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ABSTRACT 

The ongoing development of storage devices and technologies for medical 

image management has led to a growth in the digital archiving of these 

images. The characteristics of medical x-rays are examined, and a number 

of digital coding methods are considered. An investigation of several fast 

cosine transfonn algorithms is carried out. An adaptive cosine transfonn 

coding technique is implemented which produces good quality images using 

bit rates lower than 0.38 bits per picture element. 
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1. Introduction 

The growth of digital and electronic imaging systems has revolutionized the requirements and 

technology for aquiring, recording, processing, storing, transmitting, and retrieving images. 

An assortment of new storage devices and technologies has recently become available, allowing 

digital (or electronic) archiving of medical images. The most talked about device is probably 

the digital optical recorder, which allows the recording of up to 1000 m bytes of data on each 

side of an optical disk. But more readily available and less expensive systems are on hand

namely the new digital videodisks and the new high-capacity fast access magnetic tapes and 

disks [19] . 

Methods employed in the management of centralized analogue film library archiving systems 

will have to be changed or adapted to the management of digital image systems. At present, 

a film file room manages both the analog generated radiographic images and the video raster 

fIlm recordings of digital diaguostic images. The transmission and retrieval of fUm images is 

very straight forward: someone physically takes the fUm out of the fIle room and carries it 

to where it is needed [6]. 

Duernickx [6] states that in 10 years, an medium-size hospital produces about fIve million 

pictures, most of them high resolution chest x-rays. To make matters worse, plates are 

retained for between 10 to 30 years after the initial investigation, depending on the legislation 

of the country in question [15]. 

The radiological information is conventionally recorded on fIlm, because in the past only fIlm 

was able to record the fIne detail, wide dynamic range and large area of the image in 

sufficiently short time. However, film is increasingly expensive to use, bulky to store and 

inconvenient to distribute. In addition, the information contained therein is difficult to 

manipulate. 
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On the other hand, the digital representation of an x-ray image requires a large number of 

bits. Although there is some disagreement over this issue, Lux [15]1 states that a typical 

40 x 40 em x-ray image requires about 108 bits. 

Among the many inherent shortcomings of digitized film images are film dynamic range, 

scatter, and digitizing instrumentation imperfections [26]. A digital image aquisition system 

obviates many of these. The past few years have seen the development of x-ray detection 

systems capable of capturing these images directly in photoelectronic form. In order to 

overcome the size limitations of conventional x-ray image intensifiers, as well as to largely 

eliminate the image degredation caused by scattered radiation, at least two manufacturers of 

diagnostic systems have constructed dedicated digital chest machines based on scanning x-ray 

beam geometry. 

One of the many advantages of storing the x-ray image in digital form is that it is then 

possible to process the image data using the full range of image processing techniques widely 

used in a variety of other application areas. These techuiques include image enhancement, 

restoration, quantative analysis and data compression. The success of these techniques in a 

wide variety of applications points to the possibility of similar benefits being reaped from 

their application to digital x-ray images. 

Digitization would also make possible centralized storage facilities for large urban areas, 

allowing for fast and efficient retrieval of any plate at the touch of a key. Remote diagnosis 

would also be incorporated into such a system. 

Dueruickx [6] is of the opiuion that the major challenge now facing the medical 

imaging community does not involve the process of imaging per se but rather the management 

of images once they are aquired. The need is evident for minimizing redundancy in images in 

order to reduce storage costs and improve transmission speed. Digital coding methods are well 

known in applications such as TV, video telephones and facsimile machines. It is neccessary, 

however, to adapt the corresponding coding techuiques to suit x-ray statistics. The criteria for 

1 The scanuing rate and number of bits/pixel required for the digital representation of 
an x-ray picture are controversial issues, and will not be considered here. 
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judging reconstructed radiographs are strict in medical diagnostics because errors of 

reconstruction may influence diagnostic reliability [15]. 

It is the aim of this dissertation to fmd the best coding algorithm for this application, based 

on the parameters of complexity of implementation and performance, and to evaluate this 

method by means of a computer simulation. 

This dissertation is divided into ten chapters. 

Chapter Two describes the hardware and software used to digitize the x-ray images. 

Chapter Three involves an investigation of the statistics of x-ray images. 

Chapter Four presents a brief overview of widely used image coding techniques. 

Chapter Five provides an introduction to transform image coding. 

Chapter Six looks at the Discrete Cosine Transform as the optimum transform. 

Chapter Seven presents a review of the many algorithms which have arisen over the last 

decade for implementing the Fast DCT. 

Chapter Eight looks at three different methods of transform DCT image coding, and presents 

computer simulation results for each. An adaptive method is presented which achieves good 

quality images using bit rates lower than 0.38 bits per picture element. Included in this 

chapter are the results obtained using each of these methods, in the form of photographs, 

error maps and graphs. 

Chapter Nine looks at aspects for further study, and is mainly concerned with the "fine 

tuning" of the algorithm presented. 

Chapter Ten provides a discussion and conclusion on the results presented. 
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2. System description 

2.1 Hardware 

To capture an image, use was made of the PCEYE VIDEO CAPTURE SYSTEM (Chorus Data 

Systems), interfaced to a CW16 Excel microcomputer. 

The PC-EYE package includes a TM·34K CCD video camera, together with an extensive set of 

machine language subroutines to allow easy capture, storage, manipulation and display of an 

image. Software interfaces are provided to enable these subroutines to be called from 

applications programs written in C or Basic. 

The CW16 microcomputer was equipped with a 20M byte hard disk, 640 K memory, 8 mhz 

clock, and maths coprocessor. A 

adapter capable of displaying 

Tecmar Graphics Master high resolution graphics display 

pictures of 640 x 400 pixels with 4 bits/pixel 

(16 grey levels) was used. This was unable to display the 640 x 512 x 6 pixel image which the 

system was capable of storing on disk or memory. The IBM colour display served as a rough 

guide to the nature of the image to be captured on disk. From the display the size, lighting 

and orientation could be distinguished and subsequently corrected. 

The video camera produces an interlaced video signal which forms 30 frames per second. This 

sigual is digitized at a rate greater than that at which the micro can transfer data to 

memory [2]. Aquisition must therefore be delayed to enable the data to be written to memory. 

To overcome this problem, a monitor was connected to the External Video Output, thus 

providing a real time view rmder. 

Images were sent to a Digital Equipment Corporation Vax-11/730 (Vax) minicomputer via a 

standard RS232C serial communications line, and displayed on a Tektronix M4115B graphics 

terminal, maximum resolution 1280 x 1024 pixels with 8 bits/pixel. 
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2.2 Software 

A C program (PC2.C) was created in order to access the PC-EYE functions. These functions 

provide control of the hardware and set of utilities to move image data through the system 

and to capture an image on disk. The user specifies the name of the output file and the drive 

it is to reside on. The horizontal and vertical dimensions of the image may be specified, as 

well as the black and white levels to be used. The values entered for these levels control 

reference voltages to the ND converter which digitizes the video signal. 

Images on the VAX are stored as Binary Data Files, which have a .BDF appended to the file 

name. Before the PC-EYE images could be displayed or processed, they had to be converted 

to this format. The main difference between the CW-16 PC/PC-EYE capture format and the 

V AX/STARLINK display format lies in their respective co-ordinate numbering conventions. 

PC-EYE numbers co-ordinates according to the standard video scanning sequence. The scan 

begins at the top left-hand corner of the image (scanning rows first), and therefore this is 

chosen as the origin, with co-ordinate values increasing downwards and to the right. The 

image display terminal used on the VAX numbers the co-ordinates according to the usual 

mathematical format with the origin at the bottom left-hand corner and values increasing 

upwards and to the right. The program PCEYE.FOR was modified to perform this conversion 

(see Appendix B). 

2.2.1 RMF 

A locally written version of CDC's RMF system was used to send images to the VAX. This 

version enables a microcomputer to function as a terminal for the VAX. This made it possible 

for image files to be transferred from the IBM PC to the VAX and vice versa [2]. 

2.2.2 Starlink 

Extensive use was made of the Starlink Software Collection which resides on the VAX. 

Although written for astronomical applications, some of the display and manipulation 

subroutines proved valuable. 
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Because the 256 x 256 picture element test images were too small for display purposes 

(approximately 4cm x 4cm on the Tek screen), use was made of the Starlink program, Expand 

This program takes the original image and expands it by interpolating new data values 

between the old ones. Sine(theta)/theta interpolation is used. The impact on the transform of 

the image is not important since the resulting image is used for display purposes only. 
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3. An investigation of the attributes of digital x-rays 

3.1 Test image dimensions 

A digital image is a 2-dimensional array of picture elements or "pixels". Each pixel has a 

binary value corresponding to the light intensity at that point in the image. This value is 

called the 'grey-level" of the pixel. The number of discrete grey-levels from black to white is 

fixed and determined by the number of bits that make up the binary values. In our case, each 

picture is a 256 x 256 matrix, each element of which is an 8 bit number. Therefore the total 

number of bits required to represent the picture is 28 x 28 x 23 = 219. The reason for the use 

of such a small image is the time factor involved in processing such an image. The coding 

algorithms were simulated in finite precision wordlengths on a CW16 micro. Even using the 

FDCT algorithm proposed by Chen et al [4], the time taken to perform the transform, 

compression and inverse transform is approximately 35 minutes. If a 400 x 400 pixel input 

image is used, this time may run into several hours. 

3.2 Notes on reducing irrelevant anatomy 

X-ray images contain a large amount of redundant information. Although this is partly due to 

the ioherent anatomical redundancy and ioherent strong correlation between adjacent 

pixels (q.v. section 3.3), another factor is the irrelevant anatomy that is recorded [26]. 

Fig 1.1( a) shows the original x-ray, showing a patient with a broken neck. In this case the 

doctor is not concerned with features such as the shoulders or head of the patient, although 

it is wise to include these features to a certain extent, in order to allow for some perspective 

and orientation. Fig 1.1(b) shows the image that would be stored in the image filing system. 

This 256 x 256 pixel image represents a 1:4 savings in storage cost, while retaining all ' the 

relevant information of the original radiograph. Fig 1.2( a) shows the original x-ray of a 

patient with a fractured leg. Fig 1.2(b) is the final image, ready for processing. Once again 

redundant information is discarded. 
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Fig LI( a) Original x-ray, showing irrelevant anatomy. 

Fig 1.1(b) Stored image. 
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Ftg L2( a). Original x-ray 

Fig 12(b) Stored image. 

It can be appreciated that the image capturing stage is an extremely important one. It is of 

little use to attempt to maximise the compression rate while retaining large areas of redundant 

information. 
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3.3 Image statistics 

Since the compression rate depends mainly on picture statistics, it is important to understand 

some of the characteristics of x·rays. Reininger and Gibson [22] show that for a "large class" 

of images the average intensity is best approximated by a Gaussian distribution and that the 

non-de coefficients are best approximated by the Laplacian distribution. Using Laplacian 

quantizers for tbe non-de transform coefficients can improve the quality of the reconstructed 

image as compared to Gaussian quantizers. Care must be taken to correctly classify the input 

image, since some images, like some aerial images are still best represented by Gaussian 

statistics. 
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The distribution of differences between adjacent pixels was investigated. It was found that 

this distribution approaches a Laplacian distribution rather than a Gaussian for all x·rays 

tested (Fig 2.1). This is in agreement with the fmdings of Tesic et at [26]. 

The autocorrelation function (ael) tells us how close, or similar neighbouring pixels are, on 

the average. Figs 2.2 and 2.3 show the autocorrelation functions for PLATE and NECK 

respectively. 
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The statistics presented in Figs 2.1 - 3 show much correlation inherent in this type of image. 

In a "busy" picture, the autocorrelation function should fall off very rapidly, while in a 

'smooth" picture the falloff should be more gradual. The quantity p has values in the 
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range (-1, + 1). A value of p = 1 implies perfect positive correlation (any two samples of a 

constant waveform), while a value of p = -1 suggests perfect negative correlation (a sinusoid 

sampled only at its positive and negative peaks). A value of p = 0 implies total decorrelation, 

as between pixels in a totaly random white noise image [12]. 

The approximate values of p for PLATE and NECK are 0.94 and 0.93 respectively. This proves 

that for both images, pixel values in a small area are strongly correlated. Unser [27] shows 

that the DCT provides a very close approximation of the Karhunen-Loeve transform for 

positive correlation values close to unity (q.v. Chapter 5). More specifically, it is known that 

for a Markov signal with correlation coefficient 1 > = P > = 0.5, the DCT is the best substitute 

for the optimal Karhunen-Loeve transform [26]. 
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3.4 Fidelity Criteria 

A number of fidelity criteria have been created to measure the quality of a reconstructed 

image (7,21,23]. In this dissertation the NMSE or normalized mean square error will be used as 

an objective measure of the coding efficiency of the DCI' coding algorithms presented. 

J-l K-l 

The NMSE is given by Pratt [21] as NMSE - L L 
J K j -O k"O 

J K 

This is a measure of the normalized mean square error between 

2 
A 

f(j,k) - f(j,k) 

J -l K-l 2 

LL f (j,k) 

j-O k-O 

the spatial picture before 

coding and the reconstructed picture after coding. Normalization is achieved by dividing the 

mean square error by the mean signal energy within the picture (see Appendix Q). 

The second, and in this case more important criterion, is the subjective fidelity criterion, 

corresponding to how "good' the images look to hnman observers, or in this case, the trained 

eye of the radiologist or physician. It is on this criterion that the ultimate success or failure 

of the coding algorithm will depend, since the human visual system has particular 

characteristics so that two pictures having the same percentage of NMSE may appear to have 

drastically different visual qualities. For example, the human visual system has a logarithmic 

sensitivity to light intensity so that errors in dark areas of an image are much more 

noticeable than errors of the same magnitude in light areas. The human visual system is also 

sensitive to abrupt spatial changes in grey level so that reconstruction errors on or near the 

edges are more bothersome than reconstruction errors in background texture [7]. 

The inadequacy of a simple measurement like the NMSE as a perceptually meaningful measure 

of image quality can be shown by the simple example of a small geometric tilt of an image. 

Although the tilted image would be perceptually quite acceptable for an application such as 

this, the resulting value for the NMSE would be relatively large. 
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4. An overview of image coding techniques. 

We have seen that the digital representation of an x-ray image requires a very large nllIilber 

of bits. The aim of digital image coding is to code the image using a smaller number of code 

bits, while satisfying the often delicate balance between reconstruction quality and 

compression rate. 

Coding methods may be placed into a number of classes. Initially, a distinction may be made 

between information lossless techniques, which allow reconstruction of the original image 

exactly, and information lossy techniques which introduce some distortion. Furthermore, the 

distinction can be made between coding for storage of images or coding for bandwidth 

reduction of image transmission. A third classification may be made, based on the space where 

the method is applied. A technique which manipulates the values of the pixels in an 

appropriate manner is labelled as a spatial method. Methods which operate on the set of 

transform coefficients are known as transform methods. 

Kunt [13] states that early efforts in image coding were guided solely by information theory, 

and as a result the upper bound of the compression rate was soon reached. Shreiber [24] was 

one of the first to exploit the properties of the human visual system, leading the way for new 

coding schemes capable of achieving impressive compression rates. These techniques which 

model the human visual system are known as psychovisual coders or psychophysical coders. 

There are, of course, many other classifications which can be made. Some coding schemes will 

belong to a number of different classes while others may not seem to fit into any category. 

What follows is a brief discription of some well known coding techniques. 

4.1 Reversable information preserving coding methods 

4.1.1 Huffman and Shannon codes 

Early methods used Huffman and Shannon codes [7,20] to reduce the average code length. 

Using these methods, different length PCM (pulse Code Modulation) code words are assigoed 

to different "events". 
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The intuitive idea is to assign short code words to the most probable events (no change in 

successive brightness levels) and longer code words to the least likely events (large 

differences in successive brightness levels) to obtain a code with a small average length. 

The variable length of the code words make this method more difficult to implement than a 

fixed length code. Another problem with these methods is that a change of input image would 

reqcire a new code mapping to ensure minimal length. 

The properties of the human visual system are not exploited at all, .and the resulting 

compression ratio is approximately 2.5 : 1. 

4.1.2 Bit plane encoding 

Bit plane encoding [7,13,14,20] is a constant-word-length PCM encoding technique, in which 

the code words are conceptually organized into planes corresponding to their pixel position. 

The most significant planes are organized so as to occupy the bottom plane. It has been found 

[14] that the most signilicant bits, occupying the bottom plane, seldom change in most images, 

while the least signilicant bits occupying the top plane fluctuate almost randomly. Compression 

is achieved by run length coding the bit state transitions in each bit plane. Compression ratio 

is roughly 2 : 1. 

4.2 Psychovisual coders 

4.2.1 The Synthetic high system 

In the early days of image coding, the computational load of the synthetic high algorithm was 

thought to be too heavy, but present technology makes this method easy to implement. The 

original image is broken up into two parts : the low pass picture giving the general area 

brightness without sharp contours, and the high pass picture containing sharp edge 

information [13]. The low frequency picture is then quantized and coded at a low bit rate, 

while the high-frequency picture is coded at a higher rate [13,14,20]. 

15 



The synthetic high system was far in advance for its time, and its elegant exploitation of the 

properties of the human visual system, allowed it to achieve an impressive compression ratio 

of approximately 8.5 : 1 

4.3 Predictive coding 

4.3.1 DPCM 

DPCM (Differential Pulse Code Modulation) [7,23,26] makes use of the fact that for most 

images, adjacent pixels are highly correlated. Thus if pixel xi_] has a certain value, then the 

adjacent pixel xi along the same scan line is likely to have a similar value. 

The pixel to he sampled is predicted from the previous element. The transmitter predictor then 

computes the error between the actual pixel value and the predicted value. This difference 

will, on the average, be significantly smaller in magnitude than the value of the pixel. 

Although the simplicity of DPCM is an advantage, this technique only allows compression 

ratios of around 2.5 : 1. DPCM also suffers from several problems, including granular noise 

and error propagation at the receiver. 

The development of a predictive coding scheme for digital chest images is described by Tesic 

et al[26]. 

4.4 Cluster coding methods 

Cluster coding methods differ from other techniques such as transform and predictive coding 

techniques where the correlated data are transformed to generate uncorrelated elements prior 

to quantization and transmission. In cluster coding, the data are grouped to form a number of 

clusters. 
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4.4.1 The Blob algorithm 

The blob algorithm is an adaptive method which examines each four adjacent pixels and uses a 

hypothesis testing method to decide if the pixels are close enough to be joined with the 

adjacent pixels or if they belong to a new class. In this manner, the entire image is 

partitioned into blobs such that all pixels within a blob have similar grey levels and textures. 

As a result of this similarity, only the boundary information and one Tepresentative 'value 'for 

each blob is needed by the receiver in order to reconstruct that blob. The boundary 

information for each blob may be extracted using contour tracing algorithms. 

4.5 Hybrid coding methods. 

Hybrid coding methods combine the strong points of predictive and transform coding to 

achieve good performance at bit rates lower than 1 bit/pixel. A common method is to take a 

one-dimensional unitary transform along the rows of an image and then encode these 

coefficients in a DPCM technique across the transformed rows. The advantages of such a 

method are speed of operation and memory reduction. Pyramidal coding and Anisotropic 

nonstationary predictive coding are two better known hybrid methods. The latter meihod 

makes extensive use of the properties of the human visual system to achieve a compression 

rate of greater than 10 : 1. 
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5. Transform coding 

The subject of transform image coding has been exhaustively covered in the literature, a good 

summary having been presented by Wintz [30]. Transform coding uses a linear mathematical 

operator to create a new domain. Statistically dependant pixels are transformed into a set of 

"more independant" coefficients. The basic advantage of an image transform coding system is 

that the two-dimensional transform of an image has energy distribution more suitable for 

coding that the spatial domain presentation. 

As a result of the inherent pixel-to-pixel correlation of an x-ray image, the energy of the 

transform domain tends to be clustered into a relatively small number of transform samples. 

To achieve compression, low magnitude transform samples can be grossly quantized, without 

introducing serious picture reconstruction quality. 

Since the transformation is a reversable process without loss of information, it is the 

quantization and coder operation after transformation which actually provides the data 

compression. The coder plays the part of a sample selector which decides which of the 

quantized co-efficient samples are to be selected for transmission or storage, and which are 

discarded. 

Originol 
[moge FORWARD SAMPLE -... OUANTIZER -
F (j, k) TRANSFORM 7(u,v) SELECTOR B CODER 

Reconstructe 
INVERSE Imoge - CHANNEL DECODER 

A 
TRANSFORM 

A 

?' (U, vI F ( j, k) 

t 
Error 

F'Jg 3.1 Transform image coding system. F'JgUfe reproduced from Pratt [21]. 

By representing an image by uncorrelated data we make each element of that data a unique 

property of the data. The data is then classified according to degree of significance of their 

contribution to both the information content and the subjective quality of the picture [23]. 

18 

d 



After the data is categorized, those elements of the data that are unimportant from the point 

of view of the grey scale and spatial resolution capability of the receiver can be neglected. 

This allows a major degree of picture compression. 

In transform coding, the input image is partitioned into a number of n x n arrays with n < < N 

as illustrated in Fig 3.2. 

256 

1-------256-- - ----1 

H-H+H, i ' !! : ' 
+·h rrrrfH+t-ri- H-

,I " ... 
'. , , . 

, , 

, . 

FJg 32 Partitioning a 256 x 256 picture into 1024 8x8 subpictures 

Each sub-image is then coded independantly, and the separate sub-image blocks are 

reassembled by the decoder. By segmenting the image, the local characteristics of the image 

are exploited. 

Fig 3.3 shows the cosine transforms for NECK and PLATE. Since the dynamic range of 

transform components is very large (q.v. section 6.1) it is necessary to compress the 

coefficient values to produce a useful display. 
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a b 

FIg33a) LogscaIedDCf of NECK. b) LogscaIedDCf of PLATE. 

Transform coding techniques are more complex than other conventional compression 

techniques, but they achieve a higher compression ratio and less distortion. The optimum 

transform is the Karhunen-Loeve transformation. Unfortunately, no fast computational 

algorithm exists for the KL transform. It has been shown that for many -practical situations 

the cosine transform, which has many fast algorithms, yields results almost identical to the 

K-L transformation. 

To conclude this chapter, some of the advantages of transform coding are listed below [20]. 

1. Superior coding at low bit rates. (lower than 1 bit/pixel) 

2. Produces uncorrelated coefficients from a highly correlated image field. 

3. Fast convolutional algorithms for implementation. 

4. Less sensitive to image statistics. 

5. Better SUbjective error performance (than DPCM). 
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6. TheDCT 

The one-dimensional cosine transform of a discrete function fO), j = O,l. ... N-1 is dermed 

as [4] 

2c(u) N - 1 

F(u) = L 
N j = ° 

1 

c(u) , ........ for u=D 

-{2 
= 1 •....• for u = 1,2, ........ N - 1. 

O, ............... elsewhere. 

and the inverse transform is 

f(j) 

N - 1 

L 
u = 0 

[

(2 j +l)Un] 
c(u)F(u)cos 2N 

j = 0,1, ... N-l 

The attractiveness of the ncr for this application is two-fold : (a) it is nearly optimal for 

images with high positive values of adjacent-sample correlation. And (b) it can be computed 

via anyone of a number of fast algorithms [4,5,9,10,16,17]. 

It is true that in the class of unitary transforms with a known fast computational algorithm 

the ncr has a superior energy compression property. The ncr also results in the same energy 

compaction performance as the optimum Karhunen-Loeve transform for most images. 
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6.1 Coefficient bound 

Before going on to consider a fast algorithm for the DCI', it is vital to consider the 

coefficient bound. The maximum coefficient value of the cosme transform is very important 

for finite word length computer simulations of the various coding algorithms, since the dc

coefficient is linearly quantized. This is due to the fact that quantization errors in the dc

coefficient cause artificial sub-block boundary discontinuities at reconstruction and should be 

avoided. 

Oosthuizen [20] shows that the maximum coeffient bound for the one-dimensional Chen-DCI' 

matrix implementation is 

2 N-l 

Fk max :L x ( j) f2 (f max) 

j=O 
since x( j) ~ 0 for all. 

By defining the maximum spatial pixel value as 255 (8 bit input image) the maximum 

coefficient bound is calculated as 

Fkmax= Vz (255) = 360,62 

Accepting the DCI' to be unitary the maximum coefficient bound for the 2-dimensional DCI' is 

calculated as 

Fk max/2D = Vz (Fk max) 2 (f max) = 510 

Note that the maximum coefficient bound is not affected by the transform block size. The 

coefficient bound for the Chen algorithm is also substantially less than most other FDCI' 

algorithms. 
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7. An investigation of FDCTalgorithms 

The ncr performs closely to the statistically-optimal Karhunen-Loeve transform for a wide 

class of signals. Fast algorithms for the ncr are therefore of significant practical interest. 

Initially, use of the ncr in a variety of applications was limited due to lack of an efficient 

algorithm. In recent years however, many fast algorithms for computing the ncr have been 

published. These algorithms can be classified into one of the following categories based on 

their methods of approach: a) indirect computation [5,16,17], b) recursive computation [10], or 

c) direct factorization [4,9]. 

Fast Fourier transforms (FFf's) and Walsh-Hadamard transforms are used to obtain the ncr in 

(a), but unnecessary operations are often involved in the computation steps. Using sparse 

matrix factorization, the algorithms in (h) gain speed advantages over the other methods. The 

recursive approach in (c) is intended to generate higher order ncr's from lower order ncr's. 

7.1 Indirect computation 

Early methods of implementing the ncr utilized a double size Fast Fourier Transform (FFf) 

algorithm employing complex arithmetic throughout the computation. Makhoul [16] demonstrates 

the computation of the ncr of a sequence from just an N-point nFT of a reordered version 

of the same sequence, with a resulting saving of 1/2. 

Makhoul shows how the ncr of a 2-n real sequence {x(n1' nz), 0 < = n1 < = N1 - 1, 

o < = n2 < = N2-1 } can be computed using an (N1 x N2) - point real nFT instead of the 

(2N1 x 2N2) - point real nFT required in the traditional method, resulting in a saving of 1J4. 

Makhoul claims performance similiar to the Chen algorithm for N a power of 2. 

Malvar [17] presents an approach for the computation of the ncr in which a niscrete Hartley 

transform is performed on a permutation of the incoming data, and the result is passed 

through a plane rotation. 
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7.2 Recursive computation 

Hou [10] introduces a recursive DCT algorithm which allows the generation of higher order 

DCTs from two identical lower order DCT's. This feature offers flexibility in programming 

different sizes of DCT's, as well as requiring fewer multipliers and adders than any other 

known DCT algorithm. This method proved to be one of the most promising encountered in 

this survey, providing excellent performance without introducing great complexity. 

7.3 Direct factorization 

For this application, this approach seemed the most promising. Two algorithms were considered 

the method proposed by Haque [9] and the well known Chen et al [4] algorithm. 
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FJg 4.1 A 4x42-D inverse fast cosine transfonn. Figure reproduced 

from Haque [9). 

Because of the separability of the 2·D DCT kernel, a 1-D FCT can be used to compute the 

2-D FCT, first taking the 2-D data along the columns and then along the rows. But this 
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method requires increased computation. Haque [9J introduces a 2-D FCI' algorithm for 2m x 2n 

data points which requires only real multiplications and additions. 

This algorithm works directly on 2-D data sets and not separately On columns and rows, as 

done by the 1-D FCI'. For this algorithm, the number of real multiplications without initial 

normalizations, for M x N data samples, is (3/8)MNlog
2
(MN), where M and N are powers of 2. 

The paper by Haque is very brief, and an extension of the algorithm for 8x8 or 16x16 input 

matrices is not shown. Another problem arises with this algorithm when larger data blocks are 

used. If a 128 x 128 block is used, the corresponding maximum coefficient is 1660, which could 

result in some overflow problems in a finite word length machine [9J. 

The FDCI' method by Chen et al [4J appears simplest to interpret, and while not being the 

most efficient, represents one technique for methodical extension, to any desired value of 

N = 2m , m ~ 2. 

The signal flow graph consists of alternating cosine/sine butterfly matrices with binary 

matrices to reorder the matrix elements to a form which preserves a recognisable bit reversed 

pattern at every other node. 

'. 

'. 
" 
'. 
" 
'. 
" 
' .. 
' u 

' .. 
'" 

, '. f.." ./ ><:: 
'.\\ II. '. 

~ ." ' u >-;! V../ : " ><;: .. ' . 
~ -Cl 'I' 

Y VI..//, . "-" <0 >< .'- .n/. ' . 
_\: 7//1/ . _\'\. >-<!,. ~ , 

~/j 
- \ 

u >< ./ "- .. . 0 '. 

~. '" ." 

" ./ . ,. >< .\ ., . 'l 
JIZ \\ . " .. t': _\\ " !r. -

yr'/ ·"-~IA >< .~ ~ " _CI <Ii . :::x:: • - X ' . , 
- ./" " - ,/./1 \" >< /4 ' , 
- " . '* / ." 't )'/ \" -

./ " ,. >< j , 
-

'" 
" 
" 
'u 

" 
' n 

" 
" 

Fig 42 Chen FDCT flow graph for N = 4, N = 8, N = 16. Ci = cos i, Si = sin i. 

Figure reproduced from Chen et al [4]. 
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.. 
Practical system application is attained by maintaining a balance between complexity of 

implementation and performance. The success of the Chen et al [4] FDCT algorithm can 

be seen by its widespread use in practical applications [20,26], where its simplicity and ease of 

implementation give it the edge on later, more efficient methods. Another advantage of the 

Chen et at method is that it gives the user a "feel" for the workings of the DCT. As a start, 

the algorithm was implemented on a spreadsheet for 8 data points, making it possible to see 

the intermediate stages as results "filtered through". Fig 4.2 is a signal flow graph for N = 4,8 

and 16. Note that this graph is bidirectional, i.e. the inverse transform may be computed by 

introducing the vector [F] at the output and recovering the vector [f] at the input [4]. 

A drawback of the Chen algorithm is that it is not 2-dimensional. When operating on a block 

of image data, the rows are processed first. The matrix is then transposed, and the columns 

are then transformed to produce the final result. 

This algorithm was implemented by the program FDCT.C (Appendix H) and was used 

exclusively for all the coding algorithms. 
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8. DCT coding techniques 

8.1 Zonal coding 

In a transform coding system, there are two basic strategies of selecting those coefficients 

which are to be retained : zonal sampling and threshold sampling. In the zonal coding system 

a set of zones is established in each transform block. The reconstruction is then made with 

these subsets of transform samples, usually containing the low frequency coefficients. For 

digital transmission, each component in a zone is quantized and assigned a binary code word. 

The number of quantization levels is usually made proportional to the estimated variance of 

the component, and the number of code bits is made proportional to the expected probability 

of occurrence. 

There are several types of zones that could logically be employed for zonal sampling; for 

example, a rectangular, elliptical or triangular zone. Both analytic and experimental studies 

have shown that the optimum zone for a mean square error criterion is the so-called maximum 

variance zone [21]. The subset is chosen from those coefficents with the largest variances, 

while the remainder are discarded. 

If we assume that NB (u,v) code bits are assigned to each of the remaining coefficients, then 

we have 

L(u,v) = 2NB(u,v) quantization levels. 

Thus a total NB =I.I.NB(LI, vJ bits are required to code the picture. For the bit assignment 
" " 

NB(u,v) for each coefficient we use the log variance relation described by Pratt[21] 

where V,(u, u) is the variance of a transform coefficient. 

It should be noted that quantization errors in the dc-coefficient causes artificial sub-block 

boundary discontinuities at reconstruction and should be avoided. The dc-coefficient is 
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therefore always linearly quantized and coded without thresholding [20]. For the other 

coefficients however, the optimum placement of the quantization decision and reconstruction 

levels to minimize the mean square reconstruction error for a given number of quantization 

levels is given by the Max quantization strategy. [12,18,21] 

This technique is known as block quantization. It is significantly more efficient than using the 

same number of bits for all coefficients. Its disadvantage lies in the problems inherent in 

handling binary words of unequal lengths. 
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0 0 0 0 0 0 0 0 0 0 

a 

Fig 5.1 (a) and (b) Bit assignments for Dcr zonal coding of NECK. 

8 x 8 blocks at a rate of a) 1, and b) 05 bits per pixel. 
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b) Resulting error map. 
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FJg 53 (a). NECK, ncr zonal coded at 05 bits/pixel %NMSE = 0332. 

b) Resulting error map. 
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Wintz [30] states that III some cases the subjective quality can be slightly improved by 

assigning more bits to the coefficients with larger variances and fewer to the coefficients 

with smaller variances than suggested by the rule mkl~log (Ju'. Wintz states that this is 

probably due to the fact that the sensitivity of the human visual system to distortion as well 

as the coefficient variances is inversely proportional to spatial frequency. This fact was kept 

In mind when adjusting the bit allocation map, since the bit allocation scheme proposed by 

Pratt [21], does not produce the desired number of bits every time. 
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8.2 Threshold coding 

The difficulty with the zonal filter sampling method of bandwidth reduction is that large 

magnitude samples are indiscriminately discarded. An obvious answer to this problem is to 

code only those samples whose magnitndcs are above a given threshold level. With this coding 

method it becomes necessary to provide information as to the location of significant samples. 

Selection of a threshold level for a given transform is generally a compromise between the 

number of samples deleted and the error resulting from the deletion of samples. 

In threshold coding, the retained coefficients are not fixed a priori as in zonal coding, but 

arc adaptively chosen to match input statistics. It is also possible to keep the total number of 

bits per block constant by using a variable threshold for transmitted coefficient magnitudes. 

The first step in determining the optimum threshold is to get an indication of the distribution 

of the DCT ac-coefficients. This is shown in Fig 6.1. 

THRESHOLD NECK PLATE 

ABS VALUE 

1 89.1922 85.014343 

2 95.739746 93.460083 

3 96.986389 95.542908 

4 97.514343 96.383667 

5 97.862244 96.832275 

FIg 6.1 Distribution of Cosine Transform coefficients. 

Percentage of eoefficents below threshold value for NECK and PLATE. 
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Fig 6.2. Result. of ncr threshold coding NECK a) original, b) threshold = 1, 

%NMSE = 0.058. d) threshold = 2, %NMSE = 0.112. f) threshold = 3, %NMSE = 0.144. 

h) threshold = 4, %NMSE = 0.172, and j) threshold = 5, %NMSE = 0.201. 

Fig 6.2 (c), (c), (g) ,(i) and (Ie) show the resulting error maps. 
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(I) (g) 

(h) (i) 

G) (Ie) 
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Fig 63. Results of ocr threshold coding PLATE. a) original, b) threshold = 1, 

%NMSE = 0.024. d) threshold = 2, %NMSE = 0.049. f) threshold = 3, %NMSE = 0.074. 

h) threshold = 4, %NMSE = 0.09l, and j) threshold = 5, %NMSE = 0.107. 

Fig 63 ( c), (e), (g) ,(i) and (k) show the resulting error maps. 
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These computer simulation results, using real arithmetic on both images, have shown no visible 

degredation in picture reconstruction quality using a threshold value of 2. Note however, the 

blocking effects which worsen as the threshold value is raised above this level. 

The biggest advantage of the threshold coding algorithm is the fact that the high frequency 

cosine coefficients are not simply discarded as is the case with zonal selection techniques [21]. 

The threshold operation selects only the most important (largest) frequency coefficients for 

coding, irrespective of position in the sub-block. As a result, this method is capable of high 

compression rates. Oosthuizen [20] reports good picture reconstruction quality at rates of 0,5 

bits/pixel using the threshold selection technique. 

On the other hand, one of the major drawbacks of this system is that although it is adaptive, 

it is an open loop system and the compression rate is image content dependant. Choosing the 

N-largest coefficients in each block will however produce a fixed compression rate system 

[21]. 

Although for the same number of transmitted samples a threshold mask would give a better 

choice of transmission samples (ie lower distortion) it would also result in an increased bit 

rate because the addresses of the transmitted samples (ie the boundary of the threshold mask) 

have to be coded for every image block. Typically, a sample line by line run-length coding 

scheme is implemented to code the transmission boundaries in the threshold mask. Usually this 

results in a somewhat more complex scheme than zonal transform coding. However threshold 

coding has its merits since it is adaptive in nature and is particularly useful when the image 

statistics might change so rapidly that a fixed zonal mask is inefficient [11]. 

Pratt [21] describes the following simple, but quite efficient run length coding techuique to 

code the positions of the siguificant coefficients. 

1) The first sample along each line is coded regardless of its maguitude. A position code 

word of all zeros or all ones affIXed to the amplitude provides a line syncronization code 

group; 

2) The amplitude of the second run-length code word is the coded amplitude of the next 

significant sample; 
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3) If a significant sample is not encountered after scanning the maximum run length of 

samples, the position and amplitude code bits are set to all ones to indicate a maximum 

run length. 

Although the position coding adds to the bit rate, as a result of the adaptivity of this 

method, its performance is somewhat better than the simpler zonal coding process. 

With standard thresholding coding technique described above, the number of code bits 

transmitted is image dependant. A variation of threshold coding, called N-largest coding, has 

been developed for communication links in which the transmission bit rate and picture 

transmission rate is flXed. This method codes the N-largest coefficients in a block regardless 

of their values. Iu effect, the threshold is adaptively set for each block to achieve the 

desired transmission rate without introducing great complexity [21]. 
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8.3 An adaptive OCT coding scheme 

Adaptive transform coding methods are based on the fact that images are composed of objects 

which are in tum a combination of edges and areas of varying degrees of detail. Using small 

block sizes, the degree of picture detail in each block changes rapidly. Transform encoders 

can be made to adapt to local image structure by allowing a number of 'modes" of operation, 

and for each subimage, cboosing the mode that is most efficient for that subimage [7]. 

Although such adaptive transform coders have proved to be highly effective, they do introduce 

system complexity, since extensive bookkeeping information indicating which mode was used 

must be coded along with the sub-block coeffients. The key to a practical system 

implementation lies in selecting an efficient coding scheme which achieves a successful 

compromise between complexity and performance. A comprehensive survey of many of these 

adaptive transform coding schemes is provided by Habibi [8]. 

Adaptive schemes using a fmite number of bit maps are appealing because of the low overhead 

involved. According to Staelin et al [25], the best choice of the number and form of these 

maps is a difficult problem which has received little attention. Staelin uses pattern recognition 

techniques in designing a classificatory scheme for adaptive transform coding. Although 

performing well, this scheme introduces additional complexity. Tesic [26] segments chest x-ray 

images into regions of high and low entropy and uses data compressiou and pattern 

recognition techniques to achieve a relatively large compression ratio. 

The technique developed in this dissertation is based on the work of Chen & Smith [3]. The 

basic approach is to divide the transform sub-blocks to be coded into a finite number of 

classes, according to their "activity index", which represents the amount of "activity" or 

"detail" in each transform sub-block. Bits are then distributed among "busy" and "quiet" image 

areas according to the level of activity, with more bits going to high activity classes and 

fewer bits to classes with low activity [20]. A block diagram of the cosine transform adaptive 

coding system is presented in Fig 7.1. 

The algorithm is basically a two pass algorithm : the fust pass generates the sub-block 

classification maps, sets up the bit assignment matrices and calculates the normalization 

factors needed. The second pass multiplies the norma1ization factor, quantizes the transform 

coefficients, codes the data, adds the overhead information and stores the resulting data. 
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In an attempt to improve the performance of the Chen and Smith algorithm, a few minor 

changes were made. Instead of using the sum of the squares of the coefficients in the 

transform domain in order to classify each sub-block, the sum of the absolute values 

(activity index) was used. The transformed coefficients are stored as a one-dimensional vector 

in order to simplify the classification, normalization, quantization and coding operations which 

follow. The normalization factor for each coefficient is calculated directly from the square 

root of the corresponding entry in the variance matrix. The bit allocation algorithm is based 

on the procedure described by Pratt [21] . Obviously, an increased number of classes would 

improve the image quality for a given bit rate. Using 16 classes, it was possible to code both 

NECK and PLATE at rates of below 0.3 bits/pixel. According to Staelin et al [25] the point of 

diminishing returns is reached for 16 to 32 classes for 8 x 8 sub-blocks, but is not reached 

for 16 x 16 blocks. (Other suggestions for the optimization of this technique are presented in 

the next chapter.) 

If one looks at the bit allocation maps for NECK (Fig 7.3), it can be seen that for those sub

blocks in the lowest activity index, only 1 bit per 64 pixels (0.016 b/p) is needed to provide a 

faithful reconstruction of large areas of the original image. X-ray images, with their large 

areas of uniform brightness, are well snited to this algorithm. Another feature of this 

algorithm is the manner in which large magnitude high frequency coefficients are protected by 

obtaining more bits than smaller nearby lower frequency samples. 

3 3 2 1 4 3 3 2 

4 4 2 2 3 2 2 1 

4 3 1 4 1 3 2 1 

3 2 1 1 4 1 3 3 

2 4 4 3 1 2 1 1 

3 2 4 4 3 1 1 1 

2 2 1 3 3 4 1 1 

4 1 4 2 1 4 2 1 

Fig 72 Classification of 8 X 8 transform sub blocks for NECK. 

Class 1 is the lowest activity, while class 4 is the highest 
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1 0 0 0 0 0 0 0 8 2 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 a 
0 0 0 0 0 0 0 0 a a a a a 1 1 a 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Class 1 Class 2 

8 4 2 0 a 0 1 0 8 5 4 4 4 3 3 2 

4 2 0 a a 1 1 1 5 3 1 1 a a a 0 

1 a 0 0 0 0 0 0 2 1 1 a 0 0 a a 
0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 a 
0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 1 0 0 0 0 0 a 0 0 

0 0 a 0 0 0 0 1 0 0 0 0 0 a 0 0 

a 0 0 0 a a 0 1 a 0 a 0 a 0 a 0 

Class 3 Class 4 

FJg 73 Bit allocation maps for NECK Bits/pixel = 0.367. 

Unlike most other adaptive methods of this nature, the bookkeeping information is kept to a 

minimum. According to Chen and Harrison Smith [3], less than 0.034 bits of overhead 

information is needed to code a one bit monochrome image of 256 x 256 pixels. As the image 

dimensions increase, this figure is dramatically reduced. 
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FJg 7.4. Adaptive coding scheme. NECK coded at 0367 b/p. 

%NMSE = 0.153. Bit maps used are displayed in FJg 73. 

FJg 75. Adaptive coding scheme. PLATE coded at 0354 b/p. 

%NMSE = 0.119. 
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9. Aspects for further study 

9.1 Reduction of blocking effects 

Transform coding takes advantage of the correlation between adjacent pixels by reducing the 

redundancy. Because of block segmentation, statistical dependancies beyond the block 

boundaries are not taken into account. 

In very low bit rate applications, the block boundaries may become visible. With the ncr, 
mismatches between adjacent blocks are visible, especially in highly structured regions of the 

image [24]. Blocking effects can be the limiting factor in reducing the bit rate. Various 

schemes have been proposed in order to reduce this problem. 

9.1.1 Overlap method 

The visibility of boundaries can be reduced by overlapping the blocks before transform coding. 

The pixels on the border of each region would then be coded in two or more regions. The 

main disadvantage of this method is the increased bit rate resulting from the redundancy of 

the image representation due to overlapping blocks. 

9.1.2 Filtering method 

Using this method, an image enhancement procedure is applied after decoding. Since the 

discontinuities are similar to very sharp edges, a low pass filter is used to smooth out the 

image. An obvious advantage of the filtering method is the fact that it does not increase the 

bit rate. 

9.1.3 Lapped orthogonal transforms 

Staelin ef al [25] introduces a new type of transform which significantly reduces block noise, 

while retaining a low bit rate. The lapped orthogonal transform is defined as as a separable 

unitary transformation for which the basis functions corresponding to adjacent data blocks 

overlap. Results obtained showed that the LOT makes an image look smoother than the ncr 
coded image. It also renders the block noise less noticeable. 
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9.2 Bit allocation 

The bit assignment approach described by Pratt [21] and adopted in the simulation algorithm 

does not provide optimum performance since the real numbers need to be "fiddled" to provide 

the desired bit rate. A computational method for bit assignment based on a technique called 

marginal analysis has been found to achieve performance superior to other algorithms. This 

approach allocates the total number of available bits on a bit by bit basis. Although this 

approach provides superior results, the computational load is extremely heavy. Tzou [27] 

proposes a fast computational algorithm for optimum bit assignment which is based on marginal 

analysis but has been shown to be much more efficient than any other algorithms. The use of 

such an algorithm however, would depend on the tradeoff between increased complexity and 

computation time against the improvement in quality of the reconstructed image. 

9.3 Nonuniform quantization 

The aim of the quautizer is to determine the optimum transition and reconstruction levels for 

the transform coefficients. The quantizer used in this simulation is the uniform Max 

quantizer [18]. Tesic [27] states that for input data with a Laplacian distribution, the 

nonuniform quantizer will be 4.3 dB better than the optimum uniform quantizer. Once again, 

the reason for not using the nonuniform quantizer is the burden of increased complexity and 

computation time, since the nonuniform quantizer consists of a uniform quantizer preceeded 

and succeeded by nonlinear transforms. Once again the increased performance would have to 

be weighed up carefully against these negative factors. 

9.4 Error protection 

A major advantage of image transform coding is its tolerance to channel errors. The inherent 

' error averaging" property of transform coding allows an error in a transform coefficient to 

be distributed over the entire sub picture, making it less objectionable from a human visual 

standpoint. On the other hand, using a predictive compression technique, an error in an 

element of the differential data would result in an incorrect reproduction of a picture element, 

and as a result of the predictor at the receiver, this error would propagate to neighbouring 

pixels. 
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Although errors in transform coefficients arc not as annoying as the distortions introduced by 

other coding schemes, attention must be paid to toward suppressing error influences, since 

they might lead to misinterpretations by physicians. 

a b 

Fig 8.1 Binary symmetric channel noise in spatial and transform domain transmission. 

a) 10-2 error rate in the spatial domain. b) 10-2 error rate in transform domain. 

The effect of channel errors and the use of error correcting codes for transform coding has 

been investigated, among others, by Lux [15], Andrews[I], Oosthuizen [20] and Wintz [29]. 

Oosthuizen [20] states that for high quality image reconstruction, no meaningful error 

protection is necessary for transmission probability error rates of less than 10-3 and peak-to

peak signal to rms noise higher than 30 dB. Chen and Harrison Smith [3] state that for an 

adaptive transform coding scheme of this nature, only the overhead part of the data 

(classification map, normalization factors and bit tables) requires error correction to produce 

yreliable data transmission. If protection of this nature were required, it could be added to 

the algorithm with a negligible increase in the bit rate and a minimum of fuss. 
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10. Discussion and conclusion 

An adaptive transform coding technique for digital x-ray images has been developed. A number 

of computer simulations have been conducted to evaluate the performance of the coder for 

x-ray images. The research has shown that the coding of these images offers the possibility of 

high compression rates. The statistics show much correlation inherent in this type of image, 

and the classification of image sub-blocks by activity level provides efficient coding for the 

transform domain elements. 

The adaptive coding technique requires minimal overhead information yet performs extremely 

well for this class of image, while the flexibility of this simulation code allows easy expansion 

to any image size or number of classes. The results indicate that the adaptive cosine 

transform scheme can produce good quality image reconstruction at bit rates below 

0.38 bits/pixel. Greater compression could be achieved if larger error in the decompressed 

images were found acceptable for diagnostic purposes. 

As far as implementation is concerned, the adaptive transform coding technique shows better 

results than the other methods discussed, although the implementation of such a system would 

require more complex hardware. 

Tesic [26] states that the ultimate compression algorithm is the equivalent of the radiologist's 

dictated report. Research in machine vision may ultimately succeed in this endeavor although 

the answer seems very far away at this stage and much effort is still needed. At present less 

ambitious algorithms, although having many drawbacks, have proven more fruitful. 
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PROGRAM LISTINGS 



APPENDIX A 

I .--,::--,----__ -----,_----,-_ _ PC2. C----,------,---------,--:-c:--,--· I 
/* This program gives the user the ability to cature. store and display */ 
/* an image captured using the PC-EYE System . .The image is then processed wi 
I' and RMF 'ed to the VAX lor display purposes. '1 
I' I H Mclean 28/4/87 '1 

I·~~--~~~----------------------------------------·I 
#include <stdio.h> 
#include <fcntl.h> 

void mainO 
{ 

int 
newimage. 
bwllag, 

/* are we going to capture two images? wI 
I' "boo lean" flag to test b/w levels '1 

horizontal , vertical, 
pbase, gbase, 

1* dimensions of captured image *1 
/* pOinters to meroory */ 

dmem, nmem, 
inter. xtrg. 
i orrode. memtyp. 
reply, 
black, white, 
left, top, 
voff, hoff, 
count, 
type, 
ioff, lehan, 
unpack; 

extern int 
hmax, vmax, 
bitpel, 
dpbyt, 
punp; 

short 
dispmod; 

char C, d, 
filename; 

bwllag • 0; 
newimage '"" 0; 
lab2: 
dispmod = OXO; 
SETCRT(dispmod); 

/* memory locations - start of image */ 

/* parameters which set the base type */ 
/* parameter supplied by user *1 
1* the b'w levels - 8 & 26 optimum *' 
/* parameters which ajust image to screen *1 '* the throttle count *1 '* memory type - display or main memory *' 
'* pixels are unpacked - 1 p'b 

/* maximun dimensions 640 x 400 '* bits per pel 
1* pels per byte '* packed or unpacked flag 

/* simple variables for user input */ '* will hold the name of the file on disk *' 
/* no error yet */ 
/* no new image as yet */ 

/* set screen to text mode */ 

Al 

*' 
*' *' *' *' 



printf(" 
printf( "j 
printf("j PCI MENU 
printf("j 
printf("j S - SAVE AN IMAGE ON DISK 
printf( "j F - TO RESET FRAME SIZE 
printf("j G - TO GRAB ANOTHER IMAGE 
printf("j L - SET BLACK/WHITE LEVELS 
printf("j A - ADO TWO IMAGES - ON DISK 
printf("j o - STATS ON AN IMAGE ON DISK 
printf("j W - STATS ON AN IMAGE IN MEMORY 
printf("j E - STATS ON AN IMAGE IN DISP MEMORY 
printf("j M - TO RETURN TO THE MENU 
printf(" 1 Q - TO QUIT 
printf("1 
printf("1 PRESS ANY KEY TO CONTINUE 
printf("j 

d • getchO; 
if (d .. 'q') goto end; 
If (d •• 'a') (addimages();) 

labI: 
dispood " OXO; 
SETCRT(dispood); 

\n") ; 
j\n"); 
j\n"); 
j\n"); 
j \n"); 
j\n"); 
j \n"); 
j\n") ; 
j\n"); 
j\n") ; 
j\n"); 
j\n"); 
I\n"); 
j\n"); 
I\ n"); 
j\n") ; 
I\n"); 

printf("NAME OF FILE: \n"); scanf("%s",fIlename); 
printf("FRAME WIDTH :\n"); scanf("%d",&horizontal); 
prIntf("FRAME HEIGHT :\n"); scanf("%d",&vertical); 
left · (640-horizontal)/2; top· (400-vertical)/2; 

lab: 
d i spood • OXO; 
SETCRT(displTXld) ; 
/* SET BASE ADDRESSES */ 
pbase • OX3IO; gbase • OX3DO; dmem • OXAOOO; mmem • OX2000; 
reply. CADDR(pbase,gbase,dmem ,mmem); 
if (reply I· 0) printf("ILLEGAL ADDRESS"); 
if (reply" 0) 

( 

) 

/* SET BASE CONFIGURATION */ 
inter ~ 0; xtrg - 0; iomode • 0; memtyp - 5; 
reply = CSETMOO(Inter,xtrg, iooode ,memtyp); 
if (reply I · 0) prIntf("ILLEGAL MEMORY TYPE"); 

if (reply •• 0) 
{ 

set lev: 
/0 AJUST BLACK/WHITE LEVELS 0/ 
black · 10; white· 35; 
if (bwflag •• 1) 

( 

dispmod ' OXO; 
SETCRT( d i splTXld) ; 
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printf("BLACK LEVEL: \n'): scanf("%d' ,'black): 
printf("WIIITE LEVEL: In"): scanf('%d",&white): 

reply - CCALIB(black,white); 
if (reply -- I) printf("VALUE OUT OF RAlIGE"); 
if (reply -- 10) printf("BLACK LEVEL GREMER THAN WIIlTE LEVEL'); 

if (reply -- 0) 

( 

/' ESTABLISH DISPLAY FRAME '/ 
reply' CDFRAME(left,horizontal,top,vertical); 
if (reply -- 8) printf('VALUE OUT OF RANGE"); 
if (reply •• 7) printf('UNEVEN MARGIN SETTING"); 

if (reply .. 0) 

( 

/' AJUST IMAGE TO SCREEN '/ 
hoff· 60; voff • 12; 
reply. CAFRAME(hoff,voff); 
if (reply •• 12) printf('VALUE OUT OF RAIIGE'); 
if (reply" II) printf("UNEVEN HARGIN SETTING"); 

if (reply" 0) 

{ 

} 

/' SET THROTTLE COUNT '/ 
count - 14; /* 14 */ 
reply .. CTHROTL(count): 
if (reply •• I) printf("VALUE OUT OF RANGE"): 
If (reply" 2) { 

printf("THROTTLE COUNT POTENTIALLY TOO SMALL"): 
reply. 0; 

if (reply • • 0) 

{ 

} 

/, SET A PC-EYE REGISTER '/ 
ioff • I; ichan • (4-1)'16; 
reply. CSETREG(loff,ichan); 
if (reply" I) printf("VALUE OUT OF RANGE - CANIIOT EXCEED 1 BYTE"): 

if (reply·· 0) 
{ 

/, SET THE DISPLAY MODE ie GRAPHICS MODE '/ 
dlspllXld .. OXF: 
CSETCRT(displlXld); /, no reply is returned '/ 

/, ACQUIRE All IMAGE All STORE IN MAIN MEMORY ,/ 
unpack - 0; 
reply' CMDMA(u npack); 
if (reply .... 4) printf("FIFO OVERFLOW ERROR"); 
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/ " TRANSfER fROM MAIN MEMORY TO DI SPLAY MEMORY "/ 
type " 0; 
CMHTDISP(type); / " no reply ' / 

) 

{ 

c • getch(); /* do */ 
if (c •• 'g') goto lab; 
if (c · · 'f' ) goto labl; 
if (c aa 'm') goto labZ; 
if (c _. 'q') goto end; 
if (c .· 'I' ) 

{ 

bwflag • 1; 

goto set lev; 

if (c·- '5') 
{ 

dispmcd • OXD; 
SETCRT(dispmcd) ; 
bitpel • 6; dpbyt • 1; punp • 0; /* 6 bits/pi xe l, 1 pixel/byte */ 
reply ' CEYEWRIT(filename, 3); 

) 

if (c .a 'e') {stsdisp(horizonta l, vertical);) 
if (c a. 'd ') { 

dispmcd • OXE; 
CSETCRT(dispmcd ); /* no reply is returned */ 
reply' CEYEREAD("b:t",3); 

goto labZ; 
end: 

) 

CMMTOISP(O); 

dispmcd • OXO; 
SETCRT(dispmcd); 

/*--------------------------*/ 

'* statsdisp is a function similiar to the STATS routine on the VAX. It */ 
j* provides the user with statistics such as mean, hfghest and lowest */ 
/* pixel values. */ 

stsdisp(h ,v) 
Int 

h, v; /* horizontal & vertical dimensions */ 
float 
tota I; 

uns igned 
c, dispmcd, col, row, 
n, pixval. 
picarray(16); /* holds the values of the pixels */ 
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for (n .. 0; 11 <* l5; nil) (piC,1rr,\y[n] " 0;) 
row " 0; tilt,! 1 .. 0; 

If< Tile pixl~l $ .Ire rC ild directly from lrerrory, giving the user the "/ '* op t ion to cha na C! cer tain parameters before storing the i~~ ge * j 

while (row !" h) 
{ 

col· 0; 
while (col !,. v) 

( 

pixval • CRDRWCL(row,col); 
++p icarray[pixval]; 
total . total + plxval; 
++col ; 

++row; 

/* grab pixel from memory */ 

dispmod .. OXO; /* set screen to text mode */ 
SETCRT(dispmod); 
printf("DIMENSIONS : %d x %d \ n",h, v); 
printf("AVERAGE PIXEL VALUE: %d \ n",total/(h'v)); 
printf("\n"); printf("\n"); 
printf("PIXEL VALUE FREQUENCY \ n"); 
for (n • 0; n <. 15; ++n ) 

( 

printf(" %2u, ______ _ %u \n",n, picarray[n]); 

pr intf("TOTAL 
printf(" 
c • getchO; 

I'stsd i sp' I 

%f \n \n \n" ,total); 
ANY KEY TO RETURN TO MENU"); 

1* 'I 

/* This function enables the pixel values of two images of EQUAL SIZE to */ 
/* be added. Th is effectively doubles the dynamic range of the resulting *1 
1* image , 'I 

addimagesO 

int 
d; I' lID result 'I 

long 
h, v, 

count; 
/* horizontal and vertical dimensions */ 

short 
dispmod; 

extern int 
_fmode; 

char pI, p2, 
autbyte, 
filel, file2, 
ou tfile; 

I ' input pixels from files 1 & 2 *1 
I' output byte 'I 
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FILE *ft. *f2. *fout; / * poi nters to our f i les */ 

d i splOOd • OXO; 
SETCRT(displOOd); 
printf("HORIZONTAL SIZE: I n"); scanf("%d",&h); 
printf("VERTICAL SIZE: In"); scanf("%d",&v); 
printf("NAME OF FILE NO 1 ; In"); scanf("%s",filel); 
printf("NAME OF FILE NO 2 ; In"); scanf("%5",file2); 
printf("NAHE OF OUTPUT FILE: In"); 5canf("%s",outfile); 
prlntf("%d In",h*v); 
_flOOde - OX8000; 
fl. fopen(filel,"r"); f2 - fopen(file2,"r"); 
fout - fopen(outfile, "w+"); 
for (count = 1; count < - 256; ++count) 
( 

} 

d • f5canf(fl, "%c" ,&pl); 
d - f5canf(f2," %c" ,&p2); 
d • putc(pl,fout); 

for (count · 1; count < . 256000; ++count) 1* 640 x 400 *1 
{ 

d = fscanf(fl,"%c",&pl); 
d - f5canf(f2,"%c",&p2); 
outbyte • pi + p2; 
d - putc(outbyte,fout); 

fcI05e(fl); fcI05e(f2); 
fcI05e(fout}; 

) 1* addimage5 *1 
1* ________ ,PC2.C ________________ *1 
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APPENDIX B 

PROGRAM PCEYE 
C ••••••••••••• 
C 
C Program to convert pc-eye format data to starlink bdf. 
C 
C Original written by J .L.Jonas 
C Modified by A.D.Brink,OI/II/1986 
C 
C Modified once again by I.H. Mclean, 16/3/87 
C The modifications will enable the program to unpack 
C the 2 pixels per byte, storing each 4 bit pixel in 
C a single byte and masking out the high order nibble. 
C 

CHARACTER FNAME'16 
INTEGER POINTER, SIZE(2). JUNK(16) 

C INCLUDE 'STARDIR:FMTPAR.FOR' 
C 

C 

CALL ROKEYC ('INPUT' •. FALSE.,I,FNAME,JUNK,ISTAT) 
OPEN (UNIT-IO.FORM- ' UNFORMATTED' ,RECOROTYPE-'FIXEO' , 

, NAME.FNAME,STATUS·'OLO') 
SIZE(I) - 640 
SIZE(2) • 400 
CALL ROKEYI ('SIZE' ,.TRUE.,2,SIZE,JUNK,ISTAT) 
CALL WRlMAG ('OUTPUT' ,FMT_UB,SIZE,2,POINTER,ISTAT) 

K - 0 
DO I - I , 4 

READ (10) JUNK 
END DO 
CALL READ_AND_COPY (%VAL(POINTER),SIZE(1),SIZE(2)) 
CALL EXIT 

END 
SUBROUTINE READ_AND_COPY (A, M, N) 

C ------------------------
C 
C Convert PC-EYE 6 bits/pel format to Starlink .BOF format 
C with 8 bits/pel.No multiplication to convert 64 levels to 
C 256 occurs in this version. 
C 

BYTE A(M*N) 
BYTE TEMPARRAY(64'128) 
BYTE TEMPARRAY2(64*12B) 

ITOT - (M*N) / 2 - I 
DO K • 0 ,ITOT , 64 

READ (10) (TEMPARRAY(I) , I - K + 1 , MIN (K + 64 , ITOT)) 
END DO 
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C CODE WHICH INVERTS THE IMAGE - IBM FORMAT TO VAX FORMAT 

00 P - O,N-l 
DO Q = 0,(M/2)-1 

TEMPARRAY2((P*(M/2)) + Q) • TEMPARRAY((N-P+l)*(M/2)+Q) 
END DO 

END DO 

C CODE WHICH UNPACKS THE 2 PIXELS CONTAINED IN EACH BYTE 
C THE HIGHER ORDER NIBBLE OF EACH BYTE IS MASKED 

DO X • 1. nOT 
A((2*X-l)) = ((TEMPARRAY2(X) .AND. 'FO ' X)/16) .AND. 'OF'X 
A(2*X) = (TEMPARRAY2(X) .AND. 'OF'X) 

END 00 
RETURN 

END 
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APPENDIX C 

�* __________ ~ADD .C. _____________ *I 

#include <stdio.h> 
#include <fcntl.h> 
#include <math.h> 

void mainO 
{ 

1* This program enables the pixel values of 4 images of EQUAL SIZE to be *1 
1* added. This allows us to produce 8 b/p images. *1 
1* I H Mclean 28/4/87 *1 

int 
bitnum. d; 

long 
size, 
h. v. count; 

extern int 
_fmode; 

char pI, p2, p3, p4, file1, file2, fi1e3, fi1e4, outfi1e1; 

FILE *fl, *f2, *f3, *f4, *foutl; 

printf("HORIZONTAL SIZE: \n"); scanf("%d",&h); 
printf("VERTICAL SIZE: \n"); scanf("%d",&v); 
printf("NAME OF FILE NO I : \n"); scanf("%s" ,filel); 
printf("NAME OF FILE NO 2 : \n"); scanf("%s",file2); 
printf("NAME OF FILE NO 3 : \n"); scanf("%s",file3); 
printf("NAME OF FILE NO 4 : \n"); scanf("%s",file4); 
printf("NAME OF OUTPUT FILE : \n"); scanf("%s",outfilel); 
_fmode - OX8000; 
size - h*v; 
fl ," fopen(file1, Or"); 
f2 • fopen(fi1e2,"r"); 
f3 - fopen(file3,"r"); 
f4 = fopen(file4,"r"); 
fout! = fopen(outfi leI, "w+"); 
for (count - 1; count <n 256: ++count) 
{ 

) 

d - fscanf(fl,"%c",&pl); 
d = fscanf(f2,"%c",&p2); 
d .. fscanf(f3, "%c",&p3)j 
d - fscanf(f4,"%c",&p4); 
d = putc(p1,foutl); 

C1 

1* copy the headers *1 



} 

for (count ~ 1; count < - size; ++count) 
{ 

} 

d = fscanf( fl, "%c" ,&pl); 
d = fscanf(f2, "%c" ,&p2); 
d = fscanf(f3,"%c",&p3); 
d '" fscanf(f4."%c",&p4); 
bitnum = (pl+p2+p3+p4) ; 
d = putc(bitnum,foutl); 

fclose(fl); fclose(f2); 
fclose(f3); fclose(f4); 
fclose(foutl); 

/* _________ -!ADDS .C ___________ ~*/ 

C2 



APPENDIX D 

/* ___________ ,OCT8.C, _____________ */ 

/* A program which implements the Discrete Cosine Transform on a */ 
/* 8 x 8 x 8 bit image. */ 
/* This program was written in order to compare the results obtained with */ 
/* the various FOCT algorithms. */ 
/* I H Mclean 18/8/87 */ 

#include <stdio.h> 
#include <fcntl.h> 
#include <math .h> 

void main() 
{ 

#define PIOIVI6 0.19635 /* pi divided by 16 see def of OCT */ 
Hdefine TWOOIVN 0.25 /* 2/N where N - 8. See def of OCT *1 

int 
ret, /* return code far fseek function */ 

j, 1* The formula for the OCT on which this program is *1 
k, 1* based uses j and k in its notation, I do the same *1 

1* merely to avoid confusion. *1 

dispmod, 1* parameter to a PCEYE function *1 
d; 1* result of ID *1 

float 
fj, Fk, 
res, 
SUlTITJation, ck; 

long 
count; 

extern int 
_fmode; 

char 
fi lei, 

1* input & output bytes resp. See formula. *1 
/* result of raising 2 to a certain power */ 

outfilel; 1* input and output files resp. *1 

FILE *fl, *foutl; 1* painters to our input & output files resp. *1 

printf("NAME OF INPUT FILE \n"); scanf("%s",filel); 
printf("NAME OF OUTPUT FILE : \n"); scanf("%s",outfilel); 
_fmode • OX8000; 
fl • fopen(filel,"r"); foutl· fopen(outfilel,"w+"); 
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} 

} 

for (count ~ 1; count < - 8; ++count) 
{ 

for (k - 0; k < - 7; ++k) f' k as in F(k) the OCT 'f 
{ 

} 

Surrmation - 0; /* calc a new "pixel" */ 
if (k == 0) {ck - 0.707l;} else {ck - I;} 
for (j - 0; j <- 7; ++j) f' j - 0.1 •.••• N-l 'f 

( 

d = fscanf(fl . "%lOf" .&fj); f' get value from input file 'f 
res - (2'j+l) , k • PIOIV16; 
Summation - Summation + (fj , cos(res»; 

Fk • 0.25 ' ck * Summation; f' must round t o 1 byte 'f 
fprintf(foutl. "%lOf" .Fk); 
if (k <- 6) (ret - fseek(fl.(-S'lO).l);} f* use same S input bytes *f 

fclose(fl); fclose(foutl); f' close input & output files *f 

f' __________ .OCTS . C. ____________ __ 'f 
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APPENDIX E 

'* _________ PRINTFILLC, _ __________ *' 
'* This simple program prints out the pixels in a digital Image - row for */ 
/* row. The input image is assumed to have the dimensions 256 x 256. */ 
/* Used for checking the accuracy of reconstructed images . *1 
/* I Mclean 8/11/87 */ 

Hinclude <stdio.h> 
Hlnclude <fcntl.h> 
#include <math.h> 

void main() 
{ 

int 
linecount, 
1 inena. 
spaces, 

/* line number */ 
/* spaces between printouts - for more than 1 histogram */ 
/* 1'0 result *' d; 

extern int _fmode; 

long 
pas, 
count; 

char 
reply, 
wait, 
inbyte, 
filel ; 

FILE *f1; 

lineno - OJ 

'* loop counter - must be long, since> than maxint */ 

'* user input *' 
/* user input - pause between images *1 '* input byte */ '* input file *' 
'* pointer to input file *' 

spaces a 85; /* printing the first row *1 
printf("NAME OF INPUT FILE: \n"); scanf("%s",fllel); 
_fmode = OX8000; '* using translated 1'0 *' 
f1 - fopen(filel,"r"); 
for . (count = 1; count <= 256; ++count) 
{ 

d = fscanf(fl,"%c",&inbyte); 
) 

for (count. 1; count <- 65536; ++count) '* 256 x 256 *' 
{ 

d = fscanf(fl,"%c",&inbyte); 
pas - ftell(fl); 
If (inbyte < 0) {printf("pos = %d",pos); goto end;) 
if (spaces -- 85) {printf(" 

");) 

if (spaces -- 80) {printf(" 
") ;) 

El 



if (spaces == 75) {printf(" 
,,) ;) 

if (spaces •• 70) {printf( " 
") ;) 

if (spaces •• 65) {printf(" 
") ;) 

if (spaces == 60) {printf(" 
");) 

if (spaces •• 55) {pri ntf(" 
") ;) 

if (spaces == 50) {printf(" 
") ;) 

if (spaces •• 45) {printf( " ") ;) 

if (spaces •• 40) {printf(" 
if (spaces == 35) {printf( " 
if (spaces == 30) {pr intf(" 
if (spaces •• 25) {printf(" 
if (spaces == 20) {printf(" 
if (spaces == 15) {printf(" 
if (spaces == 10) {printf( " 
if (spaces -- 5) {printf(" 
if (spaces -- 0) {printf(" 
printf("%d \n",inbyte); 
++lineno; 

,,);) 
,,);) 

if (count < 13) 
{ 

if (lineno%12 •• 0) {scanf("%c",wait);) 
) 

else 
{ if (lineno%24 •• 0) {scanf("%c",wait);)) 

if (count%256 •• 0) /* end of a row */ 
{ 

" ) ;) 

") ; ) 

") ;) 
") ; } 

") ;) 

") ;) 
") ;) 

for (linecount - 1; linecount <- 15 ; •• linecount) {printf("\n");) 
printf("DO ANOTHER ROW: YIN \n"); reply - getch(); 
spaces - '" 5; 
lineno '" 0; 
if (reply == 'n') {goto end;) 

) 

/* for */ 
end: 

fclose(fl); 
) 

) 

/* print in next row */ 

/* _________ PRINTfILE,C _____ _ _____ */ 
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APPENDIX F 

/* __________ SHOWBLOCK.C __________ */ 

/* This program outputs any 8x8 block in a digital image. Using this */ 
/* window the user may move around the file and check the details of */ 
/* reconstructed images. '11/ 
/* I H Mclean 19/10/87 */ 

Hinc lude <stdio.h> 
#include <fcntl.h> 
Hinclude <math.h> 

void main() 
{ 

adefine NDIV2 4 /* N/2 - See def */ 
'define NEXTROW 248 
'define TRUE 1 
Udefine FALSE 0 

/* 256 - 8, the amount to move to next row */ 
/* Booleans. '11/ 
I'll Booleans. */ 

int 
tempval, 
rowl, call, 
ret, d; 

extern int 
_fmode; 

long 
temp, count, countl; 

char outbyte, filel; 

FILE *f1, fout1; 

_fmode - OX8000; 
printf("NAME OF INPUT FILE \n"); scanf("%s",file1); 

repeat: printf("ROW NO (-1 TO ENO) \n"); sc.nf("%d",&row1); 
if (row1 == -1) {goto end;} 
printf("COL NO : \n"); scanf("%d",&coll); 
f1 = fopen(file1,"r"); 
printf("row s %d ",rowl); printf("col .. %d \n",co11); 
temp. (rowl*256)+coll+256; 
printf("temp is %d \n",temp); 
ret = fseek(fl,temp,O); 
for (countl • 0; countl <- 7; ++countl) 

{ 

for (count = 0; count <= 7; ++count) 
{ 

d .. fscanf(fl,"%c".&outbyte): 
tempv.l • (int)outbyte; 
printf(" %3d",tempval); 

/* origin of block */ 
/* print out pos */ 

/* read in 8x8 file */ 

if (count .= 7) {ret· fseek(f1,NEXTROW,l); printf("\n"); 

fclose(fl) ; 
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gata repeat; 

end: 
I 1* showblock *1 
I* ___________ SHOWBLOCK,C, ___________ *I 
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APPENDIX G 

/* ________ ___ PIXDIFF .C, _____________ */ 

/* This simple program outputs a histogram of the difference between */ 
/* adjacent pixels in the input image. This gives an indication of the */ 
/* correlation between pixels in a small area. */ 
/* I Mclean 8/11/87 */ 

Ninclude <stdio.h> 
Uinclude <fcntl.h> 
#include <math.h> 

void main() 
{ 

int 
xl int, x2int, 
diff. 
dim, 

/* difference between ajacent pixels */ 
/* dimension of input image */ 

d; /* I/O result */ 

extern int _fmode; 

long 
pixcounter, /* sum of all pixel values */ 
count, 
col, row; /* loop counter - must be long. since> than maxint */ 

. float 

hist[200]; /* hold the values of the pixel distribution */ 

char 

/* user input */ 
xl, x2. 
reply, 
wait. /* user input - pause between images */ 

inbyte, /* read header */ 

filel; /* input file */ 

FILE *f1; /* pointer to input file */ 

start: 
printf("NAME OF INPUT FILE I : \n"); scanf("%s",fileI); 
printf("IMAGE DIMENSION \n"); scanf("%d",&dim); 
_fmode ' OX8000; /* using translated I/O */ 
fl · fopen(fileI,"r"); 
for (count' 1; count <= 256; ++count) 
( 

d:. fscanf(fl,"%c",&inbyte); 
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} 

for (count = I; count <= 200; ++count) 
{ 

hist[count-I] - 0; /* set array to zero *1 

for (row · I; row <- 256; ++row) 1* 256 x 256 - I *1 
{ 

d", fscanf(fl,"%c",&xl); 
xlint = (int)xl; 
if (xlint < 0) {xlint • xlint + 256;} 1* 8 bits 0 - 127 *1 
xl int 1= 3; 

for (col· I; col <- 255; ++col) 1* 256 -I : already read *1 
{ 

d .. fscanf(fl."%c",&x2); 
x2int = (int)x2; 
if (x2int < 0) {x2int - x2int + 256;} 
x2int 1= 3; 
diff - (x2int - xlint); 
++hist[diff+IOO]; 1* increJJ'ent that eleJJ'ent or "bin" *1 
xlint - x2int; 

fclose(fl); 
pixcounter .. 0; 
for (count a 1; count <~ 200; ++cQunt) 
{ 

printf("%d ",count-10l) ; 
printf("%10.2f \n",hist[count-I]); 1* print it out *1 
if (count%12 == 0) {scanf("%c",wait);} 

printf("DO ANOTHER IMAGE: YIN: \n"); reply = getch(); 
if (reply =. 'y') {goto start;} 

I* _________ HISTOGRAM, ____________ *1 
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APPENDIX H 

/* _ _ _ ________ FDCT.C _ ___________ */ 

#inc lude <stdio.h> 
#include <fcntl.h> 
#include <math.h> 

void main() 
{ 

/* This program implements the Fast Discrete Cosine Transform developed */ 
/* by Chen. Smith & Fralick. This algorithm is AT LEAST 8 times faster */ 
/* than the conventional OCT. This program forms the kernal of all the */ 
/* OCT coding schemes proposed. *1 
/* The FDCT is performed in one dimension ONLY. and each 8 x 8 block *1 
1* thus be transposed in order to perform the 2-0 transform. *1 
1* The frequency domain data so generated is used by other progs *1 
1* such as BITALLOC.C to provide statistics on the input image. *1 
1* I H Mclean 19/10/87 *1 

#define PIDIVI6 0.19635 1* pi divided by 16 see def of OCT *1 
#define PIDIV4 0.7B539B 1* pi divided by 16 see def of OCT *1 
Hdefine PIDIV8 0.392699 1* pi divided by 16 see def of OCT *1 
#define TWODIVN 0.25 1* 2/N where N - B. See def of OCT *1 
#define NDIV2 4 1* N/2 - See def *1 
Udefine NEXTROW 248 
#define TRUE I 
#define FALSE 0 

/* 256 - 8 t the amount to move to next row */ 
1* Booleans. *1 

int 
ret. 
d; 

extern int 

/* Booleans. 

_fmode; 1* translated 10 flag *1 

long 
temp. 
count. 
countt : 

reg ister long 
row, col, 
rowl, call; 

float 
eightbit. 
mainarr[B][8]; 

char 

/* row and col numbers of input & output files */ 

/* each pixel ;s read as an eight bit number */ 
/* and processed in axB "blocks" */ 

outbyte. outfilel[8]. filel; 

FILE *fl. *foutl; 

HI 
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_fmode • OX8000; 1* translated 1/0 *1 
pr i nt f (" ********************WARN I NG**************************** \ n tI) ; 
printf("* COMPUTATION IS IN PLACEI - USE A COPY OF INPUT FILE * \n"); 
printf("******************************************************* \n\n"); 

printf(" NAME OF INPUT FILE: \n"); scanf("%s",filel); 
fout! • fopen( "bud" , "w") ; 1* use proper name - C forgets I *1 
for (rowl - 0; rowl <- 248; rowl+-8) 

{ 

for (call - 0; call <- 248; coll+-8) 
{ 

fl - fopen(filel, "r"); 
printf("row a %d ",rowl); printf("col ... %d \n",co11); 
temp - (rowl*256)+coll+256; 1* new file pos *1 
ret = fseek(fl,temp,O); 
for (count! a 0; count! <~ 7: ++cQuntl) 

{ 

for (count = 0; count <= 7; ++count) 
{ 

} 

d - fscanf(fl,"%ctt,&outbyte); 
eightbit - (float)outbyte; 
if (eightbit < 0) {eightbit +. 256 ;) 1* eight bit goes -ve *1 
mainarr[count][countl] = eightbit; 
if (count -- )) {ret - fseek(fl,NEXTROW,I);} 

fclose(fl); 
fdct(mainarr); 

I* ________ W, RITE FILE AS 1-0 REAL __________ *I 

for (row ~ 0: row <= 7; ++row) 
{ 

} 

for (col = 0; col <- 7; ++col) 
{ 

fpri ntf( fout!, "%12f" ,ma i narr[ co l][row]); 
} 

fclose(fout!) ; 

I* _____ -'CALL RELEVANT CODING ROUTINES __________ *I 

1* 

*1 

actindex(fout!) ; 
bitalloc(outfilel); 

1* _____ ----------------_____ *1 

foutl - fopen("bud","r"); 
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for (rowl = 0; rowl <- 24a ; rowl+·a) 
{ 

) 

for (coli. 0; coli <= 24a; coll+-a) 
{ 

for (countl • 0; count I <- 7; ++countl) 
{ '* read In ax8 file *' 

for (count ~ 0; count <= 7; ++count) 
( 

d = fscanf(foutl.'%12f'.&malnarr[count][countl]); 
) 

Ifdct(mal narr); 
rep(fllel.malnarr .coll. rowl); 

) 

fclose(foutl) ; 

'* ____ INCLUDE CODE DEPENDING ON WHICH ALGORITHM IS USED, _____ *' 
'* #Inc lude<fdctadap2.c> 
#Include<fdctadap4.c> 
#Include<fdctadapl.c> 

*' 
'*--------------------------*' 

rep(fllel.Insertarr.startcol.startrow) 
char filel: 
float Insertarr[] [a]; 
long startcol,startrow; 
{ 

int 

ret; '* return code for fseek function *' 
register int row, col; 

long 
startblock; '* start pos of block to be Inserted */ 

float 
frac: '* fractional part of the real coefficient *' 

char 
outcoeff; 

FILE *fl. *foutl: '* pointers to our Input & output files resp . *' 
( 

fl · fopen("jez" '* fll el *'.'r+'); 
startblock - (startrow*256)+startcol+256: '* origin of block *' 
ret· fseek(fl.startblock.O) : 
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for (row ~ 0; row <~ 7; ++row) 

for (col - 0; col <- 7; ++col) 
{ 

/* read in 8x8 file */ 

outcoeff - (char)( insertarr[col][row]); 
frac = insertarr[col][row] - (lnt)(insertarr[col][row]); 
if (frac >- 0.5) {outcoeff +- 1;) 
ret = fseek(fl,O,I); 
fprintf(fl, "%c" ,outcoeff); 

/* printf(" %d",outcoeff); */ 
if (col · · 7) {ret - fseek(fl,NEXTROW,I); /* printf("\n"); */ ) 

) /* for */ 
/* for */ 

fclose(fl); /* close input & output files */ 
) 

/* ___________ ,FOCT.C _ ____________ */ 
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APPENDIX J 

/* _ _______ FDCTADPl.C _____________ */ 

/* ________ CHEN FDCT ___________ __ */ 

/* Data is passed as 8 x 8 blocks which are then transformed using the *' 
/* Chen algorithm. */ 

fdct(fdctarr) 
float fdctarr[][8]; 

int 
first; /* is it the first pass 7 */ 

register long 
coeff. coeffl. coeff3; 

float 
a[8] . b[8] . c[8]. 
d[8]. e[8]. f[8]; /* hold the different stages of the comp.*/ 

,* MAIN LOOP */ 

{ first - TRUE; '* first pass I *' 
start: for (coeffl - 0; coeffl <- 7; t+coeffI) 

{ 

for (coeff = 0; coeff <- 7; ++coeff) 
{ 

if (first •• TRUE) { a[coeff] • fdctarr[coeff][coeffl]; ) 
else {a[coeff] - fdctarr[coeffI][coeff];} 

) 

,* FIRST STAGE : *' 

b[O] • a[0]ta[7]; b[I] • a[I]+a[6]; b[2] - a[2]ta[5]; 
b[3] - a[3]+a[4]; b[4] - -a[4]ta[3]; b[5] = -a[5]+a[2]; 
b[6] • -a[6]ta[I]; b[7] = -a[7]ta[D]; 

,* SECOND STAGE : *' 

c[O] = b[0]tb[3]; c[I] = b[I]tb[2]; c[2] • -b[2]tb[I]; 
c[3] • -b[3]tb[0]; c[4] • b[4]; 
c[5] = -(cos(PIDIV4)*b[5]) + (cos(PIDIV4)*b[6]); 
c[6] = (cos(PIDIV4)*b[6]) + (cos(P IDIV4)*b[5]); 
c[7] = b[7]; 

/* THIRD STAGE */ 

d[D] • (cos(PIDIV4)*c[0]) + (cos(PIDIV4)*c[I]); 
d[ I ] • -(cos(PIDIV4)*c[I ] ) + (cos(PIDIV4)*c[0]); 
d[2] = (sin(P IDIV8)*c[2]) t (cos(PIDIV8)*c[3]); 
d[3] • (cos(3*PIDIV8)*c[3]) - (sin(3*PIDIV8)*c[2]); 
d[4] = c[4]tc[5]; d[5] • -c[5]tc[4]; d[6] • -c[6]+c[7]; 
d[7] • c[7]+c[6] ; 
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/* _______ FOURTH STAGE: _____________ */ 

e[O] - d[O]; e[I]· d[I]; e[2] - d[2]; e[3] • d[3]; 
e[4] · (sin(PIOIVI6)*d[4]) + (cos(PIOIVI6)*d[I]); 
e[S] . (sin(S*PIOIVI6)*d[S]) + (cos(S*PIOIVIG)*d[6]); 
e[6] . (cos(3*PIOIVI6)*d[6]) - (sin(3*PIOIVI6)*d[5]); 
e[I]· (cos(I*PIOIVI6)*d[I]) - (sin(I*PIOIVI6)*d[4]); 

/* _______ ,FIFTH STAGE: _____________ */ 

) 

) 

f[O] - TWOOIVN*e[O]; f[l] = TWOOIVN*e[4]; 
f[2] • TWOOIVN*e[2]; f[3]. TWOOIVN*e[6]; 
f[4] • TWOOIVN*e[I]; f[5] - TWOOIVN*e[5]; 
f[6] • TWOOIVN*e[3]; f[I]. TWOOIVN*e[I]; 
for (coeff3 - 0; coeff3 <- I; ++coeff3) 
{ if (first -- TRUE) {fdctarr[coeff3][coeffl] - f[coeff3];) 

else {fdctarr[coeffl][coeff3] - f[coeff3];) 
) 

if (first == TRUE) 
first - FALSE; /* go into second pass */ 
gato start; 

/* FOCT */ 
/* _______ CHEN IFOCT ______________ */ 

ifdct( i fdctarr) 
float ifdctarr[][B]; 

int 
first; /* is it the first pass? */ 

register long coeff. coeffl. coeff3; 

float 
arB]. b[B]. c[B]. 
d[B] . e[B]. feB]; /* hold the different stages of the comp.*/ 

first· TRUE; /* first pass I */ 

/*-------
~IN LOOP _______________ */ 

start: for (coeffl - 0; coeffl < - I; ++coeffl) 
{ 

for (coeff - 0; coeff < - I; ++coeff) 
{ 

if (first -- TRUE) { a[coeff] - ifdctarr[coeff][coeffl]; 
else {a[coeff] • ifdctarr[coeffl][coeff];) 

/*------- FIRST STAGE: _____________ */ 

b[4] - a[I]; b[5] - a[5]; b[6] - a[3]; b[l] - a[I]; 
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I* _______ SECONO STAGE: ____________ *1 

c[O) • a[O); c[l) 0 a(4); c(2) 0 a(2); c(3) - a[G); 
c(4) - (sin(PIOIVIG)*b[4)) - (sin(7*PIOIVIG)*b[7)); 
c(5) 0 (sin(s*PIOIVIG)*b[s)) - (sin(3*PIDIVIG)*b[G)); 
c[G) - (cos(3*PIDIVIG)*b[6)) + (cos(s*PIDIVIG)*b[s)); 
c(7). (cos(7*PIDIVI6)*b[7)) + (cos(PIDIVI6)*b[4)); 

I* _______ THIRD STAGE: _____________ *1 

d[O). (cos(PIDIV4)*c[O)) + (cos(PIDIV4)*c[I)); 
d[l) = -(cos(PIDIV4)*c[I)) + (cos(PIDIV4)*c[O)); 
d(2) = (sin(PIDIV8)*c[2)) - (sin(3*PIDIV8)*c[3)); 
d(3) - (cos(3*PIDIV8)*c[3)) + (cos(PIDIV8)*c[2)); 
d(4) = c(4)+c[s); d[s) = -c[s)+c[4); d[G) = -c[G)+c[7); 
d(7) - c(1)+c[G); 

I* _______ FOURTH STAGE: _____________ *1 

e[O] • d[O]+d[3]; e[l] 0 d[I]+d[2]; e[2] = -d[2]+d[I]; 
e[3] = -d[3]+d[O]; e[4] = d[4]; 
e[s] = -(cos(PIDIV4)*d[s]) + (cos(PIDIV4)*d[6]); 
e(6) = (cos(PIDIV4)*d[6]) + (cos(PIDIV4)*d[s)); 
e[7] • d[7]; 

I* _______ ,FIFTH STAGE: _____________ *1 

} 

f[O] - e[O]+e(7); f[l) 0 e[I]+e(6); 
f[2) = e[2]+e[s); f(3) 0 e[3]+e[4]; 
f[4] • -e(4)+e[3) ; f[s) 0 -e[s)+e[2); 
f[G] • -e[G)+e[I]; f(7) 0 -e[7]+e[O); 
for (coeff3 - 0; coeff3 < 0 7; ++coeff3) 

{ 

if (first 00 TRUE) {ifdctarr[coeff3)[coeffl) 0 f[coeff3);} 
else {ifdctarr[coeffl][coeff3) 0 f[coeff3];} 

} 1* for *1 

if (first •• TRUE) 

} 1* IFDCT *1 

first 0 FALSE; 1* go into second pass *1 
goto start; 

}/*if*1 

1* *1 
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APPENDIX J 

/* _________ ,FDCTADP2.C _____________ */ 

actindex() 
{ 

/* This procedure works out the activity index for each sub block. */ 
/* A new file is opened, into which the classifications for each sub - */ 
/* block are stored. This file is then referenced the bitalloc procedure */ 
/* to perform the adaptive coding . */ 

int 
ret, 
classcount, 
classno, 
low, 
filepos, 
intactive. 
d, 

/* return code for fseek function */ 
/* simple counter for members in a class */ 
/* the clas numbering, ie 1,2,3 or 4 */ 
/* flag for sorting algorithm */ 
/* pas in the file */ 
/* must convert to integer for storage *1 

eeeff; /* coeff of the a x a block 

register tnt 
row; 

float 
activity, /* activity index of each sub block */ 
energy; /* each coefficient of the a x a sub block */ 

FILE *f1, *f2; /* pointers to our input & output files resp. */ 
{ 

fl. fopen(lfbud"."r"); 
f2 - fopen("actvfile","w"); 
for (row· 1; row <- 1024; ++row) 

{ 

activity· 0; 

/* 1024 */ 

*/ 

d - fscanf(f1,"%12f",&energy); /* skip DC coefficient */ 
for (coeff - 2; coeff <- 64; ++coeff) 

{ 

d - fscanf(fl,"%12f",&energy); 
energy - abs(energy); 
activity += energy; 
/* for coeff */ 

intactiv - (int)activity; 
fprintf(f2,"%4d",intactiv); 

} /* for row */ 
fclose(f1); fclose(f2); /* close input & output files */ 

/* ~ 

/* Classify each a x a sub-block by looking at the "activity index" for */ 
/* that block. alocks are placed into 1 of 4 classes, */ 

f2 • fopen("actvflle", "r+"); 
filepos - 0; /* pas in file */ 
classno = -1: 
low - 0; /* we need to sort activity levels */ 
c lasscount - 0; 
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loop: 
do 

if (filepos •• 1024) {fllepos • 0; rewind(f2); ++low;) 
d • fscanf(f2, "%4d" ,&intactlve); 
++filepos; 

while (intactive < 0); 

if (intactive •• low) j* then add It to class *j 
{ 

++classcaunt; /* another meniler of class */ 
ret· fseek(f2,-4,1); 
fprintf(f2, "%4d" ,classno); 
ret· fseek(f2,4,1); 
rewind(f2); fi lepos • 0; 

) 

if (classcount < 256) goto loop; 

j* _ _ ___ -'otherwise we have co~leted another class ______ */ 

if (classno > -4) 
{ 

classcount ,. 0; 
classno -"" 1; 
goto loop; 

fclose(f2) ; 

j* ________ ,FDCTADP2,C, _____________ *j 
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APPENDIX K 

'* ____________ ,FDCTADP4.C. __________ *' 
/* The adaptive quantization and bit assignment are performed by this */ 
/* suite of procedures. */ 

bitallocO 

{ '* This procedure implements adaptive bit assignment for each *' 
/* coefficient in the transform domain. The average value of each ceeff. *1 '* Is displayed. as well as the variance. The bit assignment algorithm *' '* is to be found in Pratt pg 673. *' '* I H Mclean 3'11'87 *' 

int 
ret. '* return code for fseek function *' 
bitmatrix[64][4l. 
totalbits[4l; '* total no of bits assigned so far *' 

long int 
8. 
N. 
variance, 
d; 

long 
class, 
coeff; 

double 
result; 

float 
temp, 

'* the no of block code bits - supplied by user *' 
'* block size. eg 64. 256 etc *' 
/* the variance at this stage */ 

'* which class the 8x8 matrix belongs to *' 

/* stores square root of variance *1 

'* largest DC coefficient for eac class *' 
'* final product - quantized - "dequantized" *' 

largedc[4l. 
outrea I, 
realbyte. 
quanbyte. 
totalarr[64l[4l. 
vararr[64][4l. 
sumlogvar[4l. 
twolvar[4l. 
twonlogvar[4l. 
BdivN; 

/* variances of the coefficients for each class wI 

register long rowl; 

char 
wait; 

FILE *fl. *foutl; 

'* B divided by N. *' 
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for (class = 0; class < = 3; ++class) 
{ 

for (coeff = 0; coeff <= 63; ++coeff) /* zero the arrays */ 
{ 

} 

totalarr[coeff][class] - 0; 
vararr[coeff][class] • 0; 

N _ 64; 

B • 32; 
BdivN = 0.1; /* 0.5 bits pixel */ 

/* ___________ -'AVERAGES ___________ */ 

foutl - fopen("bud","r"); 
fl "" fopen(lfactvfile","r"); /* contains classification data */ 
for (rowl ~ 1; row! <- 1024; ++rowl) 

{ 

d .. fscanf(fl,t1%4d",&class); 
class = abs(class); 
--class; 

for (coeff = 1; coeff <= 64; ++coeff) 
{ 

d = fscanf(foutl, "%12f" ,&rea Ibyte); 
totalarr[coeff-I] [class] +- rea1byte; 

} 

fc10se(foutl); fc10se(fl); 
for (coeff • I; coeff <= 64; ++coeff) 

{ 
for (class ~ 0; class <= 3; ++class) 

{ 

tota1arr[coeff-l][class] - tota1arr[coeff-l][class]/(f10at)256; 
} 

/* ____________ VARIANCES, ___________ */ 

foutl s fopen( "bud" , "r") ; 
fl "" fopen(lfactvfile","r"); /* contains classification data */ 
for (class - 0; class <- 3; ++c1ass) 

{ 

1argedc[class ] = 0; /* got to find largest DC coeff */ 
} 

for (rowl - I; rowl <- 1024; ++rowl) 
{ 

d - fscanf(fl, "%4d" ,&class); 
class - abs(class); 
--class; 

for (coeff • I; coeff <- 64; ++coeff) 
{ 

d _ fscanf( foutl, "%12f" ,&rea Ibyte); 
if «coeff -- I) && (realbyte > largedc[class])) 
{Iargedc[class] - realbyte;} 
variance - rea I byte - totalarr[coeff-I][c lass]; 
variance ~ variance*variance; 
vararr[coeff-I][class] +- (float)variance; 
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fclose(foutl); fclose(fl); 
for (class - 0; class <- 3; ++class) {twonlogvar[class]. O;} 
for (coeff = 1; coeff <- 64; ++coeff) 

{ 

for (class· 0; class <= 3; ++class) 
{ 

) 

vararr[coeff-l][class] f · 256; 
sumlogvar[class] • logIO«float)vararr[coeff-l][class]); 
twonlogvar[class] += (float)sumlogvar[class]; 

f* ______ ---'BIT ALLOCATION _____________ *f 

for (class = 0; class <= 3; ++class) 
{ 

twonlogvar[class] *= 2; 
twonlogvar[class] f= N; 

retry: 
for (class = 0; class <= 3; ++class) 
{totalbits[class] = O;} f* no bits assigned *f 
for (coeff • 2; coeff <= 64; ++coeff) 

{ 

for (class = 0; class <- 3; ++class) 
{ 

) 

twolvar[class] = 10gIO«float)vararr[coeff-l][class]); 
temp = BdlvN + (2*twolvar[class]) - twonlogvar[class]; 
if (temp < 0) {temp = O;} 
bitmatrix[coeff-l][class] = (int)temp; 
totalbits[class] +- bitmatrix[coeff-l][class]; 

for (class. 0; class <= 3; ++class) f* dc coeff is sent uncodedl *f 
{ 

if (Iargedc[class] = 0) {bitmatrix[O][class] = O;} 
if (Iargedc[class] > 0) {bitmatrix[O][class] • I;} 
if (Iargedc[class] > 1) {bitmatrix[O][class] - 2;} 
if (Iargedc[class] > 3) {bitmatrix[O][class] • 3;} 
if (largedc[class] > 7) {bitmatrix[O][class] = 4;} 
if (largedc[class] > 15) {bitmatrix[O][class] - 5;} 
if (largedc[class] > 31) {bitmatrix[O][class] = 6;} 
if (Iargedc[class] > 63) {bitmatrix[O][class] • 7;} 
if (Iargedc[class] > 127) {bltmatrix[O][class] - 8;} 
if (largedc[class] > 255) {bitmatrix[O][class] - 9;} 
if (Iargedc[class] > 511) {bitmatrix[O][class] = 10;} 
totalbits[class] +- bitmatrix[O][class]; · 

/ * We must now check to see whether the right number of bits have been */ 
/* assigned. If not, then increase BdivN and try again - until totalbits */ 
/* is greater than the desired BIT RATE . Once it is· greater, it can be */ 
/* reduced to the correct number. */ 

f* if (totalbits < 32) {BdivN += 0.1; go to retry;} *f 

f* ~ 
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/* for (class a 0; class <= 3; ++c1ass) 
{ 

*1 

for (coeff • 1; coeff <. 64; ++coeff) 
( 

printf( "%d ",b itmatrix[coeff-I][ class]) ; 
if (coeff%8 _. 0) (printf("\n");} 

I* ____ WAIT FOR KEYPRESS SO USER CAN SEE BIT MAPS, _______ *I 

printf("waiting II!!!"); scanf("%c",wait); scanf("%c",wait); 
for (class - 0; class <= 3; ++class) 

( 

printf("%d \n",totalbits[class]); 
} 

1* if (totalbits > 32) 
{ 

'I 

pos • 63; 
while (totalbits > 32) 
{ 

if (bitmatrix[pos] > 0) (--bitmatrix[pos]; --totalbits;) 
--pas; 
if (pos •• 0) {pos • 63;} de - coeff is untouched 

printf("\n \n"); 
for (class = 0; class <. 3; ++class) 

{ 

for (coeff • 1; coeff <. 64; ++coeff) 
( 

) 

) 

printf("%d ",bitmatrix[coeff-I][class]); 
if (coeff%8 -- 0) (printf('\n");) 

I* ________ QUANTIZE COEFFICENTS, ___________ 'I 

faut! .. fapen("bud". "r+"); 
for (rowl • 1; rowl <. 1024; ++rowI) 

for (coeff • 1; coeff <. 64; ++coeff) 
( 

d· fscanf(foutl,"%12f",&realbyte); 

I*' _________ NORMALIZATION, ____________ *I 

1* Each coefficient is divided by its standard deviation before it is 'I 
/* quantized. This ;s done in order at prevent "clipping", which occurs */ 
I' when coefficent values "overflow" - ie the number of bits allocated 'I 
/* to a certain caefficent cannot represent its value. */ 
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result. sqrt(vararr[coeff-I][class]); 
if (coeff I· I) {rea I byte I· result;} 
If (bitmatrlx[coeff-I][class] •• 0) {outreal· O;} 
if. (bitmatrix[coeff-I][class] •• I) 

{ 

} 

if (realbyte < 0) {outreal • -0.7071;} 
else {outreal • 0.7071;} 

if (bitmatrix[coeff-I][class] .- 2) 
{ 

quanbyte - (int)(realbyte/l.0874); 
quanbyte +-2 ; 
if (quanbyte > 3) {quanbyte - 3;} 
if (realbyte < 0) 

{ 

quanbyte -= I; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal - «(quanbyte - 2)*2)+1) * 0.5437; 

if (bitmatrix[coeff-I][class] •• 3) 
{ 

quanbyte = (int)(realbyte/0.7309); 
quanbyte +a4 i 

If (quanbyte > 7) {quanbyte • 7;} 
if (realbyte < 0) 

{ 

quanbyte -- I; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal - «(quanbyte - 4)*2)+1) * 0.36545; 
} 

If (bitrnatrlx[coeff-I][class] •• 4) 
{ 

quanbyte - (int)(realbyte/0.461); 
quanbyte +-8; 
if (quanbyte > 15) {quanbyte = 15;} 
if (realbyte < 0) 

{ 

quanbyte _. 1; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal • «(quanbyte - 8)*2)+1) * 0.2305; 

if (bltmatrix[coeff-l][class] -- 5) 
{ 

quanbyte - (int)(realbyte/0.28); 
quanbyte +-16; 
if (quanbyte > 31) {quanbyte - 31;} 
if (realbyte < 0) 

{ 

quanbyte -- 1; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal - «(quanbyte - 16)*2)+1) * 0.14; 
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if (bitmatrix[coeff-I][class] -- 6) 
{ 

quanbyte • (int)(realbyte/0.1657); 
quanbyte +-32; 
if (quanbyte > 63) {quanbyte " 63;} 
if (realbyte < 0) 

{ 

quanbyte -" I; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal - «(quanbyte - 32)*2)+1) * 0.08285; 
} 

if (bitmatri x[coeff-I][class] -- 7) 
{ 

quanbyte - (int)(realbyte/0.0961); 
quanbyte +-64; 
if (quanbyte > 127) {quanbyte - 127;} 
if (realbyte < 0) 

{ 

quanbyte -- I; 
if (quanbyte < 0 ) {quanbyte • O;} 

} 

outreal • «(quanbyte - 64)*2)+1) * 0.04805; 
} 

if (bitmatrix[coeff-I][class] -- 8) 
{ 

quanbyte - (int)(realbyte/0.0549); 
quanbyte +-128; 
if (quanbyte > 255) {quanbyte - 255;} 
if (realbyte < 0) 

{ 

quanbyte -- I; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal - «(quanbyte - 128)*2)+1) * 0.02745; 

if (coeff == I) 
{ 

outreal = (int)realbyte; 
) 

if (coeff I- I) {outreal *- result;} 
ret = fseek(foutl,-12,1); 
fprintf(foutl, "%12f" ,outrea I); 
ret - fseek(foutl,O,I); 

1* for coeff *1 

fclose(foutl) ; 

1* ________ FDCTADP4.C. _ _ _ __________ *1 
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APPENDIX L 

/* __________ THRESHOLD SAMPLING, _________ */ 

/* Threshold sampling - only those coefficients above a certain threshold */ 
/* value are retained - the rest are set to zero. */ 

fi lter(filtarr) 
float filtarr[)[B); 
{ 

float 
tempva 1. 
threshpix; 

/* temporary storage for pixel [0)[0) */ 
/* pixel being processed */ 

int 
col,rowi 

} 

} 

tempval • filtarr[O)[O); 
for (row ~ 0: row <~ 7; ++row) 

{ 

for (col - 0; col <- 7; ++col) 
{ 

/* set temparr - 0 */ 

threshpi x • filtarr[row)[col); 
if (abs(threshpix) < 2.0) {fi ltarr[row)[col) = O;} 

} /* for */ 
} /* for */ 
filtarr[O)[O) - tempval; /* retain de cDeff */ 

/*---------------------------*/ 
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APPENDIX M 

1* BIT ALLOCATION AND QUANTIZATION FOR ZONAL CODING SCHEME ________ *I 

bitallocO 

/* These procedures implement a bit assignment for each coefficient 1n · *1 
1* the transform domain. The average value of each coeff . is displayed *1 
/* as well as the variance. The hit assignment algorithm is to be found 
1* in Pratt pg 673. 
1* I H Mclean 3/11/87 

idefine BLOCKS 1024 

int 
ret. 
bitmatrix[64], 
totalbits, 
pas; 

1* return code for fseek function *1 
/* bit assignment are stored here */ 
1* total no of bits assigned so far *1 
/* position in the 8x8 block */ 

long int 
8, 
N, 

/* the no of block code bits - supplied by user *1 
1* block size, eg 64, 256 etc *1 

temp, 
variance, 
d; 

/* the variance at this stage *1 

long 
coeff; 

double 
result; 

float 
largedc, 
outreal, 
realbyte, 
quanbyte, 
varfloat. 
totalarr[64], 
vararr[64], 
bitsarr[64], 
sumlogvar, 
sumvars. 
twolvar. 
twonlogvar, 

/* stores square root of variance *1 

1* largest DC coefficient *1 
/* final product - quantized - "dequantized" */ 
1* input byte must be converted to real *1 

1* holds the REAL value of variance *1 
1* total of each coefficient *1 
/* varainces of the coefficients */ 
/* holds the real value of the bits allocated*/ 

8divN; 1* 8 divided by N. See formula. *1 

register long rowl, call; 

char 
wait. 

outbyte, 
filel; 

/* wait for user input *1 
outfile1[8], 

FILE *fl, *foutl; 
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for (coeff • 0; coeff <= 63; ++coeff) 1* zero the arrays *1 
{ 

totalarr[coeff] - 0; 
vararr[coeff] = 0; 

N = 64; 
B = 31; 
BdivN = 0.1; 1* 0.5 bits pixel *1 

I* ___________ ---'AVERAGES ___________ *I 

foutl = fopen("bud" 1* outfilel *I."r"); 
for (rowl - I; rowl <- 1014; ++rowl) 

for (coeff = I; coeff <= 64; ++coeff) 
{ 

d - fscanf(foutl. '%12f" .&realbyte); 
totalarr[coeff-I] += realbyte; 

fclose(foutl); 
for (coeff = I; coeff <- 64; ++coeff) 

{ 

totalarr[coeff-I] = totalarr[coeff-I]/(float)1024; 1* 256 x 256 18 *1 

I* ____________ VARIANCES ___________ *I 

foutl = fopen("bud" 1* outfilel *I.'r"); 
largedc = 0; 1* got to find largest DC coeff *1 
for (rowl - I; rowl <- 1024; ++rowl) 

{ 

for (coeff - I; coeff <= 64; ++coeff) 
{ 

d = fscanf(foutl. "%12f" .&rea lbyte); 

1* __ Find largest DC coefficient, since it is sent "as is" ______ *1 

} 

if ((coeff -- I) && (realbyte > largedc)) 
{largedc = realbyte;} 

variance - realbyte - totalarr[coeff-l]: 
variance = variance*variance; 
vararr[coeff-I] - vararr[coeff-I] + (float)variance; 

} 

fclose(foutl) ; 
twonlogvar '" 0; 
printf("variances are: \nn): 
for (coeff - I; coeff <- 64; ++coeff) 

{ 

vararr[coeff-I] 1- 1024; 
sumlogvar - logIO((float)vararr[coeff-I]); 
twonlogvar +- (float)sumlogvar; 
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I* ________ ,BIT AllOCATlON ______________ *1 

twonlogvar *,.. 2; 
printf("logIO (twonlogvar) * 2 • %f \n",twonlogvar); 
twonlogvar /'0 N; 
printf("logI0 (twonlogvar)/n • %f \n", twonlogvar); 

retry: totalbits - 0; /* no bits assigned */ 
for (coeff = 2; coeff <= 64; ++coeff) 

( 

twolvar • logIO«float)vararr[coeff-I]); 
bitsarr[coeff-l] • BdivN + (2*twolvar) - twonlogvar; 
if (bitsarr[coeff-l) < 0) {bitsarr[coeff-I] • O;} 
bitmatrix[coeff-l] - (int)bitsarr[coeff-1); 
totalbits += bitmatrix[coeff-I]; 

} 

if (largedc > 63) (bitmatrix[O) - 7;} 1* dc coeff is sent uncodedl *1 
if (largedc > 127) {bitmatrix[O] - B;} 
if (largedc > 255) (bitmatrix[O) - 9;} 
if (largedc > 511) {bitmatrix[O] - 10;} 
totalbits += bitmatrix[O); 

1* We must now check to sea wether the right number of bits have been *1 
1* assigned, If not, then increase BdivN and try again - until totalbits *1 
1* is greater than the desired BIT RATE. Once it is greater, it can be *1 
/* reduced to the correct number */ 

if (totalbits < 32) {BdivN +. 0.1; goto retry;} 

1* _____ ---------------____ --*1 

for (coeff - I; coeff < - 64; ++coeff) 
( 

printf("%d ",bitmatrix[coeff-l)); 
if (coeff%8 -- 0) (printf("\n");} 

printf("%d \n",totalbits); 
if (totalbits > 32) 
{ 

pos = 63; 
while (totalbits > 32) 
{ 

if (bitmatrix[pos] > 0) (--bitmatrix[pos); --totalbits;} 
--pas; 
if (pos _. 0) {pos - 63;} 1* dc - coeff is untouched *1 

printf("\n \ n"); 
for (coeff - I; coeff < - 64; ++coeff) 

( 

} 

printf("%d ",bitmatrix[coeff-1]); 
if (coeff%8 •• 0) (printf("\n");} 

printf("largedc • %f \n ", largedc); 
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/* ________ QUANTIZE COEFFICENTS _ _ _ _ _______ */ 

fout! - fopen( "bud" • "r+") ; 
for (rowl = 1; rowl <= 1024; ++rowl) 

for (coeff = 1; coeff <= 64; ++coeff) 
( 

d = fscanf(foutl,"%12f",&realbyte); 

/* ____ ___ __ ,NORMALIZATION, _________ ___ */ 
/* Each coefficient is divided by its standard deviation before it is 
1* quantized. This is done in order ot prevent "clipping", which occurs 
1* when coefficent va lues "overf low" - ie the number of bits al located 
1* to a certain coefficent cannot represent its val ue . 

result a sqrt(vararr[coeff-1]); 
if (coeff != 1) {real byte /a result;} 
if (bitmatr ix[coeff-1] _. 0) (outreal - O;) 
if (bitmatrix[coeff-1] == 1) 
{ 

if (realbyte < 0) {outrea l = -0 .7071;} 
else {outreal - 0.7071;} 

if (bitmatrix[coeff-1] =a 2) 
( 

quanbyte a (int)(realbyte/1.0874); 
quanbyte +=2; 
if (quanbyte > 3) {quanbyte a 3;} 
if (realbyte < 0) 

( 

quanbyte _ :c 1; 
if (quanbyte < 0 ) (quanbyte • O; ) 

outreal = (((quanbyte - 2)*2)+1) * 0.5437; 

if (bitmatrix[coeff-1] . - 3) 
{ 

quanbyte = (int)(realbyte/0 . 7309) ; 
quanbyte +-4; 
if (quanbyte > 7) (quanbyte - 7;) 
if (realbyte < 0) 

( 

quanbyte _. 1; 
if (quanbyte < 0 ) {quanbyte = O;} 

outreal = (((quanbyte - 4)*2)+1) * 0.36545; 

if (bitmatrix[coeff-1] -- 4) 
{ 

quanbyte - (int)(realbyte/0.461); 
quanbyte +=8; 
if (quanbyte > 15) (quanbyte - IS;) 
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if (realbyte < 0) 
{ 

quanbyte - = 1; 
if (quanbyte < 0 ) {quanbyte - O;} 

outreal • «(quanbyte - 8)*2)+1) * 0.2305; 

if (bitmatrix[coeff-1J == 5) 
{ 

quanbyte • (int)(realbyte/0.28); 
quanbyte +-16; 
if (quanbyte > 31) {quanbyte = 31; } 
if (realbyte < 0) 

{ 

quanbyte -- 1; 
if (quanbyte < 0 ) (quanbyte • 0;) 

outreal = «(quanbyte - 16)*2)+1) * 0.14; 

if (bitmatrix[coeff-IJ •• 6) 
{ 

quanbyte • (int)(realbyte/0.1657); 
quanbyte +-32; 
if (quanbyte > 63) (quanbyte • 63;) 
if (realbyte < 0) 

{ 
quanbyte _. I; 
if (quanbyte < 0 ) (quanbyte • 0;) 

) 

outreal - «(quanbyte - 32)*2)+1) * 0.08285; 

if (bitmatrix[coeff-IJ == 7) 
{ 

quanbyte • (int)(realbyte/0.0961); 
quanbyte +=64; 
if (quanbyte > 127) {quanbyte - 127;} 
if (realbyte < 0) 

{ 

quanbyte -- I; 
if (quanbyte < 0 ) {quanbyte - o;} 

outreal - «(quanbyte - 64)*2)+1) * 0.04805; 

if (bitmatrix[coeff-IJ == 8) 
{ 

quanbyte • (int)(realbyte/0.0549); 
quanbyte +-128; 
if (quanbyte > 255) {quanbyte • 255;} 
if (realbyte < 0) 

{ 

quanbyte _. I; 
if (quanbyte < 0 ) {quanbyte • o;} 

outreal = «(quanbyte - 128)*2)+1) * 0.02745; 
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if (coeff -- I) 
{ 

outreal = (int)realbyte ; 

if (coeff !- I) {outreal '- result;) 
ret - fseek(foutl.-12.1); 
fpri ntf(fout!. "%12f" • outrea l) ; 
ret · fseek(foutl .O.I); 

/, for eoeff '/ 

feloseUoutl ) ; 

/' ________ ,BITALLOC.C __ --, ___________ '/ 
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APPENDIX N 

I* __________ GNOISE.C, _____________ *I 

1* A simple program which generates a 256 x 256 block of uncorrelated *1 
/* Gaussian random variables - noise. This noise may then be increased */ 
/* or decreased in power and added to any image of the same size. */ 
1* The algorithm to convert independant, uniform random numbers to *1 
/* uncorrelated Gaussian random variables appears 1n ---- I pg571. */ 
1* I H Mclean 19/8/87 *1 

#include <stdio.h> 
#include <fcntl.h> 
#include <math.h> 
Hinclude <limits.h> 

void main() 
{ 

int 
d' 

long 

1* result of 10 *1 

count; /* loop counter - must be long since> maxint */ 

double 
w. wI, temp, 1* see formula for generating *1 
x, xl, r. y; /* Gaussian noise. *1 

extern int 
_fmode; 1* translated 10 flag *1 

char in1, fn2, 1* two input bytes *1 
outbyte, outbytel, 
outfilel; 1* output file *1 

FILE *fl, *fout!; 1* pointer to our output file. *1 

printf('NAME OF OUTPUT FILE 
_fmode = OX8000; 

\n'); scanf('%s",outfilel); 

foutl = fopen(outfilel,'w+'); 
for (count· I; count <= 256; ++count) 1* copy the file header I *1 
{ 

d - fscanf(fl,'%c',&outbyte); 
d = putc(outbyte,foutl); 
} 

x = drand48(); 
for (count. I; count <= 16384; ++count) 1* generate noise *1 
{ 

xl - drand48(); 
r - 10g(1/x); 
y • sqrt(20*r); 
temp. (6.283*xl); 
W • y*cos(temp); 
wI • y*sin(temp); 
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outbyte • (char)(w); 
outbytel - (char)(wl); 
x .. xl; 
d • putc(outbyte,loutl); 
d " putc(outbytel,loutl); 

) 

Iclose(loutl): 1* close input & output Illes *1 
) 

I* _ ________ GNOISE,C _____________ *I 
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APPENDIX 0 

I* _________ ,NOISLC _____________ _ *I 

/* A simple program which simulates a binary symmetric channel. The error */ 
/* rate of the channel is fixed by the user. In a binary symmetrlc ' channel*1 
1* the probability of receiving an incorrect symbol is given by p for the *1 
/* transmission of l's or 0'5. */ 
1* I H Mclean 19/8/87 *1 

Hinclude <stdio.h> 
linclude <fcntl.h> 
linclude <math.h> 
'include <limits.h> 

void main() 
{ 

int 
rate, /* error rate */ 
bit, 
bytes, 
fi lecount, 
bitfield, 
tempint, 
d; 1* result of 10 *1 

long 
/* no of image rows */ row, 

bytecQunter, 
count: 

/* counts unitl no of bytes in file have been read */ 
/* loop counter - must be long since> maxint */ 

double 
randomno; 

extern int 
_flTKlde; 

char 
Qutbyte. Qutbytel, 
outfilel; 1* output file. *1 

FILE *fl,*foutl; 1* pointer to our output file. *1 

printf("WARNING II - OUTPUT FILE MUST HAVE ZERO MEAN - USE STATS I\n"); 
printf("NAME OF OUTPUT FILE : \n"); scanf("%s".outfllel); 
printf("ERROR RATE: \n"); scanf("%d".rate); 
_flOOde • OX8000; 
foutl • fopen(outfilel,"w+"); 
bytecQunter g 0: 
row .. 0; 
for (count· 1; count <- 256; ++count) 1* copy the file header I *1 
{ 

d - putc(O,foutl); 
) 
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} 

while (bytecounter < 65536) 
( 

randomno • drand48(); 
randomno * . rate; /* fix the error rate *1 
bytes - (int)randomno/8; 
bit - (int)randomno - 8'bytes; 
bitfield • I; /' 00000001 '/ 
bitfield - bitfield « bit; 
filecount - I; 
while (filecount <- bytes) 

{ 

++bytecounter; 
if (bytecounter == 65536) {goto end;} 
++f i 1 ecount j 
d = putc(O ,foutl); 

} 

tempint - 0; 
tempint -. bitfield; 
outbyte • (char)tempint; 
d = putc(outbyte,foutl); 

end: 
} 

fclose(foutl); /, close input & output files '/ 
} 

/' ________ NOISE.C. ____________ '/ 
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APPENDIX P 

/* THOLO.C */ -------------- ------------------
/* This program calculates the percentage of coefficients in the */ 
/* frequency domain which are less than a certain threshold value. */ 
/* Useful in determining the optimum threshold values in OCT-TIIRESHOLO */ 
/* COOING. */ 
/* I H Mclean 18/8/87 */ 

#include <stdio.h> 
Hinclude <fcntl.h> 
Rinclude <math.h> 

void main() 
{ 

int 
size, /* dimension of input image */ 
d; /* result of 10 */ 

long 
belowl, below2, below3, below4, below5, /* coefficIent counters */ 
count; /* loop counter - must be long since> maxint */ 

float 
inbyte, /* read from I d real file */ 
perl, per2, per3, per4, perS; /* % coefficient below thresh */ 

extern int 
_fmode; /* translated I/O */ 

char 
filel; 

FILE *fl; /* pointers to our input & output files resp. */ 

size· 65536; 
belowl - 0; 
below2 = 0; 
below3 • 0; 
below4 = 0; 
belowS = 0; 
printf("NAME OF INPUT FILE 
_fmode - OX8000; 
fl = fopen(filel,"r"); 

\n"); scanf("%s",filel): 
/* translated 10 */ 

for (count ~ 1; count <- size; ++cQunt) 
{ 

d • fscanf(fl,"%12f",&inbyte); 
if (abs(inbyte) < I) {++belowl;} 
if (abs(inbyte) < 2) {++below2;} 
if (abs(inbyte) < 3) {++below3;} 
if (abs(inbyte) < 4) {++below4;} 
if (abs(inbyte) < 5) {++below5;} 
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Iclose(II); f* close input lile *f 
printf("belowl • %f \n" ,belowl); 
printl("below2 • %1 \n",below2); 
printf(~below3 - %f \n",below3); 
printl("below4 • %1 \n",below4); 
printf("below5 - %1 \n",below5); 
perl = (l loat)((lloat)belowlf65536 )*100; f* (int)size *f 
per2 • (float)((lloat)below2f65536 )*100; 
per3 = (lloat)((lloat)below3f65536 )*100; 
per4 .. (float)((float)below4f65536 )*100; 
per5 = (float)((float)below5f65536 )*100; 

printf(" percent coefficient below threshold I is %f \n",perl); 
printf(" percent coefficient bel ow threshold 2 is %f \n" ,per2); 
printf(" percent coefficient below threshold 3 is %f \n",per3); 
printf(" percent coefficient below threshold 4 is %f \ n", per4); 
printf(" percent coefficient below threshold 5 is %f \n" ,per5); 

f* THOLD *f 
f* __________ THOLD.C ______________ *f 
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APPENDIX Q 

I* __________ NMSE.C, ______________ *I 

1* This program calculates the N.M.S.E. (normalized mean square error) *1 
/* between an original image and its reconstruction. *1 
1* I Mclean 3/2/87 *1 

Hinc lude <stdio .h> 
'include <fcntl.h> 
'include <math.h> 
void mainO 
{ 

'define ONEQIVM2 65536 1* 1/M**2 see formula *1 

int 
d; 1* 10 return *1 

extern int _fmode; 1* translated 10 flag *1 

long 
count: 1* has to be long, since> than maxint *1 

float 
x,y, 

fjk2, 1* f(j,k)**2 *1 
p1real, p2real, 
diff, 

/* for values> 127. since 8 bits goes -ve */ 

totdiff; /* sum of differences between pixels */ 

char pI, outflle1, fll e2 , p2, flle1; 

FILE *fout1, *f2, *f1; 

printf("NAME OF INPUT FILE 1 : \n'); scanf("%s",flle1); 
printf("NAME OF INPUT FILE 2 : \n'); scanf('%s",file2); 
_fmode - OX8000; 
totdiff = 0; 
fjk2 = 0; 
fl • fopen(file1,"r"); 
f2 - fopen(file2 , "r'); 
for (count· 1; count <- 256; ++count) 
{ 

d - fscanf(f1,"%c",&p1); 
d - fscanf(f2,' %c",&p2); 

} 

/* scan over headers */ 

for (count - 1; count <- 65536; ++count) 1* assumed 256 x 256 *1 
{ 

d • fscanf(fI,"%c",&p1); 
p1real - (float)p1; 
If (pI < 0) {p1real t _ 256;} 1* if pI > 127 It goes -ve *1 
fjk2 t_ (p1real*p1real); 
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} 

d • fscanf(f2, "%c" ,&p2); 
p2reaJ • (fJoat)p2; 
if (p2 < 0) {p2reaJ +. 256;) f* goes -ve if> than 127 *f 
diff • (pI - p2); 
if «pI < 0) && (p2 > 0» {diff. plreaJ - p2reaJ;) 
if «pI> 0) && (p2 < 0» 
{ 

if (pI < 50) {diff • pl-p2;) 
if (pI >. 50) {diff • plreaJ - p2reaJ;) 

) 
if (diff > IS) f* check for large errors in reconstruction *f 
{printf("pl • %d ",pI); printf("p2 . %d ",p2); 

printf("plreal • %f ",plreal); printf("p2real = %f \n",p2real); 
} 

totdiff +. diff*dlff ; 
} 

fclose(fl); fclose(f2); 
printf("average diff · %f \n",totdlfff65536); 
printf("totdiff • %f \n\n",totdlff); 
printf(" fjk2 • %f In", fjk2); 
fjk2 f- ONEDIVM2; 
totdiff f· ONEDIVM2; f* IfM**2 *f 
totdiff f- fjk2; 
printf(" In'); 
printf(' f % NMSE • %f \n",totdiff*IOO); 
printf(" _________ '); 

f* NMSE.C *f ------ - - --' ------ --- ----

02 


