
On the Safety of Nöcker’s Strictness Analysis

Manfred Schmidt-Schauß1, Marko Schütz2, and David Sabel1

1 Institut für Informatik, Johann Wolfgang Goethe-Universität, Postfach 11 19 32,
D-60054 Frankfurt, Germany,

schauss@ki.informatik.uni-frankfurt.de
2 Dept. of Mathematics and Computing Science, University of the South Pacific,

Suva, Fiji Islands

Technical Report Frank-19
Research group for Artificial Intelligence and Software Technology,

Institut für Informatik,
J.W.Goethe-Universität Frankfurt,

30.10.2004

Abstract. This paper proves correctness of Nöcker’s method of strict-
ness analysis, implemented for Clean, which is an effective way for strict-
ness analysis in lazy functional languages based on their operational
semantics. We improve upon the work of Clark, Hankin and Hunt,
which addresses correctness of the abstract reduction rules. Our method
also addresses the cycle detection rules, which are the main strength of
Nöcker’s strictness analysis.
We reformulate Nöcker’s strictness analysis algorithm in a higher-
order lambda-calculus with case, constructors, letrec, and a non-
deterministic choice operator ⊕ used as a union operator. Furthermore,
the calculus is expressive enough to represent abstract constants like Top

or Inf . The operational semantics is a small-step semantics and equality
of expressions is defined by a contextual semantics that observes ter-
mination of expressions. The correctness of several reductions is proved
using a context lemma and complete sets of forking and commuting dia-
grams. The proof is based mainly on an exact analysis of the lengths of
normal order reductions. However, there remains a small gap: Currently,
the proof for correctness of strictness analysis requires the conjecture
that our behavioral preorder is contained in the contextual preorder.
The proof is valid without referring to the conjecture, if no abstract
constants are used in the analysis.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14504558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

On the Safety of Nöcker’s Strictness Analysis . 1
Manfred Schmidt-Schauß, Marko Schütz, David Sabel
1 Introduction . 3
2 Related Work . 4
3 Overview . 5
4 Syntax of the Abstract Functional Core Language LRA 7
5 Normal Order Reduction . 14
6 Contextual Equivalence . 17

6.1 A Difference Between LR and an Untyped Core Language 18
7 Context Lemma . 19

7.1 Deterministic Reductions: Easy Cases . 20
7.2 The reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq) . . . 21
7.3 Monotonicity of choice-Reductions . 21
7.4 A Macro-Step (llet)-Reduction . 21

8 Complete Sets of Commuting and Forking Diagrams 22
9 Diagrams for (llet), (seq) and (cp) . 24

9.1 Equivalence of (llet) . 24
9.2 Equivalence of (seq) . 26
9.3 Correctness of (cp) . 27

10 Equivalence of Other Reductions and (case) . 30
10.1 Correctness of (gc) . 30
10.2 Equivalence of (cpx) . 33
10.3 Equivalence of the reduction rule (xch) . 34
10.4 Equivalence of (abs) . 35
10.5 Properties of (cpcx) . 36
10.6 Correctness of (case)-Reductions . 38
10.7 Summary of Properties . 39
10.8 Correctness of (ucp) . 39
10.9 Correctness of (abse) . 42
10.10Correctness of (cpax) . 42
10.11Correctness of (lwas) . 42
10.12Summary of Properties . 42

11 Simplifications . 43
11.1 A Convergent Rewrite System of Simplifications 43
11.2 Properties of Bot . 44
11.3 Another Definition of Contextual Equivalence 45
11.4 Strict Subexpressions . 46

12 Length of Normal Order Reduction . 47
12.1 Reductions lengths for (lll) and (gc) . 49
12.2 Reduction Length for (cpx)-, (cpax)- and (xch)-Reductions 52
12.3 Reduction Length for ucp-Reductions . 53

12.4 Reduction Length for (abs) . 54
12.5 Reduction Length for (lwas)-Reductions . 55
12.6 Using Diagrams for Internal Base Reductions 55
12.7 Base Reductions in Surface Contexts . 57
12.8 Reduction Length for (cpcx) . 59
12.9 Length of Normal Order Reductions for Concrete Expressions . . . 60
12.10Length of Normal Order Reduction in Concrete Terms Using

Strictness Optimization . 61
12.11Local Evaluation and Deep Subterms . 62

13 Contextual Least Upper Bounds . 64
14 Behavioral Preorder and Equivalence . 66

14.1 Variant of (case)-Rules . 66
14.2 Behavioral Preorder . 67
14.3 Iterative Deepening Evaluations . 68
14.4 Union Theorem . 71

15 Deterministic Subterms and Environments . 72
16 Abstract Terms . 76

16.1 Abstract Sets . 76
17 The Calculus for Strictness Detection . 79

17.1 Reductions on Abstract Terms . 79
17.2 Concretizations of ac-Labeled Terms . 81
17.3 Subset Relationship for Abstract Terms . 83

18 The Algorithm SAL . 83
18.1 Correspondence between Concrete and Abstract Terms 85

19 Correctness of Strictness Detection . 88
19.1 Main Theorems . 88

20 Examples . 89
21 Conclusion and Future Research . 92

1 Introduction

Strictness analysis is an essential phase when compiling programs in lazy func-
tional languages such as Haskell [Jon03] and Clean [PvE03]. Conservative parallel
evaluation and many optimizations become possible only with the information
gained in strictness analysis. There are different methods: e.g. ad-hoc strictness
optimizations in compilation schemes, strictness analysis based on abstract in-
terpretation, use of type systems, and strictness analysis based on operational
semantics.
A very effective way for strictness analysis in functional languages are algorithms
based on the operational semantics. Nöcker’s strictness analysis for Clean (see
[Nöc93]) is a prominent example. In their paper [CHH00] Clark, Hankin and
Hunt show correctness of the part of the algorithm that pushes the abstract val-
ues through the program using the operational semantics. However, this is only
part of the correctness. The cycle-detection rules are not considered. But these
are the very rules that account for much of the strength of Nöcker’s algorithm.

3

This paper extends the ideas on reduction length of normal order reductions for
a proof of a strictness analysis algorithm in [SSPS95].
We will reformulate Nöcker’s strictness analysis algorithm in a higher-order
lambda-calculus with case, constructors, letrec, constructors, seq and a non-
deterministic choice operator ⊕ used as a union operator. letrec can describe
recursive definitions and also explicitly treats the sharing inherent in lazy func-
tional languages. The choice-operator ⊕ serves in forming sets of expressions.
The main part of the proof is to exhibit the properties of the reduction rules
and other reductions, in particular their influence on the length of normal order
reduction of some expression. The induction is on the number of essential steps
of the (unique) normal order reduction of a given ⊕-free expression.
Let us consider two examples.
An expression f is called strict in argument i for arity n, iff the evaluation
starting with f t1 . . . ti−1 Bot ti+1 . . . , tn will never yield a weak head normal
form, where Bot represents terms without WHNF.
The first example is the combinator K with definition K x y = x, which is strict
in its first argument (for arity 2). This will be detected by Nöcker’s method as
follows: reducing K Bot Top gives Bot which indicates that K is indeed strict in
its first argument.
A nontrivial example is length with the following definition:

length = letrec len = \ lst a .
case lst of

Nil -> a;
y:ys -> len ys (a+1)

in len

Reducing length Top Bot using the rules of the calculus results either in Bot or
in an expression that is essentially the same as length Top Bot. Since the same
expression is generated, and at least one (essential) normal order reduction was
necessary, the strictness analysis algorithm concludes that the expression loops.
Summarizing, the answer will be that length is strict in its second argument.
Our proof justifies this reasoning by loop-detection, even in connection with
abstract values like Top or Inf. However, the syntax is slightly different from
Nöcker’s since usually there is a global letrec environment including all relevant
function definitions.

2 Related Work

Strictness analysis has been approached from many different perspec-
tives. These can roughly be characterized as based on abstract in-
terpretation (e.g. [BHA85,AH87,Bur91,CC77,Myc81,Wad87]), projec-
tions (e.g. [WH87,Pat96,LPJ96]), non-standard type systems (e.g.
[KM89,Jen98,GNN98,CDG02]) or abstract reduction ([Nöc92]). We will
be concerned with the latter and will only briefly comment on the other

4

approaches. For a detailed comparison of many of these approaches we refer to
[Pap98,Pap00].
In [Nöc92,Nöc93] Nöcker described a strictness analysis based on abstracting
the operational semantics of a non-strict functional programming language. This
strictness analysis is very appealing, both intuitively and pragmatically, but it
has proven theoretically challenging.
The key concept is to add new names for abstract constants, such as Bot for
all terms without WHNF, or > for all expressions, and appropriate (abstract)
reduction rules capturing their semantics. This analysis was implemented at least
twice: once by Nöcker in C for Concurrent Clean [NSvP91] and once by Schütz in
Haskell [Sch94]. As of Concurrent Clean version 2.1 Nöcker’s C-implementation
is still in use in the compiler. The analysis is not very expensive to implement,
runs quickly without large memory requirements and obtains good results.
Its drawback seems to be the slow progress in its theoretical foundation. Nöcker
[Nöc92] himself proved correctness of the analysis for orthogonal term rewrit-
ing systems only. In [SSPS95] we showed correctness of the analysis for a
supercombinator-based functional core language. In this exposition a treatment
of sharing and letrec was missing. Then Clark, Hankin and Hunt [CHH00]
proved correctness of a significant subset of the analysis, but did not consider
the loop-detection rules. Since the loop-detection rules may well be the most
important aspect of the strictness analysis by abstract reduction this paper pro-
vides a formal account of the analysis using a language with explicit sharing and
proving correctness for all of the rules of Nöcker’s algorithm.
Moran and Sands in [MS99] developed tools for the detailed analysis of reduction
lengths, unfortunately these cannot be used here, since only certain essential nor-
mal order reductions are relevant and counting the number of letrec-shufflings
is not appropriate for the proof of correctness of Nöcker’s strictness analysis.
Strictness analysis has numerous applications: optimizing the compilation of ex-
pressions, detecting possibilities for conservative parallel evaluation, and check-
ing preconditions for correct application of transformations in the compilation
process of lazy functional programming languages (see [San95,PJS94]).
This paper contributes to increase the applicability and trustworthiness of
Nöcker’s method and to provide foundations for its application e.g. in Haskell.

3 Overview

The goal of this paper is a reformulation and the proof of correctness of Nöcker-
type strictness analysis for non-strict functional programming languages. Since
the actions of the algorithm rely on the small-step operational semantics of a
functional core language LRA, we use the operational semantics and an equality
based on contextual preorder. An appropriate tool for proving the correctness
of the cycle detection rules of Nöcker’s algorithm is the length of a normal
order reduction. The domains commonly used in the literature on denotational
semantics do not provide such an operational measure. We could have developed

5

appropriate tools based on a non-standard denotational semantics, but felt the
operational approach to be more intuitive.
The paper has three main parts:

1. a description of the language and the normal order reduction (sections 4 –
6).

2. a detailed analysis of the properties of contextual equivalence and of the
length of normal order reduction sequences (sections 7 – 15)

3. a description of the strictness analysis algorithm, its data structures and a
proof of its correctness (sections 16 – 19).

The first part is concerned with describing the calculus for a call-by-need func-
tional core language using sharing and investigating equivalences and lengths of
normal order reductions. The calculus is extended by a non-deterministic choice-
primitive ⊕ that is used to describe (infinite) sets of expressions, and since the
core language permits letrecs, it is possible to encode abstract constants like >
or Inf in the extended core language LRA. (Non-deterministic) reduction allows
extracting the elements from these sets.
The core language provides letrec, the usual primitives like a weakly typed
case, constructors, lambda, application, and seq, since programs in Clean or
Haskell often use a seq or a similar primitive which would otherwise not be
representable in the core language. The core language and the first treatment is
borrowed mainly from [SS03], since this choice appears to be the very natural way
for proving all the required equivalences. The case-primitive is slightly changed
insofar as it is typed, which has to be complemented by the addition of a seq
in order to have the same expressiveness. The typing makes the language more
similar in behavior to a typed functional programming language (see Example
6.4).
Contrary to Moran, Sands and Carlsson [MSC99] we allow arguments other than
variables. Their restriction is fine for working with an abstract machine, also for
most of the proofs of equivalences, but awkward in proofs of the properties
of behavioral preorder and behavioral equivalence. The results in this paper
show this restriction on the term structure to be irrelevant for the main length
measure.
The reduction rules for the language LRA are defined without constraints, the
normal order reduction is then defined as a specific strategy uniquely determining
the next sub-expression for reduction. The non-determinism comes only from the
non-deterministic (choice) rule. The contextual equivalence is defined as usual
where the only observation is successful termination of the evaluation of an
expression.
We show that contextual equivalence is stable w.r.t. all deterministic reduction
rules. In this we employ a context lemma and the computing of overlappings of
rules leading to complete sets of commuting and forking diagrams . Our main
tool is induction. The measure is essentially the length of normal order reduc-
tion sequences. For technical reasons we need to provide several measures each
counting a specific set of reduction rules occurring in the normal order reduc-

6

tion sequence. We then study how these measures are affected by normal order
reducing a ⊕-free expression.
The algorithm SAL is a reformulation of Nöcker’s algorithm. It uses the knowl-
edge of already computed strictness of functions. The main data structure is
a directed graph of expressions, where the directed edges correspond to reduc-
tions or to cycle-checks. The expressions in the graph represent sets of terms in
the (concrete, i.e. ⊕-free) core language, and the reductions either modify the
abstract expressions, or if a ⊕ pops up and has to be reduced, the case anal-
ysis leads to a forking in the graph. This leads to a concise representation of
unions, and it indicates that the directed graph is more appropriate to check the
termination conditions.
The conditions on successful termination of SAL give new insights into the nature
of the algorithm. In fact SAL is a non-termination checker for a an infinite set
of concretizations described by an abstract expression. The proof justifies the
intuition that certain reductions (normal order and reductions at strict position)
make progress, whereas this is not true for several other reductions.
The correctness proof of SAL (Theorem 19.1 and Corollaries 19.3, 19.2) relies
on arguments on the number of essential normal order reduction steps of ex-
pressions after reductions and transformations. It requires the union-theorem
stating that the execution of a choice-reduction corresponds to the union of the
concretizations. A further base is a theorem on the correctness of copying parts
of a term that are deterministic.
The correctness proof of the strictness analysis algorithm also requires a con-
jecture (14.5) on the containment of our behavioral preorder in the contextual
preorder. Our behavioral preorder is a generalization of the behavioral preorder
for deterministic lambda calculi. The correctness proof is valid without the con-
jecture if no abstract constants like > are used (see Corollary 19.4 and 19.5).
A proof of the conjecture is possible, if Howe’s proof method can be used also
for non-deterministic calculi. A first adaptation for a non-deterministic calculus,
but without a case, without constructors, and with a non-recursive let was
successful [Man04]. The conjecture is used in Proposition 14.6, Proposition 16.6,
and finally via the Proposition 16.6 also in the theorems and corollaries in section
19.1. We are optimistic that this gap can be closed in the near future.

4 Syntax of the Abstract Functional Core Language LRA

Our language, LRA, has the following syntax:
There are finitely many constants, called constructors. The set of constructors is
partitioned into (nonempty) types. For every type T we denote the constructors
as cT,i, i = 1, . . . , |T |. Every constructor has an arity ar(cT,i) ≥ 0.
The syntax for expressions E, case alternatives Alt and patterns Pat is as follows:

7

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt|T |) | (E1 E2)
(E1 ⊕ E2) | (λ V.E) | (letrec V1 = E1, . . . Vn = En in E)

Alt ::= (Pat → E)
Pat ::= (c V1 . . . Var(c))

where E,Ei are expressions, V, Vi are variables and where c denotes a con-
structor. Within each individual pattern variables are not repeated. In a case-
expression, for every constructor cT,i, i = 1, . . . , |T | of type T , there is ex-
actly one alternative with a pattern of the form (cT,i y1 . . . yn). The expressions
(c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . AltN) | (E1 E2) | (λV.E) |
(letrec V1 = E1, . . . Vn = En in E), (E1⊕E2) are called constructor application,
seq-expression, case-expression, application, abstraction, letrec-expression, or
⊕-expression respectively.
The constructs case, seq, ⊕ and the constructors cT,i can only occur in special
syntactic constructions. Thus expressions where case, seq, ⊕ or a constructor
is applied to the wrong number of arguments are not allowed.
The structure letrec obeys the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are commu-
tative, i.e. letrecs with interchanged bindings are assumed to be syntactically
equivalent. letrec is recursive: I.e., the scope of xj in (letrec x1 = E1, . . . xj =
Ej , . . . in E) is E and all expressions Ei. This fixes the notion of closed, open
expressions and α-renamings. For simplicity we use the distinct variable conven-
tion. I.e., all bound variables in expressions are assumed to be distinct, and free
variables are distinct from bound variables. The reduction rules are assumed to
implicitly rename bound variables in the result by α-renaming if necessary to
obey this convention. Note that this is only necessary for the copy rule (cp).
We also use the convention to omit parentheses in denoting nested applications:
(s1 . . . sn) denotes (. . . (s1 s2) . . . sn).

Definition 4.1. (concrete language)
We define the concrete language, LR, as the fragment of the language without
⊕-expressions. The corresponding terms are also called concrete terms.

To abbreviate the notation, we will sometimes use (caseT E alts) instead of
(caseT E Alt1 . . . Alt|T |). Sometimes we abbreviate the notation of letrec-
expression (letrec x1 = E1, . . . xn = En in E), as (letrec Env in E), where
Env ≡ {x1 = E1, . . . xn = En}. This will also be used freely for parts of the bind-
ings. We assume that letrec-expressions have at least one binding. The set of
bound variables in an environment Env is denoted as LV (Env). In examples we
will use : as an infix binary list-constructor, and Nil as the constant constructor
for lists.
In the following we define different context classes and contexts, where we use a
different text style for context classes and individual contexts.

8

Definition 4.2. The class C of all contexts is defined as follows.

C ::= [·] | (C E) | (E C) | (seq E C) | (seq C E) | λx.C
| (caseT C alts) | (caseT E Alt1, . . . , (Pat → C), . . . , Altn)
| (c E1 . . . Ei−1 C Ei+1 . . . Ear(c))
| (C ⊕ E) | (E ⊕ C) |
| (letrec x1 = E1, . . . , xn = En in C)
| (letrec x1 = E1, . . . , xi−1 = Ei−1, xi = C, xi+1 = Ei+1, . . . , xn = En in E)

The main depth of a context C is the depth of the hole in the context C.

Definition 4.3. The following special context classes are defined: Reduction
contexts R, and weak reduction contexts
R−, the latter has no letrec-expressions above the hole. The former achieves
nesting by referencing bound variables from inside weak reduction contexts.

R− ::= [·] | (R− E) | (caseT R− alts) | (seq R− E)
R ::= R−| (letrec Env in R−) |

(letrec x1 = R−1 , x2 = R−2 [x1], . . . , xj = R−j [xj−1],Env in R−[xj])
where j ≥ 1 and R−,R−i , i = 1, . . . , j are weak reduction contexts

For a term t with t = R−[t0], we say R− is maximal (for t), iff there is no larger
weak reduction context with this property. For a term t with t = C[t0], we say C
is a maximal reduction context iff C is either

– a maximal weak reduction context, or
– of the form (letrec x1 = E1, . . . , xn = En in R−) where R− is a maximal

weak reduction context and t0 6= xj for all j = 1, . . . , n, or
– of the form (letrec x1 = R−

1 , x2 = R−
2 [x1], . . . , xj =

R−
j [xj−1], . . . in R−[xj]), where R−

i , i = 1, . . . , j are weak reduction
contexts and R−

1 is a maximal weak reduction context for R−
1 [t0], and the

index j of involved bindings is maximal.

Searching for a maximal reduction context can be seen as an algorithm walking
over the term structure. In implementations of functional programming this is
usually called “unwind” (see also section 5).
For example the maximal reduction context of (letrec x2 = λx.x, x1 =
x2 x1 in x1) is (letrec x2 = [·], x1 = x2 x1 in x1), in contrast to the non-
maximal reduction context (letrec x2 = λx.x, x1 = x2 x1 in [·]).

Definition 4.4. We define surface contexts, meaning that the hole is not in the
body of an abstraction. Let S be the context class of surface contexts defined as

9

follows:

S ::= [·] | (S E) | (E S)
| (caseT S alts) | (caseT E . . . (p→ S) . . .)
| (c E1 . . . Ei−1 S Ei+1 . . . Ear(c))
| (seq S E) | (seq E S)
| (S ⊕ E) | (E ⊕ S)
| (letrec Env in S) | (letrec . . . , xi = S,Env in E)

Note that every reduction context is also a surface context.

Definition 4.5. We define application surface contexts, meaning that the hole
is not in the body of an abstraction and not in the alternatives of a case. Let AS
be the context class of application surface contexts defined as follows:

AS ::= [·] | (AS E) | (E AS)
| (caseT AS alts)
| (c E1 . . . Ei−1 AS Ei+1 . . . Ear(c))
| (seq AS E) | (seq E AS)
| (AS ⊕ E) | (E ⊕AS)
| (letrec Env in AS) | (letrec Env , xi = AS, . . . in E)

Definition 4.6. Let AS−(1) be the context class of weak application surface con-
texts of main depth 1, which are application surface contexts with a hole not
below a letrec:

AS−(1) ::= ([·] E) | (E [·]) | (c E1 . . . Ei−1 [·] Ei+1 . . . Ear(c))

| (caseT [·] alts) | (seq [·] E) | (seq E [·]) | ([·] ⊕ E) | (E ⊕ [·])

Sometimes we will also use multicontexts, which are like contexts, but have sev-
eral holes ·i, and every hole occurs exactly once in the term. We write a multi-
context as C[·1, . . . , ·n], and if the terms si for i = 1, . . . , n are plugged into the
holes ·i, then we denote the resulting term as C[s1, . . . , sn].

Definition 4.7. A value is either an abstraction, or a constructor application.
We denote values by the letters v, w.

Definition 4.8. The (base) reduction rules for the language LRA are defined in
figures 1 and 2. The union of (llet-in) and (llet-e) is called (llet), the union of the
rules (choice-l) and (choice-r) is called (choice), the union of (case-c), (case-in),
(case-e) is called (case), the union of (seq-c), (seq-in), (seq-e) is called (seq), the
union of (cp-in) and (cp-e) is called (cp), and the union of (llet), (lcase), (lapp)
(lseq), is called (lll).
The specializations of (seq), (case), (cp) where the C-context is restricted to a
surface context, is denoted as (seqS), (caseS), (cpS).

10

Reductions are denoted using an arrow with super and/or subscripts: e.g. llet−−→.
To explicitly state the context in which a particular reduction is executed we
annotate the reduction arrow with the context in which the reduction takes place.
If no confusion arises, we omit the context at the arrow.
The redex of a reduction is the term as given on the left side of a reduction rule.
We will also speak of the inner redex, which is the modified case-expression
for (case)-reductions, the modified seq-expression for (seq)-reductions, and the
variable position which is replaced by a (cp). Otherwise it is the same as the
redex.
Transitive closure of reductions is denoted by a +, reflexive transitive closure by
a ∗. E.g. ∗−→ is the reflexive, transitive closure of→. If necessary, we attach more
information to the arrow.

(lbeta) ((λx.s) r)→ (letrec x = r in s)
(cp-in) (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env in C[xm])

→ (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env in C[v])
where v is an abstraction

(cp-e) (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env , y = C[xm] in r)
→ (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env , y = C[v] in r)

where v is an abstraction
(llet-in) (letrec x1 = s1, . . . , xn = sn in (letrec y1 = t1, . . . , ym = tm in r))

→ (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)
(llet-e) (letrec x1 = s1, . . . , xi =

(letrec y1 = t1, . . . , ym = tm in si), . . . , xn = sn in r)
→ (letrec x1 = s1, . . . , xi = si, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)

(lapp) ((letrec Env in t) x)→ (letrec Env in (t x))
(lcase) (caseT (letrec Env in t) alts)→ (letrec Env in (caseT t alts))
(seq-c) (seq v t)→ t if v is a value
(seq-in) (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env in C[(seq xm t)])

→ (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env in C[t])
if v is a value

(seq-e) (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env , y = C[(seq xm t)] in r)
→ (letrec x1 = v, x2 = x1, . . . , xm = xm−1,Env , y = C[t] in r)

if v is a value
(lseq) (seq (letrec Env in s) t)→ (letrec Env in (seq s t))
(choice-l) (s⊕ t)→ s
(choice-r) (s⊕ t)→ t

Fig. 1. Reduction rules, part a

Note that the reduction rules generate only syntactically correct expressions,
since the context definitions are made in an appropriate way.

Remark 4.9. The case-rule looks a bit weird, but it is carefully designed and we
made all possibilities explicit. If a case-expression of the form case x ... is to

11

be evaluated, then the case and constructor application must cooperate. It is not
possible to copy every constructor application into the position of x, since it may
contain choice-expressions. A possibility is to use a rule (abs) that abstracts the
terms in the constructor application. However, including the rule (abs) into the
calculus provides a very hard obstacle in proving that all deterministic reductions
are correct program transformations. The current definition of (case) is borrowed
from FUNDIO [SS03].

12

(case-c) (case (ci t1 . . . tn) . . . ((ci y1 . . . yn)→ t) . . .)
→ (letrec y1 = t1 . . . yn = tn in t)

where n = ar(ci) ≥ 1
(case-c) for the case ar(ci) = 0

(case ci . . . (ci → t) . . .)→ t
(case-in) letrec x1 = (ci t1 . . . tn), where n = ar(ci) ≥ 1

x2 = x1, . . . xm = xm−1, . . .
in C[case xm . . . ((ci z1 . . . zn) . . .→ t)]
−→
letrec x1 = (ci y1 . . . yn), y1 = t1, . . . yn = tn,

x2 = x1, . . . xm = xm−1, . . .
in C[(letrec z1 = y1, . . . , zn = yn in t)]
where yi are fresh variables

(case-in) for the case ar(ci) = 0
letrec x1 = ci, x2 = x1, . . . xm = xm−1, . . .
in C[case xm . . . (ci → t) . . .]
−→
letrec x1 = ci, x2 = x1, . . . xm = xm−1, . . .
in C[t]

(case-e) letrec x1 = (ci t1 . . . tn), where n = ar(ci) ≥ 1
x2 = x1, . . . xm = xm−1, . . .
u = C[case xm . . . ((ci z1 . . . zn)→ r1) . . .]

in r2

−→
letrec x1 = (ci y1 . . . yn), y1 = t1, . . . yn = tn,

x2 = x1, . . . xm = xm−1, . . .
u = C[(letrec z1 = y1, . . . , zn = yn in r1)]

in r2

where yi are fresh variables
(case-e) for the case ar(ci) = 0

letrec x1 = ci, x2 = x1, . . . xm = xm−1, . . .
u = C[case xm . . . (ci → r1) . . .]

in r2

−→
letrec x1 = ci, x2 = x1, . . . xm = xm−1, . . .

u = C[r1]
in r2

Fig. 2. Reduction rules, part b

13

5 Normal Order Reduction

First we will informally describe how the position of the normal order redex can
be reached by using a labeling algorithm. Then we will rigidly define the normal
order reduction in definition 5.1.
The following labeling algorithm will detect the position where the normal order
reduction will start evaluation by applying a reduction rule. Use three labels:
e0, e1, e, where e0 means evaluation of the top term, e1 means evaluation of a
subterm, and e may be e0 as well as e1. The label e1 prevents going deeper into
letrec-expressions. For a term s the labeling algorithm starts with se0

The labeling algorithm:

(letrec Env in t)e0 → (letrec Env in te1)
(s t)e → (se1 t)
(seq s t)e → (seq se1 t)
(case s alts)e → (case se1 alts)
(letrec x = s,Env in C[xe1]) → (letrec x = se1,Env in C[x])
(letrec x = s, y = C[xe1],Env in t)→ (letrec x = se1, y = C[x],Env in t)

If the labeling algorithm terminates, i.e. it is no longer possible to apply a rule,
then the normal order redex may only be the marked subterm or the direct su-
perterm. It is possible that there is no normal order reduction: In this case either
the evaluation is already finished, or it can be viewed as a kind of dynamically
detected error. If the labeling algorithm does not terminate, then there is no
normal order redex and hence no normal order reduction.

Definition 5.1. Let t be an expression. Let R be the maximal reduction context
such that t ≡ R[t′] for some t′. The normal order reduction n−→ is defined by one
of the following cases:

1. t′ is a letrec-expression (letrec Env1 in t′′), and R is not trivial.
Then there are 5 cases, where R0 is a reduction context:

(a) R = R0[(seq [·] r)]. Reduce (seq t′ r) using (lseq).
(b) R = R0[([·] x)]. Reduce (t′ x) using (lapp).
(c) R = R0[(caseT [·] alts)]. Reduce (caseT t′ alts) using (lcase).
(d) R = (letrec Env2 in [·]). Reduce t using (llet-in) by flattening t′ re-

sulting in (letrec Env1,Env2 in t′′).
(e) R = (letrec x = [·],Env2 in t′′′). Reduce t using (llet-e) by flattening

t′ resulting in (letrec x = t′′,Env1,Env2 in t′′′).

2. t′ is a value. There are the following cases:
(a) R = R0[caseT [·] . . .], t′ is a constructor application, and the top con-

structor of t′ belongs to type T . Then apply (case-c) to (caseT t′ . . .),
(b)

14

i. We have

R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env
in R−

0 [caseT xm (c y1 . . . yn → r) alts],

t′ = c t1 . . . tn, and the top constructor c belongs to T .
Then apply (case-in) resulting in

letrec x1 = c z1 . . . zn, x2 = x1, . . . , xm = xm−1, z1 = t1, . . . , zn = tn,Env
in R−

0 [(letrec y1 = z1, . . . , yn = zn in r)]

ii. We have

R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env
in R−

0 [caseT xm (c→ r) alts],

t′ = c, and the top constructor c belongs to T .
Then apply (case-in) resulting in

letrec x1 = c, x2 = x1, . . . , xm = xm−1,Env
in R−

0 [r]

(c)
i. We have

R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env
y = R−

0 [caseT xm (c y1 . . . yn → r) alts] in r′,

t′ = c t1 . . . tn, the top constructor c belongs to T , and y is in a
reduction context.
Then apply (case-e) resulting in

letrec x1 = c z1 . . . zn, x2 = x1, . . . , xm = xm−1, z1 = t1, . . . , zn = tn,
Env , y = R−

0 [(letrec y1 = z1, . . . , yn = zn in r)] in r′

ii. We have

R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env
y = R−

0 [caseT xm (c→ r) alts] in r′,

t′ = c, the top constructor c belongs to T , and y is in a reduction
context.
Then apply (case-e) resulting in

letrec x1 = c, x2 = x1, . . . , xm = xm−1,
Env , y = R−

0 [r] in r′

(d) R = R0[([·] s)] where R0 is a reduction context and t′ is an abstraction.
Then apply (lbeta) to (t′ s).

15

(e) R = (letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env in R−
0 [xm]) where

R−
0 is a weak reduction context and t′ is an abstraction. Then apply

(cp-in) and copy t′ to the indicated position, resulting in (letrec x1 =
[·], x2 = x1, . . . , xm = xm−1,Env in R−

0 [t′]).
(f) R = (letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env , y = R−

0 [xm] in r)
where R−

0 is a weak reduction context, y is in a reduction context and t′

is an abstraction. Then apply (cp-e) resulting in (letrec x1 = [·], x2 =
x1, . . . , xm = xm−1,Env , y = R−

0 [t′] in r).
(g) R = R0[(seq [·] r)]. Then apply (seq-c) to (seq t′ r) resulting in r.
(h) R = (letrec x1 = [·], x2 = x1, . . . , xm =

xm−1,Env in R−
0 [(seq xm r)]), and t′ is a constructor application.

Then apply (seq-in) resulting in (letrec x1 = t′, x2 = x1, . . . , xm =
xm−1,Env in R−

0 [r]).
(i) R = (letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env , y =

R−
0 [(seq xm r)] in r′) where y is in a reduction context, and t′ is a

constructor application. Then apply (seq-e) resulting in (letrec x1 =
t′, x2 = x1, . . . , xm = xm−1,Env , y = R−

0 [r] in r′).

3. t′ is a ⊕-expression. Then apply (choice-r) or (choice-l) to t′.

The normal order redex is defined as the subexpression to which the reduction
rule is applied. This includes the letrec-expression that is mentioned in the
reduction rules, for example in (cp-e).

The normal order reduction implies that seq behaves like a function strict in its
first argument, and that the case-construct is strict in its first argument. I.e.,
these rules can only be applied if the corresponding argument is a value.
The notion of weak head normal form will be required.

Definition 5.2. A weak head normal form (WHNF) is one of the two cases:

– A value v.
– A term of the form (letrec Env in v), where v is a value.
– A term of the form (letrec x1 = c t1 . . . tar(c), x2 = x1, . . . xm =

xm−1,Env in xm)

Lemma 5.3. For every term t:
if t has a normal order redex, then this redex is unique.
If the normal order redex is not a ⊕-expression, then the normal order reduction
is unique.

Definition 5.4. For a term t, we write t⇓ iff there is a normal order reduction
sequence to WHNF starting from t. Otherwise, we write t⇑. If t⇓, we say that t
is terminating.
The set of terminating normal order reductions of an expression t is denoted as
nor(t).

16

For a term t, we write t⇑⇑, if t has no normal order reduction to a WHNF, and
no normal order reduction to a term of the form R[x] where x is a free variable
in R[x], and R is a reduction context. A term t with t⇑⇑ is also called bot-term,
and a specific representative is abbreviated as Bot.

Note that there are useful open terms t that might not have any normal order
reduction to a WHNF, e.g. x is such a term.
Note also that there are (closed) terms t that are neither WHNFs nor have
a normal order redex. For example (caseT (λx.x) Alts) or ((cons 1 2) 3),
where cons is a constructor of arity 2. These terms are bot-terms and could be
considered as violating type conditions.
Consider the closed “cyclic term” (letrec x = x in x). The maximal reduction
context for this term is (letrec x = [·] in x). It is easily seen that there is no
normal order reduction defined for this term.
A term that has a non-terminating normal order reduction is (letrec z =
λx.x x in (z z)); the start of the infinite reduction being (letrec z =

λx.x x in (z z))
n,cp−−−→ (letrec z = λx.x x in ((λx.x x) z))

n,lbeta−−−−→ (letrec z =

λx.x x in (letrec x1 = z in (x1 x1)))
n,llet−−−→ (letrec z = λx.x x, x1 =

z in (x1 x1)).

6 Contextual Equivalence

We define contextual equivalence w.r.t. terminating normal order reduction se-
quences.

Definition 6.1. (contextual preorder and equivalence) Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]⇓ ⇒ C[t]⇓.
s ∼c t iff s ≤c t ∧ t ≤c s

Note that we permit contexts such that C[s] may be an open term.
Later in Proposition 11.6 we will show that s ≤c t is equivalent to:

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)

A precongruence ≤c is a preorder on expressions, such that s ≤c t⇒ C[s] ≤c C[t]
for all contexts C. A congruence is a precongruence that is also an equivalence
relation.

Proposition 6.2. ≤c is a precongruence, and ∼c is a congruence.

Proof. Let s ≤c t, t ≤c r, let C be a context such that C[s]⇓. Then C[t]⇓. Since
t ≤c r, we have also C[r]⇓.
Hence s ≤c r.

17

To show the congruence property, let s ≤c t and let C be a context. To show
C[s] ≤c C[t], let D be a further context. If D[C[s]]⇓, we can use the context DC
for s ≤c t, and see that D[C[t]]⇓.
This shows C[s] ≤c C[t]. ut

We define strictness of functions and expressions consistent with the notion from
denotational semantics.

Definition 6.3. An expression s is strict, iff (s Bot) ∼c Bot.
An expression s is strict in the ith argument for arity n, iff 1 ≤ i ≤ n and for
all closed expressions t1, . . . , ti−1, ti+1, . . . tn:
(s t1 . . . ti−1 Bot ti+1 . . . tn) ∼c Bot.
An expression s is strict in the subexpression s0, iff for the term s′ that is
constructed from s by replacing s0 by Bot, we have s′ ∼c Bot.
Here we mean by subexpression also the position within the superterm.

Knowing strictness of functions and strict subterms of terms helps to rearrange
evaluation and is thus of importance for optimizations and parallelization of
programs.

6.1 A Difference Between LR and an Untyped Core Language

Example 6.4. This example shows that the language LR is closer to a polymor-
phically typed language like Haskell and Clean than a functional core language
without types. So assume for this example, that there is a core language CFP
without types, but with letrecs, constructors, and abstractions. The language
CFP has only one case-construct: there are alternatives for every constructor,
and also either a default alternative, or an alternative for abstractions. Note that
seq can be defined in CFP.
Now define the following functions:
s0 = \f -> if (f True) then (if (f Nil) then Bot else True)

else Bot
t0 = \f -> if (f Nil) then (if (f True) then Bot else False)

else Bot
We claim that s0, t0 cannot be distinguished in LR, since (f True) and (f Nil)
can not result in different (terminating) Boolean values. If a function f outputs
different values for the inputs True and Nil, then there must be an evaluation
of a case-expression scrutinizing the inputs. But then one of the results must
be ⊥, since case is typed. That this reasoning implies s0 ∼c t0 can be derived
from the conjecture 14.5.
The expressions s0, t0 can be distinguished in CFP, since it is easy to define a
function f as follows: The top level is a case having alternatives for all construc-
tors, for True it yields True, and for Nil it yields False. Applying s0, t0 to the
function f gives different results.

This means that the reason for the difference between the languages LR and CFP
is only the restricted typing. The reason is that typing restricts the number of
contexts in LR in contrast to CFP.

18

7 Context Lemma

The Context Lemma restricts the criterion for contextual equivalence to reduc-
tion contexts. This is of great value in proving the conservation of contextual
equivalence by certain reductions, since there is no need to introduce parallel
reductions like Barendregt’s 1-reduction [Bar84]

Lemma 7.1. Let s, t be terms. If for all reduction contexts R (R[s]⇓ ⇒ R[t]⇓),
then ∀C : (C[s]⇓ ⇒ C[t]⇓); I.e. s ≤c t.

Proof. In this proof we will use multicontexts, which are generalizations of con-
texts having several holes, and every occurrence of a hole is mentioned in the
argument list of the multicontext.
We prove the more general claim:

For i = 1, . . . , n, let si, ti be expressions. Let the following hold:
∀i : ∀ reduction contexts R: (R[si]⇓ ⇒ R[ti]⇓).
Then ∀C : C[s1, . . . , sn]⇓ ⇒ C[t1, . . . , tn]⇓.

Assume the claim is false. Then there is a counterexample. I.e., there is a mul-
ticontext C, a number n ≥ 1 and terms si, ti for i = 1, . . . , n, such that ∀i : ∀
reduction contexts R: (R[si]⇓ ⇒ R[ti]⇓), and C[s1, . . . , sn]⇓, but C[t1, . . . , tn]⇑.
We select the counterexample minimal w.r.t. the following lexicographic order-
ing:

1. the number of normal order reduction steps of a shortest terminating normal
order reduction of C[s1, . . . , sn].

2. the number of holes of C.

Either some hole of C[·1, . . . , ·n] is in a reduction context or no hole is in a
reduction context. The definition of reduction contexts and some easy reasoning
shows that the unwind applied to C[·1, . . . , ·n] either arrives at some hole, or
does not arrive at a hole, and moreover, that this is not affected by filling the
holes.

If one hole of C[·1, . . . , ·n] is in a reduction context, then we assume wlog that
it is the first one.
Then C[·, t2 . . . , tn] is a reduction context. Let C ′ := C[s1, ·2, . . . , ·n]. Since
C ′[s2, . . . , sn] ≡ C[s1, . . . , sn], these expressions have the same normal order
reduction. Since the number of holes is smaller, we obtain C ′[t2, . . . , tn]⇓, which
means C[s1, t2, . . . , tn]⇓. Since C[·, t2, . . . , tn] is a reduction context, the precon-
ditions of the lemma applied to s1, t1 imply C[t1, t2, . . . , tn]⇓, a contradiction.

If no hole of C[·1, . . . , ·n] is in a reduction context, then the first normal order
reduction step C[s1, . . . , sn] n−→ C ′[s′1, . . . , s

′
m] can also be used for C[t1, . . . , tn]

giving C ′[t′1, . . . , t
′
m], where for every i : ρi,j(sj , tj) = (s′i, t

′
i) for some variable

renaming ρi,j and some j. To verify this, we have to check that for a normal
order redex, the parts that are modified are also in a reduction context.

19

– in a (cp) normal order reduction, every superterm of the to-variable position
is in a reduction context.

– For normal order reductions (llet), (lapp), (lcase), (lseq), the inner letrec is
in a reduction context.

– The constructor application used in a (case) is in a reduction context.

The following may happen to the terms si, ti in the holes:

– If the hole is in an alternative of a (case)-expression that is discarded by
the reduction, or in the expressions that is removed by a reduction (choice),
then the hole, and hence si as well as ti, is eliminated after reduction.

– If the hole is not eliminated, and if the reduction is not a (cp), then the
terms si, ti in the holes are unchanged and also not copied, but both may
appear at a different position in the resulting expression.

– If the reduction is a (cp), and the hole is not in the copied expression, then
again the terms si, ti in the holes are unchanged and also not copied.

– If the reduction is a (cp), and the hole is within the copied expression, then
the terms si, ti in the holes may be duplicated giving s′i, t

′
i. Since the reduc-

tion is a normal order reduction, and since we have assumed the “distinct
bound variable convention”, the renaming concerns the free variables in si, ti
which are bound in C. For a fixed i, we can use the same renaming ρi for
the variables in si and ti, so we have ρi(si) = s′i, ρi(ti) = t′i. This means that
the assumption holds also for the new pair of terms:

∀i : ∀ reduction contexts R : (R[s′i]⇓ ⇒ R[t′i]⇓).

Now we can use induction on the number of n−→-reductions.
Since the number of steps in a shortest normal order reduction of C[s′1, . . . , s

′
m]

is strictly smaller, we also have C ′[t′1, . . . , t
′
m]⇓. But then we have also

C[t1, . . . , tn]⇓, which contradicts the assumption that we have chosen a coun-
terexample.
Now we look at the base case. If C has no holes, then a counterexample is
impossible.
If the number of normal order reduction steps is 0, then C[s1, . . . , sn] is already a
WHNF. Since we can assume that no hole is in a reduction context, the context
itself is a WHNF, and thus this holds for C[t1, . . . , tn] as well, which is impossible.
Concluding, we have proved that there is no counterexample to the general claim,
hence the lemma holds, since it is a specialization of this claim. 2

7.1 Deterministic Reductions: Easy Cases

Non-normal order reductions for the language LRA are called internal and de-
noted by a label i. An internal reduction in a reduction context is marked by
iR, and an internal reduction in a surface context by iS.

20

7.2 The reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)

Lemma 7.2. Every a-reduction in a reduction context where a ∈
{(case-c), (seq-c), (choice), (lbeta), (lapp), (lcase), (lseq)} is a normal order
reduction.

Proof. This follows by checking the possible term structures in a reduction con-
text. 2

Proposition 7.3. Contextual equivalence remains unchanged under the reduc-
tions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq).
I.e. s

a−→ t with a ∈ {(case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)} implies s ∼c

t.

Proof. This follows from the context lemma 7.1. It is sufficient to consider R[s]
and R[t]. From s

a−→ t and Lemma 7.2 it follows that R[s] n−→ R[t]. Since the
reductions are deterministic, it follows R[s]⇓ iff R[t]⇓. Now we apply the context
lemma. 2

The (choice)-reductions break contextual equivalence. The reductions (lll), (cp),
(case-e), (case-in), (seq-e), (seq-in) may be non-normal order in a reduction
context, so other arguments are required.

7.3 Monotonicity of choice-Reductions

Theorem 7.4. If s
a−→ t by a choice-reduction a then s ≥c t.

Proof. By Lemma 7.2, there are no internal (choice)-reductions in reduction
contexts. The proof is similar to the proof in Proposition 7.3. We use the context
lemma 7.1. It is sufficient to consider R[s] and R[t] for an arbitrary reduction

context R. From s
choice−r−−−−−−→ t and Lemma 7.2 it follows that R[s]

n,choice−r−−−−−−−→ R[t].
It follows that R[t]⇓ ⇒ R[s]⇓. Now we apply the context lemma and obtain
t ≤c s. 2

7.4 A Macro-Step (llet)-Reduction

The following lemma shows that letrecs in reduction contexts can be immedi-
ately moved to the top level environment.

Lemma 7.5. Let t = (letrec Env in t′) be an expression, and R be a reduction
context. Then

1. If R = (letrec EnvR in R′), where R′ is a weak reduction context, then

R[(letrec Env in t′)]
n,lll,+−−−−→ (letrec EnvR,Env in R′[t′]).

2. If R = (letrec EnvR, x = R′ in r), where R′ is a weak reduction

context, then (letrec EnvR, x = R′[(letrec Env in t′)] in r)
n,lll,+−−−−→

(letrec EnvR,Env , x = R′[t′] in r), and (letrec EnvR,Env , x =
R′[·] in r) is a reduction context.

21

3. If R is not a letrec-expression, i.e. R is a weak reduction con-
text, then R[(letrec Env in t′)]

n,lll,∗−−−−→ (letrec Env in R[t′]), and
(letrec Env in R[·]) is a reduction context.

Proof. This follows by induction on the number of reductions, using the defini-
tion of reduction context and weak reduction context and the (lll)-reductions.
2

Definition 7.6. We define the
n,lll,∗−−−−→-reduction as in Lemma 7.5 which shifts

letrec-environments that are in reductions contexts to the top of the expression
as (n,mll).

8 Complete Sets of Commuting and Forking Diagrams

For proving correctness of further program transformations, we require the no-
tions of complete sets of commuting diagrams and of complete sets of forking
diagrams.
A reduction sequence is of the form t1 → . . . → tn, where ti are terms and
ti → ti+1 is a reduction as defined in definition 4.8. In the following definition we
describe transformations on reduction sequences. Therefore we use the notation

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→

iX,redh−−−−−→

for transformations on reduction sequences. Here the notation
iX,red−−−−→ means a

reduction with iX ∈ {iC, iR, iS}, and red is a reduction from LRA.
The above transformation rule can be applied to the prefix of the reduction
sequence RED, if the prefix is: s

iX,red−−−−→ t1
n,a1−−−→ . . . tk

n,ak−−−→ t. Since we will use
sets of transformation rules, it may be the case that there is a transformation
rule in the set, where the pattern matches a prefix, but it is not applicable, since
the right hand side cannot be constructed.
We will say the transformation rule

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→

iX,redh−−−−−→

is applicable to the prefix of the reduction sequence RED, where the prefix is:
s

iX,red−−−−→ x1
n,a1−−−→ . . . xk

n,ak,−−−→ t, iff the following holds:

∃y1, . . . , ym, z1, . . . , zh−1 :

s
n,b1−−→ y1 . . .

n,bm−−−→ ym
iX,red1−−−−−→ z1 . . . zh−1

iX,redh−−−−−→ t

The transformation consists in replacing this prefix with the result:

s
n,b1−−→ t′1 . . . t′m−1

n,bm−−−→ t′m
iX,red1−−−−−→ t′′1 . . . t′′h−1

iX,redh−−−−−→ t

where the terms in between are appropriately constructed.

22

Definition 8.1.
• A complete set of commuting diagrams for the reduction

iX,red−−−−→ is a set of
transformation rules on reduction sequences of the form

iX,red−−−−→ .
n,a1−−−→ . . .

n,ak−−−→ ;
n,b1−−→ . . .

n,bm−−−→ .
iX,red1−−−−−→

iX,redk′−−−−−→,

where k, k′ ≥ 0,m ≥ 1, such that in every reduction sequence t0
iX,red−−−−→ t1

n−→
. . .

n−→ th, where th is a WHNF, at least one of the transformation rules is
applicable to a prefix of the sequence.
In the special case h = 1, we require that in t0

iX,red−−−−→ t1, the term t1 is a WHNF,
and the term t0 is not a WHNF.

• A complete set of forking diagrams for the reduction
iX,red−−−−→ is a set of trans-

formation rules on reduction sequences of the form
n,a1←−−− . . .

n,ak←−−− .
iX,red−−−−→ ;

iX,red1−−−−−→
iX,redk′−−−−−→ .

n,b1←−− . . .
n,bm←−−−,

where k, k′ ≥ 0,m ≥ 1, such that for every reduction sequence th
n←− . . . t2

n←−
t1

iX,red−−−−→ t0, where th is a WHNF, at least one of the transformation rules from
the set is applicable to a suffix of the sequence. In the special case that h = 1,
we require that in t1

iX,red−−−−→ t0, the term t1 is a WHNF, and that t0 is not a
WHNF.

The two different kinds of diagrams are required for two different parts of the
proof for the contextual equivalence of two terms.
As a notation, we also use the * and +-notation of regular expressions for the
diagrams. The interpretation is obvious and is intended to stand for an infinite
set accordingly constructed.
In most of the cases, the same diagrams can be drawn for a complete set of
commuting and forking diagrams, though the interpretation is different for com-
muting and forking diagrams. We will follow this in this paper and give in general
only the drawing in the form of diagrams. The starting term is in the northwest-
ern corner, and the normal order reduction sequences are always downwards.
where the deviating reduction is pointing to the east. There are rare exceptions
for degenerate diagrams, which are self explaining.
For example, the forking diagram

n,a←−− · iS,llet−−−−→ ;
iS,llet−−−−→ · n,a←−− is represented

as

· iS,llet //

n,a

��

·
n,a

���
�
�

· iS,llet //___ ·

The commuting diagram
iS,llet−−−−→ · n,a−−→ ;

n,a−−→ · iS,llet−−−−→ is represented as

· iS,llet //

n,a

���
�
� ·

n,a

��
· iS,llet //___ ·

23

The straight arrows mean given reductions and dashed arrows mean existen-
tial arrows. A common representation is without the dashed arrows, where the
interpretation depends on whether the diagrams is interpreted as forking or
commuting diagram.
Note that the selection of the reduction label is considered to occur outside the
transformation rule, i.e. if

n,a−−→ occurs on both sides of the transformation rule
the label a is considered to be the same on both sides.

· iS,llet //

n,a

��

·
n,a

��
· iS,llet // ·

Note, however, that in cases of reduction diagrams for (choice), the twofold
interpretation as forking and commuting diagrams may be incorrect.

9 Diagrams for (llet), (seq) and (cp)

We prove equivalence of the reductions (llet), (seq) and (cp) by computing the
required forking and commuting diagrams, and then give hints on an inductive
proof for constructing normal order reductions.

9.1 Equivalence of (llet)

For the reduction (llet), we use the reductions in S-contexts instead of reduction
contexts, since they are more general and cover all reduction contexts.

Lemma 9.1. A complete set of forking diagrams and commuting diagrams for
(iS, llet) can be read off the following graphical diagrams:

· iS,llet //

n,a

��

·
n,a

��

· iS,llet //

n,a

��

·

n,a
����

��
��

�
· iS,llet //

(n,lll)+

��

·

(n,lll)+����
��

��
�

· iS,llet //

(n,lll)+

��

·

(n,lll)+

��
· iS,llet // · · · · iS,llet // ·

· iS,llet //

n,a

��

·

n,a

����
��
��
��
��
��
�

·
n,llet

��
·

The corresponding complete set of commuting diagrams is:

24

iS,llet−−−−→ · n,a−−→ ;
n,a−−→ · iS,llet−−−−→

iS,llet−−−−→ · n,a−−→ ;
n,a−−→

iS,llet−−−−→ · (n,lll)+−−−−−→;
(n,lll)+−−−−−→

iS,llet−−−−→ · (n,lll)+−−−−−→;
(n,lll)+−−−−−→ · iS,llet−−−−→

iS,llet−−−−→ · n,a−−→ ;
n,a−−→ · n,llet−−−→

The corresponding complete set of forking diagrams is:

n,a←−− · iS,llet−−−−→ ;
iS,llet−−−−→ · n,a←−−

n,a←−− · iS,llet−−−−→ ;
n,a←−−

(n,lll)+←−−−−− · iS,llet−−−−→ ;
(n,lll)+←−−−−−

(n,lll)+←−−−−− · iS,llet−−−−→ ;
iS,llet−−−−→ · (n,lll)+←−−−−−

n,llet←−−− · n,a←−− · iS,llet−−−−→;
n,a←−−

Proof. Diagram 1 covers the cases where the (iS, llet) and (n,a)-reductions com-
mute. Diagram 2 covers the case of removed expressions in a (case)-reduction,
(seq)-reduction or a (choice)-reduction. Lemma 7.5 describes the same cases as
diagrams 3 and 4.
Diagram 5 is the case where in diagram 1 the closing (llet) is turned into a normal
order reduction. Two typical cases are (letrec x = (letrec Env in s) in t⊕x)
and (letrec x = (letrec Env in s) in seq True x). 2

Lemma 9.2. If s
i,lll−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 9.3. If s
llet−−→ t, then s ∼c t.

Proof. By the context lemma 7.1, it is sufficient to prove R[s]⇓ ⇔ R[t]⇓ for

all reduction contexts R. If R[s]
n,llet−−−→ R[t], then this is trivial. In the case

R[s]
iS,llet−−−−→ R[t], we use the complete sets of diagrams to show that from a

normal order reduction sequence to WHNF of R[s], we can construct a normal
order reduction of R[t] to WHNF, and vice versa.

1. If R[s]⇓, then we by induction on the length of the normal order reduction
Red of R[s] to a WHNF, that there is also a normal order reduction for R[t].

We use the fact that of s
iS,llet−−−−→ t, then also R[s]

iS,llet−−−−→ R[t], since reduction
contexts are also surface contexts and the combination of surface contexts
again gives a surface context.
In the base case we use Lemma 9.2. If Red is not trivial, then the complete
set of forking diagrams in lemma 9.1 provides all cases. Let Red = R[s] n−→ s′ ·
Red ′. Diagrams 2,3,5 directly construct a terminating normal order reduction
for R[t]. For diagrams 1 and 4, the induction hypothesis can be applied to

25

s′
iS,llet−−−−→ t′ with R[t]

n,+−−→ t′, and we obtain a terminating normal order
reduction for R[t].

2. If R[t]⇓, then we use similar methods. We apply induction on the number of
normal order reduction steps of R[t] to a WHNF using the complete set of
commuting diagrams in lemma 9.1. In the base case we use Lemma 9.2.

2

9.2 Equivalence of (seq)

For the reduction (seq), we treat reductions in S-contexts.

Lemma 9.4. A complete set of forking diagrams and commuting diagrams for
(iS, seq) can be read off the following graphical diagrams:

· iS,seq //

n,a

��

·
n,a

��

· iS,seq //

n,a

��

·

n,a

����
��
��
��
��
��
�

· iS,seq //

n,a

��

·

n,a
����

��
��

�
· iS,seq //

(n,cp)

��

·
(n,cp)

��
· iS,seq // · ·

n,seq

��

· · iS,seq // · iS,seq // ·

·

Proof. Diagram 1 covers the cases where the (iS, seq) and (n,a)-reductions com-
mute. Diagram 2 is the case where the closing (iS, seq) is turned into a normal
order reduction. Diagram 3 covers the case where the redex is removed in a
(case)-reduction, a (seq)-reduction or a (choice)-reduction. Diagram 4 covers the
case where a (iS, seq) is applied within an abstraction that is copied by a (n, cp),
e.g. in (letrec y = λz.z, y1 = λx.(seq y b) in y1) there is a seq-reduction in
a surface context, but the modified subexpression is within the body of an ab-
straction that will be copied in a normal order reduction.

2

Lemma 9.5. If s
iS,seq−−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 9.6. If s
seq−−→ t, then s ∼c t.

Proof. It is sufficient to prove R[s]⇓ ⇔ R[t]⇓ for all reduction contexts by the
context lemma.
If R[s]

n,seq−−−→ R[t], then the claim is trivial. In the case R[s]
iS,seq−−−−→ R[t], we use

the diagrams.

1. If R[s]⇓, then we have to use the forking diagrams in Lemma 9.4. We
use the following measure for a normal order reduction Red : the pair
(µ1(Red), µ2(Red)), where µ1 is the number of (n, cp)-reductions, and µ2 is

26

the number of normal order reductions. The pairs are ordered lexicographi-
cally. We show by induction on (µ1(Red), µ2(Red)), that if R[s] has a reduc-
tion Red to WHNF, then R[t] has a reduction Red ′ with µ(Red) ≥ µ(Red ′).
For diagram 1 we can apply the induction hypothesis using the number of
normal order reductions. For the diagrams 2 and 3 this is obvious, and for
diagram 4, we can apply the induction hypothesis twice. In the base case we
use Lemma 9.5.

2. If R[t]⇓, then the induction argument is slightly different. We consider the
reduction Red which consists of R[s] iS−→ R[t]

n,∗−−→ t0, where t0 is a WHNF.
The complete set of commuting diagrams in Lemma 9.4 is used as a transfor-
mation system on reductions, which consists of n- and iS−→ -reductions. The
ordering on these mixed reductions is a multiset consisting of the following
pairs of numbers: for every iS−→-reduction in the sequence, a pair (n1, n2),
where n1 is the number of (n,cp)-reductions to the right of it, and n2 is
the number of reductions to the right of it before the next (n,cp)-reduction.
The pairs are ordered lexicographically, and the multiset is ordered by the
induced multiset-ordering. By well-known arguments, this ordering is well-
founded.
Now we go through the diagrams:
– Diagram 1 strictly decreases one pair: either the number of (n,cp)-

reductions to the right is strictly decreased, or the second component
of the pair is strictly decreased.

– Diagram 2 removes one pair and does not change the other pairs.
– Diagram 3 removes one pair, and does not change the other pairs.
– Diagram 4 replaces one pair by two pairs, which are strictly smaller,

since the number of (n,cp)-reductions to the right is strictly smaller.
Other pairs are either equal or strictly decreased.

The base case is that the reduction iS−→ is the final one and results in a
WHNF. In this case we use Lemma 9.5. and remove this reduction. Finally,
we obtain a normal order reduction for R[s].

2

9.3 Correctness of (cp)

To show that the (cp)-reduction is correct as a program transformation, we have
to split the reduction into two different reductions, depending on the position of
the target variable.
(cpS) = (cp) where the position of the replaced variable is in a surface

context.
(cpd) = (cp) where the position of the replaced variable is not in a surface

context.

Lemma 9.7. A complete set of forking diagrams and commuting diagrams for
iS,cpS−−−−→ can be read off the following graphical diagrams:

27

· iS,cpS //

n,a

��

·
n,a

��

· iS,cpS //

n,a

��

·

n,a

����
��
��
��
��
��
�

· iS,cpS //

n,a

��

·

n,a
����

��
��

�

· iS,cpS // · ·
n,cp

��

·

·

Proof. By case analysis. For a more detailed version see [SS03] 2

Lemma 9.8. A complete set of forking diagrams and commuting diagrams for
iS,cpd−−−−→ can be read off the following graphical diagrams:

· iS,cpd //

n,a

��

·
n,a

��

· iS,cpd //

n,cp

��

·
n,cp

��

· iS,cpd //

n,a

��

·

n,a
����

��
��

�

· iS,cpd // · ·
iS,cpd

// ·
iS,cpd

// · ·

· iS,cpd //

n,lbeta

��

·
n,lbeta

��
· iS,cpS // ·

Proof. By case analysis. For a more detailed version see [SS03] 2

Lemma 9.9. If s
iS,cp−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 9.10. If s
cp−→ t, then s ∼c t.

Proof. It is sufficient to prove R[s]⇓ ⇔ R[t]⇓ for all reduction contexts. If

R[s]
n,cp−−−→ R[t], then this is trivial. In the case R[s]

iS,cp−−−→ R[t], we use the
diagrams for (cp), i.e., for (cpd) and (cpS).

1. Assume R[t]⇓. The method is to transform the reduction

R[s]
iS,cp−−−→ R[t] ·RED, where RED is a normal order reduction to

WHNF into a normal order reduction for R[s] to a WHNF, where the
transformations are used that correspond to the complete set of commuting
diagrams in Lemmas 9.8 and 9.7.
We have to show that the transformation terminates with a normal order
reduction, where the local effect of the transformation is to shift (iS, cpd)
and (iS, cpS) to the right. We define a well-founded measure for reduction

sequences RED where
(iS,cpd)−−−−−→,

(iS,cpS)−−−−−→ and normal order reductions are
mixed.
A single (iS, cpd) or (iS, cpS) in RED has as measure the triple consisting
of

28

(a) the number of (n,lbeta)-reductions to the right of it;
(b) the number of all (n, cp)- and (iS, cpS)-reductions right of it before the

next (n,lbeta)-reduction;
(c) the number of reductions to the right.
The triples are ordered lexicographically. The measure µ of the whole re-
duction sequence is the multiset of the triples for all iS-reductions, ordered
by the multiset-ordering. Every transformation rule of the commuting
diagrams for (iS, cpd) and (iS, cpS) strictly decreases the measure µ. That
the measure is decreased must also be checked for (iS, cpd) and (iS, cpS)-
reductions that are not directly involved in the transformation.

(a) Diagram cpS-1: if a = (lbeta), then it strictly decreases µ1 for the in-
volved reduction, and it does not increase the measure for other (iS, cpd)
or (iS, cpS)-reductions. If a 6= (lbeta), then the µ3-component of the in-
volved reductions is strictly decreased.

(b) Diagram cpS-2: One triple is removed, and the other triples are not
increased.

(c) Diagram cpS-3: One triple is removed, and the other triples are not
increased.

(d) Diagram cpd-1: Similar to diagram cpS-1.
(e) Diagram cpd-2: one triple is replaced by two triples that have a strictly

smaller µ2-component, hence the multiset is strictly decreased.
(f) Diagram cpd-3: see cpS-3.
(g) Diagram cpd-4: a triple is replaced by a triple with strictly smaller µ1-

component.
Since a diagram is applicable whenever there is a (cpd) or (cpS) reduction
for a non-WHNF term, the transformation terminates with a normal order
reduction.
For the base case use Lemma 9.9.

2. If R[s]⇓, then the transformation has to treat reductions sequences RED′

that are mixtures of
(iS,cpd)−−−−−→,

(iS,cpS)−−−−−→ and normal order reductions
n,a←−−,

where the transformation has the local effect of shifting
(iS,cpd)−−−−−→ and

(iS,cpS)−−−−−→
to the left. We apply induction using the following measure:
The well-founded measure for the mixed reduction sequences RED′ is as
follows:
An

(iS,cpd)−−−−−→ or
(iS,cpS)−−−−−→ in RED′ has as measure the triple consisting of

(a) the number of
(n,lbeta)←−−−−−-reductions left of it;

(b) the number of
(n,cp)←−−−−- and

(iS,cpS)−−−−−→-reductions left of it before the next
(n,lbeta)←−−−−−-reduction.

(c) the number of reductions to the left.
The triples are ordered lexicographically. The measure µ of the whole reduc-
tion sequence is the multiset of the triples for all iS-reductions, ordered by
the multiset-ordering. A similar case analysis as above show that a normal
order reduction for R[t] can be constructed.

29

Now we can conclude by applying the context lemma for the two directions, that
s ∼c t.

2

10 Equivalence of Other Reductions and (case)

We show in this section that the extra reductions (gc), (cpx), (cpax), (cpcx),
(xch), (ucp) and (lwas) are correct program transformations in the calculus LRA.
This finally will lead to a proof that (case) is a correct program transformation.
In this section we extend the notion of complete sets of commuting and forking
diagrams slightly by allowing the extra reductions as defined below in the place
of the internal reductions.

Definition 10.1. We define further transformation rules in figure 3. The
union of (gc1) and (gc2) is called (gc), the union of (cpx-in) and (cpx-e) is
called (cpx), the union of (cpcx-in) and (cpcx-e) is denoted as (cpcx).

Note that the (useless) reduction letrec x = x in t → letrec x = x in t is
not allowed as an instance of the (cpx)-rule. Note also that the reduction (lwas)
includes the reductions (lapp), (lcase), (lseq).

Definition 10.2. For a given term t, the measure µlll(t) is a pair (µ1(t), µ2(t)),
ordered lexicographically. The measure µ1(t) is the number of letrec-
subexpressions in t, and µ2(t) is the sum of lrdepth(s, t) of all letrec-
subexpressions s of t, where lrdepth is defined as follows:

lrdepth(s, s) = 0

lrdepth(s, C1[C2[s]]) =

1 + lrdepth(s, C2[s]) if C1 is a context of main depth 1,

and not a letrec
lrdepth(s, C2[s]) if C1 is a context of main depth 1,

and it is a letrec

The following termination property of (lll) is required in later proofs.

Proposition 10.3. The reduction (lll) is terminating, I.e. there are no infinite
reductions sequences consisting only of (lll)-reductions.

Proof. This holds, since t1
lll−→ t2 implies µlll(t1) > µlll(t2), and the ordering

induced by the measure is well-founded. 2

10.1 Correctness of (gc)

Lemma 10.4. A complete set of commuting and forking diagrams for (S, gc)
can be read off the following set of graphical diagrams:

30

(gc1) (letrec x1 = s1, . . . , xn = sn,Env in t)→ (letrec Env in t)
if for all i : xi does not occur in Env nor in t

(gc2) (letrec x1 = s1, . . . , xn = sn in t)→ t
if for all i : xi does not occur in t

(cpx-in) (letrec x = y,Env in C[x])
→ (letrec x = y,Env in C[y]) where y is a variable and x 6= y

(cpx-e) (letrec x = y, z = C[x],Env in t)
→ (letrec x = y, z = C[y],Env in t) where y is a variable and x 6= y

(cpax) (letrec x = y,Env in s)
→ (letrec x = y,Env [y/x] in s[y/x])
where y is a variable,x 6= y and y ∈ FV (s,Env)

(cpcx-in) (letrec x = c t1 . . . tm,Env in C[x])
→ (letrec x = c y1 . . . ym, y1 = t1, . . . , ym = tm,Env in C[c y1 . . . ym])

(cpcx-e) (letrec x = c t1 . . . tm, z = C[x],Env in t)
→ (letrec x = c y1 . . . ym,

y1 = t1, . . . , ym = tm, z = C[c y1 . . . ym],Env in t)
(abs) (letrec x = (c t1 . . . tn),Env in s)

→ (letrec x = c x1 . . . xn, x1 = t1, . . . xn = tn,Env in s)
where n ≥ 1

(abse) (c t1 . . . tn)
→ (letrec x1 = t1, . . . xn = tn in c x1 . . . xn)

where n ≥ 1
(xch) (letrec x = t, y = x,Env in r) → (letrec y = t, x = y,Env in r)
(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where x has at most one occurrence in S[x] and no occurrence in Env , t, r
and S is a surface context

(lwas) AS−1 [(letrec Env in s)]→ (letrec Env in AS−1 [s])
where AS−1 is a weak application surface context of main depth 1
(see Definition 4.6)

Fig. 3. Extra Reduction Rules

31

t1
gc //

n,a

��

s1

n,a

��

t1
gc //

n,a

��

s1

n,a
��~~

~~
~~

~~
t1

gc2 //

n,lll

��

s1??

gc2~~
~~

~~
~~

t2
gc // s2 t2 t2

Proof. This follows by a case analysis. Diagram 2 occurs if the (gc)-redex is in
a removed alternative of a case or in the removed term in a (choice) or a (seq).
Diagram 3 occurs, e.g. in the case (seq (letrec Env in t1) t2) if (gc) removes
the environment Env , and in similar cases. A further example for the third case
is

R[((letrec Env1 in t1) x)]
n,lapp−−−−→ R[(letrec Env1 in (t1 x))]
gc−→ R[(t1 x)]

R[((letrec Env1 in t1) x)]
gc−→ R[(t1 x)]

The following nontrivial overlapping results in a diagram of type 1.

(letrec Env1 in (letrec Env2 in s) t)
gc−→ ((letrec Env2 in s) t)
n,lapp−−−−→ (letrec Env2 in (s t))
n,lapp−−−−→ (letrec Env1 in (letrec Env2 in (s t)))
gc−→ (letrec Env2 in s t)

2

Lemma 10.5. Let t, t′ be expressions and t
gc−→ t′. Then

– If t is a WHNF, then t′ is a WHNF.

– If t′ is a WHNF and t is not a WHNF, then t
n,llet−−−→ t′; or t

[],n,llet−−−−−→ t′′
gc2−−→ t′,

and t′′ is a WHNF.

Proposition 10.6. Let t be an expression. If t
gc−→ t′, then t ∼c t′.

Proof. Using the context lemma and the same technique as in the proof of Propo-
sition 9.10, we have only to ensure that transforming a terminating normal order
reduction of R[t] using the diagrams in Lemma 10.4 to a (terminating) normal
order reduction of R[t′], and vice versa, always successfully terminates.
The measure for both directions is the number of normal order reductions, where
the base case requires Lemma 10.5. In constructing from a reduction R[t]

gc−→
R[t′]

n,∗−−→ t0 a terminating normal order reduction for R[t′], Proposition 10.3
shows that there there are only finitely many repeated applications of diagram
3.

2

32

10.2 Equivalence of (cpx)

Note that the reduction
R,cpx−−−−→ may not terminate:

letrec x = y, y = x in C[x]
R,cpx−−−−→ letrec x = y, y = x in C[y]

R,cpx−−−−→
letrec x = y, y = x in C[x].

A further example for non-termination is: letrec x = y, y = x, z = x in t
R,cpx−−−−→

letrec x = y, y = x, z = y in t
R,cpx−−−−→ letrec x = y, y = x, z = x in t

Lemma 10.7. A complete set of forking and commuting diagrams for
S,cpx−−−→

can be read off the following graphical diagrams:

· S,cpx //

n,a

��

·
n,a

��

· S,cpx //

n,cp

��

·
n,cp

��

· S,cpx //

n,a

��

·

n,a
����

��
��

�

· S,cpx // · ·
S,cpx

// ·
S,cpx

// · ·

Proof. The second case happens if the target of the (cpx)-reduction is in the
copied abstraction of the (cp). The third case may happen if the reduction is a
(case), (cp), (seq), or (choice). An example for the last case is

letrec x = s, y = x in C[y]
S,cpx−−−→ letrec x = s, y = x in C[x]
n,cp−−−→ letrec x = s, y = x in C[s]
n,cp−−−→ letrec x = s, y = x in C[s]

2

Lemma 10.8. If s
S,cpx−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 10.9. The reduction (cpx) is a correct program transformation.

Proof. We only show the non-standard parts of the proof, which is termination
of the transformation process. We use Lemmas 10.7 and 10.8.
There are two cases for the transformation. First consider the transformation
of s

S,cpx−−−→ t · RED into a normal order reduction sequence from s to WHNF,
where RED is a normal order reduction to a WHNF. Intermediate steps have a
sequence of normal order reductions mixed with (S,cpx)-reductions. We measure
the sequences by the multiset consisting of the following numbers: for every
(S,cpx)-reduction, the number of normal order reductions to the right of it. This
is a well-founded order, and it is easy to see that the transformations strictly
reduce this measure in every step using the commuting diagrams.
The other case is the transformation of RED · s S,cpx−−−→ t to a normal order
reduction of t, where RED is a normal order reduction sequence of s to WHNF,
and RED the inverted sequence. Now the measure is the multiset consisting of
the following numbers: for every (S,cpx)-reduction, the number of normal order

33

reductions to the left of it. This is a well-founded order, and it is easy to see that
the transformations strictly reduce this measure in every step using the forking
diagrams. ut

10.3 Equivalence of the reduction rule (xch)

Lemma 10.10. The reduction
S,xch−−−−→ commutes with normal order reductions.

I.e.
S,xch−−−−→ · n,a−−→ ;

n,a−−→ · S,xch−−−−→

Proof. It is easy to verify that this holds for the different kinds of reductions.
Only for (case) and a specific type of interference we show the concrete trans-
formation:

(letrec x = c t, y = x in case x ((c u)→ r))
xch−−→ (letrec y = c t, x = y in case x ((c u)→ r))
n,case−−−−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))
n,case−−−−→ (letrec x = c z, z = t, y = x in (letrec u = z in r))
xch−−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))

ut

Lemma 10.11. The
S,xch−−−−→-reduction has trivial forking diagrams with normal

order reductions. I.e.

n,a←−− · S,xch−−−−→ ;
S,xch−−−−→ · n,a←−−

Lemma 10.12. If t
xch−−→ t′, then t is a WHNF iff t′ is a WHNF.

Proposition 10.13. The reduction (xch) is a correct program transformation.

Proof. This follows using standard methods, since there are only the trivial di-
agrams.
It also follows from the reductions

(letrec x = t, y = x,Env in r)
cpax−−−→ (letrec x = t[x/y], y = x,Env [x/y] in r[x/y])
gc−→ (letrec x = t[x/y],Env [x/y] in r[x/y])
=α (letrec y = t[y/x],Env [y/x] in r[y/x])
gc←− (letrec y = t[y/x], x = y,Env in r[y/x])
cpax←−−− (letrec y = t, x = y,Env in r)

ut
and from the correctness of (gc) and (cpx); see Proposition 10.6, 10.9. 2

34

10.4 Equivalence of (abs)

Lemma 10.14. A complete set of commuting and forking diagrams for
S,abs−−−→

can be read off the following diagrams:

· S,abs //

n,a

��

·
n,a

��

· S,abs //

n,a

��

·

n,a
����

��
��

�
· S,abs //

n,case

��

·
n,case

��
· S,abs // · · ·

S,abs
// ·
S,cpx,∗

// ·
S,xch,∗

// ·

Proof. Instead of a complete proof, we only show the typical hard case:

(letrec x = c t in case x (c y → s))
abs−−→ (letrec x = c z, z = t in case x ((c y)→ s))
n,case−−−−→ (letrec x = c u, u = z, z = t in (letrec y = u in s))
n,case−−−−→ (letrec x = c u, u = t in (letrec y = u in s))
abs−−→ (letrec x = c z, z = u, u = t in (letrec y = u in s))
cpx,∗−−−→ (letrec x = c u, z = u, u = t in (letrec y = u in s))
xch,∗−−−→ (letrec x = c u, u = z, z = t in (letrec y = u in s))

The second diagram covers the case where the (abs)-redex is removed by a
(choice), (case), or (seq). ut

Lemma 10.15. If s
S,abs−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 10.16. The reduction (abs) is a correct program transformation.

Proof. We only show the non-standard parts of the proof, which is termination
of the transformation process.
There are two cases for the transformation.
First consider the transformation of s

S,abs−−−→ t ·RED into a normal order reduc-
tion sequence from s to WHNF, where RED is a normal order reduction to a
WHNF. Intermediate steps have a sequence of normal order reductions mixed
with (S,abs), (S,cpx), and (S,xch)-reductions. We measure the sequences by the
multiset consisting of the following numbers: for every reduction (S,abs), (S,cpx),
and (S,xch), the number of normal order reductions to the right of it. This is a
well-founded order, and it is easy to see that the transformations strictly reduces
this measure in every step using the commuting diagrams in Lemma 10.14, 10.7,
and 10.10.
The other case is the transformation of RED ·s S,abs−−−→ t to a normal order reduc-
tion of t, where RED is a normal order reduction sequence of s to WHNF, and
RED the inverted sequence. Now the measure of the mixed reduction sequence
is the multiset consisting of the following numbers: for every reduction (S,abs),
(S,cpx), and (S,xch), the number of normal order reductions to the left of it. This
is a well-founded order, and it is easy to see that the transformations strictly
reduce this measure in every step using the forking diagrams in Lemmas 10.14,
10.7, and 10.11. ut

35

10.5 Properties of (cpcx)

Note that there are infinite reduction sequences using only (cpcx):
(letrec x = c x in x)

cpcx−−−→ (letrec x = c x1, x1 = x in c x1)
cpcx−−−→ (letrec x =

c x2, x2 = x1, x1 = x in c (c x2)) . . .

Lemma 10.17. A complete set of commuting and forking diagrams for
S,cpcx−−−−→

can be read off the following diagrams:

· S,cpcx //

n,a

��

·
n,a

��

· S,cpcx //

n,cp

��

·
n,cp

��
· S,cpx // · ·

S,cpcx
// ·
S,cpcx

// ·
S,cpx,∗

// ·
S,gc1,∗

// ·

· S,cpcx //

n,a

��

·

n,a
����

��
��

�
· S,cpcx //

n,case

��

·
n,case

��

· S,cpcx //

n,a

��

·
n,a

��
· ·

S,cpcx
// ·
S,cpx,∗

// ·
S,xch,∗

// · · S,abs // ·

where a in the last diagram may be (case), (choice), or (seq).

Proof. Instead of a complete proof, we only show the typical cases:

(letrec x = c t, y = λu.C[x] in y)
S,cpcx−−−−→ (letrec x = c z, z = t, y = λu.C[c z] in y)
n,cp−−−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[c z])
n,cp−−−→ (letrec x = c t, y = λu.C[x] in λu′.C ′[x])
cpcx−−−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[x])
cpcx−−−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu′.C ′[c z′])
cpx−−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])
cpx−−→ (letrec x = c z, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])
gc−→ (letrec x = c z, z = t, y = λu.C[c z] in λu.C[c z])

(letrec x = c t in case x (c y → s))
cpcx−−−→ (letrec x = c z, z = t in case (c z) ((c y)→ s))
n,case−−−−→ (letrec x = c z, z = t in (letrec y = z in s))
n,case−−−−→ (letrec x = c z, z = t in (letrec y = z in s))

In the following example we use a multicontext C[., .] that may have different
holes, every hole is mentioned as an argument.

36

(letrec x = c t in C[case x (c y → s), x])
cpcx−−−→ (letrec x = c z, z = t in C[case x (c y → s), c z])
n,case−−−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])
n,case−−−−→ (letrec x = c z′, z′ = t in C[(letrec y = z′ in s), x])
cpcx−−−→ (letrec x = c z, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
cpx−−→ (letrec x = c z′, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
xch−−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])

(letrec x = c t in seq x r)
cpcx−−−→ (letrec x = c z, z = t in seq (c z) r)
n,seq−−−→ (letrec x = c z, z = t in r)
n,seq−−−→ (letrec x = c t in r)
abs−−→ (letrec x = c z, z = t in r)

ut

Lemma 10.18. If s
S,cpcx−−−−→ t, then s is a WHNF iff t is a WHNF.

Proposition 10.19. The reduction (cpcx) is a correct program transformation.

Proof. The non-standard part of the proof is the termination part.
First consider the transformation of s

S,cpcx−−−−→ t ·RED to a normal order reduc-
tion of s to WHNF. We assume that always the rightmost S-reduction before
a WHNF is transformed according to a diagram in the corresponding complete
set. Intermediate reduction sequences consist of normal order reductions mixed
with (S,cpcx)-, (S,cpx), (S,xch)
, (S,abs) and (S,gc)-reductions. The measure cannot be the number of normal
order reductions, since (gc) is involved and the third diagram increases this
number. We measure the reduction sequences by the multiset consisting of the
following triples of numbers:
for every S-reduction the triple (n1, n2, n3), where

1. n1 is the number of normal order (case)- or (cp)-reductions to the right of
it,

2. n2 is the number of normal order reduction steps after the rightmost non-
normal order reduction in the sequence.

3. n3 is µlll(t′), where t′
a−→ t′′ is the rightmost non-normal order reduction in

the sequence.

The triples are compared lexicographically. This is a well-founded order on mul-
tisets. The commuting diagrams in Lemmas 10.17, 10.10, 10.7, 10.4, and 10.14
show that the transformations corresponding to (S,cpcx), (S,cpx), (S,abs), and
(S,xch) strictly reduce this multiset-measure in every transformation step, if
always the rightmost S-reduction before a WHNF is transformed. The third di-
agram in Lemma 10.4 leads to an increase of (lll)-reductions to the left of the

37

(gc)-reduction, however, the component n3 is strictly reduced, if this diagram is
applied. If a WHNF is reached by the non-normal order reduction, then Lemmas
10.8, 10.5, 10.15, and 10.18 show that the non-normal order reduction can be
shifted after a WHNF, hence it is removed.
The other case is the transformation of RED · s S,cpcx−−−−→ t to a normal order re-
duction of t. We measure the sequences by the multiset consisting of the number
of normal order reductions to the left for every S, a-reduction.
It is easy to see that the transformations strictly reduce this measure in every
step using the forking diagrams for the reductions (S,cpcx), (S,cpx), (S,abs), and
(S,xch). ut

10.6 Correctness of (case)-Reductions

Proposition 10.20. The reductions (case-in) and (case-e) are correct program
transformations.

Proof. Propositions 7.3 and 9.3 show that (case-c) is a correct program transfor-
mation. From Lemmas 10.19, 10.9, 10.6, and 9.10, we obtain that (cpcx), (cpx),
and (gc) are correct program transformations. We show by induction that a
(case-e) and (case-in)-reduction is correct by using the correctness of the reduc-
tions (cpS), (cpcx), (case-c), (cpx), and (gc). The induction is on the length of
the variable chain in the (case-in) (or (case-e), respectively). We give the proof
only for (case-in), the other is a copy of this proof.
The base case is:

(letrec x = c t,Env in C[case x (c z → s) alts])
cpcx−−−→ (letrec x = c y, y = t,Env in C[case (c y) (c z → s) alts])
case−c−−−−→ (letrec x = c y, y = t,Env in C[(letrec z = y in s)])
The result after a (case-in) is:
case−in−−−−−→ (letrec x = c y, y = t,Env in C[(letrec z = y in s)])

We show the induction for a short variable chain:

(letrec x1 = c t, x2 = x1,Env in C[case x1 (c z → s) alts])
cpcx−−−→ (letrec x1 = c y, y = t, x2 = c y,Env in C[case xn (c z → s) alts])
case−in−−−−−→ (letrec x1 = c y, y = t, x2 = c y2, y2 = y,Env in C[(letrec z = y2 in s)])
cpx,cpx,gc−−−−−−→ (letrec x1 = c y, y = t, x2 = c y,Env in C[(letrec z = y in s)])
The other case is:
case−in−−−−−→ (letrec x1 = c y, y = t, x2 = x1,Env in C[(letrec z = y in s)])
cpcx−−−→ (letrec x1 = c y′, y′ = y, y = t, x2 = c y′,Env in C[(letrec z = y in s)])
cpx,cpx,gc−−−−−−→ (letrec x1 = c y, y = t, x2 = c y,Env in C[(letrec z = y in s)])

2

Proposition 10.21. The reduction (case) is a correct program transformation.

Proof. Follows from Proposition 10.20 and 7.3. 2

38

10.7 Summary of Properties

Theorem 10.22. The reductions (cpcx), (cpx), (abs) and (gc) keep contextual
equivalence. I.e. whenever t

a−→ t′, with a ∈ {cpcx, cpx, abs, gc}, then t ∼c t′.

The remaining reduction will be treated below.

Theorem 10.23. All the deterministic reductions in the base calculus keep con-
textual equivalence. I.e. whenever t

a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then
t ∼c t′.

Proof. Follows from Propositions 9.3, 9.6, 9.10, 10.21 and 7.3. 2

10.8 Correctness of (ucp)

A difference between (ucp) and (cp) is that (ucp) can be applied even if the
expression bound to a variable is not an abstraction.

Lemma 10.24. The complete sets of forking and commuting diagrams for
S,ucp−−−→ can be read off the following graphical diagrams:

t1
S,ucp //

n,a

��

s1

n,a

��

t1
S,ucp //

n,a

��

s1

n,a
��~~

~~
~~

~~
t1

S,ucp //

n,lll+

��

s1

n,lll∗

��

t1
S,ucp //

n,cp

��

s1??

S,gc~~
~~

~~
~~

t2
S,ucp // s2 t2 t2

S,ucp // s2 t2

t1
S,ucp //

n,a

��

s1

n,a

��

t1
S,ucp //

n,case

��

s1

n,case

��
t2

S,gc // s2 t2
S,gc // t3

S,ucp // s2

Where a ∈ {(seq), (choice-l), (choice-r)} in the fifth diagram

Proof. We show the typical overlappings.

(letrec x = (letrec y = t in s),Env in (x z))
ucp−−→ (letrec Env in ((letrec y = t in s) z))
n,lapp−−−−→ (letrec Env in (letrec y = t in (s z)))
n,llet−−−→ (letrec Env , y = t in (s z))
n,llet−−−→ (letrec x = s, y = t,Env in (x z))
ucp−−→ (letrec y = t,Env in (s z))

39

(letrec x = (letrec y = ty in tx), z = R′[x],Env in R[z])
ucp−−→ (letrec z = R′[(letrec y = ty in tx)],Env in R[z])
n,llet,+−−−−−→ (letrec z = R′[tx], y = ty,Env in R[z])
n,llet,+−−−−−→ (letrec x = tx, y = ty, z = R′[x],Env in R[z])
ucp−−→ (letrec y = ty, z = R′[tx],Env in R[z])

(letrec x = (letrec Env in v) in x)
ucp−−→ (letrec Env in v)
n,llet−−−→ (letrec x = v,Env in x)
ucp−−→ (letrec Env in v)

(letrec x = s,Env in (x y))
ucp−−→ (letrec Env in (s y))
n,cp−−−→ (letrec x = s,Env in (s y))
gc−→ (letrec Env in (s y))

(letrec x = cs in (seq x r))
ucp−−→ (seq (c s) r)
n,seq−−−→ r
n,seq−−−→ (letrec x = cs in r)
gc−→ r

(letrec x = c s in (case x (c z → r)))
ucp−−→ (case (c s) (c z → r))
n,case−−−−→ (letrec z = s in r)

n,case−−−−→ (letrec x = c y, y = s in (letrec z = y in r))
gc−→ (letrec y = s in (letrec z = y in r))
ucp−−→ (letrec z = s in r)

2

Lemma 10.25. Let t, t′ be expressions and t
ucp−−→ t′. Then

– If t is a WHNF, then t′ is a WHNF.
– If t′ is a WHNF, then there are the following cases:
• t is a WHNF
• t

n,(lll∪ cp),∗−−−−−−−−→ t′′, where t′′ is a WHNF

Proof. The first case is obvious.
In the second case there are the following possibilities:

40

– t = (letrec x = λv.r,Env in x)
ucp−−→ (letrec Env in λv.r). In this case a

(n,cp)-reduction is sufficient to transform t into WHNF.
– t = (letrec x = t0 in x)

ucp−−→ t0, where t0 is a WHNF. Then either an
(n,cp)-reduction, or a (n,llet)-reduction, or a (n, llet) followed by an (n,cp)-
reduction transform t into WHNF.

– t = (letrec x = v in (letrec Env in x))
ucp−−→ (letrec Env in v), where

v is a value. Then an (n,cp)-reduction or an (n,llet)-reduction or an (n,llet)-
reduction followed by a (n,cp)-reduction transform t into WHNF.

– t = (letrec Env in (letrec x = v in x))
ucp−−→ (letrec Env in v). Again an

(n, llet)-reduction or an (n, llet)-reduction followed by an (n,cp)-reduction
transforms t into WHNF.

2

Proposition 10.26. Let t be a expression. If t
ucp−−→ t′, then t ∼c t′

Proof. Using the context lemma and the same technique as in the proofs of
Proposition 9.10, we have only to ensure that transferring a terminating normal
order reduction of R[t] to a normal order reduction of R[t′], and vice versa, really
terminates.

– Let R[t]⇓. We show that R[t′]⇓ by using the forking diagrams in Lemma 10.24

and 10.4 to transform Red · ,S,ucp−−−−→ into a terminating normal order reduction
of R[t′], where Red is a terminating normal order reduction of R[t]. We use as
measure on the intermediate reductions a multiset of the following numbers:
for every S-reduction, the number of normal order reductions to the left of
it.
The diagrams 1 – 5 of ucp obviously strictly decrease this measure. Diagram
6 replaces a number in the multiset by two smaller ones, hence the multiset
is also strictly decreased.
For the base case, we apply Lemma 10.25.

– Let R[t′]⇓. We show that R[t]⇓ by transforming a terminating reduction
S,ucp−−−→ ·Red into a normal order reduction of R[t], where Red is a normal
order reduction of R[t′]. We use the commuting diagrams in Lemma 10.24

and 10.4 for the transformation. First we shift the single
S,ucp−−−→-reduction

to the right using the diagrams in Lemma 10.24. This terminates, since the
number of normal order reductions to the right either strictly decreases or in
the case of diagram 3, some (lll)-reductions are added to the left, which also
terminates. In the final step, we apply Lemma 10.25 and replace the final

reduction by
n,(lll∪ cp),∗−−−−−−−−→. This leaves a reduction sequence which is a mixture

of normal order reductions and
S,gc−−−→-reductions. Now we can apply Lemma

10.4 and can use the same arguments as in Proposition 10.6 to transform
this mixed sequence into a normal order reduction to a WHNF.

2

41

10.9 Correctness of (abse)

Proposition 10.27. The reduction (abse) is a correct program transformation.

Proof. This follows from Proposition 10.26 and Theorem 10.22, since (abse) can
be undone by several (ucp)-and (gc)-reductions. 2

10.10 Correctness of (cpax)

Proposition 10.28. The reduction (cpax) is a correct program transformation.

Proof. This follows from proposition 10.9, since (cpax) can also be performed
by several (cpx) reductions. 2

Proposition 10.29. The reduction (cpax) is terminating.

Proof. Every (cpax) reduction strictly decreases the number of let-bound vari-
ables that have occurrences in the expression. 2

10.11 Correctness of (lwas)

In this subsection we show the correctness of the reduction (lwas), which lifts
letrec bindings over an AS−(1) context.

Proposition 10.30. The (lwas)-reduction is correct. I.e., if s
lwas−−−→ t, then s ∼c

t.

Proof. The reduction sequence

AS−1 [(letrec Env in t)]
ucp←−− (letrec x = (letrec Env in t) in AS−1 [x])
llet−−→ (letrec x = t,Env in AS−1 [x])
ucp−−→ (letrec Env in AS−1 [t])

and the correctness of (ucp) and (lll), which are proved in Theorem 10.22, The-
orem 10.23 and Proposition 10.26 show that the proposition holds.

2

10.12 Summary of Properties

Theorem 10.31. The reductions (ucp), (cpx), (cpax), (gc), (lwas), (cpcx),
(abs), (abse) and (xch) keep contextual equivalence. I.e. whenever t

a−→ t′, with
a ∈ {ucp, cpx, cpax, gc, lwas, cpcx, abs, abse, xch}, then t ∼c t′.

Proposition 10.32. If t⇑ and t
a−→ t′, where a is any reduction (lll), (seq),

(lbeta), (case), (gc) (cpx), (cpax), (ucp), (lwas), then t′ is also non-terminating.

42

Proof. This follows from the contextual equivalences (see Theorem 10.23 and
Theorem 10.31). 2

Theorem 10.33. (Standardization) Let t be a term such that t
∗−→ t′, where t′

is a WHNF, and the reductions are base reductions or extra reductions. Then
t⇓.

Proof. This follows from Theorems 10.23, 10.22 and 7.4. 2

11 Simplifications

11.1 A Convergent Rewrite System of Simplifications

Definition 11.1. As simplification rules we will use (lwas), (llet), (gc), (cpax).

Note that the rule (lwas) includes (lseq), (lcase), (lapp), but not (llet). The
simplification rules (lwas), (llet), (gc), (cpax) keep contextual equivalence, which
is proved in Theorem 10.23 and Theorem 10.31. For definitions of confluence and
local confluence see e.g. [BN98].

Theorem 11.2. The set of reductions (lwas), (llet), (gc), (cpax) is confluent
(up to α-renaming) and terminating.

Proof. We have to compute the forking diagrams (critical pairs) between (lwas)-,
(llet)-, (cpax)-, and (gc)-reductions in order to show local confluence of the
reductions. We omit the cases of commutation of the reductions.
The forking diagrams are:

For (lwas) with (lwas):

· lwas //

lwas

��

·

lwas

���
�
�

·

llet

���
�
�

·
lwas

//___ ·
llet

//___ ·

For (lwas) with (llet):

· llet //

lwas

��

·

lwas

���
�
�

· lwas //___ · llet //___ ·
For (cpax) with (cpax):

· cpax //

cpax

��

·
gc

���
�
�

· gc //___ ·

43

For (gc) with other reductions:

· a //

gc

��

·
gc

���
�

�
�

·

For termination we only need a well-founded measure of terms that is strictly
decreased in every reduction step. This measure µ is a tuple (µ1(t), µ2(t), µ3(t)),
ordered lexicographically. The measure µ1(t) is µlll(t) as defined in Definition
10.2 and used in the proof of Proposition 10.3, µ2(t) is the number of all bindings
in letrec-subexpressions in t, and µ3(t) is the number of let-bound variables
that have occurrences in the expression.
This measure of t is strictly decreased by every reduction (lwas), (cpax), (gc),
(llet): The reductions (llet) and (lwas) strictly decrease µ1, the reduction (gc)
strictly decreases µ1 or leaves µ1 unchanged and strictly decreases µ2, and the
reduction (cpax) leaves µ1, µ2 unchanged, and strictly decreases µ3.
Finally, we apply the well-known Newman’s Lemma which states confluence for
terminating and locally confluent reduction systems (see e.g. [BN98]). 2

Proposition 11.3. The simplification rules, if applied exhaustively, produce a
normal form with the following properties:

– There are no unnecessary bindings.
– The letrec-environments are joined at the top of the term, at the top in the

body of abstractions, and at the top in the alternatives of cases.

11.2 Properties of Bot

In this section we show that all bot-terms, i.e., all terms t with t⇑⇑ are equivalent
and that Bot is the least element w.r.t. ≤c.

Proposition 11.4. Let t be an expression such that t⇑⇑ and let s be an arbitrary
expression.
Then t ≤c s.

Proof. The context lemma shows that it is sufficient to prove for all reduction
contexts R: R[t]⇓ ⇒ R[s]⇓. We simply prove that R[t]⇓ does not hold. Assume
that there is a terminating normal order reduction of R[t] to WHNF. We prove
by induction that this implies that t has a terminating normal order reduction
to a WHNF.
Let t

n,∗−−→ t1, such that t1 is the first letrec-expression in the sequence. If
t 6= t1, we can use induction, since the normal order reductions of R[t]

n,∗−−→ R[t1]
are precisely the same reductions. This holds, since inserting the maximal weak
reduction context of t into a reduction context R yields a maximal reduction
context.
In the rest of the proof we assume that t is a letrec-expression.
By Lemma 7.5, if t = (letrec Et in t′), the normal order reduction reduces

44

R[t] = R[(letrec Et in t′)] to (letrec Et, ER in R′[t′]) in several steps, where
R′ is a weak reduction context, Et the environment that belongs to t, and ER the
environment part that is at the top level of R. If R is not a letrec-expression,
then ER is empty.
The correspondence between normal order reductions of t and of
(letrec Et, ER in R′[t′]) is as follows:

– If there is a (n,llet-in)-reduction t = (letrec Et in (letrec E1 in t′′)) n−→
(letrec Et, E1 in t′′), then the corresponding normal order reduction of
(letrec Et, ER in R′[(letrec E1 in t′′)]) is a normal order (mll)-reduction
resulting in (letrec Et, E1, ER in R′[t′′]). With E′

t = Et ∪ E1, the corre-
spondence holds.

– If there is another reduction of t, then this is of the form (letrec Et in t′) n−→
(letrec E′

t in t′′). It is easy to see that (letrec Et, ER in R′[t′]) n−→
(letrec E′

t, ER in R′[t′′]). The environment ER is never involved, since
we have assumed that t⇑⇑.

Summarizing, the normal order reductions of R[t] correspond to the number
of normal order reductions of t. The number of (lll)-reductions may vary, but
the non-(lll)-reductions are the same. Hence, if R[t] terminates with a WHNF,
then we also obtain a WHNF of t by the translation above. Hence we get a
contradiction.
This finally shows that for a non-terminating t, the term R[t] cannot have a
terminating normal order reduction. 2

Corollary 11.5.

1. If t1, t2 are expressions with t1⇑⇑ and t2⇑⇑, then Bot ∼c t1 ∼c t2.
2. For all expressions s: Bot ≤c s.
3. R[Bot] ∼c Bot.
4. If t = R[s] is an expression and R a reduction context, then s is a strict

subexpression of t.

Proof. The first two claims follow from Proposition 11.4. Claim 3 and 4 follow
using the arguments in the proof of Proposition 11.4. 2

11.3 Another Definition of Contextual Equivalence

Proposition 11.6. s ≤c t is equivalent to:

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)
Proof. One direction is trivial.
Assume that the following holds

∀C[·] : C[s], C[t] are closed⇒
(
C[s]⇓ ⇒ C[t]⇓

)
45

Let D be an arbitrary context such that D[s]⇓. Let {x1, . . . , xn} be the vari-
ables in FV (D[s], D[t]). Let D′ := (letrec x1 = Bot, . . . , xn = Bot in D).
Then D′[s]⇓ follows from D[s]⇓, and D′[t]⇓ follows from the assumption. The
terminating normal order reduction of D′[t]⇓ does never put any xi in a reduc-
tion context, since this contradicts Corollary 11.5. Hence the same method as
in the proof of Proposition 11.4 shows that we can use the same normal order
reduction to show that D[t]⇓. 2

11.4 Strict Subexpressions

We prove that a strict subexpression s of t, which is additionally in a surface
context, can be reduced eagerly to WHNF.
In the following a strict subterm s of t always includes its position in t. We assume
that the subterm s is labeled, that the reduction respects labels and that labels
can be identified in the reduct, unless the reduction is a (llet)-reduction that
destroys the top level letrec of s, or s is eliminated.

Lemma 11.7. Let s be a strict subterm of the expression t, where t = S[s]
and S is a surface context. Then for every terminating normal order reduction
t

n,∗−−→ t0, there is an intermediate term R[s], such that t
n,∗−−→ R[s]

n,∗−−→ t0, R is
a reduction context, and R[s] is the first term in this sequence where s is in a
reduction context.

Proof. If there is a terminating normal order reduction t
n,∗−−→ t0, where s is never

in a reduction context, then we can replace s by Bot and get the same reduction
sequence to a WHNF. This contradicts the assumption that s is a strict subterm
of t. 2

Lemma 11.8. Let s be a strict subterm of the expression t, where t = S[s] and
S is a surface context. Then the following holds:

1. If s is of one of the following forms:
(letrec E in s′), (s′ s′′), (seq s′ s′′), or (case s′ alts),
then s′ is a strict subterm of t.

2. Every superterm of s in t is a strict subterm of t
3. If t = C[(letrec x = s′, E in C ′[x])], and x is a strict subterm of t in a

surface context, then s′ is also a strict subterm of t.

Proof. The first claim follows from Corollary 11.5, since (letrec E in Bot) ∼c

(Bot s′′) ∼c (seq Bot s′′) ∼c (case Bot alts) ∼c Bot, since in each of the ex-
pressions Bot is in a reduction context
The second claim follows from the properties of a precongruence: If t = C[D[s]]
we have C[D[Bot]] ∼c Bot. Since Bot ≤c D[Bot], we obtain C[Bot] ≤c

C[D[Bot]] ∼c Bot, hence C[Bot] ∼c Bot.
The third claim can be proved using Lemma 11.7 which shows that every termi-
nating normal order reduction of t has an intermediate term R[x]. Hence s′ will
occur under a reduction context in every terminating normal order reduction,
Thus s′ is a strict subterm of t. 2

46

Lemma 11.9. Let t be a term with t⇓, let s be a strict subterm of the expression
t with s 6= t, t = S[s] where S is a surface context, and s is not a value and not
a letrec-expression. If t

a−→ t′ by a reduction a from the base calculus, then s is
also a strict subterm of t′.

Proof. If the reduction is within s, i.e. s → s′ and t′ = t[s′/s], then the lemma
holds, since t[Bot/s] ∼c Bot, and so also t[Bot/s′] ∼c Bot. This also holds, if a
(cp) or (seq) has its inner redex in s, but the redex is not in s. If a (case)-reduction
is such that the case-expression is within s, and the constructor application is
not in s, then we have t[Bot/s] abs−−→ t′[Bot/s′], hence by Proposition 10.16, we
obtain t′[Bot/s] ∼c Bot,
If the reduction does not change s, then also t[Bot/s]→ t′[Bot/s] by a reduction
from the base calculus. In this case Theorems 10.23 and7.4 show that t′[Bot/s] ∼c

Bot.
The other case is that s is not changed, but eliminated by a (choice), (seq),
or (case). In this case we have t[Bot/s] → t′[Bot/s] = t′ and we reach the
contradiction t′ ∼c Bot using Theorems 10.23 and7.4.
It is not possible by assumption that s is copied by a (cp), or that the top level
of s is destroyed by a (lll)-reduction, or that s is the constructor application used
in a (case)-reduction, or that s is the head of a (lbeta)-reduction.

2

12 Length of Normal Order Reduction

In the following we develop properties of the length of normal order reduction
sequences. The lengths are mainly used for normal order reductions of concrete
expressions, but we require the claims also for certain induction arguments later
for abstract terms.
For claims about lengths of reductions, only complete sets of forking diagrams
are required. On the other hand, we cannot use the context lemma, and thus also
have to treat overlappings where the reduction is within the body of a lambda
abstraction.

Definition 12.1. We define the lengths of normal order reductions.
Let t be a closed term and Red be a normal order reduction that terminates with
a WHNF. Then

1. rl]](Red) is defined to be the number of (choice),(case), (lbeta), (seq)-
reductions in Red.

2. rl](Red) is defined to be the number of (choice), (case), (lbeta), (seq), and
(cp)-reductions in in Red.

3. rl[(Red) is defined to be the number of (lll)-reductions in Red.
4. rl(Red) := rl](Red)+rl[(Red). I.e., the number of all normal order reduction

steps.

47

In the case that the normal order reduction is infinite, we define rl]](Red) =
rl](Red) = ∞. This is consistent with the property of normal order reduction
sequences.

Proposition 12.2. Let t be a closed term and Red be an infinite normal order
reduction sequence for t, then Red contains infinitely many (cp)-reductions as
well as infinitely many (lbeta)-reductions.

Proof. Suppose Red has finitely many (cp)-reductions. Then it is sufficient to
treat the situation where Red has no (cp)-reductions. Then there are only
finitely many (lbeta)-reductions, since the number of abstractions is strictly
decreased by (lbeta), but not increased by non-(cp)-reductions. The same for
(case)-reductions, since a (case)-reduction removes a case-expression. Similar
for seq-reductions. Then we have a normal order reduction that consists only of
(lll)-reductions. This, however, contradicts Proposition 10.3.
Now suppose that Red has finitely many (lbeta)-reductions. Then the number
of surface positions of variables remains bounded, and hence there are finitely
many (cp)-reductions. This contradicts the first part. 2

Definition 12.3. Let t be a closed concrete term, and let Red be the unique and
maximal normal order reduction of t.

1. rl]](t) := rl]](Red)
2. rl](t) := rl](Red)
3. rl[(t) := rl[(Red)
4. rl(t) := rl](t) + rl[(t) .

Note that since the terms are concrete, there are no (choice)-reductions.
In the case that t does not terminate with a WHNF, we define rl]](t) = rl](t) =
∞.

The main measure in this paper will be rl]](·).

Proposition 12.4. Let t be a closed expression and Red1 ∈ nor(t).

1. If Red1 =
n,a−−→ ·Red2 with a ∈ {case, seq, lbeta, cp, lll}, then rl(Red1) =

rl(Red2) + 1.
2. If Red1 =

n,a−−→ ·Red2 with a ∈ {case, seq, lbeta, cp}, then rl](Red1) =
rl](Red2) + 1.

3. If Red1 =
n,a−−→ ·Red2 with a ∈ {case, seq, lbeta}, then rl]](Red1) =

rl]](Red2) + 1.

Proof. Trivial. 2

Theorem 12.5. Let t1, s1 be closed expressions and Red1 ∈ nor(t1). Then

1. If t1
a−→ s1 with a ∈ {case, seq, lbeta, cp}, then there exists a Red2 ∈ nor(s1)

with rl(Red1) ≥ rl(Red2), rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2).

48

2. If t1
S,a−−→ s1 with a ∈ {caseS, seqS, lbeta, cpS}, then there exists a Red2 ∈

nor(s1) with rl](Red1) ≥ rl](Red2) ≥ rl](Red1) − 1 and rl]](Red1) ≥
rl]](Red2) ≥ rl]](Red1) − 1. If a = cpS, then there exists a Red2 ∈ nor(s1)
with rl]](Red1) = rl]](Red2).

3. If t1
a−→ s1 with a ∈ {lll, gc}, then there exists a Red2 ∈ nor(s1) with

rl(Red1) ≥ rl(Red2), rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2). If
a = gc1, then we can select Red2 such that in addition rl(Red1) = rl(Red2).

4. If t1
a−→ s1 with a ∈ {cpx, cpax, xch}, then there exists a Red2 ∈ nor(s1) with

rl(Red1) = rl(Red2), rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2).
5. If t1

ucp−−→ s1, then
there exists a Red2 ∈ nor(s1) with rl(Red1) ≥ rl(Red2), rl](Red1) ≥
rl](Red2) and rl]](Red1) = rl]](Red2).

6. If t1
lwas−−−→ s1, then there exists a Red2 ∈ nor(s1) with rl]](Red1) =

rl]](Red2).
7. If t1

a−→ s1 with a ∈ {cpcx, abs} then there exists a Red2 ∈ nor(s1) with
rl(Red1) = rl(Red2), rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2).

Proof. The proof is done below in this section in Propositions 12.20, 12.22, 12.8,
12.11, 12.12, 12.14, 12.17, 12.24, and 12.16. 2

12.1 Reductions lengths for (lll) and (gc)

For the purposes of this subsection we denote the union of the reductions (lapp),
(lseq), (lcase) as (llasc).

Lemma 12.6. A complete set of forking and commuting diagrams for (i, lll),
where a is an arbitrary reduction type, is as follows:

t1
i,lll //

n,a

��

s1

n,a

��

t1
i,lll //

n,a

��

s1

n,a

����
��
��
��
��
��
��

t1
i,lll //

n,a

��

s1

n,a
��~~

~~
~~

~~

t2
i,lll // s2 t3

n,lll

��

t2

t2

t1
i,lll //

n,cp

��

s1

n,cp

��

t1
i,llet //

n,llasc

��

s1

n,llasc

��

t1
i,llet //

n,llasc

��

s1

n,llasc

����
��

��
��

��
��

��
��

��
��

��
�

t2
i,lll // t3

i,lll // s2 t2
i,llasc // t3

i,llet // s2 ·

n,llasc

��
·

n,llet

��
t2

49

Proof. We make the cases analysis for the forking diagrams. There are a number
of standard cases:

– the reductions commute, or
– the reductions commute, and the (i,lll)-reduction is turned into a (n,lll)-

reduction, or
– the (i,lll)-reduction is in a term that is removed by the reduction, i.e., a lost

case-alternative or an expression lost by a (choice)-reduction.
– the (i,lll)-reduction is within a copied abstraction.

This leads to cases 1 to 4.
All overlappings of an (i,b)-reduction, where b ∈ {(lseq), (lcase), (lapp), (llet-e)}
lead to a commuting diagram. The non-standard cases are overlappings of a

reduction
i,llet-in−−−−−→ with a normal order redex: we demonstrate the reductions

by representative examples.

• (((letrec Env1 in (letrec Env2 in t1)) t2) t3)
n,lapp−−−−→ ((letrec Env1 in ((letrec Env2 in t1) t2)) t3)
i,lapp−−−−→ ((letrec Env1 in (letrec Env2 in (t1 t2))) t3)
i,llet−−−→ ((letrec Env1,Env2 in (t1 t2)) t3)

• (((letrec Env1 in (letrec Env2 in t1)) t2) t3)
i,llet−−−→ (((letrec Env1,Env2 in t1) t2) t3)
n,lapp−−−−→ ((letrec Env1,Env2 in (t1 t2)) t3)

This is covered in the diagram number 5.
A slight variation is the case:

• ((letrec Env1 in (letrec Env2 in t1)) t2)
n,lapp−−−−→ (letrec Env1 in ((letrec Env2 in t1) t2))
n,lapp−−−−→ (letrec Env1 in (letrec Env2 in (t1 t2)))
n,llet−−−→ (letrec Env1,Env2 in (t1 t2))

• ((letrec Env1 in (letrec Env2 in t1)) t2)
i,llet−−−→ ((letrec Env1,Env2 in t1) t2)
n,lapp−−−−→ (letrec Env1,Env2 in (t1 t2))

This corresponds to the diagram 6.
The same holds if (lapp) is replaced by (lseq), or (lcase).
Checking all cases shows that no further diagrams are required. 2

Lemma 12.7. A complete set of forking diagrams for (gc), where a is arbitrary,
is as follows:

50

t1
gc //

n,a

��

s1

n,a

���
�
� t1

gc //

n,a

��

s1

n,a
��~

~
~

~

t2
gc //___ s2 t2

t1
gc //

n,cp

��

s1

n,cp

���
�
� t1

gc2 //

n,lll

��

s1??

gc2~
~

~
~

t2
gc //___ t3

gc //___ s2 t2

Proof. We omit the arguments for the cases 1,2,3.

Checking all possibilities for an overlap, it is clear that a (gc)-reduction can only
overlap with a normal order reduction that requires a letrec. A non-trivial
overlap is only possible, if (gc) removes the complete environment, i.e. only with
(gc2). It is easy to check that all cases are covered by the diagrams (see also
Lemma 10.4). 2

Now we can prove claim 3 of theorem 12.5.

Proposition 12.8. Let t1, s1 be closed expressions with Red1 ∈ nor(t1) and
t1

a−→ s1 where a ∈ {lll, gc}. Then there exists a Red2 ∈ nor(s1) with rl(Red1) ≥
rl(Red2), rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2). If a = (gc1), then
Red2 can be selected such that in addition rl(Red1) = rl(Red2).

Proof. The proof constructs a reduction Red2 using induction on rl(Red1).
If t1 is a WHNF, then s1 is also a WHNF by Lemmas 9.2 and 10.5.
First we treat the case that the reduction is an (i,lll):
Let t1 be the starting term. Let Red1 = t1

n,a−−→ t2 · Red1r. In the triangular
diagrams, it is easy to see that the reduction Red2 satisfies the length properties.
For diagrams 1,4,5, the induction hypothesis has to be used.
The diagrams in Lemma 12.6 fix the notation of the terms ti, si. So we associate
a reduction Red2r to s2.

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r, perhaps two times, and obtain a reduction Red2r starting
from s2.

51

It is easy to see inspecting the diagrams, that rl[(Red1) ≥ rl[(Red2). The addi-
tional contribution of the (n,a)-reduction, or the (n,cp)-reduction to rl](Red1)
or rl](Red2) is the same in all diagrams, hence rl](Red1) = rl](Red2) holds using
induction.
Now we consider the case that the internal reduction is a (gc). The diagrams in
Lemma 12.7 are used.
In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r.
The equality rl](Red1) = rl](Red2) holds in the diagram cases 1,2 since the (n,a)-
reductions contribute the same number of reductions. The same for diagram 3,
but we have to apply the induction hypothesis twice. In diagram 4, the (n,a)-
reduction is a (n,lll), hence rl](Red1) = rl](Red2r), and rl](Red2r) = rl](Red1)
by induction.
Exactly the same arguments show the claim of the theorem for rl]](·) for (gc)
and (lll)-reductions.
The easy induction proof for the property of (gc1) is done by the length rl(·),
omitting diagram 4. 2

Proposition 12.9. Let t1, s1 be a closed expressions with Red2 ∈ nor(s1) and
t1

lll−→ s1. Then there exists a Red1 ∈ nor(t1) with rl](Red1) = rl](Red2) and
rl]](Red1) = rl]](Red2).

Proof. Using Lemma 12.6 the proof constructs a reduction Red1 using induc-
tion on the following measure of reduction sequences, which are a mix of (i,lll)-
reductions and normal order reductions:
It is a multiset with the multiset ordering, where the multiset consists of a triple
for every (i,lll)-reduction:

1. The number of (n,cp)-reductions to the right of it.
2. If the reduction is r1

i,lll−−→ r2, then µlll(r1).

1. Diagram 1 strictly reduces in one triple either µ1, or leaves µ1 and strictly
decreases µ2.

2. Diagram 2,3,6 remove one triple from the multiset.
3. Diagram 4 replaces a triple by two strictly smaller triples, where the first

component is strictly smaller.
4. Diagram 5 replaces a triple by two strictly smaller triples, where the second

component is strictly smaller.

Since the ordering is well-founded, the shifting terminates with a normal or-
der reduction. Furthermore, the number of (choice), (seq), (case), (lbeta), (cp)-
reductions is not modified. Hence the claim holds. 2

12.2 Reduction Length for (cpx)-, (cpax)- and (xch)-Reductions

We compute the effect of (cpx)- and (xch)-reductions on the length of normal
order reduction sequences. Note that the diagrams from Lemma 10.7 have to be
reconsidered, since now all positions in a term have to be covered.

52

Lemma 12.10. A complete set of forking diagrams for b ∈ {cpx, xch} in all
contexts is as follows:

t1
b //

n,a

��

s1

n,a

���
�
� t1

b //

n,a

��

s1

n,a
��~

~
~

~
t1

b //

n,cp

��

s1

n,cp

���
�
�

t2
b //___ s2 t2 t2

b //___ t3
b //___ s2

Proof. There are only the standard overlappings.
2

Concerning the length of normal order reductions, the following holds:

Proposition 12.11. Let t1 be a closed expression with Red1 ∈ nor(t1), and
t1

b−→ s1 where b ∈ {cpx, xch}. Then there exists a Red2 ∈ nor(s1) with Then
rl]](Red1) = rl]](Red2), rl](Red1) = rl](Red2) and rl(Red1) = rl(Red2).

Proof. This follows by induction on rl(Red1) from Lemma 12.10, Lemma 10.8
and 10.12. 2

We have to treat the length-modifications by (cpax)-reductions:

Proposition 12.12. Let t1 be a closed expression with Red1 ∈ nor(t1), and
t1

cpax−−−→ s1. Then there exists a Red2 ∈ nor(s1) with rl]](Red1) = rl]](Red2),
rl](Red1) = rl](Red2) and rl(Red1) = rl(Red2).

Proof. This follows by induction on the number of variables occurrences that are
replaced by the (cpax)-reduction, and from Proposition 12.11, since the (cpax)-
reduction can be simulated by several (cpx) reductions. 2

12.3 Reduction Length for ucp-Reductions

Lemma 12.13. A complete sets of forking diagrams for
ucp−−→ in arbitrary con-

texts is as follows:

t1
ucp //

n,a

��

s1

n,a

���
�
� t1

ucp //

n,a

��

s1

n,a
��~

~
~

~
t1

ucp //

n,lll+

��

s1

n,lll∗

���
�
� t1

ucp //

n,cp

��

s1??

gc
~

~
~

~

t2
ucp //___ s2 t2 t2

ucp //___ s2 t2

t1
ucp //

n,a

��

s1

n,a

���
�
� t1

ucp //

n,a

��

s1

n,a

���
�
�

t2
gc //___ s2 t2

ucp //___ · ucp //___ s2

where a ∈ {(cp), (case)} in the 6th diagram.

53

Proof. The first five diagrams are as in Lemma 10.24, the 6th diagram covers
the same case as the 6th case in Lemma 10.24 and in addition the case that the
(ucp) takes place in the body of an abstraction. 2

Proposition 12.14. Let t1 be a closed expression with Red1 ∈ nor(t1) and
t1

ucp−−→ s1. Then there exists a Red2 ∈ nor(s1) with rl]](Red1) = rl]](Red2) and
rl](Red1) ≥ rl](Red2).

Proof. This follows by induction on rl](Red1) and then on rl(Red1) from Lemma
10.25, Lemma 12.13 and Proposition 12.8. 2

12.4 Reduction Length for (abs)

For the definition of the (abs)-reduction see figure 3.

Lemma 12.15. The forking diagrams for (abs) in arbitrary contexts are as fol-
lows.

t1
abs //

n,a

��

s1

n,a

���
�
� t1

abs //

n,a

��

s1

n,a
��~

~
~

~

t2
abs //___ s2 t2

t1
abs //

n,cp

��

s1

n,cp

���
�
� t1

abs //

n,case

��

s1

n,case

���
�
�

t2
abs //___ t3

abs //___ s2 t2
abs //___ · cpx,∗ //___ · xch,∗ //___ s2

Proof. The cases are standard, only the last diagram requires an explicit justi-
fication:

(letrec x = c t1 t2 in C[case x (c y1 y2)→ s])
abs−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2 in C[case x (c y1 y2)→ s])
n,case−−−−→ (letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])
n,case−−−−→ (letrec x = c z1 z2, z1 = t1, z2 = t2 in C[(letrec y1 = z1, y2 = z2 in s)])
abs−−→ (letrec x = c x1 x2, x1 = z1, x2 = z2, z1 = t1, z2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])
cpx,∗−−−→ (letrec x = c z1 z2, x1 = z1, x2 = z2, z1 = t1, z2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])
xch,∗−−−→ (letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2 in

C[(letrec y1 = z1, y2 = z2 in s)])

2

54

Proposition 12.16. Let t1, s1 be closed expressions with Red1 ∈ nor(t1) and
t1

abs−−→ s1. Then there exists a Red2 ∈ nor(s1) with rl(Red1) = rl(Red2),
rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2).

Proof. The proof is by induction on rl(Red1), where the diagrams in Lemma
12.15 are used, and part 4 in Theorem 12.5, and since (abs) transforms WHNFs
into WHNFs and vice versa. 2

12.5 Reduction Length for (lwas)-Reductions

Proposition 12.17. Let t1 be a closed expression with Red1 ∈ nor(t1) and
t1

lwas−−−→ s1. Then there exists a Red2 ∈ nor(s1) with rl]](Red1) = rl]](Red2).

Proof. Since (lwas) can be simulated using (ucp) and (llet)-reductions in both
directions (see proof of Lemma 10.30), Propositions 12.14, and 12.8 show the
claim. 2

It would also be possible to sharpen this proposition, however, this is not neces-
sary for the further development.

12.6 Using Diagrams for Internal Base Reductions

Now we analyze the length of normal order reductions for internal base reduc-
tions.

Lemma 12.18. A complete set of forking diagrams for internal reductions with
b ∈ {case, seq, lbeta, cp}, where a is the kind of the normal order reduction, and
all contexts are permitted, is as follows

t1
i,b //

n,a

��

s1

n,a

���
�
� t1

i,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
i,b //

n,cp

��

s1

n,cp

���
�
� t1

i,b //

n,a

��

s1

n,a
��~

~
~

~

t2
i,b //___ s2 t3

n,b

��

t2
i,b //___ t3

i,b //___ s2 t2

t2

t1
i,case //

n,case

��

s1

n,case

���
�
�

t2
i,case //___ · cpx,∗ //___ · xch,∗ //___ s2

Proof. The conflicts are only between (i,b) and the rule (cp), in which case the
b-reduction may be within the copied expression, or in a removed alternative of

55

a case, or in a subterm removed by (choice) or (seq).
The exceptional diagram is a (case)-(case)-overlapping:

(letrec x = c t1 t2 in C[case x (c z1,1 z1,2)→ s1, case x (c z2,1 z2,2)→ s2])
i,case−−−−→ (letrec x = c y1 y2, y1 = t1, y2 = t2 in

C[case x (c z1,1 z1,2)→ s1, (letrec z2,1 = y1, z2,2 = y2 in s2)])
n,case−−−−→ (letrec x = c y′1 y′2, y1 = t1, y2 = t2, y

′
1 = y1, y

′
2 = y2 in

C[(letrec y′1 = z1,1, y
′
2 = z1,2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])

n,case−−−−→ (letrec x = c y′1 y′2, y
′
1 = t1, y

′
2 = t2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), case x (c z2,1 z2,2)→ s2])
i,case−−−−→ (letrec x = c y1 y2, y

′
1 = t1, y

′
2 = t2, y1 = y′1, y2 = y′2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])
i,cpx,∗−−−−→ (letrec x = c y′1 y′2, y

′
1 = t1, y

′
2 = t2, y1 = y′1, y2 = y′2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])
i,xch,∗−−−−→ (letrec x = c y′1 y′2, y1 = t1, y2 = t2, y

′
1 = y1, y

′
2 = y2 in

C[(letrec z1,1 = y′1, z1,2 = y′2 in s1), (letrec z2,1 = y1, z2,2 = y2 in s2)])

2

Lemma 12.19. If t is a closed WHNF, and t
i,b−→ t′ for b ∈ {case, seq, cp, lbeta},

then t′ is a (closed) WHNF.

Proof. This follows by checking the possible positions of the reduction in a
WHNF. 2

Now we can prove claim 1 of Theorem 12.5

Proposition 12.20. Let t1, s1 be closed expressions with Red1 ∈ nor(t1) and
t1

a−→ s1 where a ∈ {case, seq, lbeta, cp}. Then there exists a Red2 ∈ nor(s1) with
rl(Red1) ≥ rl(Red2), rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2).

Proof. The proof will be done by induction on the length rl(Red1).
The induction base is that t1 is in WHNF, in which case we apply Lemma
12.19 to show that t1

i,b−→ s1 and rl(Red1) = 0 imply rl(Red2) = 0, rl](Red1) =
rl](Red2) = 0, and rl]](Red1) = rl]](Red2) = 0.

For the induction step assume that Red1 = t1
n−→ t2 ·Red1r and t1

i,b−→ s1. Lemma
12.18 shows that there are 5 possible cases.
In any case, we have rl(Red1) > rl(Red1r), and so we can apply the induction
hypothesis to Red1r.
In case 2 the relations rl](Red1) > rl](Red2), and rl(Red1) > rl(Red2), and
rl]](Red1) ≥ rl]](Red2) can be directly derived from the diagrams, and in case
4, we obtain rl](Red1) ≥ rl](Red2), rl(Red1) ≥ rl(Red2), and rl]](Red1) ≥
rl]](Red2).
We use the following notational conventions in this proof for the rectangle-cases
1,3,5:

56

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

In case 1, we obtain by induction that there exists a reduction Red2r of t2 with
rl](Red1r) ≥ rl](Red2r), rl(Red1r) ≥ rl(Red2r), and rl]](Red1r) ≥ rl]](Red2r).
In case 3, we have to apply the induction hypothesis twice and obtain that there
is a reduction Red3 with rl(Red1r) ≥ rl(Red3), hence also a reduction Red2r of
s2 with rl](Red1r) ≥ rl](Red2r), and rl(Red1r) ≥ rl(Red2r), and rl]](Red1r) ≥
rl]](Red2r).
In cases 1 and 3, we obtain rl(Red1) ≥ rl(Red2). Since the first normal order
reductions starting from t1 and from s1 are of the same kind, we obtain also
rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2).
In the fifth case, we apply induction using the existence of appropriate normal
order reduction sequences and the preservation of the lengths of these sequences
by the (xch)- and (cpx)-reductions proved in Proposition 12.11.

2

12.7 Base Reductions in Surface Contexts

Now we treat the case of S-restricted internal base reductions in surface contexts,
which is necessary to obtain sharper bounds in this case.

Lemma 12.21. A complete set of forking diagrams for b ∈
{caseS, seqS, lbeta, cpS}, where a is the kind of the normal order reduction, and
the b-reduction is in a surface context, is as follows:

t1
iS,b //

n,a

��

s1

n,a

���
�
� t1

iS,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
iS,b //

n,a

��

s1

n,a
��~

~
~

~

t2
iS,b //___ s2 t3

n,b

��

t2

t2

t1
iS,caseS //

n,case

��

s1

n,caseS
���
�
�

t2
iS,caseS//___ · cpx //___ · xch //___ s2

57

Proof. The same arguments as in the proof of Lemma 12.18 can be used. See
also Lemma 9.7. Note that the duplicating (n,cp)-diagram does not occur, since
the reductions are in surface contexts and the context C in their definition is
also restricted to a surface context. 2

Now we can prove claim 2 of Theorem 12.5

Proposition 12.22. Let t1, s1 be a closed expression with Red1 ∈ nor(t1) and

t1
S,a−−→ s1 where a ∈ {caseS, seqS, lbeta, cpS}. Then there exists a Red2 ∈ nor(s1)

with rl](Red1) ≥ rl](Red2) ≥ rl](Red1) − 1 and rl]](Red1) ≥ rl]](Red2) ≥
rl]](Red1)− 1. For a = cpS, in addition rl]](Red1) = rl]](Red2) holds.

Proof. Proposition 12.20 already shows that there exists a Red2 ∈ nor(s1) with
rl(Red1) ≥ rl(Red2), rl](Red1) ≥ rl](Red2) and rl]](Red1) ≥ rl]](Red2). So it
remains to prove that rl](Red2) ≥ rl](Red1)− 1 and rl]](Red2) ≥ rl]](Red1)− 1
for the same constructed reduction Red2.
The proof will be done by induction on the length rl(Red1). The induction base
is that t1 is in WHNF, in which case we apply Lemma 12.19 to show that
t1

i,a−−→ s1 and rl(Red1) = 0 imply rl(Red2) = 0, rl](Red1) = rl](Red2) = 0, and
rl]](Red1) = rl]](Red2) = 0.

For the induction step assume that t1
n−→ t2 and t1

iS,b−−→ s1. Lemma 12.21 shows
that there are four possible cases.
We use the following notational conventions in this proof for the rectangle-case
1 :

t1
i,b //

n,a

��

s1

n,a

���
�
�

t2
i,b //______

Red1r

��

s2

Red2r

��
· ·

In case 1 we have rl(Red1) > rl(Red2r), and so we can apply the induction
hypothesis to Red1r.
Furthermore, there is a reduction Red2r of s2 with rl](Red2r) ≥ rl](Red1r) − 1
and rl]](Red2r) ≥ rl]](Red1r) − 1 by induction hypothesis. This implies the
claim, by adding a δ to either side of the two inequations, where δ may be 0 or
1 depending on the kind of reduction a.
In case 2, the measures depend on the kind of reductions a, b: The equation
rl](Red1) − 1 = rl](Red2) holds, and either the equation rl]](Red1) − 1 =
rl]](Red2) or rl]](Red1) = rl]](Red2) holds.
In case 3, the equations rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2) hold.
In case 4, the equations rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2) hold
by induction similar to diagram 1 using Proposition 12.11.
In the case that a = cpS, the equation rl]](Red1) = rl]](Red2) follows by induc-
tion using the diagrams 1,2,3.

58

2

12.8 Reduction Length for (cpcx)

The reduction (cpcx) is defined as follows (see also Definition 10.1).

Lemma 12.23. A complete set of forking diagrams for (cpcx) in arbitrary con-
texts is as follows.

t1
cpcx //

n,a

��

s1

n,a

���
�
� t1

cpcx //

n,a

��

s1

n,a
��~

~
~

~
t1

cpcx //

n,cp

��

s1

n,cp

���
�
�

t2
cpcx //___ s2 t2 t2

cpcx //___ t3
cpcx //___ s2

t1
cpcx //

n,cp

��

s1

n,cp

���
�
� t1

cpcx //

n,a

��

s1

n,a

���
�
�

t2
cpcx,+

//___ t3 cpx,∗
//___ t4

gc1,∗
//___ s2 t2

abs //___ s2

· iS,cpcx //

n,case

��

·
n,case

��
·
iS,cpcx

// ·
iS,cpx,∗

// ·
iS,xch,∗

// ·

Proof. The first three cases cover the standard cases, prototypical examples for
the other diagrams are already in the proof of Lemma 10.17. We give a further
prototypical example for diagram 6:

(letrec x = c t1 t2, y = x in case y (c y1 y2)→ s)
cpcx−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2, y = c x1 x2 in case y (c y1 y2)→ s)
n,case−−−−→ letrec x = c x1 x2, x1 = t1, x2 = t2, y = c z1 z2, z1 = x1, z2 = x2

in (letrec y1 = z1, y2 = z2 in s)
n,case−−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2, y = x in (letrec y1 = x1, y2 = x2 in s))
cpcx−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2, y = c z1 z2

in (letrec y1 = x1, y2 = x2 in s)
cpx,∗−−−→ letrec x = c x1 x2, z1 = x1, z2 = x2, x1 = t1, x2 = t2, y = c z1 z2

in (letrec y1 = z1, y2 = z2 in s)

59

The following case is covered by diagram 5:

(letrec x = c t1 t2 in case x (c y1 y2)→ s)
cpcx−−−→ (letrec x = c x1 x2, x1 = t1, x2 = t2 in case (c x1 x2) (c y1 y2)→ s)
n,case−−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2

in (letrec y1 = z1, y2 = z2 in s)
n,case−−−−→ letrec x = c x1 x2, x1 = t1, x2 = t2

in (letrec y1 = x1, y2 = x2 in s)
n,abs−−−→ letrec x = c z1 z2, z1 = x1, z2 = x2, x1 = t1, x2 = t2

in (letrec y1 = x1, y2 = x2 in s)

2

Proposition 12.24. Let s1, t1 be closed expressions with Red1 ∈ nor(t1) and
t1

cpcx−−−→ s1. Then there exists a Red2 ∈ nor(s1) with rl(Red1) = rl(Red2),
rl](Red1) = rl](Red2) and rl]](Red1) = rl]](Red2).

Proof. The proof is by induction on rl(Red1), where Lemmas 10.18 is used for
the base case, and the diagrams in the following Lemmas are used: 12.23, 12.7,
12.15, and 12.10. 2

12.9 Length of Normal Order Reductions for Concrete Expressions

We specialize the claims on the lengths of reduction sequences to concrete ex-
pressions.

Theorem 12.25. Let t1, s1 be closed and terminating concrete expressions.
Then

1. If t1
a−→ s1 with a ∈ {case, seq, lbeta, cp}, then rl(t1) ≥ rl(s1), rl](t1) ≥ rl](s1)

and rl]](t1) ≥ rl]](s1).

2. If t1
S,a−−→ s1 with a ∈ {caseS, seqS, lbeta, cpS}, then rl](t1) ≥ rl](s1) ≥

rl](t1) − 1 and rl]](t1) ≥ rl]](s1) ≥ rl]](t1) − 1. For a = cpS, the equa-
tion rl]](t1) = rl]](s1) holds.

3. If t1
a−→ s1 with a ∈ {lll, gc}, then rl(t1) ≥ rl(s1), rl](t1) = rl](s1) and

rl]](t1) = rl]](s1).
4. If t1

a−→ s1 with a ∈ {cpx, cpax, xch}, then rl(t1) = rl(s1), rl](t1) = rl](s1)
and rl]](t1) = rl]](s1).

5. If t1
ucp−−→ s1, then rl(t1) ≥ rl(s1), rl](t1) ≥ rl](s1) and rl]](t1) = rl]](s1).

6. If t1
lwas−−−→ s1, then rl]](t1) = rl]](s1).

7. If t1
a−→ s1 with a ∈ {cpcx, abs} then rl(t1) = rl(s1), rl](t1) = rl](s1) and

rl]](t1) = rl]](s1).

Proof. Follows from Theorem 12.5 by specializing it to concrete expressions,
where normal order reductions are uniquely determined. 2

60

12.10 Length of Normal Order Reduction in Concrete Terms Using
Strictness Optimization

In this subsection we show that modifying the normal order reduction sequence
to exploit strictness will not increase the number of (case)-, (cp)-, (seq)-, and
(lbeta)-reductions required to reach a WHNF.

Proposition 12.26. Let t1 be a closed concrete (LR-) expression and let t1 =
S[t0], where t0 is a strict subterm of t1, S is a surface context, and t0 is an

inner b-redex for for b ∈ {(caseS), (seqS), (lbeta), (cpS)}. Let t1
S,b−−→ s1, where

the subexpression t0 is reduced using the b-reduction.
Then rl](t1) = 1 + rl](s1).
If a 6= (cpt), then rl]](t1) = 1 + rl]](s1) and if a = (cpt), then rl]](t1) = rl]](s1).

Proof. We only consider the case that t1⇓.
We apply induction on rl(t1).
It is not possible that t1 is a WHNF, since then the condition that there is a
b-redex on a surface position for b ∈ {(caseS), (seqS), (lbeta), (cpt)} and that
t1[Bot/t0] ∼c Bot cannot hold simultaneously.
Let t1

n−→ t2.
Lemma 11.9 shows that the descendent of t0 is also a strict subterm of t2.
The diagrams are as follows, where the iS-reduction reduces the redex t0 or its
descendent (see also Lemma 12.21).

t1
iS,b //

n,a

��

s1

n,a

���
�
� t1

iS,b //

n,a

��

s1

n,a

���
�
�
�
�
�
�

t1
iS,caseS //

n,case

��

s1

n,caseS
���
�
�

t2
iS,b //___ s2 t3

n,b

��

t2
iS,caseS//___ · cpx //___ · xch //___ ss

t2

t1
iS,caseS //

n,case

��

s1

n,caseS
���
�
�

t2
iS,caseS//___ · cpx //___ · xch //___ s2

The short triangle-diagram from Lemma 12.21 does not occur, since t0 remains
a strict subterm.
We use induction on rl(t1), where the diagrams above are the cases that have
to be considered in the induction step, and use the already known results on
the lengths of normal order reductions (see Theorem 12.25) for (xch) and (cpx)-
reductions. We obtain that the claim of the proposition holds.

2

61

12.11 Local Evaluation and Deep Subterms

In this subsection we restrict considerations to concrete terms ∈ LR and show
that the reduction lengths for deep and strict subterms is strictly smaller than
the reduction length of the top term.

Definition 12.27. Let t = (letrec Env in t′) be a concrete expression, and
let x ∈ LV (Env). Then the local evaluation of x is defined as the reduction
sequence of t, which corresponds to the normal order reduction sequence of
(letrec Env in x), where only the reductions are included that make modi-
fications in Env, i.e., a perhaps last (n,cp) that replaces x in the normal order
reduction sequence is omitted in the local evaluation.
If the normal order reduction sequence of (letrec Env in x) termi-
nates with a WHNF, then the length of a local evaluation is denoted as
rl]loc(letrec Env in x), otherwise rl]loc(letrec Env in x) :=∞.

Definition 12.28. In the closed concrete term (letrec x = t, y = s,Env in r),
we say x requires y, iff the local evaluation of x in (letrec x = t, y =
Bot,Env in r) does not produce a WHNF for x, i.e., results in Bot for x.

Lemma 12.29. Let t = (letrec x = sx, y = sy,Env in r) be a closed concrete
term, where x requires y, and let t

n−→ t′. Then in t′ the variable x also requires
y.

Proof. First assume that the reduction is not a (llet)-reduction
If t

n−→ t′ modifies only r, then the Lemma holds, since there is no difference
in the local evaluations of x wrt. t and t′. If the reduction modifies a case-
expression in r, where the constructor application is in the top environment,
let t′ = (letrec x = s′x, y = s′y,Env ′ in r′). Then one of the two relations
(letrec x = sx, y = Bot,Env in x) = (letrec x = s′x, y = Bot,Env ′ in x) or
(letrec x = sx, y = Bot,Env in x) abs−−→ (letrec x = s′x, y = Bot,Env ′ in x)
holds, which implies that the Lemma holds.
If t

n−→ t′ modifies the top environment, then similar arguments show that the
Lemma holds.
Now assume that the reduction is a (llet)-reduction. If the (llet)-reduction does
not change the top level structure of t, then again the same arguments suffice
for a proof.
The only non-standard case is that sy = (letrec Envy in s′y) and that it is
modified by a (n,llet-in)-reduction: t′ = (letrec x = sx,Envy, y = s′y,Env in r).
Now the Lemma follows from Lemma 11.8. 2

Lemma 12.30. Let the closed concrete term t = (letrec x1 = t1, . . . , xn =
tn,Env in r) be such that there is a cyclic dependency. I.e.: xi requires xi+1 for
i = 1, . . . , n− 1 and xn requires x1.
Then for all i, the local evaluation of xi does not produce a WHNF for xi.

62

Proof. Assume w.l.o.g. that some local evaluation of x1 terminates with success.
Moreover assume, that this is the rl](·)-shortest successful local evaluation for
all xi.
Every xi is bound to a term that is not a value, since otherwise we have a shorter
evaluation. W.l.o.g. we can ignore the (lll)-reductions. Let the first normal order
reduction step of t

n−→ t′ be a non-(lll)-normal order reduction step. The cyclic
dependency remains as before the reduction (see Lemma 12.29). The term t′ is
a counterexample with a shorter rl](·)-number of a successful local evaluation of
an xi, hence we have a contradiction.
This means there is no finite successful local evaluation for xi for any i = 1, . . . , n.
2

Proposition 12.31. Let t1 = (letrec Env in t′1) be a closed concrete LR-
expression with t1⇓. Let x ∈ LV (Env) where the binding is x = tx, and tx is a
strict subexpression in t1.
Then rl](t1) ≥ rl]loc(letrec Env in x) and rl]](t1) ≥ rl]](letrec Env in x).

Proof. If x = t′1 there is nothing to show. Hence in the following we assume
x 6= t′1.
The proof is by induction on rl]loc(letrec Env in x). If tx is in WHNF, then
rl]loc(letrec Env in x) = 0, and the claim holds. Now let tx be a non-WHNF.
Let t1

a−→ t2 be the reduction corresponding to the first local evaluation step of
x. If the reduction is an (lll)-reduction, then we can use induction and Theorem
12.25. It is easy to see that the inner redex of the reduction is a strict subterm
of t1. The other local reduction types are (cpS), (lbeta), (caseS), (seqS), hence
Proposition 12.26 and induction on the number of local evaluations shows the
claim. 2

Definition 12.32. Let t = (letrec Env in t1). Let t1 be either an application,
a seq-expression, a case-expression, or a variable, say x1. In the latter case there
must be a part of the environment of the form {xn = t2, xn−1 = xn, . . . , x1 =
x2}, where t2 is an application, a seq-expression, or a case-expression. Let
x ∈ LV (Env) such that x 6∈ {x1, . . . , xn}.
Then we say that tx in the binding x = tx is a deep subterm in t.

The next proposition shows that for deep and strict proper subexpressions, the
number rl]](·) of local normal order reductions to a WHNF is less than the
corresponding number for the top term.

Proposition 12.33. Let t1 = (letrec Env in t′1) be a closed concrete LR-
expression with t1⇓. Let x ∈ LV (Env) be a variable with binding x = tx, such
that tx is a strict and deep subterm in t1, and tx is not a letrec-expression.
Then rl]](t1) > rl]]((letrec Env in x)).

Proof. We show by induction on the number of local evaluation steps of x, that
after a local evaluation of x, tx remains a strict and deep subterm in t1. If tx is
already a WHNF, then it is a value. Due to the syntactic form of t1, the normal

63

order reduction of t1 must include at least one (case), (seq), or (lbeta)-reduction
to reach a normal form, hence the proposition holds.
If tx is not a value, then consider a single local evaluation step of x in t1, i.e.
t1 → t2. Then tx remains a strict subterm in t2 by Lemma 11.9.
We have to show that tx is also a deep subterm in t2. The subterm t′1 is not
modified. If it is not a variable, then tx is already a deep subterm. In the case that
t′1 is a variable, t1 = (letrec x = tx,Env , xn = r, xn−1 = xn, . . . , x1 = x2 in x1).
Since tx is a strict subterm, all variables xi, i = 1, . . . , n require x in t1. Since t1⇓,
the variable x does not require xi, i = 1, . . . , n by Lemma 12.30. Hence the local
evaluation of x makes modifications only in tx and Env . Hence t′x, the successor
of tx, is also a deep subterm in t2.
If the next reduction in the local evaluation is a (lll)-reduction, then the measure
rl]] does mot change. If the next reduction in the local evaluation is a (cpS)-
reduction, then apply apply Proposition 12.26. We obtain that rl]](t1) = rl]](t2).
If the next reduction in the local evaluation is a (caseS), (seqS), or (lbeta)-
reduction, then apply Proposition 12.26. We obtain that rl]](t1) = 1 + rl]](t2).
Hence the induction shows that rl]](t1) > rl]]((letrec Env in x)). 2

13 Contextual Least Upper Bounds

We represent sequences s1, s2, . . . as (si)i.

Definition 13.1. Let s1 ≤c s2 ≤c . . . be an ascending chain. The expression s
is a least upper bound (lub) of this chain, denoted s = lub((si)i), iff
(∀i : si ≤c s and for all r: (∀i : si ≤c r))⇒ s ≤c r.

The expression s is a contextual least upper bound (club) of this chain, denoted
as s = club((si)i), iff
∀C : C[s] = lub((C[si])i).
This is denoted as s = club((si)i).

Note that club is unique up to ∼c.
It would be more suggestive to write C[(club(si))i] = club((C[si])i), which means
continuity of contexts in analogy to the corresponding notion for complete partial
orders.
In a paper by Mason, Smith, Talcott [MST96] there is an example which shows
(for a different lambda-calculus) that not every lub is also a club. This can
be reformulated as: “application is not continuous w.r.t. lub”. Presumably, this
example can be translated into our calculus. The definition of club enforces that
all contexts (in particular applications) are continuous w.r.t. club.
The definition of lub and club is also required for sets of expressions:

Definition 13.2. Let A be a set of expressions, and let t be an expression. Then
t = lub(A), iff ∀a ∈ A : a ≤c t and ∀s : (∀a ∈ A : a ≤c s)⇒ t ≤c s.
t = club(A), iff for all C: C[t] = lub({C[a] | a ∈ A}).
The following criterion and its improvement for reduction contexts is essential
for using club as a tool.

64

Lemma 13.3. Let s1 ≤c s2 ≤c . . . be an ascending chain and let s be an ex-
pression. Assume that the following holds:

1. For all i : si ≤c s
2. For all contexts C: C[s]⇓ ⇒ ∃i : C[si]⇓.

Then s = club((si)i).

Proof. Let C,D be contexts. We will show that D[s] = lub((D[si])i). Let r be
an expression with ∀i : D[si] ≤c r. The assumption implies that if CD[s]⇓,
then there exists a j with CD[sj]⇓. Since D[sj] ≤c r we have also C[r]⇓. Hence
CD[s]⇓ ⇒ C[r]⇓. Since this holds for all contexts C, we have proved D[s] ≤c r.
This implies for all contexts D : D[s] = lub((D[si])i). 2

Lemma 13.4. Let s1 ≤c s2 ≤c . . . be an ascending chain. Let s be an expression.
Assume that the following holds:

1. For all i : si ≤c s
2. For all reduction contexts R: R[s]⇓ ⇒ ∃i : R[si]⇓.

Then s = club((si)i).

Proof. We prove that the conditions of Lemma 13.3 hold. The technique is the
same as in the proof of the context lemma. We prove that for a multicontext
C[·, . . . , ·], and for ascending chains (si,j)j , i = 1, . . . , n, and for expressions si

the following holds:
If ∀i, j : si,j ≤c si, and for all reduction contexts R and all i : R[si]⇓ ⇒ ∃j :
R[si,j]⇓, then

C[s1, . . . , sn]⇓ ⇒ ∃j : C[s1,j , . . . , sn,j]⇓

We assume that there is a counterexample with a minimal number of normal
order reductions of C[s1, . . . , sn] to WHNF, and among the minimal counterex-
amples, we select the minimal number of holes of C. Since it is a counterexample,
the number of holes in C is > 0, and C is not a WHNF. There are two cases:

– The normal order redex is within C, i.e. no hole is in a reduction context.
Then the first step of the normal order reduction of C[s1, . . . , sn] n−→ t1
may leave the holes or drop or copy some holes. For further arguments on
the scopes of variables and the applications of renamings see the proof of
the context lemma 7.1. We obtain a corresponding reduction for all i by
reducing the same redex: C[s1,i, . . . , sn,i]

n−→ C ′[s′1,i, . . . , s
′
n′,i] for all i. Every

pair (s′i, (s
′
i,j)j) is the same as some pair (si, (si,j)j) after an appropriate

renaming of variables of the pairs (see the proof of Lemma 7.1). Since after
the reduction, we do no longer have a counterexample, there is some i0, such
that C ′[s′1,i0

, . . . , s′n′,i0
]⇓, hence C[s1,i0 , . . . , sn,i0]⇓, which is a contradiction.

– The second case is that the normal order reduction requires a part of some
si. Then there is a hole of C that is in a reduction context in C. We as-
sume it is the first one. Then let C ′[. . .] := C[s1, ·, . . .]. Since the number

65

of holes is smaller, and since C ′[s2, . . . , sn]⇓, we obtain that there is an i
such that C ′[s2,i, . . . , sn,i]⇓, which means C[s1, s2,i, . . . , sn,i]⇓. The context
C[·, s2,i, . . . , sn,i] is a reduction context, hence there is some i0 such that
C[s1,i0 , s2,i, . . . , sn,i]⇓. Since (sj,k)k are ascending chains, we can choose the
maximum i1 of i0 and i and obtain C[s1,i1 , s2,i1 , . . . , sn,i1]⇓, which is a con-
tradiction. 2

14 Behavioral Preorder and Equivalence

In addition to the context lemma we require the notion and tool of behavioral
equivalence ≤b in LRA for proving ≤c-relations
We generalize the behavioral preorder (see [Abr90]), which avoids the counterex-
amples to a näıve generalization given in [SS03], and which is compatible with
the preorder in [Man04].

14.1 Variant of (case)-Rules

Definition 14.1. A constructor application of the form (c x1 . . . xn) is called a
cx-expression.
We require three specialized reduction rules: (case-cx) is like (case) with the dif-
ference, that if the constructor application is a cx-expression, then the rule has
no effect on the binding. The extra reduction rule (cpcxnoa) can be seen as an
abbreviation of a (cpcx) with subsequent (cpx) and (gc)-reductions.
The extra reduction rule (ibot) is required by the definition of the behavioral
preorder.

(cpcxnoa) (letrec x = c x1 . . . xm,Env in C[x])
→ (letrec x = c x1 . . . xm,Env in C[c x1 . . . xm])

(case-cx) (letrec x = (c x1 . . . xn),Env in C[case x ((c y1 . . . yn)→ s) alts])
→ letrec x = (c x1 . . . xn),Env

in C[(letrec y1 = x1, . . . , yn = xn in s)]
(case-cx) letrec x = (c x1 . . . xn),Env ,

y = C[case x ((c y1 . . . yn)→ s) alts] in r
→ letrecx = (c x1 . . . xn),Env ,

y = C[(letrec y1 = x1, . . . , yn = xn in s)] in r
(case-cx) like (case) in all other cases
(ibot) t→ ⊥

Lemma 14.2. The following holds:

1. The reduction rule (cpcxnoa) is a correct program transformation. It can be
simulated by (cpcx) with subsequent (cpx) and (gc)-reductions.

2. A (case-cx) reduction can be simulated by (case) and subsequent
cpx,∗−−−→ · gc,∗−−→

reductions.

66

3. Every (case-e) and (case-in)-reduction can be simulated by an (abs)-
reduction followed by a (case-cx)-reduction.

4. The reduction rule (case-cx) is a correct program transformation.

Proof. Easy. 2

The number of normal order reduction steps is not changed due to Theorem
12.5, and since (case-cx) can be simulated by a (case) and subsequent (cpx) and
(gc)-reductions.

14.2 Behavioral Preorder

Definition 14.3. Let t be a closed expression. If t can be reduced to t′ using
the reduction rules of the base calculus, and additionally (ibot), (gc), (cpx),
(cpcxnoa), (abse) and all reductions are in surface contexts, then we write

t
bhv,∗−−−→ t′.

A B-value is either an abstraction, or a constructor application (c x1 . . . xn),
where xi are variables.
A term t is in bhv weak head normal form (BWHNF), iff it is a B-value or of the
form (letrec Env in v), where v is a B-value, and Env = {x1 = t1, . . . , xn =
tn}, where for all i : ti is either a B-value, or ⊥.
We partition BWHNFs into FBWHNFs and CBWHNFs: A BWHNF
(letrec Env in v), where v is an abstraction, is called a FBWHNF, and if
v is a constructor application it is called a CBWHNF.

Definition 14.4. We define the behavioral preorder ≤b on closed terms.
For a relation η define the relation [η] for closed terms s, t:

s [η] t iff: If s
bhv,∗−−−→ s1, and s1 is a FBWHNF, then there is a FBWHNF t1

with t
bhv,∗−−−→ t1, and

for all closed r : (letrec x = r in (s1 x)) η (letrec x =
r in (t1 x)) for a fresh variable x,
and

if s
bhv,∗−−−→ s1 = (letrec Envs in (c x1 . . . xn)), i.e., s1

is a CBWHNF, then there is a CBWHNF t1 with t
bhv,∗−−−→

t1 = (letrec Env t in (c y1 . . . yn)), and for all i :
(letrec Envs in xi) η (letrec Env t in yi).
If c is a 0-ary constant, then the recursive condition is omitted.

The behavioral preorder ≤b on closed terms is defined as the greatest fixpoint on
relations on closed abstract terms of the operator [·].

We extend this order to open terms s, t as follows:
s ≤o

b t iff for FV (s, t) = {x1, . . . , xn} and for all closed t1, . . . , tn :

(letrec x1 = t1, . . . xn = tn in s) ≤b (letrec x1 = t1, . . . xn = tn in t).

67

Conjecture 14.5. We conjecture that the behavioral preorder ≤b is contained
in the contextual preorder ≤c on closed terms.

A proof of this conjecture for a weaker language is in [Man04]. We are working
on generalizing and extending this proof also for LRA.
We will have to use this conjecture in the proof of correctness of the strictness
analysis. Wherever the conjecture is used, we will make the reference explicit.

Proposition 14.6. The following equivalence holds: for all s, t : s ≤o
b t implies

s ≤c t.

Proof. We use the Conjecture 14.5.
Assume that s ≤o

b t holds. Let {x1, . . . , xn} = FV (s, t). Then by definition, for
all closed t1, . . . , tn : (letrec x1 = t1, . . . xn = tn in s) ≤b (letrec x1 =
t1, . . . xn = tn in t). By the definition of behavioral preorder, this implies
that λx1, . . . , xn.s ≤b λx1, . . . , xn.t. Using Conjecture 14.5, renaming variables
and plugging the expressions into the context ((λy1, . . . , yn.[·]) x1 . . . xn) im-
plies (λy1, . . . , yn.s[yi/xi, i = 1, . . . , n]) x1 . . . xn ≤c (λy1, . . . , yn.t[yi/xi, i =
1, . . . , n]) x1 . . . xn. By Theorem 10.23 reduction implies contextual equivalence,
so (lbeta)-reducing both sides we obtain s ≤c t. 2

Lemma 14.7. If t
bhv,∗−−−→ t′, then t′ ≤c t.

Proof. By Theorems 10.23 and 7.4, bhv−−→-reductions (except (ibot)) imply con-
textual equivalence. The reduction (ibot) in turn makes the expression smaller
w.r.t. ≤c, which is a consequence of Proposition 11.4. 2

14.3 Iterative Deepening Evaluations

Due to optimzations in the proofs, this subsection is no longer directly required
in later proofs.

Lemma 14.8. Let t = (letrec Env , x = r in t′) be a concrete expression,
such that the local evaluation of x (see Def. 12.27) does not terminate. Then
t ∼c (letrec Env , x = ⊥ in t′)

Proof. (letrec Env , x = ⊥ in t′) ≤c t follows from Corollary 11.5.
We use the context lemma for the other direction: Let R be a reduction context
and let R[t]⇓. If the normal order reduction starts a local evaluation of x, then t is
strict in r, and the Proposition 12.31 shows that the normal order reduction does
not terminate. Hence the normal order reduction never starts a local evaluation
of r, and hence it can be replaced by Bot without changing the normal order
reduction. Hence R[(letrec Env , x = ⊥ in t′)]⇓. Now the context lemma shows
that (letrec Env , x = ⊥ in t′) ≤c t, and the claim holds. ut

68

Definition 14.9. Let s be a closed concrete expression. We define two series si

and s⊥i of expressions as follows: If s has no WHNF, then s0 = ⊥. Otherwise,
s0 is constructed from s by applying normal order reduction to WHNF. Then
s0 = (letrec Env0 in s′0). Using the reductions (abse), (llet) and (cpcxnoa), we
can assume that s′0 is a B-value after the reduction.
The expressions si = (letrec Env i,1,Env i,2 in s′0) for i ≥ 1 have a fixed parti-
tioning of their top level environment into two parts Env i,1,Env i,2, where Env i,1

represents the already evaluated bindings in the ith step and Env i,2 the not yet
evaluated bindings. If there is no top level environment, then these parts are
empty. The bound terms in Env i,1 are B-values or ⊥, if the corresponding local
evaluation does not terminate.
The construction of si+1 from si is as follows:
If Env i,2 is empty, then stop the sequence.
Otherwise, let Env i,2 = {xi,2,1 = si,2,1, . . .}.
For all j: if the local evaluation of xi,2,j does not terminate, then replace si,2,j

by ⊥. Otherwise make a local evaluation of the variables xi,2,j in Env i,2, where
(case) is replaced by (case-cx). If there is a bound term that is a constructor
application that is not a B-value, then proceed as follows: for constructor ap-
plications that have arguments that are not variables, apply (abse), and then
(llet); for variables apply (cpx). We collect the new bindings at top level in an
environment Env i+1,2. The modified environment Env i,2 after the evaluations is
denoted as Env ′i,2. The result is the term si+1 where Env i,1 is unchanged, since
we have used (case-cx) instead of (case), and Env i+1,1 := Env i,1 ∪ Env ′i,2 and
Env i+1,2 = Env i,3.
The expression s⊥i is constructed from si by replacing all bound terms in the
environment Env i,2 by ⊥ which gives the environment Env⊥i,2

Lemma 14.10. For the terms s, si as defined above in Definition 14.9, we have
s ∼c si for all i.

Proof. This follows from the correctness of reductions as program transforma-
tions, i.e. from Theorems 10.23,10.22, Lemma 14.8 and 14.2. 2

Lemma 14.11. The expressions si, s
⊥
i for i ≥ 1 can also be repre-

sented as si = (letrec Env seq
1 , . . . ,Env seq

i ,Env i,2 in s′0), and s⊥i =
(letrec Env seq

1 , . . . ,Env seq
i ,Env⊥i,2 in s′0). We have

⋃i
j=1 Env seq

i = Env i,1. The
bound terms in Env seq

j are B-values or ⊥ for all j. The variables LV (Env seq
i) may

be contained in FV (Env seq
i−1) for i ≥ 1, but not in FV (Env seq

k) for 0 ≤ k < i−1.

The intention in the following is to show that the sequence (s⊥i)i is an ascending
chain with s = club((s⊥i)i).

Lemma 14.12. Let s, si, s
⊥
i be as in Definition 14.9. Then s⊥i are BWHNFs

with s
bhv,∗−−−→ s⊥i for all i

Proof. This holds, since the expressions s⊥i are BWHNFs, and the reductions
are permitted by bhv−−→.

69

Lemma 14.13. Let s, si, s
⊥
i be as in Definition 14.9. Then the sequence s⊥i is

a ≤c-ascending chain with s⊥i ≤c s for all i.

Proof. It is clear that s⊥i ≤c s, by Lemma 14.7 and 14.10
We omit the trivial cases.
Let si = (letrec Env i,1,Env i,2 in s′0) with Env i,2 = {x1 =
t1, . . . , xn = tn}, where s′0 and the bound terms in Env i,1 are B-
values. The expression si+1 as constructed in definition 14.9 has the
form si+1 = (letrec Env i,1,Env ′i,2,Env i+1,2 in s′0). We have s⊥i+1 =
(letrec Env i,1,Env ′i,2,Env1⊥i+1,2 in s′0), where the bound terms in Env ′i+1,2

are all equal to ⊥. Since LV (Env i,2) = LV (Env ′i,2), and the variables in
LV (Env i+1,2) do not occur in Env i,1 nor in s′0, the term s⊥i can be reached
from s⊥i+1 by the following transformations: replace in s⊥i+1 the terms that are
bound to the variables in LV (Env i,2) by ⊥, and then use perhaps several (gc)-
reductions. This implies s⊥i ≤c s⊥i+1 by Theorem 10.31 and Proposition 11.4.
2

Lemma 14.14. Let s be a concrete closed term and let si be defined as in Def-
inition 14.9, and let R be a reduction context. Given a normal order reduction
R[s]

n,∗−−→ t, where t is a WHNF, then there exists the following reduction se-
quence:
R[s]

AS,∗−−−→ R[si]
n,∗−−→ t′, where t

∗−→ t′ and t′ is a WHNF, and the
AS,∗−−−→- re-

duction may use base reductions and the extra reductions (cpx), (gc), (cpcxnoa).
I.e.,

R[s]
AS,∗ //

n,∗

��

R[si]

n,∗
���
�
�

t ∗
//____ t′

Moreover, the number of reductions of R[s]
n,∗−−→ t is greater than or equal to the

number of reductions of R[si]
n,∗−−→ t′.

Proof. This follows easily from Theorem 12.5. 2

Lemma 14.15. Let s be a concrete closed term and let si, s
⊥
i be defined as in

Definition 14.9, and let R be a reduction context. If R[si]⇓, and the reduction
requires less than i normal order reductions of type (case), (lbeta), or (seq), then
R[s⊥i]⇓.

Proof. Select a normal order reduction sequence as a witness of R[si]⇓. This
reduction may put bound expressions of the top level of si into a reduction con-
text. Using Lemma 14.11, it is easy to see using induction, that bound terms in
Env seq

j are required not before at least j (case) or (lbeta)-normal order reduc-
tions were performed. Since the difference between si and s⊥i is in the bound

70

terms of Env i,2, at least i normal order reductions are required before the B-
values of these bound terms are demanded. Hence, If R[si]⇓ using at most i
normal order reductions of type (case), (lbeta), or (seq), then also R[s⊥i]⇓ using
at most i normal order reductions of type (case), (lbeta), or (seq). 2

Proposition 14.16. Let s be a concrete closed expression. Let the terms si, s
⊥
i

be defined as in Definition 14.9. Then s = club((s⊥i)i).

Proof. We use the criterion in Lemma 13.4. The chain is ≤c-ascending by Lemma
14.13. To show the second condition, let R be any reduction context, let R[s]⇓,
select a terminating normal order reduction for R[s], and let i be the number of

normal order reductions of type (case), (lbeta), or (seq). Since s
AS,∗−−−→ si (where

extra reductions are allowed), and thus R[s]
AS,∗−−−→ R[si], Lemma 14.14 shows

that R[si]⇓ with a reduction using at most i normal order reductions of type
(case), (lbeta), or (seq). Lemma 14.15 now shows that R[s⊥i]⇓.
Finally, Lemma 13.4 implies that s = club((s⊥i)i). 2

14.4 Union Theorem

The main result in this subsection is the union-theorem, which states that the
(choice)-rule constructs a union, i.e. if s ≤c t, where s is a closed concrete
expression, and tl, tr are the two reducts of a surface choice-redex, then s ≤c tl
or s ≤c tr.

Theorem 14.17. (Union-Theorem)
Let s be a concrete closed term and t be an abstract term such that s ≤c t. If
for some ⊕-AS-redex in t, we have the two different reductions t

AS,choice−r−−−−−−−−→ tr

and t
AS,choice−l−−−−−−−−→ tl, then s ≤c tr or s ≤c tl.

Proof. Assume that the theorem does not hold. Then there is a closed term
t = C[r1 ⊕ r2], where C is a AS-context, t

AS,choice−l−−−−−−−−→ tl = C[r1],

t
AS,choice−r−−−−−−−−→ tr = C[r2], and s 6≤c tl as well as s 6≤c tr. By the context-

lemma 7.1, there are reduction contexts Rl, Rr with Rl[s]⇓, Rr[s]⇓ and Rl[tl]⇑⇑,
Rr[tr]⇑⇑. Let S′ := (letrec x = [·] in seq Rl[x] Rr[x]). Then S′ is an AS-
context. We have to argue that S′[s]⇓: We have to show that (letrec x =
s in seq Rl[x] Rr[x])⇓. The term (letrec x = s in Rl[x]) terminates. A termi-
nating normal order reduction can be transferred and yields a term of the form
(letrec Envs,EnvR in seq r0 Rr[x]), such that seq is applicable and reduces to
(letrec Envs,EnvR in Rr[x]). Applying (gc) and all the reductions on the Envs

backwards produces the term (letrec x = s in Rr[x]). Since s is deterministic,
we can apply the Theorems 10.23 and 10.31 and obtain that S′[s]⇓.
Now we have to argue that S′[t] does not terminate. So assume that there is a
terminating normal order reduction of S′[t]. There are two possibilities:

1. The normal order reduction does not reduce the subterm r1 ⊕ r2, i.e. this
subterm is never in a reduction context in the normal order reduction. Then

71

the same terminating normal order reduction is possible for S′[tr], S′[tl],
which contradicts our assumption.

2. The normal order reduction includes a reduction step (choice) with redex
r1 ⊕ r2. W.l.o.g. we assume it is a (choice-r)-reduction. It is easy to see

that a
AS,choice−r−−−−−−−−→-reduction commutes with normal order reductions, if the

(choice)-redex is already in an AS-context in the upper left corner of the
diagram, i.e. before the normal order reduction

· n,a //

AS,(choice−r)

���
�
� ·

AS,(choice−r)

��
· n,a //_________ ·

The subterm r1 ⊕ r2 is in an AS-context at the start of the reduction, and
since normal order reduction steps leave terms in AS-contexts, this holds
during all reduction steps until the subterm is the normal order redex. The
commuting diagram then shows that the (choice-r)-reduction can be shifted

to the left in the reduction. Finally we obtain S′[C[r1⊕r2]]
AS,choice−r−−−−−−−−→ S′[tr]

and there is a terminating normal order reduction for S′[tr].
This is a contradiction to the assumption. Hence the theorem holds.

2

Note that Theorem 14.17 does in general not hold if s is not a concrete expression.

15 Deterministic Subterms and Environments

The goal of this section is to show that in certain situations, concrete subterms
or even concrete parts of let-environments can be copied without consequence
for the ∼c-equivalence of expressions.
For a concrete subterm t of (letrec x = t,Env in S[x]) where FV (t) = ∅ and
S is a surface context, an instance of the problem is to show that (letrec x =
t,Env in S[x]) and (letrec x = t,Env in S[t]) are contextually equivalent.

Definition 15.1. A closed concrete term is also called deterministic.
Let s be a subterm in a surface context of the abstract term t.
Then s is called non-deterministic , if it contains a ⊕-expression, or if there is
a let-bound free variable in s that is bound to a non-deterministic subterm.
A subterm s of t, which is in a surface context is deterministic, if it is not a
non-deterministic subterm.

A direct consequence of the definition of a deterministic subterm s is that the
local evaluations of s will not use (choice)-reductions.

We treat the following situation:
Let t = (letrec x1 = y1, x2 = y1,Env1,Env rest in s), where y1, and all subterms
in Env1 are deterministic, and FV (Env1)∪{y1} ⊆ LV (Env1). We want to show

72

that t ∼c t′, where t′ = (letrec x1 = y1, x2 = z1,Env1,Env2,Env rest in s),
where Env2 is a renamed copy of Env1, including the let-bound variables. More
precisely, let Env1 = {y1 = r1, . . . , yn = rn}, and let ρ = {y1 7→ z1, . . . , yn 7→
zn}, where zi are new variables. Then Env2 = {z1 = ρ(r1), . . . , zn = ρ(rn)}.

Proposition 15.2. Under the above conditions, we have t ∼c t′.

Proof. We use the context lemma to show that R[t]⇓ ⇔ R[t′]⇓. It is obvious from
the definition of normal order reduction that the first reduction steps of R[t] as
well as R[t′] are to shift the top environment of t (or t′) to the top environment
of R[t], or R[t′], respectively. Then the part x1 = y1, x2 = y1,Env1 is the same in
the top environment. The rest of the top environment is denoted in the following
as Env3.

Let R[t]⇓. Assume first that y1 is not used in the reduction, i.e. it
is never in a reduction context in any term in the reduction sequence,
and we also have R[(letrec x1 = Bot, x2 = Bot,Env1,Env3 in s)]⇓.
Then R[(letrec x1 = Bot, x2 = Bot,Env1,Env2,Env3 in s)]⇓, since
(gc) can be used as program transformation to remove Env2. From
R[(letrec x1 = Bot, x2 = Bot,Env1,Env2,Env3 in s)] ≤c R[(letrec x1 =
y1, x2 = z1,Env1,Env2,Env3 in s)], we derive R[(letrec x1 = y1, x2 =
z1,Env1,Env2,Env3 in s)]⇓.
The remaining case is that y1 is used in the reduction. We fix a normal order
reduction Red to WHNF. This reduction sequence is modified by replacing every
(case)-reduction by abs−−→ · case−cx−−−−−→ having the same effect as the (case). The
constructed reduction sequence is denoted as Red ′. Then we first distinguish the
reduction steps in Red ′ as follows:

– Env1-related reductions: reductions that make changes in Env1.
– Env1-independent reductions: reductions that do not make changes in Env1.

We construct the following reduction sequence of R[t′], where every Env1-related
reduction step in Red ′ is also done (as a renamed copy) as a corresponding
reduction in Env2 after the Env1-reduction. In Red ′ there may be (cp)-reductions
copying abstraction from Env1 to positions in Env3 or s. These may be modified
by copying from Env2. Other reductions remain the same perhaps up to the
names of the variables yi, zi. The invariant is that after merging yi, zi for all i
and successive reductions on Env1,Env2, we obtain the reduction for t.
We have constructed a reduction sequence of R[t′] to a WHNF using reductions
of the calculus and external reductions. From Lemma 14.2 and Theorem 10.33
we obtain R[t′]⇓.

In order to prove the other direction, let R[t′]⇓.
We fix a normal order reduction Red of R[t′] to a WHNF. The idea is to syn-
chronize the reduction steps that occur in the environments Env1,Env2, perhaps
adding reductions if necessary, and translating (case)-reductions into (abs) and
(case-cx) if necessary.

73

Since the environments Env1, and Env2 are equal up to a variable renaming, we
speak of corresponding terms, positions and reductions.
Our first observation is that we can recognize the successor environments of the
environments Env1 and Env2 in the expressions in the normal order reduction
sequence of R[t′]. The construction will keep this correspondence property. Note
that these environments may have more bindings than the original environments.
We want to argue that we can construct a reduction sequence to a WHNF with
the following property:
Every reduction making a modification in Env1 is immediately followed by a
reduction that makes the corresponding modification in Env2 and vice versa, and
all reductions are in surface contexts, are base-reductions, (case-cx)-reductions
or (abs)-reductions.
We show this by induction on the pair (rl](·), µlll(t)) of the reduction Red ,
where t is the first term.
If the reduction does not modify the environments Env1,Env2, then we leave
the reduction where it is and treat the next reduction step to the right.
Consider the first normal order reduction step that modifies a part of Env1 or
Env2 (or their successor-environments).

1. If the reduction is a (lll)-reduction, then do the same for the other environ-
ment. It is only possible that an inner part of Env1 may add bindings to
Env1. The same for Env2, respectively.

2. If the reduction is completely within, say, Env1, make the same reduction
for Env2. Theorem 12.5 shows that we can use induction on the length.

3. A (cp) into Env1 or Env2 is not possible due to the conditions on variable
occurrences.

4. If the reduction is a (case) where the inner redex is in Env1, but the redex
is external, then split it into an (abs) followed by a (case-cx), and make the
corresponding (case-cx) also for Env2. Since a (case-cx) can be simulated by
(case) with following (cpx) and (gc), Theorem 12.5 shows that we can use
induction on the length rl](·).

5. If the effect in Env1 is an (abs), which comes from an external (case), then
perform the corresponding (abs) also in Env2. The same also for Env2.

Note that there is no choice-reduction in the environments Env1 nor Env2.
Finally, we obtain a reduction sequence to a WHNF, using only surface reduction
in the base calculus, some extra reductions, and (case-cx), where the reductions
in Env1,Env2 are always corresponding ones and immediately follow each other.
Now it is easy to construct a terminating reduction sequence of R[t]: We only
use the reductions for Env1, but with the correct renaming, and also select only
one of the corresponding reduction steps.
We finally have a reduction sequence of R[t] ending in a WHNF, where the steps
may be from the base calculus, extra reductions and (case-cx). Now Lemma 14.2
and Theorem 10.33 show that R[t]⇓. 2

74

Corollary 15.3. Let S be a surface context, and t be a deterministic sub-
term of (letrec x = t,Env in S[x]) with FV (t) = ∅. Then (letrec x =
t,Env in S[x]) ∼c (letrec x = t,Env in S[t]).

Proof. We apply Proposition 15.2 with (letrec x = y1, x2 = y1, y1 =
t,Env in S[x2]), since the preconditions are satisfied. We obtain (letrec x =
y1, x2 = y1, y1 = t,Env in S[x2]) ∼c (letrec x = y1, y1 = t, x2 = z1, z1 =
t,Env in S[x2])

cpx−−→ . . .
gc−→ . . .

ucp−−→ (letrec x = y1, y1 = t,Env in S[t]). Now
the proof can be finished using (gc) and (ucp). 2

Corollary 15.4. Let t = (letrec Env1,Env3 in t0), such that
FV (Env1) ⊆ LV (Env1) and all expressions in Env1 are determinis-
tic, where Env1 = {y1 = s1, . . . , yn = sn}, and let t′ = (letrec y1 =
(letrec Env ′1 in y′1),Env2,Env3 in t0), where Env ′1 is Env1 where yi are
renamed into y′i and Env2 is Env1 where y1 is renamed into y′′1 . Then t ∼c t′.

Proof. Proposition 15.2 is used as follows: t = (letrec x1 = y1, x2 = y1, y1 =
s1, . . . , yn = sn,Env3 in t0), such that x1 does not occur in any subterm, and
y1 does not occur in Env or t0. Then t′′ = (letrec x1 = y1, x2 = y′1, y1 =
s1, . . . , yn = sn, y′1 = s′1, . . . , y

′
n = s′n,Env3 in t0), and we obtain t ∼c t′′.

Since y′i for i = 1, . . . , n occurs only in s′j , we can use (llet) backwards and obtain
t′′ ∼c (letrec x1 = y1, y1 = s1, . . . , yn = sn, x2 = (letrec y′1 = s′1, . . . , y

′
n =

s′n in y′1),Env3 in t0). Using (gc) and an appropriate renaming, we obtain the
claim of the Corollary. 2

Corollary 15.5. Let t = (letrec Env1,Env3 in t0), such that FV (Env1) ⊆
LV (Env1), where Env1 = {y1 = s1, . . . , yn = sn} is determinis-
tic, and let t′ = (letrec y1 = (letrec Env1,i in y′1), . . . , yn =
(letrec Env1,n in y′n),Env3 in t0), where Env1,i is Env1 where yi are re-
named into y′i.
Then t ∼c t′.

Proof. This follows from Corollary 15.4 by repeated application: After one ap-
plication, the part y1 = (letrec Env ′1 in y′1) can be seen as a part of the next
rest-environment Env ′3. 2

This corollary describes a technique of duplicating environments and isolating
variables if the environment is deterministic and certain restrictions are satisfied.

Example 15.6. Consider the expressions

s := letrec repeat = ... x = repeat 1 in (x,x)
t := letrec ... in (repeat 1, repeat 1)

where the definition of repeat is done using a fixpoint combinator Y . Then
s ∼c t follows easily from Corollary 15.3.
The corollary as it stands cannot be applied if the definition of repeat is recur-
sive.

75

16 Abstract Terms

Abstract terms are expressions from LRA. Most of the extra constants (the
abstract constants) used in strictness analysis algorithms, like ⊥, >, Inf etc. can
be simulated within this language, so we use them only as abbreviations. These
constants were already used in [Nöc92,Nöc93,vEGHN93,Sch00]. The notation
for sets of terms was coined “demands” in [Sch00]. Note that only the subset of
down-closed demands can be represented in our calculus.

16.1 Abstract Sets

We define structured terms in the abstract language that are used to represent
sets of concrete expressions. These terms are able to represent for example all
expressions (>), or all infinite lists (Inf). In the following we will use () as a
(dummy) constant.

Definition 16.1. A closed LRA-term t is called an ac-labeled term, if it is
of the form (letrec Envac,Envacg,Envup in r), where the environment for
abstract constant generators is Envacg = {y1 = s1, . . . , ym = sm}, and the
environment for abstract constants is Envac = {x1 = t1, . . . , xn = tn}. The
variables LV (Envac) are labelled “ac”, and called ac-variables, and the vari-
ables in LV (Envacg) are labeled “acg” and called acg-variables. The variables in
LV (Envup) are unlabeled and called up-variables.
The following should hold:

– The terms ti must be of one of the forms

(c (yi1 ()) . . . (yik
())), yi (),⊥

where the variables yi1 , yi are in LV (Envacg), i.e., are acg-variables.
– The terms si, i.e., the abstract constant generators, are of the form λx.s′i,

where x 6∈ FV (s′i), and s′i are nested ⊕-expressions where the inner terms
are of one of three forms

(c (yi1 ()) . . . (yik
())), λx.yi (),⊥,

where the variables yi1 , yi are in LV (Envacg).
– Envup does not contain acg-variables
– Envacg and Envac do not contain up-variables
– There may be occurrences of ac-variables in Envup and r, but there are no

occurrences of acg-variables yi in Envup or r.

An abstract constant a is a closed ac-labeled abstract term with an abstract set
environment and is of the form (letrec Envacg,Envac in xi), where xi is an
ac-variable.

This means abstract constants do not contain case-expressions and seq-
expressions, and every application is basically ((λx.r) ()), where r does not
contain the variable x. They can be seen as a recursive description of sets of
expressions.

76

Definition 16.2. The set of concrete terms (i.e. in LR) of an abstract constant
a is defined as:

ctac(a) := {t | t ∈ LLR, t ≤c a}

Note that all the terms in ctac(a) are deterministic.

Definition 16.3. We give the definition in our formalism of some abstract con-
stants that are also used in other papers on strictness analysis.
We write the ⊕-expressions without brackets.

> := letrec
topg = λx. (λy.topg ())

⊕ ⊥
⊕ (c1 topg () . . . topg ())
⊕ . . .
⊕ (cN topg () . . . topg ())

in topg ()

Inf := letrec
topg = λx. (λy.topg ())

⊕ ⊥
⊕ (c1 topg () . . . topg ())
⊕ . . .
⊕ (cN topg () . . . topg ())

infg = λx. ⊥
⊕ (topg () : infg ())

in infg ()

where c1, c2, . . . cN are all the constructors in the language and where : denotes
the binary list-constructor.

Note that (λy.topg ()) cannot be used for a representation of abstractions in
LRA, but it works if restricted to LR.
It follows from Definition 16.1 that the ac-variables do not reference each other
via bindings.
We have to define the effect of reduction rules on the ac-labeling:

Definition 16.4. If a reduction rule is applied to an expression, then in general
the labeling does not change with the following exception. If a (case)- or (abs)-
reduction in the ac-part, or a (case)-reduction in the upper part generates a
binding in the top letrec x0 = c x1 . . . xn, where x0 is an ac-variable and the
variables xi, i = 1, . . . , n are fresh ones, then remove the ac-label from x0, i.e.
make it into an up-variable, label the variables xi, i = 1, . . . , n as ac-variables
and thus the binding is shifted into the upper part. A (cp)-reduction that copies
an abstraction from the ac-part into the upper part is forbidden. A base reduction
that is not forbidden is also called ac-reduction.

77

The special (cp)-reduction above is forbidden, since it is not compatible with
the intention that ac-variables represent sets of deterministic terms.

Lemma 16.5. Let t be an ac-labeled term. According to Definition 16.1 the
following reduction sequences t

∗−→ t′ transform t into an ac-labeled term.

1. A reduction step (seq), (lbeta), (case), (cp), (lll) that only modifies the upper
part.

2. A reduction step (case) in the upper part with an (abs)-effect in the ac-part
with subsequent relabeling.

3. A reduction (n,cp) copying an acg-function into the ac-part, followed by ap-
propriate (n,lbeta), (n,lll), (n, choice)∗.

Proof. This follows by a case analysis.
We only go through the reductions that may change Envac:
If the effect in the ac-part is an (abs), then a binding x = (c t1 . . . tn) may be
transformed into several bindings x = (c x1 . . . xn), x1 = t1, . . . , xn = tn, where
we let xi be new ac-variables. In this case, x = (c x1 . . . xn) is moved into the
upper part, and x is no longer an ac-variable, but an up-variable. If there is a
sequence (cp), (lbeta) within Envac, then subsequent (lll) and choice-reduction
will transform the environment into a form that conforms to the requirements.
Note that the reductions may leave redundant bindings x = () in the upper part.
2

The following shows that the definition of > is indeed contextually greater than
any (possibly open) expression.

Proposition 16.6. Let > be defined as above in Definition 16.3. Then the fol-
lowing holds:

1. For all expressions t: t ≤c >
2. For all concrete expressions t: If t has a CWHNF with top constructor c of

arity n, then t ≤c (c > . . .>).
3. (a) If a concrete expression t allows to construct a finite sequence ti, i =

1, 2 . . . , n of expressions as follows t = t1, ti
n,∗−−→ (si+1 : ti+1), and tn⇑⇑

then t ≤c Inf .
(b) If a concrete expression t allows to construct an infinite sequence ti, i =

1, 2 . . . of expressions as follows t = t1, ti
n,∗−−→ (si+1 : ti+1), then t ≤c

Inf .

Proof. We use Conjecture 14.5 and Proposition 14.6. We can assume that t is
closed by possibly treating all the terms (letrec x1 = t1, . . . , xn = tn in t) where
ti are closed. Then we use the definition of ≤b and co-induction: For reduction
we have to use the bhv-reductions and BWHNFs. If t has no WHNF, then it also
has no BWHNF and the claim holds. If t has a WHNF, then we can argue for
every BWHNF of t as follows: In every case, we bhv-reduce the expression for >
by (lbeta), (llet) and some (choice)-reductions and the other reductions as deep
as necessary until it is in BWHNF. The BWHNF can be seen as representing a

78

tree built from constructors, where the leaves are ⊥, abstractions or constructor
constants. We can reduce > to a tree that is at least as deep as the corresponding
tree for the BWHNF for t. In every case we use the definition of ≤b, and then
obtain the same situations as before, in general with a different t′, but the term
for > is reproduced. Hence we can use co-induction, and obtain that t ≤b >,
and hence t ≤c >.
The proof for Inf follows the same co-induction scheme as for >. 2

Remark 16.7. The definition of abstract constants does not cover the non-down-
closed demands in [Sch00] like Fin, the abstract constant representing all finite
lists.
We conjecture that the Moran-Sands-preorder [MSC99] which has an extra con-
dition on non-termination in the definition of the contextual order, together with
a behavioral preorder may be an alternative mechanism to provide Fin.

17 The Calculus for Strictness Detection

Intuitively, strictness of a function f is detected if normal order reduction of
(f ⊥) in the abstract language can only yield ⊥ or nontermination. This may be
represented by the explicit abstract constant ⊥ itself, or by a proof that normal
order reduction will not terminate. Reduction of expressions (case > . . .) will
require a case analysis, which is done in [Nöc93] as a propagation of unions,
whereas our calculus uses the equivalent method of generating a directed graph,
in which the union of cases is represented by forking.
The calculus is also applicable for detecting more general forms of strictness. For
example strictness in the ith argument of an abstraction f can be detected by
feeding (f > . . .> ⊥ > . . .>) into the analyzer. By providing other abstract
constants apart from > and ⊥, even more complicated analyses are possible like
a test for tail-strictness, or strictness under certain conditions.
We also want to use strictness of built-in functions and the results of previous
analyses. Therefore we assume that there are already sets of concrete closed
expressions (functions) SFn,i for i, n ∈ IN with 1 ≤ i ≤ n, such that every
expression f ∈ SFn,i is known to be strict in its ith argument for arity n. These
functions are assumed to be defined via x = f in the top level letrec, and the
variable x is not labeled as ac or acg.
Note that seq allows explicitly making any argument of a function a strict ar-
gument.

17.1 Reductions on Abstract Terms

Definition 17.1. The reduction rules that treat the constant ⊥ are defined in
figure 4. Note that these reductions are permitted in all contexts.

Proposition 17.2. If t→ t′ by a ⊥-reduction as defined in Figure 4, then

79

(beta-bot) (⊥ y)→ ⊥
(cp-in-bot) (letrec x = ⊥,Env in C[x])

→ (letrec x = ⊥,Env in C[⊥])
(cp-e-bot) (letrec x = ⊥, y = C[x],Env in r)

→ (letrec x = ⊥, y = C[⊥],Env in r)
(hole) (letrec x = x,Env in r)

→ (letrec x = ⊥,Env in r)
(case-bot) (caseT ⊥ . . . ((ci y1 . . . yn) -> t) . . .)→ ⊥
(app-bot) (v t) → ⊥

if v is a constructor application
(letrec-bot) (letrec Env in ⊥) → ⊥
(case-untyped1) (caseT v alts)→ ⊥

if v is an abstraction or the
top-constructor does not belong to the type T

(case-untyped2) (letrec xn = v, . . . , x1 = x2,Env in caseT x1 alts)→ ⊥
if v is an abstraction or its
top-constructor does not belong to the type T

(seq) (seq ⊥ t)→ ⊥
(strict-bot) D[(f x1 . . . xn)]→ D[⊥]

if f ∈ SFn,i and xi is bound to ⊥ in D

Fig. 4. Reduction rules for ⊥

– t ∼c t′

– If t is a closed concrete term, then rl]](t) = rl]](t′)

Proof. Contextual equivalence follows from Corollary 11.5 for (beta-bot), (case-
bot), (app-bot) (letrec-bot), (case-untyped), (seq) and (strict-bot). For the rules
(cp-in-bot), (cp-e-bot), and (hole) other arguments are required. The context
lemma shows the claim: If t → t′, and we check the normal order reductions
of R[t] and R[t′], then they are synchronous, as long as neither ⊥ nor x is
required. The values of x or ⊥ are required in t iff they are required in t′.
In this case this term is in a reduction context. We already know that then
the expression is contextually equivalent to ⊥. Thus the context lemma shows
contextual equivalence.

The claim on the lengths of reductions can be proved as follows. In a terminating
normal order reduction to WHNF, the subterm ⊥, the subterm x, or the untyped
expressions cannot be required by evaluation in any reduction, hence the lengths
of the normal order reduction sequences are the same.

2

In the following, the bot-reduction rules as defined in Definition 17.1 (figure
4) are used where instead of ⊥, we allow a variable bound to ⊥ in the top
environment. This does not really make a difference.

80

17.2 Concretizations of ac-Labeled Terms

We define concretizations s of ac-labeled terms t as deterministic terms, where
the relationship can be informally described as follows. There is an upper part
in s, t that must be syntactically identical, and the bindings of the free variables
must be such that the semantic content of the variables from s has to be con-
tained in the corresponding variable of t, e.g. (letrec y = 2, x = 1 : x in y : x)
is a concretization of (letrec Env , top = topg(), inf = infg() in top : inf).

Definition 17.3. Let t = (letrec Env t,ac,Env t,up in t′) be an ac-labeled closed
abstract term. We assume that Env t,ac = Env t,acb ·∪Env t,acg where Env t,acb are
the ac-bindings.
Then the set of concretizations γ(t) is defined as follows:
Let s = (letrec Envs in s′) be a closed concrete term. Then s ∈ γ(t) iff the
following holds:

– There is a split of the environment Envs into Envs = Envs,ac ·∪Envs,up, with
FV (Envs,ac) = ∅, such that the properties below hold. Note that s is not an
ac-labeled term, and that Envs,ac is any appropriate part of the environment.

– Let s1 := (letrec Envs,up in s′), t1 := (letrec Env t,up in t′). Let
{y1, . . . , yk} = FV (t1) be the ac-variables occurring in terms of the upper
part of t.
The set FV (s1) consists of k variables {x1, . . . , xk}. For ρ defined by
ρ(xi) = yi for i = 1, . . . , k, the equation ρ(s1) = t1 holds, i.e. s1 and t1
are equal up to a renaming of variables.

– For every i: (letrec Envs,ac in xi) ∈ ctac(letrec Env t,ac in yi), i.e.,
(letrec Envs,ac in xi) ≤c (letrec Env t,ac in yi).

Proposition 17.4. Let t be an ac-labeled closed term and let s ∈ γ(t). Then
s ≤c t.

Proof. We use the notation of Definition 17.3. Then t =
(letrec Env t,ac,Env t,up in t′), s = (letrec Envs,ac,Envs,up in s′). For
all i = 1, . . . , k the term (letrec Envs,ac in xi) is closed and is deterministic,
since it contains no ⊕-expressions.
For all i = 1, . . . , k the term (letrec Env t,ac in yi) is closed, and for every
i = 1, . . . , k, there is a binding yi = ui in Env t,ac. The term t can be transformed
into the following form: (letrec y1 = r1, . . . , yk = rk,Envrest in t′), where
ri = (letrec Envacg in ui) for i = 1, . . . , k are closed, using (gc) and by moving
(i.e. appropriately copying) the acg-environment completely into ri, which are
correct program transformations. We have for all i: (letrec Env t,ac in yi) ∼c

(letrec Env t,acg, yi = ui in yi) ∼c (letrec Env t,acg, in ui) = ri.
Now we use the condition on ctac, and that ≤c is a precongruence, and obtain
(after an appropriate renaming ρ):

letrec y1 = (letrec Envs,ac in x1), . . . , yk = (letrec Envs,ac in xk),
Env t,up

in t′

≤c letrec y1 = r1, . . . , yk = rk,Env t,up in t′

81

Corollary 15.5, the correctness of (gc) and and applying the assumptions and
the renaming ρ shows that

letrec y1 = (letrec Envs,ac in x1), . . . , yk = (letrec Envs,ac in xk),
Env t,up in t′

∼c (letrec Env ′s,ac,Env t,up in t′)
where Env ′s,ac is {y1 = ρ∗(q1), . . . , yn = ρ(qn)}

if Envs,ac = {x1 = q1, . . . , xn = qn}
and ρ∗ = {x1 7→ y1, . . . , xn 7→ yn}

∼c (letrec Envs,ac,Envs,up in s′) (by renaming)
= s

If we put the ∼c-relations and ≤c-relations together, we obtain s ≤c t. 2

Example 17.5. In this example we use a short-hand notation for expressions by
omitting top-level definitions of functions and of infg and topg.
To show

(letrec x1 = 1, x3 = (repeat x1) in (x1 : x3))
∈ γ((letrec top0 = topg (), inf0 = infg () in (top0 : inf0)))

requires checking whether 1 ∈ ctac((letrec top0 = topg () in top0)) and
(letrec x1 = 1, x3 = (repeat x1) in x3) ≤c (letrec inf0 = infg () in inf0).
The former follows from Proposition 16.6, for the latter we use the definition of
the behavioral preorder, Conjecture 14.5 and co-induction.

Example 17.6. Let s = (letrec x = (y : x), y = 1 in (c x x y)), and let
t = (letrec . . . in (c inf inf top)). Since inf, top are ac-variables, we have to
compare using ρ = {x 7→ inf, y 7→ top}, whether ρ(c x x y) = (c inf inf top),
which holds.
There are three further checks required:
The first is membership of (letrec z = x, x = (y : x), y = 1 in z) in
ctac(letrec z = inf, . . . in z), which is true, and can be verified using ≤b,
using Conjecture 14.5 and co-induction. However, we give no algorithm for this
test in this paper.
The second is the same, whereas the third is membership of (letrec z = y, x =
(y : x), y = 1 in z) in ctac(letrec z = top, . . . in z), which also holds.

Example 17.7. There may be abstract terms with a reduction to WHNF, but
without concretizations:
t = (letrec otg = λx.(1 ⊕ 2), f = λx.otg () in if (f 0) + (f 0) ==
3 then 1 else ⊥), where we assume that the variable f is ac-labeled. There
is a reduction to WHNF, however, there is no concretization s of t that leads to
a WHNF: the possible concrete expressions bound to f are ⊥, λx.⊥, λx.1, λx.2,
but every possibility leads to nontermination.

82

17.3 Subset Relationship for Abstract Terms

The subset-relations w.r.t. concretization between two ac-labeled abstract terms
is defined as follows:

Definition 17.8. Let s, t be two ac-labeled closed abstract terms.
Then s ⊆γ t iff γ(s) ⊆ γ(t).

We give a sufficient condition for ⊆γ :

Lemma 17.9. Let s = (letrec Envs in s′) and t = (letrec Env t in t′) be
two closed abstract terms that are ac-labeled. Then s ⊆γ t if the following holds:

– The environment Envs is split into Envs = Envs,ac ·∪Envs,up, where Envs,ac

is the ac-labeled part.
– The environment Env t is split into Env t = Env t,ac ·∪Env t,up, where Env t,ac

is the ac-labeled part.
– Let s1 = (letrec Envs,up in s′), t1 = (letrec Env t,up in t′), Let
{y1, . . . , yk} = FV (t1) be the ac-variables occurring in terms of the upper
part of t.
The set FV (s1) consists of k variables {x1, . . . , xk}. Let ρ(xi) = yi for
i = 1, . . . , k. The equation ρ(s2) = t2 must hold.

– For every i: ctac(letrec Envs,ac in xi)) ⊆ ctac((letrec Env t,ac in yi).

Proof. The conditions can directly be matched with the conditions in Definition
17.3. 2

18 The Algorithm SAL

We present the algorithm SAL (strictness analyzer for a lazy functional lan-
guage), which is a reformulation of the algorithm Nöcker implemented for Clean.
The core is a method to detect non-termination of concretizations of abstract
terms.

Definition 18.1. The algorithm SAL uses a finite family of finite sets, the
strict functions, SFn,i, that are already known or shown to be strict in the ith

argument for arity n.
The data structure for the algorithm SAL is a directed graph, where the nodes
are labeled by ac-labeled abstract terms. The edges may be labeled or not.
The algorithm SAL starts with a directed graph consisting only of one node
labeled with the initial abstract term. This term must be ac-labeled.
Given a directed graph D, a new directed graph D′ is constructed by using some
rule from the definition 18.4 below. For every node added, we assume that the
simplification rules (i.e. (lwas), (llet), (gc), (cpax)) and the bot-reduction rules
(see 17.1) have been applied exhaustively.
The algorithm stops successfully, if all leaves are labeled with ⊥, I.e. if every
non-⊥ node has an outgoing edge.
If some rule generates a cycle in the graph such that no edge in the cycle has a
label, then fail.

83

We identify syntactically the strict and proper strict positions w.r.t. the sets
SFn,i.

Definition 18.2. Assume given the sets SFn,i. Then the SF-strict contexts
SFS(t) of a term t are defined as follows:

1. If t ≡ R[s] then R ∈ SFS(t).
2. If t ≡ S[f t1 . . . tn], S ∈ SFS(t) and f ∈ SFn,i, then

S[f t1 . . . ti−1[·]ti+1 . . . tn] ∈ SFS(t)
3. If t ≡ S[x] S ∈ SFS(t) and t ≡ C[(letrec x = s,Env in t0)] then

C[(letrec x = [·],Env in t0)] ∈ SFS(t).
4. If S ∈ SFS(t) and there is a term t0 such that S[R−

(1)[t0]] ≡ t then
S[R−

(1)[·]] ∈ SFS(t).
5. If S ∈ SFS(t) and t ≡ S[(letrec Env in t0)] then S[(letrec Env in [·])] ∈
SFS(t).

We will use the term strict position ac-reduction (spac-reduction), if the reduction
is an ac-reduction and the inner redex is in an SF-strict context. This reduction is
not unique, since there may be several SF-strict positions where a spac-reduction
may be possible.
Note that a subterm in an SF-strict context is also a strict subterm. The following
condition is used to syntactically detect proper strict contexts.

Definition 18.3. Given the sets SFn,i, the proper SF-strict contexts PSFS(t)
of a term t are defined as follows:

1. If S[f t1 . . . [·] . . . tn] ∈ SFS(t), then S[f t1 . . . [·] . . . tn] ∈ PSFS(t).
2. If t ≡ S[x] S ∈ PSFS(t) and t ≡ C[(letrec x = s,Env in t0)] then

C[(letrec x = [·],Env in t0)] ∈ PSFS(t).
3. If S ∈ SFS(t) and there is a term t0 such that S[R−

(1)[t0]] ≡ t then
S[R−

(1)[·]] ∈ PSFS(t).
4. If S ∈ PSFS(t) and t ≡ S[(letrec Env in t0)] then

S[(letrec Env in [·])] ∈ PSFS(t).

The following rules use the effective test ⊆⊆γ , which must be an algorithm with
the property that s ⊆⊆γ t⇒ s ⊆γ t.
For an abstract term t, let simp(t) be the result of exhaustively applying sim-
plification rules and bot-reduction rules.

Definition 18.4. The non-deterministic construction rules of SAL are:

nred Let a leaf L be labeled with t, and let t have a spac-reduction to t′, where
the reduction is not a choice-reduction and not an (lll)-reduction. Let t′′ :=
simp(t′). Then generate a new node L′ with term t′′ and add a directed edge
from L to L′. If the reduction is in the upper part, and if it is a (case),
(lbeta), or a (seq), then the edge is to be labeled with the kind of reduction.

84

nchoice Let a leaf L be labeled with t, where t has a spac-reduction (choice-r)
to tr, and (choice-l) to tl for the same redex, then let t′r := simp(tr) and
t′l := simp(tl) and generate two nodes Lr, Ll which are labeled with t′r, t

′
l,

respectively. Add directed edges from L to Ll, Lr that are not labeled.
ichoice The same operation as nchoice, but for a non-spac-reduction, where the

redex must be on the application surface.
ired Let a leaf L be labeled with t and let t have a non-spac-reduction to t′, where

the reduction must be an ac-reduction, and may be a (case), (seq), (lbeta),
or (cp). Let t′′ := simp(t′). Then generate a new node L′ with term t′′ and
add an unlabeled directed edge from L to L′.

subsume If there is a leaf L with term label t1 6= ⊥, and a node N 6= L with
term label t2, and t1 ⊆⊆γ t2, then add a directed unlabeled edge from L to N
under the following condition: After completion of this operation, the graph
does not contain a cycle of unlabeled directed edges.

subsume2 Let ⊥ 6= t = (letrec Env in t11), let N be a node with N 6= L with
term label t2, and let one of the following two conditions hold:
1. For C = (letrec Env in C ′) ∈ PSFS(t) with t = C[t12] we have

(letrec Env in t12) ⊆⊆γ t2, or
2. For C = (letrec y = C ′, Env in t11) ∈ PSFS(t) with t = C[t12] we

have (letrec y = C ′[t12][x/t12], Env[x/t12], x = t12 in x) ⊆⊆γ t2.
Then add a directed edge from L to N labeled with (subsume2).

generalize Given a leaf L with label t, construct a new term t′ as follows: add a
binding top = topg () to the top letrec-environment, select a subterm of t
on a surface position and in the upper part of t and replace this subterm by
top, where top is a new variable. Add an unlabeled directed edge from L to
the node L′ with term t′.

Note that a subsume-edge may end in any node. It is not necessary that it is a
predecessor of the leaf.
Note also that the abstract reduction sequence (letrec . . . , x =
λy.topg () in C[x s]) → (letrec . . . , x = λy.top in C[(λy.topg ()) s]) is for-
bidden. Instead, an application of generalize has to produce the desired effect:
(letrec . . . , x = λy.topg (), z = topg () in C[z]).

18.1 Correspondence between Concrete and Abstract Terms

Lemma 18.5. Let t be an abstract ac-labeled term and let x be a strict subterm
at position p in the upper part of t. Let s ∈ γ(t) and let x be the subterm in s
corresponding to position p. Then x is also a strict subterm of s.

Proof. The definition of strictness implies that t[⊥/p] ∼c ⊥. Since the definition
of concretization implies that s and t have syntactically the same upper part up
to variable renaming, the term s[⊥/p] is a concretization of t[⊥/p]. 2

Theorem 18.6. Let s be a closed concrete term, and let t be a closed ac-labeled
abstract term, such that s ∈ γ(t) and s⇓.

85

1. (nred) Let t
sp,a−−→ t′ be a spac-reduction with a ∈ {(case), (seq), (lbeta), (cp)}.

Then there are two cases:
(a) The reduction is in the upper part. Then there is a term s′, such that

s
sp,a−−→ s′, s′ ∈ γ(t′), and rl]](s) > rl]](s′) if a ∈ {(case), (seq), (lbeta)}

and rl]](s) ≥ rl]](s′) if a = (cp).
(b) The reduction is in the ac-part. Then s′ = s ∈ γ(t′) or s ∼c s′ ∈ γ(t)

and rl]](s) ≥ rl]](s′).
2. If the rule (nchoice) or (ichoice) was applied to the term t, then t

choice−l−−−−−→ t1

and t
choice−r−−−−−−→ t2, and there exists an s′ such that s ∼c s′ and either s′ ∈

γ(t1) or s′ ∈ γ(t2), and rl]](s) ≥ rl]](s′).
3. (ired) Let t

a−→ t′ with an a-reduction that is (case), (seq), (lbeta), or a (cp),
and that is a non-spac-reduction, but an ac-reduction. Then there is some s′

with s
∗−→ s′, s′ ∈ γ(t′) and rl]](s) ≥ rl]](s′).

4. If t
a−→ t′ with a simplifying reduction a, then s ∈ γ(t′), or there is an s′ with

s
a−→ s′, and s′ ∈ γ(t′) and rl]](s) = rl]](s′).

5. If t
a−→ t′ with a bot-reduction rule, then there is a concretization s′ that is a

closed concrete term with s′ ∼c s, rl]](s) = rl]](s′) and s′ ∈ γ(t′).
6. If t′ is the result of a generalization applied to t, then there is a concretization

s′ with s′
ucp−−→ s, s′ ∈ γ(t′), and rl]](s) = rl]](s′).

Proof. 1.
(a) If the reduction of t is a (case), (seq), (lbeta), or (cp) in the up-

per part, then the reduction of the abstract term can also be per-
formed in the concretization, since in the upper part, the terms must
be α-equal. Since the functions SF are in the upper part, the reduc-
tion is also an spac-reduction s

a−→ s′ iff it is one in t. Note that
the rules {(case), (seq), (cp)} can only be {(caseS), (seqS), (cpS)} for
spac-reductions. If a ∈ {(caseS), (seqS), (lbeta)}, then Proposition 12.26
shows that rl]](s) > rl]](s′). Theorem 12.25 shows that rl]](s) ≥ rl]](s′)
if the reduction is a (cpS).

(b) Let the reduction be in the ac-part.

Then there are two cases: if there is no change in the boundary between
ac-part and upper part, then s remains a concretization, since ctac is
invariant under non-choice-reduction, hence s′ = s.
If there is a change in the boundaries between ac-part and upper
part in t, then the conditions on the concretization show that there
is a variable, say with index 1 such that (letrec Envs,ac in xs,1) ≤c

(letrec Env t,ac in xt,1), and after one reduction step the binding for
xt,1 in the reduct is of the form xt,1 = rt where rt is a constructor ap-
plication. Since xt,1 is in a reduction context in t, the variable xs,1 in
Envs,ac is also in a reduction context. The assumption s⇓ implies that
(letrec Envs,ac in xs,1) will normal order reduce to a term where the
binding for xs,1 is of the form xs,1 = rs, where rs is a value or bound
to a value. In the case that it is bound to a value, we can use (cpx),

86

(abs), (cp) and (cpcx) to copy the value to this position resulting in s′.
Theorem 12.25 shows that we still have rl]](s) ≥ rl]](s′).
Now it remains to show what happens when the boundaries are moved.
The values rt, rs must have the same top-level constructor. The syntactic
restrictions on the ac-part of t ensure that rt = c yt,1 . . . yt,n. We also
have rs = c rs,1 . . . rs,n. Using (abs), we get rs = c ys,1 . . . ys,n with
an additional binding part {ys,1 = rs,1, . . . ys,n = rs,n}. Since ≤c is a
congruence, we obtain that the ≤c-conditions hold.

2. If the reduction is a (choice)-reduction in a surface context, then it is in the
ac-part, and s is also a concretization of one of the reducts by Theorem 14.17.
If the boundary between ac-part and upper part changes, then the same
reasoning as above shows that there is some s′ with s ∼c s′, rl]](s) ≥ rl]](s′),
and either s′ ∈ γ(tl) or s′ ∈ γ(tr).

3. In the case of an (ired)-reduction, the same reasoning as for (nred) applies
with the difference that it is only possible to derive rl]](s) ≥ rl]](s′) using
Theorem 12.25.

4. Let the reduction be a simplification, i.e., (llet), (gc), (lwas) or (cpax). If it
is completely in the upper part, then it can be performed in t as well as in s.
Theorem 12.25 shows that the claim on rl]](·) holds. If it is in the ac-part,
then Theorem 10.23 and 10.31 show that ctac is not changed.

5. Let t
a−→ t′ with a bot-reduction rule. From Lemma 17.2 it follows that ∼c is

stable w.r.t. this reduction, and also that rl]](.) is unchanged. It is not possi-
ble that the corresponding subterms are used in a terminating reduction of a
concretization, since the reduction of the subterm would either not terminate
or produce an error, which is treated as equivalent to non-termination.

6. Let t′ be a term. If t′ is the result of a generalization applied to t, then a
reverse (ucp) in an application surface is possible in s at the same position
in the upper part, where the binding is placed in the top environment. Note
that the replaced term has only free variables that are bound in the top
letrec. Since > is maximal by Proposition 16.6, we obtain s′ ∈ γ(t′). From
Proposition 12.14 we derive that rl]](s) = rl]](s′).

2

Proposition 18.7. Let (N,N ′) be an edge introduced by one of the subsume-
rules. Let t be the term at N and t′ be the term at N ′. Let s ∈ γ(t). Then the
following holds:

1. If the node is generated by the rule (subsume), then there is a concretization
s′ ∈ γ(t′) with rl]](s′) ≤ rl]](s).

2. If the node is generated by the rule (subsume2), then there is a concretization
s′ ∈ γ(t′) with rl]](s′) < rl]](s).

Proof. For the rule (subsume), this holds, since t′ ⊆⊆γ t. For the rule (subsume2),
we apply Proposition 12.33.

2

87

Corollary 18.8. Let N,N ′ be two nodes in a graph generated by SAL, such
that (N,N ′) is an edge. Let t, t′ be the corresponding terms. Let s ∈ γ(t) be a
terminating concretization.

1. If the edge is labeled, then there exists s′ ∈ γ(t′) with rl]](s) > rl]](s′).
2. If the edge is not labeled and was generated using neither (nchoice) nor

(ichoice), then there is a concretization s′ ∈ γ(t′) and rl]](s) ≥ rl]](s′).
3. If the edge was generated using (nchoice) or (ichoice), let (N,N ′′) be the

other edge generated by the rule, where t′′ is the corresponding term of N ′′.
Then s ∈ γ(t′) or s ∈ γ(t′′).

19 Correctness of Strictness Detection

19.1 Main Theorems

Theorem 19.1. Let t be a closed abstract term. If t leads to successful termi-
nation using SAL, then s ∈ γ(t)⇒ s⇑.

Proof. Assume that there is a closed concrete term s ∈ γ(t) that has a termi-
nating normal order reduction.
Theorem 18.6 and Corollary 18.8 show that for every node N : if tN at N has a
concretization sN with WHNF, then there is a direct successor node N ′ and term
tN ′ with a concretization sN ′ and rl]](sN) ≥ rl]](sN ′). If the edge is labeled,
then we have rl]](sN) > rl]](sN ′) by Corollary 18.8. It is not possible that
the initial concretization has a successor in a leaf labeled ⊥. Among the nodes
that have a terminating concretization we select a node Nmin with term label
tN,min that has the minimal length rl]](sN,min) of a terminating concretization
sN,min. Since there is an outgoing edge, minimality shows that the edge cannot
be labeled. However, since the graph is finite, we will find a cycle without labels,
which does not exist due to the construction. Hence we have a contradiction. 2

Corollary 19.2. If (letrec bot = ⊥ in f bot) leads to successful termination
using SAL, then f is strict in its argument.

Proof. Since the term is already a concretization of itself, Theorem 19.1 implies
that (letrec bot = ⊥ in f bot) ∼c ⊥. Proposition 17.2 and correctness of (gc)
show that (letrec bot = ⊥ in f bot) ∼c f ⊥ ∼c ⊥, hence by the definition of
strictness, f is strict in its argument. 2

Corollary 19.3. If the term t :=

letrec topg = . . . , bot = ⊥, top1 = topg (), . . . , topn = topg ()
in (f top1 . . . topi−1 bot topi+1 . . . topn)

leads to successful termination using SAL, then f is strict in its ith argument.

88

Proof. The definition of strictness requires that for every deterministic ex-
pression tj , j = 1, . . . , n: f t1 . . . ti−1 ⊥ ti+1 . . . tn ∼c ⊥. The term
f t1 . . . ti−1 ⊥ ti+1 . . . tn is contextually equivalent to

s := letrec x1 = t1, . . . , xi−1 = ti−1, xi = ⊥, xi+1 = ti+1, . . . , xn = tn
∈ f x1 . . . xi−1 xi xi+1 . . . xn ,

which follows using correctness of (lwas), (ucp), (gc) (see Theorem 10.31). We
also have s ∈ γ(t) by Proposition 16.6. Theorem 19.1 implies that s ∼c ⊥.
Now, by the definition of strictness, we obtain that f is strict in its ith argument.
2

The following corollaries can be proved without using the conjecture 14.5:

Corollary 19.4. Independent of Conjecture 14.5, the following holds. If
(letrec bot = ⊥ in f bot) leads to successful termination using SAL without
using any abstract constants, then f is strict in its argument.

Proof. This follows from Corollary 19.2 and since the conjecture is only used in
the correctness proof via Proposition 16.6, which is not required if no abstract
constants are used in the analysis. 2

Corollary 19.5. Independent of Conjecture 14.5, the following holds. If
(letrec bot = ⊥ in f bot) leads to successful termination using SAL without
using the rule generalize, then f is strict in its argument.

Proof. Only the rule generalizemay introduce the abstract constant >, hence this
follows from Corollary 19.4. 2

20 Examples

Example 20.1. We show that the tail-recursive length function (lenr) is strict in
its second argument:

letrec len = \lst -> lenr lst 0,
lenr = \lst s -> case lst of

(Nil -> s)
(x:xs -> letrec z = 1+s in lenr xs z in ...)

This can be shown by running SAL on the expression (letrec top =
topg (), bot = ⊥ in (lenr top bot)) using an enclosing acg-environment.
We do not write the letrec-acg-environment, and we write > for a variable
that is bound to an expression topg (), ⊥ for a variable that has a binding = ⊥,
and Inf for a variable that is bound to infg (). For definition and properties see
Definition 16.3 and Proposition 16.6.

89

lenr > ⊥

lbeta
��

caselst > (Nil→ ⊥)
(x : xs→ lenr xs (⊥+ 1))

��
caselst > (Nil→ ⊥)
(x : xs→ lenr xs ⊥)

wwnnnnnnnnnnnnnnnnn

��
((PPPPPPPPPPPPPPPPPP

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

caselst ⊥ . . .

��

caselst (> : >)
(Nil→ ⊥)

(x : xs→ lenr xs ⊥)
case

��

caselst Nil . . .

��

caselst (λx.>) . . .

��
⊥ lenr > ⊥

FF

⊥ ⊥

Example 20.2. Further properties of lenr.
The function lenr is tail-strict in the first argument. For definition of Inf and
the properties see Definition 16.3 and and Proposition 16.6.

lenr Inf >

��
caselst Inf
(Nil→ >)

(x : xs→ lenr xs (>+ 1))

wwppppppppppppppppp

��

caselst ⊥ . . .

��

caselst (> : Inf)
(Nil→ >)

(x : xs→ lenr xs (>+ 1))
case

��
⊥ lenr Inf (>+ 1)

��
lenr Inf >

HH

Example 20.3. The function sum is tail-strict in its argument.
Let sum be defined in the environment by
sum = caselst xs (Nil→ 0) (y : ys→ y + (sumys)).

90

The resulting graph is:

sum Inf

��
caselst Inf

(Nil→ 0) (y : ys→ y + (sum ys))

uukkkkkkkkkkkkkkkkkk

��

caselst ⊥ . . .

��

caselst (> : Inf)
(Nil→ 0) (y : ys→ y + (sum ys))

��
⊥ >+ (sum Inf)

subsume2

YY

Here the subterm criterion (subsume2) was used.

Example 20.4. We want to show that sharing of abstract constants is a (slight)
improvement of SAL over Nöcker’s method as described in [Nöc93].

f x z = g x x z
g x y z = if x then if y then z

else False
else if y then False

else z

Checking whether f is strict in its second argument means to check
(letrec top = >, bot = ⊥, . . . in f top bot)
Reducing this by (cp), (lbeta) yields (letrec top = >, bot =
⊥, . . . in g top top bot)
Now the effect is that the variable is the same, and > is not copied. The expres-
sion

if top then if top then bot
else False

else if top then False
else bot

yields for the True case:

if True then if True then bot
else False

else if True then False
else bot

which evaluates to ⊥. The case False yields also ⊥.
As published, Nöcker’s method copies the > and the information that it is the
same variable is lost. Perhaps the implementation is able to copy the top.

91

21 Conclusion and Future Research

The paper gives a correctness proof for all the essential steps in the strictness
analyzer based on abstract reduction as first described and implemented by Eric
Nöcker in C and later by Marko Schütz in Haskell [Sch94]. It is based on a call-
by-need calculus with sharing using letrec, a non-deterministic ⊕ to represent
sets and unions, and a contextual preorder. However, for applying it analyses
that use abstract constants, we have to rely on the conjecture that our behavioral
preorder is contained in the contextual preorder.
We are looking forward to see a proof of ≤b ⊆ ≤c for LRA based on an exten-
sion of [Man04], since this would fully prove the correctness of the application
of SAL and hence of Nöcker’s algorithm.
A challenge for future research is to extend the results of the strictness anal-
ysis to FUNDIO [SS03], a call-by-need functional programming language with
direct-call IO having an operational semantics is a combination of a trace- and
a contextual semantics.
The representation of sets in the language may have other applications than ab-
stract constants, for example it may lay a new foundation for a lazy lambda cal-
culus with constraints [Man95] or for a representation of ambiguity in a lambda
calculus which has potential applications in the representation of the semantics
of natural languages.

References

Abr90. Samson Abramsky. The lazy lambda calculus. In D. Turner, editor, Re-
search Topics in Functional Programming, pages 65–116. Addison-Wesley,
1990.

AH87. S. Abramsky and C. Hankin. Abstract interpretation of declarative lan-
guages. Ellis Horwood, 1987.

Bar84. H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, New York, 1984.

BHA85. G. L. Burn, C. L. Hankin, and S. Abramsky. The theory for strictness
analysis for higher order functions. In H. Ganzinger and N. D. Jones,
editors, Programs as Data Structures, number 217 in Lecture Notes in
Computer Science, pages 42–62. Springer, 1985.

BN98. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

Bur91. Geoffrey Burn. Lazy Functional Languages: Abstract Interpretation and
Compilation. Pitman, London, 1991.

CC77. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approxima-
tion of fixpoints. In Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, pages 252–252. ACM Press, 1977.

CDG02. M. Coppo, F. Damiani, and P. Giannini. Strictness, totality, and non-
standard type inference. Theoretical Computer Science, 272(1-2):69–112,
2002.

CHH00. David Clark, Chris Hankin, and Sebastian Hunt. Safety of strictness anal-
ysis via term graph rewriting. In SAS 2000, pages 95–114, 2000.

92

GNN98. Kirsten Lackner Solberg Gasser, Hanne Riis Nielson, and Flemming Niel-
son. Strictness and totality analysis. Sci. Comput. Program., 31(1):113–
145, 1998.

Jen98. Thomas P. Jensen. Inference of polymorphic and conditional strictness
properties. In Symposium on Principles of Programming Languages, pages
209–221, San Diego, January 1998. ACM Press.

Jon03. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge Uni-
versity Press, 2003. www.haskell.org.

KM89. Tsun-Ming Kuo and Prateek Mishra. Strictness analysis: A new perspec-
tive based on type inference. In Functional Programming Languages and
Computer Architecture, pages 260–272. ACM Press, 1989.

LPJ96. John Launchbury and Simon Peyton Jones. State in Haskell. Journal of
functional programming, 1996. to appear.

Man95. L. Mandel. Constrained Lambda Calculus. Verlag Shaker, Aachen, Ger-
many, 1995.

Man04. Matthias Mann. Towards sharing in lazy computation systems. Frank re-
port 18, Institut für Informatik, J.W.Goethe-Universität Frankfurt, Ger-
many, 2004.

MS99. A.K.D. Moran and D. Sands. Improvement in a lazy context: An opera-
tional theory for call-by-need. In POPL 1999, pages 43–56. ACM Press,
1999.

MSC99. A.K.D. Moran, D. Sands, and M. Carlsson. Erratic fudgets: A seman-
tic theory for an embedded coordination language. In Coordination ’99,
volume 1594 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

MST96. Ian Mason, Scott F. Smith, and Carolyn L. Talcott. From operational
semantics to domain theory. Information and Computation, 128:26–47,
1996.

Myc81. Alan Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. PhD thesis, University of Edinburgh, 1981.

Nöc92. Eric Nöcker. Strictness analysis by abstract reduction in orthogonal term
rewriting systems. Technical Report 92-31, University of Nijmegen, De-
partment of Computer Science, 1992.

Nöc93. Eric Nöcker. Strictness analysis using abstract reduction. In Functional
Programming Languages and Computer Architecture, pages 255–265. ACM
Press, 1993.

NSvP91. E. Nöcker, J. E. Smetsers, M. van Eekelen, and M. J. Plasmeijer. Con-
current Clean. In Proc of Parallel Architecture and Languages Europe
(PARLE’91), number 505 in LNCS, pages 202–219. Springer Verlag, 1991.

Pap98. Dirk Pape. Higher order demand propagation. In K. Hammond, A.J.T.
Davie, and C. Clack, editors, Implementation of Functional Languages
(IFL ’98) London, volume 1595 of Lecture Notes in Computer Science,
pages 155–170. Springer-Verlag, 1998.

Pap00. Dirk Pape. Striktheitsanalysen funktionaler Sprachen. PhD thesis, Fach-
bereich Mathematik und Informatik,Freie Universität Berlin, 2000. in Ger-
man.

Pat96. Ross Paterson. Compiling laziness using projections. In Static Analy-
sis Symposium, volume 1145 of LNCS, pages 255–269, Aachen, Germany,
September 1996. Springer.

PJS94. Simon L. Peyton Jones and André Santos. Compilation by transformation
in the Glasgow Haskell Compiler. In Functional Programming, Glasgow
1994, Workshops in Computing, pages 184–204. Springer, 1994.

93

PvE03. R. Plasmeijer and M. van Eekelen. The concurrent clean language re-
port: Version 1.3 and 2.0. Technical report, Dept. of Computer Science,
University of Nijmegen, 2003. http://www.cs.kun.nl/~clean/.

San95. Andre Santos. Compilation by Transformation in non-strict functional
Languages. PhD thesis, University of Glasgow, 7 1995.

Sch94. Marko Schütz. Striktheits-Analyse mittels abstrakter Reduktion für den
Sprachkern einer nicht-strikten funktionalen Programmiersprache. Mas-
ter’s thesis, Johann Wolfgang Goethe-Universität, Frankfurt, 1994.

Sch00. Marko Schütz. Analysing demand in nonstrict functional programming
languages. Dissertation, J.W.Goethe-Universität Frankfurt, 2000. available
at papers/marko.

SS03. Manfred Schmidt-Schauß. FUNDIO: A lambda-calculus with a letrec,
case, constructors, and an IO-interface: Approaching a theory of
unsafePerformIO. Frank report 16, Institut für Informatik, J.W. Goethe-
Universität Frankfurt am Main, 2003.

SSPS95. Manfred Schmidt-Schauß, Sven Eric Panitz, and Marko Schütz. Strictness
analysis by abstract reduction using a tableau calculus. In Proc. of the
Static Analysis Symposium, number 983 in Lecture Notes in Computer
Science, pages 348–365. Springer-Verlag, 1995.

vEGHN93. M. van Eekelen, E. Goubault, C.L. Hankin, and E. Nöcker. Abstract re-
duction: Towards a theory via abstract interpretation. In M.R. Sleep, M.J.
Plasmeijer, and M.C.J.D. van Eekelen, editors, Term Graph Rewriting -
Theory and Practice, chapter 9. Wiley, Chichester, 1993.

Wad87. Phil Wadler. Strictness analysis on non-flat domains (by abstract inter-
pretation over finite domains). In Samson Abramsky and Chris Hankin,
editors, Abstract Interpretation of Declarative Languages, chapter 12. Ellis
Horwood Limited, Chichester, 1987.

WH87. Philip Wadler and John Hughes. Projections for strictness analysis. In
Functional Programming Languages and Computer Architecture, number
274 in Lecture Notes in Computer Science, pages 385–407. Springer, 1987.

94

http://www.ki.informatik.uni-frankfurt.de/papers/markobib.html

	On the Safety of Nöcker's Strictness Analysis
	Manfred Schmidt-Schauß cl@@auth, Marko Schütz cl@@auth, David Sabel
	Introduction
	Related Work
	Overview
	Syntax of the Abstract Functional Core Language LRA
	Normal Order Reduction
	Contextual Equivalence
	A Difference Between LR and an Untyped Core Language

	Context Lemma
	Deterministic Reductions: Easy Cases
	The reductions (case-c), (seq-c), (lbeta), (lapp), (lcase), (lseq)
	Monotonicity of choice-Reductions
	A Macro-Step (llet)-Reduction

	Complete Sets of Commuting and Forking Diagrams
	Diagrams for (llet), (seq) and (cp)
	Equivalence of (llet)
	Equivalence of (seq)
	Correctness of (cp)

	Equivalence of Other Reductions and (case)
	Correctness of (gc)
	Equivalence of (cpx)
	Equivalence of the reduction rule (xch)
	Equivalence of (abs)
	Properties of (cpcx)
	Correctness of (case)-Reductions
	Summary of Properties
	Correctness of (ucp)
	Correctness of (abse)
	Correctness of (cpax)
	Correctness of (lwas)
	Summary of Properties

	Simplifications
	A Convergent Rewrite System of Simplifications
	Properties of Bot
	Another Definition of Contextual Equivalence
	Strict Subexpressions

	Length of Normal Order Reduction
	Reductions lengths for (lll) and (gc)
	Reduction Length for (cpx)-, (cpax)- and (xch)-Reductions
	Reduction Length for ucp-Reductions
	Reduction Length for (abs)
	Reduction Length for (lwas)-Reductions
	Using Diagrams for Internal Base Reductions
	Base Reductions in Surface Contexts
	Reduction Length for (cpcx)
	Length of Normal Order Reductions for Concrete Expressions
	Length of Normal Order Reduction in Concrete Terms Using Strictness Optimization
	Local Evaluation and Deep Subterms

	Contextual Least Upper Bounds
	Behavioral Preorder and Equivalence
	Variant of (case)-Rules
	Behavioral Preorder
	Iterative Deepening Evaluations
	Union Theorem

	Deterministic Subterms and Environments
	Abstract Terms
	Abstract Sets

	The Calculus for Strictness Detection
	Reductions on Abstract Terms
	Concretizations of ac-Labeled Terms
	Subset Relationship for Abstract Terms

	The Algorithm SAL
	Correspondence between Concrete and Abstract Terms

	Correctness of Strictness Detection
	Main Theorems

	Examples
	Conclusion and Future Research

