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ABSTRACT 

The purpose of this study is to investigate various solution strategies employed by 

Grade 7 learners and their teachers when solving a given set of mathematical tasks. 

This study is oriented in an interpretive paradigm and is characterised by qualitative 

methods. The research, set in nine schools in the Eastern Cape, was carried out with 

nine learners and their mathematics teachers and was designed around two phases. 

The research tools consisted of a set of 12 tasks that were modelled after the Third 

International Mathematics and Science Study (TIMSS), and a process of clinical 

interviews that interrogated the solution strategies that were used in solving the 12 

tasks. Aspects of grounded theory were used in the analysis of the data. 

The study reveals that in most tasks, learners relied heavily on procedural 

understanding at the expense of conceptual understanding. It also emphasises that the 

solution strategies adopted by learners, particularly whole number operations, were 

consistent with those strategies used by their teachers. Both learners and teachers 

favoured using the traditional, standard algorithm strategies and appeared to have 

learned these algorithms in isolation from concepts, failing to relate them to 

understanding. Another important finding was that there was evidence to suggest that 

some learners and teachers did employ their own constructed solution strategies. They 

were able to make sense of the problems and to 'mathematize' effectively and reason 

mathematically. An interesting outcome of the study shows that participants were 

more proficient in solving word problems than mathematical computations. This is in 

contrast to existing research on word problems, where it is shown that teachers find 

them difficult to teach and learners find them difficult to understand. 

The findings of this study also highlight issues for mathematics teachers to consider 

when dealing with computations and word problems involving number sense and 

other problem solving type problems. 
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND TO STUDY 

1.1 INTRODUCTION 

The aim of this study is to identify and analyse a diversity of solution strategies 

employed by Grade 7 learners and their teachers. 

This chapter provides an introduction to the study and explains why research of this 

nature was undertaken. The chapter begins with background details about the study, 

then gives the rationale, and places the research in a South African context, with some 

information about the new Outcomes Based Education approach (OBE). Further 

aspects dealt with in the chapter include a brief examination of the goals of the 

research, a brief summary of the methodology employed, some findings of the study, 

its limitations and significance. Finally, the chapter gives an overview of the study. 

1.2 BACKGROUND TO THE STUDY 

My interest in the Third International Mathematics and Science Study (1996) 

(TIMSS) was aroused when it was found that the performance of South African 

learners was placed at the bottom of a list of over 41 countries that participated in the 

study. Although the intention of the TIMSS study was not to gauge which countries 

were better or what teaching methods were more superior, my interest initially was to 

assess whether I would find the same results using a similar study. I have worked 

with rnany in-service teachers and their learners doing problem solving tasks. As a 

result I have come across a plethora of diverse solution strategies that learners use in 

solving problems. I have also assisted teachers in refining their own strategies. In this 

study I wanted to interrogate more closely whether learners and teachers use a variety 

of solution strategies when given problem tasks to solve. 

In a further TIMSS-(R) study conducted in 1998 amongst 8 000 learners in Grade 8 in 

South African schools, it was found that learners still performed poorly when 
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compared with other participating countries. What was particularly revealing was that 

the mean score of South African learners was even lower than two other African 

countries that took part, namely Morocco and Tunisia. Although South Africa had 

participated in both studies, there had been no real difference in performance between 

1995 and 1998. 

As I had helped to develop similar assessment tasks for Grade 4 learners with 

colleagues from the Rhodes University Mathematics Education Project (RUMEP), I 

felt that a study at the Grade 7 level would help teachers see whether learners were at 

an appropriate level to enter high school and whether learners were able to use 

different solution strategies when solving problems. The main research instrument to 

explore solution strategies that framed this study consisted of a test with twelve tasks. 

To construct the test, I consulted widely, adapting tasks from the TIMSS study, the 

Ohio proficiency tests and my own experience. In the TIMSS studies, three different 

types of questions were included: mUltiple-choice questions, short answer questions 

and extended answer questions. For this study both multiple-choice questions and 

more problem-solving, extended questions were used. 

The TIMSS studies showed that learners performed poorly in fractions , number sense, 

data representation, geometry and algebra. I thus decided to use the same content 

areas in my study. 

1.3 RATIONALE FOR THE STUDY 

The rationale for choosing a study on solution strategies was triggered by the poor 

TIMSS results, the new outcomes-based approach being adopted in South Africa and 

my interest in the problem-centred approach that I had been using in my own class as 

a teacher. As I view problem solving as the vehicle to learning, (Murray, Olivier & 

Human 1998) and having been an advocate of the constructivist view of learning for 

some time, my interest in solution strategies research was heightened. 

2 



1.4 CONTEXT OF THE RESEARCH 

When RUMEP was established in 1993 as a teacher development institute, it was 

given a mandate to develop mathematics teaching and learning skills of primary 

school teachers in the Eastern Cape. The primary school level was chosen as this was 

considered to be the level where such an intervention would make the greatest impact. 

I have been working at RUMEP since 1996 with a particular focus on evaluating in­

service teacher workshops in the field. This study needs to be seen in the context of 

my work place and its mandate. 

A pilot study was conducted in 2000 to investigate the solution strategies Grade 7 

learners used when doing problem-solving tasks (Penlington & Michael 2000). These 

benchmark tasks were modelled after the TIMSS study (Beaton et al. 1996) and the 

findings show that there are large discrepancies in performance between rural and 

urban schools. 

The actual study on which this thesis is based took place in October 2001 in nine rural 

and peri-urban schools in the Eastern Cape of South Africa. Some of the participating 

schools lacked the infrastructure for appropriate teaching and learning to take place. 

Basic equipment like furniture for learners, textbooks and other resources for teaching 

were lacking. Consequently teachers struggled to provide learners with the rich 

experiences needed to learn mathematics in a developmentally appropriate manner. 

1.5 CURRICULUM 2005 

This study is located within the spirit of Curriculum 2005. Through the 

implementation of Curriculum 2005, which is underpinned by an outcomes-based 

approach, South Africa transformed its education system from one based on a 

traditional, content-focussed system to one underpinned by outcomes and learner­

centredness. There has been a shift to the "mastering of processes linked to intended 

outcomes, as well as on mastering of knowledge and skills needed to achieve the 

outcome" (Olivier 1998 :21). 

3 
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Encouraging learners to develop and use their own solution strategies is regarded as 

consistent with a move from being "teacher-centred" to a more process driven 

problem solving "learner-centred" approach (Southwood & Spanneberg 1996). The 

Revised National Curriculum Statement (RNCS) (2002:1) reaffirms this when it 

states, "The outcomes encourage a learner-centred and activity-based approach to 

education." With the learner at the centre of the learning process, much more 

emphasis is placed on learners developing conceptual understanding and learning 

computational skills (Bransford, Brown & Cocking 1999). Understanding must be the 

most fundamental goal of mathematics education (Hiebert et aI.1997). This is 

corroborated by the National Council of Teachers of Mathematics (1980:2) who assert 

that "whatever students learn, they should learn with understanding." One of the 

purposes of this study was to explore how learners explain their understanding, while 

using different solution strategies during problem solving tasks. 

1.6 GOALS OF THE RESEARCH 

The goal of the research was: 

To identify and analyse solution strategies used by nine Grade 7 learners and their 

mathematics teachers in solving a given set of tasks. 

Sub-goals of the research were: 

a) To develop a theoretical framework for analysing solution strategies using 

grounded theory. 

b) To classify the set of tasks according to the TIMSS Curriculum Frameworks 

(McNeeley 1997). 

c) To investigate to what extent the learners and their teachers used similar 

solution strategies to solve the set of tasks. 
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1.7 RESEARCH METHODOLOGY 

This research is qualitative in nature and is located in the interpretive paradigm. 

Aspects of grounded theory as a methodology, namely open coding, were used to 

analyse the solution strategies. Three research instruments were used: 

a) A test consisting of 12 tasks. 

b) Individual clinical interviews with both learners and teachers to ascertain the 

solution strategies they had used and their understanding of them. 

c) A semi-structured teacher interview schedule that incorporated questions on 

the benchmark test and its relevance. 

1.8 SOME FINDINGS 

Although the findings of this research are documented in detail in chapter 5, I present 

here four of the findings. 

Most of the participants in the study used solution strategies that had been 'teacher 

taught'. The procedures were mostly 'rule-based' with the emphasis more on 

procedural understanding at the expense of conceptual understanding. The solution 

strategies, particularly those related to whole numbers in this study, were similarly 

completed by both learners and teachers. However, there were instances where some 

participants did use their own 'constructed' solution strategies, which enhanced their 

conceptual understanding and their ability to 'mathematize'. Language was central to 

the test as the majority of tasks required careful reading with understanding. Although 

research has confirmed that word problems are difficult for most learners to solve, this 

research seems to indicate the opposite. Most of the learners interviewed appeared to 

have more difficulties with simple computations that required not much reading skill, 

than with word problems. A possible reason for learners finding word problems easier 

was that the test was presented to the participants in their mother tongue as well as in 

English. 
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1.9 LIMITATIONS 

Subsequent to this study several limitations were identified. Firstly, the use of 

grounded theory as a methodology could not be implemented in its entirety. My data 

only lent themselves to a limited grounded theory analysis. Secondly, my sample size 

was too small for the making of any general inferences. 

1.10 SIGNIFICANCE OF THE STUDY 

I believe this study is significant for the following important reasons: 

Firstly, the test was not only seen as a tool for assessing learners, but it also created 

opportunities for learning. Secondly, the ability of learners to construct their own 

solution strategies was confirmed. Research conducted by Kamii et al. (1993), Woods 

& Sellers (1996) and Fennema & Romberg (1999) has found that learners are able to 

construct, develop and modifY their own solution strategies when given problems to 

solve. Another significant aspect of this study is that it has informed teacher practice 

by promoting the idea of encouraging teachers in all grades to encourage their 

learners to use a variety of their own, constructed solution strategies. 

1.11 OVERVIEW OF THE STUDY 

This thesis is organised into five chapters. Chapter 1 provides an overview of the 

thesis. In this chapter, the background of the study, the rationale, goals of the study, 

the new OBE approach and a brief summary of the methodology employed IS 

discussed. The chapter concludes with an overview of the whole thesis structure. 

In chapter 2 the literature pertaining to research in problem solving, the problem­

centred approach and the principles underlying constructivism and social­

constructivism are discussed together with a critique of both the problem-centred 

approach and constructivism. 

In chapter 3 aspects of grounded theory as a methodology and the processes involved, 

together with the instruments developed, are described and used for gathering the 
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data. Aspects dealt with include the selection of Grade 7 learners, the design of the 

test, the clinical interviews and the semi-structured interview schedule for teachers. 

Ethical issues including voluntary participation, anonymity and researcher and co­

worker's identity are also described in this chapter. 

In chapter 4 the analysis of each of the twelve tasks IS categorised and solution 

strategies of learners and their teachers are compared. 

In the final chapter a discussion of the findings is presented together with 

recommendations, implications and avenues for future research. 
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CHAPTER TWO 

THEORETICAL PERSPECTIVE 

REVIEW OF LITERATURE 

2.1 INTRODUCTION 

The ongm of this study is derived from the new OBE approach, which was 

implemented in Grade 1 in South Africa in 1998. The introduction of Curriculum 

2005 into Grade 7 classes, which took place in 2000, filled some teachers with 

excitement because many believed the new curriculum would promote better learning 

and help learners achieve their potential. However, many were also concerned about 

the implementation of Curriculum 2005. 

The new curriculum was a watershed for South African schools: its outcomes-based 

approach represented a new paradigm which endeavoured to develop learners into 

citizens who would be prepared to live and work independently in a society that 

demanded and required skilled people in areas such as mathematics, science and 

technology (Brady 1996). However, Brady (1996:13) argues that: 

It places enormous demands on teachers to further individualise instruction, 
plan remediation and enrichment, administer diagnostic assessment and keep 
extensive records . . . Outcomes-based education will flounder if there is not 
appropriate high quality staff development and the provision of sufficient 
support. .. (Brady 1996:13) 

The national Department of Education has committed itself to adopting and 

implementing a transformational outcomes-based education (Spady & Marshall 

1991). This implies a move from a content-based curriculum to an outcomes-based 

learning programme (Spady & Marshall 1991). In this approach, the curriculum is 

designed: 

from future-driven exit outcomes with the emphasis falling on embedding 
quality problem solving skills, rather than on memorizing given information. 
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The goal is to equip all students with the knowledge, competence and 
orientation needed for success after they leave school. (pretorius 1998:6) 

The twelve critical (generic) outcomes adopted by the South African Qualifications 

Authority (SAQA) are all based on the rationale of each learning area, and the 

specific outcomes (Olivier 1998). These would have a major influence on the kind of 

learning environment learners need and the kinds of activities they should engage in if 

they are to progress towards achieving the outcomes. However, with teachers having 

difficulties in coping with new curriculum documents, and the perceived inadequate 

OBE training, which does not address teachers' fears and answer their questions (Cele 

1998), a review committee was appointed in July 2002 by the Minister of Education 

to look into the original policy document. The result was that this review committee 

recommended that the principles of outcomes-based education should be retained. 

This is a unanimous rejection of the apartheid education principles of Christian 

National Education (Ashley 1989) and of fundamental pedagogics (Kallaway 1984). 

The review committee proposed a National Curriculum Statement (NCS) that would 

supersede the previous policy document which was based on specific outcomes, 

performance indicators and assessment criteria (Department of Education 1997). 

The new document for the General Education and Training Band (Grades R-9) was 

implemented in the Foundation Phase (Grades R-3) in 2004. For the mathematics 

learning area the NCS describes briefly the mathematical content and processes that 

learners are expected to learn, including learning outcomes that specify the sequence 

of core concepts, content and skills, together with clearly stated assessment standards. 

Most American and South African teachers' conception of mathematics sees the 

discipline as a body of knowledge which is static, incorporating a set of rules and 

procedures that are applied to produce one right answer (Romberg & Kaput as cited in 

Fennema & Romberg 1999). To 'know' the mathematics being taught means being 

skilled and efficient in executing procedures and manipulating symbols without 

necessarily really having any understanding of what they represent. The 

aforementioned beliefs are consistent with mathematics learning being regarded as 

being 'traditional', (Department of Education 1997) with the teacher taking 

responsibility for transmitting the knowledge to learners and being in total control. 

9 
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Research done in America, which is also applicable in my view to South Africa as far 

as teaching practice is concerned, is that a typical mathematics lesson starts with the 

teacher reviewing previous work or introducing a new procedure by providing 

learners with step-by-step instructions and then giving learners problems on which to 

practise the procedures (Gregg 1995). 

In this chapter, I describe the learning theories which underpin the study. I start with 

an overview of the knowledge transmission model and show the move towards a 

social constructivist model (Vygotsky 1978). As learning mathematics is viewed as a 

social activity as well as an individual constructive activity, I then provide an 

overview of problem solving and discuss an approach referred to as the problem­

centred approach (Murray, Olivier & Human 1998; Cobb et at. 1991). As the role of 

the teacher is central to the problem-centred approach, the social component and the 

problem component of the learning environment is further explored. To find solutions 

to problems, learners need to draw on their own knowledge. Through this process 

learners develop appropriate solution strategies for new mathematical understandings. 

As the concept of solution strategies is central to this study, I wove it through as a 

common theme. 

The first step is to look at the theories of learning which inform this study. 

2.2 LEARNING THEORIES 

2.2.1 Introduction 

Prawat (1992) mentions that the nature of teaching and learning has changed 

substantially from that of 20 to 30 years ago. The traditional view of knowledge, 

based on the idea that education is a scientific and value free endeavour transmitted 

from the teacher to the learner through the process of ' teacher-tell', has been 

criticized. The belief that an idea is true if and only if it is linked to an independent, 

objective reality has been looked at with a critical gaze. 
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2.2.2 Knowledge transmission model 

The perceived view of learning in many schools in South Africa has until recently 

been based on the knowledge transmission model. This model implies that 

mathematical knowledge gained by one generation of individuals is transmitted 

completely to the next generation by teachers. By implication, it regards learners as 

passive recipients of mathematical knowledge. This transmission model is not limited 

to South Africa. Internationally, data gathered in other countries have shown that 

learners are not provided with the knowledge and skills to prepare them to tackle 

problem situations in effective ways (De Corte 1995). 

A major change in the teaching and learning of mathematics carne about inter alia 

through the work of Pia get (1972), von Glasersfeld (1991), Ernest (1998) and others. 

The change carne in the form of a move away from the idea that knowledge is 

transmitted to learners who are passive to the idea that learners construct their own 

knowledge. Learners are no longer seen as being passive individuals receiving 

knowledge, but as active recipients of knowledge who interact with the environment. 

This shift in emphasis is referred to as constructivism (von Glasersfeld 1991; Bodner 

1985). 

2.2.3 Piaget's theory of cognitive development 

The roots of constructivism can be attributed to the work of Piaget. Cognitive 

development is intellectual development, which includes a person's mental capacity 

to engage in thinking, reasoning, understanding and solving problems (Piaget 1972). 

Piaget's view is that children pass through four stages of development. The stages are: 

• sensori-motor stage, 

• pre-operational stage, 

• concrete operational stage 

• formal operational stage (Piaget 1972) 

Children pass through these stages one after the other, although they may vary in the 

age at which they reach a particular stage. The formal operational stage from ages 
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about 11-15 is applicable to this study. During this stage children begin to reason 

things out in their minds without having to see and manipulate the real objects. They 

also start thinking about moral and philosophical issues (Piaget 1972). 

Building on Piaget's idea of how children acquire knowledge, cognitive psychologists 

have also shifted their perspective away from the traditional view of knowledge. The 

traditional view of knowledge "views the mind as a 'black box'; we can accurately 

judge what goes in (stimulus) and what comes out (response), but we can only guess 

about what is happening inside the box" (Bodner 1985:374). Bodner (ibid.) also 

asserts that the constructivist view of knowledge "views the environment as the 'black 

box', each of us knows what is going on in our minds; what we can only guess about 

is the relationship between our mental structures and the real world." 

Cognitive psychologists have pointed out that: 

All children bring a wealth of knowledge with them into the classroom. They 
are not, as was previously thought, 'sponges' soaking up knowledge according 
to their ability levels. They have definite views about what is taught. Like 
adults they develop theories about nearly everything ... Children use theories 
to frame their interpretation of new information. Because these theories help 
them make sense oftheir world, children are often hesitant to change them. 

(Prawat 1992: 11 ) 

In the context of this study, the quotation above epitomizes the idea that knowledge is 

constructed in the mind of the learner and 'fits' reality. 

It is further stated that: 

Current research ... also focuses on the role of the student. It recognises that 
students do not merely passively receive or copy input from the teachers but 
instead actively mediate it by trying to make sense of it and to relate it to what 
they already know (or think they know) about the topic. Thus, students 
develop new knowledge through a process of active construction. In order to 
get beyond rote memorization to achieve a true understanding, they need to 
develop and integrate a network of associations linking new input to pre­
existing knowledge and beliefs anchored in concrete experiences. 

(Brophy 1992:5) 

Piaget (1972) has been recognised as the creative force behind the conception of the 

learner as an active constructor of knowledge. The focus of this study is on learners 
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actively using their own knowledge to construct a variety of solution strategies, which 

they understood and could make sense of. 

2.2.4 Vygotsky and social constructivism 

There are many theoretical positions within constructivism on learning, teaching, 

curriculum development, and the professional development of teachers (Hodson & 

Hodson 1998). Many of the ideas and views originated by Vygotsky who lived in the 

1930s, both during and before Piaget's time, only became known to English speaking 

researchers after his work had been translated in the 1970s. His theory, according to 

Wertsch (1991), is known as socio-cultural learning because development comes 

about through the medium of culture that was established by special kinds of social 

collaboration. 

The social constructivist philosophy starts from the premise that all fields of human 

knowledge are interconnected (Lerman 1994). Social constructivism emphasizes 

language, culture and the social milieu. In the social constructivist model of the 

teaching-learning process, four key elements interact and affect each other - the 

learner; the teacher; the task; and the context. As knowledge is socially constructed, 

the classroom is seen as an extension of the learners ' environment. That knowledge 

which the learner knows is built on the existing knowledge gained through social 

interactions other than those found in the formal classroom (see page 17). 

Vygotsky's emphasis is on the role of commlmication, social interaction and 

instruction in establishing development (Wood 1988). For Vygotsky, language has the 

strength and the power to shape future mental development; biological and natural 

influences are far less important than historical, cultural and social influences. Ways 

of thinking are not merely natural products of the mind or the one and only creation of 

children. Indeed these are observed as cultural interventions that need to be studied 

through social interaction with those who already hold and practise them (Wood 

1988). Vygotsky' s view is that there are two levels of development that exist 

simultaneously in the developing learner. Firstly, there is the actual level of 

development, which is found in what a learner can do on hislher own. Secondly, there 

is the potential level of development, which is found in a learner who has difficulty 
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executing a task or solving a problem on his or her own, who needs help if assisted by 

a more knowledgeable adult. He called the gap between these two levels of 

development, the zone of proximal development or ZPD. The ZPD is defined by 

Vygotsky (1978:76) as " ... the distance between the actual development level as 

determined by independent problem solving and the level of potential development 

through problem solving under adult guidance or more capable peers." Vygotsky 

(1978) reasoned that the mental powers to learn through instruction are itself a basic 

feature of human intelligence. When adults help children to achieve that which they 

cannot do on their own, they are furthering the development of knowledge and ability. 

The success of a learner lies in the greater or lesser ability to transfer from that which 

the child can do on his/her own to what he/she can do with an adult's help. The more 

experienced adult is able to provide "scaffolding" of the subject matter to support the 

learner's ongoing understanding (Vygotsky 1978). 

While Piaget identified with the effects of both the social environment and children's 

development, observing that both social interaction and language are important, he 

did not give them the emphasis that Vygotsky provides (Knight 1993). Vygotsky's 

theory rests on the fundamental hypothesis that learning occurs on the social level, 

when the learner is engaged in co-operative activities within the cultural context. In 

social constructivism facts are emphasized far less than conceptual understanding and 

the acquisition of skills so that learners can operate as individuals in their own 

societies. That is why teaching as an activity cannot be separated from learning. 

Teaching is a process of social interaction that takes place between learners and 

teachers in particular contexts. This course of action is akin to what has been termed 

enculturation (Bishop 1988); (Schoenfeld 1992) and socialization (Resnick 1989). 

According to Schoenfeld, as cited m Ernest (1991 :5), enculturation is a 

"reconstructive and not a reproductive activity". Learners are seen as part of an 

immature mathematical community, who are being enculturated into the experienced 

mathematical community. Enculturation is concerned with leaming the concepts, 

orientations, values and processes of the 'expert' community and seeing none of these 

as beyond examination and revision. Its features include learning the way ideas are 

examined and the systems of creating, justifying and verifying knowledge. 
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A strength of the social constructivist perspective is that learners are empowered by 

the learning process because knowledge is not seen as something 'out there' to be 

learned and accepted but as something to be constructed and re-constructed. Teachers 

require an understanding of mathematics as an activity, which unfolds in a number of 

social contexts. They also need to be confident with their own mathematics 

knowledge to allow an open interpretation of ideas (Ernest 1991). A social 

constructivist teacher regards himselflherself as an active participant with learners in 

constructing their learning. The teacher plans, designs and sets up a suitable context 

where learners will participate in stimulating activities that encourage and facilitate 

learning. The teacher will encourage, guide and respond to questions and queries and 

provide opportunities for learners to work with more experienced peers in order to 

support the learner to reach a higher level of cognitive functioning. 

Recent research has shown that since Piaget's early theory, other factors about 

children's mathematical thinking need to be taken into consideration. One such factor, 

which is fundamental in the learning of mathematics, is that of language (Vygotsky 

1978). Vygotsky believes that language functions as a tool for thought. Thought 

originates in social interaction mediated by language. For Vygotsky there are two 

forms of child speech. Children working individually would use spoken language -

what is called egocentric speech - to guide and regulate their actions in performing a 

task. As children mature, this speech is internalised as inner speech (Vygotsky 1978). 

Both are social and form a genesis of thought, so the development of thinking is from 

the social to the individual, rather than from the individual to the social (Vygotsky 

1978). Murray (1990) also asserts that language helps the thinking process and that, as 

concepts get more abstract, the individual is more dependent on language. 

In mathematics, learners are seen to have a strong capacity for 'making sense' of 

mathematical situations and particularly situations that involve interaction amongst 

their peers and teachers (Vygotsky 1978). 

Language is also fundamental to this research study as the test that the learners 

completed relied heavily on understanding the language used. Although each learner 

completed the test individually, it is difficult for me to agree with Vygotsky when he 

states that the development of thinking is from the social to the individual. In this 
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particular instance I was unable to check the development of thinking as being social 

as learners completed the task individually. What impacted on this study was the 

bilingual approach used. Learners appeared to be at an advantage in being able to read 

the tasks not only in English but in their mother-tongue as well. They were able "to 

mathernatize" and to make sense of the mathematical situation (Fosnot & Dolk 2001). 

2.2.5 Constructivism 

Constructivists contend that knowledge is not found outside a person (Confrey 1990) 

but that true knowledge can only be found when it is constructed inside the mind of a 

human being. The understanding of any event, situation or problem happens only 

when relationships are made to existing understanding in a leamer's mind (Cobb & 

Steffe 1983). 

A basic tenet of constructivism as advocated by Clements and Battista (1990) is that 

knowledge is actively created or constructed by the child, not passively received from 

the environment. The ideas that learners construct are made meaningful when children 

integrate them into their existing structures of knowledge. This implies that teachers 

need to recognise and build on learners' prior knowledge by using the ideas that 

learners bring into the classroom to guide the direction of lessons. 

As learning is a social process in which children grow intellectually in interacting 

with others, a supportive interactive learning environment is required. The 

constructivist classroom is seen as supporting a culture in which students are involved 

not only in discovery and invention but also in a social discourse involving 

discussion, explanation, negotiation, sharing and evaluation (Clements & Battista 

1990). This implies that learner collaboration is being promoted by encouraging each 

other's conceptualisations and ideas. In a constructivist classroom, learning is viewed 

as a two-way flow of information between learners and teachers and implies that the 

teaching process should change from transmitting to facilitating the learning process 

(Tobin 1990). Teaching by telling learners everything should be substituted with 

teaching that involves discussing, reflecting, sharing, explaining and negotiating. 
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In a constructivist classroom the nature of mathematics changes from VIeWing 

mathematics as learning a set of procedures to a sense-making activity. Learners are 

encouraged to repeatedly engage in trying a particular solution strategy, reflecting on 

it and reviewing the strategy. In constructivist instruction, learners are encouraged to 

create their own methods when solving problems. They are not asked to adopt 

someone else's thinking but are encouraged to refine their own. As Confrey 

(1990:111) comments, "leamers must first believe in their knowledge, since 

knowledge without belief is contradictory." The above reflects my intention in this 

study. I wanted learners and teachers to use a variety of strategies when solving the 

given problems. The strategy they used had to make sense to them; they had to be 

able to articulate what they had done and I wanted to see evidence of not just using 

memorised procedures given to them by their teachers with no understanding (see 

chapter 4, page 88). 

The verb "to construct" according to Nj isane, as quoted in Breen et al. (1992:29) 

implies "that the structures the child ultimately possesses are built up gradually from 

separate components in a marmer initially different from that of an adult." Piaget 

believes that knowledge is acquired through individuals trying to organise, structure 

and re-structure their experiences by considering the available schemas. 

In support of the constructivist approach, I concur with the view that children who use 

their own methods for solving problems and to make sense of what they are doing, 

will develop mathematical structures that are more complex, abstract and powerful 

than they currently have (Cobb 1988). Making sense implies "that the learner will 

reflect on the experience and what he/she already knows" (Tobin 1990:31). In this 

study, clinical interviews (Ginsburg 1997) were conducted with both learners and 

teachers in order to find out their own particular solution strategies and the thinking 

behind the problems presented to them (see chapter 3, page 63). 

Kamii & Joseph (1989:183) notes, "encouraging children to construct knowledge 

from within is the diametric opposite of trying to impose isolated skills from the 

outside." It is apparent that the point of view that Kamii et al. (1989:184) subscribes 

to differs from that of more traditional educators who" ... assume that the job of the 
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teacher is to put knowledge into children's heads." Like Kamii (1989), Piaget, asserts 

that children make ideas. Ideas are not picked up like a stone or just passed on from 

others like a gift (Piaget 1972). This suggests that children build new ways of thinking 

about the world in which they live. By reflecting on their physical and mental actions, 

children create new knowledge. 

According to Cobb et al. (1991:161) usmg a constructivist perspective seems to 

advocate two maj or goals for mathematics instruction. The first goal is that students 

should formulate mathematical structures that are "complex, abstract and powerful. .. " 

so that they are increasingly capable of solving a wide variety of meaningful 

problems. A second goal is that they should become "autonomous and self-motivated 

in what they do". He further believes that they do not get mathematics knowledge 

from their teacher so much as from what they think, explore and participate in, and 

that making sense of what they are learning and communicating about mathematics is 

their responsibility. Learners therefore require time to experience, and to reflect on 

their experiences in relation to what they already know (Tobin 1990:31). 

Olivier (1989) makes the following comments about the constructivist perspective: 

The student is therefore not seen passively receiving knowledge ... it is not 
possible that knowledge can be transferred ready made and intact from one 
person to another. Therefore although instruction clearly affects what children 
learn, it does not determine it, because the child is an active participant in the 
construction of his own knowledge. (Olivier 1989:11) 

Constructivist teaching is concerned with learner-centred teaching. The claim made 

by Brookes & Brookes (1993:10) succinctly encapsulates this theory about the nature 

of knowledge and learning: 

· .. when the classroom environment in which students spend so much of their 
day is organised so that student-to-student interaction is encouraged, 
cooperation is valued, assignments and material are inter-disciplinary and 
students' freedom to choose their own ideas is abundant, students are more 
likely to take risks and approach assignments with a willingness to accept 
challenges to their correct understanding. Such teacher role models and 
environmental conditions honour students as emerging thinkers. 

(Brookes & Brookes 1993 : 1 0) 
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2.2.6 Critique of constructivism 

Some learners very often think that a teacher who explains things clearly is a good 

teacher. Constructivism therefore could undermine the view that explanations are 

important, unless they take place where the learner is explaining something to the 

teacher or learners are engaging in a group discussion. Being able to explain clearly is 

an important characteristic for a teacher to have, but if learners are to be given 

opportunities to construct their own knowledge, then it means it is an aspect which 

will have to be held in check (Orton & Wain 1994). A critique of constructivism that I 

identify with is that teachers in a constructivist classroom require considerable 

mathematical knowledge and pedagogical skill. In my view and experience, many 

teachers do not have these skills. A myth documented by Clements (1997) in 

constructivism is that using resources in teaching makes learners active. When 

teachers use resources, it does not necessarily mean that they are 'teaching 

constructively'. The resources that teachers use in class must serve the purpose of 

engaging learners in the task. Class control and management, especially for a new 

teacher, is sometimes seen as being more difficult when strategies other than the 

transmission model are being undertaken (Orton & Wain 1994). Getting learners to 

work in groups and applying co-operative learning also does not necessarily make 

teaching ' more constructivist' (Clements 1997). I agree with this statement, because 

very often learners sit in groups but do not participate or take part in any group 

discussions. They just wait for answers to develop. Assigning group roles so that 

everyone participates, may also distract learners' attention away from the 

mathematics to the group process itself (Noddings 1990). 

Young teachers very often need the support and guidance of more experienced 

teachers to see the benefits of constructivist teaching because powerful constructions 

in learners can be achieved by increasing the amount of time learners spend working 

together (Nod dings 1990). This, however, poses another difficulty. Learners who are 

given free rein might explore a particular problem or area, which may fall outside the 

content as found in the curriculum (Orton & Wain 1994). The timing of intervening in 

a discussion by a teacher may further exacerbate the problem. This is another area of 

concern for teachers. Teachers worry that (00 much discussion may lead to their not 

completing the prescribed curriculum (Orton & Wain 1994). 
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Orton & Wain (1994:55) further contend, "many teachers would say that approaches 

to learning based on constructivist beliefs do not sit easily alongside the kinds of tests 

and examinations, which pupils have to write." In my experience this is only partly 

true. However, with OBE, teachers are now using alternative forms of assessment to 

assess learners ' understanding. By integrating assessment with instruction, the kind of 

authority a teacher holds in a constructivist environment differs from the traditional 

classroom environment where knowledge is transmitted by the teacher. A 

constructivist teacher has to earn respect "rather than have it accorded automatically 

by society" (Orton & Wain 1994: 12). The teacher has to now work together with 

learners in setting criteria for work to be assessed. In this instance it is much more 

demanding for the teacher. 

Another critique of constructivism is that if learning from experience is important, as 

constructivists claim, then in teacher education we need to provide teachers with 

appropriate forms of experience (Davis, Maher & Noddings 1990). Constructivist 

teachers also need to watch for any misconceptions, which may develop anywhere in 

the learning process. They need to plan activities that will lead learners to question 

their own faulty conceptions (Davis, Maher & Noddings 1990). Even if 

constructivists regard learning as an active process, it is important not to discard all 

the strategies recommended by theorists who favour direct instruction or alternative 

forms of instruction, even if we disagree with them on fundamental cognitive 

reasoning (Confrey 1990). 

The next step is to explore the notion of problem-solving and an approach referred to 

as the problem-centred approach. 

2.3. PROBLEM SOLVING 

2.3.1 Introduction 

In recent curriculum documents (Department of Education 1997:24), an important 

critical outcome for mathematics states: 

"Identity and solve problems by using critical and creative thinking." 
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Fwiher, the document describes OBE as "an activity-based approach to education 

designed to promote problem solving and critical thinking." 

The aforementioned words 'problem solving and critical thinking' are consistent with 

the constructivist philosophy, with its emphasis on knowledge, skills and attitudes. A 

guiding principle of constructivist pedagogy is posing real-life, relevant problems for 

learners to solve that will help them to construct understanding, while at the same 

time getting them to think critically. 

As far back as 1989, the National Council of Teachers of Mathematics in the United 

States states in its first recommendation that: 

Problem solving must be the focus of school mathematics. Fundamental to the 
development of problem solving activity is an open mind, an attitude of 
curiosity and exploration ... Mathematics teachers should create a classroom 
environment in which problem solving can flourish ... [it] is essentially a 
creative activity. (NCTM 1989:23) 

This is in agreement with the Cockroft Report in Britain, which states: 

The ability to solve problems is at the heart of mathematics. Mathematics is 
only useful to the extent to which it can be applied to a particular situation and 
it is the ability to apply mathematics to a variety of situations to which we give 
the name 'problem solving' ... The idea of investigations is fundamental both 
to the study of maths itself and also to an understanding of the ways in which 
mathematics can be used to extend knowledge and to solve problems in very 
many fields. (Cockroft Report 1982: paragraph 249 - 250) 

The focus on problem solving is supported by Great Britain (1982) and the National 

Criteria in Mathematics for General Certificate of Secondary Education (GCSE), 

which further supports the approach that includes investigative work and projects as 

part of the national assessment of sixteen year olds studying mathematics. 

The opemng statement in the recently published NCTM (2000), Principles and 

Standards for School Mathematics, reiterates that problem solving is a necessary part 

of all mathematics learning. My submission that learners make use of different 

strategies and look for meaningful understanding in solving problems is pertinent 

here. The emphasis on learners being encouraged to invent their own procedures is 
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advocated by (Kamii et al. 1993; McClain & Cobb 2001) so that learners build their 

own meaning for themselves in order to better understand the concepts and skills of 

mathematics. This, in essence, is what I explore in this research (see chapter 2, page 

37). 

2.3.2 What is problem solving? 

Problem solving has in the recent past been a powerful and resonant area of research 

for mathematics educators (Lester 1985). However, for Lester (1985 :667) it appears 

that other issues have drawn attention away from problem solving. Even in the latest 

publication of the NCTM (2000), problem solving has been diminished to being only 

one of the four main foci of the curriculum. Secondly, it appears that the research 

community seems to be less interested in problem solving and that constructivism has 

taken its place as the philosophy ofleaming (Lester 1985). As problem solving is seen 

as a very complex form of human endeavour, it is concerned with more than the 

ability to just recall a fact or apply a well-learned procedure. The skill and ability to 

solve a mathematical problem unfolds slowly and as a result success is dependent on 

more than content knowledge. Problem solving performance according to Lester 

(1985 :669) appears to be a "function of several interdependent categories of factors 

(e.g. knowledge acquisition and utilization, control, beliefs, affects and socio-cultural 

contexts)." 

Problem solving has many different meanings. According to Branca, (as cited in 

Krulik & Reys 1980) the three most important interpretations of problem solving are: 

• Problem solving as a basic skill 

• Problem solving as a process 

• Problem solving as a goal. 

Branca, (as cited in Krulik & Reys 1980:7) explains: 

... considering problem solving as a basic skill can help us organise the 
specifics of our daily teaching of skills, concepts and problem solving. 
Considering problem solving as a process can help us examine what we do 
with the skills and concepts, how they relate to each other and what role they 
play in the solution of various problems. Considering problem solving as a 
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goal can influence all that we do in teaching mathematics by showing us 
another purpose for our teaching. Each of these interpretations is important but 
they are different. 

Hobden (2002) defines problem solving as follows: 

Problem solving is a multi-faceted cognitive activity in which we engage 
when we are confronted with a task in which routine action or normal thinking 
does not allow one to go from the given existing situation to the desired goal 
situation, but rather there is recourse to some form of critical thinking. Such 
critical thinking has the task of devising some action, which may overcome 
the perceived barrier between the existing and the goal situations. 

(Hobden 2002:102) 

Relating Hobden's definition quoted above to the current policy documents for 

teachers and researchers, this definition for me sums up what problem solving is all 

about. It seems to incorporate the view of John Dewey's reflective inquiry (as quoted 

in Hiebert et al. 1996). I argue that using aspects of his approach will facilitate 

learners' understanding. I also concur with Hiebert et al. (1996) who claim that if the 

subject or task is 'problematized', it could result in the construction of understanding 

(see page 33). 

2.3.3 Understanding the terms 'problem' and 'problem solving' . 

The use of the term ' problem' is controversial within the mathematics education 

community. Hobden (2002) argues that students have a limited and narrow 

understanding of what it means to solve a problem. He believes that part of the 

difficulty is the plethora of meanings associated with the term that appear in 

curriculum documents and in teaching practice. 

According to Gunter, Estes & Schwab (1995), a problem is a situation requiring much 

thought, which needs to be explained, but which at times does not have one correct 

answer (solution). As a researcher I identify with the above sentiments. This would 

require the person to have an open mind with clear thinking and understanding. In 

order not to draw incorrect inferences, authors need to furnish meanings of the terms, 

which apply to their own research context. They have to be clear about the use of the 

terms such as algorithm, procedure, real-life problems, routine or non-routine tasks. 
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The tenn 'problem solving' is frequently used in our everyday lives and is cOlU1ected 

to thinking and higher cognitive skills (Greeno & Goldman, as cited in Malcolm & 

Lubisi 2002: 99). Also in many curriculum documents, critical thinking and problem 

solving are often referred to in the same sentence. For Hobden (as cited in Malcolm 

& Lubisi 2002: 100) "all critical thinking is not problem solving, but all problem 

solving involves critical thinking." He further states that the task can only acquire the 

rank of a problem task and be regarded as a problem solving activity if it generates 

some aspect of critical thinking. The aspect of critical thinking is also endorsed in the 

critical outcomes adopted in our new curriculum. The focus of problem solving 

should be on the explanation and justification of the outcome of something and not 

solely on some particular pattern (Ball 1994). 

2.3.4 The role of the teacher in a problem solving classroom 

Cockroft (1982) comments that the teacher is the most essential ingredient in a 

problem solving classroom. It is suggested that the teacher in such a classroom plays a 

facilitative, consultative and managerial role and avoids direct teaching as much as 

possible. According to Simmons (1993), the teacher should demonstrate sufficient 

confidence in the content being presented and be able to communicate the material in 

an explicit and easy way to the class. Encouraging learners to react to controversial 

matters brought up in discussion by other students in the class and boosting their 

personal responses (Howe 1988) is the task of the teacher in such an environment. By 

engaging in realistic problems, learners learn to construct mathematical concepts. 

Instead of . being prescriptive, the teacher needs to devise different learning 

opportunities that provide for the different learning styles of students. 

2.3.5 Some factors that influence the problem solving process 

Charles & Lester (1982:8) suggest three mental processes are required for successful 

problem solving. These three sets of factors, which interact with each other, are: 

• Experience factors 

• Affective Factors 

• Cognitive factors 
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Experience factors include personal and environmental factors. Affective factors 

will include interest in the problem, motivation, pressure and ability to perform. 

Cognitive factors include having a sound reasoning and reading ability and adequate 

computational skills. These processes are seen as being ' ideal' when teaching 

problem solving but very often we encounter situations where one or more of the 

factors are missing. 

Although individuals may have all the prerequisite knowledge to solve a problem, 

they may not be competent due to a number offactors, such as lack of familiarity with 

appropriate solution strategies, lack of motivation or a high level of stress. Further, 

two people may arrive at the same solution using different, but correct methods. This 

aspect of problem solving then makes it difficult to find the appropriate ways to teach 

problem solving (Charles & Lester 1982). 

2.3.6 An overview of some problem solving research 

Researchers over the past 25 years have debated many issues around the topic. In 

countries such as Germany, United Kingdom, Japan, Portugal, Italy and Sweden 

problem solving has become a particular focus of research in mathematics education 

(Lester 1994). 

According to Lester (1994:2) a report of the National Assessment of Educational 

Programmes indicates that in the United States of America, the performance of 

students in problem solving is woefully inadequate. He quotes from Dossey, Mullis & 

Jones (1994) who state: 

On extended constructed-response tasks, which required students to solve 
problems requiring a greater depth of wlderstanding and then explain, at some 
length, specific features of their solutions, the average percentage of students 
producing satisfactory or better responses was 16 percent at grade 4, 8 percent 
at grade 8 and 9 percent at grade 12. 

(Dossey, Mullis & Jones as cited in Lester 1994: 2) 

Notwithstanding reports, textbooks and curriculum guides, which claim that problem 

solving is at the core of instruction at each level; the above evidence does not confirm 

this. 
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Since the formation of a review of the research on mathematics problem solving by 

Kilpatrick, as cited in Lester (1994), more than 25 years ago, there have been 

considerable reviews of the research literature by Schoenfeld (1992). In addition there 

have been many endeavours to understand problem solving research for classroom 

practice by Driscoll; Hembree & Marsh; and Kroll & Miller, (as cited in Lester 1994). 

The nature of problem solving has grown substantially since Kilpatrick (as cited in 

Lester 1994:663), "characterized the research literature on mathematics problem 

solving as atheoretical, unsystematic and uncoordinated, interested almost exclusively 

in standard text book word problems and restricted completely to quantitative 

measures of problem solving behaviour." 

Table 2.1 provides a short summary of research in the problem solving field. It 

encapsulates and highlights the features of problem solving that have been of primary 

concern. 

Table 2 . l. 
An overview of problem solving research emphases and methodologies: 1970-1994 

Dates '" 

1970 - 1982 

1978 - 1985 

1982 - 1990 

1990 - 1994 

Problem solving 
research emphases 

Research methodologies 
used 

Isolation of key determinants 
of problem difficulty: 
identification of characteristics 
of successful problem solvers; 
heuristics training 

Comparison of successful and 
unsuccessful problem solvers 
(experts vs. novices) : 

strategy training 

Meta-cognition: relation of 
affectslbeliefs to problem 
solving; meta-cognition training 

Social influences: problem 
solving in context (situated 
problem solving) 

Statistical regression 
analysis: early "teaching 
experiments" 

Case studies: "think 
aloud" protocol analysis 

Case studies: "think 
aloud" protocol analysis 

Ethnographic methods 

• dates shown are only approximate Taken from Lester (1994:664) 

Table 2.1 shows that from the 1970s to the early 1980s, a considerable amount of 

interest was attached to the study of determinants of problem solving difficulty. The 
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aim was mostly on the types of problems learners were required to solve at school. 

From the 1980s to about 1990, the emphasis was on comparing successful problem 

solvers with unsuccessful problem solvers, while at about the same time, interest in 

meta-cognition took root (see page 29 for more on meta-cognition). From the 1990s 

the emphasis changed to looking at problems in context and the effects of social 

influences. 

According to Lester (1994:663-664) a study of the literature (which is not 

immediately apparent from looking at Table 2.1) shows four areas of inquiry where 

progress in teaching problem solving has been made: 

(a) determinants of problem difficulty 

(b) distinctions between good and poor problem solvers 

(c) attention to problem solving instruction 

(d) the study of meta-cognition in problem solving 

(a) The problem difficulty for students 

According to Lester (1994) there is general consensus today that the difficulty of a 

problem is not so much a function of various task variables as it is of the attributes of 

the problem solver. These attributes include: spatial visualisation ability; dispositions 

i.e. beliefs and attitudes and experiential background, such as instructional history; 

and familiarity with types of problems. 

(b) The difference between 'good' and 'poor' problem solvers 

Between the 70s and 80s problem solving was based mainly on individual problem 

solving competence and performance (Charles & Silver, as cited in Lester 1994:664). 

Much attention was given to assessing individual competence to show the differences 

between ' good and poor' problem solvers or ' expert and novice' problem solvers. 

Lester (1994:665) makes the assertion that five important points distinguished good 

problem solvers (GPS) from poor problem solvers (PPS) : 

GPS knew more than PPS because what they knew was different, their knowledge 

was made up of connections and rich schemata. GPS focused more on the structural 

characteristics of problems while PPS focused on surface features. They were more 
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conscious of their strengths and weaknesses than PPS. GPS were better able to 

regulate and check their problem solving efforts than PPS. The solutions of GPS were 

more refined than PPS. 

Other characteristics of GPS which Suydam, (as cited in Krulik & Reys 1980:36) 

mention include that GPS had the ability to estimate and analyse. They scored higher 

on self-esteem and confidence and had good relationships with other children. GPS 

also had the ability to understand mathematical concepts and terms and exhibited 

lower scores for test anxiety. 

(c) Teaching about problem solving 

Lester (1994) found that the number of new problem solving programmes founded 

since 1975 were not firmly based on research. He further states that programmes are 

now grounded on the "folklore of mathematics teaching, particularly the sage advice 

of master teacher and problem solver - George Polya" (Lester 1994:665). 

(d) Meta-cognition - the driving force in problem solving 

The role of meta-cognition in mathematics activity has become an important 

emphasis (Lester 1985: 666). Meta-cognition, according to Flavell, as cited in 

Fortunato et al. (1991 :38), refers "to one's knowledge and concerns one's own 

cognitive processes and products and anything related to them." In meta-cognition it 

is crucial that the problems chosen are challenging to learners and that there is more 

than one approach to the problem. Classroom discussion can benefit both learners and 

teachers' understanding of how learners are thinking about problem solving. Learners 

should be 'active' and 'doers' of mathematics, rather than only knowing mathematical 

facts and procedures. Teaching should be structured to develop their meta-cognition 

(Garofalo 1987). Lesh, Silver, and Schoenfeld (as cited in Lester 1994: 665) view 

meta-cognition constructs as "driving forces" in problem solving, affecting cognitive 

behaviour at all stages of problem solving. This area of research has flourished not 

only as a wedge pushing cognitive behaviour, but is also related to a number of non­

cognitive factors like beliefs and attitudes. 

Meta-cognition is important in this study because many teachers fail to focus on what 

learners should be looking at when given a problem to solve. The learners' focus 
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should be drawn away from the problem's solution and directed towards the cognitive 

processes and strategies needed to solve the problem. Challenging problems given to 

learners enable them to reflect more on how they constructed the solution. 

Some of the literature on problem solving instruction provides arnbiguous messages, 

but according to Lester (J 994) the following stand out as being important. For 

students to improve their problem solving ability, students must solve many problems. 

Problem solving ability is a slow, developmental process that takes place over a long 

period of time. For problem solving to be beneficial to students, it needs to be taken 

seriously by students and they must be certain that their teachers think it is important. 

The majority of students gain a lot from problem solving if the instruction is planned 

systematically. There is a need to teach students explicitly about problem solving 

strategies. 

2.4 PROBLEM-BASED LEARNING AND REFLECTIVE INQUIRY 

2.4.1 Introduction 

New methods of learning have permeated our educational institutions over the last 

decade and one such approach is a method of learning referred to as problem-based 

learning. 

2.4.2 What is problem-based learning? 

In order to increase the usefulness of learners ' knowledge, one response that some 

schools and universities have adopted is the model of problem-based learning or the 

problem-centred approach (Shulman as cited in Murray, Olivier & Human 1996:14). 

They both have the sarne features, but their approach may be different as regards their 

implementation in specific, individual classrooms (Murray, Olivier & Human 1998). 

Problem-based learning (PBL) 

is a method of learning in which the learners first encounter a problem, 
followed by a systematic, student-centred enquiry process. Although the 
purpose of using problems in PBL is to stimulate learning of information and 
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concepts brought out by the problem (rather than to 'solve' the problem), PBL 
does teach both a method of approaching and an attitude towards problem 
solving (Schwarz, Mennin & Webb 2001 :1). 

PBL is used mainly by medical and dental faculties at universities, where students 

work in groups of 4-6 with a tutor who acts as a facilitator of learning rather than as a 

direct source of information (Schwarz, Mennin & Webb 2001). The students meet the 

problem 'cold' not knowing much about the problem and then interact with group 

members to investigate their existing knowledge as it relates to the problem. They 

form and test problem hypotheses, establish further learning needs to solve the 

problem, do some self-study, then return to their groups to integrate the newly 

acquired knowledge to the problem. 

Research by Vernon and Blake, (as cited in Schwartz, Mennin & Webb 2001:3) 

shows that "learners using this approach are superior to their counterparts from 

traditional curricula with respect to their approach to the study (being able to study for 

understanding rather than for short-term recall)". 

According to Boud & Feletti (as cited in Hiebert et at. 1996:14), PBL "is not simply 

the addition of problem solving activities to an otherwise discipline-centred curricula, 

but a way of conceiving of the curriculum which is centred around key problems in 

professional practice. PBL courses start with problems and as a result of working on 

these problems, the learners would be left with a residue of ' mathematics' rather than 

with the exposition of disciplinary knowledge." (see chapter 2, page 33 for different 

kinds of residue). As long as fifty years ago, it was claimed by critics that this 

approach narrowly concentrated on applications and they were concerned that 

important information would get lost. In the past, with the emphasis on acquiring the 

mechanics of mathematics, the more recent recommendations have placed more 

emphasis on applications and connections of mathematics in the real world (National 

Council of Teachers of Mathematics 1989: 1991). Learners will be able to apply the 

knowledge gained to a number of real-life situations. However, Hiebert et al. (1996: 

14), still believe that this does not explain the difficulties that are implicit in the 

differences between acquiring knowledge and applying it. In order to understand the 

roots of this distinction and to develop the alternative principle of 'problematizing the 
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subject'. Hiebert et al. (1996) look at John Dewey's idea of 'reflective inquiry' (see 

page 32 onwards). 

The distinction in philosophy between 'knowing' and ' doing' builds directly on the 

separation between acquiring knowledge and applying it. Dewey remarks that 

'knowing', resulting from reason and thought is ' potentially certain', while ' doing' is 

unreliable and indefinite. The difference between knowing and doing has become so 

prevalent and so evasive that it saturates our thinking. Dewey, (as cited in Hiebert et 

al. 1996:14) said, "We are so accustomed to the separation of knowledge from doing 

and making that we fail to recognise how it controls our conception of mind, of 

consciousness and of reflective inquiry." He accepts as true that reflective inquiry is 

the "key to moving beyond the distinction of knowing and doing and thereby 

providing a new way of viewing human behaviour" (Hiebert et al. 1996: 14). 

The fundamental features of reflective inquiry are: 

• Problems are identified 

• Problems are studied through active engagement 

• Conclusions are reached as problems are at least partially resolved 

(Dewey, as cited in Hiebert et aI.1996 :14) 

Dewey (as quoted in Hiebert et al. 1996:1 4) said, "when we treat an object as a 

problem to be solved and to examine it carefully, we begin to understand it, to gain 

more control over it and to use it more effectively for our advantage." Furthermore, he 

states " ... were all instructors to realize that the quality of mental process, not the 

production of correct answers, is the measure of educative growth, something hardly 

less than a revolution in teaching would be worked" (Dewey, as cited in Hiebert et al. 

1996: 15). Once a conclusion has been achieved, the outcome of the process is a new 

situation. For Dewey, the advantage of reflective inquiry resides not in the solution to 

the problem but in the new relationships that are found, the new features of the 

situation being understood more deeply. Hiebert et al. (1996) links Dewey's reflective 

inquiry with understanding and works from the assumption that understanding is the 

goal of mathematics instruction. The problem-centred approach, which I am using, 

aims at helping children construct meaningful understandings for themselves (Olivier, 

31 



Murray & Human 1990). They do this by using problem solving methods appropriate 

for their level of knowledge. "In fact they justify the practice of problematizing the 

subject by claiming that it is this activity that most likely leads to the construction of 

understanding," (Hiebert et al. 1996:14). To substantiate this assertion they look at 

how "problematizing" fits with the functional and structnral views of mathematics 

understanding. 

2.4.3 Functional understanding 

Functional understanding means taking part in a community of people who practise 

mathematics (Lave 1988; Schoenfeld 1988). According to Dewey (as quoted in 

Hiebert et al. 1996: 15) "Knowing is not the act of an outside spectator but of a 

participator." Activity in the classroom is the focus of the functional view. 

Understanding is characterized explicitly by what students contribute to and share in 

the whole activity. Hiebert, et al. (1996:16) argue tl1at the "key to shaping classroom 

activity that invites participation is to allow the subject to be problematic." 

It is the teacher who is accountable for developing a social community of learners 

who problematize rnathematics and who engage in looking for solutions. A significant 

aspect of such communities is that the gist of examination and discussion is on the 

methods used to find solutions. In their descriptions of classrooms, many case studies 

demonstrate evidence where teachers stress the open and constructive examination of 

methods of inquiry and solution (Cobb, Wood, Yackel & McNeal; Fennema, Franke, 

Carpenter & Carey; Murray, Olivier & Human, (as cited in Hiebeli et al. 1996): 16). 

Hiebert et al. (1996) emphasize two factors of the learners' role in reflective inquiry 

classrooms. Firstly, the need to be accountable for sharing the results of their inquiries 

and for describing and accounting for their methods. This makes the learners become 

full participants in the community and establishes an openness that is vital for 

examining and improving methods. Secondly, learners need to realise and 

acknowledge that learning means learning from others, to look carefully at otl1ers' 

ideas and the results of their investigations. This supports the view taken by Mnrray, 

Olivier & Human (1993:75) that learners can and ought to learn from each other by 

listening to and trying to make sense of other procedures and concepts. 
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2.4.4 Structural understanding 

Structural understanding "means representing and organising knowledge internally in 

ways that highlight relationships between pieces of information" (Hiebert & 

Carpenter 1992: 17). The focus in the structural view is on what students actually take 

with them from the classroom. According to Davis (1992) residue provides a way of 

talking about the understandings that remain after an activity is over. The kind of 

residue will depend, in part, on the prior knowledge that learners bring to the activity 

and the kind of problem that has to be solved. 

There are different kinds of residue. "Insights into the structure of the subject matter 

are left behind when problems involve analysing patterns and relationships within the 

subject" (Hiebert & Wearne, as quoted in Hiebert et ai. 1996:17). An example will be 

in class where learners analyse the ways in which procedures work and how these 

procedures are the same and different. There is evidence that suggests that learners 

who take part in these kinds of debates have a richer structural understanding than 

those learners who proceed through a more traditional skills-based curriculum subject 

(Cobb et ai; Hiebert & Weame, as cited in Hiebert et al. 1996). Two kinds of 

strategies are found when working through problematic situations. One is the 

procedure that leamers can use to solve particular problems. The second is the normal 

approaches or ways of thought that are required to construct the procedures. For 

example when a learner solves a fraction multiplication problem, they use specific 

procedures and techniques for solving these specific problems; in other words, 

specific procedures for specific tasks make up one kind of residue (see chapter 4 on 

analysis of solution strategies). A second strategy residue may be called 'meta­

strategic'. While working through problematic situations, Hiebert et al. (1996) say: 

learners learn to construct strategies and learn how to adjust strategies to solve 
new kinds of problems. What gets left behind are the conceptual 
underpinnings and methods for actually working out new procedures when 
they are needed. (Hiebert et al. 1996: 17) 

Evidence for this residue has shown that those learners who have been motivated to 

look at a situation problematically and develop and construct their own strategies are 

able to modify them or invent new ones to solve new problems (Fennema, Franke, 
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Carpenter & Carey; Fuson & Briars; Hiebert & Wearne; Kamii & Joseph, as cited in 

Hiebert et al. 1996). It is these kinds of residue that I was trying to explore in the 

learners whom I interviewed. I was interested to see whether learners would be able to 

construct and develop their own solution strategies. By gaining insight into what they 

had constructed, could they now refine their understanding to solve new kinds of 

problems? 

When learners develop methods for constructing new procedures they are integrating 

their conceptual knowledge with their procedural skill (Hiebert et al. 1996). This is 

important because research findings on learners' mathematics learning often disclose 

a separation between conceptual and procedural knowledge (Hiebert et al. 1996). 

From my own experience of teaching in a traditional classroom, some learners' use 

understanding that appears not to show their procedure and they memorise and recall 

procedures that they do not fully understand. In this study I was interested in seeing 

whether learners showed any understanding or whether they just used a memorized 

algorithm or learnt procedure. When learners are exposed to curricula that regard 

mathematics as problematic, this separation is rare (Carpenter, Fennema, Peterson, 

Chiang & Loef; Fuson & Briars; Fuson, Smith & LoCicero; Murray, Olivier & 

Human; Kamii & Joseph all cited in Hiebert et al. 1996). There is further evidence as 

quoted in Hiebert et al. (1996: 17) that those who participate in reflective inquiry and 

who treat mathematics as problematic, provide an opportunity for students to 

"recognise that inventiveness of their own practices" (Carpenter, Fennema, Peterson, 

Chiang & Loef, 1989; Cobb et al. 1991). 

2.5 PROBLEM-CENTRED APPROACH 

2.5.1 Introduction 

In the problem-centred approach, learners must be mathematically autonomous. This 

is what distinguishes the problem-centred approach from problem-based learning, 

although the theoretical principles are the same. Learners need to find out and decide 

for themselves how to go about solving a problem and what strategy to use (Botha et 

al. 1997). The teacher should not pressurize learners to use a specific strategy, as this 

will diminish the autonomy of the learner as they may just be copying out memorized 

procedures without the necessary understanding (Human 1993). 

34 



"As problem solving is one of the ways used to enhance pupils' construction of 

knowledge," as cited by Nj isane, in Breen et al. (1992:28), this study is based on the 

problem-centred approach of Olivier, Murray & Human (1990). This approach is 

different from other problem solving approaches in that understanding is the goal of 

mathematics instruction. The principle is that students should be allowed to make the 

subject problematic. This means allowing students to search for solutions, to wonder 

why things are and to inquire (Hiebert et al. 1996). 

2.5.2 Tenets of the problem-centred approach 

In the early 1990s, Piet Human, Alwyn Olivier and Hanlie Murray from the 

University of Stellenbosch in South Africa piloted the problem-centred mathematics 

project, now called the problem-centred approach. An aspect of their approach is that 

learners construct their own knowledge, which is gained through social interaction, 

not necessarily found in the classroom. The intention of social interaction in the 

problem-centred approach is to establish openings for learners to talk about what they 

have done and this promotes reflection. In my study a key aspect was getting learners 

and teachers to communicate their thoughts about the problems presented to them. 

Von Glasersfeld (1991) describes this interaction as follows: 

From a constructivist point of view, there can be no doubt that reflective 
ability is a major source of knowledge on all levels of mathematics . ... To 
verbalize what one is doing ensures that one is examining it. And it is 
precisely during such examination of mental operating that insufficiencies, 
contradictions or irrelevancies are likely to be spotted. By guiding learners to 
discuss the problem from their point of view and experimental approaches, 
which they might have discussed, boosts their self-confidence and equips them 
to reflect and display more feasible strategies. (von Glasersfeld 1991: 18-19) 

It was through social interaction in the classroom that teachers and learners also 

construct a shared domain of "taken to be-shared mathematical knowledge that both 

makes possible communication about maths and served to constrain individual 

student's mathematical activity" (Cobb et al. 1991 :6). 
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Ernest (1991: 42) contends, 'The basis of mathematical knowledge is linguistic 

knowledge, conventions and rules and language which is a social construction." As a 

teacher who has taught using this approach, I can testifY that it helped me to see the 

need for and encouraged some of my learners to interact and communicate with each 

other when solving problems. This was in contrast to the behaviouristic transmission 

model of acquiring knowledge, which I had otherwise been using. All I was interested 

in was getting my learners to provide me with an answer to a problem using a 

standard algorithm. It involved no understanding or meaning of why such an approach 

was used. The problem-centred learning approach represents the belief that subjective 

knowledge should be learned by the students "as personal construction and not re­

constructed objective knowledge" Murray, Olivier & Human (1998: 171). 

According to Fennema & Romberg (1999) the problem-centred approach is a 

programme where learners spend most of their time participating in problem solving. 

The emphasis on the importance of skills and understanding are an important aspect 

of this approach (Hiebert & Wearne 1993; Murray, Olivier and Human 1993; 

Carpenter, Fennema & Franke 1996). The programme has been researched and 

examined widely in primary classrooms (James & Tumagole 1994). 

2.5.3 CognitiveJy Guided Instruction 

The Cognitively Guided Instruction Project (CGI) and the Problem-Centred 

Mathematics Project (PCMP) were two other projects that inspired me to focus on 

learners' thinking, understanding and problem solving strategies. In both programmes 

children spend the majority of their time engaged in problem-solving activities. Both 

support a growing body of research that learning computational skills and developing 

understanding are important (Fennema & Romberg 1999). Teachers do not show 

procedures or expect learners to follow a certain algorithm. Children spend time using 

their own strategies (ways of solving a problem) that is consistent with the move to a 

more process driven problem solving approach (Southwood & Spanneberg 1996). 

More emphasis is now being placed on learners as they solve a variety of mathematics 

problems often set in story contexts, thus developing conceptual understanding and 

computational skills (Carroll 2000; McClain & Cobb 2001). This is consistent with 

Fennema & Romberg (1999) who proclaim that word problems and symbolic 
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problems are the vehicles through which children learn mathematics concepts and 

skills. 

The COl project established at the University of Wisconsin by Carpenter, Fennema 

and Franke (1996) encourages its participants to use multiple solution strategies when 

tackling problem solving tasks. Research done at this institution has found that 

through the use of different solution strategies, children begin to feel that mathematics 

is an understandable body of knowledge that they can learn (Fennema et al. 1999). 

As the teacher's role is active, the goal of the COl project "is to help teachers better 

understand children' s thinking so that they can help children relate to what they are 

learning to what they already know" (Fennema & Romberg 1999: 51). Secada & 

Carey (2001:34) further contend, "Teaching should focus on problem solving, 

problem-solving processes and student understanding." 

Teachers who attend cor workshops are identified according to their various levels of 

belief and practice, which they exhibit. A Level 1 teacher for example is one who 

teaches by demonstrating the steps in a procedure and where children practise and 

apply the procedure. A Level 3 teacher is one who firmly believes that children can 

solve problems without being shown a particular strategy. Learners in such classes 

talk about the mathematics both to the teacher and their fellow peers. They use a 

variety of strategies and are able to compare and contrast them to other strategies. The 

distinctive difference between Level 3 and Level 4 teachers is "their use of what they 

learn from listening to students to make instnlctional decisions" (Carpenter et al. 

1999: 108). A Level 4 teacher has a "more fluid perspective of their children's 

thinking; they do not apply their knowledge to assess their own students' thinking and 

to plan instruction, but also regard it as a framework for developing a deeper 

understanding of children' s thinking in general" (Carpenter et al. 1999: 108). 

Carpenter et al. (1999: 109) further contend, "developing an understanding of 

children's thinking provides a basis for change, but change occurs as teachers attempt 

to apply their knowledge to understand their own students." Studies have also shown 

that where teachers provide the environment in which children's thinking is the focus, 

children are able to construct their own procedures for solving problems and concepts 

are developed through problem solving (Carpenter et al. 1999). 
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Woods & Sellers (1996) found that when companng children in textbook-based 

classes, with those in problem-centred classes, children in problem-centred classes 

achieved significantly higher on measures of computation and conceptual 

understanding and also held different beliefs and motivations about mathematics. 

Students in problem-centred classes believed that rather than conform to the methods 

shown by the teacher, it was better to find their own or different ways to solve 

problems (Woods & Sellers 1996). 

Independent to the above is the University of Chicago Mathematics School Project 

(UCMSP) where learners are encouraged to develop their own solution strategies with 

no standard algorithm being taught as part of the curriculum up to the third grade. 

Findings from the study suggest that learners are capable of inventing and applying 

their own solution strategies when solving problems (Fennema et al. 1996; Kamii et 

at. 1993). It is suggested that by investigating various solutions, learners develop a 

larger toolbox of procedures and are more apt to choose one that best fits the problem 

and a solution strategy that the learner understands (Kamii 1993; Carroll 2000). 

Two aspects of the problem-centred approach that require further elucidation because 

of their importance are the social component of the learning environment and the 

problem component. 

2.6 THE SOCIAL COMPONENT OF THE LEARNING ENVIRONMENT 

2.6.1 Introduction 

In the problem-centred approach, the idea of social interaction produces opportunities 

for learners to talk and to discuss what they are thinking. Children are also 

encouraged to reflect on their different solution strategies with their peers and their 

teacher. By making sense of other learners' explanations, they are developing 

sophisticated, efficient concepts of number. 
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2.6.2 The role of the teacher 

It is necessary to again return to the role of the teacher to explain how the teacher fits 

into the problem-centred approach. The idea of recognising that some learners 

construct their own knowledge, initially gave teachers the perception that they need 

not concern themselves too much in the learning process (Murray, Olivier & Human 

1998). In order to clearly define the role of the teacher in the problem-centred 

approach, it is important to look at Piaget's classification of three kinds of 

mathematical knowledge, namely physical, social (conventional) and logico­

mathematical knowledge, as well as two types of abstraction involved in the 

acquisition of each kind of knowledge (Piaget 1971; 1952); (Kamii 1985). 

Physical knowledge is that knowledge which a child constructs through actions 

involving physical objects - for example the colour, shape or weight of counters. 

This forms the base for the child's knowledge about number. 

Social knowledge is the knowledge teachers pass on to learners in order for them to 

understand the problem and to be able to put their thoughts down on paper, based on 

social conventions (Piaget 1971). In order for students to understand a problem, 

teachers need to provide students with the appropriate social knowledge (a convention 

for example that 1 km = 1 DOOm). This enables them to communicate with each other, 

and to take possession of their thoughts in a coherent way. The tools to be used need 

to be shown to the students and teachers have to negotiate with learners the social 

norms that determine ordinary classroom behaviour and interaction. The construction 

of social knowledge is therefore dependent on the child's action on and interaction 

with other people (Wadsworth 1989). 

Logico-mathematical knowledge is that knowledge which consists of relationships 

between objects and the ultimate source of these relationships, the human mind 

(Piaget 1971). For example seeing two stones on the ground, we can think of them as 

being different or similar. Another relationship we can see between the stone is 'two' . 

The stones can be observed empirically but the number 2 cannot. 

39 



The two kinds of abstraction mentioned by Piaget are empirical abstraction and 

constructive abstraction [also called reflective abstraction], (Kamii, Kirkland & 

Lewis, as cited in Cuoco & Curico 2001:26). In empirical abstraction, the focus is 

placed on certain properties of an object while other properties are ignored. For 

example, if the colour of an object is abstracted (physical knowledge), the other 

properties such as weight and the material with which the object is made are ignored. 

In contrast, constructive abstraction involves "making of mental relationships between 

and among objects" (Kamii, Kirkland & Lewis, as cited in Cuoco & Curico 2001:26). 

In the example above the relationships like similar, different, and 2 (logico­

mathematical knowledge) are made by constructive abstraction. 

I include the above in this research because it is essential to understand the key role 

that the teacher plays in such a learning environment. 

2.6.3 The learning environment 

In this research, I use part of the definition of culture as interpreted by Linton (cited in 

Haralambos & Holbom 1996:3), "culture is the skills, knowledge and accepted ways 

of behaving in a society in which one is found." In my view, then, the learning 

environment would include the nature of the tasks given to learners, the role of the 

teacher and the social culture of the classroom. 

An important factor influencing the development of any mathematical understanding 

is the learning environment. A learning environment that is conducive for learners to 

come together to discuss, listen and take responsibility for their own learning is 

advocated. As learners corne to the classroom with varying experiences and 

knowledge, their intuitions and experiences need to be explored in order for learners 

to develop a meaningful understanding of the topic. Learners need to be given 

opportunities to talk about their thinking and understanding of problems presented to 

them. I believe that learners need to be grouped in such a way that they can 

communicate with each other. I have mentioned Piaget's classification of different 

kinds of knowledge and agree with Murray, Olivier and Human (1998) that the 

physical and social knowledge, which they speak about, can be regarded as fitting 

40 



Vygotsky 's view of learning (ZPD), where learners need to work with their more 

knowledgeable peers or with the teacher (Williarns & Burden 1997). 

Fennema & Franke (1992) in their research on teachers ' knowledge and impact 

suggest that where the accent of the mathematics is placed on problem solving, with 

the emphasis on the 'power' of learners to do and understand the mathematics, 

learners become busily occupied in rich mathematical discourse with peers and 

teachers. In South Africa, however, research suggests that such a discourse 

community in the classroom is not going to be easily achieved. The work of Taylor 

and Vinjevold (1999) shows that much of the classroom discourse does not continue 

beyond the procedural level. Nickson, (as quoted in Newstead & Bennie 1999: 58) 

uses research to propose that the culture in classrooms depends "on its actors", in 

other words the teacher and the learners. Newstead and Bennie (1999) further state 

that "the unique culture in the classroom is the product of what the teacher and the 

learners bring to it in terms of knowledge, beliefs and values." 

2.6.4 The social culture 

Hiebert, Carpenter, Fennema, Fuson, Wearne, Murray, Olivier and Human, (as cited 

in van Niekerk et al. 1999:218) identified four features of the social culture in a 

problem-centred classroom. 

• All ideas are potentially important and should therefore be respected. 
• Autonomy of methods should be encouraged. The need for every child to 

understand the method he or she is using must be respected. The children 
should also realise that a variety of methods can lead to the correct answer; 
therefore they should have the freedom to explore and share these methods 
with their peers. 

• Mistakes must be seen as learning opportunities and should not be suppressed. 
They can lead to reasoning and discussion that might deepen learners ' 
understanding of the problem. 

• The authority for the correctness of the problem solution lies in the structure 
of the problem and not in the teacher or the other children. A method is not 
necessarily correct just because a popular child presented it. 

(van Niekerk et al. 1999:218) 

This resonates with my study and I am of the opinion that the above are essential for 

learners' mathematical development. In this study all ideas from the learners and 
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teachers were taken as being important and were respected as they explained their 

thinking and understanding of the different solution strategies used. 

2.7 THE PROBLEM COMPONENT OF THE LEARNING ENVIRONMENT 

2.7.1 Introduction 

In the problem-centred approach, the choice of the problem is crucial if learners are to 

understand concepts, different sub· constructs and different meanings. If learners are 

not subjected to these sub·constructs, "limiting constructions" are formed. This 

phrase, coined by D'Ambrosio and Mewborn (as cited in Olivier & Newstead 1998: 

177), shows the misconceptions that occur when learners have only had a limited 

opportunity to develop a certain concept. For example the misconception that 

multiplication only makes bigger. This occurs when multiplying whole numbers, for 

example, 6 by 7 is 42. This restricts learners when they have to deal with fraction 

operations. For example, multiplying + by i equals to +, is pertinent here. 

2.7.2 The kind of problem posed 

Munay, Olivier & Human (1998: 177) use the words "learning trajectories", which 

refers to the focus or goal of a learner' s problem solving experience, and mention that 

problems chosen should be realistic, meaningful and related to real life situations. In 

this study I have tried to make the problems as meaningful as possible and have used 

real life situations with which the learners can identify (see chapter 3 on analysis of 

solution strategies). 

Problems serve different functions or are used for various purposes. Any problem 

chosen should be based on thorough content analysis and a sound understanding of 

how leamers develop concepts and misconceptions. It is imperative that leamers 

interact mathematically with a variety of problems and be given opportunities to make 

sense of and discover meanings about the new knowledge (Murray, Olivier & Human 

1998: 176). The problems that learners are given to solve may stay the same or be 

similar for a certain period of time. However, the solution strategies used by the 

learners should change and develop towards becoming more refined during this time. 
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The question should be asked whether a learning trajectory should end with a 

particular algorithm (for example division). I am of the opinion that learners who 

show flexibility in acquiring the knowledge of properties of numbers and operations 

and can make sense of what they are doing should be encouraged to continue 

exploring. 

2.7.3 The role of time in the development of concepts 

Research conducted by Murray, Olivier and Human (1998), shows that learners who 

have been exposed to the problem-centred approach for a few weeks to several 

months, and who appear to be weak at mathematics, can and do construct 

mathematical concepts. Some learners are able to construct mathematical ideas if not 

hindered in their thought processes. I can testifY to this idea when I was teaching 

grade 5 learners in 1995. Some of the learners (after a period of time) were able to 

make sense of and understand mathematical concepts about the new knowledge they 

had learnt. 

Learners very often appear to change a given activity into smaller sub-activities by 

transforming them into parts that they can cope with. For example, 29 x 46 can be 

written as (29 x 20) + (29 x 20) + (29 x 3) + (29 x 3) 

In the above computation, digits are transformed into numbers that are easier to recall 

through the use of doubling and tripling. The ability to transform numbers like this is 

dependent on the learners' intuitive feeling for numbers and on the awareness of 

certain properties of operations. This was evident when I was analysing learners' 

solution strategies (see chapter 4, page 89). 

2.8 Critique of the problem-centred approach 

The problem-centred approach to learning may not achieve its goals if, firstly, the 

problems put forward are not selected for their mathematical structures and the order 

in which the problems are introduced are not well planned. Secondly, the 

development of routine skills like multiplication tables and bonds, for example, 

should not be abandoned but ways should be sought to encourage learners to see 
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patterns and relationships (Murray, Olivier & Human 1998). Thirdly, in order to use 

the problem-centred approach successfully, teachers should "let students struggle 

towards solutions without suggesting procedures, yet provide sufficient scaffolding to 

keep students interested and on the task" (Clarke 1997: 282). I endorse this sentiment 

fully and try to implement it in my own teaching. Fourthly, a problem solving 

approach is not likely to be beneficial to learners if the prerequisite content has not 

been taught (Murray, Olivier & Human 1998). 

The emphasis on getting learners to discover and refine their solution strategies when 

solving problems seems to be gaining momentum. The 'negative' effects of teaching 

only one written standard algorithm have been documented by Karnii; Plunkett (as 

quoted in Zarzycki 2001). The latter teaching strategies discourage a learner' s logical 

mathematical thinking and have led to a poor success rate of large numbers of learners 

in solving such algorithms. Karnii & Dominick, (as cited in Morrow & Kenney 1998) 

found that learners using their own calculating procedures were able to solve more 

problems correctly than children who had been taught the standard algorithm. Fosnot 

& Dolk (2001) also found that teaching algorithms gets in the way of children's sense 

making. They further state that some children perform a series of memorised steps in 

getting to the solution, rather than trusting in their own mathematical sense. 

This study has shown that learners are able to construct their own solution strategies 

and are willing to share them with their peers and teachers. 

2.9 CONCLUSION 

In this chapter I briefly discussed the transmission model, which initially had a big 

influence on my own teaching. The idea of learning procedures and memorizing 

information without understanding was a trademark of the approach. As a theory 

about the nature of knowledge and the nature of learning, the chapter's change in 

focus to a constructivist model showed how teachers interacted with children by 

questioning and discussion. They provided learners with problems to solve and 

responded to their ideas by getting them to discover relationships and predict future 

events. The aim of the teacher was therefore on children's thinking, rather than on 

their ability to write correct answers (Kamii & Joseph 1989). 
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I then engaged the reader with a section on problem solving giving an overview of 

problem solving research emphases and methodologies as well as some factors that 

influence the problem solving process. 

As my own teaching paradigm shifted to a problem-centred approach with its 

emphasis on learners finding out how to go about solving a problem and using various 

solution strategies in the process, I explored the tenets of the approach and the various 

levels of belief that teachers undergo while participating in eGI workshops. As the 

teacher is central to the success of the problem-centred approach, I elaborated more 

on the role of the teacher, the learning environment and the problem component. 

This chapter emphasised that learners should see mathematics as a problem posing, 

problem solving and investigative activity in which they build on their existing 

achievements to formulate new understandings (Southwood & Spanneberg 1996). In 

order to have control over their learning, learners need to take an active role in 

verifying their mathematical ideas and to reflecting on their mathematical 

expenences. 

In chapter three, I examine the process of my research and focus on the qualitative 

methods that were used for collecting and analysing the data. 
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CHAPTER THREE 

RESEARCH DESIGN AND METHODOLOGY 

3.1. INTRODUCTION 

The TIMSS study, one of the largest international comparative studies of its kind, 

found that South Africa's results showed the lowest overall improvement from Grade 

7 to Grade 8. Further, it suggested that South African students seem to lack adequate 

problem solving techniques (Beaton et al. 1996). The TIMSS - Repeat (Howie: 2000) 

conducted in 1998/9 with more than 8000 learners in 200 schools in South Africa 

shows that the performance of Grade 8 learners in mathematics remained unchanged. 

Comparative results for fractions and number sense, for example, show that South 

African students achieved a significantly lower score than all other countries. 

The main aim of this research was to explore Grade 7 learners' and their teachers' 

mathematical understanding through an analysis of their solution strategies (see 

chapter 4, page 78 onwards). 

3.2. CONTEXT OF RESEARCH 

The Rhodes University Mathematics Education Project (RUMEP) is a non­

governmental, independently funded organisation, linked to the university with the 

specific aim of improving the quality of teaching and learning mathematics in primary 

schools. By assisting teachers in disadvantaged, rural schools, the focus of RUMEP is 

on in-service professional development and curriculum reform. My role at RUMEP is 

to evaluate teacher mathematics workshops out in the field and to co-ordinate the 

Advanced Certificate in Education course. 

Cole & Flanagan (1995) recommend in a policy document that primary education 

should be the investment priority target for South Africa, as it will yield the highest 

social and private return of any level of education. Prompted by the design of 

developing a test instrument for use at Grade 4 level, (Mboyiya 2000), I embarked on 

a pilot study in 2000. In the context of my RUMEP work, the pilot study set out to 
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develop tasks aimed at testing the problem solving skills and mathematical 

understanding of Grade 7 learners. 

This pilot study investigated the solution strategies of Grade 7 learners. The 

assessment of the tasks shows discrepancies in performance between peri-urban 

schools in Grahamstown and urban schools in Port Elizabeth. This could have been 

language related as the schools all contained English second language speakers and 

the tasks were only written in English. 

To ascertain the extent of the problem solving ability of learners, and their ability to 

use different solution strategies at Grade 7 level, the actual study of this thesis was 

based on a new test consisting of 12 tasks undertaken in the year 2001 , in nine schools 

in the Northern region of the Eastern Cape. Learners from government schools with 

limited resources, such as a lack of stationery and classroom furniture, in the remote 

districts of Sterkspruit, Whittlesea and Bolotwa, near Idutywa, took part. 

This chapter describes and explains the research procedure that was followed in the 

study. 

3.3. THE CHOSEN PARADIGM 

This study is best described as qualitative in nature and lies in the interpretive 

paradigm. According to Cohen & Manion (1994:36) this "is characterized by a 

concern for the individual. The central endeavour in the context .. . is to understand 

the subjective world of human experience." Cantrell (1993:84) on the other hand 

states, "... interpretive researchers seek to understand phenomena and to interpret 

meaning within the social and cultural context of the natural setting." Mwira & 

Wamahiu (1995) assert that researchers adopting the interpretive paradigm: 

attempt to produce data that is holistic, contextual, descriptive, in-depth, 
rich in detail. They are concerned with discovering the inner meanings of 
social action rather than just their outward form. They are interested in 
describing processes instead of simply the outcome or end results. 

(Mwira & Wamahiu 1995:116) 
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A dimension that was important to this study was that knowledge in the interpretive 

paradigm was seen as constructed, rather than discovered (Denzin & Lincoln 1994). 

As I used a constructivist approach (see chapter 2, page 8), (Wellington 2000), the 

participants were encouraged to seek, understand and articulate their interpretations of 

their own solution strategies. A qualitative approach to data analysis was seen as 

appropriate. The focus was on action, especially on observing, describing and 

interpreting the action as it occurs within the context. Data was gathered by using in­

depth interviews. The interpretive paradigm allowed the research design to be 

sufficiently flexible for the perusal of emerging categories and strategies. 

Although I could have constructed a quantitative study, like the TIMSS study, my 

overarching purpose was to seek understanding, to explain and interrogate 'the what 

and tlle how' of learners' solution strategies. Hence, my commitment to the 

interpretive paradigm (Yin 1989). In this study, learners were encouraged to explain 

in depth 'what' and 'how' they attempted to solve a set of tasks. I was interested in 

exploring their own meaning and interpretation of solving the tasks. The interpretive 

paradigm was seen to be suitable for this study because I wanted to look for any 

constructs to which meaning could be assigned. 

I acknowledge that my findings in this research are more tentative than assertive. The 

findings will hopefully encourage and facilitate further inquiry. 

This study was interested in exploring and describing particular solution strategies. It 

was empirical in nature as it depended on interaction with learners and teachers in a 

natural setting i.e. in the classroom, and so fits the interpretive paradigm. 

Maykut & Morehouse (1994) point out that the purpose of qualitative research is to 

gather enough knowledge to lead to understanding. I have tried to do this in this study 

by acquiring data from two sources, teachers and learners. 

Quantitative approaches could have been used in this study if it had focussed on 

actual results of the tasks only. A qualitative approach was however seen as more 

appropriate because I wanted to explore learners' understanding by doing an 

interpretive analysis of their solution strategies. 
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3.4. GROUNDED THEORY AS A METHODOLOGY 

3.4.1 Introduction 

Grounded theory was the underpinning methodology selected for this study. As a 

form of qualitative research, the grounded theory perspective is " by far the most used 

qualitative interpretive framework in the social sciences today" (Denzin & Lincoln 

1994: 508). Its applications are extensive as it caters for a specific set of steps a 

researcher can follow. Grounded theory is often referred to in the literature as the 

constant comparative method (Strauss & Corbin 1990). The methodology was seen as 

appropriate for the following reasons. Firstly, my study was a small-scale 

investigation into the solution strategies of learners. Secondly, the study was 

interpretive because it aimed at understanding the actions of individuals and was 

interested in looking at the thoughts of human beings. Lincoln & Guba (1985) refer to 

this as the use of 'human instruments'. Thirdly, it was a study where I wanted to 

explore, describe and classify the specific solution strategies of both teachers and 

learners in categories. 

For this study I have used certain aspects of grounded theory. Some background 

information on grounded theory is necessary to understand the principles that I 

adopted in this study. 

3.4.2 Beginnings of grounded theory research 

In 1967 two sociologists, Barney Glaser and Anselm Strauss, first postulated 

grounded theory research, which is a general methodology, and later expanded on it 

through their books (Glaser & Strauss 1967; Strauss 1987; Strauss & Corbin 1990). 

They hold the view that hypotheses should be "grounded" in data from the field, 

especially in the actions, interactions and social processes of people. 
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3.4.3 Definitions of Grounded Theory 

Various definitions of grounded theory exist. According to Rubin & Babbie 

(1993:55) grounded theory as a term is "based more on an observation than on 

deduction". This suggests that grounded theory provides a framework for taking 

observations, intuitions and understandings to a conceptual level. By this (conceptual 

level) is meant looking at the data carefully and taking a sentence, paragraph or 

observation and giving each individual event or occurrence a name. The name given 

to each event must represent a phenomenon (Strauss & Corbin 1990). 

Schuerman (1983:111) states that the grounded theory approach "is concerned 

exclusively with the generation rather than the testing of theory." 

The definition of grounded theory given by Strauss & Corbin (1990:24) best fits the 

methodological underpinnings of this study: 

Grounded theory is a qualitative research method that uses a systematic set of 
procedures to develop an inductively derived grounded theory about a 
phenomenon. That is, it is discovered, developed and provisionally verified 
through systematic data collection and analysis of data pertaining to that 
phenomenon. (Strauss & Corbin 1990:24) 

In the grounded theory approach data collection, analysis and theory are in a 

"reciprocal relationship", (De Vos 1998:260). This implies that the researcher begins 

with an area of investigation and what is central to that area is allowed to unfold. 

Glaser & Strauss (as cited in Wells 1995), further contend that it is vital that the 

theory is discernible and that the social world of the source needs to be clear, giving 

enough detail to the research process. 

3.4.4 Coding 

The coding of data into categories is central to grounded theory. Coding has been 

defined by Kerlinger (as cited in Cohen, Manion & Morrison 2000:283), "as the 

translation of question responses and respondent information to specific categories for 
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the purpose of analysis." Coding can be very tedious, yet it is critical as it 

immediately raises data to a conceptual level (Strauss & Corbin 1990). 

In this study the tasks given to the learners and teachers and the interviews were 

connected. How the tasks were answered helped the researcher to frame the questions 

to be asked. 

The three major types of coding in grounded theory are open coding, axial coding and 

selective coding (Strauss & Corbin 1990). 

Open coding 

Open coding is the first step in the coding process as outlined in the grounded theory 

literature and involves looking at the following: 

Labelling phenomena 

The first step in analysis is conceptualising the data. By this Strauss & Corbin 

(1990:63) mean pulling apart an observation, a sentence or a paragraph and then 

assigning a name to each distinct occurrence, idea or event. The name given must 

represent or portray a phenomenon. Using the interviews and tasks, data of both 

learners and teachers were classified into various strategies. Strategies are the various 

ways employed to solve mathematical problems like decomposing a number, adding 

vertically or horizontally, and looking for the lowest common denominator. In the 

context of my research, I use the word strategies and not phenomena. 

The strategies are now grouped together so as to lessen the number of units the 

researcher had to work with. The combination of concepts that seem to pertain to the 

same phenomenon (in my case strategies) are at this stage still considered 

"provisional" according to grounded theory (De Vos 1998 :272). 

When developing a category, it is the properties that are first developed. According to 

De Vos (1998:272) "properties are the characteristics or attributes of a category." He 

further mentions that once properties have been developed, these are then 

dimensionalized. Dimensions according to De Vos (1998:272) "represent locations of 

a property along a continuwTI. Dimensions were not considered in this study, as they 

did not fit the data collected. 
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Variations in ways of doing open coding 

The process of open coding can be done in different ways. One way might be to take 

the first interview and observe and analyse it line by line. In my study, I pasted each 

interview and each question onto large sheets of paper, then took each line, examined 

phrases, sometimes even single words, to find the strategies, properties and 

categories. I then wrote them down next to the learner or teacher's work. 

The other two types of coding in grounded theory, namely axial and selective coding 

(Strauss & Corbin 1990), were not used in this study as the relevant material, the 

solution strategies, did not lend itself to further coding. The limitations of grounded 

theory in the context of my research are discussed below in 3.5. 

3.5. THE CONSTANT COMPARATIVE METHOD AND TIMSS 

CURRICULUM FRAMEWORKS 

Grounded theory is based upon the joint coding and analysis of data to systematically 

generate theory - also referred to as the constant comparative method (Glaser & 

Strauss 1967). My original aim was to adopt this methodology. However, it was not 

possible to use all aspects of this approach, as my data did not lend itself entirely to 

such analysis. Creating and suggesting many categories, properties and hypotheses, is 

the crux of the constant comparative approach. 

I was only able to code the tasks into categories, but was not able to compare the 

categories with previous developments in the same category, as my research 

instrument consisted of only one interview. My data were such that I could not 

compare the different strategies that leamers used and produce theoretical properties 

of the category, which is characteristic of the constant comparative method (Glaser & 

Strauss 1967). I therefore agree with Lincoln & Guba (1985) who argue that the use 

of grounded theory in its entirety must fit the situation that is being researched. My 

research project only partly lent itself to the constant comparative method. 

The initial justification for using this research method was that I intended to develop 

categories of children's solution strategies and come up with a theoretical framework. 
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For this reason, I needed to be flexible. I believed this approach would help me find 

answers to issues and that it was geared towards action and process. However, when 

examining the solution strategies that learners and teachers used, I found that the level 

of each task only allowed me to go as far as the first type of coding, namely, open 

coding. 

In order to deconstruct the individual benchmark test, I used the TIMSS Curriculum 

Fran1eworks (McNeeley 1997) to classify each task into three classes: content 

category, performance expectation and perspectives (see chapter 4). 

3.6. DESIGN OF THE RESEARCH INSTRUMENTS 

3.6.1 The test 

The Grade 7 test upon which this study rests is included in Appendix B. It consisted 

of 15 multiple-choice type and 12 tasks and comprised two parts: Section 1 -

multiple-choice items, section 2 - problem-type word problems as described in section 

3.8.1. 

For this research only section 2 of the test was relevant. The main reasons for this 

were that I was not particularly interested in final solutions to a particular problem 

(although the schools asked for all the results of all the learners). For this study, the 

most interesting and important aspect was to find out how the learners and teachers 

confronted the problems and what strategies they had used to solve the problems. 

Further, I was also interested to see whether the solution strategies adopted by the 

learners were the same or different from those their teachers had used. 

I had intended using section J of the test as well. However, some learners did not 

make use of the space provided to show exactly how they arrived at a solution. Hence, 

I decided to leave out this section and concentrate only on section 2. 
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3.6.2 Individual clinical interviews 

In order to analyse the solution strategies in more depth, I interviewed nine learners 

and nine teachers. The interview schedule was semi-structured in nature (Bogdan & 

Biklen 1992) and contained a checklist of suggested questions. However, not all 

questions were pre-determined. This kind of interview allowed me to have more 

flexibility and freedom to explore the solution strategies adopted by the participants. 

The goal and emphasis of using the semi-structured interview was to probe for 

(learner's) understanding. Before each interview, I obtained permission from the 

learners and teachers to record the interview. The first question asked of all 

respondents was the same, namely to explain carefully and exactly how they (the 

learners and teachers) went about solving the tasks. Each respondent was then asked 

to elaborate on strategies in solving the tasks. Some learners and teachers were asked 

more questions than others. What I explored in the interviews was to find out how the 

learners and teachers had answered the tasks. I was also interested in the solution 

strategies that each one adopted and whether they could explain with understanding 

what they had done. None of the responses were exactly the same. I had to approach 

each task in a different way, according to the responses that the learners and teachers 

gave me. 

3.6.3 Teacher interview schedule 

A short additional structured interview schedule was drawn up asking the 

participating teachers to comment on a few aspects of the benchmark test. (see chapter 

4, page 142). The intention behind doing this was to gauge whether the tasks were too 

difficult for their classes and whether having them translated into their mother tongue 

had any effect on how learners approached them. I was also interested to find out 

what the teachers thought about using multiple-choice questions as a form of 

assessment and whether they had covered all the work required of them in the 

curriculum prior to writing the test. 

According to Cohen et al. (2000 :273) a structured interview "is one in which the 

content and procedures are organised in advance." There is less flexibility over the 
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range and order of questions in the schedule. It is also characterised by being a closed 

situation and may provide an easier frarnework for analysis (Wellington 2000). This I 

found to be applicable in this situation. Lincoln & Guba (1985: 269) suggest, 

that the structured interview is useful when the researcher is aware of 
what he/she does not know and therefore is in a position to frarne the 
questions, that will supply the knowledge required. 

(Lincoln & Guba 1985) 

3.7 SELECTION AND CHARACTERISTIC S OF PARTICIPANTS 

3.7.1 The choice ofthe grade, criteria and schools 

Grade 7 was chosen for this study because it is the beginning of the Senior Phase in 

the primary school. The TIMSS study in 1995 used learners aged 13-14 years, which 

is about Grade 7 level in South Africa. Learners at this age level are able to articulate 

their thought processes. Their communication skills are also sufficiently developed at 

this stage to articulate their solution strategies. From previous experience as a 

classroom teacher at this level, and from my RUMEP experience of working with 

many Grade 7 teachers in the Eastern Cape who are upgrading their qualifications, I 

felt that the teachers would be able to relate to this study. 

The central criteria used to select the sample of learners for this study were 

competency to articulate in their mother tongue (isiXhosa), and a willingness to 

participate as a volunteer. Interviews would be conducted in mother tongue (or if the 

learners so wished in English). This was made very clear at the beginning of the 

interview. 

The schools in which the pilot study took place were all government schools situated 

in Grahamstown, Port Elizabeth and Queenstown. Two were ex-model C schools, 

while the rest were township schools. 

The Northern Region of the Eastern Cape was the chosen region for the actual study 

of this thesis because Department of Education (DoE) officials provided me with the 

names of schools in the districts and ensured access for me to visit schools. They even 
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showed willingness to accompany me on my journey to the schools and were very 

supportive and positive in their approach. The schools chosen were rural in nature, 

some of them situated in very impoverished communities. Some schools lacked the 

necessary infrastructure, with a number of schools having several broken windows 

and doors, insufficient desks and chairs and inadequate curriculum materials like 

textbooks and other resources. 

Towards the end of the first term in the year 2001 , permission had been granted by the 

DoE in the Northern Region of the Eastern Cape to do the study. Twelve schools were 

approached and letters were sent to each of the schools in the Whittlesea, Queenstown 

and Sterkspruit districts. 

Nine schools volunteered to take part. Three schools were situated in Sterkspruit, one 

in Bolotwa, near Idutywa, and five schools in Whittlesea. I visited all of these schools, 

before the study was to take place. The principals and teachers were informed about 

the purpose of the study. All information would be kept strictly confidential between 

the school and the researcher. 

As this study involved working with children and teachers, ethical issues had to be 

taken into consideration. I discuss these in section 3.12. 

3.8 DATA COLLECTION 

According to Maykut & Morehouse (1994:174), the purpose of qualitative research is 

"to accumulate sufficient knowledge to lead to understanding". This has 

methodological implications for my study. In this study ' sufficient knowledge' was 

gathered using three data collecting techniques. 

They included: 

a) a test (see page 54) 

b) individual, semi-structured clinical interviews (see page 55) 

c) structured teacher interviews (see page 55) 
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The qualitative approach was appropriate in this study as it allowed me to analyse 

learners and teachers' work and hear each individual explain to me how they solved 

each benchmark task. I was able to cross-check by looking at their solutions, whether 

correct or incorrect, and probe further. This was important because there was the 

possibility that they may have given responses which they wanted me to hear, but 

could not explain. 

The study progressed through three stages. 

3.8.1 Stage one: The pilot study 

Development of the pilot test 

The pilot test referred to on page 48 in section 3.2, was modelled after the TIMSS 

study (Beaton, et ai, 1996). The conceptual framework centred on the intended 

curriculum (the curriculum which learners are supposed to learn as laid out in official 

documents), the implemented curriculum (the learners' opportunity to learn) and the 

attained curriculum (what the learners actually achieve) (Long 1998). The pilot study 

was useful as it helped to establish baseline data of where Grade 7 learners were in 

terms of mathematical content and understanding in their schooling career and for the 

construction of the test for the actual study. 

The set of tests were piloted in two township schools in Grahamstown, two ex-model 

C schools, one in Grahamstown and one in Port Elizabeth, and two township schools 

in Queenstown and consisted of 258 Grade 7 learners. 

Nature of the pilot test 

The content areas of the test were based on the TIMSS report (Beaton et al. 1996) 

which focussed on application and understanding (see chapter 4, page 73) 

The set of tasks consisted of two sections: Section 1 consisted of 16 multiple-choice 

type questions where learners had to choose the appropriate answer from a list of four 

possibilities. Space was provided for any working out which might be required by the 

learner. Section 2 comprised 5 questions, which was a combination of calculation and 

word problems. In these tasks all thinking and working out had to be shown. 
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Table 3.8 indicates the breakdown and distribution of the content areas of the pilot 

test. 

Table 3.8 Content areas, number of tasks and the percentage of total pilot benchmark test 

Content area Number of tasks Percentage of total 

Number Sense 13 62% 

Measurement 1 5% 

Geometry 3 14% 

Data Handling 0 0% 

Patterns 4 19% 

TOTAL 21 100% 

The test was heavily loaded on number sense, as this was one of the content areas 

where the findings of the TlMSS study indicate that South African learners performed 

poorly. I was specifically interested in exploring further solution strategies in this area 

of content. 

Administering the tasks 

Two staff members from RUMEP, both English first language speakers, were 

responsible for ensuring that the test was handed out to the learners in an orderly and 

organised manner. The instructions given to the two staff members are found in 

Appendix C. The instructions were necessary to ensure uniform participation 

conditions in the different schools. 

Assessment of tasks 

The test was assessed as follows: 

In section I of the test, one mark was allocated for each of the multiple-choice 

questions. Table 3.8.1 shows the criteria used to evaluate the benchmark test of 

Section 2. In this marking scale, marks are not only allocated to an answer, but marks 

are also given for the correct operation and the process used in getting to the solution. 
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Table 3.8.1 Assessment rubric for tasks in Section 2 

Marks Criteria 

0 B lank, nothing is shown. 

Problem is just re-copied. 

An incorrect answer. No working out is shown 

1 Work shows some understanding of the problem. 

Uses correct operation sign, but implemented incorrectly. 

Answer is not shown or is incorrect. 

2 Correct strategy shown, but makes errors along the way. 

Answer is not correct. 

3 Correct strategy chosen with correct answer and correctly 

labelled. 

adapted from Charles, Lester and O'Daffer (1987: 35) 

The schools requested percentages for each learner and these were made available to 

each school. The assessment was regarded as confidential. 

Capturing the data and results 

All the scripts were marked and the raw data was captured from the learners' response 

booklets. The average for each school was recorded and all information was 

communicated back to the participating schools. The data from each school was 

analysed to see which areas in the mathematics curriculum each school found 

problematic. 

Lessons learnt from the pilot study 

As a result of the pilot study, certain aspects needed to be taken into consideration 

before the actual study took place. There were two main problems: 

• Difficulties with language. Tasks were only written in English and this was a 

problem for most learners. Learners appeared to have difficulty in 

understanding exactly what was required, especially in the problem-type word 

problems. 
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• The participating schools had not covered some mathematical content 

knowledge. I then decided to look carefully at the tasks to see where changes 

needed to be made. One task that required learners to draw a reflected image 

was removed and substituted with a similar task that did not require a reflected 

Image. 

It was then decided that in order to give the learners a better opportunity of showing 

their understanding, the set of tasks would also be translated into their mother tongue. 

This was to address the language limitations as expressed by Howie (1997). Together 

with two other RUMEP staff members, questions were reviewed, rephrased or 

omitted and substituted by more relevant questions. The calculations and problem 

type tasks were carefully scrutinised for any misunderstandings like ambiguity and 

level of difficulty. 

Five experts in the teaching of mathematics and the language field were requested to 

review the new version of the set of tasks. These included a primary school principal 

who taught mathematics, two practising mathematics teachers, the co-ordinator of the 

collegial cluster project at RUMEP, and an experienced mother-tongue education 

lecturer. Discussions between the above 'experts ' and myself were held to check the 

appropriateness of the tasks in terms ofJanguage, format and context. 

I also learnt that setting a set oftasks is not an easy thing to do. As the tasks had to be 

translated into mother tongue, it required that I be very clear and unarnbiguous in 

stating what was wanted in each task. It also showed me how difficult it must be for 

learners to learn mathematics in a second language. This was evident from the 

different ways that the set of tasks had been translated by the various mathematics 

'experts ' . 

3.8.2 Stage two: The main study 

Nature of the main test 

The content areas for this test remained the same as the pilot test. Appropriate 

adjustments were made as discussed on page 60. 
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The test still consisted of two sections. Section I consisted of 15 multiple-choice type 

questions where learners were given four and sometimes five possibilities to choose 

the correct answer. Space was provided for any working out which the learner needed 

to do. Section 2 comprised 12 questions. This was a combination of computation and 

problem-type word problems. Learners had to show all thinking and working out in 

these tasks. Table 3.8.2 below indicates the total number of tasks asked and the total 

percentage of each content area. 

Table 3.8.2 Content areas, number of tasks and percentages of the main total of the benchmark tasks 

Content area Number of tasks Percentage of total 

Number Sense 16 59% 

Measurement 3 11% 

Geometry 4 15% 

Data Handling 1 4% 

Patterns 3 11% 

TOTAL 27 100% 

Administering the test 

A co-worker from RUMEP and I administered the test. A total of 341 learners 

participated and learners were given approximately an hour and a half to complete all 

the activities. After the learners had completed the test, I requested that the nine 

mathematics teachers also complete the test. 

The notes to the administrators were the same as in the pilot study (Appendix C) 

except that a mother tongue speaker now read the tasks to the learners in isiXhosa. A 

study by Long (1998) had shown that although items had been translated into 

isiXhosa, the reading level of some of the items might have been too difficult. In 

order to overcome the difficulty of language, I also read each task in English. 

Assessment of test and capturing of data 

I used the same marking scheme as that used for the pilot study (see page 59). It was 

not my intention to collect quantitative data in this study, but schools asked 
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specifically that 1 send the mean for their school and a short swnmary of the findings 

to them. 

3.9 INTERVIEWS 

One learner from each school was chosen by the teacher, using the selection criteria 

articulated on page 55, to be interviewed. Each interview took approximately 40 

minutes. I divided the interview into three stages: beginning stage; questioning stage; 

and intervention stage (Ginsburg 1997). I initiated the interview by starting to ask the 

learners and teachers non-threatening questions about their families and favourite 

activities. I then told them that the purpose of the interview was find out how each 

task was solved and that I was interested in their thinking. During the questioning 

stage, I said the following: "I am going to read the problem to you and then I want 

you to tell me how you went about solving the problem." As the learners and teachers 

explained, 1 had to get them to elaborate on their responses and support their 

responses with explanations. The interview became a verbal means for me to listen 

carefully and gain a better understanding of how they approached each task. After the 

learners had been interviewed, I then interviewed the teachers. All interviews were 

captured on a tape recorder for further analysis 

Hopkins (1993) points out that interviewing children can be problematic because they 

might encounter difficulties in explaining their thoughts and feelings . Children may 

also feel intimidated by the one-to-one nature in the interview, as they do not know 

the interviewer. In my experience in working with children, 1 have found similar 

observations. I also found that some children have a short attention span and if 

questioned too closely abont a particular task, they refuse to talk or say, "I don't 

know", 

My co-worker and 1 took cognisance of the fact that the respondents would place the 

interviewer on the same or on a higher level of authority as the teacher. Prior to the 

interview, I therefore tried to make the learners and teachers feel relaxed, as 

mentioned above. Clandinin & Connelly (1994) comment that the way in which the 

interviewer questions and responds to the answers will have an effect on the way the 

children and the teachers respond. 
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In order to address the above, the clinical interviews were kept as conversational as 

possible. The purpose of a clinical interview is to probe for understanding (Ginsburg 

1997). Although I remained focussed and despite the careful planning, my co-worker, 

who was a Xhosa mother tongue speaker, and I still experienced problems like 

forgetting to probe further or not writing down something to return to later. 

Ginsburg (1997) remarks that a clinical interview is difficult, as it takes skill and 

insight to reword questions and to do this on the spot. Fontana and Frey (1994: 361) 

make the assertion that "asking questions and getting answers is a much harder task 

than it may seem at first." We both found this to be true. I found it difficult to listen 

and to make notes, (see page 64) especially as my learners were second language 

speakers of English who would from time to time continually 'code switch' from 

isiXhosa to English. I had to force myself not to interrupt the learners or the teachers 

while they were talking, when I wanted to probe for more detail. Yin (1989) 

emphasises that it is important for the interviewer to make notes during an interview. 

We had great difficulty with that because we had to continually bring the child or the 

teacher back to the problem when they were derailed for some reason. The taped 

interview and the participants' written work was all that I could rely on for gathering 

my information. 

The purpose of using clinical interviews as a data collecting technique was that I 

wanted to gain more insight into the 'why' and the 'how' of learners and teachers' 

solution strategies, through a careful analysis of the solutions to the tasks confronted 

by them. I also wanted to get learners and teachers to elaborate on and support their 

responses with clear explanations. Clinical interviews were chosen because using 

them would also enable me to do a comparison between learners and teachers' 

responses. 

As I had chosen the clinical interview as my most important data collecting technique, 

I had to consider the following very carefully. I had to be really interested in each 

child and each teacher's response. This I did by carefully getting each one to elaborate 

on responses that seemed unclear or vague. I had to be flexible in my approach and 

allow the interviewee enough time to complete each question. I did this by giving the 
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interviewees time to pause. My focus had to be clear of what was required of each 

teacher and learner. I had to refrain from interrupting them as they explained a 

problem, but rather allow them the opportunities to clarify their thinking. 

Being a teacher myself, I found it quite difficult to not give any clues. I was able to 

ask the teachers and children to repeat a step if I could see that he/she had made an 

error. Very often when teachers and learners discovered an error in their mathematics 

on their own, they were able to correct it on their answer sheet. 

When interviewing, I was particularly interested in the processes the respondents had 

using in solving the tasks, and wanted to gain insight into these processes. Another 

aspect I had to consider in the construction of the interviews was taking gestures (see 

page 63) and displays of emotion into account. Although some interviewees struggled 

from time to time, it was important for me to offer encouragement and to listen to 

their responses. 

I also had the difficult task of encouraging both the teacher and the learner to 

verbalise everything that they were thinking. This was quite demanding and drained 

one emotionally (Ginsburg 1997). 

Ginsburg (1997) lists some of the major features of the clinical interview that should 

be considered. Firstly, I should be open and allow the interviewees to explore, but at 

the same time try t6 establish the learner's/teacher's competence by continuing to 

probe and record questions. Secondly, it was difficult trying to continually consider 

hypotheses about why the learner/teacher does or says what he/she is saying, without 

asking for more explanation. Thirdly, I had to always think, or theorize about what 

children at this age are capable of and had to try to make them feel comfortable and at 

ease. As all the learners were second language speakers, I was able to use my co­

worker's help with the interviews. It was also important for me to take cognisance of 

the behaviour of both the child and the teacher for whatever clues they may offer 

about their thinking and understanding. For example, looking at their facial 

expressions and noting pauses as they spoke. One particular learner was very excited 

about answering the tasks. At the end of the interview, he asked me what I was going 

to give him. Another learner fidgeted continually with the cuff of his shirt and, from 
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the expression on his face, he appeared quite nervous. I therefore needed to make him 

feel at ease. 

As I examined the child's and the teacher's thinking, I also looked at the following 

aspects, as suggested by Ginsburg (1997). The asking of fundamental questions like 

'how did you know that', or 'explain to me how you worked out that sum' happened 

often during the interviews. I had to be careful not to discourage the child or the 

teacher's way of solving the problem, but accept and value their strategies even if it 

was unorthodox or even incorrect. At times, it was necessary not to assume that a 

wrong answer is wrong or that a right answer is right. I needed to delve beneath the 

answer to understand the thought that produced it. 

According to Ginsburg (1997) in order to establish credibility in the clinical 

interview, one has to often rephrase the task to avoid misunderstanding. Sometimes 

in the interviews it was necessary to change the problem by first substituting it with a 

simpler problem. In order not to make the child or the teacher feel uncomfortable, I 

had to sometimes repeat the question and ask them to explain it more carefully or 

slowly by saying, "I didn't quite understand what you meant, so let's do it again and 

you tell me what you are doing?" 

3.9.1 Reflections on the individual clinical interviews 

As I reflect on the experience of conducting an interview, I can say that I learnt that 

one should never go into an interview 'cold', without thorough planning and 

preparation. The tasks presented to the respondents had to be complex enough to 

engage the child or teacher in thinking. 

Both teachers and learners were unfamiliar with the one-to-one nature of the interview 

situation and both groups had great difficulty expressing themselves. As these 

interviews took place in the respective schools, it was sometimes difficult to find a 

suitable, quiet spot to conduct the interview as interrupting noises were heard. 

The learners were at first fascinated by the micro-cassette tape recorder, but 

nevertheless responded willingly and generously. I found the tape recorder was 
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sometimes a source of distraction to both the interviewer and some of the 

interviewees. Some spoke very softly and sometimes, in my haste, I was worried that 

I might have pressed the incorrect button and not recorded the interview. At times I 

did, however, experience a 'dead end' when getting no responses from some of the 

learners. However, on the whole the teachers felt more intimidated and inhibited in 

answering than the learners did. 

The original taped interviews and their corresponding transcripts are housed in the 

RUMEP resource centre at Rhodes University, Grahamstown. 

3.10. ANALYSIS OF DATA 

Some interviews, which were recorded in isiXhosa, were first translated into English, 

then transcribed and photocopied. Large sheets of cardboard were used where each 

task was given a page number and was coded, for example QI.L1 or QI.Tl. 

(Question I, Learner I or Question I, Teacher I). All the solution strategies for task I 

were then pasted onto separate sheets of cardboard. The solution strategies of each 

task were indicated in pencil in the margin together with the properties and possible 

categories. The learner and teacher sheets were then placed side by side and compared 

for similarities and differences. The interview scripts were then reread a number of 

times to substantiate the properties and the category (See chapter 4, from page 77). 

3.11. VALIDITY AND RELIABILITY 

Validity is a prerequisite for both quantitative and qualitative research. In qualitative 

research validity is concerned with description and explanation and asks the question 

whether a given explanation fits a given description (Denzin & Lincoln 1994). 

According to Gronlund, (as cited in Cohen Manion & Morrison 2000:105), validity 

should be seen "as a matter of degree, rather than an absolute state". 

In order to assess the methodology which I used, I refer to Campbell & Stanley (as 

cited in Le Compte, Millroy & Preissle 1992). They list eight factors that threaten 

internal validity and four factors that threaten external validity. Internal validity has to 

do with how accurately the findings describe the phenomena being researched 
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(Cohen, Manion & Morrison 2000). External validity "is the degree to which results 

can be generalised to the wider population" (Cohen, Manion & Morrison 2000: 1 09). 

The two threats affecting the internal validity of my study are: subject selection and 

changes in instrumentation. Although all learners in Grade 7 took the benchmark test, 

I left it up to the teachers to choose the learners whom I could interview. Although 

there were no direct changes to the instrumentation as such, it was necessary to 

translate the tasks into isiXhosa and change some of the problems, because teachers 

had not covered certain sections of the curriculwn. 

I think a threat to external validity included subject selection effects. That the subjects 

selected for this study come from only one racial group, may affect the validity. Other 

threats to validity, which may have had an impact on this study, were ensuring that 

the level of the benchmark tasks were appropriate for Grade 7 learners, i.e. neither too 

easy nor too difficult. 

During the stage of data analysis, a threat to validity may have been my not making 

enough inferences and poor coding, as I used only aspects of grounded theory. 

I am of the opinion that my interviews are validated because when I compare the 

interview transcripts with the actual written work of the learners and teachers, the two 

achieve the same result. This comparison is termed convergent validity. 

A criticism of qualitative research has been the concern with bias. Bias may have 

crept into this study through the respondents behaving differently when they were 

placed in the new situation, like the interview situation. Another bias may have been 

the attitude, gender, race, age, personality, dress, comments, replies and non-verbal 

communication of the researcher. I tried by to minimize the amount of bias as much 

as possible by doing clinical interviews, which puts tremendous pressure on the 

interviewer rather than on the respondent (Ginsburg 1997). However, I agree with 

Hitchcock and Hughes (as cited in Cohen, Manion & Morrison 2000) who argue that 

because humans are interacting with humans, it is unavoidable that the researcher will 

have some effect on the respondents and, consequently on the data. 
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Research in the interpretive paradigm recognises that the findings stress a subjective 

interpretation, which may be biased. Subjectivity is therefore accepted and valued as a 

vital aspect of understanding. This is an essential part of the paradigm, although I 

have tried to be conscious of my own SUbjectivity and my position in this research. 

That is why a co-worker was used to help with the mother tongue interviews and their 

transcription. 

Reliability is concerned with preClSlon and accuracy (Denzin & Lincoln 1994). 

According to Bogdan & Biklen (as cited in Cohen, Manion & Morrison 2000: 119), 

reliability "is regarded as a fit between what researchers record as data and what 

actually occurs in the setting that is being researched." 

I believe that the reliability of my interviews and benchmark tasks have been 

enhanced by the careful piloting which was done the previous year and which resulted 

in changes and revisions being made. On the aspect of reliability, I concur with 

Wellington (2000: 13) that "reliability is linked to the idea of 'replicability', i.e. the 

extent to which a piece of research can be copied or replicated in order to give the 

same results in a different context with different researchers." 

3. 12 RESEARCH ETHICS 

It is asserted by many researchers that ethical issues need to be given careful thought 

before, during and after the research process (Dane 1990). There are several 

distinguishing issues, according to Dane (1990), which the researcher needs to take 

into consideration. The following were important for this study: voluntary 

participation, informed consent, researchers and co-worker's identity and anonymity 

of participants. 

3.12.1 Voluntary participation and informed consent 

For the actual study, informed consent was obtained firstly from the DoE in 

Queenstown and Aliwal North who gave me the names and addresses of schools. 

Individual letters were then written to each school requesting them to indicate whether 

they wanted to take part in the study or not. A mother tongue co-worker and myself 
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then visited schools that indicated a willingness to participate. I explained to the 

principal, teachers and learners of each school, the purpose of the study and what was 

to take place. They were then asked to indicate whether they still wanted to participate 

or not. It was explained to the teachers and learners that the purpose of the task was 

not to test for right or wrong answers, but rather to look at the processes involved in 

the solving of problems using different solutions. According to Dane (1990 : 59), 

"research participants have the right to voluntary participation, the right to be aware 

that they are participating and the right to information that may affect their decision to 

participate." 

3.12.2 Researcher's and co-worker's identity 

As the researcher and co-worker, it was our responsibility to portray ourselves 

accurately to the school, the principal, the teachers and the learners (Dane 1990). I 

made every effort to be sincere, honest and to gain the trust of all those involved. In a 

qualitative study it is often taken for granted that research is not value- or bias-free, 

with the researcher early in the study describing and identifying his own biases and 

tenets (Jane sick 1994). 

The mathematics teachers and the learners were kept fully informed about our visits . 

A letter was sent to all principals informing them about the exact date of our visits. 

They were also informed that if they felt uncomfortable about taking part, they could 

withdraw at any time. 

No school objected and principals and teachers welcomed us with open arms each 

time. They were grateful for any feedback on what we had found. 

After the pilot study, all schools were sent letters informing them about the results and 

the general trends which were found (Penlington & Michael 2000). Principals wanted 

to know where their learners stood as compared to other schools in the study. They 

were not that much interested in what I had set out to do, namely to explore the 

solution strategies of learners and their understanding of these strategies. 
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3.12.3 Anonymity 

All learners and teachers who participated in this research were volunteers and their 

names or schools have not been mentioned. All information has remained strictly 

confidential with the researcher. Transcripts of raw data and interview schedules are 

available in the RUMEP archives. 

3.12.4. The role of the mathematics teachers 

I was completely open with each mathematics teacher who participated in the study 

by carefully describing the purpose of the study and the point of the research. All the 

teachers (except for one teacher, who appeared nervous at the start, but nevertheless 

still took part) showed their willingness and volunteered to participate. They were 

eager to see how their learners performed. I explained that the mathematics teacher 

could be present at all times when the benchmark tests were being administered and 

that they could act as an assistant interpreter should the need arise. All the teachers 

readily took up their role as assessment interpreters. 

3.13. CONCLUSION 

This chapter has located the study in an interpretive paradigm. More specifically, it 

has described and justified the methodology used. It was a small-scale investigation, 

which used only one level of grounded theory as a methodology. Some limitations of 

the methodology were discussed. Further, the design of the research instruments used 

to collect the data was explained. Issues of validity and reliability were addressed, as 

were ethical considerations. 

The next chapter describes the analysis of the solution strategies used by learners and 

teachers. 
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CHAPTER FOUR 

ANALYSIS AND INTERPRETATION OF SOLUTION 

STRATEGIES 

4.1 INTRODUCTION 

In this chapter, the data gathered using the methodology discussed in chapter 3 are 

analysed. In the context of South Africa being placed at the bottom of all countries 

that participated in the last two TIMSS studies (Beaton et al. 1996 and Howie 2000), 

my study on solution strategies used some of the original TIMSS items. The tasks 

required learners to solve problems and computations using their own solution 

strategies. 

The analysis procedure for each task will follow the same format: 

a) Description of task: Here I show the task as it was presented to the learners. 

b) Categorisation of task using the TIMSS Curriculum Frameworks: Here I use 

the TIMSS curriculum framework as discussed in 4.2. to categorise each task 

into categories, subcategories and subordinate categories. 

c) Open coding: Here I analyse the solutions of the tasks, identifying strategies 

used and labelling the properties. I have replaced the term 'phenomena' (as 

used in grounded theory) with 'strategies' 

d) Discussion of solution strategies: Here I describe and discuss the solution 

strategies based on learners and teachers' transcripts inferred from the 

intervi ews. 

e) Comparison of teacher and learner solution strategies: Here I look for 

comparisons and similarities between teachers and learners' solution 

strategies. I examine whether learners adopted similar strategies as teachers 

and vice-versa. 
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The test (only section B was analysed) consisted of 12 tasks on numbers, 

measurement, geometry, proportionality, functions and data handling for Grade 7 

leamers (see chapter 3). The test was administered after adaptations had been made to 

it on the basis of the pilot study. The solution strategies and complementary data were 

supported by learners and teachers' clinical interviews (see chapter 3). Their 

responses to the tasks were coded using aspects of grounded theory and the referred 

TIMSS Curriculum Frameworks (McNeeley 1997). 

4.2. TIMSS CURRICULUM FRAMEWORK 

The TIMSS Curriculum Framework was used in this study to categorise each task into 

categories, subcategories and subordinate categories related to learning goals 

comparing mathematics education across countries. The frameworks as used in the 

TIMSS study of 1996 examined three aspects of the curricula: Firstly, content or 

subject matter, secondly, performance expectations, e.g. problem solving and thirdly, 

perspectives, such as a positive attitude towards mathematics (McNeeley 1997). 

4.2.1 Content 

According to Mc Neely (1997:28), "any curriculum component in this classification 

system can be described by a 'signature' involving categories and subcategories of the 

three aspects." The content component of the TIMSS Curriculum Frameworks shows 

the content categories of mathematics used in the American curriculum. The content 

categories are comparable to the curriculum found in South Africa. The 10 content 

categories (Figure 4.1) are further subdivided into 29 subcategories and 20 

subordinate subcategories (Only subcategories and subordinate subcategories 

applicable to this study are found in Appendix A). 
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• Numbers 

• Measurement 

• Geometry: Position, Visualisation and Shape 
• Geometry: Symmetry, Congruence and Similarity 

• Proportionality 

• Functions, Relations and Equations 

• Data Representation, Probability and Statistics 

• Elementary Analysis 

• Validation & Structure 

• Other Content 

Figure 4.1. TIMSS content categories 

4.2.2 Performance expectations 

The performance expectation component refers to the cognitive dimension and 

describes the many kinds of performances or behaviours that might be expected of 

learners. The expectations refer to what learners were able to do with the knowledge 

they obtained. The performance expectations (Figure 4.2) vary from being able to 

understand information, to applying it in theory, problem solving and investigations. 

• Knowing 

• Using routine procedures 

• Investigating and problem solving 

• Mathematical reasoning 

• Communicating 

Figure 4.2. TlMSS performance expectation categories 
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Figure 4.2. 1 below highlights the performance expectation categories listed above 

which are further subdivided. 

Knowing 

Representing I Recognising equivalents I Recalling mathematical objects and properties 

Using routine procedures 

Using equipment I Performing routine procedures I Using more complex procedures 

Investigating and problem solving 

Formulating and clarifying Developing strategies Solving Predicting Verifying 

problems and situations 

Mathematical reasoning 

Developing Developing Generalising Conjecturing Justifying and Axiomatising 

notation and algorithms proving 

vocabulary 

Communication 

Using vocabulary and Relating Describing and Critiquing 

notation representations discussing 

Figure 4.2.1 Categories and subcategories of performance expectations 

The performance expectation categories and subcategories were used as a guide to 

frame the discussion of the solution strategies. 

4.2.3 Perspectives 

The aim of the perspectives aspect of the TIMSS Curriculum Framework is to identify 

clear goals for teaching mathematics. The perspectives aspect concentrates on the 

development of learners' attitudes, interest and motivation. This aspect will not be 

discussed in the study. 
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4.3. TASK 1 

4.3.1 Description of the task 

In the magic triangle all the nwnbers along each edge must add up to 90. Put all the 

numbers 20, 30, 50 and 60 in the circles to make correct totals. 

40 

4.3.2. Categorisation of the task 

1. Content Area Category Number 

2.Subcategory Whole nwnbers 

3.Subordinate Subcategory Operations 

4.Perforrnance Expectation Category Investigating and problem solving 

5.Subcategory Developing strategies 

Figure 4.3 TIMSS Curriculum Framework categorisation for task I 

The task as illustrated in Figure 4.3 relates to the addition of whole numbers, which is 

part of nwnber sense. It incorporates investigating whole numbers and requires 

learners and teachers to investigate and develop a strategy in order to solve the 

problem. 
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4.3.3. Open coding 

Table 4. I Summary of strategies used by both learners and teachers in solving task I 

CS = Correct solution IS = Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 if Trial and error 1 if Sequence of numbers 
2 x Addition 2 if Trial and error 
3 if Trial and error 3 if Consecutive multiple strategy 
4 x Trial and error 4 if Trial and error 
5 if Trial and error 5 if Consecutive mUltiple strategy 
6 if Addition 6 if Trial and error 
7 if Trial and error 7 if Addition strategy 
8 x Trial and error 8 ./ Trial and error 
9 if Trial and error 9 if Trial and error 

67 % correctlv answered by learners I 100% correctly answered by teachers 

Table 4.1 refers to the strategies used to solve task 1 by the learners and teachers. 

The fo llowing strategies were identified: 

Trial and error strategy 

The trial and error strategy is a strategy where any numbers are placed in the circles in 

a random way in order to get to a total of 90. 

Sequence afnumbers strategy 

The sequence of numbers strategy is a strategy starting with a particular number and 

following a sequence to get a total of 90. 

Consecutive multiple strategy 

The consecutive multiple strategy involves starting with the first multiple of 10 and 

placing numbers 20-60 in the appropriate positions to arrive at a sum of 90. 

Addition strategy 

The addition strategy uses the numbers given which are then added to the other 

multiples of 10. 

The property (see chapter 3, page 52) I have identified in task 1 is 'using multiples of 

10 from 10 to 60 to get to a total 0[90'. 
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4.3.4. Discussion of solution strategies 

The strategy used by six of the learners in task I was trial and error. In the interviews, 

learners mentioned using random numbers to get to a total of 90 along one side before 

applying the other numbers to the other two sides. The three learners, who were 

unsuccessful in the task, failed to check the sides of the triangle to get to a sum of 90 

and consequently ended up with a total of more than 90. 

L I refers to learner I and T I refers to teacher I. 

L I started using the given numbers 10 and 40. 

L 1: These numbers are 10 and 40. I put 50 here and it makes 60 
and 30 here and it makes 90. And here it's 50 and here it's 20. I 
took 40 and put 30 to this and it makes 90. There it is 60 and 30, 
makes 90. I add 30, this 40, it makes 70 plus 20 and it makes 90. 

L 9 used one side to complete the triangle before moving onto the other two sides. 

L 9: It is said that we must add these numbers to make 90. We 
were given 20, 30, 50, 60 and on this side 10 and on this side 40. 
And then on this side I took 60 and 20 equals 80 and add 10 to 
make 90. And I also added 40 + 30 = 70 and 20 + 70 = 90 and on 
this side 50 + 30 = 80 and add 10 = 90. 

Five out of nine teachers also used the trial and error strategy by looking at the 

numbers and then randomly apportioning them to one side and its opposite side. 

T I made use of a clue by ordering the numbers in a sequence. 

T 1: I found that there is a clue here because if you see 10 there, then 
the corners. You make, I , I decided to put them all to their order 10, 
20 , 30. Then after finding those solutions, then I looked for a number 
that is to make the sum of 90 and then I decided on 60 on this side 
and 40 on that side. 

T 4 who used the trial and error strategy said: 

T 4: It asks that we have to get the answer 90 so we are given it here 
at the top, 40 at the bottom and I looked for both for giving a number. I 
was also looking at the right hand side and the bottom part. Whenever 
I put a number here, it must also give me the answer here. It was the 
right hand side. It was easy to get to the answer. 

I: So basically what strategy did you use? 

T 4: I used the trial and error strategy. 
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Gray (as cited in Nickson 2000), found that children who were asked to rearrange 

numbers visually, used their knowledge of pattern and were forced to complete the 

task, using a specific method. However, when numbers were given to them vertically, 

they resorted to algorithmic ' rule-like' behaviour, which many did not understand. 

In this task learners and teachers were free to choose any strategy as long as they 

arrived at a total of 90. 

The different solution strategies used by learners is emphasized by de Lange (as cited 

in Nickson 2000), who comments that besides the different models that should be 

made available to learners to help them solve problems, learners should also be 

allowed to use their own strategies. 

4.3.5. Comparison between learner and teacher solution strategies 

The teachers used more sophisticated approaches to solve the magic triangle, like 

looking at a sequence of numbers or looking for a relationship between numbers on 

the sides of the triangle. Starting from one side of the triangle and using consecutive 

numbers was another strategy used. There were two instances where the teachers' 

strategies matched the learners' strategies like in the trial and error approach. This 

was very common among the learners and was used by more than half of all the 

participants. 

T 3 used a consecutive multiple strategy and said: 

T 3: I started with the corner numbers, using consecutive multiples of 
10, (10, 20 and 30). It was easy to fill the middle numbers since they 
are also consecutive multiples of 10 (40, 50 and 60). The three all add 
up to 90. 

The learner in this teacher's class started with the number 10 that was given. 

L 3: I add 10 + 60 + 20 and I got 90. And 20 + 40 + 30, I got 90 and 
10 + 50 + 30 and I got 90. 

I: So how did you know that you have to put 60 on this side and not on 

that side. 

L 3: I thought if I put it this side, I won't be able to get 90. 
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L5 T5 

301)----( lj- 0 }-----\p lj-O }----'IP" 

Figure 4.4 Identical solution strategies of a learner and teacher 

Figure 4.4 shows identical solutions, although the strategies used by both learner and 

teacher differed. L 5 used random numbers to solve the problem, while T 5 used a 

consecutive multiple strategy. 

L 5: I took some numbers from here 50 + 30 = 80 + 10 = 90. That is 
my first answer. And I add 30 + 40 and it became 70 and I add 20 
and it became 90. That is my second answer. I add 10 + 60 and it 
became 70 and I add 20 and it became 90. 

T 5: Now when looking at this triangle, we have been given, if I am 
correct this magic number and we have got this 40 and 10 and that's 
50. Now eh, I asked myself having been given that magic number, 
what would I possibly have to add to get 40. Now not only looking at 
this in order for that 90. Now this 30, I added 30 and 40 to get 70. So 
here now I said 40 + 30 " 70. 90 minus 70 gives 20. As well as this 40 
+ 30. And I subtracted this from 90 and got 50. 
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4.4 TASK 2 

4.4.1 Description of the task 

Fill in the missing numbers in (a) and (b) 

2 

3 

5 

(a) 

10 

-
--

-

4.4.2. Categorisation of the task 

I.Content Area Category 

2. Subcategory 

3.Subordinate Subcategory 

4.Performance Expectation Category 

5.Subcategory 

-

-

-18 

27 

(b) 

81 

90 

Functions, relations and equations 

Patterns, relations and functions 

Not applicable 

Knowing 

Recognizing equivalents 

Figure 4.5 TlMSS Curriculum Framework categorisation of task 2 

Figure 4.5 shows the reason for placing this task in the content category of functions. 

It is because learners at this stage are learning to develop the concepts of variable 

relationship and function. The understanding of these relationships will allow the 

learner to describe the rules generating the patterns. Learners had to process the 

information and look for connections between input and output numbers. 
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4.4.3 Open coding 

Table 4.2 Summary of strategies used by both learners and teachers in solving task 2 

CS = Correct solution IS = Incorrect solution 

Learner CS IS Strategies Teacher CS IS Strateaies 
1 x Skip counting 1 ./ One-to-one 

correspondence 
2 x Addition strategy 2 ./ Trial and error 
3 x Counting 3 ./ Generalised pattern 
4 ./ Multiplication 4 ./ Multiplication pattern 

pattern 
5 x Addition strategy 5 x Difference between 

numbers 
6 ./ Multiplication 6 ./ Multiplication pattern 

pattern 
7 ./ Multiplication 7 ./ Trial and error 

pattern 
8 ./ Multiplication 8 ./ Multiplication pattern 

pattern 
9 ./ Multiplication 9 x Counting strategy 

pattern 
56 % correctly answered by learners I 78 % correctly answered bv leachers 

Table 4.2 shows the strategies used by learners and teachers in solving task 2. The 

strategies include: 

Skip counting strategy 

In this strategy digits are counted but some are skipped out. For example counting 

digits like 2, 3 but then skipping out 4 and then continuing with 5, 7 and skipping out 

6. 

One-to-one correspondence strategy 

The one-to-one correspondence strategy involves relating digits on the left hand side 

with digits on the right hand side, like 2 --+ 18; 3 --+ 27 and looking for a pattern. In 

this example, the relationship was found by multiplying the digits on the left hand 

side by 9. 

Generalised pattern strategy 

A generalised pattern strategy is looking for a relationship between the input and the 

output numbers. This strategy is similar to the one-to-one correspondence strategy 

except that the generalised rule, 9n was used. 
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Multiplication pattern strategy 

In the multiplication strategy, input numbers are multiplied by a constant ( in this case 

9) in order to get the output numbers. 

Trial and error strategy 

In this strategy random numbers are chosen together with one of the four basic 

operations in order to get the output number. 

The counting strategy and the difference between numbers strategy did not yield the 

correct solutions. These strategies were used by learners and based on simple 

counting and looking for a difference between numbers shown on the input and output 

sides. 

The properties identified were pattern recognition, flow diagrams and looking for a 

generalisation between numbers. 

4.4.4. Discussion of solution strategies 

According to the Principles and Standards (2000), the idea of using variables where 

learners explore patterns and note relationshlps should be developed. In the spider 

diagram (task 2), learners were being challenged to use the ideas of a variable as they 

thought about how to describe a rule. 

L's 4, 6, 7 and 8 spotted a pattern by linking the input numbers and output numbers. 

L 6: Here I said, 2 x 9 and I got 18 and 3 x 9 and I got 27; 5 x 9 and 
I came up with 45 and 9 x 9 and I got 81 and 10 x 9 and I got 90. 

T 6 also sees a pattern. 

T 6: Number machine. It was multiplication. You multiply by 9. So 
when you multiply by 9 to get 45. 

I: How did you get that 9 there? 

T 6: I divided by 9. 

Ll looks at the numbers vertically at first and does not see a pattern. 

L 1: It's 2, 3, 5. You skip 1 it's 2, you skip 4, don't skip here, you 
skip 4 here and you skip 5 and you skip 6, 7 and here is 10. 
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I: And this 36 here. How did you get that? 

L 1: Here it is 18. Here I added the number 9 and it makes 27 plus 
9, it makes 26, I mean 36. 

I: Let us get back to the 7 . You said here that you added 1 and here you 

added 2: Now what did you add here to get this, to get the (a) part? 

L1: I added 1 to 2 to get 3 and add 2 and that is 5 + 2 is 7. 

L 9 strategizes by looking at the output numbers to help work out the input numbers. 

L 9: Here I said that we must put 9 and 9 x 9 = 81. In (b) we have 
5 x 9 = 45. 

I: How did you know to put 9 here? 

L 9: I looked for the answer because they are multiplied by 9. 

L 2 and L 5 had not encountered such functions before. 

L 2 said that he counted the first two input numbers 2 + 3 and got 5 and then said 5 + 

5 = 10 and placed 5 at position (a). Working with the output numbers he said that he 

added 18 + 9 to get 27 and 27 + 9 to get 36 for his missing number in (b). 

L 5 said that this problem was very difficult and that she did not know how to do it 

and just wrote down 1 because before 3 is 2 and before 2 is 1. In the output number 

she said, " I just add 9." When prompted by the researcher that the problem showed a 

machine with numbers that go into the machine and numbers that come out of the 

machine, she very easily explained that what happened inside the machine was that 

each of the numbers was multiplied by 9. 

Four of the nine teachers mentioned that they looked for a relationship between the 

input numbers and the output numbers. Teacher 3 looked for a rule to help her an·ive 

at the correct solution while teachers 6 and 8 spotted a pattern. 

L 4 and T 4 looked for a relationship between the numbers. 

L 4: (Pause ...... ) I saw that if you multiply 2 by 9, you get 18 and 3 
by 9 you get 27 and I thought that all these numbers would be 
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multiplied by 9. Then in (b) I said (Pause .. . ..) 5 times 9, I got 45 
and (a) I said 81 divided by 9 and I got 9. 

T 4: Okay, I just looked for a relationship between the input and output 

number. The output is 18 and the input is 2 and then when the input is 

3, the output is 27. So these are multiples of 9 so they should be 

multiplied by 9. 

I: So how did you get to the input? 

T 4: I also looked for the output. The output is 81. Each number is 

multiplied by 9 to get the input. 

T 5 said that he found the problem difficult and got 2 for (a) and 11 for (b). When 

prompted by the interviewer, he then saw his error and was able to correct his first 

answer. However, he was unable to explain how he arrived at 11 for (b) 

4.4.5. Comparison between learner and teacher solution strategies 

This question elicited a number of different strategies with only three teachers and 

learners showing the same strategy of using a multiplication strategy or pattern. Skip 

counting was a strategy used by one learner while trial and error, and one-to-one 

correspondence were other strategies which evolved. 

T 7 and L 7 below both described how they found the pattern, which was to multiply 

the input numbers by 9. 

T 7: With this one I can see the spider pattern. I, I quickly detect that 2 
and 18, 3 and 27. Immediately I knew that it is multiplication and I 
knew that I have got to multiply by 9 first to get 18. I started off with 
the given number so I multiplied 2 by 9 and I got 18, so I've got to 
think of (a) and then I can see that ehhh, I, I took the pattern here 5 
times 9, 6 times 9 I could see that. I tried that one. I used trial and 
error. 

L 7: Here I have multiplied 9 x 9 = 81 and 5 x 9 = 45. 
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4.5. TASK 3 

4.5.1. Description of the task 

25 learners go on an outing to the beach. They each buy an 

ice-cream which costs R3,50. How much must they pay 

altogether? 

4.5.2. Categorisation of the task 

1. Content Area Category Number 

2.Subcategory Decimal fractions 

3.Subordinate Subcategory Properties of operations 

4.Performance Expectation Using routine procedures 

5. Subcategory Performing routine procedures 

Figure 4.6 TIMSS Curriculum Framework categorisation of task 3 

Figure 4.6 shows the task being placed in the content area of number. It is a 

multiplication word problem, which is part of number (sense). It has been further 

subdivided into the subcategory of decimal fractions. 
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4.5.3. Open coding 

Table 4.3 Summary of strategies used by both learners and teachers in solving task 3 

CS = Correct solution IS = Incorrect solution 

Learner CS IS Strategies Teacher CS IS Strategies 

1 ./ Vertical algorithm 1 ./ Vertical algorithm 
2 x Counting strategy 2 ./ Decomposition of the 

multiplier 
3 x Vertical algorithm 3 ./ Vertical algorithm 
4 ./ Use of a mathematical 4 ./ Decomposition of the 

model multiplier 
5 ./ Vertical algorithm 5 ./ Vertical algoritlun 
6 x Vertical algorithm 6 ./ Fraction multiplication 
7 x Fraction multiplication 7 ./ Decomposes multiplier 
8 x Counting strategy 8 ./ Vertical algorithm 
9 ./ Vertical algorithm 9 ./ Short method of x 

44 % correctly answered by learners 1 100% correctly answered by teachers 

Table 4.3 shows the various solution strategies used by teachers and learners. The 

following strategies were identified: 

Decomposition of the multiplier 

In this strategy the multiplier, 25 is decomposed into (20 + 5) and then mUltiplied by 

R3,50. 

Vertical multiplication algorithm 

In this strategy, the multiplicand and multiplier are placed vertically underneath each 

other and are multiplied starting with the ones (units) digit. 

Use of a mathematical model 

In this strategy a learner used his prior knowledge that 25 is the same as 5 times 5 to 

simplify the problem and then multiplied. 

Counting strategy 

In the counting strategy, the learner counted 5 groups of 350 at a time and found the 

total. 

Short method strategy 

In this strategy prior knowledge of multiplying the multiplicand by 100 and dividing 

by 4 was used. 
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Fraction multiplication 

In this strategy R 3,50 was converted into 3 Y, and then Y, was multiplied by 25. 

The properties I identified in the task were decomposition of the multiplier e.g. 25 = 

(20 + 5) and the short method of multiplying by 25 

4.5.4. Discussion of solution strategies 

Five learners used the traditional vertical multiplication algorithm with L I, 5 and 9 

successfully solving the problem. 

L I was a little nervous and had to be asked to repeat what she had done. She solved 

the problem like this: 

L 1: I said 25, 350 times 25. I got R 87,50. 

I: Can you explain that piece in the middle? 

L 1: 5 times 0 is 0, 5 x 5 is 25. I took 5, I put it here, I carried 2 ; 2 x 
3 is 6 ; 2 x 5 is 10 plus 2. 

I: Let uS start again. 

L 1: 5 times zero is 0 , 5 x 5 is 25, put 5 here, carry 2. 5 x 3 is 15 
plus 2 is 17; 5 x 2 is 10 , 2 times 5 is 10 and put 0 here and 2 x 3 is 
6 plus 1 is 7. And all these is number 8. 

I: And the total is? 

L 1: R 87,50 

L 2 used a counting strategy of adding 350, twenty five times and got 

R78,50 instead of R87,50. In the interview, he counted twenty-five 

threes but got lost when adding the fifties. 

L 3 had a problem computing 5 x 0 by saying it equalled 5, and then corrected 

himself, but then made further multiplication errors. 

L 6 used the traditional multiplication algorithm, was successful up to a point, but his 

lack of mastery in his multiplication tables let him down and he made other simple 

computational errors. An understanding of 'place value' is important as it involves 
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both knowledge of the significance of the position of a digit and also the relationship 

between digits in the same number. 

L 4 used an interesting mathematical modelling strategy by using his prior knowledge 

that 25 was made up of 5 x 5. (Figure 4.6) 

L4 

L 4: The learners were 25 so I divided 25 by 5, then 5 and I said 
R3,50 multiplied by 5 and it was R17,50 and then I multiplied this 
R17,50 by 5 and I got R87,50. 

R~) 50 X 2'5" 
.::: R C7 1)50 . 

' . 0 > 
~'S~5 =S' 

R"6$O X S" RnJs'G . J . 

. R \l $"0)( 'S =: Rcn/>o _ J . 

Figure 4.7 shows an individually constructed solution strategy 

Whether the strategy illustrated in Figure 4.7 done by L 4 was taught or not, is 

unclear, but it appears this learner used his own constructed knowledge to fathom out 

how to solve the problem (see page 44, chapter 2). The use of the mathematical model 

was very efficient in this case and says a great deal about the learner's number sense. 

It appears that he had built his understanding of manipulating numbers and made 

sense of the procedure used. 

Mathematical models "are mental maps of relations that can be used as tools when 

solving problems" (Fosnot & Dolk 2001:88). According to Fosnot & Dolk (2001:88), 

"models are representations that a learner constructs over time as they reflect on how 

one thing can be done or changed into another" (see the strategy used by learner 4). 

Dabell (2002 :22) contends that "multiplication is difficult to learn and hard to teach", 
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with a nwnber of adults and children avoiding multiplication and substituting it with 

addition. However, he feels that we need to extend the repertoire of strategies we 

teach, as some children are unsure that there are different ways to multiply. 

L 7 used fraction multiplication by saying that R3 , 50 is 3 t and then multiplied it by 

25. He managed to get 175 divided by 2 and finally got 89 t . 
Except for the error in the final calculation, this learner also used a strategy which 

made sense to him and which he understood. 

T3 

Figure 4.8 illustrates a procedurally directed algorithm 

Four of the nine teachers used the traditional vertical algorithm to arrive at the correct 

solution. Figure 4.3.2 shows that the teaching may be procedurally directed and the 

teacher's knowledge of the algorithm emphasised more procedural understanding. 

Procedural understanding has been described as a step-by-step sequence where rules 

are memorized and followed, often without real understanding. 

Another three teachers used the decomposition strategy. They decomposed 25 into 

two multiples of 10 and a mUltiple of 5. The strategy used by T 2 in Figure 4.9 is 

conceptually directed as it shows how the teacher applied the skills of decomposition 

(breaking up of numbers) to make sense of the task. Their knowledge of the algorithm 

involved suggests both conceptual and procedural understanding. Conceptual 

understanding according to McNeeley (1997:143) means: 

that students make sense of the maths operations they perform. They 
not only know how to apply skills but also when to apply them and 
why they are being applied. Conceptual understanding provides 
students with the basis for seeing relationships between skills and 
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problem solving and among mathematical ideas. Students with 
conceptual understanding see the structure and logic of maths more 
flexibly and appropriately and are able to recall or adapt rules because 
they see the larger pattern. 

T2 

::l5)( 1<3.1 50 

loX P,,~50 

lOX, R3.150 

5x K3,so 

f(".3?; 0 0 

_ ~3S; 110 

-= .Ri7,50 · 

. ~ S7. SQ 

Figure 4.9 conceptual understanding of an algorithm 

T 9 used the short method of multiplying by 25 . She explained that she multiplied 350 

by 25 by adding two zeros to 350 and then dividing by 4 to get the answer. This 

strategy appears to be a learnt strategy. 

4.5.5. Comparison between learner and teacher solution strategies 

L5 

IZ J, G (7 

).6 
' . 

T5 

Figure 4. 10 a traditional vertical algorithm 

I.>, 

!G 3.51:) 

X \ ;}-'5 

/7, sO 
,00 

By far the most common strategy used was the traditional vertical method as 

illustrated in Figure 4.10. Nine learners and teachers used this strategy. This suggests 

that most of the teachers appeared to teach this algorithm. 

Figure 4.10 indicates how L 5 and T 5 solved the task. 
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L 5: Okay, I multiply 350 by 25 and it became R 87,50. 

I: Explain how you multiply here. 

L 5: I multiply 5 x 0 =0 and 5 x 5 = 25 and I put it 2 here and I put 
I said 5 x 3 = 15; 15 + 2 and it became 17 and 2 x 0 = 0 and 2 x 5 = 
10 and I carry 1 and I put 0 and 2 x 3 = 6 + 1 = 7 and I add 0 and 
becomes equal to 0 and 5 + 0 = 5 and 7 + 0 = 7 and 1 + 7 = 8. 

T 5: 20 learners go on an outing. So now this R 3,50, I multiplied by 25 
learners. I get R 87,50. 

I: How did you get it? 
T 5: I did it the traditional multiplication way. 

Ma (1999) found that the way Chinese and American teachers teach the multiplication 

algorithm differs dramatically. The majority of Chinese teachers teach the algorithm 

in a conceptual way by using the distributive property and breaking up the problem 

into its component parts. Only after the conceptual understanding has been developed, 

do they compare the problems in the algorithm with the component parts. Ma (1999) 

found that 70% of American teachers teach the algorithm as a set of procedures. 

Learners are reminded of the 'rules', to use zero as a place value holder and that when 

multiplying by tens, they must move their answer to the next column. 

Kamii e/ al. (1993) found that when children are asked to develop their own ways of 

decomposing a problem, like when the algorithm has not been taught to them, most 

children use a form of the distributive property. Clark & Kamii (1996) also found 

that multiplicative thinking in learners develops slowly. They found that only 28% of 

fourth graders and 49% of fifth graders demonstrated solid multiplicative thinking. 

They further suggest that the pedagogical implication of this is that when 

multiplication problems are given to learners, they should be allowed to solve them 

in their own way - some learners using multiplication and others addition. 

Fosnot and Dolk (2001) caution that algorithms should not be the primary goal of 

computation instruction. Solving number sense calculations means that the numbers 

should be looked at first and then a strategy decided that is flexible , efficient and 

fitting. According to Fosnot and Dolk (2001:102) "children need to mathematize, to 

think like mathematicians, to look at the numbers before they calculate." 
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4.6. TASK4 

4.6.1. Description ofthe task 

3 
Calculate: 4" 1 

3 

4.6.2. Categorisation of the task 

1. Content Area Category 

2.Subcategory 

3.Subordinate Subcategory 

4 .Perforrnance Expectation Category 

5. Subcategory 

Number 

Fractions 

Common fractions 

Knowing 

Recognising equivalents 

Figure 4.11 TlMSS Curriculum Framework categorisation of task 4 

Figure 4.11 refers to the content category in which the fractional computation was 

placed. The task is part of number (rational numbers), with its subordinate 

subcategory being common fractions. 
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4.6.3. Open coding 

Table 4.4 Summary of strategies used by both learners and teachers in solving task 4 

CS ~ Correct solution IS ~ Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 x Drawing 1 if Fraction algorithm 
2 x Drawing 2 x Multiplies 

denominator 
3 x Drawing 3 if Fraction algorithm 
4 x Uses whole number 4 if Fraction algorithm 

subtraction 
5 if Fraction algorithm 5 if Fraction algorithm 
6 if Equivalency 6 if Equivalency 
7 if Fraction algorithm 7 if Equivalency 
8 if Fraction algorithm 8 if Fraction algorithm 
9 x Uses whole number 9 if Fraction algorithm 

subtraction 
44 % correctly answered by learners I 89 % correctlv answered by teachers 

Table 4.4 shows the strategies teachers and learners used in solving the computation. 

The strategies were: 

Fraction algorithm 

This strategy used finding the lowest common denominator and was used by 44 % of 

the participants. 

Equivalent fraction strategy 

In this strategy the same equivalent fraction was found for both fractions to be 

subtracted. 

Drawings 

Representations were used to show the two fractions and then subtracted. 

Use of whole number subtraction 

In this strategy, whole number subtraction was used where either the two numerators 

were subtracted or both numerators and denominators were subtracted. 

Multiplies denominators 

A lowest common denominator was found for the two fractions and then the two 

fractions were simply subtracted. 
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The following properties were identified when analysing the solution strategies: 

making use of equivalent fractions; finding the lowest common denominator and 

making use of sketches. 

4.6.4. Discussion of solution strategies 

L's 5, 6, 7 and 8 were all able to complete this computation by explaining in detail 

that in order to subtract both fractions, they had to first look for the lowest common 

multiple of 4 and 3 which is 12. Then once both fractions were the same, by 

multiplying t by t and t by 4 the two fractions could then be subtracted from one 

another. 

L 1 appeared very confident when trying to explain with a drawing but got lost along 
the way. 

L 1: Here is our whole, I draw it. I draw a line to show these are 
quarters. There are t and I subtract one and two are left and there 

are 1. left (1._1 = 1.) 
3 4 3 3 

The interviewer then asked her what would happen if the sum were t - t ? 

L: It is t 
1: What is left over? 

L: t will be left. 

I And if it was i - t 
L: That would be a t and t . (Long pause) I am stuck. 

The interviewer ended the interview here. 

L2 

rr:;C1r:::Jr:::J 

fill] 

Figure 4.12 Drawings used by L 2 
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Figure 4.12 shows the drawings used by L 2. She mentions that + is the first picture 

and t is the second one. When asked what + -t would be, the learner promptly 

writes down t. When prompted to explain further, there were inaudible mumbles and 

the learner said, "1 don't understand." 

L 3 appeared confused and said that he drew + and subtracted t and was left with t 

and t. The interview went as follows: 

1: How did you get t? 

L: I minus t from +. 
I: How did you then get thist? 

L: It is because a quarter is made up of two one thirds and 1 
minus t in this and left with t. 
I: Are you sure a quarter is made up of two one thirds? 
L: Yes, two one thirds. 
1: Which is the bigger a quarter or a third? 
L: A quarter. I "killed" this third and I showed it here, so was 
left with two quarters and t. 

It appears the learner subtracted the two numerators 3 - I = 2 and then put this over 

the denominator of 4. He then took the two denominators and subtracted them (4 - 3) 

and put the answer over 3. Some learners approach the computation from a whole 

number point of view, using the whole number subtraction process, while not taking 

into consideration the fractions, as fractions. The common error above has been 

documented by Carpenter; Coburn; Reys & Wilson (1976) and Howard (1991). Both 

Carpenter et al. (1976) and Howard (1991) found that the main reason for learners 

doing this, especially in addition of fractions, is the introduction of multiplication of 

fractions before addition. When learners have learnt the 'top x top' over 'bottom x 

bottom' strategy, they tend to transfer that process to addition. Based on my 

experience, 1 disagree with the findings of the above but agree with Lukhele et al. 

(1999) who believe that the main reason learners make such errors is because of their 

lack of understanding of the concept ofa fraction. 

This study shows that some learners view the fractions as two separate whole 

numbers (mentioned above). When two fractions are used in a computational or word 

problem, learners see the fractions as four separate whole numbers that need to be 

added or subtracted to give a whole number (see L 2 mentioned above). The strategies 

used by learners in the above examples show that learners have learnt the operations 
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and algorithms of whole numbers. They think that the same processes can be used 

when calculating fractions. D'Ambrosio & Mewborn (1994) state that fraction 

concepts should come from learners' own constructions and these then need to be 

used to develop the algorithms. Research conducted by Lukhele et al. (1999:96) found 

that "by showing learners different algorithms, teachers impose arbitrary definitions 

on learners that make no sense to them." 

L 4 subtracted the numerators from each other t - t = t and kept the denominator of 

four . When questioned about how he got 2 as a numerator and 4 as the denominator, 

he was unable to answer. The interviewer then asked: 

I: What ist- t? 
L: It's a quarter 
I: How did you get a quarter? 
L: A haJiis made up of two quarters. 
I: Good, what about t + t ? 

L: (long pause) ...... It is t 
I: How did you get it? 
L: No answer 
I: Let's make it easier for you. What is t + t? 

L: It's 1. 
4 

I: So t+t 
L: It's 1. 

4 

Again the learner was doing the same as he had done at the beginning of the 

interview, adding the numerators and then keeping one of the denominators. This 

shows that the learner has not been exposed to other fraction types although he was 

able to subtract t from t and add fractions with the same denominators. However, 

he still could not compute t + t. L' s 2, 3 and 4 see the sum and denominator as a 

measure (which is a description of the size of the measure) and not as a count (Kieran 

1993). It is important for learners to realise that one can never add sizes of measures. 

L 9 subtracts the numerators from each other and also the denominators. 

L 9: I minus t-t =i= 2. 

I: What happens if you had t - t ? 

L 9: Get at 

I: How did you get a quarter? 
L 9: Because t has t and minust and you have a quarter. 

I: What will you do then with t and t? 
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L 9: I am not sure. 

This common error has been found by a number of researchers. Hart (1981) for 

example found that the error happened more when the question was stated in 

computational form than in word problem form. I have found this to be the same in 

my research with only 44% of the sample interviewed being able to solve the 

computation. I agree with Hart (1981 :46) when she says, "the emphasis must change 

from algorithmic learning to understanding the structures of the operations themselves 

and how and when they should be applied." She further states that maybe the 

traditional standard algorithms taught should be given up completely in favour of 

other strategies which may be less efficient, but more akin to children's own informal 

methods which are easier to remember, like equivalent fractions and using drawings. 

Research conducted by Baroody & Hume (1991); Streefland (1991 ; D'Ambrosio & 

Mewborn (1994) and Murray et al. (1996) has shown that there appear to be three 

main possible causes why learners in the primary school have a poor understanding of 

common fractions: 

• The environment in the classroom where, through lack of opportunity, the 

everyday conceptions of fractions are not consolidated and incorrect intuitive 

reasoning is not checked. 

• The way and order in which fractions are taught usmg pre-partitioned 

materials with teachers stressing halves and quarters. 

• Improper application of whole number schemas, like seeing the numerator and 

the denominator as distinct whole numbers. 

In the fraction computation, five learners had limited constructions probably arising 

from their own intuitions and real life experiences or it might be the direct result of 

the teaching approach used by the teacher. 

Baroody and Hume (1991) argue that learners' errors in fractions may be the result of 

poor understanding of underlying concepts, as well as not being able to recognise 

accurate visual representation. The research done found that it is imperative for 

teachers to plan their fraction activities in such a way that enables learners to build 

conceptual understanding rather than to teach fractions in the 'traditional' way. 
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Researchers such as Mullis, Dossey, Owen and Philips (1991) and Groff (1994) 

maintain that middle grade learners persist in doing poorly on fraction work 

regardless of their being given broad and continuous instruction. These researchers 

also believe that learners find fractions very complex and problematic to grasp. 

Gabb (2002) found that some children rely heavily on memorisation when doing 

fraction work and often have weak strategies when manipulating the ideas. The result 

is that learners ' perceptions of fractions tend to discourage conceptual development 

and the sense-making process of mathematics. 

Hanson (2001) acknowledges that year in and year out, learners learn fractions but 

forget how to add, subtract, multiply and divide with them. This becomes terribly 

frustrating to both learners and teachers. The main reason learners had difficulties was 

because they would memorise formulas or algorithms without any real understanding. 

This study concurs with Hanson's (2001) findings. 

Seven of the nme teachers had good procedural knowledge and used the formal 

traditional algorithm of finding the lowest common multiple (LeM). 

T 7: Immediately I jumped to equivalency because I even taught 
my learners that it's difficult to do maybe subtraction or division 
of fractions which are totally different. We should make them the 
same although, they still have the same value so I changed f 
into 9. I looked for a common denominator, which became 12. So 
I changed f to become ,', and t to become ,~ and then 

I've minussed 9-4, then I got ,~ . 

Figure 4.13 shows how T 2 solved the computation. 

T 2: The fractions are not the same so I made them to be the 
same. I multiply the denominators by the first then by 4 and 3 and 
3 and 4 by the other side. Then I get the denominator as a 12. 
Then I subtract ,~ from i,. I get ,', . 

98 



T2 

Figure 4.13 shows what T 2 did 

4.6.5. Comparison between learner and teacher solution strategies 

Three learners applied the same strategy using a drawing to try and solve the 

computational sum, but were unsuccessful. The four learners and six teachers who 

used the traditional fraction algorithm successfully were confident and relaxed while 

explaining what they had done. 

L5 T5 

Figure 4.14 illustrates how L 5 and T 5 solved the task. 
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Figure 4.1 4 shows the exact strategy used by L 5 and T 5. 

L 5: Number 4 is difficult because I said txt - t x f and I said 

and 4 x 3 = 12 and I put it 12 and I put it there the basic operation 
and I said 1 x 4 = 4 and multiply 3 x 4 = 12 and I minus 9-4 = 5 and 
(indistinct) 

I: If you have a number, let's say you've got two quarters and then you 

take away a quarter. What do you get? 

L 5 : You get a quarter. 

I: Alright, so if you've got Ii and take away I'" what do you get? 

L 5: I get I~ 

I: Ja, okay. 

T 5: Now this is how I said. Now because this has different 
denominators . Now the common denominator should be 12. So we 
say we cannot minus or add fractions that are different so we have to 
make them common . So now + multiplied in order to get the 

denominator being that 12 multiplied by t minus t multiplied by f . 
Then I said 3 x 3 is (, minus 4 x 1 = 4; I" and then subtracted 4 from 

9, got 5 so I~ . 

L 6 and T 6 were very similar in their explanation. 
L 6: I said here is the LCD of 4 and 3 is 12 and I said, how many 4s 
in 12 and they are 3 and I said 3 x 3 = 9 and how many 3s in 12 
and I got 4 and I said 1 x 4 = 4 and 9 - 4 = I', 

T 6: In terms of the fraction , I actually looked at the LCM but the 
quickest way is through multiplication so I decided to multiply by 3 
where the denominator is 4 and by 4 where the denominator is 3. 
I· S 9 · 4 d h ' . 0 you got IT mmusIT an t en IT . 

There were more matches of learners using the same strategy as teachers in this 

question. This flexibility of teachers using both equivalent fractions and the LCM to 

teach this aspect of number sense is apparent from their work. 
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4.7. TASKS 

4.7.1. Description of the task 

Look at the following two shapes: 

'------.Ji / 

A 

What do we call shape A? 

What do we call shape B ? 

B 

Write one thing that is the same about both shapes. 

4.7.2. Categorisation of the task 

I.Content Area Category Geometry: position, visualisation & shape 

2.Subcategory Two-dimensional geometry: Polygons 

3.Subordinate Subcategory Not applicable 

4.Performance Expectation Category Communication 

5.Subcategory Describing and discussing 

Figure 4.15 TIMSS Curriculum Framework categorisation of task 5 

Figure 4.15 shows that geometry is the content category used to categorise the task. 

My justification for including a question on geometry was to see whether learners 

could accurately identify and describe a two-dimensional shape. 
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4.7.3 Open coding 

Table 4.5 Summary of strategies both learners and teachers used to solve task 5. 

PC = Partially Correct TC = Totally Correct TI = Totally incorrect 

Learner PC TC TI Strategies Teacher PC TC TI Strategies 
1 " Identifies shape I "" Identifies shape 
2 " Identifies shape 2 "" Identities shape 
3 " Identifies shape 3 "" Identifies shape 
4 "" Identifies shape 4 "" Identifies shape 
5 " Identifies shape 5 " Identifies shape 
6 " Identifies shape 6 "" Measurement 
7 " Identifies shape 7 "" Identifies shape 
8 "" Identifies shape 8 "" Identifies shape 
9 x Identifies shape 9 " Identifies shape 

22 % ofleamers totally correct 22% ofteachers partially correct 
67% oflearners partially correct 78% of teachers totally correct 
I I % of learners totally incorrect 

Open coding was not used in this task (Table 4.5) as leamers had to only identify two 

shapes and find one similarity between them. 

The property I have used to describe this task is ' identifying polygons'. 

4.7.4. Discussion of solution strategies 

L I was able to correctly identify the parallelogram but called the rectangle a square. 

Because of this she said that the sides were the same but the sizes of the angles were 

different. L 2 appeared to have very little idea of any of the shapes. 

This was how the interview went: 

I: What can you tell me about these two shapes? 
L 2: Angles 
I: Are the angles the same? 
L: yes 
I: Angles the same, but what else is the same? 
L: Straight lines 
I: How many lines? 
L: 4 lines 
I: What do you call this shape? What is it called? 
L: length and breadth. 
I: Okay, what else can you tell me about the two shapes? Anything 
else. 
L: I don't see anything else. 
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The interviewer decided to halt the interview at this point as it was obvious the leamer 

had not been exposed to the properties of the shapes. 

L's 3 and 4 appeared very confident and were able to deduce the names of the 

quadrilaterals and compare them. L 5 confused the parallelogram with a rectangle and 

the rectangle with a square. He was able to mention that both shapes have four 

straight lines and four comers. 

Both L's 6 and 9 confused the parallelogram with a rhombus and the rectangle with a 

square. The possibility existed that they had been exposed to the new vocabulary and 

just got the names of the shapes mixed up. I am not sure what the reason for this could 

be. 

This was what L 8 had to say: 

L 8: I made a mistake here. 
I: What is it supposed to be? 
L: Parallelogram 
I: And here. 
L: Square 
I: What is a square? 
L: Something with equal sides. 
I: Are these sides equal? 
L:No 
I: So what is it if the sides are not equal? 
L: Rectangle. 
I: Okay, what is it which is the same about the two shapes? 
L: They have two short and two long sides. 

All teachers except T 5 and T 9 answered this question correctly. T 9 confused a 

rhombus with a parallelogram. She was able to conclude that opposite sides in both 

shapes are parallel, that the angles add up to 360 0 and that they have four sides. T 5 

could not identify either of the two shapes but was able to see that both shapes have 

four sides. He identified shape A as a rhombus and shape B as a square. 

4.7.5 Comparison between learner and teacher solution strategies 

This task required learners and teachers to apply their social knowledge (see chapter 

2) to identify the shapes and then to use this knowledge to find something similar 
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about tbe two shapes. The learners and teachers' strategies were all tbe same as all the 

task required was to identify the shape and reco gnise a similar property. 

T 6 used measurement as a strategy to decide on the shape. 

He said tbe following: 

T 6: Well, I've thought of it. Due to the fact that I measured it so it's 
going to be a parallelogram. And this one I've thought is a 
rectangle. 

I: What is common about the two shapes? 
T 6: Well in terms of sides, they both have 4 sides. 
I: What else? 

T 6: Angles as well, Uhhh, well if I could talk in terms of the 
diagonals, they would both have two diagonals. 

L 4 and T 4 were clear in their descriptions. 

L 4: A is a parallelogram and B is a rectangle. 
1: How are they tbe same? 

L 4: The two opposite sides are equal in both of the shapes. 
I: Anything else? 

L 4: They have four corners. They have four sides. 
I: What is tbe word we give to these shapes with four sides? 
L 4: Quadrilaterals 

T 4: I said this is a parm and this is a rectangle. What is common? 
They have one pair of parallel sides. This one has one and this has 
two pairs. 
I: How many pairs has this one got? 

T 4: Only two pairs that is A, and 2 here in B. 
I: What else can you tell me that is common about those two shapes? 
T 4: They are all quads and also they are also rectangles. 

According to the van Hiele levels of geometric understanding, some of the learners 

and teachers appear to be at level 1 where most were able to recognise the shape and 

make decisions based on perception (van Hiele 1986). However, it was not possible to 

verify whether a teacher was at level 2 of geometric understanding. For effective 

geometric learning to take place, learners need to engage with the geometry being 

taught in appropriate contexts leading to discussion and reflection. 
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4.8. TASK 6 

4.8.1 Description of the task 

Calculate: 2806 7 8 

4.8.2. Categorisation of task 

I.Content Area Category Number 

2.Subcategory Whole numbers 

3.Subordinate Subcategory Operations 

4.Perforrnance Expectation Category Knowing 

5.Subcategory Representing 

Figure 4.16 TIMSS Curriculum Framework categorisation of task 6 

Figure 4.16 shows the content category for the computation which is number with its 

subcategory whole numbers. 

My justification in including a computation on division was to find out whether 

learners were able to come up with a variety of solution strategies to solve the 

computation. 
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4.8.3. Open coding 

Table 4.6 Sununary of strategies used by both learners and teachers in solving task 6 

CS ~ Correct solution IS ~ Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 x Vertical algorithm 1 x Vertical algorithm 
2 x Unclear strategy 2 x Partitioned dividend 
3 x Unclear strategy 3 ,;' Partitioned dividend 
4 x Factors of2 and 4 4 ,;' Partitioned dividend 
5 x Partitioned dividend 5 x Vertical algorithm 
6 x Vertical algorithm 6 x Vertical algorithm 
7 x Partitioned dividend 7 x Partitioned dividend 
8 x Guess work 8 x Partitioned dividend 
9 ,;' Vertical algorithm 9 ,;' Vertical algorithm 

II % correctly answered bv learners I 33 % correctly answered bv tcachers 

The following strategies (See Table 4.6) were identified. 

Formal vertical algorithm 

This is the traditional division algorithm of dealing separately with the digits of the 

dividend, first dividing, multiplying, subtracting and then carrying down in a vertical 

way. 

Partitioned dividend 

In this strategy the dividend is partitioned into multiples taken from the divisor. 

USingfactors of the divisor 

The divisor of 8 was decomposed into 2 and 4 and then divided. 

The properties which describe the task were counting, the traditional vertical 

algorithm and decomposing the dividend. 

4.8.4. Discussion of solution strategies 

According to Fosnot & Dolk (2001: 1 02) an algorithm is a "structured senes of 

procedures that can be used across problems, regardless of their numbers." 

Maurer (as cited in Morrow & Kenney 1998) argues that an "algorithm is a precise 

systematic method for solving a class of problems [It] takes input, follows a 

detenninate set of rules and in a finite number of steps gives output that provides a 

conclusive answer." 
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Tirosh and Graeber (1991) suggest two models of division that children use. The first 

model involves partitioning or fair sharing and the other involves measurement or 

repeated subtraction. Because no context (it was a straight forward calculation) was 

provided for this computation, it could not be classified as 'measurement' or 

'partitioning'. The solution therefore depended on being able to use a variety of 

strategies. To understand multiplication and division, learners need to understand the 

relationship between them. Learners need to learn the meaning of a remainder by 

modelling division problems and exploring the size of the remainders. 

Steinberg (as cited in Nickson 2000) examined the strategies and algorithms used by 

children in CGI classes (see chapter 2, page 37) when doing division. The approach 

used gave the learners the chance to solve problems and to construct, present and 

discuss their strategies. Learners in this class solved a variety of problems using 

different solution strategies, which they were able to explain and discuss with their 

teacher and peers. In this study I had hoped to see more variety in the solution 

strategies presented. It was disappointing to see that more than 50% of the teachers 

used the vertical algorithm, which incurred the most mistakes. 

L 1 

fL Jl.."'it .-. ~'l-
" . 

~t> 
.. .. 

Figure 4.17 shows the traditional vertical algorithm. It is. however, incomplete 

In Figure 4.17, L I gave a clear explanation of having being taught the traditional 

algorithm, but does not know what to do with the 6 in the dividend and ends up with a 

quotient 005. 
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L3 

Figure 4.18 shows an incorrect division strategy 

Figure 4.18 shows how L 3 attempted to solve the division computation. 

L 3 : I asked how many 8s in 2S, 3 times and left with 2 and I put 2 
on top and how many 8s in 26, 4 times and I add 3 plus 4 and I got 
7. 
I: What is 7 x 8? 

L3: 56 

I: If you can get 7 there and it means that this is 56. 

L 3: How many Ss in 24? Three times and put 3 ..... .. The rest 

becomes inaudible. 

Fosnot & Dolk (2001:116) contend that, "it's an insufficient model to teach division 

as a 'goes into' and treating digits separately, not only confuses children, makes little 

sense to them." I tend to agree with these authors because, in the above example, the 

learner needed to know that 300 x 8 = 2 400 and 50 x 8= 400 and that there was a 

remainder of 6. If one used 'the goes into' strategy, leamers will not see the 

connection between how many 8s in 2 400 or how many 8s in 24. 

L 4 divided the dividend by 2 and got 1403 and then divided this answer by 4 and got 

350,10. She was unable to explain how she got the 3 in her answer. When asked to 

explain how she got 0,10 there was just a long pause and the learner said, "I don't 

know." 

L 5: I think I've got the wrong answer here and it was very 

difficult. 

I: What is the question? 

L 5: The question is I must divide 2S06 by S. 

I: What did you do? 

L: I said S x 100 = SOD and I said S x 200 = 1600. 
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In this strategy the child decomposed 2806 into 800 and 1600 but then could not go 

any further. 

In Figure 4.19, L 6 used the traditional formal algorithm and good procedural 

understanding. She explained what she was doing in a simple manner. From the 

interview it was not clear though whether she had any conceptual understanding of 

the strategy used. 

L6 

Figure 4.19 shows the traditional division algorithm 

L 7 did the following: 2000 7 8 = 200 remainder 40 

80078 = 100 

678 = 

305 

This learner used the decomposition strategy and although he made errors, seemed to 

be thinking about what he was doing. 

L 9 used the traditional formal algorithm but made a mistake when getting to the 

remainder 6. She forgot to insert a decimal comma after the 6 and ended up with a 

remainder of 4. 

357 

81 2806 

-24 

40 

-40 

60 
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-56 

4 

T's 1, 5, and 9 used the traditional formal division algorithm. T 9 being the only one 

to complete it successfully but with a faulty explanation: 

T 9: I divided by 8, I write 2806 + 8. How many 8s in 28 , is 3, 3 x 8 
=24. Subtract now 24 from 28 then it's 4. Then I take down the zero 
and then now it's 40. How many 8s in 40, then it's 5, 5 x 8 = 40. Then 
40 take away 40 is 0 and then take down the 6 then it's 6. Now 2806+ 
8 becomes 350 remainder 6. 

T 1 stopped after getting 35 and T 5 got up to 35, forgot about putting down a zero 

and then continued to work out the number of eights in 60. It was interesting to 

discover the number of teachers who partitioned the number 2806 into 2000 + 800 + 6 

and then divided each number by 8. Only T 8 used multiples of 8 but made a mistake 

after being left with having to divide 6 by 8. It was only T 3, 4 and 9 who were 

successful in partitioning and arriving at a correct solution. 

T4 

~ 000 -7 g :;: ~5 0 
Sao-\- g - 100 

~ .;. S -3-5-0-~1"Y> b 

T9 

'J.. gOb' : S 
;;I. 4-,00 ~ ~ = ~ 00 

'3;"'0 '7 S ::= +- 4- 0 

$ ~ ~ 3:::: 1 0 re",* 

'350 rem ~ 

Figure 4. 20 shows the strategy of partitioning the dividend used by T 4 and T 9 

4.8.5. Comparison between learner and teacher solution strategies 

There were seven instances where the teachers and learners used the same strategy, 

namely the traditional division algorithm, with five teachers and two learners 

partitioning the dividend 2806 into (2000 + 800 + 6) or mUltiples of 8 (2400 + 400 + 

6). It is interesting to note from Figure 4.20 that some teachers were using flexible 

strategies when solving this computation. The strategy of partitioning the dividend 
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into multiples of 8 is clear from Figure 4.20. Learners who used the traditional 

algorithm often failed to complete the strategy, suggesting that they had tried to 

memorize a particular strategy, but lacked understanding in completing it. 

I agree with Scharton (2004) who argues that providing opportunities for learners to 

create, explain and analyse their computational methods will result in their developing 

efficient, accurate and flexible strategies for computations. She further supports this 

statement by saying: 

giving students experience with solving problems and allowing them to 
communicate their problem-solving strategies to others are essential 
components to developing understanding and benefits students in a variety of 
ways ... exposure to a variety of computation strategies allows students access 
to methods that they may not have considered on their own .. . their 
knowledge of different strategies grows, so does their computational 
flexibility. Scharton (2004:278) 

The above quotation reiterates the need for teachers to expose their learners to a 

variety of solution strategies as everyone benefits in some or other way. 

Scharton (2004:280) further emphasises that the goal of arithmetic instruction for her 

is, "to help students build computational fluency by inventing their own computation 

procedures, effectively explaining these procedures to their peers, and analysing 

procedures for relatedness, efficiency and effectiveness." This sentiment has been 

corroborated by Carpenter et al. (1997) and Fuson et al. (1997) who found that 

elementary students are able to construct computational procedures. 
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4.9 TASK 7 

4.9.1 Description of the task 

Half a cake is shared fairly amongst four children. 

What fraction should each child get? 

4.9.2 Categorisation of the task 

l.Content Area Category Number 

2.Subcategory Fractions 

3.Subordinate Subcategory Common fractions 

4.Performance Expectation Category Investigating and problem solving 

5.Subcategory Solving 

Figure 4.21 TIMSS Curriculum Framework categorisation of task 7 

The above word problem was included to see whether learners would be able to 

understand a simple real life problem involving division of fractions. Figure 4.21 

shows its classification under the content category of number with common fractions 

as its subordinate subcategory. 
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4.9.3 Open coding 

Table 4.7 Summary of strategies used by both learners and teachers in solving task 7 

CS ~ Correct solution IS ~ Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 ./ Drawing 1 ./ Mental strategy 
2 x Drawing/guesswork 2 ./ Drawing 
3 x Drawing 3 ./ Multiplication 
4 ./ Multiplicative strategy 4 ./ Invert & multiply 
5 ./ Drawing 5 x Invert & multiply 
6 ./ Mental strategy 6 x Invert & multiply 
7 ./ Invert & multiply 7 ./ Invert & multiply 
8 x Drawing 8 ./ Drawing 
9 ./ U sing the fraction 9 ./ Using the fraction 

family family 
67 % correctly answered by learners I 78 % correctly answered by teachers 

The following strategies were identified in Table 4.7: 

Invert and multiply strategy 

This is the traditional strategy used to teach division where the second fraction is 

inverted. 

Mental strategy 

This strategy involves doing calculations 'in your head' without paper and pencil. 

A mental strategy is any procedure that involves calculating something in your head 

without the use of paper and pencil McChesney & Biddulph (as cited in Neyland 

1993). 

Use of a drawing 

This model of representation includes drawing a picture of the problem and then 

making inferences. 

Multiplicative strategy 

In this strategy participants made use of 'y, a cake of v.' because there were four 

people involved. 

Using the ji·action family 

This strategy uses the ' family of halves and quarters' to arrive at a solution. 
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In this task the properties were sharing, the traditional division strategy of invert and 

multiply, the use of drawings and equivalent fractions. 

4.9.4 Discussion of solution strategies 

Fractions and division of fractions in particular are considered to be the most complex 

numbers in primary school mathematics, with most teachers using the 'invert and 

multiply' method when teaching this concept (Bezuk & Armstrong 1993). 

In this study it is interesting to note that of the five learners who used a drawing when 

thinking about the problem, only two were able to correctly solve the problem. 

According to Woleck (as cited in Cuoco & Curico 2001 :215), "representations are not 

static products, rather they capture the process of constructing a mathematical concept 

or relationship. Representations can take on many forms like drawings and models, to 

graphs and symbolic expressions." In this question, drawings served as a 

representation to support mathematical learning. It was a tool learners used to support 

and process their mathematical communication. Drawings show to the teacher the 

ideas held by the learner and contain much information. They enable the teacher to 

see and the learner to display qualities of understanding that are obscured from other 

procedures. 

When division problems are given in the context of a situation, Newstead & Murray 

(1998) found that learners achieved better and made better sense of the unfamiliar 

situations. L I was very clear in her explanation as she explained her drawing. She 

was able to rectify her first mistake when saying that each learner should get a 

quarter. When she realised it was half a cake and not a whole cake, she was able to 

say each child should get one eighth. 

Figure 4.22 shows a series of drawings and guesswork, with L 2 just saying" t ". 
When the interviewer started probing by asking how a quarter was found the learner 

became silent for a moment and then repeated, "Each gets one, one quarter." My 

impression was that he probably took the half cake to be a whole cake and then 

divided it into four pieces, so each piece would be a quarter. 
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L2 

Figure 4.22 shows a series of drawings with some guesswork 

L3 

II I I 
Figure 4.23 shows a drawing oflbe whole cake 

Figure 4.23 shows how L 3 interpreted the fraction task. 

L 3: I shared a half into four and had two quarters and I shared 
again a quarter and it is made of two one thirds. So each child gets 
a third. 
I: What is t + t + t equal to? 

L· J . J 

I: And that one in your drawing 

L: .1-
J 

I: And what is it here? 

L: A whole 

I: If you say this t, t, t makes a whole, because this is t. Three thirds 

is the name for the whole so you can't get this f as this is more than a 

whole. 

It then was obvious that the learner was having difficulty in answering this and no 

further probing took place. 
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L 4 (Figure 4.24) used a sketch by drawing a whole cake. He then divided the cake in 

half, using an incorrect circular representation and promptly wrote the following: 

L4 

£e.~\;- W\\\ ~e..~ G>,. to1Q t 
O'l' 8" fIJ flj 

Figure 4.24 a drawing showing the representation 

L 5 said: 

L: I was going to make a quarter but I didn't go well and I made 
how many eighths in a quarter and they were two. And how many 
t in a quarter and they made at. That is why I made t for 4 

children. 

I: Four children can get how many eighths altogether? 

L: Four children get one eighth each. 

L 8 (Figure 4.25) also used an incorrect representation, a round cake (although he 

drew a t cake) divided into four to get at. 

Figure 4.25 a drawing showing an incorrect representation 

L 9 attempted explaining what he had done. It was very confusing, although he still 

got one eighth. 

116 



L 9: I should give each child one eighth because in one half we've 
got two quarters and in a quarter we have one eighth and in a half 
we have one eighth. 

T I and T 2 were clear in their simple explanation of sharing the half cake into four 

equal parts with each child then getting an eighth. 

T 3 (Figure 4.26) used the multiplicative strategy of solving the problem. She said: 

T 3 

T 3: It is said t a cake is shared between four children. So if you 

divide a half you get a quarter, then that t 
eighth so each will get an eighth. 

is .L and .L of .L is an 2 2 4 

Figure 4.26 uses the mult iplicative strategy 

T 4 was asked to explain ' what does it mean a half divided by 4'. Teacher replied: 

T 4: It's a half a cake shared amongst 4 children. 

I: What fraction does each child get? 

T 4: I changed the division sign to multiplication sign because it's 
easier to work with, then I did the inverse of four, that is a quarter and 
then I multiplied by a half and got an eighth. 

T 7 also explained the problem using the invert and multiply strategy which showed 

her procedural knowledge, while teacher 8 explained it like this: 

T 8: I started with the whole. I divided the whole into two equal parts. 
Then I divided, I discovered that each part is a half. Then I've divided 
each t into two equal parts. So I discovered that a half of a half is a 

quarter. So each half is a quarter, then I went straight to the question, 
then I divided the half into 4 children so I ended up having an eighth 
for each child. 
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This strategy shows that the teacher has some conceptual understanding of what a 
fraction is. 

4.9.5 Comparison between learner and teacher solution strategies 

There appeared to be only two instances where learners matched the teachers' 

strategies. It was interesting to note the number of learners who used a drawing 

strategy to try and solve the problem with four of the seven succeeding. This seems 

to indicate that learners were using their own prior knowledge in order to understand 

the problem. It shows that in order to understand something, learners need to be given 

opportunities to use a strategy that they have thought about and are then able to 

execute correctly. Although T 5 and T 6 (Figure 4.27) were unable to solve the 

problem correctly, their learners on the other hand capably handled the division 

problem with ease. Both T 9 and L 9 got tile correct answer, but their strategy and 

explanation was somewhat confusing. It appears that they were looking for some 

pattern like t = t = t but they failed to explain it in a coherent marmer. 

T6 

/ 

~ i. ., 
, 

X -8 

I -I{. 

Figure 4. 27 where a half is divided by eight instead offour 
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4.10 TASK 8 

4.10.1 Description of the task 

8 . Babalwa makes a graph of taxis passing her school in 1 hour. 

UBabalwa ubonakalisa igrafu yeeteksl ezlgqitha eslkolweni sakhe nge-yure enye. 

IIteksl ezldlulayo ngeyure snyel Taxis passing In one hour 

12,------------------------------------------
10~----~--------------------------------~ 

c 8~----------------------------------------£! 
o 6 
~ 
:x: ~ 

2 

No. S No.11 No. 27 No. 39 No. 50 . r_ 
1. How malJY times does taxi number.27 pass In 1 hour? 

Idlule kangaphl iTeksi engunombolo 27 ngeyure enye? 

2. How many more number B taxis pass in the hour than number 11 taxis? 
Iteksi engunombolo 8 1yodlula kangakanani engu -11 ngeyure? 

3 . Babalwa says: Taxf number 39 passes least often in the hour. Explain how the 
graph shows this. 
UBabalwa uthi: rIeksI el19u -39 yeyona Idlula amathuba ambalwa ngeyure. 
Ch~ ukuba'igrafu iyibonakallsa njani Ie nto. 

4.10.2 Categorisation of the task 

I .Content Area Category Data Representation, probability & statistics 

2.Subcategory Data Representation and analysis 

3.Subordinate Subcategory Not applicable 

4.Perforrnance Expectation Category Communication 

5.Subcategory Relating representations 

Figure 4.28 TIMSS Curriculum Framework categorisation of task 8 
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The reason for putting in a task on data handling was to see whether learners would be 

able to understand and interpret the questions. Figure 4.28 shows the content category 

being data representation, with its subcategory being the ability able to analyse the 

graph. 

4.10.3 Open coding 

Table 4.8 Summary of strategies used by both learners and teachers in solving task 8 

PC ~ Partially correct TC ~ Totally correct 

Leamer PC TC Strategies Teacher PC TC Strategies 
1 ./ Reading 1 ./ Reading and applying 
2 ./ and applying 2 ./ information to the graph 
3 ./ information to 3 ././ 

4 ././ the graph 4 ./ 

5 ./ 5 ./ 

6 ./ 6 ./ 

7 ././ 7 ././ 

8 ./ 8 ././ 

9 ././ 9 ././ 

33 % correctlv answered bv learners I 56 % correctly answered by teachers 

Open coding was not used in this task. The strategy required was to be able to read the 

graph accurately and to interpret the questions (Table 4.8) . Properties were not 

applicable to this particular task. 

4.10.4 Discussion of solution strategies 

Dunkels (as cited in Nickson 2000: 87), mentions that: 

data handling is an important topic in the learning of mathematics in 
the primary school. It is a valuable medium for the development of 
number sense. Being able to read information from a two-dimensional 
representation, children learn to interpret data, which may relate to 
them and be useful to them 

According to Orton & Frobisher (1996: 148) "graphs are an important means of 

communication, and we should obviously be aiming to enable children to 

communicate clearly, accurately and attractively, through graphs." 
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L's 4, 7 and 9 all gave clear explanations and interpreted the graph correctly. 

L' s I, 2, 3, 5, 6, and 8 were able to partially interpret the graph correctly, but the 

second question requiring them to subtract seemed to be a problem. 

Many of the teachers were at first unsure and remarked that the questions required a 

lot of thinking. T 3 said: "I had a problem with this one." T 7 said: "I've taken a long 

time with this one", but both eventually succeeded in answering all the questions. 

T's 4, 5 and 6 were hesitant and had difficulty in answering all the questions. 

T I and T 9 were very clear about their explanations although they took a long time in 

completing this question. 

4.10.5. Comparison between learner and teacher solution strategies 

In the data-handling question, similarities were found with two teachers and learners 

(7 and 9). It was obvious that this topic had been dealt with in class. The rest of the 

teachers and learners were able to answer only some of the questions that required 

careful reading and interpretation. 

This is how L 7 and T 7 answered the task. 

L 7: Here it is asked, how many times does taxi number 27 pass in 
one hour. I wrote 4 times. How many more number 8 taxis pass in 
the hour than number 11 taxi, I counted and I said 7-2. 
I: Where did you get this 7? 

L 7: This 7 of this and I minus 2 ofthis and I got this 5 and 
Babalwa says, Taxi number 39 passes least often in the hour. 
I: Explain how the graph shows this. 
L 7: I said number 39 is in the half or number 1. The graph shows 
that number 39 is the least often in hour. 

T 7: I've taken a long time with this one. I couldn 't understand where 
the hours are indicated here but at the same time, I could see taxi 
number 8 and so on. Then, the first question. How many times does 
taxi number 27 pass in one hour. So I thought taxi number 27 passes 
four times an hour. And then taxi number 8 passes 7 times in an hour 
and taxi 11 passes 2 times. So the question goes how many more 
number 8 taxis pass in the hour than taxi number 11 . I subtracted the 
number of times of taxi number 8 passes which is seven times and the 
number of times of number 11 so I've got that taxi number 8 has past 
5 times more than taxi number 7. Taxi number 39 passes the least 
number. Uhhh, I said, the graph has just moved one time from 0 up to 
1 between 0 and 2, there is. So that is how it has been shown here 
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4.11 TASK 9 

4.11.1 Description of the task 

Thobeka obtains 45 marks out ofa total of 75 marks for 

a science test. What was Thobeka' s percentage? 

4.11.2 Categorisation ofthe task 

1. Content Category Number 

2.Subcategory Fractions & Decimals 

3.Subordinate Subcategory Percentages 

4.Performance Expectation Category Using routine procedures 

5.Subcategory Performing routine procedures 

Figure 4.29 TlMSS Curriculum Framework categorisation of task 9 

The reason for inserting a question on percentages was to see whether learners could 

connect the fraction-percentage relationship. Working with percentages is used daily 

in most classrooms. 

Figure 4.29 shows the content category used which was number and the subcategory, 

fractions and decimals. The subordinate subcategory is percentages. 
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4.11.3 Open coding 

Table 4.9 Summary of strategies used by both learners and teachers in solving task 9 

CS = Correct solution IS = Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 x Subtraction 1 -/ Formal calculation 
2 x Counting 2 -/ Formal calculation 
3 x MUltiples of 2 3 -/ Formal calculation 
4 x Addition 4 -/ Formal calculation 
5 x Simplification 5 -/ Formal calculation 
6 x Formal calculation 6 -/ Formal calculation 
7 x No idea 7 .( Formal calculation 
8 x 'guess' 8 -/ Formal calculation 
9 -/ Formal calculation 9 -/ Formal calculation 

I I % correctly answered by learners I 100 % correctlv answered by teachers 

The following was the strategy used in this task: 

Formal percentage calculation 

I have called this strategy the 'formal calculation' strategy because it involves writing 

down the fraction and then multiplying by 100 in order to obtain the percentage. 

Only one property was identified and I have labelled it a 'simple percentage problem'. 

4.11.4. Discussion of solution strategies 

Only L 9 was able to solve this problem and it was done using the formal percentage 

computation. 

L 5 (Figure 4.30) used the percentage computation but lacked the skill of 

simplification. 

L5 

Figure 4.30 a correct strategy but lacks the skill of simplification 
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All the other learners did not know how to calculate a percentage from a total mark. 

There seemed to be no conceptual understanding of percentages. 

L 1: Here is the total 75. This is 45 of Thobeka. I subtract 45 from 

75, I get 30% 

I: If you get 9 out of 10 for a test, what percentage would you get? 

L 1: 1% 

I: Would you only get I %? If you got 6 out of 10, what would that be? 

L:4% 

All of the teachers used the formal percentage strategy, which is simplifying the 

numerators and denominators first by dividing by 5 and then by 3 before simplifying 

by 100 and dividing by 5 (Figure 4.31). 

T7 

!t§ 
7S 
i§ X /-Q...a u. 
~ . - . 

.3 I 

!to / oJ 
_ :; QO Ib 3 _ 

Figure 4.31 shows a formal percentage strategy 

T 8 mUltiplied the numerators together and the denominators together and then 

simplified the fraction to get to 60%. 

4.11.5. Comparison between learner and teacher solution strategies 

Although the teachers all managed to complete this problem, only one learner was 

able to solve it correctly_ L 9 matched his teacher and both used the same learnt 

strategy (see Figure 4.32). 
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L9 T9 

Figure 4.32 shows the identical strategy used by L 9 and T 9. 
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4.12 TASK 10 

4.12.1 Description of the task 

If four packets of sugar together weigh 48 kg, how 

1 . 
much does a '3 of a packet of sugar weigh? 

4.12.2 Categorisation of the task 

1. Content Area Category Number 

2.Subcategory Proportionality problem 

3.Subordinate Subcategory Not applicable 

4.Performance Expectation Category Investigating and problem solving 

5.Subcategory Solving and verifying 

Figure 4.33 TIMSS Curriculum Framework categorisation of task 10 

Figure 4.33 shows the categories used to classify the task. The task is part of number 

and is a proportional problem because it requires learners to first calculate how much 

one-kilogram of sugar weighs, before working out t kilogram. 

My reason for including this question in the task was that proportion is an important 

aspect of the problem solving process and learners and teachers had to solve more 

than one operation when investigating this problem. 
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4.12.3 Open coding 

Table 10 Summary of strategies used by both learners and teachers in solving task 10 

CS ~ Correct solution IS ~ Incorrect solution 

Leamer CS lS Strategies Teacher CS lS Strategies 

1 j( Division 1 ./ Proportion calculation 
2 j( Counting 2 ./ Proportion calculation 
3 j( Counting 3 j( Proportion calculation 
4 ./ Proportion calculation 4 ./ Proportion calculation 
5 j( No idea 5 ./ Proportion calculation 
6 j( Multiplication 'of 6 ./ Calculation 
7 j( Multiplication 'of 7 ./ Proportion calculation 
8 j( Multiplication ' of 8 ./ Algebraic calculation 
9 j( Division 9 ./ Proportion calculation 

II % correct Iv answered by learners I 89 % correctly answered by teachers 

Table 10 shows the following strategies used in solving the problem: 

Proportion calculation 

In this strategy simple proportion was used to find I kg and then a third was 

calculated. 

Algebraic calculation 

This strategy made use of algebra and then used ' cross multiplication' . 

Division 

In this strategy the fraction was converted to a decimal and then a simple computation 
took place. 

Counting 

Counting in threes was the strategy used here in order to get 48. Another cow1ting 

strategy was to count first in fours to 48 and then threes to 12. 

Multiplication 

Computing a third of 48 was the strategy used here to solve the problem. 

The properties found in this question are simplification and making use of 

multiplication and division (simple proportion). 
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4.12.4 Discussion of solution strategies 

L 4 gave a clear explanation of how she arrived at 4 kg. L I worked out one packet to 

be 12 kg and then said t would be 12 kg. After much prompting by the interviewer, 

she was able to say a third would be 4 kg. 

The same can also be said for learner 3 who also eventually got 4 kg. L 2 and 5 had 

no idea of what to do while L 8, after being prompted by the interviewer to make a 

drawing, was able to get 4 kg. 

L 9: I am not sure with this. And wrote down the following: 

L9 

---7 

Figure 4.34 shows a somewhat confused strategy 

When L 9 (Figure 4.34) was prompted by the interviewer to explain how much t of a 

packet of sugar weighed? 

L: 15 kg 

The interviewer then asked: 

I: Draw a packet of sugar. 

L: I am not good at drawing. 

L: 12 kg 

I: How much is a t of a packet of sugar? [No response.] 

I: How much does I packet of sugar weigh? 

L: 12 kg 

I: How much does + a packet of sugar weigh? 
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L: 6kg 

1: How much does a t of a packet of sugar weigh? 

L: 3 kg 

I: Are you sure? How did you get that 6 ? 

L: Half of 12 is 6 and add 6 plus 6 equals 12. 

I: What does that 2 tell you? 

L: Divide 12 by 3 is equal to 4 kg. 

I: Great, okay. 

Seven of the nme teachers solved this proportion sum by using a proportional 

strategy. That meant that they worked out what one packet of sugar weighs and then 

found a t of the one packet. Only T 8 used an algebraic way to solve it by making 

use of cross multiplication. T 5 did not fully read the question and said: 

T 5: Now it is said if 4 packets of sugar together weigh 48 kg, what will 
a third of a packet of sugar weigh . Now I calculated one third of 48 
and I got 16 kg. 

4.12.5 Comparison between learner and teacher solution strategies 

This problem was challenging to teachers and learners with only L 4 (Figure 4.35) 

being able to solve the problem. 

L 4: The packets of sugar were 4. I divided 48 by 4 to get how much 

I: How much does 1 packet of sugar weigh? 

L 4 : I got 12 kg. Then I divided 12 by 3. 

1: Why 3? 

L 4: Because the question said, "How much does t of a packet of 

sugar weigh?" 

I: How did you get 4? 

L 4: I divided by 3. 

129 



L4 
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Figure 4.35 shows a correct solution 

The above description compared favourably with the teacher's description (Figure 
4.36) 

T 4: It says 4 packets of sugar together weigh 48 kg. I looked for a 

packet and then I said 48 divided by 4 = 12 kg so I looked for a 1/3 of 

a packet, which is 4 kg. 

T4 

Figure 4.36 shows a near identical solution to L 4 
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4.13 TASKll 

4.13.1 Description of the task 

11. A pattern of triangles is made from matches. 
I. patheni yoonxantathu (triangles) yenziwe ngemicinga yematshisi. 

D 
[5J 

DL 

3 matches make 1 triangle 
Emi - 3 yenza unxantathu 0 ·1 

5 matches make 2 triangles 
Emi - 5 yenza oonxantathu a - 2 

7 matches make 3 triarigles 
Esf - 7 yenza oonxantathu a - 3 

How many matches do I need to make 5 triangles? 
Show how you worked this out. 
Kwakufuneka ndibenemicinga emingaphi ukuze ndenze oonxantathu 8- 5. 80ni58 
Indlela ofumene ngayo impendulo yakho ? 

Working ouVBala apha. 

If I have 19 matches, how many triangles can I make? 
Show how you worked this out 
Ukuba nd/oemicinga e -19. ndakukwenza onxantathu abangaphi? Bonisa indlela 
ofumene ngayo impendulo yak.ho ? 
Working out 
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4.13.2 Categorisation of the task 

I.Content Area Category Functions, patterns & relations 

2.Subcategory Patterns, relations & functions 

3.Subordinate Subcategory Not applicable 

4.Performance Expectation Category Mathematical reasoning 

5.Subcategory Generalising 

Figure 4.3 7 TIMSS Curriculum Framework categorisation of task II 

Figure 4.37 shows the category in which this task was placed. The content category is 

functions, patterns and relations. This task requires careful reasoning and 

understanding to work out the pattern in order to come to some generalisation. 

The reason for putting in such a problem was to see whether learners could get to the 

'rule' of generalising. 

4.13.3 Open coding 

Table 4.11 Summary of strategies used by both learners and teachers in solving task II 

CS = Correct solution IS = Incorrect solution 

Learner CS IS Strategies Teacher CS IS Strategies 

1 ./ Drawing 1 ./ Counting/pattern 
2 ./ Addition 2 ./ Table/drawing 
3 ./ Counting 3 ./ Table/pattern 
4 ./ Differences between triangles 4 ./ Table 
5 ./ Counting/drawing 5 ./ Drawing 
6 ./ Counting 6 ./ Drawing/pattern 
7 ./ Drawing/counting 7 ./ Table/drawing 
8 ./ Counting/addition 8 ./ Table 
9 ./ Drawing 9 ./ Addition 

100 % correctly answered bL leamers I 100 % correctly answered bv teachers 

Table 4.11 shows the following strategies used by teachers and learners: 

Making use of a drawing and then counting 

In this strategy each triangle of match sticks was drawn and then counted. 
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Constructing a table 

Using the pattern of triangles given, a table was constructed. 

Differences between triangles 

By looking at the differences between the patterns provided, a common difference 

was found and then applied to the rest of the table. 

The following properties were identified: counting; tabular format and relating the 

number of triangles to match sticks. 

4.13.4. Discussion of solution strategies 

Describing number patterns, the relationship between variables, and forming 

generalisations have been perceived to be important in the Department of Education 

(2002). The focus of tills learning outcome was to formalise the rules generating 

patterns. 

The NCTM of the Principles and Standards (2000) state that: 

students should investigate both numerical and geometric patterns and 
express them mathematically in words or symbols. They need to 
analyse the structure of a pattern and watch it grow or change, organise 
the information systematically and develop generalisations about the 
mathematical relationship. 

In the example of the matchstick pattern, learners were encouraged to use the idea of a 

variable as they thought about how to describe a rule. 

Garcia-Cruz & Martinon (1997) in their research found that learners checked their 

rules by either counting or drawing or extending the numerical sequence. This was 

also my finding in this research. Four learners made use of a drawing with three more 

making use of a counting strategy in order to reach the pattern that was emerging. 

L 4 immediately when asked how she solved the pattern said: 

L 4: I first looked for a rule. 

I: How did you work out the rule? 

L 4: (Pause} ... . I first saw that one triangle was made up of three 
match sticks, two triangles was made up of 5 match sticks and 
three triangles was made up of 7 match sticks. Now I looked for the 
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difference here. It was 2. Then I added here 7 plus 2, I got 9 and 
said any number multiplied by 2 and add 1. 
I: So how many matchsticks for five triangles? 

L 4: 11 

I: In the second part of the question? 

L 4: I made the opposite of this to get to the number of triangles for 

19 matchsticks. I said 19 divided by 2 minus 1 is 9. 

I: Just one moment. Are you sure what you have said is correct? 

L 4: I said 19 minus 1 = 18 divided by 2 , a half of 18 is 9 triangles. 

Sasman, Linchevski, Olivier & Libenberg (1998) found in their research that when 

problems were formed in terms of pictures, learners instinctively constructed a 'table' 

and then only used the table of values to solve the solution. 

Five of the nine teachers in this question constructed a table and made a drawing or 

looked for the pattern to get to the generalisation. 

T 1 said: Here 1,1,1 , constructed a pattern and counted and discovered 
that you always multiply the triangle number by 2 and add 1. So for 19 
sticks, you construct 9 triangles because I divided this 19 by 2 and 
there was one odd stick left, which was the one I always add . 

T 9: I've done this, they like it. 1 23 and then they'll say 1 2 3 4 5, ja 

and even I've asked them. How do you say and they just say plus 2 

ne, like this one, 3 5 7 9 11. They would say 11. also 19 match sticks, 

how many triangles can I make? So they've got a battle there. So 

they'll say + 2 + 6 would be 13 + 7; 16 + 2: 17 + 2 would be 19. So 9 

triangles form 19 matches. 

4.13.5 Comparison between learner and teacher solution strategies 

In this problem all learners and teachers managed to complete the problem with the 

majority either using a drawing and then counting on or drawing up a table and 

looking for a pattern. There were a number of similarities between teachers and 

learners. 
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Figure 4.38 shows how L 4 and T 4 approached the task. 

L4 T4 

£'~,zPl Y;'lJW of fi~_~~L,-...:.....:':c2}llC.2tL 
2 .:J 

/ ., Wk1.tclr£.s = n · tn:''''!II!$ 

19-:-2-1 ='} (L'7 - I) 7 fi.. Fyo.,.. ftv.. ~ rh,;t+f 

19 "1 ~ 1<0 ~ ~ 
IS;). ."" '1 

Figure 4.38 shows the different ways L 4 and T 4 solved the problem 
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4.14 TASK 12 

4.14.1. Description ofthe task 

Mrs Khumalo has a bag of sweets to give to her Grade 7 

classes. She gives the first class 157 sweets and the 

second class 248 sweets. She then has 35 sweets left in 

her bag. How many sweets were in her bag at the start? 

4.14.2 Categorisation of the task 

I. Content Area Category Number 

2.Subcategory Whole numbers 

3.Subordinate Subcategory Properties of operations 

4.Performance Expectation Category Using routine procedures 

5. Subcategory Performing routine procedures 

Figure 4.39 TIMSS Curriculum Framework categorisation of task 12 

The task in Figure 4.39 is part of number. It is an addition word problem whose 

subcategory is whole numbers. The reason for setting such a task was to explore 

whether or not learners and teachers would use the same traditional vertical algorithm. 
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4.14.3 Open coding 

Table 4.12 Summary of strategies used by both learners and teachers in solving task 12 

CS = Correct solution IS = Incorrect solution 

Leamer CS IS Strategies Teacher CS IS Strategies 

1 ./ Vertical algorithm 1 ./ Vertical algorithm 
2 ./ Decomposition of 2 ./ Vertical algorithm 

numbers 
3 ./ Vertical algorithm 3 ./ Vertical algorithm 
4 ./ Vertical algorithm 4 ./ Vertical algorithm 
5 ./ Vertical algorithm 5 ./ Vertical algorithm 
6 ./ Vertical algorithm 6 ./ Horizontal & Vertical 

algorithm 
7 ./ Vertical algorithm 7 ./ Horizontal & Vertical 

algorithm 
8 ./ Vertical algorithm 8 ./ Vertical algorithm 
9 ./ Vertical algorithm 9 ./ Vertical algorithm 

100 % correctlv answt'red byleamers ! 100 % correct Iv answered bv teachers 

The strategies used in Figure 4.12 include the following: 

Vertical algorithm 

When using this strategy, numbers are placed underneath each other according to their 

place value and added. 

Decomposition of numbers or expanded notation 

In this strategy, each number is decomposed into hundreds, tens, and ones and then 

added. 

Horizontal algorithm 

This strategy uses decomposition of numbers or expanded notation and the numbers 

are then added. 

The properties that have been identified were partitioning of numbers and vertical 

addition. 

4.14.4. Discussion of solution strategies 

The addition word problem was straightforward and clear. All learners and teachers 

succeeded in completing it. Except for L 2 who decomposed the numbers, all the 
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other learners used the vertical addition algorithm. This suggests to me that ' rule ' like 

behaviour does have its advantages. However, Hiebert et al. (as cited in Nickson 

2000) relates that children should not only have a variety of models at their disposal 

to help them carry out number operations, but that they should be encouraged to use 

their own strategies. In task 12 it seemed that most learners and teachers felt 

comfortable with the vertical algorithm strategy. They were flexible in applying it and 

it was the most efficient strategy to use. Fuson (as cited in Nickson 2000), contends 

that children who understand the structures of numbers and can see the relationships 

among the numbers, are able to work with them flexibly. For example 364 = (300 + 

60 + 4). 

Figure 4.40 shows how L 2 solved the problem correctly. She combined and 

partitioned numbers as her strategy. 

L2 

to 0+ 1. .00 ~ Soc::> 
S7 +4S~ \0-5 
5 .} 55 ::. l+- 0 

4-00+ 1+0 -::: ~o 

Figure 4.40 shows decomposing and combining numbers 

4.14.5. Comparison between learner and teacher solution strategies 

I started by looking at similarities among the strategies of the nine teachers. All of 

them added in columns, with T 7 using the decomposition strategy as well. T 6 

(Figure 4.39) also used expanded notation in doing the first part of the sum. 
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Figure 4.41 shows the traditional vertical algorithm and a decomposition strategy 

Besides L 2 (as mentioned above) and L 7, the rest of the learners used the traditional 

algoritlun by adding in columns. All learners had no difficulty in the computation of 

the sum or the understanding of the word problem. Figure 4.42 shows teachers and 

learners using the same solution strategy_ 

L8 
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Figure 4.42 shows the identical strategy used by L 8 and T 8 
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4.15 TEACHERS' PERCEPTIONS OF THE TEST 

In the previous section of this chapter, aspects of grounded theory were used to 

analyse and classify learners and teachers' solution strategies. 

In order to ascertain whether the standard of questions asked in the test was consistent 

with learners' ability at a Grade 7 level, a short structured interview was conducted 

with the nine teachers from the schools who took part in the study. My initial 

expectations were that the teachers would comment that the questions were of a high 

standard and too difficult for their learners to answer. 

4.15.1 The general standard of the test 

All mne teachers stated that the standard of the tasks were appropriate. T 7 

commented by saying that, "the questions were challenging . Children had to think." 

T1 stated, "[ think that we have covered all the stated outcomes that is number 

sense, shape and space, geometry." T4 stated that, "they [the tasks] are the 

correct standard for Grade 7. They allow for different types of questions like 

choosing the correct answer and calculations." 

After assessing the test and looking at the results, I felt that maybe the tasks were of a 

standard which was above that expected of learners at the Grade 7 level. However, as 

seen from the above comments, the teachers felt differently. 

4.15.2 The translation of questions into isiXhosa 

There was unammous agreement by all nine teachers that it was a good idea to 

translate the questions into mother tongue. Both T 1 and T 4 said the learners had a 

language problem and that they lacked understanding of English. T I further 

commented that the task was "easy for them". This seems to possibly suggest that the 

task instructions were easy for the learners to understand. 

T 8 commented, "Yes, ja because our learners have a problem of the medium of 

instruction which is English so in order to make them understand, we used to, to, 

to, to use the, the mother tongue so that they could be able to understand what 

you want." 

140 



T 9 said, "Yes, because in fact it is not their mother tongue the medium of 

instruction and then some of the learners may become confused. And then now if 

she comes to her language, then now it becomes clear." 

4.15.3 The accuracy of the isiXhosa translation 

Only two teachers commented on the accuracy of the translation. T 3 said, "It is 

accurately translated. 1 think the translator is a very good person." T 1 said that 

he could not comment, as he had not read the isiXhosa translation. He concentrated on 

the English version only. T 4 said, "To be honest, 1 don't normally look at the 

isiXhosa translation. When 1 am answering myself, 1 look just at the English." The 

priority for the teachers seems to suggest that they wanted to complete the test and 

were not so concerned about the standard of the translation. 

4.15.4 The asking of multiple-choice questions 

Multiple-choice questions were useful in evaluating learners' thinking processes. 

According to Charles, Lester & O'Daffer (1987: 42): 

a multiple choice test is made up of items that consist of a problem or 
question and a list of possible solutions or answers ... are versatile and 
can measure the ability to get a correct answer as well as the ability to 
use problem solving thinking skills 

My intention in setting multiple-choice questions (section 1 of the test) was to explore 

the different solution strategies that learners would use. Although space had been 

provided for learners to show their working out, many of them did not utilize it. I then 

decided to concentrate only on section 2 of the test, which would help me understand 

how learners were thinking about aspects of problem solving and how they were 

employing alternative solution strategies. 

Comments made by the teachers about using multiple-choice questions were varied 

and interesting. Three teachers had mixed feelings about using this type of a question. 

T 4 commented and said, "1 don't think it is very good because some [learners] are 

so lazy. When there is multiple-choice, they tend to choose without calculating." 

T 6 had a similar comment. She said, "Well, children become lazy when doing 
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multiple-choice questions. They don't think them through." T 3 thought it was a 

good idea. He remarked, "it is a good idea if he is aware of what is happening here, 

it's not just guessing. You have to calculate before you can choose a correct 

answer. They have got to calculate all the time so they are exposing their 

strategies and skills." 

T 8 said, "I think it's a good idea because it encourages the learners to think 

critically about what is being asked." 

4.15.5 The level of difficulty of the test 

The teachers were positive when asked what they thought about the level of difficulty 

of the test. All the teachers agreed that the test was not too difficult. T 9 said, "Not so 

difficult. They have to think because mathematics is about thinking." 

T 5 commented that, "No, I would not say they are not difficult, because now it's 

the use of language, that is the understanding." 

4.15.6 Content knowledge covered in the test 

I tried, when drawing up the test, to cover all five learning outcomes, namely number 

sense, patterns, geometry, measurement, and data handling. 

When I asked teachers to comment on whether they had covered all the work that was 

included in the test, some said 'yes' , with T 9 saying, "I did all but not too much on 

geometry. " 

T 3 said, "No because of time. I have not done decimal fractions and 

percentages. " 

T 5 said: "Ja, in fact I would say three quarters of it. I have not done graphs." 

T 7 commented, "Yes, I am worried. I did not touch percentages, otherwise I've 

covered most of the work." 

4.15.7 Reflection and summary 

The range of opinions and comments made by the teachers pleasantly surprised me. 

As mentioned earlier, I personally expected that the teachers would find the test too 

difficult and the translation not sufficiently accurate. Yet despite what was expected, 
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learners and teachers appeared to enjoy answering the test. Teachers appeared open to 

not having covered all the content knowledge and the comments on using multiple­

choice questions was also interesting. 

It confirmed then that the pilot study, which I had carried out the previous year, had 

been well worth the effort and that the tasks were reliable and valid for this study. 

4.16 CONCLUSION 

This chapter describes the 12 tasks of the test. It categorised each task into categories, 

subcategories, subordinate categories and performance expectations. The discussion 

of solution strategies was framed by the TIMSS Curriculum Frameworks. Using 

aspects of grounded theory, namely open coding, strategies for each task were 

identified, and properties of the tasks were formulated. A discussion of various 

solution strategies used by learners and teachers followed. This was followed by a 

comparison of solution strategies using a substantial amount of material taken from 

the interview responses to verify and strengthen the analysis . Finally, the teachers' 

perceptions of their overall impression of the test were investigated. 

The next chapter uses the analysis of chapter four to discuss the findings, draw 

implications and conclusions from this study, and to formulate a number of 

recommendations. 
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CHAPTER FIVE 

DISCUSSION OF FINDINGS, IMPLICATIONS, 

RECOMMENDATIONS AND A VENUES FOR FURTHER 

RESEARCH 

5.1 INTRODUCTION 

In this chapter I discuss the findings of this study under the headings of 

a) number sense 

b) patterns and functions 

c) geometry 

d) data handling 

as itemised in the TIMSS Curriculum Frameworks (see chapter 4, page 73 - 74). 

I use these headings as a framework for the formulation of a number of implications 

and recommendations. The chapter also identifies avenues for possible further 

research with a final section reflecting on the entire research process. 

The main goal of the research was to investigate and analyse the solution strategies 

adopted by nine Grade 7 learners and their teachers of mathematics in solving a given 

set of tasks. In order to achieve this goal, each task was deconstructed into categories 

using the TIMSS Curriculum Frameworks (McNeeley 1997). Further, I employed 

aspects of grounded theory as a methodology to analyse the different solution 

strategies used by the participants. 

5.2 DISCUSSION OF THE FINDINGS 

5.2.1 Number or number sense 

TraditionalIy, number activities in classrooms have been characterised by children 

copying the teachers' ideas or simply supplying the correct answer. Howden (1989: 

11) however suggests that: 
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Number sense can be described as good intuition about numbers and their 
relationships. It develops gradually as a result of exploring numbers, 
visualising them in a variety of contexts, and relating them in ways that are not 
limited by traditional algorithms. 

The shift in instruction implicit in this quotation is from an individual learner 

memorising facts, rules and procedures to developing into a mathematical thinker. 

The following tasks formed part of number sense: task 1, task 3, task 4, task 6, task 7, 

task 9, task 10 and task 12. They constituted 67% of the test. 17% were simple 

computation problems, while 50% of the tasks were made up of problem solving type, 

word problems. 

Task 1 involved the magic triangle that required the simple manipulation of adding or 

subtracting multiples of 10 from 20 to 60 to make a total of 90 along each side of the 

triangle. The investigation was interesting because a wide range of problem solving 

strategies or heuristics, which can be both general and specific, were used by the 

participants (Suydam, as cited in Krulik & Reys 1980). These included trial and error, 

using consecutive multiples and deduction. All nine teachers and six of the learners 

answered the task correctly. 

Task 3, which was a multiplication word problem, was only solved correctly by 44% 

of the learners. Those learners who forged ahead and successfully solved the 

multiplication algorithm, almost exclusively used the traditional vertical algorithm 

strategy, but very few were able to explain in a logical manner the processes involved. 

Evidence from the interviews I conducted shows that learners often started off well 

but got lost along the way or lacked the mastery of the mUltiplication tables. The 

solution very often did not make sense and was seen as just another 'rule' to follow. 

Bryant (1995) and Prior (2000) have shown that mastery of basic arithmetic underpins 

the learning of more complex mathematical capacities that depend on an accurate 

memory for basic facts. By extending the repertoire of strategies we teach, learners 

will come to the realisation that substituting addition for a multiplication computation 

is not always feasible. This of course depends on the size of the numbers used. 

Learners when solving such problems need to ' mathematize', i.e. to reason 

mathematically by looking carefully at the numbers to be used before deciding which 
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strategy to use The strategy chosen should be efficient, clear and fit the problem 

(Fosnot & Dolk 2001). As many of the basic mathematics concepts are learned in 

primary schools, it is important that concepts and skills from all strands of 

mathematics need to be strengthened and expanded (Perso 1992). Drill and practise 

still needs to be reinforced, while teaching computations should not be seen as 

detached activities, but need to be connected to a conceptual base or located within a 

significant setting. 

Task 4 was a fraction subtraction computation. It was poorly answered with only 44% 

of the selected sample of learners capable of doing it. Two learners who made use of a 

drawing were unable to explain how they arrived at their solution. One learner was 

unable to explain his model of a drawing. He just said t. When asked what t - + 
was the learner replied, ~. His next sentence was inaudible and he just said, "I don't 

understand". Four of the learners simply subtracted the numerators from each other 

and wrote down the first denominator given. McIntosh et al. (1997) found the same 

error in his sample across Grades 3-10. It was clear from the interviews that the 

concept of a fraction had not been clearly understood. In this computation, interviews 

revealed that procedural understanding had been emphasised at the expense of 

conceptual understanding (see chapter 4, page 90), Some learners had approached the 

computation from a whole number point of view. The most common strategy was to 

find the lowest common multiple, while two teachers and one learner took a more 

flexible and efficient approach and used equivalent fractions. This example showed 

that learners experienced conceptual understanding that required reasoning for 

justifying procedures. 

Task 6, the whole number division computation task was successfully completed by 

only 11 % of the selected sample of learners. Some of the learners not only lacked 

procedural knowledge, but they also lacked a clear understanding of how to solve the 

computation (see chapter 4, page 107-108). Evidence from the interviews showed that 

some learners relied heavily on memorisation, which hindered them in the execution 

of the task. There was evidence from the interviews that some teachers teach division 

as a ' goes into' model. According to Fosnot & Dolk (2001) it is an ineffective model 

as digits are treated separately. This confuses learners and makes little sense to them. 
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Teachers tend not to emphasise the reciprocal relationship between multiplication and 

division or what the meaning of a remainder is. It appeared that the meaning of the 

remainder when applied to a paper and pencil algorithm had not been properly 

investigated. It seemed that the connection when doing division using a calculator had 

also not been properly explored. From the interviews there was evidence to suggest 

that teachers are perpetuating the methodology they learnt in their own school careers 

and this had been transferred to the learners whom they now teach. 

Task 7, the fraction division word problem, although fairly complex, was well done, 

considering learners in Grade 7 only encounter division of fractions towards the end 

of the year. 67% of the learners answered the problem correctly as against 78% of the 

teachers. The 'invert and multiply' strategy was the most common strategy used by 

four of the teachers, while only one learner used this strategy. An interesting aspect of 

this task was that five of the learners used a drawing as the mode of representation to 

solve the problem. It was used as a tool by the learners to display and support their 

mathematical learning and understanding. In comparison, only one teacher applied 

this mode. 

Task 9 was a percentage task and was successfully completed by 11 % of the learners. 

Teachers traditionally teach percentages as a discrete section of work. Many appear 

not to connect them to the fraction-decimal relationship that exists. For example the 

relationship that 50% can also be written as 0,5 or t (see chapter 4, page 125). Only 

one strategy was evident, which was used by both learner and teachers. It appeared 

that these learners lacked the necessary understanding that the structure of practical 

situations like percentages can be modelled by a particular operation. 

Task 10 was a proportional problem. Only 11% of learners and 89% of teachers 

correctly completed the task. This problem required a deeper understanding than the 

other word problems, as it required a number of different operations. For example, 

division of whole numbers and multiplication of a fractional part of a whole. The 

learners attempted a number of different strategies but were mostly unsuccessful. 

They were unable to make sense of the problem, focussing more on the answer 
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instead of looking at the investigative processes involved (Southwood & Spanneberg 

1996). 

Task 12 was an addition problem, which was successfully completed by the entire 

sample. It has been my experience in working with teachers that many of them spend 

a considerable amount of time doing addition computations and word problems 

involving addition at the expense of the other operations. Some of the strategies used 

were based on the place-value principle of adding numbers in columns, the so-called 

vertical algorithm and decomposing numbers into hundreds, tens and ones. 

The number sense word problems were generally better completed than· the 

computations. Computation "is a particular form of mathematical problem solving ... 

involving the performance of basic numerical operations" (Bass 2003:322). 

According to Bass (2003) 'computing' and 'calculating' are words often used 

interchangeably. Word problems on the other hand require careful reading and 

understanding. A possible reason for the learners doing better at word problems was 

that the test was written in English and translated into their mother tongue, isiXhosa. 

Because the learners were able to read each task not only in English, but also in their 

own language, they could in my opinion comprehend what they had to do and transfer 

it to symbols. Instead of just focussing on the symbols themselves (i.e. the language 

itself), they were now focussing on the meaning of the symbols. This is in contrast to 

research done on word problems. Research done by De Corte & Verschaffel (1989) 

found that a large number of learners and teachers find word problems difficult to 

learn and to teach. They also found that current educational practice does not consider 

the variety and flexibility in learners' informal solution strategies. They further state 

that learners who had not had formal instruction in a particular operation, for example 

addition or subtraction, could solve simple word problems using a wide variety of 

informal strategies. The findings of my interviews and the written work presented by 

the learners and teachers in the word problems, showed that many of the solution 

strategies depended on the learner's procedural understanding (see chapter 4, page 

90). The types of strategies used were indicative of their own level of understanding. 

However, there were instances, for example in the multiplication word problem in 

task 3, where a variety of informal strategies were identified. They ranged from 

simple counting strategies to decomposing the multiplier. Some learners concentrated 
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on the strategies of using place value and the 'short method' of multiplying by 25 (see 

chapter 4, page 89). This confinns the findings of De Corte & Verschaffel (1989), as 

discussed above. 

5.2.2 Patterns and functions 

From the time that learners enter the Foundation Phase and throughout their primary 

school years, they should ideally have regular, daily opportunities for exploring 

number patterns. For example, teachers might help children notice that red-blue-blue­

red-blue-blue can be extended with another red-blue-blue sequence or help them 

predict that the twelfth tenn is blue, assuming that the red-blue-blue pattern repeats 

indefinitely. Initially, learners may describe the regularity in patterns verbally rather 

than with mathematical symbols. The study of patterns in the Intennediate and Senior 

Phases should gradually shift to the study of functions as the learners become 

increasingly confident. In these two phases, learners should be given experiences in 

conjunction with appropriate teaching resources. Mathematical problems should lead 

learners to build connections between the concrete context and the numerical pattern. 

From using such patterns, learners begin to use variables and describe algebraic 

relationships. 

The study of patterns is the core of learning outcome 2 in the RNCS (2002:35). It 

states, "the study of numeric and geometric patterns develops the concepts of variable 

relationships and functions"; concepts which are central to an understanding of 

algebra. It further states, "investigating pattern and relationships allows the learner to 

... develop thinking skills such as general ising, explaining, describing, observing, 

inferring, specialising, creating, justifying, representing, refuting and predicting." 

Task 2 and task 11 addressed this learning outcome. Task 2 was the function 

machine. In the input-output flow diagram, 56% of the learners and 78% of the 

teachers identified the pattern. The task required learners to use the idea of a variable 

to enable them to explore pattern work and to look for relationships. 

The interviewing process revealed that strategies used by the participants included 

looking for a rule and finding a relationship between the input and output numbers. 
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The ability to link new facts to known facts and to structure a variety of facts into the 

formation of mental patterns contributes to learners mastering number facts. It was 

helpful in this task for learners to discover the relationship amongst facts, instead of 

just simply requiring learners to know the facts. 

Task 11 was the matchstick number pattern. Both learners and teachers scored 100% 

for this task. Learners and teachers solved this problem using a number of alternative 

representations by visualising the pattern found. The solution strategies identified 

showed that 67% of the learners used a drawing. Gardner (as cited in Thornton 

2001:389) states, "there is no more effective aid in understanding algebraic identities 

than a good diagram." I fully support this statement, as the next step would be to get 

learners to understand how the visualisation can be described symbolically. In the 

task, some teachers on the other hand drew up a table and also made a drawing, while 

others just drew up a table. Most teachers then wrote down the number pattern in the 

form of an algebraic expression. The constructive approach used by some learners 

was to draw and visualise each pattern of matchsticks and then physically count the 

number of ensuing matchsticks. The strategies used ranged from the simple to more 

complex ones. This shows aspects of teachers and learners being able to think flexibly 

in acquiring the knowledge of number patterns and executing more advanced 

strategies. 

5.2.3 Geometry 

Shape and space are the words used to describe geometry in the RNCS document 

(2002). Too often this topic is taught using formulae, rather than the practical 

experience which will enable learners to understand the properties of the most 

common shapes and their classification (Merttens 1987). 

The only task covering geometry was task 5. The van Hiele model, which focusses on 

levels of thinking in geometry, provided a useful framework in which to design the 

one geometric task (van Hiele 1986). According to the van Hiele theory, learners 

move through five (later revised to three) hierarchical levels of geometric 

understanding. The first three levels are appropriate to the teaching and learning of 

geometry at the Intermediate and Senior Phase. For this study only the first level, the 
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recognition level, was used. At this level, learners are able to identify, narne and 

compare geometric figures on the basis of the appearance ofthe shape as a whole. 

The geometric task 5, required participants to identify two shapes and find one 

similarity between them. Only 22% of the learners and 78% of the teachers correctly 

and completely solved the task. In the identification of two-dimensional shapes, some 

learners confused a square with a rectangle and a rhombus with a general 

parallelogram. Finding a similarity between the two shapes was fairly well done. Only 

some of the learners and teachers thus appear to be on the fust level of the van Hiele 

levels of geometric understanding. The van Hieles also argue that a learner cannot 

perform with understanding on one level if he/she has not passed through preceding 

levels. This study was not able to confirm or deny this comment. 

5.2.4. Data Handling 

Data handling is a fairly new mathematical strand for most teachers in South Africa to 

teach. Although it was prescribed in previous curriculum documents, data handling­

which includes being able to collect information in statements, draw graphs and 

tables in my view appears to be marginalized by some teachers. The focus of data 

handling is the gaining of skills to gather and summarise data so that it can be 

interpreted and analysed. Learning Outcome 5 of the RNCS document states, " ... 

collect, summarise, display and critically analyse data in order to draw conclusions 

and make predictions, and to interpret and determine chance variation" (Department 

of Education 2002:38). 

The bar graph in task 8 required learners and teachers to read the questions related to 

the graph and to correctly interpret it. 33% of the learners and 56% of the teachers 

correctly interpreted all the questions. To be able to read and interpret information is 

an important element for the development of number sense. 
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5.2.5 General comments 

The findings in the interviews and the written work presented by the learners and 

teachers, show that some learners struggled to communicate their thought processes in 

a coherent way. Without their being able to give clear explanations, there is little 

evidence oflearners' real understanding and application of mathematical processes. It 

highlights the importance of social discourse and understanding. If learning takes 

place with understanding, these processes will become more long lasting and valuable 

to both learners and teachers. The linking of fractions , decimal fractions and 

percentages would be such an example. 

The findings further suggest that many of the teachers in this sample do not allow 

enough time and opportunity for learners to develop alternative solution strategies, 

which results in a lack of capacity to produce new understandings. 

Of the twelve tasks analysed, half of them could be classified as 'typical' word 

problems. There is evidence in the interviews that suggests procedural understanding 

had been emphasised at the expense of conceptual understanding. In the fraction 

subtraction computation, learners and teachers relied heavily on procedural 

understanding (see chapter 4, page 94-101). Most learners saw the fraction 

computation as four separate whole numbers to be subtracted. Because they had learnt 

the operations and algorithms of whole numbers, they thought that the same processes 

could be applied when calculating fractions. This suggests that the recall of 

memorized data does not necessarily help with understanding. This also suggests that 

giving problems in context teaches learners to think about and understand the 

problems first, rather than just applying some step-by-step sequence of a rule that they 

have learnt. 

The solution strategies of whole numbers used by learners were similar to those used 

by the teachers. This was particularly evident in the whole number multiplication, 

addition and division calculations. In these cases it appears that learners had learnt the 

algorithm from their teachers in isolation from concepts, with no effort made to relate 

them to understanding. Learners were often unable to 'mathematize' (Fosnot & Dolk 
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200 I), to look at the numbers carefully before deciding on what solution strategy to 

use. The same was evident with the fraction subtraction computation. 

The leamers and teachers who did use alternative solution strategies showed that if 

given a chance to construct their own solutions, and make reasoned choices, they 

were thinking for themselves. For them sense making with understanding was seen as 

a priority. 

5.3. SUMMARY OF FINDINGS 

• Most of the solution strategies that the participating learners used were straight 

forward procedures that they had learnt. They relied mostly on procedural 

understanding at the expense of conceptual understanding. 

• The solution strategies of whole numbers adopted by the learners in this study 

were similar to the whole number solution strategies used by their teachers. 

• Some teachers and learners in the sample did employ their own constructed 

solution strategies. They were able to make sense of the problems and to 

'mathematize' . 

• Teachers in the sample placed more emphasis on addition computations and 

word problems than on the other three basic operations. 

• Language played a role in that learners sometimes struggled to communicate 

their thought processes in a coherent manner. Nevertheless, number sense 

word problems were better completed than computations as the tasks had been 

translated into mother tongue. This is in contrast to research done on word 

problems. 

• Both learners and teachers used the heuristic or problem-solving strategies to 

solve some of the problems. For example they used strategies like trial-and­

error, constructing a table, looking for patterns and making drawings. 

5.4 IMPLICATIONS AND RECOMMENDATIONS 

This study suggests that there are several important points that teachers should 

consider in teaching computation and word problems involving number sense. 
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Teachers should ensure that learners be given sufficient opportunities to solve 

problem-solving type problems. Besides addition, the other whole number operations 

(subtraction, multiplication and division) must also be given the recognition they 

deserve. In each lesson planned time should be taken to allow learners to master the 

basic concepts. For example, understanding the concept of a fraction as compared to 

whole number operations. More emphasis needs to be placed on developing 

conceptual understanding, allowing learners to explore and use their own constructed 

solution strategies (see chapter 4, page 90). 

This study has shown that teachers need to take cognisance of language problems 

when teaching word problems. They should note that if word problems are written in 

English and mother tongue, reading, comprehension and encoding errors would be 

lessened. Olivares (as cited in Lee & Jung 2004:271) recommends that limited­

English-proficient students, " be allowed to rely on their native language to make 

sense of mathematics communication, since background knowledge is the basis of any 

learning process in mathematics." The findings in this study with its bilingual 

approach show that the errors made by learners were mainly defective algorithms, 

careless or process errors, but did not relate to not understanding the task. The 

implication is that teachers need to spend more time allowing learners to look at the 

processes involved in arriving at a solution, rather than focussing on the solution. 

This study has shown that learners in Orade 7 can and are able to invent their own 

strategies to solve complex word problems. The fraction division and whole number 

multiplication tasks are such examples. Kamii & Dominick (as cited in Morrow & 

Kenney 1998) found that learners using their own calculating procedures were able to 

solve more problems correctly than children who had been taught the standard 

algorithm. Carpenter, Fennema & Franke (1996) found in COl classrooms that 

teachers do not prescribe procedures for learners to solve or expect them to use a 

particular algorithm. Learners solve problems on their own by working out their 

solutions, which are composed of fundamental number concepts and alternative 

solution strategies, which they then communicate to their peers and teachers. 

By allowing learners to develop their own solution strategies, teachers will be 

sensitized to the thinking and reasoning of learners as they strive to make sense of the 
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mathematics. Carroll & Porter, (as cited in Kenney & Morrow 1998) assert that 

"although it is advantageous for all students to know at least one written procedure for 

each of the operations, the standard algorithms taught in schools are often not the 

most appropriate or understandable. However, teaching algorithms as 'fixed' 

procedures restricts the thinking ability of learners to reason, communicate, and 

consequently, their ability to do mathematics. Teaching for understanding should be 

emphasised at the expense of 'teacher taught procedures'. Hiebert (1996) asserts that 

there is increasing evidence suggesting that learners, who have memorized and 

practised procedures without understanding, have difficulty in making sense of their 

work. 

The above is also documented by Kamii & Dominick (as cited in Morrow & Kenney 

1998) who believe, and which I fully support, that conventional algorithms are 

harmful because they encourage children to give up their own thinking, they un-teach 

place value, thereby preventing children from developing number sense. 

This study has also shown the 'negative' effects of teaching one written standard 

algorithm with no understanding. Kamii & Plunkett (as quoted in Zarszycki 2001) 

report that doing this discourages a leamer's logical mathematical thinking and 

contributes to the poor success rate of large numbers of learners. This study fully 

supports this statement because by giving learners the freedom to develop their own 

strategies, they are likely to use different 'methods' to those a teacher might expect 

from them. 

According to Scharton (2004) being computationally fluent is an essential goal of 

mathematics. She argues that if learners are given opportunities to explain and analyse 

their computational methods, this will result in their developing efficient, accurate and 

flexible strategies. As their knowledge of different strategies grows, so does their 

computational fluency. Solution strategies that learners use should be grounded in 

understanding. This means that an understanding of the meaning of operations, for 

exarnple subtraction and division, and their relationship, needs to be emphasised (see 

chapter 4, page 112). In this study the problems learners were given and asked to 

solve possibly yielded greater problem solving competence and possibly equal or 

better computational competence. Through exposing learners to problems the 
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'threads' of problem solving and computational competence become interwoven and 

together lead to a development of understanding. Learners need to be able to compute 

using more than one method. The various strategies they use need to be efficient and 

carried out by using ideas gained through discussion with their peers in the class. An 

aspect of the problem solving process is that learners need to record carefully and 

flexibly when choosing a strategy. It may require the knowledge of more than one 

approach to solve a particular problem. Orehovec (1984) found that learners could 

succeed when problem solving is taught, but for it to be a success there must be an 

understanding on the part of teachers and others to fully put the problem solving 

process into effect. I agree with Naidoo (1991) that more in-service professional 

development courses using the problem solving approach for teachers are necessary to 

allow them to change from the transmission mode of teaching to adopting the role of 

a facilitator in the learning process. 

5.5 SIGNIFICANCE OF THE STUDY 

The results of this study have contributed to the mathematical understanding of 

learners' solution strategies in the following way: 

• Firstly, the test was not only seen as a means of assessing learners, but as a 

tool that created opportunities for learning. The significance of this study lies 

in the methodology used and the analysis of solution strategies. 

• Secondly, the importance of seeing non-routine solution strategies being 

constructed by learners and teachers contributed to the study. 

• Thirdly, the significance of the study has infonned teacher practice in that it 

has promoted the idea of allowing learners to use their own solution strategies 

in the execution of any problem solving task. In this study, only one of the 

nine teachers demonstrated complete insight into all tasks. She understood and 

was able to articulate her thinking and provide correct solutions to all the tasks 

in the test. 

• Fourthly, this study has shown that through the efforts of outcomes-based 

teaching, learners are starting to work towards the outcome of 'constructing' 

156 



their own knowledge by interacting with the problems, together with their 

peers in the social environment. 

5.6 LIMITATIONS OF THE STUDY 

On reflection, there were numerous limitations and shortcomings in this study. 

• The limited use of grounded theory as a tool for analysis could be viewed as a 

limitation of this study. In hindsight, it could be argued that grounded theory 

only enabled me to analyse the various solution strategies to the level of open 

coding. I initially set out to use grounded theory to analyse solution strategies 

in more depth, but my data did not suit this strategy. 

• Another limitation I found was in the clinical interviews that I conducted. The 

limited information about the social construction of meaning and knowledge 

in the classroom environment was evident. I was not able to witness the 

learners working in groups, negotiating meaning with their peers and with the 

teacher. Nevertheless the clinical interviews continued to be a powerful tool to 

gain insight into the learners and teachers' construction of knowledge, their 

understanding and sense making. 

• A further shortcoming of this research was the small sample size. The solution 

strategies of only nine learners and nine teachers were analysed, although 341 

learners took part in the overall study. 

• Another limitation I saw was in the semi -structured teacher interview 

schedule. I should have asked teachers questions pertaining to the teaching and 

learning of problem solving. For example: questions such as whether they 

used the problem solving approach in their daily teaching, whether they knew 

anything about the problem-centred approach, and if there were any benefits to 

using such an approach should have been explored. 

• In hindsight, I also felt that some of the tasks in the test were not cognitively 

demanding enough. 
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5. 7 AVENUES FOR FUTURE RESEARCH 

The findings of this study suggest that a more in-depth longitudinal study into the 

development of solution strategies needs to be carried out in a range of schools from 

Grades 4 to grade 7. The RNCS document now being implemented has been made 

more explicit, which will hopefully allow teachers to set more demanding cognitive 

activities for their learners. As this study was located in a rural and semi-rural context, 

similar research needs to be conducted in urban areas. 

A further area where further research is needed is in the professional development of 

teachers, where they need to be trained in looking at strengthening the multiplicity of 

solution strategies that learners can use. Teachers need to become more experienced 

at being able to gain insight into what a learner has done and to give guidance as to 

how to refine the solution strategy used. 

Another avenue for research is an exploration of how teachers assist learners with 

misconceptions. Teachers need to acquire the skills to be able to help all learners in 

acquiring alternative solution strategies and to identify misconceptions and be able to 

deal with them. The approach with the learner should involve discussion, 

communication, reflection and negotiation. 

5.8 REFLECTION OF THE RESEARCH PROCESS 

The entire research process has been a fascinating and enriching experience. From the 

outset, when I formulated my research goals to the methodology I intended using, I 

was naive, as it all seemed so simple. However, I encountered many challenges with 

the methodology and reflecting back, I would now not choose grounded theory as a 

tool for analysing solution strategies. 

Administering the test to the learners made me realise the poor conditions under 

which some teachers have to work and learners have to learn. Some schools lacked 

basic equipment such as chairs and tables, while others had broken windows, no doors 

and few resource materials. My dismay at seeing teachers struggle with some of the 

tasks in the test is testimony to the amount of professional development and training 
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that is needed in our schools. I am of the opinion that this research will help teachers 

see the need to allow their learners to construct and use a variety of solution strategies 

when solving problems. Teachers will need to develop the insight and skills to help 

their learners refine inefficient strategies they use, and equip them and offer guidance 

where necessary. 

The analysis of the solution strategies I found difficult and fiustrating. I was 

disappointed in the low level of alternative strategies, which both teachers and 

learners used. The TIMSS Curriculum Frameworks, however, helped me categorise 

and deconstruct the solution strategies. 

I found the conducting of the clinical interviews to be a real challenge. Interviewing 

learners and teachers in their second language was difficult. Not being able to 

communicate exactly what they wanted to say often stifled some participants. 

Although I had an isiXhosa-speaking co-worker to assist me, many of the learners did 

not want to speak in their mother tongue and hence struggled to give precise 

descriptions. 

Notwithstanding the above, I have come to think more deeply about my own teaching 

and learning. My experience when working with teachers and learners has been to 

allow them to construct their own solution strategies, which may emerge as they solve 

tasks presented to them. I have also realised the importance of teaching learners to 

become computationally fluent and that both conceptual knowledge and conceptual 

understanding are integral aspects that need to be reinforced. 

5.9 CONCLUSION 

This qualitative study was situated in the interpretive paradigm and was underpinned 

by constructivism. As an empirical study, it was framed by the problem-centred 

approach. The TIMSS Curriculum Frameworks (McNeeley 1997) and aspects of 

grounded theory were used to analyse the solution strategies. 

The data used to answer the research goal in this study was collected using three 

instruments. The first instrument, a test, was used to gather the necessary information 
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concerning the different types of strategies exhibited by the learners and the teachers 

at a Grade 7 level. This instrument was also used to assess the learners' cognitive 

performance. This information was of importance to schools that took part, although it 

was not used for this study. Also included in the study was a semi-structured 

interview schedule on teachers' perceptions of the tasks. The third instrument was the 

clinical interviews conducted with nine learners and their mathematics teachers to 

gather information about the different strategies used and their understanding of the 

problems. Evidence obtained from the interviews and the test was analysed using 

aspects of grounded theory as a methodology and the TIMSS Curriculum Frameworks 

Document. Strategies were then analysed and a comparison was made between the 

strategies used by learners and their teachers. 

This study has shown that teaching one standard algorithm may not be very useful to 

learners, as it does not inspire logical mathematical thinking. It 'un-teaches' place 

value thereby preventing learners from developing number sense. One of the main 

findings of the study was that teachers appeared to place more emphasis on 

procedural understanding at the expense of solid conceptual understanding. The study 

has also shown that learners are capable of inventing and constructing their own 

solution strategies, provided teachers allow enough time and opportunities for learners 

to communicate their understanding and thinking to each other. Three avenues for 

further research have also been suggested. They are that a more in-depth longitudinal 

study be undertaken into the development of solution strategies in a range of schools, 

both rural and urban. Two other areas where research is needed is in the professional 

development of teachers, and exploring learners' misconceptions. 

This research study evolved like the unravelling of a tight ball of string. As the results 

of the TIMSS study were recognised and the challenges of designing problem solving 

tasks unfolded, so too has the meaningful exploration of solution strategies 

constructed by learners and teachers been disentangled. As a teacher using the 

problem-centred approach, I have made it a daily routine of mine to allow learners to 

struggle towards finding solutions to problems and I avoid providing rule-like 

procedures as much as possible. However, I do provide my learners with scaffolding 

to keep them interested in the problem and encourage them to look meaningfully at all 

tasks. 
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This study has shown that learners are quite capable and ingenuous enough to develop 

their own constructed solution strategies once they have understood and made sense 

of the mathematics involved and have learnt to 'mathematize.' 
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Appendix A 

TIMSS Curriculum Frameworks (McNeeley 1997) 
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Appendix A 

TIMSS Curriculum Frameworks (McNeeley 1997) 

Content Category: Functions 
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Appendix A 

TlMSS Curriculum Frameworks (McNeeley 1997) 

Content Category: Data Representation, Probability & Statistics 
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Appendix B RUMEP 

Igama: Iminyaka: 
Name: ..... ...... ..... .. ............. ..... ..... ..... .. ... .. .... ..... .. . . Age: ....... .. ............... .. .. . 

Igama likatitshalakazi: Umhla: 
Name of teacher: .... .. ................. ... ............ .. .... .. .. ....... Date : ..... .. ..................... .. 

Igama lesikolo: 
Name of school: ... .. .... ... .................. ........ .. ....... .................... .. . 

Intombi Iinkwenkwe 
Girl! Boy 
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Let us do these 2 examples together. 
Masenze Ie m izekelo mibini kunye. 

Show your working in the space provided. 
Wubonise umsebenzi wakho kulendawo kungabhalwanga kUyo. 

Example 1.1 Umzekelo 1 Working out! Bala apha 

How many minutes in 2 Y, hours? 

Mingaphi imizuzu kwiyure eziyi - 2 Y, ? 

A. 60 minutes I imizuzu 

B. 120 minutes I imizuzu 

C. 150 minutes I imizuzu 

D. 180 minutes I imizuzu 

Working out I Bala apha 
Example 2.1 Umzekelo 2 

Calculate I Bala: 

4 + (3 x 6) + 1 

A. 23 

B. 43 

C 32 

D. 90 
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Benchmarks for Grade 7 

Section/lcandelo 1. 

1. You multiply 3 by 5 and add 7 to the 
product. You get 22. 

Which number sentence represents 
this statement? 

Xa uphinda-phinde u 3 ngo 5 uze 
udibanise u 7 kwisiphumo eso 
ufumana u 22. 
Sesiphi isivakalisi samanani 
esibonisa oko kwezi zilandelayo. 

A. 5 x 3+7=22 

B. 3 x 5 - 7 = 22 

C. 5 x 3 x 7 = 22 

D. 5 (3+7) = 22 

2. These shapes are arranged in a 
pattern. 

Le mizobo ibekwe ngokohlobo 
eyahluke ngayo. 

0.0 0 •• 0 00 ..... 

Which line of shapes is arranged in the 
same pattern as the one shown 
above? 

Loluphi uludwe Iwemizobo ku le 
ilandelayo olubekwe ngohlobo olufana 
nolu luboniswe ngasentla ? 

A. _0_ 0 __ 0 0 __ 0 0 

B. 0 _ 0 0 _ 0 0 0 _ 0 0 0 0 

c. _ 0 __ 0 0 ___ 0 0 0 

D. DO __ 0 _ 0 0 __ 0 _ 

Working out I Bala apha 

Working out I Bala apha 
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3. A piece of wire 28 cm long is made 
into a rectangle. The width of this 

rectangle is 4 cm. What is its length? 

Ucingo olubude buyi 28 cm Iwenziwe 
uxande (rectangle). Ububanzi balo 
buyi 4 cm. Bungakanani ubude balo ? 

A. 6cm 

B. 8 cm 

C. 9 cm 

D. 10 cm 

4. Which of the following is the 
biggest decimal fraction? 

Leliphi elona qhezu likhulu kula 
alandelayo ? 

A. 0,19 

B. 0,9 

C. 0,091 

D. 0,109 

Working out I Bala apha 

Working ouUBala apha 
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5. Which of these angles has a size closest to 45°? 

Yeyiphi kwezi engile enomlinganiselo osondeleyo ku 45? 
ABC 

• 

A. 

B. 

C. 

D. 

6. In which list of fractions are all the 
fractions equivalent? 

Loluphi uluhlu Iwamaqhezu 
olunamaqhezu alinganayo ? 

A -1,...4,J). 
2 8 12 

B. 2, ...4 , JL 
5 7 15 

C. 2. Jl..R 
8 32 48 

D . .1 , J)., 1Q. 
2 12 50 

/ 

• • 

Working out I Bala apha 

o 
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7. A newspaper reported that about 
14 600 trees had been planted in a 
New township in Peddie. The 
number was rounded off to the 

nearest hundred. Which of these 
could have been the actual 
number of trees planted? 

Iphephandaba Iithi imithi eqikelelwa 
kwi 14600 iye yalinywa kwindawo 
yokuhlala entsha edolophini 
yase Ngqushwa. Eli nani libhalwe 
ngokwekhulu elisondele kulo 
(Rounded off to the nearest 
hundred). Ingaba ib ileliphi elona 
nani lemithi eye yatyalwa ? 

A. 14348 

B. 14672 

C 14463 

D. 14567 

8. What is the next number? 

Leliphi inani elilandelayo? 

1. 4. 8. 13. 

A. 16 

B. 17 

C. 18 

D. 19 

Working out I Bala apha 

Working out I Bala apha 
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9. Rectangle PQRS is divided into equal 
squares. 

Uxande (rectangle) u- PQRS lahlulwe 
lazizikwere ezilinganayo. 

This is one square unit 
Nasi esinye isikwere. 

P 

Q 

D 
s 

R 

The area of the triangle SQR is ... ........•......... 
square units. 

I-area ka nxantathu (triangle) u - SQR 
ingu ..... (square units) 

A. 2 

B. 5 

C. 8 

D. 10 

10. Monde is 11 years old. His age is 
a quarter of his father's. Howald 
is Monde's father? 

UMonde uneminyaka eyi 11. 
Iminyaka yakhe iyikota yeminyaka 
katata wakhe. Mdala kangakanani 
utata KaMonde? 

A. 22 yrs 

B. 33 yrs 

c. 44 yrs 

D. 50 yrs 

Working out / Bala apha 

Working out / Bala apha 
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11. Here are piles of tomatoes. How many tomatoes will be in row 5? 

Nalu isicuku seetumato. Zakubangaphi itumato eziya kuba kwindawo yesi - 5 ? 

o 
Row 1 Row 2 Row 3 

A. 14 

B. 15 

C. 16 

D. 20 

12. On one day the minimum temperature for 
Queenstown is -7" C and the maximum 
temperature is 17"C. By how much does 
the temperature rise? 

Kusuku olunye iqondo lobushushu 
baseKomani eliphantsi liba ngu -7 C , lize 
eliphezulu libe ngu 17 C. Bunyuke 
kangakanani ubushushu ? 

A. 20' 

B. 27' 

C. 24' 

D. 10' 

Row 4 

Working out I Bala apha 

Working out I Bala apha 
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13. The sum of 3 and 0 is equal to 12. 
What is the value of O? 

Xa kudifyaniswe u 3 nenani 
elisebhokisini isiphumo ngu 12. 
Ingaba ngubani inani elimelwe 
yibhokisi? 

A. 4 

B. 9 

C. 15 

D. 36 

14. 

I 
i 

I I 
I I 

I ! I I I I I ! , 
! 

I 2 3 4 5 6 
ern 

7 

I i I I I I 

8 

What is the length of the paper clip in the figure? 

Working out I Bala apha 

. . 
. . ... 

I 
I 

I I I I· I 

I 
9 10 11 

Bungakanani ubude besiqhoboshi-maphepha esikulo mzobo? 

A. 4 em 

B. 4,5 em 

C. 5em 

D. 12,5 em 
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15. 

Look at this group of shapes: 
Qwalasela eliqela lemizobo? 

Which shape below is included in this group? Why? 
KuJe mizobo ingezantsi ngowuphi ofakelwe kule ingentla ? Kutheni ? 

A. 

B. 

c. 

D. 
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Section Ilcandelo 2 

1. In the magic triangle all the numbers along each edge must add up to 90. 
Put all the numbers 20, 30, 50 and 60 in the circles to make totals correct. 
Kulo nxantathu umangalisayo onke amanani asemacalen i xa edityanisiwe 
kufuneka enze u-90. 
Fakela la manani u 20, 30, 50 kwakunye no 60 kwizangqa ezingenanto 
ukuze kuphume isiphumo esichanekileyo, ukutsho u-90. 

40 

Working out 
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2. 

2 /18 

3 ~ / ~ 27 

5~D~(b) 
(a) , 81 .---- '-----10 - '-----90 

2.1 Fill in the missing numbers in (a) 
and (b) 

Fakela amanani ashiyiweyo kwindawo 
eno (a) naku (b) 

3. 25 learners go on an outing to the 
beach. They each buy an ice·cream 
which costs R3,50. 
How much must they pay altogether? 

Abafundi abayi-25 banohambo oluya 
elwandle. Emnye kubo uthenga 
iayisiskhrim exabisa R3,50. Ingaba 
kufuneka bebhatele imalini xa imali 
yabo idityanisiwe ? 

Working out 

(a) 

(b) 

Working out 
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4. Calculate J Bala : 

;2 - 1 
4 3 

5. Look at the following two shapes. 

Khangela lemizobo mibini ilandelayo 

/ A 7 
What do we call shape A? 
Yintoni igama lomzobo ongu A 

What do we call shape B ? 
Yintoni igama lomzobo ongu B ? 

Working out 

B 

............ ... ... .. .. ... .... ....... ..... .... .... ... .... 

.... . ..... . .. . ...... . . ........ . .. ... . .. .. , ...... .... ... 

Write one thing which is the same about both shapes. 
Bhala into ibenye lemizobo efana ngayo. 
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6. Calculate! Bala : 

2806 + 8 

7. Half a cake is shared fairly between 
four children. What fraction of cake 
would each child get? 

Isiqingatha (ihafu) yekeyiki yahlulwe 
ngokulinganayo isahlulelwa abantwana 
a - 4. Ingaba leliphi iqhezu umntwana 
ngamnye ayakulifumana ? 

Working out 

Working out 
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8. Babalwa makes a graph of taxis passing her school in 1 hour. 

UBabalwa ubonakalisa igrafu yeeteksi ezigqitha esikolweni sakhe nge-yure enye. 

Ii!eksi ezidlulayo ngeyure enyel Taxis passing in one hour 

12 - - ------ ----.-----.. - J. «"-. -J 
f /,:" 

10 .... ...----------- - - ----\, .. "'. 1---
t ~." 

8 ~-. --- - - - ---------.- .---- - ' •. : '~~ -
I -,.,.~ ' .. ,J., '.L 

~--'. ~ -.. ,. 
6 -1-~:" 'or- - . , 

I • '. ':" ~ 
4 r- . -: :~.' -_. _--.-- .. --.- ~~:) '~,:. - ~~f.'~ - . 
2 -;-1- '. ' -f ..... '#.--,.-. ;] ---r~:~~: ------.---... ---~!?.,' C-
O . ~; • • :':.i<>.:~ _ _ _ ~,.,:, I . .L '~~:2L 

• I . 

NO.8 No.11 No. 27 No. 39 No. 50 

t3 Taxis 

1. How many times does taxi number 27 pass in 1 hour? 
Idlule kangaphi iTeksi engunombolo 27 ngeyure enye ? 

2. How many more number 8 taxis pass in the hour than number 11 taxis? 
Iteksi engunombolo 8 iyodlula kangakanani engu -11 ngeyure ? 

3. Babalwa says: Taxi number 39 passes least often in the hour. Explain how the 
graph shows this. 
UBabalwa uthi : iTeksi engu -39 yeyona idlula amathuba ambalwa ngeyure. 
Chaza ukuba igrafu iyibonakalisa njani Ie nto. 
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9. Thobeka obtains 45 marks out of a 
Total of 75 marks for a science test. 

Kumanqaku ayi -75 kwi-testi yeScience 
(nzululwazi), Uthobeka ufumana 
amanqaku ay -45. 

What was Thobeka 's percentage? 
Ingaba ayintoni amanqaku kaThobeka 
ekhulwini (%) ? 

10. If 4 packets of sugar together 
weigh 48 kg, how much does 
'13 of a packet of sugar weigh? 

Ukuba iipakethi zeswekile ezi 4 
zizonke zinobunzima obunggu 48 
kg, ingaba i -1 /3 yepakethi enye 
ibunzima bungakanani na ? 

Working out 

Working out 
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I 

11 . A pattern of triangles is made from matches. 
I-patheni yoonxantathu (triangles) yenziwe ngemicinga yematshisi. 

1\ 
~ ~ 

Lil 
~~!i 

3 matches make 1 triangle 
Emi - 3 yenza unxantathu 0-1 

5 matches make 2 triangles 
Emi - 5 yenza oonxantathu a - 2 

7 matches make 3 triangles 
Esi - 7 yenza oonxantathu a - 3 

How many matches do I need to make 5 triangles? 
Show how you worked this out. 
Kwakufuneka ndibenemicinga emingaphi ukuze ndenze oonxantathu a- 5. Bonisa 
indlela ofumene ngayo impendulo yakho ? 

Working out/Bala aoha. 

If I have 19 matches, how many triangles can I make? 
Show how you worked this out. 
Ukuba ndinemicinga e -19 , ndakukwenza onxantathu abangaphi? Bonisa indlela 
ofumene ngayo impendulo yakho ? 
Working out 

1 ___ _ -- ------- - ._--- -.. - ..... _- ---

I. 
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12. Mrs Khumalo has a bag of sweets 
to give to her grade 7 classes. She 
gives the first class 157 sweets, 
and the second class 248 sweets. 

She then has 35 sweets left in her 
bag. How many sweets were in her 
bag at the start? 

UNkosikazi Khumalo unengxowa 
yeelekese afuna ukuzinika abantwana 
bakhe bakwa grade 7. Unike iklasi 
yokuqala zayi 157, wanika eyesibini zayi 
248. Ushiyekelwe ngoku zilekese 
eziyi35 engxoweni yakhe. Bezingaphi 
iilekese zakhe engxoweni ekuqaleni ? 
Bonisa ukuba ubale njani . 

Working out 
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Appendix C 

Notes to the administrators/ field workers were as follows: 

• The benchmark activities are the property of RUMEP and no activity books will 

be left for the school or the class teacher. The administrator is responsible for 

handing out material, administering the benchmark test and collecting the booklets 

at the end. 

• The introduction, especially if the learners have not had any prior experience with 

multiple-choice questions, should take between 5-10 minutes. 

• The introductory section needs to be done thoroughly. 

• Check that each learner has circled the correct letter and not the answer. 

• Explain to the learners that if they make a mistake they are to cross out the 

incorrect answer and ring the correct one. Stress that no erasers are allowed. 

• There is only one correct answer; therefore indicate that two answers cannot be 

circled at the same time. 

• The multiple-choice section should take between 25-30 minutes and the long 

questions should take 40 - 50 minutes. 

• No calculators may be used. 

• Read all the tasks clearly to the learners. 

• All tasks are to be read twice. In the pilot study this was done in English only. 

During the actual study, tasks were translated and read once in English and once 

in the mother tongue. This enabled learners to return to the task (should they so 

wish) and read it again in either English or isiXhosa before attempting to answer 

it. 

• Allow enough time for individual learners to answer the test. Always be guided by 

the speed set by the learners themselves. Only move to the next task once each 

person has completed the work. 

• Learners are required to sit in rows and should cover their work while they are 

waiting for the next task to be read. 

• Stress that you want to see how the learners worked things out. Tell them to show 

all their working out in the space provided. You will have to continually tell them 

this and prevent them from writing on hands, desks and scraps of paper. 
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