zooming can occur without re-transmitting a request to the server, resulting in a

significant performance improvement. Thus, the major advantages of client-side solutions

are the abilities to enhance user interfaces, e.g. the ability to perform multipoint feature

selection, and improve performance through the reduction in network traffic.

The major disadvantage associated with client-side GIS solutions such as Java applets,

ActiveX components, or plug-ins, is that they require software to be downloaded to the client

machine (and installed) before the user is able to browse the data. This may be acceptable for

1 The ability to return Features, e.g. as GML, rather than static images, was originally

intended as a major extension to the Web Map Server specification. However, it has now

become a separate interface specification, called the Web Feature Server specification

[Vretanos 2001]

 68

someone who intends using a particular product regularly. However, for someone who rarely

uses mapping services, it is far easier to access a Web page that immediately allows him/her

to start interacting with map data, than have to download different client software

implementations when wishing to browse data from different vendors [Gifford 1999].

Table 4.2 below summarises some the advantages and disadvantages of the Client-side

architecture. For a more comprehensive discussion on Client-side and Server-side GIS

architectures, the reader is referred to [Gifford 1999].

 Advantages to Client-Side GIS

Adherence to Standards

?? Document/graphics standards not required

?? Vector data can be used

?? Image quality not restricted to GIF and JPEG

?? Modern interfaces possible

?? Not restricted to single -click operations

Performance

?? Excellent performance for operations that occur locally

?? Less Internet traffic required

Disadvantages to Client-Side GIS

Adherence to Standards

?? Non-conformance limits user base

?? Requires users to obtain additional software

?? Platform/browser incompatibility

Performance

?? Initial download times can be substantial if databases
transferred

?? Users must wait for software to download

?? Overall performance can be low with large databases

Table 4.2. Advantages and disadvantages of Client-side GIS [Gifford 1999]

 69

4.1.2.1. Traditional GIS applications

Traditional GIS applications such as ARCInfo, MapInfo, ArcView, and TNTmips are

generally very large applications that are expensive to license, have a very steep learning

curve [Albrecht 1996], and are difficult to use. These applications are intended for use by

GIS experts, who have a solid understanding of cartography. Although most provide the

ability to install additional modules for specialist tasks, or develop customised

functionality through scripting languages, they do not allow the application to be tailored

towards users of different levels-of-expertise or based on the user’s application domain.

While there is no denying that traditional GIS applications fulfil an extremely valuable

role, many problems associated with these GIS applications have been identified,

including application bloat, vendor lock-in, and lack of interoperability and location

transparency. (Please refer back to section 1.1 for a more detailed discussion of these

problems).

4.1.2.2. Java Applets

A number of Java applets implementing rudimentary GIS functionality have emerged

recently. However, there are a number of problems with implementing GIS clients as

Java applets that limit the potential of this approach. These include having to download

the applet each time the client is used, and security restrictions on applets, which must be

signed with digital certificates in order to obtain special permissions to read/write to the

hard drive and/or create a network socket connection to a server other than the server

from which the Applet was downloaded. Furthermore, applet-signing mechanisms are

complicated and vary between Netscape and Internet Explorer [Griscom 1999].

Applets rely on the Web browser for their Java Virtual Machine (JVM). Even though

they are supposed to implement the same standard, there are often differences between

the JVMs of different browsers, including incomplete implementations of certain features.

Neither Netscape nor Microsoft currently allow one to upgrade the browser’s JVM, and

thus one either has to develop applets for old versions of the JVM, or make use of the

Java plug-in. However, because the plug-in approach uses an external JVM, it is not

 70

possible for the Java applet to interact with the Web browser, which once again limits its

functionality [Rohaly 2000].

Even if the above-mentioned problems could be avoided, execution of Java (applets)

within a Web browser is much slower than standalone Java execution [Rohaly 2000].

This poor performance is a very real problem that may ultimately dissuade a user from

using an applet-based GIS.

However, possibly the biggest problem with developing client-side GIS software as

applets, is that they must be downloaded from the Web Server each time they are to be

used. If the applet is too large, it will take too long to download and the user will

invariably seek an alternative solution. Therefore, the functionality of the applet is

severely limited by its size, and applets are generally implemented with a specific task in

mind.

4.1.2.3. Plug-in approach

A plug-in is a program module that extends the functionality of Web browsers, enabling

them to support new types of multimedia content1. In comparison with Java applets, most

GIS plug-ins provide faster visualization and better levels of interactivity. In addition,

GIS plug-ins do not suffer from the security restrictions imposed on Java applets, or the

need to download the applet each time a data set is to be viewed because the code for the

plug-in is installed on the client machine.

Plug-ins for most commercial GIS applications are becoming more and more prevalent,

e.g. Autodesk mapGuide plug-in, ArcExplorer. Most of them are freely available,

because they are fairly limited in functionality (in comparison to traditional GIS

applications). They generally simply fulfil the role of data viewers/browsers for

1 Technically, the term “plug-in” refers to a module that conforms to the Netscape Navigator

standard, whereas modules designed for Internet Explorer use the ActiveX software standard.

However, we will use the generic sense of the term plug-in to refer to modules that conform

to either standard.

 71

proprietary spatial data formats, with limited analytic capability and/or image processing

capabilities.

Due to their limited functionality and design, as well as problems affecting the interaction

of different plug-ins within the Web browser environment1, plug-ins and traditional GIS

applications sit at the opposite ends of the customisability spectrum. Plug-ins are

essentially small, specialised, standalone modules that cannot be extended, while

traditional GIS applications suffer from serious application bloat, but cannot be trimmed

of unnecessary features.

4.2. OpenGIS®
It is unlikely that a single architecture for developing GIS applications will triumph. Instead,

because different users have different requirements and preferences, a number of models,

from traditional GIS applications to specialist GIS applications based on highly distributed

components will co-exist. The fundamental issue that will determine whether or not these

systems co-exist successfully is that of interoperability.

The OGC’s vision for the future of GIS is “the full integration of geospatial data and

geoprocessing resources into mainstream computing and the widespread use of interoperable

geoprocessing software and geodata products throughout the information infrastructure”

[Open GIS Consortium 1999a]. In order to facilitate this vision, its working groups have

developed abstract specifications and implementation specifications for its two central

technology themes of sharing geospatial information and providing geospatial services (see

table 4.3 and table 4.4).

1 While the interaction of certain combinations of plug-ins is possible using a particular Web

browser architecture and version, differences in fundamental architecture in different Web

browsers, as well as within versions of a particular Web browser, have severely limited the

ability for developers to utilise a standard mechanism to allow plug-ins to interact effectively.

 72

4.2.1. The Abstract Specifications

The Abstract Specification documents provide the theoretical background for the

Implementation Specifications (see section 4.2.2), as well as providing a technically complete

“language” to discuss issues of interoperability [Open GIS Consortium, 1999a].

Each of the topics described in the OpenGIS® Abstract Specification documents is composed

of two models:

?? the Essential Model that describes a conceptual link between the software system

and the real world, and

?? the Abstract Model (the core of the Abstract Specification) that describes how the

eventual software system should work in an implementation neutral manner.

Figure 4.2 shows the dependencies between the topics described in the OpenGIS® Abstract

Specification, while table 4.3 provides a very brief description of each of them.

Figure 4.2. Dependencies between Abstract Specification topics

Topic 1
Feature

Geometry

Topic 2 Spatial
Reference
Systems

Topic 3
Locational
Geometry

Topic 8
Relations

Bet’n Features

Topic 11
Metadata

Topic 10
Feature

Collections

Topic 9
Quality

Topic 14
Semantics and
Info Com’t’s

Topic 4 Stored
Functions and
Interpolation

Topic 5
The Open

GIS Feature

Topic 6
The Coverage

Type

Topic 7
Earth

Imagery

Topic 12
The Open GIS
Services Arch

Topic 15
Image Expl.

Services

Topic 13
Catalog
Services

Topic 16
Image Coord .

Transf Services

Topic 1
Feature

Geometry

Topic 2 Spatial
Reference
Systems

Topic 3
Locational
Geometry

Topic 8
Relations

Bet’n Features

Topic 11
Metadata

Topic 10
Feature

Collections

Topic 9
Quality

Topic 14
Semantics and
Info Com’t’s

Topic 4 Stored
Functions and
Interpolation

Topic 5
The Open

GIS Feature

Topic 6
The Coverage

Type

Topic 7
Earth

Imagery

Topic 12
The Open GIS
Services Arch

Topic 15
Image Expl.

Services

Topic 13
Catalog
Services

Topic 16
Image Coord .

Transf Services

 73

Table 4.3 provides an overview of the OGC’s Abstract Specification as of July 2001 (adapted

from [Öhrström 2001]). For further information please refer to the following OpenGIS® Web

page: http://www.opengis.org/techno/specs.htm

Specification Purpose

Overview
Provides an overview of the OpenGIS® Abstract

Specifications

Feature Geometry
Describes an abstract model for the geometric

representation of GIS-objects (i.e. features)

Spatial Reference Systems
Contains definitions of classes for reference

systems, data types, units and operations

Locational Geometry
Functions for mapping Features from one

locational system to another

Stored Functions and Interpolation
Calculating functions, interpolation, and

extrapolation

The OpenGIS® Feature Modelling real world and abstract entities

The Coverage Type
The formulation and calculus of the Coverage

Type and its subtypes

Earth Imagery
Image geometry models, and models for

computing the real world-model connection

Relationships Between Features How to model relationships between Features

Quality
Defines various position accuracy terms and

concepts

Feature Collections Models for handling Feature collections

Metadata
Models for handling Feature and Feature

collection metadata

The OpenGIS® Service Architecture

A framework of services required for the

development and execution of geospatially

oriented applications

 74

Catalog Services
OpenGIS® services for data discovery and

data access

Semantics and Information Communities sharing data between communities

Image Exploitation Services
Functions for image exploitation, such as

Feature extraction

Image Coordinate Transformation

Services

Services for transforming image position

coordinates, to and from ground position

coordinates

Table 4.3. Abstract Specification overview as of July 2001 [Öhrström 2001]

4.2.2. The Implementation Specifications

The Implementation Specifications documents, are a set of specifications, based on the

Abstract Specifications (see section 4.2.1), that contain guidelines for implementing

OpenGIS® applications or components. Table 4.4 provides a very brief description of each of

the Implementation Specifications. For further information refer to the following OpenGIS®

Web page: http://www.opengis.org/techno/specs.htm

A “Testing Program” has been developed by the OGC to test for conformance of products to

the OpenGIS® Implementation Specifications, and at a later stage, to test for interoperability

between products. The conformance test is used to determine if a product implementation of

a particular Implementation Specification fulfils all the mandatory elements. However, it

does not ensure, or even test for, the interoperability of software products. Instead, the OGC

hopes that as the specifications mature, the likelihood of interoperability will become higher.

Specification Purpose

Simple Features Specification

Specification for the handling of simple

geometric representations of GIS-objects, such as

polygons (excludes 3D), and reference systems

Catalog Services Interface Implementation

Specification

Specifies how geospatial handling over networks

should be implemented

 75

Grid Coverage Implementation Specification

Specification for all types of raster based images.

Interfaces for analysis and calculation, such as

histogram, covariance etc

Coordinate Transformation Services

Implementation Specification

Strategies for coordinate systems and

transformation between them

Web Map Server Interfaces Implementation

Specification

Defines services necessary for Web-based access

to geo-data and processing

Geography Markup Language (GML)

Implementation Specification

XML encoding of the Simple Features

Specification

Table 4.4. Implementation specifications as of July 2001 [Öhrström 2001]

4.2.3. Simple Features Specification

A Feature, as defined by the OGC, is the encapsulation of measurable or describable

phenomena about real world or abstract entities. It is the fundamental unit of geospatial

information and consists of both spatial and attribute data. Simple Features are a subset of

Features, that only support linear interpolation between coordinates and do not consist of

other features, i.e. they are atomic [Miller and Schirnick 1999]. Simple Features represent

vector data, such as roads, land-use zones, and watersheds, as points, lines, arcs and

polygons. They do not, however, support the representation of raster data1.

The Simple Features specification does not provide details of how to map features to real

world objects. Instead, it provides a specification for the implementation of mechanisms to

work with Features and Spatial Reference Systems [Öhrström 2001]. This allows the

communication of simple geometry, spatial reference system and attribute information

between applications or components that conform to the Simple Features Implementation

Specification.

1 Vector data consists of a series of points (coordinates), some of which are joined by lines

(i.e. sets of related points), and some line segments (arcs) are joined to form polygons. Raster

data is composed of a grid of cells that represent geographic features, i.e. a georeferenced bit -

mapped image.

 76

The Open GIS Consortium has also produced Simple Features specifications for OLE/COM,

CORBA and SQL for working with simple geospatial features in a distributed or component-

based computing environment, or an SQL database, respectively. Due to the fact that Java

has become the dominant software language for developing distributed enterprise-level

applications, and since an estimated 80% of corporate data has a spatial component, Sun

Microsystems realised that there was a need to add geoprocessing capabilities. Thus, there is

now also an informal workgroup working on creating a Simple Features specification for

Java [Daisey 2000].

4.3. Exposing data efficiently – The future of geospatial

data access?
As mentioned in section 4.1.1.1, most Web Map Servers simply generate and then serve GIF

or JPG map images to the user's Web browser. This approach is straightforward and works

well when the user simply wants to view a low-resolution map image, but does not allow the

user to process the result further in a client-side GIS application, or to make use of it as part

of a service-chaining request.

In addition, most Web mapping applications are inseparably tied to a specific server

implementation, i.e. the client is hard-coded to interact with a particular vendor’s proprietary

map server implementation. Thus a user must run different client applications in order to

access the data and functionality provided by different server implementations. This lack of

interoperability or reuse of client and server implementations, severely limits the ability of a

user to transparently access data from multiple disparate data sources. [Wang et al. 2001]

This section introduces two technologies that have the potential to overcome the above-

mentioned problems, providing much needed capabilities for the efficient indexing of

searchable, georeferenced metadata as well as the delivery of geospatial data in a vendor

independent/open format.

 77

4.3.1. The .geo proposal

Information about a particular location is of more interest to people close to that location than

people who are far away [Lake 2000]. Therefore, it makes sense to have most of the

information regarding a particular location, stored and maintained in that vicinity. However,

one must also remember that remote users may still be interested in that data, and therefore

one must also ensure that such data is readily accessible, and may be easily integrated, on a

regional and global scale.

The .geo proposal, submitted to The Internet Corporation for Assigned Names and Numbers

(ICANN) by SRI International, for an open infrastructure for registering and discovering

georeferenced information on the Internet, attempted to do just that.

The .geo proposal was submitted to ICANN in response to an initiative of the ICANN Board

to select a limited number of diverse proposals that could be used as a proof-of-concept on

which to base decisions about introducing future Top-Level Domains1 (TLDs). It motivated

the creation of a TLD, called .geo , which could be used to index searchable, georeferenced

metadata, using a modified version of DNS to encode latitude/longitude bounded cells as

domain names in the form of minutes.degrees.tendegrees.geo

For example:

?? The geographic domain name 10e40n.geo identifies the 10-degree x 10-degree cell

whose southwest corner is located at 10 degrees east, 40 degrees north.

?? The geographic domain name 2e4n.10e40n.geo identifies the 1-degree x 1-degree cell

whose southwest corner is located at 12 degrees east, 44 degrees north.

?? The geographic domain name 11e21n.2e4n.10e40n.geo identifies the 1-minute x 1-

minute cell whose southwest corner is located at 12 degrees, 11 minutes east and 44

degrees, 21 minutes north.

1 The .geo proposal was not accepted as one of the seven proposals selected for the proof-of-

concept phase by ICANN, and a reconsideration request was rejected by ICANN on 16

March 2001. The reasons provided by ICANN include the complexity of the proposal, and

ICANN’s cautious approach to introducing new top-level domains. This does not, however,

prevent the .geo proposal from being accepted in the future [ICANN Committee 2001].

 78

The beauty of the .geo proposal is in its simplicity, as it provides an easy to use mechanism

for finding information for a particular area. For example, if one were interested in obtaining

information about Grahamstown, one would simply need to determine its longitude and

latitude co-ordinates (possibly from a geo-referencing service). From this information, one

could easily infer the domain name of the geospatial data (and service) server for that area. If

a Web Map/Feature Server was running on that machine, one could very easily make use of

the standardised request format to obtain the desired information (possibly as GML-encoded

data). Additional benefits of the .geo approach are that it limits the amount of metadata per

server, and it drastically reduces server bandwidth because clients can directly query the

relevant cell server(s) to find metadata for a given area [Leclerc et al. 2001].

Regardless of whether or not the .geo proposal is accepted at a future date, it has made an

invaluable contribution in this field, and highlights the need for an efficient mechanism to

index spatial information based on location. For a full description the .geo proposal, please

refer to [Reddy et al. 2000a][SRI Internet Initiative 2000].

4.3.2. A standardised spatial data transfer format - GML

As part of the OGC’s development of specifications for sharing geospatial information and

providing geospatial services, it developed the Simple Features Specification (see section

4.2.3) based on the Feature and Geometry models of the OpenGIS® Abstract Specification. It

has subsequently developed an XML encoding of the Simple Features Specification, called

the Geographic Markup Language (GML 1.0). GML is an open standard for marking up

geospatial information, including both properties and the geometry of geographic features. It

allows one to deliver geospatial information as distinct features, as well as specifying how the

features are to be displayed (using a particular stylesheet) [Galdos Systems Inc. 2001].

GML is not a presentation format, but must be styled for presentation e.g. to Scalable Vector

Graphics (SVG) or X3D (see section 5.1.1.3), using an appropriate style sheet. It is therefore

possible for users to view the resulting maps using a standard browser (once the relevant

plug-in has been installed, e.g. SVG plug-in from Adobe), negating the need for a proprietary

client-side GIS application to visualise the geospatial data.

 79

Figure 4.3 illustrates how GML data can be displayed in a standard, XML-enabled Web

browser using an XSLT stylesheet that maps the GML data into an appropriately represented

SVG image. The manner in which GML data is displayed, is determined by the creator of the

GML to SVG stylesheet. It is therefore possible to have a number of different stylesheets for

the same type of feature, e.g. one stylesheet may represent roads as a thin black line, whereas

another stylesheet may represent roads using a thicker, red line. It is also possible for

stylesheets to map the same GML feature to different SVG-based symbols, depending on the

purpose of the map. Figure 4.4 shows the intended use of GML in the RADGIS architecture.

GML is intended to enable the transport and storage of geographic information in XML and

is anticipated to provide greater interoperability between GIS applications, to enable linked

geographic datasets, and make a significant impact on the ability of organizations to share

geographic information with one another. Although a relatively new technology, GML has

already been hailed as a success, and according to [Wang et al. 2001] “GML represents one

of the most visible steps taken by the geospatial community towards the vision of widespread

spatial interoperability”.

Figure 4.3. Displaying GML data in an XML-enabled Web Browser

GML
Data

XSLT
Engine

XML
Parser

XML - enabled Web Browser

SVG
GML

to
SVG

Stylesheet

SVG plug-in or Active-X control

GML
Data

XSLT
Engine

XML
Parser

XML - enabled Web Browser

SVG
GML

to
SVG

Stylesheet

SVG plug-in or Active-X control

 80

Figure 4.4. The intended use of GML in the RADGIS architecture

The use of GML rather than static GIF/JPEG images (which contain no geographic encoding)

has many advantages including: better quality maps; no need to only target Web browsers

although it can be rendered by most current XML-enabled Web browsers, without the need to

purchase client-side software; custom map styling (using appropriate stylesheets); ability to

create editable maps; more sophisticated linking capabilities; better query capability; control

over content (filtering); animated features; and service chaining [Galdos Systems Inc. 2001].

Many of these advantages are due to the fact that GML is based on XML technologies.

GML
Data

XSLT
Engine

XML
Parser

X3DGML to
X3D

Stylesheet

X3D loader for Java3D

GML
Data

XSLT
Engine

XML
Parser

X3DGML to
X3D

Stylesheet

X3D loader for Java3D

Distributed
Tool

Distributed
Tool

RADGIS
Framework

Local Tool
GML

GML

Distributed
Tool

Distributed
Tool

RADGIS
Framework

Local Tool
GML

GML

 81

The current version, GML 2.0, now based entirely on XML Schema (XSD), was released on

20 February 2001 and significantly expands GML 1.0 to include the encoding of complex

features and feature associations. GML 3.0, which is to be finalised towards the end of 2001,

will provide many useful extensions including topographic support, events, coverages as well

as histories and feature timestamps [Lake 2001a]. These will allow more complex analytic

GIS processing of GML-encoded spatial and temporal data, which in turn will facilitate the

development of more sophisticated GIS tools and location services, based on the open GML

standard.

4.4. Interoperable Geospatial Services
Within the OGC’s specification of geospatial services, it has defined geospatial domain-

specific business objects to ensure that the OpenGIS® Services Architecture can be realised

with standards-based, Commercial-Off-The-Shelf (COTS) products available from multiple

vendors [Open GIS Consortium 2001a]. The OGC also envisages that as developers

implement products with OpenGIS® interfaces, interoperable geographic applications will be

composed of components from the OpenGIS® Services Model and other supporting and

compatible information services [Buehler and McKee 1996].

Many of the components will be implemented to run locally on the client machine as core

services (e.g. the OpenGIS®’s GeoSpatial Display Services), as add-on modules, or stand-

alone utilities. However, there is a strong business case for developing distributed

implementations of geospatial and image manipulation services - specifically, but not limited

to, those identified in the OpenGIS®’s Geospatial Coordinate Transformation Services,

Geospatial Analysis Services, Image Geometry Model Services, Image Synthesis Services

and Image Understanding Services. For a full list of Geospatial Domain Services as

classified by the Open GIS Consortium, please refer to [Open GIS Consortium 1999b]. This

view has recently been confirmed when it was announced that the Open GIS Consortium's

Interoperability Program for 2001 was focusing on defining a Web Services architecture that

would support the deployment of spatial services using WWW Protocols [Doyle 2001].

 82

4.4.1. Motivation for the development of distributed implementations of

interoperable Geospatial Services

In addition to the benefits derived from the ability to invoke location-transparent

interoperable geospatial services, there are two main areas in which the use of distributed

objects has the potential to optimise the execution of geospatial services: one is speeding up

the processing of a particular service by using parallel processing or executing the service on

a faster (remote) platform; and the other is reducing bandwidth requirements when one is

making use of data from the internet, by performing as much of the processing as possible

“close to” the data source.

4.4.1.1. Faster processing

Consider the following scenario, which would provide an extremely useful service to

organizations that cannot afford to purchase expensive GIS software or powerful

processing platforms. A fairly common geospatial operation would be to perform

viewshed analysis on a particular spatial dataset, i.e. determine all possible locations that

are visible from a particular point. However, depending on the type of work done by the

user, it may not be a tool that is used often, and would almost certainly not be included in

most “lite” GIS applications. It would also probably not warrant purchasing a large GIS

application if this were the only “advanced” feature required.

There are two possible implementation solutions that are both catered for using our

approach to the runtime integration of new services into our proof-of-concept system.

The first is to allow the user to download and integrate a local version of this tool, and the

second is to enable the user to download and integrate a front-end interface to a remote

implementation of this tool.

It is the latter option that we will consider now, as it is the more complex solution, and

has the potential to provide the additional benefits, not available to the version that would

run on the client machine. Thus we will discuss the ability to perform the viewshed

analysis remotely, on a faster machine located across the Internet, without having to

purchase a local copy of the viewshed tool, or an entirely new GIS application that

supported this operation.

 83

Viewshed analysis, or line-of-sight mapping, is a computationally expensive operation

that draws a line from the point of interest (e.g. Point A in figure 4.5) through each

location, or cell, in a raster image to determine the slope between the two points (e.g.

from Point A to Point B in figure 4.5). If any of the cells between these two points has a

height value greater than the interpolated height value from the slope at that location, then

the point being examined (Point B) is not visible from the point for which the viewshed is

being performed (Point A). In figure 4.5 , Point B is not visible from Point A because

the height value of an intermediary cell, at Point C is greater than the interpolated height

value.

Figure 4.5. Viewshed Analysis Example

Even the most efficient algorithms are still at O(n2 log n) [Kreveld 1996]. A recent

viewshed analysis of a line with 47 points on a 20.2mb uncompressed geotiff image on a

Pentium II 400Mhz PC with 64mb of RAM (our standard laboratory machine) took

roughly 12 hours to complete. The same viewshed operation took less than 8 hours to

complete on a Pentium III 450 Mhz with 256mb of RAM (considered a server-type

machine for the purposes of this discussion).

Point A

Point B
Point C

Increasing height

Point A

Point B
Point C

Increasing height

 84

It is not always possible to provide server-like processing power on the standard desktop

machine, and therefore, for processor intensive operations, one should consider the

possibility of performing the same operation on a remote machine with more powerful

resources. However, the main consideration would be the time taken to upload the data

from the client machine to the machine where it is to be processed, and the time taken to

download the result once the calculation has been completed.

The data source used by the viewshed tool was a 20.2mb GEOTIFF image that could

have been compressed to 2.8mb, for transmission over the Internet, using the ZIP

compression algorithm. The resultant image would be roughly the same size. If one

assumes a modest transfer speed of 5kb/sec, the time taken to download the 2.8mb input

and upload the 2.8mb result is less than 20 minutes in total, including the time taken to

compress and decompress the GEOTIFF data. Even without compressing the original

dataset, if one calculates the time taken to transfer the data to the server, and the resultant

image back to the client, it would still have been worthwhile sending the data to the

remote machine for processing (8 hours versus 12 hours). In addition, the client’s

machine is free for further processing during this time.

Apart from the potential performance benefits illustrated above, this approach also

provides accessibility to different vendor’s implementations, possibly using different

algorithms, dynamic upgrading, finer licensing granularity as well as different pricing

models that may even include guarantees of Quality of Service in terms of speed or

accuracy with which the algorithm is executed. For an in-depth discussion on the

implications of developing (distributed) component-based applications on licensing and

pricing models, refer to section 5.5 .

4.4.1.2. Reduced bandwidth requirement

While rapid advances are being made in creating faster processors, it is ultimately the

legacy Internet networking structure that will create the bottleneck to high-bandwidth

multimedia applications [Preston et al. 1998a].

A potential solution for reducing the high demands made on Internet bandwidth may lie

in processing more information on the server side, to reduce the amount of extraneous

 85

data that gets downloaded across the Internet to the client. This optimisation technique

has tremendous potential in Internet-based GIS applications because GIS data sets are

often extremely large, and the user is only interested in a small subset of this information.

It is also extremely likely that in the near future Data Providers will implement, or at least

offer, distributed processing of GIS services that could be used in conjunction with their

datasets. The benefits from this coupling include increased customer loyalty, and a

decrease in the overall processing time, by negating the need to first transfer the data from

the Data Provider, across the Internet, to a separate GIS Service provider before the

geoprocessing can begin.

This approach also has the following inherent security benefits associated with it:

?? The user cannot gain unwanted access to the underlying data, i.e. only the GIS

tools executed on Server machines have access to the data sets.

?? The user cannot download, pirate and/or reverse engineer a particular GIS tool

because all code for executing the tool remains on the server at all times.

It is totally reasonable for a data provider to offer the ability to perform GIS operations on

a dataset without ever allowing direct access to the data itself. For example, one may use

an Internet-based GIS to select a suburb of a city, add a coverage detailing the road

structure together with names, and download the resultant street map in the form of a

GIF/JPEG image. The image was created using the data and services provided by a map

service provider, but at no stage did the client have access to the underlying GIS data.

This allows a data provider to provide inexpensive maps to clients without divulging the

underlying dataset.

The sale of GIS data is often accompanied by copyright restrictions that prevent the

purchaser from redistributing the dataset in its original form. Therefore, instead of not

allowing any type of access to a dataset, highly controlled access could be provided

through specific GIS services that do not provide access to the underlying dataset. This

approach would allow service providers to offer value-added GIS services that make use

of the purchased data set, without contravening the licensing agreement.

 86

A data provider might sell a dataset to other data vendors/GIS consultants for large sums

of money, or retain exclusive access to the dataset to maintain competitive advantage.

Consider the following scenario: Company A, has a detailed Digital Elevation Model

(DEM) of the Eastern Cape that they have invested a lot of time and money in developing

so that they can offer consultancy services for the Coega project1. They do not wish to

make the dataset available for fear of it being pirated, and someone else undercutting their

bid for consultancy contracts. However, they also realize that there is money to be made

from allowing other GIS experts, (hopefully) in different fields, to make use of their

dataset. Therefore they develop and deploy a suite of CORBA services that allow clients

to make use of the underlying dataset without providing direct access to the data.

Now consider the case where another GIS consultant, needs to perform a viewshed

analysis to minimise the visual impact of erecting electricity pylons, but does not have

his/her own DEM of the particular region in the Eastern Cape. He/she could either obtain

the necessary terrain maps, digitise the area of interest and then use the data in his/her

own GIS application (that supported the viewshed analysis operation), or simply use the

viewshed service exposed by company A. The exposed service need only allow him/her

to specify the bounding co-ordinates of the area of interest, and the envisaged positions

for each of the pylons. It would then return the result of the viewshed operation as a

GIF/JPEG illustrating the visual impact. Thus company A is able to share their data and

generate income without relinquishing exclusive access to their DEM.

An alternative to the implementation of suites of services by data providers, is for data

providers to facilitate the use of mobile agents by customers. The mobile agents would

be allowed to move the code of a GIS service to the data provider’s machine for

execution. This reduces the responsibilities of the data provider, e.g. not having to license

GIS service software, or ensure that the software provided produces accurate results.

1 The Coega project is a major industrial development that involves the building of a new

deepwater port on the Coega River, near Port Elizabeth, South Africa. For more information

refer to the Coega Development Corporation, http://www.coega.co.za

 87

Thus a range of possibilities are available to data providers, depending on their size and

their willingness to diversify their core business to include the provision of GIS services.

It is highly likely that large data providers might decide to invest in software that will

facilitate client access to GIS services in addition to the data that they provide. However,

smaller data providers might decide to allow (registered) clients to send mobile agents,

which implement specific GIS services, to their intranet to perform a particular operation

on their datasets locally.

Appendix A contains further information regarding the use of Mobile Agents in GIS that

formed part of our research, but is not directly relevant to the focus of this thesis.

4.5. GIS and Location Services
The recent media focus on mobile devices, and in particular mobile phones, has sparked

tremendous interest within industry over the business potential for (Mobile) Location

Services. The goal of Location Services1 [Koeppel, current], a combination of Web, wireless

communication and GIS technologies, is to allow one to exploit location information

anywhere, anytime, and on any device. In its broadest sense, a location service may be

thought of as any application or service that extends spatial information processing, or GIS

capabilities, to end users via the Internet and/or wireless network.

In contrast to GIS applications, location services are particular applications of spatial and

analytic functions found in GIS applications, that filter their content or change their

behaviour, based on the user’s (specified) location. Thus, location services build on the

existing underlying GIS functionality found bundled in current GIS applications.

1 For more information regarding Location-Based Services please refer to the Location

Interoperability Forum at http://www.locationforum.org, and the Open Location Services

Initiative at http://www.openls.org

 88

Location services hide the complexity of GIS tools from the user, by providing an easy-to-use

interface for a specific service. This interface makes use of one or more GIS tools behind the

user’s back in order to provide the location-based service, and thus no longer requires that the

user be knowledgeable in geography or cartography. In fact, if the user interface of a

Location Service is simple enough, very little computer literacy is required for a user to be

able to make use of complex GIS operations.

While the development of location services is a big step forward in its own right, it also plays

a very important role in highlighting the intrinsic value of location in data, as well as the need

to develop re-usable GIS components based on open systems.

Our research focuses primarily on developing a framework that allows the user to create their

own customised, scaled-down GIS application, which contains only the tools required for

their particular need. However, it could just as easily facilitate the development of small,

specialised GIS-type applications that provide location services.

Thus, our RADGIS architecture could also used to create a framework in which one could

combine location services to create more sophisticated tools, as well as allowing further

processing of the results obtained from location services. For example, one could access a

Real Estate Location Service that provided a map showing a number of houses that were for

sale, and then overlay a map provided by a traffic routing location service to determine the

level of congestion on the roads between each of the houses for sale and one’s work

premises.

There are many issues that need to be addressed in order for location-based services to be

successfully implemented and widely utilised, especially via the Mobile Internet. These

include generic hardware issues such as the ability to display 2D and 3D images, limited

bandwidth, and the relatively low processing power and small memory capacities of most

mobile phones. However, there are also three main back-end issues that hold the key to the

successful implementation of location-based services, namely:

1. exposing location-based data and GIS operations,

2. providing a simple mechanism for content developers to create and deliver new

location services, as well as to integrate location into existing applications, and

 89

3. creating searching mechanisms based on semantics, rather than simply syntax or text-

based searches.

Ideally, location service developers should be able to develop new location services without

the unnecessary duplication of existing GIS functionality. Thus the development of location

services requires that the GIS tools and data sets be “exposed” efficiently to ensure that the

creation of location services is simplified. Some potential solutions to the issue of exposing

location-based data and services are covered implicitly in section 4.3.1 (.geo proposal) and

section 4.6 (Catalog and Registry services). The second issue is touched on briefly through

discussions of how DGCML can be used to develop and deploy location services easily (see

section 5.2.5), and how our RADGIS architecture may be applied to the creation of a client-

side framework for integrating location services. However, the notion of searching location-

based data using semantics (or location synonyms) is not dealt with elsewhere in this thesis

and therefore warrants discussion now.

4.5.1. Searching location-based data

When accessing location services, mobile device users may have their location encoded

automatically by the device or the service provider, using a standardised format. However, a

location service user may wish to specify a location explicitly. This could be done in a

number of different ways, such as by specifying a longitude/latitude pair, town/city name,

suburb name, postal code, or telephone area code, and with varying degrees of precision, i.e.

city versus suburb. For searches based on location, it may be advantageous to allow a user to

match all these references to, or synonyms for, the same geographical location.

In addition, much of the data currently available on the Web contains a relatively high level

of intrinsic location-based information. It therefore makes sense to make this existing

information available via “intelligent” searches, rather than requiring that all the information

be reformatted to include an explicit spatial reference before it is made available for use by

location services.

 90

The creation of “intelligent” searches, based on semantics rather than simply on keywords,

removes the requirements that:

?? users format their location-based queries using a standardised geocoding, and

?? existing data, which contains implicit location information, be reformatted to include

an explicit spatial reference.

An “intelligent” search, based on location semantics, could be implemented by simply

searching a database of equivalent location encodings for a given location. The “intelligent”

search would therefore be split up into multiple smaller searches based on location synonyms,

enabling the use of existing location-based information that might not otherwise have been

included in the result set. For example, given a search containing a postal code and a name,

the search would also return information about that name based on the location inferred by

the postal code, rather than simply returning a list of all documents that contain the name and

the postal code explicitly as text.

More sophisticated searches that provide GIS-type “near” or “within” functionality could also

be used in conjunction with existing intrinsic location-based data, but these searches would

require additional pre-processing and could potentially create a large number of sub-queries.

4.6. Exposing GIS Services efficiently
The inability to discover and access geospatial data and geoprocessing tools in a simple

manner, drastically reduces the effectiveness of GIS applications. The next generation GIS

model will provide a distributed environment in which data and services are added, updated

or removed dynamically. It is therefore necessary to provide a mechanism to reduce the

complexity of keeping track of these events, and to allow users to access data and services

transparently.

CORBA, DCOM, RMI and EJB provide naming/registry services that allow client

applications to locate distributed objects by name. However, other than the use of the

CORBA Trader Service, which is a directory service, these technologies do not provide a

mechanism to register objects with attributes or meta-information. Such information is useful

 91

for distinguishing objects with the same name, or for performing queries based on distributed

objects’ properties.

Catalog and Registry services allow the registration of geospatial data and services by data

and service providers. The use of a Catalog or Registry service to discover data or services,

makes it is possible to change the location of where the data is stored or where a service is

executing by simply editing the appropriate entry in the Catalog or Registry. It is not

necessary to update all the clients that make use of the data-source or service. This change in

the location of where the data is stored or where the geoprocessing is taking place is therefore

transparent to the end-user.

Much work has been done to allow users to index and search spatial data, such as Catolog

services. However, very little work has been done to provide a unified mechanism for

registering GIS services, which have been developed using different distributed object

technologies, with their associated meta-information. Such a mechanism is urgently needed,

as it is imperative that distributed GIS services are advertised effectively and efficiently. We

believe that there are two mainstream technologies that have the potential to fulfil this role,

namely LDAP and UDDI.

4.6.1. LDAP

The Lightweight Directory Access Protocol (LDAP) is an extensible client-server protocol

and information model that allows one to access and manage information in a tree-structured

database [Roman 2000]. Each entry in an LDAP server has a distinguished name that allows

easy identification, and stores associated information as attributes. Each attribute has an

associated type and one or more values.

One of the tremendous benefits of using LDAP is that one can create one’s own object types

and attributes. This allows you to use LDAP directories for a wide variety of tasks, including

the ability to register distributed components and services which will be extremely useful for

advertising our GIS services developed using DGCML. For more information on LDAP,

please refer to [Wahl et al. 1997]

 92

4.6.2. UDDI

The Universal Description, Discovery, and Integration (UDDI) standard is a repository-based

directory service for sharing business information, which includes the ability to find and

access the applications or Web Services they expose. The services registered with a UDDI

server can be deployed in a private (internal) or public (external) manner depending on

whether one wishes to share the services within an organisation only, or throughout the Web

[IBM 2001]. For more information on UDDI, please refer to [UDDI.org 2000].

However, according to Cimetiere [2001] the ambitions of UDDI might be too broad for it to

succeed, and because a Web Service is simply another resource, it could just as easily be

registered with existing technologies such as an LDAP server. Therefore, while we view

UDDI as a promising technology for exposing Web Services, the simplicity, efficiency and

proven track record of LDAP currently make it a more suitable candidate for advertising GIS

services in our RADGIS architecture.

4.7. RADGIS - Our Approach
In order to overcome many of the problems associated with current GIS architectures,

outlined in section 1.1 and section 4.1 , we have developed a framework that allows

interoperable GIS services to be incorporated into a highly-configurable client GIS

application at runtime. The proof-of-concept distributed GIS application we have developed

to demonstrate the feasibility of such an approach has been named RADGIS, due to its ability

to facilitate the Runtime Application Development of Geographic Information Systems1.

One of the objectives of the project was to avoid vendor specific solutions, and to promote

interoperability through use of open standards wherever possible. The RADGIS architecture

therefore integrates interoperable services and geodata models based on OpenGIS® standards

developed by the Open GIS Consortium, that have been presented earlier in this chapter. In

particular, we decided to adopt the use of GML as the geospatial data transfer format, and the

OGC’s Services Architecture to develop runtime-extensible client-side GIS and Location

Service applications that are based on vendor-independent, interoperable GIS components.

1 Chapter 5 details how the RADGIS application has been implemented.

 93

In the past there have been many efforts to facilitate the accessing of distributed geospatial

data from different vendors. However, our RADGIS client architecture is an attempt to allow

users to not only make use of geospatial data from different data providers, but also

distributed GIS services. Because RADGIS is a runtime-extensible architecture that can

invoke methods on distributed GIS tools, it is a hybrid of the client-side and server-side GIS

architectures discussed in section 4.1.1 and section 4.1.2, which provides a high level of

location-transparency for accessing both data and services. Using this approach, the

RADGIS architecture is able to draw on the advantages provided by both client-side and

server-side GIS architectures, as well as overcome many of their respective disadvantages1.

The resultant advantages and disadvantages of the RADGIS architecture are listed in table

4.5, and more comprehensive summary of benefits is presented in section 6.6.

 Advantages to RADGIS Architecture

?? Significantly reduces application bloat by providing a small,
extensible client framework.

?? Adherence to OpenGIS® standards to ensure interoperability with
future OpenGIS®-compliant components.

?? Platform independence using Java, CORBA and EJBs (CORBA
also provides language independence).

?? High level of location transparency when accessing distributed
data and services.

?? Significant GIS functionality can reside on distributed servers.

?? Data sets can be obtained from multiple distributed data servers.

?? Georeferenced raster and vector data can be used, i.e. not
restricted to using static images, e.g. GIF and JPEG.

?? Highly customisable GUIs for individual services.

?? Not restricted to single-click operations.

1 See tables 4.1 and 4.2 for the advantages and disadvantages of server-side and client-side

architectures.

 94

?? Centralised administration of data and GIS services is possible,
reducing total cost of ownership.

?? Excellent performance for operations that occur locally.

?? Ability to perform processing remotely can eliminate need to
download large data sets across the Internet.

Disadvantages to RADGIS architecture

?? Cannot be accessed with standard Web browser

?? Requires users to obtain additional software

?? Users must wait for software to download. However, since most
of the services may be accessed remotely, often only the small
DGCML descriptors for a service need to be downloaded.

?? Overall performance can be low with large data sets, but the
RADGIS architecture promotes a distributed model that would
allow the RADGIS client distribute the workload for certain
operations.

Table 4.5. RADGIS Architecture advantages and disadvantages

A similar vision is shared by the Defence Science and Technology Organisation (DSTO). As

part of the development of their Geospatial Service Segment Architecture (see figure 4.6),

they are also exploring ways of using software components to build large systems, instead of

designing monolithic applications that are obsolete before they are deployed. They have

decided to make use of CORBA and have adopted the OpenGIS® Simple Features for

CORBA implementation specification as their interface for accessing Geospatial Information

[Davis 2000].

 95

Figure 4.6. The Geospatial Services Segment Vision [Ekins and Davis 1999]

While traditional GIS applications are well-suited to GIS experts, there is a growing

realisation that there are a number of users, in a variety of fields, who require spatial analysis

tools similar to those found in GIS applications. These users generally require only a small

subset of the functionality provided by traditional GIS applications, and do not necessarily

wish to become experts in GIS in order to make use of GIS applications. Our RADGIS

architecture therefore allows the development of small, client-side GIS applications that can

be customised to suite different user domains, e.g. hydrology, geology, forestry, and

according to different user’s level of expertise. However, as the user’s requirements change,

or their level of expertise increases, it is possible for the user to add new functionality to the

RADGIS client as well as to customise the services according to his/her needs or preferences.

We have developed a novel approach to the integration of interoperable GIS components at

runtime, using client-configurable XML descriptors for deploying GIS services, based on our

Distributed GIS Component Markup Language (DGCML). The GIS components may be

implemented as Java objects that are packaged in JARs, which are downloaded and run as

client-side services, or as distributed objects that reside on server machines, e.g. Common

Object Request Broker Architecture (CORBA) Objects or EJB’s. DGCML is used to wire-

DSTO: The GSS VisionDSTO: The GSS Vision

End User

 96

together local and remote GIS components to create services that can be added and removed

by the GIS application at runtime. In addition, these services can be edited using a simple

text editor, at runtime, if customisation is desired.

Therefore, the RADGIS architecture addresses the following problems found in most

traditional GIS applications:

?? Application bloat – It is possible for the RADGIS client to initially implement only

the very basic GIS services needed for data visualisation. However, its extensible

nature allows users to add and remove tools, as and when required. Thus the user

does not have to purchase a very large (and generally expensive) GIS package, which

contains a great deal of functionality that will never be used.

?? Usability – The ability to add tools is as simple as selecting the required tools from a

menu or web-page. The novice user can make use of a service without any

knowledge of how the service has been created from distributed components, while

the expert user has the ability to customise the service by simply editing the DGCML

descriptor file.

?? Interoperability – RADGIS provides the ability to add services composed of

interoperable distributed components developed independently by different vendors.

?? Location Transparency – RADGIS allows the processing of data to be performed

wherever it makes most sense, without the user necessarily being aware of the

physical location of the tool that is performing the processing.

The ability to specify GIS services using DGCML allows method-calls invoked by a

particular service to be made on objects executing locally or on objects implemented as

CORBA objects or EJBs residing on remote machines. If alternate codebases are provided

for a particular service, it is possible for the RADGIS system to elect which codebase to use,

based on the location of the data to be processed. This is advantageous because, even if

certain GIS functionality has been installed locally as part of the RADGIS application, should

it make sense to perform that operation on data that resides at a remote location, it is possible

for the user to invoke a remote implementation of that service transparently. An example of

where this may be mandatory, rather than simply for convenience or a matter of optimisation,

is when one wishes to obtain data from a data provider who does not want to provide direct

access to the data, but only allows access to the data through certain GIS operations that

 97

return static images or data at a particular resolution. Therefore RADGIS affords the user a

high level of location transparency when performing geoprocessing operations.

Figure 4.7 below details the use of our proof-of-concept GIS application (RADGIS) based on

highly interoperable (distributed) components developed using our Distributed GIS

Component Markup Language (DGCML), the OpenGIS® Services Architecture, and the

Geographic Markup Language (GML).

Figure 4.7. RADGIS: A highly distributed component-based GIS

It is generally accepted (see section 1.2 and section 1.3.3) that future GIS applications will

become distributed, disaggregated, decoupled and interoperable. The implementation of

distributed interoperable components will ensure healthy competition between vendors and

will allow end users to easily replace the implementation of a particular service with another

superior or cost-effective service. The use of interoperable components also facilitates the

development of highly scalable systems, and the packaging of particular services, resulting in

lower costs and products tailored for specific end-users’ requirements. Clearly the RADGIS

architecture embraces these ideals, and goes further by providing a runtime-extensible

framework that allows users to add services based on open standards to the client application,

which were not known about at compile-time.

Portal
Servers or
Gateway
Services

Internet or
Intranet

Location
Service X

GIS Tool A

GIS Tool B

Vendor 2:
GIS Tool C

GPS

Dynamic GIS
Client

Data Source A

Data Source B

DGCML descriptions for:
Remote tools:

GIS Tool A
GIS Tool C (Vendor 2)

Local tools:
GIS Tool Z

Vendor 1:
GIS Tool C GIS Tool D

Portal
Servers or
Gateway
Services

Portal
Servers or
Gateway
Services

Internet or
Intranet

Location
Service X

GIS Tool A

GIS Tool B

Vendor 2:
GIS Tool C

GPS

Dynamic GIS
Client

Data Source A

Data Source B

DGCML descriptions for:
Remote tools:

GIS Tool A
GIS Tool C (Vendor 2)

Local tools:
GIS Tool Z

Vendor 1:
GIS Tool C GIS Tool D

 98

4.7.1. Use-case scenarios

With the aid of figure 4.7, we will now sketch a few typical use-case scenarios to illustrate

the flexibility and usefulness of the RADGIS architecture, over traditional GIS applications.

For the first scenario, let us assume that during the course of performing a particular GIS

operation, a user discovers that they do not have a particular GIS tool necessary to complete

the operation. If the user was using a traditional GIS application that did not support that

particular operation, his/her options might include outsourcing that operation, obtaining a

different GIS package, or downloading and installing an additional module, which

implements that GIS tool, for their existing GIS. However, using the RADGIS architecture,

the user would be able to search a GIS tool repository, and depending on whether the tool

was required to execute locally or remotely:

?? add that tool to the local client-side GIS (e.g. GIS Tool Z). This is similar to

downloading an additional module except that the vendor of the tool need not be

the same as the developer of the client-side GIS framework, and that RADGIS

allows for greater levels of customisation and integration than might otherwise be

possible when installing additional modules.

?? add a reference to a remote tool (e.g. GIS Tool A or C) which would be invoked

transparently through the user interface which would be generated from the

DGCML descriptor for that tool.

For the second scenario, consider once again the viewshed analysis example, given in section

4.4.1.1 , which illustrated the ability to make use of distributed processing on a server

machine to increase the speed of performing a particular operation. If, for example, one

extended the scenario to assume that the user wished to perform the viewshed analysis of 47

points (representing pylon positions) for three different positions, it would generally be

necessary to perform three sequential viewshed analysis operations. Using a standard

laboratory machine, as described in the example in section 4.4.1.1 , this would take

approximately 36 hours of processing (3 x 12 hours per viewshed analysis) to complete.

However, because each viewshed analysis is independent of each other, the ability to make

use of 3 different distributed viewshed analysis services simultaneously, i.e. parallel

processing, would allow the user to compare the three resultant images in approximately 8

 99

hours (assuming each analysis is performed on a server that provides the same performance

as obtained in the example in section 4.4.1.1).

For the final scenario, consider the ability of the RADGIS architecture to allow a user to

make use of a distributed GIS tool implemented by a Data Provider that does not wish to

allow direct access to the underlying data set. For example, a user wishes to make use of data

(e.g. stored in Data Source A), but the only access to it is using GIS tools (e.g. GIS Tool A)

implemented by the Data Provider. The ability to download a DGCML descriptor that makes

use of that GIS tool allows the close integration of that tool with the RADGIS client, and

provides the ability to invoke the necessary functionality via a GUI generated by the

RADGIS client, according to the DCGML descriptor for using that tool.

4.8. Summary
This chapter has presented work being done by major standardisation bodies and large

corporations in order to ensure interoperability of GIS components and applications, as well

as a brief overview of GIS architectures, and products currently available, together with their

associated advantages and disadvantages.

The relatively new research topic of Location Services was introduced, as it will have a major

influence on the architecture of future GIS applications due to its heavy reliance on re-usable

GIS components. We also highlighted some of the backend issues that will have a significant

influence on the future success of location services. In particular, we stressed the need to

make geodata and geoprocessing components easily accessible through initiatives such as the

.geo proposal, and the use of Catalog and Registry services.

A number of problems with current GIS architectures were highlighted that illustrated the

need to develop a flexible GIS architecture that can be adapted to the requirements of users

who work in different application domains, with varying levels of competency. These factors

were the motivation for the development of our RADGIS application, which facilitates the

use of distributed data and GIS services in a location transparent manner. The RADGIS

architecture was described, together with its associated benefits and how it overcomes many

of the problems associated with traditional GIS architectures.

 100

In the next chapter we discuss how the RADGIS architecture was implemented in more

detail. In particular we focus on the development of our Virtual Grahamstown data set using

VRML and the visualisation of this 3D geospatial data, which formed the basis of our initial

research into Virtual GIS, as well as the development of GIS services using DGCML, which

can be integrated into the RADGIS client at runtime.

 101

Chapter 5

Implementation of the RADGIS Application

“The best way to predict the future is to invent it.”

Alan Kay

A GIS must support both computational and display facilities as it allows the user to compute

and display information about geographic features. Therefore, in the development of our

RADGIS application, our research has focussed on both the visualisation of 3D geospatial

data as well as the runtime integration of GIS services, for the analysis of that data, which

may be executed locally or on a remote GIS server.

This chapter will therefore present a detailed description of how we implemented our

RADGIS proof-of-concept application, and will provide insight into:

?? the development of our “Virtual Grahamstown” 3D data set using VRML;

?? the design considerations that resulted in our choice of Java3D for rendering the 3D

data;

?? the implementation-specific details of our DGCML meta-language;

?? how one could use DGCML to create a location service; and

?? how we have made use of Java’s Reflection API to allow the runtime addition and

execution of GIS services that are developed and deployed using DGCML.

 102

The factors that influenced the design of RADGIS as a client-side application, rather than a

Java applet, have much to do with problems associated with the visualisation of 3D

geospatial data. The use of VRML as a mechanism for facilitating the creation of Web-based

Virtual GIS was the focus of much of our early research. Therefore this chapter presents two

major areas of research that we have undertaken. The first section presents the issues

associated with the visualisation of 3D geospatial data, while the second section focuses more

on the implementation details of the runtime extensible framework provided by RADGIS for

the integration of GIS services that have been developed and deployed using DGCML.

5.1. 3D Visualisation of Geospatial information
Most current Geographic Information Systems are static 2D, map-based systems with non-

interactive response rates when displaying high-resolution maps. More recently, however,

there has been a trend towards implementing interactive 3D GIS applications with the aid of

improvements in 3D graphics software and hardware, efficient new terrain visualisation

algorithms and, possibly most importantly, the tremendous interest in using VRML to display

geospatial information on the Web.

This move towards greater use of 3D spatial data, and the inclusion of temporal data in the

quest for the development of a spatiotemporal Geographic Information Systems, is a logical

step in the evolution of Geographic Information Systems, providing a graphical insight into,

and graphical analysis tools for analysing, large volumes of spatiotemporal data.

5.1.1. Rendering of 3D spatial information

Within the GIS domain there are two main binary formats for representing 3D geospatial

information, namely Digital Elevation Models (DEM) and Triangular Irregular Networks

(TIN). Since the mid 1990s, three-dimensional or Virtual GIS on the Web [Rhyne 1997] has

been regarded as a promising alternative to traditional GIS applications. One of the obvious

requirements for implementing such systems is the need for a simple mechanism for viewing

3D geospatial data without requiring a GIS client application.

 103

The use of VRML for distributing and visualising geospatial data has received a lot of

attention due to its simplicity, cost-effectiveness and wide accessibility [Kim et al. 1998]

since it is an open standard (ISO/IEC 14772). This can be seen by the large number of

research papers that have been published on this topic, such as [Fairbairn and Parsley 1997]

[Dykes et al. 1999] [Rhyne 1997]. In addition, due to the popularity of VRML for modelling

geospatial data, there are now a number of GIS products and conversion utilities available

that are able to convert information stored as DEMs or TINs to VRML.

5.1.1.1. VRML and Cartography

The Virtual Reality Modelling Language (VRML1) is a vocabulary for the animation and

modelling of 3D geometric shapes. It has become a widely accepted standard for

interactive 3D information interchange on the WWW. VRML allows one to incorporate

many different types of data, including text, diagrams, graphs, audio and video, together

with 3D models, seamlessly within the 3D world. This, together with the ability to

communicate 3D worlds across the Web, provides significant flexibility for the sharing of

three-dimensional data sets, and enables VRML to provide an open standards alternative

for displaying geospatial information. (For more information about VRML, refer to

[VRML97] [Nadeau 1997] [Marrin and Cambell 1997])

A number of projects have been undertaken that successfully make use of VRML to

visualise geographic data, such as [Fairbairn and Parsley 1997] [Martin and Higgs 1997]

[Rhyne and Fowler 1998]. One such example is that of Buziek and Hatger [1998], who

developed an interactive spatiotemporal 3D animation, using depth and tide information

for the Elbe estuary over a 12 hour period, in order to investigate the cartographic

potential of VRML for geo-referenced cartographic applications. According to Buziek

and Hatger [1998], VRML is suitable for modelling geo-referenced 3D worlds, but also

has some limitations. The most serious of these limitations is that VRML currently only

supports 32 bit float values, which limits the precision to 7 digits. This accuracy is not

adequate for geodetic coordinates, and thus world coordinates have to be shortened.

1 All references to VRML in this dissertation refer to the ISO/IEC 14772 or VRML97

specification.

 104

Another major limitation of using VRML for cartographic representation on the Web is

the large amount of data to be transferred. However, VRML provides a number of

optimisation techniques that can be employed to help overcome or at least reduce the

effective bandwidth required for visualising data sets over the Web, including

compression, inlining, level of detail (LOD) management, and ShapeHints1. In addition,

a number of nodes2 have been developed by the GeoVRML task group, which looks

specifically at the representation of geographical data in VRML, to facilitate the efficient

visualisation of large terrain models in 3D.

5.1.1.2. GeoVRML

Like VRML, GeoVRML is an official working group of the Web3D Consortium.

However, its focus is on extending VRML as well as developing methods and tools for

the representation of geographical data from disparate servers across the web, possibly

generated from different sources, at different resolutions, and specified in different

coordinate systems [Reddy et al. 2000c].

According to Reddy et al. [2000b], GeoVRML addresses most of the concerns raised by

Dykes et al. [1999] regarding support for cartographic applications in VRML. It does this

by overcoming the shortcomings of VRML, and providing additional functionality with

respect to representing geospatial information, such as [Reddy et al. 1999a] [Reddy et al.

2000b]:

?? Support for data in various geospatial coordinate systems;

?? Scalability – facilitating the integration and use of data from large geospatial

databases that are distributed over the web.

?? Providing the capability of representing large quantities of terrain and other

related data;

?? Preservation of the original geographic data;

?? Management of multiple levels of detail of geospatial data; and

1 See Appendix B for a more in-depth description of these optimisation techniques.
2 See Appendix C for brief descriptions of these GeoVRML nodes.

 105

?? Accuracy – overcoming the limitations of VRML's single-precision floating-point

support.

This is achieved through extensions to the VRML syntax (using the VRML PROTO

node), which implement nodes that support the efficient and accurate representation, as

well as rendering of large terrain models. More information about the GeoElevationGrid,

GeoCoordinate, GeoLocation, GeoOrigin, GeoLOD, GeoInline, GeoPositionInterpolator,

GeoTouchSensor, GeoViewpoint and GeoMetadata nodes can be found in appendix C.

Figure 5.1. Screenshot of scenes developed using GeoVRML [Reddy 2000]

The work that has been undertaken by the GeoVRML workgroup in the development of

GeoVRML, and its acceptance as a Web3D Consortium “Recommended Practice” goes a

long way towards being able to accurately represent 3D geographic information that may

be visualized across the web using a standard VRML browser (with Java support).

5.1.1.3. X3D

The X3D (Extensible 3D) format, formally known as VRML-NG (VRML Next

Generation), is an open 3D graphics specification for the Web that extends the

functionality of VRML97. The main objectives of the X3D working group include

ensuring backwards compatibility with VRML97, and the integration of XML. X3D will

enable the creation and deployment of visually rich 3D graphics that can be viewed using

small, lightweight web clients with advanced 3D capabilities. In addition, due to the X3D

 106

working-group’s close interaction with the MPEG-4 group’s ongoing 3D integration

activities, X3D will add high-performance 3D to broadcast media [Web3D Press Release

2001][X3D FAQ 2001].

X3D adopts a component-based architecture that supports the extension of the X3D

vocabulary. This enables the development of extremely compact 3D clients that can be

extended with plug-in components/profiles [Web3D Press Release 2001]. There are

currently a number of profiles that have been developed, including [X3D FAQ 2001]:

?? The X3D Core profile (X3D -1) – contains a reduced set of VRML nodes that only

support simple non-interactive animation and is intended for the widest-possible

adoption of X3D support.

?? The X3D-2 profile – is a larger profile that covers the full VRML specification in

order to provide support for fully interactive worlds and existing “rich” VRML

content.

?? The GeoVRML profile – which contains support for the GeoVRML nodes listed

in section 5.1.1.2.

Once GML (see section 4.3.2) supports 3D geospatial data, it is inevitable that a GML to

X3D stylesheet will be written that will allow GML content to be converted to the X3D

format for presentation in an X3D browser. Thus, utilising the necessary XML

stylesheets, X3D profiles and supporting Java classes, it should become possible to view

GML, VRML and GeoVRML geospatial data in an X3D browser. This will be

particularly useful for the 3D data visualisation approach we have adopted in the

RADGIS architecture (see section 5.1.2), which currently makes use of a VRML loader

for Java3D, but which can easily be extended to make use of an X3D loader for Java3D

when one becomes available.

5.1.2. RADGIS: Data sets and Visualisation

The general framework for our Runtime Application Development GIS (RADGIS)

architecture was outlined in section 4.6. This section, however, provides specific

implementation details regarding the development of our data set in VRML and the use of

Java3D for rendering the data, as well as explaining the factors that have contributed towards

these choices.

 107

When we originally started our research, our focus was on the development of a Virtual GIS

application that was easy to use, and could be used by anyone who had access to a Web

browser, i.e. no proprietary software. At that stage VRML was the only open-standards 3D

visualisation platform for the Web. Thus, when we created our model of Virtual

Grahamstown (see section 5.1.2.1), we made use of VRML.

However, VRML itself is fairly limited in the types of operations that it can perform. This is

because VRML is not a general-purpose programming language. It is simply a vocabulary

for marking-up scene descriptions, which runs entirely within its plug-in environment. In

order to make VRML more powerful, it is necessary to make use of the Java programming

language to program custom application logic that can interact with the VRML scene.

There are two specified methods for using Java with VRML that are supported by a number

of VRML plug-ins. One method is through the use of Script nodes, and the other is though

the use of the External Authoring Interface (EAI). It was the latter that was of primary

interest to us, as it provided the desired mechanism for creating custom visualisation Java

applets that were able to manipulate the VRML Scene Graph in the VRML plug-in, and

provide customised user interaction and increased functionality.

The interaction between Java code and the VRML plug-in provides a powerful mechanism

for overcoming some of the shortcomings of using VRML by itself. An applet can be used to

effect changes in a VRML world, by providing control over the contents of a VRML

browser, embedded in a web page. It does this through the Web browser’s plug-in interface,

such as Netscape's LiveConnect or Microsoft's ActiveX/COM, which allows objects

embedded in a web page to communicate with each other. While VRML plug-ins are not

required to implement the EAI to achieve VRML 2.0 compliance, several plug-ins have

implemented it.

Unfortunately, there are a number of problems with using the EAI, which include

implementation differences between Web browsers, and different versions of a particular

Web browser, as well as whether or not the VRML browser plug-in supports the EAI. The

most serious issue for the development that we originally planned to undertake, which

 108

implemented the GIS client as an applet, was the inability for the applet to connect to the

VRML scene graph if the applet was being run using the Java plug-in.

As we expanded our goals from simply providing a mechanism to visualise 3D geospatial

data, to include the ability to integrate distributed GIS services implemented using CORBA

Objects and EJBs, we soon ran into implementation issues due to the lack of support for

“new” features in the JVM’s of Web browsers. The JVMs supplied with Web browsers are

very seldom up-to-date with the latest JVM from Sun, and most only support version 1.1.x of

the JVM. This means that some browsers do not support RMI over IIOP, Java Foundation

Classes, e.g. Swing, or “advanced” GUI features such as Java’s Drag-and-Drop functionality,

and the Accessibility API. The use of the Java plug-in therefore became necessary to utilise

the latest features of an SDK release, rather than wait for them to be incorporated in an

upgrade to the browser JVM. The plug-in approach was also attractive, as it did not dictate

what Web browser or particular version of the browser the user had to install in order for the

GIS client applet to run correctly.

However, it soon became apparent that what we were trying to achieve was possibly best

implemented as a client-side application, which incorporated a dedicated 3D browsing

environment, rather than an applet that accessed an external VRML browser. This approach

overcame the security restrictions placed on applets, and the inability for an applet executing

using the Java plug-in to access the Scene Graph in the VRML browser. It also simplified the

integration of local and remote services implemented as DGCML descriptor files that require

the ability to read and write configuration and helper files, and make network connections to

multiple machines on which the distributed services were running.

Our current proof-of-concept distributed spatiotemporal GIS client application, RADGIS, has

therefore been written in Java, for platform independence, and uses Java3D for the

visualisation of the 3D VRML worlds, thanks to the availability of a VRML loader for

Java3D. This decision has proved very useful, as it has also ensured that support for GML, or

X3D scenes generated from GML using a GML to X3D style sheet, could be added by

simply adding the appropriate GML or X3D file-format loader for Java3D.

Currently, neither the GML nor the X3D specifications are complete. While an early version

of an X3D file-format loader for Java3D does exist [Brutzman et al. 2001], it is not possible

 109

to test the overall system, based on GML encoded spatial data, as GML does not currently

support 3D features and therefore neither a complete GML file -format loader for Java3D, nor

GML mapping to X3D currently exists.

Since the focus of this research is not on the rendering of 3D geospatial data, we have

decided not to change file formats until a fully implemented version of the X3D loader

becomes available. However, we recognise the short-comings of VRML with respect to geo-

referencing geospatial data and the limitation of single-precision floating-point support, and

wish to highlight the extensive work being done by the GeoVRML working group to support

geospatial data rendering based on the VRML and upcoming X3D specifications.

5.1.2.1. Creation of the Spatial Data Set: Virtual Grahamstown

In order to create the VRML data sets, we made use of an extrude utility written by

Bangay [1997]. This allowed us to scan in maps of Grahamstown and then "digitise"

features such as roads and buildings. Contour maps with roads and outlines of the floor

plans of buildings, from the Town Planning Office, were used for most of the layout and

geo-referencing of the roads and buildings. However, some smaller, more detailed maps

of the Rhodes University campus were also used for creating more accurate

representations of buildings on the university campus. Thus a number of maps covering

adjacent areas were used in the creation of this model since no one map was capable of

providing the view of the town in the required detail.

Once the maps had been scanned in, the outlines of the buildings were used as a template

for specifying the arrangement of the walls. Using the specialised extrude tool (see figure

5.1), developed specifically for the purpose of creating the objects in the virtual world,

these walls were raised to the appropriate levels, and then a roof was added. The resultant

three-dimensional volume represents the outside of the building, and is stored as a set of

polygons that make up the walls and roof of the virtual building.

The two polygon primitives that were used to create the buildings were vertical

rectangles, used to form most of the walls, and triangles that were used to construct the

roads and roofs, and any other specialised feature. Since the outline of the building is

captured as a sequence of line segments whose end points normally overlap to produce a

 110

closed horizontal polygon, it is useful to ensure that the end points of overlapping

segments are not needlessly duplicated. Thus points within a small distance from each

other are identified and merged to form a single common vertex.

Figure 5.2. Screenshot of Extrude utility

Each line segment in the outline of the horizontal polygon forms a vertical rectangular

wall in the final virtual building. An additional parameter must therefore be specified to

represent the height of the wall, and the absolute height of the building as a whole

(relative to sea-level or any other convenient reference point) can then be specified as a

base offset for the entire building.

Since each object will be used together with many other objects in a virtual world where

the speed of interaction is important, there is a trade-off between the level of detail (LOD)

of the structures and the final rendering speed. It is therefore assumed that a simplified

 111

outline for the building is sufficient for most objects. However, should more detail be

required for a particular object, that object can also be created at a greater LOD and used

together with VRML LOD and InLine statements to provide a higher level of detail for

that object (see appendix B).

Once the structures had been created, it was then possible to add colour and to map

textures to the buildings to add realism to them. See figures 5.3 and 5.4 for sample

snapshots from Virtual Grahamstown, which illustrate the realism achieved by adding

colour and textures.

Colour, as opposed to texture mapping, was used where the significance of the building

was low, or the building was being drawn at a lower level of detail, or where the texture

of an area would have been relatively plain. This reduced the scene complexity and

increased the speed of rendering the scene.

Figure 5.3. A snapshot of selected buildings on the Rhodes University campus

(looking towards the Grahamstown Monument)

 112

Figure 5.4. A snapshot of the Grahamstown City Hall(Left) and Cathedral(Right)

The use of textures for important landmarks, however, is almost mandatory, and the

resulting realism is extremely high in comparison with simply using colour. The texture

maps for these buildings were obtained by taking still-shots of the actual buildings using a

video recorder. While the use of texture mapping is relatively resource intensive, there

are ways to minimise the effect of using textures within a scene, and to reduce memory

usage at rendering time. These include:

?? Repeating the texture both horizontally and vertically, allowing areas with repeated

features to be efficiently generated from only a single instance of the texture of that

feature.

?? Selecting active areas of the texture allows reuse of the texture maps for cases where

only smaller portions of the texture are required. For example a texture used for an

entrance arch with window above, could equally well be used for a wall with a

window of the same shape.

 113

5.2. Location-transparent GIS Services
The second part of this chapter shifts the focus to our more recent and innovative work. As

outlined in the Introduction (see chapter 1), we have identified a number of problems with

traditional GIS applications, and have therefore developed RADGIS in an effort to provide an

alternative GIS client architecture that overcomes many of these problems (see section 4.7).

The runtime-extensible RADGIS architecture enables the development of highly-

customisable and scalable GIS clients, that can be tailored by end-users according to their

domain-specific requirements and level of expertise. It allows users to make use of both local

and remote implementations of GIS services that have been developed and deployed using

our DGCML meta-language. This facilitates the use of GIS services that may be invoked

with location-transparency on the local machine or on a remote server, depending on where

the data that is to be processed is stored. This is an important capability as data and services

become more closely integrated, and data providers add value to their underlying datasets by

providing value-added services, in order to maintain their competitive advantage.

5.2.1. Standardised Metadata for Efficient Integration

Metadata is extremely important for providing context. Just as we require information to

base our decisions on, the more metadata one provides about the GIS components, the easier

it becomes to integrate them efficiently with the client GIS application.

Software is generally shipped with documentation on how to use it, together with an online

help system. Individual software components (both local and remote implementations)

should be created in the same manner, i.e. each component should have associated

documentation describing how it should be used, including expected input, output, boundary

conditions and possibly what algorithm was used in its implementation, as well as having a

comprehensive online help system. However, because these components are to be

discovered, and added to the dynamic application at runtime, as opposed to at development-

time, there is the additional requirement that this information be stored in a standardized

manner, to facilitate automated retrieval.

 114

Two methods for providing information about the GUI and on-line help for each tool,

implemented as a CORBA object or EJB, were initially considered. The first was to create a

standard set of methods that must be implemented by each CORBA object or EJB, e.g.

getHelp and getGUI. These methods could in turn query a database and return the relevant

XML encoded metadata. The second method, which we decided to adopt, does not require

any changes to existing CORBA objects or EJBs. Instead, it provides the metadata about the

intended use of the CORBA objects and EJBs in a readily customisable XML document,

using the Distributed Component GIS Markup Language.

5.2.2. The Distributed GIS Component Markup Language (DGCML)

The DGCML meta-language was developed to provide deployment, GUI and help system

meta-information about locally and remotely implemented GIS services that could be

integrated by the RADGIS client at runtime. The factors that influenced the design of

DGCML were covered in chapter 3. This section will now provide implementation-specific

details of the DGCML meta-language.

Figure 5.5. The DGCML DTD hierarchy

Figure 5.5 illustrates how the DGCML language has been defined in three separate DTDs

that specify the format of the deployment, GUI, and help information stored in a DGCML

descriptor file. The describeService.DTD file, shown in table 5.1, ensures that a GIS service

descriptor based on DGCML contains the following information:

?? The name, vendor and version of the GIS service, as well as an optional icon that can

be used to identify the service;

DescribeService.DTD

(Deployment information)

DescribeGUI.DTD

(GUI specification)

DescribeHelp.DTD

(HelpSet information)

 115

?? Links to a description of the service, and the license agreement;

?? The codebase which indicates what type of tool it is, i.e. whether the tool resides

locally or is a remote implementation, and its location;

?? A complete description of the GUI required by the tool to operate correctly; and

?? The links to the HelpSet files.

<!ENTITY % helpSystem SYSTEM "file://localhost/C:/describeHelp.dtd">

%helpSystem;

<!ENTITY % guiDisplay SYSTEM "file://localhost/C:/describeGUI.dtd">

%guiDisplay;

<!ELEMENT GISService (CodeBase*, GUI, Help)>

 <!-- Menu is optional in case the tool is a stand-alone application -->

 <!ATTLIST GISService name CDATA #REQUIRED vendor CDATA #REQUIRED

 version CDATA #REQUIRED>

 <!-- href is an optional tag that indicates where to find a web page describing the

 (distributed) tool -->

<!ELEMENT CodeBase (License?)>

 <!ATTLIST CodeBase url CDATA #REQUIRED icon CDATA #IMPLIED>

 <!-- if the icon field is empty, the name of the tool (as bound in NS) is used -->

<!ELEMENT License EMPTY>

 <!ATTLIST License href CDATA #REQUIRED>

Table 5.1. DTD for GIS Service (describeService)

5.2.2.1. Deployment metadata

The XML descriptor file for a particular GIS service contains the unique name of the GIS

service, the vendor’s name and the version of the service. It also includes an optional link

to a description of the GIS service. The description of what the GIS service does,

generally also marked-up using XML, serves as online documentation.

 116

The XML encoded description can be processed by an XML-to-HTML style sheet, using

the XML Style-sheet Language (XSL) [Adler 2000], to create an HTML document for

presentation in a Web browser. Alternatively, it is also feasible that the XML description

could be used by a Registry service when differentiating between multiple tools that fulfil

the same function.

The DGCML descriptor allows for the specification of alternate codebases, for the

provision of more than one remote runtime instance of a particular vendor’s

implementation of a GIS tool. This provides fault tolerance, and the ability to switch

remote service providers based on service levels or cost, in the event that component-

based or per-usage charging models are implemented at a later stage (see section 6.6).

The specification of more than one codebase for an implementation of a particular tool

also provides the ability to choose a server “close” to the data source. This is very useful

if, for example, a geospatial data vendor also provides remote access to instances of

particular GIS services. (We are assuming that processing the data on the remote site is

more efficient than first downloading the whole dataset and then performing the operation

locally, or that the user does not have a local implementation of that service.)

5.2.2.2. GUI specification

The DGCML GUI specification allows the client GIS application to build the GUI

required by the GIS Service at runtime, using Java’s Reflection API. This means that

changes to the GUI may be made by simply editing the DGCML GUI description. There

is no compile-cycle required, and the changes to the GUI are reflected the next time the

GUI is generated, i.e. changes to the GUI do not require the user to close down and restart

the entire client GIS application.

The describeGUI DTD, which describes how a GUI for a GIS service can be specified, is

given in table 5.2.

 117

<!-- All methodcall names starting with the string "remote:" are reserved for internal use by

 DGCML -->

<!ELEMENT GUI (Component | MethodCall)*>

 <!-- If there are no components, there is no visible GUI and the tool is simply "executed"

 using method-calls -->

<!ELEMENT Component (Component | Property | MethodCall | Event)*>

 <!-- MethodCall is required for invoking methods on Components that are not

 getting/setting properties of beans, such as pack() on a container -->

 <!ATTLIST Component name ID #REQUIRED type CDATA #REQUIRED

 position CDATA #IMPLIED>

<!ELEMENT Property (MethodCall*)>

 <!ATTLIST Property comp NMTOKEN #IMPLIED name NMTOKEN #REQUIRED

 value CDATA #REQUIRED >

<!ELEMENT Event (MethodCall | Property)*>

 <!ATTLIST Event type NMTOKEN #REQUIRED filter NMTOKEN #IMPLIED>

<!ELEMENT MethodCall (Param*)>

 <!ATTLIST MethodCall name CDATA #REQUIRED ReturnType CDATA #REQUIRED

 ReturnValueDest CDATA #REQUIRED>

<!ELEMENT Param (Property?)>

 <!ATTLIST Param Source CDATA #REQUIRED DataType CDATA #REQUIRED

 CallType CDATA "IN">

Table 5.2. DTD for GUI specification (describeGUI)

The describeGUI DTD specifies the following:

?? Zero or more components or method calls, where the absence of any components

infers that the GIS Service does not require its own GUI, i.e. it is probably a batch

process.

 118

?? Unique naming of all components such that they may be referenced as sources

and/or destinations of arguments/return types for method calls.

?? The getting/setting of JavaBean properties.

?? The events generated by the relevant components.

?? The method calls that should be invoked.

?? The parameter types with which a method call should be invoked, including a

callType flag to signal whether the argument in the object’s IDL file was defined

as an “IN”, “OUT” or “INOUT” parameter.

The focus of DGCML is to provide a highly customisable front-end for users that can

support tight integration with the client-application. Therefore, it has been kept relatively

simple, and has not attempted to become a Java-like XML programming language. This

means that certain complex operations may not be easily achieved using DGCML.

However, these complex operations would normally encapsulate some programming

concept that would be best implemented as a Java class. That Java class could then be

referenced in the DGCML descriptor to provide the desired functionality simply and

efficiently.

Thus there is a trade-off between the ability to easily customise the functionality of the

GUI by editing the DGCML GUI specification, and reducing the complexity and amount

of Reflection that is required to build the GUI, by writing certain complex operations as

“helper” Java classes.

Complex GUI’s may therefore be developed either through the use of Java’s Swing

components, or custom-built GUI/helper classes. If one wanted to add a custom GUI

component not (easily) programmable via the DGCML meta-language, it is possible for

that functionality to be created in a standard Java class, and for an object of that type to be

instantiated and added to, or used by, the GUI.

 119

5.2.2.3. Help Metadata

Some GIS packages are so large that their documentation is seldom up to date with the

new features, and often they have trouble just keeping up with their standard features.

For a large GIS package that tries to provide as many tools as possible, the volume of

documentation becomes almost unmanageable to maintain, and this in turn makes it

difficult for users to find relevant information within the help system.

There is a greater likelihood, however, that if specialists wrote individual services, that

the documentation (help system or user manual) would be up to date, and could provide

more detailed use-cases, explanations of the algorithms used for certain processes, such as

the interpolation methods used for the creation of digital elevation/terrain models,

explanations of boundary conditions, or possible problem data sets.

We are using JavaHelp 1.1 [Sun Microsystems 2001c] in our RADGIS client to provide

access to remote help data for our GIS services. JavaHelp uses XML documents to

specify the structure of each help system, and HTML formatted text for the presentation

of the help. It also defines simple mechanisms for the merging of help data from different

components that may be stored at different locations, as well as the indexing and

searching of these help files. For a comprehensive description of how JavaHelp provides

location-transparent access to help data, and the ability to merge help data from multiple

components, refer to the JavaHelp User’s Guide [Sun Microsystems 2001c].

<!ELEMENT Help (HelpSet*)>

 <!ELEMENT HelpSet EMPTY>

 <!ATTLIST HelpSet href CDATA #REQUIRED>

Table 5.3. DTD for Help specification (describeHelp)

The describeHelp DTD allows the user to specify one or more HelpSets for the GIS

service, i.e. the help system for a particular GIS service can be created from a number of

smaller help topics if desired. These HelpSets are merged (in a hierarchical format) with

 120

the RADGIS client’s help system at runtime when the tool is invoked. Each HelpSet

element simply contains a reference to the JavaHelp HelpSet file, which in turn contains

references to the JavaHelp map file, and the files necessary for providing the table-of-

contents, index, and search views.

Figure 5.6 shows how the HelpSets for two GIS tools (GIS Tool A and GIS Tool B) have

been merged with the main help system of the client application. It is possible for the

help systems of these tools to be downloaded to reside locally, or to be accessed at

runtime across the Internet. Therefore use of JavaHelp, which facilitates the

implementation of a distributed help system, provides a high level of location

transparency to the end-user when accessing help information.

Figure 5.6. Use of JavaHelp to display help data from different GIS Services

<HelpSet>

<TOC>
<Index>

<HTML>
<Head>
<Title>
GIS Tool A –
Overview
</Title> …

<HelpSet>

<TOC>

<Index>
<HTML>
<Head>
<Title>
GIS Tool B –
Overview
</Title> …

GIS Tool B

GIS Tool A
Client GIS Application

Merged Help

<HelpSet>

<TOC>
<Index>

<HTML>
<Head>
<Title>
GIS Tool A –
Overview
</Title> …

<HelpSet>

<TOC>
<Index>

<HTML>
<Head>
<Title>
GIS Tool A –
Overview
</Title> …

<HelpSet>

<TOC>

<Index>
<HTML>
<Head>
<Title>
GIS Tool B –
Overview
</Title> …

GIS Tool B

GIS Tool A
Client GIS Application

Merged Help

 121

5.2.3. Adding and Invoking a Service – A Use-case Example

In order to illustrate how the functionality of the RADGIS client can be extended at runtime

through the addition of a new service, developed and deployed using DGCML, we will now

briefly describe a simple use-case scenario for a remote tool that has been implemented using

a CORBA object.

Below, figure 5.7 illustrates how a simple SQL query tool, implemented remotely as a

CORBA object, could be added at runtime and invoked by the client application.

Figure 5.7. CORBA SQL query tool example

First the user searches for the tool that is required for the task at hand, possibly by browsing

the Web for links to DGCML descriptors or using specialised lookup services such Registry

or Directory services (see section 4.6).

Client
App

Client
App

SQL Query
Tool

Database

Remote CORBA Object

XML
description of
SQL Query

Tool

XML
description of
SQL Query

Tool

JDBC

ORB

Client
App

Client
App

SQL Query
Tool

Database

Remote CORBA Object

XML
description of
SQL Query

Tool

XML
description of
SQL Query

Tool

JDBC

ORB

 122

Once the user has found the desired tool, the DGCML descriptor for that tool is downloaded,

together with any supporting Java “Helper” classes, and then the icon and tool name are

added to the GIS client’s menu and/or toolbar. This completes the “installation” of the new

service.

When the user chooses to invoke the service by selecting it from the menu or toolbar, the

DGCML descriptor file is parsed by the client application. The client application then looks

up the object reference to the CORBA object, and assuming that there was no compile-time

knowledge of the tool, would use CORBA’s Dynamic Invocation Interface (DII) to invoke

methods on the object.

These method invocations would generally be the result of events generated by the user of the

client application, when interacting with the GUI associated with the tool. This GUI would

have been created by the client application in response to the XML description associated

with the CORBA object, e.g. the SQL Query tool in figure 5.7.

5.2.4. Creation of a Location Service

In general, location services are specific applications of one or more generic GIS tools that

simplify the interface and allow traditionally non-GIS users to make use of GIS-type

functionality transparently.

For example, consider the interface required for implementing a simple yellow -pages location

service for finding all restaurants within a particular distance of a user-specified location.

This location service is essentially a “complex” spatial query that would probably not be

correctly specified by a non-technical user. However, due to the nature of the location

service to be implemented, the number of unknowns (such as the number of parameters, the

names of these parameters, and the name and location of the database table holding the

restaurants’ location information) are reduced, allowing much of the query to be pre-

generated by the developer of the service.

In addition, by creating a simple interface, such as the one implemented using DGCML

shown in figure 5.8 (the DGCML listing for this example has been included in appendix E), it

is very easy for the user to make use of such a service, i.e. only the user’s location and radius

 123

in which to search for restaurants are required. It is possible to simplify the user interface

even more if the user accesses the location service from a cellular phone, which can be used

to automatically determine the user’s location using triangulation.

Figure 5.8. Example of a location service for finding restaurants

The above example shows the tremendous flexibility of the RADGIS architecture. RADGIS

is, in effect, a generic client architecture that is able to parse DGCML descriptors at runtime

and, using Reflection, generate the GUI necessary to execute GIS services, location services

or any other type of service described by a valid DGCML descriptor. Thus our approach

allows one to create a client-side framework in which one could combine location services to

create more sophisticated tools, as well as allowing further processing of the results obtained

from invoking a particular location service.

RADGIS Client

Location
Service

RADGIS Client

Location
Service

 124

5.3. Invocation of methods at runtime
Our DGCML goes further than simply wiring together components to create an application,

but looks at the integration of tools for which no previous knowledge of other components is

known. At the same time, a requirement of our RADGIS system is that it must be simple for

the user to add and remove tools as well as modifying their installation and/or GUI for tight

integration with the client application.

In our description of the DGCML grammar so far, we have not mentioned anything about

how the services are implemented. This is because the DGCML is independent of whether

the services are implemented as CORBA Objects, EJBs or simply in local class files (stored

in JARs).

Methods of both local and remote objects may be invoked when executing a GIS service that

has been developed using the DGCML. However, because these services have been

developed separately to the RADGIS application, the RADGIS application has no compile-

time knowledge of these objects. It is therefore necessary to make use of special mechanisms

to accommodate this dynamic behaviour.

5.3.1. Invocation on local objects using Reflection

Java classes that implement GIS services, which have been downloaded to the client’s

machine to run locally, require a runtime mechanism to instantiate objects, set properties and

invoke methods. Fortunately Java provides just such a means for the "introspection" of Java

classes, namely Reflection.

Reflection is a runtime capability that facilitates late binding, and is an essential part of

JavaBeans technology, although its uses stretch far beyond JavaBeans. Its power lies in

providing an abstraction that frees software from having static references to target classes and

objects when it is compiled [Portwood 2000]. Thus, designing with Reflection provides

flexibility, extensibility and pluggability that are essential for the type of client architecture

we have developed.

 125

The java.lang.reflect package provides the ability to query a Java class about its properties,

and to operate on methods and fields by name for a given object instance, within the basic

security framework, e.g. based on access modifiers [Tremblett 1998]. For more information

regarding Java’s Reflection mechanism, refer to [Portwood 2000].

According to Portwood [2000], there are a number of myths surrounding the use of

Reflection, including that Reflection is too complex for use in general-purpose applications

and that Reflection reduces performance of applications. He maintains that, when properly

applied, Reflection leads to improved performance and simplified maintenance, with greater

reusability and extensibility of software.

Apart from the method invocations on the GIS tools, Reflection is used for building the GUI

from Swing components. Swing components are JavaBeans, and as such allow one to use the

Bean Introspector to interrogate a Swing component (using Reflection) to reveal important

aspects of its behaviour, such as the types of events it will respond to, and the types of events

it may generate [Spruit 1997].

5.3.2. Invocation on Remote Objects

Our RADGIS application makes use of both static (i.e. using compile-time knowledge of

stubs) and dynamic (i.e. runtime discovery) method invocations on remote objects.

This means that, at runtime, it is possible to look up references to:

?? distributed objects that were known about at compile -time, and were “built-in” by the

programmer. Here the only “unknown” at compile time may have been where the

distributed objects would reside at runtime.

?? distributed objects that were not known about at compile-time.

The former is relatively straightforward because one is able to make the assumption that the

programmer has detailed knowledge of how the remote object should be invoked, what

parameters to pass, and what to do with the result. The latter, however, is far more

complicated as one cannot assume that the user has any knowledge of how to invoke the tool

that has been discovered at runtime, nor how to incorporate it into the current application.

The level of expertise required by a user (or by the framework acting on behalf of the user)

 126

that wishes to discover new tools at runtime is therefore much greater than that of a user that

only makes use of static invocations of “built-in” tools.

There are two possible models for accessing remote services:

?? The first assumes that only the discovery of tools is dynamic, and thus once a tool has

been selected, the necessary stubs are downloaded and installed on the client machine.

?? The second requires the use of the Dynamic Invocation Interface (and the Interface

Repository) to implement the dynamic invocation of method-calls on the remote

CORBA Object(s), or the use of Java’s Reflection mechanism for EJBs. It is

unfortunately not possible to simply use Java’s Reflection mechanism to invoke

methods dynamically on both CORBA Objects and EJBs, as the CORBA Objects

may have been implemented using a language other than Java (which may not support

Reflection), and therefore the CORBA (proxy) Objects do not hold the necessary

information for performing Reflection on the CORBA Objects’ implementations.

Both of these approaches have therefore been implemented in the RADGIS client to

provide transparent access to CORBA objects and EJBs for which no compile-time

knowledge exists.

5.3.2.1. CORBA Objects

CORBA's Dynamic Invocation Interface (DII) allows a client to choose any target

CORBA Object at run time and then dynamically invoke its methods.

Dynamic invocation using the Interface Repository is invariably slower than using static

stubs. However, much of the performance loss associated with DII in general, is

attributed to looking up the interface name, getting the operation identifier/parameters,

and creating the request (Duman, 1999). Therefore, using the information about the

method-call stored in the XML descriptor, one is able to minimise the performance loss

associated with using the dynamic invocation.

 127

5.3.2.2. Enterprise JavaBeans (EJB)

It is possible to create the necessary proxy objects for the home and remote interfaces

required for invoking methods on a particular EJB using Java’s Reflection API (as used in

section 5.3.1 for invoking methods on local objects). This is extremely useful as it

simplifies the invocation process and allows a standard mechanism for the runtime

invocation of methods on both local and remote objects.

5.4. Summary
In this chapter we have presented the implementation details and some of the initial design

considerations that were taken into account during the development of our RADGIS

application and the DGCML grammar.

Specifically we detailed the use of VRML models for the creation of the data set, the

problems associated with the use of VRML for cartographic representation and the work

currently being undertaken to solve these problems together with the emerging X3D standard.

Once we had outlined how the RADGIS client visualised the 3D data, we gave a break-down

of the DGCML descriptor file and provided a simple use-case scenario. We also provided an

example of how a location service could be developed using DGCML. The ability to invoke

methods on local and remote objects was then discussed to complete the overview of

technologies used in the development of the core functionality of the RADGIS application.

With this knowledge it is now possible to look at some of the implications that the RADGIS

architecture has on the development of GIS services for developers, as well as the

implications of using and customising such an application for the end-user. This will provide

us with an opportunity to discuss the benefits that are derived from using the RADGIS

architecture, and to look at some of the issues would that need to be addressed if RADGIS

were to be released commercially.

 128

Chapter 6

Discussion

“Reality is merely an illusion, albeit a very persistent one.”

Albert Einstein (1879-1955)

Thus far we have described the problems with current GIS architectures, which have

highlighted the need for an extensible client architecture that facilitates the addition, and

close integration, of interoperable GIS services at runtime. We have also outlined the

implementation of our proof-of-concept system, called RADGIS, which aims to fulfil these

requirements. In this chapter we will now present some of the implications that arise from

the use of the RADGIS architecture, such as the design considerations for object developers

and component integrators. In particular, we will highlight the fact that very little, if any,

modification to existing objects is required, and that component integrators are able to

assemble GIS and location services with tremendous ease and flexibility.

We will also discuss what impact the use of the RADGIS architecture has on the usability of

client-side GIS applications, i.e. the level of expertise required by the user to successfully

make use of the RADGIS client. This allows us to present the qualitative benefits of using

the RADGIS architecture to access GIS tools and services distributed across the Web.

 129

During the course of our research, and the implementation of our RADGIS architecture, a

number of issues arose from the use of distributed components and services that were not part

of the original research mandate. These include the necessity to provide a directory service

for registering and locating GIS services, as well as the adoption of new charging models for

distributed components and services, the possibility of employing parallel processing, and the

ability to modify the user interface at runtime based on what tools are currently being used

(adaptive or intelligent user interfaces).

While we were unable to address these supplementary issues in the limited time and scope of

this investigation, we have devoted the latter part of this chapter to these issues in order to

highlight further work that would have to be undertaken if one were to implement a full

version of the RADGIS architecture for commercial release.

6.1. Design considerations for the object developers
Due to the design of DGCML, which allows component integrators to wire together both

GUI objects, and local and remote objects that provide GIS functionality, there is no need to

modify existing GIS tools that have been developed as components. The flexibility of the

DGCML language, together with the ability to make use of “helper” Java classes ensures that

it is possible to adapt an existing GIS tool for use in the RADGIS architecture. The amount

of “adapting” that must be performed by the component integrator to successfully make use

of that component can be considered an indication of its level of re-usability.

This is a large benefit of our design, since it does not require that the objects that implement

the desired GIS functionality be rewritten to adhere to a particular standard or format.

Instead, it is possible to adapt existing components. However, there are definite benefits to

be derived from creating GIS services based on objects that have been implemented using

standards, e.g. the Open GIS Consortium’s Implementation specifications, including

simplifying compatibility and substitutability decisions (see section 2.1.4), and reducing the

need to create complex component adapters.

 130

Therefore, while there are no additional requirements imposed by the RADGIS architecture

on object developers, or the need to rewrite existing objects, it would be beneficial for object

developers to create GIS tools that conform to standards.

6.2. Design considerations for the component integrators
It is the component integrator who will most likely write the DGCML descriptors that

provide customised GIS services, which can be integrated by the RADGIS client at runtime.

The goals of component-based software development are to maximise code reuse and

simplify application development. However, many unforeseen circumstances may arise

when trying to make use of such a generalised approach to application development,

particularly with respect to integrating components that were developed by different vendors,

at different times and possibly across application domains.

Thus, from time to time, it may be necessary for a component integrator to also write

converter or “helper” objects to facilitate particular operations that fall outside the scope for

which the component was originally intended. These helper classes also allow component

integrators to simplify the DGCML code necessary for specifying complex GUIs and

component interactions, as well as for “hiding” certain operations that should not be

modifiable by the end-user. The customisability and the flexibility provided by the DGCML

meta-language, together with the ability to create and utilise “helper” Java classes, therefore

ensures that a component integrator is able to develop easily-customisable, yet sophisticated,

GIS services based on diverse GIS components.

However, without standardisation amongst GIS object developers and component integrators,

on issues such as naming conventions and documentation, the power to replace

implementations and to facilitate tight integration of services with the client application will

be severely hampered. Therefore the greatest benefits will be derived from our approach, and

CBSD in general, when used in combination with agreed upon standards.

 131

6.3. Implications for the client
The application of our approach to dynamic runtime systems’ development using distributed

objects, to the field of GIS, opens up the scope of GIS applications for traditionally non-GIS

communities that require only a subset of the GIS functionality available. Thus users would

no longer have to download and install large GIS packages if they were only ever going to

use a fraction of the GIS functionality that is typically bundled with current GIS applications.

Instead, using RADGIS, they would have the ability to add GIS services to the client

framework as, and when, required.

Rudimentary GIS applications can be created by relatively inexperienced users, simply by

selecting the tools required, and electing to add them to the client application. This course of

action makes use of the default DGCML descriptor file, developed by a component

integrator, which defines the mechanics of how the tool is to be located, and integrated into

the dynamic application at runtime. No further customisation or user intervention is required

in order to make use of these tools. The RADGIS client uses the self-describing DGCML

descriptor to display the default GUI for invoking the tool, as well as integrating the help

associated with the tool, into the client application’s help system.

However, the real power of this approach lies with the expert user who can modify a

DGCML descriptor, so as to allow tighter coupling and integration with other local and

distributed tools, as well as the core client application. This includes the development of new

services that perform multi-stage processing by chaining tools together, or executing batch

operations.

Thus, if the tools are used with their default DGCML descriptors, no further configuration is

necessary and the end user is not required to perform any complex integration operations.

However, expert users are able to benefit from the large degree of customisation available,

and are therefore no longer restricted to use a GIS designed for “most” users, but instead can

customise their client GIS to suit their individual requirements.

 132

6.4. Combining GIS tools and data to create location

services
Our research has primarily focussed on developing an architecture that allows the user to

create their own customised, scaled-down GIS application, which contains only the tools

required for his/her particular tasks. However, we have also demonstrated how our approach

would allow one to create a client-side framework in which one could combine location

services to create more sophisticated tools, as well as allowing further processing of the

results obtained from location services (see section 5.2.4). The RADGIS architecture could,

therefore, just as easily facilitate the development of small, specialised applications that

integrate one or more location services.

This is an important capability of the RADGIS architecture considering the significant

industry interest and financial backing that is moving the Location Services industry forward

as new markets for location services are rapidly being uncovered. Location Services’ strong

reliance on GIS functionality means that many of the OpenGIS® standards developed by the

OCG, particularly GML, will also be used in the development of future location services.

The relatively recent development of location-based services, which share much in common

with distributed GIS services, has also spurred renewed interest in providing Web-based GIS

functionality. Location services will therefore foster the development of open

implementations of GIS tools that may be accessed remotely, as well as the exposure of

valuable intrinsic location-based information. This is extremely important because it is only

as more data and tools are made available online, that the relating and organising of this

location-based information will allow hidden meanings and relationships to be revealed, and

the true potential of GIS and location services to be unlocked.

 133

6.5. Runtime discovery of remote implementations of GIS

services
The envisaged future of distributed geospatial data and services will not become a reality

without the ability to efficiently expose these data and services. In the same manner that web

search engines have enabled us to search huge quantities of data, so the ability to search for

geospatial data and services will require providers of these data and services to register them

with software that provides a searchable repository of features and metadata.

Due to the focus of the research we have not implemented a catalog or directory service (see

section 4.6) to allow the registration and discovery of GIS services implemented using

DGCML. Instead, for demonstration purposes, we have simply generated Web pages

“advertising” the services. These Web pages are based on the XML descriptions of the GIS

services, and have links which allow the user to download the DGCML descriptor(s) and any

supporting Java “Helper” classes (see figure 6.1), bundled as a JAR file with an extension

.DGJAR.

The user can browse, download and install a new service in two different ways:

?? The client may use a standard Web browser to navigate to, and browse, a Web page

which describes a GIS service that may be used by the RADGIS client. The user

may download the JAR file using the Web browser to the local machine, and install

the GIS service by selecting the .DGJAR descriptor using the “install” option in the

RADGIS client at runtime.

?? Alternatively, the RADGIS client can make use of a generic Web-browser service,

implemented using a customised Java Swing JEditorPane component, that has been

developed and deployed as a DGCML descriptor. Clicking on a link to a .DGJAR

file in this Web-browser service invokes the RADGIS client’s installService method,

automating the download and install process, i.e. adding the icon and service name to

the menu and/or toolbar.

 134

Figure 6.1. Advertising GIS services using Web pages

However, we realise that the simplicity of this approach also has a number of drawbacks, and

does not take into account the research being undertaken with respect to directory services

that are being designed to simplify object/service registration and discovery. Therefore we

refer the reader back to section 4.6, in which we discussed some of the prospective

technologies that may be used to develop registries that advertise GIS services. Figure 6.2

shows the role that a registry service would play in the RADGIS architecture to allow the

client to discover a particular GIS service.

DGCML
Descriptors

&
Java Helper

Files

Geospatial
Services Web

Server

XML

XSLT

HTML

1

2

3

4

1. Client retrieves HTML description of service
2. Client uses HTML to locate and download DGCML and Java Helper Files
3. Client uses DGCML descriptor to invoke method on remote object
4. Client obtains result from remote object

DGCML
Descriptors

&
Java Helper

Files

Geospatial
Services Web

Server

XML

XSLT

HTML

1

2

3

4

1. Client retrieves HTML description of service
2. Client uses HTML to locate and download DGCML and Java Helper Files
3. Client uses DGCML descriptor to invoke method on remote object
4. Client obtains result from remote object

 135

Figure 6.2. Advertising GIS services using a searchable registry

6.6. Benefits
The runtime application development paradigm of the RADGIS client architecture, which

facilitates the addition of GIS services, developed and deployed using DGCML, has a

number of advantages. These include:

?? the creation of small GIS applications with specific functionality, aimed at reducing:

o the per-seat licensing fee;

o the complexity of the overall application; and

o the learning curve for non-GIS users.

?? finer licensing granularity, which facilitates the use of alternative pricing models (see

section 6.7.1). Thus the user may no longer be required to pay for functionality that

they do not require.

DGCML
Descriptors

&
Java Helper

Files

Geospatial
Services Geospatial

Service
Registry

1

2

3

4

1. Client searches geospatial service registry for particular service, based on name or properties
2. Client uses link to locate and download DGCML and Java Helper Files
3. Client uses DGCML descriptor to invoke method on remote object
4. Client obtains result from remote object

Registered with

DGCML
Descriptors

&
Java Helper

Files

Geospatial
Services Geospatial

Service
Registry

1

2

3

4

1. Client searches geospatial service registry for particular service, based on name or properties
2. Client uses link to locate and download DGCML and Java Helper Files
3. Client uses DGCML descriptor to invoke method on remote object
4. Client obtains result from remote object

Registered with

 136

?? reducing application bloat, which in turn reduces the in-memory and secondary

storage requirements of the software.

?? loading functionality only when required which amortizes the load time through the

entire run of the application. Unused functions are never loaded, which reduces the

demands made on system resources.

?? the flexibility to support both novice and expert users within the same architecture.

?? the ability to make use of different underlying implementations of a particular GIS

service while retaining the use of a single “familiar” user interface to which the user

may be accustomed. This is particularly useful for eliminating the “limited transfer of

knowledge” when a user changes from using one software-package to another.

?? providing the user with increased flexibility when choosing application components

and services, depending on the user’s processing requirements and level of expertise.

?? improved robustness due to reuse and constant retesting of components in different

environments.

?? the ability to make use of dynamic invocation, which ensures that users always have

access to the latest version of a particular object/service. Due to the centralised nature

of server-side processing, a vendor can easily retract an old version and rebind a new

version of that tool to the old naming context, thereby dynamically upgrading the tool

transparently and ensuring that users always work with the most up-to-date versions

of objects.

?? the ability for a single distributed object to be used by many different service

implementations that are distributed across the Internet. This reuse of “live” software

components or services has the potential to be more useful than making use of “static”

component code repositories.

?? increased interoperability and customisability of components via a runtime extensible

client framework.

?? possible bandwidth savings if the geospatial data to be processed resides “close” to

the remote service that is being invoked, e.g. if both the data and service reside on the

same Intranet.

Our approach has the added benefit that within the field of GIS, the Open GIS Consortium

has started standardising interfaces and specifying IDLs for the spatial and attribute datatypes

[Open GIS Consortium, 1998b]. It is therefore possible to create a client that knows how to

 137

interact with standardised GIS datatypes and services, increasing the ability to incorporate

new tools at runtime with high levels of integration.

Alternatively, if one considers the use of more general-purpose components, it also becomes

possible to make use of a single component in more than one application domain. Hence it

may be possible to generalise our RADGIS architecture to the point that one no longer

requires the use of different applications for different tasks. Instead it would become possible

to make use of a set of loosely coupled components that allow tight integration to process

information across traditional application boundaries.

Figure 6.3. Example showing how more than one DGCML descriptor could make use

of a distributed GIS tool

While the implementation of such an architecture may currently be too ambitious, the ability

to utilise the same component in multiple applications, using DGCML descriptors that adapt

it for use in a particular application, is possible. Each DGCML descriptor could simply

reference the same component(s), but provide application-specific GUIs and help (see figure

6.3).

Geospatial
Components

Registry

DGCML:
GIS

Service A

DGCML:
Location
Service

DGCML:
Alternative

implementation
of GIS Service A

A

B

C

D

Geospatial
Components

Registry

Geospatial
Components

Registry

DGCML:
GIS

Service A

DGCML:
Location
Service

DGCML:
Alternative

implementation
of GIS Service A

A

B

C

D

 138

6.7. Implications of distributed CBSD for a Commercial

implementation of RADGIS
We have covered a number of component-based software development technologies that

have shown tremendous potential for application in the domain of GIS. However, there are

three areas that warrant further examination with respect to implementing a full commercial

version of our RADGIS client architecture, and the effective utilisation of distributed GIS and

location-based services. These are:

?? the ability to charge for the use of distributed GIS services;

?? design considerations associated with the ability to invoke distributed components

concurrently; and

?? the need to increase the “intelligence” of the user interface to cope with the

complexities arising from the addition of new services at runtime.

6.7.1. Charging Mechanisms for distributed objects

The implementation of distributed GIS tools that are invoked remotely means a user would

no longer be required to buy, install and maintain large, costly GIS packages locally. Instead

it would be possible for a user to purchase individual services that run locally, and to “rent”

distributed services on a per usage basis. Therefore, a number of heterogeneous pricing

models may be used to determine the cost involved in accessing and processing geospatial

data.

The adoption of the RADGIS architecture commercially would require the ability for GIS

service providers to charge for the use of their distributed services. While charging models

for distributed software tools are not the focus of this thesis, we would like to point out some

of the pertinent issues:

?? The use of a distributed tool may be charged on a per-usage fee, and/or a lookup table

of registered users may be consulted to determine payment method, i.e. it may be

possible to pay a once-off fee for using a service, or pay a per-usage fee, or a

combination of an initial fee plus a per-usage fee.

 139

?? Assuming the distributed tool processes a particular dataset, which is not provided by

the user, the client may be charged for the use of/access to the dataset independently

of the use of the distributed tool. Alternatively, if the dataset is only accessible using

that particular tool, the cost of accessing the data may be incorporated into the cost of

using the distributed tool.

?? The user may simply be charged for the use of the software, or may also be charged

for processing time. It may be useful to charge the client different amounts depending

on the size of the data set involved. This also allows quality of service charging

mechanisms to be introduced whereby the client may choose how quickly and/or

when to process their data, i.e. PC vs. Mainframe, and peak vs. off-peak times.

It would also be essential to define what service is being provided, what cost is involved, and

what boundaries are defined for where the service starts and stops. Additionally, the user

may also be given the ability to negotiate a service contract for the use of a particular tool that

cannot change without the user's knowledge and consent/authorisation. For example, if a

software vendor upgrades their software, and then decides to charge more for the new

service, the user must be notified of the change, but may, by law, also have the right to retain

the use of the old version at the original price.

The ability to negotiate a fixed cost for invoking a particular version of a tool would also

reduce the need to negotiate the use of that tool every time it is used, and would allow for

charging to be performed transparently. This would be particularly useful for tools that are

used frequently, and that have a relatively low cost associated with them.

According to Gabriel and Wagner [2001], neither the ISO nor the OGC define a price model

in sufficient detail for electronic commerce (e-commerce) applications. They also believe

that while general e-commerce developments like UDDI, Electronic Business XML

(ebXML) and RosettaNet1 are suitable for commercial-off-the-shelf products, they do not

provide enough flexibility in their pricing mechanisms to adequately deal with configurable

1 RosettaNet is an organisation that was set up to define and implement a common set of

standards for e-business, supporting business processes between supply chain partners.

 140

products. For a more in-depth discussion on pricing models, please refer to [Gabriel and

Wagner 2001].

6.7.2. Potential parallelism issues

Coppit and Sullivan [2000] point out that even though a program that is composed of

multiple executable components is inherently concurrent, modern components do not provide

much functionality for concurrency control. Therefore it is necessary to be aware of the

potential danger of invoking distributed components concurrently.

Within the CORBA and EJB specifications there are different ways of communicating with

remote objects, including synchronous (invocation causes the client to block, waiting for a

result before continuing), deferred synchronous (invocation returns immediately but

application must poll for the result) and asynchronous (message is sent to the local message

queue and execution continues without waiting for a result – the result is returned to the local

message queue triggering a callback method) requests.

The CORBA 2.0 specification supported only synchronous and deferred synchronous method

invocations, while CORBA 3.0 supports synchronous, deferred synchronous and

asynchronous messaging. The EJB 2.0 specification introduced message-driven beans, in

addition to the existing entity and session beans, and therefore now supports both

synchronous and asynchronous communication.

If a client application makes use of multi-threading to invoke distributed objects, or if

distributed objects’ methods are invoked using deferred synchronous or asynchronous

requests, then the implications of executing two or more tools in parallel must be considered.

This parallelism can be used to execute two or more different GIS tools in parallel, or to

subdivide a single task into many smaller subtasks, and then execute each of these in parallel

using two or more versions of the same tool.

An example of the use of parallel processing to increase efficiency is shown in figure 6.4 . In

Process A, all components are executed in sequential order. Process B illustrates a

semantically equivalent set of operations that will achieve the same end-result. However, in

 141

Process B, it is possible for the GIS tools, which simply convert an ARC file to a polygon list

and a DXF file to polygon list, to be executed in parallel. Therefore, in Process B, the time

taken before the results can be combined is the greater of the times taken by the two GIS

tools to complete execution, i.e. the greater of Time D or Time E.

Figure 6.4. Contrived Example of Process Equivalence

If the time taken to convert a DXF file to a polygon list is the same as converting an

equivalent ARC file to a polygon list, and the ARC and DXF files in Process B have an equal

number of polygons, then optimistically, it is possible for Process B to be twice as efficient as

Process A. In addition, due to the restructuring of Process A, the time taken initially to

convert the data sources into a common data format (Time A) is removed, as this operation is

no longer required.

If one further assumes that the output of the GIS tool is at least an order of magnitude smaller

than the input, then in general, the time taken to combine the results in Process B should be at

least an order of magnitude smaller than the time taken to combine the inputs in Process A.

Thus, the ability to restructure the way in which a process is performed, together with the

Conversion
Tool (e.g.
DXF to ARC)

Source A
e.g. ARC

Source B
e.g. DXF

Source A
e.g. ARC

Source B
e.g. DXF

Combine
Sources

Combine
Results

GIS process
e.g. ARC?
Polygon List

GIS process
e.g. ARC ?
Polygon List

GIS process
e.g. DXF ?
Polygon List

Output Output

Time B

Time A

Time C

Time D Time E

Time F

Process A Process B

Conversion
Tool (e.g.
DXF to ARC)

Source A
e.g. ARC

Source B
e.g. DXF

Source A
e.g. ARC

Source B
e.g. DXF

Combine
Sources

Combine
Results

GIS process
e.g. ARC?
Polygon List

GIS process
e.g. ARC ?
Polygon List

GIS process
e.g. DXF ?
Polygon List

Output Output

Time B

Time A

Time C

Time D Time E

Time F

Process A Process B

Conversion
Tool (e.g.
DXF to ARC)

Source A
e.g. ARC

Source B
e.g. DXF

Source A
e.g. ARC

Source B
e.g. DXF

Combine
Sources

Combine
Results

GIS process
e.g. ARC?
Polygon List

GIS process
e.g. ARC ?
Polygon List

GIS process
e.g. DXF ?
Polygon List

Output Output

Time B

Time A

Time C

Time D Time E

Time F

Process A Process B

 142

ability to make use of parallel processing, means that Process B has the potential to be

dramatically more efficient than Process A.

However, if there are dependencies between different tools, i.e. they are required to run in

sequential order, or modify the same data, it is imperative that a transparent mechanism to

prevent the client from being able to fire off these processes in parallel is implemented to

ensure data integrity.

6.7.3. Dynamic Interface Development

Our research focuses on the creation of a runtime extensible client architecture that enables

the addition of distributed services. Dynamic component integration allows components to

interact in ways that might not have been predicted by the original designers. However, this

adds additional complexity to user interfaces that are currently too inflexible, are not able to

change according to the user’s needs, and do not interoperate. Therefore, in our research, we

also briefly explored the possibility of providing an adaptive user interface.

The implementation of an adaptive user interface would simplify the potentially complex user

interface that might result from the addition of numerous GIS services during the lifetime of

the client application. In addition, we have implemented a basic mechanism that provides the

ability to send data stored in a GUI component of one GIS service, to a GUI component

residing in another GIS service without explicitly coding the relationship between them. This

is done at runtime, based on the GIS services that are currently being used.

One of the goals of the RADGIS architecture was simplic ity of operation. Therefore, while

we have not fully implemented or explored the implications of developing an adaptive

interface for the RADGIS client, further research in the fields of Adaptive and Intelligent

User Interfaces (see appendix D) is required to ensure that the benefits of the RADGIS

architecture can be fully realised without adding undue complexity to the user interface.

 143

6.8. Summary
In this chapter we have brought together the qualitative results of the research that has been

presented in this dissertation. It has demonstrated the benefits of using the RADGIS

architecture and discussed the design considerations and implications for object developers,

component integrators and the end-user.

We have also highlighted some of the technical issues that have arisen from the research that

has been undertaken, which require further examination. The most important of these is the

registration of services and distributed objects with catalog and registry services so that they

can be easily discovered and integrated into applications.

While directory and catalogue services are currently mainly concerned with the passive self-

registration of objects, it is not unlikely that in the future, these services will be able to

actively seek out services in a manner similar to that of current Web search engines. This

will facilitate the dynamic registration of services in up-to-date directories and catalogues.

A number of issues arising from use of distributed CBSD, and which require further research,

were also raised, including:

?? the ability to make use of an innovative charging mechanisms;

?? the ability to perform parallel processing, and deal with some of the associated risks;

and

?? the possibility of creating an intelligent adaptive user interface to facilitate the

automatic runtime customisation of the user interface.

 144

Chapter 7

Concluding Remarks

Vanessa: That's you in a nutshell.

Austin Powers: No, this is me in a nutshell: “Help! I'm in a nutshell! How did I get

into this bloody great big nutshell? What kind of shell has a nut like this?”

Austin Powers International Man of Mystery.

This thesis was motivated by the current change in paradigm of application development in

general, and particularly within the field of GIS, towards a network centric approach that

facilitates the integration of distributed resources. The focus of our approach, therefore, was

the provision of a runtime-extensible and customisable GIS client architecture that provides

the user with location-transparent access to independently-provided, yet interoperable,

distributed data and services.

During the course of this thesis, we have described some of the major problems with current

GIS architectures, and we have highlighted the move towards a highly component-based,

distributed software architecture. We have also provided an insight into the research

initiatives that are currently underway to provide open standards for the implementation of

GIS services and data formats. These standards are being developed to facilitate the

implementation of vendor-independent interoperable GIS services, and will ensure the future

success of the distributed geoprocessing model.

 145

While GIS has contributed a tremendous amount to our understanding of spatial

relationships, its greatest contribution yet may be as a number of loosely connected

distributed, but interoperable, services and data sources. As users become more adept at

working with location-based data, so they will chain services together to perform more

complex tasks. In turn developers will be able to gain better insight into the requirements of

users in particular domains, enabling them to focus their efforts on providing composite

services and customised front-ends, while reusing the underlying GIS functionality.

This final chapter brings together the work that has been presented in this dissertation on

runtime-extensible, distributed GIS applications, by offering a critical assessment of our

RADGIS client architecture, including its limitations. We then conclude by highlighting our

contribution towards the study of distributed GIS applications.

7.1. Assessment of the RADGIS client architecture
There are currently two major GIS architectures: the traditional GIS client and the Web-

browser front-end to a Web Map/Feature Server for visualising GIS data. The latter is a very

constrained architecture that does not provide much processing functionality, but was

developed as a mechanism for allowing widespread visualisation of geospatial data across the

Web. Web-browser based GIS applications are limited by the GUI functionality of Web

browsers in general, and by the fact that basic GIS visualisation operations, including simple

Pan and Zoom operations, require processing of data on a server machine, which incurs

performance penalties because large amounts of data need to be transferred across the

network. Therefore, there is a growing trend away from Web-browser based GIS towards

small, customised clients with rich GUI functionality that are able to access distributed

services.

The two major problems with traditional GIS applications are that they suffer from

application bloat, and provide very limited interoperability with software from other vendors.

These factors have a negative impact on the overall usability of GIS applications, which are

generally considered difficult to operate and limit the transfer of knowledge when moving

from one GIS application to another, because knowledge gained while using a GIS

 146

application from one vendor cannot be directly applied to using a GIS application from

another vendor due to differences in fundamental conceptual approaches.

The RADGIS architecture has been shown to overcome the problem of application bloat by

allowing application developers to rapidly develop small, customised GIS applications for

novice users, or highly domain-specific systems for expert users. The development of small,

customised GIS-type applications, which can be extended at runtime if necessary, increases

the usability of the GIS application by reducing the number of extraneous features that are

not required to provide the basic functionality required by novice users, in particular

application domains. The development of smaller, customised GIS applications that are

tailored to better fit the conceptual model of a specific application domain, e.g.

environmental, geological, municipal, also increases the usability of GIS applications.

However, the real power of the RADGIS architecture lies in its ability to allow the end-user

to customise the application based on his/her requirements, at runtime. This ensures that the

client application has the flexibility to withstand changing levels of expertise or user

requirements.

As the level of expertise of end users increases, the knowledge gap between novice users and

expert users increases. It is, therefore, extremely important to provide an extensible

architecture that can cater for users with very different levels of competence, and their

progression from novice to expert user. The RADGIS architecture, together with DGCML,

provides a single extensible client that is able to accommodate the needs of both novice and

expert users through:

?? the simplicity of its approach with respect to adding, removing and customising

services. This allows unnecessarily complicated features that are not immediately

required by the novice user to be left out of the initial GIS client, while retaining the

option to add them later (as opposed to having to obtain a different client that

provides additional functionality); as well as

?? providing increased flexibility and customisation for expert users who wish to get

more out of an application than was originally intended by the developer. The level

of customisation currently afforded by most applications typically only allows the

end-user to make use of built-in functionality through scripting languages or to

customize the overall look-and-feel of an application. RADGIS allows the user to add

 147

and replace services within the client application, as well as to decide on the level of

integration of these new services with other services. This, in turn, facilitates the

development of new services that the original developer of the system may not have

envisaged.

In general, the core client application would have a fairly small software footprint that

possibly only included the basic Geospatial Display Services. However, it could be extended

with as much functionality as the user required, when the user required it. The adoption of a

distributed GIS architecture also has the potential to reduce the software footprint on the

client’s machine, because a number of the tools would be accessed remotely.

The RADGIS client is therefore a hybrid client, which is neither a traditional “thin” client

(simply a user interface), nor a “fat” client (user interface and all the application logic).

Instead the client may be extended or trimmed down at various stages of its life, based on the

user’s requirements. It is also possible to load templates based on the task the user wishes to

perform, i.e. a single DGCML descriptor could describe a whole menu of options which,

when installed, would provide access to a customised set of tools that are required for a

particular task.

The issue of interoperability has been addressed in this thesis by the adoption of open

standards developed by the OGC and ISO/TC 211. In particular, the use of XML encoded

geospatial data, e.g. using GML, will provide a simplified method of exchanging data

between interoperable components, as well as simplify the visualisation of data on the Web,

e.g. using SVG in a standard XML-enabled Web browser.

The adoption of standard interfaces when implementing components will also dramatically

improve the ability to determine the substitutability and compatibility of components. The

adoption of a single open standard, such as OpenGIS, will mean that any future components

developed according to this standard would be interoperable with existing components,

irrespective of who implemented them.

Another major problem with GIS applications, which relates to both traditional and Web-

browser based client architectures, is the inability to provide location transparent access to

distributed geospatial services. The RADGIS architecture makes use of DGCML descriptor

 148

files, which specify the use of local and/or distributed objects, to implement GIS services.

The user is able to invoke these GIS services in the same manner regardless of whether they

make use of local objects or remote objects, providing a high level of location transparency.

While there may be some noticeable performance benefits from the ability to explicitly

specify the best location for processing to occur, this option would generally only be made

available to the expert user.

There is currently much research into distributed GIS (see figure 7.1) [Alameh 2001].

However, the RADGIS architecture improves on current models by providing a runtime-

extensible distributed-GIS client, based on OpenGIS® standards. This client is easily

extended through the addition of interoperable GIS services that are developed and deployed

using DGCML. The DGCML descriptor files are straightforward to edit and allow the user

or component integrator to customise GIS services. These changes do not require the

RADGIS client to be restarted, but take effect the next time the tool is chosen from the menu

options, providing runtime extensibility.

Figure 7.1. Example of a distributed GIS architecture

GIS
Service
Registry

Geospatial Access
Components:

Geodata Catalog

Geoprocessing
Components

Spatial Analysis
Components

RADGIS Client

RADGIS Client

Static Client

Registry for
GIS Services
Implemented

Using DGCML

All remote services are
discovered at runtime

Some remote services are
known about at compile
time, others are
discovered at runtime

All remote services
are known about at
compile time

Geodata

Geodata

Geodata

GIS
Service
Registry

Geospatial Access
Components:

Geodata Catalog

Geoprocessing
Components

Spatial Analysis
Components

RADGIS Client

RADGIS Client

Static Client

Registry for
GIS Services
Implemented

Using DGCML

All remote services are
discovered at runtime

Some remote services are
known about at compile
time, others are
discovered at runtime

All remote services
are known about at
compile time

Geodata

Geodata

Geodata

 149

Our research focused primarily on the ability to add GIS services, implemented as local

classes that execute locally, or as distributed CORBA objects and EJBs, to an application at

runtime. One of RADGIS’s strengths is the ability of the client application to access remote

objects at runtime for which no compile-time knowledge exists, i.e. the client application

does not have access to the stubs for the remote objects. In this case one must assume that

the client may have very little knowledge, if any, of how the methods of that object are to be

invoked in order to provide the particular service required by the user, and whether or not the

service requires its own Graphical User Interface (GUI).

We have looked at the implications this has on the design of the RADGIS client application

and the distributed objects used to implement the GIS services. We have also shown that,

while it is not practical to create an entire application at runtime, the benefits of being able to

tailor an application at runtime, or to add functionality provided by different software vendors

is both appealing and feasible.

The use of a distributed GIS model, as implemented in our RADGIS application, means that

one can delegate a particular task to a platform or location that best fits the task at hand,

based on processing and data requirements. Therefore, although particular optimisations will

have to be user driven, as opposed to being location transparent, it will be possible for more

than one implementation of a particular tool to be invoked. Such optimisations will, for

example, depend on where the data source is located, or what type of operation is being

performed, i.e. it may be more cost effective to transfer the data set to a more powerful

machine for processing, than process the data locally.

Apart from the potential performance benefits to be derived from processing data on faster

machines, or using the ability to perform parallel processing, the implementation of a

distributed GIS architecture composed of interoperable components also provides

accessibility to different vendors’ implementations of a particular GIS service. This allows

the application developer or end-user to choose a particular implementation based on the

algorithms used, as well as factors such as whether or not the vendor supports dynamic

upgrading, licensing restrictions, pricing models, and possibly even guarantees of Quality of

Service in terms of speed or accuracy with which the algorithm is executed. It is also worth

noting that some users may be willing to accept reduced efficiency, as a result of executing a

 150

GIS service remotely, when offset against benefits such as reducing the total cost of

ownership of GIS software, or eliminating the need to store, update and maintain local copies

of geospatial data.

The ability to make use of the RADGIS architecture to create a client-side framework in

which one could combine location services to create more sophisticated tools, as well as

allowing further processing of the results obtained from invoking a particular location

service, shows the tremendous flexibility of the RADGIS architecture. RADGIS is, in effect,

a generic client architecture that is able to parse DGCML descriptors at runtime and, using

Reflection, generate the GUI necessary to execute GIS services, location services or any

other type of service described by a valid DGCML descriptor.

Therefore, we conclude that the original research objective stated in chapter 1, i.e. “To

develop a runtime extensible, highly-customisable, distributed-component based GIS

and Location-based Service clients”, has been achieved.

7.1.1. Limitations of the research undertaken

Distributed GIS is an extremely broad field, which encompasses many different topics, and

makes use of many different technologies, operating on a number of diverse platforms.

However, due to limited time and resources, it was necessary to focus the research on specific

issues. Therefore the following unresolved issues are considered outside the scope of the

research that was undertaken:

?? A complete GIS application is an extremely complex system comprising many

diverse functions. The RADGIS architecture, however, was implemented as a proof

of concept system, comprising a generic framework and very specific tools that were

developed to illustrate specific concepts. The RADGIS client is therefore not a fully-

functional commercial GIS application.

?? Because the RADGIS client is not a complete GIS application, and we did not

implement a wide range of tools for use with the client, it was not possible to test the

RADGIS client under heavy load or perform meaningful usability studies.

?? The core of the RADGIS architecture, which allows the addition of GIS services to

the client application at runtime, developed and deployed using DGCML, has been

 151

implemented and test as a whole. However, some of the components that facilitate

the visualisation of geospatial data in formats other than VRML had to be tested

separately, because the implementation of certain “bridging” components are not

currently available, and certain standards have not been finalised. For example, while

we have highlighted the benefits of using GML as a standardized data format for

transferring geospatial data, we have not made use of it in the implementation of our

RADGIS client. This is due to our focus on the visualization of 3D data, which is not

currently supported in GML 2.0.

?? Although the specification of the DGCML meta-language using a DTD does not limit

our RADGIS architecture, we acknowledge the potential benefits to be gained from

converting it to an XML Schema-based specification.

?? We have not implemented, or made use of, a geoprocessing registry service for

registering and discovering GIS services that have been implemented and deployed

using DGCML.

?? We have not implemented mechanisms to deal with charging, transaction

management, or security when dealing with distributed objects.

During our research we have identified two utilities that would be extremely useful for

working with the DGCML meta-language, but which have remained unimplemented because

they are not essential to the research that we have undertaken. They are:

?? a simple GUI editor that would allow the user to create GUIs by dragging and

dropping Java Swing components, and then generate the equivalent DGCML

description of the GUI. It would also allow the user to load existing DGCML GUI

descriptions and modify them, thus simplifying the editing of DGCML descriptor

files.

?? a code generation tool that allows a user to generate Java code from a DGCML

descriptor, rather than interpreting the DGCML descriptor and then having to perform

Reflection at runtime. Such a utility could be used to optimise the execution of

frequently-used GIS services.

While we have not used the Simple Object Access Protocol (SOAP) or XML Remote

Procedure Call (XML-RPC) to implement method-calls on remote objects, we acknowledge

the tremendous impact these technologies are having on the implementation of distributed

 152

applications on the Web, and believe that the RADGIS client could easily be adapted to make

use of these technologies. There is currently tremendous industry impetus behind the

development of Web services, implemented using technologies such as the SOAP, Web

Services Description Language (WSDL) and Universal Description, Discovery, and

Integration (UDDI). There are also a number of research projects within the field of GIS that

are starting to look at the benefits that can be derived from using such technologies and Web

Service-based architectures.

7.2. Thesis contributions
Having summarised the findings of this thesis, it is now possible to explicitly highlight the

contributions that our work makes to the fields of GIS and distributed component-based

software development. Therefore, the following points are offered as the major contributions

that have been presented in this thesis:

?? A thorough literature survey of current state-of-the-art GIS research and software

architectures, including location-based services. In particular we have focussed on

research undertaken by large standardisation bodies, such as the Open GIS

Consortium, in the interests of promoting interoperability based on open standards.

?? In the development of our RADGIS architecture, we have highlighted the value of

using XML as a transfer format for geospatial data (i.e. GML and X3D), and as a

wiring language for combining (distributed) components to implement GIS services,

in the evolution of GIS applications.

?? We have highlighted the current status and problems surrounding the visualisation of

3D geospatial data using GML, VRML, GeoVRML and X3D, as our RADGIS

application aims to keep pace with developments in the field of 3D geospatial

visualisation.

?? The development of a novel GIS client architecture, called RADGIS, which was

designed to overcome the problems identified with current GIS applications. Its

ability to allow the user to customise the GIS client at runtime, provides an extensible

architecture that facilitates a high level of customisation, and allows the user to work

with distributed geospatial data and services in a location-transparent manner.

 153

?? The development of a markup language, called DGCML to facilitate the development

and deployment of GIS services that can be integrated into the RADGIS client at

runtime, including the ability to specify the GUI required by a GIS service as well as

links to the necessary help files.

?? We have highlighted the implications of employing a distributed CBSD approach to

developing client applications, as utilised in our RADGIS application, in order to

draw attention to the need for further research on:

o distributed component-based charging mechanisms;

o the need to deal with issues of concurrency arising from the use of distributed

components; and

o the ability to dynamically customise the user interface based on the types of

tools that are available for processing the geospatial data.

The contributions of this thesis extend beyond distributed GIS architectures, and can be

applied in the broader context of Web/distributed programming. They also takes

cognisance of the changing trend in Web-based application development towards the

implementation of distributed Web Services and “intelligent” clients, which is currently

being realised through the development of Microsoft’s .NET and Sun’s Open Net

Environment (Sun ONE) technologies. The increasing importance of being able to

combine interoperable Web services, based on open standards, to facilitate the

development and customisation of specialised client applications, signals a move away

from the Web-browser as the client for Internet applications, towards more “intelligent”

clients.

 154

Appendix A – Mobile Agents
GIS applications are resource intensive by nature, i.e.:

?? GIS datasets consist of megabytes, possibly even terabytes of spatial and attribute data,

necessitating the introduction of hardware-based data compression for storage

optimisation.

?? GIS applications are computationally intensive due to the use of transcendental functions,

complex transformations in map projection and high-level graphics rendering.

?? GIS applications require large-bandwidths between GIS users over Intranets and the

Internet.

While rapid advances are being made in creating faster processors and secondary storage

devices that have greater storage capacities, it is ultimately the legacy Internet networking

structure that will create the bottleneck to high-bandwidth multimedia applications. This is

particularly true of resource intensive GIS applications that require large spatiotemporal

datasets to be transferred across the relatively limited bandwidth of much of the Internet

(especially within South Africa). Thus, developing a distributed spatiotemporal GIS for use

over the Internet provides constant challenges for optimisation, and necessitates a flexible

architecture.

During the course of our research into distributed GIS architectures, we therefore also briefly

looked at the use of Mobile Agents as a method for reducing Internet traffic. This appendix

details some background material with respect to Mobile Agents, as well as some of the

research that we undertook when investigating the integration of Mobile Agents into our

Proof of Concept system.

One particularly useful scenario for which the use of Mobile Agents shows great promise, is

for operations that require one to download a large data set in order to perform a relatively

simple operation which returns a result that is generally an order of magnitude smaller than

the data set. In such a scenario, it would be more efficient to transfer and execute the code

necessary to perform the operation on the machine on which the data set resides (or possibly

same intranet), rather than transferring the data set across the Internet, to the machine that

was to perform the processing.

 155

Background

Agents should be reactive, autonomous, goal-oriented and temporally continuous, i.e. agents

should be continuously running processes that exercise control over their actions and are able

to respond proactively to changes in the environment in order to achieve a particular goal.

Agents can be classified according to the role they fulfil, for example different types of agent

may exhibit communicative, learning, mobile, flexible and/or character qualities [Franklin

and Graesser 1996].

Conde [1998] argues that the traditional distributed object paradigm is “a synchronous

message-passing paradigm whereby all objects are distributed, but stationary, and interact

with each other through message-passing”. Even though the use of Java’s Reflection

mechanism for dynamically invoking EJBs, and CORBA's dynamic facilities, including

Dynamic Invocation Interface (DII), and the Interface Repository, allow the creation of

extremely flexible systems that allow runtime discovery and late-binding [Orfali and Harkley

1998], the objects themselves are still stationary.

While research into the use of agents is not new, according to Kurki [1998], mobile agents,

i.e. agents that are able to migrate from one machine to another in a heterogeneous network,

are an emerging technology that is attracting more and more interest from distributed systems

researchers. Mobile agents are able to initiate their transfer to a different host and migrate the

code, data and, in a system that supports strong migration, the execution state so that it can

continue execution from where it stopped before the transfer.

In addition to mobility, agents also exhibit the following characteristics [Conde 1998]

[Millman 1998]:

?? Asynchronous: a mobile agent can execute asynchronously as it has its own thread of

execution.

?? Discrete: a mobile agent is invisible to the user and the system, providing location

transparency.

?? Flexibility: a mobile agent can adapt to changing circumstances, e.g. it is able to work

around broken links and downed servers. If the network connection is broken, and the

agent needs to move, it can simply wait until the connection is restored.

 156

?? Local interaction: a mobile agent generally moves to another location to interact with

other mobile agents or stationary objects locally, rather than using remote message

passing.

?? Object-passing: when a mobile agent moves, the whole object is passed, including its

code, execution state, data, and travel itinerary.

?? Persistence: a mobile agent is autonomous and self-sustaining, i.e. it contains

sufficient information to decide what to do, where to go, and when to go.

?? Parallel execution: it is possible to subdivide a task so that multiple agents can be

dispatched to different sites to perform these sub-tasks in parallel, or even to perform

multiple tasks in parallel.

?? Secure: when a mobile agent arrives at a host, it is subjected to the security

restrictions of the context, a gateway between agents visiting the host and the host's

resources, that provides an agent sandbox [Agosta 1998]. This ensures that mobile

agents are resistant to interception and tampering, and that agents may only access

particular resources subject to verification, e.g. digital signatures.

According to Conde [1998], there are many technical advantages of mobile agents, and there

is no single alternative to all of the functionality they provide.

The Object Management Group (OMG) is currently working on the specification of an agent

framework to support agent mobility via Mobile Agent System Interoperability Facilities

Specification (MASIF) on top of the Common Object Request Broker Architecture

(CORBA). GmbH Informations - und Kommunikationstechnologie [IKV++ 1998], are

researching emerging telecommunications technologies such as the Telecommunications

Information Networking Architecture (TINA), and have developed Grasshopper, which they

claim to be the first mobile agent environment that is compliant to the OMG MASIF

standard.

The use of Mobile Agents in GIS applications

A potential solution for reducing the high demands made on Internet bandwidth may lie in

processing more information on the server side, to reduce the amount of extraneous data that

is downloaded across the Internet to the client. This optimisation technique has tremendous

 157

potential in Web-based GIS applications because GIS data sets are often extremely large, and

the user is only interested in a small subset of this information. Thus, if it is possible to

process and refine the data required by the user on the server side, it could reduce the overall

Internet bandwidth requirements.

Our research investigated means to reduce client-side setup and the demands for client-side

processing power by distributing the services/GIS tools so as run on the most appropriate

machine, e.g. on the same machine as the dataset, or a machine more appropriate to do

intensive "number crunching".

Our approach identifies two major uses of mobile agents to reduce the amount of Internet

bandwidth required by a user of a Web-based spatiotemporal GIS. The first is to move an

agent to a server machine to perform a task on a data set stored on the server, and the second

is to allow GIS tools to be moved to the client machine to execute locally. This is in contrast

to the current CORBA paradigm where one would obtain an object reference to a GIS tool

implemented as a remote object.

Figure A.1. Example of component interaction using a Mobile Agent

GIS Tool_X:
Properties B
dispatches
Mobile Agent
to the agent-enabled machine on the same
Intranet as the spatiotemporal database
and then queries the database using JDBC

ORB with Naming
and/or Trading Service
IORs and Properties for:

GIS Tool_X: Prop A
GIS Tool_X: Prop B
GIS Tool_Y: Prop C

O
R
B

JDBC

Spatiotemporal GIS Web Server

Mobile
Agent

Client

Distributed
Spatiotemporal

Databases

ORB with
GIS Tool_Y:
Properties C

ORB
with GIS
Tool_X:
Properties A

ORB
with GIS
Tool_X:
Properties B

GIS Tool_X:
Properties B
dispatches
Mobile Agent
to the agent-enabled machine on the same
Intranet as the spatiotemporal database
and then queries the database using JDBC

ORB with Naming
and/or Trading Service
IORs and Properties for:

GIS Tool_X: Prop A
GIS Tool_X: Prop B
GIS Tool_Y: Prop C

O
R
B

JDBC

Spatiotemporal GIS Web Server

Mobile
Agent

Client

Distributed
Spatiotemporal

Databases

ORB with
GIS Tool_Y:
Properties C

ORB
with GIS
Tool_X:
Properties A

ORB
with GIS
Tool_X:
Properties B

 158

Figure A.1 shows the interaction of CORBA ORBs and Mobile Agents in our "Proof of

Concept" Web-based spatiotemporal GIS. In particular it illustrates how the client can use

the CORBA Naming and/or Trader Services to dynamically discover and invoke distributed

GIS tools. Should one of these tools be implemented as a mobile agent, it is then also

possible to dispatch the agent to a particular machine in order to perform the processing

"locally" on that machine. This is done either to achieve parallel processing or to perform the

processing of a dataset on the same machine as the dataset, or another agent-enabled machine

on the same Intranet as the dataset, so as to minimise Internet bandwidth requirements.

Figure A.2. Using Agents for “client-side” processing

Figure A.2 and figure A.3 show simplified examples of moving mobile agents to different

machines in order to achieve different tasks, i.e. figure A.2 illustrates the moving of an agent

to the client machine in order to perform local processing, while figure A.3 illustrates the

moving of an agent to the machine on which the spatiotemporal dataset resides in order to

perform "local" processing on the dataset.

1 – Bind
agent (GIS tool) to
Voyager ORB and write IOR
to file on a web server or register
object with a Naming/Trading Service

2 – Get IOR for
GIS tool and then

lookup IOR to get
an Object Reference

3 - Tell agent to move to client machine
running Voyager ORB, in order to do
local “client-side” processing, e.g. “bounding-
box” selection using a sphere

ClientGIS tool provider

Voyager
ORB

Voyager
ORB

1 – Bind
agent (GIS tool) to
Voyager ORB and write IOR
to file on a web server or register
object with a Naming/Trading Service

2 – Get IOR for
GIS tool and then

lookup IOR to get
an Object Reference

3 - Tell agent to move to client machine
running Voyager ORB, in order to do
local “client-side” processing, e.g. “bounding-
box” selection using a sphere

ClientGIS tool provider

Voyager
ORB

Voyager
ORB

Voyager
ORB

Voyager
ORB

 159

It should be noted that the possibility exists for mobile agents to be used to process/collect

data from multiple sources. Therefore, agents may travel to more than one machine in order

to perform a specified task and then collate the results before returning home to deliver the

final output.

Figure A.3. Using Agents for “server-side” processing

According to the Voyager ORB Developer Guide [ObjectSpace Inc. 1998], one can expect a

performance benefit of between 1 000 and 100 000 times when using local messaging as

opposed to remote messaging. However, according to [Kurki 1998], even if the performance

benefits become negligible, due to the communication overhead of transferring the agent

being comparable to the overhead of transferring the data set across the network, it is still

useful to have the code closer to the data.

The use of mobile agents can also improve fault tolerance or flexibility. For example when

an agent reaches its destination, should the network go down, it can wait for the network to

Voyager
ORB

1 – Bind
agent (GIS tool) to
Voyager ORB and write IOR
to file on a web server or register
object with a Naming/Trading Service

2 – Get IOR for
GIS tool and then

lookup IOR to get
an Object Reference

3 - Tell agent to move to Server
machine running Voyager ORB,
in order to do “server-side”
processing, e.g. dataset manipulations/
transformations, complex queries or
multimedia data streaming, etc.

Client
GIS tool provider

Voyager
ORB

Voyager
ORB

Database ServerVoyager
ORB

Voyager
ORB

1 – Bind
agent (GIS tool) to
Voyager ORB and write IOR
to file on a web server or register
object with a Naming/Trading Service

2 – Get IOR for
GIS tool and then

lookup IOR to get
an Object Reference

3 - Tell agent to move to Server
machine running Voyager ORB,
in order to do “server-side”
processing, e.g. dataset manipulations/
transformations, complex queries or
multimedia data streaming, etc.

Client
GIS tool provider

Voyager
ORB

Voyager
ORB

Voyager
ORB

Voyager
ORB

Database Server

 160

come up again and then send the result/move to its next destination. Thus any lengthy

process that may be interrupted due to the network going down, and would have to be

resumed at a later stage, could be better implemented using as agents to quickly traverse the

network, as there is less chance of the network failing over a short period.

The ideal solution would, therefore, be a mix of stationary and mobile code that provided a

single uniform paradigm for distributed object computing, including synchrony and

asynchrony, message-passing and object-passing, for stationary objects and mobile objects

within the framework of a web-based spatiotemporal Geographic Information System (GIS).

 161

Appendix B - VRML Optimisations
VRML provides a number of mechanisms to increase downloading and rendering speed, such

as proper decomposition of a scene, inlining, and streaming certain multimedia and graphics

elements. In terms of efficiency, using compression schemes (such as gzip, binary format or

geometry compression) or instancing (reusing parts of your scene, textures and multimedia

elements) VRML can produce images three times smaller than GIFs. [Gorman 1997]

When discussing VRML optimisations, one must draw a distinction between optimising the

time taken to download a virtual world (optimising bandwidth), and optimising the rendering

of that virtual world.

Rendering Optimisations

It is important to identify where the bottlenecks for rendering a scene are, i.e. if the scene is

co-ordinate (vertex) bound, texture-bound, or pixel-bound [Nadeau et al. 1996] [Silicon

Graphics 1998].

Figure B.1. VRML Rendering Pipeline [Silicon Graphics 1998]

Setup Per
Vertex

Per
PixelDisplay

Modify World:
Run scripts
Run Interpolators

Download
Decompress
Parse

Send Pixels
to display

Depth Buffer
Fill polygons
Texture polygons

Transform
Lighting

} Geometry
Pipeline

} Rasterization
Pipeline

Setup Per
Vertex

Per
PixelDisplay

Modify World:
Run scripts
Run Interpolators

Download
Decompress
Parse

Send Pixels
to display

Depth Buffer
Fill polygons
Texture polygons

Transform
Lighting

} Geometry
Pipeline

} Rasterization
Pipeline

 162

Co-ordinate-bound

A scene is co-ordinate-bound if the computations involving co-ordinates are limiting

the speed of the pipeline. Co-ordinates, and their associated texture co-ordinates and

colours, are used in all pipeline stages. Therefore it is very important to try to avoid

letting the scene become co-ordinate-bound.

Pixel-bound

The scene is pixel-bound if the computations needed fill triangles using triangle

colours and textures in the Rasterize stage are limiting the pipeline speed.

Texture -bound

The scene is texture-bound if computations necessary to access textures in the

Rasterize stage are limiting the performance of the pipeline.

It is also possible for the performance bottlenecks associated with rendering a particular

scene to shift as the viewer moves through that scene. Consider, for instance, a detailed

terrain on a virtual planet. When the planet is a distant dot, far from the viewer, the number

of pixels drawn for the planet's geometry is very low, but the number of co-ordinates used to

build that geometry is high. From such a distant vantage point, the planet will cause the

rendering pipeline to be co-ordinate-bound. However, as the viewer moves closer, the

planet's image on the screen grows in size, causing more pixels for the detailed terrain of the

planet to be drawn, and the pipeline may become pixel-bound.

The tremendous range of viewing freedom offered to viewers of VRML worlds makes it

difficult for VRML world authors to optimise their worlds so that they draw quickly

regardless of the viewer's vantage point. Instead, VRML world authors strive to optimise for

typical viewing situations. For instance, if the viewer is expected to walk from room to room

in a virtual building, then the world's content can be optimised for this path. If the viewer

unexpectedly dives through a wall and hovers in mid-air outside the building, drawing speed

may decrease for this atypical vantage point.

 163

Compression

The VRML 1.0 specification focuses on the specification of 3D graphics objects, while

paying little attention to minimising download time. For example, the VRML files must be in

ASCII format, which wastes bandwidth.

A number of current VRML browser plug-ins now support the downloading of gzipped world

files. The use of gzip compresses the ASCII files, saving bandwidth and decreasing the

download time. Should the plug-in be able to interpret the gzipped file rather than unzipping

it first, it may also be feasible that the parsing time is decreased which ultimately leads to a

decrease in the time taken to draw the scene initially.

According to Leung, they have been unable to find a browser implementation that can accept

compressed VRML from a CGI program within a WWWInline node (see InLine below).

When using a CGI program to create VRML data on the fly, this becomes a major drawback

as it leads to long delays in the presentation of the data. These delays are due to both the CGI

activation (latency) and the transmission delays (bandwidth) associated with the larger data

size of the uncompressed VRML file.

Although compression of the ASCII files using gzip is supported, a compressed binary format

would require far fewer bytes, and is an important consideration for accessing very large data

models over the Web [Leung 1998].

Inline

The WWWInline node may be used for reducing the file size of a virtual world by allowing

one to define a bounding box for the file it references. If the user never actually sees the

bounding box (because of culling, or for any other reason), the inlined file might never be

downloaded, which ultimately translates into a saving in bandwidth. The process of

decomposing a scene into objects that can be inlined requires careful thought and planning,

but the savings in bandwidth requirements and transfer time make it worth the additional

effort [Matsuba and Roehl 1996].

 164

Inlining also facilitates the re-use of objects if they are stored separately, as opposed to all

being placed in one file, i.e. the same object (stored by itself) can be incorporated into more

than one “virtual world” using the WWWInline node.

USE and DEF

The DEF keyword allows one to provide a node with a name that may be referenced later in

the same file with USE or ROUTE statements. Instead of creating a copy of the node, the

USE statement inserts the same node into the scene graph a second/third/etc. time, resulting

in the node having multiple parents [VRML97].

Instancing (or the reuse of objects) is useful for traditional GIS because if symbols are used to

represent features in a coverage, one can instance 3D symbols and then reuse them to save

space and reduce processing overheads. However, this only works if you can find a generic

symbol and are not too concerned about the actual dimensions of the object it is representing.

For example you could use 3 different generic tree symbols to "represent" a forest. There are

many objects in everyday use that are similar and can be defined once and used where

needed. Thus, depending on the GIS application, the required Level of Detail (LOD), and the

required accuracy of representation, a considerable saving in space and processing could be

obtained by defining generic symbols and re-using them in the scene.

Shapehints

If you know that all the faces in an object have consistent vertex ordering, and/or that the

shape only has an "outside" (i.e., the inside surfaces are not visible) then the ShapeHints

node should be used to inform the browser of that information. This allows the rendering

engine to avoid lighting surfaces that won't be seen, and possibly do backface culling. The

result is a noticeable performance improvement [Matsuba and Roehl 1996].

 165

Bounding boxes

Information about the size and location of the bounding box is used by the browser to decide

if a WWWInline node is visible. In this way, it is possible that should the user never do a

360-degree turn, part of the scene need never be downloaded. Making "clever" use of

bounding boxes is particularly useful for decreasing the amount of data that needs to be

downloaded initially, and may result in savings of bandwidth should the user never get close

enough, or look in the direction of the object represented by the bounding box.

Level of Detail (LOD)

An important feature of VRML, which increases the speed of visualisation, is based on using

several different representations for a single object, i.e. VRML implements a mechanism to

support level of detail (LOD) management. The level of detail defines how the object

appears on display with respect of viewing distance. It means that the rendering software

substitutes one model with less or more detail as user goes through the scene. Furthermore,

objects can be defined as invisible from certain distance.

Note, that the number of faces in each scene with several LODs is higher than in a single-

level scene description. Thus, a higher speed of interactive walking-through virtual worlds is

achieved by increasing the amount of data. Although this last statement sounds confusing, it

is correct. When using LOD, one increases the amount of data for that scene (multiple

representations for the same object). However, at the same time, by allowing the browser to

render objects at a lower LOD, one obtains an increase in performance. Thus, there is a

trade-off between downloading additional LODs for a particular object, i.e. increased

bandwidth, and increasing the rendering performance.

One can delay transferring the inlined file until the user gets close enough to see it, by placing

a WWWInline statement inside a LOD node. One can even have multiple versions of an

object at different levels of detail, and only transfer them as needed. Thus, the LOD node can

be used to increase the power and efficiency of the Inline node. [Matsuba and Roehl 1996]

 166

Progressive LOD

As an alternative to using VRML's built-in LOD, one can implement one's own LOD

handling. This is useful if, for example, one wishes to implement a progressive LOD

mechanism. Progressive LOD means that even if the user needs to view the next LOD, the

whole object does not get downloaded again, only those parts that are different to the current

LOD. This is similar in concept to video compression, where only the changes between two

frames are stored/transmitted.

Figure B.2. Progressive LOD

Thus, there are two methods for implementing LOD:

?? Using VRML’s LOD node: Redrawing of objects at varying LODs or specifying urls

for each LOD. Each method ends up downloading the same base information each

time.

?? Using VRML’s createVRMLFromString/createVRMLFromURL: Specifying

additional objects to be added to the original object in the scene graph as the LOD

increases. This method decreases the bandwidth implications because only the

Progressive LOD

Bounding Box
(house)

Walls Roof

Windows Doors

Window Panes Tin/TiledDoor Handle

 167

changes need to be downloaded each time and not the entire object. It may also be

less processor intensive because one is adding and removing portions of an object at

different LODs as opposed to removing whole objects and then adding new objects.

This is an issue that still needs investigation.

Linear interpolation

All VRML 2.0 interpolator nodes use linear interpolation to compute intermediate values

between the key values you provide. A linear interpolator computes an intermediate position

or orientation each time an output is needed. Any number of intermediate values can be

computed between your key positions and orientations.

The use of interpolation is especially important when playing an animation at different

speeds. For a quick animation, one's VRML browser may only have time to draw the world a

few times between the time the animation starts and the time it stops. In this case, one's

browser may only need to linearly interpolate values at a few fractional times between the

key fractional times provided.

For a slow animation, one's VRML browser may have the time to draw the world many times

and may need a large number of interpolated positions or orientations. In this case, one's

browser may interpolate values at many fractional times between key fractional times.

Using keyframe animation and linear interpolation, one can describe an animation

independent of the playback speed of the animation. During playback, an appropriate

number of intermediate values are computed automatically.

 168

Appendix C – GeoVRML Nodes

The following nodes are part of the GeoVRML 1.0 Recommended Practice document that

has been submitted to ISO for inclusion as an amendment to the ISO VRML97 standard

[Reddy et al. 2000b] [Reddy et al. 2000c]:

?? The GeoElevationGrid node - allows one to take the curvature of the earth into

consideration when modelling large extents. It provides a height field

representation for geospatial elevation data, offset from an ellipsoid model of the

planet, in a number of geographic coordinate systems such as geodetic (latitude/

longitude) and Universal Transverse Mercator (UTM). In contrast, VRML’s

ElevationGrid node values are offset from a single flat plane [VRML97], and it is

therefore unsuitable for representing geospatial data where the curvature of the

earth needs to be taken into account.

?? The GeoCoordinate node - lets a modeller specify coordinates using

geographic coordinate systems (e.g. geodetic, UTM) directly within a VRML file,

as opposed to having to convert them to Cartesian coordinates first. This is useful

for inserting output from devices such as GPS units, which normally output a

location as a latitude/longitude coordinate, straight into VRML files. The

GeoCoordinate node transparently converts the data into a Cartesian frame, and

correctly positions the coordinates in the global model.

?? The GeoLocation node – allows the user to georeference an arbitrary VRML

model, i.e. establish the relationship between the coordinates of the VRML model

with a specific point on the earth. It also orients the model correctly, depending

upon its position on the earth, to ensure that a model built using the standard

VRML right-handed coordinate system will have its base correctly aligned with

the surface of the earth.

?? The GeoOrigin node - As previously mentioned, VRML uses single-precision

(32-bit floating-point numbers) to model and render all geometry [VRML97].

However this precision is not enough to accurately display geographic data at high

resolutions. Thus one of the requirements for modelling geographic (e.g.,

geocentric) coordinates beyond a resolution of 10-100 m is the use of at least

double-precision (64-bit floating-point numbers). The GeoOrigin node enables

 169

the accurate rendering of double-precision geographic coordinates by defining an

absolute geographic origin (or GeoOrigin) in double -precision, and then for all

double-precision geographic coordinates, the difference between each coordinate

and the GeoOrigin is taken. The result is a single-precision offset that can be

used for accurate rendering of that object. All GeoVRML nodes that deal with

coordinates, e.g. GeoElevationGrid, GeoCoordinate, and GeoLocation,

support the use of the GeoOrigin node.

?? The GeoLOD (formerly QuadLOD) node - provides the ability to browse multi-

resolution, tiled terrain data, which is essential for memory management and

scalability operations when browsing massive terrain datasets (e.g. Terravision II

[Reddy et al. 1999b]. It automatically manages the progressive loading of higher-

resolution data as the user approaches the terrain, and also unloads terrain data

once the user has moved past.

?? The GeoInline node - is a grouping node that is used to decide when its children

should be read from a location on the web. This is done either immediately when

the node is first loaded, or at a later stage when for example, a VRML

ProximitySensor triggers the required event.

In addition to these nodes, GeoVRML 1.0 also includes the GeoPositionInterpolator

node to perform animations using geographic coordinates, the GeoTouchSensor node to

return the geographic location at the current (mouse) pointer position, the GeoViewpoint

node to specify a camera location in geographic coordinates, and the GeoMetadata node to

provide a summary and links to full metadata descriptions of the geographic data [Reddy et

al. 2000b]. For more information on the GeoVRML nodes, please refer to

http://www.geovrml.org.

 170

Appendix D - Dynamic Interface

Development
According to Dey et al. [1997b], dynamic component integration shows the most promise for

context-aware computing, which requires an infrastructure that permits intelligent mediation

between software components. An example of such a system that has been developed is

Cyberdesk [Dey et al. 1997b]. Cyberdesk is an adaptive interface that modifies the list of

available tools at runtime, based on the user’s current activity, using a dynamic mapping of

user actions to possible user actions.

In order to illustrate the benefits and validity of such an approach, this appendix provides

some background on adaptive and intelligent interfaces in order to make the reader aware of

some of the research that has been performed in these fields. Much of this research was

performed based on static, non-distributed applications, and thus the application of this

research to the runtime extensible distributed applications involves additional complexity that

must be taken into consideration.

Adaptive interfaces are a way of reducing the complexity of an application with respect to its

usability [Browne et al. 1990] [Shneider-Hufschmidt et al. 1993]. Thus, research into

adaptive and intelligent interfaces explores the following basic software usability issues

[Encarnação 1997]:

?? Simplification of the design and implementation of “good” user interfaces,

?? The clearer and more efficient presentation of information,

?? Simplification of the interaction between the client and the application, and

?? The creation of interfaces that provide better support for a users’ particular tasks.

On the other hand, intelligent user interfaces automatically adapt to the needs of different

users, learn new concepts and techniques, anticipate the needs of users, accommodate the

changing needs of users over time (for example, as the user’s level of expertise progresses

from novice to expert), take initiative and make suggestions to users, and provide

explanations of their actions [Maes and Lieberman, current].

 171

Research into adaptive and intelligent user interfaces also incorporates research from a

number of other fields, particularly the use of agents and artificial intelligence. Figure D.1

illustrates the relationship between adaptive and intelligent user interfaces as well as number

of sub-disciples.

Figure D.1. Components of intelligent and adaptive user interfaces [Encarnação 1997]

The main benefits to be derived from these approaches are the simplification of the user

interface, and customise the application based on the user’s level of expertise and processing

requirements. For example, an experienced user may be aware of his or her level of

expertise and request full menus and brief prompts, whereas a novice may request short

menus and lengthy prompts [Sukaviriya and Foley 1993].

More intelligent interfaces may also infer information about the user’s level of expertise and

customise the application based on how the user works with the application, and which tasks

the user makes use of most frequently. This could be extremely useful for customising the

GIS client based on the user’s most frequently performed task, e.g. data capturing

(digitising), or analysis, or presentation.

Intelligent
User Interfaces

Adaptive
User Interfaces

Interface
adapta-

bility

Plan
Recognition

Dynamic
Present-

ation
Natural

Language

Multimodal
Communi-

cation

User
Modelling

Intelligent
Help

Intelligent
User Interfaces

Adaptive
User Interfaces

Interface
adapta-

bility

Plan
Recognition

Dynamic
Present-

ation
Natural

Language

Multimodal
Communi-

cation

User
Modelling

Intelligent
Help

 172

Appendix E – DGCML listing of a location

service for finding restaurants

<?xml version="1.0 " encoding="UTF-8"?>
<!DOCTYPE GISService SYSTEM "file://localhost/C:/describeService.dtd" >
<GISService name="Restaurant Location Service" vendor="RUDevGroup" version="2.0.2">
 <CodeBase url="iiop://localhost:900/RestaurantLocService" />
 <GUI>
 <Component name="MainFrame" type="Frame">
 <Property name="title" value="Restaurant Location Service"/>
 <Component name="ResultPanel" type="Panel" position="Center">
 <Property name="layout" value="java.awt.BorderLayout"/>
 <Component name="RLSResultsScrollPane" type="ScrollPane" position="Center" >
 <MethodCall ReturnValueDest="_tmpBorder2"
 ReturnType="javax.swing.border.Border"
 name="javax.swing.BorderFactory.createTitledBorder">
 <Param DataType="java.lang.String" Source="Restaurant Information"/>
 </MethodCall>
 <Property name="border" value="_tmpBorder2" />
 <MethodCall ReturnValueDest="_tableModel"
 ReturnType="RemoteResultSetTableModel" name="constructor">
 <Param DataType="java.lang.Integer.TYPE" Source="4" />
 <Param DataType="java.lang.Integer.TYPE" Source="3" />
 </MethodCall>
 <Component name="SQLResults" type="Table" position="Center" >
 <Property name="model" value="_tableModel" />
 </Component>
 </Component>
 </Component>
 <Component name="InputPanel" type="Panel" position="North">
 <Property name="layout" value="java.awt.BorderLayout"/>
 <Component name="UserLocation" type="TextField" position="North">
 <Property name="text" value="X-coordinate, Y-coordinate"/>
 <MethodCall ReturnValueDest="_tmpBorder1"
 ReturnType="javax.swing.border.Border"
 name="javax.swing.BorderFactory.createTitledBorder">
 <Param DataType="java.lang.String" Source="Enter your position here"/>
 </MethodCall>
 <Property name="border" value="_tmpBorder1" />
 </Component>
 <Component name="Radius" type="TextField" position="South">
 <Property name="text" value="distance in km"/>
 <MethodCall ReturnValueDest="_tmpBorder1"
 ReturnType="javax.swing.border.Border"
 name="javax.swing.BorderFactory.createTitledBorder">
 <Param DataType="java.lang.String" Source="Enter Radius here"/>
 </MethodCall>
 <Property name="border" value="_tmpBorder1" />
 </Component>
 </Component>
 <Component name="SubmitQuery" type="Button" position="South">
 <Property name="text" value="Search"/>
 <Event type="action">

 173

 <MethodCall ReturnValueDest="_userLoc" ReturnType="java.lang.String"
 name="constructor">
 <Param DataType="javax.swing.JTextField" Source="UserLocation">
 <Property name="text" value="java.lang.String"/>
 </Param>
 </MethodCall>
 <MethodCall ReturnValueDest="_userRadius" ReturnType="java.lang.String"
 name="constructor">
 <Param DataType="javax.swing.JTextField" Source="Radius">
 <Property name="text" value="java.lang.String"/>
 </Param>
 </MethodCall>
 <MethodCall ReturnValueDest="_tmpRes" ReturnType="[Ljava.lang.String;"
 name="remote:makeRestaurantQuery" >
 <Param DataType="java.lang.String" Source="_userLoc" />
 <Param DataType="java.lang.String" Source="_userRadius" />
 </MethodCall>
 <MethodCall ReturnValueDest="null" ReturnType="void" name="_tableModel.init">
 <Param DataType="[Ljava.lang.String;" Source="_tmpRes"/>
 </MethodCall>
 <MethodCall ReturnValueDest="null" ReturnType="void"
 name="_tableModel.fireTableChanged">
 <Param DataType="javax.swing.event.TableModelEvent" Source="null"/>
 </MethodCall>
 </Event>
 </Component>
 <MethodCall ReturnValueDest="null" ReturnType="void" name="pack"/>
 <Property name="visible" value="true"/>
 <Event type="window" filter="windowClosing">
 <Property name="visible" value="false"/>
 </Event>
 </Component>
 </GUI>
 <Help>
 <HelpSet href="RestaurantLS.hs"/>
 </Help>
</GISService>

 174

Glossary of Terms and Acronyms

“The beginning of wisdom is to call things by their right name.”

Chinese Proverb

Accuracy - the quality of the result, or the degree of correctness of the measurement. It

should be distinguished from precision, which relates to the quality of the process by which

the result was obtained.

Algorithm - a statement of the steps to be followed to solve a problem.

API – Application Programming Interface

Applet – a Java program that is included in an HTML Web Page using the <applet> tag, and

runs in a client’s Web browser.

Attribute data - the a-spatial, descriptive information about features that is often used for

analysis and the manipulation of the associated geospatial data.

BeanML – Bean Markup Language. A wiring language developed by IBM Alphaworks that

allows one to describe an application composed of JavaBeans in XML.

Cartography - The art or technique of making maps or charts.

Catalog - A collection of entries, each of which points to a feature collection and describes

its contents, coverages, and other metadata.

CBSD – Component-based Software Development. CBSD is the philosophy of building a

system by assembling and integrating existing components rather than building the system

from scratch. Also known as Component-Based Software Engineering (CBSE).

 175

CCM – The CORBA Component Model is a core component of the CORBA 3 specification,

developed by the OMG, which extends the basic architecture defined in the EJB

Specification, and allows the creation of server-side scalable, language-neutral, transactional,

multi-user and secure enterprise-level applications.

COM – Component Object Model. A specification developed by Microsoft for writing

reusable software components that can be accessed and invoked in a Windows environment.

Also see DCOM.

CORBA – The Common Object Request Broker Architecture, developed by the OMG, is an

architecture and specification for creating, distributing, and managing distributed objects in a

network.

COTS software – Commercial-off-the-Shelf software.

Datum – A point, line or surface that is used as a reference.

DCOM – Distributed Component Object Model. A distributed software architecture

developed by Microsoft, based on COM, that provides the ability to perform remote

procedure calls so that DCOM objects can run remotely over a network. Also see COM.

DEM – Digital Elevation Model. Digital elevation models are cartographic/geographic data

in raster form that represent the elevation of a dry land surface, i.e. they are typically used to

represent terrain relief, and are also referred to as Digital Terrain Models (DTM).

DGCML (Distributed GIS Component Markup Language) – a meta-language developed by

the author to enable the creation and deployment of GIS services, based on local and

distributed components, which can be incorporated into the RADGIS client.

DII – CORBA’s Dynamic Invocation Interface. An API that allows a client to make

dynamic method invocations on remote CORBA objects that were generally not known about

at compile time.

Disaggregated – broken up into a number of constituent parts.

 176

Distributed – the ability to access data and processing, as well as collaborate with other users

located throughout the world, i.e. not concentrated in a single location.

DOM – Document Object Model. A platform- and language-neutral interface that allows

programs and scripts to dynamically access and update a document’s content, structure, and

style. See SAX.

DTD – Document Type Definition. A type of file that defines the structure and properties of

an XML document, and is used by a parser to validate the structure of an XML document. It

has been superseded by the XML Schema Language. See XML Schema.

EAI – External Authoring Interface. A mechanism, developed by Chris Marrin, to allow

Java programs to manipulate the VRML scenegraph in a VRML plug-in that supports the

EAI.

EJB – Enterprise JavaBeans. A Java-based distributed object architecture developed by Sun

Microsystems, that facilitates the development and deployment of reusable, object-oriented,

server-side components.

Element – A component of an XML document that represents a logical data structure,

delimited by start and end tags.

Feature – A digital representation of measurable or describable phenomena about a real

world entity or an abstraction of the real world. It is the fundamental unit of geospatial

information and consists of both spatial and attribute data.

.geo – Proposal by SRI for a new top level domain to simply indexing and discovery of

spatial data.

Geocoding - the process of defining the positions of geographical objects relative to a

standard reference datum.

Geodata – geographically related data

 177

Geographic information system (GIS) - a computer hardware and software system capable

of handling the storage, manipulation, analysis and display of spatial and related attribute

data.

Geoprocessing – the processing of geographically related data

Georeference - to establish the relationship between page coordinates (i.e. x, y) of a planar

map or image with known real-world coordinates (i.e. longitude/latitude, UTM, etc).

Geospatial data – spatial data that is referenced to the earth

GeoVRML – a 3D data format, based on VRML. It was developed by the GeoVRML

Working Group to overcome the limitations of using VRML for large terrain visualisation.

GIS – see Geographic Information System.

GML – Geographic Markup Language. An XML encoding of the Simple Features

Specification, developed by the OGC, which is likely to be widely adopted as a geospatial

data exchange format.

GPS - Global Positioning System. A position-finding system, which uses a radio receiver to

pick up signals from special satellites to compute the location of the receiver.

GUI – Graphical User Interface

HTML – Hypertext Markup Language. A very simple markup language used to format text,

create form fields, and embed images, sound, and other multimedia files using URLs in a text

file. This HTML file is generally downloaded across the Internet and interpreted by a Web

browser.

HTTP – Hypertext Transfer Protocol. The Internet protocol used by Web browsers for

fetching hypertext objects from remote hosts.

 178

IDL – The Interface Definition Language is used to define interfaces that enable

communication between modules implemented in different languages.

IIOP – Internet Inter-ORB Protocol. A protocol developed for communication between

CORBA ORBs.

Interoperability - ability of software (possibly distributed on multiple machines) from

multiple vendors to freely exchange data between systems.

IR – CORBA’s Interface Repository. A service that contains all the registered CORBA

objects’ interfaces, as well as the methods they contain and the parameters they require.

ISO/TC 211 – The International Standardisation Organisation (ISO) technical committee that

was formed to develop standards for working with geographic information. ISO/TC 211 is

now working closely with the OGC to ensure that standardisation efforts are harmonised.

ISO/TC 211 is currently concentrating more on data standards than the provision of GIS

services and the standardisation of Web Map/Feature Servers, which is being looked at by the

OGC.

J2EE – Java 2 Enterprise Edition is an environment for developing and deploying multi-

tiered, Web-based enterprise applications.

JAR – The Java Archive file format is essentially a ZIP file that contains Java classes and

optionally a manifest file to describe the classes.

Java3D – 3D API for the Java programming language

JDBC – A Java API for database connectivity. Although actually a trademark name, it is

often thought of as an acronym for Java Database Connectivity. Also see ODBC.

JNLP – Java Network Launch Protocol. JNLP is a web-centric software distribution

protocol based on XML that enables the deployment of Web-based Java applications.

 179

JVM – Java Virtual Machine. A specification for an abstract computing machine, which is

implemented in software or hardware, that interprets Java programs that have been compiled

into Java byte-codes.

Kriging - an optimised interpolation technique (after Dr. D. G. Krige) that uses information

about the stochastic (random, local) aspects of spatial variation.

LDAP – The Lightweight Directory Access Protocol is an extensible client-server protocol

and information model that allows one to access and manage information in a tree-structured

database. Each entry in an LDAP server has a distinguished name that allows easy

identification, and stores associated information as attributes. Each attribute has an

associated type and one or more values.

Location-Based Services – The convergence of wireless communication, Web and GIS

technologies that allows a user to gain access to data based on her/his (specified) location.

Location Services are particular applications of spatial and analytic functions found in GIS

applications.

LOD management – Level of Detail management is a graphics optimisation technique

whereby an application renders an object at different levels-of-detail according to particular

predefined criteria (e.g. performance requirements for rendering a scene, or the distance

between the viewpoint and the object)

Marshal – Convert a request from its representation in the programming language to one that

is suitable for transmission to the target object.

Metadata – data that describes the characteristics of an information or processing resource.

MLS - Mobile Location Service. See Location Based Service.

Mobile Agent – An agent that is able to migrate from one machine to another in a

heterogeneous network.

 180

Naming Service – A Service that allows objects to be named by means of binding a name to

an object reference. A client can obtain a reference to a desired object from the Naming

Service by simply specifying the name of the object.

ODBC – Open Database Connectivity. A standard API for accessing data in both relational

and nonrelational DBMS, i.e. it provides the programmer with a standardised manner of

accessing data in an underlying database, which is independent of that database’s data storage

format and programming interface. Also see JDBC.

OGC – Open GIS Consortium. A not for profit trade association whose purpose is to

promote interoperability within the field of GIS through the creation an open standards GIS.

OLE – Microsoft’s Object Linking and Embedding is a way to create documents containing

objects from other programs.

OMG – Object Management Group. A non-profit organisation whose charter is to

standardise and promote the use of object-oriented technology.

OpenGIS® Specification – A software interface standard developed by the Open GIS

Consortium that enables interoperable geoprocessing and data sharing between GIS systems

from different vendors.

Open system – A system that complies with standards, which have been made available

throughout the industry, and therefore can be connected to other systems that comply with the

same standards.

ORB – Object Request Broker. The infrastructure that connects objects requesting services

to objects providing them, in a distributed environment.

OSD – Open Software Description. An XML-based language for automated software

distribution over the Internet, developed by Microsoft.

PDA – Personal Digital Assistant.

 181

RADGIS – Runtime Application Development of GIS. The runtime-extensible GIS client

architecture developed by the author.

Raster – A data structure composed of a grid of cells that represent geographic features. A

group of cells with the same value represents a feature. See Vector.

RMI - Remote Method Invocation. Java’s distributed programming architecture.

SAX – The Simple API for XML is a standard interface for event-based parsing. See DOM.

SDK – The Java Software Development Kit is a set of Java class libraries, help

documentation and the Runtime-environment, which is used by a Java application developer.

Sequential - one after the other, in tandem order.

SGML – Standard Generalized Markup Language. SGML is a vendor, platform, and media

independent standard for documents based on DTDs. It was adopted as an ISO standard in

1986, and is the predecessor of XML.

Soap – The Simple Object Access Protocol is a method of making remote procedure calls

over the Internet using HTTP.

Spatial analysis – the process of applying analytical techniques to geospatial data. Spatial

analysis may be used to model, examine and interpret complex geographical interactions,

make decisions based on spatial relationships or make predictions about future events. This

is the essence of Geographic Information Systems, and is what distinguishes them from

automatic map-making systems.

Spatial data – the locations of geographical entities together with their spatial dimensions.

Spatial data may be vector (points, lines, areas or surfaces) or raster data (bit -mapped data).

Spatiotemporal GIS – A GIS which models features that may change shape or position over

time.

 182

SQL (Structured Query Language) – a powerful query language supported by most relational

databases.

Standard – A definition or format, approved an authority or accepted as a de facto standard

by industry.

SVG – Scalable Vector Graphics is a language for describing two-dimensional vector and

mixed vector/raster graphics in XML.

Swing – GUI API for Java programming language.

Temporal GIS – A GIS that allows the user to work with data that has a time component.

TIN- Triangular Irregular Network. A method of creating a 3-D surface from irregularly

spaced point data in a vector data model. See DEM.

Trader Service - a brokerage facility that allows objects to publicise their services and bid

for jobs.

UDDI – The Universal Description, Discovery, and Integration standardis a repository-based

directory service which facilitates the automated lookup of Web Services.

Unmarshal – Convert a request from a client, from its transmissible form to a programming

language form.

Vector – One of the fundamental ways of representing and storing spatial data (the other

being raster). It is a coordinate-based data structure that is comprised of a series of points

(coordinates), some of which are joined by lines (i.e. sets of related points), and some line

segments (arcs) are joined to form polygons. See Raster

Voyager – Application server developed by Objectspace.

VRML – The Virtual Reality Markup Language, is an ISO standard for displaying 3D

objects over the Web.

 183

VRML NG – VRML Next Generation

W3 – World Wide Web Consortium. Responsible for maintaining and developing emerging

Internet standards, including any new standards for HTML.

Web Feature Server – originally intended as a major extension to the Web Map Server

specification, it has now become a separate interface specification. The Web Feature Server

specification, developed by the OpenGIS Consortium, enables a client to specify a request

that returns a feature set, e.g. as GML, to the client.

WMS – Web Map Server. A specification developed by the OpenGIS Consortium for an

online service that is able to provide maps in one of a number of standard image formats, e.g.

GIF, JPEG, PNG, or as vector -based graphical elements, e.g. using SVG.

WWW – World Wide Web. Otherwise referred to as the Internet.

X3D – an XML-based version of VRML NG

XML – Extensible Markup Language. XML is subset of SGML, and does not require a

document to have an associated schema described in a DTD.

XML Schema – It has recently replaced the DTD as the recommended practice for

specifying the format, and allowable datatypes, in an XML document. See DTD.

XSL – Extensible Style Language. Is responsible for how the XML data is presented to the

user.

XSLT – Extensible Style Language Transformations. This is the language responsible for

transforming XML documents in one format into other XML documents, e.g. GML to SVG.

XwingML – A wiring language developed by HP Bluestone Software, which enables users to

build XML documents that define a complete Java Swing GUI.

 184

References

Adler, S. et al., 2000, “Extensible Stylesheet Language (XSL) Version 1.0”, W3C Working

Draft 27 March 2000, http://www.w3c.org/TR/xsl.

Agosta, L., 1998, “Advances in Web Computing”, DM Review Magazine, June 1998,

http://www.dmreview.com/issues/1998/jun/articles/jun98_70.htm

Alameh, N., 2001, “Scalable and Extensible Infrastructures for Distributing Geographic

Information Services on the Internet”, PhD Thesis,

http://web.mit.edu/nadinesa/oldWWW/thesis

Albrecht, J., 1996, “Universal GIS Operations: Task-oriented systematization of GIS

functionality”, http://www.ncgia.ucsb.edu/~jochen/diss/dissabst.html

America, P., 1990, “Designing an object-oriented programming language with behavioral

subtyping.”, In der Bakker, J., de Roever, W. and Rozenberg, G., editors,

Foundations of Object-Oriented Languages, 1990 REX School/Workshop,

Noordwijkerhout, The Netherlands, number 489 in LNCS, Springer-Verlag,

pp. 60-90.

Asaipillai, C., 1997, “The History of Distributed Object Oriented Technologies”,

http://www.metronet.co.uk/weegee/OOD.htm

Associated Press, 2001, “IBM Turns to (Server) Farming”, Wired News,

http://www.wired.com/news/technology/0,1282,45769,00.html?tw=wn200108

02

Bangay, S., 1997, “30 Days to Build a City: Building Virtual Worlds from Maps”, Computer

Science Department, Rhodes University.

Barroca L., Hall J., and Hall P.(Editors), 2000, “Software Architectures: Advances and

Applications”, Springer-Verlag London Limited.

Basili, V., Briand, L., and Melo, W., 1994, “How Reuse influences productivity in Object-

Oriented Systems”, Communications of the ACM, Vol. 37 No. 5, 1994, 104-

115.

Batory, D., and Geraci, B. J., 1996, “Validating Component Composition in Software System

Generators”, in Proceedings of the Fourth International Conference on

Software Reuse, IEEE Computer Society Press, April 1996.

 185

Bergner K., Rausch A., Sihling M., and Vilbig A., 1999, “Componentware - Methodology

and Process”, CBSE 99, Proceedings of the International Workshop on

Component-Based Software Engineering: Held in conjunction with the 21st

International Conference on Software Engineering (ICSE99) Los Angeles,

CA, USA, May 17-18.

Berre, A., Grønmo, R., Hoff, H., Solheim, I., Lantz, K., and Østensen, O, 2000, “DISGIS: An

Interoperability framework for GIS”, SINTEF Telecom and Informatics, GIS

Denmark, Norwegian Mapping Authority,

http://www.gsdi.org/docs/capetown/abstracts.htm

Buehler, K., and McKee, L. (Editors), 1996, “The OpenGIS Guide”, OGIS Project Technical

Committee of the Open GIS Consortium, Inc., OGIS TC Document 96-001,

http://www.opengis.org/techno/guide/guide1.htm

BlueStone, 1999, “About HP Bluestone XwingML”, http://www.bluestone.com

BlueStone, 2000, “XML FAQ”, http://www.bluestone.com/downloads/doc/051900_XML-

FAQ.doc

Booch G., Rumbaugh J., and Jacobson I., 1999, “The unified modeling language user guide”,

Addison-Wesley.

Bray, T., Paoli, J. and Sperberg-McQueen, C., 1998, “Extensible Markup Language (XML)

1.0”, W3C Recommendation, http://www.w3c.org/TR/REC-xml.

Bray, T., Hollander, D., Layman, A. (Editors), 1999, “Namespaces in XML”,

Recommendation, World Wide Web Consortium, Jan 1999,

http://www.w3.org/TR/REC-xml-name

Brown, A., (Editor), 1997, “Component-Based Software Engineering”, IEEE Computer

Society Press.

Brown, A., and Wallnau, K., 1998, “The Current State of Component-Based Software

Engineering”, IEEE Software, September/October 1998.

Browne D., Norman M., and Totterdell P. (Editors), 1990, “Adaptive User Interfaces”,

Academic press, ISBN 0-12-137755-5.

Brox, C., and Kuhn, W., 2001, “Marketplaces for Geographic Information”, In the

proceedings of the 4th AGILE Conference, Brno, Czech Republic,

http://agile.uni-muenster.de/Conference/Brno2001/New_Economy.pdf

Brutzman, D., and Williams, J., 2001, “How to install and compile Xj3D”, Web3D

Consortium,

http://www.web3d.org/TaskGroups/x3d/Xj3D/HowToInstall.html

 186

Buziek, G. and Hatger, C., 1998, “Interactive animation and digital cartometry by VRML 2.0

and JAVA within a temporal environmental model on the basis of a DTM of

the Elbe estuary and a 12 hour tide period”, University of Hannover,

Germany, http://visart.ifk.uni-hannover.de/~buziek/COMVIS/COMVIS98/

buziek/comvis98.html

Cagle, K., 2000, “A Tale of Two Parsers”, Webtechniques,

http://www.webtechniques.com/archives/2000/07/progrevu/

Canal, C., Fuentes, L., Troya, J, and Vallecillo, A., 2000, “Extending CORBA interfaces with

p calculus for protocol compatibility”, In Proceedings of TOOLS Europe

2000, IEEE Press, France, pp. 208-225.

Cimetiere, J., 2001, “The Web Services Value Chain”, Intranet Journal,

http://www.intranetjournal.com/articles/200108/tm_08_29_01a.html

Clements P.C., Bass L. [et al.], 2000, “Constructing Superior Software”, MacMillan

Technical Publishing, Indianapolis.

Conde, J., 1988, “Mobile Agents in JAVA”, CERN/IT/ASD/RD45/98/12, December 1998,

http://wwwinfo.cern.ch/asd/rd45/white-papers/9812/agents2.html

Coppit, D., and Sullivan K., 2000, “Multiple Mass-Market Applications as Components”,

ICSE 2000, ACM, Limerick, Ireland.

Cox, S., 2000, “Geospatial Data Transfer”, CSIRO, http://www.ned.dem.csiro.au/

XMML/about/geospatial.html

Daisey, P., 2000, GeoJava: "Where will you be tomorrow?", Geography Division, U.S.

Census Bureau, Java Location Services,

http://www.jlocationservices.com/company/Census/where_will_you_be.html

Davis, S., 2000, “OpenGIS Simple Features For CORBA work in DSTO”,

http://www.opengis.org/techno/interop/dsto/

Dhara, K., and Leavens, G., 1996, “Forcing behavioral subtyping through specification

inheritance. In Proceedings of the 18th International Conference on Software

Engineering (ICSE-18), Berlin, Germany, IEEE Press, pp. 258-267.

Dey, A., Abowd, G., Pinkerton, M., and Wood, A., 1997a, “CyberDesk: A Framework for

Providing Self-Integrating Ubiquitous Software Services”, ACM Inc., UIST.

Dey, A., Abowd, G., Pinkerton, M., and Wood, A., 1997b, “CyberDesk: Automated

Integration of Desktop and Network Services”, CHI 97, ACM.

Doyle, A., 2001, “An Introduction to the Open GIS Consortium and its programs”,

Proceedings of Digital Earth Conference, Fredericton, Canada.

 187

Duman, A., et al, 1998, “Are CORBA Services Ready to Support Resource Management

Middleware for Heterogeneous Computing?”, IEEE, Proceeds of the Eighth

Heterogeneous Computing Workshop.

Dykes, J. A., Moore, K. M. and Fairbairn, D., 1999, “From Chernoff to Imhof and Beyond:

VRML & Cartography”. In Proceedings of the Fourth Symposium on the

Virtual Reality Modeling Language, Paderborn, Germany. pp. 99-104.

Ekins, C., and Davis, S., 1999, “The EXC3ITE Geospatial Services Segment” , Information

Technology Division, Australian ESRI & ERDAS User Conference, DSTO

Australia.

Encarnação, M., 1997 “Concept and realization of intelligent user support in interactive

graphics applications”, PhD Thesis, der Eberhard-Karls-Universität zu

Tübingen, http://www.crcg.edu/company/staff/mencarna/publs/diss/diss.html

Fairbairn, D., and Parsley, S., 1997, “The use of VRML for cartographic presentation”,

Computers & Geosciences, Vol. 23 No. 4, pp. 475-481,

http://www.elsevier.nl/homepage/sad/cageo/cgvis/fairbair/vr_carto.htm

Fan, M., Stallaert, J., and Whinston, A., 2000, “The adoption and design methodologies of

component-based enterprise systems”, European Journal of Information

Systems, Vol. 9 No. 1, pp. 25-35.

Fayad, M., Schmidt, C., and Johnson R., 1999, “Building Application Frameworks”, Wiley

Computer Publishing, John Wiley & Sons, Inc.

Ferris, N., 1998, “GIS Gets Down to Business”, Managing Technology,

http://www.govexec.com/tech/articles/0998mantech1.htm

Fingar, P., Clarke, J., and Stikeleather, J., 1997, “Object Magazine”, April 1997,

http://home1.gte.net/pfingar/obj_mag_497.htm

Franklin S., and Graesser, A., 1996, “Is it an Agent, or just a Program?”, A Taxonomy for

Autonomous Agents, Institute for Intelligent Systems, University of Memphis,

Proceedings of the Third International Workshop on Agent Theories,

Architectures, and Languages, Springer-Verlag.

Fischer, G., 1994, “Domain-Oriented Design Environments”, Automated Software

Engineering, Johnson, L., and Finkelstein, A., (Editors), Kluwer Academic

Publishers, Vol. 1 No. 2, June 1994.

Gabriel, P., and Wagner, R., 2001, “GIS meets E-commerce: Pricing in a distributed

environment”, Fraunhofer ISST, Proceedings of Digital Earth Conference,

Fredericton, Canada.

 188

Galdos Systems Inc., 2001, “Why GML?”, http://www.galdosinc.com/technology-

whygml.html

Gamma E., Helm R., et al., 1995, “Design Patterns: Elements of Reusable Object-Oriented

Software”, Addison-Wesley.

Garlan, D., and Perry, D., 1995, “Introduction to the Special Issue on Software Architecture”,

IEEE Transactions on Sofiware Engineering, Vol. 21 No.4, April 1995, pp.

269–74.

Gartner Group, 1997, “Componentware: Categorization and Cataloging,” Applications

Development and Management Strategies Research Note, by K. Loureiro and

M. Blechar, December 5, 1997, http://www.gartnergroup.com

Gardels, K., current 26/10/2001, “The Open GIS Approach to Distributed Geodata and

Geoprocessing”, http://www.regis.berkeley.edu/gardels/envmodel.html

GeoEurope, 2000, “Geofocus: GIS in business”, April 2000, available at

http://www.geoplace.com

GeoInformatics, 2001, “Review of the Autodesk GIS 2000 International User Group

Conference”, Conferences and Meetings, GeoInformatics Online Issue,

December 2000, http://www.geoinformatics.com/issueonline/issues/

2000/12_2000/pdf_12_2000/conf2_8.pdf

Gifford, F., 1999, “Internet GIS Architectures-Which Side Is Right for You?”, Maxim

Technologies Inc., http://ceiba.cc.ntu.edu.tw/GIS/Architecture.htm

Goodchild, M., Egenhofer, M., Fergeas, R., 1997, “Interoperating GISs”, Report of a

Specialist Meeting Held under the Auspices of the Varenius Project Panel on

Computational Implementations of Geographic Concepts, California,

http://www.ncgia.ucsb.edu/conf/interop97/interop_toc.html

Gorman, T., 1997, “Why VRML is more than eye candy”,

http://www.netscapeworld.com/nw-07-1997/nw -07-vrml.html

Grady, R., current 26/10/2001, “Geoengineering meets Information Technology

Mainstream”, Applied Geographics, Inc. Environmental and Geographic

Information Systems, http://www.bentley.com/geosummit/white/geowhite.htm

Griscom, D., 1999, “Code Signing for Java Applets”, Suitable Systems,

http://www.suitable.com/Doc_CodeSigning.shtml

Gunther, O. and Muller, R., 1999, “From GISystems to GIServices: Spatial Computing on

the Internet Marketplace”, Interoperating Geographic Information Systems,

 189

Edited by Goodchild, M., Egenhofer, M., Fegeas, R. and Kottman, C., Kluwer

Academic Publishers, pp. 427-442.

Hall, R., Heimbigner, D., and Wolf, A., 1999, “A Cooperative Approach to Support Software

Deployment Using the Software Dock”, Proc. of ICSE'99: The 1999 Int'l

Conf. on Software Engineering, Los Angeles, CA, pp. 174-183.

Heiler, S., 1995, “Semantic interoperability”, ACM Computing Surveys, Vol. 27 No. 2, pp. 265-

275.

Herzum P., Sims O., 2000, “Business Component Factory”, John Wiley & Sons Inc.

Hernández, J., Troya, J., and Vallecillo, A., 2000, “Lesson 3: Component Interoperability”,

http://www.lcc.uma.es/~av/Docencia/Doctorado/tema3.pdf

Heywood, I., Kemp, K., Reeve, D., 1998, “Interoperable Education for Interoperable GIS”,

Interoperating Geographic Information Systems, Kluwer Academic

Publishers.

Hurwitz, J., 1998, “Component Directions”, DBMS Online, May 1998,

http://www.dbmsmag.com/9805d04.html

IBM, 2001, “Visualize: Using dynamic e-business to open new markets for existing

products”, Case Study, http://www-4.ibm.com/software/solutions/

webservices/casestudies/visualize.html

ICANN Committee, 2001, “Reconsideration Request 00-14”, ICANN, March 2001,

http://www.icann.org/committees/reconsideration/rc00-14.htm

IDC (The International Data Corporation), 2000, “1999 Worldwide Spatial Information

Management Markets and Trends”, http://www.idc.com

IKV++ (GmbH Informations - und Kommunikationstechnologie), 1999, Grasshopper: The

Agent Platform, Germany, http://www.ikv.de/products/grasshopper/

grasshopper.html

ISO/TC 211, 2000, “Draft Business Plan of ISO/TC 211 - Geographic

Information/Geomatics”, 27/11/2000, http://www.statkart.no/isotc211/

Kamthan, P., 2000, “XML Euphoria in Perspective”,

http://tech.irt.org/articles/js203/index.htm

Kim, K., Lee, K., Lee, H. and Ha, Y. 1998, “Virtual 3D GIS's

Functionalities Using Java/VRML Environment”, GIS Lab. Image Processing

Dept. Systems Engineering Research Institute, S.Korea, Published in: J.

Strobl and C. Best (Eds.), 1998: Proceedings of the Earth Observation & Geo-

Spatial Web and Internet Workshop '98 Salzburger Geographische

 190

Materialien, Volume 27. Instituts für Geographie der Universität Salzburg.

ISBN: 3-85283-014-1.

Koeppel, I., current 26/10/2001, “What are Location Services? - From a GIS Perspective”,

ESRI Location Service Industry Manager,

http://www.geojava.net/company/esri/What%20are%20Location%20Services.

html

Kreveld, M, 1996, Variations on sweep line algorithms: Efficient computation of extended

viewsheds and class intervals, Proceedings of the seventh International

Symposium on Spatial Data Handling, pp. 843-855

Kurki, T, 1998, “Java and (mobile) software agents”, Research Seminar: Java-based Software

Technologies, Tik-76.270 http://smartpush.cs.hut.fi/tjk/javaagents.htm

Lake, R., 2000, “GML – The Future of Internet Mapping”, Galdos Systems Inc.,

http://www.web-mapper.com/articles/GML.html

Lake, R., 2001a, “GML 2.0 – Enabling the Geo-spatial Web”, Galdos Systems Inc.,

http://www.geojava.net/company/galdos/articles/GML3.htm

Lake, R., 2001b, “The hitchhiker's guide to the new web mapping”, GeoPlace.com,

http://www.geoplace.com/ge/2001/0201/0201web.asp

Langran, G., 1992, “Time in Geographic Information Systems”, Technical Issues in GIS,

Taylor & Francis, London, UK.

Leavens, G., and Sitaraman, M., (Editors), 2000, “Foundations of Component-Based

Systems”, Cambridge University Press.

Leclerc, Y. (Primary), Reddy, M., Iverson, L., and Eriken, M., 2001, “The GEOWEB (aka

dot-geo) – Indexing data on the internet by location”, SRI International,

Proceedings of the Digital Earth Conference, Fredericton, Canada.

Lemmens, R., 2001, “Distributed interoperable processing in GIS: Towards Plug-and-Play

GIS components”, International Institute for Aerospace Survey and Earth

Science, http://www.itc.nl/sitacs/research/Qualifier%20presentation%20

abstract%20for%20webpage.htm

Leung, A., 1998, “Interactive viewing of 3D terrain models using VRML”, School of

Computer and Information Science, Syracuse University,

http://www.dhpc.adelaide.edu.au/reports/043/html/index.htm

Liron, T., 2000, “Launching into Java - New client-side technologies bring Java apps out of

the Web and onto the desktop”, http://www.javaworld.com/javaworld/jw-09-

2000/jw-0915-launch_p.html

 191

Liskov, B. and Wing, J., 1994, “A behavioral notion of subtyping”, ACM Transactions on

Programming Languages and Systems, Vol. 16 No. 6, pp. 1811-1841.

Location Interoperability Forum, http://www.locationforum.org

Looney, M., Lunga, S., and Budgen, D., 1998, “Software Component Reuse in Open System

Software Design: A UK Perspective”,

http://www.dodccrp.org/Proceedings/DOCS/wcd00000/wcd000fb.htm

Lopez, X., 2000, “GeoJava for Internet and Mobile Location Services”, Oracle Corp., 2000,

http://www.geojava.net/company/Oracle/geojava_for_Internet_and_Mobile

_Location_Services.html

Maes, P., and Lieberman, H., current 26/10/2001, “Intelligent Interfaces”, Intelligent

Interfaces seminar, MIT Media Laboratory,

http://lcs.www.media.mit.edu/people/lieber/Teaching/Int-Int/Int-Int-

Announcement.html

Maler, E., 2000, “Guide to the W3C XML Specification ("XMLspec") DTD, Version 2.1”,

W3C, February 2000, http://www.w3.org/XML/1998/06/xmlspec-report.htm

Marrin, C., and Campbell, B., 1997, “Teach Yourself VRML2 in 21 Days”, Sams Net, ISBN

1-57521-193-9.

Marshall, J., 2000, “Developing Internet-Based GIS Applications”,

http://www.giscafe.com/TechPapers/Papers/paper058/

Martin, D. and Higgs, G., 1997, The Visualisation of Socio-Economic GIS Data Using

Virtual Reality Tools, Transactions in GIS, Vol. 1 No. 4, pp. 255-266.

Matsuba, S., and Roehl, B., 1996, “Special Edition Using VRML”, Que Publishers, ISBN: 0-

7897-0494-3.

Megginson, D., 2000, “SAX 2.0: The Simple API for XML”,

http://www.megginson.com/SAX/

Miller, D., and Schirnick, H., 1999, “Smallworld and OpenGIS”, Navigant Consulting Inc.,

http://www.smallworld.co.uk/large_docs/sw99_americas/Deb_Miller.pdf

Millman, H., 1998, “Agents at your service”, http://www.idg.net/gomail.cgi?id=9-47025

Morais, M., 2000, “Realizing the Benefits of an N-Tiered Enterprise GIS”, GIS at About,

http://www.about.com

Nadeau, D., 1997, “Publishing 3D content with VRML”, NASA EOSDIS Desktop

Computing Workshop, July 1997,

http://www.sdsc.edu/~nadeau/Talks/NASA_EOSDIS/java3d.htm

 192

Nadeau, D., Ames, A., and Moreland, L., “Optimizing the Performance of VRML Worlds”,

http://linux.tomsk.ru/docs/programming/DrDobbs/articles/1996/9607/9607a/9

607a.htm

Niagara SIG Meeting, 2000, (Special Interest Group) CBDi Buying & Selling Components,

September 2000.

Niemeier, D. and Beard, K.,1993, “GIS and Transportation Planning: A Case Study”,

Computers, Environment, and Urban Systems, 17, pp. 31-43.

ObjectSpace Inc., 1998, “Voyager ORB 3.0 Developer Guide”, USA.

Öhrström, P., 2001, “Investigating the Feasibility of an OpenGis GeoBox Prototype”, Kungl

Tekniska Högskolan Institutionen för geodesi och fotogrammetri,

Universitetsservice US AB, Stockholm.

OMG (Object Management Group), 1999, “CORBA Components and Component Model”,

document orbos/99-02-05, available at http://www.omg.org/

Open GIS Consortium, 1998a, “The Benefits of OGC Membership”,

http://www.opengis.org/info/benefits/Benefits.rtf

Open GIS Consortium, 1998b, “OpenGIS Simple Features Specification for CORBA”,

Revision 1.0.

Open GIS Consortium, 1999, “The OpenGIS Abstract Specification Topic 0: Abstract

Specification Overview”, Version 4, OpenGIS Project Document Number 99-

100r1, http://www.opengis.org/techno/spec/99-100r1.pdf

Open GIS Consortium, 1999, “The OpenGIS Abstract Specification Topic 12: Service

Architecture”, Version 4, OpenGIS Project Document Number 99-112,

http://www.opengis.org/techno/spec/99-112.pdf

Open GIS Consortium, 2001a, “The OpenGIS Abstract Specification Topic 12: Service

Architecture”, Version 4.1, OpenGIS Project Document Number 01-112,

http://www.opengis.org/techno/spec/01-112.pdf

Open GIS Consortium, 2001b, “OpenGIS Web Map Server Interfaces Implementation

Specification”, Revision 1.1.0, http://www.opengis.org/techno/specs/01-

047r2.pdf

Orfali, R. and Harkey, D., 1998, Client/Server Programming with Java and CORBA, 2nd

Edition, Wiley Computer Publishing.

Ousterhout, J., 1998, “Scripting: Higher Level Programming for the 21st Century”, IEEE

Computer, Vol. 31 No.3, pp. 23–30.

 193

Panel-GI, 2000, “A Guide to GI and GIS”, Pan European Link for Goegraphical Information,

http://www.unigis.hu/library/PANEL_GI_book.pdf

Peuquet, D. and MacEachren, A., 1998, “An integrated approach for representation and

analysis of Space/Time Environmental Data”,

http://www.geog.psu.edu/apoala/abstract.htm

Perry, D., 1989, “The Inscape Environment”, in Proceedings of the 11th International

Conference on Software Engineering, IEEE Computer Society Press, May

1989.

Pesce, M., 1997, “VRML and Java - A marriage made in heaven”,

http://developer.netscape.com/viewsource/pesce_vrml2/pesce_vrml2.html

Pharoah, A., Seigel, J., and Brooke, C., 2000, “Creating Commercial Components: CORBA

Component Model (CCM)”, ComponentSource,

http://www.componentsource.com/BuildComponents/WhitePapers/CORBAW

hitePaper.asp

PortWood, M., 2000, “Using JavaT M Technology Reflection to Improve Design”, JavaOne,

Presentation made at Java Developer Conference,

http://servlet.java.sun.com/javaone/javaone2000/pdfs/TS-706.pdf

Preston, M., Clayton, P. and Wells, G., 1997, “Distributed Virtual GIS”, In the proceedings

of the Teletraffic ’97 Conference, Grahamstown, South Africa.

Preston, M., Clayton, P. and Wells, G., 1998a, “Web-based Spatiotemporal GIS”, In the

proceedings of the Masters and Ph.D. Conference, Stellenbosch, South Africa.

Preston, M., Clayton, P. and Wells, G., 1998b, “An overview of Temporal Object Models and

their application to VGIS”, In the proceedings of the SATNAC ’98

Conference, Cape Town, South Africa.

Preston, M., Clayton, P. and Wells, G., 1999a, “Using CORBA to implement distributed GIS

tools for use in a Web-based Spatiotemporal GIS”, In the proceedings of the

Masters and PhD ’99 Conference, Golden Gate National Park, South Africa.

Preston, M., Clayton, P. and Wells, G., 1999b, “Integrating CORBA and Mobile Agents as a

method for reducing Internet Bandwidth”, In the proceedings of the SATNAC

’99 Conference, Durban, South Africa.

Preston, M., Clayton, P. and Wells, G., 1999c, “Creating a Web-based Spatiotemporal GIS

using Java and VRML”, In the proceedings of the WebNet ’99 Conference,

Honolulu, Hawaii.

 194

Preston, M., Clayton, C. and Wells, G., 2000, “Dynamic run-time application development

using CORBA Objects and XML”, In the proceedings of the SATNAC 2000

Conference, Stellenbosch, South Africa.

http://www.cs.ru.ac.za/research/Preston_satnac2000.pdf

Preston, M., Clayton, C. and Wells, G., 2001a, “Location Services: The importance of

location in the location-transparent medium of the Internet”, In the

proceedings of the SATNAC 2001 Conference, Wild Coast, South Africa.

Preston, M., Clayton, C. and Wells, G., 2001b, “Dynamic run-time application development

using CORBA Objects and XML in the field of Locations Services and

Distributed GIS”, Submitted to the International Journal of Geographic

Information Science.

Prieto-Diaz, R., and Neighbors, J. M., 1986, “Module Interconnection Languages”, Journal of

Systems and Software, Vol. 6, 1986, pp. 307–334.

Raj, G., 1998, “The EJB Model”, Gopalan Suresh Raj’s Web Cornucopia,

http://www.execpc.com/~gopalan/java/ejb/ejbmodel.html

Radiya, A. and Dixit, V., 2000, “Get started using XML Schema instead of DTDs for

defining the structure of XML documents”, AvantSoft, Inc., http://www-

106.ibm.com/developerworks/xml/library/xml-schema/

Reddy, M., Iverson, L., and Leclerc, Y., 1999a, “Enabling Geographic Support in Virtual

Reality Modelling with GeoVRML”, SRI International, Technical Note #13 in

the journal Cartography and Geographic Information Science, Vol. 26 No. 3,

July 1999, http://www.ai.sri.com/~reddy/pubs/ica/

Reddy, M., Leclerc, Y., Iverson, L., and Bletter, N., 1999b, “TerraVision II: Visualizing

Massive Terrain Databases in VRML”, IEEE Computer Graphics and

Applications (Special Issue on VRML), Vol. 19 No. 2, pp. 30-38.

Reddy, M., and Iverson, L., 2000a, “Indexing and Using 3D GeoData on the Web”, SRI

International.

M. Reddy, L. Iverson, and Y. G. Leclerc, 2000b, "Under the Hood of GeoVRML 1.0", In

Proceedings of The Fifth Web3D/VRML Symposium, Monterey, California.

Reddy, M., Iverson, L., and Leclerc, Y., 2000c, “GeoVRML 1.0 – Adding Geographic

support to VRML”, GeoInformatics Magazine, September 2000,

http://www.geoinformatics.com/issueonline/issues/2000/09_2000/pdf_09_200

0/art3_6.pdf

Reddy, M., 2000, “Update on GeoVRML 1.0”, ACM Siggraph 2000, BOF Presentation.

 195

Resnick, R., 1996, “Bringing Distributed Objects to the World Wide Web”,

http://www.interlog.com/~resnick/javacorb.html

Rhyne, M., 1997, “Going virtual with geographic information and scientific visualization”,

Computers & Geosciences Vol. 23 No. 4, pp. 489-491, http://www.elsevier.nl/

homepage/sad/cageo/cgvis/rhyne/rhyne.htm

Rhyne, M., and Fowler, T., 1998, “Examining Dynamically Linked Geographic

Visualisation”, http://www.epa.gov/vislab/svc/publications/awma-gisvis.html

Ring K., and Ward-Dutton N., 1998, “Componentware – Building it, Buying it, Selling it”,

Ovum Ltd.

Robertson, A., Sale, R., Morrison, J. and Muehrche, P., 1984, “Elements of Cartography”.

New York, John Wiley & Sons.

Rohaly, T., 2000, “Client-side Java makes a comeback - Java Web Start, a new product from

Sun, aims to breathe life back into client-side Java”,

http://www.javaworld.com/javaworld/javaone00/j1-00-webstart.html

Roman, E., 2000, “Mastering EJB”, Elliott, R. (Editor), John Wiley & Sons, Inc., New York,

ISBN 0-47133229 –1.

Shneider-Hufschmidt M., Kühme T. & Malinwski U., 1993, “Adaptive user interfaces:

principles and practice”, Human factors in technology, ISBN 0-444-81545-7.

Schmidt, D., 2001, “Overview of CORBA”, http://www.cs.wustl.edu/~schmidt/corba-

overview.html

Schneider, J. and Nierstrasz, O., 1999, “Components, Scripts and Glue”, in Software

Architectures – Advances and Applications, Leonor Barroca, Jon Hall, and

Patrick Hall (Editors.), Springer, pp. 13–25.

ScreamingMedia, 1999, “CORBA Component Model Will Help Developers Quickly Design

and Implement Mission Critical Distributed Systems, Business Wire,

September 02, 1999, http://industry.java.sun.com/javanews/stories/

story2/0,1072,18380,00.html

Sessions, R., 1998a, “COM and DCOM”, John Wiley Press.

Sessions R., 1998b, “Component-Oriented Middleware”, Component Strategies, October

1998.

Siegel, J., 2000, “CORBA 3: Fundamentals and Programming” OMG Press, John Wiley &

Sons, Inc.

Siegel, J., 2001, “What’s coming in CORBA 3.0”, OMG, July 2001,

http://www.omg.org/technology/corba/corba3releaseinfo.htm

 196

Silicon Graphics, 1998, “VRML Development with Cosmo Worlds”, Technical Education,

Part number: VRMLDCW-1.0-6.2/3/4-S-SD-SW, http://corsi.cineca.it/

dispense/worlds/html/

Snodgrass, R., Boehlen, M., Jensen, C., and Steiner, A., 1998, “Transitioning Temporal

Support in TSQL2 to SQL3”, Temporal Databases: Research and Practice,

Etzion, S. Jajodia and S. Sripada, Springer Verlag, LNCS 1399

March 1998.

Software AG, current 26/10/2001, “XML – The Benefits”,

http://www.softwareag.com/xml/about/xml_ben.htm

Spruit, S., 1997, “Reflections on Java, Beans, and relational databases”, JavaWorld,

http://www.javaworld.com/javaworld/jw-09-1997/jw-09-reflections.html

SRI Internet Initiative, 2000, “The Proposed .geo Top-Level Domain Name”, SRI

International, http://www.dotgeo.org/proposal/html/contents.html

St.Laurent, S., 1999, “Java, XML, and a New World of Open Components”, New York

Developers Group, http://www.simonstl.com/articles/nycod/sld001.htm

Stojanovic, Z., 2000, “Generic Component-Based Framework for Effective Telematics

Application Development”, http://www.betade.tudelft.nl/projects/Proposal_

Stojanovic_20001115.htm

Sukaviriya, P., and Foley, J., 1993, “Supporting Adaptive Interfaces in a Knowledge-Based

User Interface Environment”, Intelligent User Interfaces ’93, ACM.

Sun Mic roSystems, 2001a, “JavaTM Web Start Software Delivers Full-Featured Applications

With a Single "Click", LOS ANGELES, CA Spring Internet World,

http://java.sun.com/pr/2001/03/pr010314-02.html

Sun MicroSystems, 2001b, “Enterprise JavaBeans technology”,

http://java.sun.com/products/ejb/

Sun Microsystems, 2001c, “JavaHelp”, http://www.javasoft.com/products/havahelp/

Szyperski C., 1998, “Component Software: Beyond Object-Oriented Programming”, ACM

Press, Addison-Wesley.

Szyperski, C., 2000, “Components versus objects”, ObjectiveView #5, pp. 8-16.

Toon, M., 1997, The World by your Window, GIS Europe, Vol. 6, No. 11, pp. 38-41.

Traynor, C., and Williams, M., 1995, “Why are Geographic Information Systems Hard to

use?”, ACM, CHI’95 Mosaic of Creativity.

Tremblett, P., 1998, “Java Reflection Not just for tool developers”, Dr. Dobb’s Journal,

January 1998, http://www.ddj.com/articles/1998/9801/9801c/9801c.htm

 197

Tsou, M. and Buttenfield, B., 1998, “Client/Server Components and Metadata Objects for

Distributed Geographic Information Services”. Proceedings, GIS/LIS ’98, Fort

Worth, TX, November, pp. 590-599, http://map.sdsu.edu/publications/Tsou-

GIS98.pdf

UDDI.org, 2000, “UDDI Executive White Paper”, http://www.uddi.org/pubs

/UDDI_Executive_White_Paper.pdf

van Hoff, A., Partovi, H., and Thai, T., 1997, “The Open Software Description Format

(OSD)”, Submitted to W3C 13 August 97, http://www.w3.org/TR/NOTE-

OSD.html

Veryard R., 2000, “Plug and Play: Towards the Component-Based Business”, Springer

London, in preparation, November 2000.

Voss, H., and Birlinghoven, S., 2000, “CommonGIS - Common Access to Geographically

Referenced Data”, Fourth Global Spatial Data Infrasture Conference - GSDI-

4, Cape Town, South Africa, http://www.gsdi.org/docs/capetown/

abstracts.htm

Vretanos, P. (ed.), 2001, “OpenGIS Discussion Paper #01-023: Web Feature Service Draft

Candidate Implementation Specification 0.0.12”, January 2001,

http://www.opengis.org/techno/discussions.htm

VRML97, ISO/IEC 14772-1:1997, 1997, “The Virtual Reality Modeling Language”,

http://www.vrml.org/Specifications.

W3C DOM WG, 2001, “Document Object Model (DOM)”, September 15, 2001,

http://www.w3.org/DOM/

Wahl, M., Howes, T., and Kille., S., 1997, “Lightweight Directory Access Protocol (v3)”,

RFC 2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt

Wang, X., Yang, C., and Liu, D., 2001, “Web Mapping with Geographic Markup Language”,

Institute of Remote Sensing Applications, Proceedings of Digital Earth

Conference, Fredericton, Canada.

Web3D Press Release, 2001, “New-Generation X3D Open Web3D Standard Launched with

Leading Browser-Company Support”, August 2001,

http://web3d.org/fs_X3Dpressrelease8_01.htm

Webtechniques 1999, “Freeware Tool Xwings Two Ways”,

http://www.webtechniques.com/archives/1999/04/newsnotes/

 198

Whitlock, N., 2001, “XML Schema becomes W3C Recommendation”, Casaflora

Communications, May 2001, http://www-

106.ibm.com/developerworks/xml/library/x-schrec.html?open&l=132

Wiederhold, G., Wegner, P., and Ceri, S., 1992, “Toward Megaprogramming”,

Communications of the ACM, Vol. 35, No. 11, November 1992.

X3D FAQ, 2001, “X3D (Extensible 3D) Frequently Asked Questions (FAQ)”, Compiled by

Martin Reddy, Version 1.17, Aug 9 2001,

http://www.web3d.org/TaskGroups/x3d/faq/index.html

Yellen, D., and Strom, R., 1997, “Protocol specifications and component adapters”, ACM

Transactions on Programming Languages and Systems, Vol. 19 No. 2, pp.

292-333.

	rmpreston_phd

