
FUNDIO: A Lambda-Calculus With letrec,
case, Constructors, and an IO-Interface:
Approaching a Theory of unsafePerformIO

Technical Report Frank-16

Manfred Schmidt-Schauß

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

E-mail: schauss@ki.informatik.uni-frankfurt.de

Date: September 25, 2003

Abstract. This paper proposes a non-standard way to combine lazy
functional languages with I/O. In order to demonstrate the usefulness
of the approach, a tiny lazy functional core language “FUNDIO”, which
is also a call-by-need lambda calculus, is investigated. The syntax of
“FUNDIO” has case, letrec, constructors and an IO-interface: its op-
erational semantics is described by small-step reductions. A contextual
approximation and equivalence depending on the input-output behavior
of normal order reduction sequences is defined and a context lemma is
proved. This enables to study a semantics of “FUNDIO” and its semantic
properties.
The paper demonstrates that the technique of complete reduction di-
agrams enables to show a considerable set of program transformations
to be correct. Several optimizations of evaluation are given, including
strictness optimizations and an abstract machine, and shown to be cor-
rect w.r.t. contextual equivalence. Correctness of strictness optimizations
also justifies correctness of parallel evaluation.
Thus this calculus has a potential to integrate non-strict functional pro-
gramming with a non-deterministic approach to input-output and also
to provide a useful semantics for this combination.
It is argued that monadic IO and unsafePerformIO can be combined in
Haskell, and that the result is reliable, if all reductions and transforma-
tions are correct w.r.t. to the FUNDIO-semantics. Of course, we do not
address the typing problems the are involved in the usage of Haskell’s
unsafePerformIO.
The semantics can also be used as a novel semantics for strict functional
languages with IO, where the sequence of IOs is not fixed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14504553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

FUNDIO: A Lambda-Calculus With letrec, case, Constructors, and
an IO-Interface: Approaching a Theory of unsafePerformIO Technical
Report Frank-16 . 1

Manfred Schmidt-Schauß
1 Introduction . 3
2 Related Work . 5

2.1 Lambda Calculi and Non-Determinism . 6
2.1.1 Remedy: Fixed Evaluation Order . 6
2.1.2 Remedy: Sharing . 6
2.1.3 Lambda-calculi, Non-determinism and Sharing 7
2.1.4 Different Kinds of Non-Deterministic Operators 7
2.1.5 Strict functional languages, effects and I/O 7
2.1.6 Non-Strict Functional I/O and Non-Deterministic Operators 7
2.1.7 Functional-Logic Programming and Non-Deterministic Op-

erators . 9
2.1.8 Constrained Lambda-Calculus . 9

3 Overview . 9
4 Syntax of FUNDIO . 10
5 Normal Order Reduction . 14
6 Contextual Equivalence . 16

6.1 Examples and Discussion . 19
7 Context Lemma . 23
8 Correctness of Reductions . 27
9 Complete Sets of Commuting and Forking Diagrams 28
10 Correctness of (llet) . 30
11 Correctness of (cp)-Reductions . 33
12 Correctness of Garbage Collection (gc) . 36
13 Correctness of (cpx)-Reductions . 38
14 Correctness of (cpcx)-Reductions . 40

14.1 Correctness of (xch)-Reductions . 40
14.2 Properties of (cpcx) . 41

15 Correctness of (case)-Reductions . 43
16 Correctness of FUNDIO-Reductions: Summary . 44
17 Correctness of ucp-Reductions . 44
18 Further Program Transformations . 46

18.1 Correctness of Lambda-Lifting . 46
18.2 Correctness of a Beta with Variable Arguments 47

19 Modifying the Normal Order Reduction . 47
19.1 Garbage Collection and Removing Indirections 47
19.2 Evaluation Strategies . 49
19.3 Correctness of the strategy G using (gc) and (cpx) 50

20 Relativized Normal-Order Reduction . 51
20.0.1Non-Terminating rn-Reductions . 58

20.1 Multiple Relativized Reductions . 60
21 Strictness and Strictness Optimization . 60

21.1 Strictness in FUNDIO . 60
21.2 Shifting (rn) to the Left . 61
21.3 Shifting (n) to the Left Over rn-Reductions . 62
21.4 Shifting (rn) to the Left Over rn-Reductions 63
21.5 Strictness Optimizations . 63

22 Parallel Evaluation . 68
23 Weaker Definitions of Contextual Equivalence . 69
24 Behavioral Equivalence . 69
25 An Abstract Machine for FUNDIO . 71

25.1 An Abstract Machine for FUNDIO based on Sestoft’s machine . . . 71
25.2 Correctness of an Eager-Copy-Strategy . 72
25.3 Correctness of the Abstract Machine . 73

26 Applications . 74
26.1 Application of the Results to the Core-Language of Haskell 74

26.1.1The operators seq and strict . 74
26.2 The Relation between Haskell and FUNDIO 74
26.3 Encoding Sequentialization of Actions . 75

26.3.1Checking the Monoid Laws . 75
26.4 Application to Strict Functional Programming Languages 78

26.4.1Embedding a strict functional language in FUNDIO 78
26.4.2A correct program transformations in strict functional lan-

guages . 79
26.5 XML and XQuery . 79
26.6 A Warning for Practical Programming Languages 80

27 Extensions and Parallel Evaluation . 80
28 Conclusion and Future Work . 80
29 Acknowledgements . 81

1 Introduction

The aim of this paper is to describe an alternative way for investigating the prop-
erties of a lazy functional program with side effects and the correctness of pro-
gram transformations and evaluation strategies. It is based on work on sharing
in lazy functional programs [AFM+95,AF97,MOW98], on the experience with a
side-effecting lazy functional programming language [HNSSH97], and on investi-
gations of non-deterministically extended lambda-calculi [KSS98,MSC99,Kut00].
The common method to relieve the programming language designer from the
inherent IO-problems is to shift responsibility to the programmer who has to
sequentialize all IO-requests. This is also true for the monadic approach imple-
mented in Haskell [ABB+99]. The approach in this paper tries to demonstrate

3

that there is a possibility to combine the advantages of lazy functional program-
ming and a more declarative IO where the semantics of the program allows to
change the sequence of IO-requests.
The basic question is: “What is a correct (operational) semantics of such a
programming language?”
As language we use a functional core-language which is an untyped lambda-
calculus extended with letrec, case, constructors, and an IO-function. The
basic IO-action is that the program prints a question, and the user (the operating
system) answers by inputting the answer. Questions and answers are modelled
by constants, which may encode finitely many alternatives. This restrictions keep
reasoning simple and retain sufficient expressiveness.
The IO-behavior of a single IO-action is described by an IO-pair (question-
answer-pair), and the IO-behavior of an evaluation is captured in a multiset of
IO-pairs.
The operational semantics is defined by a normal order reduction. Based
on this, program equivalence is defined by contextual equivalence similar to
[GP98,Pit97], but extended by the observation of the multiset of IO-pairs.
Our approach models the input as well as the output part of IO and also the
correlation between question and answer in contrast to a combination of an er-
ratic non-deterministic choice with a lambda-calculus respecting sharing as in
[Kut00,MSC99] which has turned out to lose too much information (see Ex-
ample 6.10). Our approach also proposes a separation into a deterministic pro-
gram and a non-deterministic user or environment, respectively, which avoids
the need for search during evaluation. This is an advantage over the work in
[Mor98,MS99,MSC99], where non-deterministically extended lambda calculi are
analyzed for their use in modelling IO by encoding the stream processor in a
non-determinisitc calculus. The fudgets as IO-concepts are then coded using the
stream processor.
In investigations in non-deterministic programs an often referred-to example
is the comparison of two programs P1, P2, the first evaluates to a constant a,
the second is a non-deterministic choice between a and ⊥. The natural encod-
ings of these programs in FUNDIO are obviously non-equivalent, since non-
deterministic choices in FUNDIO can only be done by asking the environment,
and so P1 terminates without querying the environment, whereas P2 has to make
at least one query (see Example 6.17).
A further example is the double-example (λx.x+x) (1⊕2), where ⊕ means non-
deterministic choice. If usual beta-reduction is performed, then the expression
(1⊕2)+(1⊕2) may result in the set {2, 3, 4}; if non-deterministic choice is applied
first, then the possible results are in the set {2, 4}. Using beta-reduction for the
expression (λx.2 ∗ x) (1 ⊕ 2) gives only the set {2, 4}. However, the programs
(λx.x + x) and (λx.2 ∗ x) should be equivalent, which rules out several calculi.
Though we have kept it as simple as possible, the calculus FUNDIO is rather
complex, hence it is far from clear that anything sensible can be proved about
correct program transformations, standard reduction, optimization, etc. In this
paper we show that it is indeed possible to show that a sufficiently rich equa-

4

tional theory holds for expressions, that the deterministic reductions are correct,
and that a majority of the optimizations in [JS98] remain correct. So we have
demonstrated that contextual equivalence provides a useful semantics and that
operational techniques are adequate to show sufficiently many program trans-
formations to be correct.
The following results are obtained.

1. All reduction rules of FUNDIO are correct program transformations, of
course with the exception of the evaluation of IO-functions. Moreover, further
reductions like garbage collection and compressing indirections and “unique
copy” are also correct program transformations.

2. Modifying the evaluation by intermediate garbage collection, compressing
indirections does not change the meaning of programs.

3. Modifying the evaluation exploiting strictness of abstractions does not
change the meaning of FUNDIO-programs. Moreover, strictness optimiza-
tion does not save any reduction. The optimization effect can only be ob-
served as saved heap-update-operations using an abstract machine.

4. FUNDIO is much better suited to model direct-call-IO than a plain non-
deterministic lazy functional programming approach.
For example there are two programs (see also 6.10): An “and” and an “or”-
program of two Boolean inputs, which can be distinguished in FUNDIO,
whereas their natural nondeterministic encodings cannot be distinguished in
the nondeterministic setting.

It is also possible to combine monadic IO and unsafePerformIO in a functional
encoding (see subsection 26.2), which is consistent with the correctness proof
for monadic state in [AS98]. In a Haskell compiler that seriously compiles the
unsafePerformIO function, the FUNDIO-semantics can be used as a guideline
for correct program transformations.
We have tried several other combinations of syntax, reduction rules and contex-
tual equivalence. After identifying lots of wrong choices, designing FUNDIO’s
rules and equational theory is a kind of natural choice. The interchangability
of IOs is essential for permitting parallel evaluation, since different threads may
in general produce different sequential appearance of IOs that are independent
of each other. The same holds for strictness optimizations, which are only pos-
sible if the definition of equality permits interchanging IOs. So the correctness
of strictness optimizations is directly connected with the possibility of parallel
evaluation.

2 Related Work

Since it is beyond the scope of this paper to survey all relevant papers and
related work on the combination and application of combinations of lambda
calculus, non-determinism, different evaluation strategies, sharing, IO, etc., we
mention papers that proposed similar methods, and though in our opinion all
these papers have their value, we will mostly point out the differences to the
calculus FUNDIO. We will also give hints on the applications of FUNDIO.

5

2.1 Lambda Calculi and Non-Determinism

There are approaches to combine lambda-calculi and non-determinism while re-
taining the copying beta-reduction (cf. [Ong93,DP95,DCdP94,DCTU99]). These
are completely different from FUNDIO, since the above mentioned double-
problem arises. An early discussion on the properties of different combinations
of lambda calculi and non-determinism is in [Cli82], which contains several in-
structive examples and counter-examples, however the idea of sharing was not
taken into account.

2.1.1 Remedy: Fixed Evaluation Order Fixing the evaluation order in
a functional programming language, for example to insist on strict evaluation
makes the combination of lambda-calculi and non-determinism more useful in
practice. Extended lambda-calculi and reasoning along these lines are described
in e.g. [Las98,LP00]. For example, this is the way, Lisp, Scheme, and ML perform
their communication with the environment. A disadvantage is that the evaluation
order is then part of the language’s semantics and cannot be changed. Moreover,
the equivalence of programs is more or less restricted to expressions that are free
of external calls. In the double-example, the consequence is that first the choice
is made, and then the beta-reduction, while the other is forbidden.
If a lazy strategy is chosen, while retaining beta-reduction, then the undesired
effect is that non-deterministic calls are copied without control, and hence mul-
tiplied. Thus we run into the double counter-example. A call-by-need strategy,
which modifies beta-reduction by sharing the argument expressions instead of
copying, appears promising. To follow this approach means to accept that shar-
ing is now not only an optimization, but a necessary ingredient in the semantics,
and as a consequence beta-reduction is not used, but a modofied variant. This
approach is followed in FUNDIO.

2.1.2 Remedy: Sharing That sharing could remedy some problems like
the double-problem above in the combination of non-determinism and lambda-
calculus was already observed in [AC79].
There are related call-by-need calculi that are based on sharing, but with-
out non-determinism: e.g. [Yos93], explicit substitutions [ACCL91], and let-
based lambda-calculi [AFM+95,MOW98,AF97]. These approaches have no non-
deterministic operators, which explains that they permit equations that are
wrong in FUNDIO, e.g. shifting let over lambda [ACCL91,AC79]. That this
rule is wrong in FUNDIO is explained in Example 6.21. The notion of
equality of programs is often the equivalence closure of the reduction rules
([AFM+95,MOW98,AF97]), which is weaker than contextual equivalence, and
also heavily depends on the formulation of the reduction rules. The calculus
FUNDIO can be seen as a non-deterministic extension of a call-by-need lambda
calculus presented in [AFM+95,MOW98], however, the FUNDIO-semantics is
based on contextual equivalence. It can also be seen as an extension of the cal-
culus in [MSC99].

6

It should be noted that sharing of subexpressions (i.e. using a graph) is not suffi-
cient; it is also required that the exact scope of every shared term is known. For
example, the let-over-lambda reduction does not change the sharing structure
of the term, but only the scope of the sharing of the term. The let-construct
opens a scope and identifies the shared term, hence it is the appropriate method
to model sharing for our purposes.

2.1.3 Lambda-calculi, Non-determinism and Sharing Usually, a deno-
tational semantics for nondeterministic programming languages is given by pow-
erdomain constructions [Plo76,Smy78,Bro86]. However, these papers do not take
into account the sharing technique. In a paper of Søndergard and Sestoft [SS92]
on semantics of nondeterminism, twelve different kinds of non-determinism in
non-strict functional languages are identified. Concerning their categories, FUN-
DIO has an erratic, restrained, singular nondeterminism (up to IO-multisets).
However, we use a modified notion of unfoldability since FUNDIO employs
(lbeta) exploiting sharing, instead of (beta), such that in FUNDIO there is no
incompatibility between singular semantics and unfoldability.
The paper [PS92] uses lazy PCF plus sharing via explicit substitutions. This
appears to fit into the FUNDIO-framework, though it is not clear whether the
paper has inherited the let-over-lambda rule of explicit substitutions.

2.1.4 Different Kinds of Non-Deterministic Operators There are dif-
ferent views of the non-deterministic choice. One is the bottom-avoiding choice
operator amb, which can be seen as a choice between two possibilities, however
if there is a choice between a non-terminating argument and a terminating one,
then the terminating one has to be chosen (see for example [HO90,HO89,HM92]).
The operational net effect is that search and backtracking are required by evalu-
ation. The non-determinism in FUNDIO is more like a committed choice, which
was also considered in [KSS98,Kut00,MSC99].

2.1.5 Strict functional languages, effects and I/O The treatment
of effects and I/O in strict functional programming languages using op-
erational semantics based on the syntax was done by several authors:
[MT91,CG94,MST96,Fel78,FH92]. The usage of contextual equivalence was ad-
vocated in [MT91,CG94,MST96,Pit97,PS98]. The approach of using operational
semantics and contextual equivalence as a basis for proof techniques is also cho-
sen for the non-strict calculus FUNDIO since it permits the most general notion
of equality. In the case of I/O, the difference between FUNDIO and other ap-
proaches like [CG94] is that FUNDIO has a more declarative view of I/O: it
is possible to interchange I/Os, whereas this is not possible in the operational
theories of I/O in ML-like languages.

2.1.6 Non-Strict Functional I/O and Non-Deterministic Operators
The intended application of FUNDIO is to provide a theory of equality of ex-
pressions for the treatment of I/O in non-strict functional languages, like the

7

call to unsafePerformIO in Haskell [ABB+99], There are several proposals for
I/O in non-strict functional languages (cf. [Gor94]), for example, monadic I/O
([Wad92,Wad95,PJW93], continuation passing I/O, and unique typing ([Ach96].
For example, Gordon writes: “. . . , as is well-known, side-effecting I/O does not
combine well with lazy languages. ”. In this paper we want to argue that it is
not that bad, in particular if unsafePerformIO is used. The monadic approach
appears to be not the end of the story: there are several papers that demand
more freedom and/or functionality: [PJGF96,JME99,Jon01], which also propose
a “pure use” of unsafePerformIO. In [Jon03] Simon Peyton Jones proposed
to use commutative monads to obtain a possibility to interchange independent
I/Os.
A (commercial) non-strict functional language with side-effecting I/O
[HNSSH97] provided as interface to the external world a possibility like Haskell’s
unsafePerformIO. Experience from the implementation shows that some stan-
dard optimizations do not work in such a language, or that they only work
as expected if slightly restricted. For example, lambda-lifting as described in
[PJ87] has to be simplified to lifting variables only. The functional language in
[HNSSH97] is an example for a language that could be based on FUNDIO.
In [KSS98,Kut00] the lambda-calculus is built upon a combination of call-by-
need and non-determinism, but there are no constructors. The equality is a
contextual equivalence based on termination and non-termination. It contains a
thorough analysis of the equational theory and develops a proof technique based
on reduction diagrams.
The paper [MSC99] is a non-deterministic lambda calculus with letrec and
constructors intended as a basis for the use of an I/O-interface with fudgets
implemented by a stream processor. The equality is a contextual equivalence
also based on termination and non-termination. The language is restricted such
that only applications (s x) for variables x are permitted. Their proof tech-
nique is based on an abstract machine. FUNDIO does not have the language
restriction, however, the results in this report imply that the abstraction rule
(s t) → (letrec x = s in t) is correct, and hence the equational theories in
FUNDIO and [MSC99] are strongly related.
The approaches in [KSS98,Kut00,MSC99] are unable to distinguish the two (in-
tuitively different) programs in example 6.10, which is remedied in FUNDIO by
adding a notion of trace into the semantics.
Haskell-98 uses monadic I/O, which can be seen as a device that enforces a
predictable sequence of I/Os, together with other “unsafe” I/O-operators like
unsafePerformIO. A current evaluation of the compatibility of the transforma-
tions done by the Haskell-98 compiler and the FUNDIO-semantics is worked
out in [Sab03], the result being that after switching off several optimizations,
Haskell-98 is safe in the sense of the FUNDIO-semantics.
The non-strict functional programming language Clean combines lazy functional
programming with IO and therefore uses a unique type system to ensure a
single-threaded use of external entities. One disadvantage of this approach is
that program transformations and optimizations can only transform a program

8

into another program that has the same normal-order reduction. A rigid notion
of contextual equality of programs under a different sequence of evaluation is
missing in Clean. As mentioned above, graph-rewriting alone is insufficient, as
long as the scope of the sharing is not in the syntax.

2.1.7 Functional-Logic Programming and Non-Deterministic Oper-
ators There is work on functional-logic programs with non-determinism and
sharing (see e.g. [Liu93]). [AHH+02] describe a natural semantics for a functional
logic programming language, which is compatible with the FUNDIO-semantics.
However, there is no treatment of I/O and equality of expressions, in particular
no contextual semantics. A non-deterministic lambda calculus with constraints
is modelled in [MS94].

2.1.8 Constrained Lambda-Calculus The work of L. Mandel
[Man95,CMW96,MS94] on a combination of constraints and lambda-calculus
can also be seen as a variant of combining non-determinism with lambda-
calculus, where non-determinism stems from constraints which may have several
solutions. The calculi in this work are mostly call-by-value (i.e. strict) ones.
The application of the FUNDIO-calculus and its methods to a lazy variant of
the constrained lambda-calculus seems promising and remains to be explored.

3 Overview

FUNDIO is a call-by-need lambda-calculus extended with letrec, case, con-
structors and an IO-function. The evaluation is based on a normal order re-
duction, which is deterministic for all reductions with the exception of an IO-
reduction, which may have several outcomes. The reduction rules are designed
carefully. The guidelines are that copying is avoided where possible, and instead
a sharing using letrec is used; the first principle is that abstraction can be
(syntactically) copied. Copying constructor expressions like (cons s t) is pro-
hibited. Only if a case-reduction requires the information which constructor
is present, there is a desharing that transforms (cons s t) more or less into
(letrec x = s, y = t in cons x y) and then permits to copy (cons x y).
Contextual approximation and equivalence are defined as

s ≤c t iff ∀C[·], (∀P : C[s]⇓(P)⇒ C[t]⇓(P)) ∧ (C[t]⇑ ⇒ C[s]⇑)
s ∼c t iff s ≤c t ∧ t ≤c s

where P denotes the multi-set of IO-pairs made in an evaluation. This means
that equivalence is based on termination for IO-multisets. The second condition
means that either both terms have an error (i.e. there is a reduction to a term
that has no terminating reductions) or both are error-free.
The proofs for correctness of program transformations are based on this con-
textual equivalence and rely on an analysis of overlappings of left hand sides of
reduction rules and on reduction diagrams.

9

The main method for proving program transformations to be correct is a context
lemma which reduces the requirement for all contexts to reduction contexts; and
complete sets of reduction diagrams for the different rules. Finally we show that
all deterministic reduction rules are correct plus several other equalities like
garbage collection. It is also shown that different evaluation strategies can be
used, e.g. modifications using strictness information and also using a strategy
“eager-copy” that connects the evaluation to an abstract machine.

From a Haskell perspective, the IO-call is like a unsafePerformIO combined
with getChar and/or putChar. The treatment of the world is that every time
such a call occurs, there is a fetch of a new world, and after the call, the world
is discarded. This means that FUNDIO-semantics does not model the outside
world and treats all I/Os as independent from each other. Programs which are
different in FUNDIO are also different w.r.t. a more sophisticated theory also
modelling an outside world with a memory. This view also shows how to correctly
connect a lazy functional programming language with a world that may change
during the calls independently from the functional program. Thus this can be
used for measuring physical entities, for random events outside of the program,
and other changing environments.

4 Syntax of FUNDIO

The syntax of the language FUNDIO is as follows:
There are finitely many constructors c, every constructor has an arity ar(c). Let
N ≥ 2 be the number of all constructors. The constructors are indexed, and ci

denotes the ith constructor. The last constructor cN is the constructor called
lambda of arity 0, which however is only permitted in patterns.
The syntax for expressions E, case alternatives Alt and patterns Pat is as follows:

E ::= V | (c E1 . . . Ear(C)) | (IO E) | (case E Alt1 . . . AltN) | (E1 E2)
| (λ V.E) | (letrec V1 = E1, . . . Vn = En in E)

Alt ::= (Pat→ E)
Pat ::= (c V1 . . . Var(c))

where E,Ei are expressions, V, Vi are variables, where c in expressions E
may be ci for i ∈ {1, . . . , N − 1}, and c in patterns Pat may be ci for
i ∈ {1, . . . , N}. The variables in a pattern Pat must be different, and also
new ones. In a case-expression, for every constructor ci, i = 1, . . . , N there
is exactly one alternative with a pattern of the form (ci y1 . . . yn). The expressions
(c E1 . . . Ear(C)) | (IO E) | (case E Alt1 . . . AltN) | (E1 E2)| (λ V.E) | (letrec V1 =
E1, . . . Vn = En in E) are called constructor application, IO-expression, case-
expression, application, abstraction, or letrec-expression, respectively.

10

The constructs case, IO and the constructors ci can only occur in special syntac-
tic constructions. Thus expressions where case, IO, or a constructor is applied
to a wrong number of arguments are not allowed.
The structure letrec obeys the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are commu-
tative, i.e. letrecs with interchanged bindings are assumed to be syntactically
equivalent. We also allow letrecs without bindings. letrec is recursive: I.e., the
scope of xi in (letrec x1 = E1, . . . xj = Ej , . . . in E) is E and all expressions
Ei. This defines closed, open expressions and α-renamings. For simplicity we
use the distinct variable convention. I.e., all bound variables in expressions are
assumed to be distinct. The reduction rules are assumed to implicitly rename
bound variables in the result by α-renaming if necessary to obey this convention.
In FUNDIO, this is only necessary for the copy rule (cp). We also use the con-
vention to omit parenthesis in denoting nested applications: (s1 . . . sn) denotes
(. . . (s1 s2) . . . sn).
To abbreviate the notation, we will sometimes use (case E alts) instead
of (case E Alt1 . . . AltN). Sometimes we abbreviate the notation of letrec-
expression (letrec x1 = E1, . . . xn = En in E), as (letrec Env in E), where
Env ≡ {x1 = E1, . . . xn = En}. This will also be used freely for parts of the
bindings. An empty letrec is written as (letrec {} in t).
Contexts are defined as follows.

C ::= [·] | (C E) | (E C) | (IO C) | (c E . . . E C E . . .) | λx.C |
(case C alts) | (case E Alt1, . . . , (Pat→ C), . . . , Altn) |
(letrec x1 = E1, . . . , xn = En in C) |

(letrec x1 = E1, . . . , xi−1 = Ei−1, xi = C, xi+1 = Ei+1, . . . , xn = En in E)

where c is a constructor ci for i ∈ {1, . . . , N − 1}.

Definition 4.1. The following special context classes are defined: Reduction
contexts R, and weak reduction contexts R−, the latter has no letrec-
expressions above the hole

R− ::= [·] | (R− E) | (case R− alts) | (IO R−)
R ::= R−| (letrec x1 = E1, . . . , xn = En in R−) |

(letrec x1 = R−
1 , . . . , xj = R−

j−1[xj−1], . . . in R−[xj])
where R,R−

j are contexts of class R,R− , respectively

R is called a reduction context and R− is called a weak reduction context.
For a term t with t = R−[t0], we say R− is maximal (for t), iff there is no larger
weak reduction context with this property. For a term t with t = C[t0], we say C
is a maximal reduction context iff C is either

– a maximal weak reduction context, or
– of the form (letrec x1 = E1, . . . , xn = En in R−) where R− is a maximal

weak reduction context and t0 6= xj for all j, or

11

– of the form (letrec x1 = R−
1 , x2 = R−

2 [x1], . . . , xj =
R−

j [xj−1], . . . in R−[xj]), where t = (letrec x1 = t1, . . . in R−[xj]),
R−

1 is a maximal weak reduction context for t1, and the index j of involved
bindings is maximal.

Searching for a maximal reduction context can be seen as an algorithm walking
over the term structure. In implementations of functional programming this is
usually called “unwind”.
For example the maximal reduction context of (letrec x2 = λx.x, x1 =
x2 x1 in x1) is (letrec x2 = [·], x1 = x2 x1 in x1), in contrast to the non-
maximal reduction context (letrec x2 = λx.x, x1 = x2 x1 in [·]).

Definition 4.2. We define surface contexts, meaning that the hole is not in the
body of an abstraction. Let S be the context class of surface contexts defined as
follows:

S ::= [·] | (S E) | (E S) | (c E . . . E S E . . .) |(case S alts)
| (case E . . . (p→ S) . . .) | (IO S)
| (letrec . . . in S) | (letrec . . . , xi = S, . . . in E)

where c may be ci for i = 1, . . . , N − 1.

Note that every reduction context is also a surface context.
Sometimes we will also use multicontexts, which are like contexts, but have sev-
eral holes ·i, and every hole occurs exactly once in the term. We write a multi-
context as C[·1, . . . , ·n], and if the terms si for i = 1, . . . , n are plugged into the
holes ·i, then we denote the resulting term as C[s1, . . . , sn].
The (call-by-need) reduction rules defined in Definition 4.3 follow the principle
of minimizing copying at the cost of perhaps following several indirections. This
holds for the copy rule (cp) as well as (case). The technical reason is that this
principle assures well-behaved reduction diagrams.

Definition 4.3. The reduction rules are defined in figures 1 and 2. The union
of the rules (cp-in) and (cp-e) is called (cp), the union of (llet-in) and (llet-e)
is called (llet), the union of (case-c), (case-lam), (case-in), (case-e) is called
(case), and the union of (IOr-c), (IOr-in), (IOr-e) is called (IOr).
Note that the case-reduction for a constant produces a letrec without variable
bindings.

If the context is important, then we denote it as a label of the reduction.
It will turn out in later sections that, viewed as correct program transformations,
the reductions with the exception of (IOr) may also be used in an arbitrary
context.
Reductions are denoted using an arrow with super and/or subscripts: e.g.

llet
−→.

Transitive closure is denoted by a +, reflexive transitive closure by a ∗. E.g. ∗→
is the reflexive, transitive closure of→. If necessary, we attach more information
to the arrow.

12

(lbeta) ((λx.s) t) → (letrec x = t in s)
(cp-in) (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, Env in C[xj])

→ (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, Env in C[s1])
where s1 is an abstraction

(cp-e) (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, xj+1 = C[xj], Env in s)
→ (letrec x1 = s1, x2 = x1, . . . , xj = xj−1, xj+1 = C[s1], Env in s)

where s1 is an abstraction
(llet-in) (letrec x1 = s1, . . . , xn = sn in (letrec y1 = t1, . . . , ym = tm in r))

→ (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)
(llet-e) (letrec x1 = s1, . . . , xi =

(letrec y1 = t1, . . . , ym = tm in si), . . . , xn = sn in r)
→ (letrec x1 = s1, . . . , xn = sn, y1 = t1, . . . , ym = tm in r)

(lapp) ((letrec xi = ti in t) s) → (letrec xi = ti in (t s))
(lcase) (case (letrec E in t) alts) → (letrec E in (case t alts))
(case-c) (case (ci t1 . . . tn) . . . ((ci y1 . . . yn) → t) . . .)

→ (letrec y1 = t1 . . . yn = tn in t)
(case-lam) (case λx.s . . . (lambda→ t) . . .) → (letrec {} in t)
(case-in) letrec x1 = (ci t1 . . . tn), where n = ar(ci)

x2 = x1, . . . xm = xm−1, . . .
in C[case xm . . . ((ci z1 . . . zn) → t)]
−→
letrec x1 = (ci y1 . . . yn), y1 = t1, . . . yn = tn,

x2 = x1, . . . xm = xm−1, . . .
in C[(letrec z1 = y1, . . . , zn = yn in t)]

(case-e) letrec x1 = (ci t1 . . . tn), where n = ar(ci)
x2 = x1, . . . xm = xm−1, . . .
u = C[case xm . . . ((ci z1 . . . zn) → r1)]

in r2

−→
letrec x1 = (ci y1 . . . yn), y1 = t1, . . . yn = tn,

x2 = x1, . . . xm = xm−1, . . .
. . .
u = C[(letrec z1 = y1, . . . , zn = yn in r1)]

in r2

where yi are fresh variables

Fig. 1. Reduction rules of FUNDIO

13

5 Normal Order Reduction

Definition 5.1. Let t be a (closed) expression. Let R be the maximal reduction

context such that t ≡ R[t′] for some t′. The normal order reduction
n
−→ is defined

by one of the following cases:

1. t′ is a letrec-expression (letrec Env1 in t′′), and R is not trivial.
Then there are 5 cases, where R0 is a reduction context:
(a) R = R0[(IO [·])]. Reduce (IO t′) using (IOlet).
(b) R = R0[([·] s)]. Reduce (t′ s) using (lapp).
(c) R = R0[(case [·] alts)]. Reduce (case t′ alts) using (lcase).
(d) R = letrec Env2 in [·]. Reduce t using (llet-in) by flattening t′ resulting

in (letrec Env1, Env2 in t′′).
(e) R = letrec x = [·],Env2 in t′′′. Reduce t using (llet-e) by flattening t′

resulting in (letrec x = t′′, Env1, Env2 in t′′′).
2. t′ is a constructor application. There are the following cases:

(a) R = R0[case[·] . . .]. Then apply (case-c) to (case t′ . . .).
(b) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env in R−

0 [case xm alts]
where R−

0 is a weak reduction context. Then apply (case-in) to the indi-
cated case-expression.

(c) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1, y =
R−

0 [case xm alts],Env in t′′ where R−
0 is a weak reduction context, and

y is in a reduction context. Then apply (case-e) to the indicated case-
expression.

3. t′ is a constant, and case 2 does not apply. There are the following cases:
(a) R = R0[(IO [·])]. Then apply (IOr-c) to (IO t′).
(b) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env in R−

0 [(IO xm)]
where R−

0 is a weak reduction context. Then apply (IOr-in) to the indi-
cated IO-expression.

(c) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1, y =
R−

0 [(IO xm)],Env in t′′ where R−
0 is a weak reduction context, and y is

in a reduction context. Then apply (IOre) to the indicated IO-expression.
4. t′ is an abstraction. There are the following cases:

(a) R = R0[case[·] . . .]. Then apply (case-lambda) to (case t′ . . .).
(b) R = R0[([·] t′′)] where R0 is a reduction context. Then apply (lbeta) to

(t′ t′′).
(c) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1,Env in R−

0 [xm] where
R−

0 is a weak reduction context. Then apply (cp-in) such that R−
0 [xm] is

changed into R−
0 [t′]

(d) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1, y = R−
0 [xm s],Env in t′′

where R−
0 is a weak reduction context, and y is in a reduction context.

Then apply (cp-e) such that R−
0 [xm s] is reduced to R−

0 [t′ s].
(e) R = letrec x1 = [·], x2 = x1, . . . , xm = xm−1, y =

R−
0 [case xm alts],Env in t′′ where R−

0 is a weak reduction context, and
y is in a reduction context. Then apply (cp-e) such that R−

0 [case xm alts]
is reduced to R−

0 [case t′ alts].

14

(IOlet) (IO (letrec Env in s)) → (letrec Env in (IO s))
(IOr-c) (IO c) → d
(IOr-in) letrec x1 = c, x2 = x1, . . . xm = xm−1, . . . , in C[(IO x1)]

→ letrec x1 = c, x2 = x1, . . . xm = xm−1, . . . in C[d]
(IOr-e) letrec x1 = c, x2 = x1, . . . xm = xm−1, u = C[(IO x1)], Env in r

letrec x1 = c, x2 = x1, . . . xm = xm−1, u = C[d], Env in r

where c, d are constants

The IO-pair of the IOr-reductions is(c, d)

Fig. 2. IO-Reduction rules of FUNDIO

The normal order redex is defined as the subexpression to which the reduction
rule is applied. This includes the letrec -expression that is mentioned in the
reduction rules, for example in (case-e).

The normal order reduction implies that the IO-function IO behaves as a strict
function, and that the case-construct is strict in its first argument. I.e., these rules
can only be applied if the corresponding argument is a constant or a constructor
applicatio, respectively.

Definition 5.2. A value is a constructor application or an abstraction.

The notion of weak head normal form will be required.

Definition 5.3. A weak head normal form (WHNF) is one of the cases:

– A value
– A term of the form (letrec Env in t), where t is a value
– A term of the form letrec x1 = (c t1 . . . tar(c)), x2 = x1, . . . , xm =

xm−1,Env in xm.

Lemma 5.4. For every term t:
if t has a normal-order redex, then this redex is unique.
If the normal-order reduction is not an (IOr), then the normal order reduction
is also unique.
If the normal-order reduction is an (IOr), and the IO-pair is given, then the
normal-order reduction is unique.

Definition 5.5. An error-term t is a term that

1. is not a WHNF, and
2. has no normal order redex, and
3. is not of the form R[x], where R is a reduction context, and x a free variable

in t.

15

An error-term t satisfies one of the following conditions:

– The search for a normal order redex using an unwind-like algorithm does
not terminate. In general, this is the case if t = R1[x] = R2[x] where x is a
bound variable and R1, R2 are two different reduction contexts.

– A term of the form R[IO t′], where t′ is a non-constant constructor ap-
plication or an abstraction; or it is bound to a non-constant constructor
application or to an abstraction, and where R is a reduction context

– A term of the form R[t′ t′′], where t′ is a constructor application or is bound
to a constructor application

Definition 5.6. Let a bot-term be defined as a closed expression that has no
normal order reduction that ends in a WHNF.

Later we will show that all bot-terms are equivalent and that their equivalence
class is the least element in the contextual preorder. We will use bot as a repre-
sentative of a bot-term, if the exact sytactic form is not important.
Note that there are terms t that are neither WHNFs nor have a normal order
redex. For example (IO(λx.x)) or ((cons 1 2) 3), where cons is a constructor
of arity 2. These terms are error-terms and could be considered as violating
type conditions. In FUNDIO these terms will be shown to be equivalent to non-
terminating ones.
Consider the “cyclic term” (letrec x = x in x). The maximal reduction context
for this term is (letrec x = [·] in x). It is easily seen that there is no normal
order reduction defined for this term.

6 Contextual Equivalence

We define contextual equivalence w.r.t. the IO-behavior of terminating normal
order sequences. The intuition is that terms are equivalent if the IO-actions of
terminating normal order reduction sequences are equal as multiset, and if either
both have an error or both are error-free. I.e. have a normal order reduction to
a bot-term, or both don’t permit such a reduction. Using multisets enables the
commutation of IO-actions.

Definition 6.1. An IO-pair is a pair (a, b) of constants. An IO-sequence is a
finite sequence of IO-pairs. An IO-multiset is a finite multiset of IO-pairs.
The IO-sequence IOS(s1 → s2 → . . . → sn), and the IO-multiset
IOM(s1 → s2 → . . . → sn) of a reduction sequence s1 → s2 → . . . → sn

are defined as follows:

– The IO-pair of a single (IOr)-reduction C[IO c]→ C[d] (analogously for the
other IOr-reductions) is the pair of output-input-values: (c, d). Non-(IOr)-
reductions have no IO-pair.

16

– Let s1 → s2 → . . .→ sn be a reduction sequence.
If s1 → s2 is not an (IOr)-reduction, then IOS(s1 → s2 → . . . → sn) :=
IOS(s2 → . . .→ sn).
If (a, b) is the IO-pair for the (IOr)-reduction s1 → s2,
then IOS(s1 → s2 → . . .→ sn) := (a, b), IOS(s2 → . . .→ sn).

– Let s1 → s2 → . . .→ sn be a reduction sequence.
Then IOM(s1 → s2 → . . . → sn) is defined as the multiset of the elements
of IOS(s1 → s2 → . . .→ sn).

For a term t and a finite IO-multiset P , we write t⇓(P) iff there is a normal
order reduction sequence to WHNF starting from t with IO-multiset P . Other-
wise, we write t⇑(P). If t⇓(P), we say that t is terminating for IO-multiset P .

We say a closed term t has a bot-reduction (notation: t⇑), iff there is a normal

order reduction t
n,∗
−→ t′, and t′ is a bot-term.

Definition 6.2. (contextual preorder and equivalence) Let s, t be terms.
Then:

s ≤c t iff ∀C[·]
(
∀P : C[s]⇓(P)⇒ C[t]⇓(P)

)
∧ (C[t]⇑ ⇒ C[s]⇑)

s ∼c t iff s ≤c t ∧ t ≤c s

Note that we permit contexts such that C[s] may be an open term.
We define some tools and notions to deal with bot-reductions.

Definition 6.3. Let −→P be a finite IO-sequence and let t be a term. We say that
−→
P is valid for t, iff there is a normal order reduction t

n,
−→
P
−→ t′ for some t′. This

reduction is called the normal order reduction of t along −→P .

For a term t and an IO-sequence −→P , we write t↓(−→P) iff t
n,
−→
P
−→ t′ and t′ is a

WHNF.
For a closed term t and a finite IO-sequence −→P , we write t⇓(−→P) iff the following

holds: if −→P is valid for t then t
n,
−→
P
−→ t′ where t′ has a normal-order reduction to

a WHNF.

Lemma 6.4. t⇑ holds iff there is an IO-sequence −→P , such that t
n,
−→
P
−→ t′, and t′

is a bot-term.

Note that given a term t, and a valid IO-sequence −→P , the normal-order reduction
along −→P is unique. Note also that an open term t may not have any normal order
reduction to a WHNF, but we do not consider this as equivalent to bot, e.g. x
is such a term.
Given an IO-multiset P , and an expression t, there may be different normal order
reduction sequences starting with t with IO-multiset P , such that the normal
order reductions are not prefixes of each other. The divergence of a term can also

17

be formulated as follows: it is possible to reduce the program such that there
is no escape: there are no more terminating normal-order reductions. If a term
has an infinite normal-order reduction with an infinite IO-multiset, this is not
treated as an error as long as there are remaining possibilities to reach a WHNF
by normal order reduction.
The intuition behind the contextual preorder is that not only the termination
of the program is used as observation, but also the question-answer pairs of an
evaluation and the error-behavior (or the reductions to bot-terms). Since we use
multisets, this concept will permit interchanging question-answer pairs. It has
similarities to a trace semantics, though we allow commutativity.

Lemma 6.5. The second condition for contextual preorder ∀C[·] : C[t]⇑ ⇒
C[s]⇑ can be reformulated as

∀C[·] : (∀−→P : C[s]⇓−→P)⇒ (∀−→P : C[t]⇓−→P)

Lemma 6.6. s ≤c t is equivalent to:

∀C[·] C[s], C[t] are closed⇒
(
∀P : C[s]⇓(P)⇒ C[t]⇓(P)

)
∧ (C[t]⇑ ⇒ C[s]⇑)

Proof. One direction is trivial. The proof of the other direction will appear in
section 23. ut
A precongruence ≤c is a partial order on expressions, such that s ≤c t ⇒
C[s] ≤c C[t] for all contexts C. A congruence is a precongruence that is also
an equivalence relation.

Proposition 6.7. ≤c is a precongruence, and ∼c is a congruence.

Proof. Let s ≤c t, t ≤c r, let C be a context, and P be an IO-multiset such that
C[s]⇓(P). Then C[t]⇓(P). Since t ≤c r, we have also C[r]⇓(P).
For the other part let C[r]⇑. Then C[t]⇑ holds, and from s ≤c t, we also have
C[s]⇑. Hence s ≤c r.
To show the congruence property, let s ≤c t and let C be a context. To show
C[s] ≤c C[t], let D be a further context. If D[C[s]]⇓(P) for an IO-multiset P ,
we can use the context DC for s ≤c t, and see that D[C[t]]⇓(P).
To show that D[C[t]]⇑ ⇒ D[C[s]]⇑ for all contexts D, use the context DC and
the assumption s ≤c t.
Concluding, this shows C[s] ≤c C[t]. ut

The following lemma shows that for terms s, t with s ∼c t, the first condition
in the definition implies that either both terms have an infinite normal order
reduction with infinitely many IOs, or both terms don’t have such a reduction.

Lemma 6.8. Let t be a term such that for every n > 0 there is a P with |P | ≥ n
and t⇓(P). Then t has a non-terminating n-reduction with infinitely many IOs.

18

Proof. It is no restriction to assume that t has a normal order (IOr)-redex by
perhaps reducing until such a term is reached. Consider the tree of all reductions,
structured according to the IO-sequences, where every node is a term with an
normal order redex that is an IO-expression, and the connection from a node to
its sons corresponds to different answers. The leaves may be ⊥, if the n-reduction
is non-terminating or results in an error-term without IO-reduction, or it is a
term in WHNF.
Then this tree has finite branching, and by the assumption, there is no bound
on the depth of the tree, hence by Königs Lemma there is an infinite branch,
hence an infinite reduction. ut

6.1 Examples and Discussion

In this subsection we discuss the usefulness, appropriateness and consequences
of the definition of contextual equivalence in Definition 6.2 by giving examples
and counter-examples.

Programs with commuted IO-actions may be contextually equal:

Example 6.9. Let P1 be a program that asks for your name and then for your
date of birth, and let P2 be the program that asks first for your date of birth
and then for your name. Both programs return a pair of the values. We simply
assume that strings are constants.
P1 :=

letrec b = IO "date-of-birth?"
n = IO "Your-name?"

in case b
(c1 -> case n (c1 -> (b,n) ...))
(c2 -> case n (c1 -> (b,n) ...))
...

P2 :=

letrec b = IO "date-of-birth?"
n = IO "Your-name?"

in case n
(c1 -> case b (c1 -> (b,n) ...))
(c2 -> case b (c1 -> (b,n) ...))

Then P1 and P2 have the same behavior in the empty context, since the IO-
multisets {("date-of-birth?", ”01011990”), ("Your-name?", ”Jim”)} can be
used for the normal-order reductions of P1 as well as P2. We are sure that these
terms are contextually equal, the methods for proving this have to be developed.

Example 6.10. Consider two programs computing the and, or, respectively of
two boolean inputs.
We assume there are boolean constants True, False, and that the definitions of
and and or are:

19

and := λx, y.case x (True→ y) (False→ False) . . .
or := λx, y.case x (True→ True) (False→ y) . . .

and-prog := and (IO True) (IO True)
or-prog := or (IO True) (IO True)
The two programs and-prog and or-prog are contextually different in FUNDIO:
The IO-multiset

M := {(True, True), (True, False))}

together with the context

C := (case [·] (False→ False) (True→ bot) . . .)

distinguishes the two programs. Here we let bot be a non-terminating expression.
We have C[and-Prog]⇓M , since the reduction that uses the multiset M results
in False, and in this case the program terminates. But C[or-Prog]⇑(M).

This example is a hint that FUNDIO with the defined contextual equivalence is
better suited for functional IO-programs, since it distinguishes more intuitively
different programs with I/O than the non-deterministic approach in [Kut00]. In
this approach, the expression IO True has to be encoded as a nondeterministic
choice: (choice True False). The contextual equivalence in [Kut00] cannot
distinguish the two programs, since it is based on the sets of possible outcomes,
which is {True, False} in both cases.
The calculus in [MSC99] is also not able to distinguish the and from the or-
program.

Example 6.11. This example shows that it makes sense to require that the nor-
mal order reduction terminates with a WHNF in the definition of contextual
equivalence.
Suppose we have an appropriate encoding of non-negative integers and ∗. Con-
sider an expression s ∗ t, where ∗ is infix product, and s, t may contain IO-calls
in their normal order evaluation. Since product is strict in both arguments, it
should not matter whether s or t is evaluated first. However, if s, t are both non-
terminating, making different IOs, the reduction “first s then t” and “first t then
s” were distinguishable under a definition of contextual equivalence that takes
infinite reductions into account. Our definition 6.2 prevents this by comparing
the IO-multisets only for terminating normal order reductions. The IO-multisets
of the two different reductions of s ∗ t are in this case the union of the two
IO-multisets for s and t, and thus equal.

The contextual equivalence as defined above is able also to compare potentially
non-terminating programs w.r.t. their IO-behavior. It also shows that it is crucial
for comparing programs that there are enough possibilities to regularly exit the
program:

Example 6.12. As an example assume there is a program P1 that computes
the decimal representation of π, and outputs the digits one by one, in the right

20

sequence, and asking after every printed digit “n: more? Y/N”. If Y is the answer,
then the next digit and question is printed, otherwise the program reduces to a
WHNF.
Let P2 be a program that also outputs the digits of π, also asking : “more?
Y/N” after every digit, however, the sequence of digits is different, say
2, 1, 4, 3, 6, 5, 8, 7,
The definition of contextual equivalence shows that these two programs are
different, since P2 has no normal order reduction with IO-multiset {(“3 :
more?Y/N”, N)}.
This means that a program that interchanges the output of the digits of π is
different from P1. The reason is that P1 is able to interrupt after every printed
digit.

Example 6.13. The so-called η-rule is not a correct program transfor-
mation in FUNDIO: case True (True ->True)(False->True) ... and
case (\x-> True x) (True->True)(False->True) ... (lambda->bot) are
contextually different, since the first has a normal order reduction to a WHNF,
while the second doesn’t.

Definition 6.14. Define the expression choice as follows:

choice := \x,y . if (IO 0) then x else y

where the if-expression is a case of boolean values.

This expression behaves like a non-deterministic selection between two expres-
sions, since the answer may be True or False. Concerning equality of programs,
it is different than in other approaches, since the number of choices is counted,
even whether the right or left expression was selected is significant. Thus the
examples below should not only rely on counting the choices to permit a fair
comparison with program-equivalence in other approaches.
The following examples justify the clause on divergence in the definition of con-
textual equivalence.

Example 6.15. This example shows that FUNDIO should also look for non-
terminating reductions in the definition of contextual equality of expressions.
The programs

s1 = (choice (choice 1 bot) (choice 2 3))
s2 = (choice (choice 1 2) (choice 2 3))

are not distinguishable using a contextual equivalence that is based only on
convergence, since e.g. in the empty context, the expressions have the same
results.
However, they are clearly 6∼c, since s1⇑, but not s2⇑.

Example 6.16. This example shows that the contextual equivalence should not
use the criterion that equal expressions should have the same non-termination
behavior for all IO-multisets. Let ∗ be multiplication, strict in both arguments
and appropriately encoded in FUNDIO.

21

s := choice 1 1
t := (choice (choice 2 bot) (choice 2 2))
p1 := s*t
p2 := t*s

The program p2 has a loop after the sequence of answers True,False, whereas
the program p1 has a loop after the answer-sequences True,True,False and
False,True,False.
The definition of ∼c is such that this is no problem. We are sure that p1 ∼c p2
can be proved.

Example 6.17. In non-deterministic programs an often referred-to example is
the comparison of two programs P1, P2, the first evaluates to a constant a, the
second is a non-deterministic choice between a and ⊥.

P1 := a
P2 := choice a bot

In FUNDIO, these two programs are clearly different: In the empty context,
P1 has a terminating normal-order reduction with empty IO-multiset, whereas
P2 has no terminating normal-order reduction with empty IO-multiset.
Making the example fair, i.e. independent of counting choices, we modify it to

P1’ := choice a a
P2’ := choice a bot

This doesn’t make the two terms equal modulo ∼c, since P2′⇑, but not P1′⇑.

Example 6.18. Simon Peyton Jones in [Jon01] discusses the comparison of two
programs loop and loopX, the first is nonterminating, the second prints x for-
ever.
Programs with this behavior are all equivalent to ⊥ in FUNDIO, since there is
no escape from both programs. Adding a legal escape in the print program, e.g.
between printing looking for an interrupt-bit and then going to a stop, giving
the program loopx’ would make the two programs different, since now there is
a legal possibility to stop, and hence to reach a WHNF.

Example 6.19. The same arguments hold for an operating system. FUNDIO
only requires that the operating system always has a legal possibility to stop.
However, if the operating system is in a loop with IO, and there is no other
escape than switching the power off, then this is treated as ⊥.

Example 6.20. Consider the programs

p1 := choice (choice p1 p1) (choice 1 1)
p2 := choice (choice p2 p2) (choice 1 bot)

These programs are equal w.r.t. comparing them only for convergence on all
multisets, and also both have a non-terminating reduction. However, we have
p1 6 ⇑, but p2⇑, thus they are not equivalent in FUNDIO.

22

Example 6.21. This example shows that the let-over-lambda rule is not correct
in FUNDIO. Consider the programs

p1 := let z = (let x = choice 1 2 in \y.x) in (z 0) + (z 0)
p2 := let z = (\y.choice 1 2) in (z 0) + (z 0)

These programs are not contextually equivalent, since p1 has only the possibili-
ties {2, 4}, whereas p2 has the possibilities {2, 3, 4}.

7 Context Lemma

The so-called Context Lemma restricts the criterion for contextual equivalence
to reduction contexts. These are also infinitely many contexts, but it is of great
value in proving the conservation of contextual equivalence by certain reductions,
since there is no need to introduce parallel reductions as a generalization of
Barendregt’s 1-reduction.
We split the proof of the context lemma into two lemmas.

Lemma 7.1. Let s, t be terms. If for all reduction contexts R and all IO-
multisets P (R[s]⇓(P)⇒ R[t]⇓(P)), then
∀C,∀P : (C[s]⇓(P)⇒ C[t]⇓(P)).

Proof. In this proof we will use multicontexts, which are generalizations of con-
texts having several holes, and every hole is mentioned in the argument list of
the multicontext.
We prove the more general claim:

For i = 1, . . . , n, let si, ti be expressions. Let the following hold:
∀i : ∀ reduction contexts R : ∀P : (R[si]⇓(P)⇒ R[ti]⇓(P)).
Then ∀C,∀P : C[s1, . . . , sn]⇓(P)⇒ C[t1, . . . , tn]⇓(P).

Assume the claim is false. Then there is a counterexample: I.e., there is a mul-
ticontext C, an IO-multiset P , a number n ≥ 1 and terms si, ti for i = 1, . . . , n,
such that ∀i : ∀ reduction contexts R : ∀P ′: (R[si]⇓(P ′) ⇒ R[ti]⇓(P ′)), and
C[s1, . . . , sn]⇓(P), but C[t1, . . . , tn]⇑(P).
We select the counterexample minimal w.r.t. the following lexicographic order-
ing:

1. the number of normal order reduction steps of a terminating reduction of
C[s1, . . . , sn] which has P as corresponding IO-multiset.

2. the number of holes of C.

The distinction is whether or not some hole of C[·1, . . . , ·n] is in a reduction
context. The definition of reduction contexts and some reasoning shows that the
unwind applied to C[·1, . . . , ·n] either hits some hole, or doesn’t hit a hole, and
moreover, this does not change if the holes are filled.

If one hole of C[·1, . . . , ·n] is in a reduction context, then we assume wlog that
it is the first one.

23

Then C[·, t2 . . . , tn] is a reduction context. Let C ′ := C[s1, ·2, . . . , ·n]. Since
C ′[s2, . . . , sn] ≡ C[s1, . . . , sn], they have the same normal-order reduction for the
IO-multiset P . Since the number of holes is smaller, we obtain C ′[t2, . . . , tn]⇓(P),
which means C[s1, t2, . . . , tn]⇓(P). Since C[·, t2, . . . , tn] is a reduction context,
the preconditions of the lemma applied to s1, t1 imply C[t1, t2, . . . , tn]⇓(P), a
contradiction.

If no hole of C[·1, . . . , ·n] is in a reduction context, then C[s1, . . . , sn] as well as
C[t1, . . . , tn] can be reduced using the same normal order reduction at the same
position. To verify this, we have to check that for a normal order redex, the parts
that are modified are also in a reduction context.

– in a (cp) normal order reduction, every superterm of the to-variable position
is in a reduction context.

– For normal order reductions (llet), (lapp), (lcase), (IOlet), the inner letrec is
in a reduction context.

– The constructor application in a (case) is in a reduction context.
– the constant in the (IO)-reduction is in a reduction context.

The following may happen to the terms si, ti in the holes:

– If the hole is in the wrong alternative of a (case)-expression that is reduced,
then the hole is eliminated after reduction.

– If the hole is not in the wrong alternative of a (case)-reduction, and if the
reduction is not a (cp), then the terms si, ti in the holes are unchanged and
also not copied, but perhaps at a different position in the result.

– if the reduction is a (cp), and the hole is not in the copied expression, then
again the terms si, ti in the holes are unchanged and also not copied.

– if the reduction is a (cp), and the hole is within the copied expression, then
the terms si, ti in the holes may be duplicated giving s′i, t

′
i. Since the reduc-

tion is a normal order reduction, and since we have assumed the “distinct
bound variable convention”, the renaming concerns the free variables in si, ti
which are bound in C. For a fixed i, we can use the same renaming ρi for the
bound variables in si and ti, so we have ρi(si) = s′i, ρi(ti) = t′i. This means
that the assumption holds also for the new pair of terms:

∀i : ∀ reduction contexts R : ∀P : (R[s′i]⇓(P)⇒ R[t′i]⇓(P)).

If the normal order reduction is non-(IOr), then we can use induction on the

number of
n
−→-reductions.

If the normal order reduction is an (IOr)-reduction for the pair (c, d), then the
IO-multisets have to be checked:
A new smaller example is constructed with an IO-multiset P ′ := P \

{(c, d)}. The reduction can be written as C[s1, . . . , sn]
n,(c,d)
−→ C ′[s1, . . . , sn] and

C[t1, . . . , tn]
n,(c,d)
−→ C ′[t1, . . . , tn] with C ′[s1, . . . , sn]⇓(P ′). Since the number of

normal order reductions is strictly smaller, we have also C ′[t1, . . . , tn]⇓(P ′). But

24

then we have C[t1, . . . , tn]⇓(P), which contradicts the assumption that this is a
counterexample.
Now we look at the base case. If C has no holes, then a counterexample is
impossible.
If the number of normal order reduction steps is 0, then C[s1, . . . , sn] is already a
WHNF. Since we can assume that no hole is in a reduction context, the context
itself is a WHNF, and thus this holds for C[s1, . . . , sn] as well as C[t1, . . . , tn],
which is impossible.
Concluding, we have proved that there is no counterexample to the general claim,
hence the lemma holds, since it is a specialization. 2

Lemma 7.2. Let s, t be terms. If for all reduction contexts R: (∀−→P :
R[s]⇓(−→P))⇒ (∀−→P : R[t]⇓(−→P)), then ∀C : (∀−→P : C[s]⇓(−→P))⇒ (∀−→P : C[t]⇓(−→P)).

Proof. The proof can be generated from the proof of Lemma 7.1 with some
modifications.
We prove the more general claim:

For i = 1, . . . , n, let si, ti be expressions. Let the following hold:
If ∀i : ∀ reduction contexts R : (∀−→P : R[si]⇓(

−→
P))⇒ (∀−→P : R[ti]⇓(

−→
P)),

then ∀C : (∀−→P : C[s1, . . . , sn]⇓(−→P))⇒ (∀−→P : C[t1, . . . , tn]⇓(−→P)).

Assume that the claim is false. Then there is a counterexample: I.e., there is
a multicontext C, a number n ≥ 1 and terms si, ti for i = 1, . . . , n, such that
∀−→Q : C[s1, . . . , sn]⇓(−→Q)), but for some −→P : ¬(C[t1, . . . , tn]⇓(−→P)).

This means that −→P is valid for C[t1, . . . , tn], and that C[t1, . . . , tn]
n,
−→
P
−→ bot where

bot is a bot-term.
We select the counterexample minimal w.r.t. the lexicographic ordering with the
following two components:

1. If −→P is valid for C[s1, . . . , sn], then the minimal number of normal order
reduction steps of C[s1, . . . , sn] along −→P and then to a WHNF.
If −→P is not valid for C[s1, . . . , sn], then the maximal number of normal order
reduction steps of C[s1, . . . , sn] along

−→
P ′ where

−→
P ′ is a prefix of −→P . I.e. until

there is an (invalid (IOr)-redex.
2. the number of holes of C.

If a hole of C[·1, . . . , ·n] is in a reduction context, then we assume wlog that it
is the first one.
Then C[·, t2 . . . , tn] is a reduction context. Let C ′ := C[s1, ·2, . . . , ·n]. Note that
C ′[s2, . . . , sn] ≡ C[s1, . . . , sn], and that the first component of the induction
measure is the same. Since the number of holes of C ′ is smaller, we obtain ∀−→Q :
C ′[t2, . . . , tn]⇓(−→Q), which means ∀−→Q : C[s1, t2, . . . , tn]⇓(−→Q). Since C[·, t2, . . . , tn]
is a reduction context, the preconditions of the lemma applied to s1, t1 imply in
particular: C[t1, t2, . . . , tn]⇓(−→P), a contradiction.

25

If no hole of C[·1, . . . , ·n] is in a reduction context, then C[s1, . . . , sn] as well as
C[t1, . . . , tn] can be reduced using the same normal order reduction at the same
position.
From here on we can use the same considerations as in the proof of the previous
lemma.
If the normal order reduction is non-(IOr), then we can use induction on the

number of
n
−→-reductions.

If the normal order reduction is an (IOr)-reduction for the pair (c, d), which is
the first element of −→P , then the IO-sequences have to be checked:
A new smaller example is constructed with an IO-sequence

−→
P ′ with (c, d),

−→
P ′ :=

−→
P . The reduction can be written as C[s1, . . . , sn]

n,(c,d)
−→ C ′[s1, . . . , sn] and

C[t1, . . . , tn]
n,(c,d)
−→ C ′[t1, . . . , tn] with C ′[s1, . . . , sn]⇓(

−→
P ′). Since the first com-

ponent of the measure is strictly smaller, we have also C ′[t1, . . . , tn]⇓(
−→
P ′). But

then we have C[t1, . . . , tn]⇓(−→P), which contradicts the assumption that this is a
counterexample.
Now we look at the base case. If C has no holes, then a counterexample is
impossible.
If the number of normal order reduction steps is 0, then there are two cases:

1. C[s1, . . . , sn] is already a WHNF. Since no hole is in a reduction context,
the context itself is a WHNF, and thus this holds for C[s1, . . . , sn] as well
as C[t1, . . . , tn], which is impossible.

2. The next normal order reduction is impossible, since the next reduction
would be an invalid IOr-reduction. This is not possible, since then there
would be no normal order reduction from C[t1, . . . , tn] to a bot-term.

Concluding, we have proved that there is no counterexample to the general claim,
hence the lemma holds, since it is a specialization. 2

Combining the two lemmas 7.1 and 7.2, we obtain:

Lemma 7.3. (Context Lemma) Let s, t be terms. If for all reduction contexts
R: ∀P : (R[s]⇓(P)⇒ R[t]⇓(P)), and
if for all reduction contexts R: (∀−→P : R[s]⇓(−→P))⇒ (∀−→P : R[t]⇓(−→P)),
then s ≤c t.

In the following, we will show that several reductions keep contextual equiva-
lence. However, all these reductions only change the terms and their normal order
reductions in a controlled way. The following sufficient criterion for contextual
equivalence allows easy proofs and is more appropriate for proving correctness
of these reductions.

Lemma 7.4. Let s, t be terms. A sufficient condition for s ≤c t is:

∀R[·]∀−→P : (R[s]↓(−→P)⇒ R[t]↓(−→P))
∧ (−→P valid for R[t]⇒ −→P valid for R[s])

26

Proof. We show that both conditions of the two parts of the context lemma hold.
If ∀R[·]∀−→P : R[s]↓(−→P) ⇒ R[t]↓(−→P) holds, then of course also ∀R[·]∀P :
R[s]⇓(P))⇒ R[t]⇓(P). Hence we can apply Lemma 7.1.
For the second part, assume that the precondition

(∀−→P : R[s]⇓(−→P))⇒ (∀−→P : R[t]⇓(−→P))

is wrong.
This means ∀−→P : R[s]⇓(−→P) holds, but there is a −→P0, such that R[t]⇓(−→P0) is
wrong. Then the normal-order reduction of R[t] along −→P0 reaches a bot-term.
The assumption on validity implies that the normal-order reduction of R[s] along
−→
P0 also reaches a term without a normal order reduction. This contradicts the
assumption.
Summarizing, this means that the condition of the second context lemma 7.2
holds. From the context lemmas we can conclude that s ≤c t. ut

8 Correctness of Reductions

We show that non-IO-reductions of FUNDIO keep contextual equivalence.

Definition 8.1. We define different kinds of internal reductions.
An internal reduction is any non-normal order reduction. We denote such a

reduction as
i
−→, perhaps with further labels.

An R-internal reduction is a non-normal order reduction, which takes place in
a reduction context, i.e. the redex is in a reduction context. We denote such a

reduction as
iR
−→.

An S-internal reduction is a non-normal order reduction, which takes place in a

surface context. We denote such a reduction as
iS
−→.

Note that we mainly use iR-reductions, which is different from the definition of
internal reductions in [Bar84], however, it is sufficient to show correctness of a
lot of program transformations if the context lemma is used.

Lemma 8.2. There are no R-internal reductions of type (lbeta), (lapp), (lcase),
(case-c), (case-lam), (IOlet).

Proof. Whenever such a reduction is in a reduction context, it is already a normal
order reduction, which can be checked by going through all the cases. 2

The missing reductions are (llet), (cp), and (case-e), (case-in), which require a
special treatment.

Example 8.3. There are (case)-reductions that are in a reduction context, but
not normal order:
(letrec x = a, y = case x (a → b) alts in x)

iR
−→ (letrec x = a, y =

(letrec {} in b) in x). The same for (IOr).

27

Definition 8.4. A program transformation T from terms to terms is correct,
iff for all t, t′: t T t′ implies that t ∼c t′

Proposition 8.5. The reductions (lbeta), (lapp), (lcase), (case-c), (case-lam),
(IOlet) are correct program transformations.

Proof. We use the fact that normal order reductions of type (lbeta), (lapp),

(lcase), (case-c), (case-lam), (IOlet) are unique. Let s
a
−→ t, where a ∈ {(lbeta),

(lapp), (lcase), (case-c),(case-lam), (IOlet)}. We have to show that s ∼c t. Using
the context lemma 7.3 and lemma 7.4, we see that it is sufficient to show the
following for all reduction contexts R:
For all IO-sequences −→P :−→
P is valid for R[s] ⇔ −→P is valid for R[t] and
R[s]↓(−→P)⇒ R[t]↓(−→P) and also the reverse: R[t]↓(−→P)⇒ R[s]↓(−→P).

Lemma 8.2 shows that s
i
−→ t implies s

n,a
−→ t, and that the normal-order reduc-

tion is unique. Since R is a reduction context, we have R[s]
n,a
−→ R[t]. We have

that R[s]↓(−→P) implies R[t]↓(−→P), since the normal-order reduction step is unique
and the first reduction does not use IO-pairs. If R[t]↓(−→P), then we also have
R[s]↓(−→P), since R[s] normal-order reduces to R[t] without using IO-pairs.
The equivalence of validity also holds, since the reduction a does not use an
IO-pair.

2

Note that (IOr) is not correct as a program transformation, since (IO d) may
reduce to different constants, which are clearly not contextual equivalent.

9 Complete Sets of Commuting and Forking Diagrams

For proving correctness of further program transformations, we require the no-
tions of a complete set of commuting diagrams and of a complete set of forking
diagrams.
A reduction sequence is of the form t1 → . . . → tn, where ti are terms and
ti → ti+1 is a FUNDIO-reduction, if not specified otherwise, as defined in defi-
nition 4.3. In the following definition we describe transformations on reduction
sequences. Therefore we use the notation

iX,red,P0
−−−−→ .

n,a1,P1
−−−−→ . . .

n,ak,Pk

−−−−→ ;
n,b1,P ′

1
−−−−→ . . .

n,bm,P ′
m

−−−−→ .
iX,red1,P ′′

1
−−−−→

iX,redh,P ′′
h

−−−−→

for transformations on reduction sequences. Here the notation
iX,red,P
−−−−→ means a

reduction with iX ∈ {iC, iR, iS}, red is a reduction from FUNDIO, and P, Pi are
the IO-pairs of the reductions, if necessary. Pi may also be variables to indicate
that certain IO-pairs are retained during the transformation.
The above transformation rule can be applied to the prefix of the reduction

sequence RED, if the prefix is: s
iX,red,P0
−−−−→ t1

n,a1,P1
−−−−→ . . . tk

n,ak,Pk

−−−−→ t. Since we will

28

use sets of transformation rules, it may be the case that there is a transformation
rule in the set, where the pattern matches a prefix, but it is not applicable, since
the right hand side cannot be constructed.
We will say, a transformation rule is applicable to the prefix of the reduction

sequence RED, where the prefix is: s
iX,red,P0
−−−−→ x1

n,a1,P1
−−−−→ . . . xk

n,ak,Pk

−−−−→ t, iff the
following holds:

∃y1, . . . , ym, z1, . . . , zh−1 :

s
n,b1,P ′

1
−−−−→ y1 . . .

n,bm,P ′
m

−−−−→ ym

iX,red1,P ′′
1

−−−−→ z1 . . . zh−1

iX,redh,P ′′
h

−−−−→ t

The transformation consists in replacing this prefix with the result:

s
n,b1,P ′

1
−−−−→ t′1 . . . t′m−1

n,bm,P ′
m

−−−−→ t′m
iX,red1,P ′′

1
−−−−→ t′′1 . . . t′′h−1

iX,redh,P ′′
h

−−−−→ t

where the terms in between are appropriately constructed.

Definition 9.1.

• A complete set of commuting diagrams for the reduction
iX,red,P0
−−−−→ is a set of

transformation rules on reduction sequences of the form

iX,red,P0
−−−−→ .

n,a1,P1
−→ . . .

n,ak,Pk

−→ ;
n,b1,P ′

1
−→ . . .

n,bm,P ′
m

−→ .
iX,red1,P ′′

1
−−−−→

iX,redk′ ,P
′
k′

−−−−→ ,

where k, k′ ≥ 0,m ≥ 1, such that in every reduction sequence t0
iX,red,P0
−→ t1

n
−→

. . .
n
−→ th, where th is a WHNF, at least one of the transformation rules is

applicable to a prefix of the sequence.

In the special case h = 1, we require that in t0
iX,red,P0
−→ t1, the term t1 is a

WHNF, and the term t0 is not a WHNF.

• A complete set of forking diagrams for the reduction
iX,red,P
−−−−→ is a set of trans-

formation rules on reduction sequences of the form

n,a1,P1
←−− . . .

n,ak,Pk

←−− .
iX,red,P0
−−−−→ ;

iX,red1,P ′
1

−−−−→
iX,redk′ ,P

′
k′

−−−−→ .
n,b1,P ′′

1
←−− . . .

n,bm,P ′′
m

←−− ,

where k, k′ ≥ 0,m ≥ 1, such that for every reduction sequence th
n
←−− . . . t2

n
←−−

t1
iX,red,P0
−−−−→ t0, where th is a WHNF, at least one of the transformation rules from

the set is applicable to a suffix of the sequence. In the special case that h = 1,

we require that in t1
iX,red,P0
−−−−→ t0, the term t1 is a WHNF, and that t0 is not a

WHNF.

The two different kinds of diagrams are required for two different parts of the
proof for the contextual equivalence of two terms.
In the following, the verification of the reduction diagrams is done mostly on
paper. It is necessary to extend the work on checking and testing the diagrams
automatically as already done for a simpler language in [Hub00].

29

10 Correctness of (llet)

We define the reduction (lll) as the union of {llet, lapp, lcase, IOlet}. The nota-

tion
(lll)∗

−→ then means a reduction sequence of an arbitrary number of reductions
from the set {llet, lapp, lcase, IOlet}.

Lemma 10.1. The reduction (lll) cannot be applied infinitely often.

Proof. Let the depth of a position p ignoring intermediate letrec-expressions
be the function dpl(p). In every (lll)-reduction, the following number is strictly
reduced:

The sum of the number of letrec -expressions in t plus the sum of all
dpl(p) where p is the position of a letrec-subexpression.

Since this number is strictly reduced by every (lll)-reduction, termination holds.
2

Lemma 10.2. If a letrec occurs in a reduction context, then it can be shifted

upwards to the top using
iR,lll
−→ - and normal-order (lll)-reductions:

1. R−[letrec Env in t]
(n,lll)∗

−→ letrec Env in R−[t].
2. If R = (letrec x1 = R−

1 [·], . . . , xj = R−
j−1[xj−1], Env1 in R−[xj]) is a

reduction context, then
(letrec x1 = R−

1 [letrec Env2 in t], . . . , xj = R−
j−1[xj−1], Env1 in R−[xj])

(n,lll)∗

−→
(letrec x1 = R−

1 [t], . . . , xj = R−
j−1[xj−1], Env1, Env2 in R−[xj]).

3. (letrec Env1 in R−[letrec Env2 in t])
(n,lll)∗

−→
(letrec Env1, Env2 in R−[t])

Proof. This follows by checking all the cases of the reductions
{llet, lapp, lcase, IOlet}. ut

In the following
(n,a,P)
−→ means a normal-order reduction with an arbitrary re-

duction a, and if it is an (IOr)-reduction then P denotes the IO-pair of the
reduction.

Lemma 10.3. A complete set of commuting diagrams for
iR,llet
−→ is:

(iR,llet)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,llet)
−→

(iR,llet)
−→ ·

(n,lll)+

−→ ;
(n,lll)+

−→
(iR,llet)
−→ ·

(n,lll)+

−→ ;
(n,lll)+

−→ ·
(iR,llet)
−→

Proof. An (iR,llet)-reduction has the following possibilities:

30

1. it is a (llet-e) in the empty context, and the inner letrec-term is not in a
reduction context. Then we can only have the commuting case.

2. it is in a nontrivial reduction context and the normal order reduction is a
(llet). There are 4 combinations of the subcases of (llet), but there may be
six reduction completions.

(iR, llet-in).(n, llet-e) ; (n, llet-e).(n, llet-in)
(iR, llet-in).(n, llet-in) ; (n, llet-in).(n, llet-in)
(iR, llet-e).(n, llet-e) ; (n, llet-in).(iR, llet-in)
(iR, llet-e).(n, llet-e) ; (n, llet-in).(n, llet-in)
(iR, llet-e).(n, llet-in) ; (n, llet-in).(iR, llet-e)
(iR, llet-e).(n, llet-in) ; (n, llet-in).(n, llet-e)

An illustration of the third and fourth case is:

letrec x = (letrec y = (letrec z = tz in ty) in tx), Env in R−[x]
iR,llet-e
−→ letrec x = (letrec y = ty, z = tz in tx), Env in R−[x]

n,llet-e
−→ letrec x = tx, y = ty, z = tz, Env in R−[x]

n,llet-e
−→ letrec x = tx, y = (letrec z = tz in ty), Env in R−[x]

iR∨n,llet-e
−→ letrec x = tx, y = ty, z = tz, Env in R−[x]

The last reduction is an (n) if tx = R−
1 [y], otherwise it is an (iR).

3. it is in a nontrivial reduction context and the normal order reduction is a
(cp), (lbeta),(case), or (IOr). In all the cases, there is no interference, hence
the commutation of the reductions holds.

4. it is in a nontrivial reduction context and the normal order reduction is a
(lcase), (lapp), or (IOlet). We have to distinguish the cases (iR,llet-e) and
(iR,llet-in). The easy case is (iR,llet-e), which requires two diagrams:

(iR, llet-e).(n, lll) ; (n, lll).(iR, llet-e)
(iR, llet-e).(n, lll) ; (n, lll).(n, llet-e)

In the case (iR,llet-in) the required diagram is
(iR,llet)
−→ ·

(n,lll)+

−→ ;
(n,lll)+

−→ .
We show a typical case:

R[(IO (letrec x = tx in letrec y = ty in t))]
iR,llet-in
−→ R[(IO (letrec x = tx, y = ty in t))]

n,IOlet
−→ R[(letrec x = tx, y = ty in (IO t))]

n,IOlet
−→ R[(letrec x = tx in IO (letrec y = ty in t))]

(n,lll)∗

−→ (letrec x = tx in R[IO (letrec y = ty in t)])
(n,IOlet)
−→ (letrec x = tx inR[(letrec y = ty in (IO t))])

(n,lll)∗

−→ (letrec x = tx, y = ty in R[IO t])

31

The reductions that shift the letrecs to the top are possible according to
Lemma 10.2.

ut
Note that the diagrams would change, if empty letrecs are forbidden, since
then a case on a constant can interfere with a (llet).

Lemma 10.4. A complete set of forking diagrams for
iR,llet
−→ is:

n,a,P
←−−·

iR,llet
−→ ;

iR,llet
−→ ·

n,a,P
←−−

(n,lll)+

←−−−−·
iR,llet
−→ ;

iR,llet
−→ ·

(n,lll)+

←−−−−
(n,lll)+

←−−−−· iR,llet→ ;
(n,lll)+

←−−−−

Proof. We have to check the overlappings of (iR, llet)-reductions with normal-
order reductions. The cases are the same as for the commuting diagrams, hence
the diagrams can be obtained using the commuting diagrams as guide. ut

Lemma 10.5. If s
iR,llet
−→ t, then s is a WHNF iff t is a WHNF.

Proposition 10.6. If s
llet
−→ t, then s ∼c t.

Proof. The context lemma 7.4 shows that it is sufficient to analyze the situation
where the (llet)-reduction is in a reduction context. We mainly argue that the
termination equivalence holds for every IO-sequence. The proof for equivalence
of validity can be done in the same way.
We assume that s ≡ R[s′] and s′ is the (llet)-redex and R is a reduction context.

Let s′ → t′ be the (llet)-reduction. Then either R[s′]
iR,llet
−→ R[t′] or R[s′]

n,llet
−→

R[t′]. In the latter case the assumption of the context lemma holds, since
n,llet
−→

is unique and does not use an IO-pair. For the rest of the proof assume that

R[s′]
iR,llet
−→ R[t′].

Let s have a normal order reduction to the WHNF s′′ with an IO-sequence −→P .
Induction on the length k of the normal order reduction and using the complete
set of forking diagrams for (llet) in Lemma 10.4 shows that we can construct a
normal order reduction sequence for t with the same IO-sequence. Here we use
the fact that the transformations guarantees that at most one R-internal (llet)-
reduction during transformation has o be considered. The number of normal-
order reductions to the right of the (iR,llet)-reduction is strictly decreased. Fur-
thermore, the IO-sequence is not changed by the transformation. The following
diagram shows one possibility during the induction:

32

s
iR,llet //

kn

��

t s t

1n

��
// s′

iR,llet //

k−1n

��

t′

s′′

Lemma 10.5 shows the constructed normal-order reduction terminates in a
WHNF.
Let t have a normal order reduction to a WHNF with an IO-sequence −→P . Then
induction on the length of a normal order reduction and using the commuting
diagrams for (llet) in Lemma 10.3 again is sufficient to show that s has a normal
order reduction sequence to a WHNF with the same IO-sequence.
The following diagram schematically shows one possible step in the induction.

s
iR,llet // t

kn

��

s

1n

��

t

// s′
iR,llet // t′

k−1n

��
t′′ t′′

Lemma 10.5 shows that the constructed normal-order reduction terminates in a
WHNF. 2

Proposition 10.7. (llet) is a correct program transformation.

11 Correctness of (cp)-Reductions

To show that the (cp)-reduction is correct as a program transformation, we have
to split the reduction into two different reductions, depending on the position of
the target variable.
(cpt) = (cp) where the replaced position of the variable is in a surface context.
(cpd) = (cp) where the replaced position of the variable is not in a surface context.
Note that the rule (cp) can be applied infinitely often:
letrec x = \y. x y in t → letrec x = \y. (\z. x z) y in t →
This also means that (cpd) may cause an infinite reduction sequence.
This is not possible for the rule (cpt):

Lemma 11.1. The reduction (cpt) cannot be applied infinitely often.

33

Proof. We show that (cpt) strictly reduces a well-founded measure of terms. The
measure of t is the number of variable occurrences at surface positions in the term
t. The (cpt)-reduction replaces such a variable occurrence by an abstraction. It
removes one such variable position without introducing new ones. ut

Lemma 11.2. A complete set of commuting diagrams for
iR,cpt
−→ is:

(iR,cpt)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,cpt)
−→

(iR,cpt)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(n,cp)
−→

(iR,cpt)
−→ ·

(n,case)
−→ ;

(n,case)
−→

Proof. A reduction (iR,cpt) replaces a single variable by an abstraction. Since
it is not a normal order reduction, the positions that are in reductions contexts
do not change with one exception:
letrec x1 = s, x2 = x1, . . . in R[xm] → letrec x1 = s, x2 = s, . . . in R[xm]
where s is an abstraction in a reduction context. There is also no normal or-
der reduction that has the effect that a letrec-expression is moved out of a
reduction context. Going through the possibilities, the (iR,cpt)-reduction may
be superfluous if the target is in a lost alternative of a case, there may be com-
mutation of the (iR,cpt) and the (n,a)-reduction, where the (iR,cpt)-reduction
may remain internal or turn into a normal order (cp)-reduction. ut

Lemma 11.3. A complete set of forking diagrams for
iR,cpt
−→ is:

n,a,P
←−−·

iR,cpt
−→ ;

iR,cpt
−→ ·

n,a,P
←−−

n,case
←−− ·

iR,cpt
−→ ;

n,case
←−−

n,cp
←−−·

n,a,P
←−−·

iR,cpt
−→ ;

n,a,P
←−−

Lemma 11.4. A complete set of commuting diagrams for
iR,cpd
−→ is:

(iR,cpd)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,cpd)
−→

(iR,cpd)
−→ ·

(n,cp)
−→ ;

(n,cp)
−→ ·

(iR,cpd)
−→ ·

(iR,cpd)
−→

(iR,cpd)
−→ ·

(n,case)
−→ ;

(n,case)
−→

(iR,cpd)
−→ ·

(n,lbeta)
−→ ;

(n,lbeta)
−→ ·

(iR,cpt)
−→

(iR,cpd)
−→ ·

(n,lbeta)
−→ ;

(n,lbeta)
−→ ·

(n,cp)
−→

Proof. The first and third cases occur als in the diagrams for (cpt); the second
occurs, if the (iR,cpd) copies into the abstraction that is copied by the other
reduction. The fourth and fifth cases are required, if the target variable of the
copy is in the body of an abstraction that is turned into a letrec by an (lbeta).

ut

34

Lemma 11.5. A complete set of forking diagrams for
iR,cpd
−→ is:

n,a,P
←−−·

iR,cpd
−→ ;

iR,cpd
−→ ·

n,a,P
←−−

n,a,P
←−−·

iR,cpd
−→ ;

iR,cpd
−→ ·

iR,cpd
−→ ·

n,a,P
←−−

n,case
←−− ·

iR,cpd
−→ ;

n,case
←−−

n,lbeta
←−− ·

iR,cpd
−→ ;

iR,cpt
−→ ·

n,lbeta
←−−

n,cp
←−−·

n,lbeta
←−− ·

iR,cpd
−→ ;

n,lbeta
←−−

Lemma 11.6. If s
iR,cp
−→ t, then s is a WHNF iff t is a WHNF.

Proposition 11.7. The reduction (cp) is a correct program transformation

Proof. Due to the context lemma, it is sufficient to consider the situation

s = R[s′], t = R[t′], s′
cp
−→ t′, such that s

iR,cp
−→ t.

Again we omit the argumentation for equivalence wrt validity, since it can be
derived from the proof below.
First assume that t has a normal order reduction RED to WHNF with IO-
sequence −→P . We assume that the reduction s

iR,cp
−→ t ·RED1 is transformed into

a normal-order reduction for s terminating with a WHNF, where the transfor-
mations are used that correspond to the complete set of commuting diagrams in
Lemmas 11.4,11.2.
We have to show that the transformation terminates. We have to give a well-

founded measure for reduction sequences RED′ where
(iR,cpd)
−→ ,

(iR,cpt)
−→ and normal

order reductions are mixed.
A single (iR, cpd) or (iR, cpt) in RED′ has as measure the triple consisting of

1. the number of (n,lbeta)-reductions right of it;
2. the number of all (n,cp)- and (iR,cpt)-reductions right of it before the next

(n,lbeta)-reduction;
3. the number of normal-order reductions before the next (n,cp)- or (iR,cpt)-

reduction.

The pairs are ordered lexicographically. The measure µ of the whole reduc-
tion sequence is the multiset of the triples for all iR-reductions, ordered by the
multiset-ordering. Now every transformation rule of the commuting diagrams for
(iR,cpd) and (iR,cpt) strictly decreases the measure µ. This can be verified by
going through the 8 possible transformation rule applications. That the measure
is decreased must also be checked for (iR,cpd) and (iR,cpt)- reductions that are
not directly involved in the transformation.
There are the following critical ones: 1. The rule that duplicates (i,cpd)-
reductions replaces a pair by two smaller ones, which makes the multiset strictly

1 We use s
iR,cp

−→ t ·RED as a notation for the combined reduction sequence.

35

smaller. 2. Changing (i,cpd) into (i,cpt) or (n,cp) can only be done by jump-
ing over an (n,lbeta)-reduction, hence also in this case the multiset is strictly
decreased. The other rules are easy.
In summary, the rules transform the reduction sequence into a reduction se-

quence s
n,∗
−→ s′′

iR,∗
−→ s′′′, where the normal order reduction s

n,∗
−→ s′′ has the same

IO-sequence as RED. Due to Lemma 11.6 the normal-order reduction terminates
in a WHNF.
The other case is that s has a normal order reduction RED with IO-sequence −→P .
We have to show that t has a normal order reduction with the same IO-sequence−→
P . Now we use the forking diagrams in Lemmas 11.3, 11.3 .
The mechanism of the proof is similar as above. It is sufficient to show that the
transformation terminates. The well-founded measure for reduction sequences Q′

where (iR, cpd), (iR, cpt) and normal order reductions are mixed is as follows:
An (iR, cpd) or (iR, cpt) in Q′ has as measure the triple consisting of

1. the number of
(n,lbeta)
←−−−−-reductions left of it;

2. the number of
(n,cp)
←−−- and

(iR,cpt)
−→ -reductions left of it before the next

(n,lbeta)
←−−−−-

reduction.

3. the number of normal-order reduction left to it before the next
(n,cp)
←−−- or

(iR,cpt)
−→ -reduction.

The triples are ordered lexicographically. The measure µ of the whole reduc-
tion sequence is the multiset of the triples for all iR-reductions, ordered by the
multiset-ordering. Lemma 11.6 shows that the constructed normal-order reduc-
tion terminates in a WHNF.
Now we can conclude by applying the context lemma for the two directions that
s ∼c t. ut

12 Correctness of Garbage Collection (gc)

In this and the following sections, we use diagrams, where also other reductions
are permitted, not only FUNDIO-reductions.
There are two forms of garbage collections:

(gc) • (letrec x1 = s1, . . . , xn = sn, Env in t)→ (letrec Env in t)
if for all i : xi does not occur in Env nor in t

• (letrec {} in t)→ t

The first is able to collect cyclic references; the second eliminates letrecs with
empty environment.

Lemma 12.1. The rule (gc) cannot be applied infinitely often.

Again we have to find complete sets of commuting and forking diagrams.

36

Lemma 12.2. A complete set of commuting diagrams for
(iR,gc)
−→ is:

(iR,gc)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,gc)
−→

(iR,gc)
−→ ·

(n,a,P)
−→ ;

(n,lll)∗

−→ ·
(n,a,P)
−→ ·

(iR,gc)
−→

(iR,gc)
−→ ·

(n,a,P)
−→ ;

(n,lll)∗

−→ ·
(n,a,P)
−→

(iR,gc)
−→ ;

(n,llet)
−→

Proof. A case analysis shows the validity of the diagrams. We give a typical
example

(letrec Env1 in (IO (IO (letrec Env2 in a))))
iR,gc
−→ (letrec Env1 in (IO (IO a)))
n,IOr,(a,b)
−−−−−−−→ (letrec Env1 in (IO b))
n,lll
−→ (letrec Env1 in (IO (letrec Env2 in (IO a))))
n,lll
−→ (letrec Env1 in (letrec Env2 in (IO (IO a))))
n,lll
−→ (letrec Env1, Env2 in (IO (IO a)))
n,IOr,(a,b)
−−−−−−−→ (letrec Env1, Env2 in (IO b))
iR,gc
−→ (letrec Env1 in (IO b))

If the environment Env2 is empty, we get the third transformation rule. The last
transformation rule is the special case of the term letrec {} in letrec Env in t,

where t is a value, and the reduction
(iR,gc)
−→ transforms the term into a WHNF.

ut

Lemma 12.3. A complete set of forking diagrams for
(iR,gc)
−→ is:

n,a,P
←−−·

iR,gc
−→ ;

iR,gc
−→ ·

n,a,P
←−−

(n,a,P)
←−− ·

(n,lll)∗

←−− ·
iR,gc
−→ ;

iR,gc
−→ ·

n,a,P
←−−

(n,a,P)
←−− ·

(n,lll)∗

←−− ·
iR,gc
−→ ;

n,a,P
←−−

(n,llet)
←−− ·

iR,gc
−→ ; ∅

Proof. A case analysis using the same cases as in the previous lemma is sufficient.
ut

Lemma 12.4. Let s
iR,gc
−→ t.

– If s is a WHNF, then t is a WHNF.

37

– If t is a WHNF, but s is not a WHNF, then we have the special case that
s ≡ letrec {} in letrec Env in s′, where s′ is a value, or s′ is a variable
which is bound in Env to a constructor application.

Proposition 12.5. The rule (gc) is a correct program transformation.

Proof. Due to the context lemma, it is sufficient to consider the situation s =

R[s′], t = R[t′], s′
gc
−→ t′, such that s

iR,gc
−→ t.

First assume that t has a normal order reduction RED with IO-sequence −→P .

We assume that the reduction s
iR,gc
−→ t RED is transformed into a normal-

order reduction using the complete set of commuting diagrams in Lemma 12.2.

This transformation is a shift of
iR,gc
−→ to the right, where it is possible that

(n, lll)∗-reductions have to be inserted. The number of transformation steps is
at most the length of the reduction sequence RED. Eventually, a normal order
reduction with the same IO-sequence −→P is constructed. Lemma 12.4 shows that
the constructed normal order reduction sequence terminates with a WHNF.
Now assume that s has a normal order reduction sequence RED from right

to left and with IO-sequence −→P . Now we shift
iR,gc
−→ to the left in the reduction

RED s
iR,gc
−→ t using the complete set of forking diagrams in Lemma 12.3. Lemma

12.4 shows that the constructed normal order reduction sequence terminates with
a WHNF.

ut

13 Correctness of (cpx)-Reductions

The further development requires to consider the reduction that shortens indi-
rections.

(cpx-in) (letrec x = y, . . . , Env in C[x])
→ (letrec x = y, Env in C[y]) where y is a variable and x 6= y

(cpx-e) (letrec x = y, z = C[x], Env in t)
→ (letrec x = y, z = C[y], Env in t) where y is a variable and x 6= y

We do not allow the (useless) reduction letrec x = x in t→ letrec x = x in t.
The union of (cpx-in) and (cpx-e) is denoted as (cpx).

Note that the reduction
iR,cpx
−→ may not terminate:

letrec x = y, y = x in C[x]
iR,cpx
−→ letrec x = y, y = x in C[y]

iR,cpx
−→

letrec x = y, y = x in C[x].

A further example for non-termination is: letrec x = y, y = x, z = x in t
iR,cpx
−→

letrec x = y, y = x, z = y in t
iR,cpx
−→ letrec x = y, y = x, z = x in t

Lemma 13.1. A complete set of commuting diagrams for
iR,cpx
−→ is:

38

(iR,cpx)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,cpx)
−→

(iR,cpx)
−→ ·

(n,cp)
−→ ;

(n,cp)
−→ ·

(iR,cpx)
−→ ·

(iR,cpx)
−→

(iR,cpx)
−→ ·

(n,a)
−→ ;

(n,a)
−→

The second case happens if the target of the (cpx)-reduction is in the copied
abstraction of the (cp). The third case may happen if the reduction is a (case)

or (cp). An example for the last case is letrec x = s, y = x in C[y]
iR,cpx
−→

letrec x = s, y = x in C[x]
n,cp
−→ letrec x = s, y = x in C[s], and also

letrec x = s, y = x in C[y]
n,cp
−→ letrec x = s, y = x in C[s].

Lemma 13.2. A complete set of forking diagrams for
iR,cpx
−→ is:

n,a,P
←−−·

iR,cpx
−→ ;

iR,cpx
−→ ·

n,a,P
←−−

n,cp
←−−·

iR,cpx
−→ ;

iR,cpx
−→ ·

iR,cpx
−→ ·

n,cp
←−−

n,a
←−−·

iR,cpx
−→ ;

n,a
←−−

Lemma 13.3. If s
iR,cpx
−→ t, then s is a WHNF iff t is a WHNF.

Proposition 13.4. The reduction (cpx) is a correct program transformation.

Proof. We only show the non-standard parts of the proof, which is termina-
tion of the transformation process. There are two cases for the transformation.

First consider the transformation of s
iR,cpx
−→ t ·RED into a normal order reduc-

tion sequence from s to WHNF, where RED is a normal order reduction to a
WHNF. Intermediate steps have a sequence of normal-order reductions mixed
with (iR,cpx)-reductions. We measure the sequences by the multiset consisting
of the following numbers: for every (iR,cpx)-reduction, the number of normal-
order reductions to the right of it. This is a well-founded order, and it is easy to
see that the transformations strictly reduce this measure in every step using the
commuting diagrams.

The other case is the transformation of RED ·s
iR,cpx
−→ t to a normal order reduc-

tion of t, where RED is a normal order reduction sequence of s to WHNF, and
overlineRED the inverted sequence. Now the measure is the multiset consisting
of the following numbers: for every (iR,cpx)-reduction, the number of normal-
order reductions to the left of it. This is a well-founded order, and it is easy to
see that the transformations strictly reduce this measure in every step using the
forking diagrams. ut

39

14 Correctness of (cpcx)-Reductions

The correctness of the reductions (cpcx) may be helpful to show correctness of
more copy-operations, partial evaluation, in particular case-reductions which are
embedded in a deeper letrec environment.

(cpcx-in) (letrec x = c t1 . . . tm, Env in C[x])
→ (letrec x = c y1 . . . ym, y1 = t1, . . . , ym = tm, Env in C[c y1 . . . ym])

(cpcx-e) (letrec x = c t1 . . . tm, z = C[x], Env in t)
→ (letrec x = c y1 . . . ym,

y1 = t1, . . . , ym = tm, z = C[c y1 . . . ym], Env in t)

The union of (cpcx-in) and (cpcx-e) is denoted as (cpcx).

14.1 Correctness of (xch)-Reductions

Definition 14.1. We need a reduction rule that is required for further proofs:

(xch) (letrec x = t, y = x,Env in r) → (letrec y = t, x = y, Env in r)

Lemma 14.2. The (xch)-reduction commutes with normal-order reductions.
I.e.

xch
−→ ·

n,a,P
−→ ;

n,a,P
−→ ·

xch
−→

This is also true for the restricted reduction
iR,xch
−→ .

Proof. It is easy to verify that this holds for the different kinds of reductions.
Only for (case) and a specific type of interference we show the concrete trans-
formation:

(letrec x = c t, y = x in case x ((c u)→ r))
xch
−→ (letrec y = c t, x = y in case x ((c u)→ r))
n,case
−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))

n,case
−→ (letrec x = c z, z = t, y = x in (letrec u = z in r))
xch
−→ (letrec y = c z, z = t, x = y in (letrec u = z in r))

ut

Lemma 14.3. The (xch)-reduction has trivial forking diagrams with normal or-
der reductions. I.e.

n,a,P
←−− · RRAPxch ;

xch
−→ ·

n,a,P
←−−

This is also true for the restricted reduction
iR,xch
−→ .

40

14.2 Properties of (cpcx)

We conjecture that there are no infinite reduction sequences consisting only of
(cpcx) reductions.

Lemma 14.4. A complete set of commuting diagrams for
iR,cpcx
−−−−→ is:

(iR,cpcx)
−−−−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,cpcx)
−−−−→

(iR,cpcx)
−−−−→ ·

(n,cp)
−→ ;

(n,cp)
−→ ·

(iR,cpcx)
−−−−→ ·

(iR,cpcx)
−−−−→ ·

(iR,cpx)∗

−−−−→ ·
(iR,gc)∗

−−−−→
(iR,cpcx)
−−−−→ ·

(n,a)
−→ ;

(n,a)
−→

(iR,cpcx)
−−−−→ ·

(n,case)
−→ ;

(n,case)
−→ ·

(iR,cpcx)
−−−−→ ·

(iR,cpx)∗

−−−−→ ·
(iR,xch)∗

−−−−→

Proof. Instead of a complete proof, we only show the typical cases:

(letrec x = c t, y = λu.C[x] in y)
iR,cpcx
−→ (letrec x = c z, z = t, y = λu.C[c z] in y)

n,cp
−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[c z])
n,cp
−→ (letrec x = c t, y = λu.C[x] in λu′.C ′[x])
cpcx
−→ (letrec x = c z, z = t, y = λu.C[c z] in λu′.C ′[x])
cpcx
−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu′.C ′[c z′])
cpx
−→ (letrec x = c z′, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])
cpx
−→ (letrec x = c z, z′ = z, z = t, y = λu.C[c z] in λu.C[c z])

gc
−→ (letrec x = c z, z = t, y = λu.C[c z] in λu.C[c z])

(letrec x = c t in case x (c y → s))
cpcx
−→ (letrec x = c z, z = t in case (c z) ((c y)→ s))
cn,case
−→ (letrec x = c z, z = t in (letrec y = z in s))

cn,case
−→ (letrec x = c z, z = t in (letrec y = z in s))

In the following example we use a multi-context C[., .] that may have different
holes, every hole is mentioned as an argument.

(letrec x = c t in C[case x (c y → s), x])
cpcx
−→ (letrec x = c z, z = t in C[case x (c y → s), c z])
n,case
−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])

n,case
−→ (letrec x = c z′, z′ = t in C[(letrec y = z′ in s), x])

cpcx
−→ (letrec x = c z, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
cpx
−→ (letrec x = c z′, z = z′, z′ = t in C[(letrec y = z′ in s), c z])
xch
−→ (letrec x = c z′, z′ = z, z = t in C[(letrec y = z′ in s), c z])

ut

41

Lemma 14.5. A complete set of forking diagrams for
iR,cpcx
−→ is:

n,a,P
←−−·

iR,cpcx
−→ ;

iR,cpcx
−→ ·

n,a,P
←−−

n,cp
←−−·

iR,cpcx
−→ ;

iR,cpcx
−→ ·

iR,cpcx
−→ ·

(iR,cpx)∗

−→ ·
(iR,gc)∗

−→ ·
n,cp
←−−

n,a
←−−·

iR,cpcx
−→ ;

n,a
←−−

n,case
←−− ·

iR,cpcx
−→ ;

iR,cpcx
−→ ·

(iR,cpx)∗

−→ ·
(iR,xch)∗

−→ ·
n,case
←−−

Lemma 14.6. If s
iR,cpcx
−→ t, then s is a WHNF iff t is a WHNF.

Proposition 14.7. The reduction (cpcx) is a correct program transformation.

Proof. The non-standard part of the proof is the termination part.

First consider the transformation of s
iR,cpcx
−→ t·RED to a normal order reduction

to WHNF of s. The used Lemmas are 14.4, 14.2, 13.1, 12.2. Intermediate steps
have a sequence of normal-order reductions mixed with (iR,cpcx)-, (iR,cpx),
(iR,xch) and (iR,gc)- reductions. We measure the sequences by the multiset
consisting of the following triples of numbers:
for every iR-reduction: (n1, n2, n3), where

1. n1 is the number of normal-order (case)- or (cp)-reductions to the right of
it,

2. n2 is the number of (iR,gc)-reduction to the right of it before the next (n,cp)
or (n, case)-reduction.

3. n3 is the number of other normal-order reductions to the right of it.

The triples are compared lexicographically. This is a well-founded order on mul-
tisets. The commuting diagrams show that the transformations corresponding to
(iR,cpcx), (iR,cpx), and (iR,xch) strictly reduce this multiset-measure in every
step, if always the rightmost iR-reduction before a WHNF is transformed. For
(iR,gc) we assume that we shift the rightmost (iR,gc)-reduction until it vanishes
or is shifted over a (n,case) or (n,cp)-reduction. Hence it strictly reduces the
multiset-measure.
The other case is the transformation of RED ·s

iR,cpcx
−→ t to a normal order reduc-

tion of t. We measure the sequences by the multiset consisting of the following
triples of numbers: for every iR-reduction: (n1, n2, n3), where

1. n1 is the number of normal-order (case)- or (cp)-reductions to the left of it,
2. n2 is the number of (iR,gc)-reduction to the left of it before the next (n,cp)

or (n, case)-reduction.
3. n3 is the number of other normal-order reductions to the left of it.

The triples are compared lexicographically.
This is a well-founded order, and it is easy to see that the transformations strictly
reduce this measure in every step using the forking diagrams for the reductions
(iR,cpcx), (iR,cpx), and (iR,xch), if always the leftmost i-reduction is shifted to

42

the left. For the transformation involving (iR,gc) we use the same strategy as for
the other part of the proof: We only shift them to the left, if there is no other
iR-reduction between the (iR,gc) and the final WHNF. Then we see that the
measure also in this case is strictly decreased. ut

15 Correctness of (case)-Reductions

Proposition 15.1. The reductions (case-in) and (case-e) are correct program
transformations.

Proof. Proposition 8.5 shows that (case-c) and (case-lam) are correct program
transformations, from Lemmas 14.7, 13.4, 12.5, and 11.7, we obtain that (cpcx),
(cpx), and (gc) are correct program transformations. We show by induction
that a (case-e) and (case-in)-reduction is correct by using the correctness of the
reductions (cpt), (cpcx), (case-c), (cpx), and (gc). The induction is on the length
of the variable chain in the (case-in) (or (case-e), respectively). We give the proof
only for (case-in), the other is a copy of this proof.
The base case is:

(letrec x = c t, Env in C[case x (c z → s) alts])
cpcx
−→ (letrec x = c y, y = t, Env in C[case (c y) (c z → s) alts])
case-c
−→ (letrec x = c y, y = t, Env in C[(letrec z = y in s)])
The result after a (case-in) is:

case−in
−→ (letrec x = c y, y = t, Env in C[(letrec z = y in s)])

We show the induction for a short variable chain:

(letrec x1 = c t, x2 = x1, Env in C[case x1 (c z → s) alts])
cpcx
−→ (letrec x1 = c y, y = t, x2 = c y, Env in C[case xn (c z → s) alts])
case−in
−→ (letrec x1 = c y, y = t, x2 = c y2, y2 = y, Env in C[(letrec z = y2 in s)])

cpx,cpx,gc
−→ (letrec x1 = c y, y = t, x2 = c y, Env in C[(letrec z = y in s)])

The other case is:
case−in
−→ (letrec x1 = c y, y = t, x2 = x1, Env in C[(letrec z = y in s)])

cpcx
−→ (letrec x1 = c y′, y′ = y, y = t, x2 = c y′, Env in C[(letrec z = y in s)])
cpx,cpx,gc
−→ (letrec x1 = c y, y = t, x2 = c y, Env in C[(letrec z = y in s)])

2

Proposition 15.2. The reduction (case) is a correct program transformation.

Proof. Follows from Proposition 15.1 and 8.5. 2

43

16 Correctness of FUNDIO-Reductions: Summary

Theorem 16.1. All reductions of FUNDIO with the exception of (IOr) are cor-
rect program transformations in FUNDIO

Proof. This follows from Propositions 8.5, 10.7, 11.7 and 15.2. ut

It is clear that (IOr) is not a correct program transformation, since this would
mean to allow IO-operations at compile-time:

Proposition 16.2. If there are at least two different constants, then (IOr) is
not correct as a program transformation.

Proof. Assume that (IOr) is a correct program transformation. Then let a1, a2

be two different constants. The assumption that (IOr) is a correct program
transformation implies that for a constant b the term (IO b) can be trans-
formed to a1 as well as a2, hence this implies a1 ∼c a2. However, the context
(case [·](a1 → ⊥) (a2 → a2) alts) for a non-terminating expression ⊥ distin-
guishes these two constants, which is a contradiction. 2

17 Correctness of ucp-Reductions

In this section we show that a binding letrec x = s,Env in t, where x occurs
at most once in Env or t, and this occurrence is at a surface position, can be
resolved by copying s to this occurrence. We define the reduction such that the
corresponding binding is eliminated after copying.

(ucp) • letrec x = s,Env in S[x]→ letrec Env in S[s]
if x has only an occurrence in Env, S[x] and no occurrence in s.
• letrec x = s,Env, y = S[x] in t→ letrec Env, y = S[s] in t

if x has only an occurrence in Env, S[x], t and no occurrence in s.

Note that this may generate letrecs with empty environment. Note also that
copying into a non-surface position would be incorrect (see Example 17.6).

Lemma 17.1. The reduction (ucp) cannot be applied infinitely often.

Lemma 17.2. A complete set of commuting diagrams for
iR,ucp
−→ is:

(iR,ucp)
−→ ·

(n,a,P)
−→ ;

(n,a,P)
−→ ·

(iR,ucp)
−→

(iR,ucp)
−→ ·

(n,a)
−→ ;

(n,a)
−→

(iR,ucp)
−→ ·

(n,lll)+

−→ ;
(n,lll)+

−→ ·
(iR,ucp)
−→

(iR,ucp)
−→ ·

(n,case)
−→ ;

(n,case)
−→ ·

(iR,gc)
−→ ·

(iR,ucp)
−→

(iR,ucp)
−→ ;

(n,cp)
−→ ·

(iR,gc)
−→

44

Proof. We show the typical overlappings.

(letrec x = c t, Env in case x (c z → a))
ucp
−→ (letrec Env in case (c t) (c z → a))
n,case
−→ (letrec Env in (letrec z = t in a))

n,case
−→ (letrec x = c y, y = t, Env in (letrec z = y in a))
gc
−→ (letrec y = t, Env in (letrec z = y in a))
ucp
−→ (letrec Env in (letrec z = t in a))

(letrec x = (letrec y = t in s), Env in (x a))
ucp
−→ (letrec Env in ((letrec y = t in s) a))
n,lapp
−→ (letrec Env in (letrec y = t in (s a)))

n,llet
−→ (letrec Env, y = t in (s a))
n,llet
−→ (letrec x = s, y = t, Env in (x a))
ucp
−→ (letrec y = t, Env in (s a))

(letrec x = (letrec y = ty in tx), z = R′[x], Env in R[z])
ucp
−→ (letrec z = R′[(letrec y = ty in tx)], Env in R[z])
n,llet,+
−→ (letrec z = R′[tx], y = ty, Env in R[z])

n,llet,+
−→ (letrec x = tx, y = ty, z = R′[x], Env in R[z])

ucp
−→ (letrec y = ty, z = R′[tx], Env in R[z])

(letrec x = s,Env in (x a))
ucp
−→ (letrec Env in (s a))
n,cp
−→ (letrec x = s,Env in (s a))
gc
−→ (letrec Env in (s a))

ut

Lemma 17.3. A complete set of forking diagrams for
iR,ucp
−→ is:

n,a,P
←−−·

iR,ucp
−→ ;

iR,ucp
−→ ·

n,a,P
←−−

n,a
←−−·

iR,ucp
−→ ;

n,a
←−−

(n,lll)+

←−− ·
iR,ucp
−→ ;

iR,ucp
−→ ·

(n,lll)+

←−−
(n,case)
←−− ·

iR,ucp
−→ ;

(iR,gc)
−→ ·

iR,ucp
−→ ·

(n,case)
←−−

n,cp
←−−·

iR,ucp
−→ ;

iR,gc
−→

45

Lemma 17.4. Let s
iR,ucp
−→ t. Then s is a WHNF iff t is a WHNF.

Proof. If s is a WHNF, then clearly t is a WHNF. For the other direction, note
that (ucp) does not remove the letrec, but may leave an empty environment,
hence t can only be a WHNF, if s is already a WHNF. ut

Proposition 17.5. The reduction (ucp) is a correct program transformation.

Proof. Let s
ucp
−→ t. It is sufficient to show that the transformations of the re-

ductions s
ucp
−→ t RED and RED s

ucp
−→ t to normal order reductions of s and t,

respectively, terminate.

We show this for the transformation of s
ucp
−→ t RED: The commuting diagrams

in Lemma 17.2 show that there is at most one
iR,ucp
−→ -reduction in intermediate

reductions. In every transformation step based on
iR,ucp
−→ , the number of normal

order reductions on the right strictly decreases. After this, there may be some

remaining
iR,gc
−→ -reductions, which can also be shifted to the right (see Lemma

12.2), starting with the rightmost one before a WHNF is reached in the reduction.

The same proof is possible for the transformation of the reduction RED s
iR,ucp
−→

t, where right and left have to be interchanged using Lemmas 17.3 and 12.3 ut

Example 17.6. The reduction (ucp) would be not correct, if it were possible to
copy into an abstraction: We assume that there is an operation xor, from which
we only require that it is strict in both arguments, and that IO output Booleans
and gets Booleans.

P1 := letrec x = (IO True), y = (\z.x) in (IO (xor (y True) (y True)))
P2 := letrec y = (\z.(IO True)) in (IO (xor (y True) (y True)))

Obviously, we have P1 → P2 by a unique copy reduction to a non-surface posi-
tion, replacing x by (IO True).
The programs P1 and P2 are contextually different: P1 has only terminating
normal-order reductions for IO-multisets of the form {(True, a), (False, b)},
whereas P2 has also normal-order reductions for IO-multisets of the form
{(True, a), (True, b), (True, c)}. The reason is that the abstraction \z.(IO True)
is copied by reduction, and thus the IO-expression is duplicated.

18 Further Program Transformations

18.1 Correctness of Lambda-Lifting

Lambda-lifting is the operation used in a compiler that abstracts free variables:

C[s[z]]→ C[((λ x . s[x]) z)]

In order to show that this is a correct transformation, we have to show that it
can be undone by correct program transformations.

46

C[(λ x . s[x]) z]
lbeta
−→ C[(letrec x = z in s[x])]

(cpx)
−→ C[(letrec x = z in s[z])]

(gc,∗)
−→ C[s[z]]

Proposition 18.1. Lambda-Lifting is a correct program transformation.

Proof. Follows from propositions 8.5, 13.4 and 12.5. ut

18.2 Correctness of a Beta with Variable Arguments

This rule can be used if the arguments of an abstraction are variables. This
rule is used in the STG-machine of Haskell, and can be proved to be correct in
FUNDIO:

(betavar) C[((λx.s) y)]→ C[s[y/x]]

Proposition 18.2. (betavar) is a correct program transformation.

Proof. The reduction can be simulated by correct program transformations:

C[((λx.s) y)]
lbeta
−→ C[(letrec x = y in s)]

cpx∗

−→ C[(letrec x = y in s[y/x])]
gc
−→ C[s[y/x]]

See propositions 8.5, 13.4 and 12.5. ut

19 Modifying the Normal Order Reduction

There are mainly the following modifications and extensions of the normal order
reduction: Intermediate garbage collection, reduction of indirections and exploit-
ing strictness information. Basically, the evaluation by an abstract machine is
also a kind of modification of the normal order reduction.

19.1 Garbage Collection and Removing Indirections

First we show that intermediate garbage collection and compressing indirections
does not provide any problems for evaluation. It is only necessary to treat (gc)
and (cpx) that are performed in surface contexts. The rationale for the restriction
is that garbage collections within abstractions can be done at compile time. This
is possible, since (gc) as well as (cpx) are correct as program transformations.
So we are left with garbage collections and (cpx)-reductions during run-time,
i.e., during reduction to WHNF. The normal order reductions of the calculus
FUNDIO never introduce (gc)-redexes or (cpx)-redexes within an abstraction,
which can be checked by looking at the rules and the definition of normal order
reduction.

47

However, normal order reduction may generate lots of possibilities to reduce
redundant bindings by (gc) and (cpx), which means to free space in an imple-
mentation of FUNDIO.
The reduction (cpx) may cause infinite reductions, hence we have to restrict the
application to obtain a useful optimization during evaluation. It is not useful
to do this reduction as a macro step like letrec x = y, Env[x] in C[x] →
letrec Env[y] in C[y], since this is unrealistic for an implementation for it can
only be achieved by checking all references.
We define the reduction (cpxTrm) consisting of the reductions:

(cpxTrmX) letrec x = y, Env in t→ letrec x = x, Env in t
if x 6= y and there is a cyclic chain of bindings in Env:
x = y, y = y1, y1 = y2, . . . , yk = x

(cpxTrmC) letrec x = y, z = C[x], Env in t→ letrec x = y, z = C[y], Env in t
if x 6= y and if (cpxTrmX) is not applicable

letrec x = y, E in C[x]→ letrec x = y, E in C[y]
if x 6= y and if (cpxTrmX) is not applicable

The reduction (cpxTrm) is defined as the union of (cpxTrmX) and (cpxTrmC).

Lemma 19.1. A
(iR,cpxTrmC)
−−−−−−−→ -reduction is also a

(iR,cpx)
−−−−→-reduction.

A
(iR,cpxTrmX)
−−−−−−−→ -reduction is a sequence of

(iR,cpx)
−−−−→-reductions. Hence the reduc-

tions are correct as program transformations.

Lemma 19.2. A reduction sequence of only
(cpxTrm)
−−−−−−−→-reductions consists of

first applying
cpxTrmX,∗
−−−−−−−→ and then

cpxTrmC,∗
−−−−−−−→.

Proof. (cpxTrmC) can only be applied, if (cpxTrmX) is not applicable, hence
we have only to argue that (cpxTrmC) does not enable a (cpxTrmX)-reduction.
This holds, since if there is a cyclic chain after a (cpxTrmC)-reduction, then
there is also one before the reduction. ut

Lemma 19.3. There are no infinite reduction sequences consisting only of
cpxTrm
−→ -reductions.

Proof. Lemma 19.2 shows that it is sufficient to show termination of the re-
ductions (cpxTrmC) and (cpxTrmX). The reduction (cpxTrmX) strictly reduces
the number of variable occurrences that contribute to cyclic binding chains of
more than one variable. The rule (cpxTrmC) is only applicable, if the letrecs
in reduction contexts have no cyclic chains of more than one variable. We can
construct a well-founded measure as follows: The variables that occur as left
hand sides in letrecs in reduction contexts are ordered as follows: x > y, if
x 6= y and {x = y} is a binding in t. The transitive closure of this partial or-
dering is also denoted as >. The transitive closure operation generates a strict
partial ordering, since there are no cycles. The measure of t is a multiset M of

48

variables, where every variable occurs as often in M as there are occurrences of
this variable in t. The multisets are ordered by the induced multiset-ordering,
which is also a well-founded, strict partial order. Every step of (cpxTrmC) re-
places a variable occurrence by a smaller one, hence the resulting term is smaller
in the multiset-ordering. Thus the reduction (cpxTrmC) and hence (cpxTrm)
terminates. ut

19.2 Evaluation Strategies

Definition 19.4. An evaluation strategy S is a (possibly non-deterministic)
algorithm which for every term t determines the next reduction to apply. These
may be reductions from FUNDIO, perhaps requiring an IO-pair, or also some
other reductions like (cpx, gc). We assume in this paper that the normal forms
for strategies are WHNFs.
We say a term t terminates w.r.t. S and IO-multiset P , if there is a terminating
S-reduction to a WHNF requiring P as IO-multiset. This is denoted as t⇓S(P).
We say a term t terminates w.r.t. S and the finite IO-sequence −→P , iff there
is a terminating S-reduction to a WHNF requiring −→P as IO-sequence. This is
denoted as t↓S(−→P).

An IO-sequence −→P is S-valid for t, iff there is an S-reduction t
S,
−→
P
−→ t′ for some

t′.

For a term t and a finite IO-sequence −→P , we write t↓S(−→P) iff t
S,
−→
P
−→ t′ and t′ is

a WHNF.
For a closed term t and a finite IO-sequence −→P , we write t⇓S(−→P) iff the following

holds: if −→P is S-valid for t then t
S,
−→
P
−→ t′ where t′ 6= ⊥.

If ∀−→P : t⇓S(−→P), then we say t has no bot-S-reduction. Otherwise, we write t⇑S.

We say the strategy S is correct, iff for all closed expressions t: for all finite
IO-multisets P : t⇓(P)⇔ t⇓S(P) and t⇑ ⇔ t⇑S.

The second condition can also be reformulated as (∀−→P : t⇓(−→P)) ⇔ (∀−→P :
t⇓S(−→P)).

Note that it is not sufficient to define an evaluation strategy as consisting of
correct reductions, since there may be terms that have a WHNF for a certain
IO-multiset P (IO-sequence −→P), but the strategy does not terminate for t and
P .

Lemma 19.5. Let S be an evaluation strategy. Let the following hold:
∀−→P : t⇓(−→P)⇔ t⇓S(−→P).
Then S is correct.

Proof. The condition that for all finite IO-multisets P : t⇓(P)⇔ t⇓S(P) follows
immediately from the condition. The equivalence of error-freeness follows, since
(∀−→P : t⇓(−→P))⇔ (∀−→P : t⇓S(−→P)) can be derived from the assumption. ut
For proofs about correctness, the following lemma provides a sufficient condition:

49

Lemma 19.6. Let S be an evaluation strategy. Let the following hold:

∀−→P : t↓(−→P)⇔ t↓S(−→P)
∧ −→P is valid for t⇔ −→P is S-valid for t

Then S is correct.

Proof. Let t be a term, and −→P be an IO-sequence. Since the normal-order and
the strategy S are equivalent w.r.t. validity, we check the cases where −→P is valid
w.r.t. both strategies.
The precondition implies that t↓(−→P) is equivalent with t↓S(

−→
P ′).

ut
Of course, the following should hold for strategies:

Proposition 19.7. Let s ∼c t, and let S be a correct evaluation strategy. Then
for all IO-multisets P : s⇓S(P)⇔ t⇓S(P) and s⇑S ⇔ t⇑S.

Proof. Follows from the definition of correct strategy and from the definition of
∼c. 2

19.3 Correctness of the strategy G using (gc) and (cpx)

Now we define a special strategy:

Definition 19.8. We assume that there is a strategy for selecting after every

reduction whether the next step is a garbage collection
iR,gc
−→ , a (cpx)-reduction

iR,cpxTrm
−−−−→ or a normal-order reduction. The selection may also be random. We

call this reduction strategy nG-reduction.

Note that the definition of a single normal order reduction is not changed.

Theorem 19.9. Let t be a closed expression. The nG is correct as strategy.

Proof. We use Lemma 19.6. We argue that the termination criterion holds. That
equivalence of validity holds also is a by-product of the reasoning, since the
proof below shows that there is a normal-order reduction w.r.t. −→P iff there is a
S-reduction w.r.t. −→P .
First let s have a nG-reduction to WHNF, where the reduction has IO-sequence−→
P . We use the commuting diagrams for (iR,gc) and (iR,cpx) (see Lemmas 19.1,
12.2 and 13.1) to transform this reduction sequence into a normal order reduction
sequence. The termination of this transformation is easily shown as in the proofs
of correctness of the corresponding reductions.
For the other part of the proof let s↓(−→P) by a reduction RED. Then the strategy
nG has three possibilities:

1. selecting a normal order reduction s
n
−→ s′. In this case the same normal

order reduction as for s is to be used, in particular if this is an (IOr).

50

2. selecting a (iR, gc)
3. selecting a (iR, cpxTrm)

The induction is on the number of normal-order reductions.
In case 1 induction can be used.

We treat the second and third case. Let s
(iR,gc)
−→ s′ or s

(iR,cpxTrm)
−−−−→ s′. From

Lemmas 12.3 and 13.2 it follows that there is a normal order reduction RED′

of s′ to a WHNF with the same IO-sequence and the number of normal-order
reductions is not greater than in RED.

s
iR,gc //

���
�
� s′

−→
Pn

��
rWHNF //___ r′WHNF

In order to use induction, we have to show that every combination of (iR, gc) and
(iR, cpxTrm) terminates. This follows using the same arguments as in the proof
of Lemma 19.3 using a slightly extended measure: the number of occurrences
of letrecs has to be added to the multiset. Using the observation that (gc)
strictly reduces this measure, we obtain termination. Thus the strategy cannot
select (iR,gc) or (iR,cpxTrm) infinitely often, and after a finite number of steps
G must select a normal order reduction. Then we can use induction on the length
of the normal order reduction sequence. ut

20 Relativized Normal-Order Reduction

This section is intended as a preparation for analyzing the effect of modifying the
normal order evaluation if it is known that a function is strict in its argument.
I.e. if in an application ((λx.s) t) it is known that the lambda-expression is
strict, then the evaluation order can be changed such that first the argument t
is evaluated and then the application.
In this section we formalize the notion of “evaluating a subexpression to WHNF”
and show some properties of the corresponding relativized reduction. This is
more complex than for the lambda calculus, since it has to take the letrec-
structure into account.

Definition 20.1. The context class LR of right-nested letrecs is defined by the
syntax

LR := [] | (letrec Env in LR)

It turns out that not every surface position is relevant in the treatment of strict-
ness; in fact the positions in the alternatives of a case should be ruled out.

Definition 20.2. We define application surface contexts, meaning that the hole
is not in the body of an abstraction and not in an alternative of a case. Let A be

51

this context class defined as follows:

A ::= [·] | (A E) | (E A) | (case A alts) | (IO A)
| (letrec Env in A) | (letrec Env1, x = A in E)

In the following we want to capture the intuition of evaluating a subterm of
a term. This is done by labeling this subterm appropriately and inheriting the
labeling after reduction steps. The evaluation of the subterm should be a variant
of the normal order reduction adapted for subterms. This is different from the
easy notion in lambda calculus, since in FUNDIO, the letrec-structure may
enforce evaluation of terms in an environment.
We define evaluation labels and their treatment:

Definition 20.3. Let t be a closed expression, and t0 be a subexpression of t that
is in an A-context, and which is intended to be evaluated first. The evaluation
label is a non-negative integer.
The labelling starts with the label 0 at subexpression t0.
First the 0-label is shifted to the rightmost expression in a letrec using the
following rule as often as applicable.

(down0) (letrec Env in s)0 → (letrec Env in s0)

Then the following rules propagate the evaluation label i.

(s1 s2)i → (si+1
1 s2)i

(case s1 alts)i → (case si+1
1 alts)i

(IO s1)i → (IO si+1
1)i

(letrec x = s1, Env in A[xi]) → (letrec x = si+1
1 , Env in A[xi])

(letrec x1 = s1, x2 = A[xi
1], Env in s2)→ (letrec x1 = si+1

1 , x2 = A[xi
1], Env in s2)

The labeling stops with success, if the labelled term is a value, marking it with a
maximal label.
The labeling fails, if a subexpression is labeled twice with different labels.
This indicates a loop in the labeling, and means that there is no terminating
evaluation of the subterm.

Now assume the labeling is successful, i.e. done completely.
We say a variable x with label i is bound to a value in t, if labeling does not fail,
and if in an outer letrec, there is a binding (letrec x = si+1, Env in C[x]),
and either s is the value t, or s is a variable bound to the value t .
The subterm s0 of t is in relativized WHNF, if labelling does not fail and s is
of one of the following forms:

– a value, i.e. an abstraction or a constructor application.
– x, where x is bound in t to a constructor application

52

Example 20.4. An example for the labeling is

letrecy = λu.u in letrecx = ((λz.z)3 a)2 in (x1 b)0

The term (x b) is the term which had to be evaluated, the coresponding labelings
areindicated as superscripts. The normal order evaluation would be different,
since the first reduction is a (llet).
The term letrec x = x in x^0 is a further example, where propagating the
label first gives letrec x = x^1 in x^0, and then fails.

The initial shift of the labeling 0 means that relativized normal order reduc-
tion cannot trace evaluation of a subterm t0 of the form (letrec Env2 in s)0

in a term (letrec Env1 in (letrec Env2 in s)0), since this is relabeled as
(letrec Env1 in (letrec Env2 in s0)), and hence only the evaluation of the
rightmost non-letrec-term can be traced. This is not a severe restriction, but
makes a proof of correctness easy possible for rearranging the normal order re-
duction sequences exploiting strictness.
Using the labeling, we define the relativized normal order reduction w.r.t. to a
subexpression.

Definition 20.5. Let t be a closed expression, and s be a subexpression that is
in an A-context, and labelled initially with 0.
If the labeling failed, then there is no relativized normal order reduction step
w.r.t. s.
Otherwise, let j be the maximal number used by the labeling. There are several
cases for the (rn)-reduction w.r.t s.

– If s is in relativized WHNF, then there is no relativized normal order reduc-
tion.

– t is of the form C[(sj
1 s2)j−1], and s1 is an abstraction. Then apply rule

(lbeta) to (s1 s2).
– t is of the form A[xj′], and x is bound in t to an abstraction rj. Then reduce

the term as follows:
(cptrn) A[x]→ A[r]

The rule (cptrn) only copies into A-contexts.
– t is of the form C[(case (c t1 . . . tn)j ((c y1 . . . yn)→ r) alts)].

Then apply (case-c) and obtain C[(letrec y1 = t1, . . . , yn = tn in r)].
– t is of the form C[(case t′j (lambda→ r) alts)], and t′ is an abstraction.

Then apply (case-lam) and obtain C[(letrec {} in r)].
– t is of the form

C[letrec u = (c t1 . . . tn)j , Env

in D[(case xj′ ((c y1 . . . yn)→ r) alts)]]

where D is an A-context, and x is bound to the term (c t1 . . . tn)j. Then use
the following rule that results in:

(casern) C[letrec u = (c z1 . . . zn), z1 = t1, . . . , zn = tn
in D[(letrec y1 = z1, . . . , yn = zn in r)]

53

– t is of the form

C[letrec x = (c t1 . . . tn)j , Env,

y = D[(case xj′ ((c y1 . . . yn)→ r) alts)] in t′]

where D is an A-context, and x is bound to the term (c t1 . . . tn)j.
Then use the following rule that results in:

(casern) C[letrec x = (c z1 . . . zn), z1 = t1, . . . , zn = tn,
y = D[(letrec y1 = z1, . . . , yn = zn in r)] in t′]

– t is of the form C[(letrec Env in r)j], where C is not trivial and j > 0.
Then apply a rule of (lll) and shift the letrec one level higher.

– t is of the form C[(IO aj)j−1] then apply (IOr) and obtain one of the expres-
sions C[b], where b is a constant. This reduction has IO-Pair (a, b).

– t is of the form C[(IO xj′)] and x is bound in t to aj, then use the following
rule

(IOrrn) C[(IO xj)]→ C[b] where b is a constant

This reduction has IO-Pair (a, b).

After every (rn)-reduction, it is assumed that the term s remains labelled 0, and
then the other labels are computed anew.

Note that the rn-rules above are the (lll)-rules of calculus or the generalized rules
(casern), (IOrrn), (cptrn), where the binding of the variable may act over several
levels of letrec.
Note also that for rn-reductions, the normal-order reduction would prefer (lll)-
reductions.
It is an easy exercise to show that the extended rules are correct program trans-
formations. However, this is not an issue here, since we are interested in a mod-
ified normal order reduction at run-time.
In the following let ρ be a mapping for reductions as follows: ρ(cptrn) =
(cp), ρ(IOrrn) = (IOr), ρ(casern) = (case) and ρ(a) = a, otherwise.

Lemma 20.6. Let t be a closed expression, and s be a subexpression that is in
a reduction context. Then a normal order reduction leaves the successor of s
according to definition 20.3 in a reduction context w.r.t. t.

Definition 20.7. We need a further reduction rule as a restriction of (cpx) to
have nice commuting diagrams for the (rn)-reductions:

(cpxx) (letrec x = y, z = x,Env in t)
→ (letrec x = y, z = y, Env in t)

Lemma 20.8. The reduction (iA, cpxx) commutes with the n-reductions of the
FUNDIO-calculus and the reductions (rn).

54

In the following we use a modified notion of complete set of commuting diagrams.
The idea is that there are the desired reductions and one disturbing reduction
that has to be eliminated by shifting.

Lemma 20.9. Let t be a closed expression, and s be a subexpression that is in
an A-context, and labelled initially with 0.
The following is a complete set of commuting diagrams for an rn-reduction w.r.t.
s in an A-context.

(rn,a,P1)
−−−−→ ;

(n,ρ(a),P1)
−−−−→

(rn,a1,P1)
−−−−→ ·

(n,a2,P2)
−−−−→ ;

(n,a2,P2)
−−−−→ ·

(rn,a1,P1)
−−−−→

(rn,case)
−−−−→ ·

(n,case)
−−−−→ ;

(n,case)
−−−−→ ·

(rn,case)
−−−−→ ·

(iA,cpxx)∗

−−−−→ ·
(iA,xch)∗

−−−−→

where P1, P2 are IO-pairs or empty.

Proof. We omit the standard calculations and demonstrate the typical nontrivial
commutation for the (case)-over-(case) transformation.

(letrec x = c t in C[(case x ((c y)→ r1))0, case x ((c z)→ r2)])
rn,case
−→ (letrec x = c u, u = t in C[(letrec y = u in r0

1), case x ((c z)→ r2)])
n,case
−→ (letrec x = c v, u = t, v = u in C[(letrec y = u in r0

1), (letrec z = v in r2)])
n,case
−→ (letrec x = c v, v = t in C[(case x ((c y)→ r1))0, (letrec z = v in r2)])

rn,case
−→ (letrec x = c u, v = t, u = v in C[(letrec y = u in r0

1), (letrec z = v in r2)])
cpxx
−→ (letrec x = c v, v = t, u = v in C[(letrec y = u in r0

1), (letrec z = v in r2)])
xch
−→ (letrec x = c v, u = t, v = u in C[(letrec y = u in r0

1), (letrec z = v in r2)])

ut

Lemma 20.10. The (iA, xch)-reduction commutes with the n-reductions of the
FUNDIO-calculus and the reductions (rn). I.e.

iA,xch
−→ ·

rn,a,P
−→ ;

rn,a,P
−→ ·

iA,xch
−→

iA,xch
−→ ·

n,a,P
−→ ;

n,a,P
−→ ·

iA,xch
−→

Proof. Is the same as for commutation with normal order reductions. ut

Proposition 20.11. Let t be a closed term, and let s be a subexpression for
relativized normal order reduction, which is in a reduction context R, i.e., t =

R[s]. Assume given a reduction sequence t
rn,∗
−→ t′

n,∗
−→ t′′ with IO-multiset P ,

where the first part is the relativized normal order reduction w.r.t. s until a
relativized WHNF for s is obtained in the term t′, and the second part is a
normal order reduction terminating with a WHNF t′′.

55

Then the reduction sequence can be transformed into a normal order reduction

for t
n,∗
−→ t′′′ to a WHNF, with t′′′

cpxx∨xch,∗
−−−−−−−→ t′′, where the IO-multiset is P , and

the number of the reduction is the same; even for every type of reduction: (case),
(cp),(lll), (lbeta), (IOr), the number of reductions is the same.

Proof. Lemmas 20.9, 20.10 and 20.8 show that shifting (rn)-reductions to the
right terminates and keeps the number of non-(lll)-reductions.
We have to argue that there remains no (rn)-reduction before a WHNF. Lemma
20.6 shows that the successor of s after a normal order reduction step is in
a reduction context. If t is a WHNF, then the subterm s is also in relativized
WHNF, and thus there is no remaining (rn)-reduction before a WHNF. Thus the
shifting right does not lose any reductions nor shifts them after the terminating
n-reduction. Concluding, the claim holds. ut

Lemma 20.12. The (iA, xch)- and (iA,cpxx)-reduction has trivial forking with
(rn)-reductions and with n-reductions. I.e.

rn,a,P
←−− ·

iA,xch
−→ ;

iA,xch
−→ ·

rn,a,P
←−−

n,a,P
←−−·

iA,xch
−→ ;

iA,xch
−→ ·

n,a,P
←−−

rn,a,P
←−− ·

iA,cpxx
−→ ;

iA,cpxx
−→ ·

rn,a,P
←−−

n,a,P
←−−·

iA,cpxx
−→ ;

iA,cpxx
−→ ·

n,a,P
←−−

Lemma 20.13. Let t be a closed term, and let s be a subexpression that is in
an A-context. The following is a complete set of forking diagrams for an rn-
reduction w.r.t. s that is complete if the case of a fail does not occur

(n,ρ(a),P1)
←−− ·

(rn,a,P1)
−→ ; Id

(n,a2,P2)
←−− ·

(rn,a1,P1)
−→ ;

(rn,a1,P1)
−→ ·

(n,a2,P2)
←−−

(n,ρ(a1),P1)
←−− ·

(n,a2,P2)
←−− ·

(rn,a1,P1)
−→ ;

(n,a2,P2)
←−−

(n,case)
←−− ·

(rn,case)
−→ ;

rn,case
−→ ·

iA,cpxx,∗
−→ ·

iA,xch,∗
−→ ·

(n,case)
←−−

(n,ρ(a),P1)
←−− ·

(rn,a,P2)
−→ ; fail

if the redex is the same, but P1 6= P2

The right side Id means that both reductions are removed.

Proposition 20.14. Let t be a closed term, and let s be a subexpression that
is in a reduction context, i.e., t = R[s]. If there is a terminating normal order

reduction sequence for t with IO-sequence −→P : t
n,∗,
−→
P

−→ t′, then there is also a
terminating relativized normal order reduction sequence w.r.t. s. Moreover, there
are IO-sequences −→P1,

−→
P2 with P = P1 ∪ P2 as multisets and such that −→P1 is a

subsequence of −→P , such that there exists a reduction sequence t
rn,∗,
−→
P1

−−−−→ t′′
n,∗,
−→
P2

−−−−→

t′′′, t′′ is a rWHNF and t′
iA,(xch∨cpxx)∗

−−−−→ t′′′.

56

t
rn,∗,
−→
P1 //

n,∗,
−→
P

��

t′′

n,∗,
−→
P2

��
t′

iA,(xch∨cpxx)∗// t′′′

The reduction t
rn,∗,P1
−−−−→ t′′

n,∗,P2
−−−−→ t′′′ requires the same number of reductions as

t
n,∗,P
−→ t′; even for every type of reduction: (case), (cp),(lll), (lbeta), (IOr), the

number of reductions is the same.

Proof. Note that the normal order reductions leave s in a reduction context.
As a first step we prove by induction on the number k of normal order reductions

of t
k,P
−→ t′ the following restricted claim:

If R[s] = t
n,k,P
−→ t′, in k steps to a WHNF t′, then either s is in rWHNF , or

there is a rn-reduction t
rn
−→ t1, such that t1

n,k−1,P
−−−−→ t′′′, where t′′′ is a WHNF

and t′
iA,(xch∨cpxx)∗

−−−−−−−→ t′′′.
We have to construct a rn-reduction w.r.t. s to a rWHNF. If t is already a
rWHNF, then there is nothing to show. Assume that t

rn
−→ t1. We use the com-

plete set of forking diagrams in Lemma 20.13. We treat all cases:

– If k = 1, then the second case is not possible, since a WHNF has no rn-
reduction for a term s in a reduction context. So only the first forking trans-
formation is possible, and the claim is true. For the other cases, assume that
k > 1.

– If the first or third forking rule can be used, then the claim is obvious.
– If the forking rule 2 is used, then we get a t2 with t

n
−→ t3

rn
−→ t2 and t1

n
−→ t2.

induction shows that t2 has a normal order reduction of length k − 2.
– If a fail occurs according to the last rule, then we had a choice among several

IO-reductions: we simply use a different (rn)-IOr-reduction using the same
redex, but an appropriate IO-pair.

– If the forking rule 4 is used, then we get a diagram as follows:

t
rn //

n

��

t1

n

��
t3

rn //

n,k−1

��

t4
cpxx,∗ //

n,k−2

��

· xch,∗ // t2

n,k−2

��
t′

(xch∨cpxx)∗ // ·
(xch∨cpxx)∗ // t′′′

By induction, there is a normal order reduction for t4 of length k − 2. The
forking diagrams for (cpxx) and (xch) (see Lemma 20.12) show that diagram

57

with north-west corner t4 holds. The diagram then contains a normal order
reduction of length k − 1 for t1.

Tracing the IO-pairs in the diagrams, we see that the IO-multisets of the re-

duction t
n,∗
−→ t′ and t

rn,
−→
P1
−→ t1

n,∗,
−→
P2

−−−−→ t′′′ are the same, and that moreover the
IO-sequence −→P1 is a subsequence of −→P . Thus the claim is proved.

A further induction on the number of rn-reductions now shows the lemma. ut

The following lemma shows that the difference between a normal-order reduction
to a WHNF and an rn-reduction of the top level term consists only of (llet-in)-
reductions

Lemma 20.15. Let t be a closed term.
There is a terminating (rn)-reduction w.r.t. t: t

rn,∗,P
−−−−→ t′ where t′ is a rWHNF,

iff there is a terminating normal order reduction t
n
−→ t′′, and t′

P,(n,llet)∗

−−−−−−−→ t′′.
The sequence of the reduction types is the same after removing the (llet-in)-
reductions.

Proof. This holds, since the the trivial forking diagram for
n,llet−in
−→ and an rn-

reduction holds in the above situation.

n,llet−in
←−− ·

rn,a,P
−→ ;

rn,a,P
−→ ·

n,llet−in
←−−

n,a,P
←−−·

rn,a,P
−→ ; Id

The inductive construction of the n-reduction (the rn-reduction, respectively)
can be driven either by the rn-reduction or by the n-reduction, where in case of
an IOr-reduction, we have to use the same IO-pair.

ut

20.0.1 Non-Terminating rn-Reductions

Corollary 20.16. Let s be a closed expression without a terminating normal
order reduction. Then for all R: R[s] does not have a normal order reduction for
all reduction contexts R.
By the context lemma this means s ≤c t for all expressions t.

Proof. The claim follows from Proposition 20.14 as follows.
Suppose R[s] has some terminating n-reduction with IO-multiset P . Lemma
20.14 implies that there is also a reduction sequence first rn-reducing s in R[s]
to a rWHNF using P1, and then a further n-reduction sequence with some IO-
multiset P2 with P = P1 ∪ P2. Since s is closed, the rn-reduction is almost the
same as a normal order reduction of s, up to some (llet)-reductions by Lemma
20.15. The (rn)-reductions yield an expression R[s′], where s′ is closed and of
the form LR[s′′], where s′′ is in rWHNF in LR[s′′]. After a finite number of
(llet)-reductions, this term is also in WHNF.

58

This is a contradiction to the assumption that s has no terminating normal order
reduction.
Now both preconditions of the context lemma are satisfied, and the context
lemma shows s ≤c t for all expressions t. ut
Now the following makes sense:

Definition 20.17. Let ⊥ be defined as a closed expression without any termi-
nating normal order reduction.

Corollary 20.16 shows that ∀t : ⊥ ≤c t.
A consequence of Corollary 20.16 is that programs that have an infinite normal
order reduction with (IOr)-reductions, but without any terminating normal order
reduction are also equivalent to ⊥. This is the view that programs that cannot
be stopped legally are equivalent to ⊥.

Corollary 20.18. For every reduction context R, the equation R[⊥] ∼c ⊥ holds.

Proof. Follows from Corollary 20.16. ut
Lemma 20.19. If t is a term without any normal-order reduction to a WHNF,
and t → t′ by a FUNDIO-reduction, then t′ has no terminating normal-order
reduction to a WHNF

Proof. Assume that t′ has a terminating normal order reduction. Since all non-
IOr-reductions from FUNDIO are correct program transformations, the only case

we have to consider is that t
IOr
−→ t′. So we need a complete set of commuting

diagrams for
IOr
−→, where the (IOr) may be in an arbitrary context. These are

i,IOr,P1
−−−−→ ·

n,P2
−→ ;

n,P2
−→ ·

i,IOr,P1
−−−−→

i,IOr,P1
−−−−→ ·

n,P2
−→ ;

n,P2
−→ ·

n,IOr,P1
−−−−→

i,IOr,P
−−−−→ ·

cp,n
−→ ;

cp,n
−→ ·

i,IOr,P
−−−−→ ·

i,IOr,P
−−−−→

Moreover, if t1
IOr
−→ t2, and t2 is a WHNF, then t1 is a WHNF.

For induction we use as measure a pair of the following measures, where the
pairs are ordered lexicographically.

1. The multiset of the following numbers: for every (i,IOr)-reduction the num-
ber of (n,cp)-reductions to the right of it. The multiset is ordered by the
multiset ordering.

2. The multiset of the following numbers: for every (i,IOr)-reduction the num-
ber of reductions to the right of it.

Thus the shifting to the right terminates.

We conclude by induction that t
IOr
−→ t′

n,∗
−→ t′′, where t′′ is a WHNF, leads to a

terminating normal order reduction for t.
We have shown that the lemma holds ut
Corollary 20.20. If t ∼c ⊥ and t→ t′ by a FUNDIO-reduction, then t′ ∼c ⊥.

Proof. This follows from Lemma 20.19 and 20.16. ut

59

20.1 Multiple Relativized Reductions

To treat correctness of strictness optimizations, it is necessary to consider the
evaluation of more than one subterm in a single reduction sequence, and also to
trace the corresponding reductions.
Therefore we generalize the evaluation labeling from Definition 20.3 to a pair
(i, j), where i is the index of the term to be evaluated, and j is the evaluation la-
bel, starting from 0. It is possible that a subterm has multiple labels for different
indices.
We denote the index i only if necessary. The relativized reduction according to

index i is denoted as
rn(i)
−→ , or if the subterm s is clear from the context, we will

also write
rn(s)
−→ .

Example 20.21. We give an example for a term with a subterm that has multiple
labels for different indices.

(letrec x = (IO a) in r x(2,0) (case x(1,0) alts))

We show more evaluation labels:

(letrec x = (IO a)(1,2),(2,3) in ((r x(2,0))(2,1) (case x(1,0) alts)(1,1))(1,2),(2,2))

Lemma 20.22. Let t be a closed term, and let s1, s2 be two subexpression in
A-contexts. The following is a complete set of forking diagrams for a rn(s1)-
reduction and rn(s2)-reductions which is complete if the case of a fail does not
occur

(rn(1),ρ(a),P1)
←−− ·

(rn(2),a,P1)
−→ ; Id

(rn(1),a1,P1)
←−− ·

(rn(2),a2,P2)
−→ ;

(rn(2),a2,P2)
−→ ·

(rn(1),a1,P1)
←−−

(rn(1),ρ(a1),P1)
←−− ·

(rn(1),a2,P2)
←−− ·

(rn(2),a1,P1)
−→ ;

(rn(1),a2,P2)
←−−

(rn(1),case)
←−− ·

(rn(2),case)
−→ ;

rn(2),case
−→ ·

iA,cpxx,∗
−→ ·

iA,xch,∗
−→ ·

(rn(1),case)
←−−

(rn(1),ρ(a),P1)
←−− ·

(rn(2),a,P2)
−→ ; fail

if the redex is the same, but P1 6= P2

Proof. Can be done by case analysis ut

21 Strictness and Strictness Optimization

21.1 Strictness in FUNDIO

In this section we define the notion of strict abstraction, and more general of
strict expressions. We define also the corresponding modification of the evalua-
tion strategy w.r.t. to a strict abstraction s, and call this the s-strict evaluation

60

strategy, or strict strategy. We prove that the strict strategy is correct if s is a
closed and strict abstraction.
A strictness analysis for terms in FUNDIO appears to be possible. How-
ever, a standard denotational semantics is inappropriate since sharing is usu-
ally ignored in these semantics, and instead the contextual semantics has
to be used. A promising method is the abstract reduction approach (see
[Nöc93,vEGHN93,SSPS95]), since it appears to be adaptable to FUNDIO.
A result of this section is that strictness optimization in a call-by-need calcu-
lus does not save any of the (non-lll) normal order-reductions. For the (lll)-
reductions, the observation is that the number of bindings in a global heap of an
abstract machine (e.g. see section 25) is unchanged. An observable optimization
effect comes from the knowledge of the order of evaluation, which permits to
save heap-accesses, in particular heap-updates.

Definition 21.1. We say the term s is strict iff (s ⊥) ∼c ⊥.

In this section, we will only consider the s-strict strategy for strict and closed
abstractions. The methods in this section are easily applicable also to terms of
the form s = LR[s0] where s0 is an abstraction.

21.2 Shifting (rn) to the Left

In the following we assume that the terms contain a subterm r0, which is the
term to be evaluated by (rn)-reduction.
In order to shift (rn)-reductions in a reduction sequence to the left, commuting

diagrams of the type
n
−→ ·

rn
−→ ;

rn
−→ · . . . are required. We have a rule that

shows that an n-reduction may also be a (rn)-reduction. This is in particular

necessary for the case t1
n
−→ t2 where t2 is a WHNF, turning this reduction

into an (rn)-reduction. We say the set of diagrams is complete, if every case is
covered.

Lemma 21.2. We consider the situation where the term for relativized reduc-
tion is already available in the (n)-reduction. We fix the (rn)-reductions to this
term and the corresponding 0-label. In the diagrams we assume that all reduc-
tions are in A-contexts. A complete set of diagrams for shifting (rn) to the left
over (n) is as follows:

a1,n,P1
−→ ·

a2,rn,P2
−→ ;

a2,rn,P2
−→ ·

a1,n,P1
−→

ρ(a),n,P
−→ ;

a,rn,P
−→

n,case
−→ ·

rn,case
−→ ;

rn,case
−→ ·

n,case
−→ ·

iA,cpxx,∗
−−−−→ ·

iA,xch,∗
−−−−→

Proof. A case analysis. The computation of a critical case is the same as in the
proof of Lemma 20.9. ut

Lemma 21.3. Let t be a closed term and r be a subexpression that is in rWHNF

w.r.t. rn(r). If t
iA,lll
−→ t′, then the successor of r is also in rWHNF.

61

The following proposition is a first step in showing that a rearrangement of a
normal order reduction sequence according to strictness information is correct,
but does not save any reduction steps.

Proposition 21.4. Let R[(s t)] be an expression such that s is a strict, closed
abstraction, and R a reduction context. Assume there is a terminating normal
order reduction sequence for R[s t] with IO-sequence −→P . Then there is a reduction

sequence w.r.t. t as follows: R[s t]
rn(t),∗,

−→
P1

−−−−→ r
n,∗,
−→
P2

−−−−→ r′, such that r is a rWHNF
w.r.t. t, −→P1 is a subsequence of −→P , P = P1 ∪P2 as multisets, and the number of
reductions of every kind is unchanged: (lll), (cp), (lbeta), (IOr), (case).

Proof. Since s is strict, the reduction can be splitted, such that

R[s t]
n,∗
−→ r′

n,∗
−→ r′′, such that t0 is in a reduction context in r′. Then Propo-

sition 20.14 shows that there is a terminating rn-reduction of r′ such that

R[s t]
n,∗,P2,1

−−−−→ r′
rn(t),∗,P1

−−−−→ ·
n,∗,P2,2

−−−−→ r′′.

The complete set of reductions in Lemma 21.2 shows that the (rn)-reductions can
be moved to the left, where the (cpxx) and (xch) may be shifted to the right out
of the reduction sequence. We use the following strategy using the diagrams in
Lemma 21.2: Let there be a border between the starting (rn)-reduction sequence
and a following (n)-reduction sequence. In the n-reduction sequence find the first
one that can be turned into an (rn)-reduction. Then shift this (rn)-reduction
completely to the left until the border is reached. The remaining (cpxx) and
(xch)-reductions are shifted to the rightmost end of the sequence. After this,

the reduction is of the form R[s t]
rn,t,∗,

−→
P1

−−−−→ r
n,∗,
−→
P2

−−−−→ r′. The term r must be in
rWHNF. ut

21.3 Shifting (n) to the Left Over rn-Reductions

We require also the diagrams for shifting n-reductions to the left.

Lemma 21.5. We consider the situation where the term for relativized reduc-
tion is already available in the (n)-reduction. We fix the (rn)-reductions to this
term and the corresponding 0-label. In the diagrams we assume that all reduc-
tions are in A-contexts. A complete set of diagrams for shifting (n) to the left
over (rn) is as follows:

a1,rn,P1
−→ ·

a2,n,P2
−→ ;

a2,n,P2
−→ ·

a1,rn,P1
−→

a,rn,P
−→ ;

ρ(a),n,P
−→

rn,case
−→ ·

n,case
−→ ;

n,case
−→ ·

rn,case
−→ ·

iA,cpxx,∗
−−−−→ ·

iA,xch,∗
−−−−→

Proof. A case analysis. ut

62

21.4 Shifting (rn) to the Left Over rn-Reductions

To treat the strict strategy, it is necessary to consider shifting rn(1)-reductions
over rn(2)-reductions.

Lemma 21.6. We consider only situations where at least the 0-label for the
corresponding indices are available. We use two (rn)-reductions for the indices
1 and 2. In the diagrams we assume that all reductions are in A-contexts.
A complete set of diagrams for shifting rn(2)-reductions to the left over rn(1)-
reductions is as follows:

a1,rn(1),P1

−−−−→ ·
a2,rn(2),P2

−−−−→ ;
a2,rn(2),P2

−−−−→ ·
a1,rn(1),P1

−−−−→
a,rn(1),P
−−−−→ ;

a,rn(2),P
−−−−→

rn(1),case
−−−−→ ·

rn(2),case
−−−−→ ;

rn(2),case
−−−−→ ·

rn(1),case
−−−−→ ·

iA,cpxx,∗
−−−−→ ·

iA,xch,∗
−−−−→

Proof. A case analysis. The computation of a critical case is the same as in the
proof of Lemma 20.9. ut

Proposition 21.7. Let C[(s t)] be an expression, where s is a strict and closed
abstraction, C is an A-context, and the subterm (s t) is labeled as follows:
C[(s t)(1,j)]. Assume there is a terminating rn(1)-reduction sequence for C[(s t)]
with IO-sequence −→P . Then for t being the subterm for index 2, there is a rn(2)-
reduction sequence as follows:

R[s t]
rn(2),∗,

−→
P1

−−−−−−−→ r
rn(1),∗,

−→
P2

−−−−−−−→ r′

such that −→P1 is a subsequence of −→P , and P = P1∪P2 as multisets. The term r is
a rn(2)-rWHNF, and the term r′ is a rn(1)-rWHNF. The number of reductions
of every kind of reductions (lll), (cp), (lbeta), (IOr), (case) is unchanged.

Proof. The proof is the same as for Proposition 21.4 where a copied lemma and
proof of Lemma 20.14 is used. ut

21.5 Strictness Optimizations

Definition 21.8. Let s be a strict, closed abstraction that is a subexpression of a
closed expression t0. We assume that the reduction strategy maintains strictness
marks for closed abstractions, where in case of a (cp), the strictness mark is
duplicated. Let s have a strictness marker.
Define the s-strict evaluation strategy (s-strict reduction) as follows:
Whenever (s t) is in a reduction context, then

– Use a new index j for t and apply s-strict-rn(j)-reduction w.r.t. t, until a
rn(j)-rWHNF is reached.

– Apply the normal-order reduction (lbeta) for the subterm (s t′)

63

– Proceed with the s-strict evaluation strategy.

Define the s-strict-rn(j)-reduction w.r.t. r(j,0), as follows:
Whenever (s t) is a subterm to be rn(j)-reduced by (lbeta), then

– If (s t) is already pending for another rn(k)-reduction, then fail: this would
cause an infinite loop.

– Use a new index j′ for t and apply s-strict-rn(j’) reduction w.r.t. t, until a
rn(j’)-rWHNF is reached.

– Apply the rn(j)- step (lbeta) for the subterm (s t′)
– Then proceed with the s-strict-rn(j)-reduction.

Example 21.9. As an example for the possibility of a loop, consider the term

letrec x = s y, y = s x in y

We show that the existence of a terminating normal-order reduction for P implies
the existence of a terminating s-strict reduction for P .

Proposition 21.10. Let s be a strict, closed abstraction that is a subexpression
of a closed expression t and that is marked as strict. Assume there is a normal
order reduction of t using IO-multiset P to a WHNF. Then there is a s-strict
reduction to a WHNF with IO-multiset P that requires the same number of of
every kind of reduction: (lll), (cp), (lbeta), (IOr), (case).

Proof. Let t⇓(P), then we have to show that there is a terminating s-strict

reduction using IO-multiset P . Let t
n,∗,P
−→ t1 be a normal order reduction to

a WHNF t1. If there is no intermediate term of the form R[s r], where R is a
reduction context, then we are ready, since the normal-order reduction is already

an s-strict reduction. So assume that t
n,∗,P1
−−−−→ t′ = R[s r]

n,∗,P2
−−−−→ t1. Proposition

21.4 shows that the (rn)-reductions w.r.t. r in a sequence R[s r]
n,∗,P2
−−−−→ t1 can be

moved to the left until the reduction sequence is of the form R[s r]
rn,∗
−→ t′′

n,∗
−→ t1,

where t′′ is in rWHNF.
To use induction, we have to count the length of a reduction: The length is

the same, and additionally, the first reduction in t′′
n,∗
−→ t1 must be an (lbeta)-

reduction: The (lbeta)-reduction cannot be required as an (rn)-reduction, since
otherwise, the rn-reduction is either non-terminating, or there will be a fail in
finding the next rn-redex. Since at least the (lbeta)-reduction is missing, the

reductions R[s r]
rn,∗
−→ t′′, as well as t′′

n,∗
−→ t1 have less reductions, and induction

can be used.
The same arguments can be used if the reduction R[s r]

rn,∗
−→ t′′ is modified by a

strict abstraction s:

Let t
rn(j),∗,P
−→ t1 be a reduction to a rWHNF t1. If there is no intermediate term

of the form R[s r], then we are ready, since the rn(j)-reduction is already an s-

strict-rn(j)-reduction. So assume that t
rn(j),∗,P1

−→ t′ = C[s r]
n,∗,P2
−→ t1, where (s r)

64

is the subterm to be (lbeta)-reduced by rn(j)-reduction. Proposition 21.7 shows

that the (rn(j’))-reductions w.r.t. r in a sequence C[s r]
rn(j),∗,P2

−−−−→ t1 can be moved

to the left until the reduction sequence is of the form C[s r]
rn(j′),∗
−→ t′′

rn(j),∗
−→ t1,

where t′′ is in rWHNF . Again the number of reductions is the same, and the first

reduction of t′′
rn(j),∗
−→ t1 is an (lbeta)-reduction. Thus induction can be used.

ut

Proposition 21.11. Let s be a strict, closed abstraction that is a subexpression
of a closed expression t and that is marked as strict. Assume there is an s-strict
reduction of t using IO-multiset P to a WHNF. Then there is a normal order
reduction to a WHNF with IO-multiset P that requires the same number of non-
(lll)-reductions, in particular also the same number of every kind of reductions:
(lll), (cp), (lbeta), (IOr), (case).

Proof. Let t
str(s),∗,P
−−−−→ t0. If this is already a normal order reduction, then

we are ready. Let there be an intermediate term, such that t
n,∗,P1
−→ t1 =

R[s r1]
str(s),∗,P2

−−−−→ t0 with P = P1 ∪ P2. By induction on the length of the re-
duction sequence, we can assume that t = t1. The reduction is of the form

t
str(s),∗,P2,1

−−−−→ t2 = R[s r′1]
str(s),∗,P2

−−−−→ t0, where the first reduction of the second
part is the (lbeta) reduction for the redex (s r′1). By induction, this can be

rearranged as t
rn(r1),∗,P2,1

−−−−−−−→ t2 = R[s r′1]
str(s),∗,P2

−−−−→ t0, where the (cpxx)- and
(xch)-reductions are moved out of the way. We can shift the n-reductions to the
left using Lemma 21.5, again moving the (cpxx)- and (xch)-reductions out of the
way. This shows that there is also a n-reduction to a WHNF.
What remains to be proved is that the (rn)-reductions that are to the right
are not after the WHNF is reached, but are all turned into n-reductions.
The argument is as follows: If after the shifting, the reduction is of the form

t
n,∗,P3
−−−−→ t3

rn(r1),∗,P4

−−−−→ t4, where t3 is a WHNF, then again, we can isolate the

rn(r1)-reductions in the reduction t
n,∗,P3
−→ t3 and shift them to the left. The

result would be a reduction t
rn(r1),∗,P5

−−−−→ t5
n,∗,P6
−→ t′3, but t5 is not in rWHNF. So

we could also place in a bot-term for the 0-labeled term in t5, since there is no
further reduction on it. This is a contradiction to the strictness of s.

The same arguments as above can be used to show the claim for the case where
an rn(j)-reduction has to be shifted over an rn(j′)-reduction, where Lemma 21.6
has to be used.

ut

Theorem 21.12. Let s be a closed and strict abstraction that is a subexpression
of a closed expression t0, and that is marked as strict. The the s-strict strategy
is correct as a strategy.

65

Proof. For the proof we have to use the definition of a correct strategy. I.e. we
show that ∀P : t⇓(P) ⇔ t⇓str(s)(P) and t⇑ ⇔ t⇑S . Hence the proof consists of
four parts.

1. For t⇓(P), we have to show that there is an s-strict reduction terminating
with a WHNF and using P as IO-multiset. This follows from Proposition
21.10 and Theorem 16.1.

2. Assume, that the s-strict strategy terminates with a WHNF using IO-
multiset P . Then Lemma 21.11 shows the that there is also a normal order
reduction to a WHNF using the same IO-multiset.

3. If t0
n,∗,
−→
P

−→ t1, and t1 = ⊥, then we have to show that there is some s-strict
reduction of t0 to a term t′1 that has no terminating s-strict reduction (i.e.
t′1 = ⊥)

If the normal-order reduction t0
n,∗,
−→
P

−→ t1 is also a s-strict reduction, then we
can use part 1 and 2 of this proof and we are ready.
Hence we have to consider the case that there is an intermediate term t2 =

R[s t] with t0
n,∗
−→
P1

−−−−→ t2
n,#k,

−→
P2

−−−−→ ⊥. From t2 we start the (rn)- reduction(s)

for s: t2
rn
−→ t′2. The situation is as follows:

t2 = R[s t]
rn,∗ //

n,#k

��

t′′2

?

��
t1 = ⊥ ? // t′′1 = ⊥

We construct further reduction sequences of t2 by induction on the number
k of normal-order reductions.
If all rn-reductions w.r.t. t from t2 are infinite or stop with an error, then we
are ready, since then there is also no terminating s-strict reductions of t2.
Hence assume there are some terminating rn(t)-reductions of t2. We argue
by using forking diagrams that either we can use induction on the k, or the
rn(t)-reduction terminates with a rWHNF that has a n-reduction to ⊥.
So the second parameter for the induction is the number of rn-reductions.
Using the forking diagrams for (rn) in 20.13 as well as for (cpxx), (xch),

we obtain by induction that there is a reduction t′2
n,∗
−→ t′1, where either

t1
rn
−→ ·

(cpxx∨xch)∗

−−−−−−−→ t′1, or t1
(cpxx∨xch)∗

−−−−−−−→ t′1. The diagram is:

t2 = R[s t] rn //

n,∗

��

t′2
rn,∗ //

n,∗
��

t′′2

n,∗
��

t1
rn0∨1

// ·
iA,(xch∨cpxx)∗// t′1

(rn∨xch∨cpxx)∗// t′′1

It is clear that t′1 has no terminating normal-order reduction. Furthermore,

it follows from the diagrams, that the length of t′2
n,∗
−→ t′1 is not greater than

66

the length of t2
n
−→ t1. If the (rn)-reduction is an (IOr), then it may be

possible that the transformation fails. In this case, we simply modify the
(rn)-reduction to use the same IO-pair as the normal order reduction. In

this fail-case, the length of t′2
n,∗
−→ t′1 is strictly smaller, and induction can be

used.
The base case is that n = 0, hence the reduction t2

rn,∗
−→ t′′2

n,∗
−→ t′′1 is the

s-strict reduction, where t′′1 has no terminating normal order reduction.
So we have shown the first step in constructing an s-strict reduction to
⊥. Induction on the number of (lbeta)-reductions with strictness-marked
marked abstractions can be used to construct the this s-strict reduction,
where instead of forking diagrams for two kinds of (rn)-reductions is required
(see Lemma 20.22).

4. If there is an s-strict reduction to a term having no s-strict reductions to a
WHNF, we have to argue that there is also a normal order reduction to a
term without terminating normal-order reduction; i.e. to a term equivalent
to ⊥.

Let the reduction be t0
str(s)
−−−−→ t1, and t1 has no terminating s-strict reduc-

tion. From Proposition 21.10 and since s is strict it follows that t1 cannot
have a terminating normal-order reduction.

If the s-strict reduction t0
str(t)
−−−−→ t1 consists only of normal order reduc-

tions, then we are ready. Hence the reduction is of the form t0
n,∗
−→ t2 =

R[s t]
str(rn(s)),+
−−−−−−−→ t3

n,∗
−→ t1 = ⊥.

To simplify the following arguments, we assume that t2
str(rn(t)),+
−−−−−−−→ t3 is an

rn(t)-reduction.
If t3 is a rWHNF, then we can use Lemma 20.11, Theorem 16.1 and obtain a

n-reduction to ⊥. Hence we have only to consider the situation t0
n,∗
−→ t2

rn,+
−→

t1 = ⊥.
If there is no terminating normal order reduction for t2, then we are ready.
Hence we can select a terminating n-reduction of t2.
We use induction on the length of the rn-reduction to ⊥, and then on the
length of the selected n-reduction. The forking diagrams in Lemma 20.13
show that if no conflict occurs, the following diagram can be constructed:

t2
rn,∗,h //

n,k

��

t1

n,≤k

��
t′2

rn,∗ // ·
iA,(xch∨cpxx)∗// t′1

If a conflict occurs, then we can use induction on the length of the rn-
reduction.
The term t′2 is a WHNF.
If there are no rn-reductions necessary in the lower reduction, then we are

67

ready, since t′1 has no terminating normal-order reduction. In the reduction
from t2 to t′2, there is an intermediate term such that t is in a reduction
context, since s is strict and t2 is of the form R[s t]. Hence there cannot
be any rn(t)-reduction in the reduction from t′2 to t′1, since this could be
transformed into the rn-reduction starting from t2 leading to a rWHNF,
which is already treated.

In the general case that the strict reduction t2
str(rn(t)),+
−−−−−−−→ t3 is not rn(t)-

reduction, but has subreductions, then we argue as follows:
Terminating subreductions can be transformed into rn-reductions of the
higher level. For non-terminating ones we can use induction on the num-
ber of lbeta-reductions for abstractions that marked as strict. This is the the
same diagram reasoning as for normal order.
Summarizing, we can construct a normal order reduction from t2 to a term
that has no further normal order reductions.

2

Remark 21.13. General Strictness Optimization
A more general strictness optimization would be to replace strict subterms
λx.s in an environment, such that C[λx.s] is replaced by C[λx.(x seq s)] where
seq is definable as λx, y.case x (Pat1 → y) . . . (PatN → y). To show the
correctness of this transformation helps to make the proof of the correctness of
the strictness optimization incremental.

22 Parallel Evaluation

There are two basically different methods to parallelize evaluation:

– To analyze the program to detect expressions that can be evaluated in paral-
lel, which is the same analysis as for strictness. This is an implicit parallelism.

– Annotations like (parallel E1 E2) which could mean to evaluate E1, E2
in parallel, the value being the value of E2. This is an explicit parallelism.

Both methods are compatible with contextual equivalence of FUNDIO, if the
explicit parallelism is encoded as a seq.
It appears to be wrong to view (parallel E1 E2) only as a hint to start
evaluation of E1, since then there may be useless IO-requests, required by E1.
The modification of the strict evaluation strategy also provides a justification
of correctness of parallel evaluation. The correctness is an issue, since other
definitional variants of the semantics would make parallel evaluation incorrect.
This enables in principle parallel processes that perform the reductions, including
IO-calls, and which may be performed in different sequential orders. A formal
treatment has to state the correctness of a parallel strategy as the correctness
of a strategy that non-deterministically interleaves the different reductions. The
strictness optimized strategy is an instance. This is not formally treated in this

68

paper, but the results for the correctness of the s-strict strategy show that we
can be rather sure that there are no obstacles.

23 Weaker Definitions of Contextual Equivalence

Now we can prove the following lemma (see 6.6)

Lemma 23.1. s ≤c t is equivalent to:

∀C[·] C[s], C[t] are closed⇒
(
∀P : C[s]⇓(P)⇒ C[t]⇓(P)

)
∧ C[t]⇑ ⇒ C[s]⇑

Proof. Assume that

∀C[·] C[s], C[t] are closed⇒
(
∀P : C[s]⇓(P)⇒ C[t]⇓(P)

)
∧ C[t]⇑ ⇒ C[s]⇑

holds, and let s, t be two terms, and C be a context, such that C[s] con-
tains free variables. Let P be an IO-multiset such that C[s]⇓(P). We have
to show that C[t]⇓(P). Let C ′ be the context (λx1, . . . , xn.C[]) ⊥ . . .⊥, where
xi are all the free variables in C[s], C[t]. From C[s]⇓(P), we obtain that
((λx1, . . . , xn.C[s]) ⊥ . . .⊥)⇓(P) since it is permitted to instantiate ⊥. But then
C ′[t]⇓(P) holds, too. This means that C[t]⇓(P) also holds, since instantiating a
WHNF gives a WHNF.
For divergence, similar arguments can be used. Instantiation of an error-term
gives an error-term, and an infinite reduction does not change after instantiation.

ut

24 Behavioral Equivalence

This section gives instructive examples to demonstrate that a practically useful
definition of behavioral approximation is far from being a simple extension of
the deterministic variant of behavioral approximation.

Proposition 24.1. There are closed s, t with s 6≤c t, but

1. ∀P: s⇓(P)⇒ t⇓(P)
2. Neither s, t have a bot-reduction.
3. For all closed r : s r ∼c t r

Proof. Let a, b, c, d be different numbers and let + be addition. Define the fol-
lowing expressions, where choice is defined as in Definition 6.14.

s := \x. choice (choice (a+c) (a+d)) (choice (b+c) (b+d))
t := let y = choice a b in \x. y + (choice c d)

Apply both terms to an argument:

69

s r = choice (choice (a+c) (a+d)) (choice (b+c) (b+d))
t r = let y = choice a b in y + choice c d

To see that s r ∼c t r, we can test them in a reduction context: For every
IO-multiset, we get the same results (up to some reductions), hence s r ∼c t r.
However, s 6∼c t:
Let f = \z . z 0 + z 0, and check f s and f t.
f s reduces to

choice (choice (a+c) (a+d)) (choice (b+c) (b+d))
+ choice (choice (a+c) (a+d)) (choice (b+c) (b+d))

Note that a+b+c+d is a possible selection for the IO-multiset
{(0, T), (0, T), (0, F), (0, F)}
f t = let z = s in z 0 + z 0

= let z = (let y = choice a b in \x. y + choice c d) in z 0 + z 0
= let y = choice a b in let z = \x. y + choice c d in z 0 + z 0
= let y = choice a b in (y + (choice c d)) + (y + (choice c d))

Now the possibility a+b+c+d is no longer available, and moreover, there is no
reduction for the IO-multiset {(0, T), (0, T), (0, F), (0, F)}.

ut

Proposition 24.2. There are closed terms s, t with s ∼c t, and

1. ∀P: s⇓(P)⇔ t⇓(P)
2. Neither s nor t have a bot-reduction.
3. There is a WHNF s′ of s, such that for all WHNFs t′ of t: s′ 6≤c t′.

The terms are:

s = choice (\x. (choice (choice 1 bot) (choice 2 3)))
(\x. (choice (choice 4 5) (choice 5 6)))

t = choice (\x. (choice (choice 1 2) (choice 2 3)))
(\x. (choice (choice 4 bot) (choice 5 6)))

We provide only a sketch of proof for s ∼c t: The expressions s, t have to be
checked in reduction contexts. A critical one is ([] r). The terms (s r) and (t r)
differ only by the way ⊥ can be reached by reduction, hence s ∼c t.
But if we select the WHNF s′ = (\x. (choice (choice 4 5) (choice 5 6)))
of s, there is no WHNF t′ of t with s′ ≤c t′, since for any closed r: s′ r has no
bot-reduction, and it cannot be ≤c (choice (choice 1 2) (choice 2 3)))

ut

70

25 An Abstract Machine for FUNDIO

25.1 An Abstract Machine for FUNDIO based on Sestoft’s machine

This abstract machine is based on the abstract machines in [Ses97], and on the
nondeterministic extensions in [MS99,Kut00].

Definition 25.1. The language that is suitable for the abstract machine has the
following restrictions:

– Arguments of applications must be variables: I.e. only (t x) is admissible
– The arguments in constructor applications must be variables: I.e. only

(c x1 . . . xn) is admissible

Proposition 17.5 shows that it is a correct program transformation to use the
reverse of (ucp) as follows:

(s t) → (letrec x = t in (s x))
(c t1 . . . tn)→ (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))

where x, xi are new variables.

A variant of an abstract machine derived from Sestoft’s machine is as follows:

Definition 25.2. The abstract machine for FUNDIO:
It has as state a triple 〈Γ, t, S〉, where Γ is a multiset of (recursive) bindings
xi = ti, t is an expression, S is a stack, which may contain variables x, update
markers #x, a complete set of alternatives, or the constant IO.
The transition rules of the machine are:

(Lookup) 〈Γ{x = tx}, x, S〉 → 〈Γ , tx,#x : S〉
(Update1) 〈Γ, r,#x : S〉 → 〈Γ{x = r}, r, S〉

if r is a constructor application
(Update2) 〈Γ, r,#x : S〉 → 〈Γ{x = r′}, r, S〉

if r is an abstraction; where r′ is a α-renamed copy of r
(Unwind) 〈Γ, t x, S〉 → 〈Γ, t, x : S〉
(Share) 〈Γ, λx.t, y : S〉 → 〈Γ, (letrec x = y in t), S〉
(Case) 〈Γ, case t alts, S〉 → 〈Γ, t, alts : S〉
(Branch1) 〈Γ, c x1 . . . xn, {(c y1 . . . yn → t) . . .} : S〉 → 〈Γ, (letrec −−−−→yi = xi in t), S〉
(Branch2) 〈Γ, λx.r, {(lambda→ t) . . .} : S〉 → 〈Γ, t, S〉
(Letrec) 〈Γ, (letrec −−−→x = t in s), S〉 → 〈Γ{−−−→x = t}, s, S〉
(UnwindIO) 〈Γ, IO t, S〉 → 〈Γ, t, IO : S〉
(IO) 〈Γ, c, IO : S〉 → 〈Γ, d, S〉

where c, d are constants

Evaluation of a closed term t starts with 〈{ }, t, ∅〉.
The machine stops successfully, if 〈Γ, r, ∅〉 is reached, and r is a value. The IO-
multiset of the whole evaluation is defined as the multiset of the used IO-pairs.

The machine has several possibilities for a fail with error

71

– If 〈Γ, x, S〉 is reached, but x is not bound in the environment. This may
happen if the evaluation is looping.

– if 〈Γ, r, S〉 is reached, r is a constructor application that is not a constant,
and the top of the stack does not consist of alternatives nor an update marker
nor the constant IO. This is usually a typing error.

– if 〈Γ, r, IO : S〉 is reached, and r is a value, but not a constant. This is a
typing error.

Remark 25.3.

– (Share) is named (Subst) in Moran’s paper. It uses letrec, whereas Moran
implements (betavar) (see [MS99]).

– (Branch) differs from Moran’s (branch) in the point that the generation of
a letrec is done instead of substitution.

The FUNDIO-abstract machine could be optimized using replacement of vari-
ables by variables. i.e. use the rule (Betavar) in the rules (Share) and (Branch).
This however, would require a more involved correctness proof of the machine.

An optimization for this machine may be to modify the inputted term using
lambda-lifting and then a reverse (ucp) to avoid nested lambdas, since these
may be unnecessarily copied. The same holds for alternatives of a case.

25.2 Correctness of an Eager-Copy-Strategy

To show that the abstract machine makes a correct evaluation, we require the
correctness of the eager-copy-strategy.

Definition 25.4. The eager-copy-strategy, (ec-strategy) for evaluation is de-
fined as follows:
All normal order reductions are admissible with the following exceptions:

– (case-in) and (case-e) are not allowed, i.e. case-reductions are only allowed
if the case-expression is of form (case v alts), where v is a value. Instead
of a (case-e) or (case-in)-reduction, a (cpcx)-reduction is performed for the
first variable in the chain. I.e., if

R[(letrec x1 = (c t1 . . . tn), x2 = x1, . . . , xm−1 = xm, Env
in R′[case xm ((c z1 . . . zn)→ s) alts])]

→ R[(letrec x1 = (c y1 . . . yn), y1 = t1, . . . , yn = tn,
x2 = x1, . . . , xm−1 = xm, Env

in R′[(letrec z1 = y1, . . . zn = yn in s)])]

is the normal order reduction, and m > 1, then apply (cpcx) instead and
obtain the following term:

R[(letrec x1 = (c y1 . . . yn), y1 = t1, . . . , yn = tn,
x2 = (c y1 . . . yn), . . . , xm−1 = xm, Env

in R′[case xm ((c z1 . . . zn)→ s) alts])]

72

If m = 1, obtain the following term:

R[(letrec x1 = (c y1 . . . yn), y1 = t1, . . . , yn = tn, Env
in R′[case (c y1 . . . yn) ((c z1 . . . zn)→ s) alts])]

– (cp)-reductions are only allowed, if the copy is direct, i.e. if the term is
R[(letrec x1 = λx.s, x2 = x1, . . . , xm−1 = xm, Env in R′[xm])], then in-
stead of copying into xm, the copy is made into x2: The result is
R[(letrec x1 = λx.s, x2 = λx.s, . . . , xm−1 = xm, Env in R′[xm])].

Note that the WHNFs reached by the ec-strategy are of the form
(letrec Env in v), where v is a value.

Proposition 25.5. The ec-strategy is a correct strategy.

Proof. For the proof the criterion in Lemma 19.6 is used.
Let t↓ec(

−→
P). Then the reduction sequence is a mixture of normal-order,

cp-reductions and (cpcx)-reductions. The (cp)-reductions are in fact (cpt)-
reductions.
Then Lemmas 11.7 and 14.7 show that there is a also a terminating normal order
reduction of t with the same IO-sequence.
Let t↓(−→P). We have to show that t↓ec(

−→
P). We do this by induction on the sum

of the number of (n, case)-reductions and (lbeta)-reductions; and then on the
number of n-reductions of t with −→P .
If the first n-reduction is not a (case-e) nor (case-in), then we can use induction,
since the normal-order reduction is also a reduction according to the ec-strategy.
If the reduction is a (case-e) or (case-in), then the ec-strategy-reduction is a

(cpcx). It is obvious, that then t
cpcx,+
−→ t′

case,n
−→ t′′ is the start of the ec-strategy-

reduction sequence. The Lemmas on forking diagrams of (cpcx), (cpx), (gc),
(xch) (see Lemmas 14.5, 13.2 14.2, and 12.3) show that t′′ has a normal order
reduction to WHNF with the same −→P , but with a smaller number of (case)-
reductions and (lbeta)-reductions, Hence we can use induction.
If the reduction is a (cp)-reduction over several indirections, then the ec-strategy-

reduction is a (cpt). Then either t
cpt,+
−→ t′ and t′ is a WHNF, or t

cpt,+
−→ t′

lbeta
−→ t′′,

or t
cpt,+
−→ t′

case−c
−→ t′′. In the latter case it follows from Lemma 11.3, that t′′ has

a smaller number of (case)-reductions and (lbeta)-reductions. Hence we can use
induction. These are all cases.
We can use the same arguments for the equivalence of validity.
This proves correctness of the ec-strategy.

ut

25.3 Correctness of the Abstract Machine

Theorem 25.6. Let t be a closed term. Let t′ be the transformed term according
to definition 25.1. The machine stops with success for input t′ and IO-sequence−→
P iff t has a normal order reduction for −→P .

73

Proof. (Sketch) We show that the machine simulates the reduction according
to the correct eager-copy-strategy (see Proposition 25.5). The environment of
the machine indicates the bindings in the outermost letrecof the intermediate
term in the normal order reduction.
There is a correspondence of the structure of the intermediate term (letrec x1 =
s, x2 = R2[x1], x3 = R2[x2], . . . , xm = R2[xm−1], Env in R[xm]) to the update-
markers on the stack. If the normal order is operating on s, then all the update-
markers are #x1,#x2,#x3, . . . #xm on the stack are, perhaps interspersed with
other entries. (lll)-reductions are done by the machine not one-by-one, but always
several at once, if a letrec-environment is encountered it is always shifted to
the top environment.
Using these observations, it is possible to make an induction to show the corre-
spondence between a machine evaluation and an evaluation by the eager-copy-
strategy.

ut

26 Applications

26.1 Application of the Results to the Core-Language of Haskell

26.1.1 The operators seq and strict It is clear that the Haskell-
operators seq can be encoded in FUNDIO, where s seq t is transformed into
case s (Pat1 → t) . . . (PatN → t), since the pattern lambda is available. The
operator strict is easily encoded using seq:

strict = \f x -> seq x (f x)

A hyperstrict evaluation can also be encoded as follows. We define a function
hyeval s, which hyperstrictly evaluates its argument The definition is given
recursively, but is easily transformed into a letrec-expression.

hyeval = λx. case x ((c1 x11 . . . x1n1)
→ (seq(hyeval x11) (seq (hyeval x12) . . .

(seq (hyeval x1n1) x) . . .))) . . .

A hyperstrict normal form of t is a WHNF of the expression (hyeval t). The
application of hyeval to an argument permits parallel evaluation of the corre-
sponding expressions.

26.2 The Relation between Haskell and FUNDIO

In order to apply the results for Haskell, we take for granted that Haskell
expressions can be desugared into a core language. The missing parts we
also consider are monadic IO, and the function unsafePerformIO. Usages of
unsafePerformIO are translated into calls using FUNDIO’s IO.
Two basic IO-functions in Haskell are, where we interpret IO a as of type World
-> (a,World).

74

getChar :: IO Char -- World -> (Char,World)
putChar :: Char -> IO () -- Char -> (World -> ((),World))

The FUNDIO-simulation of getChar is a call to IO using a dummy-constant,
say () as argument, and obtaining a character c as output. This corre-
sponds to the Haskell call (unsafePerformIO getChar). The Haskell call
(unsafePerformIO putChar) is implemented as a call to IO using c as argu-
ment, and the result is (). The IO-pair of the first is ((), c), the IO-pair of the
second is (c, ()).

-- FUNDIO:
getChar = \c -> IO (c~{\tt seq} ~())
putChar = \c -> (IO c)

26.3 Encoding Sequentialization of Actions

We present an encoding of programming method in FUNDIO to sequentialize
the execution of actions, which is derived from monadic programming. Since
FUNDIO is untyped, we fix actions to be strict abstractions. The intention is
that actions take an argument, communicate with the outer world via IO, and
then return a result.
In the following we use case s of x -> t[x] to abbreviate the case-expression

case s of {p_1 -> t[p_1]; \ldots p_{N} -> t[P_N], lambda ->bot}

Instead of the monadic bind, we use the slightly different composition >@>, which
is in our case almost a strict composition of actions (which are like unary func-
tions).

return x = case x of r -> r
m >@> k = \x -> case m x of r -> k r

The definition of return is the same as identity, but returns ⊥ for abstractions.
Comparing this with a monadic bind >>=, the operator >@> can be defined using
>>= by

m >@> k = \x -> m x >>= k

and bind itself can be encoded as

m >>= k = case m of r -> k r

26.3.1 Checking the Monoid Laws We check the monoid laws for the
composition >@>.
The criterion is to check the following:
For abstractions s, t, check whether ∀r : s r ∼c t r
We know that this criterion alone is insufficient to show contextual equivalence,
but it is a critical test (see Proposition 24.1).
Verifying the laws is done under the following assumptions on actions:

75

1. actions m are closed abstractions.
2. the actions are strict in their argument
3. m (λy.s) ∼ ⊥.

The first law is: return >@> m = m
We have to check \a -> case (case a of r’ -> r’) of {r -> m r)}. In
the case that the argument a is an abstraction or bot, then the result is also bot.

return >@> m
∼c \a -> case (case a of r’ -> r’)

of {r -> m r)} Def. of >@>
∼c \a -> case a of {r -> m r } Def. of return, (case,ucp)
∼c \a -> let r = a in m r) (case,ucp)
∼c \a -> m a (case,ucp)
∼c m (η)

The second law is m >@> return = m
Again we assume that the arguments and results of actions are not ⊥ nor ab-
stractions. In these cases it is easy to see that both sides of the equation are
⊥.

m >@> return
∼c \a -> case (m a) of r -> return r
∼c \a -> case (m a) of r -> r
∼c m (to be proved)

Now we check associativity of the strict composition:
m1 >@> (m2 >@> m3) = (m1 >@> m2) >@> m3
First we compute the left hand side, under the assumption that all arguments
and results are neither ⊥ nor abstractions.

\x -> case (m1 x) of (r1 -> (m2 >@> m3) r1)
∼c \x1 -> case (m1 x1) of

(r1 -> (\x2 -> case m2 x2 of (r2 -> m3 r2)) r1)
∼c \x1 -> case (m1 x1) of

(r1 -> (let x2 = r1 in case m2 x2 of (r2 -> m3 r2)))
∼c \x1 -> case (m1 x1) of

(r1 -> (case m2 r1 of (r2 -> m3 r2))) ucp

We compute the left hand side,

(m1 >@> m2) >@> m3
∼c \x1 -> case (m1 >@> m2) x1 of (r2 -> m3 r2)
∼c \x1 -> case ((\x2 -> case (m1 x2) of

(r1 -> m2 r1)) x1) of (r2 -> m3 r2)
∼c \x1 -> case (let x2 = x1 in case (m1 x2) of

(r1 -> m2 r1)) of (r2 -> m3 r2)
∼c \x1 -> case (case (m1 x1) of

(r1 -> m2 r1)) of (r2 -> m3 r2) cpx, gc
∼c \x1 -> case (m1 x1) of

(r1 -> case (m2 r1) of (r2 -> m3 r2)) case-case

76

This argument uses the rule (case-case) for FUNDIO (see also [JS98]), which
can be proved correct using the methods in this paper; for a worked-out proof
see [Sab03].
We demonstrate the use of the encoding for two simple IO-functions, where we
assume that the input and output are characters or the special constant (), and
that seq defined as \ s t ->case s (Pat1 → t) . . . (PatN → t), inlcuding the
pattern lambda, where we use seq as binary infix symbol.

getChar = \c -> (IO (c seq ())
putChar = \c -> (IO c)

First we try getChar >@> getChar

\x -> case (getChar x) of (r -> getChar r)
∼c \x -> case (IO (x seq ())) of (r -> (IO (r seq ()))) lbeta, gc

This means that the combined action does indeed two subsequent getChar’s ,
and also in the originally intended sequence.
Now we try to first get a character and put it back:
getChar >@> putChar

\x -> case (getChar x) of (r -> putChar r)
∼c \x -> case (IO (seq x ())) of (r -> IO r) lbeta, gc

Example 26.1. The following example in [Jon01] shows that the replacement of
equals for equals is no longer valid in Haskell according to the Haskell-semantics,
where

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar c w2

is transformed into

\w -> case getChar w of
(c,w1) -> case putChar c w1 of

(_,w2) -> putChar (fst (getChar w)) w2

using different action combinators. This transformation is invalid, since the
getChar is called twice after the transformation, whereas it was only called
once before the transformation.
This cannot happen using FUNDIO-semantics, since copying the (getChar w)-
call is not valid in FUNDIO.

The results in this paper allow to prove program transformations and compiler
optimizations as correct or to detect incorrect w.r.t. the use of unsafePerformIO
and the encoding of monadic IO. The results are consistent with the observations
and proofs in [AS98].
A program transformation that is correct in FUNDIO is also correct in Haskell-
core, and hence in Haskell.

77

If only a subset of Haskell-core (say the expressions that are type-correct in
some sense) are considered, then there may be correct program transformations
in Haskell-core that are not correct in FUNDIO. However, presumably, these
are rare cases. Usually, the FUNDIO-counterexamples to equivalence can also
be translated to Haskell-core.

26.4 Application to Strict Functional Programming Languages

26.4.1 Embedding a strict functional language in FUNDIO The lan-
guage FUNDIO can also be used to justify optimizations and parallel evaluation
in strict functional programming languages, like LISP, ML and Scheme, in par-
ticular it is also possible to justify rearrangements of input/output sequences.
This is only possible, if the semantics of the strict language does not insist on
the sequence of IOs. Of course, if sequentialization of I/O is enforced by data
dependency, then this sequence cannot be changed.
The results of FUNDIO are applicable to strict functional programming lan-
guages as follows:
Let Fstrict be a strict functional core language, the syntax being the same as the
FUNDIO-syntax, however, the evaluation mechanism is such that

– every abstraction first evaluates the argument strictly before applying (lbeta)
– Every constructors is strict, i.e., evaluates the arguments before constructing

the constructor application.
– Every let is strict, i.e. first all bindings are evaluated.

The effect is that expressions are hyperstrictly evaluated, since every application
is strict.
Now we can also speak of a contextual preorder in Fstrict.
Let FUNDIOstrict by the sublanguage of FUNDIO generated from Fstrict as
follows. Given an expression r from Fstrict, we have to ensure that lets are
strict, that abstractions are strict and that constructors are strict. This is done
by plugging in a seq at appropriate places:

1. To make every abstraction t strict, it has to be replaced by (λx.x seq (t x)).

2. To make every constructor c strict, constructor applications (c t1 . . . tn)
have to be replaced by an application (c′ t1 . . . tn), where c′ =
λx1, . . . , xn.x1 seq . . . seq xn seq (c x1 . . . xn).

3. To make every letrec strict, every letrec-expression t has to be translated
as a strict letrec:
letrec x1 = t1, . . . , xn = tn in s
is translated into
t1 seq t2 seq tn seq (letrec x1 = t1, . . . , xn = tn in s)
This ensures that every binding will be evaluated.

Note that (lbeta) does only create new bindings that are already evaluated.

78

We have embedded Fstrict into FUNDIO, with the following conclusions. The
contextual equivalence w.r.t. full FUNDIO in FUNDIOstrict is more restrictive
than in Fstrict, but expressions that are equal w.r.t. FUNDIO are also equivalent
in Fstrict.

Example 26.2. In Fstrict the two functions

p1 = \f -> bot
p2 = \f -> f bot

cannot be distinguished, since they can only be applied to abstractions that are
strict. In FUNDIO, these are easily distinguished by applying them to λx.True.

Though it appears that the sequence of evaluation is fixed in Fstrict, this is not
the case. The equivalence of expressions in Fstrict is the essential invariant, not
the sequence of evaluation. For example, the closed expression (s seq t) can also
be evaluated by first evaluating t, then s, and then returning the value of t. If
(s seq t) is open, or a subexpression in another expression, then there may be
data dependencies, which prevent this evaluation.

26.4.2 A correct program transformations in strict functional lan-
guages A FUNDIO-term t is in hyperstrict normalform, if it is an abstraction,
or a constructor application, and all arguments are in hyperstrict normal form.

Proposition 26.3. Let t be a FUNDIO-term in hyperstrict normal form. Then

(letrec x = t, Env in C[x]) → (letrec x = t, Env in C[t])
(letrec x = t, x′ = C[x], Env in t′)→ (letrec x = t, x′ = C[t], Env in t′)

are correct program transformations.

Proof. The correctness of the rule follows from correctness of the rules (cpcx) in
14.7, (gc), and (cp). ut
Hence it is also FUNDIO-correct to substitute hyperstrictly evaluated arguments
into the body of functions, since they only consist of constructors and abstrac-
tions.

26.5 XML and XQuery

The query language XPath/XQuery to make queries to XML-documents is a
functional language (see [w3-03a,w3-03b]), which is defined as a call-by-value
language without side-effects. Adopting the FUNDIO-semantics would allow to
also have a lazy functional language which also can perform updates and other
side-effects.
The advantage of using a lazy variant of a functional language is that a lazy
read of a file is easily possible.

79

26.6 A Warning for Practical Programming Languages

The contextual equivalence of FUNDIO does not guarantee the following: If
there is a sequence of two IOs:

1. write 8 to external storage location a.
2. read the value from external storage location a.

and there is no data dependency between the two IO’s, then FUNDIOs semantics
may justify to parallelize the IOs or to perform them in the other order: first 2,
then 1.
Hence a pragmatics would be to sequentialize IOs by data dependency or by a
monadic method to sequentialize actions, if the programmer wants a fixed order
for some reason.

27 Extensions and Parallel Evaluation

An extension to FUNDIO would be to allow a more general IO-interface that
also accepts a list of arbitrary (but finite) length of constants, which are to be
hyperstrictly evaluated to a lambda-free term. After this hyperstrict evaluation
the IO-operation may start.
The only difference to FUNDIO appears to be that this would allow for an
infinite number of different outputs and inputs. This is only a slight change in
the contextual equivalence of expressions.

28 Conclusion and Future Work

We introduced the call-by-need lambda calculus FUNDIO for combining (IO)
and lazy functional programming, gave a definition of contextual equality and
argued that there is a rich equational theory. We also showed for a selection
of program transformations that they are correct. The formalism has a high
potential of serving as a theory of program transformations for strict and non-
strict functional programming languages with direct-call IO, e.g. Haskell with
unsafePerformIO, the Clean language, and also strict functional programming
languages with a declarative IO.
Induction for recursive functions should be investigated, there appears to be
no obstacle. It would also be a challenge to adapt the work on improvements
[San98,MS99] to the FUNDIO semantics.
The generalization of a behavioral preorder ≤b has to be explored, i.e., an ap-
propriate definition to be a found and then to be proved equivalent to ≤c.
The reduction diagrams are verified by hand. We feel that it is necessary to apply
the work in [Hub00] also to FUNDIO, which would then provide a mechanical
check and test of the diagrams.

80

29 Acknowledgements

I would like to thank David Sabel and Matthias Mann for their constructive
comments. I would particularly thank Arne Kutzner for his contributions to the
abstract machine model for FUNDIO.

References

[ABB+99] Lennart Augustsson, Dave Barton, Brian Boutel, Warren Burton, Joseph
Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas Johnsson, Mark
Jones, John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin
Runciman, and Philip Wadler. Haskell 98: A non-strict, purely functional
language, February 1999.

[AC79] Egidio Astesiano and Gerardo Costa. Sharing in nondeterminism. In Proc.
6th ICALP 79, pages 1–15, 1979.

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J Lévy. Explicit substitutions.
J. functional programming, 4(1):375–416, 1991.

[Ach96] Peter Achten. Interactive functional programs: models, methods and im-
plementation. PhD thesis, Computer Science Department, University Ni-
jmegen, 1996.

[AF97] Z.M. Ariola and M Felleisen. The call-by-need lambda calculus. J. func-
tional programming, 7(3):265–301, 1997.

[AFM+95] Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-
by-need lambda calculus. In Principles of programming languages, pages
233–246, San Francisco, California, 1995. ACM Press.

[AHH+02] Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and
Germán Vidal. Operational semantics for lazy functional logic lan-
guages. In ENTCS, volume 76. Elsevier, 2002. Also available from
http://www.elsevier.nl/locate/entcs/volume76.html.

[AS98] Zena M. Ariola and Amr Sabry. Correctness of monadic state: An imper-
ative call-by-need calculus. In POPL 98, pages 62–74, 1998.

[Bar84] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, New York, 1984.

[Bro86] Manfred Broy. A theory for nondeterminism, parallelism, communication,
and concurrency. TCS, 45:1–61, 1986.

[CG94] Roy L. Crole and Andrew D. Gordon. A sound metalogical semantics for
input/output effects. In Proceedings Computer Science Logic 94, LNCS
933, pages 339–353. Springer-verlag, 1994.

[Cli82] William Clinger. Nondeterministic call by need is neither lazy nor by
name. In ACM Symp. on Lisp and Functional Programming, pages 226–
234. ACM, 1982.

[CMW96] John N. Crossley, Luis Mandel, and Martin Wirsing. First-order con-
strained lambda calculus. In FroCos 1996, pages 339–356, 1996.

[DCdP94] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno.
Fully abstract semantics for concurrent lambda-calculus. TACS, pages
16–35, 1994.

[DCTU99] Mariangiola Dezani-Ciancaglini, Jerzy Tiuryn, and Pawel Urzyczyn. Dis-
crimination by parallel observers: The algorithm. Information and Com-
putation, 150(2):153–186, 1999.

81

[DP95] U. De’Liguoro and A. Piperno. Nondeterministic extensions of untyped
λ-calculus. Information and Computation, 122:149–177, 1995.

[Fel78] Matthias Felleisen. The calculi of Lambda-ν-cs Conversion: A syntac-
tic Theory of Control and State in Imperative Higher-Order Programming
Languages. PhD thesis, Indiana UNiversity, 1978.

[FH92] Matthias Felleisen and R. Hieb. The revised report on the syntactic theo-
ries of sequential control and state. TCS, 103:235–271, 1992.

[Gor94] A.D. Gordon. Functional programming and Input/Output. Cambridge
University Press, 1994.

[GP98] Andrew D. Gordon and Andrew D. Pitts. Higher Order Operational Tech-
niques in Semantics. Cambridge University Press, 1998.

[HM92] J. Hughes and A. Moran. A semantics for locally bottom-avoiding choice.
In Proc. Glasgow functional programming workshop 1992, Workshops in
Computing. Springer-Verlag, 1992.

[HNSSH97] N.W.O. Hutchison, U. Neuhaus, M. Schmidt-Schauß, and C.V. Hall. Nat-
ural Expert: A commercial functional programming environment. J. of
Functional Programming, 7(2):163–182, 1997.

[HO89] J. Hughes and J. O’Donnell. Expressing and reasoning about non-
deterministic functional programs. In Glasgow workshop on functional
programming 1989, Workshops in Computing, pages 308–328. Springer-
Verlag, 1989.

[HO90] J. Hughes and J. O’Donnell. Nondeterministic functional programming
with sets. In IV Higher Order Workshop, Workshops in Computing, pages
11–31. Springer-Verlag, 1990.

[Hub00] Michael Huber. JONAH: Ein System zur Validierung von Reduktionsdia-
grammen in nichtdeterministischen Lambda-Kalkülen mit let-Ausdrcken,
letrec-Ausdrcken und Konstruktoren. Master’s thesis, Fachbereich Infor-
matik, J.W.Goethe-Universität Frankfurt, 2000. Diplomarbeit (Master
thesis), in German.

[JME99] Simon Peyton Jones, Simon Marlow, and Conal Elliot. Stretching the
storage manager: weak pointers and stable names in Haskell. In IFL 99,
pages 37–58, 1999.

[Jon01] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In
Ralf Steinbruggen Tony Hoare, Manfred Broy, editor, Engineering theo-
ries of software construction, pages 47–96. IOS-Press, 2001. Presented at
the 2000 Marktoberdorf Summer School.

[Jon03] Simon L. Peyton Jones. Wearing the hair shirt: a retrospective on haskell,
2003. Slides of invited talk at POPL’03.

[JS98] Simon L. Peyton Jones and André L. M. Santos. A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1–3):3–47,
1998.

[KSS98] Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-
need lambda calculus. In International Conference on Functional Program-
ming 1998, pages 324–335. ACM Press, 1998.

[Kut00] Arne Kutzner. Ein nichtdeterministischer call-by-need Lambda-Kalkül
mit erratic choice: Operationale Semantik, Programmtransformationen und
Anwendungen. Dissertation, J.W.Goethe-Universität Frankfurt, 2000. in
german.

[Las98] Søren Bøgh Lassen. Relational Reasoning about Functions and Nondeter-
minism. PhD thesis, Faculty of Science, University of Aarhus, 1998.

82

[Liu93] F. Liu. Towards lazy evaluation, sharing and non-determinism in resolution
based functional logic languages. In PFPCA, pages 201–209, 1993.

[LP00] Søren B. Lassen and Corin S. Pitcher. Similarity and bisimilarity for count-
able non-determinism and higher-order functions. Electronic Notes in The-
oretical Computer Science, 10, 2000.

[Man95] L. Mandel. Constrained Lambda Calculus. Verlag Shaker, Aachen, Ger-
many, 1995.

[Mor98] A.K.D. Moran. Call-by-name, call-by-need, and McCarthys Amb. PhD
thesis, Dept. of Comp. Science, Chalmers university, Sweden, 1998.

[MOW98] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need
lambda calculus. J. of Functional programming, 8:275–317, 1998.

[MS94] Andy Mück and Thomas Streicher. A tiny constraint functional logic lan-
guage and its continuation semantics. In ESOP 1994, pages 439–453, 1994.

[MS99] A.K.D. Moran and D. Sands. Improvement in a lazy context: An opera-
tional theory for call-by-need. In POPL 1999, pages 43–56. ACM Press,
1999.

[MSC99] A.K.D. Moran, D. Sands, and M. Carlsson. Erratic fudgets: A seman-
tic theory for an embedded coordination language. In Coordination ’99,
volume 1594 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[MST96] Ian Mason, Scott F. Smith, and Carolyn L. Talcott. From operational
semantics to domain theory. Information and Computation, 128:26–47,
1996.

[MT91] Ian Mason and Carolyn L. Talcott. Equivalence in functional languages
with effects. Journal of functional programming, 1(3):287–327, 1991.

[Nöc93] Eric Nöcker. Strictness analysis using abstract reduction. In Functional
Programming Languages and Computer Architecture, pages 255–265. ACM
Press, 1993.

[Ong93] C.-H. L. Ong. Non-determinism in a functional setting. In Proc. 8th
IEEE Symposium on Logic in Computer Science (LICS ’93), pages 275–
286. IEEE Computer Society Press, 1993.

[Pit97] Andrew D. Pitts. Operationally-based theories of program equivalence. In
Semantics and Logics of Computation. Cambridge University Press, 1997.

[PJ87] Simon L. Peyton Jones. The Implementation of Functional Programming
Languages. Prentice-Hall International, London, 1987.

[PJGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent haskell. In Proc.
23th Principles of Programming Languages, St. Petersburg Beach, Florida,
1996.

[PJW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional pro-
gramming. In Proceedings 20th Symposium on Principles of Programming
Languages, Charleston, South Carolina,, pages 71–84. ACM, 1993.

[Plo76] G.D. Plotkin. A powerdomain construction. SIAM Journal of Computing,
5(3):452–487, 1976.

[PS92] S. Purushothaman and J. Seaman. An adequate operational semantics of
sharing in lazy evaluation. In Proc. ESOP 92, LNCS 582, pages 435–450.
Springer-Verlag, 1992.

[PS98] A.M. Pitts and Ian Stark. Operational Reasoning for functions with local
state, pages 227–273. Cambridge university press, 1998.

[Sab03] David Sabel. Realisierung der Ein-/Ausgabe in einem Compiler für Haskell
bei Verwendung einer nichtdeterministischen Semantik. Master’s thesis,
Institut für Informatik, J.W.Goethe-Universität Frankfurt, 2003. Diplo-
marbeit, (to appear).

83

[San98] David Sands. improvement theory and its applications, pages 275–306.
Cambridge university press, 1998.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. J. of functional programming,
7(3):231–264, 1997.

[Smy78] M.B. Smyth. Power domains. J. of Computer and System Sciences,
16(3):23–35, 1978.

[SS92] H. Søndergard and P. Sestoft. Non-determinism in functional languages.
The Computer Journal, 35(5):514–523, 1992.

[SSPS95] Manfred Schmidt-Schauß, Sven Eric Panitz, and Marko Schütz. Strictness
analysis by abstract reduction using a tableau calculus. In Proc. of the
Static Analysis Symposium, number 983 in Lecture Notes in Computer
Science, pages 348–365. Springer-Verlag, 1995.

[vEGHN93] M. van Eekelen, E. Goubault, C.L. Hankin, and E. Nöcker. Abstract
reduction: Towards a theory via abstract interpretation. In M.R. Sleep,
M.J. Plasmeijer, and M.C.J.D. van Eekelen, editors, Term Graph Rewriting
- Theory and Practice, chapter 9. Wiley, Chichester, 1993.

[w3-03a] Xquery 1.0: An xml query language, 2003. URL =
http://www.w3.org/TR/xquery/.

[w3-03b] Xquery 1.0 and xpath 2.0 formal semantics, 2003. URL =
http://www.w3.org/TR/xquery-semantics/.

[Wad92] P. Wadler. Comprehending monads. Mathematical Structures in Computer
Science, 2:461–493, 1992.

[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Mei-
jer, editors, Advanced Functional Programming, number 925 in Lecture
Notes in Computer Science, pages 24–52. Springer, 1995.

[Yos93] N. Yoshida. Optimal reductions in weak-λ-calculus with shared environ-
ments. In Proc. functional programming languages and computer architec-
ture, pages 243–252. ACM press, 1993.

84

