
Towards Sharing in

Lazy Computation Systems

Technical Report Frank-18

Matthias Mann

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany
mann@cs.uni-frankfurt.de

December 28, 2004

Abstract. Work on proving congruence of bisimulation in functional
programming languages often refers to [How89,How96], where Howe gave
a highly general account on this topic in terms of so-called “lazy com-
putation systems”. Particularly in implementations of lazy functional
languages, sharing plays an eminent role. In this paper we will show how
the original work of Howe can be extended to cope with sharing.
Moreover, we will demonstrate the application of our approach to the
call-by-need λ-calculus λND which provides an erratic non-deterministic
operator pick and a non-recursive let. A definition of a bisimulation
is given, which has to be based on a further calculus named λ≈, since
the näıve bisimulation definition is useless. The main result is that this
bisimulation is a congruence and contained in the contextual equivalence.
This might be a step towards defining useful bisimulation relations and
proving them to be congruences in calculi that extend the λND-calculus.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14504556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

Towards Sharing in Lazy Computation Systems . 1
Matthias Mann (JWG-University Frankfurt)
1 Introduction . 3

1.1 Outline of the Paper . 3
1.2 Related Work . 4
1.3 Mathematical Preliminaries . 5

2 Lazy Computation Systems . 5
2.1 Language . 5
2.2 Preorders and the Precongruence Candidate 7
2.3 Reduction and Evaluation . 9

2.3.1 Reduction Diagrams . 11
2.3.2 Independent Reductions . 13

2.4 Contextual Precongruence . 14
3 A λ-let-calculus with erratic pick . 15
4 The Approximation Calculus λ≈ . 21

4.1 Terms, Contexts and Evaluation . 22
4.2 The (cpa)-reduction . 24
4.3 Internal (stop)-reductions . 26
4.4 The (lbeta)-reduction . 28
4.5 The (lapp)-reduction . 30
4.6 Some Specific Cases of Reduction . 31
4.7 Standardisation . 32
4.8 Similarity . 34
4.9 Extending similarity to open terms . 40
4.10 The Precongruence Candidate revisited . 44

4.10.1Substitution Lemmas . 44
4.11 Proving .b

o a precongruence . 47
4.11.1Stability of .̂b under reduction . 47

5 Approximating λND by λ≈-expressions . 54
5.1 Transforming

p−→- into n−→λND
-reduction sequences 54

5.1.1 (cpa) commutes with normal-order reductions 56
5.1.2 (stop) commutes with normal-order reductions 57
5.1.3 Commutation of

p−→-reductions w.r.t. n−→λND
-reductions . . . 58

5.2 Transforming n−→λND
- into

p−→-reduction sequences 59
5.3 Proof of the Approximation Theorem . 60

6 Contextual (Pre-) Congruence . 62
7 Conclusion and Future Work . 66
8 Acknowledgements . 66

Towards Sharing in Lazy Computation Systems 3

1 Introduction

Contextual equivalence due to [Mor68] is of great interest for λ-calculi, notably
in the important field of correct program transformations. Since it does not,
unlike the notion of convertibility, directly depend on the reduction rules of a
calculus but rather discriminates terms by their behaviour, usually termination
(cf. [Mil77]) in all contexts, it provides a separate justification for the reduction
rules in addition to a huge amount of meaningful equations.

But establishing contextual equivalence is rarely straightforward, so the tech-
nique of bisimulation (cf. [Mil71,Par81]) recently has attracted interest in the
context of functional programming (cf. [Abr90,San91,Gor94,Gor99]). However,
in order to apply bisimulation as a tool for showing correctness of program trans-
formations, it has to be a congruence. Proving this is in general a complex effort
as e.g. the work in [Abr90,How89,How96] demonstrates. For non-deterministic
call-by-need λ-calculi in particular, it seems to us that up to now there has not
been much research in this respect.

So the aim of this paper is twofold. First we will introduce the notions and ab-
stractions which are necessary to adapt the method of Howe (cf. [How89,How96])
to call-by-need λ-calculi. Secondly, we will demonstrate the feasibility of our ap-
proach in that we apply it to set up a bisimulation for a non-deterministic call-by-
need λ-calculus and prove it a congruence. In this calculus, the usual technique
to define bisimulation, namely by reducing terms to a weak head normal form
and applying these weak head normal forms to arbitrary fresh arguments, will
not work, as we will see.

1.1 Outline of the Paper

Therefore, the structure of the paper is as follows. In section 2 we will treat the
abstract approach to syntax and evaluation by the so-called lazy computation
systems and develop general criteria for bisimulation being a congruence. The
non-deterministic call-by-need λ-calculus λND with an erratic non-deterministic
operator pick and a non-recursive let is then introduced in section 3. It inten-
tionally is a very basic calculus, since it should act as a starting point for further
studies. An example will show that, as mentioned before, a definition of bisim-
ulation in λND working directly with let-environments is problematic. Hence
in section 4 with the λ≈-calculus we work out a way to prune the evaluation
in environments at any arbitrary finite depth. We accomplish this by adapting
the reduction rules so that bisimulation may be based upon reduction to pure
abstractions without a surrounding let-environment while recording every pos-
sible outcome of the original environment. This enables us to define bisimulation
and prove it a congruence by an extension of Howe’s method in [How89,How96],
i.e. that the so-called “precongruence candidate” is preserved under reduction.
The achievement of section 5 then is to establish the link between the λND- and
the λ≈-calculus in that the contextual equivalences agree. Figure 1 outlines the
dependencies of the major proof steps.

4 Matthias Mann – December 28, 2004

Main Theorem:
.b

o is a
precongruence

Theorem 2.16

88pppppppppppp
(c.b) 0 ⊆ .b

ffNNNNNNNNNNN

.b
o is

admissible

OO

c.b stable
under reduction

OO

Substitution
Lemmas 4.63

and 4.64

66mmmmmmmmmmmmmmmmmmmmmmmmmmmm

OO

Lemma 2.13

OO

99

(·)o is preorder-
preserving

OO

Fig. 1. Structure of the proof

1.2 Related Work

When introducing a non-deterministic construct into a programming language
or, e.g. a λ-calculus, a number of questions have to be clarified. Apart from the
classification of non-determinism as e.g. in [SS92], we consider a major issue the
decision what kind of terms should be permitted to be copied.

Non-determinism in languages without sharing, i.e. retaining a copying (β)-
rule like e.g. [Ong93,San,dP95,LP00], is completely different from our work be-
cause it will distinguish λx.(x + x) from λx.(2 ∗ x). Likewise is the situation
with [Bou94], since, as usual in explicit substitution-calculi (cf. [ACCL91]) too,
substitutions are distributed over applications and hence duplicated.

The deterministic call-by-need calculi of [AFM+95a,AF97,MOW98] realise
explicit sharing using a let-construct (or special syntactic entities, as is the
case in [AF97]) and restrict copying to abstractions. However, their equational
theory is based on convertibility rather than on contextual equivalence.

Towards Sharing in Lazy Computation Systems 5

Thus the calculi in [MSC99a,KSS98,Kut99,SS03] which all provide a non-
deterministic choice, sharing and contextual equivalence roughly represent the
direction of our investigations, though there are a few differences. Since these
papers do not discuss bisimulation, it seemed sensible to carry out our studies
in a rather elementary calculus, which also should increase readability.

Hence, like the work of [KSS98,Kut99], the λND-calculus only has a non-
recursive let, whereas the calculi in [MSC99a,SS03] provide recursive bindings.
Furthermore, like [KSS98,Kut99] but in contrast to [MSC99a,SS03], the λND-
calculus neither has data constructors nor a case.

1.3 Mathematical Preliminaries

We assume the reader to be familiar with substitutions on terms, frequently
specified in a way like [s/x] or {x 7→ s}. With dom(·) we denote the domain of
a substitution and with rng(·) the range. The restriction of a substitution σ to
a subset D of its domain is written σ|D and interpreted as for usual mappings.

2 Lazy Computation Systems

Since we would like to be able to transfer our results concerning the bisimu-
lation in a non-deterministic call-by-need lambda calculus to different calculi
with sharing, we need to specify the syntax and operational semantics of the
language in an abstract way. There are quite a few approaches to this subject,
spanning e.g. [KvOvR93,MN98,How89]. We decided to stick to Howe’s approach
since he has made a great deal in formalising conditions when bisimilarity is a
precongruence for a large class of languages. Furthermore, by applying it to im-
provement theory in [San91] even though not regarding sharing, Sands already
has demonstrated that it is possible to further enhance Howe’s approach.

In this section, we therefore first introduce the concept of a lazy computa-
tion language, before we treat preorders and prove criteria sufficient for them
to be precongruences. In section 2.3 we then define reduction and evaluation,
i.e. operational semantics for lazy computation languages, thus yielding lazy
computation systems.

2.1 Language

As in [How89], we characterise a lazy computation language by its operators
forming the terms of the language. But here, we will omit the partitioning of the
operators into canonical and non-canonical ones.

Definition 2.1. A signature L = (O,α) consisting of a set O of operators with
their arity given by a mapping α : O → {〈k1, . . . , kn〉 | ∀1 ≤ i ≤ n ∈ N : ki ∈ N0}
is called a lazy computation language.

Remark 2.2. Note that the arity of an operator is a sequence of integers as we
do without separate kinds of variables as e.g. in [How96] and [San97], since we
concentrate on lazy evaluation.

6 Matthias Mann – December 28, 2004

Definition 2.3. Given a (possibly infinite) set V of variables we inductively
define the sets iT (L) as follows:

– V ⊆ 0T (L)
– If t ∈ 0T (L) and x1, . . . , xn ∈ V are distinct then x1, . . . , xn.t ∈ nT (L)
– If τ ∈ O with arity α(τ) = 〈k1, . . . , kn〉 and tj ∈ kjT (L) for j ∈ {1, . . . , n}

then τ(t1, . . . , tn) ∈ 0T (L).

Now the terms of the language L are given by T (L) = 0T (L).

The elements of the sets nT (L) for n > 0 are called operands, the constitution of
an operand x.t binds all free occurrences in t of variables in x. A term is closed if
all of its variables are bound, otherwise it is called open. The set of closed terms
is denoted by T0(L), and if the language L is clear from context we will simply
write T and T0 in the remainder of this paper.

We consider terms and operands syntactically equal up-to alpha-renaming,
i.e. renaming of bound variables. We denote this syntactic equality with ≡α or
simply with ≡, e.g. we write x.s ≡ y.t, if there is a renaming of the bound
variables (including the possibly empty tuples x and y respectively) such that
the operands become the same, i.e. s[z/x] ≡ t[z/y] for fresh variables z.

Convention 1 (Variable Convention). Since we deal with terms modulo ≡α, we
may assume that in every term t all bound variables are distinct from each other
and the free variables. We will extend this convention also to terms that result
from transformations of other terms.

Example 2.4. The λ-language consisting of the operators O = {λ, @} with its
arities α(λ) = 〈1〉 and α(@) = 〈0, 0〉 forms a lazy computation language where
e.g. @(λ(x.s), t) is an open term which would usually be denoted by (λx.s) t and
λ(y.@(y, y)) is a closed term, written λy.yy in the usual notation.

Example 2.5. A simple let-language could be modelled by the set of oper-
ators O = {λ, let,@} with λ and @ having arities as in example 2.4 and
α(let) = 〈1, 0〉. Thus, the non-recursive let x = t in s could then be expressed
as let(x.s, t).

A context is a term with a hole and may be defined like in definition 2.3. We
write C for the set of all such single-hole contexts, as we sometimes also consider
multi-contexts, i.e. contexts with multiple holes which must clearly be told apart
from each other.

Definition 2.6. Let D be denoting some set of contexts. Then the sets D∗, D+,
Dk, Dm∨n are defined by the corresponding symbols for every D ∈ D:

D0 ::= [] Dk+1 ::= D[Dk]

D+ ::= D | D[D+] Dm∨n ::= Dm | Dn

D∗ ::= D0 | D+

In the following we will usually write e.g. Dm∨n denoting a context D ∈ Dm∨n.

Towards Sharing in Lazy Computation Systems 7

2.2 Preorders and the Precongruence Candidate

We will now state some general properties for preorders in a lazy computation
language. Therefore assume the set T of terms to be fixed for the remainder of
this section. As is known, the key idea of Howe’s method for proving bisimulation
a congruence is to define a so-called “precongruence candidate” first, which by
definition is a reflexive and operator-respecting but not necessarily transitive
relation. Showing then that this precongruence candidate coincides with the
underlying preorder results in the desired precongruence. So we first clarify the
notion of a precongruence.

Definition 2.7. A relation η ⊆ T 2 is called operator-respecting if and only if
ai η bi implies τ(ai) η τ(bi) for all operands ai, bi and operators τ .

Another word for operator-respecting is compatible.

Definition 2.8. A preorder η ⊆ T 2 is a precongruence if and only if for all
terms s, t ∈ T we have s η t =⇒ ∀C ∈ C : C[s] η C[t].

As easily could be shown by induction, a preorder is a precongruence if and only if
it is operator-respecting. Hence for preorders, we use both notions synonymously
in the following. We also extend a relation η to operands by x.s η y.t if and only
if [z/x] η t[z/y] for fresh variables z holds, i.e., if a consistent renaming of the
bound variables exists that relates the underlying terms. The restriction of a
preorder η ⊆ T 2 to closed terms is defined by η 0 = η ∩ T0

2 as usual. From this
notion, some easy consequences may be drawn immediately, e.g. that η1 ⊆ η2

implies (η1) 0 ⊆ (η2) 0 by monotonicity of set-intersection.
As mentioned before, a relation η ⊆ T0

2 must not be extended to open
terms via the “for-all-substitutions”-notion since this breaks sharing of terms.
An alternative for this extension ηo of η to open terms has to be formulated
distinctly for every concrete instance of an lcs, which we would like to postpone
until later and therefore define only a conceptional notion here.

Definition 2.9. A mapping (·)o : T0×T0 → T ×T is said to extend (relations)
to open terms and ηo is called the extension of a relation η to open terms.

The definition of the precongruence candidate, which is as usual, works without
specific properties, so we just assume (·)o extending η ⊆ T0

2 to open terms.

Definition 2.10. Let η ⊆ T0
2 be a preorder, then define η̂ ⊆ T 2 by induction

– x η̂ b if x ηo b and x ∈ V .
– τ(ai) η̂ b if ai η̂ a′i and τ(a′i) ηo b for some τ ∈ O and operands a′i.

Remark 2.11. Note that for every operator ζ of arity α(ζ) = 〈〉, i.e. ζ has no
operands, and every term t ∈ T we have ζ η̂ t ⇐⇒ ζ ηo t by the above.

For most of the fundamental properties, it is sufficient to demand that ηo is a
preorder whenever η is, hence the following definition.

8 Matthias Mann – December 28, 2004

Definition 2.12. If (·)o extends relations to open terms, it is called preorder-
preserving if and only if for every relation η ⊆ T0

2 on closed term the following
holds: η is a preorder implies that also ηo is a preorder.

Proving the analogue to [How96, lemma 3.1] reveals the necessity of (·)o being
preorder-preserving.

Lemma 2.13. If η ⊆ T0
2 and its extension ηo ⊆ T 2 both are preorders then

1. η̂ is reflexive
2. η̂ and η̂ 0 are operator-respecting
3. ηo ⊆ η̂
4. η̂ ◦ ηo ⊆ η̂

Proof. 1. Let a ∈ T be an arbitrary but fixed term, then we show a η̂ a by
induction on the structure of a:
– If a ∈ V is a variable, we have a η̂ a from the reflexivity of ηo and the

base case of definition 2.10.
– If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai from

the induction hypothesis and τ(ai) ηo τ(ai) from the reflexivity of ηo.
So, by definition 2.10, we may compose this to τ(ai) η̂ τ(ai).

2. We assume ai η̂ bi and have to show τ(ai) η̂ τ(bi) for an arbitrary but fixed
operator τ . By reflexivity of ηo we have τ(bi) ηo τ(bi) and from definition
2.10 we conclude τ(ai) η̂ τ(bi).
As a consequence if τ(ai), τ(bi) ∈ T0 are closed, we also have τ(ai) η̂ 0 τ(bi)
from ai η̂ bi, which implies that η̂ 0 is operator-respecting too.

3. Assume a ηo b for arbitrary but fixed a, b ∈ T and show a η̂ b by induction
on the structure of a:
– If a ∈ V is a variable, we have a η̂ b directly from a ηo b and the base

case of definition 2.10.
– If a ≡ τ(ai) for some operator τ and operands ai, we have ai η̂ ai

from property (1), the reflexivity of η̂. By definition 2.10 then, we may
conclude τ(ai) η̂ b.

4. Assume a η̂ b and b ηo c, so according to definition 2.10 we have to distinguish
the following two cases:
– a is a variable, then for a η̂ b also a ηo b must hold and thus the propo-

sition by transitivity of ηo and property (3).
– a has the form τ(ai), then there is a τ(a′i) such that ai η̂ a′i and τ(a′i) ηo b.

By transitivity of ηo we also have τ(a′i) ηo c thus τ(ai) η̂ c. ut

In order to prove the essential theorem on the criteria for ηo being a precongru-
ence, we have to demand the following properties.

Definition 2.14. Let η ⊆ T0
2 be a relation, then an extension ηo ⊆ T 2 of η to

open terms is admissible only if all of the following conditions are met:

1. (·)o is preorder-preserving
2. (ηo) 0 = η
3. ∀ν : ν ⊆ η =⇒ νo ⊆ ηo

Towards Sharing in Lazy Computation Systems 9

4. η̂ ⊆ (η̂ 0)
o

Lemma 2.15. Let η ⊆ T0
2 be a preorder on closed terms. Then every admissible

extension ηo contains η, i.e. η ⊆ ηo.

Proof. Assume a preorder η ⊆ T0
2 on closed terms and ηo admissible. Then from

property (2) of definition 2.14 we have (ηo) 0 = η. Since ν 0 = ν ∩ T0
2 ⊆ ν holds

for every relation ν ⊆ T 2 on terms, we thus have η = (ηo) 0 = ηo ∩ T0
2 ⊆ ηo.

In [How96, Theorem 3.1], the formulation of the following theorem requires a
substitution lemma which we cannot provide at this point, since we have made
only a few assumptions about ηo. But with having abstracted out the essential
properties in definition 2.14, the main result remains provable independently.

Theorem 2.16. Let η ⊆ T0
2 be a preorder and ηo its admissible extension to

open terms. Then the following are equivalent.

1. ηo is a precongruence
2. η̂ ⊆ ηo

3. η̂ 0 ⊆ η

Proof. The claim is shown by a chain of implications.

“1 =⇒ 2”: Assuming ηo to be a precongruence and a η̂ b, we show a ηo b by
induction on the definition of η̂.
– If a ∈ V is a variable, the only possibility is a ηo b.
– If a ≡ τ(ai) for some operator τ and operands ai, there must have

been operands a′i such that ai η̂ a′i for every i and τ(a′i) ηo b. From the
induction hypothesis we may conclude ai ηo a′i, which in turn means
τ(ai) ηo τ(a′i) and furthermore τ(ai) ηo b since ηo is a precongruence.

“2 =⇒ 3”: If η̂ ⊆ ηo then we immediately have η̂ 0 ⊆ (ηo) 0 = η, since ηo is
admissible.

“3 =⇒ 1”: So it remains to show that ηo is a precongruence under the as-
sumption η̂ 0 ⊆ η. Since ηo is admissible, from η̂ 0 ⊆ η we have (η̂ 0)

o ⊆ ηo

by monotonicity, i.e. property (3) of definition 2.14. In conjunction with
property (4) there, this becomes η̂ ⊆ (η̂ 0)

o ⊆ ηo. Hence by property (3) of
lemma 2.13 we have η̂ = ηo, thus ηo is operator-respecting. ut

The plan is to establish the last set inclusion η̂ 0 ⊆ η for which we will show that
the precongruence candidate η̂ is stable under reduction. Therefore we now turn
our attention to reduction and evaluation in lazy computation languages.

2.3 Reduction and Evaluation

We now come to the specification of the operational semantics of a lazy compu-
tation language. As is known, this could be done in two ways, i.e. by a big step
evaluation relation and by a small-step reduction. In this section, we will depict
reduction and evaluation to the extent to which they may be applicable to the
abstract notion of a lazy computation language.

10 Matthias Mann – December 28, 2004

Definition 2.17 (Lazy Computation System). A lazy computation lan-
guage L together with a binary relation ⇓ ⊆ T 2 on terms is called a lazy com-
putation system (lcs for short) iff ⇓ is reflexive and satisfies the following con-
dition:

a ⇓ v =⇒ ∀v′ : (v ⇓ v′ ⇐⇒ v ≡ v′) (2.1)

We then call ⇓ evaluation and simply write a ⇓ if there exists some b — which
we call an answer — such that a ⇓ b, and a 6⇓ if there is no such b.

Remark 2.18. Note that the condition (2.1) does not enforce determinism, as
a ⇓ v may hold for different v. But in some way, an answer v may be seen as an
“end-point” of the ⇓-relation.

The previous definition reflects the approach to “big-step” operational seman-
tics. We will now also declare “small-step” reduction semantics. Unlike [Bar84,
p. 50], we do not require a reduction relation to be operator-respecting in gen-

eral. Instead, we will use the notation s
C, a−−−→ t to indicate that for the reduction

from s to t the reduction rule (a) is used in the context C.

Definition 2.19 (Reduction). A reduction relation is a binary relation on
terms which may be specified by distinct reduction rules. If s, t ∈ T are terms
so that s reduces to t by the rule (a) we write s

a−→ t and speak of a top-level
reduction. If C ∈ C is a context and s reduces to t at top-level by rule (a) then

we may use rule (a) in the context C which we will denote by C[s]
C, a−−−→ C[t].

In both cases, s is called a redex which is an acronym for “reducible expression”.

Sometimes we will emphasise a top-level reduction by writing s
[], a−−−→ t and if

the reduction rule (a) is omitted it may be any of the respective calculus. If
a reduction is superscripted with a context class instead of a distinct context,
e.g. s

D, a−−−→ t, this means a reduction by rule (a) may be performed in any
context which belongs to the class D, i.e.

∃D ∈ D : s ≡ D[s′] ∧ t ≡ D[t′] ∧ s′
a−→ t′ (2.2)

Moreover, the transitive and reflexive-transitive closure of −→ will be denoted as
usual by −→+ and −→∗ respectively, while we write −→k and −→<k for a reduction
of exactly and less than k steps respectively. Similarly with e.g. −→k≥m we will
denote a reduction of k ≥ m steps. Sometimes further labels will be attached to
the symbol −→ in order to specify certain properties of the reduction.

In [How89], Howe defines the notion of a canonical operator, i.e. terms whose
top-level operator is canonical, are not reduced further. Hence they represent
the answers in the sense of definition 2.17. But since we want to model sharing,
we must take into account that a term may carry around an environment with
bindings of variables to be shared as discussed in [AFM+95a] or [MOW98]. As a
consequence, a clear distinction between canonical and non-canonical operators
cannot be kept up. So it may be an option to describe the notion of an answer
by the syntactic structure of the terms, e.g. given by some predicate, say F(·),

Towards Sharing in Lazy Computation Systems 11

we then may relate ⇓ and −→∗ in the way s ⇓ t ⇐⇒ s −→∗ t ∧ F(t). It is
then often interesting and necessary to argue about different reductions that
may lead to the same result. Therefore we first introduce the notion of reduction
and conversion sequences.

Definition 2.20 (Reduction and Conversion Sequences). Let n ∈ N be
a non-negative integer, t1, . . . , tn+1 ∈ T be terms, Ca1 , . . . , Can

be contexts and
a1, . . . , an be reduction rules (with possibly further labels attached).

Then a sequence (〈ti, ai, Cai
〉)i is a reduction sequence (of length n) if and

only if ti
Cai

, ai−−−−−→ ti+1 for every 1 ≤ i ≤ n holds. If for every 1 ≤ i ≤ n, we have

either ti
Cai

, ai−−−−−→ ti+1 or ti
Cai

, ai←−−−−− ti+1, then we call (〈ti, ai, Cai
〉)i a conversion

sequence (of length n).

One use for the notion of reduction sequence is the definition of divergence.

Definition 2.21 (Divergence). We say that a term s ∈ T diverges, denoted
by s ⇑, if there is an infinite reduction sequence starting with s.

It is important to note that s ⇑ in general does not imply s 6⇓ and vice versa.

Example 2.22. Supposing a nondeterministic construct pick which may reduce
to either of its arguments, for the term pick I Ω both relations ⇓ and ⇑ hold.

Relevant parts of the following proofs will use transformations on reduction and
conversion sequences respectively. One way to describe such transformations is
by meta-rules on reduction sequences in form of diagrams.

2.3.1 Reduction Diagrams The technique of complete sets of commuting
and forking diagrams respectively is well-established and has yet been proven
useful in several situations (cf. [KSS98,Kut99,SS03,Sab03]). We will now expand
its definitions to lazy computation systems.

Definition 2.23 (Transformation Rule). A transformation of a conver-
sion sequence (〈si, ai, Cai〉)i of length m consists of a conversion sequence
(〈tj , bj , Cbj 〉)j of length n such that s1 ≡ t1 and sm+1 ≡ tn+1.

A transformation rule describes a set of possible transformations of conver-
sion sequences in an abstract manner using a notation of the form

Ca1 , a1−−−−−→ ·
Ca2 , a2←−−−−− · . . . ·

Cam−1 , am−1
←−−−−−−−−− · Cam , am−−−−−−→

Cb1 , b1←−−−−− ·
Cb2 , b2−−−−−→ · . . . ·

Cbn−1 , bn−1
−−−−−−−−→ ·

Cbn , bn←−−−−−

A transformation rule like the above is called applicable to a prefix (suffix)
of a conversion sequence (〈si, ai, Cai

〉)i of lengh k ≥ m if there are terms
t1, . . . , tn+1 ∈ T such that (〈tj , bj , Cbj 〉)j is a transformation of the prefix-
sequence (〈si, ai, Cai〉)i≤m (suffix-sequence (〈si, ai, Cai〉)i>k−m respectively).

12 Matthias Mann – December 28, 2004

Definition 2.24 (Complete Set of Commuting Diagrams). A set of com-

muting diagrams for a reduction
D, a−−−→ w.r.t. two sets B,O of reductions, is a

set of transformation rules of the form

D, a−−−→ ·
Cb1 , b1−−−−−→ · . . . ·

Cbl
, bl−−−−→

Cb1 , b1−−−−−→ · . . . ·
Cb′m

, b′m−−−−−−→ ·
Ca1 , a1−−−−−→ · . . . · Can , an−−−−−→

for reduction sequences, where the following conditions are met:

1.
Cbi

, bi−−−−→ ⊆ B for every 1 ≤ i ≤ l,

2.
Cb′

i
, b′i

−−−−→ ⊆ B for every 1 ≤ i ≤ m and

3.
Caj

, aj

−−−−−→ ⊆ O ∪ D, a−−−→ for every 1 ≤ j ≤ n

A set of commuting diagrams is called complete if and only if for every reduction
sequence of the form

s0
D, a−−−→ s1

Cb1 , b1−−−−−→ . . .
Cbl

, bl−−−−→ sl+1

such that l > 0 and sl+1 is an answer but s0 is not, there is one transformation
rule applicable to a prefix of the sequence.

By means of a complete set of commuting diagrams for a reduction
D, a−−−→ one can

show that reductions of this kind may be moved to the end of every reduction
sequence consisting only of reductions in B, while possibly auxiliary reduction
from O are introduced.

Similarly is with complete sets of forking diagrams, which may guarantee that
the application of a reduction does not change termination behaviour, i.e. show
some kind of confluence property (cf. [BKvO98]).

Both, complete sets of commuting and forking diagrams, should adhere to
the condition that the composition of diagrams from the set terminates. This
makes induction applicable.

Definition 2.25 (Complete Set of Forking Diagrams). A set of forking

diagrams for a reduction
D, a−−−→ w.r.t. two sets B,O of reductions, is a set of

transformation rules of the form

Cb1 , b1←−−−−− · . . . ·
Cbl

, bl←−−−− · D, a−−−→

Ca1 , a1−−−−−→ · . . . · Can , an−−−−−→ ·
Cb′1

, b′1
←−−−−− · . . . ·

Cb′m
, b′m←−−−−−−

for conversion sequences, where the following conditions are met:

1.
Cbi

, bi−−−−→ ⊆ B for every 1 ≤ i ≤ l,

2.
Cb′

i
, b′i

−−−−→ ⊆ B for every 1 ≤ i ≤ m and

Towards Sharing in Lazy Computation Systems 13

3.
Caj

, aj

−−−−−→ ⊆ O ∪ D, a−−−→ for every 1 ≤ j ≤ n

A set of forking diagrams is called complete if and only if for every conversion
sequence of the form

s0

Cb1 , b1←−−−−− . . .
Cbl−1 , bl−1
←−−−−−−− sl−1

Cbl
, bl←−−−− sl

D, a−−−→ sl+1

such that l > 0 and s0 is an answer but sl is not, there is one transformation
rule applicable to a suffix of the sequence.

If O = ∅ in the definitions above we simply leave it out and speak of a set of
commuting (forking) diagrams w.r.t. B.

2.3.2 Independent Reductions While diagrams are a very useful tool to
prove commuting reductions, there are already some simple cases which may be
shown in general. Therefore the notion of disjoint contexts is necessary.

Definition 2.26. Two contexts Ca, Cb ∈ C are called disjoint if there is no other
context C ∈ C such that Ca ≡ Cb[C] or Ca ≡ Cb[C] holds.

Lemma 2.27. Let Ca, Cb ∈ C be two disjoint contexts. Then for all terms
s0, s1, s2 ∈ T and all reductions a, b the following holds:

s0
Ca, a−−−−→ s1

Cb, b−−−→ s2 =⇒ ∃s′2, C ′
a, C ′

b : s0
C′

b, b−−−→ s′2
C′

a, a−−−−→ s2

s1
Ca, a←−−−− s0

Cb, b−−−→ s2 =⇒ ∃s3, C
′
a, C ′

b : s1
C′

b, b−−−→ s3
C′

a, a←−−−− s2

Proof. Assume Ca, Cb ∈ C to be disjoint contexts, i.e. neither Ca ≡ Cb[C] nor

Ca ≡ Cb[C] for some further context C ∈ C holds. We recall that s0
Ca, a−−−→ s1

means that s0 and s1 are of the respective forms s0 ≡ Ca[t1] and s1 ≡ Ca[t′1]

such that t1
[], a−−−→ t′1 is a top-level reduction. The same holds for Cb, i.e. in the

forking case which we will treat first, we have s0 ≡ Cb[t2] and s2 ≡ Cb[t′2] such

that t2
[], b−−−→ t′2 is a top-level reduction. Since Ca and Cb are disjoint, there is a

two-hole-context C[[]1, []2] ∈ C such that Ca ≡ C[[]1, t2] and Cb ≡ C[t1, []2].
Thus C ′

a ≡ C[[]1, t′2] and C ′
b ≡ C[t′1, []2] represent the desired contexts, which

clearly permit the reductions s1
C′

a, a−−−→ s3 and s2
C′

b, b−−−→ s3.
For the commuting case we have s1 ≡ Cb[t2] and s2 ≡ Cb[t′2] such that

t2
[], b−−−→ t′2 is a top-level reduction. Since Ca and Cb are disjoint, there is a two-

hole-context C[[]1, []2] ∈ C such that Ca ≡ C[[]1, t2] and Cb ≡ C[t′1, []] hold.
Thus C ′

a ≡ C[[]1, t′2] and C ′
b ≡ C[t1, []2] are contexts, which permit the desired

reductions s1
C′

a, a−−−→ s3 and s2
C′

b, b−−−→ s3 independently. ut

In the following, we will develop criteria for how to establish complete sets of
commuting and forking diagrams respectively. The key idea is, that for reductions
which may be performed inside contexts that are closed under composition, it
is sufficient to analyse the empty context in a few base cases. The next lemma
demonstrates this for the commutation of two reductions.

14 Matthias Mann – December 28, 2004

Lemma 2.28. Let s0
Ca, a−−−−→ s1

Cb, b−−−→ s2 be a reduction sequence for arbitrary
terms s0, s1, s2 ∈ T . If Cb ≡ Ca[C] with some context C ∈ C then the following

holds: If for every reduction sequence t0
[], a−−−→ t1

C, b−−−→ t2 there exists a term

t′1 ∈ T and a context C ′ such that t0
C′, b−−−→ t′1

[], a−−−→ t2 then there is also a term

s′1 ∈ T and a context C ′
a ∈ C with s0

Cb, b−−−→ s′1
C′

a, a−−−−→ s2.

Proof. Assume s0
Ca, a−−−→ s1

Cb, b−−−→ s2 then s0 and s1 must be of the respective
forms s0 ≡ Ca[t0] and s1 ≡ Ca[t1] for some terms t0, t1 ∈ T and a top-level

reduction t0
[], a−−−→ t1. Since Cb ≡ Ca[C] we have s2 ≡ Ca[t2] and t1

C, b−−−→ t2 from

s1
Cb, b−−−→ s2, hence there are t′1 and C ′ such that t0

C′, b−−−→ t′1
[], a−−−→ t2 by the

premise. This reduction can also be performed inside Ca, thus the claim. ut

The last step of the proof using composition of contexts is remarkable. Hence
we may adopt the technique to reductions inside a class of contexts which is
closed under composition. Also the claim could be extended to reduction and
conversion sequences of a length greater than two by similar arguments, hence
the summary in the following corollary.

Corollary 2.29. Let (〈si, ai, Cai
〉)i be a reduction (conversion) sequence of

length m and 1 ≤ k ≤ m an index such that for every 1 ≤ i ≤ m there are
contexts C ′

ai
with Cai

≡ Cak
[C ′

ai
] for i 6= k and C ′

ak
≡ []. Furthermore, pre-

sume that for every conversion sequence (〈pi, ai, C
′
ai
〉)i there is a transformation

(〈qj , bj , Cbj 〉)j. Then there exists also a transformation (〈tj , bj , Ck[Cbj]〉)j of the
original reduction (conversion) sequence.

2.4 Contextual Precongruence

Throughout this paper we will use the following definition of contextual pre-
congruence which is based on the observation of convergent behaviour of terms.
However, in a nondeterminic calculus as we will treat it in the following section,
it usually is sensible to incorporate divergence, i.e. the possibility of infinite re-
duction sequences, as well. Besides that there are quite different views how to
accomplish this task, e.g. [Kut99] in contrast to [MSC99a], the reason to omit
divergence here is to keep the presentation as simple as possible. Another justifi-
cation is that it seems feasible to define a separate approximation for divergence.

Definition 2.30 (Contextual Approximation). Let .c ⊆ T 2, the contex-
tual approximation, be defined by

s .c t ⇐⇒ (∀C ∈ C : C[s] ⇓ =⇒ C[t] ⇓) (2.3)

Since .c is defined on arbitrary terms using all contexts, and not only closing
ones, it is easily checked that .c is reflexive, transitive and operator-respecting,
thus a precongruence.

Towards Sharing in Lazy Computation Systems 15

Example 2.31. Regard the closed terms I and pick I Ω as of example 2.22. If, in
the definition of .c, we also demand the condition ∀C : C[t] ⇑ =⇒ C[s] ⇑ which
is motivated in [Kut99] by the reason that t should only considered be “better”
than s if it does not introduce non-termination, we will have I 6.c pick I Ω.

But for the similarity .b we will define later, this would technically compli-
cate matters, since we would then loose the property that the possible outcomes
of a reduction are always smaller w.r.t. .b than the original term.

The following lemma is useful to transfer the convergent behaviour of terms from
one language to another.

Lemma 2.32. Let L1,L2 be two lazy computation systems, whose term sets
are identical, i.e. T (L1) = T (L2), with respective evaluation ⇓L1 and ⇓L2 and
contextual approximation .L1,c and .L2,c. Then .L1,c = .L2,c if and only if
r ⇓L1 ⇐⇒ r ⇓L2 for every term r ∈ T holds.

Proof. The “only-if”-part simply follows by choosing C = [] in definition 2.30.
By symmetry, it suffices to show .L1,c ⊆ .L2,c for the “if”-part. So assume
terms s, t ∈ T , arbitrary but fixed, and a context C ∈ C such that s .L1,c t and
C[s] ⇓L2 hold. By the premise ∀r : r ⇓L1 ⇐⇒ r ⇓L2 , we also have C[s] ⇓L1

and hence C[t] ⇓L1 since s .L1,c t implies C[s] .L1,c C[t]. Thus C[t] ⇓L2 by the
premise ∀r : r ⇓L1 ⇐⇒ r ⇓L2 again. ut

3 A λ-let-calculus with erratic pick

In this section we will introduce the calculus λND which provides an erratic
non-deterministic operator pick and a non-recursive let. It closely resembles
the calculus of [Kut99] except for the difference that the nondeterministic choice
is modelled by the syntactic construct pick rather than a constant.

The normal-order reduction that will be defined conforms to [Kut99] in that
it will respect sharing, i.e. only abstractions may be copied and non-deterministic
choices will not be duplicated. Unlike [Kut99] we will only consider contextual
equivalence w.r.t. converging behaviour of terms — including divergence be-
haviour will be devoted to future research.

We will demonstrate that the usual approach of testing terms by just reduc-
ing them to weak head normal form and applying these WHNF’s to arbitrary
arguments is futile in the λND-calculus.

Definition 3.1 (λND-Language). The language of the calculus λND is formed
by the set O = {@, λ, let, pick} of operators with the respective arities

α(@) = 〈0, 0〉
α(λ) = 〈1〉

α(let) = 〈1, 0〉
α(pick) = 〈0, 0〉

16 Matthias Mann – December 28, 2004

We make the usual convention to write λxy.s as a synonym for the term λx.(λy.s)
and call closed terms combinators.

Definition 3.2. We define abbreviations for the following combinators:

S ≡ λpqr.p r (q r)
K ≡ λxy.x

K2 ≡ λxy.y

I ≡ λx.x

Y ≡ λf.(λx.f (xx)) (λx.f (xx))
Ω ≡ (λx.x x) (λx.x x)

We also introduce useful shortcuts for some particular contexts.

Definition 3.3. Let e denote an expression. We define the following contexts:

LR ≡ let x = e in [] AR ≡ e []
LL ≡ let x = [] in e AL ≡ [] e

Since contexts of the form L∗R play a major role they will get an own name.

Definition 3.4 (Environments). Let E be the class of environment contexts
or environments for short which is defined by the following syntactic rules for
the symbol L where e denotes an expression:

L ::= [] | let x = e in L

Using environments, we may now explain the notion which corresponds to an-
swers as declared in section 2.3, i.e. the normal-order reduction, which we will
define later, stops when reaching a weak head normal form.

Definition 3.5 (Weak Head Normal Form). A term t ∈ T is in weak head
normal form (WHNF for short) iff t ≡ L[λx.s] for some environment L ∈ E and
term s ∈ T .

In contrast to this definition, we will use the notion of a value in the remainder
of this paper essentially for terms that may be copied, i.e. in the λND-calculus
these are abstractions.

Definition 3.6 (Reduction). We declare the following reduction rules

let x = (let y = ty in tx) in s
llet−−→ let y = ty in (let x = tx in s) (llet)

(let x = tx in s) t
lapp−−−→ let x = tx in (s t) (lapp)

(λx.s) t
lbeta−−−→ let x = t in s (lbeta)

pick s t
nd,left−−−−→ s (nd, left)

pick s t
nd,right−−−−−→ t (nd, right)

let x = λy.r in D[x]
cp−→ let x = λy.r in D[λy.r] (cp)

Towards Sharing in Lazy Computation Systems 17

which should be understood as templates, i.e. they are valid for all possible con-
texts D, terms s, t, . . . and variables x, y, . . . etc. Furthermore, we adopt the
variable convention 1, hence in all terms which arise from reduction, we assume
all bound variables to be distinct from each other and from the free variables.

We take the union of some reductions, so let

nd−→ =
nd,left−−−−→ ∪ nd,right−−−−−→ (nd)

lll−→ = llet−−→ ∪ lapp−−−→ (lll)

One important property of the normal-order reduction will be that it only takes
place in specific contexts, the reduction contexts.

Definition 3.7 (Reduction Contexts). The class R of reduction contexts is
defined by the following rule for the symbol R:

R ::= L∗R[A∗
L] | L∗R[let x = A∗

L in R[x]]

The notion of normal-order reduction may then intuitively be described as fol-
lows. Descend into contexts of the form LR and subsequently AL, until (nd),
(lapp) or (lbeta) becomes applicable, the case (1) of definition 3.8. If during this
process a variable is encountered, follow its binding. Whenever possible, perform
(cp) or (llet) for the variable in question, i.e. cases (3) and (4) respectively. Oth-
erwise, in case (2), if the variable is bound to an application, descend into the
A∗

L-context as far as possible in order to apply (nd), (lapp) or (lbeta).

Definition 3.8 (Normal-Order Reduction). A reduction s
R, a−−−→ t is called

normal-order and depicted by s
n, a−−−→ t if and only if it matches one of the

following.

1. If s ≡ L∗R[A∗
L[r]] and rule (lapp), (lbeta), (nd, left) or (nd, right) is applied

to r.
2. If s ≡ L∗R[let x = A∗

L[r] in R[x]] with some reduction context R such that
rule (lapp), (lbeta), (nd, left) or (nd, right) is applied to r.

3. If s ≡ L∗R[let x = λy.r in R[x]]
n, cp−−−→ L∗R[let x = λy.r in R[λy.r]] ≡ t by

rule (cp) for some reduction context R.
4. If rule (llet) is applied as follows:

s ≡ L∗R[let x = (let y = ty in tx) in R[x]]
n, llet−−−−→

L∗R[let y = ty in (let x = tx in R[x])] ≡ t

The above definition conforms with [Kut99] and slightly differs from [AFM+95b]
as discussed in [Kut99, p. 42]. It ensures that the normal-order redex, i.e. the
sub-expression to be reduced, is unique and, except for the non-deterministic
rules, the reduction itself is also unique. Moreover, the present formulation helps
to detect overlaps as we will see.

18 Matthias Mann – December 28, 2004

But for now, let us turn to an example which serves two purposes. First,
it demonstrates the interplay of non-determinism and sharing in the normal-
order reduction. On the other hand, it shows that in λND an adoption of the
usual approach to define bisimilarity, i.e. reduction to WHNF and application
to arbitrary arguments, won’t match contextual equivalence.

Example 3.9. We assume the Church numerals 1, 2, . . . be defined as usual with
addition + evaluating its first argument previous to the second. Let

s ≡ λx.(pick (pick (1 + 2) (1 + 3)) (pick (4 + 2) (4 + 3)))
t ≡ let y = pick 1 4 in λx.(y + pick 2 3)

then obviously s and t both are in WHNF and every application of s and t
respectively to some arbitrary argument e leads to the same set {3, 4, 6, 7} of
answers.

But s and t could be distinguished by contexts since s is an abstraction and
may be copied, whereas in t the subterm pick 1 4 is shared. Evaluation in the
context C ≡ let f = [] in (f 1) + (f 1) illustrates this. For C[s] we may have

let f = λx.(pick (pick (1 + 2) (1 + 3)) . . .) in (f 1) + (f 1)
n, cp−−−→ let f = λx.(pick (pick (1 + 2) (1 + 3)) . . .) in (s 1) + (f 1)

n−→
∗
let f = λx.(pick (pick (1 + 2) (1 + 3)) . . .) in L1[6] + (f 1)

n, cp−−−→ let f = λx.(. . .) in L1[6] + (s 1)
n−→
∗

Ls[6 + 3]

while for C[t] this is obviously not possible, e.g.

let f = (let y = pick 1 4 in λx.(y + pick 2 3)) in (f 1) + (f 1)
n, llet−−−−→ let y = pick 1 4 in (let f = λx.(y + pick 2 3) in (f 1) + (f 1))
n, cp−−−→ let y = pick 1 4 in (let f = λx.. . . in ((λx.(y + pick 2 3)) 1) + (f 1))

n−→
∗
let y = 4 in (let f = λx.. . . in (let x = 1 in (y + pick 2 3)) + (f 1))

n, cp−−−→ let y = 4 in (let f = λx.. . . in (let x = 1 in (4 + pick 2 3)) + (f 1))
nd,left−−−−→ let y = 4 in (let f = λx.. . . in L1[4 + 2] + (f 1))

n−→
∗
let y = 4 in (let f = λx.. . . in L1[6] + L2[4 + pick 2 3])

n−→
∗

Lt[6 + 7]

In the previous example, one could easily keep track of how the normal-order
reduction adheres to a choice, once it is made. Since this property could be lost,
if non-normal-order reductions are performed, we will investigate these in more
detail below.

Definition 3.10. A reduction by a rule (a) within a context C is called internal

and depicted by
i, C, a−−−−→ (or

iC, a−−−→ for short) if it is a non-normal-order reduction.

Towards Sharing in Lazy Computation Systems 19

Because internal reductions which take place in reduction contexts are of special
interest, we inspect the structure of reduction contexts making the following
observations.

Lemma 3.11. There are no
iR, lapp−−−−−→-,

iR, lbeta−−−−−−→- or
iR, nd−−−−→-reductions.

Lemma 3.12. A reduction inside a reduction context L∗R[A∗
L] is internal if (llet)

or (cp) is applied to the subterm let x = r in s of L∗R[A∗
L[let x = r in s]] and

either there is no reduction context R such that s ≡ R[x] holds or A∗
L is not the

empty context.

Lemma 3.13. A reduction for a term L∗R[let x = A∗
L[let y = r in s] in R[x]]

is internal within a reduction context if R is a reduction context and the rule
(llet) or (cp) is applied to let y = r in s.

As an analysis shows, a (iR, llet)-reduction may only be of a form as in the
previous two lemmas whereas for (iR, cp), because the target location of the
copy operation does indeed matter, there is one additional possibility.

Corollary 3.14. Let s, t ∈ T be terms. Then s
iR−−→ t if and only if one of the

following holds and rule (llet) or (cp) is applied to the subterm denoted by s′:

– s ≡ L∗R[let x = q in C[x]] where s′ ≡ let x = q in C[x] and C is not a
reduction context.

– s ≡ L∗R[A∗
L[s′]] where s′ ≡ let y = q in r and A∗

L is not the empty context
or there is no reduction context R such that s ≡ R[y].

– s ≡ L∗R[let x = A∗
L[let y = q in r] in R[x]] where R is a reduction context

and s′ ≡ let y = q in r.

Lemma 3.15. Let s, t ∈ T be terms such that s
iR−−→ t holds. Then t is a WHNF

only if s is a WHNF.

Proof. By case analysis on the contraposition of the claim. ut

The notion of convergence in the λND-calculus is defined by a normal-order
reduction sequence to a term of the form L∗R[λx.t], i.e. a WHNF. So we write
s ⇓ t if and only if s

n−→
∗

t and t is a WHNF, s ⇓ if there exists such a t and s 6⇓ if
not. Since neither a reduction inside an abstraction nor a (cp) whose target is not
inside a reduction context constitutes a normal-order reduction, the conditions
of definition 2.17 are satisfied and λND forms a lazy computation system.

The following lemma considerably reduces the number of contexts which are
necessary to establish the contextual preorder.

Lemma 3.16 (Context Lemma). Let s ∈ T be a term and T ⊆ T a countable
set of terms satisfying the following: For every reduction context R ∈ R with
R[s] ⇓ there is a term t ∈ T such that R[t] ⇓ holds.

Then this property is also valid for general contexts, i.e. for every context
C ∈ C with C[s] ⇓ there exists t ∈ T such that C[t] ⇓ is true.

20 Matthias Mann – December 28, 2004

Proof. For 1 ≤ i ≤ k let si ∈ T be terms and Ti ⊆ T countable sets of terms.
We will then show the following claim:

If for every reduction context R ∈ R the following property holds: R[si] ⇓
implies that there is an ti ∈ Ti such that R[ti] ⇓ too. Then for every
multi-context C ∈ C with k holes, C[s1, . . . , sn] ⇓ implies ∃(t1, . . . , tk) ∈
T1 × · · · × Tk : C[t1, . . . , tk] ⇓.

The proof is by induction on the lexicographical ordering consisting of the length
of a normal order reduction C[s1, . . . , sk] n−→

∗
p to some weak head normal form

p and the number k of holes. For the induction base consider the case for a
context C with only one hole, where C[si] already is a weak head normal form.
Then either C[ti] for some ti ∈ Ti is a weak head normal form too, or the hole
is in a reduction context and the precondition proves the claim.

Hence for the induction step we assume the proposition to hold for all con-
texts smaller than C w.r.t. the given ordering. Then there are the following
possibilities:

– In the case the first reduction of the sequence C[s1, . . . , sk] n−→
∗

p is of the
form C[s1, . . . , sk] n−→ C ′[s1, . . . , sk] the induction hypothesis applied to the
context C ′ proves the claim. Note that this may always be the case for the
rules (llet), (lapp) and (lbeta) but for the other reduction rules only if none
of the subterms sj is affected.

– If the reduction is performed inside one of the si, the ith hole is found
at a necessary position, i.e. C[s1, . . . , si−1, [], si+1, . . . , sk] forms a reduc-
tion context. Now let C ′ ≡ C[[]1, . . . , []i−1, si, []i+1, . . . , []k] then the
term C ′[s1, . . . , si−1, si+1, . . . , sk] has the same normal order reduction as
C[s1, . . . , sk] because C ′[s1, . . . , si−1, si+1, . . . , sk] ≡ C[s1, . . . , sk]. Since C ′

is smaller than C, i.e. has k − 1 holes, the induction hypothesis applies, so
there are (t1, . . . , ti−1, ti+1, . . . , tk) ∈ T1×· · ·×Ti−1×Ti+1×· · ·×Tk such that
C ′[t1, . . . , ti−1, ti+1, . . . , tk] may converge, too. From the above, we have that
R ≡ C[t1, . . . , ti−1, [], ti+1, . . . , tk] is also a reduction context and therefore
R[si] =⇒ ∃ti ∈ Ti : R[ti] ⇓ by the precondition. Thus by construction of
R there exist (t1, . . . , tk) ∈ T1 × · · · × Tk such that C[t1, . . . , tk] converges.

– Now reductions of the form C[s1, . . . , sk] n−→ C ′[s′1, . . . , s
′
m] remain, where

only the following rules come into question:
• Using (nd), a subset of the si has been selected, i.e. m ≤ k is valid and

for every 1 ≤ j ≤ m there is a 1 ≤ i ≤ k such that s′j ≡ si holds. This
selection emerges for the reduction C[t1, . . . , tk] n−→ C ′[t′1, . . . , t

′
m] as well

and therefore the induction hypothesis may be applied since the length
of the normal order reduction sequence to a weak head normal form has
been decreased.
• For (cp), when a hole is within the copied expression, the corresponding

si has been duplicated, i.e. there is a 1 ≤ j ≤ m and a variable renaming
σ such that sj ≡ σ(si) holds. Note that, by the variable convention, σ
only renames free variables of si which become bound by C. Therefore

Towards Sharing in Lazy Computation Systems 21

the precondition R[sj] ⇓ =⇒ ∃tj ∈ Tj : R[tj] ⇓ remains valid for sj ,
too. Thus the proposition is shown by the induction hypothesis, since the
length of the normal order reduction sequence to a weak head normal
form has been decreased. ut

The lemma is especially useful in the case where T is a singleton, i.e. T = {t}.
In preparation for a closer examination of possible deviations from normal-

order reduction, we introduce the so-called surface contexts, which obey the
significant property that a hole does not occur under an abstraction. This closely
relates to the fact that by the rule (cp), only λ-terms may be copied.

Definition 3.17 (Surface Contexts). The class S of surface contexts is given
by the following syntactic rules for the symbol S where e means an expression:

S ::= [] | S e | e S |
let x = e in S | let x = S in e |
pick S e | pick e S

Surface contexts are closed under composition, thus the results of lemma 2.27
and corollary 2.29 apply to them.

4 The Approximation Calculus λ≈

The calculus presented in this section represents the fundamental bridge to the
use of Howe’s technique for proving bisimulation a congruence. Such a bridge is
necessary, since the notion of bisimulation in [How89,How96] could not easily be
adopted, for several reasons which we will expose subsequently.

First, in the λND-calculus there a distinction between the notion canonical
and non-canonical for the let-operator is not possible: Evaluation could end up
with a let-term as well as reduce it further. Also, let appears in the reduction
rules as both an outermost operator and a qualifying subterm.

This could be resolved by regarding answers like in e.g. [AFM+95a], i.e. values
which carry an environment holding shared terms. But then the primary method
of Howe’s bisimulation, i.e. decomposition of canonical terms, looses sharing of
subterms. Therefore we will rather use an experiment which applies those terms
to fresh arguments as e.g. in [Abr90]. Furthermore, in the non-deterministic
setting even this may be insufficient since it is problematical to fix particular
answers during the application to arguments, as example 3.9 has shown.

These issues should not be considered just minor, technical obstacles. They
rather impose severe restrictions on the design of the definition for a bisimulation
which should be sound w.r.t. contextual equivalence. Another challenge concerns
the proof in section 4.11.1, that the precongruence candidate η̂ is stable w.r.t. the
reduction rules. Proving this property for the rule (llet) has turned out to be
intractable for all the other variations of bisimulation-definitions we have tried.

Hence our approach eliminates the necessity for (llet)-reductions in that it
may limit the reduction to an arbitrary but fixed depth and instead of answers,

22 Matthias Mann – December 28, 2004

produces pure values in form of abstractions without surrounding environments.
Therefore, a further operator } is added to the language as a kind of stop
marker, i.e. though } could be copied it does not have any reduction. Since this
approximates reduction in some way, we use the term “approximation calculus”
for this reason.

Furthermore copying is extended to simultaneously substituting all occur-
rences of a variable and executing garbage collection afterwards. At first sight,
this may look similar to the mapping of λNEED to λNAME in [MOW98, sec. 4],
but it is different, since only values and } may be copied instead of any term
bound in a let-environment.

4.1 Terms, Contexts and Evaluation

The operators of the language are now O = {@, λ, let, pick,}}, and the arity
of } is α(}) = 〈〉, i.e. } is a new constant operator without any arguments. The
arities of the other operators are the same as before.

The reduction rules evolve from the ones in λND as follows. First, by the
rule (stop) which may reduce every non-} term to }, a further level of non-
determinism is introduced. As there is no rule for }, this delimits the reduction,
i.e. evaluation is pruned underneath.

Since it is our goal to eliminate top-level environments, it is natural to
copy terms that could not be reduced further, namely } and abstractions, and
garbage-collect their binding with the rule (cpa), so the original (cp)-rule be-
comes obsolete. Furthermore, we will permit all these reductions inside arbi-
trary surface contexts, which are denoted by S as before. Hence there is no
need for the rule (llet) either, since we could first reduce inside the binding of a
let-environment and then collapse it using (cpa).

Definition 4.1 (Reduction). The calculus λ≈ consists of the following rules:

(let x = tx in s) t
lapp−−−→λ≈ let x = tx in (s t) (lapp)

(λx.s) t
lbeta−−−→λ≈ let x = t in s (lbeta)

pick s t
nd,left−−−−→λ≈ s (nd, left)

pick s t
nd,right−−−−−→λ≈ t (nd, right)

let x = s in t
cpa−−→λ≈ t[s/x] (cpa)

where s ≡ λz.q or s ≡ }

s
stop−−−→λ≈ } if s 6≡ } (stop)

In the remainder, we will omit the subscript λ≈ if it is clear from context, the
reductions of which calculus are meant, in particular if (cpa) and (stop) are used.

Towards Sharing in Lazy Computation Systems 23

Note that in contrast to λND the notions of answer and value are the same
in the approximation calculus. Again, we will use the notation s

C, a−−−→λ≈ t to
indicate that for the reduction from s to t the reduction rule (a) is used in the
context C, i.e. s ≡ C[s′] and t ≡ C[t′]. As before we will speak of a top-level

reduction if s
[], a−−−→λ≈ t and will use the respective symbols for the transitive

and reflexive-transitive closure of −→λ≈ freely. We are now able to declare the
kind of reduction which should be carried out in the λ≈-calculus.

Definition 4.2. We define the following unions of reductions:

nd−→ =
nd,left−−−−→ ∪ nd,right−−−−−→ (nd)

p−→ =
S, lapp−−−−−→ ∪ S, lbeta−−−−−→ ∪ S, nd−−−−→ ∪ S, cpa−−−−→ ∪ S, stop−−−−−→ (p)

where a further specification of a context class for a
p−→-reduction is only permitted

if it represents a subset of surface contexts, i.e. s
p, D, a−−−−−→ t means that the rule

a ∈ {lapp, lbeta, nd, cpa, stop} is applied in a context D ∈ D ⊆ S. A reduction
of type

p−→ is called and approximation reduction.

In order to prove the precongruence candidate a simulation, a notion which we
will define in section 4.8, we will pursue an approach similar to the operator
extensionality of [How89, sec. 3.1], since it is more suitable for the small-step
reduction of our λ≈-calculus than to provide evidence that the precongruence
candidate is respected by evaluation as in [How96]. Therefore, we will need a set
of evaluation relations ⇓k which fulfils the conditions that

– a ⇓0 b if and only if a ≡ b is an answer.
– If a ⇓k b for some k > 0 then a is not an answer but b is.

and write a ⇓ b if there is some k ≥ 0 such that a ⇓k b. It is then to show
that s′ η̂ t holds whenever s η̂ t and s ⇓ s′ do. Defining ⇓k in terms of stepwise
reduction, this can be accomplished for every reduction rule separately. Hence
the following definition.

Definition 4.3 (Evaluation). For k ≥ 0 we define the relation ⇓λ≈,k ⊆ T 2 by

s ⇓λ≈,k t ⇐⇒ ∃λx.t′ : s
p−→

k
t ∧ t ≡ λx.t′ (4.1)

and say that s evaluates or converges to t in k steps. We use the symbol ⇓λ≈ if
there exists a k such that ⇓λ≈,k holds and will simply write s ⇓λ≈ if we are not
interested in the term s converges to.

Again, the criteria of definition 2.17 are obviously fulfilled. As with reduction,
we may omit the subscript λ≈ if it is clear from context. Since our evaluation
relation is highly non-deterministic, it is convenient to gather all possible answers
a term converges to. So the following notion makes sense.

24 Matthias Mann – December 28, 2004

Definition 4.4. We define the answer set ans(s) ⊆ T of a term s as follows.

ans(s) = {t | s ⇓ t}

and augment ans(·) to sets of terms by ans(S) = {t | s ∈ S ∧ t ∈ ans(s)}.
Closed terms possess only closed answers, since reduction does not introduce
free variables, which is the statement of the following lemma.

Lemma 4.5. Let s ∈ T0 be a closed term. Then ans(s) ⊆ T0.

It is interesting to note that only two of the above rules may yield an abstraction
directly in one step.

Remark 4.6. If s
p−→ λx.t for two terms s, λx.t ∈ T such that s is not an abstrac-

tion, then s must be of one of the following forms where the respective reduction
rule is used:

– s ≡ pick r (λx.t)
[], nd,right−−−−−−−−→ λx.t

– s ≡ pick (λx.t) r
[], nd,left−−−−−−−→ λx.t

– s ≡ let y = λx.t in y
[], cpa−−−−→ λx.t as a special case of

– s ≡ let y = q in r
[], cpa−−−−→ r[q/y] ≡ λx.t

Before we may proceed further, we first need some elementary properties about
the reduction rule (cpa) which are the subject of the following section.

4.2 The (cpa)-reduction

Reduction by the rule (cpa) is the key to eliminate environments, and often we
will use the fact, that it does not change convergent behaviour. In order to prove
this, we need to establish a complete set of forking diagrams for

cpa−−→ w.r.t. all the
remaining

p−→-reductions. In the following we will only consider the cases where,
according to corollary 2.29, a surrounding surface context already is abandoned,
since surface contexts are closed under composition.

If (cpa) is applied in the empty context, the whole expression must be of
the form let x = s in t with s ≡ } or s ≡ λz.q. Hence a (lapp)-reduction is
possible only in the surface context let x = e in S, which results in the first
diagram. On the other hand, if (lapp) is top-level, a reduction by (cpa) may take
place in every non-empty surface context, which could be commuted easily in
the following three diagrams. The last represents the case where (cpa) makes
the top-level (lapp)-reduction superfluous.

let x=e in S, lapp←−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, lapp←−−−−

[], lapp←−−−−− · (let x=tx in s) S, cpa−−−−−−−−−−−−−−→
let x=tx in (s S), cpa−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], lapp←−−−−− · (let x=S in s) t, cpa−−−−−−−−−−−−−−→
let x=S in (s t), cpa−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], lapp←−−−−− · (let x=tx in S) t, cpa−−−−−−−−−−−−−−→
let x=tx in (S t), cpa−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], lapp←−−−−− · [] t, cpa−−−−−→
[], cpa−−−−→

Towards Sharing in Lazy Computation Systems 25

The first case for (lbeta) is the same as for (lapp), whereas for a top-level appli-
cation of (lbeta), the situation is slightly different since (cpa) is only possible in
surface contexts of the form (λx.e) S now.

let x=e in S, lbeta←−−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, lbeta←−−−−−

[], lbeta←−−−−− · (λx.e) S, cpa−−−−−−−−→
let x=S in e, cpa−−−−−−−−−−−−→ · [], lbeta←−−−−−

The rules (nd, left) and (nd, right) do not pose any problem even if the target of
the copy operation lies inside the pick in question, consequently the following
two diagrams ensue.

let x=e in S, nd,left←−−−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, nd,left←−−−−−−

let x=e in S, nd,right←−−−−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, nd,right←−−−−−−−

In the converse case, i.e. if (cpa) is applied inside the pick, it may be eliminated.

[], nd,left←−−−−−−− · pick S e, cpa−−−−−−−−−→
S, cpa−−−−→ · [], nd,left←−−−−−−−

[], nd,right←−−−−−−−− · pick S e, cpa−−−−−−−−−→
[], nd,right←−−−−−−−−

[], nd,right←−−−−−−−− · pick e S, cpa−−−−−−−−→
S, cpa−−−−→ · [], nd,right←−−−−−−−−

[], nd,left←−−−−−−− · pick e S, cpa−−−−−−−−→
[], nd,left←−−−−−−−

The cases for the rule (cpa) overlapping itself conceal that a “top-down” strategy
seems capable to minimise the number of target locations for (cpa)-reductions.

let x=e in S, cpa←−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, cpa←−−−−

[], cpa←−−−− · let x=e in S, cpa−−−−−−−−−−−−→
S, cpa−−−−→ · [], cpa←−−−−

If rule (stop) is applied to the term e to be copied by (cpa), then this has to be
compensated by #x(e) subsequent (stop)-reductions, where #x(e) is the number
of occurrences of the variable x in the term e. Note that these (stop)-reduction
have to be admitted inside arbitrary contexts. Otherwise, (stop) may be applied
to a target of (cpa) or a superterm of this target, or does not interfere with the
copy procedure, hence the second diagram. The last diagram covers the case
where (stop) is applied in the empty context, while substituting the whole term
with } and thus deleting every surface (cpa)-redex.

let x=[] in e, stop←−−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · C, stop←−−−−

#x(e)

let x=e in S, stop←−−−−−−−−−−−− · [], cpa−−−−→
[], cpa−−−−→ · S, stop←−−−−

[], stop←−−−−− · S, cpa−−−−→
[], stop←−−−−−

The above observations end up in the following lemma.

26 Matthias Mann – December 28, 2004

Lemma 4.7. A complete set of forking diagrams for
S, cpa−−−−→ w.r.t. the two sets

p−→ and
C, stop−−−−→ of reductions is:

S, a←−−− · S, cpa−−−−→
S, cpa−−−−→ · S, a←−−− (4.2)

[], lapp←−−−−− · [] t, cpa−−−−−→
[], cpa−−−−−→ (4.3)

S, nd←−−−− · S, cpa−−−−→
S, nd←−−−− (4.4)

S, stop←−−−−− · [], cpa−−−−−→
[], cpa−−−−−→ · C, stop←−−−−

∗
(4.5)

[], stop←−−−−− · S, cpa−−−−→
[], stop←−−−−− (4.6)

Proof. According to corollary 2.29, the cases discussed above are exhausting. ut

In order to conclude from this complete set of forking diagrams that convergent
behaviour is preserved after an application of (cpa), we first have to look into

the
C, stop−−−−→-reductions which are introduced in the diagram (4.5).

4.3 Internal (stop)-reductions

Since in the diagrams for the reduction rule (cpa) there occur (stop)-reductions
which are to be carried out in arbitrary rather than surface contexts, we have to
show that these are safe for an approximation reduction to reach an abstraction.
More precisely, this concerns the reductions by rule (stop) which are not within
a surface context, hence the following definition.

Definition 4.8. A
C, stop−−−−−→-reduction is called internal, depicted by

i, C, stop−−−−−−→,
if C ∈ C is a context which is not a surface context, i.e. C /∈ S.

Therefore, in this section we will establish complete sets of commuting diagrams
for

i, C, stop−−−−−−→- w.r.t.
p−→-reductions.

Lemma 4.9. Following is a complete set of commuting diagrams for
i, C, stop−−−−−−→

w.r.t. approximation reductions:

i, C, stop−−−−−−→ · S, a−−−→
S, a−−−→ · i, C, stop−−−−−−→

i, let x=λy.C in t, stop−−−−−−−−−−−−−−−−→ · [], cpa−−−−−→
[], cpa−−−−−→ · i, C, stop−−−−−−→

#x(t)

i, S1[(λx.S2) t], stop−−−−−−−−−−−−−→ · S1, lbeta−−−−−−→
S1, lbeta−−−−−−→ · S1[let x=t in S2], stop−−−−−−−−−−−−−−−→

Proof. Since — apart from the empty one — the contexts, in which approxima-
tion and internal (stop)-reductions respectively may take place, are disjoint by
definition, the first diagram is an easy application of lemma 2.27. It also cov-
ers approximation reductions other than by rule (cpa) performed in the empty
context.

The second diagram then handles just this case, where the internal (stop)-
reduction takes place inside the term to be copied by (cpa) which therefore

Towards Sharing in Lazy Computation Systems 27

has to be made up by as many internal (stop)-reductions as the variable x
occurs in the target t of the copy operation. The internal (stop)-reduction may
also be turned into an ordinary one, since a (lbeta)-reduction can bring the
corresponding context to the surface, as the last diagram shows. ut

It is easily seen that the application of the above commuting diagrams for in-
ternal (stop)-reductions terminates, since they strictly decrease the weight of a
reduction sequence under the multi-set ordering on the multi-set containing the
number of non-(stop) approximation reductions following each internal (stop)-
reduction. Hence by induction on this measure of such a sequence, we may draw
the conclusion that for every reduction sequence consisting of

p−→- and
i, stop−−−−→-

reductions to an abstraction, there is also an approximation reduction sequence
to an abstraction that only differs by internal (stop)-reductions.

Lemma 4.10. Let s, λx.t ∈ T be terms with s (
p−→ ∪ i, stop−−−−→)∗ λx.t. Then there

is also a reduction s
p−→
∗

λx.t′ such that λx.t′
i, stop−−−−→

∗
λx.t holds.

Now we are in the position to connect this with the forking diagrams for (cpa).

Lemma 4.11. Let s, t be terms such that s
S, cpa−−−−→ t. Then whenever s has an

approximation reduction to an abstraction λx.s′, there is also an approximation
reduction starting from t leading to an abstraction λx.t′ such that λx.s′ differs

from λx.t′ only by internal (stop)-reductions, i.e. λx.t′
i, stop−−−−→

∗
λx.s′ holds.

Proof. Assume s
p−→

k
λx.s′, then we show

∃λx.t′ : t
p−→
∗

λx.t′ ∧ λx.t′
i, stop−−−−→

∗
λx.s′

by an induction on the length k of the reduction sequence.

– If k = 1 then according to remark 4.6, only s
[], cpa−−−−→ λx.s′ and s

[], nd−−−−→ λx.s′

are possible. So in both cases we obviously have t
p−→

0∨1
λx.s′ by the two

diagrams (4.2) and (4.4) of lemma 4.7 that come into question.
– For the induction step assume the claim to be valid for sequences of length

smaller than k. Then the sequence s
p−→

k
λx.s′ may be divided as follows:

s
p−→ s1

p−→
k−1

λx.s′

We may apply the induction hypothesis to s1
p−→

k−1
λx.s′, i.e. if s1

S, cpa−−−−→ t1

then there is a reduction t1
p−→
∗

λx.t′ with λx.t′
i, stop−−−−→

∗
λx.s′. This is

applicable to the forking diagrams (4.2), (4.3) and (4.5) of lemma 4.7, so
there is also a reduction t

p−→
∗

t1, thus t
p−→
∗

λx.t′.
In the case of diagram (4.4), using the induction hypothesis is not necessary,

since t
S, nd−−−→ t1 ≡ s1

p−→
k−1

λx.s′ directly.
The last diagram (4.6) is not applicable here, since then s1 would reduce to
the term } instead of an abstraction. ut

28 Matthias Mann – December 28, 2004

Note that the induction argument in the above lemma is valid because of the
special structure of the forking diagrams for (cpa), i.e. there is at most one
(cpa)-reduction necessary to clean up the forking situation.

4.4 The (lbeta)-reduction

Also for reduction by rule (lbeta) we may develop a complete set of forking
diagrams w.r.t.

p−→-reductions.
If (lbeta) is applied in the empty context, the whole expression must be

of the form (λx.t) s. Hence a surface reduction may take place inside s or in
the context [] s only, the former of which obviously may be commuted with a
(lbeta)-reduction, the first diagram.

(λx.t) S, a←−−−−−−− · [], lbeta−−−−−→
[], lbeta−−−−−→ · let x=S in t, a←−−−−−−−−−−

If rule (lbeta) is applied inside a non-empty surface context S ∈ S and (lapp)
is top-level, the following three diagrams arise. The fourth covers the situation
of (stop) being applied in the empty context eliminating the (lbeta)-reduction
while the last handles the case that the function argument of an (lbeta)-redex
is canceled by (stop).

[], lapp←−−−−− · (let x=s in t) S, lbeta−−−−−−−−−−−−−−−→
let x=s in (t S), lbeta−−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], lapp←−−−−− · (let x=s in S) t, lbeta−−−−−−−−−−−−−−−→
let x=s in (S t), lbeta−−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], lapp←−−−−− · (let x=S in s) t, lbeta−−−−−−−−−−−−−−−→
let x=S in (s t), lbeta−−−−−−−−−−−−−−−→ · [], lapp←−−−−−

[], stop←−−−−− · S, lbeta−−−−−→
[], stop←−−−−−

S[[] s], stop←−−−−−−−− · S, lbeta−−−−−→
S, stop−−−−→ · S, stop←−−−−

If the non-deterministic rules (nd) are applied at top-level, the (lbeta)-reduction
may be eliminated as the following diagrams illustrate.

[], nd,left←−−−−−−− · pick S e, lbeta−−−−−−−−−→
S, lbeta−−−−−→ · [], nd,left←−−−−−−−

[], nd,right←−−−−−−−− · pick S e, lbeta−−−−−−−−−→
[], nd,right←−−−−−−−−

[], nd,right←−−−−−−−− · pick e S, lbeta−−−−−−−−−→
S, lbeta−−−−−→ · [], nd,right←−−−−−−−−

[], nd,left←−−−−−−− · pick e S, lbeta−−−−−−−−−→
[], nd,left←−−−−−−−

Overlapping (lbeta) with itself only modifies the surface context where the re-
duction takes place.

(λx.t) S, lbeta←−−−−−−−−− · [], lbeta−−−−−→
[], lbeta−−−−−→ · let x=S in t, lbeta←−−−−−−−−−−−−−

[], lbeta←−−−−− · (λx.t) S, lbeta−−−−−−−−−→
let x=S in t, lbeta−−−−−−−−−−−−−→ · [], lbeta←−−−−−

Towards Sharing in Lazy Computation Systems 29

So let us consider the remaining case where rule (cpa) is applied in the empty
context, i.e. the term has to be of the form let x = λz.q in t or let x = } in t
and hence a surface reduction is possible inside t only.

[], cpa←−−−− · let x=λz.q in S, lbeta−−−−−−−−−−−−−−−→
S, lbeta−−−−−→ · [], cpa←−−−−

[], cpa←−−−− · let x=} in S, lbeta−−−−−−−−−−−−−→
S, lbeta−−−−−→ · [], cpa←−−−−

Again we refer to corollary 2.29 and collect these diagrams in a separate lemma.

Lemma 4.12. A complete set of forking diagrams for
S, lbeta−−−−−→ w.r.t.

p−→ is:

S, a←−−− · S, lbeta−−−−−→
S, lbeta−−−−−→ · S, a←−−−

S, nd←−−−− · S, lbeta−−−−−→
S, nd←−−−−

[], stop←−−−−− · S, lbeta−−−−−→
[], stop←−−−−−

S[[] s], stop←−−−−−−−− · S, lbeta−−−−−→
S, stop−−−−→ · S, stop←−−−−

Before we can show that also reduction by rule (lbeta) preserves the approx-
imation reduction to an abstraction, we need the following result about the
correspondence of } and its application in surface contexts.

Lemma 4.13. Let t ∈ T be a term and S ∈ S a surface context such that
S[} t]

p−→
∗

λz.q. Then also S[}]
p−→
∗

λz.q holds.

Proof. W.l.o.g. we may require S to be non-empty, i.e. S 6≡ [], because } t
obviously has no approximation reduction to an abstraction, since the rules
(lapp) and (lbeta) would be the only possibilities to get rid of the top-level @-

operator. So assume S[} t]
p−→

k
λz.q for an induction on the length k of the

reduction sequence.

– In the case S[} t]
p−→ λz.q for k = 1 it is easily checked that only the rules

(cpa) or (nd) could have been used to produce an abstraction. Since the term
} t in question is located in a surface context, i.e. not under an abstraction,
it must be discarded by (nd), whereas (cpa) is not possible.

– If S[} t]
p−→ s

p−→
k

λz.q then either s ≡ S′[} t], s ≡ S[} t′] or s ≡ S[}] hold,
for the latter of which the proposition becomes trivial. On the other hand,
to both S′[} t] and S[} t′] the induction hypothesis is applicable, thus the
claim holds. ut

Now we can use an argument similar to, but in this case simpler than the one
in lemma 4.11 to prove the following lemma.

Lemma 4.14. Let s, t be terms such that s
S, lbeta−−−−−→ t. Then whenever s has

an approximation reduction to an abstraction there is also an approximation
reduction sequence starting from t leading to the same abstraction, i.e.

s
p−→
∗

λz.q =⇒ t
p−→
∗

λz.q

30 Matthias Mann – December 28, 2004

Proof. Assume s
p−→

k
λz.q for an induction on the length k of the reduction

sequence.

– If k = 1 then according to remark 4.6, only s
[], cpa−−−−→ λz.q and s

[], nd−−−−→ λz.q

are possible, for both of which we obviously have t
p−→

0∨1
λz.q by the first

two diagrams of lemma 4.12.
– For the induction step assume the claim to be valid for sequences of length

smaller than k. Then the sequence s
p−→

k
λz.q may be divided as follows:

s
p−→ s1

p−→
k−1

λz.q

We may apply the induction hypothesis to s1
p−→

k−1
λz.q, i.e. if s1

S, lbeta−−−−−→ t1
then there is a reduction t1

p−→
∗

λz.q. This is the case only for the first forking
diagram of lemma 4.12, so there is also a reduction t

p−→
∗

t1, thus t
p−→
∗

λz.q.
In the case of the second and third diagram, using the induction hypothesis

is not necessary, since t
S, nd−−−→ t1 ≡ s1

p−→
k−1

λz.q directly.
If the last diagram is applicable, the special treatment it needs is done in
lemma 4.13 thus the claim holds. ut

Corollary 4.15. Let s, t be terms such that s
S, lbeta−−−−−→ t. Then for all abstrac-

tions λz.q the following holds:

s
p−→
∗

λz.q ⇐⇒ t
p−→
∗

λz.q

Proof. The “only-if”-part is just the statement of the previous lemma where the
“if”-part results from the fact that s

S, lbeta−−−−−→ t.

4.5 The (lapp)-reduction

In order to establish a complete set of forking diagrams, we have only to examine
(lapp) in combination with (nd), (stop) and itself now, since (lbeta) and (cpa)
are covered by the previous sections.

As an analysis shows, overlapping (lapp) with itself is no problem while the
cases for (stop) and (nd) look similar to the ones for (lbeta):

[], stop←−−−−− · S, lapp−−−−−→
[], stop←−−−−−

S[[] s], stop←−−−−−−−− · S, lapp−−−−→
S, stop−−−−→ · S, stop←−−−−

[], nd,left←−−−−−−− · pick S e, lapp−−−−−−−−−→
S, lapp−−−−→ · [], nd,left←−−−−−−−

[], nd,right←−−−−−−−− · pick S e, lapp−−−−−−−−−→
[], nd,right←−−−−−−−−

[], nd,right←−−−−−−−− · pick e S, lapp−−−−−−−−−→
S, lapp−−−−→ · [], nd,right←−−−−−−−−

[], nd,left←−−−−−−− · pick e S, lapp−−−−−−−−−→
[], nd,left←−−−−−−−

Hence the following lemma corresponds closely to its counterpart.

Towards Sharing in Lazy Computation Systems 31

Lemma 4.16. A complete set of forking diagrams for
S, lapp−−−−−→ w.r.t.

p−→ is:

S, a←−−− · S, lapp−−−−−→
S, lapp−−−−−→ · S, a←−−−

S, nd←−−−− · S, lapp−−−−−→
S, nd←−−−−

[], stop←−−−−− · S, lapp−−−−−→
[], stop←−−−−−

S, stop←−−−−− · S, lapp−−−−−→
S, stop−−−−−→ · S, stop←−−−−−

4.6 Some Specific Cases of Reduction

This section discusses some specific cases in which approximation reductions
may be commuted.

Corollary 4.17. Let S ∈ S be a surface context and r, s, t ∈ T be terms. Then
for all types a of reductions the following diagrams commute:

S[(λx.s) t]

S[(λx.s) []], a

��

S, (lbeta) // S[let x = t in s]

S[let x=[] in s], a

��
S[(λx.s) t′]

S, (lbeta) // S[let x = t′ in s]

S[(let x = r in s) t]

S[(let x=r in s) []], a

��

S, (lapp) // S[let x = r in s t]

S[let x=r in s []], a

��
S[(let x = r in s) t′]

S, (lapp) // S[let x = r in s t′]

Proof. By lemma 2.27 since the respective surface contexts are disjoint. ut

Lemma 4.18. Let S ∈ S be a surface context, λz.q ∈ T some abstraction and
t ∈ T0 a closed term such that S[t] ⇓ λz.q holds. Then either there is a closed
abstraction λx.s ∈ T0 satisfying t ⇓ λx.s and S[λx.s] ⇓ λz.q, or S[}] converges.

Proof. Since for S ≡ [] or t ≡ λz.q there is nothing to show, we rule out
these cases. The proof is then by induction on the length k of an approximation

reduction sequence S[t] S−→
k

λ≈ λz.q to an abstraction. Since S cannot be the
empty context k = 0 is not possible and k = 1 forms the induction base. So if
S[t] S−→λ≈ λz.q then also S[}] ⇓ as t is not an abstraction.

Hence for the induction step we may assume that the claim holds for all se-
quences of length k. Then for the first reduction S[t] S−→λ≈ r of an approximation

sequence S[t] S−→λ≈ r
S−→

k

λ≈ λz.q the following cases have to be distinguished:

– For r ≡ S[t′], i.e. the reduction took place within t, the proposition is shown
by the induction hypothesis for the remaining sequence.

32 Matthias Mann – December 28, 2004

– If the reduction is performed on the context S so that the hole is deleted by
rule (stop), obviously already S[}] will converge. For any other reduction
rule, we will obtain r ≡ S′[t] to which the induction hypothesis applies. Rule
(cpa) is no exception here, since t is closed and therefore will not be altered.

– For a reduction of the form S[t] ≡ S′[(λy.p) t]
S′, lbeta−−−−−→ S′[let y = t in p]

the term t remains in a surface context and we therefore may apply the
induction hypothesis to S′′[] ≡ S′[let y = [] in p]. Hence, there are the
following possibilities:
• In the case of S′′[}] ⇓ we obviously have S[}] ⇓ too, since the reduction

S[}] ≡ S′[(λy.p)}]
S′, lbeta−−−−−→ S′[let y = } in p] ≡ S′′[}].

• On the other hand, if there is a closed abstraction λx.s such that t ⇓ λx.s
and S′′[λx.s] ⇓ λz.q both hold, we may construct an approximation se-
quence ending in λz.q for S[t] as follows. In order to move the aforesaid

reduction S[t] ≡ S′[(λy.p) t]
S′, lbeta−−−−−→ S′[let y = t in p] ≡ S′′[t] from

the beginning to the end of the sequence S′′[t] S−→
∗
λ≈ S′′[λx.s] we de-

ploy corollary 4.17 repeatedly. I.e., by induction on the length j of the

approximation sequence S′′[t] S−→
j

λ≈ S′′[λx.s] we obtain t ⇓ λx.s and
S[λx.s] ⇓ λz.q as desired.

– An application of the rule (lapp) is treated analogously to the previous case,
i.e. either S[}] converges anyway, or, by corollary 4.17, every reduction like

S[t] ≡ S′[(let y = r in p) t]
S′, lapp−−−−−→ S′[let y = r in (p t)] ≡ S′′[t] may be

moved after the end of a sequence S′′[t] S−→
∗
λ≈ S′′[λx.s]. ut

4.7 Standardisation

We may, in some respect, standardise every reduction leading to an abstraction,
which will be helpful later. The goal for a term of the form let x = s in t is
to first reduce inside s until } or an abstraction is reached and then to collapse
the let-expression using (cpa) before proceeding with reductions inside t. This
means, we have to bring in front all the reductions that take place inside s,
i.e. reductions of type

let x=C in t, a−−−−−−−−−−→λ≈ , a task for which we first establish the
following corollary.

Corollary 4.19. Let let x = s in t ∈ T be a term and a, b two arbitrary
reduction types. Then for all contexts Ca, Cb ∈ C the following diagram commutes

let x = s in t

let x=s in Ca, a

��

let x=Cb in t, b // let x = s′ in t

let x=s′ in Ca, a

��
let x = s in t′

let x=Cb in t′, b // let x = s′ in t′

Proof. By a simple application of lemma 2.27. ut

Towards Sharing in Lazy Computation Systems 33

Note that an approximation reduction
let x=C in t, a−−−−−−−−−−→λ≈ must take place in a

surface context, i.e. C ∈ S must hold. The following lemma now uses the previ-
ous commutativity result to move such

let x=S in t, a−−−−−−−−−−→λ≈ -reductions successively
forward.

Lemma 4.20. For every reduction sequence let x = s in t
p−→

n
λz.q with n ≥ 0

there is also an approximation reduction sequence

let x = s in t
let x=S in t−−−−−−−−−→

k

λ≈ let x = s′ in t
[], cpa−−−−−→ t[s′/x]

p−→
m

λz.q

where s′ represents } or an abstraction and k + 1 + m = n holds.

Proof. Assume let x = s in t
p−→

n
λz.q. Then the proof is by induction on the

length n of the reduction sequence. According to remark 4.6, for a term of the
form let x = s in t the only rule which may produce an abstraction in a single
step is (cpa), hence the induction base is clear.

For the induction step, we may split up the above reduction sequence into
let x = s in t

p−→ r
p−→

n
λz.q. Now either let x = s in t

p−→ r already is of the
desired form, thus we apply the induction hypothesis to r

p−→
n

λz.q which proves
the claim.

If let x = s in t
let x=s in S−−−−−−−−−→λ≈ let x = s in t′ ≡ r is the reduction, we have

to apply the induction hypothesis twice. First, from let x = s in t′
p−→

n
λz.q we

yield an approximation reduction sequence

let x = s in t′
let x=S in t′−−−−−−−−−→

k

λ≈ let x = s′ in t′
[], cpa−−−−→ t′[s′/x]

p−→
m

λz.q

with k + 1 + m = n for which we distinguish the following alternatives:

– For s′ ≡ s if k = 0 is the case, s must be } or an abstraction and hence
the rule (cpa) may already be applied to let x = s in t with which the
reduction let x = s in t

let x=s in S−−−−−−−−−→λ≈ let x = s in t′ obviously may be
commuted.

– If let x = s in t′
let x=S in t′−−−−−−−−−→

k≥1

λ≈ let x = s′ in t′, i.e.

let x = s in t′
let x=S in t′−−−−−−−−−→λ≈ let x = s′′ in t′

let x=S in t′−−−−−−−−−→
k−1

λ≈ let x = s′ in t′

then by corollary 4.19 we may commute the first of these reductions with
the preceding let x = s in t

let x=s in S−−−−−−−−−→λ≈ let x = s in t′ hence

let x = s in t
let x=S in t−−−−−−−−→λ≈ let x = s′′ in t

let x=s′′ in S−−−−−−−−−→λ≈

let x = s′′ in t′
let x=S in t′−−−−−−−−−→

k−1

λ≈ let x = s′ in t′
[], cpa−−−−→ t′[s′/x]

p−→
m

λz.q

Now apply the induction hypothesis to the suffix of the above sequence, thus
the claim holds. ut

34 Matthias Mann – December 28, 2004

Remark 4.21. Note that the situation here is different from the one in lemma 4.11
since there is no need to shift (cpa)-reductions over (stop)-reductions.

Combining the approximation reduction sequence let x=S in t−−−−−−−−→
∗
λ≈ ·

[], cpa−−−−→ in
one distinct reduction, the result of the previous lemma may then easily be
generalised to arbitrarily deep environments by induction.

Definition 4.22. Let r stand for } or an abstraction. Then the reduction rule
(olf) is defined by

let x = r in s
olf−−→ t (olf)

if let x = r in s
p−→
∗
let x = r′ in s

[], cpa−−−−−→ s[r′/x] ≡ t

We then call an approximation reduction sequence of the form L[t]
olf−−→

∗
t′ for

some environment L ∈ E an outer let first sequence.

The following fruitful theorem shows that such an outer let first sequence exists
for every converging reduction.

Theorem 4.23 (Standardisation). Let t ∈ T be a term. Then for every ap-
proximation reduction t

p−→
∗

λz.q to an abstraction there exists also an outer let

first sequence t
olf−−→

∗
t′

p−→
∗

λz.q such that t′ is not a let-term.

Proof. Assuming t ≡ L[s] and using lemma 4.20 for an induction on the size of
the environment L. ut

4.8 Similarity

In order to respect sharing, some effort in the definition of what a simulation
should be, becomes necessary. Since we haven’t stated much about the extension
of a relation to open terms yet, our definition of an experiment rather matches
the applicative bisimulation of [Abr90]. But afterwards, we will point out that
in the approximation calculus both views are identical.

Definition 4.24 (Experiment). The experiment [·]λ≈ : T0
2 → T0

2 for the
calculus λ≈ is defined as follows.

s′ [η]λ≈ t′ ⇐⇒
∀λx.s ∈ ans(s′) : ∃λy.t ∈ ans(t′) : ∀r : r ∈ T0 =⇒ (λx.s) r η (λx.t) r

Using non-determinism, the above definition exploits that with the rules (stop)
and (cpa), it is now possible to equip abstractions with the information about
their let-environments up to every arbitrary depth.

Towards Sharing in Lazy Computation Systems 35

Remark 4.25. Note that, since we consider convergence to an abstraction, i.e. we
do not have to deal with environments around the values, and under the exten-
sion ηo which we will give later, the above approach is identical to the Howe-like

s′ [η]λ≈ t′ ⇐⇒ ∀λx.s ∈ ans(s′) : ∃λx.t ∈ ans(t′) : s ηo t

where the abstractions would simply be stripped off from the answers.

We proceed with some fundamental properties of [η]λ≈ first. Since s 6⇓ means
ans(s) = ∅ we have the following corollary.

Corollary 4.26. Let s ∈ T0 be a closed term such that s 6⇓. Then s [η]λ≈ t for
every closed term t ∈ T0 holds.

The next lemma reflects the fact, that reduction may only cut down on the
approximation reduction sequences to an abstraction.

Lemma 4.27. If s, t ∈ T0 are closed terms such that s
p−→

k
t then t [η]λ≈ s.

Proof. The claim is obvious since with t ⇓k′ λx.r also s ⇓k+k′ λx.r holds. ut

An example shows that w.r.t..b, the λ≈-calculus has incomparable abstractions.

Example 4.28. Consider the combinators K and K2, which both clearly are
abstractions. If applied e.g. to the argument I we yield

KI lbeta−−−→ let x = I in λy.x
cpa−−→ λy.I

K2 I lbeta−−−→ let x = I in λy.y
cpa−−→ λy.y

Hence both again are abstractions but if applied to Ω as a further argument,
the difference becomes apparent:

(λy.I)Ω lbeta−−−→ let y = Ω in I
cpa−−→ I

(λy.y)Ω lbeta−−−→ let y = Ω in y −→ . . .

Obviously, the term let y = Ω in y has no approximation to an abstraction,
thus K 6.b K2. With a similar argument — just applying first to Ω and then
to I — one can show that K2 6.b K holds.

Without further reference, we will often use the following proof principle for
similarity which states that s .b t holds, if in every approximation reduction
sequence from s to an abstraction, we can find a term s′ such that there is also
an approximation reduction sequence from t to a term t′ with s′ .b t′.

Lemma 4.29. For all closed terms s, t ∈ T0 and all preorders η ⊆ T0
2 on closed

terms the following holds:

(∀λx.s′′ : s
p−→
∗

λx.s′′ =⇒

(∃s′, t′ : s
p−→
∗

s′
p−→
∗

λx.s′′ ∧ t
p−→
∗

t′ ∧ s′ [η]λ≈ t′)) =⇒ s [η]λ≈ t

36 Matthias Mann – December 28, 2004

Proof. Since the claim constitutes a central tool, we will give a detailed proof
here. So we assume closed terms s, t ∈ T0 as well as a preorder η ⊆ T0

2 on closed
terms, arbitrary but fixed.

To prove s [η]λ≈ t, we further assume s ⇓ λx.s′′, i.e. there is an approximation
reduction sequence s

p−→
∗

λx.s′′ for a closed abstraction λx.s′′ ∈ T0 arbitrary but
fixed. So under the precondition

∃s′, t′ : s
p−→
∗

s′
p−→
∗

λx.s′′ ∧ t
p−→
∗

t′ ∧ s′ [η]λ≈ t′ (4.7)

we have to show that there is a λy.t′′ such that t ⇓ λy.t′′ and for a closed term
r ∈ T0 arbitrary but fixed, (λx.s′′) r η (λy.t′′) r hold. So assume s′, t′ ∈ T0 to
be the closed terms given by (4.7), then from s′ [η]λ≈ t′ we obtain for every
term to which s′ converges to, in particular for λx.s′′ fixed above, a λy.t′′ such
that ∀r ∈ T0 : (λx.s′′) r η (λy.t′′) r holds. Since by t

p−→
∗

t′, there is also an
approximation reduction sequence from t to λy.t′′, the claim is shown. ut

The following corollary presents a special case of the precedent lemma, where
the intermediate terms s′, t′ coincide with the abstractions at the end of an
approximation reduction sequence.

Corollary 4.30. For all closed terms s, t ∈ T0 and all preorders η ⊆ T0
2 on

closed terms the following property holds:

(∀s′ ∈ T0 : s ⇓ s′ =⇒ (∃t′ ∈ T0 : t ⇓ t′ ∧ s′ [η]λ≈ t′)) =⇒ s [η]λ≈ t (4.8)

Remark 4.31. Note that instead of lemma 4.29 we also could have shown

(∀s′ : s
p−→
∗

s′ =⇒ (∃t′ : t
p−→
∗

t′ ∧ s′ [η]λ≈ t′)) =⇒ s [η]λ≈ t

but that is a rather weak condition, not sufficient for a proof of corollary 4.30.

As an instance of lemma 4.29, a single reduction step by rule (lbeta) will occur
frequently, hence the following corollary.

Corollary 4.32. Let r, λx.s, λx.t ∈ T0 be closed terms. Then we have

let x = r in s [η]λ≈ let x = r in t ⇐⇒ (λx.s) r [η]λ≈ (λx.t) r

Proof. We first notice the reductions (λx.s) r
[], lbeta−−−−−→ let x = r in s and

(λx.t) r
[], lbeta−−−−−→ let x = r in t respectively. Hence by corollary 4.15 we have

(λx.s) r
p−→
∗

λz.qs ⇐⇒ let x = r in s
p−→
∗

λz.qs

as well as
(λx.t) r

p−→
∗

λz.qt ⇐⇒ let x = r in t
p−→
∗

λz.qt

so that the claim holds by an application of lemma 4.27 and 4.29 respectively
for each of the implications in the proposition. ut

Towards Sharing in Lazy Computation Systems 37

With the experiment [·]λ≈ in mind, the notion of a simulation is as usual and
the results of the preceding paragraphs also apply to simulations.

Definition 4.33. Let η ⊆ T 2 be a preorder on terms. Then η is called a simu-
lation, if and only if it is [·]λ≈-dense, i.e. η ⊆ [η]λ≈ holds.

Since the experiment [·]λ≈ clearly is monotonic w.r.t. the inclusion ordering on
sets, i.e. η1 ⊆ η2 =⇒ [η1]λ≈ ⊆ [η2]λ≈ , its greatest fixed point exists by the
fixed point theorem (cf. e.g. [DP92]).

Definition 4.34. Define the similarity .b to be the greatest fixed point of [·]λ≈ ,
i.e. .b = gfp([·]λ≈) and the bisimilarity ∼b by s ∼b t ⇐⇒ s .b t ∧ t .b s.

The following conclusions are either obvious from the definitions or their proof
can be found in the literature.

Corollary 4.35. .b is a preorder and ∼b an equivalence relation.

Lemma 4.36. The similarity .b is the greatest [·]λ≈-dense set, i.e. it can be
characterised as the union of all [·]λ≈-dense sets:

.b =
⋃
{η | η ⊆ [η]λ≈}

Note that similarity then may be represented in the following recursive manner.

s′ .b t′ ⇐⇒ (∀λx.s ∈ ans(s′) : ∃λy.t ∈ ans(t′) :
∀r : r ∈ T0 =⇒ (λx.s) r .b (λx.t) r) (4.9)

The next example illustrates that the previous statement is especially useful in
proving algebraic properties (e.g. like the ones in [HHS00]) for similarity.

Example 4.37. Let r, s, t ∈ T0 be closed terms. Then we have

r .b t ∧ s .b t =⇒ pick r s .b t

i.e. if t behaves “better” than both r and s, then it is immaterial which one is
chosen thereof. So assume pick r s ⇓ λy.p then we obviously may bring the
reduction by rule (nd) forward, hence r ⇓ λy.p or s ⇓ λy.p. Since by the premise
we have r .b t and s .b t, by equation (4.9) the claim is shown. ut
Especially useful is the result, that (stop)-reductions in general lead to terms
that are w.r.t. .b smaller. At the same time the following lemma gives a nice
example of a bisimulation proof using the fact that .b – as a greatest fixed point
of [·]λ≈ – contains every [·]λ≈ -dense set.

Lemma 4.38. Let s, t ∈ T0 be terms such that s
C, stop−−−−→

∗
t then t .b s holds.

Proof. Since .b is the union of all [·]λ≈ -dense sets, we will simply show that

the set S = {(t, s) ∈ T0
2 | s

C, stop−−−−→
∗

t} is [·]λ≈ -dense, i.e. S ⊆ [S]λ≈ . So

assume s
C, stop−−−−→

∗
t such that t ⇓ λx.t′. Then by lemma 4.10, there is also a

reduction s
p−→
∗

λx.s′ such that λx.s′
C, stop−−−−→

∗
λx.t′. Hence for an arbitrary

but fixed closed term r ∈ T0 we also have (λx.s′) r
C, stop−−−−→

∗
(λx.t′) r. Thus by

((λx.t′) r, (λx.s′) r) ∈ S the claim is shown. ut

38 Matthias Mann – December 28, 2004

Corollary 4.39. Let s, t ∈ T0 be closed terms such that s .b t holds. Then for
every closed term r ∈ T0 also s r .b t r holds.

Proof. The claim is immediate from the definition of .b as a greatest fixed point.

It is important to note that the converse of the previous statement, i.e. the
correctness of the extensionality rule (∀r : s r ∼b t r) =⇒ s ∼b t, does not
automatically hold.

Corresponding to [Abr90, p. 71], the example λx.Ωx 6.b Ω already demon-
strates this and we also have some limited kind of extensionality.

Corollary 4.40. Let λx.s, λy.t ∈ T0 be two closed terms such that

(λx.s) r .b (λy.t) r

for every closed term r ∈ T0 holds. Then also λx.s .b λy.t is valid.

Proof. Obviously, both λx.s and λy.t converge, and from condition (2.1) in the
definition of a lazy computation system, we know that there are no possibilities
other than λx.s ⇓ λx.s and λy.t ⇓ λy.t. Hence we have

∀λx.s ∈ ans(λx.s) : ∃λy.t ∈ ans(λy.t) : ∀r : r ∈ T0 =⇒ (λx.s) r .b (λy.t) r

and thus λx.s .b λy.t holds by definition. ut

Remark 4.41. We speak of a “limited” extensionality above, since in our non-
deterministic setting we don’t even have the conditional version of the η-rule

s ⇓ ∧ x /∈ FV(s) =⇒ λx.s x ∼b s

like in [Abr90, p. 71]. We give s ≡ pick K K2 as a counter-example here.
Obviously, λx.(s x) ⇓ λx.(s x) but for s to converge, a choice has to be made
in advance, i.e. either s ⇓ K or s ⇓ K2. Since K and K2 are incomparable as
shown in example 4.28, neither K or K2 alone is capable to exhibit the same
convergent behaviour as λx.(s x) if applied to arguments.

Bringing together the corollaries 4.39 and 4.40, we obtain the following

Lemma 4.42. For all closed terms s′, t′ ∈ T0 the following is true:

s′ .b t′ ⇐⇒ ∀λx.s ∈ ans(s′) : ∃λy.t ∈ ans(t′) : λx.s .b λy.t

Proof. By equation (4.9) we only have to show

∀λx.s ∈ ans(s′) : ∃λy.t ∈ ans(t′) : λx.s .b λy.t ⇐⇒
∀λx.s ∈ ans(s′) : ∃λy.t ∈ ans(t′) : ∀r ∈ T0 : (λx.s) r .b (λx.t) r

of which the “only-if”-part is by corollary 4.39 and the “if”-part by corollary 4.40
respectively. ut

Towards Sharing in Lazy Computation Systems 39

The bottom line of the next lemma, that reduction by rule (cpa) complies to
bisimilarity, is integral for arguing within the λ≈-calculus. In order to show this,
we will fall back upon lemma 4.38, that s

i, stop−−−−→ t implies t .b s.

Lemma 4.43. If let x = s in t
S, cpa−−−−→ t[s/x] then let x = s in t ∼b t[s/x].

Proof. Since t[s/x] .b let x = s in t is clear by the definition of .b, we only

have to show let x = s in t .b t[s/x], i.e. that
S, cpa−−−−→ does not change the

result of a
p−→

k
-reduction sequence.

By corollary 4.30, it has to be shown that for every reduction sequence
let x = s in t

p−→
∗

λy.p there is a corresponding reduction sequence for t[s/x],
i.e. t[s/x]

p−→
∗

λz.q which satisfies λy.p .b λz.q. By lemma 4.11 there is an ap-

proximation reduction t[s/x]
p−→
∗

λz.q such that λz.q
i, stop−−−−→

∗
λy.p holds. Thus

by lemma 4.38 the claim is shown. ut

We now briefly discuss the adoption of example 3.9 to the λ≈-calculus.

Example 4.44. Let again + stand for addition on the Church numerals and the
two closed terms s, t ∈ T0 be given by

s ≡ λx.(pick (pick (1 + 2) (1 + 3)) (pick (4 + 2) (4 + 3)))
t ≡ let y = pick 1 4 in λx.(y + pick 2 3)

Then like in the λND-calculus, s and t could be distinguished by the context
C ≡ let f = [] in (f 1) + (f 1) in the λ≈-calculus too: Evaluating C[s] may
yield an answer from the set {6, 7, 8, 9, 10, 11, 12, 13, 14} whereas for C[t] e.g. the
answer 9 is not possible.

Furthermore, s and t are not bisimilar, either. Actually s is an answer but t is
not, but both possible answers ans(t) = {λx.(1 + pick 2 3), λx.(4 + pick 2 3)}
of t possess only insufficiently many choices if applied to some argument e, i.e.

ans(λx.(1 + pick 2 3) e) = {3, 4}
ans(λx.(4 + pick 2 3) e) = {6, 7}

We conclude the section with a more sophisticated bisimulation proof using the
fact that .b – as a greatest fixed point of [·]λ≈ – contains every [·]λ≈ -dense set.

Example 4.45 (A Bisimulation Proof). Let r, s, t ∈ T0 be closed terms such that
we have r .b pick s t and the set ans(r) has, w.r.t. .b, one greatest element.
Then r .b s or r .b t holds.

First note, that r .b pick s t implies that there must exist a [·]λ≈ -dense
set R which contains (r, pick s t), i.e. R ⊆ [R]λ≈ and (r, pick s t) ∈ R, hence
(r, pick s t) ∈ [R]λ≈ as well. Since the union of [·]λ≈ -dense sets again is [·]λ≈ -
dense, it suffices to show that S or T , with S = R∪{(r, s)} and T = R∪{(r, t)}
respectively, is [·]λ≈ -dense.

Obviously, for r 6⇓ there is nothing to show, so we assume λy.p ∈ T0 to
be the greatest closed abstraction such that r ⇓ λy.p holds. From the premise

40 Matthias Mann – December 28, 2004

r [R]λ≈ pick s t we have an abstraction λz.q such that pick s t ⇓ λz.q and
∀u ∈ T0 : (λy.p) u R (λz.q) u is satisfied. Note that this λz.q usually depends on
λy.p but under the precondition that λy.p is greater than every closed abstraction
r converges to, we may fix λz.q here. So in the approximation reduction sequence
pick s t

p−→
∗

λz.q the reduction by rule (nd) could be brought forward, hence
we may argue that s ⇓ λz.q or t ⇓ λz.q must hold.

Since these cases behave symmetrically, we assume s ⇓ λz.q w.l.o.g., for
which we will show S ⊆ [S]λ≈ , i.e. (a, b) ∈ S =⇒ (a, b) ∈ [S]λ≈ for which we
distinguish the two cases:

– For (a, b) ∈ R nothing has to be shown since R is [·]λ≈ -dense.
– If (a, b) ≡ (r, s), we know from what has been said before that r ⇓ λy.p is

the only possibility. Hence s ⇓ λz.q with ∀u ∈ T0 : (λy.p)u R (λz.q) u shows
the claim, since [R]λ≈ ⊆ [S]λ≈ by monotonicity of the [·]λ≈ -operator. ut

4.9 Extending similarity to open terms

Though reduction and convergence are defined not only on closed but also on
open terms, it is clear that the notion of similarity cannot directly be applied to
open terms, since otherwise all variables would be incomparable.

Instead, e.g. the relation .b has to hold for all possible assignments of the
free variables. But rather than to simply substitute the corresponding terms for,
sharing by let-environments has to be used, as the following example shows.

Example 4.46. Consider the open terms f f and let x = f in xx which are
contextual equivalent in the λND-calculus since copying variables is permitted
(cf. correctness of rule (lcv) in [Kut99]). But demanding the terms to be bisimilar
for every closing substitution is not possible: (f f)[pick K K2/f] may yield
KK2 which converges if successively applied to Ω, Ω and K, while (let x =
f in xx)[pick K K2/f] does not.

Since in the λ≈-calculus only } and abstractions may be copied, it is indeed
sufficient to consider these in closing let-environments.

Lemma 4.47. Let s, t ∈ T be terms such that let x = r in s .b let x =
r in t holds for all r which are either } or an arbitrary abstraction. Then also
∀p ∈ T0 : let x = p in s .b let x = p in t holds.

Proof. Let p ∈ T0 be an arbitrary but fixed closed term. Since otherwise noth-
ing has to be shown, we assume that let x = p in s converges. Legitimated
by lemma 4.29, we will prove that for every approximation reduction sequence
let x = p in s

p−→
∗

λz.q yielding an abstraction, there will be an intermediate
term s′ ∈ T with let x = p in s

p−→
∗

s′
p−→
∗

λz.q and a corresponding reduction
sequence for let x = p in t

p−→
∗

t′ such that s′ .b t′ holds. So assuming
let x = p in s

p−→
∗

λz.q arbitrary but fixed, by the standardisation lemma 4.20
this converging reduction sequence may be reordered to

let x = p in s
let x=S in s−−−−−−−−−→

∗
λ≈ let x = p′ in s

p−→
∗

λz.q

Towards Sharing in Lazy Computation Systems 41

for p′ being } or an abstraction. Obviously, this reduction sequence is also pos-
sible for let x = p in t, thus we have

let x = p in t
let x=S in s−−−−−−−−−→

∗
λ≈ let x = p′ in t

and in conjunction with lemma 4.29 the claim holds by the premise. ut

We are now free to define the extension .b
o of .b to open terms in either of

these manners, but it seems more suitable for the majority of the following
proofs to restrict on bindings to terms which may be copied. Having said this,
the following corollary indicates that for terms which will anyway be copied,
using substitution or let-environments will make no difference.

Corollary 4.48. Let s ∈ T be an open term with FV(s) = {x} and λz.q ∈ T0

a closed abstraction. If p ≡ } or p ≡ λz.q, then let x = p in s ∼b s[p/x] holds.

Proof. By lemma 4.43, since reduction by rule (cpa) immediately applies. ut

So it is possible to keep the approach with substitutions like in [How96] whenever
it is restrained to terms which may be copied.

Definition 4.49. Let s, t ∈ T be (possibly open) terms. We then write s .b
o t if

and only if σ(s) .b σ(t) holds for all closing substitutions σ whose range rng(σ)
satisfy rng(σ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q}, i.e. substitutions that map only
to } or a closed abstraction.

Of course, it is adequate to consider closing substitutions with a “minimal”
domain in the sense, that for open terms s, t ∈ T the domain dom(σ) of the
substitution σ is just the set of free variables, i.e. dom(σ) = FV(s) ∪ FV(t).
The following corollary states this more precise.

Corollary 4.50. Let s, t ∈ T be two (possibly open) terms. Then s .b
o t if and

only if σ(s) .b σ(t) holds for all substitutions σ with dom(σ) = FV(s)∪ FV(t)
and rng(σ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q}.

Proof. Since the “only if”-part is obvious, we assume s, t ∈ T and an arbitrary
but fixed closing substitution σ′ with rng(σ′) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q}.
Now σ′|FV(s)∪FV(t), the restriction of σ′ to the set FV(s)∪FV(t) of free variables
of s and t, i.e. dom(σ′|FV(s)∪FV(t)) = FV(s) ∪ FV(t), coincides with σ′ on its
domain, i.e. x ∈ FV(s) ∪ FV(t) =⇒ σ′(x) ≡ σ′|FV(s)∪FV(t)(x).

Thus we have σ′(s) ≡ σ′|FV(s)∪FV(t)(s) .b σ′|FV(s)∪FV(t)(t) ≡ σ′(t) by
the premise that σ(s) .b σ(t) holds for all substitutions σ with dom(σ) =
FV(s) ∪ FV(t) and rng(σ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q}.

In the remainder we often will, without prior notice, make use of the following
lemma which provides evidence that the three concepts discussed above are
interchangeable.

Lemma 4.51. Let s, t ∈ T be terms such that its free variables may be specified
by FV(s) ∪ FV(t) = {xi | 1 ≤ i ≤ n}. Then the following are equivalent:

42 Matthias Mann – December 28, 2004

1. ∀σ : rng(σ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q} =⇒ σ(s) .b σ(t)
2. ∀p ∈ T0 : (p ≡ } ∨ p ≡ λz.q) =⇒ let x = p in s .b let x = p in t
3. ∀p ∈ T0 : let x = p in s .b let x = p in t

Proof. We assume arbitrary terms s, t ∈ T which meet the preconditions and
w.l.o.g. n > 0, since nothing has to be proven if s, t ∈ T0 are closed. We will
then show (1) ⇐⇒ (2) and (2) ⇐⇒ (3). The first equivalence may be handled
in conjunction with corollary 4.48 by an induction on n, the number of free
variables. Using lemma 4.47 again for an induction on n, the number of free
variables, the implication (2) =⇒ (3) of the second equivalence holds. The
remaining implication (2) ⇐= (3) is obvious. ut

Now the following corollary is immediate.

Corollary 4.52. Let s, t ∈ T be terms with free variables FV = FV(s)∪ FV(t)
and φ : {1, . . . , |FV |} → FV be a bijection. Then we have s .b

o t if and only if

let φ(1) = p1 in let φ(2) = p2 in . . . let φ(|FV |) = p|FV | in s .b

let φ(1) = p1 in let φ(2) = p2 in . . . let φ(|FV |) = p|FV | in t

for all closed pi ∈ T0 with 1 ≤ i ≤ |FV | holds.

The following corollary makes remark 4.25 more precise.

Corollary 4.53. For all closed terms s′, t′ ∈ T0 the following holds:

s′ .b t′ ⇐⇒ ∀λx.s ∈ ans(s′) : ∃λx.t ∈ ans(t′) : s .b
o t

Proof. We will show that for all closed λx.s, λx.t ∈ T0 the conditions s .b
o t

and ∀r : r ∈ T0 =⇒ (λx.s) r .b (λx.t) r are equivalent. Therefore first note
that using reduction rule (lbeta)

∀r : r ∈ T0 =⇒ (λx.s) r .b (λx.t) r

and
∀r : r ∈ T0 =⇒ let x = r in s .b let x = r in t

are equivalent by corollary 4.32. Since by the prerequisites x is the only free
variable in s and t the claim then holds by corollary 4.52. ut

Lemma 4.54. Let s, t ∈ T be terms. Then s .b
o t implies ρ(s) .b

o ρ(t) for
every substitution ρ with range rng(ρ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q} and
domain dom(ρ) ⊆ FV(s) ∪ FV(t).

Proof. We assume terms s, t ∈ T arbitrary but fixed such that s.b
o t holds, from

which, by corollary 4.50, we have σ(s) .b σ(t) for all substitutions σ with range
rng(σ) = {p ∈ T0 | p ≡ } ∨ p ≡ λz.q} and domain dom(σ) = FV(s) ∪ FV(t).
For every such σ now, σ ◦ ρ again meets these conditions, thus the claim. ut

Combining the previous lemma with corollary 4.52 we obtain the following.

Towards Sharing in Lazy Computation Systems 43

Corollary 4.55. Let s, t ∈ T be terms and x ∈ FV(s) ∪ FV(t). Then the
following statements are true:

s .b
o t ⇐⇒ (∀p ∈ T0 : let x = p in s .b

o let x = p in t)
x /∈ FV(s) =⇒ (s .b

o t ⇐⇒ (∀p ∈ T0 : s .b
o let x = p in t))

x /∈ FV(t) =⇒ (s .b
o t ⇐⇒ (∀p ∈ T0 : let x = p in s .b

o t))

The following justifies the assumption in of (·)o being preorder-preserving.

Lemma 4.56. The extension .b
o of .b to open terms is a preorder.

Proof. Since s ≡ s[}/x] and s ≡ s[λz.q/x] for all closed terms s ∈ T0 holds,
reflexivity and transitivity transfer from .b to .b

o, thus .b
o is a preorder. ut

As a consequence of the previous lemmas we have:

Corollary 4.57. .b ◦ .b
o ⊆ .b

o holds.

Furthermore, since } is closed and ans(}) = ∅:

Corollary 4.58. } .b s holds for every closed term s ∈ T0 and } .b
o t for

every term t ∈ T .

Conveniently, for a reduction a−→ we speak of soundness w.r.t. some relation η if
s

a−→ t implies s η t.

Corollary 4.59. If s
p, a−−→ t for some terms s, t ∈ T and the reduction

p, a−−→ is
sound w.r.t. .b (&b) on closed terms then also s .b

o t (s &b
o t) holds.

Proof. Let s, t ∈ T be open terms such that s
p, a−−→ t and w.l.o.g. assume

p, a−−→
to be sound w.r.t. .b. Then s .b

o t follows from definition 4.49 due to the fact
that (stop) is the only reduction rule which may affect1 the free variables. ut

We may now carry over a result on closed terms.

Corollary 4.60. Let s, t ∈ T be terms such that s .b
o t holds. Then for every

term r ∈ T also s r .b
o t r holds.

Proof. Assume terms s, t ∈ T such that s .b
o t holds. From definition 4.49 it

follows that σ(s) .b σ(t) for every closing substitution with the given properties
holds. Let σ′ an arbitrary extension of σ so that also σ′(r) is closed. Then
by corollary 4.39 we have σ′(s)σ′(r) .b σ′(t) σ′(r) which is equivalent to
σ′(s r) .b σ′(t r), thus s r .b

o t r follows.

1 Note, that copies of free variables will always be captured by the closing substitution

44 Matthias Mann – December 28, 2004

4.10 The Precongruence Candidate revisited

Note that the precongruence candidate .̂b could now be characterised by

Definition 4.61. Let the relation .̂b ⊆ T 2 defined by induction:

– x .̂b b if x ∈ V is a variable and x .b
o b.

– τ(ai) .̂b b if there exists a′i such that ai .̂b a′i and τ(a′i) .b
o b.

Since } has no operands and by corollary 4.58 we have } .b
o s for every term

s ∈ T , from remark 2.11 immediately follows

Corollary 4.62. Let s ∈ T be a term. Then } .̂b s holds.

4.10.1 Substitution Lemmas The following substitution lemmas will present
an essential step forward to the proof that .b

o is a precongruence.
The }-Substitution Lemma states that it is safe for .̂b to replace free vari-

ables by }. A slightly more complex case, i.e. the substitution of a free variable
by a value in a term which are both greater w.r.t. .̂b than their respective
counterparts, is treated by the Value-Substitution Lemma.

Lemma 4.63 (}-Substitution Lemma). For all b, b′ ∈ T the following holds:

b .̂b b′ =⇒ b[}/x] .̂b b′[}/x]

Proof. We use induction on the definition of .̂b.

– If b ≡ y .̂b b′ for a variable y ∈ V , then by definition 4.61 we have y .b
o b′.

This then, by definition 4.49, means that σ(y) .b σ(b′) for all substitutions,
that map variables only to } or an abstraction, holds. Since this true also for
all those σ′ with σ′(x) ≡ }, by σ(y[}/x]) .b σ(b′[}/x]) the claim holds.

– For b ≡ τ(bi) .̂b b′ there must exist b
′
i such that bi .̂b b

′
i and τ(b

′
i) .b

o b′,
i.e. σ(τ(b

′
i)) .b σ(b′) holds for all substitutions σ with appropriate range.

From the induction hypothesis, we have bi[}/x] .̂b b
′
i[}/x] and since the

condition σ(τ(b
′
i)) .b σ(b′) is satisfied particularly for those substitutions

σ with σ(x) ≡ }, we may substitute } for x beforehand, hence

σ(τ(b
′
i)[}/x]) .b σ(b′[}/x])

which implies τ(b
′
i)[}/x].b

o b′[}/x] and thus we have τ(bi[}/x])) .̂b b′[}/x]
by σ(τ(b

′
i[}/x])) ≡ σ(τ(b

′
i)[}/x]) and the induction hypothesis in connec-

tion with property (4) of lemma 2.13. ut

Lemma 4.64 (Value-Substitution Lemma). For all b, b′ ∈ T and closed
terms λz.r, λz.r′ ∈ T0 the following holds:

b .̂b b′ ∧ λz.r .̂b λz.r′ =⇒ b[λz.r/x] .̂b b′[λz.r′/x]

Towards Sharing in Lazy Computation Systems 45

Proof. Nothing has to be shown if x /∈ FV(b)∪FV(b′) so assuming x ∈ FV(b)∪
FV(b′) we only have to deal with the cases x /∈ FV(b), x /∈ FV(b′) and x ∈
FV(b) ∩ FV(b′). The proof then is by induction on .̂b’s definition.

– If b ≡ y .̂b b′ for a variable y ∈ V then y .b
o b′ and we have to distinguish

the two cases y ≡ x and y 6≡ x.
We begin with the latter for which we have y[λz.r/x] ≡ y .b

o b′ by the
premise. For x /∈ FV(b′) nothing has to be shown since b′[λz.r′/x] ≡ b′. If
x ∈ FV(b′) this becomes

∀p ∈ T0 : y .b
o let x = p in b′

by corollary 4.55 which must hold for p ≡ λz.r′ in particular. Thus y[λz.r/x] ≡
y .b

o b′[λz.r′/x] from the reduction let x = λz.r′ in b′
[], cpa−−−−→ b′[λz.r′/x]

by lemma 4.43 and corollary 4.59.
In the case of y ≡ x /∈ FV(b′), from x .b

o b′ we have

∀p ∈ T0 : let x = p in x .b
o b′

by corollary 4.55. This must hold for p ≡ λz.r in particular, hence

x[λz.r/x] ≡ λz.r .b
o b′ ≡ b′[λz.r′/x]

by composition, c.f. corollary 4.57, since λz.r .b let x = λz.r in x follows
from the reduction let x = λz.r in x

cpa−−→ λz.r by lemma 4.27. Thus we have
x[λz.r/x] .̂b b′[λz.r′/x] by property (3) of lemma 2.13. If y ≡ x ∈ FV(b′),
then from corollary 4.55 we have

∀p ∈ T0 : let x = p in x .b
o let x = p in b′

which again must hold for p ≡ λz.r′ in particular, hence

λz.r′ .b let x = λz.r′ in x .b
o let x = λz.r′ in b′ .b

o b′[λz.r′/x]

by two applications of lemma 4.43 in connection with corollary 4.59. From
this we then have λz.r′ .b

o b′[λz.r′/x] by corollary 4.57. Furthermore we
have λz.r .̂b λz.r′ from the premises and thus x[λz.r/x] ≡ λz.r .̂b b′[λz.r′/x]
by composition, i.e. property (4) of lemma 2.13.

– If b ≡ τ(bi) .̂b b′ with b
′
i such that bi .̂b b

′
i and τ(b

′
i) .b

o b′, then w.l.o.g. we
may assume x ∈ FV(τ(b

′
i)) ∩ FV(b′) so that we have2

∀λz.r′ ∈ T0 : let x = λz.r′ in τ(b
′
i) .b

o let x = λz.r′ in b′

for the particular case p ≡ λz.r′ by corollary 4.55. Using lemma 4.43 twice
this becomes

τ(b
′
i)[λz.r′/x] .b

o b′[λz.r′/x]

2 Note that the following is also valid for x /∈ FV(b
′
i) and x /∈ FV(b′), but we just do

the proof without the possible simplifications which corollary 4.55 may give us.

46 Matthias Mann – December 28, 2004

Since .̂b is operator-respecting, we may apply the induction hypothesis

bi[λz.r/x] .̂b b′i[λz.r′/x]

to τ -terms which results in

τ(bi)[λz.r/x] ≡ τ(bi[λz.r/x]) .̂b τ(b
′
i[λz.r′/x]) ≡ τ(b

′
i)[λz.r′/x]

and thus τ(bi)[λz.r/x] .̂b b′[λz.r′/x] from τ(b
′
i)[λz.r′/x] .b

o b′[λz.r′/x] by
composition along property (4) of lemma 2.13. ut

By means of the substitution lemmas it follows that the precongruence candidate
is stable under substitutions which map only to } or abstractions.

Corollary 4.65. Let s, t be terms with s .̂b t. Then for every substitution ρ

with range rng(ρ) ⊆ {p ∈ T0 | p ≡ } ∨ p ≡ λz.q} also ρ(s) .̂b ρ(t) holds.

Proof. Obvious from lemma 4.63 and 4.64, since .̂b is reflexive. ut

Now we are in the position to show that .b
o indeed is admissible.

Lemma 4.66. The extension .b
o of .b to open terms is admissible.

Proof. Lemma 4.56 implies that (·)o is preorder-preserving, thus condition (1) is
met. Property (2), i.e. (.b

o) 0 = .b, follows directly from the definition of .b
o

since s ≡ s[}/x] and s ≡ s[λz.q/x] for all closed terms s ∈ T0 holds. Property (3)
should be clear from the fact that the substitutions in use map open to closed
terms and .̂b ⊆ (.̂b 0)

o
, i.e. property (4), is a consequence of corollary 4.65. ut

Sometimes it is convenient to restrict the definition of .̂b such that for a .̂b b
with a closed term a, the intermediate terms a′i are also closed.

Lemma 4.67. Let a, b ∈ T be terms. Then a .̂b b if and only if one of the
following holds:

– a ≡ x for a variable x ∈ V and x .b
o b.

– a ≡ τ(ai) for some operator τ ∈ O, operands ai and there exist operands a′i
such that ai .̂b a′i and τ(a′i) .b

o b hold with FV(a′i) ⊆ FV(ai) for every i.

Proof. Since the “if”-part is merely a special case of definition 4.61, we just
show the “only-if”-part. Therefore we assume a .̂b b for a case analysis along
the definition of the precongruence candidate.

– If a ≡ x .̂b b for a variable x then x .b
o b, so x .̂b x shows the claim.

– For a ≡ τ(ai) .̂b b, from definition 4.61 we have a′′i such that ai .̂b a′′i and
τ(a′′i) .b

o b hold. W.l.o.g. let FV(a′′i) \ FV(ai) = {xi | 1 ≤ i ≤ n}. Then we
construct the desired term τ(a′i) by substituting every xi with }, i.e.

τ(a′i) ≡ τ(a′′i)[}/x1, . . . ,}/xn]

Towards Sharing in Lazy Computation Systems 47

From τ(a′′i) .b
o b, setting pi ≡ } we have

let x1 = } in let x2 = } in . . . let xn = } in τ(a′′i) .b
o b

by corollary 4.55, hence τ(a′i) .b
o b with some (cpa)-reductions by lemma

4.43. From lemma 4.63 we have τ(ai) .̂b τ(a′i), thus the claim holds. ut
Corollary 4.68. Let τ(ai) ∈ T0 be a closed and b ∈ T an arbitrary term such
that τ(ai) .̂b b holds. Then there are operands a′i such that τ(a′i) is closed too
and ai .̂b a′i as well as τ(a′i) .b

o b hold.

Proof. The claim immediately follows from lemma 4.67 since FV(τ(ai)) = ∅. ut

Lemma 4.69. If a′ .̂b b for closed terms a′, b ∈ T0 and a′ is a value, then there
exists a closed value b′ such that b ⇓ b′ and a′ [.̂b]λ≈ b′ as well as a′ .̂b b′.

Proof. A value is of the form λx.s, so assuming a′ ≡ λx.s we have s′ such that

s .̂b s′ ∧ λx.s′ .b
o b

from λx.s .̂b b by definition 4.61. Note that we may assume λx.s′ to be closed
according to corollary 4.68. By the premise b is closed, hence λx.s′ .b

o b is
equivalent to λx.s′ .b b. Since λx.s′ is a value, we have b ⇓ b′ ≡ λx.t such that
λx.s′ .b λx.t holds by lemma 4.42. Thus not only a′ ≡ λx.s .̂b λx.t ≡ b′ but
also a′ ≡ λx.s [.̂b]λ≈ λx.t ≡ b′. ut
Corollary 4.70. For all closed terms a, a′, b ∈ T0 we have

a ⇓ a′ ∧ a′ .̂b 0 b =⇒ (∃b′ : b ⇓ b′ ∧ a [.̂b 0]λ≈ b)

Proof. From a′ .̂b b we have a closed b′ such that b ⇓ b′ and a′ [.̂b]λ≈ b′ by
lemma 4.69 since a′ is a value. Thus a [.̂b 0]λ≈ b follows from equation (4.8)
since all the terms are closed. ut

4.11 Proving .b
o a precongruence

For proving .b a precongruence it will be argued that the relations .b and (.̂b) 0

coincide. According to theorem 2.16, it suffices to show that (.̂b) 0 ⊆ .b holds,
which on the other hand follows from (.̂b) 0 ⊆ [(.̂b) 0]λ≈ , since .b as a greatest
fixed point, contains all [·]λ≈ -dense sets.

4.11.1 Stability of .̂b under reduction An important step towards this
goal is to show that the precongruence candidate relation .̂b is stable under
reduction on closed terms, i.e. s .̂b t ∧ s

p−→ s′ =⇒ s′ .̂b t for s, s′ to be closed.
In the following, this will be done for each of the reduction rules separately. But
we would like to restrict the treatment to reductions at top-level, hence we have
to show that for every approximation reduction to an abstraction there is also
an approximation reduction sequence to the same abstraction which performs
reductions only on closed terms.

48 Matthias Mann – December 28, 2004

Definition 4.71. The class N of non-closing surface contexts is defined by the
following rule for the symbol N :

N ::= [] | N e | eN | let x = N in e |
pick N e | pick e N

This means that non-closing surface contexts are just the subset of surface con-
texts whose construction does not involve LR-contexts. Thus a surface context
S ∈ S \N is called closing, i.e. if it is not a non-closing surface context. We now
show that reductions inside closing surface contexts can be moved to the end of
an approximation reduction sequence.

Lemma 4.72. A complete set of commuting diagrams for
S \N , a−−−−−→λ≈-reductions

w.r.t.
N , b−−−→λ≈-reductions is

S \N , a−−−−−→λ≈ ·
N , b−−−→λ≈

N , b−−−→λ≈ ·
S \N , a−−−−−→λ≈

S \N , a−−−−−→λ≈ ·
N , b−−−→λ≈

N , b−−−→λ≈

Proof. First note, that an overlapping closing surface context must be of the form
N [LR[S]] for some surface context S and a non-closing N . Since the property
(non-) closing is retained when inserting into a non-closing surface context, it

suffices to examine the cases
LR[S], a−−−−−→λ≈ ·

N, b−−−→λ≈ and
N [LR[S]], a−−−−−−−−→λ≈ ·

[], b−−−→λ≈ .
For the former we immediately obtain the diagram

LR[S], a−−−−−→λ≈ ·
N, b−−−→λ≈

N, b−−−→λ≈ ·
LR[S], a−−−−−→λ≈

since a LR- is disjoint from any N -context. For
N [LR[S]], a−−−−−−−−→λ≈ ·

[], b−−−→λ≈ we must
distinguish along N . Note that b = stop is not possible, since then there would
be no approximation reduction to an abstraction.

– For the empty context N ≡ [] we have b = cpa and in contrast to the forking
diagrams in 4.7, a (stop)-reduction can only be performed inside the target
of the (cpa)-reduction:

LR[S], a−−−−−→λ≈ ·
[], cpa−−−−→

[], cpa−−−−→ · S, a−−−→λ≈

– The cases pick N ′ e, pick e N ′ imply that the top-level (b)-reduction is
(nd), and the (a)-reduction may be dropped:

N [LR[S]]], a−−−−−−−−→λ≈ ·
[], nd−−−−→

[], nd−−−−→ · N [LR[S]], a−−−−−−−−→λ≈

N [LR[S]], a−−−−−−−−→λ≈ ·
[], nd−−−−→

[], nd−−−−→

Towards Sharing in Lazy Computation Systems 49

– If N ≡ eN ′ there may be an overlap with b ∈ {lapp, lbeta} which results in

(λx.s) (N ′[LR[S]]), a−−−−−−−−−−−−−→λ≈ ·
[], lbeta−−−−−→

[], lbeta−−−−−→ · let x=(N ′[LR[S]]) in s, a−−−−−−−−−−−−−−−−−→λ≈

(let x=s in t) (N ′[LR[S]]), a−−−−−−−−−−−−−−−−−−−→λ≈ ·
[], lapp−−−−−→

[], lapp−−−−−→ · let x=s in (t (N ′[LR[S]])), a−−−−−−−−−−−−−−−−−−−→λ≈

– For N ≡ N ′ e only b = lapp is a possible top-level reduction, hence

(LR[S]) e, a−−−−−−−→λ≈ ·
[], lapp−−−−−→

[], lapp−−−−−→ · LR[S e], a−−−−−−→λ≈

– The case N ≡ let x = N ′ in e is impossible, since the only top-level
reduction would be (cpa).

Lemma 4.73. Let s, λx.t ∈ T0 be closed terms such that s ⇓ λx.t holds. Then
there is an approximation reduction sequence of the form s

N−→
∗
λ≈ λx.t too,

i.e. using only reductions in non-closing surface contexts.

Proof. We do the proof by induction on the length k of an approximation re-

duction sequence s
p−→

k
λx.t.

– If k = 1, nothing has to be shown, since by remark 4.6 only reductions in
the empty context come into question.

– For the induction step, we split a reduction s
p−→

k+1
λx.t into the sequence

s
p−→ s′

p−→
k

λx.t and assume the reduction s
p−→ s′ to take place in a closing

surface context, since otherwise the claim immediately follows from an easy
application of the induction hypothesis.

So applying the induction hypothesis to the suffix sequence s′
p−→

k
λx.t

delivers an approximation reduction s′
N−→

k

λ≈ λx.t. By the diagrams of
lemma 4.72, the reduction s

p−→ s′ either commutes with this sequence or
is superfluous.

Corollary 4.74. Let s ∈ T0 be a closed term and N ∈ N a non-closing sur-
face context. Then N [s] ⇓ λz.q implies that there exists some closed abstraction

λx.s′ ∈ ans(s) such that N [s] N−→
∗
λ≈ N [λx.s′] S−→

∗
λ≈ λz.q holds.

Proof. By lemma 4.73 there is an approximation reduction sequence where re-
duction only takes place inside non-closing surface contexts. So it remains to
show that this sequence can be reordered such that the reductions inside N are
performed first. Inspecting the cases of definition 4.71 shows that non-closing
surface contexts are disjoint and the only overlapping with the empty context is
in the case let x = N in e for which a reduction by rule (cpa) is impossible. ut

50 Matthias Mann – December 28, 2004

We will now present a series of lemmas which show that s .̂b t ∧ s
[], a−−−→λ≈ s′

implies s′ .̂b t for each reduction rule (a) of the λ≈-calculus.

Lemma 4.75 (lapp). Let s, t, tx ∈ T be terms such that (let x = tx in s) t is
closed. Then we have

((let x = tx in s) t
lapp−−−→λ≈ let x = tx in (s t) ∧

(let x = tx in s) t .̂b b) =⇒ let x = tx in (s t) .̂b b

Proof. From (let x = tx in s) t .̂b b we have

∃l′, t′ : let x = tx in s .̂b l′ ∧ t .̂b t′ ∧ l′ t′ .b
o b (4.10)

such that, by corollary 4.68, we may assume l′ t′ and hence the subterms l′, t′

itself to be closed. Furthermore, let x = tx in s .̂b l′ implies

∃x.s′, t′x : x.s .̂b x.s′ ∧ tx .̂b t′x ∧ let x = t′x in s′ .b
o l′ (4.11)

with let x = t′x in s′ again to be closed according to corollary 4.68, so that
let x = t′x in s′ .b l′ holds on closed terms. Since .b is respected by closed
A∗

L-contexts, cf. corollary 4.39, we have

(let x = t′x in s′) t′ .b l′ t′

from let x = t′x in s′ .b l′, and hence (let x = t′x in s′) t′ .b
o b by corol-

lary 4.57. Since p
p−→
∗

q implies q .b p by lemma 4.27, we may apply the
(lapp)-reduction also to (let x = t′x in s′) t′ which results in

(let x = t′x in s′) t′
lapp−−−→λ≈ let x = t′x in s′ t′ .b

o b

We have tx .̂b t′x, s .̂b s′ and t .̂b t′ by construction and s t .̂b s′ t′ since .̂b is
operator-respecting, thus let x = tx in s t .̂b b holds. ut

Lemma 4.76 (lbeta). Let s, t ∈ T be terms such that (λx.s) s is closed. Then

(λx.s) t
lbeta−−−→λ≈ let x = t in s ∧ (λx.s) t .̂b b =⇒ let x = t in s .̂b b

Proof. Assume (λx.s) t
lbeta−−−→ let x = t in s and (λx.s) t .̂b b. By corollary 4.68,

from the latter we have closed terms f ′, t′ ∈ T0 such that (λx.s) .̂b f ′ and t .̂b t′,
as well as f ′ t′ .b

o b is valid. Expanding (λx.s) .̂b f ′ further, we obtain a closed
λx.s′ ∈ T0 which fulfils s .̂b s′ and λx.s′ .b

o f ′, hence λx.s′ .b f ′ for the
closed relation, too. By lemma 4.42 this in turn means, that there is a closed
abstraction λx.s′′ ∈ T0 such that f ′ ⇓ λx.s′′ and λx.s′ .b λx.s′′ hold.

Towards Sharing in Lazy Computation Systems 51

We obviously may perform the reduction f ′
p−→
∗

λx.s′′ also inside the surface
context [] t′ so (λx.s′′) t′ .b f ′ t′ holds. Since .b is respected by closed A∗

L-
contexts, we also have (λx.s′) t′ .b (λx.s′′) t′ and furthermore we may reduce
(λx.s′) t′

lbeta−−−→ let x = t′ in s′ hence the chain

let x = t′ in s′ .b (λx.s′) t′ .b (λx.s′′) t′ .b f ′ t′ .b
o b

Since then let x = t′ in s′ .b
o b holds by corollary 4.57, we complete the proof

by recognising that let x = t in s .̂b let x = t′ in s′ holds since .̂b is operator-
respecting. Thus let x = t in s .̂b b by property (4) of lemma 2.13. ut

Lemma 4.77 (nd, left). Let s, t ∈ T be terms. Then

pick s t
nd,left−−−−→λ≈ s ∧ pick s t .̂b b =⇒ s .̂b b

Proof. From pick s t .̂b b we have

∃s′, t′ : s .̂b s′ ∧ t .̂b t′ ∧ pick s′ t′ .b
o b

Since p
p−→
∗

q =⇒ q .b
o p by corollary 4.59 we have

s′ .b
o pick s′ t′

from pick s′ t′
nd,left−−−−→λ≈ s′, hence by transitivity

s .̂b s′ .b
o pick s′ t′ .b

o b

thus s .̂b b by composition, i.e. property 4 of lemma 2.13. ut

By a symmetric argument we have

Lemma 4.78 (nd, right). Let s, t ∈ T be terms. Then

pick s t
nd,right−−−−−→λ≈ s ∧ pick s t .̂b b =⇒ s .̂b b

The case for a reduction by rule (stop) is obvious by corollary 4.62.

Lemma 4.79 (stop). Let s ∈ T be a term such that s 6≡ }. Then

s
stop−−−→ } ∧ s .̂b b =⇒ } .̂b b

The proof for a reduction by rule (cpa) is more involved.

Lemma 4.80 (cpa). Let s, t ∈ T be terms such that let x = s in t is closed.
Then the following is true:

let x = s in t
cpa−−→ t[s/x] ∧ let x = s in t .̂b b =⇒ t[s/x] .̂b b

Proof. We show the cases for s ≡ } and s ≡ λz.q from definition 4.1 separately.

52 Matthias Mann – December 28, 2004

– For s ≡ } the proposition is

let x = } in t
cpa−−→ t[}/x] ∧ let x = } in t .̂b b =⇒ t[}/x] .̂b b

From let x = } in t .̂b b, by definition 4.61, we have s′, t′ such that

} .̂b s′ ∧ x.t .̂b x.t′ ∧ let x = s′ in t′ .b
o b

hence t[}/x] .̂b t′[}/x] from t .̂b t′ by lemma 4.63 and furthermore

t′[}/x] .b
o let x = } in t′ .b

o let x = s′ in t′ .b
o b

since let x = s′ in t′
stop−−−→ let x = } in t′

cpa−−→ t′[}/x]. Thus t[}/x] .̂b b
holds by composition, i.e. property (4) of lemma 2.13.

– If s ≡ λz.q the claim reads as follows

let x = λz.q in t
cpa−−→ t[λz.q/x] ∧ let x = λz.q in t .̂b b =⇒

t[λz.q/x] .̂b b

From let x = } in t .̂b b, by corollary 4.68, we have l′, t′ such that

λz.q .̂b l′ ∧ t .̂b t′ ∧ let x = l′ in t′ .b
o b

holds and let x = l′ in t′ is closed, which implies that l′ itself is closed.
Expanding the definition of .̂b further, from λz.q .̂b l′ we have q′ with

q .̂b q′ ∧ λz.q′ .b
o l′

which obviously implies λz.q .̂b λz.q′ because .̂b is operator-respecting.
Since λz.q′ again is closed by corollary 4.68, from λz.q′ .b

o l′ we even have
λz.q′ .b l′, hence l′ ⇓ λz.q′′ with

λz.q′ .b λz.q′′

by lemma 4.42, as λz.q′ already is an abstraction. So λz.q .̂b λz.q′′ fol-
lows from λz.q .̂b λz.q′ in connection with λz.q′ .b λz.q′′ by composition,
i.e. property (4) of lemma 2.13. Furthermore, the reduction l′

p−→
∗

λz.q′′ can
also be performed inside the surface context let x = [] in t′, hence

let x = l′ in t′
p−→
∗
let x = λz.q′′ in t′

cpa−−→ t′[λz.q′′/x]

Since a −→ b implies b .b a by lemma 4.27, from let x = l′ in t′ .b b, by
transitivity of .b and corollary 4.57, we have

t′[λz.q′′/x] .b
o b

With t .̂b t′ and λz.q .̂b λz.q′′ the preconditions of lemma 4.64 are satisfied,
thus t[λz.q/x] .̂b b follows from t[λz.q/x] .̂b t′[λz.q′′/x] and the above by
property (4) of lemma 2.13. ut

Towards Sharing in Lazy Computation Systems 53

Now we will carry over the preceding results to reductions within non-closing
surface contexts.
Lemma 4.81. Let p, q ∈ T0 be closed terms such that p

N , a−−−→λ≈ q with some
rule (a) of definition 4.1. Then for every term r: p .̂b r implies q .̂b r.

Proof. We assume p ≡ N [p′]
N, a−−−→ N [q′] ≡ q with p′

[], a−−−→ q′ for some arbitrary,
but fixed non-closing surface context N ∈ N . Then p′, q′ ∈ T0 have to be closed
terms by definition 4.71 and we may use induction over the structure of N :

– For N ≡ [] the claim holds by one of the lemmas above.
– If N ≡ N ′ t for some surface context N ′ ∈ N and a term t ∈ T such that

p ≡ N ′[p′] holds, then from p ≡ N ′[p′] .̂b r we have s1, s2 such that

N ′[p′] .̂b s1 ∧ t .̂b s2 ∧ s1 s2 .b
o r

by definition 4.61. Since N has only one unique hole, the (a)-reduction may
also take place within N ′, hence

N ′[p′]
N ′, a−−−→ N ′[q′]

to which we may apply the induction hypothesis, i.e.

N ′[p′]
N ′, a−−−→ N ′[q′] ∧ N ′[p′] .̂b s1 =⇒ N ′[q′] .̂b s1

thus q ≡ N [q′] .̂b r immediately follows.
– The cases sN ′, pick N ′ t, pick s N ′ and let x = N in t can be shown

accordingly. ut

Generalising this, we conclude s .̂b t ∧ s ⇓ λx.s′ =⇒ s′ .̂b t by induction on
the length of some N -approximation reduction sequence.

Proposition 4.82. The restriction (.̂b) 0 of .̂b to closed terms is a simula-
tion, i.e. the inclusion (.̂b) 0 ⊆ [(.̂b) 0]λ≈ is valid.

Proof. Let s, t ∈ T0 be closed terms such that s (.̂b) 0 t holds and assume

s ⇓ λx.s′, i.e. ∃k : s
p−→

k
λx.s′. By lemma 4.73, there is also an approximation

reduction sequence s
N−→

k′

λ≈ λx.s′ to the same abstraction while using only non-
closing surface contexts.

Using lemma 4.81 for an induction on the length k′ of this sequence then,
also λx.s′ .̂b t is shown. Thus by corollary 4.70, there exists a closed λx.t′ such
that t ⇓ λx.t′ and s [(.̂b) 0]λ≈ t holds. ut

Having shown (.̂b) 0 a simulation, by coinduction it is now an easy consequence
that the inclusion (.̂b) 0 ⊆ .b holds. Together with the admissibility of .b

o,
this enables the application of theorem 2.16 in order to establish one of our
main results.
Main Theorem 4.83. The similarity .b

o is a precongruence.
As noted before, this is the essential precondition for showing that similarity
complies with contextual preorder, which will be addressed in a later section.

54 Matthias Mann – December 28, 2004

5 Approximating λND by λ≈-expressions

So far, we have defined a bisimulation in the λ≈-calculus and proven it a congru-
ence. This implies that bisimulation is sound w.r.t. the contextual equivalence
in the λ≈-calculus. But since our aims were a technique for showing contextual
equivalences in the λND-calculus, we have an obligation to show that this is
indeed the same as the contextual equivalence in the λ≈-calculus.

Hence in this section we define an approximation of λND-terms by sets of
λ≈-terms so that the contextual congruence will be retained, i.e. essentially the
convergent behaviour of terms. We therefore understand the notion of normal-
order reduction in T (λND) as extended to terms from T (λ≈) in the obvious
way, i.e. regarding } as a constant which has no normal-order reduction.

Definition 5.1 (Approximation Set). Let s ∈ T (λND) be a λND-term.
Then oso ⊆ T (λ≈), its approximation set, is defined as the following set of
λ≈-terms:

oso = {λx.t ∈ T (λ≈) | s p−→
∗

λx.t}
Theorem 5.2 (Approximation Theorem). For all terms s ∈ T the following
holds: s ⇓ND if and only if its approximation set oso is non-empty.

This means the following two implications have to be shown.

1. If there is a normal order reduction sequence starting with s and ending
in a WHNF, then there is also an approximation reduction from s to an
abstraction.

2. If there is an approximation sequence starting with s and ending in an ab-
straction, there is also a normal order reduction reduction from s to a WHNF.

5.1 Transforming
p−→- into n−→λND

-reduction sequences

We begin with the latter for which commuting diagrams for
p−→-reductions are

required. We will have to show that for every reduction sequence

s0
p, a−−→ s1

n, b1−−−→λND
. . .

n, bk−−−→λND
sk+1 (5.1)

ending in a weak head normal form sk+1 there is also a reduction sequence

s0
n, b′0−−−→λND

s′1
n, b′1−−−→λND

. . .
n, b′m−1−−−−−→λND

s′m
p, a′−−−→

0∨1

s′m+1 (5.2)

where s′m+1 ≡ sk+1 and s′m is already a WHNF. Roughly, the proof is by induc-
tion on the length k of the first reduction sequence above. The following lemma
prunes the number of cases which therefore have to be considered.

Lemma 5.3. Let S be a surface context which is not a reduction context. Then
for all terms s0, s1, s2 ∈ T , every surface reduction

S, a−−−→λ≈ and every normal

order reduction
n, b−−→λND

the following holds:

s0
S, a−−−→λ≈ s1

n, b−−→λND
s2 =⇒ ∃s′2 : s0

n, b−−→λND
s′2

S, a−−−→λ≈ s2

s1
S, a←−−−λ≈ s0

n, b−−→λND
s2 =⇒ ∃s3 : s1

n, b−−→λND
s3

S, a←−−−λ≈ s2

Towards Sharing in Lazy Computation Systems 55

Proof. Let R be the reduction context in which
n, b−−→λND

takes place, i.e. the

normal order reduction is
R, n, b−−−−−→λND

in fact. Since S is not a reduction context,
an examination of the structure of surface and reduction contexts shows that
S and R are disjoint. Thus an argument as the one in lemma 2.27 shows the
claim. ut

Using this lemma, it is easy to show that for every reduction sequence of the
form (5.1) there is a corresponding sequence of the form (5.2) whenever the
surface context is not a reduction context. So it now suffices to show that for
every reduction sequence

s0
R, a−−−→λ≈ s1

n, b1−−−→λND
. . .

n, bk−−−→λND
sk+1

ending in a weak head normal form sk+1 there is also a reduction sequence

s0
n, b′0−−−→λND

s′1
n, b′1−−−→λND

. . .
n, b′m−1−−−−−→λND

s′m
R, a′−−−→

0∨1

λ≈ s′m+1

where s′m+1 ≡ sk+1 and s′m is already a WHNF. The base case for k = 0 of the
induction is then covered by the following lemma.

Lemma 5.4. Let s, t ∈ T be arbitrary terms such that s
R, a−−−→λ≈ t holds and

t is a WHNF. Then either s is a WHNF too, s
n−→λND

t directly, or there is a

normal order reduction s
n, cp−−−→λND

t′ to a WHNF t′ such that t′
S, cpa−−−−→λ≈ t.

Proof. Let s
R, a−−−→λ≈ t. Since for a

iR, a−−−→λND
-reduction s already is in WHNF

by lemma 3.15, we assume that t is a WHNF but s is not. If the reduction
s
R, a−−−→λ≈ t already is a normal order reduction nothing has to be shown. Hence

we only have to distinguish the following cases for a:

– If a = stop, we may assume s ≡ R[s′]. So t ≡ R[}] cannot be a WHNF,
hence

stop−−−→ is not possible.
– The only possibility for a = cpa is

s ≡ L∗R[let x = λz.q in L∗R
′[x]]

R, cpa−−−−→ L∗R[(L∗R
′[x])[λz.q/x]] ≡ t

for which there is also a
n, cp−−−→λND

-reduction, namely

s ≡ L∗R[let x = λz.q in L∗R
′[x]]

n, cp−−−→ L∗R[let x = λz.q in L∗R
′[λz.q]] ≡ t′

and since L∗R[(L∗R
′[x])[λz.q/x]] ≡ L∗R[(L∗R

′[λz.q])[λz.q/x]] we clearly have

t′ ≡ L∗R[let x = λz.q in L∗R
′[λz.q]]

R, cpa−−−−→ L∗R[(L∗R
′[λz.q])[λz.q/x]] ≡ t

Thus the proposition is shown. ut

56 Matthias Mann – December 28, 2004

For the induction step, complete sets of commuting diagrams for
R, cpa−−−−→ and

R, stop−−−−−→ will be established. This is sufficient because firstly, by lemma 5.3 only
reduction contexts have to be taken into account, as noted before. Secondly,
the common reduction rules of both calculi, λND and λ≈, could be disregarded
according to lemma 3.11, if their application is limited to take place inside re-
duction contexts. The following lemma states this more precisely.

Lemma 5.5. Let s0, s1, s2 ∈ T be terms and (a) a rule of the λ≈-calculus. If

s0
i, R, a−−−−−→λND

s1
n−→ s2 then there is a term s′1 such that s0

n−→ s′1
R, a−−−→ s2 holds.

Proof. By lemma 3.11 there is no reduction
R, a−−−→ with the required property.

Since we have treated all those rules which are shared by λND and λ≈ we may
now turn our attention to the ones which are present in λ≈ but not in λND.

5.1.1 (cpa) commutes with normal-order reductions. For a reduction
by rule (cpa) inside a reduction context R ∈ R assume

R[let x = s in t]
R, cpa−−−−→ R[t[s/x]]

with s being } or an abstraction. The normal-order redex may be independent
of where the substitution takes place. Or, a subsequent normal-order reduction
may also use the term substituted for x, so a preceding

n, cp−−−→ is necessary. Note
that in this case s cannot be }, if

n, lbeta−−−−−→ is the normal-order reduction in
question. If t ≡ let y = x in t′ itself is the

n, cp−−−→-redex, then s 6≡ } either and
two successive

n, cp−−−→-reductions have to be performed.

R, cpa−−−−→ · n, a−−−→
n, a−−−→ · R, cpa−−−−→

R, cpa−−−−→ · n, lbeta−−−−−→
n, cp−−−→ · n, lbeta−−−−−→ · R, cpa−−−−→

R, cpa−−−−→ · n, cp−−−→
n, cp−−−→ · n, cp−−−→ · R, cpa−−−−→

It is noteworthy that here the reduction context for the (cpa)-reduction remains
the same. This is also the case, if t[s/x] is an abstraction and in the head position

for a lbeta−−−→-normal-order reduction, where we have to connect a
lapp−−−→-reduction

before.

R, cpa−−−−→ · n, lbeta−−−−−→
n, lapp−−−−→ · n, lbeta−−−−−→ · R, cpa−−−−→

If the abstraction for a lbeta−−−→-normal-order reduction is created by the preceding
cpa−−→, a normal-order

cp−→ has to be inserted after
lapp−−−→:

R, cpa−−−−→ · n, lbeta−−−−−→
n, lapp−−−−→ · n, cp−−−→ · n, lbeta−−−−−→ · R, cpa−−−−→

Towards Sharing in Lazy Computation Systems 57

Now we consider R ≡ L∗R[let y = [] in R′[x]] which may only be the case when

let x = s in t lies inside the normal-order redex. Then possibly a llet−−→-reduction
has to be prepended, modifying the reduction context where (cpa) takes place.

L∗R[let y=[] in R′[x]], cpa−−−−−−−−−−−−−−−−−−→ · n, a−−−→
n, llet−−−−→ · n, a−−−→ · L∗R, cpa−−−−−→

Because the effect of the reduction rule (cpa) also consists of a garbage collection,
it cannot be simulated by any normal-order reduction. Hence a (cpa)-reduction
might not disappear. Since we exhausted all cases, we summarise our results in
the following lemma.

Lemma 5.6. A complete set of commuting diagrams for
R, cpa−−−−→ w.r.t. n−→ is:

R, cpa−−−−→ · n, a−−−→
n, a−−−→ · R, cpa−−−−→

R, cpa−−−−→ · n, a−−−→
n, cp−−−→ · n, a−−−→ · R, cpa−−−−→ if a ∈ {lbeta, cp}

R, cpa−−−−→ · n, lbeta−−−−−→
n, lapp−−−−−→ · n, cp−−−→

0∨1
· n, lbeta−−−−−→ · R, cpa−−−−→

R, cpa−−−−→ · n, a−−−→
n, llet−−−−→ · n, a−−−→ · R, cpa−−−−→

All these transformation diagrams in the above lemma share one basic pattern,
namely that they do not duplicate the (cpa)-reduction. This property plays a
central role in induction proofs, i.e. it leads to termination for the composition
of such diagrams. This follows from the strict decrease of a reduction sequence
under the multi-set ordering w.r.t. a multi-set, which contains for every (cpa)-
reduction the number of normal-order reductions following this (cpa)-reduction.

Now that we have the prerequisites to move a (cpa)-reduction from the front
of a normal-order reduction sequence to its tail, we will proceed with the re-
maining rule (stop).

5.1.2 (stop) commutes with normal-order reductions. If the reduction
rule (stop) is applied within a reduction context, there is no subsequent normal-
order reduction.

Lemma 5.7. Let s, t ∈ T be terms and R ∈ R a reduction context such that
s

R, stop−−−−−→ t. Then t has no normal-order reduction.

Proof. Assuming a reduction sequence of the form
Ri, stop−−−−−→ · n, Rn, a−−−−−−→ we have

to distinguish only a few cases. Clearly, (stop) must not take place “above” the
normal-order redex, i.e. Rn ≡ Ri[C] for some further context C ∈ R. So only
Ri ≡ Rn[[] e] and Ri ≡ Rn[let x = [] in e] are possible reduction contexts for
the preceding (stop)-reduction. But Rn[} e] and Rn[let x = } in e] both have
no normal-order reduction, either. ut

58 Matthias Mann – December 28, 2004

5.1.3 Commutation of
p−→-reductions w.r.t. n−→λND

-reductions. So far,
we have seen that only (cpa)- and (stop)-reductions inside reduction contexts
are worth to be considered. Before we proceed further towards the proof of the
Approximation Theorem we first put the preceding parts together by showing
that for every reduction sequence s

p−→ · n−→
+

t such that t is a WHNF, there is
either a pure normal-order reduction sequence s

n−→
+

t or a reduction sequence
of the form s

n−→
+
· p−→ · n−→

∗
t to the same WHNF. This is accomplished in detail

by the following lemma.

Lemma 5.8. Let s0, s1, s2, s3 ∈ T be terms such that s0
p−→ s1

n−→ s2
n−→

k
s3 and

s3 is a WHNF. Then there is a s′1 ∈ T such that s0
n−→

1∨2
s′1

p−→ s2
n−→

k
s3 holds.

Proof. We assume terms s0, s1, s2, s3 ∈ T such that s0
p−→ s1

n−→ s2
n−→

k
s3 and

s3 is a WHNF and analyse the following cases for the
p−→-reduction:

– If s0
S,−−→λ≈ s1

n−→ s2 with a surface context S ∈ S \ R which is not
a reduction context, we have a term s′1 ∈ T from lemma 5.3 such that

s0
n−→ s′1

S,−−→λ≈ s2 holds. Since we can prolong this to the reduction sequence

s0
n−→ s′1

S,−−→λ≈ s2
n−→

k
s3 ending in the WHNF s3, the proposition holds

and for the following cases, w.l.o.g. we may assume the reduction to take
place inside a reduction context.

– The case s0
R, stop−−−−−→ s1 is impossible since it would contradict lemma 5.7.

– If s0
R, cpa−−−−→ s1

n−→ s2 then one of the diagrams in lemma 5.6 must be appli-
cable since this set is complete and s2 by s2

n−→
k

s3 reduces to a WHNF. So
we have a reduction sequence s0

n−→
1∨2

s′1
R, cpa−−−−→ s2 which can be prolonged

to s0
n−→

1∨2
s′1

R, cpa−−−−→ s2
n−→

k
s3 yielding the WHNF s3. ut

Now it is an easy induction to show that every
p−→-reduction may be moved from

the front of a normal-order reduction sequence to its tail.

Lemma 5.9. Let s0, s1, s2 ∈ T be terms such that s0
p−→ s1

n−→
∗

s2 and s2 is a
WHNF. Then there is also a reduction sequence of the form s0

n−→
∗

s′2
p−→

0∨1
s2

with s′2 being already a WHNF.

Proof. For a proof by induction on the length k of the normal order reduction
sequence assume terms si with 0 ≤ i ≤ k + 1 such that s0

p−→ s1, si
n−→ si+1 for

i > 0 and sk+1 is a WHNF.

– If k = 0 lemma 5.4 already shows the claim.
– For k > 0 assume the statement to be true for normal order reduction

sequences of length at most k− 1 and split up the given sequence as follows:

s0
p−→ s1

n−→ s2
n−→

k−1
sk+1

Towards Sharing in Lazy Computation Systems 59

Then by lemma 5.8, we either already have s0
n−→

+
s2, for which nothing has

to be shown, or obtain a term s′1 such that

s0
n−→
∗

s′1
p−→ s2

n−→
k−1

sk+1

Now the induction hypothesis may be applied to the remaining shorter se-
quence s′1

p−→ s2
n−→

k−1
sk+1, thus the claim holds. ut

It seems necessary to point out again that the simplicity of the argument in
the induction step of the previous lemma is only possible because none of the
commuting diagrams for

S, cpa−−−−→ multiplicates the number of (cpa)-reductions.

5.2 Transforming n−→λND
- into

p−→-reduction sequences

We now turn to the first implication which has to be shown for the proof of
the Approximation Theorem, i.e. that for every term s ∈ T there is a reduction
s

p−→
∗

λx.r whenever s has a normal order reduction sequence s
n−→
∗
λND

t such
that t is a WHNF. Hence the following explanations stand in contrast to section
5.1 in that complete sets of forking instead of commuting diagrams have to be
used.

A major requirement for transforming normal-order reduction sequences is
the ability to eliminate

n, llet−−−−→-reductions. The following lemma deals with this.

Lemma 5.10. Let s, s′ ∈ T be terms such that s
n, llet−−−−→ s′ is a top-level reduc-

tion. Then s′
p−→
∗

λx.r implies s
p−→
∗

λx.r, i.e. s also has a surface approximation
reduction sequence to the same abstraction.

Proof. Assume s, s′ ∈ T which match the given preconditions, i.e. these terms
relate as follows:

s ≡ let x = (let y = ty in tx) in R[x]
n, llet−−−−→

let y = ty in (let x = tx in R[x]) ≡ s′
p−→
∗

λx.r

By lemma 4.20, we may perform reductions in the outermost let-environment
first, videlicet in the surface context let y = S in let x = tx in R[x]. Hence
from s′

p−→
∗

λx.r we obtain a reduction sequence

let y = ty in (let x = tx in R[x])
let y=S in let x=tx in R[x]−−−−−−−−−−−−−−−−−−−→

∗

λ≈

let y = t′y in (let x = tx in R[x])
cpa−−→

(let x = tx in R′[x])[t′y/y]
p−→
∗

λx.r (5.3)

with t′y being } or an abstraction now. Note, that for every surface context S
also let x = (let y = S in t′x) in R′[x] is a surface context, so we may transfer

the above reduction sequences to s, thereby eliminating the
n, llet−−−−→-reduction.

60 Matthias Mann – December 28, 2004

We therefore apply to let x = (let y = ty in tx) in R[x] exactly the same
reductions as in equation (5.3), but within surface contexts of the form let x =
(let y = S in t′x) in R′[x], resulting in

let x = (let y = ty in tx) in R[x]
let x=(let y=S in tx) in R[x]−−−−−−−−−−−−−−−−−−−−→

∗

λ≈

let x = (let y = t′y in tx) in R[x]
let x=[] in R[x], cpa−−−−−−−−−−−−−−→

let x = tx[t′y/y] in R[x]

which is syntactically identical to (let x = tx in R[x])[t′y/y], thus the claim. ut

5.3 Proof of the Approximation Theorem

Now we may establish the whole proof of the main theorem.

Proof (Theorem 5.2). For the “if”-part assume an arbitrary but fixed reduction
sequence s

p−→
m

λx.r of length m. We will show that there is also a normal order
reduction s

n−→
∗
λND

t to a WHNF t by induction on m:

– If m = 1 then by lemma 5.4 the proposition holds.
– For the induction step we assume that the claim is valid for a reduction

sequence of length < m. Now suppose a reduction sequence s
S−→

n

λ≈ λx.r of
length m which can be split as follows:

s
p−→ s1

p−→
m−1

λx.r

By the induction hypothesis3 there is a normal order reduction sequence
s1

n−→
∗

t where t is a WHNF, i.e. we have the following situation

s
p−→ s1

n−→
∗

t

Now by lemma 5.9 we have s
n−→
∗

t′
p−→ t with t′ already a WHNF. ut

For the “only if”-part we will construct a reduction s
p−→
∗

λx.r, so assume
an arbitrary but fixed normal-order reduction sequence s

n−→
m

λND
t of length m

such that t is a WHNF.

– From m = 1 we have s
n−→ t where t is a WHNF and s is not (otherwise there

would be no normal-order reduction).
Now consider the case where this reduction is also a possible −→λ≈ -reduction.
If t ≡ λx.r nothing has to be shown, so assume t ≡ L+

R[λx.r] with L+
R ∈ E be

a non-empty environment. Then we may apply
stop−−−→ to all the bound terms

in E followed by a sequence of
cpa−−→-reductions which yields λx.r[}/xi] if xi

are the variables bound by E.
3 Therefore normal-order has to be declared for terms where } was introduced.

Towards Sharing in Lazy Computation Systems 61

The normal-order reduction s
n−→ t cannot be

n, llet−−−−→, since then s would
already be in WHNF, so

n, cp−−−→ is the only remaining possibility for a normal-
order reduction which is not a −→λ≈ -reduction. But this could only be the
case for let y = λx.r in y

n, cp−−−→ let y = λx.r in λx.r which can be
simulated by an application of the (cpa)-rule.

– Assume the proposition holds for normal-order reduction sequences of length
k < m. Then a sequence s

n−→
m

t may be split up as follows

s
n−→ s1

n−→
m−1

t

with t being a WHNF. By the induction hypothesis, s1
p−→
∗

λx.r, hence

s
n−→ s1

p−→
∗

λx.r

so we examine the possibilities for s
n−→ s1:

• If s
n−→ s1 is also a −→λ≈ -reduction then s

p−→
∗

λx.r.
• For L∗R[let x = λy.s in R[x]]

n, cp−−−→ L∗R[let x = λy.s in R[λy.s]] we
may apply

cpa−−→ to L∗R[let x = λy.s in R[λy.s]] yielding

L∗R[let x = λy.s in R[λy.s]]
cpa−−→ L∗R[(R[λy.s])[λy.s/x]]

for which, from L∗R[let x = λy.s in R[λy.s]]
p−→
∗

λz.q by the induction
hypothesis, we obtain an approximation reduction to an abstraction λz.q′

such that λz.q′
i, stop−−−−→

∗
λz.q by lemma 4.11 holds, i.e.

L∗R[(R[λy.s])[λy.s/x]]
p−→
∗

λz.q′
i, stop−−−−→

∗
λz.q

But we could also reduce the initial term L∗R[let x = λy.s in R[x]]
directly with

cpa−−→ which results in syntactically the same term

L∗R[let x = λy.s in R[x]]
cpa−−→ L∗R[(R[x])[λy.s/x]]

since L∗R[(R[λy.s])[λy.s/x]] ≡ L∗R[(R[x])[λy.s/x]] and thus the claim.
• In the case of

s ≡ L∗R[let x = (let y = ty in tx) in R[x]]
n, llet−−−−→

L∗R[let y = ty in (let x = tx in R[x])] ≡ s1

we obtain from theorem 4.23 for s1 the following reduction sequence

L∗R[let y = ty in (let x = tx in R[x])]
olf−−→

∗

let y = t′y in (let x = t′x in R′[x])
p−→
∗

λx.r (5.4)

62 Matthias Mann – December 28, 2004

where
olf−−→

∗
proceeds completely inside the surface context L∗R. Hence

these reductions could be taken over for s giving

s ≡ L∗R[let x = (let y = ty in tx) in R[x]]
olf−−→

∗

let x = (let y = t′y in t′x) in R′[x]

Since
olf−−→

∗
leads to terms, i.e. let x = (let y = t′y in t′x) in R′[x] and

let y = t′y in (let x = t′x in R′[x]) respectively, that are equal up to
an (llet)-reduction which in fact is the top-level normal-order reduction

let x = (let y = t′y in t′x) in R′[x]
n, llet−−−−→

let y = t′y in (let x = t′x in R′[x])

we may apply lemma 5.10, hence

let x = (let y = t′y in t′x) in R′[x]
p−→
∗

λx.r

and thus the claim holds by

s ≡ L∗R[let x = (let y = ty in tx) in R[x]]
olf−−→

∗

let x = (let y = t′y in t′x) in R′[x]
p−→
∗

λx.r

ut

However, the actual goal was to show the correspondence of the contextual
congruences in λND and λ≈, which the following theorem is good for.

Theorem 5.11. Let s, t ∈ T (λND) be terms in the λND-calculus. Then we have
s 'λND, c t if and only if s 'λ≈, c t holds.

Proof. The claim follows from T (λND) ⊆ T (λ≈) by lemma 2.32 in conjunction
with the Approximation Theorem. ut

6 Contextual (Pre-) Congruence

Since by theorem 5.11 from the preceeding section, the contextual preorder in
λND matches the one in λ≈, for the rest of the paper we will drop the distinction
between the two.

Lemma 6.1. For all terms s, t ∈ T the following holds:

s .b
o t =⇒ s .c t

Proof. We assume s .b
o t and an arbitrary but fixed context C ∈ C. Since, by

the Main Theorem, .b
o is a precongruence, we also have C[s] .b

o C[t] from
which C[s] ⇓ =⇒ C[t] ⇓ follows. ut

Towards Sharing in Lazy Computation Systems 63

However, the inclusion (.c) 0 ⊆ .b does not hold in general:

Proposition 6.2. There exist closed terms s, t ∈ T0 such that s (.c) 0 t holds
but s .b t does not.

Establishing this proposition requires some preparation.

Lemma 6.3 (Surface Context Lemma). Let s ∈ T be a term and T ⊆ T a
countable set of terms satisfying the following: For every surface context S ∈ S
with S[s] ⇓ there is a term t ∈ T such that S[t] ⇓ holds.

Then this property is also valid for general contexts, i.e. for every context
C ∈ C with C[s] ⇓ there exists t ∈ T such that C[t] ⇓ is true.

Proof. Given a term s such that ∀S ∈ S : S[s] ⇓ =⇒ ∃t ∈ T : S[t] ⇓ holds.
For all terms r ∈ T we have r ⇓ND ⇐⇒ r ⇓λ≈ by the Approximation Theorem.
Hence the above implication is equivalent to

∀S ∈ S : S[s] ⇓ND =⇒ ∃t ∈ T : S[t] ⇓ND

and as every reduction context is also a surface context, lemma 3.16 applies. ut

Definition 6.4. Let s, t ∈ T be terms and i ∈ N a natural number. Then si t,
the i-fold application of s to t, is inductively defined as follows:

s0 t ≡ t

si+1 t ≡ s (si t)

Lemma 6.5. Let f ≡ λx.s ∈ T0 designate a closed abstraction. Then for ev-
ery abstraction the term (λy.f (y y)) (λz.f (z z)) converges to, there is a natural
number i ∈ N such that f i} reduces to the same abstraction.

Proof. By induction on the length n of the converging approximation sequence
for the term (λy.f (y y)) (λz.f (z z)). We therefore distinguish on the first reduc-
tion of this sequence:

– Clearly (λy.f (y y)) (λz.f (z z))
S, stop−−−−−→ } may be ruled out, since } has no

approximation reduction to an abstraction.
– By lemma 4.13, the case (λy.f (y y)) (λz.f (z z))

S, stop−−−−−→ } (λz.f (z z)) be-
haves identically to the previous one.

– The reduction (λy.f (y y)) (λz.f (z z))
S, stop−−−−−→ (λy.f (y y))} may only be

followed by (lbeta) to reach an abstraction — otherwise one of the previous

cases would arise. This sequence
S, stop−−−−−→ · S, lbeta−−−−−→ obviously commutes,

i.e. leads to the same abstraction as
S, lbeta−−−−−→ · S, stop−−−−−→ that together form

the induction base.
The common result of both sequences is let y = } in f (y y) whose reduction
may continue with rule (cpa) without changing the length of the sequence
by lemma 4.20. This yields f (}}) and establishes the claim, since f1} has
the same approximation reduction to an abstraction by lemma 4.13.

64 Matthias Mann – December 28, 2004

– The induction step is given when the use of (stop) is avoided at this early
stage. Then only (lbeta) is possible at first:

(λy.f (y y)) (λz.f (z z))
[], lbeta−−−−−→ let y = (λz.f (z z)) in f (y y)

By lemma 4.20, we now may perform (cpa) without changing the length of
the sequence. Recalling f ≡ λx.s, the possible non-(stop)-reductions are all
of type (lbeta) and may clearly be commuted. Hence we may assume:

(λy.f (y y)) (λz.f (z z))
[], lbeta−−−−−→ let y = (λz.f (z z)) in f (y y)
[], cpa−−−−→ f ((λz′.f (z′ z′)) (λz′′.f (z′′ z′′)))
[], lbeta−−−−−→ let x = ((λz′.f (z′ z′)) (λz′′.f (z′′ z′′))) in s

By lemma 4.20 again, we may assume that reduction first proceeds inside
the context let x = [] in s without changing the length of the sequence at
all. But then, since (λz′.f (z′ z′)) (λz′′.f (z′′ z′′)) is syntactically equal to the
original term, we may apply the induction hypothesis to it.
Hence there is a natural number i such that f i} reduces to the same abstrac-
tion as (λz′.f (z′ z′)) (λz′′.f (z′′ z′′)) converges to. Thus the claim is shown
since f i+1}

lbeta−−−→ let x = (f i}) in s holds. ut

Lemma 6.6. Let f ≡ λy.p ∈ T0 be a closed abstraction and S ∈ S a surface
context. Then S[Y f] ⇓ λz.q implies that there is a natural number i ∈ N such
that also S[f i}] has a reduction to λz.q, i.e. to the same abstraction.

Proof. Assuming S[Y f] ⇓ λz.q lemma 4.18 is applicable, since Y and f both are
closed. Hence we have λx.s such that Y f ⇓ λx.s and S[λx.s] ⇓ λz.q hold. Since

for Y f ⇓ λx.s all sensible reduction sequences have to start with Y f
S−→

∗
λ≈

(λy.f (y y)) (λz.f (z z)) lemma 6.5 may be used. Therefore, there is a natural

number i such that f i}
S−→

∗
λ≈ λx.s too. This approximation reduction may be

performed within the surface context S, thus S[f i}] S−→
∗
λ≈ S[λx.s] S−→

∗
λ≈ λz.q

proves the claim. ut

Lemma 6.7. Let f ≡ λx.s ∈ T0 be a closed abstraction and C ∈ C an arbitrary
context. Then the implication C[Y f] ⇓ =⇒ ∃i ∈ N : C[f i}] ⇓ is valid.

Proof. Assume f ≡ λx.s ∈ T0 to be a closed abstraction. Then, by lemma 6.6,
the implication ∀S ∈ S : S[Y f] ⇓ =⇒ ∃i ∈ N : S[f i}] ⇓ holds. Therewith,
the preconditions for lemma 6.3 are met. ut

Corollary 6.8. Let f ≡ λx.s ∈ T0 be a closed abstraction. Then for all contexts
C ∈ C with C[λz.(Y f)] ⇓ there is a λz.(f i}) such C[λz.(f i})] ⇓ holds.

Proof. Let C be an arbitrary context such that C[λz.(Y f)] converges. For the
context D ≡ C[λz.[]] we obtain D[Y f] ⇓ since C[λz.(Y f)] ≡ D[Y f]. Hence, by
lemma 6.7, there exists a f i} such that D[f i}] ⇓ which in fact is C[λz.(f i})] ⇓
as desired. ut

Towards Sharing in Lazy Computation Systems 65

Notation. Whenever f denotes some closed abstraction, let Gf stand for the
closed term Gf ≡ (Y (λg.λx.pick (λz.x) (g (f x))))} in the following.

Corollary 6.9. Let f ∈ T0 be a closed abstraction. Then for ans(Gf), the an-
swer set, ans(Gf) = {λz.(f i}) | i ∈ N} holds.

Proof. By induction on the number i of (nd, right)-reductions in a converging

approximation reduction Gf
S−→

∗
λ≈ λz.q we will show that q ≡ f i} holds. We

therefore unfold the beginning of such a sequence, where we disregard (stop)-
reductions, since they will not contribute anything for an abstraction:

Gf ≡ (Y (λg.λx.pick (λz.x) (g (f x))))}
lbeta−−−→ (let h = (λg.λx.pick (λz.x) (g (f x))) in (λy.h (y y)) (λy′.h (y′ y′)))}

cpa−−→ ((λy.(λg.λx.pick (λz.x) (g (f x))) (y y)) (λy′.(λg.. . .) (y′ y′)))}
lbeta−−−→ . . .

cpa−−→ ((λg.λx.pick (λz.x) (g (f x))) ((λy′.(λg.. . .) (y′ y′)) . . .))}
S−→

∗
λ≈ pick (λz.}) w

The induction base is given by λz.} while the term w is of a form so that the
induction hypothesis may be applied. ut

Lemma 6.10. Let f denote a closed abstraction. Then λz.(Y f) .c Gf is true.

Proof. Assuming f ≡ λx.s ∈ T0 and a context C satisfying C[λz.(Y f)] ⇓,
we have to show that C[Gf] ⇓ holds, too. By corollary 6.8 there is a number
i such that C[λz.f i}] converges. Furthermore, by corollary 6.9, the reduction

Gf
S−→

∗
λ≈ λz.(f i}) exists, hence λz.(f i}) .b Gf by lemma 4.27. From this

we have C[λz.(f i})] .b C[Gf] since .b is a precongruence, and thus, by the
definition of .b, the claim holds. ut

Corollary 6.11. The inequation λz.(Y K) (.c) 0 GK is true.

Lemma 6.12. The inequation λz.(Y K) .b GK is false.

Proof. Assume λz.(Y K) .b GK for a proof by contradiction. Since λz.(Y K)
already is an abstraction, there has to be a closed abstraction λz.q ∈ T0 such
that GK ⇓ λz.q and λz.(Y K) .b λz.q hold. By corollary 6.9, q has to be of
the form q ≡ λz.(Ki}). Fixing some i we obtain (λz.(Y K))} . . .} ⇓ for i + 2
many applications to }, but (λz.Ki})} . . .}, with } . . .} representing the
same argument sequence, does not converge. ut

Proof (Proposition 6.2). By corollary 6.11 and lemma 6.12. ut

66 Matthias Mann – December 28, 2004

7 Conclusion and Future Work

We have seen how the framework of Howe may be extended to cope with shar-
ing. For a non-deterministic call-by-need calculus we have developed a bisimula-
tion and proven it to be equivalent to contextual equivalence. Here, two points
emerged to be of great importance. First, we have seen that testing terms by
just reducing them to weak head normal form and applying these WHNF’s to
arbitrary arguments is not appropriate. Instead, the terms to be tested have
rather be equipped with all the information about which choices have to be
shared and which may be copied. We accomplished this by performing evalua-
tion inside surface contexts up to every arbitrary depth, in which also choices in
let-environments may be forced. Since we non-deterministically collect all these
possible outcomes, the bisimulation then has as much potential to discriminate
terms as the contextual equivalence. Moreover, as the proof of lemma 4.38 and
the examples 4.37 and 4.45 and illustrate, with bisimulation we have a method
at hand for which proofs often require only finitely many steps whereas for con-
textual equivalence infinitely many contexts have to be considered.

The other aspect concerns which kind of terms may be copied. As we have
seen, the precongruence candidate or, strictly speaking, the extension of the
bisimilarity to open terms had to be adapted such that only } and abstractions
are considered. This might point out a general approach for the proof of the fun-
damental substitution lemma, i.e. [How89, Lemma 1] and [How96, Lemma 3.2]
respectively, or lemma 4.63 and 4.64 in our case, to go through.

On the basis of these explanations, we feel confident that the technique
demonstrated in this paper is powerful enough for the treatment of a language
extending the λND-calculus with a case and data constructors. However, in-
troducing a letrec-construct, i.e. recursive bindings as e.g. in [MSC99a,SS03],
seems to be non-trivial, since a straightforward encoding by fixed point combi-
nators may duplicate non-deterministic choices and therefore is not appropriate
for a lazy semantics (cf. [Lau93]).

But a further extension of the λND-calculus which seems possible, is to in-
corporate divergent behaviour in the definition of the contextual equivalence.
As the work of [MSC99a,Kut99,SS03] suggests, it is quite reasonable in a non-
deterministic calculus to regard possibly infinite reduction sequences.

8 Acknowledgements

I would like to express my gratitude to Manfred Schmidt-Schauß and David
Sabel for their constructive comments. I am particularly indebted to Manfred
Schmidt-Schauß for his helpful suggestions and careful proof-reading.

References

[Abr90] Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor,
Research Topics in Functional Programming, University of Texas at Austin

Towards Sharing in Lazy Computation Systems 67

Year of Programming Series, chapter 4, pages 65–116. Addison-Wesley,
1990.

[ACCL91] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. Journal of Functional Programming, 1991.

[AF97] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus.
Journal of Functional Programming, 7(3):265–301, 1997.

[AFM+95a] Zena Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In Proc. POPL ’95, 22’nd An-
nual Symposium on Principles of Programming Languages, San Francisco,
California. ACM Press, January 1995.

[AFM+95b] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and
Philip Wadler. A call-by-need lambda calculus. In Proceedings of 22nd An-
nual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 233–246, 1995.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus, Its Syntax and Seman-
tics. Elsevier Science Publishers, 1984.

[BKvO98] Marc Bezem, Jan Willem Klop, and Vincent van Oostrom. Diagram
techniques for confluence. Information and Computation, 141(2):172–204,
March 1998.

[Bou94] Gérard Boudol. Lambda-calculi for (strict) parallel functions. 108(1):51–
127, January 1994.

[DP92] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, Cambridge, 1992.

[dP95] Ugo de’Liguoro and Adolfo Piperno. Nondeterministic extensions of un-
typed λ-calculus. Information and Computation, 122(2):149–177, Novem-
ber 1995.

[Gor94] Andrew D. Gordon. Functional programming and input/output. Distin-
guished Dissertations in Computer Science. Cambridge University Press,
September 1994.

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional programming.
Theoretical Computer Science, 228(1-2):5–47, October 1999.

[HHS00] C. A. R. Hoare, He Jifeng, and A. Sampaio. Algebraic derivation of an
operational semantics. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, language, and interaction: essays in honour of Robin Milner,
Foundation of Computing, chapter 3, pages 77–98. MIT Press, Cambridge,
Massachusetts, 2000.

[How89] Douglas J. Howe. Equality in lazy computation systems. In Proceedings,
Fourth Annual Symposium on Logic in Computer Science, pages 198–203,
Asilomar Conference Center, Pacific Grove, California, 5–8 June 1989.
IEEE Computer Society Press.

[How96] Douglas J. Howe. Proving congruence of bisimulation in functional pro-
gramming languages. Information and Computation, 124(2):103–112,
1 February 1996.

[KSS98] Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-
need lambda calculus. In International Conference on Functional Pro-
gramming 1998, pages 324–335. ACM Press, 1998.

[Kut99] Arne Kutzner. Ein nichtdeterministischer call-by-need Lambda-Kalkül mit
erratic Choice: Operationale Semantik, Programmtransformationen und
Anwendungen. PhD thesis, Johann Wolfgang Goethe-Universität, Frank-
furt, October 1999.

68 Matthias Mann – December 28, 2004

[KvOvR93] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-
binatory reduction systems: introduction and survey. Theoretical Com-
puter Science, 121(1–2):279–308, 1993.

[Lau93] John Launchbury. A natural semantics for lazy evaluation. In Proceed-
ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 144–154. ACM Press, 1993.

[LP00] Soren Lassen and Corin Pitcher. Similarity and bisimilarity for countable
non-determinism and higher-order functions. In Andrew Gordon, Andrew
Pitts, and Carolyn Talcott, editors, Electronic Notes in Theoretical Com-
puter Science, volume 10. Elsevier, 2000.

[Mil71] Robin Milner. An algebraic definition of simulation between programs. In
D. C. Cooper, editor, Proceedings of the 2nd International Joint Confer-
ence on Artificial Intelligence, pages 481–489, London, September 1971.
William Kaufmann.

[Mil77] Robin Milner. Fully Abstract Models of Typed lambda-Calculi. Theoretical
Computer Science, 4(1):1–22, 1977.

[MN98] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their
confluence. Theoretical Computer Science, 192:3–29, 1998.

[Mor68] J.H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, 1968.

[MOW98] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need
lambda calculus. Journal of Functional Programming, 8(3), May 1998.

[MSC99a] A. K. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A seman-
tic theory for an embedded coordination language. In the Third Inter-
national Conference on Coordination Languages and Models; COODINA-
TION’99, number 1594 in Lecture Notes in Computer Science, pages 85–
102. Springer-Verlag, April 1999. Extended available: [MSC99b].

[MSC99b] A. K. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A semantic the-
ory for an embedded coordination language (extended version). Extended
version of [MSC99a], February 1999.

[Ong93] C.-H. Luke Ong. Non-determinism in a functional setting. In Logic in
Computer Science, pages 275–286, 1993.

[Par81] David Park. Concurrency and automata on infinite sequences. In Pe-
ter Deussen, editor, Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer, 1981.

[Sab03] David Sabel. Realising nondeterministic I/O in the Glasgow Haskell Com-
piler. Frank report 17, Institut für Informatik, J.W. Goethe-Universität
Frankfurt am Main, December 2003.

[San] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario.
pages 120–153, 15 .

[San91] D. Sands. Operational theories of improvement in functional languages
(extended abstract). In Proceedings of the Fourth Glasgow Workshop on
Functional Programming, Workshops in Computing Series, pages 298–311,
Skye, August 1991. Springer-Verlag.

[San97] David Sands. From SOS rules to proof principles. Technical report,
Chalmers University of Technology and Göteborg University, 1997.

[SS92] Harald Søndergard and Peter Sestoft. Non-determinism in Functional Lan-
guages. The Computer Journal, 35(5):514–523, 1992.

[SS03] Manfred Schmidt-Schauß. FUNDIO: A Lambda-Calculus with a letrec,
case, Constructors, and an IO-Interface: Approaching a Theory of

Towards Sharing in Lazy Computation Systems 69

unsafePerformIO. Frank report 16, Institut für Informatik, J.W. Goethe-
Universität Frankfurt am Main, September 2003.

