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Abstract 
A number of GIS architectures and technologies have emerged recently to facilitate the 
visualisation and processing of geospatial data over the Web.  The work presented in this 
dissertation builds on these efforts and undertakes to overcome some of the major problems 
with traditional GIS client architectures, including application bloat, lack of customisability, 
and lack of interoperability between GIS products.  In this dissertation we describe how a 
new client-side GIS architecture was developed and implemented as a proof-of-concept 
application called RADGIS, which is based on open standards and emerging distributed 
component-based software paradigms.  RADGIS reflects the current trend in development 
focus from Web browser-based applications to customised clients, based on open standards, 
that make use of distributed Web services. 
 
While much attention has been paid to exposing data on the Web, there is growing 
momentum towards providing “value-added” services.  A good example of this is the 
tremendous industry interest in the provision of location-based services, which has been 
discussed as a special use-case of our RADGIS architecture.  Thus, in the near future client 
applications will not simply be used to access data transparently, but will also become 
facilitators for the location-transparent invocation of local and remote services.  This flexible 
architecture will ensure that data can be stored and processed independently of the location of 
the client that wishes to view or interact with it. 
 
Our RADGIS application enables content developers and end-users to create and/or 
customise GIS applications dynamically at runtime through the incorporation of GIS services.  
This ensures that the client application has the flexibility to withstand changing levels of 
expertise or user requirements.  These GIS services are implemented as components that 
execute locally on the client machine, or as remote CORBA Objects or EJBs.  Assembly and 
deployment of these components is achieved using a specialised XML descriptor.  This XML 
descriptor is written using a markup language that we developed specifically for this purpose, 
called DGCML, which contains deployment information, as well as a GUI specification and 
links to an XML-based help system that can be merged with the RADGIS client application’s 
existing help system. Thus, no additional requirements are imposed on object developers by 
the RADGIS architecture, i.e. there is no need to rewrite existing objects since DGCML acts 
as a runtime-customisable wrapper, allowing existing objects to be utilised by RADGIS.   
 
While the focus of this thesis has been on overcoming the above-mentioned problems with 
traditional GIS applications, the work described here can also be applied in a much broader 
context, especially in the development of highly customisable client applications that are able 
to integrate Web services at runtime.  
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Chapter 1  

Introduction 
 

"All truth passes through three stages. First, it is ridiculed.  

Second, it is violently opposed. Third, it is accepted as being self-evident." 

Arthur Schopenhauer (1788-1860) 

 

Geographic Information Systems (GIS) provide the user with the ability to explore 

geographic, or location-based data visually, allowing specialised searches on, and analysis of, 

both spatial and a-spatial (attribute) data.  Traditional GIS applications provide a wide variety 

of tools for manipulating this data, from the digitising of spatial data to complex spatial 

analysis tools, conversion utilities, statistical analysis, as well as charting and presentation 

functionality.   

 

A number of books and papers have been published that highlight the many advantages of 

digital mapping, and the ability of GIS applications to mine geospatial data effectively 

[Robertson et al. 1984] [Panel-GI 2000].  These advantages include increased speed, 

analytical and visualisation capabilities, as well as efficiency of data storage, integration of 

spatial and attribute data, and the ability to perform "finer-grained" spatial analysis [CTRE 

1998] [Niemeier et al. 1993].  
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How ever, there are also a number of problems that hamper its effective deployment and use 

within organisations.  These include problems associated with the resource-intensive nature 

of GIS applications due to the large data sets that are used, and the complexity of the 

algorithms used to process the data, as well as problems associated with the design of 

traditional GIS applications, such as application bloat and lack of interoperability between 

GIS software packages. 

 

The work presented in this thesis describes our solution to these problems through the 

creation of an extensible client-side framework that provides the user with the ability to add 

distributed interoperable geospatial services to the client application at runtime.  This new 

client-side GIS architecture was implemented as a proof-of-concept application called 

RADGIS (Runtime Application Development of GIS), and is based on open standards and 

emerging distributed component-based software paradigms.   

 

The RADGIS architecture enables the creation of small, highly specialised GIS clients that 

are easily extensible should the user’s needs change, or if the user requires a once-off or 

seldom-used service.  This has been achieved through the creation of GIS services that are 

implemented by wiring together local and distributed objects using an XML-encoded 

descriptor language we have developed called DGCML (Distributed GIS Component Markup 

Language). 

 

GIS applications typically provide extensive functionality, most of which is very specific to 

the field of geospatial data analysis, although some of it is more general in application.  

While the focus of this thesis is on the development of an improved client-side GIS 

architecture, much of the work presented in this thesis can be applied to the development of 

component-based applications in general.  However the benefits of using our approach are 

maximised when applied to a domain that has been the focus of large-scale standardisation 

efforts, such as GIS.  It is also easier to expound the virtues of an approach when one is able 

to provide concrete examples of how such an approach is able to solve specific problems 

identified within that domain. 
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If our objectives for the research presented in this dissertation were to be summarised in a 

single sentence it would be: 

 

To develop runtime -extensible, highly-customisable, distributed-component based GIS 

and Location-based Service clients.   

 

The remainder of this chapter expands on some of the problems associated with current GIS 

applications that can be attributed to the resource intensive nature of GIS, as well as the large 

number of diverse operations that may be performed.  In particular, it focuses on two driving 

forces that have been the motivation for our approach to component-based GIS applications, 

namely reducing application bloat by disaggregating GIS applications into interoperable 

components (rather than interoperable software suites), and providing a high level of 

location-transparency for accessing local and remote data and services 

. 

 

1.1. Problems associated with current GIS Applications 
One of the biggest challenges that organizations face today when deploying and using 

software-intensive systems is managing the complexity inherent in such systems, while being 

able to rapidly adapt to change, without a breakdown in the transfer of knowledge and 

experience when moving from one system to another [Brown 2000]. 

 

Monolithic Geographic Information Systems (GIS) packages of today are being replaced by 

new forms of geo-processing, based on new interoperable principles and standards.  These 

changes are necessary due to the non-interoperability of current GIS products, which has lead 

to conceptual diversity, product specificity and the limited transfer of knowledge when a user 

changes from using one particular GIS package to another [Heywood et al. 1998][Open GIS 

Consortium, 1998a]. 

 

Traditional GIS applications are generally very large applications that are expensive to 

license, have a very steep learning curve [Albrecht 1996], and are difficult to use.  Traynor et 

al. [1995] argue that proficient use of traditional GIS applications requires a solid 

understanding of the fields of geography, cartography and database management systems, as 

well as being computer literate, and that they very often require specialist knowledge.   
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Traditional GIS applications are well-suited to GIS experts.  However there is a growing 

realisation that there are a number of users, in a variety of fields, who require spatial analysis 

tools similar to those found in GIS applications.  These users generally require only a small 

subset of the functionality provided by traditional GIS applications, and do not necessarily 

wish to become experts in GIS in order to make use of GIS applications. 

 

While there is no denying that traditional GIS applications fulfil an extremely valuable role, 

many problems associated with these GIS applications have been identified.  The following is 

not meant to be an exhaustive list, but are described in more detail below due to their 

relevance to the research presented in this dissertation: 

?? “Application bloat” – many GIS applications attempt to provide as much functionality 

as possible.  As a result, these GIS applications have become extremely complex 

systems that are prone to serious application bloat. 

?? Lack of Interoperability – In the past, due to the lack of standards, GIS software from 

one vendor would not work with software from another. This lack of interoperability 

between software products from different vendors has been a major stumbling block 

to sharing geospatial data, particularly across the Web.  

?? Location Transparency – while many GIS applications do provide access to data sets 

located on various different platforms with a large degree of location transparency, 

the ultimate goal is to extend location transparency to incorporate both data and 

services.  This will allow processing of data to be performed wherever it makes most 

sense without requiring the user to be aware of the physical location of either the data 

set being processed, or the tool that is performing the processing. 

 

1.1.1. Application Bloat 

Classic application bloat within major software packages is becoming more and more 

common as developers try to add functionality to cater for every eventuality to their 

applications.  However, different users have very different requirements, and may end up 

using very little of the overall functionality provided by an application.  This is particularly 

true in GIS, where users typically only make use of a fraction of the available functionality 

found in most traditional GIS applications [Gunther and Muller 1999] 
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Ironically, it is also likely that an advanced user will require functionality not provided by the 

core application, even though it contains many features that will never be used.  Such a user 

must then install additional modules, which may integrate with the original application, but 

are often stand-alone tools that must be executed outside the core application.   

 

This is not entirely the developer’s fault as it is impossible for developers to provide systems 

tailored to each individual’s requirements.  Most applications are developed based on 

generalised requirements, i.e. for groups of users with similar core requirements, but differing 

application environments that require specialized features.  In addition, many end-users only 

discover what functionality they require once they start working on a particular project.   

 

Application bloat is not unique to GIS applications.  According to Dey et al. [1997a], the 

main downfall of most current software suites is their poor ability to integrate individual 

tools/services.  They point out that tightly integrated suites of tools/services currently 

available are unsatisfactory because: 

 

?? They require designers to predict how end users will want to integrate the 

tools/services provided; and 

?? They force users to use particular tools/services with no opportunity to replace or add 

tools/services to the application.  

 

The latter is mainly due to vendors wishing to capitalize on vendor “lock-in” and customer 

loyalty, by making it extremely difficult or costly for a user to change tool or service 

provider.  The result is a large application, written by a single software house with general 

expertise, rather than individual components, written by experts in that field, that can be 

integrated into larger applications. 

 

A solution to this problem would be to allow users to decide which tools they require for the 

job at hand.  Should they determine, at any stage, that they do not have the necessary tools for 

a task, they should have the opportunity to locate implementations of these tools, and 

integrate them in their existing application, rather than having to purchase an additional 

package or separate stand-alone utility.   
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1.1.2. Interoperability 

Interoperability has been a major stumbling block within the computing industry as a whole 

in the last decade.  Until recently, the lack of standards within GIS hindered the widespread 

adoption of GIS applications because organisations were reluctant to buy into software from 

a vendor that did not provide a simple migration path, or interoperate with software from 

other vendors [Ferris 1998].  

 

However, it is clear from the numerous standardisation efforts presently underway, 

particularly within the many XML dialects, that a high priority has been placed on 

developing interoperable systems based on open standards.  In addition, the OpenGIS®  

Specification being developed by the Open GIS Consortium represents an evolution in GIS 

solutions, in which proprietary data models and software functions are made interoperable 

and extensible. 

 

The term “interoperability” is used to describe the ability of software (possibly distributed on 

multiple machines) from multiple vendors to freely exchange data between systems.  This is 

possible when each system has knowledge of the other systems’ proprietary formats, but is 

guaranteed when data is transferred between systems that support an open standards format.  

The use of open data standards, i.e. data formats whose internal structures have been openly 

published, allows developers to create “small” interoperable components independently of 

each other.  This permits GIS users to perform tasks that require functionality from more than 

one vendor, based on the integration of these software components.  

 

According to Goodchild et al. [1997], the adoption of open standards will lead to the 

development of “similar” systems that make use of the same vocabulary, follow the same 

conventions and ensure that interoperability over a wide range of systems becomes possible.  

This will, in turn, result in a simplification of data formats, improve interaction between the 

user and a particular system, and reduce the amount of knowledge required by a user to be 

effective with respect to that type of system.  Therefore users could achieve the same 

outcome with less knowledge, and training in one system, e.g. ARC/INFO, would not be 

wasted if the user was transferred to another similar system, e.g. MapInfo.   
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Open systems facilitate interoperability by allowing vendors to produce competing products 

that are interchangeable with existing components.  This healthy competition ensures that end 

users are able to replace the implementation of a particular service with another, possibly 

superior service, without changing the base application code.  The use of interoperable 

components also facilitates the development of highly scalable systems, and the packaging of 

particular services, resulting in lower costs and products tailored for specific end-users’ 

requirements. 

 

The ability to utilise interoperable services in the creation of task-oriented clients is of great 

benefit to the GIS community [Albrecht 1996].  Application developers have the flexibility to 

select services based on the requirements of the end-user by choosing the service 

implementations that are best suited to the task at hand. In addition, developers of 

applications for traditionally non-GIS users can implement small, customised applications 

that require a small subset of a traditional GIS application’s functionality, by combining 

interoperable services rather than developing them from scratch.  

 

This can only be achieved through the development of vendor-neutral, standards-based 

frameworks that enable the discovery and integration of multiple online geodata sources and 

services distributed over the Web.  According to Kenn Gardels [current], the future success 

of GIS as a technology, and as a paradigm of spatial understanding, will depend on the 

seamless integration of these diverse methods into a comprehensive system for scientific 

investigation and environmental planning. 

 

1.1.3. Location transparency 

Goodchild et al. [1997] describe transparency as the ability to work at a conceptual level 

rather than having to be aware of the implementation issues, thus providing “a uniform view 

of multiple, heterogeneous, distributed, and autonomous participating systems”.   

 

The ability to provide a high level of location transparency within GIS applications allows 

users to utilise geospatial data and services without necessarily being aware of where the 

datasets are stored or where the geoprocessing is being performed.  This reduces the 
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complexity of using distributed data and services, which might otherwise prove 

unmanageable for all but expert users. 

 

Location transparency is an extremely important feature of new applications that embrace the 

trend towards a highly-networked model of computing.  This has a dramatic impact on the 

architecture of applications, and as technology improves, the distinction between accessing a 

local or remote resource will slowly fade altogether.   

 

 

1.2. Motivation 
While there will always be a need to provide the bundled functionality found in traditional 

GIS applications, there is a growing need to enable non-specialist users to make use of GIS 

operations in a more user-friendly manner, and customised to their particular field of interest.   

 

At a specialist meeting held in December 1997, under the auspices of the Varenius Project, 

the workshop agreed that in the future GIS applications would become [Goodchild et al. 

1997]: 

?? Distributed – enabling a user to access data and processing, as well as collaborate 

with other users located throughout the world.  For example it would be possible for a 

user at location A to send data from location B to a server at location C to be 

processed, and have the results returned to location A for display.  

?? Disaggregated – as the use of interoperable, standards-based Commercial-off-the-

Shelf (COTS) software components, developed by different vendors, replaced 

monolithic applications developed by a single vendor.  

?? Decoupled – as disaggregated components are no longer part of a single application, 

but are distributed over many networked systems.  

?? Interoperable – a clear precondition for all three of the above-mentioned points. 

 

This vision of the future of GIS applications addresses most of the problems that we outlined 

earlier with respect to GIS software, including reducing application bloat, lack of 

interoperability and location transparency.  Of particular importance to the success of this 

vision are the recent developments in component-based architectures and distributed-object 
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computing which encourage flexible plug and play systems that are extensible, and allow 

heterogeneous components to interoperate across diverse platforms and network protocols. 

   

The successful integration of these technologies will lead to the creation of GIS applications 

composed of distributed services, implemented as interoperable components (see figure 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  The new trend towards distributed interoperable  

GIS components [Alameh 2001] 

 

The problems with GIS applications that we outlined in section 1.1, as well as the vision 

expressed by Goodchild et al. [1997] for the future of GIS applications, are not restricted to 

the domain of GIS applications, but are in fact general application development issues for 

most resource-intensive Internet-based applications.  

 

However, we have focussed our research on the field of GIS for three main reasons: 

?? an overriding interest in the field of GIS,  

?? the large amount of standardisation which has occurred within this discipline over the 

past few years, and  
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?? by constraining our discussion to the field of GIS, we are able to address particular 

issues and provide a more pertinent way to discuss the benefits of our approach by 

looking at specific scenarios. 

 

Our approach to solving these problems does not make use of GIS-specific technology.  

Instead we have applied emerging computing principles and technologies, such as 

component-based software development, XML and distributed-object technologies to the 

field of GIS.   

 

 

1.3. State-of-the-art 
GIS applications have undergone many architectural changes over the past two decades that 

have been in keeping with advances in tiered application development in general.  This 

initially saw GIS applications evolve from a single, tightly-coupled or single -tier application 

to a two-tier client-server architecture.  This change was made to separate the data 

management duties from the operations and analysis logic, and the rendering and user 

interface, allowing a database other than the GIS vendor’s proprietary database to be used.  

More recently, GIS application development has progressed to using the N-tier architecture, 

primarily to facilitate distributed processing, Web-based mapping and “thin-client” spatial 

data viewers.    

 

Another trend worth noting is the increasing prevalence of Java-based GIS applications and 

location-based services, which is evidence of the wide-spread industry adoption of Java as a 

powerful tool for developing platform-independent distributed GIS software. 

 

1.3.1. GIS Standardisation  

A number of standardisation bodies are currently working on different aspects of GIS, most 

noticeably the Open GIS Consortium [1998a] and ISO Technical Committee 211 [ISO/TC 

211 2000].  In general, the OGC is concerned with software specifications, while ISO/TC 211 

concentrates more on data standards.  However, in order to ensure that their work, which is 

often complementary (e.g. the work done in defining the geometry model), does not result in 

competing standards these two standardisation organisations are fully coordinated [Open GIS 
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Consortium, 1998a].  The OGC has agreed to submit their specifications for ISO approval via 

ISO/TC 211, and a “Class A Liaison” between the ISO and the OGC ensures that their efforts 

are harmonized, and that mutual experiences and results are shared.  

 

The Open GIS Consortium (OGC) has dedicated much time and effort towards solving the 

interoperability issues outlined previously.  Its major objective was to produce a single 

operational model for all spatiotemporal applications that would enable an application 

developer to combine geospatial data, and any geospatial function or process, available on the 

Web. 

 

To date, the major achievements of OGC include [Cox 2000]:  

?? the Simple Features Specification  – a subset of the ISO/TC 211 data model required 

to support basic GIS systems;  

?? the Geographic Markup Language (GML) –  an  XML encoding of the Simple 

Features Specification; and 

?? the Web Map Server Interface Specification –  for producing maps of georeferenced 

data, based on a standardised request mechanism.  

   

In addition, the OGC has defined geospatial domain-specific business objects to ensure that 

the OpenGIS®  Services Architecture1 can be realized with standards-based, Commercial-Off-

The-Shelf (COTS) products available from multiple vendors [Open GIS Consortium 2001a].   

 

These OpenGIS® standards, developed by the Open GIS Consortium, are being closely 

followed and adopted by all the major GIS vendors including Integraph, ESRI, Bentley, and 

MapInfo.  Therefore, by developing open standards for geoprocessing, the OGC is actively 

shaping the future of GIS applications and enabling “geoprocessing to become an integral 

part of the evolving distributed computing paradigm in which applets, middleware, 

components, e-commerce tools, and object request brokers give any networked computing 

device real-time access to a huge universe of data and processing resources” [Open GIS 

Consortium, 1998a]. 

 

                                                 
1 The OpenGIS® Service Architecture is a framework of services that are required for the 

development and execution of geospatial applications. 
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1.3.2. Component-Based Software Development 

Component-Based Software Development (CBSD) allows systems to be developed from a 

number of existing interoperable system elements with exposed interfaces and hidden 

implementations.  Therefore a system no longer needs to be built from scratch, but can be 

developed by selecting, reconfiguring, adapting, assembling and deploying encapsulated, 

replaceable, interoperable components [Barroca et al. 2000] [Clements et al. 2000]. 

 

The development of systems using existing, pre-tested components has a number of tangible 

and intangible benefits, including shortened system development cycles, increased 

productivity through component reuse, higher quality systems, reduced time-to-market, as 

well as reduced development and maintenance costs.  See section 2.2  for a more 

comprehensive list of benefits. 

 

The integration of the Web and component-based systems implemented using distributed 

object technology provide a number of additional benefits, which include the ability to share 

computing and data resources, platform and operating system independence, increased 

efficiency by distributing the workload across multiple machines, and the ability to use the 

same distributed resources on a number of different devices [Fan et al. 2000] [Fingar et al. 

1997].  See section 2.4  for a more comprehensive list of benefits associated with the use of 

distributed component technologies. 

 

There are three major distributed component or component-oriented middleware technologies 

that are currently used for developing enterprise-scale component-based applications, namely 

the OMG’s CORBA Specification [OMG 1999] [Siegel 2000], Sun’s Enterprise JavaBeans 

(EJBs) [Sun Microsystems 2000b] [Roman 2000] and Microsoft’s Distributed Common 

Object Model (DCOM1) [Sessions, 1998a].  We have decided to focus on the use of CORBA 

objects and EJBs because of the platform-independent nature of CORBA and Java (see 

section 2.4).   

 

                                                 
1 DCOM, COM, COM+, information available at http://www.microsoft.com/com/ 
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1.3.3. Technology convergence (Where is GIS heading?) 

The convergence of the Web and distributed object technology has resulted in a multitude of 

new applications and services.  Just as the value of a fax machine increases with use and with 

an increase in the number of other fax machines to which it can connect and communicate, 

each distributed application and service added to the Web increases the value of the Web 

directly in terms of the functionality it provides, and indirectly by increasing the value of 

other interoperable applications and services. 

 

David Schell, acting president and CEO of the Open GIS Consortium, believes that in the 

future data content providers, connectivity service providers, platform providers, service 

technology providers, and vertical service providers will slowly replace the traditional GIS 

provider [GeoInformatics 2001].  This view is shared by a number of people including 

Alameh [2001] (see figure 1.2), and Brox and Kuhn [2001] who argue that the future market 

for geographic information will be a market of geographically referenced information 

products generated by technical and organizational services applied to data.  Indeed this can 

already be seen in the increasing number of stand-alone GIS services, location-based 

services, and the integration of geospatial information into mainstream IT applications, 

particularly through the use of Oracle Spatial database technology.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Potential value chain for the future GIS marketplace [Alameh 2001] 
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The work undertaken by the Open GIS Consortium aims to make interoperability easier and 

more powerful by defining open standards for storing, delivering and processing geospatial 

data [Lake 2001b].  The following emerging technologies, which are currently the focus of 

much of the OGC’s efforts, are very likely to become the foundation of future GIS: 

?? GML – a geospatial data standard that is likely to be widely adopted as an exchange 

format for GIS services. 

?? The OpenGIS®  Service Architecture –  a framework of interoperable services required 

for the development of geospatial applications. 

?? Web Map Servers and Web Feature Servers –  for the efficient access to geospatial 

data, especially when serving the requested map as GML. 

?? Catalog and Registry Servers –  extremely valuable services that allow users to register 

and locate data or services, based on associated metadata stored about that data source 

or service. 

 
While certainly not the focus of this thesis, it would be a gross oversight if one neglected to 

mention the huge impact that wireless communication is having on Internet applications and 

mobile E-commerce in general, and within the field of GIS in particular.  Of specific interest 

to us is the relatively recent emergence of location-based services, born out of the 

convergence of wireless communication, the Web and GIS technologies. 

 

In contrast to GIS applications, location services are particular applications of spatial and 

analytic functions found in GIS applications, which filter their content or change their 

behaviour, based on the user’s (specified) location.  Location services hide the complexity of 

GIS tools by providing an easy-to-use interface for a specific service.  This interface makes 

use of one or more GIS tools behind the user’s back in order to provide the location-based 

service, and thus no longer requires that the user be knowledgeable in geography or 

cartography.  In fact, if the user interface is simple enough, very little computer literacy is 

required for a user to be able to make use of complex GIS operations transparently through 

location services. 

 

Mobile phones are the most widely used form of wireless device, and therefore offer the 

greatest potential market for location services.  While some mobile device manufacturers 

have embedded, or pla n to embed, GPS devices in their mobile devices, existing mobile 
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phone users will be able to benefit from an increasing variety of location-based services as 

the accuracy with which a service provider is able to triangulate their position improves.   

 

The ability to accurately determine the location of a mobile phone user opens up a plethora of 

new services and business opportunities which were previously unavailable, or limited in 

their efficiency and effectiveness, because they were dependent on the location of the user.  

However, it may be surprising to learn that the main impetus behind increasing the accuracy 

with which a mobile phone user’s position may be calculated in the United States is not 

commercial, but rather the provision of emergency services.  This took the form of a US 

Federal Communication Commission E911 mandate requiring that by the 1st of October 

2001, wireless service providers in the US must be able to provide the location of mobile 

handset users to within approximately 125m, 67 percent of the time [Lopez 2000]1.   

 

However, the relatively limited accuracy currently available has not deterred a growing 

number of industries from providing location services that deliver Web mapping, street 

routing, traffic reports and electronic yellow pages to Web and wireless devices.   

 

According to the International Data Corporation [IDC 2000], the GIS market has realised 

fairly linear growth in the range of 10-15% annually since its establishment, centred primarily 

on providing mapping and spatial analysis tools to specialist users.  However, despite its 

infancy, the rate of growth for location services has already exceeded that of the traditional 

GIS market. 

 

Location-based services are of interest to us for two reasons: the first is that the introduction 

of location services is moving the GIS community towards component-based GIS 

applications, based on open systems; and secondly because the provision of location services 

over the Web gives us another GIS-related application against which we can evaluate our 

research into building applications at runtime.    

 

                                                 
1 Due to the complexity, lack of equipment and cost of implementing the necessary 

technology in the base-stations, this deadline has subsequently passed without a single 

wireless service provider meeting this requirement. 
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Other topical research areas within the field of GIS that are receiving much attention are the 

display of 3D geospatial information [Dykes et al. 1999] [Preston et al. 1997, 1999c] [Reddy 

et al. 1999-2000], the use of mobile agents in distributed GIS [Conde 1998] [Preston et al. 

1999b], and the inclusion of time-based data and operators to provide spatiotemporal or 4D 

GIS support [Langran 1992] [Pequet and MacEachren 1998] [Preston et al. 1998a, 1998b] 

[Snodgrass et al. 1998]. 

 

 

1.4. How does our research address these problems? 
A number of distributed GIS-related research projects are currently being undertaken, 

including DisGIS (Distributed GIS) [Berre et al. 2000], plug-and-play GIS components 

[Lemmens 2001], [Tsou and Buttenfield 1998] and CommonGIS [Voss and Birlinghoven 

2000].  Each of these systems aims to address one or more of the problems outlined 

previously.  However, the RADGIS provides an improved client architecture because it is a 

runtime-extensible architecture, based on open GIS standards, that allows a user to determine 

what functionality is provided by their client application as well as how the client application 

integrates the interoperable GIS services.   

 

This ability to add functionality, as and when required, rather than attempt to provide built-in 

functionality for every eventuality, ensures that the RADGIS architecture does not suffer 

from the “application bloat” associated with traditional GIS clients.  It also guarantees that 

the user does not have to change to a different client application when additional 

functionality, not provided by the current client, is required.   

 

One of our design goals was to create a system that is extensible through the asynchronous 

addition of, or upgrade to, system components.  The ability to facilitate tight integration of 

software components, without the need for unnecessary component adapters, requires 

consensus on the names, types, and the semantics of components’ input and output.  

Interoperability of GIS components is assured through the adoption of open GIS standards, 

which are currently the focus of a number of standardisation bodies, most noticeably the 

Open GIS Consortium and ISO/TC 211.  
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The use of Web mapping services and online geoprocessing tools that allow users to access 

remote geospatial data and to process their data sets over the Web, is both possible and highly 

desirable.  Autonomous components and services are the easiest to integrate into the 

RADGIS client application, due to their ability to work independently of the client 

application.  However, through the use of standardised naming conventions we are able to 

demonstrate the ability for the RADGIS architecture to facilitate “tight” integration of 

distributed services with the core client application and other services. 

 

Interoperability, according to [Goodchild et al. 1997], also means commonality in user 

interaction, which can be achieved through the development of interfaces that can be 

customized to provide a familiar ‘look and feel’ to the user.  RADGIS allows the user to 

make use of a single customisable client application, which improves upon the limited 

transfer of knowledge inherent in switching from software developed by one vendor to 

another.  This is achieved by allowing the user to make use of new services within a familiar 

client framework, and by allowing the user or service developer to customise the GUI of a 

service to provide a familiar “look and feel”. 

 

One of the problems with implementing a distributed GIS application, which is addressed by 

the RADGIS architecture, is the problem of invoking distributed GIS tools for which no 

compile-time knowledge exists.  This is particularly true for complex operations that require 

the user to interact with distributed objects using a GUI.  However, rather than download 

compiled GUI classes, we have decided to create easily modifiable XML documents that 

provide meta-information about the GIS service and allow one to wire-together Java objects 

to create a GUI or specify batch processes.  A few XML-based scripting languages have been 

developed that allow one to wire together JavaBeans (including Swing components), e.g. 

Bean ML, or to specify Swing GUI’s in XML, e.g. XwingML.  However, we have developed 

our own wiring language (DGCML) that goes beyond the functionality provided by these 

scripting languages, and which serves four main purposes:  

?? the deployment of GIS services for integration with the RADGIS client at runtime;  

?? the specification of a GUI for the GIS service; 

?? the ability to specify remote method calls to CORBA objects and EJBs; and  

?? the provision of links to the associated help files which can be integrated into the 

RADGIS client’s help system. 
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Another issue addressed by the RADGIS architecture is that of location transparency.  The 

ability to specify GIS services using DGCML allows the user to make use of a service 

without necessarily knowing where the processing is taking place.  The method-calls invoked 

by a particular service may be made on objects executing locally or on objects implemented 

as CORBA objects or EJBs residing on remote machines.  If alternate codebases are provided 

for a particular service, it is possible for the RADGIS system to elect which codebase to use 

based on the location of the data to be processed.  Therefore RADGIS affords the user of a 

service a high level of location transparency when performing geoprocessing operations.   

 

During the course of our research, we have observed the tremendous industry attention that is 

being given, especially within the field of GIS, to the provision of location-based services.  

We have therefore used location-based services as an example to show how our RADGIS 

architecture can be extended to other application domains.  We also believe that the Location 

Services model reflects the future of GIS applications in terms of being distributed, 

disaggregated, decoupled and interoperable. 

 

Our approach focuses on a number of architectural issues currently being addressed by the 

GIS community, and in doing so, provides a flexible and extensible solution that caters both 

for the novice and expert user, in a wide range of GIS-related tasks.  Not only will this 

improve the level of geospatial data access and use among traditional GIS users such as 

cartographers, planners, scientists, and environmental protection agencies, but it will also 

enable non-technical users to access this information as well (especially through the use of 

location services). 

 

 

1.5. Thesis Organisation 
This introductory chapter mapped out the problems inherent in current GIS architectures, 

particularly monolithic GIS client applications, that are to be addressed in this thesis.  It then 

proceeded to provide a concise overview of current developments within the field of GIS, as 

well as future trends, providing some examples of research that is being undertaken in similar 

areas.   
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The RADGIS architecture was introduced briefly in order to explain how we intended 

solving the problems with current GIS architectures outlined previously.  This chapter also 

explained why we decided to constrain our focus to GIS applications even though many of 

the problems with current GIS architectures that have been identified are also inherent in 

other resource-intensive applications.  However, because our solution makes use of general 

component-based software development techniques and distributed object technologies, the 

work described here can still be applied in a much broader context. 

 

The remainder of this thesis is structured as follows: 

Chapter 2 (CBSD):  The RADGIS architecture relies heavily on distributed Component-

Based Software Development (CBSD) techniques and the use of distributed-

object technologies such as CORBA Objects and EJBs to implement distributed 

geospatial services.  This chapter provides background information required by 

the reader to fully understand the implications (both the inherent problems as well 

as the intended benefits) of the chosen component-based design. 

 

Chapter 3 (XML – Enabling CBSD and Deployment):  The specification and deployment of 

GIS services that can be integrated with the RADGIS client at runtime, is done 

using a meta language we developed called DGCML.  This chapter provides some 

background on XML, and provides some examples of its use as a deployment 

language and as a wiring language, before describing our DGCML vocabulary and 

the functionality it provides. 

 

Chapter 4 (Factors influencing the design of RADGIS):  This chapter presents a 

classification of GIS application architectures as well as a brief overview of the 

work that has been undertaken by the Open GIS Consortium in the standardisation 

of GIS, in order show the relevance of our work and where it integrates with this 

global view of where GIS is headed.  It concludes with a description of what our 

RADGIS architecture does and what it hopes to achieve. 

 

Chapter 5 (Implementation of the RADGIS Application ):  Provides a detailed description of 

how our the RADGIS client application was implemented, including the ability to 

visualise 3D geospatial data and integrate distributed GIS services developed and 

deployed using DGCML. 
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Chapter 6 (Discussion ):  This penultimate chapter highlights some design considerations for 

distributed object developers and component integrators, as well as the 

implications of using the RADGIS architecture on end-users.  It then lists the 

qualitative benefits of using the RADGIS architecture before taking a brief look at 

some of the technological and business-related issues that would need to be 

addressed in a commercial implementation of the RADGIS architecture. 

 

Chapter 7 (Concluding Remarks):  The final chapter of this thesis is devoted to providing a 

critical assessment of the RADGIS architecture, including its limitations, and 

motivates the contributions that the research undertaken in this dissertation has 

made to the field of distributed GIS. 

 

This thesis describes an architecture that is made up of a number of new and emerging 

technologies.  Therefore, instead of providing background chapters and then detailing our 

work separately, each chapter contains some background material necessary for explaining 

the design considerations that were taken into account in the development and 

implementation of the RADGIS client. 

 

The reader’s attention is also drawn to the Glossary of Terms, located immediately after the 

appendices. This should provide a useful and convenient resource for locating concise 

definitions of various technical terms and acronyms used in this dissertation. 
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Chapter 2  

Component-Based Software Development 
 

As a common witticism goes, 

“the only difference between a software component and a virus is the author”. 

 

 

A Gartner Group study [Gartner Group] estimates that the market for pre-built components 

will have grown from $1.4 billion in 1997, to more than $8 billion in 2002.  Furthermore, it is 

estimated that by 2003, at least 70 percent of all new applications will be deployed as a 

combination of pre-assembled and/or newly created components, integrated to form complex 

business systems.  

 

According to Stojanovic [2000], component-related research can be also found under various 

subjects such as module interconnection languages (MILs) [Prieto-Diaz and Neighbors 

1986], module interface specification and analysis [Perry 1989], megaprogramming 

[Wiederhold et al. 1992], domain-specific software architectures (DSSAs) [Fischer 1994], 

software generators [Batory and Geracy 1996], object-oriented frameworks and patterns 

[Gamma et al., 1995] [Fayad et al. 1999] and architecture description and configuration 

languages (ADLs) [Garlan and Perry 1995].  
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This provides a clear indication of the importance placed on CBSD, and illustrates the 

paradigm shift from developing relatively small, centralised monolithic systems to complex 

enterprise systems composed of distributed components that may accessed across a corporate 

intranet or the Internet.   

 

This chapter will present a brief introduction to some of the work currently being done in the 

field of Component-Based Software Development (CBSD) in order to highlight the benefits 

and the complexity involved in developing reusable components that are compatible and 

substitutable with other components within a component framework.   

 

We then present two distributed component technologies, CORBA and EJBs, that have been 

used in our RADGIS application to implement distributed GIS tools that can be used together 

with our DGCML vocabulary to develop and deploy customised GIS services.   

 

 

2.1. CBSD Basics 
Component-Based Software Development (CBSD), and the concept of ‘Commercial Off-

The-Shelf’ (COTS) components, is generating tremendous interest from industry and 

researchers alike, because of the many potential benefits to be gained from developing 

applications using plug-and-play reusable software components, rather than building the 

whole system from scratch [Hernandez et al. 2000] [Brown 1997] [Brown and Wallnau 1998] 

[Szyperski 1998].   

 

In theory, developing an application using the CBSD paradigm is a simple task of browsing a 

component catalogue or library, selecting the appropriate components, and then 

reconfiguring, adapting, assembling and deploying them [Barroca et al., 2000].  However, in 

practice, CBSD is very seldom simply a matter of plug-and-play development, and 

component re-use is often difficult to achieve across application domains. 
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2.1.1. Terminology 

Looney et al. [1998] state that the lack of an agreed definition of what comprises a software 

component has led to some confusion as to how to identify and re-use components.  

Therefore we will briefly introduce some CBSD terminology to clarify what we mean by 

software components, componentware, and component frameworks. 

 

2.1.1.1. Software Component 

According to [Schneider and Nierstrasz 1999], software components are static 

abstractions with plugs, i.e. they encapsulate their implementation and only interact with 

their environment through well-defined interfaces  

 

A software component or, for the purposes of this dissertation, simply a component, has a 

number of characteristic properties, including [Booch et al., 1999] [Schneider and 

Nierstrasz 1999] [Szyperski 2000]:  

 

?? it is a unit of independent deployment; 

?? it has no observable state; 

?? it must be instantiated in order to be used; 

?? it is a replaceable part of a system; and 

?? it should come with clear specifications of the services/events it provides and the 

services/events it requires.  

 

2.1.1.2. Componentware  

The term componentware [Gartner Group 1997][Sessions 1998b] defines applications 

assembled from a set of software components  [Ring and Ward-Dutton 1998] [Bergner et 

al. 1999].  These software components are not used in isolation, but are elements of a 

component framework .   
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2.1.1.3. Component Framework  

A component framework is an architectural template that facilitates the efficient 

development of complex systems using components.  It determines the interfaces that 

components may have, and how the components are plugged together, i.e. a component 

framework is a collection of collaborating software components and architectural styles 

[Schneider and Nierstrasz 1999]. 

 

2.1.2. Granularity of components 

Components can be divided into two major categories [Hurwitz 1998]:  

?? large-grained components that implement complete units of business functionality; 

and  

?? fine-grained components that implement small units of functionality.  Fine-grained 

components are generally combined with other fine-grained components to provide a 

large-grained component.  

 

By working at the higher level of abstraction provided by large-grained components, it is 

possible to start working with business processes rather than having to deal with the inner 

workings of fine-grained components.  Therefore, large-grained components have the 

potential to deliver greater productivity to developers than fine-grained components [Hurwitz 

1998].   

 

2.1.3. Components and Objects 

Although both components and objects increase software reusability and simplify the 

software development process, they are not the same, but may be considered to be orthogonal 

concepts [Hernandez et al. 2000]. Components capture software’s static nature, whereas 

objects capture its dynamic nature, i.e. components come to life through objects.   

 

If one is using an object-oriented programming language to implement components, then in 

the simplest case, a component is simply a class, although in general a component would 

normally contain one or more classes or immutable prototype objects.  However, for non-

object oriented programming languages, a component could also be implemented using 
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traditional procedures, functional programming constructs, assembly language, or any other 

approach [Szyperski, 2000]. 

 

In contrast to components (see 2.1.1.1), objects are units of instantiation that have a unique 

identity, they have state that can be persisted, and they encapsulate both state and behaviour 

[Szyperski, 2000].  Another significant difference between objects and components revolves 

around the use of inheritance [Hurwitz 1998], as the focus of component technology is not on 

inheritance, but the combination and integration of different software components [Fan et al. 

2001].  For a more complete discussion on the distinction between components and objects, 

refer to [Leavens and Sitaraman 2000][Szyperski 1998][Szyperski 2000]. 

 

2.1.4. Component Interoperability 

Interoperability is a major challenge for software developers in general, and within 

component-based software development in particular. 

 

However, due to the development of standardised interfaces by the Open GIS Consortium, in 

their Abstract and Implementation Specifications, many these requirements for component 

interoperability will be easier to fulfil than in other application domains that have not 

undergone rigorous standardisation. 

 

In the development of our RADGIS architecture we have not implemented automated 

component substitution, but have rather left the choice of component selection up to the 

application developer, or the end-user, who would be able to query a Trader or Directory 

Service and receive a list of equivalent components that suited his/her particular 

requirements.  It would therefore be up to the component developer to ensure that a particular 

component fulfils its intended role. 

 

There are three types of component interoperability [Hernandez et al. 2000]: signature 

interoperability, semantic interoperability and protocol interoperability.  While the research in 

this thesis is not concerned with determining equivalence for compatibility and 

substitutability of components (see figure 2.1), we wish to briefly draw the reader’s attention 

to these issues.   
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Figure 2.1.  Compatibility versus Substitutability 

 

2.1.4.1. Signature Interoperability 

Component interoperability at the signature level is based on the names, parameter types 

and return types of the components’ operations (methods), and is used for determining the 

compatibility and substitutability of components.  The compatibility of two components is 

determined by their ability to work together properly if connected, i.e. determined by 

whether or not the data and messages exchanged between them are correctly understood. 

 

Checking the substitutability of component A by component B, at the signature level, is 

an attempt to determine whether all the services offered by component A are also offered 

by component B.  The only differences allowed, in the services offered by component B, 

are more specific inputs and more general outputs, i.e. it works on the principle of object 

subtyping.  

 

However, without standardisation, there is no guarantee that the same naming 

conventions for methods, parameter types and return types, will be used by different 

vendors.  There is also no guarantee that two methods that have equivalent signatures will 

perform the same operation, or handle the same boundary conditions equivalently, or 

perform the same algorithm with the same accuracy, and thus it is impossible to perform a 

complete comparison of two components simply on the signature level. 

 

Compatibility SubstitutabilityCompatibility Substitutability
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2.1.4.2. Semantic Interoperability 

The term semantic interoperability was first introduced by [Heiler 1995].  In contrast to 

signature interoperability, which simply checks for compatibility and substitutability of 

components based on method signatures, semantic interoperability is an attempt to ensure 

that both requesting and providing components share a common understanding of the 

meaning of the requested services and data.  Thus semantic interoperability includes 

ensuring agreement on, for example, the algorithms for computing the requested values, 

the side effects of methods, or the source or accuracy of requested data elements 

[Hernandez et al. 2000].   

 

At the semantic level, compatibility is now determined by whether or not the behaviour 

provided by a component is the same as that required by the client component.  This can 

be approached, for example, by showing that the pre-conditions of a component’s 

methods are met by the calling components when invoking them, and that the methods’ 

post-conditions satisfy the calling component’s expectations. 

 

Substitutability at the semantic level is based on “behavioural subtyping” [America 

2000], and means that the behaviour of the subclass instances must be consistent with that 

of the superclass instances.  This includes associating behaviours to signatures and 

identifying subtypes that conform to their supertypes both syntactically and semantically.   

 

Computing semantic interoperability is undecidable in the formal sense.  Therefore 

semantic interoperability is far more difficult to compute than signature interoperability, 

since it is not simply reliant on operational or behavioural semantics, but may also be 

dependent on the context in which the components are used.  For a more in-depth look at 

semantic interoperability and behavioural subtyping, the reader is referred to works by 

[America 2000][Liskov and Wing 1994][Dhara and Leavens 1996].   
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2.1.4.3. Protocol Interoperability 

The protocol interoperability level, first identified by [Yellin and Strom 1997], builds on 

top of the signature level and deals with the relative order in which an object expects its 

methods to be called, the order in which it invokes other objects’ methods, and the 

blocking conditions and rules that govern the object interactions.   

 

Two components are considered compatible at the protocol level if the restrictions 

imposed on the interaction of each component when they call each other are preserved 

and their communication is dead-lock free [Hernandez et al. 2000]. 

 

Substitutability at the protocol level is determined by two main issues [Canal et al. 2000] 

[Yellin and Strom 1997]: 

?? All operations of component A are supported by component B, i.e. all messages 

accepted by component A are also accepted by component B, and component B’s 

outgoing messages when implementing component A’s services are a subset of 

component A’s outgoing messages; and 

?? The relative order of incoming and outgoing messages of both components is 

consistent. 

  

2.1.5. Components and Scripting languages 

Thus far we have introduced the concepts of components and frameworks, but have not 

indicated how components can be wired together to express compositions.   

 

Scripting-languages have become increasingly popular for configuring and connecting 

components to develop small flexible applications quickly and easily.  Indeed, according to 

[Szyperski 2000], “wiring” components is surprisingly productive for relatively simple 

applications.  

 

Although these languages typically offer high-level abstractions for connecting components 

in a flexible manner, they generally support a single, specific architectural style, and are 

designed with a specific application domain in mind (e.g. graphical user interfaces –  see 

XwingML, section 3.2.1 ) [Ousterhout  1998] [Schneider and Nierstrasz 1999] . 
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2.1.6. Component Customisation and Re-use  

In our discussion of CBSD up to this point, we have focussed on integrating COTS 

components directly into the component framework, and have given little consideration to the 

possibility of customising the component first.  This is sometimes necessary to allow a 

component to better fit the requirements of a particular system in which it is to be integrated. 

  

Conventional CBSD approaches do not generally support the ability to adapt, tailor and 

customise components in order to provide tight integration based on the user’s specific 

requirements [Stojanovic 2000].  While this does not present as many problems for 

components that have been developed based on widely-accepted standards in a specific 

domain, and that have agreed-upon interface specifications, it does pose many problems for 

CBSD in general. 

 

An inability to adapt, tailor and customise components means that components can only be 

reused in very specific cases, and reduces the ability to reuse components that could 

otherwise be reused.  This results in a number of similar components that provide the same 

underlying functionality, but that have been rewritten for different applications, clearly 

defeating the goals of CBSD.   

 

If one has access to the source code of a particular component, it is possible to modify 

components before reusing them.  However, this is not generally possible or advisable 

because it increases the possibility of errors occurring in the component code, and very few 

vendors would be prepared to release the source code for their components.  Therefore, the 

parameterisation and configuration of components provides an extremely valuable 

mechanism to facilitate the tailoring of a component according to application-specific 

requirements and the environment in which it is to be deployed.  This also removes the 

requirement that the component integrator have access to the source code of the components.  

These two techniques increase the ability of a component to be reused in different 

applications and illustrate the spectrum of reuse possible, which Basili et al. [1994] 

characterise as: reused verbatim, slightly modified, extensively modified and new.  
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2.2. Expected Benefits of CBSD 
The additional work required initially to develop reusable components is well worthwhile.   

The ability to rapidly assemble complex systems, based on well-defined interfaces, using 

existing, pre-tested components results in a number of quantitative and qualitative benefits, 

including [Fan et al. 2000] [Herzum and Sims 2000] [Szyperski 1998]: 

?? shortened system development cycles; 

?? increased productivity through reuse of software;  

?? increased customisation; 

?? increased performance; 

?? increased maintainability; 

?? improved reliability due to the use of higher quality components that have been 

reused in a number of different applications, reducing the probability that they have 

errors; 

?? reduced time-to-market; 

?? reduced development costs; 

?? reduced maintenance costs; and 

?? since components are encapsulated, it is possible to make changes to their 

implementation without affecting all the systems that rely on them.  

 

It is because of these numerous benefits that GIS applications are slowly becoming 

disaggregated, component-based applications.  As an extension to this paradigm, one of the 

core aims of this research is to provide GIS and Location Service integrators with an 

extensible architecture that will allow them to select, configure, customise and then deploy 

tightly integrated assemblies of (local and/or remote) components, based on standardised 

frameworks, rather than build whole systems from scratch. 

 

 

2.3. Expected problems and limitations 
While we have highlighted the many benefits to be derived from the use of CBSD, many of 

these benefits also add to the complexity of creating component-based applications, for 

example the necessity to be able to integrate components developed at different times, by 

different people, and possibly with different end-users in mind.  One of the greatest potentials 
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for problems to arise is that one cannot always foresee the incompatibilities that might arise 

when components are used in combination.  Therefore one of the key issues for building 

applications from reusable components is that of interoperability.  

 

There has been much debate about whether it is better to create very specific components 

with well-defined, reasonably-scoped functionality, or more flexible general-purpose 

components [OMG 1999].  More specific components are generally economic to design and 

reuse, whereas more abstract (generic) components can be reused in a wider range of 

applications, possibly across different application domains.  However, the trade-off of 

generality is an increase in the cost of development, and the time taken to understand the 

additional requirements, document the component, as well as to test the component in a range 

of applications.  For in-depth discussions on the merits of both approaches, please refer to 

[Niagara 2000] [Veryard 2000] and [Stojanovic 2000]. 

 

Another potential problem with the use of software components, especially distributed 

components that are integrated into the client application at runtime, is the issue of trust.  The 

use or reuse of a software component entails an implicit trust relationship that the component 

will do what its specification says - nothing more and nothing less [Looney et al. 1998].  This 

emphasises the value of trademarks and brand names in the absence of secure mechanisms to 

ensure that the data that is being provided is accurate, and the services that are being invoked 

are providing the correct results.   

 

Providing solutions to these problems fall outside the scope of this thesis, but is currently the 

subject of much research within the field of CBSD in general.  This section has briefly 

outlined some of the potential issues that should be borne in mind when developing 

distributed component-based software in order to ensure that the reader is able to assess the 

merits of such an approach.   

 

 

2.4. Components and Distributed Systems 
IBM has recently announced plans to invest $4 billion to build 50 computer server farms 

around the world [Associated Press 2001].  They believe that pay-per-use, on-demand 

computing power and storage-capacity, will become a household commodity such as 
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electricity.  Although IBM are initially marketing the ability to obtain extremely large 

amounts of processing power for resource intensive applications, such as climate prediction, 

server farms may one day provide the ability for users and service providers to make use of 

them as temporary sites for processing intermediate results before returning the final result of 

a request that required services and data from a number of disparate locations.   

 

Thus it is no longer necessary for a complex computational operation to be handled by a 

single service provider, or for the originating client to process intermediate results.  The client 

may issue a set of requests (similar to the idea of an itinerary for mobile agents, or service 

chaining) which access remote services and data, and all the intermediate results are 

processed (in a location transparent manner) on a server farm. 

 

This model of operation may be a little “futuristic” at the moment, but still emphasises the 

usefulness of distributed object technology that allows one to implement distributed services.   

These services may one day make use of processing power obtained from the above-

mentioned server farms in a location transparent manner, which if implemented correctly, 

would not require any change to client applications. 

 

Distributed object technologies enable the invocation of methods on distributed objects 

residing anywhere on a network, possibly running on heterogeneous platforms and operating 

systems, as if they were local objects.  With the development of “bridging” technologies, e.g. 

CORBA’s IDL mappings, it is also possible for clients to access distributed objects 

irrespective of the programming language and compiler used to create the distributed objects.  

 

Distributed object technology encompasses not only the original object-oriented model, but 

also component technology [Fan et al. 2000].   Unlike objects that execute locally as part of a 

client-application, distributed objects live within their own dynamic library outside of an 

application, and are considered to be components because of the way they are packaged 

[Asaipillai 1997].  This distinction is made clearer when one considers the definition of a 

software component by Szyperski [1998] as “a unit of composition with contractually 

specified interfaces and explicit context dependencies that can be deployed independently 

and is subject to third-party composition”.   
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The use of distributed object computing provides a number of solutions to problems 

associated with existing monolithic applications, including [Fan et al. 2000] [Fingar et al. 

1997]: 

?? The ability to share (expensive) resources; 

?? Platform and operating system independence, which allows one to distribute 

components of an application to computing platforms that best fit the task of each 

object; 

?? The ability to leverage legacy code as part of new applications, or on different 

platforms; 

?? The ability to use the programming language best suited for a particular task; 

?? Increased efficiency, because the workload can be distributed across multiple 

machines;  

?? Applications can be deployed internally on a company’s intranet or globally across 

the Internet; and 

?? The same distributed resources can be made use of by a number of different devices 

such as desktops, workstations, PDAs, and mobile phones.  This means that one no 

longer needs to implement the same business logic multiple times for use by different 

devices.  

 

Thus many organisations are beginning to implement component-based n-tier applications 

based on popular distributed object technologies such as CORBA, Enterprise JavaBeans 

(EJB), and DCOM [Morais 2000].  We have chosen to restrict our research to the use of 

CORBA objects and EJBs because both of them are platform independent solutions that 

provide tight integration with the Java programming language (reasons why we chose to use 

Java, based on the RADGIS application’s need to integrate a number of diverse emerging 

technologies, are given throughout the thesis).   

   

2.4.1. CORBA 

The Common Object Request Broker Architecture (CORBA) is a distributed, object-oriented, 

middleware specification developed by the Object Management Group (OMG) that aims to 

facilitate portability and interoperability of objects across heterogeneous networks [Fan et al. 

2000].  Possibly the biggest advantage that CORBA has over other distributed object 
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technologies such as EJB’s and DCOM is that the programming language and compiler used 

to create the server objects may be different from the programming language used to 

implement the client objects, thus providing programming language independence.  In 

addition, the location of distributed CORBA objects as well as the specific platform and 

operating system they execute on, are totally transparent to clients.  CORBA therefore 

provides an ideal mechanism for creating 3-tier (or n-tier) distributed applications, which 

goes beyond providing simple interoperability [Orfali and Harkey 1998].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  CORBA ORB Architecture [Schmidt 2001] 

 

Five of the main components of CORBA are [Asaipillai 1997] [Fan et al. 2000] [Orfali and 

Harkey 1998]:  

?? The Object Request Broker (ORB) – ORBs are the core of the CORBA specification.  

They intercede on the client and server objects’ behalves, handling the flow of 

messages between the client application and the distributed object(s) using the 

General Inter-ORB Protocol (GIOP), the Environment-Specific Inter-ORB Protocols 
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(ESIOPs) for interoperation over specific networks, or most often the Internet Inter-

ORB Protocol (IIOP).   

?? The Interface Definition Language (IDL) – is a programming language independent, 

declarative language used to define the services provided by objects independent of 

their implementation, i.e. the IDL is used to specify the modules, interfaces, data 

types, methods, argument types and return types of the distributed objects.   

?? The Interface Repository (IR) – is a searchable, persistent storage mechanism for IDL 

interface declarations.  It allows client applications to navigate an object’s inheritance 

hierarchy and provides descriptions of all operations that an object supports as well as 

type information necessary for issuing requests using the Dynamic Invocation 

Interface. 

?? The Dynamic Invocation Interface (DII) –  is a generic client-side stub capable of 

forwarding any request to any object, using runtime interpretation of request 

parameters and operation identifiers to perform the marshalling and unmarshalling of 

requests.  The DII is therefore often used together with information obtained from the 

IR, and is extremely useful for making use of distributed objects for whic h compile-

time knowledge of their interfaces was unknown1. 

?? Object Adapters (OA) – act as an interface between various object implementations 

and the ORB, providing services such as the generation and interpretation of object 

references, mapping object references to implementations, object method invocation, 

and the activation and deactivation of objects and implementations (see figure 2.3) 

 

Of particular interest to us, with respect to the integration of GIS services into the RADGIS 

client at runtime, is CORBA’s capability to perform dynamic discovery of objects and 

services, because CORBA objects are self-describing and introspective.  CORBA's dynamic 

facilities, including the Trader Service, Dynamic Invocation Interface (DII), and the Interface 

Repository, allow the creation of extremely flexible systems that allow runtime discovery and 

late-binding [Orfali and Harkey 1998].  This is especially useful in the distributed Web 

                                                 
1 This is in contrast to the normal mode of operation whereby IDL declarations are compiled 

into programming language-specific stubs, allowing clients to invoke operations on known 

objects. 



 

 36 

environment where a user is able to discover new services and then make use of them 

transparently.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Simplified Object Management Architecture  

 

2.4.1.1. CORBA Trader Service 

The CORBA Trader Service offers a brokerage facility, i.e. it allows objects to publicise 

their services and bid for jobs.  Clients may specify queries in a formalised constraint 

language, and the trader responds by providing zero, one or more matching CORBA 

object references that the client can use to bind to a server object of its choice.  Traders 

are particularly useful in systems where there are many objects offering the same service.  

In this case it becomes impractical to insist that every object be uniquely identified by 

name [Resnick 1996].  The Trader Service therefore provides a mechanism to 

differentiate services implemented as CORBA objects by their properties, e.g. cost, 

implementation algorithm, platform on which it is running, type of input data set, and 

output type. 

  

Currently, the CORBA Trader specification supports only passive self-registration of 

objects with the Trader Service.  However, it is not unlikely that in the future, the trader 

will be able to actively seek out server objects in a manner similar to that of current Web 

search engines.  Orfali and Harkey [1998] and Resnick [1996] describe an Object Web 

environment containing spiders, crawlers, and bots, that will dynamically discover 

CORBA objects and store them in up-to-date Traders.   
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2.4.1.2. CORBA Component Model 

The vendor-neutral CORBA Component Model (CCM) forms part of the CORBA 3 

Specification developed by the OMG.  It is an enhancement to the current, widely-

adopted CORBA 2 Specification that extends the basic architecture defined in the EJB 

Specification, providing a framework for building, assembling and deploying 

components, referred to as CORBAcomponents [ScreamingMedia 1999].   

 

The CCM specification defines two level of component: basic and extended [Pharoah et 

al. 2000].  Basic components have the same capabilities as EJBs (as defined by release 

1.1 of the EJB Specification), and interoperability between basic CCM components and 

EJBs is possible using the IIOP protocol.  This also means that it will be possible to 

seamlessly access EJBs using CORBA CCM clients implemented in a wide range 

programming languages, including Java, COBOL and C++.  

 

According to Jon Seigel [2001], the 3 major features of CORBAComponents are: 

?? A container environment that provides support for transactions, security, and 

persistence, and as well as interface and event resolution.  

?? Integration with Enterprise JavaBeans.  It will be possible for Enterprise 

JavaBeans (EJBs) to act as CORBAcomponents, and therefore EJBs can also be 

deployed in a CORBAcomponent container.  The advantage of using 

CORBAcomponents, as opposed to using EJBs, is that they can be written in 

multiple languages and support multiple interfaces.  

?? A multi-platform software distribution format, including an installer and XML-

based configuration tool. 

 

While we have not made use of the CORBA Component Model in our research, because 

an implementation of this standard was not yet available, it holds much potential for the 

development of distributed applications, which are composed of components that are 

independent of implementation language and platform. 
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2.4.2. Enterprise JavaBeans 

The Enterprise JavaBeans (EJB) standard defines a component architecture for deploying 

components called enterprise beans, in an EJB container.  The EJB container provides 

runtime services to the components, such as life-cycle management, threading, transaction 

support, security and persistence.  Thus the Enterprise JavaBeans model is simpler than the 

CORBA model because the EJB container is responsible for the provision of these services 

[Sun Microsystems 2001b].  (Hence the introduction of the CORBA Component Model, see 

section 2.4.1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.  The basic EJB Model [Raj 1998] 

 

An enterprise bean is never accessed directly by the client, but rather through the EJB 

container, which intercepts the method calls and provides the required services.   This means 
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required by a particular component, they could be specified declaratively at the method level 

at deployment time.    

 

In contrast to CORBA, which is implementation language independent, EJBs are based on 

the Java programming language.  However, just like CORBA, EJBs can be deployed on any 

platform and operating system that supports the EJB standard.  Interoperability between EJBs 

and CORBA objects is made possible through the use of the Internet Inter-ORB Protocol 

(IIOP), which is now supported by Java RMI.  This is particularly useful for allowing non-

Java clients to make use of EJBs.   

 

The EJB architecture therefore simplifies the development of highly scalable, distributed, 

component-based, enterprise systems that have strong transaction and security support [Fan et 

al. 2000]. 

 

 

2.5. Summary 
In this chapter we have provided some background information on CBSD issues that were 

taken into consideration when building our RADGIS architecture and specifically in the 

development of the DGCML meta language for creating and deploying GIS services based on 

local and distributed components.   

 

It provided insight into issues of compatibility and substitutability of components, as well as 

factors affecting the reuse of components.  The overriding benefits of CBSD as well as the 

inherent problems and limitations of this approach were discussed, and once again we 

stressed the need for interoperability, which is best achieved through the specification of and 

rigid adherence to standards.    

 

 “Stand-alone” GIS services (large-grained components) require very little integration with 

the client application.  This is advantageous as it reduces potential complexity for the end-

user, who would generally not have any programming skills, who wishes to “tightly” 

integrate new GIS services with the client application.  However, it is also possible to 

simplify the integration of components that have dependencies on other components or on the 
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client application if both the client and the component(s) conform to agreed-upon standards, 

such as the OpenGIS® Specification defined by the OGC.   

 

Two distributed object technologies used in the development of our proof of concept 

RADGIS client were discussed briefly.  Both the CORBA and EJB specifications are fairly 

similar.  CORBA is an open standard that provides programming language independence, 

whereas the EJB specification is Java specific and was developed as part of the Java 

Community Process.  The most important feature of these distributed object technologies is 

the ability for client applications to make use of distributed objects as though they were local.  

This in turn allows a large degree of location transparency when working with distributed 

resources, increasing the efficiency and flexibility of applications while reducing unnecessary 

complexity through the use of high-level distributed object programming constructs. 

 

Thus we are now armed with an understanding of CBSD and the additional functionality 

provided by distributed object technologies.  This will allow us to keep in mind the 

requirements that must be considered when developing the components and the component 

framework that are to become the extensible distributed GIS based on interoperable services.   
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Chapter 3  

XML - Enabling CBSD and Deployment 
 

 

“Make everything as simple as possible, but not simpler.” 

Albert Einstein (1879-1955) 

 

 

 

This chapter will introduce some background information about XML in order to demonstrate 

how we have used it to develop a wiring language, called DGCML, which can be used in the 

development and deployment of component-based software.  It also provides a description of 

what DGCML has been designed to achieve and, together with section 2.4  on distributed 

component-based software development, provides our approach to generating applications 

dynamically at runtime.  

 

Although the use of DGCML to create applications by wiring together components is a 

generic approach, which is not restricted to the GIS domain, there are a number of problems 

with trying to integrate components that have been developed by different vendors, possibly 

using different naming conventions.  Therefore this approach will be most successful when 

used in a specific application domain, such as GIS, in which there has been a tremendous 

focus on standardisation and interoperability.   This is the focus of the next chapter in which 

we explain how the development of our RADGIS application was influenced by different 

GIS architectures and the standardisation efforts undertaken by the Open GIS Consortium. 
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3.1. XML Basics 
The Extensible Markup Language (XML) [Bray 1998], developed by the World Wide Web 

Consortium (W3C), is a standard for encoding data in plain text (i.e. not a binary format) that 

has seen rapid adoption by industry.  It is a subset of the Standard Generalised Markup 

Language (SGML) that was specifically designed for ease of implementation, and for 

interoperability with both SGML and HTML.   

 

While there has been a lot of hype surrounding the usefulness of XML (see [Kamthan 2000]), 

it does have a number of tangible benefits that make it an extremely valuable tool for 

developing distributed applications where high levels of interoperability are required.  These 

are primarily due to the nature of XML which is self-describing, can accommodate both 

document and data structures, and allows one to define customized markup languages.  Other 

important advantages include [Software AG (current)] [St. Laurent 1999]: 

 

?? Clear separation of content from presentation.  XML is not a presentation grammar – 

the tags in an XML document provide contextual information that can be used to 

interpret the meaning of the data.  However, an XML document can be displayed in 

any number of different ways by simply applying different stylesheets to it. 

?? Providing portable data.  XML-encoded documents do not require a (vendor-) specific 

application for viewing or editing the data.  

?? Support for multilingual documents and Unicode.  This is an important consideration 

for the internationalisation of applications. 

?? Ability to embed multiple data types.  There is no limitation on the type of data that 

can be stored in an XML document.  Thus it is possible for XML documents to 

contain a wide range of possible data types, from multimedia data (image, audio, 

video) to active components (Java applets, ActiveX). 

?? Separation of file handling from application architecture.  The parsing of XML 

documents tends to be assigned to a pre-built component, leaving the application 

developer to concentrate on processing the data. 

?? Clean integration with OOP.  The hierarchical structures of XML map well to objects 

and properties.  This is particularly true of XML documents based on the XML 

Schema language, which supports data-types and namespaces.  However, one must be 
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aware of mapping issues such as when to aggregate elements or when to use 

references, and how to represent references between items.  

?? Program composition based on document content.  Mapping XML content to object 

structures, together with late-binding permits the runtime construction of programs 

based on XML document content.  This has been shown to be useful for simplifying 

repetitive programming chores like GUI construction. (See relevant sections on 

BeanML, XwingML and our DGCML)  

 

However, there are also some disadvantages associated with the use of XML.  These include: 

?? the verbose nature of XML – because XML is a plain text markup language, and there 

is a lot of structural/meta-information associated with XML documents, the XML-

encoded information is less efficient than binary formats in terms of size and 

performance.  The larger XML representations also impact on bandwidth 

requirements when transferring XML documents across a network/the Internet. 

?? (tongue firmly in cheek) not being able to lock customers into a proprietary software 

solution and inscrutable file format.  However, this is clearly not an issue if one is 

committed to the development of open systems.  

 

The issue regarding the performance of XML, as a text-based representation as opposed to a 

binary representation, will not severely limit XML’s usefulness and application as disk space, 

network bandwidth, and CPU’s are constantly getting cheaper/faster.  In addition, the use of 

compression techniques, such as XMLZip, allows for a significant reduction in the size of 

XML-encoded data.  Compression techniques can also be used effectively in the end-to-end 

transmission of XML data, for example using HTTP/1.1, which can compress data on the fly, 

thus saving bandwidth as effectively as a binary format.  Alternatively, if one makes use of 

the XML DOM API, XML files can be compressed based on the node level in the XML 

document.  This allows the XML file to be uncompressed on the client side according to the 

specific node the user is referencing, rather than uncompressing the entire document 

[Kamthan 2000]. 
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3.1.1. DTD versus Schema 

A DTD is a set of rules, written using the DTD language, that specify which elements are 

allowed in an XML document, the order in which they can appear, and which of the elements 

have attributes [Maler 2000].  The DTD language, however, has two major short-comings: 

the lack of datatypes, and the inability to support the use of namespaces [Radiya and Dixit 

2000].  

 

The XML Schema specification, which was developed subsequent to the DTD, is a much 

richer and more extensible way to describe the rules for the content of a document than using 

a DTD.  The benefits of using the XML Schema language as opposed to the DTD language 

include: 

?? XML schema are written in XML as opposed to requiring the user to learn a separate 

XML Schema language.  Therefore XML schema may be edited and processed with 

the same tools as XML documents.  In contrast, DTD’s are written in a non-XML, 

DTD-specific language. 

?? The XML Schema language supports the definition of data types, the specification of 

numeric ranges, sets (not possible in a DTD), regular expressions and checks on text 

content.  It also allow element content to be specified as unique through the use of 

keys. 

?? Multiple elements may be defined with the same name but different content. 

?? The XML Schema language provides support for Namespaces [Bray et al. 1999], 

which makes the reuse of entire XML vocabularies and/or individual structure 

definitions easier. (Although the development of the XML Namespace specification 

was carried out independently of the XML Schema specification, it is not possible to 

make use of XML Namespaces using the DTD language.)   

 

Many of the benefits listed above are a direct result of the XML Schema having much in 

common with programming languages, e.g. object-reuse through inheritance, the creation of 

user-defined types, and namespace scoping.  Despite the complexity introduced by the XML 

Schema, the overwhelming benefits listed above ensured that after a lengthy debate on the 

merits of the DTD versus XML Schema specifications, the W3C formally accepted the XML 

Schema specification as a W3C Recommendation on 1 May 2001 [Whitlock 2001]. 
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At the time of writing this thesis, our DGCML grammar (see section 3.4  and section 5.2.2) 

was specified using a Document Type Definition (DTD) file.  While the advantages of using 

the XML Schema, as well as namespaces and linking, will provide additional flexibility to 

DGCML, there is currently no compelling reason, or additional functionality required that 

can only be achieved by using XML Schema.  Therefore, although we will probably convert 

our DTD to an XML Schema representation at a later stage, once more mature products and 

support for this new standard become available, it currently adds little value to our proof-of-

concept system. 

 

3.1.2. SAX versus DOM 

Two dominant standards exist for XML processing, namely the Simple API for XML (SAX) 

developed by members of the XML-DEV mailing-list, under the coordination of David 

Megginson [Megginson 2000], and the Document Object Model (DOM) which is currently 

being developed as a W3C specification [W3C DOM WG 2001]. 

 

SAX is an event-driven model that “reads” the document, and is supported by almost all Java 

XML parsers [St.Laurent 1999].   The module using the SAX reader supplies “callback” 

methods that are invoked as the SAX parser encounters tags, elements and properties in the 

XML document.  It is up to the developer to supply the implementation of the “callback” 

methods to perform the desired operation, for example, to build an in-memory structure 

corresponding to the document.   

 

SAX requires more programming that the DOM, and is limited in processing functionality in 

comparison with the DOM because the parser only knows about the current node, and can 

only process nodes that are children of the current node, i.e. it does not inherently provide a 

mechanism to access information about previous nodes.  However, it is faster and more 

memory efficient than the DOM as it does not store the entire document model in memory at 

one time. 

 

DOM, in contrast, is a tree-based model of the document, i.e. a DOM parser creates a 

hierarchical tree representing the entire data structure in memory, and passes this 

representation back to the application for manipulation as a Document Object.  This can 

obviously cause problems when the document is large.  However, this is a trade-off against 
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the ability to perform more sophisticated processing than would be available using the SAX 

[Cagle 2000].  

 

Our DCGML interpreter currently makes use of the DOM parser (as does BeanML), although 

it could just as easily have been implemented using a SAX parser because the DGCML 

interpreter simply reads the document from start to finish, building the GUI, and keeping 

hashtables of components and objects that may be referenced later in the document, or by 

components in a DGCML descriptor of another service, i.e. it is a single-pass interpreter.  

The size of the DGCML files is relatively small because they are intended to be easy to read 

and modify.  Complex operations, which might otherwise cause the DGCML file to become 

unwieldy, would normally encapsulate some programming concept that would be best 

implemented as a Java class.  That Java class would then be referenced in the DGCML 

descriptor to provide the desired functionality, simply and efficiently.  Thus the performance 

issues associated with keeping the entire document in memory using the DOM parser are 

negligible.  

 

 

3.2. XML for Wiring Components 
The use of XML has not been limited to simply formatting documents, but has also been used 

to create vocabularies that allow one to compose applications with XML by wiring together 

components.  One example is IBM’s BeanML, which allows one to wire JavaBeans, and 

create GUI’s by wiring together GUI components.  Another example is XwingML, which 

allows the specification of GUI’s composed of Swing components. 

 

While both of these wiring languages were discovered subsequent to the development of our 

DGCML wiring language, they confirm the validity of our approach.  Feature comparisons 

show the strengths of our language, which provides a superset of the operations available in 

these competing technologies.  This is because DGCML was designed with three main goals 

in mind, the ability to deploy services composed  of local and remote  components, together 

with an easily-configurable GUI and an easily-integrated help  system.  
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3.2.1. XwingML* 

XwingML (pronounced "zwing-M-L"), developed by HP Bluestone Software, enables users 

to build XML documents that define a complete Java Swing GUI  [BlueStone 1999].  

Although XwingML is similar to BeanML (see section 3.2.2 ), it is a more specific vocabulary 

aimed at a particular area of Java development, i.e. GUI development, as opposed to 

BeanML, which is a more general vocabulary for wiring JavaBeans [StLaurent 1999].   

 

A simple example of XwingML, taken from [Bluestone 2000], illustrates the sort of 

information stored in a XwingML descriptor file. 

 

<JMenuBar> 

    <JMenu text="File" mnemonic="F"> 

        <JMenuItem icon="open.gif" text="Open" 

            actionListener="OpenFile"/> 
<JMenuItem icon="save.gif" text="Save" 

      actionCommand="save"  

      actionListener="SaveFile"/> 

        <JMenuItem text="Exit" 

            actionListener="com.bluestone.xml.swing.XwingMLExit"/> 
    </JMenu> 

</JMenuBar> 

 

XwingML comes with an XML DTD that defines the full set of Swing/Java Foundation Class 

(JFC) classes and properties, as well as support for all Swing/JFC Listeners [BlueStone 

1999].  It also includes templates for making a wide variety of GUI interfaces, including 

menus, frames, and dialog boxes [WebTechniques 1999].  The XwingML allows GUI’s to be 

easily specified by simply editing an XML document. The XML document is then read in by 

the XwingML parser, which dynamically generates the Java GUI.   

 

 

 

 

                                                 
* XwingML is no longer supported/available for download from BlueStone 
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Specifying the GUI of an application separately as an XML document has a number of 

benefits, including [BlueStone 1999] [WebTechniques 1999]: 

 

?? Java GUI creation without Java coding or compile cycle, 

?? Java GUI defined in human-readable XML, which is closer to plain English and take 

less time to learn than Java, 

?? Ease of code maintenance and re-use because there is a clear separation of the GUI 

code from the application logic. 

 

XwingML’s focus on representing Java Swing GUIs has enabled it to provide a fairly easy to 

use syntax for specifying relatively complex Swing GUIs.  However, it is limited to using 

Swing components, and does not allow one to specify more general operations, such as 

working with non-GUI objects, as possible with BeanML and our DGCML.  If the XwingML 

syntax were to be extended to allow the more generic operations provided by BeanML and 

DGCML, it would require the specification of a very detailed DTD or schema because of the 

use of element and attribute tags to represent the name and properties of each class. 

  

3.2.2. Bean Markup Language (BeanML) 

IBM Alphaworks’ Bean Markup Language (BeanML) is an XML-based component 

configuration or wiring language that is customised for the JavaBean component model.  It is 

not a full scripting language, but instead serves only to describe how JavaBean components 

relate to one another in terms of their configuration.    

 

A simple example of BeanML, illustrates the sort of information stored in a BeanML 

descriptor file1. 

<bean class="javax.swing.JMenuBar"> 

  <add> 

    <bean class="javax.swing.JMenu"> 

                                                 
1 In order to allow a syntactic comparison of BeanML, XwingML and DGCML, the simple 

code extracts implement the same trivial task of setting up part of a menu.  The code extracts 

should not, however, be considered a reflection on the power and flexibility of the wiring 

languages. 
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        <args> <string value="File"/> </args> 

        <property name="mnemonic" value="F"/> 

   <add> 

    <bean class="javax.swing.JMenuItem"> 

            <args> <string value="Open"/> </args> 

      <property name="icon" value="open.gif"/> 

      <property name="mnemonic" value="O"/> 

                  <event-binding name="action"> 

              <script> 

                … open file dialog, etc. 

              </script> 

            </event-binding> 

    </bean> 

    <bean class="javax.swing.JMenuItem"> 

            <args> <string value="Save"/> </args> 

          … Additional details for Save MenuItem omitted for brevity …  

          </bean>  

          <bean class="javax.swing.JMenuItem"> 

      <property name="text" value="Exit"/> 

      <property name="mnemonic" value="x"/> 

                  <event-binding name="action"> 

                    <script> 

                … tidy up, and exit gracefully 

                    </script> 

                  </event-binding> 

    </bean> 

  </add> 

</bean> 

         </add> 

   </bean> 

 

 

There are many conceptual similarities between BeanML and our DGCML, as they both 

attempt to facilitate similar behaviour.  However, there are also some fundamental 

differences, the most important of which is that BeanML does not support distributed 

application development.  In addition, BeanML is a very general solution to wiring beans 

together, whereas our DGCML was built specifically for marking up descriptions of 

distributed GIS services, including deployment information, a description of the service, its 

GUI, and its associated help system.  
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BeanML is extensible1, and is a more general solution for developing applications 

declaratively than our system.  While it may have been possible to extend/customise BeanML 

to provide similar functionality, we have kept our original design rather than adopting and 

extending the BeanML approach in order to avoid the complexity of BeanML due to its 

generalised approach.  Our system was developed to solve the specific problems associated 

with the development of a dynamic interface for GIS components, based on the inclusion of 

remote services implemented as EJB or CORBA Objects.  In addition, one of the 

requirements was that it should be simple to modify, so that non-programmers could 

understand, and customise, any part of the GIS service descriptor by simply editing the XML 

text. 

 

 

3.3. XML for deploying applications 
With the rapid growth of the Internet, there can be little doubt that we are moving away from 

the standalone, or "unconnected," model of operation, and migrating towards a highly 

networked environment.  This has resulted in the network becoming a powerful medium for 

software distribution.  No longer does the distribution of software have to incur the cost 

overhead of producing CDs or floppy disks.  Instead, wherever possible the network may be 

used to allow end-users to download software.  This may be done actively using the “pull” 

paradigm, or passively though the “push” paradigm [van Hoff et al. 1997].  This clearly has 

an impact on how software is deployed and requires new deployment software technologies 

to be developed that support this new distribution medium [Hall et al. 1999].   

 

Part of the functionality provided by our DGCML is the deployment of GIS services that may 

execute locally on the client machine, or remotely on a server, or as a combination of local 

and remote components.  Therefore we have included a brief overview of two popular 

deployment mechanisms to illustrate the similarities in the information stored by each of 

them as well as the information stored in our DGCML descriptor file.  

 

                                                 
1 BeanML allows one to develop special classes for event-handling, performing type 

conversion, and to overload the <add> operation for adding different beans. 
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3.3.1. OSD 

The Open Software Description (OSD) specification is an XML-based, open industry data 

format for the automation of software distribution over the Internet or corporate intranets.  It 

has been included here because there is overlap between the functionality that has been 

included in our DGCML wiring language, and information stored about software 

components/applications deployed using the OSD specification.   

 

The OSD vocabulary is used to describe deployment-related information about software 

packages and their inter-dependencies, and can be used to deploy Java packages, Java 

standalone applications and platform native code [van Hoff et al. 1997].  Deployment occurs 

when the client, usually a browser, parses the OSD file and then downloads and installs the 

necessary components.   

 

OSD was discovered when our DGCML design was already in an advanced stage.  It has 

capabilities for identifying metadata beyond those in our DGCML description, such as 

operating system and version, processor, and language requirements as well as dependency 

information.  Incorporating these capabilities into DGCML would be beneficial if our 

language were to become more than simply a mechanism to implement our proof-of-concept 

system RADGIS.  However, DGCML could easily be extended to include such metadata  

without affecting its core structure. 

 

The OSD specification provides an XML-encoded vocabulary that can be used to describe 

software components, their versions, their underlying structure, and their interdependencies 

with other components.  Our DGCML also contains deployment information, but is aimed at 

finer-grained components that facilitate the development and deployment of GIS services.  In 

addition, DGCML specifies the GUI for invoking the components as well as information 

necessary to integrate help for that service into the client application’s help system.     
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A simple example of OSD, taken from a specification submitted to the W3C (see [van Hoff et 

al. 1997]), illustrates the sort of information stored in an OSD descriptor file. 

 
<SOFTPKG NAME="com.foobar.www.Solitaire" VERSION="1,0,0,0"> 

    <TITLE>Solitaire</TITLE> 

<ABSTRACT>Solitaire by FooBar Corporation</ABSTRACT> 

        <LICENSE HREF="http://www.foobar.com/solitaire/license.html" /> 

  <!-- FooBar Solitaire is implemented in native code for Win32, Java    

       code for other platforms --> 

        <IMPLEMENTATION> 

            <OS VALUE="WinNT"><OSVERSION VALUE="4,0,0,0"/></OS> 

            <OS VALUE="Win95"/> 

            <PROCESSOR VALUE="x86" /> 

            <LANGUAGE VALUE="en" /> 

            <CODEBASE HREF="http://www.foobar.org/solitaire.cab" /> 

        </IMPLEMENTATION> 

     

        <IMPLEMENTATION> 

            <IMPLTYPE VALUE="Java" /> 

            <CODEBASE HREF="http://www.foobar.org/solitaire.jar" /> 

             

            <!-- The Java implementation needs the DeckOfCards object --> 

            <DEPENDENCY> 

                <CODEBASE HREF="http://www.foobar.org/cards.osd" /> 

            </DEPENDENCY> 

        </IMPLEMENTATION> 

</SOFTPKG> 

 

While most of the above example is fairly self-explanatory, it is worth pointing out that the 

Solitaire software package specifies that there are two different implementations of Solitaire 

available.  The first version is packaged in a standard windows CAB file, and requires 

Windows 95 or WinNT version 4.0 to run.  The second version is a Java version, which does 

not have particular operating system requirements (for obvious reasons), but has a 

dependency on another piece of software whose deployment is specified by the cards.osd file.  

Should the software specified in the cards.osd file not be installed on the local machine at the 

time of installing the Java version of solitaire, it will be installed before the solitaire 

installation begins. 
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3.3.2. JNLP and Java Web Start  

Due to the overwhelming emphasis being placed on making everything Web browser-

enabled, there has been a strong drive by Sun to develop Java-based server-side technologies, 

as seen in the development of the Servlet and J2EE specifications, while the client-side has 

remained relatively neglected.  In fact, according to [Rohaly 2000] “it’s been accepted for 

some time now that client-side Java is dead”.     

 

Many people are slowly realising that trying to make many different types of applications fit 

the Web browser style is not always possible or prudent, particularly due to browser 

limitations such as the limited graphics capabilities, relatively primitive GUI, and 

incompatibilities between different browsers and versions.  Thus there is still a very real 

demand for client-side applications, as opposed to browser-based front-ends, that interact 

with server-side processes.   

 

It was the simplicity of the web-browser and the built-in security that have made it such a 

popular development platform.  However, with the help of the recently launched Java Web 

Start and Java Network Launch Protocol (JNLP), these same benefits, together with a number 

of others mentioned below, may yet ensure that Java becomes a viable client development 

platform. 

 

Java Web Start, developed by Sun and its partners under the Java Community Process, is a 

client-side helper application that is invoked when a browser encounters a link with a MIME 

type application/jnlp and file extension .JNLP  [Rohaly 2000].  Clients therefore no longer 

require a browser with a JVM in order to run these applications or applets.  Instead, the Java 

Web Start Application Manager can be used to launch the applications or applets (and 

perhaps launch an external JVM if required), install the applications so that they may be 

executed through icons on the desktop, or even launch these applications when offline.  

 

This approach allows one to launch client-side applications that provide richer functionality 

than HTML, without the need for a browser or applets.  In addition, the use of JNLP provides 

a number of runtime features that make JNLP-based apps more attractive than applets, such 

as [Rohaly 2000] [Sun MicroSystems 2001a] [Liron 2000]: 
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?? guaranteeing platform compatibility by automatically detecting, installing, and using 

the correct version of the Java Runtime Environment for a particular application.  

?? providing the ability to launch applications or applets from the browser or the 

desktop.  (applet integration is built into Java Web Start, allowing existing applets to 

be deployed without modification.) 

?? version checking ensures that newer versions of the application are downloaded as 

they become available. 

?? classes used by the application are automatically cached and updated locally so that 

the start-up time is dramatically reduced after the first time the application is used. 

?? enhanced security, which goes beyond the Applet sandbox model, ensures that local 

resources, such as the file -system, may be used in a secure manner without the need 

for signed code.  However, it is also possible to grant additional permissions to signed 

code. 

?? the ability to finely control how applications are downloaded. For example, it is 

possible to load one small JAR immediately, and the others on demand. 

?? A jardiff mechanism facilitates incremental updates such that only the classes in a 

JAR that differ from the locally-cached copies are downloaded.  Thus updates to an 

application need not require the entire new version to be downloaded.  

 

Once again, the best way to illustrate what sort of information is stored in a .JNLP file is  to 

provide a simple example.  The .JNLP example below is Sun's "Draw" example application, 

available at http://java.sun.com/products/javawebstart/demos.html: 

 
<jnlp> 

<information> 

<title>Draw</title> 

<vendor>Sun Microsystems, Inc.</vendor> 

<description>Draw</description> 

<description kind="short">A minimalist drawing Application 

along the lines of Illustrator.</description>  

<icon ref="http://www.swingteam.com/jumpjars/draw.jpg"/>  

<offline/>  

</information>  

<jre version="1.3.0 1.3 1.2"/>  
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<codebase>  

<jar ref="http://www.swingteam.com/jumpjars/draw.jar"/>  

</codebase>  

<application mainclass="Draw"/>  

</jnlp>  

 

The .JNLP descriptor file is read by the Java Web Start Application Manager which then 

decides whether the application needs to be downloaded or updated, then runs the 

application.  Figure 3.1  provides a pictorial overview of the entire process, from selecting a 

link to a .JNLP file, to the launching of the application once all the necessary checks have 

been made and files downloaded. 

 

 

 
 

Figure 3.1.  The Jav a Web Start architecture [Rohaly 2000] 
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3.4. Our Distributed GIS Component Markup Language 

(DGCML ) 
 

In the development of our proof-of-concept system, we have made use XML to transfer 

metadata about the implementations of individual GIS services.  DGCML allows the 

developer of GIS services to make use of local and/or remote objects, and contains a 

description of the service, what components make up its GUI (if there is one associated with 

that service) as well as links to the necessary help files for that service1.  DGCML has been 

designed specifically to be easy to understand and edit, and its programming style is close to 

Java. 

 

The extract of DGCML below, based on the example used in XwingML and BeanML, 

illustrates the sort of information stored in a DGCML descriptor file 

 

       … deployment information … 

  <GUI> 

       … other GUI components … 

     <Component name="defaultMenuBar" type="MenuBar"> 

      <Component name="fileMenu" type="Menu"> 

              <Property name="text" value="File"/> 

 

              <Component name="OpenMI" type="MenuItem"> 

                <Property name="text" value="Open"/> 

                <MethodCall ReturnValueDest="_openIcon"  

                            ReturnType="javax.swing.ImageIcon"  

                            name="constructor"> 

                     <Param DataType="java.lang.String" Source="open.gif"/> 

                </MethodCall> 

       <Property name="icon" value="_openIcon"/> 

        <Event type="action"> 

   … MethodCalls …  

                </Event> 

                                                 
1 Further implementation-specific details are provided in Chapter 5, which deals with the 

implementation of the RADGIS application.  
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         </Component> 

              <Component name="SaveMI" type="MenuItem"> 

                <Property name="text" value="Save"/> 

          … additional details for Save MenuItem omitted for brevity … 

              </Component> 

              <Component name="ExitMI" type="MenuItem"> 

                <Property name="text" value="Exit"/> 

                <Event type="action"> 

   … MethodCalls …  

                </Event> 

              </Component> 

          </Component> 

      </Component> 

 

  </GUI> 

          … help system inform ation … 

 

Although DGCML was originally developed to support GIS services implemented as remote 

objects, it also supports the use of local GIS services that have downloaded to, and are 

executed on, the client machine as part of the client GIS application.   

 

We have chosen to implement the local components as Java objects, deployed as JARs, and 

the remote components, as Enterprise JavaBeans (EJBs) and CORBA Objects.  It should be 

noted that some services are implemented as a combination of finer-grained obje cts that may 

be local or remote.  Thus, like BeanML, our DGCML facilitates the creation of hierarchies 

whereby one “complex” DGCML descriptor may contain a reference to one or more 

DGCML files that contain descriptions of “simple” components that may reside locally or 

remotely.   

 

The idea of using XML to specify how JavaBeans may be wired together to create an 

application, is not novel (see section 3.2.2  which describes BeanML).  However our approach 

to the creation of an XML descriptor for GIS services, that includes application metadata and 

the ability to wire Java objects and Swing components to provide a GUI, that facilitates the 

invocation of local and/or remote  methods, and can be incorporated into a client GIS 

application at runtime, is novel.  
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3.5. Summary 
In this chapter we have presented four XML technologies that overlap with, or have 

influenced, the development of our DGCML.  BeanML and XwingML are markup languages 

that enable a user to compose applications based on JavaBeans, and develop GUI’s based on 

the Swing/JFC classes respectively.  OSD and JNLP are deployment descriptor vocabularies 

that allow applications to be deployed across the Internet.   

 

Our DGCML can therefore be best described as being a combination of a deployment 

descriptor and a wiring language for components that implement GIS services, or even stand-

alone applications.  All that is required on the client-side is the DGCML interpreter that reads 

in the DGCML descriptor, downloads the necessary support classes, and builds the GIS 

service using Java Reflection and JavaBean APIs. 
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Chapter 4  

Factors influencing the design of RADGIS 
 

“I can't understand why people are frightened by new ideas.  

I'm frightened of old ones.”  John Cage (1912-1992) 

 

 

With the explosion of the Internet, one has seen a shift in focus from commodity-based 

economies to data-driven economies.  Many companies have invested heavily in systems that 

will allow them to perform data mining, for example data visualisation and trend analysis, in 

order to retain competit ive advantage.  However, with the exception of specific industries that 

rely heavily on GIS functionality, e.g. mining, telecommunications, forestry and 

conservation, most businesses have not made use of spatial analysis to support business 

decisions, or in the derivation of income.   

 

This is surprising when one considers that according to studies [Daisey 2000], including “GIS 

in business” conducted by Dutch-based Ravi Business Platform in collaboration with the 

Vrije Universiteit, Amsterdam and Manchester Metropolitan University, UK, an estimated 80 

to 90 percent of business-related information, particularly business support systems, is 

geographical in nature [GeoEurope 2000].  However, as industry is made aware of the 
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intrinsic value of location, through innovative developments such as Mobile Location 

Services1, this is rapidly going to change. 

Many GIS vendors and spatial data providers, on the other hand, have been quick to realise 

the potential of the Internet as the next-generation GIS platform and geospatial data 

distribution tool, and have moved with the times to ensure that they are able to tap into this 

particularly lucrative new market [Toon 1997][Gifford 1999].   

 

There are two main areas where the development of GIS applications have benefited most 

from the explosion of the Web and Web technologies.  These are the development of 

Web/Image Mapping Servers and browser-based front-ends that provide access to maps and 

geospatial data, as well as the development of sophisticated client-side GIS applications that 

integrate geospatial services and data, distributed across the Web, in a transparent manner.   

 

Web browser-based GIS applications and Web/Image Mapping Servers have been criticised 

for their lack of functionality because they do not provide tools for performing analysis on 

the geospatial data, i.e. they are generally no more than data viewers or data explorers.  The 

focus of our research has therefore been on the development of an extensible client-side GIS 

application.  It is here that we have developed a novel approach towards allowing the user to 

create, and customize, their own component-based client-side GIS application, which has the 

ability to make use of distributed services and data.  Our work therefore fills an important 

niche that has been neglected, or at best only partially addressed, until now. 

  

The relatively new concept of Location (Based) Services has brought with it the promise of 

individual services that provide user-friendly applications of GIS operations.  The 

introduction of location services has also added much value to our research.  Not only does it 

add to the industry impetus to create re-usable GIS services, it also provides another 

application within the field of GIS for demonstrating the flexibility of our approach, i.e. in the 

development of an extensible client-side framework for utilising location services. 

 

                                                 
1 The Location Services industry is currently the most rapidly expanding sector of GIS.  Its 

growth rate has already exceeded that of the traditional GIS market [International Data 

Corporation 2000]. 
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This chapter provides an overview of different GIS architectures currently available, as well 

as work done by the Open GIS Consortium, in order to illustrate the synergy between our 

approach and the work that is being undertaken by major developers and standardization 

bodies.  It also discusses the following topics that form the theoretical foundation of our 

approach to RADGIS, which is introduced at the end of the chapter: 

 

?? The origin of a standardised, XML-encoded data transfer format called GML, based 

on the OGC’s Simple Features Specification.  Components developed for our 

RADGIS application must, in addition to any proprietary formats, support GML so 

that geospatial data transfer between distributed components within the RADGIS 

application can be standardised on GML, simplifying interoperability. 

?? Work done by the OGC with respect to the provision of interoperable geospatial 

services (OpenGIS® Service Architecture), which forms the basis for implementing 

our local and distributed services. 

?? Location (Based) Services, which are being considered as a special application of our 

RADGIS architecture, as well as fuelling the market for re-usable GIS components. 

 

 

4.1. GIS Architectures 
It is generally accepted that GIS applications can be logically disaggregated into three main 

functions [Morais 2000], namely: 

?? data management –  the storage and retrieval of spatial and a-spatial attribute data, 

generally via a database management system.  

?? operations and analysis  – the “business logic” that implements the logical processing 

of the data, including things like feature overlay, image manipulation and analysis, 

and map projection. 

?? rendering and user interface  – the software components that the user interacts with 

that support the presentation of data. 

 

GIS applications have undergone many architectural changes over the past two decades that 

have been in keeping with advances in tiered application development in general.  GIS 

systems developed during the late 1970s and early 1980s were based on the single 

unconnected workstation model, and did not separate the tasks of data management, 
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operations and analysis , and the rendering and user interface .  Instead, these components 

were tightly coupled and sold as part of a single entity (or single-tier application). 

 

However, with the emergence of the client-server systems architecture in the early 1990s, 

aided by the introduction of relational databases and relatively inexpensive desktop 

computers, GIS applications slowly disaggregated the data management duties from the 

operations and analysis, and rendering and user interface.   

 

This facilitated the use of a database from a vendor other than the GIS application vendor, as 

well as the ability to make use of remote data access, i.e. accessing data from a machine other 

than the machine on which the GIS application was running.  Remote Data Access (RDA) 

provides an effective and scaleable way to distribute processing and storage over a network, 

separating the data repositories from client applications [Grady, current].  Thus, a single copy 

of the dataset could be accessed by multiple users simultaneously (according to the 

transaction rules of the database), reducing the possibility of data inconsistency due to 

keeping multiple copies of a dataset up-to-date.  Many of today’s GIS installations still make 

use of this “two-tier” architecture, for example storing their spatial data on a central server, 

such as ArcSDE or Oracle Spatial database, and using a client such as ArcView or Arc/Info 

to manipulate this data. 

 

The most recent evolutionary stage in systems architecture is the three-tiered architecture, 

also referred to as the n-tiered approach.  In n-tiered architectures, there is an explicit 

decoupling of the operations and analysis (business logic) component of GIS applications 

from the user interface and data management components.   

 

One of the key benefits derived from separating application functionality into multiple tiers, 

is the ability to replace the implementation of a particular tier without affecting the 

implementation of the other tiers, e.g. changing the database used to store the data should not 

affect the operations and analysis, and user interface tiers.   

 

The focus of our research is on the development of re-usable GIS operations and analysis  

components, such that the business logic of our GIS applications is made up of 

interchangeable components, possibly developed by different vendors at different times.   
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One of the biggest challenges is how these components are to interact with other software 

components, about which they have no compile-time knowledge.  Thus during the design of 

the components, the emphasis should be on non-specialised and non-proprietary interaction, 

to ensure extensible, yet robust components that result in the greatest possible level of reuse. 

  

The successful implementation of an n-tiered component-based application can therefore 

derive much benefit from the use of industry standards, and improvements in component 

software technology [Morais 2000].  Fortunately, within the field of GIS, there have been a 

number of standardisation efforts seeking to create industry standards for: 

?? geospatial data representation and transfer formats, e.g. the OGC’s Simple Features 

Specification and GML, ISO/TC 211’s geospatial data model, the Federal Information 

Processing Standard (FIPS 173) - Spatial Data Transfer Standard (SDTS), and various 

others by the Federal Geographic Data Committee (FGDC) and the US Geological 

Survey (USGS) Group; and  

?? the implementation of services based on open standards, e.g. the OGC's OpenGIS®  

Service Architecture, Web Mapping Server, Web Feature Server, and Catalog 

services, and the ISO/TC 211’s geospatial services.  

 

Emerging GIS software varies widely in performance, quality, feature set, cost and, most 

importantly, fundamental system architectures.  These architectural differences have a 

significant impact on how the software performs in an Internet-based computing environment 

[Gifford 1999].  Therefore, before taking a look at the standardisation that is being 

undertaken by the OGC, we briefly describe the different GIS architectures and types of GIS 

applications currently available in order to categorise our RADGIS application, and explain 

why our approach is novel.   

 

The applications have been divided into two categories: client-side GIS applications and 

server-side GIS applications.  The classification of a GIS application as server-side or client-

side, is based on where GIS services are executed as opposed to where the resultant map is 

visualized.  Thus a client-side application that simply provides an interface for viewing a 

geospatial image generated by a GIS server is not considered to be a client-side GIS 

application, as the complex GIS calculations and data remain on the server. 
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4.1.1. Server-side GIS Applications 

Server-side GIS, and in particular Internet Mapping, is a relatively simple and cost-effective 

method of allowing anyone with access to the Web to access maps and GIS-based data and 

services, based on easy-to-use browser-based formats or thin clients.  In addition, the server-

side architecture centralises control over the geospatial data and services, which significantly 

simplifies the deployment, security/access control permissions and maintenance of server-

side GIS applications.   

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Server-side Architecture  

 

Table 4.1 below summarises some the advantages and disadvantages of the server-side 

architecture.  For a more comprehensive discussion on server-side and client-side GIS 

architectures, the reader is referred to [Gifford 1999]. 
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Advantages to Server-Side GIS 
 
Adherence to Standards  

?? Can adhere to all Internet/Web standards  

?? Can be accessed with standard Web browser  

?? Eliminates platform issues as much as possible  

Performance   
?? Significant GIS functionality can reside on the server  

?? Large GIS databases can be accessed on the server  

?? Low bandwidth requirements  

?? Performance per request is predictable  

Cost of Ownership   

?? Centralised administration of data and GIS application 
software  

?? User support is minimal  

 

Disadvantages to Server-Side GIS 
 
Adherence to Standards  

?? No viable vector formats  

?? One-click functionality from Web clients 1 

?? Low graphics quality  

?? Primitive GUI  

Performance   

?? Creates many requests  

Information re-transferred for each request 

 

Table 4.1.  Advantages and disadvantages of Server-side GIS [Gifford 1999] 

 

                                                 
1 It is often necessary to allow the user to select multiple features before executing an 

operation. 
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4.1.1.1. Web Map Servers (WMS) 

A number of Web/Image Mapping Servers have been developed recently that address the 

need for out-of-the-box, GIS and mapping solutions for publishing GIS maps on the 

WWW.  These include products like ArcIMS, Internet Mapper, Autodesk MapGuide 

Server and MapObject IMS.   

 

Traditional Web Map Servers obtain geospatial data from a spatial database, in response 

to a Web browser request, and then return the resultant map as an image that can be 

viewed by the Web browser, using standard HTTP.  This provides an easy to use, 

automated interface for obtaining maps, but is very limited in terms of traditional GIS 

capability, as all the complex and proprietary software, in addition to the spatial and 

tabular data, remain on the server.   

 

The use of a Web-browser provides a simple, standard mechanism for viewing the 

resultant maps, but there are also number of drawbacks to this approach, including the 

relatively primitive GUI, low graphics quality and one-click functionality of browsers.     

   

The maps generated by WMSs are generally static images that do not contain any 

geospatial encoding.  This is because most standard Web browsers only support GIF and 

JPEG images.  Thus, even though one may be able to perform simple pan, zoom and 

navigation-type operations, it is not generally possible to perform any form of spatial 

analysis, query any information about points or areas on the maps, or use the resultant 

image as a data source for further geospatial processing.  In addition, if the image needs 

to be modified, e.g. during a pan/zoom operation, turning a layer on or off, etc, it requires 

a request to be sent to the WMS to regenerate the image from the original dataset using 

the new set of parameters.  This may result in many requests and responses being 

generated, which in turn could cause poor performance [Gifford 1999]. 

 

However, a growing number of WMS are now equipped to provide far more than static 

images.  WMS that implement the Open GIS Consortium’s WMS Specification (see 

[Open GIS Consortium 2000b] for more information) also have the ability to produce, for 
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example, georeferenced images (geoTIFF) or Features1 (GML), allowing the resultant 

map to processed further, for example using chaining, or directly in a client-side GIS 

application.  However, once again we must reiterate that these formats are not supported 

by current Web browsers, and are therefore intended for use by more sophisticated 

clients. 

 

Web Mapping Servers fulfil a very useful role within GIS, particularly for serving data on 

the Web.  Thus, the restrictions mentioned above are not criticisms of their architecture, 

but simply illustrate their intended use as static image servers for viewing spatial data on 

the web, and not as full-blown distributed GIS application servers.   However, it is worth 

noting their potential use as data servers in distributed GIS applications. 

 

4.1.2. Client-side GIS Applications 

Client-side GIS requires the installation of pre-packaged or downloaded GIS-enabled 

software on the client machine, such as traditional GIS applications or GIS Java applets, 

ActiveX components, or plug-ins for a Web browser [Marshall 2000]. 

 

Client-side architectures that interact directly with the geospatial data, as opposed to static 

map images, enable a large set of graphic and GIS operations to be performed locally. Thus 

unlike the WMS (see section 4.1.1.1), changes to the display, caused by operations such as 

panning or zooming can occur without re-transmitting a request to the server, resulting in a 

significant performance improvement.  Thus, the major advantages of client-side solutions 

are the abilities to enhance user interfaces, e.g. the ability to perform multipoint feature 

selection, and improve performance through the reduction in network traffic. 

 

The major disadvantage associated with client-side GIS solutions such as Java applets, 

ActiveX components, or plug-ins, is that they require software to be downloaded to the client 

machine (and installed) before the user is able to browse the data.  This may be acceptable for 

                                                 
1 The ability to return Features, e.g. as GML, rather than static images, was originally 

intended as a major extension to the Web Map Server specification.  However, it has now 

become a separate interface specification, called the Web Feature Server specification 

[Vretanos 2001] 
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someone who intends using a particular product regularly.  However, for someone who rarely 

uses mapping services, it is far easier to access a Web page that immediately allows him/her 

to start interacting with map data, than have to download different client software 

implementations when wishing to browse data from different vendors [Gifford 1999]. 

 

Table 4.2 below summarises some the advantages and disadvantages of the Client-side 

architecture.  For a more comprehensive discussion on Client-side and Server-side GIS 

architectures, the reader is referred to [Gifford 1999]. 

 

 Advantages to Client-Side GIS  
 
Adherence to Standards  

?? Document/graphics standards not required  

?? Vector data can be used  

?? Image quality not restricted to GIF and JPEG  

?? Modern interfaces possible  

?? Not restricted to single -click operations  

Performance  

?? Excellent performance for operations that occur locally  

?? Less Internet traffic required 

 

Disadvantages to Client-Side GIS 
 
Adherence to Standards  

?? Non-conformance limits user base  

?? Requires users to obtain additional software  

?? Platform/browser incompatibility  

Performance   

?? Initial download times can be substantial if databases 
transferred  

?? Users must wait for software to download  

?? Overall performance can be low with large databases  

Table 4.2.  Advantages and disadvantages of Client-side GIS [Gifford 1999] 
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4.1.2.1. Traditional GIS applications 

Traditional GIS applications such as ARCInfo, MapInfo, ArcView, and TNTmips are 

generally very large applications that are expensive to license, have a very steep learning 

curve [Albrecht 1996], and are difficult to use.  These applications are intended for use by 

GIS experts, who have a solid understanding of cartography.  Although most provide the 

ability to install additional modules for specialist tasks, or develop customised 

functionality through scripting languages, they do not allow the application to be tailored 

towards users of different levels-of-expertise or based on the user’s application domain.  

 

While there is no denying that traditional GIS applications fulfil an extremely valuable 

role, many problems associated with these GIS applications have been identified, 

including application bloat, vendor lock-in, and lack of interoperability and location 

transparency. (Please refer back to section 1.1 for a more detailed discussion of these 

problems).   

 

4.1.2.2. Java Applets 

A number of Java applets implementing rudimentary GIS functionality have emerged 

recently.  However, there are a number of problems with implementing GIS clients as 

Java applets that limit the potential of this approach.  These include having to download 

the applet each time the client is used, and security restrictions on applets, which must be 

signed with digital certificates in order to obtain special permissions to read/write to the 

hard drive and/or create a network socket connection to a server other than the server 

from which the Applet was downloaded.  Furthermore, applet-signing mechanisms are 

complicated and vary between Netscape and Internet Explorer [Griscom 1999].   

 

Applets rely on the Web browser for their Java Virtual Machine (JVM).  Even though 

they are supposed to implement the same standard, there are often differences between 

the JVMs of different browsers, including incomplete implementations of certain features.  

Neither Netscape nor Microsoft currently allow one to upgrade the browser’s JVM, and 

thus one either has to develop applets for old versions of the JVM, or make use of the 

Java plug-in.  However, because the plug-in approach uses an external JVM, it is not 
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possible for the Java applet to interact with the Web browser, which once again limits its 

functionality [Rohaly 2000].   

 

Even if the above-mentioned problems could be avoided, execution of Java (applets) 

within a Web browser is much slower than standalone Java execution [Rohaly 2000].  

This poor performance is a very real problem that may ultimately dissuade a user from 

using an applet-based GIS.  

 

However, possibly the biggest problem with developing client-side GIS software as 

applets, is that they must be downloaded from the Web Server each time they are to be 

used.  If the applet is too large, it will take too long to download and the user will 

invariably seek an alternative solution.  Therefore, the functionality of the applet is 

severely limited by its size, and applets are generally implemented with a specific task in 

mind.   

 

4.1.2.3. Plug-in approach 

A plug-in is a program module that extends the functionality of Web browsers, enabling 

them to support new types of multimedia content1.  In comparison with Java applets, most 

GIS plug-ins provide faster visualization and better levels of interactivity.  In addition, 

GIS plug-ins do not suffer from the security restrictions imposed on Java applets, or the 

need to download the applet each time a data set is to be viewed because the code for the 

plug-in is installed on the client machine.   

 

Plug-ins for most commercial GIS applications are becoming more and more prevalent, 

e.g. Autodesk mapGuide plug-in, ArcExplorer.  Most of them are freely available, 

because they are fairly limited in functionality (in comparison to traditional GIS 

applications).  They generally simply fulfil the role of data viewers/browsers for 

                                                 
1 Technically, the term “plug-in” refers to a module that conforms to the Netscape Navigator 

standard, whereas modules designed for Internet Explorer use the ActiveX software standard.  

However, we will use the generic sense of the term plug-in to refer to modules that conform 

to either standard.  



 

 71 

proprietary spatial data formats, with limited analytic capability and/or image processing 

capabilities. 

 

Due to their limited functionality and design, as well as problems affecting the interaction 

of different plug-ins within the Web browser environment1, plug-ins and traditional GIS 

applications sit at the opposite ends of the customisability spectrum.  Plug-ins are 

essentially small, specialised, standalone modules that cannot be extended, while 

traditional GIS applications suffer from serious application bloat, but cannot be trimmed 

of unnecessary features.    

 

 

4.2. OpenGIS® 
It is unlikely that a single architecture for developing GIS applications will triumph.  Instead, 

because different users have different requirements and preferences, a number of models, 

from traditional GIS applications to specialist GIS applications based on highly distributed 

components will co-exist.  The fundamental issue that will determine whether or not these 

systems co-exist successfully is that of interoperability. 

 

The OGC’s vision for the future of GIS is “the full integration of geospatial data and 

geoprocessing resources into mainstream computing and the widespread use of interoperable 

geoprocessing software and geodata products throughout the information infrastructure” 

[Open GIS Consortium 1999a].  In order to facilitate this vision, its working groups have 

developed abstract specifications and implementation specifications for its two central 

technology themes of sharing geospatial information and providing geospatial services (see 

table 4.3  and table 4.4). 

 

                                                 
1 While the interaction of certain combinations of plug-ins is possible using a particular Web 

browser architecture and version, differences in fundamental architecture in different Web 

browsers, as well as within versions of a particular Web browser, have severely limited the 

ability for developers to utilise a standard mechanism to allow plug-ins to interact effectively.  
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4.2.1. The Abstract Specifications 

The Abstract Specification documents provide the theoretical background for the 

Implementation Specifications (see section 4.2.2), as well as providing a technically complete 

“language” to discuss issues of interoperability [Open GIS Consortium, 1999a].   

 

Each of the topics described in the OpenGIS®  Abstract Specification documents is composed 

of two models: 

?? the Essential Model that describes a conceptual link between the software system 

and the real world, and 

?? the Abstract Model (the core of the Abstract Specification) that describes how the 

eventual software system should work in an implementation neutral manner. 
 
Figure 4.2  shows the dependencies between the topics described in the OpenGIS®  Abstract 

Specification, while table 4.3 provides a very brief description of each of them.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Dependencies between Abstract Specification topics  
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Table 4.3  provides an overview of the OGC’s Abstract Specification as of July 2001 (adapted 

from [Öhrström 2001]).  For further information please refer to the following OpenGIS®  Web 

page: http://www.opengis.org/techno/specs.htm 

 

 

Specification Purpose 

Overview 
Provides an overview of the OpenGIS®  Abstract 

Specifications 

Feature Geometry 
Describes an abstract model for the geometric 

representation of GIS-objects (i.e. features) 

Spatial Reference Systems 
Contains definitions of classes for reference 

systems, data types, units and operations 

Locational Geometry 
Functions for mapping Features from one 

locational system to another 

Stored Functions and Interpolation 
Calculating functions, interpolation, and 

extrapolation 

The OpenGIS®  Feature Modelling real world and abstract entities 

The Coverage Type 
The formulation and calculus of the Coverage 

Type and its subtypes 

Earth Imagery  
Image geometry models, and models for 

computing the real world-model connection 

Relationships Between Features How to model relationships between Features  

Quality 
Defines various position accuracy terms and 

concepts 

Feature Collections Models for handling Feature collections  

Metadata 
Models for handling Feature and Feature 

collection metadata 

The OpenGIS®  Service Architecture 

A framework of services required for the 

development and execution of geospatially 

oriented applications 



 

 74 

Catalog Services 
OpenGIS® services for data discovery and 

data access 

Semantics and Information Communities sharing data between communities 

Image Exploitation Services 
Functions for image exploitation, such as 

Feature extraction 

Image Coordinate Transformation 

Services 

Services for transforming image position 

coordinates, to and from ground position 

coordinates  

 

Table 4.3.  Abstract Specification overview as of July 2001 [Öhrström 2001] 

4.2.2. The Implementation Specifications 

The Implementation Specifications documents, are a set of specifications, based on the 

Abstract Specifications (see section 4.2.1), that contain guidelines for implementing 

OpenGIS® applications or components.  Table 4.4 provides a very brief description of each of 

the Implementation Specifications.  For further information refer to the following OpenGIS®  

Web page: http://www.opengis.org/techno/specs.htm 

 

A “Testing Program” has been developed by the OGC to test for conformance of products to 

the OpenGIS®  Implementation Specifications, and at a later stage, to test for interoperability 

between products.  The conformance test is used to determine if a product implementation of 

a particular Implementation Specification fulfils all the mandatory elements.  However, it 

does not ensure, or even test for, the interoperability of software products.  Instead, the OGC 

hopes that as the specifications mature, the likelihood of interoperability will become higher.  

 

Specification Purpose 

Simple Features Specification 

Specification for the handling of simple 

geometric representations of GIS-objects, such as 

polygons (excludes 3D), and reference systems 

Catalog Services Interface Implementation 

Specification 

Specifies how geospatial handling over networks 

should be implemented 
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Grid Coverage Implementation Specification  

Specification for all types of raster based images. 

Interfaces for analysis and calculation, such as 

histogram, covariance etc 

Coordinate Transformation Services 

Implementation Specification 

Strategies for coordinate systems and 

transformation between them 

Web Map Server Interfaces Implementation 

Specification 

Defines services necessary for Web-based access 

to geo-data and processing 

Geography Markup Language (GML) 

Implementation Specification 

XML encoding of the Simple Features 

Specification 

 

Table 4.4.  Implementation specifications as of July 2001 [Öhrström 2001] 

 

4.2.3. Simple Features Specification 

A Feature, as defined by the OGC, is the encapsulation of measurable or describable 

phenomena about real world or abstract entities.  It is the fundamental unit of geospatial 

information and consists of both spatial and attribute data.  Simple Features are a subset of 

Features, that only support linear interpolation between coordinates and do not consist of 

other features, i.e. they are atomic [Miller and Schirnick 1999].  Simple Features represent 

vector data, such as roads, land-use zones, and watersheds, as points, lines, arcs and 

polygons.  They do not, however, support the representation of raster data1.   

 

The Simple Features specification does not provide details of how to map features to real 

world objects.  Instead, it provides a specification for the implementation of mechanisms to 

work with Features and Spatial Reference Systems [Öhrström 2001].  This allows the 

communication of simple geometry, spatial reference system and attribute information 

between applications or components that conform to the Simple Features Implementation 

Specification.  

                                                 
1 Vector data consists of a series of points (coordinates), some of which are joined by lines 

(i.e. sets of related points), and some line segments (arcs) are joined to form polygons.  Raster 

data is composed of a grid of cells that represent geographic features, i.e. a georeferenced bit -

mapped image. 
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The Open GIS Consortium has also produced Simple Features specifications for OLE/COM, 

CORBA and SQL for working with simple geospatial features in a distributed or component-

based computing environment, or an SQL database, respectively.  Due to the fact that Java 

has become the dominant software language for developing distributed enterprise-level 

applications, and since an estimated 80% of corporate data has a spatial component, Sun 

Microsystems realised that there was a need to add geoprocessing capabilities.  Thus, there is 

now also an informal workgroup working on creating a Simple Features specification for 

Java [Daisey 2000]. 

 
 
 

4.3. Exposing data efficiently – The future of geospatial 

data access? 
As mentioned in section 4.1.1.1, most Web Map Servers simply generate and then serve GIF 

or JPG map images to the user's Web browser. This approach is straightforward and works 

well when the user simply wants to view a low-resolution map image, but does not allow the 

user to process the result further in a client-side GIS application, or to make use of it as part 

of a service-chaining request. 

 

In addition, most Web mapping applications are inseparably tied to a specific server 

implementation, i.e. the client is hard-coded to interact with a particular vendor’s proprietary 

map server implementation. Thus a user must run different client applications in order to 

access the data and functionality provided by different server implementations.  This lack of 

interoperability or reuse of client and server implementations, severely limits the ability of a 

user to transparently access data from multiple disparate data sources. [Wang et al. 2001] 

 

This section introduces two technologies that have the potential to overcome the above-

mentioned problems, providing much needed capabilities for the efficient indexing of 

searchable, georeferenced metadata as well as the delivery of geospatial data in a vendor 

independent/open format. 
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4.3.1. The .geo proposal 

Information about a particular location is of more interest to people close to that location than 

people who are far away [Lake 2000].  Therefore, it makes sense to have most of the 

information regarding a particular location, stored and maintained in that vicinity.  However, 

one must also remember that remote users may still be interested in that data, and therefore 

one must also ensure that such data is readily accessible, and may be easily integrated, on a 

regional and global scale.   

 

The .geo  proposal, submitted to The Internet Corporation for Assigned Names and Numbers 

(ICANN) by SRI International, for an open infrastructure for registering and discovering 

georeferenced information on the Internet, attempted to do just that.   

 

The .geo  proposal was submitted to ICANN in response to an initiative of the ICANN Board 

to select a limited number of diverse proposals that could be used as a proof-of-concept on 

which to base decisions about introducing future Top-Level Domains1 (TLDs).  It motivated 

the creation of a TLD, called .geo , which could be used to index searchable, georeferenced 

metadata, using a modified version of DNS to encode latitude/longitude bounded cells as 

domain names in the form of minutes.degrees.tendegrees.geo 

 

For example: 

?? The geographic domain name 10e40n.geo  identifies the 10-degree x 10-degree cell 

whose southwest corner is located at 10 degrees east, 40 degrees north.  

?? The geographic domain name 2e4n.10e40n.geo identifies the 1-degree x 1-degree cell 

whose southwest corner is located at 12 degrees east, 44 degrees north.  

?? The geographic domain name 11e21n.2e4n.10e40n.geo identifies the 1-minute x 1-

minute cell whose southwest corner is located at 12 degrees, 11 minutes east and 44 

degrees, 21 minutes north. 

                                                 
1 The .geo proposal was not accepted as one of the seven proposals selected for the proof-of-

concept phase by ICANN, and a reconsideration request was rejected by ICANN on 16 

March 2001.  The reasons provided by ICANN include the complexity of the proposal, and 

ICANN’s cautious approach to introducing new top-level domains.  This does not, however, 

prevent the .geo proposal from being accepted in the future [ICANN Committee 2001]. 
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The beauty of the .geo  proposal is in its simplicity, as it provides an easy to use mechanism 

for finding information for a particular area.  For example, if one were interested in obtaining 

information about Grahamstown, one would simply need to determine its longitude and 

latitude co-ordinates (possibly from a geo-referencing service).  From this information, one 

could easily infer the domain name of the geospatial data (and service) server for that area.  If 

a Web Map/Feature Server was running on that machine, one could very easily make use of 

the standardised request format to obtain the desired information (possibly as GML-encoded 

data).  Additional benefits of the .geo approach are that it limits the amount of metadata per 

server, and it drastically reduces server bandwidth because clients can directly query the 

relevant cell server(s) to find metadata for a given area [Leclerc et al. 2001].  

 

Regardless of whether or not the .geo  proposal is accepted at a future date, it has made an 

invaluable contribution in this field, and highlights the need for an efficient mechanism to 

index spatial information based on location.  For a full description the .geo proposal, please 

refer to [Reddy et al. 2000a][SRI Internet Initiative 2000]. 

 

4.3.2. A standardised spatial data transfer format - GML 

As part of the OGC’s development of specifications for sharing geospatial information and 

providing geospatial services, it developed the Simple Features Specification (see section 

4.2.3) based on the Feature and Geometry models of the OpenGIS® Abstract Specification.  It 

has subsequently developed an XML encoding of the Simple Features Specification, called 

the Geographic Markup Language (GML 1.0).  GML is an open standard for marking up 

geospatial information, including both properties and the geometry of geographic features.  It 

allows one to deliver geospatial information as distinct features, as well as specifying how the 

features are to be displayed (using a particular stylesheet) [Galdos Systems Inc. 2001]. 

 

GML is not a presentation format, but must be styled for presentation e.g. to Scalable Vector 

Graphics (SVG) or X3D (see section 5.1.1.3), using an appropriate style sheet.  It is therefore 

possible for users to view the resulting maps using a standard browser (once the relevant 

plug-in has been installed, e.g. SVG plug-in from Adobe), negating the need for a proprietary 

client-side GIS application to visualise the geospatial data.   
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Figure 4.3  illustrates how GML data can be displayed in a standard, XML-enabled Web 

browser using an XSLT stylesheet that maps the GML data into an appropriately represented 

SVG image.  The manner in which GML data is displayed, is determined by the creator of the 

GML to SVG stylesheet.  It is therefore possible to have a number of different stylesheets for 

the same type of feature, e.g. one stylesheet may represent roads as a thin black line, whereas 

another stylesheet may represent roads using a thicker, red line.  It is also possible for 

stylesheets to map the same GML feature to different SVG-based symbols, depending on the 

purpose of the map.  Figure 4.4 shows the intended use of GML in the RADGIS architecture. 

GML is intended to enable the transport and storage of geographic information in XML and 

is anticipated to provide greater interoperability between GIS applications, to enable linked 

geographic datasets, and make a significant impact on the ability of organizations to share 

geographic information with one another.  Although a relatively new technology, GML has 

already been hailed as a success, and according to [Wang et al. 2001] “GML represents one 

of the most visible steps taken by the geospatial community towards the vision of widespread 

spatial interoperability”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.  Displaying GML data in an XML-enabled Web Browser 
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Figure 4.4.  The intended use of GML in the RADGIS architecture  

 

The use of GML rather than static GIF/JPEG images (which contain no geographic encoding) 

has many advantages including: better quality maps; no need to only target Web browsers 

although it can be rendered by most current XML-enabled Web browsers, without the need to 

purchase client-side software; custom map styling (using appropriate stylesheets); ability to 

create editable maps; more sophisticated linking capabilities; better query capability; control 

over content (filtering); animated features; and service chaining [Galdos Systems Inc. 2001].  

Many of these advantages are due to the fact that GML is based on XML technologies.  
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The current version, GML 2.0, now based entirely on XML Schema (XSD), was released on 

20 February 2001 and significantly expands GML 1.0 to include the encoding of complex 

features and feature associations.  GML 3.0, which is to be finalised towards the end of 2001, 

will provide many useful extensions including topographic support, events, coverages as well 

as histories and feature timestamps [Lake 2001a]. These will allow more complex analytic 

GIS processing of GML-encoded spatial and temporal data, which in turn will facilitate the 

development of more sophisticated GIS tools and location services, based on the open GML 

standard. 

 

 

4.4. Interoperable Geospatial Services 
Within the OGC’s specification of geospatial services, it has defined geospatial domain-

specific business objects to ensure that the OpenGIS® Services Architecture can be realised 

with standards-based, Commercial-Off-The-Shelf (COTS) products available from multiple 

vendors [Open GIS Consortium 2001a].  The OGC also envisages that as developers 

implement products with OpenGIS®  interfaces, interoperable geographic applications will be 

composed of components from the OpenGIS®  Services Model and other supporting and 

compatible information services [Buehler and McKee 1996].  

 

Many of the components will be implemented to run locally on the client machine as core 

services (e.g. the OpenGIS®’s GeoSpatial Display Services), as add-on modules, or stand-

alone utilities.  However, there is a strong business case for developing distributed 

implementations of geospatial and image manipulation services - specifically, but not limited 

to, those identified in the OpenGIS®’s Geospatial Coordinate Transformation Services, 

Geospatial Analysis Services, Image Geometry Model Services, Image Synthesis Services 

and Image Understanding Services.  For a full list of Geospatial Domain Services as 

classified by the Open GIS Consortium, please refer to [Open GIS Consortium 1999b].  This 

view has recently been confirmed when it was announced that the Open GIS Consortium's 

Interoperability Program for 2001 was focusing on defining a Web Services architecture that 

would support the deployment of spatial services using WWW Protocols [Doyle 2001].   
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4.4.1. Motivation for the development of distributed implementations of 

interoperable Geospatial Services 

In addition to the benefits derived from the ability to invoke location-transparent 

interoperable geospatial services, there are two main areas in which the use of distributed 

objects has the potential to optimise the execution of geospatial services: one is speeding up 

the processing of a particular service by using parallel processing or executing the service on 

a faster (remote) platform; and the other is reducing bandwidth requirements when one is 

making use of data from the internet, by performing as much of the processing as possible 

“close to” the data source. 

 

4.4.1.1.  Faster processing 

Consider the following scenario, which would provide an extremely useful service to 

organizations that cannot afford to purchase expensive GIS software or powerful 

processing platforms.  A fairly common geospatial operation would be to perform 

viewshed analysis on a particular spatial dataset, i.e. determine all possible locations that 

are visible from a particular point.  However, depending on the type of work done by the 

user, it may not be a tool that is used often, and would almost certainly not be included in 

most “lite” GIS applications.  It would also probably not warrant purchasing a large GIS 

application if this were the only “advanced” feature required.   

 

There are two possible implementation solutions that are both catered for using our 

approach to the runtime integration of new services into our proof-of-concept system.  

The first is to allow the user to download and integrate a local version of this tool, and the 

second is to enable the user to download and integrate a front-end interface to a remote 

implementation of this tool.   

 

It is the latter option that we will consider now, as it is the more complex solution, and 

has the potential to provide the additional benefits, not available to the version that would 

run on the client machine.  Thus we will discuss the ability to perform the viewshed 

analysis remotely, on a faster machine located across the Internet, without having to 

purchase a local copy of the viewshed tool, or an entirely new GIS application that 

supported this operation. 
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Viewshed analysis, or line-of-sight mapping, is a computationally expensive operation 

that draws a line from the point of interest (e.g. Point A in figure 4.5 ) through each 

location, or cell, in a raster image to determine the slope between the two points (e.g. 

from Point A to Point B  in figure 4.5).  If any of the cells between these two points has a 

height value greater than the interpolated height value from the slope at that location, then 

the point being examined (Point B) is not visible from the point for which the viewshed is 

being performed (Point A).  In figure 4.5 , Point B is not visible from Point A because 

the height value of an intermediary cell, at Point C is greater than the interpolated height 

value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.  Viewshed Analysis Example  

 

Even the most efficient algorithms are still at O(n2 log n) [Kreveld 1996].  A recent 

viewshed analysis of a line with 47 points on a 20.2mb uncompressed geotiff image on a 

Pentium II 400Mhz PC with 64mb of RAM (our standard laboratory machine) took 

roughly 12 hours to complete.  The same viewshed operation took less than 8 hours to 

complete on a Pentium III 450 Mhz with 256mb of RAM (considered a server-type 

machine for the purposes of this discussion).   
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It is not always possible to provide server-like processing power on the standard desktop 

machine, and therefore, for processor intensive operations, one should consider the 

possibility of performing the same operation on a remote machine with more powerful 

resources.  However, the main consideration would be the time taken to upload the data 

from the client machine to the machine where it is to be processed, and the time taken to 

download the result once the calculation has been completed.   

 

The data source used by the viewshed tool was a 20.2mb GEOTIFF image that could 

have been compressed to 2.8mb, for transmission over the Internet, using the ZIP 

compression algorithm.  The resultant image would be roughly the same size.  If one 

assumes a modest transfer speed of 5kb/sec, the time taken to download the 2.8mb input 

and upload the 2.8mb result is less than 20 minutes in total, including the time taken to 

compress and decompress the GEOTIFF data.  Even without compressing the original 

dataset, if one calculates the time taken to transfer the data to the server, and the resultant 

image back to the client, it would still have been worthwhile sending the data to the 

remote machine for processing (8 hours versus 12 hours).  In addition, the client’s 

machine is free for further processing during this time. 

 

Apart from the potential performance benefits illustrated above, this approach also 

provides accessibility to different vendor’s implementations, possibly using different 

algorithms, dynamic upgrading, finer licensing granularity as well as different pricing 

models that may even include guarantees of Quality of Service in terms of speed or 

accuracy with which the algorithm is executed.  For an in-depth discussion on the 

implications of developing (distributed) component-based applications on licensing and 

pricing models, refer to section 5.5 .   

 

4.4.1.2.  Reduced bandwidth requirement 

While rapid advances are being made in creating faster processors, it is ultimately the 

legacy Internet networking structure that will create the bottleneck to high-bandwidth 

multimedia applications [Preston et al. 1998a]. 

 

A potential solution for reducing the high demands made on Internet bandwidth may lie 

in processing more information on the server side, to reduce the amount of extraneous 
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data that gets downloaded across the Internet to the client.  This optimisation technique 

has tremendous potential in Internet-based GIS applications because GIS data sets are 

often extremely large, and the user is only interested in a small subset of this information.   

 

It is also extremely likely that in the near future Data Providers will implement, or at least 

offer, distributed processing of GIS services that could be used in conjunction with their 

datasets.  The benefits from this coupling include increased customer loyalty, and a 

decrease in the overall processing time, by negating the need to first transfer the data from 

the Data Provider, across the Internet, to a separate GIS Service provider before the 

geoprocessing can begin. 

 

This approach also has the following inherent security benefits associated with it: 

?? The user cannot gain unwanted access to the underlying data, i.e. only the GIS 

tools executed on Server machines have access to the data sets.   

?? The user cannot download, pirate and/or reverse engineer a particular GIS tool 

because all code for executing the tool remains on the server at all times. 

 

It is totally reasonable for a data provider to offer the ability to perform GIS operations on 

a dataset without ever allowing direct access to the data itself.  For example, one may use 

an Internet-based GIS to select a suburb of a city, add a coverage detailing the road 

structure together with names, and download the resultant street map in the form of a 

GIF/JPEG image.  The image was created using the data and services provided by a map 

service provider, but at no stage did the client have access to the underlying GIS data.  

This allows a data provider to provide inexpensive maps to clients without divulging the 

underlying dataset.   

 

The sale of GIS data is often accompanied by copyright restrictions that prevent the 

purchaser from redistributing the dataset in its original form.  Therefore, instead of not 

allowing any type of access to a dataset, highly controlled access could be provided 

through specific GIS services that do not provide access to the underlying dataset.  This 

approach would allow service providers to offer value-added GIS services that make use 

of the purchased data set, without contravening the licensing agreement. 
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A data provider might sell a dataset to other data vendors/GIS consultants for large sums 

of money, or retain exclusive access to the dataset to maintain competitive advantage.  

Consider the following scenario: Company A, has a detailed Digital Elevation Model 

(DEM) of the Eastern Cape that they have invested a lot of time and money in developing 

so that they can offer consultancy services for the Coega project1.  They do not wish to 

make the dataset available for fear of it being pirated, and someone else undercutting their 

bid for consultancy contracts.  However, they also realize that there is money to be made 

from allowing other GIS experts, (hopefully) in different fields, to make use of their 

dataset.  Therefore they develop and deploy a suite of CORBA services that allow clients 

to make use of the underlying dataset without providing direct access to the data.   

 

Now consider the case where another GIS consultant, needs to perform a viewshed 

analysis to minimise the visual impact of erecting electricity pylons, but does not have 

his/her own DEM of the particular region in the Eastern Cape.  He/she could either obtain 

the necessary terrain maps, digitise the area of interest and then use the data in his/her 

own GIS application (that supported the viewshed analysis operation), or simply use the 

viewshed service exposed by company A.  The exposed service need only allow him/her 

to specify the bounding co-ordinates of the area of interest, and the envisaged positions 

for each of the pylons.  It would then return the result of the viewshed operation as a 

GIF/JPEG illustrating the visual impact.  Thus company A is able to share their data and 

generate income without relinquishing exclusive access to their DEM. 

 

An alternative to the implementation of suites of services by data providers, is for data 

providers to facilitate the use of mobile agents by customers.  The mobile agents would 

be allowed to move the code of a GIS service to the data provider’s machine for 

execution.  This reduces the responsibilities of the data provider, e.g. not having to license 

GIS service software, or ensure that the software provided produces accurate results.     

 

                                                 
1 The Coega project is a major industrial development that involves the building of a new 

deepwater port on the Coega River, near Port Elizabeth, South Africa.  For more information 

refer to the Coega Development Corporation, http://www.coega.co.za 
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Thus a range of possibilities are available to data providers, depending on their size and 

their willingness to diversify their core business to include the provision of GIS services.  

It is highly likely that large data providers might decide to invest in software that will 

facilitate client access to GIS services in addition to the data that they provide.  However, 

smaller data providers might decide to allow (registered) clients to send mobile agents, 

which implement specific GIS services, to their intranet to perform a particular operation 

on their datasets locally.   

 

Appendix A contains further information regarding the use of Mobile Agents in GIS that 

formed part of our research, but is not directly relevant to the focus of this thesis. 

 

 

4.5. GIS and Location Services 
The recent media focus on mobile devices, and in particular mobile phones, has sparked 

tremendous interest within industry over the business potential for (Mobile) Location 

Services.  The goal of Location Services1 [Koeppel, current], a combination of Web, wireless 

communication and GIS technologies, is to allow one to exploit location information 

anywhere, anytime, and on any device.   In its broadest sense, a location service may be 

thought of as any application or service that extends spatial information processing, or GIS 

capabilities, to end users via the Internet and/or wireless network. 

 

In contrast to GIS applications, location services are particular applications of spatial and 

analytic functions found in GIS applications, that filter their content or change their 

behaviour, based on the user’s (specified) location.  Thus, location services build on the 

existing underlying GIS functionality found bundled in current GIS applications.     

 

                                                 
1 For more information regarding Location-Based Services please refer to the Location 

Interoperability Forum at http://www.locationforum.org, and the Open Location Services 

Initiative at http://www.openls.org 
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Location services hide the complexity of GIS tools from the user, by providing an easy-to-use 

interface for a specific service.  This interface makes use of one or more GIS tools behind the 

user’s back in order to provide the location-based service, and thus no longer requires that the 

user be knowledgeable in geography or cartography.  In fact, if the user interface of a 

Location Service is simple enough, very little computer literacy is required for a user to be 

able to make use of complex GIS operations. 

 

While the development of location services is a big step forward in its own right, it also plays 

a very important role in highlighting the intrinsic value of location in data, as well as the need 

to develop re-usable GIS components based on open systems. 

 

Our research focuses primarily on developing a framework that allows the user to create their 

own customised, scaled-down GIS application, which contains only the tools required for 

their particular need.  However, it could just as easily facilitate the development of small, 

specialised GIS-type applications that provide location services.   

 

Thus, our RADGIS architecture could also used to create a framework in which one could 

combine location services to create more sophisticated tools, as well as allowing further 

processing of the results obtained from location services.  For example, one could access a 

Real Estate Location Service that provided a map showing a number of houses that were for 

sale, and then overlay a map provided by a traffic routing location service to determine the 

level of congestion on the roads between each of the houses for sale and one’s work 

premises.   

 

There are many issues that need to be addressed in order for location-based services to be 

successfully implemented and widely utilised, especially via the Mobile Internet.  These 

include generic hardware issues such as the ability to display 2D and 3D images, limited 

bandwidth, and the relatively low processing power and small memory capacities of most 

mobile phones.  However, there are also three main back-end issues that hold the key to the 

successful implementation of location-based services, namely: 

1. exposing location-based data and GIS operations,  

2. providing a simple mechanism for content developers to create and deliver new 

location services, as well as to integrate location into existing applications, and 
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3. creating searching mechanisms based on semantics, rather than simply syntax or text-

based searches. 

  

Ideally, location service developers should be able to develop new location services without 

the unnecessary duplication of existing GIS functionality.  Thus the development of location 

services requires that the GIS tools and data sets be “exposed” efficiently to ensure that the 

creation of location services is simplified.  Some potential solutions to the issue of exposing 

location-based data and services are covered implicitly in section 4.3.1 (.geo proposal) and 

section 4.6  (Catalog and Registry services).  The second issue is touched on briefly through 

discussions of how DGCML can be used to develop and deploy location services easily (see 

section 5.2.5), and how our RADGIS architecture may be applied to the creation of a client-

side framework for integrating location services.  However, the notion of searching location-

based data using semantics (or location synonyms) is not dealt with elsewhere in this thesis 

and therefore warrants discussion now. 

 

4.5.1. Searching location-based data  

When accessing location services, mobile device users may have their location encoded 

automatically by the device or the service provider, using a standardised format.  However, a 

location service user may wish to specify a location explicitly.  This could be done in a 

number of different ways, such as by specifying a longitude/latitude pair, town/city name, 

suburb name, postal code, or telephone area code, and with varying degrees of precision, i.e. 

city versus suburb.  For searches based on location, it may be advantageous to allow a user to 

match all these references to, or synonyms for, the same geographical location.   

 

In addition, much of the data currently available on the Web contains a relatively high level 

of intrinsic location-based information.  It therefore makes sense to make this existing 

information available via “intelligent” searches, rather than requiring that all the information 

be reformatted to include an explicit spatial reference before it is made available for use by 

location services.   
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The creation of “intelligent” searches, based on semantics rather than simply on keywords, 

removes the requirements that:  

?? users format their location-based queries using a standardised geocoding, and  

?? existing data, which contains implicit location information, be reformatted to include 

an explicit spatial reference. 

 

An “intelligent” search, based on location semantics, could be implemented by simply 

searching a database of equivalent location encodings for a given location.  The “intelligent” 

search would therefore be split up into multiple smaller searches based on location synonyms, 

enabling the use of existing location-based information that might not otherwise have been 

included in the result set.  For example, given a search containing a postal code and a name, 

the search would also return information about that name based on the location inferred by 

the postal code, rather than simply returning a list of all documents that contain the name and 

the postal code explicitly as text.   

 

More sophisticated searches that provide GIS-type “near” or “within” functionality could also 

be used in conjunction with existing intrinsic location-based data, but these searches would 

require additional pre-processing and could potentially create a large number of sub-queries. 

 

 

4.6. Exposing GIS Services efficiently 
The inability to discover and access geospatial data and geoprocessing tools in a simple 

manner, drastically reduces the effectiveness of GIS applications.  The next generation GIS 

model will provide a distributed environment in which data and services are added, updated 

or removed dynamically.  It is therefore necessary to provide a mechanism to reduce the 

complexity of keeping track of these events, and to allow users to access data and services 

transparently.   

 

CORBA, DCOM, RMI and EJB provide naming/registry services that allow client 

applications to locate distributed objects by name.  However, other than the use of the 

CORBA Trader Service, which is a directory service, these technologies do not provide a 

mechanism to register objects with attributes or meta-information.  Such information is useful 
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for distinguishing objects with the same name, or for performing queries based on distributed 

objects’ properties.  

 

Catalog and Registry services allow the registration of geospatial data and services by data 

and service providers.  The use of a Catalog or Registry service to discover data or services, 

makes it is possible to change the location of where the data is stored or where a service is 

executing by simply editing the appropriate entry in the Catalog or Registry.  It is not 

necessary to update all the clients that make use of the data-source or service.  This change in 

the location of where the data is stored or where the geoprocessing is taking place is therefore 

transparent to the end-user.    

 

Much work has been done to allow users to index and search spatial data, such as Catolog 

services.  However, very little work has been done to provide a unified mechanism for 

registering GIS services, which have been developed using different distributed object 

technologies, with their associated meta-information.  Such a mechanism is urgently needed, 

as it is imperative that distributed GIS services are advertised effectively and efficiently.  We 

believe that there are two mainstream technologies that have the potential to fulfil this role, 

namely LDAP and UDDI. 

 

4.6.1. LDAP 

The Lightweight Directory Access Protocol (LDAP) is an extensible client-server protocol 

and information model that allows one to access and manage information in a tree-structured 

database [Roman 2000].  Each entry in an LDAP server has a distinguished name that allows 

easy identification, and stores associated information as attributes.  Each attribute has an 

associated type and one or more values. 

 

One of the tremendous benefits of using LDAP is that one can create one’s own object types 

and attributes.  This allows you to use LDAP directories for a wide variety of tasks, including 

the ability to register distributed components and services which will be extremely useful for 

advertising our GIS services developed using DGCML.  For more information on LDAP, 

please refer to [Wahl et al. 1997] 
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4.6.2. UDDI 

The Universal Description, Discovery, and Integration (UDDI) standard is a repository-based 

directory service for sharing business information, which includes the ability to find and 

access the applications or Web Services they expose.  The services registered with a UDDI 

server can be deployed in a private (internal) or public (external) manner depending on 

whether one wishes to share the services within an organisation only, or throughout the Web 

[IBM 2001].  For more information on UDDI, please refer to [UDDI.org 2000].  

 

However, according to Cimetiere [2001] the ambitions of UDDI might be too broad for it to 

succeed, and because a Web Service is simply another resource, it could just as easily be 

registered with existing technologies such as an LDAP server.  Therefore, while we view 

UDDI as a promising technology for exposing Web Services, the simplicity, efficiency and 

proven track record of LDAP currently make it a more suitable candidate for advertising GIS 

services in our RADGIS architecture.  

 

 

4.7. RADGIS - Our Approach 
In order to overcome many of the problems associated with current GIS architectures, 

outlined in section 1.1  and section 4.1 , we have developed a framework that allows 

interoperable GIS services to be incorporated into a highly-configurable client GIS 

application at runtime.  The proof-of-concept distributed GIS application we have developed 

to demonstrate the feasibility of such an approach has been named RADGIS, due to its ability 

to facilitate the Runtime Application Development of Geographic Information Systems1.   

 

One of the objectives of the project was to avoid vendor specific solutions, and to promote 

interoperability through use of open standards wherever possible.  The RADGIS architecture 

therefore integrates interoperable services and geodata models based on OpenGIS®  standards 

developed by the Open GIS Consortium, that have been presented earlier in this chapter.  In 

particular, we decided to adopt the use of GML as the geospatial data transfer format, and the 

OGC’s Services Architecture to develop runtime-extensible client-side GIS and Location 

Service applications that are based on vendor-independent, interoperable GIS components.   

                                                 
1 Chapter 5 details how the RADGIS application has been implemented. 
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In the past there have been many efforts to facilitate the accessing of distributed geospatial 

data from different vendors.  However, our RADGIS client architecture is an attempt to allow 

users to not only make use of geospatial data from different data providers, but also 

distributed GIS services.  Because RADGIS is a runtime-extensible architecture that can 

invoke methods on distributed GIS tools, it is a hybrid of the client-side and server-side GIS 

architectures discussed in section 4.1.1 and section 4.1.2, which provides a high level of 

location-transparency for accessing both data and services.  Using this approach, the 

RADGIS architecture is able to draw on the advantages provided by both client-side and 

server-side GIS architectures, as well as overcome many of their respective disadvantages1.  

The resultant advantages and disadvantages of the RADGIS architecture are listed in table 

4.5, and more comprehensive summary of benefits is presented in section 6.6.   

 
 
 

 
 Advantages to RADGIS Architecture   
 

?? Significantly reduces application bloat by providing a small, 
extensible client framework. 

?? Adherence to OpenGIS® standards to ensure interoperability with 
future OpenGIS®-compliant components. 

?? Platform independence using Java, CORBA and EJBs (CORBA 
also provides language independence). 

?? High level of location transparency when accessing distributed 
data and services. 

?? Significant GIS functionality can reside on distributed servers.  

?? Data sets can be obtained from multiple distributed data servers. 

?? Georeferenced raster and vector data can be used, i.e. not 
restricted to using static images, e.g. GIF and JPEG.  

?? Highly customisable GUIs for individual services.  

?? Not restricted to single-click operations.  

 

                                                 
1 See tables 4.1 and 4.2 for the advantages and disadvantages of server-side and client-side 

architectures. 
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?? Centralised administration of data and GIS services is possible, 
reducing total cost of ownership.  

?? Excellent performance for operations that occur locally.  

?? Ability to perform processing remotely can eliminate need to 
download large data sets across the Internet. 

 

Disadvantages to RADGIS architecture  
 

?? Cannot be accessed with standard Web browser 

?? Requires users to obtain additional software  

?? Users must wait for software to download.  However, since most 
of the services may be accessed remotely, often only the small 
DGCML descriptors for a service need to be downloaded.  

?? Overall performance can be low with large data sets, but the 
RADGIS architecture promotes a distributed model that would 
allow the RADGIS client distribute the workload for certain 
operations.  

 

 

Table 4.5.  RADGIS Architecture advantages and disadvantages 

 

A similar vision is shared by the Defence Science and Technology Organisation (DSTO).  As 

part of the development of their Geospatial Service Segment Architecture (see figure 4.6), 

they are also exploring ways of using software components to build large systems, instead of 

designing monolithic applications that are obsolete before they are deployed.  They have 

decided to make use of CORBA and have adopted the OpenGIS®  Simple Features for 

CORBA implementation specification as their interface for accessing Geospatial Information  

[Davis 2000]. 
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Figure 4.6.  The Geospatial Services Segment Vision [Ekins and Davis 1999] 

 

While traditional GIS applications are well-suited to GIS experts, there is a growing 

realisation that there are a number of users, in a variety of fields, who require spatial analysis 

tools similar to those found in GIS applications.  These users generally require only a small 

subset of the functionality provided by traditional GIS applications, and do not necessarily 

wish to become experts in GIS in order to make use of GIS applications.  Our RADGIS 

architecture therefore allows the development of small, client-side GIS applications that can 

be customised to suite different user domains, e.g. hydrology, geology, forestry, and 

according to different user’s level of expertise.  However, as the user’s requirements change, 

or their level of expertise increases, it is possible for the user to add new functionality to the 

RADGIS client as well as to customise the services according to his/her needs or preferences. 

 

We have developed a novel approach to the integration of interoperable GIS components at 

runtime, using client-configurable XML descriptors for deploying GIS services, based on our 

Distributed GIS Component Markup Language (DGCML).  The GIS components may be 

implemented as Java objects that are packaged in JARs, which are downloaded and run as 

client-side services, or as distributed objects that reside on server machines, e.g. Common 

Object Request Broker Architecture (CORBA) Objects or EJB’s.  DGCML is used to wire-

DSTO: The GSS VisionDSTO: The GSS Vision

End User 
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together local and remote GIS components to create services that can be added and removed 

by the GIS application at runtime.  In addition, these services can be edited using a simple 

text editor, at runtime, if customisation is desired. 

 

Therefore, the RADGIS architecture addresses the following problems found in most 

traditional GIS applications: 

?? Application bloat –  It is possible for the RADGIS client to initially implement only 

the very basic GIS services needed for data visualisation.  However, its extensible 

nature allows users to add and remove tools, as and when required.  Thus the user 

does not have to purchase a very large (and generally expensive) GIS package, which 

contains a great deal of functionality that will never be used. 

?? Usability – The ability to add tools is as simple as selecting the required tools from a 

menu or web-page.  The novice user can make use of a service without any 

knowledge of how the service has been created from distributed components, while 

the expert user has the ability to customise the service by simply editing the DGCML 

descriptor file. 

?? Interoperability –  RADGIS provides the ability to add services composed of 

interoperable distributed components developed independently by different vendors. 

?? Location Transparency – RADGIS allows the processing of data to be performed 

wherever it makes most sense, without the user necessarily being aware of the 

physical location of the tool that is performing the processing. 

 

The ability to specify GIS services using DGCML allows method-calls invoked by a 

particular service to be made on objects executing locally or on objects implemented as 

CORBA objects or EJBs residing on remote machines.  If alternate codebases are provided 

for a particular service, it is possible for the RADGIS system to elect which codebase to use, 

based on the location of the data to be processed.  This is advantageous because, even if 

certain GIS functionality has been installed locally as part of the RADGIS application, should 

it make sense to perform that operation on data that resides at a remote location, it is possible 

for the user to invoke a remote implementation of that service transparently.  An example of 

where this may be mandatory, rather than simply for convenience or a matter of optimisation, 

is when one wishes to obtain data from a data provider who does not want to provide direct 

access to the data, but only allows access to the data through certain GIS operations that 
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return static images or data at a particular resolution.  Therefore RADGIS affords the user a 

high level of location transparency when performing geoprocessing operations. 

 

Figure 4.7  below details the use of our proof-of-concept GIS application (RADGIS) based on 

highly interoperable (distributed) components developed using our Distributed GIS 

Component Markup Language (DGCML), the OpenGIS® Services Architecture, and the 

Geographic Markup Language (GML). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.  RADGIS: A highly distributed component-based GIS 

It is generally accepted (see section 1.2 and section 1.3.3) that future GIS applications will 

become distributed, disaggregated, decoupled and interoperable.  The implementation of 

distributed interoperable components will ensure healthy competition between vendors and 

will allow end users to easily replace the implementation of a particular service with another 

superior or cost-effective service.  The use of interoperable components also facilitates the 

development of highly scalable systems, and the packaging of particular services, resulting in 

lower costs and products tailored for specific end-users’ requirements.  Clearly the RADGIS 

architecture embraces these ideals, and goes further by providing a runtime-extensible 

framework that allows users to add services based on open standards to the client application, 

which were not known about at compile-time. 
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4.7.1. Use-case scenarios 

With the aid of figure 4.7, we will now sketch a few typical use-case scenarios to illustrate 

the flexibility and usefulness of the RADGIS architecture, over traditional GIS applications. 

 

For the first scenario, let us assume that during the course of performing a particular GIS 

operation, a user discovers that they do not have a particular GIS tool necessary to complete 

the operation.  If the user was using a traditional GIS application that did not support that 

particular operation, his/her options might include outsourcing that operation, obtaining a 

different GIS package, or downloading and installing an additional module, which 

implements that GIS tool, for their existing GIS.  However, using the RADGIS architecture, 

the user would be able to search a GIS tool repository, and depending on whether the tool 

was required to execute locally or remotely: 

?? add that tool to the local client-side GIS (e.g. GIS Tool Z).  This is similar to 

downloading an additional module except that the vendor of the tool need not be 

the same as the developer of the client-side GIS framework, and that RADGIS 

allows for greater levels of customisation and integration than might otherwise be 

possible when installing additional modules.  

?? add a reference to a remote tool (e.g. GIS Tool A or C) which would be invoked 

transparently through the user interface which would be generated from the 

DGCML descriptor for that tool. 

 

For the second scenario, consider once again the viewshed analysis example, given in section 

4.4.1.1 , which illustrated the ability to make use of distributed processing on a server 

machine to increase the speed of performing a particular operation.  If, for example, one 

extended the scenario to assume that the user wished to perform the viewshed analysis of 47 

points (representing pylon positions) for three different positions, it would generally be 

necessary to perform three sequential viewshed analysis operations.  Using a standard 

laboratory machine, as described in the example in section 4.4.1.1 , this would take 

approximately 36 hours of processing (3 x 12 hours per viewshed analysis) to complete.  

However, because each viewshed analysis is independent of each other, the ability to make 

use of 3 different distributed viewshed analysis services simultaneously, i.e. parallel 

processing, would allow the user to compare the three resultant images in approximately 8 
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hours (assuming each analysis is performed on a server that provides the same performance 

as obtained in the example in section 4.4.1.1). 

 

For the final scenario, consider the ability of the RADGIS architecture to allow a user to 

make use of a distributed GIS tool implemented by a Data Provider that does not wish to 

allow direct access to the underlying data set.  For example, a user wishes to make use of data 

(e.g. stored in Data Source A), but the only access to it is using GIS tools (e.g. GIS Tool A) 

implemented by the Data Provider.  The ability to download a DGCML descriptor that makes 

use of that GIS tool allows the close integration of that tool with the RADGIS client, and 

provides the ability to invoke the necessary functionality via a GUI generated by the 

RADGIS client, according to the DCGML descriptor for using that tool. 

 

 

4.8. Summary 
This chapter has presented work being done by major standardisation bodies and large 

corporations in order to ensure interoperability of GIS components and applications, as well 

as a brief overview of GIS architectures, and products currently available, together with their 

associated advantages and disadvantages.  

 

The relatively new research topic of Location Services was introduced, as it will have a major 

influence on the architecture of future GIS applications due to its heavy reliance on re-usable 

GIS components.  We also highlighted some of the backend issues that will have a significant 

influence on the future success of location services.  In particular, we stressed the need to 

make geodata and geoprocessing components easily accessible through initiatives such as the 

.geo  proposal, and the use of Catalog and Registry services. 

 

A number of problems with current GIS architectures were highlighted that illustrated the 

need to develop a flexible GIS architecture that can be adapted to the requirements of users 

who work in different application domains, with varying levels of competency.  These factors 

were the motivation for the development of our RADGIS application, which facilitates the 

use of distributed data and GIS services in a location transparent manner.  The RADGIS 

architecture was described, together with its associated benefits and how it overcomes many 

of the problems associated with traditional GIS architectures. 
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In the next chapter we discuss how the RADGIS architecture was implemented in more 

detail.  In particular we focus on the development of our Virtual Grahamstown data set using 

VRML and the visualisation of this 3D geospatial data, which formed the basis of our initial 

research into Virtual GIS, as well as the development of GIS services using DGCML, which 

can be integrated into the RADGIS client at runtime. 
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Chapter 5  

Implementation of the RADGIS Application 
 

 

“The best way to predict the future is to invent it.” 

Alan Kay 

 

 

A GIS must support both computational and display facilities as it allows the user to compute 

and display information about geographic features.  Therefore, in the development of our 

RADGIS application, our research has focussed on both the visualisation of 3D geospatial 

data as well as the runtime integration of GIS services, for the analysis of that data, which 

may be executed locally or on a remote GIS server. 

 

This chapter will therefore present a detailed description of how we implemented our 

RADGIS proof-of-concept application, and will provide insight into: 

?? the development of our “Virtual Grahamstown” 3D data set using VRML;  

?? the design considerations that resulted in our choice of Java3D for rendering the 3D 

data; 

?? the implementation-specific details of our DGCML meta-language; 

?? how one could use DGCML to create a location service; and 

?? how we have made use of Java’s Reflection API to allow the runtime addition and 

execution of GIS services that are developed and deployed using DGCML. 
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The factors that influenced the design of RADGIS as a client-side application, rather than a 

Java applet, have much to do with problems associated with the visualisation of 3D 

geospatial data.  The use of VRML as a mechanism for facilitating the creation of Web-based 

Virtual GIS was the focus of much of our early research.  Therefore this chapter presents two 

major areas of research that we have undertaken.  The first section presents the issues 

associated with the visualisation of 3D geospatial data, while the second section focuses more 

on the implementation details of the runtime extensible framework provided by RADGIS for 

the integration of GIS services that have been developed and deployed using DGCML.   

 

 

5.1. 3D Visualisation of Geospatial information 
Most current Geographic Information Systems are static 2D, map-based systems with non-

interactive response rates when displaying high-resolution maps.  More recently, however, 

there has been a trend towards implementing interactive 3D GIS applications with the aid of 

improvements in 3D graphics software and hardware, efficient new terrain visualisation 

algorithms and, possibly most importantly, the tremendous interest in using VRML to display 

geospatial information on the Web. 

 

This move towards greater use of 3D spatial data, and the inclusion of temporal data in the 

quest for the development of a spatiotemporal Geographic Information Systems, is a logical 

step in the evolution of Geographic Information Systems, providing a graphical insight into, 

and graphical analysis tools for analysing, large volumes of spatiotemporal data. 

 

5.1.1. Rendering of 3D spatial information 

Within the GIS domain there are two main binary formats for representing 3D geospatial 

information, namely Digital Elevation Models (DEM) and Triangular Irregular Networks 

(TIN).  Since the mid 1990s, three-dimensional or Virtual GIS on the Web [Rhyne 1997] has 

been regarded as a promising alternative to traditional GIS applications.  One of the obvious 

requirements for implementing such systems is the need for a simple mechanism for viewing 

3D geospatial data without requiring a GIS client application.   
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The use of VRML for distributing and visualising geospatial data has received a lot of 

attention due to its simplicity, cost-effectiveness and wide accessibility [Kim et al. 1998] 

since it is an open standard (ISO/IEC 14772).  This can be seen by the large number of 

research papers that have been published on this topic, such as [Fairbairn and Parsley 1997] 

[Dykes et al. 1999] [Rhyne 1997].  In addition, due to the popularity of VRML for modelling 

geospatial data, there are now a number of GIS products and conversion utilities available 

that are able to convert information stored as DEMs or TINs to VRML.  

 

5.1.1.1. VRML and Cartography 

The Virtual Reality Modelling Language (VRML1) is a vocabulary for the animation and 

modelling of 3D geometric shapes.  It has become a widely accepted standard for 

interactive 3D information interchange on the WWW.  VRML allows one to incorporate 

many different types of data, including text, diagrams, graphs, audio and video, together 

with 3D models, seamlessly within the 3D world.  This, together with the ability to 

communicate 3D worlds across the Web, provides significant flexibility for the sharing of 

three-dimensional data sets, and enables VRML to provide an open standards alternative 

for displaying geospatial information.  (For more information about VRML, refer to  

[VRML97] [Nadeau 1997] [Marrin and Cambell 1997]) 

 

A number of projects have been undertaken that successfully make use of VRML to 

visualise geographic data, such as [Fairbairn and Parsley 1997] [Martin and Higgs 1997] 

[Rhyne and Fowler 1998].  One such example is that of Buziek and Hatger [1998], who 

developed an interactive spatiotemporal 3D animation, using depth and tide information 

for the Elbe estuary over a 12 hour period, in order to investigate the cartographic 

potential of VRML for geo-referenced cartographic applications.  According to Buziek 

and Hatger [1998], VRML is suitable for  modelling geo-referenced 3D worlds, but also 

has some limitations.  The most serious of these limitations is that VRML currently only 

supports 32 bit float values, which limits the precision to 7 digits.  This accuracy is not 

adequate for geodetic coordinates, and thus world coordinates have to be shortened.   

 

                                                 
1 All references to VRML in this dissertation refer to the ISO/IEC 14772 or VRML97 

specification. 
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Another major limitation of using VRML for cartographic representation on the Web is 

the large amount of data to be transferred.  However, VRML provides a number of 

optimisation techniques that can be employed to help overcome or at least reduce the 

effective bandwidth required for visualising data sets over the Web, including 

compression, inlining, level of detail (LOD) management, and ShapeHints1.  In addition, 

a number of nodes2 have been developed by the GeoVRML task group, which looks 

specifically at the representation of geographical data in VRML, to facilitate the efficient 

visualisation of large terrain models in 3D. 

 

5.1.1.2. GeoVRML 

Like VRML, GeoVRML is an official working group of the Web3D Consortium.  

However, its focus is on extending VRML as well as developing methods and tools for 

the representation of geographical data from disparate servers across the web, possibly 

generated from different sources, at different resolutions, and specified in different 

coordinate systems [Reddy et al. 2000c].   

 

According to Reddy et al. [2000b], GeoVRML addresses most of the concerns raised by 

Dykes et al. [1999] regarding support for cartographic applications in VRML.  It does this 

by overcoming the shortcomings of VRML, and providing additional functionality with 

respect to representing geospatial information, such as [Reddy et al. 1999a] [Reddy et al. 

2000b]: 

?? Support for data in various geospatial coordinate systems;  

?? Scalability – facilitating the integration and use of data from large geospatial 

databases that are distributed over the web.  

?? Providing the capability of representing large quantities of terrain and other 

related data;   

?? Preservation of the original geographic data; 

?? Management of multiple levels of detail of geospatial data; and  

                                                 
1 See Appendix B for a more in-depth description of these optimisation techniques. 
2 See Appendix C for brief descriptions of these GeoVRML nodes. 
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?? Accuracy – overcoming the limitations of VRML's single-precision floating-point 

support.  

 

This is achieved through extensions to the VRML syntax (using the VRML PROTO 

node), which implement nodes that support the efficient and accurate representation, as 

well as rendering of large terrain models.  More information about the GeoElevationGrid, 

GeoCoordinate, GeoLocation, GeoOrigin, GeoLOD, GeoInline, GeoPositionInterpolator, 

GeoTouchSensor, GeoViewpoint and GeoMetadata nodes can be found in appendix C. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.  Screenshot of scenes developed using GeoVRML [Reddy 2000] 

 

The work that has been undertaken by the GeoVRML workgroup in the development of 

GeoVRML, and its acceptance as a Web3D Consortium “Recommended Practice” goes a 

long way towards being able to accurately represent 3D geographic information that may 

be visualized across the web using a standard VRML browser (with Java support).   

 

5.1.1.3. X3D 

The X3D (Extensible 3D) format, formally known as VRML-NG (VRML Next 

Generation), is an open 3D graphics specification for the Web that extends the 

functionality of VRML97.  The main objectives of the X3D working group include 

ensuring backwards compatibility with VRML97, and the integration of XML.  X3D will 

enable the creation and deployment of visually rich 3D graphics that can be viewed using 

small, lightweight web clients with advanced 3D capabilities.  In addition, due to the X3D 
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working-group’s close interaction with the MPEG-4 group’s ongoing 3D integration 

activities, X3D will add high-performance 3D to broadcast media [Web3D Press Release 

2001][X3D FAQ 2001].   

 

X3D adopts a component-based architecture that supports the extension of the X3D 

vocabulary.  This enables the development of extremely compact 3D clients that can be 

extended with plug-in components/profiles [Web3D Press Release 2001].  There are 

currently a number of profiles that have been developed, including  [X3D FAQ 2001]: 

?? The X3D Core profile (X3D -1) – contains a reduced set of VRML nodes that only 

support simple non-interactive animation and is intended for the widest-possible 

adoption of X3D support.   

?? The X3D-2 profile –  is a larger profile that covers the full VRML specification in 

order to provide support for fully interactive worlds and existing “rich” VRML 

content.  

?? The GeoVRML profile –  which contains support for the GeoVRML nodes listed 

in section 5.1.1.2. 

 

Once GML (see section 4.3.2) supports 3D geospatial data, it is inevitable that a GML to 

X3D stylesheet will be written that will allow GML content to be converted to the X3D 

format for presentation in an X3D browser.  Thus, utilising the necessary XML 

stylesheets, X3D profiles and supporting Java classes, it should become possible to view 

GML, VRML and GeoVRML geospatial data in an X3D browser.  This will be 

particularly useful for the 3D data visualisation approach we have adopted in the 

RADGIS architecture (see section 5.1.2), which currently makes use of a VRML loader 

for Java3D, but which can easily be extended to make use of an X3D loader for Java3D 

when one becomes available. 

 

5.1.2. RADGIS: Data sets and Visualisation 

The general framework for our Runtime Application Development GIS (RADGIS) 

architecture was outlined in section 4.6.  This section, however, provides specific 

implementation details regarding the development of our data set in VRML and the use of 

Java3D for rendering the data, as well as explaining the factors that have contributed towards 

these choices.  
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When we originally started our research, our focus was on the development of a Virtual GIS 

application that was easy to use, and could be used by anyone who had access to a Web 

browser, i.e. no proprietary software.  At that stage VRML was the only open-standards 3D 

visualisation platform for the Web.  Thus, when we created our model of Virtual 

Grahamstown (see section 5.1.2.1), we made use of VRML. 

 

However, VRML itself is fairly limited in the types of operations that it can perform.  This is 

because VRML is not a general-purpose programming language.  It is simply a vocabulary 

for marking-up scene descriptions, which runs entirely within its plug-in environment.  In 

order to make VRML more powerful, it is necessary to make use of the Java programming 

language to program custom application logic that can interact with the VRML scene. 

 

There are two specified methods for using Java with VRML that are supported by a number 

of VRML plug-ins.  One method is through the use of Script nodes, and the other is though 

the use of the External Authoring Interface (EAI).  It was the latter that was of primary 

interest to us, as it provided the desired mechanism for creating custom visualisation Java 

applets that were able to manipulate the VRML Scene Graph in the VRML plug-in, and 

provide customised user interaction and increased functionality.   

 

The interaction between Java code and the VRML plug-in provides a powerful mechanism 

for overcoming some of the shortcomings of using VRML by itself.  An applet can be used to 

effect changes in a VRML world, by providing control over the contents of a VRML 

browser, embedded in a web page.  It does this through the Web browser’s plug-in interface, 

such as Netscape's LiveConnect or Microsoft's ActiveX/COM, which allows objects 

embedded in a web page to communicate with each other.  While VRML plug-ins are not 

required to implement the EAI to achieve VRML 2.0 compliance, several plug-ins have 

implemented it. 

 

Unfortunately, there are a number of problems with using the EAI, which include 

implementation differences between Web browsers, and different versions of a particular 

Web browser, as well as whether or not the VRML browser plug-in supports the EAI.  The 

most serious issue for the development that we originally planned to undertake, which 
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implemented the GIS client as an applet, was the inability for the applet to connect to the 

VRML scene graph if the applet was being run using the Java plug-in.   

 

As we expanded our goals from simply providing a mechanism to visualise 3D geospatial 

data, to include the ability to integrate distributed GIS services implemented using CORBA 

Objects and EJBs, we soon ran into implementation issues due to the lack of support for 

“new” features in the JVM’s of Web browsers.  The JVMs supplied with Web browsers are 

very seldom up-to-date with the latest JVM from Sun, and most only support version 1.1.x of 

the JVM.  This means that some browsers do not support RMI over IIOP, Java Foundation 

Classes, e.g. Swing, or “advanced” GUI features such as Java’s Drag-and-Drop functionality, 

and the Accessibility API.  The use of the Java plug-in therefore became necessary to utilise 

the latest features of an SDK release, rather than wait for them to be incorporated in an 

upgrade to the browser JVM.  The plug-in approach was also attractive, as it did not dictate 

what Web browser or particular version of the browser the user had to install in order for the 

GIS client applet to run correctly.  

 

However, it soon became apparent that what we were trying to achieve was possibly best 

implemented as a client-side application, which incorporated a dedicated 3D browsing 

environment, rather than an applet that accessed an external VRML browser.  This approach 

overcame the security restrictions placed on applets, and the inability for an applet executing 

using the Java plug-in to access the Scene Graph in the VRML browser.  It also simplified the 

integration of local and remote services implemented as DGCML descriptor files that require 

the ability to read and write configuration and helper files, and make network connections to 

multiple machines on which the distributed services were running.   

 

Our current proof-of-concept distributed spatiotemporal GIS client application, RADGIS, has 

therefore been written in Java, for platform independence, and uses Java3D for the 

visualisation of the 3D VRML worlds, thanks to the availability of a VRML loader for 

Java3D.  This decision has proved very useful, as it has also ensured that support for GML, or 

X3D scenes generated from GML using a GML to X3D style sheet, could be added by 

simply adding the appropriate GML or X3D file-format loader for Java3D.   

 

Currently, neither the GML nor the X3D specifications are complete.  While an early version 

of an X3D file-format loader for Java3D does exist [Brutzman et al. 2001], it is not possible 
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to test the overall system, based on GML encoded spatial data, as GML does not currently 

support 3D features and therefore neither a complete GML file -format loader for Java3D, nor 

GML mapping to X3D currently exists.    

 

Since the focus of this research is not on the rendering of 3D geospatial data, we have 

decided not to change file formats until a fully implemented version of the X3D loader 

becomes available.  However, we recognise the short-comings of VRML with respect to geo-

referencing geospatial data and the limitation of single-precision floating-point support, and 

wish to highlight the extensive work being done by the GeoVRML working group to support 

geospatial data rendering based on the VRML and upcoming X3D specifications. 

 

5.1.2.1. Creation of the Spatial Data Set: Virtual Grahamstown  

In order to create the VRML data sets, we made use of an extrude utility written by 

Bangay [1997].  This allowed us to scan in maps of Grahamstown and then "digitise" 

features such as roads and buildings.  Contour maps with roads and outlines of the floor 

plans of buildings, from the Town Planning Office, were used for most of the layout and 

geo-referencing of the roads and buildings.  However, some smaller, more detailed maps 

of the Rhodes University campus were also used for creating more accurate 

representations of buildings on the university campus.  Thus a number of maps covering 

adjacent areas were used in the creation of this model since no one map was capable of 

providing the view of the town in the required detail. 

 

Once the maps had been scanned in, the outlines of the buildings were used as a template 

for specifying the arrangement of the walls.  Using the specialised extrude tool (see figure 

5.1), developed specifically for the purpose of creating the objects in the virtual world, 

these walls were raised to the appropriate levels, and then a roof was added.  The resultant 

three-dimensional volume represents the outside of the building, and is stored as a set of 

polygons that make up the walls and roof of the virtual building. 

 

The two polygon primitives that were used to create the buildings were vertical 

rectangles, used to form most of the walls, and triangles that were used to construct the 

roads and roofs, and any other specialised feature.  Since the outline of the building is 

captured as a sequence of line segments whose end points normally overlap to produce a 
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closed horizontal polygon, it is useful to ensure that the end points of overlapping 

segments are not needlessly duplicated.  Thus points within a small distance from each 

other are identified and merged to form a single common vertex.  

 

Figure 5.2.  Screenshot of Extrude utility 

 

Each line segment in the outline of the horizontal polygon forms a vertical rectangular 

wall in the final virtual building.  An additional parameter must therefore be specified to 

represent the height of the wall, and the absolute height of the building as a whole 

(relative to sea-level or any other convenient reference point) can then be specified as a 

base offset for the entire building. 

 

Since each object will be used together with many other objects in a virtual world where 

the speed of interaction is important, there is a trade-off between the level of detail (LOD) 

of the structures and the final rendering speed.  It is therefore assumed that a simplified 
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outline for the building is sufficient for most objects.  However, should more detail be 

required for a particular object, that object can also be created at a greater LOD and used 

together with VRML LOD and InLine statements to provide a higher level of detail for 

that object (see appendix B). 

 

Once the structures had been created, it was then possible to add colour and to map 

textures to the buildings to add realism to them.  See figures 5.3 and 5.4  for sample 

snapshots from Virtual Grahamstown, which illustrate the realism achieved by adding 

colour and textures.   

 

Colour, as opposed to texture mapping, was used where the significance of the building 

was low, or the building was being drawn at a lower level of detail, or where the texture 

of an area would have been relatively plain.  This reduced the scene complexity and 

increased the speed of rendering the scene.   

 

 

  

Figure 5.3.  A snapshot of selected buildings on the Rhodes University campus  

(looking towards the Grahamstown Monument) 
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Figure 5.4.  A snapshot of the Grahamstown City Hall(Left) and Cathedral(Right) 

 

The use of textures for important landmarks, however, is almost mandatory, and the 

resulting realism is extremely high in comparison with simply using colour.  The texture 

maps for these buildings were obtained by taking still-shots of the actual buildings using a 

video recorder.  While the use of texture mapping is relatively resource intensive, there 

are ways to minimise the effect of using textures within a scene, and to reduce memory 

usage at rendering time.  These include: 

?? Repeating the texture both horizontally and vertically, allowing areas with repeated 

features to be efficiently generated from only a single instance of the texture of that 

feature. 

?? Selecting active areas of the texture allows reuse of the texture maps for cases where 

only smaller portions of the texture are required.  For example a texture used for an 

entrance arch with window above, could equally well be used for a wall with a 

window of the same shape.  
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5.2. Location-transparent GIS Services 
The second part of this chapter shifts the focus to our more recent and innovative work.  As 

outlined in the Introduction (see chapter 1 ), we have identified a number of problems with 

traditional GIS applications, and have therefore developed RADGIS in an effort to provide an 

alternative GIS client architecture that overcomes many of these problems (see section 4.7).  

 

The runtime-extensible RADGIS architecture enables the development of highly-

customisable and scalable GIS clients, that can be tailored by end-users according to their 

domain-specific requirements and level of expertise.  It allows users to make use of both local 

and remote implementations of GIS services that have been developed and deployed using 

our DGCML meta-language.  This facilitates the use of GIS services that may be invoked 

with location-transparency on the local machine or on a remote server, depending on where 

the data that is to be processed is stored.  This is an important capability as data and services 

become more closely integrated, and data providers add value to their underlying datasets by 

providing value-added services, in order to maintain their competitive advantage.   

 

5.2.1. Standardised Metadata for Efficient Integration 

Metadata is extremely important for providing context.  Just as we require information to 

base our decisions on, the more metadata one provides about the GIS components, the easier 

it becomes to integrate them efficiently with the client GIS application.   

 

Software is generally shipped with documentation on how to use it, together with an online 

help system.  Individual software components (both local and remote implementations) 

should be created in the same manner, i.e. each component should have associated 

documentation describing how it should be used, including expected input, output, boundary 

conditions and possibly what algorithm was used in its implementation, as well as having a 

comprehensive online help system.  However, because these components are to be 

discovered, and added to the dynamic application at runtime, as opposed to at development-

time, there is the additional requirement that this information be stored in a standardized 

manner, to facilitate automated retrieval.   
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Two methods for providing information about the GUI and on-line help for each tool, 

implemented as a CORBA object or EJB, were initially considered.  The first was to create a 

standard set of methods that must be implemented by each CORBA object or EJB, e.g. 

getHelp and getGUI.  These methods could in turn query a database and return the relevant 

XML encoded metadata.  The second method, which we decided to adopt, does not require 

any changes to existing CORBA objects or EJBs.  Instead, it provides the metadata about the 

intended use of the CORBA objects and EJBs in a readily customisable XML document, 

using the Distributed Component GIS Markup Language.  

 

5.2.2. The Distributed GIS Component Markup Language (DGCML) 

The DGCML meta-language was developed to provide deployment, GUI and help system 

meta-information about locally and remotely implemented GIS services that could be 

integrated by the RADGIS client at runtime.  The factors that influenced the design of 

DGCML were covered in chapter 3.  This section will now provide implementation-specific 

details of the DGCML meta-language. 

 

 

 

 

 

 

 

 

Figure 5.5.  The DGCML DTD hierarchy 

 

Figure 5.5  illustrates how the DGCML language has been defined in three separate DTDs 

that specify the format of the deployment, GUI, and help information stored in a DGCML 

descriptor file.  The describeService.DTD file, shown in table 5.1, ensures that a GIS service 

descriptor based on DGCML contains the following information: 

 

?? The name, vendor and version of the GIS service, as well as an optional icon that can 

be used to identify the service; 

DescribeService.DTD 

(Deployment information) 

DescribeGUI.DTD 

(GUI specification) 

DescribeHelp.DTD 

(HelpSet information) 
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?? Links to a description of the service, and the license agreement; 

?? The codebase which indicates what type of tool it is, i.e. whether the tool resides 

locally or is a remote implementation, and its location; 

?? A complete description of the GUI required by the tool to operate correctly; and 

?? The links to the HelpSet files.  

 

 

<!ENTITY % helpSystem SYSTEM "file://localhost/C:/describeHelp.dtd"> 

%helpSystem; 

 

<!ENTITY % guiDisplay SYSTEM "file://localhost/C:/describeGUI.dtd"> 

%guiDisplay;  

 

<!ELEMENT GISService (CodeBase*, GUI, Help)> 

    <!-- Menu is optional in case the tool is a stand-alone application --> 

    <!ATTLIST GISService name CDATA #REQUIRED vendor CDATA #REQUIRED  

                                              version CDATA #REQUIRED> 

    <!-- href is an optional tag that indicates where to find a web page describing the 

  (distributed) tool --> 

 

<!ELEMENT CodeBase (License?)> 

    <!ATTLIST CodeBase url CDATA #REQUIRED icon CDATA #IMPLIED> 

    <!-- if the icon field is empty, the name of the tool (as bound in NS) is used --> 

 

<!ELEMENT License EMPTY> 

    <!ATTLIST License href CDATA #REQUIRED> 

 

 

Table 5.1.  DTD for GIS Service (describeService) 

 

5.2.2.1. Deployment metadata  

The XML descriptor file for a particular GIS service contains the unique name of the GIS 

service, the vendor’s name and the version of the service.  It also includes an optional link 

to a description of the GIS service.  The description of what the GIS service does, 

generally also marked-up using XML, serves as online documentation.   
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The XML encoded description can be processed by an XML-to-HTML style sheet, using 

the XML Style-sheet Language (XSL) [Adler 2000], to create an HTML document for 

presentation in a Web browser.  Alternatively, it is also feasible that the XML description 

could be used by a Registry service when differentiating between multiple tools that fulfil 

the same function.  

 

The DGCML descriptor allows for the specification of alternate codebases, for the 

provision of more than one remote runtime instance of a particular vendor’s 

implementation of a GIS tool.  This provides fault tolerance, and the ability to switch 

remote service providers based on service levels or cost, in the event that component-

based or per-usage charging models are implemented at a later stage (see section 6.6).   

 

The specification of more than one codebase for an implementation of a particular tool 

also provides the ability to choose a server “close” to the data source.  This is very useful 

if, for example, a geospatial data vendor also provides remote access to instances of 

particular GIS services.  (We are assuming that processing the data on the remote site is 

more efficient than first downloading the whole dataset and then performing the operation 

locally, or that the user does not have a local implementation of that service.)  

 

5.2.2.2. GUI specification 

The DGCML GUI specification allows the client GIS application to build the GUI 

required by the GIS Service at runtime, using Java’s Reflection API.  This means that 

changes to the GUI may be made by simply editing the DGCML GUI description.  There 

is no compile-cycle required, and the changes to the GUI are reflected the next time the 

GUI is generated, i.e. changes to the GUI do not require the user to close down and restart 

the entire client GIS application.  

 

The describeGUI DTD, which describes how a GUI for a GIS service can be specified, is 

given in table 5.2. 
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<!--  All methodcall names starting with the string "remote:" are reserved for internal use by 

        DGCML --> 

 

<!ELEMENT GUI (Component | MethodCall)*> 

    <!-- If there are no components, there is no visible GUI and the tool is simply "executed" 

           using method-calls --> 

 

 

<!ELEMENT Component (Component | Property | MethodCall | Event)*> 

    <!-- MethodCall is required for invoking methods on Components that are not  

             getting/setting properties of beans, such as pack() on a container --> 

    <!ATTLIST Component name ID #REQUIRED type CDATA #REQUIRED  

                                          position CDATA #IMPLIED> 

 

<!ELEMENT Property (MethodCall*)> 

    <!ATTLIST Property comp NMTOKEN #IMPLIED name NMTOKEN #REQUIRED  

                                     value CDATA #REQUIRED >  

 

<!ELEMENT Event (MethodCall | Property)*> 

    <!ATTLIST Event type NMTOKEN #REQUIRED filter NMTOKEN #IMPLIED> 

 

<!ELEMENT MethodCall (Param*)> 

    <!ATTLIST MethodCall name CDATA #REQUIRED ReturnType CDATA #REQUIRED  

                                          ReturnValueDest CDATA #REQUIRED> 

 

<!ELEMENT Param (Property?)> 

    <!ATTLIST Param Source CDATA #REQUIRED DataType CDATA #REQUIRED 

                                  CallType CDATA "IN">  

 

Table 5.2.  DTD for GUI specification (describeGUI) 

 

The describeGUI DTD specifies the following:   

?? Zero or more components or method calls, where the absence of any components 

infers that the GIS Service does not require its own GUI, i.e. it is probably a batch 

process. 
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?? Unique naming of all components such that they may be referenced as sources 

and/or destinations of arguments/return types for method calls. 

?? The getting/setting of JavaBean properties. 

?? The events generated by the relevant components. 

?? The method calls that should be invoked. 

?? The parameter types with which a method call should be invoked, including a 

callType flag to signal whether the argument in the object’s IDL file was defined 

as an “IN”, “OUT” or “INOUT” parameter.   

 

The focus of DGCML is to provide a highly customisable front-end for users that can 

support tight integration with the client-application.  Therefore, it has been kept relatively 

simple, and has not attempted to become a Java-like XML programming language.  This 

means that certain complex operations may not be easily achieved using DGCML.  

However, these complex operations would normally encapsulate some programming 

concept that would be best implemented as a Java class.  That Java class could then be 

referenced in the DGCML descriptor to provide the desired functionality simply and 

efficiently. 

  

Thus there is a trade-off between the ability to easily customise the functionality of the 

GUI by editing the DGCML GUI specification, and reducing the complexity and amount 

of Reflection that is required to build the GUI, by writing certain complex operations as 

“helper” Java classes.  

 

Complex GUI’s may therefore be developed either through the use of Java’s Swing 

components, or custom-built GUI/helper classes.  If one wanted to add a custom GUI 

component not (easily) programmable via the DGCML meta-language, it is possible for 

that functionality to be created in a standard Java class, and for an object of that type to be 

instantiated and added to, or used by, the GUI.   

 

 

 



 

 119 

5.2.2.3. Help Metadata 

Some GIS packages are so large that their documentation is seldom up to date with the 

new features, and often they have trouble just keeping up with their standard features.  

For a large GIS package that tries to provide as many tools as possible, the volume of 

documentation becomes almost unmanageable to maintain, and this in turn makes it 

difficult for users to find relevant information within the help system.   

 

There is a greater likelihood, however, that if specialists wrote individual services, that 

the documentation (help system or user manual) would be up to date, and could provide 

more detailed use-cases, explanations of the algorithms used for certain processes, such as 

the interpolation methods used for the creation of digital elevation/terrain models, 

explanations of boundary conditions, or possible problem data sets. 

 

We are using JavaHelp 1.1 [Sun Microsystems 2001c] in our RADGIS client to provide 

access to remote help data for our GIS services.  JavaHelp uses XML documents to 

specify the structure of each help system, and HTML formatted text for the presentation 

of the help.  It also defines simple mechanisms for the merging of help data from different 

components that may be stored at different locations, as well as the indexing and 

searching of these help files.  For a comprehensive description of how JavaHelp provides 

location-transparent access to help data, and the ability to merge help data from multiple 

components, refer to the JavaHelp User’s Guide [Sun Microsystems 2001c]. 

 

 

<!ELEMENT Help (HelpSet*)>  

    <!ELEMENT HelpSet EMPTY> 

    <!ATTLIST HelpSet href CDATA #REQUIRED> 

  

 

Table 5.3.  DTD for Help specification (describeHelp) 

 

The describeHelp DTD allows the user to specify one or more HelpSets for the GIS 

service, i.e. the help system for a particular GIS service can be created from a number of 

smaller help topics if desired.  These HelpSets are merged (in a hierarchical format) with 
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the RADGIS client’s help system at runtime when the tool is invoked.  Each HelpSet 

element simply contains a reference to the JavaHelp HelpSet file, which in turn contains 

references to the JavaHelp map file, and the files necessary for providing the table-of-

contents, index, and search views. 

 

Figure 5.6 shows how the HelpSets for two GIS tools (GIS Tool A and GIS Tool B) have 

been merged with the main help system of the client application.  It is possible for the 

help systems of these tools to be downloaded to reside locally, or to be accessed at 

runtime across the Internet.  Therefore use of JavaHelp, which facilitates the 

implementation of a distributed help system, provides a high level of location 

transparency to the end-user when accessing help information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.  Use of JavaHelp to display help data from different GIS Services 
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5.2.3. Adding and Invoking a Service – A Use-case Example 

In order to illustrate how the functionality of the RADGIS client can be extended at runtime 

through the addition of a new service, developed and deployed using DGCML, we will now 

briefly describe a simple use-case scenario for a remote tool that has been implemented using 

a CORBA object.   

 

Below, figure 5.7  illustrates how a simple SQL query tool, implemented remotely as a 

CORBA object, could be added at runtime and invoked by the client application.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.  CORBA SQL query tool example  

 

First the user searches for the tool that is required for the task at hand, possibly by browsing 

the Web for links to DGCML descriptors or using specialised lookup services such Registry 

or Directory services (see section 4.6). 
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Once the user has found the desired tool, the DGCML descriptor for that tool is downloaded, 

together with any supporting Java “Helper” classes, and then the icon and tool name are 

added to the GIS client’s menu and/or toolbar.  This completes the “installation” of the new 

service. 

 

When the user chooses to invoke the service by selecting it from the menu or toolbar, the 

DGCML descriptor file is parsed by the client application.  The client application then looks 

up the object reference to the CORBA object, and assuming that there was no compile-time 

knowledge of the tool, would use CORBA’s Dynamic Invocation Interface (DII) to invoke 

methods on the object.   

 

These method invocations would generally be the result of events generated by the user of the 

client application, when interacting with the GUI associated with the tool.  This GUI would 

have been created by the client application in response to the XML description associated 

with the CORBA object, e.g. the SQL Query tool in figure 5.7. 

 

5.2.4. Creation of a Location Service 

In general, location services are specific applications of one or more generic GIS tools that 

simplify the interface and allow traditionally non-GIS users to make use of GIS-type 

functionality transparently.   

 

For example, consider the interface required for implementing a simple yellow -pages location 

service for finding all restaurants within a particular distance of a user-specified location.  

This location service is essentially a “complex” spatial query that would probably not be 

correctly specified by a non-technical user.  However, due to the nature of the location 

service to be implemented, the number of unknowns (such as the number of parameters, the 

names of these parameters, and the name and location of the database table holding the 

restaurants’ location information) are reduced, allowing much of the query to be pre-

generated by the developer of the service.   

 

In addition, by creating a simple interface, such as the one implemented using DGCML 

shown in figure 5.8 (the DGCML listing for this example has been included in appendix E), it 

is very easy for the user to make use of such a service, i.e. only the user’s location and radius 
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in which to search for restaurants are required.  It is possible to simplify the user interface 

even more if the user accesses the location service from a cellular phone, which can be used 

to automatically determine the user’s location using triangulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.  Example of a location service  for finding restaurants  

 

The above example shows the tremendous flexibility of the RADGIS architecture.  RADGIS 

is, in effect, a generic client architecture that is able to parse DGCML descriptors at runtime 

and, using Reflection, generate the GUI necessary to execute GIS services, location services 

or any other type of service described by a valid DGCML descriptor.  Thus our approach 

allows one to create a client-side framework in which one could combine location services to 

create more sophisticated tools, as well as allowing further processing of the results obtained 

from invoking a particular location service. 
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5.3. Invocation of methods at runtime 
Our DGCML goes further than simply wiring together components to create an application, 

but looks at the integration of tools for which no previous knowledge of other components is 

known.  At the same time, a requirement of our RADGIS system is that it must be simple for 

the user to add and remove tools as well as modifying their installation and/or GUI for tight 

integration with the client application. 

 

In our description of the DGCML grammar so far, we have not mentioned anything about 

how the services are implemented.  This is because the DGCML is independent of whether 

the services are implemented as CORBA Objects, EJBs or simply in local class files (stored 

in JARs). 

 

Methods of both local and remote objects may be invoked when executing a GIS service that 

has been developed using the DGCML.  However, because these services have been 

developed separately to the RADGIS application, the RADGIS application has no compile-

time knowledge of these objects.  It is therefore necessary to make use of special mechanisms 

to accommodate this dynamic behaviour.    

 

5.3.1. Invocation on local objects using Reflection 

Java classes that implement GIS services, which have been downloaded to the client’s 

machine to run locally, require a runtime mechanism to instantiate objects, set properties and 

invoke methods.  Fortunately Java provides just such a means for the "introspection" of Java 

classes, namely Reflection. 

 

Reflection is a runtime capability that facilitates late binding, and is an essential part of 

JavaBeans technology, although its uses stretch far beyond JavaBeans.  Its power lies in 

providing an abstraction that frees software from having static references to target classes and 

objects when it is compiled [Portwood 2000].  Thus, designing with Reflection provides 

flexibility, extensibility and pluggability that are essential for the type of client architecture 

we have developed.   
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The java.lang.reflect package provides the ability to query a Java class about its properties, 

and to operate on methods and fields by name for a given object instance, within the basic 

security framework, e.g. based on access modifiers [Tremblett 1998].  For more information 

regarding Java’s Reflection mechanism, refer to [Portwood 2000]. 

 

According to Portwood [2000], there are a number of myths surrounding the use of 

Reflection, including that Reflection is too complex for use in general-purpose applications 

and that Reflection reduces performance of applications.  He maintains that, when properly 

applied, Reflection leads to improved performance and simplified maintenance, with greater 

reusability and extensibility of software.  

 

Apart from the method invocations on the GIS tools, Reflection is used for building the GUI 

from Swing components.  Swing components are JavaBeans, and as such allow one to use the 

Bean Introspector to interrogate a Swing component (using Reflection) to reveal important 

aspects of its behaviour, such as the types of events it will respond to, and the types of events 

it may generate [Spruit 1997]. 

 

5.3.2. Invocation on Remote Objects 

Our RADGIS application makes use of both static (i.e. using compile-time knowledge of 

stubs) and dynamic (i.e. runtime discovery) method invocations on remote objects.   

 

This means that, at runtime, it is possible to look up references to:  

?? distributed objects that were known about at compile -time, and were “built-in” by the 

programmer.  Here the only “unknown” at compile time may have been where the 

distributed objects would reside at runtime.   

?? distributed objects that were not known about at compile-time. 

 

The former is relatively straightforward because one is able to make the assumption that the 

programmer has detailed knowledge of how the remote object should be invoked, what 

parameters to pass, and what to do with the result.  The latter, however, is far more 

complicated as one cannot assume that the user has any knowledge of how to invoke the tool 

that has been discovered at runtime, nor how to incorporate it into the current application.  

The level of expertise required by a user (or by the framework acting on behalf of the user) 



 

 126 

that wishes to discover new tools at runtime is therefore much greater than that of a user that 

only makes use of static invocations of “built-in” tools. 

 

There are two possible models for accessing remote services:  

?? The first assumes that only the discovery of tools is dynamic, and thus once a tool has 

been selected, the necessary stubs are downloaded and installed on the client machine. 

?? The second requires the use of the Dynamic Invocation Interface (and the Interface 

Repository) to implement the dynamic invocation of method-calls on the remote 

CORBA Object(s), or the use of Java’s Reflection mechanism for EJBs.  It is 

unfortunately not possible to simply use Java’s Reflection mechanism to invoke 

methods dynamically on both CORBA Objects and EJBs, as the CORBA Objects 

may have been implemented using a language other than Java (which may not support 

Reflection), and therefore the CORBA (proxy) Objects do not hold the necessary 

information for performing Reflection on the CORBA Objects’ implementations.  

Both of these approaches have therefore been implemented in the RADGIS client to 

provide transparent access to CORBA objects and EJBs for which no compile-time 

knowledge exists. 

 

5.3.2.1. CORBA Objects 

CORBA's Dynamic Invocation Interface (DII) allows a client to choose any target 

CORBA Object at run time and then dynamically invoke its methods.   

 

Dynamic invocation using the Interface Repository is invariably slower than using static 

stubs.  However, much of the performance loss associated with DII in general, is 

attributed to looking up the interface name, getting the operation identifier/parameters, 

and creating the request (Duman, 1999).  Therefore, using the information about the 

method-call stored in the XML descriptor, one is able to minimise the performance loss 

associated with using the dynamic invocation.   
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5.3.2.2. Enterprise JavaBeans (EJB) 

It is possible to create the necessary proxy objects for the home and remote interfaces 

required for invoking methods on a particular EJB using Java’s Reflection API (as used in 

section 5.3.1 for invoking methods on local objects).  This is extremely useful as it 

simplifies the invocation process and allows a standard mechanism for the runtime 

invocation of methods on both local and remote objects.   

 

 

5.4. Summary 
In this chapter we have presented the implementation details and some of the initial design 

considerations that were taken into account during the development of our RADGIS 

application and the DGCML grammar. 

 

Specifically we detailed the use of VRML models for the creation of the data set, the 

problems associated with the use of VRML for cartographic representation and the work 

currently being undertaken to solve these problems together with the emerging X3D standard.  

 

Once we had outlined how the RADGIS client visualised the 3D data, we gave a break-down 

of the DGCML descriptor file and provided a simple use-case scenario.  We also provided an 

example of how a location service could be developed using DGCML.  The ability to invoke 

methods on local and remote objects was then discussed to complete the overview of 

technologies used in the development of the core functionality of the RADGIS application.  

  

With this knowledge it is now possible to look at some of the implications that the RADGIS 

architecture has on the development of GIS services for developers, as well as the 

implications of using and customising such an application for the end-user.  This will provide 

us with an opportunity to discuss the benefits that are derived from using the RADGIS 

architecture, and to look at some of the issues would that need to be addressed if RADGIS 

were to be released commercially. 

 



 

 128 

 

 

 

 

 

 

 

 

 

 

Chapter 6  

Discussion 
 

“Reality is merely an illusion, albeit a very persistent one.” 

Albert Einstein (1879-1955) 

 

 

Thus far we have described the problems with current GIS architectures, which have 

highlighted the need for an extensible client architecture that facilitates the addition, and 

close integration, of interoperable GIS services at runtime.  We have also outlined the 

implementation of our proof-of-concept system, called RADGIS, which aims to fulfil these 

requirements.  In this chapter we will now present some of the implications that arise from 

the use of the RADGIS architecture, such as the design considerations for object developers 

and component integrators.  In particular, we will highlight the fact that very little, if any, 

modification to existing objects is required, and that component integrators are able to 

assemble GIS and location services with tremendous ease and flexibility.   

 

We will also discuss what impact the use of the RADGIS architecture has on the usability of 

client-side GIS applications, i.e. the level of expertise required by the user to successfully 

make use of the RADGIS client.  This allows us to present the qualitative benefits of using 

the RADGIS architecture to access GIS tools and services distributed across the Web.  
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During the course of our research, and the implementation of our RADGIS architecture, a 

number of issues arose from the use of distributed components and services that were not part 

of the original research mandate.  These include the necessity to provide a directory service 

for registering and locating GIS services, as well as the adoption of new charging models for 

distributed components and services, the possibility of employing parallel processing, and the 

ability to modify the user interface at runtime based on what tools are currently being used 

(adaptive or intelligent user interfaces). 

 

While we were unable to address these supplementary issues in the limited time and scope of 

this investigation, we have devoted the latter part of this chapter to these issues in order to 

highlight further work that would have to be undertaken if one were to implement a full 

version of the RADGIS architecture for commercial release.  

 

 

6.1. Design considerations for the object developers 
Due to the design of DGCML, which allows component integrators to wire together both 

GUI objects, and local and remote objects that provide GIS functionality, there is no need to 

modify existing GIS tools that have been developed as components.  The flexibility of the 

DGCML language, together with the ability to make use of “helper” Java classes ensures that 

it is possible to adapt an existing GIS tool for use in the RADGIS architecture.  The amount 

of “adapting” that must be performed by the component integrator to successfully make use 

of that component can be considered an indication of its level of re-usability. 

 

This is a large benefit of our design, since it does not require that the objects that implement 

the desired GIS functionality be rewritten to adhere to a particular standard or format.  

Instead, it is possible to adapt existing components.  However, there are definite benefits to 

be derived from creating GIS services based on objects that have been implemented using 

standards, e.g. the Open GIS Consortium’s Implementation specifications, including 

simplifying compatibility and substitutability decisions (see section 2.1.4 ), and reducing the 

need to create complex component adapters. 
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Therefore, while there are no additional requirements imposed by the RADGIS architecture 

on object developers, or the need to rewrite existing objects, it would be beneficial for object 

developers to create GIS tools that conform to standards. 

 

 

6.2. Design considerations for the component integrators 
It is the component integrator who will most likely write the DGCML descriptors that 

provide customised GIS services, which can be integrated by the RADGIS client at runtime.  

The goals of component-based software development are to maximise code reuse and 

simplify application development.  However, many unforeseen circumstances may arise 

when trying to make use of such a generalised approach to application development, 

particularly with respect to integrating components that were developed by different vendors, 

at different times and possibly across application domains.     

 

Thus, from time to time, it may be necessary for a component integrator to also write 

converter or “helper” objects to facilitate particular operations that fall outside the scope for 

which the component was originally intended.  These helper classes also allow component 

integrators to simplify the DGCML code necessary for specifying complex GUIs and 

component interactions, as well as for “hiding” certain operations that should not be 

modifiable by the end-user.   The customisability and the flexibility provided by the DGCML 

meta-language, together with the ability to create and utilise “helper” Java classes, therefore 

ensures that a component integrator is able to develop easily-customisable, yet sophisticated, 

GIS services based on diverse GIS components.   

 

However, without standardisation amongst GIS object developers and component integrators, 

on issues such as naming conventions and documentation, the power to replace 

implementations and to facilitate tight integration of services with the client application will 

be severely hampered.  Therefore the greatest benefits will be derived from our approach, and 

CBSD in general, when used in combination with agreed upon standards. 
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6.3. Implications for the client 
The application of our approach to dynamic runtime systems’ development using distributed 

objects, to the field of GIS, opens up the scope of GIS applications for traditionally non-GIS 

communities that require only a subset of the GIS functionality available.  Thus users would 

no longer have to download and install large GIS packages if they were only ever going to 

use a fraction of the GIS functionality that is typically bundled with current GIS applications.  

Instead, using RADGIS, they would have the ability to add GIS services to the client 

framework as, and when, required.  

 

Rudimentary GIS applications can be created by relatively inexperienced users, simply by 

selecting the tools required, and electing to add them to the client application.  This course of 

action makes use of the default DGCML descriptor file, developed by a component 

integrator, which defines the mechanics of how the tool is to be located, and integrated into 

the dynamic application at runtime.  No further customisation or user intervention is required 

in order to make use of these tools.  The RADGIS client uses the self-describing DGCML 

descriptor to display the default GUI for invoking the tool, as well as integrating the help 

associated with the tool, into the client application’s help system. 

 

However, the real power of this approach lies with the expert user who can modify a 

DGCML descriptor, so as to allow tighter coupling and integration with other local and 

distributed tools, as well as the core client application.  This includes the development of new 

services that perform multi-stage processing by chaining tools together, or executing batch 

operations. 

 

Thus, if the tools are used with their default DGCML descriptors, no further configuration is 

necessary and the end user is not required to perform any complex integration operations.  

However, expert users are able to benefit from the large degree of customisation available, 

and are therefore no longer restricted to use a GIS designed for “most” users, but instead can 

customise their client GIS to suit their individual requirements. 
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6.4. Combining GIS tools and data to create location 

services 
Our research has primarily focussed on developing an architecture that allows the user to 

create their own customised, scaled-down GIS application, which contains only the tools 

required for his/her particular tasks.  However, we have also demonstrated how our approach 

would allow one to create a client-side framework in which one could combine location 

services to create more sophisticated tools, as well as allowing further processing of the 

results obtained from location services (see section 5.2.4).  The RADGIS architecture could, 

therefore, just as easily facilitate the development of small, specialised applications that 

integrate one or more location services. 

 

This is an important capability of the RADGIS architecture considering the significant 

industry interest and financial backing that is moving the Location Services industry forward 

as new markets for location services are rapidly being uncovered.  Location Services’ strong 

reliance on GIS functionality means that many of the OpenGIS® standards developed by the 

OCG, particularly GML, will also be used in the development of future location services.   

 

The relatively recent development of location-based services, which share much in common 

with distributed GIS services, has also spurred renewed interest in providing Web-based GIS 

functionality.  Location services will therefore foster the development of open 

implementations of GIS tools that may be accessed remotely, as well as the exposure of 

valuable intrinsic location-based information.  This is extremely important because it is only 

as more data and tools are made available online, that the relating and organising of this 

location-based information will allow hidden meanings and relationships to be revealed, and 

the true potential of GIS and location services to be unlocked.   
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6.5. Runtime discovery of remote implementations of GIS 

services 
The envisaged future of distributed geospatial data and services will not become a reality 

without the ability to efficiently expose these data and services.  In the same manner that web 

search engines have enabled us to search huge quantities of data, so the ability to search for 

geospatial data and services will require providers of these data and services to register them 

with software that provides a searchable repository of features and metadata.    

 

Due to the focus of the research we have not implemented a catalog or directory service (see 

section 4.6) to allow the registration and discovery of GIS services implemented using 

DGCML.  Instead, for demonstration purposes, we have simply generated Web pages 

“advertising” the services.  These Web pages are based on the XML descriptions of the GIS 

services, and have links which allow the user to download the DGCML descriptor(s) and any 

supporting Java “Helper” classes (see figure 6.1), bundled as a JAR file with an extension 

.DGJAR.   

 

The user can browse, download and install a new service in two different ways: 

?? The client may use a standard Web browser to navigate to, and browse, a Web page 

which describes a GIS service that may be used by the RADGIS client.  The user 

may download the JAR file using the Web browser to the local machine, and install 

the GIS service by selecting the .DGJAR descriptor using the “install” option in the 

RADGIS client at runtime. 

?? Alternatively, the RADGIS client can make use of a generic Web-browser service, 

implemented using a customised Java Swing JEditorPane component, that has been 

developed and deployed as a DGCML descriptor.  Clicking on a link to a .DGJAR 

file in this Web-browser service invokes the RADGIS client’s installService method, 

automating the download and install process, i.e. adding the icon and service name to 

the menu and/or toolbar.  
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Figure 6.1.  Advertising GIS services using Web pages 

 

However, we realise that the simplicity of this approach also has a number of drawbacks, and 

does not take into account the research being undertaken with respect to directory services 

that are being designed to simplify object/service registration and discovery.  Therefore we 

refer the reader back to section 4.6, in which we discussed some of the prospective 

technologies that may be used to develop registries that advertise GIS services.  Figure 6.2  

shows the role that a registry service would play in the RADGIS architecture to allow the 

client to discover a particular GIS service. 
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Figure 6.2.  Advertising GIS services using a searchable registry 

 
 

6.6. Benefits  
The runtime application development paradigm of the RADGIS client architecture, which 

facilitates the addition of GIS services, developed and deployed using DGCML, has a 

number of advantages.  These include: 

 

?? the creation of small GIS applications with specific functionality, aimed at reducing: 

o the per-seat licensing fee;  

o the complexity of the overall application; and  

o the learning curve for non-GIS users.   

?? finer licensing granularity, which facilitates the use of alternative pricing models (see 

section 6.7.1).  Thus the user may no longer be required to pay for functionality that 

they do not require. 
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?? reducing application bloat, which in turn reduces the in-memory and secondary 

storage requirements of the software.   

?? loading functionality only when required which amortizes the load time through the 

entire run of the application.  Unused functions are never loaded, which reduces the 

demands made on system resources.  

?? the flexibility to support both novice and expert users within the same architecture.  

?? the ability to make use of different underlying implementations of a particular GIS 

service while retaining the use of a single “familiar” user interface to which the user 

may be accustomed.  This is particularly useful for eliminating the “limited transfer of 

knowledge” when a user changes from using one software-package to another. 

?? providing the user with increased flexibility when choosing application components 

and services, depending on the user’s processing requirements and level of expertise. 

?? improved robustness due to reuse and constant retesting of components in different 

environments. 

?? the ability to make use of dynamic invocation, which ensures that users always have 

access to the latest version of a particular object/service.  Due to the centralised nature 

of server-side processing, a vendor can easily retract an old version and rebind a new 

version of that tool to the old naming context, thereby dynamically upgrading the tool 

transparently and ensuring that users always work with the most up-to-date versions 

of objects. 

?? the ability for a single distributed object to be used by many different service 

implementations that are distributed across the Internet.  This reuse of “live” software 

components or services has the potential to be more useful than making use of “static” 

component code repositories. 

?? increased interoperability and customisability of components via a runtime extensible 

client framework.   

?? possible bandwidth savings if the geospatial data to be processed resides “close” to 

the remote service that is being invoked, e.g. if both the data and service reside on the 

same Intranet. 

 

Our approach has the added benefit that within the field of GIS, the Open GIS Consortium 

has started standardising interfaces and specifying IDLs for the spatial and attribute datatypes 

[Open GIS Consortium, 1998b].  It is therefore possible to create a client that knows how to 
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interact with standardised GIS datatypes and services, increasing the ability to incorporate 

new tools at runtime with high levels of integration. 

 

Alternatively, if one considers the use of more general-purpose components, it also becomes 

possible to make use of a single component in more than one application domain.  Hence it 

may be possible to generalise our RADGIS architecture to the point that one no longer 

requires the use of different applications for different tasks.  Instead it would become possible 

to make use of a set of loosely coupled components that allow tight integration to process 

information across traditional application boundaries.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.  Example showing how more than one DGCML descriptor could make use 

of a distributed GIS tool 

While the implementation of such an architecture may currently be too ambitious, the ability 

to utilise the same component in multiple applications, using DGCML descriptors that adapt 

it for use in a particular application, is possible.  Each DGCML descriptor could simply 

reference the same component(s), but provide application-specific GUIs and help (see figure 

6.3).  
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6.7. Implications of distributed CBSD for a Commercial 

implementation of RADGIS 
We have covered a number of component-based software development technologies that 

have shown tremendous potential for application in the domain of GIS.  However, there are 

three areas that warrant further examination with respect to implementing a full commercial 

version of our RADGIS client architecture, and the effective utilisation of distributed GIS and 

location-based services.  These are: 

?? the ability to charge for the use of distributed GIS services; 

?? design considerations associated with the ability to invoke distributed components 

concurrently; and 

?? the need to increase the “intelligence” of the user interface to cope with the 

complexities arising from the addition of new services at runtime. 

 

6.7.1. Charging Mechanisms for distributed objects 

The implementation of distributed GIS tools that are invoked remotely means a user would 

no longer be required to buy, install and maintain large, costly GIS packages locally.  Instead 

it would be possible for a user to purchase individual services that run locally, and to “rent” 

distributed services on a per usage basis.  Therefore, a number of heterogeneous pricing 

models may be used to determine the cost involved in accessing and processing geospatial 

data.   

 

The adoption of the RADGIS architecture commercially would require the ability for GIS 

service providers to charge for the use of their distributed services.  While charging models 

for distributed software tools are not the focus of this thesis, we would like to point out some 

of the pertinent issues: 

?? The use of a distributed tool may be charged on a per-usage fee, and/or a lookup table 

of registered users may be consulted to determine payment method, i.e. it may be 

possible to pay a once-off fee for using a service, or pay a per-usage fee, or a 

combination of an initial fee plus a per-usage fee. 
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?? Assuming the distributed tool processes a particular dataset, which is not provided by 

the user, the client may be charged for the use of/access to the dataset independently 

of the use of the distributed tool.  Alternatively, if the dataset is only accessible using 

that particular tool, the cost of accessing the data may be incorporated into the cost of 

using the distributed tool.   

?? The user may simply be charged for the use of the software, or may also be charged 

for processing time.  It may be useful to charge the client different amounts depending 

on the size of the data set involved.  This also allows quality of service charging 

mechanisms to be introduced whereby the client may choose how quickly and/or 

when to process their data, i.e. PC vs. Mainframe, and peak vs. off-peak times. 

 

It would also be essential to define what service is being provided, what cost is involved, and 

what boundaries are defined for where the service starts and stops.  Additionally, the user 

may also be given the ability to negotiate a service contract for the use of a particular tool that 

cannot change without the user's knowledge and consent/authorisation.  For example, if a 

software vendor upgrades their software, and then decides to charge more for the new 

service, the user must be notified of the change, but may, by law, also have the right to retain 

the use of the old version at the original price.   

 

The ability to negotiate a fixed cost for invoking a particular version of a tool would also 

reduce the need to negotiate the use of that tool every time it is used, and would allow for 

charging to be performed transparently.  This would be particularly useful for tools that are 

used frequently, and that have a relatively low cost associated with them.   

 

According to Gabriel and Wagner [2001], neither the ISO nor the OGC define a price model 

in sufficient detail for electronic commerce (e-commerce) applications.  They also believe 

that while general e-commerce developments like UDDI, Electronic Business XML 

(ebXML) and RosettaNet1 are suitable for commercial-off-the-shelf products, they do not 

provide enough flexibility in their pricing mechanisms to adequately deal with configurable 

                                                 
1 RosettaNet is an organisation that was set up to define and implement a common set of 

standards for e-business, supporting business processes between supply chain partners. 
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products.  For a more in-depth discussion on pricing models, please refer to [Gabriel and 

Wagner 2001]. 

 

6.7.2. Potential parallelism issues 

Coppit and Sullivan [2000] point out that even though a program that is composed of 

multiple executable components is inherently concurrent, modern components do not provide 

much functionality for concurrency control.  Therefore it is necessary to be aware of the 

potential danger of invoking distributed components concurrently.   

 

Within the CORBA and EJB specifications there are different ways of communicating with 

remote objects, including synchronous (invocation causes the client to block, waiting for a 

result before continuing), deferred synchronous (invocation returns immediately but 

application must poll for the result) and asynchronous (message is sent to the local message 

queue and execution continues without waiting for a result – the result is returned to the local 

message queue triggering a callback method) requests.   

 

The CORBA 2.0 specification supported only synchronous and deferred synchronous method 

invocations, while CORBA 3.0 supports synchronous, deferred synchronous and 

asynchronous messaging.  The EJB 2.0 specification introduced message-driven beans, in 

addition to the existing entity and session beans, and therefore now supports both 

synchronous and asynchronous communication. 

 

If a client application makes use of multi-threading to invoke distributed objects, or if 

distributed objects’ methods are invoked using deferred synchronous or asynchronous 

requests, then the implications of executing two or more tools in parallel must be considered.   

 

This parallelism can be used to execute two or more different GIS tools in parallel, or to 

subdivide a single task into many smaller subtasks, and then execute each of these in parallel 

using two or more versions of the same tool.   

 

An example of the use of parallel processing to increase efficiency is shown in figure 6.4 .  In 

Process A, all components are executed in sequential order.  Process B illustrates a 

semantically equivalent set of operations that will achieve the same end-result.  However, in 
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Process B, it is possible for the GIS tools, which simply convert an ARC file to a polygon list 

and a DXF file to polygon list, to be executed in parallel.  Therefore, in Process B, the time 

taken before the results can be combined is the greater of the times taken by the two GIS 

tools to complete execution, i.e. the greater of Time D or Time E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.  Contrived Example of Process Equivalence  

 

If the time taken to convert a DXF file to a polygon list is the same as converting an 

equivalent ARC file to a polygon list, and the ARC and DXF files in Process B have an equal 

number of polygons, then optimistically, it is possible for Process B to be twice as efficient as 

Process A.  In addition, due to the restructuring of Process A, the time taken initially to 

convert the data sources into a common data format (Time A) is removed, as this operation is 

no longer required.  

 

If one further assumes that the output of the GIS tool is at least an order of magnitude smaller 

than the input, then in general, the time taken to combine the results in Process B should be at 

least an order of magnitude smaller than the time taken to combine the inputs in Process A.  

Thus, the ability to restructure the way in which a process is performed, together with the 
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ability to make use of parallel processing, means that Process B has the potential to be 

dramatically more efficient than Process A. 

 

However, if there are dependencies between different tools, i.e. they are required to run in 

sequential order, or modify the same data, it is imperative that a transparent mechanism to 

prevent the client from being able to fire off these processes in parallel is implemented to 

ensure data integrity.  

 

6.7.3. Dynamic Interface Development 

Our research focuses on the creation of a runtime extensible client architecture that enables 

the addition of distributed services.  Dynamic component integration allows components to 

interact in ways that might not have been predicted by the original designers.  However, this 

adds additional complexity to user interfaces that are currently too inflexible, are not able to 

change according to the user’s needs, and do not interoperate.  Therefore, in our research, we 

also briefly explored the possibility of providing an adaptive user interface.   

 

The implementation of an adaptive user interface would simplify the potentially complex user 

interface that might result from the addition of numerous GIS services during the lifetime of 

the client application.  In addition, we have implemented a basic mechanism that provides the 

ability to send data stored in a GUI component of one GIS service, to a GUI component 

residing in another GIS service without explicitly coding the relationship between them.  This 

is done at runtime, based on the GIS services that are currently being used.   

 

One of the goals of the RADGIS architecture was simplic ity of operation.  Therefore, while 

we have not fully implemented or explored the implications of developing an adaptive 

interface for the RADGIS client, further research in the fields of Adaptive and Intelligent 

User Interfaces (see appendix D) is required to ensure that the benefits of the RADGIS 

architecture can be fully realised without adding undue complexity to the user interface.   
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6.8. Summary 
In this chapter we have brought together the qualitative results of the research that has been 

presented in this dissertation.  It has demonstrated the benefits of using the RADGIS 

architecture and discussed the design considerations and implications for object developers, 

component integrators and the end-user. 

 

We have also highlighted some of the technical issues that have arisen from the research that 

has been undertaken, which require further examination.  The most important of these is the 

registration of services and distributed objects with catalog and registry services so that they 

can be easily discovered and integrated into applications.   

 

While directory and catalogue services are currently mainly concerned with the passive self-

registration of objects, it is not unlikely that in the future, these services will be able to 

actively seek out services in a manner similar to that of current Web search engines.  This 

will facilitate the dynamic registration of services in up-to-date directories and catalogues.  

 

A number of issues arising from use of distributed CBSD, and which require further research, 

were also raised, including: 

?? the ability to make use of an innovative charging mechanisms; 

?? the ability to perform parallel processing, and deal with some of the associated risks; 

and 

?? the possibility of creating an intelligent adaptive user interface to facilitate the 

automatic runtime customisation of the user interface.  
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Chapter 7  

Concluding Remarks 
 

Vanessa: That's you in a nutshell. 

Austin Powers: No, this is me in a nutshell: “Help! I'm in a nutshell! How did I get 

into this bloody great big nutshell? What kind of shell has a nut like this?” 

 

Austin Powers International Man of Mystery. 

 

 

 
This thesis was motivated by the current change in paradigm of application development in 

general, and particularly within the field of GIS, towards a network centric approach that 

facilitates the integration of distributed resources.  The focus of our approach, therefore, was 

the provision of a runtime-extensible and customisable GIS client architecture that provides 

the user with location-transparent access to independently-provided, yet interoperable, 

distributed data and services.   

 

During the course of this thesis, we have described some of the major problems with current 

GIS architectures, and we have highlighted the move towards a highly component-based, 

distributed software architecture.  We have also provided an insight into the research 

initiatives that are currently underway to provide open standards for the implementation of 

GIS services and data formats.  These standards are being developed to facilitate the 

implementation of vendor-independent interoperable  GIS services, and will ensure the future 

success of the distributed geoprocessing model.   
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While GIS has contributed a tremendous amount to our understanding of spatial 

relationships, its greatest contribution yet may be as a number of loosely connected 

distributed, but interoperable, services and data sources.  As users become more adept at 

working with location-based data, so they will chain services together to perform more 

complex tasks.  In turn developers will be able to gain better insight into the requirements of 

users in particular domains, enabling them to focus their efforts on providing composite 

services and customised front-ends, while reusing the underlying GIS functionality.   

 

This final chapter brings together the work that has been presented in this dissertation on 

runtime-extensible, distributed GIS applications, by offering a critical assessment of our 

RADGIS client architecture, including its limitations.  We then conclude by highlighting our 

contribution towards the study of distributed GIS applications.   

 

 

7.1. Assessment of the RADGIS client architecture 
There are currently two major GIS architectures: the traditional GIS client and the Web-

browser front-end to a Web Map/Feature Server for visualising GIS data.  The latter is a very 

constrained architecture that does not provide much processing functionality, but was 

developed as a mechanism for allowing widespread visualisation of geospatial data across the 

Web.  Web-browser based GIS applications are limited by the GUI functionality of Web 

browsers in general, and by the fact that basic GIS visualisation operations, including simple 

Pan and Zoom operations, require processing of data on a server machine, which incurs 

performance penalties because large amounts of data need to be transferred across the 

network.  Therefore, there is a growing trend away from Web-browser based GIS towards 

small, customised clients with rich GUI functionality that are able to access distributed 

services.   

 

The two major problems with traditional GIS applications are that they suffer from 

application bloat, and provide very limited interoperability with software from other vendors. 

These factors have a negative impact on the overall usability of GIS applications, which are 

generally considered difficult to operate and limit the transfer of knowledge when moving 

from one GIS application to another, because knowledge gained while using a GIS 
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application from one vendor cannot be directly applied to using a GIS application from 

another vendor due to differences in fundamental conceptual approaches. 

 

The RADGIS architecture has been shown to overcome the problem of application bloat by 

allowing application developers to rapidly develop small, customised GIS applications for 

novice users, or highly domain-specific systems for expert users.  The development of small, 

customised GIS-type applications, which can be extended at runtime if necessary, increases 

the usability of the GIS application by reducing the number of extraneous features that are 

not required to provide the basic functionality required by novice users, in particular 

application domains.  The development of smaller, customised GIS applications that are 

tailored to better fit the conceptual model of a specific application domain, e.g. 

environmental, geological, municipal, also increases the usability of GIS applications.  

However, the real power of the RADGIS architecture lies in its ability to allow the end-user 

to customise the application based on his/her requirements, at runtime.  This ensures that the 

client application has the flexibility to withstand changing levels of expertise or user 

requirements.   

 

As the level of expertise of end users increases, the knowledge gap between novice users and 

expert users increases.  It is, therefore, extremely important to provide an extensible 

architecture that can cater for users with very different levels of competence, and their 

progression from novice to expert user.  The RADGIS architecture, together with DGCML, 

provides a single extensible client that is able to accommodate the needs of both novice and 

expert users through: 

?? the simplicity of its approach with respect to adding, removing and customising 

services.  This allows unnecessarily complicated features that are not immediately 

required by the novice user to be left out of the initial GIS client, while retaining the 

option to add them later (as opposed to having to obtain a different client that 

provides additional functionality); as well as 

?? providing increased flexibility and customisation for expert users who wish to get 

more out of an application than was originally intended by the developer.  The level 

of customisation currently afforded by most applications typically only allows the 

end-user to make use of built-in functionality through scripting languages or to 

customize the overall look-and-feel of an application.  RADGIS allows the user to add 
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and replace services within the client application, as well as to decide on the level of 

integration of these new services with other services.  This, in turn, facilitates the 

development of new services that the original developer of the system may not have 

envisaged. 

 

In general, the core client application would have a fairly small software footprint that 

possibly only included the basic Geospatial Display Services.  However, it could be extended 

with as much functionality as the user required, when the user required it.  The adoption of a 

distributed GIS architecture also has the potential to reduce the software footprint on the 

client’s machine, because a number of the tools would be accessed remotely.   

 

The RADGIS client is therefore a hybrid client, which is neither a traditional “thin” client 

(simply a user interface), nor a “fat” client (user interface and all the application logic).  

Instead the client may be extended or trimmed down at various stages of its life, based on the 

user’s requirements.  It is also possible to load templates based on the task the user wishes to 

perform, i.e. a single DGCML descriptor could describe a whole menu of options which, 

when installed, would provide access to a customised set of tools that are required for a 

particular task.   

 

The issue of interoperability has been addressed in this thesis by the adoption of open 

standards developed by the OGC and ISO/TC 211.  In particular, the use of XML encoded 

geospatial data, e.g. using GML, will provide a simplified method of exchanging data 

between interoperable components, as well as simplify the visualisation of data on the Web, 

e.g. using SVG in a standard XML-enabled Web browser.   

 

The adoption of standard interfaces when implementing components will also dramatically 

improve the ability to determine the substitutability and compatibility of components.  The 

adoption of a single open standard, such as OpenGIS, will mean that any future components 

developed according to this standard would be interoperable with existing components, 

irrespective of who implemented them.   

 

Another major problem with GIS applications, which relates to both traditional and Web-

browser based client architectures, is the inability to provide location transparent access to 

distributed geospatial services.  The RADGIS architecture makes use of DGCML descriptor 
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files, which specify the use of local and/or distributed objects, to implement GIS services.  

The user is able to invoke these GIS services in the same manner regardless of whether they 

make use of local objects or remote objects, providing a high level of location transparency.   

While there may be some noticeable performance benefits from the ability to explicitly 

specify the best location for processing to occur, this option would generally only be made 

available to the expert user.   

 

There is currently much research into distributed GIS (see figure 7.1) [Alameh 2001].  

However, the RADGIS architecture improves on current models by providing a runtime-

extensible distributed-GIS client, based on OpenGIS®  standards.  This client is easily 

extended through the addition of interoperable GIS services that are developed and deployed 

using DGCML.  The DGCML descriptor files are straightforward to edit and allow the user 

or component integrator to customise GIS services.  These changes do not require the 

RADGIS client to be restarted, but take effect the next time the tool is chosen from the menu 

options, providing runtime extensibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.  Example of a distributed GIS architecture  
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Our research focused primarily on the ability to add GIS services, implemented as local 

classes that execute locally, or as distributed CORBA objects and EJBs, to an application at 

runtime.  One of RADGIS’s strengths is the ability of the client application to access remote 

objects at runtime for which no compile-time knowledge exists, i.e. the client application 

does not have access to the stubs for the remote objects.  In this case one must assume that 

the client may have very little knowledge, if any, of how the methods of that object are to be 

invoked in order to provide the particular service required by the user, and whether or not the 

service requires its own Graphical User Interface (GUI).   

 

We have looked at the implications this has on the design of the RADGIS client application 

and the distributed objects used to implement the GIS services.  We have also shown that, 

while it is not practical to create an entire application at runtime, the benefits of being able to 

tailor an application at runtime, or to add functionality provided by different software vendors 

is both appealing and feasible.   

 

The use of a distributed GIS model, as implemented in our RADGIS application, means that 

one can delegate a particular task to a platform or location that best fits the task at hand, 

based on processing and data requirements.  Therefore, although particular optimisations will 

have to be user driven, as opposed to being location transparent, it will be possible for more 

than one implementation of a particular tool to be invoked.  Such optimisations will, for 

example, depend on where the data source is located, or what type of operation is being 

performed, i.e. it may be more cost effective to transfer the data set to a more powerful 

machine for processing, than process the data locally.  

 

Apart from the potential performance benefits to be derived from processing data on faster 

machines, or using the ability to perform parallel processing, the implementation of a 

distributed GIS architecture composed of interoperable components also provides 

accessibility to different vendors’ implementations of a particular GIS service.  This allows 

the application developer or end-user to choose a particular implementation based on the 

algorithms used, as well as factors such as whether or not the vendor supports dynamic 

upgrading, licensing restrictions, pricing models, and possibly even guarantees of Quality of 

Service in terms of speed or accuracy with which the algorithm is executed.  It is also worth 

noting that some users may be willing to accept reduced efficiency, as a result of executing a 
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GIS service remotely, when offset against benefits such as reducing the total cost of 

ownership of GIS software, or eliminating the need to store, update and maintain local copies 

of geospatial data. 

 

The ability to make use of the RADGIS architecture to create a client-side framework in 

which one could combine location services to create more sophisticated tools, as well as 

allowing further processing of the results obtained from invoking a particular location 

service, shows the tremendous flexibility of the RADGIS architecture.  RADGIS is, in effect, 

a generic client architecture that is able to parse DGCML descriptors at runtime and, using 

Reflection, generate the GUI necessary to execute GIS services, location services or any 

other type of service described by a valid DGCML descriptor.   

 

Therefore, we conclude that the original research objective stated in chapter 1, i.e. “To 

develop a runtime extensible, highly-customisable, distributed-component based GIS 

and Location-based Service clients”, has been achieved. 

 

7.1.1. Limitations of the research undertaken 

Distributed GIS is an extremely broad field, which encompasses many different topics, and 

makes use of many different technologies, operating on a number of diverse platforms.  

However, due to limited time and resources, it was necessary to focus the research on specific 

issues.  Therefore the following unresolved issues are considered outside the scope of the 

research that was undertaken:  

 

?? A complete GIS application is an extremely complex system comprising many 

diverse functions.  The RADGIS architecture, however, was implemented as a proof 

of concept system, comprising a generic framework and very specific tools that were 

developed to illustrate specific concepts.  The RADGIS client is therefore not a fully-

functional commercial GIS application.   

?? Because the RADGIS client is not a complete GIS application, and we did not 

implement a wide range of tools for use with the client, it was not possible to test the 

RADGIS client under heavy load or perform meaningful usability studies.   

?? The core of the RADGIS architecture, which allows the addition of GIS services to 

the client application at runtime, developed and deployed using DGCML, has been 
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implemented and test as a whole.  However, some of the components that facilitate 

the visualisation of geospatial data in formats other than VRML had to be tested 

separately, because the implementation of certain “bridging” components are not 

currently available, and certain standards have not been finalised.  For example, while  

we have highlighted the benefits of using GML as a standardized data format for 

transferring geospatial data, we have not made use of it in the implementation of our 

RADGIS client.  This is due to our focus on the visualization of 3D data, which is not 

currently supported in GML 2.0. 

?? Although the specification of the DGCML meta-language using a DTD does not limit 

our RADGIS architecture, we acknowledge the potential benefits to be gained from 

converting it to an XML Schema-based specification.   

?? We have not implemented, or made use of, a geoprocessing registry service for 

registering and discovering GIS services that have been implemented and deployed 

using DGCML. 

?? We have not implemented mechanisms to deal with charging, transaction 

management, or security when dealing with distributed objects. 

  

During our research we have identified two utilities that would be extremely useful for 

working with the DGCML meta-language, but which have remained unimplemented because 

they are not essential to the research that we have undertaken.  They are: 

?? a simple GUI  editor that would allow the user to create GUIs by dragging and 

dropping Java Swing components, and then generate the equivalent DGCML 

description of the GUI.  It would also allow the user to load existing DGCML GUI 

descriptions and modify them, thus simplifying the editing of DGCML descriptor 

files. 

?? a code generation tool that allows a user to generate Java code from a DGCML 

descriptor, rather than interpreting the DGCML descriptor and then having to perform 

Reflection at runtime.  Such a utility could be used to optimise the execution of 

frequently-used GIS services.  

 

While we have not used the Simple Object Access Protocol (SOAP) or XML Remote 

Procedure Call (XML-RPC) to implement method-calls on remote objects, we acknowledge 

the tremendous impact these technologies are having on the implementation of distributed 
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applications on the Web, and believe that the RADGIS client could easily be adapted to make 

use of these technologies.  There is currently tremendous industry impetus behind the 

development of Web services, implemented using technologies such as the SOAP, Web 

Services Description Language (WSDL) and Universal Description, Discovery, and 

Integration (UDDI).  There are also a number of research projects within the field of GIS that 

are starting to look at the benefits that can be derived from using such technologies and Web 

Service-based architectures.   

 

 

7.2. Thesis contributions 
Having summarised the findings of this thesis, it is now possible to explicitly highlight the 

contributions that our work makes to the fields of GIS and distributed component-based 

software development.  Therefore, the following points are offered as the major contributions 

that have been presented in this thesis: 

 

?? A thorough literature survey of current state-of-the-art GIS research and software 

architectures, including location-based services.  In particular we have focussed on 

research undertaken by large standardisation bodies, such as the Open GIS 

Consortium, in the interests of promoting interoperability based on open standards. 

?? In the development of our RADGIS architecture, we have highlighted the value of 

using XML as a transfer format for geospatial data (i.e. GML and X3D), and as a 

wiring language for combining (distributed) components to implement GIS services, 

in the evolution of GIS applications. 

?? We have highlighted the current status and problems surrounding the visualisation of 

3D geospatial data using GML, VRML, GeoVRML and X3D, as our RADGIS 

application aims to keep pace with developments in the field of 3D geospatial 

visualisation. 

?? The development of a novel GIS client architecture, called RADGIS, which was 

designed to overcome the problems identified with current GIS applications.  Its 

ability to allow the user to customise the GIS client at runtime, provides an extensible 

architecture that facilitates a high level of customisation, and allows the user to work 

with distributed geospatial data and services in a location-transparent manner. 
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?? The development of a markup language, called DGCML to facilitate the development 

and deployment of GIS services that can be integrated into the RADGIS client at 

runtime, including the ability to specify the GUI required by a GIS service as well as 

links to the necessary help files.   

?? We have highlighted the implications of employing a distributed CBSD approach to 

developing client applications, as utilised in our RADGIS application, in order to 

draw attention to the need for further research on: 

o distributed component-based charging mechanisms; 

o the need to deal with issues of concurrency arising from the use of distributed 

components; and  

o the ability to dynamically customise the user interface based on the types of 

tools that are available for processing the geospatial data.   

 

The contributions of this thesis extend beyond distributed GIS architectures, and can be 

applied in the broader context of Web/distributed programming.  They also takes 

cognisance of the changing trend in Web-based application development towards the 

implementation of distributed Web Services and “intelligent” clients, which is currently 

being realised through the development of Microsoft’s .NET and Sun’s Open Net 

Environment (Sun ONE) technologies.  The increasing importance of being able to 

combine interoperable Web services, based on open standards, to facilitate the 

development and customisation of specialised client applications, signals a move away 

from the Web-browser as the client for Internet applications, towards more “intelligent” 

clients.   
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Appendix A – Mobile Agents 
GIS applications are resource intensive by nature, i.e.: 

?? GIS datasets consist of megabytes, possibly even terabytes of spatial and attribute data, 

necessitating the introduction of hardware-based data compression for storage 

optimisation. 

?? GIS applications are computationally intensive due to the use of transcendental functions, 

complex transformations in map projection and high-level graphics rendering.   

?? GIS applications require large-bandwidths between GIS users over Intranets and the 

Internet. 

  

While rapid advances are being made in creating faster processors and secondary storage 

devices that have greater storage capacities, it is ultimately the legacy Internet networking 

structure that will create the bottleneck to high-bandwidth multimedia applications.  This is 

particularly true of resource intensive GIS applications that require large spatiotemporal 

datasets to be transferred across the relatively limited bandwidth of much of the Internet 

(especially within South Africa).  Thus, developing a distributed spatiotemporal GIS for use 

over the Internet provides constant challenges for optimisation, and necessitates a flexible 

architecture. 

 

During the course of our research into distributed GIS architectures, we therefore also briefly 

looked at the use of Mobile Agents as a method for reducing Internet traffic.  This appendix 

details some background material with respect to Mobile Agents, as well as some of the 

research that we undertook when investigating the integration of Mobile Agents into our 

Proof of Concept system.   

 

One particularly useful scenario for which the use of Mobile Agents shows great promise, is 

for operations that require one to download a large data set in order to perform a relatively 

simple operation which returns a result that is generally an order of magnitude smaller than 

the data set.  In such a scenario, it would be more efficient to transfer and execute the code 

necessary to perform the operation on the machine on which the data set resides (or possibly 

same intranet), rather than transferring the data set across the Internet, to the machine that 

was to perform the processing.  
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Background 

Agents should be reactive, autonomous, goal-oriented and temporally continuous, i.e. agents 

should be continuously running processes that exercise control over their actions and are able 

to respond proactively to changes in the environment in order to achieve a particular goal.  

Agents can be classified according to the role they fulfil, for example different types of agent 

may exhibit communicative, learning, mobile, flexible and/or character qualities [Franklin 

and Graesser 1996]. 

 

Conde [1998] argues that the traditional distributed object paradigm is “a synchronous 

message-passing paradigm whereby all objects are distributed, but stationary, and interact 

with each other through message-passing”. Even though the use of Java’s Reflection 

mechanism for dynamically invoking EJBs, and CORBA's dynamic facilities, including 

Dynamic Invocation Interface (DII), and the Interface Repository, allow the creation of 

extremely flexible systems that allow runtime discovery and late-binding [Orfali and Harkley 

1998], the objects themselves are still stationary.   

 

While research into the use of agents is not new, according to Kurki [1998], mobile agents, 

i.e. agents that are able to migrate from one machine to another in a heterogeneous network, 

are an emerging technology that is attracting more and more interest from distributed systems 

researchers.  Mobile agents are able to initiate their transfer to a different host and migrate the 

code, data and, in a system that supports strong migration, the execution state so that it can 

continue execution from where it stopped before the transfer. 

 

In addition to mobility, agents also exhibit the following characteristics [Conde 1998] 

[Millman 1998]: 

?? Asynchronous:  a mobile agent can execute asynchronously as it has its own thread of 

execution. 

?? Discrete:  a mobile agent is invisible to the user and the system, providing location 

transparency. 

?? Flexibility:  a mobile agent can adapt to changing circumstances, e.g. it is able to work 

around broken links and downed servers.  If the network connection is broken, and the 

agent needs to move, it can simply wait until the connection is restored. 
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?? Local interaction: a mobile agent generally moves to another location to interact with 

other mobile agents or stationary objects locally, rather than using remote message 

passing.  

?? Object-passing: when a mobile agent moves, the whole object is passed, including its 

code, execution state, data, and travel itinerary.  

?? Persistence:  a mobile agent is autonomous and self-sustaining, i.e. it contains 

sufficient information to decide what to do, where to go, and when to go. 

?? Parallel execution: it is possible to subdivide a task so that multiple agents can be 

dispatched to different sites to perform these sub-tasks in parallel, or even to perform 

multiple tasks in parallel.   

?? Secure: when a mobile agent arrives at a host, it is subjected to the security 

restrictions of the context, a gateway between agents visiting the host and the host's 

resources, that provides an agent sandbox [Agosta 1998].  This ensures that mobile 

agents are resistant to interception and tampering, and that agents may only access 

particular resources subject to verification, e.g. digital signatures.  

 

According to Conde [1998], there are many technical advantages of mobile agents, and there 

is no single alternative to all of the functionality they provide. 

 

The Object Management Group (OMG) is currently working on the specification of an agent 

framework to support agent mobility via Mobile Agent System Interoperability Facilities 

Specification (MASIF) on top of the Common Object Request Broker Architecture 

(CORBA).  GmbH Informations - und Kommunikationstechnologie [IKV++ 1998], are 

researching emerging telecommunications technologies such as the Telecommunications 

Information Networking Architecture (TINA), and have developed Grasshopper, which they 

claim to be the first mobile agent environment that is compliant to the OMG MASIF 

standard.  

 

 

The use of Mobile Agents in GIS applications 

A potential solution for reducing the high demands made on Internet bandwidth may lie in 

processing more information on the server side, to reduce the amount of extraneous data that 

is downloaded across the Internet to the client.  This optimisation technique has tremendous 
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potential in Web-based GIS applications because GIS data sets are often extremely large, and 

the user is only interested in a small subset of this information.  Thus, if it is possible to 

process and refine the data required by the user on the server side, it could reduce the overall 

Internet bandwidth requirements. 

 

Our research investigated means to reduce client-side setup and the demands for client-side 

processing power by distributing the services/GIS tools so as run on the most appropriate 

machine, e.g. on the same machine as the dataset, or a machine more appropriate to do 

intensive "number crunching".  

 

Our approach identifies two major uses of mobile agents to reduce the amount of Internet 

bandwidth required by a user of a Web-based spatiotemporal GIS.  The first is to move an 

agent to a server machine to perform a task on a data set stored on the server, and the second 

is to allow GIS tools to be moved to the client machine to execute locally.  This is in contrast 

to the current CORBA paradigm where one would obtain an object reference to a GIS tool 

implemented as a remote object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1.  Example of component interaction using a Mobile Agent 
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Figure A.1  shows the interaction of CORBA ORBs and Mobile Agents in our "Proof of 

Concept" Web-based spatiotemporal GIS.  In particular it illustrates how the client can use 

the CORBA Naming and/or Trader Services to dynamically discover and invoke distributed 

GIS tools.  Should one of these tools be implemented as a mobile agent, it is then also 

possible to dispatch the agent to a particular machine in order to perform the processing 

"locally" on that machine.  This is done either to achieve parallel processing or to perform the 

processing of a dataset on the same machine as the dataset, or another agent-enabled machine 

on the same Intranet as the dataset, so as to minimise Internet bandwidth requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.  Using Agents for “client-side” processing  

 

Figure A.2 and figure A.3 show simplified examples of moving mobile agents to different 

machines in order to achieve different tasks, i.e. figure A.2 illustrates the moving of an agent 

to the client machine in order to perform local processing, while figure A.3  illustrates the 

moving of an agent to the machine on which the spatiotemporal dataset resides in order to 

perform "local" processing on the dataset. 
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It should be noted that the possibility exists for mobile agents to be used to process/collect 

data from multiple sources.   Therefore, agents may travel to more than one machine in order 

to perform a specified task and then collate the results before returning home to deliver the 

final output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3.  Using Agents for “server-side” processing  
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come up again and then send the result/move to its next destination.  Thus any lengthy 

process that may be interrupted due to the network going down, and would have to be 

resumed at a later stage, could be better implemented using as agents to quickly traverse the 

network, as there is less chance of the network failing over a short period. 

 

The ideal solution would, therefore, be a mix of stationary and mobile code that provided a 

single uniform paradigm for distributed object computing, including synchrony and 

asynchrony, message-passing and object-passing, for stationary objects and mobile objects 

within the framework of a web-based spatiotemporal Geographic Information System (GIS). 
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Appendix B - VRML Optimisations 
VRML provides a number of mechanisms to increase downloading and rendering speed, such 

as proper decomposition of a scene, inlining, and streaming certain multimedia and graphics 

elements.  In terms of efficiency, using compression schemes (such as gzip, binary format or 

geometry compression) or instancing (reusing parts of your scene, textures and multimedia 

elements) VRML can produce images three times smaller than GIFs. [Gorman 1997] 

 

When discussing VRML optimisations, one must draw a distinction between optimising the 

time taken to download a virtual world (optimising bandwidth), and optimising the rendering 

of that virtual world. 

 

 

Rendering Optimisations 

It is important to identify where the bottlenecks for rendering a scene are, i.e. if the scene is 

co-ordinate (vertex) bound, texture-bound, or pixel-bound [Nadeau et al. 1996] [Silicon 

Graphics 1998]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1.  VRML Rendering Pipeline [Silicon Graphics 1998] 
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Co-ordinate-bound  

A scene is co-ordinate-bound if the computations involving co-ordinates are limiting 

the speed of the pipeline. Co-ordinates, and their associated texture co-ordinates and 

colours, are used in all pipeline stages.  Therefore it is very important to try to avoid 

letting the scene become co-ordinate-bound. 

 

Pixel-bound  

The scene is pixel-bound if the computations needed fill triangles using triangle 

colours and textures in the Rasterize stage are limiting the pipeline speed.  

 

Texture -bound  

The scene is texture-bound if computations necessary to access textures in the 

Rasterize stage are limiting the performance of the pipeline. 

 

It is also possible for the performance bottlenecks associated with rendering a particular 

scene to shift as the viewer moves through that scene.  Consider, for instance, a detailed 

terrain on a virtual planet.  When the planet is a distant dot, far from the viewer, the number 

of pixels drawn for the planet's geometry is very low, but the number of co-ordinates used to 

build that geometry is high.  From such a distant vantage point, the planet will cause the 

rendering pipeline to be co-ordinate-bound.  However, as the viewer moves closer, the 

planet's image on the screen grows in size, causing more pixels for the detailed terrain of the 

planet to be drawn, and the pipeline may become pixel-bound. 

 

The tremendous range of viewing freedom offered to viewers of VRML worlds makes it 

difficult for VRML world authors to optimise their worlds so that they draw quickly 

regardless of the viewer's vantage point.  Instead, VRML world authors strive to optimise for 

typical viewing situations.  For instance, if the viewer is expected to walk from room to room 

in a virtual building, then the world's content can be optimised for this path.  If the viewer 

unexpectedly dives through a wall and hovers in mid-air outside the building, drawing speed 

may decrease for this atypical vantage point. 
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Compression 

The VRML 1.0 specification focuses on the specification of 3D graphics objects, while 

paying little attention to minimising download time. For example, the VRML files must be in 

ASCII format, which wastes bandwidth.  

 

A number of current VRML browser plug-ins now support the downloading of gzipped world 

files.  The use of gzip compresses the ASCII files, saving bandwidth and decreasing the 

download time.  Should the plug-in be able to interpret the gzipped file rather than unzipping 

it first, it may also be feasible that the parsing time is decreased which ultimately leads to a 

decrease in the time taken to draw the scene initially.  

 

According to Leung, they have been unable to find a browser implementation that can accept 

compressed VRML from a CGI program within a WWWInline node (see InLine below).  

When using a CGI program to create VRML data on the fly, this becomes a major drawback 

as it leads to long delays in the presentation of the data.  These delays are due to both the CGI 

activation (latency) and the transmission delays (bandwidth) associated with the larger data 

size of the uncompressed VRML file.  

 

Although compression of the ASCII files using gzip is supported, a compressed binary format 

would require far fewer bytes, and is an important consideration for accessing very large data 

models over the Web [Leung 1998]. 

 

 

Inline  

The WWWInline node may be used for reducing the file size of a virtual world by allowing 

one to define a bounding box for the file it references.  If the user never actually sees the 

bounding box (because of culling, or for any other reason), the inlined file might never be 

downloaded, which ultimately translates into a saving in bandwidth.  The process of 

decomposing a scene into objects that can be inlined requires careful thought and planning, 

but the savings in bandwidth requirements and transfer time make it worth the additional 

effort [Matsuba and Roehl 1996]. 
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Inlining also facilitates the re-use of objects if they are stored separately, as opposed to all 

being placed in one file, i.e. the same object (stored by itself) can be incorporated into more 

than one “virtual world” using the WWWInline node.  

 

 

USE and DEF 

The DEF keyword allows one to provide a node with a name that may be referenced later in 

the same file with USE or ROUTE statements.  Instead of creating a copy of the node, the 

USE statement inserts the same node into the scene graph a second/third/etc. time, resulting 

in the node having multiple parents [VRML97].   

 

Instancing (or the reuse of objects) is useful for traditional GIS because if symbols are used to 

represent features in a coverage, one can instance 3D symbols and then reuse them to save 

space and reduce processing overheads.  However, this only works if you can find a generic 

symbol and are not too concerned about the actual dimensions of the object it is representing.  

For example you could use 3 different generic tree symbols to "represent" a forest.  There are 

many objects in everyday use that are similar and can be defined once and used where 

needed.  Thus, depending on the GIS application, the required Level of Detail (LOD), and the 

required accuracy of representation, a considerable saving in space and processing could be 

obtained by defining generic symbols and re-using them in the scene. 

 

 

Shapehints 

If you know that all the faces in an object have consistent vertex ordering, and/or that the 

shape only has an "outside" (i.e., the inside surfaces are not visible) then the ShapeHints  

node should be used to inform the browser of that information. This allows the rendering 

engine to avoid lighting surfaces that won't be seen, and possibly do backface culling. The 

result is a noticeable performance improvement [Matsuba and Roehl 1996]. 
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Bounding boxes 

Information about the size and location of the bounding box is used by the browser to decide 

if a WWWInline node is visible.   In this way, it is possible that should the user never do a 

360-degree turn, part of the scene need never be downloaded.  Making "clever" use of 

bounding boxes is particularly useful for decreasing the amount of data that needs to be 

downloaded initially, and may result in savings of bandwidth should the user never get close 

enough, or look in the direction of the object represented by the bounding box. 

 

 

Level of Detail (LOD) 

An important feature of VRML, which increases the speed of visualisation, is based on using 

several different representations for a single object, i.e. VRML implements a mechanism to 

support level of detail (LOD) management.  The level of detail defines how the object 

appears on display with respect of viewing distance. It means that the rendering software 

substitutes one model with less or more detail as user goes through the scene.  Furthermore, 

objects can be defined as invisible from certain distance.  

 

Note, that the number of faces in each scene with several LODs is higher than in a single-

level scene description.  Thus, a higher speed of interactive walking-through virtual worlds is 

achieved by increasing the amount of data.  Although this last statement sounds confusing, it 

is correct.  When using LOD, one increases the amount of data for that scene (multiple 

representations for the same object).  However, at the same time, by allowing the browser to 

render objects at a lower LOD, one obtains an increase in performance.  Thus, there is a 

trade-off between downloading additional LODs for a particular object, i.e. increased 

bandwidth, and increasing the rendering performance.   

 

One can delay transferring the inlined file until the user gets close enough to see it, by placing 

a WWWInline statement inside a LOD node.  One can even have multiple versions of an 

object at different levels of detail, and only transfer them as needed. Thus, the LOD node can 

be used to increase the power and efficiency of the Inline node. [Matsuba and Roehl 1996] 
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Progressive LOD 

As an alternative to using VRML's built-in LOD, one can implement one's own LOD 

handling.  This is useful if, for example, one wishes to implement a progressive LOD 

mechanism.  Progressive LOD means that even if the user needs to view the next LOD, the 

whole object does not get downloaded again, only those parts that are different to the current 

LOD.   This is similar in concept to video compression, where only the changes between two 

frames are stored/transmitted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2.  Progressive LOD 

 

Thus, there are two methods for implementing LOD: 

?? Using VRML’s LOD node: Redrawing of objects at varying LODs or specifying urls 

for each LOD.  Each method ends up downloading the same base information each 

time. 

?? Using VRML’s createVRMLFromString/createVRMLFromURL: Specifying 

additional objects to be added to the original object in the scene graph as the LOD 

increases.  This method decreases the bandwidth implications because only the 
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changes need to be downloaded each time and not the entire object.  It may also be 

less processor intensive because one is adding and removing portions of an object at 

different LODs as opposed to removing whole objects and then adding new objects.  

This is an issue that still needs investigation. 

 

 

Linear interpolation 

All VRML 2.0 interpolator nodes use linear interpolation to compute intermediate values 

between the key values you provide.   A linear interpolator computes an intermediate position 

or orientation each time an output is needed.  Any number of intermediate values can be 

computed between your key positions and orientations.  

 

The use of interpolation is especially important when playing an animation at different 

speeds. For a quick animation, one's VRML browser may only have time to draw the world a 

few times between the time the animation starts and the time it stops.  In this case, one's 

browser may only need to linearly interpolate values at a few fractional times between the 

key fractional times provided.  

 

For a slow animation, one's VRML browser may have the time to draw the world many times 

and may need a large number of interpolated positions or orientations.  In this case, one's 

browser may interpolate values at many fractional times between key fractional times.  

 

Using keyframe animation and linear interpolation, one can describe an animation 

independent of the playback speed of the animation.  During playback, an appropriate 

number of intermediate values are computed automatically. 
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Appendix C – GeoVRML Nodes 
 

The following nodes are part of the GeoVRML 1.0 Recommended Practice document that 

has been submitted to ISO for inclusion as an amendment to the ISO VRML97 standard 

[Reddy et al. 2000b] [Reddy et al. 2000c]: 

?? The GeoElevationGrid node - allows one to take the curvature of the earth into 

consideration when modelling large extents.  It provides a height field 

representation for geospatial elevation data, offset from an ellipsoid model of the 

planet, in a number of geographic coordinate systems such as geodetic (latitude/ 

longitude) and Universal Transverse Mercator (UTM).    In contrast, VRML’s 

ElevationGrid node values are offset from a single flat plane [VRML97], and it is 

therefore unsuitable for representing geospatial data where the curvature of the 

earth needs to be taken into account. 

?? The GeoCoordinate  node  - lets a modeller specify coordinates using 

geographic coordinate systems (e.g. geodetic, UTM) directly within a VRML file, 

as opposed to having to convert them to Cartesian coordinates first.  This is useful 

for inserting output from devices such as GPS units, which normally output a 

location as a latitude/longitude coordinate, straight into VRML files.  The 

GeoCoordinate node transparently converts the data into a Cartesian frame, and 

correctly positions the coordinates in the global model.  

?? The GeoLocation node – allows the user to georeference an arbitrary VRML 

model, i.e. establish the relationship between the coordinates of the VRML model 

with a specific point on the earth.  It also orients the model correctly, depending 

upon its position on the earth, to ensure that a model built using the standard 

VRML right-handed coordinate system will have its base correctly aligned with 

the surface of the earth.  

?? The GeoOrigin node - As previously mentioned, VRML uses single-precision 

(32-bit floating-point numbers) to model and render all geometry [VRML97].  

However this precision is not enough to accurately display geographic data at high 

resolutions.  Thus one of the requirements for modelling geographic (e.g., 

geocentric) coordinates beyond a resolution of 10-100 m is the use of at least 

double-precision (64-bit floating-point numbers).  The GeoOrigin  node enables 
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the accurate rendering of double-precision geographic coordinates by defining an 

absolute geographic origin (or GeoOrigin) in double -precision, and then for all 

double-precision geographic coordinates, the difference between each coordinate 

and the GeoOrigin is taken.  The result is a single-precision offset that can be 

used for accurate rendering of that object.  All GeoVRML nodes that deal with 

coordinates, e.g. GeoElevationGrid, GeoCoordinate, and GeoLocation, 

support the use of the GeoOrigin node. 

?? The GeoLOD (formerly QuadLOD) node - provides the ability to browse multi-

resolution, tiled terrain data, which is essential for memory management and 

scalability operations when browsing massive terrain datasets (e.g. Terravision II 

[Reddy et al. 1999b].  It automatically manages the progressive loading of higher-

resolution data as the user approaches the terrain, and also unloads terrain data 

once the user has moved past.  

?? The GeoInline node - is a grouping node that is used to decide when its children 

should be read from a location on the web.  This is done either immediately when 

the node is first loaded, or at a later stage when for example, a VRML 

ProximitySensor triggers the required event.   

 

In addition to these nodes, GeoVRML 1.0 also includes the GeoPositionInterpolator 

node to perform animations using geographic coordinates, the GeoTouchSensor node to 

return the geographic location at the current (mouse) pointer position, the GeoViewpoint 

node to specify a camera location in geographic coordinates, and the GeoMetadata node to 

provide a summary and links to full metadata descriptions of the geographic data [Reddy et 

al. 2000b].  For more information on the GeoVRML nodes, please refer to 

http://www.geovrml.org. 
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Appendix D - Dynamic Interface 

Development 
According to Dey et al. [1997b], dynamic component integration shows the most promise for 

context-aware computing, which requires an infrastructure that permits intelligent mediation 

between software components.  An example of such a system that has been developed is 

Cyberdesk [Dey et al. 1997b].  Cyberdesk is an adaptive interface that modifies the list of 

available tools at runtime, based on the user’s current activity, using a dynamic mapping of 

user actions to possible user actions.   

 

In order to illustrate the benefits and validity of such an approach, this appendix provides 

some background on adaptive and intelligent interfaces in order to make the reader aware of 

some of the research that has been performed in these fields.  Much of this research was 

performed based on static, non-distributed applications, and thus the application of this 

research to the runtime extensible distributed applications involves additional complexity that 

must be taken into consideration. 

 

Adaptive interfaces are a way of reducing the complexity of an application with respect to its 

usability [Browne et al. 1990] [Shneider-Hufschmidt et al. 1993].   Thus, research into 

adaptive and intelligent interfaces explores the following basic software usability issues 

[Encarnação 1997]:  

?? Simplification of the design and implementation of “good” user interfaces, 

?? The clearer and more efficient presentation of information,  

?? Simplification of the interaction between the client and the application, and 

?? The creation of interfaces that provide better support for a users’ particular tasks.  

 

On the other hand, intelligent user interfaces automatically adapt to the needs of different 

users, learn new concepts and techniques, anticipate the needs of users, accommodate the 

changing needs of users over time (for example, as the user’s level of expertise progresses 

from novice to expert), take initiative and make suggestions to users, and provide 

explanations of their actions  [Maes and Lieberman, current].  
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Research into adaptive and intelligent user interfaces also incorporates research from a 

number of other fields, particularly the use of agents and artificial intelligence.  Figure D.1  

illustrates the relationship between adaptive and intelligent user interfaces as well as number 

of sub-disciples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1.  Components of intelligent and adaptive user interfaces [Encarnação 1997] 

 
The main benefits to be derived from these approaches are the simplification of the user 

interface, and customise the application based on the user’s level of expertise and processing 

requirements.   For example, an experienced user may be aware of his or her level of 

expertise and request full menus and brief prompts, whereas a novice may request short 

menus and lengthy prompts [Sukaviriya and Foley 1993].   

 

More intelligent interfaces may also infer information about the user’s level of expertise and 

customise the application based on how the user works with the application, and which tasks 

the user makes use of most frequently.  This could be extremely useful for customising the 

GIS client based on the user’s most frequently performed task, e.g. data capturing 

(digitising), or analysis, or presentation. 
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Appendix E – DGCML listing of a location 

service for finding restaurants  
 

<?xml version="1.0 " encoding="UTF-8"?> 
<!DOCTYPE GISService SYSTEM "file://localhost/C:/describeService.dtd" > 
<GISService name="Restaurant Location Service" vendor="RUDevGroup" version="2.0.2"> 
    <CodeBase url="iiop://localhost:900/RestaurantLocService" /> 
    <GUI> 
        <Component name="MainFrame" type="Frame"> 
            <Property name="title" value="Restaurant Location Service"/> 
           <Component name="ResultPanel" type="Panel" position="Center"> 
     <Property name="layout" value="java.awt.BorderLayout"/> 
                 <Component name="RLSResultsScrollPane" type="ScrollPane" position="Center" > 
          <MethodCall ReturnValueDest="_tmpBorder2"  
                                             ReturnType="javax.swing.border.Border"  
                                             name="javax.swing.BorderFactory.createTitledBorder"> 
                          <Param  DataType="java.lang.String" Source="Restaurant Information"/> 
                      </MethodCall> 
                     <Property name="border" value="_tmpBorder2" /> 
                     <MethodCall ReturnValueDest="_tableModel"  
                                          ReturnType="RemoteResultSetTableModel" name="constructor"> 
                         <Param DataType="java.lang.Integer.TYPE" Source="4" /> 
                         <Param DataType="java.lang.Integer.TYPE" Source="3" /> 
                     </MethodCall> 
                     <Component name="SQLResults" type="Table" position="Center" > 
             <Property name="model" value="_tableModel" /> 
                     </Component> 
       </Component> 
            </Component> 
            <Component name="InputPanel" type="Panel" position="North"> 
                <Property name="layout" value="java.awt.BorderLayout"/> 
                <Component name="UserLocation" type="TextField" position="North"> 
          <Property name="text" value="X-coordinate, Y-coordinate"/>         
                    <MethodCall ReturnValueDest="_tmpBorder1"  
                                           ReturnType="javax.swing.border.Border"  
                                           name="javax.swing.BorderFactory.createTitledBorder"> 
                        <Param DataType="java.lang.String" Source="Enter your position here"/> 
                    </MethodCall> 
                    <Property name="border" value="_tmpBorder1" /> 
                </Component> 
                <Component name="Radius" type="TextField" position="South"> 
           <Property name="text" value="distance in km"/>         
                     <MethodCall ReturnValueDest="_tmpBorder1"  
                                            ReturnType="javax.swing.border.Border"  
                                            name="javax.swing.BorderFactory.createTitledBorder"> 
                         <Param DataType="java.lang.String" Source="Enter Radius here"/> 
                     </MethodCall> 
                     <Property name="border" value="_tmpBorder1" /> 
                </Component> 
            </Component> 
            <Component name="SubmitQuery" type="Button" position="South"> 
                <Property name="text" value="Search"/> 
                <Event type="action"> 
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           <MethodCall ReturnValueDest="_userLoc" ReturnType="java.lang.String"  
                                          name="constructor"> 
            <Param  DataType="javax.swing.JTextField" Source="UserLocation"> 
                  <Property name="text" value="java.lang.String"/> 
            </Param> 
                    </MethodCall> 
           <MethodCall ReturnValueDest="_userRadius" ReturnType="java.lang.String"  
                                          name="constructor"> 
            <Param  DataType="javax.swing.JTextField" Source="Radius"> 
                  <Property name="text" value="java.lang.String"/> 
            </Param> 
                    </MethodCall> 
                    <MethodCall ReturnValueDest="_tmpRes" ReturnType="[Ljava.lang.String;"  
                                          name="remote:makeRestaurantQuery" > 
                        <Param DataType="java.lang.String" Source="_userLoc" /> 
                        <Param DataType="java.lang.String" Source="_userRadius" /> 
                    </MethodCall> 
                    <MethodCall ReturnValueDest="null" ReturnType="void" name="_tableModel.init"> 
                        <Param DataType="[Ljava.lang.String;" Source="_tmpRes"/> 
                    </MethodCall> 
                    <MethodCall ReturnValueDest="null" ReturnType="void"  
                                           name="_tableModel.fireTableChanged"> 
                        <Param DataType="javax.swing.event.TableModelEvent" Source="null"/> 
                    </MethodCall> 
                </Event> 
           </Component> 
           <MethodCall ReturnValueDest="null" ReturnType="void" name="pack"/> 
           <Property name="visible" value="true"/> 
           <Event type="window" filter="windowClosing"> 
               <Property name="visible" value="false"/> 
           </Event> 
        </Component> 
    </GUI> 
    <Help> 
        <HelpSet href="RestaurantLS.hs"/> 
    </Help> 
</GISService> 
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Glossary of Terms and Acronyms 
 

“The beginning of wisdom is to call things by their right name.” 

Chinese Proverb 

 

 

Accuracy - the quality of the result, or the degree of correctness of the measurement.  It 

should be distinguished from precision, which relates to the quality of the process by which 

the result was obtained. 

 

Algorithm - a statement of the steps to be followed to solve a problem. 

 

API – Application Programming Interface 

 

Applet –  a Java program that is included in an HTML Web Page using the <applet> tag, and 

runs in a client’s Web browser. 

 

Attribute data - the a-spatial, descriptive information about features that is often used for 

analysis and the manipulation of the associated geospatial data. 

 

BeanML –  Bean Markup Language.  A wiring language developed by IBM Alphaworks that 

allows one to describe an application composed of JavaBeans in XML. 

 

Cartography - The art or technique of making maps or charts. 

 

Catalog - A collection of entries, each of which points to a feature collection and describes 

its contents, coverages, and other metadata. 

 

CBSD – Component-based Software Development.  CBSD is the philosophy of building a 

system by assembling and integrating existing components rather than building the system 

from scratch.  Also known as Component-Based Software Engineering (CBSE). 



 

 175 

CCM – The CORBA Component Model is a core component of the CORBA 3 specification, 

developed by the OMG, which extends the basic architecture defined in the EJB 

Specification, and allows the creation of server-side scalable, language-neutral, transactional, 

multi-user and secure enterprise-level applications. 

 

COM –  Component Object Model.  A specification developed by Microsoft for writing 

reusable software components that can be accessed and invoked in a Windows environment.  

Also see DCOM. 

 

CORBA –  The Common Object Request Broker Architecture, developed by the OMG, is an 

architecture and specification for creating, distributing, and managing distributed objects in a 

network. 

 

COTS software  – Commercial-off-the-Shelf software. 

 

Datum –  A point, line or surface that is used as a reference. 

 

DCOM  –  Distributed Component Object Model.  A distributed software architecture 

developed by Microsoft, based on COM, that provides the ability to perform remote 

procedure calls so that DCOM objects can run remotely over a network.  Also see COM. 

 

DEM –  Digital Elevation Model.  Digital elevation models are cartographic/geographic data 

in raster form that represent the elevation of a dry land surface, i.e. they are typically used to 

represent terrain relief, and are also referred to as Digital Terrain Models (DTM).  

 

DGCML (Distributed GIS Component Markup Language) – a meta-language developed by 

the author to enable the creation and deployment of GIS services, based on local and 

distributed components, which can be incorporated into the RADGIS client. 

 

DII –  CORBA’s Dynamic Invocation Interface.  An API that allows a client to make 

dynamic method invocations on remote CORBA objects that were generally not known about 

at compile time.   

 

Disaggregated – broken up into a number of constituent parts. 
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Distributed – the ability to access data and processing, as well as collaborate with other users 

located throughout the world, i.e. not concentrated in a single location. 

 

DOM –  Document Object Model.  A platform- and language-neutral interface that allows 

programs and scripts to dynamically access and update a document’s content, structure, and 

style.  See SAX. 

 

DTD – Document Type Definition.  A type of file that defines the structure and properties of 

an XML document, and is used by a parser to validate the structure of an XML document.  It 

has been superseded by the XML Schema Language.  See XML Schema. 

 

EAI –  External Authoring Interface.  A mechanism, developed by Chris Marrin, to allow 

Java programs to manipulate the VRML scenegraph in a VRML plug-in that supports the 

EAI. 

 

EJB  – Enterprise JavaBeans.  A Java-based distributed object architecture developed by Sun 

Microsystems, that facilitates the development and deployment of reusable, object-oriented, 

server-side components. 

  

Element –  A component of an XML document that represents a logical data structure, 

delimited by start and end tags. 

 

Feature  –  A digital representation of measurable or describable phenomena about a real 

world entity or an abstraction of the real world.  It is the fundamental unit of geospatial 

information and consists of both spatial and attribute data. 

 

.geo – Proposal by SRI for a new top level domain to simply indexing and discovery of 

spatial data. 

 

Geocoding  - the process of defining the positions of geographical objects relative to a 

standard reference datum. 

 

Geodata – geographically related data 
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Geographic information system (GIS) - a computer hardware and software system capable 

of handling the storage, manipulation, analysis and display of spatial and related attribute 

data. 

 

Geoprocessing  – the processing of geographically related data 

 

Georeference  - to establish the relationship between page coordinates (i.e. x, y) of a planar 

map or image with known real-world coordinates (i.e. longitude/latitude, UTM, etc). 

 

Geospatial data – spatial data that is referenced to the earth 

 

GeoVRML – a 3D data format, based on VRML.  It was developed by the GeoVRML 

Working Group to overcome the limitations of using VRML for large terrain visualisation. 

 

GIS – see Geographic Information System.  

 

GML –  Geographic Markup Language.  An XML encoding of the Simple Features 

Specification, developed by the OGC, which is likely to be widely adopted as a geospatial 

data exchange format. 

 

GPS - Global Positioning System.  A position-finding system, which uses a radio receiver to 

pick up signals from special satellites to compute the location of the receiver. 

 

GUI –  Graphical User Interface 

 

HTML – Hypertext Markup Language.  A very simple markup language used to format text, 

create form fields, and embed images, sound, and other multimedia files using URLs in a text 

file.  This HTML file is generally downloaded across the Internet and interpreted by a Web 

browser. 

 

HTTP –  Hypertext Transfer Protocol.  The Internet protocol used by Web browsers for 

fetching hypertext objects from remote hosts. 
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IDL – The Interface Definition Language is used to define interfaces that enable 

communication between modules implemented in different languages. 

 

IIOP – Internet Inter-ORB Protocol.  A protocol developed for communication between 

CORBA ORBs. 

 

Interoperability - ability of software (possibly distributed on multiple machines) from 

multiple vendors to freely exchange data between systems. 

 

IR – CORBA’s Interface Repository.  A service that contains all the registered CORBA 

objects’ interfaces, as well as the methods they contain and the parameters they require. 

 

ISO/TC 211  –  The International Standardisation Organisation (ISO) technical committee that 

was formed to develop standards for working with geographic information.  ISO/TC 211 is 

now working closely with the OGC to ensure that standardisation efforts are harmonised.  

ISO/TC 211 is currently concentrating more on data standards than the provision of GIS 

services and the standardisation of Web Map/Feature Servers, which is being looked at by the 

OGC. 

 

J2EE – Java 2 Enterprise Edition is an environment for developing and deploying multi-

tiered, Web-based enterprise applications. 

 

JAR – The Java Archive file format is essentially a ZIP file that contains Java classes and 

optionally a manifest file to describe the classes. 

 

Java3D – 3D API for the Java programming language 

 

JDBC –  A Java API for database connectivity.  Although actually a trademark name, it is 

often thought of as an acronym for Java Database Connectivity. Also see ODBC. 

 

JNLP –  Java Network Launch Protocol.  JNLP is a web-centric software distribution 

protocol based on XML that enables the deployment of Web-based Java applications. 
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JVM  – Java Virtual Machine.  A specification for an abstract computing machine, which is 

implemented in software or hardware, that interprets Java programs that have been compiled 

into Java byte-codes.   

 

Kriging - an optimised interpolation technique (after Dr. D. G. Krige) that uses information 

about the stochastic (random, local) aspects of spatial variation. 

 

LDAP –  The Lightweight Directory Access Protocol is an extensible client-server protocol 

and information model that allows one to access and manage information in a tree-structured 

database.  Each entry in an LDAP server has a distinguished name that allows easy 

identification, and stores associated information as attributes.  Each attribute has an 

associated type and one or more values. 

 

Location-Based Services – The convergence of wireless communication, Web and GIS 

technologies that allows a user to gain access to data based on her/his (specified) location.  

Location Services are particular applications of spatial and analytic functions found in GIS 

applications.   

 

LOD management –  Level of Detail management is a graphics optimisation technique 

whereby an application renders an object at different levels-of-detail according to particular 

predefined criteria (e.g. performance requirements for rendering a scene, or the distance 

between the viewpoint and the object) 

 

Marshal – Convert a request from its representation in the programming language to one that 

is suitable for transmission to the target object. 

 

Metadata –  data that describes the characteristics of an information or processing resource. 

 

MLS - Mobile Location Service.  See Location Based Service. 

 

Mobile Agent –  An agent that is able to migrate from one machine to another in a 

heterogeneous network. 
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Naming Service  – A Service that allows objects to be named by means of binding a name to 

an object reference.  A client can obtain a reference to a desired object from the Naming 

Service by simply specifying the name of the object. 

 

ODBC – Open Database Connectivity.  A standard API for accessing data in both relational 

and nonrelational DBMS, i.e. it provides the programmer with a standardised manner of 

accessing data in an underlying database, which is independent of that database’s data storage 

format and programming interface.  Also see JDBC. 

 

OGC – Open GIS Consortium.  A not for profit trade association whose purpose is to 

promote interoperability within the field of GIS through the creation an open standards GIS. 

 

OLE – Microsoft’s Object Linking and Embedding is a way to create documents containing 

objects from other programs. 

 

OMG –  Object Management Group.  A non-profit organisation whose charter is to 

standardise and promote the use of object-oriented technology. 

 

OpenGIS® Specification –  A software interface standard developed by the Open GIS 

Consortium that enables interoperable geoprocessing and data sharing between GIS systems 

from different vendors. 

 

Open system – A system that complies with standards, which have been made available 

throughout the industry, and therefore can be connected to other systems that comply with the 

same standards.  

 

ORB  – Object Request Broker.  The infrastructure that connects objects requesting services 

to objects providing them, in a distributed environment. 

 

OSD – Open Software Description.  An XML-based language for automated software 

distribution over the Internet, developed by Microsoft. 

 

PDA –  Personal Digital Assistant. 
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RADGIS – Runtime Application Development of GIS.  The runtime-extensible GIS client 

architecture developed by the author. 

 

Raster – A data structure composed of a grid of cells that represent geographic features.  A 

group of cells with the same value represents a feature. See Vector. 

 

RMI - Remote Method Invocation.  Java’s distributed programming architecture.   

 

SAX –  The Simple API for XML is a standard interface for event-based parsing.  See DOM. 

 

SDK – The Java Software Development Kit is a set of Java class libraries, help 

documentation and the Runtime-environment, which is used by a Java application developer. 

 

Sequential - one after the other, in tandem order. 

 

SGML – Standard Generalized Markup Language.  SGML is a vendor, platform, and media 

independent standard for documents based on DTDs.  It was adopted as an ISO standard in 

1986, and is the predecessor of XML.  

 

Soap – The Simple Object Access Protocol is a method of making remote procedure calls 

over the Internet using HTTP. 

 

Spatial analysis  –  the process of applying analytical techniques to geospatial data.  Spatial 

analysis may be used to model, examine and interpret complex geographical interactions, 

make decisions based on spatial relationships or make predictions about future events.  This 

is the essence of Geographic Information Systems, and is what distinguishes them from 

automatic map-making systems. 

 

Spatial data – the locations of geographical entities together with their spatial dimensions. 

Spatial data may be vector (points, lines, areas or surfaces) or raster data (bit -mapped data). 

 

Spatiotemporal GIS –  A GIS which models features that may change shape or position over 

time. 
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SQL (Structured Query Language) – a powerful query language supported by most relational 

databases. 

 

Standard  –  A definition or format, approved an authority or accepted as a de facto standard 

by industry. 

 

SVG – Scalable Vector Graphics is a language for describing two-dimensional vector and 

mixed vector/raster graphics in XML. 

 

Swing  – GUI API for Java programming language. 

 

Temporal GIS – A GIS that allows the user to work with data that has a time component. 

 

TIN- Triangular Irregular Network.  A method of creating a 3-D surface from irregularly 

spaced point data in a vector data model.  See DEM. 

 

Trader Service  - a brokerage facility that allows objects to publicise their services and bid 

for jobs. 

 

UDDI – The Universal Description, Discovery, and Integration standardis a repository-based 

directory service which facilitates the automated lookup of Web Services. 

 

Unmarshal –  Convert a request from a client, from its transmissible form to a programming 

language form. 

 

Vector – One of the fundamental ways of representing and storing spatial data (the other 

being raster). It is a coordinate-based data structure that is comprised of a series of points 

(coordinates), some of which are joined by lines (i.e. sets of related points), and some line 

segments (arcs) are joined to form polygons.  See Raster 

 

Voyager – Application server developed by Objectspace. 

 

VRML – The Virtual Reality Markup Language, is an ISO standard for displaying 3D 

objects over the Web. 
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VRML NG –  VRML Next Generation 

 

W3 –  World Wide Web Consortium.  Responsible for maintaining and developing emerging 

Internet standards, including any new standards for HTML. 

 

Web Feature Server –  originally intended as a major extension to the Web Map Server 

specification, it has now become a separate interface specification.  The Web Feature Server 

specification, developed by the OpenGIS Consortium, enables a client to specify a request 

that returns a feature set, e.g. as GML, to the client.   

 

WMS –  Web Map Server.  A specification developed by the OpenGIS Consortium for an 

online service that is able to provide maps in one of a number of standard image formats, e.g. 

GIF, JPEG, PNG, or as vector -based graphical elements, e.g. using SVG. 

 

WWW –  World Wide Web.  Otherwise referred to as the Internet. 

 

X3D –  an XML-based version of VRML NG 

 

XML – Extensible Markup Language.  XML is subset of SGML, and does not require a 

document to have an associated schema described in a DTD. 

 

XML Schema –  It has recently replaced the DTD as the recommended practice for 

specifying the format, and allowable datatypes, in an XML document.  See DTD. 

 

XSL –  Extensible Style Language.  Is responsible for how the XML data is presented to the 

user. 

 

XSLT –  Extensible Style Language Transformations.  This is the language responsible for 

transforming XML documents in one format into other XML documents, e.g. GML to SVG. 

 

XwingML – A wiring language developed by HP Bluestone Software, which enables users to 

build XML documents that define a complete Java Swing GUI.  
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