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Abstract 

This thesis investigates methods of automatic allocation of processes to available 

processors in a given network configuration. 

The research described covers the investigation of various algorithms for optimal 

process allocation. Among those researched were an algorithm which used a 

branch and bound technique, an algorithm based on graph theory, and an 

heuristic algorithm involving cluster analysis. These have been implemented and 

tested in conjunction with the gathering of pe10rmance statistics during program 

execution, for use in improving subsequent allocations. 

The system has been implemented on a network of loosely-coupled 

microcomputers using multi-port serial communication links to simulate a 

transputer network. The concurrent programming language occam has been 

implemented, replacing the explicit process allocation constructs with an 

automatic placement algorithm. This enables the source code to be completely 

separated from hardware considerations. 
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Introduction 

1. Introduction 

Advances in hardware technology have improved the computing power of single processors by orders of 

magnitude in the past decades. As the performance of processing devices approaches the theoretical maximum 

speed, improvements in performance become more costly and less significant. The linking of several 

processors together in multiprocessor computing architectures is an economically feasible alternative for 

significantly increasing the performance of computers, and thereby enabling the computationally intensive 

requirements of real-time systems to be met. 

The main driving force behind the evolution of distributed systems is that they offer a high degree of 

availability, extensibility, reliability, and concurrency. In order to reap these benefits, applications must be 

expressed in distributable components ( called processes) [HAN78] which may be assigned to different 

processors before or during execution. A Ill!lJor difference which has emerged between various designs of 

distributed systems is the location of memory and the format of inter-processor communication. Devices exist 

with only local memory and all communication is carried out on a point-to-point basis. These systems have 

been developed to combat the bottlenecks which result from shared memory systems, or systems using buses 

for communication, due to the limited bandwidth of the shared device. 

Recently, much research effort has concentrated on the design of distributed operating systems, but the 

attention has been focused mainly on issues concerning inter-process communication, synchronization, and the 

creation of processes [GON80]. The assignment of processes to processors is one of the least understood areas 

of the design of distributed computing systems. To distribute applications in a satisfactory manner, techniques 

are required for choosing the best process placements from several possibilities. 

Designers of concurrent languages can either provide facilities within the language which require the 

programmer to specify allocation in the source code, as in "MOD [C0080] and occam [BUR88a], or else can 

leave a!l0cati0il to the implCluentation, as is the case with Ada [BIS87b] and Modula-2 [GaUSS]. Since one of 

the design objectives in distributed operating systems is architectural transparency, the process placement 

function should ideally be performed by the system. 

Repetitive trial-and-error procedures are presently being used to perform workload partitioning for distributed 

computer systems. One reason why computerized optimization methods have not yet been widely applied to 

t!ris problem is the lack of established, aad at the same time practical, mathematical models of the workload 

partitioning problem. This thesis attempts to define such a mathematical model and to investigate the 

computational techniques for solving the resulting optimization problem. 

1 
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Three process allocation algorithms have been implemented and tested on a network of loosely-coupled 

microcomputers in an attempt to remove, from the progr=er, the burden of process allocation within the 

source code, and rather to develop a system of automatic process placement. All three algorithms researched 

and implemented are based on static allocation as opposed to dynamic allocation, and thus some form of 

statistical gathering is needed to obtain the necessary system and application program characteristics. The 

execution of an application program becomes an iterative process where statistics are gathered after each run 

and then used to base a subsequent improved process allocation, with the aim of decreasing the execution 

speed of the application program. 

The process of repetitively gathering performance statistics is itself a time consllnling exercise. To achieve cost 

effectiveness, the use of this approach is directed at large, frequently used applications with very high 

processing time. Information concerning the distribution of processes for a particular class of program and 

data set may be gathered and used to direct a user's decision as to which process allocation approach to adopt 

for his particular application. 

2. The Multiprocessor Model 

Multiprocessor architectures can be broadly grouped into MIMD and SIMD machines [V AN81]. MIMD 

machines are Multiple-Instruction-Multiple-Data systems. They contain a number of processors each executing 

their own programs on their own data sets. Processors are inter-connected to allow programs to exchange data 

and synchronize activities. MIMD systems are usually implemented as either shared memory machines or 

message passing machines. Examples of MIMD machines are the CRAY-XMP [SHA87] and transputer. 

SIMD machines are SingIe-Instruction-Multiple-Data systems. They contain a number of processors, each of 

which executes the same program on different data sets. An array processor is an example of a SIMD system. 

The system developed during the research described in this thesis has been implemented on a network of 

ioosely-coupled microcomputers using multi-port serial communication links to simulate a transputer network 

[HIL86]. The topology that was used for the test runs was that of a star network, as shown in Figure 1, with a 4-

port serial board being placed in the machine residing at the center of the star, and communications being 

passed through the serial ports of the other machines in the network. Communication between processors 

which are not directly linked in the topology is made possible by a rerouting scheme to be discussed in Section 

5.1. 

1. Loosely-coupled microcomputer systems are those which are fully distributed and thus have no form of shared 

memory. The transfer of all information is usually two-party co-operative, in the same way as input and output are 

pe10rmed [SHA87j. 

2 
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,,- 'l-----i f---jPl'OCUItOf 3 

Figure 1 - star topology fonning multiprocessor network 

Typically, loosely coupled systems provide good throughput at the expense of flexible resource sharing, while 

tightly coupled systems provide flexible resource sharing at the cost of degraded throughput [CHU80]. 

The network considered for this research is fully inter-connected and homogeneous in that it consists of several 

functionally similar processors. In the mode~ each processor is an independent computer with full memory, 

control, and arithmetic capability. The processors may differ in their processing power. For example, a 

network may consist of an arrangement of 8088 and 80286 based microcomputers. 

It is envisaged that a microcomputer be assigned the task of gathering all the statistics made available by the 

other processors in the network and to perform the task of devising an alternative distribution, based on the 

gathered statistics, using one of the algorithms for process placement to be discussed below. 

3_ A Transputer Based System 

With the emergence of VLSI technology, it has been possible to construct a powerful microcomputer with 

memory, processor and communications on a single device [MA Y88j. An important characteristic of such 

devices is that they can be easily linked together to form a network whose combined processing power far 

surpasses that of Q"y uniprocessor system [POU86] [K.A.R80j. 

One of the best known devices of this type is the transputer [WAL85]. There are other devices based on the 

same technology as the transputer, but it seems that it is only the transputer that is beginning to be accepted by 

computer users outside the academic and research environments. The word transputer refers to a device that 

integrates a reduced-instruction-set-computer processor, some internal memory (typically 4K), and a set of 

inter-processor communication links. The T800 transputer design [INM87] features a 32-bit integer processor, 

a 32-/64-bit IEEE floating point unit, and four full-duplex serial I/O links driven by a dedicated 8-channel 

direct memory access engine that can sustain 20 mips (millions of instructions per second) on each link. An 

important characteristic of transputer systems is that computational power increases as processors and memory 

are adde:!. The transputer is a multicomputer building block, designed to e::ecute concurrent processes unde.r 

direct hardware control [MUR88]. 

To construct a multiprocessor system, transputer nodes are configured into a chosen topology. Processes which 

3 
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have been allocated to separate processors may themselves consist of subprocesses. Transputer technology 

does not differentiate between these two classes of processes as far the generated code is concerned. 

To date, the TDS (Transputer Development System), an integrated development system of the transputer, and 

the working environment for the user, comprises the tools needed to program concurrent systems in occam, the 

native parallel programming language of the transputer. However, compilers of languages such as Pascal, 

Modula-2, Lisp, Fortran, and C, as well as new operating systems, e.g. Helios, are emerging [CLA88). 

Although occam was designed to be an abstract programming language, it is used predominantly to program 

transputers, and is often regarded as a high level assembly language of the transputer because of the 

transputer's facilities for supporting the execution of occam. 

4. Process Allocation - the Occam Approach 

The design of occam is based on that of CSP (Communicating Sequential Processes) [HUL85], which emerged 

as a message-based implementation of systems involving communicating processes. 

In occam, communicating processes exchange data through a construct known as a channel. An occam channel 

is a one-way point-to-point pathway resident in memory. Communicating processes are synchronized by 

channel communication, and the transputer lin.ks are memory mapped so that channels can be placed at link 

addresses. This placement transforms a soft channel into a hard channel, and data is transferred through a link 

to a process attached to the link on another transputer [NEW86]. 

Occam provides the framework for constructing parallel processes. Parallel processes that communicate must 

do so through occam channels, uot via shared memory. This is to prevent deadlock and to facilitate the 

execution of processes on separate processors which have no memory in common. 

The point-to-point nature of occam channels discourages the design of a program dependent on routing data 

through intermediate nodes, although system software written for the transputer, e.g. the Helios Operating 

System [GAR87], may cater for this in some way (BR086). 

Occam is designed for concurrent programming on a network of transputers. The partitioning of the 

application program into irs constiruent subprocesses is specified by the programmer within the source code, as 

is the subsequent allocation of these subprocesses to available processors in a transputer network. By placing 

allocation completely in the hands of the programmer, the designers of 0= allow applications, written in the 

language, to be easily implemented on a distributed system. 

The design of occam includes a placed par construct that enables the user to specify the allocation of processes 

from within the source code. The placed par construct is a variant of the par constructor and indicates that the 

associated subprocesses are not only concurrent, but that they are to be allocated to different processors and 

4 
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will therefore be truly paraJIel. The model of concurrent processes in occam aJIows for one or more processes 

to execute on each processor. Processes communicate via logical channels and, where appropriate, these need 

to be mapped onto the physical communication links between processors. The syntax of the placed P(Jf" 

construct and the aJIocation of channels is shown below [POU88]. 

parallel = PLACED PAR 

{placement} 

I PL4.CED PAR replicator 

{placement} 

placement PROCESSOR expression 

process 

allocation = PLACE channel AT expression 

process = allocation 

for example: 

PLACED PAR 

PROCESSOR 1 

process 

PLACE channelAT linkO 

pI 

PROCESSOR 2 

PLACE channelAT link2 

p2 

where IinkO and Iink2 are implementation dependent constants. 

A transputer network not only needs the above control structures within occam, but also a piece of software, 

named the configurer, whicn resides independently of the application program, and which specifies the 

relationship of processes to processors. The use of these control structures within an application program 

results in a loss of portability, since the source code must be modified if it is to be executed on a transputer 

network with a different topology. Moreover, specifying aJIocation in the source code becomes excessively 

tedious for programming a system of many processes [HIL88]. 

5. Towards an Alternative Process Allocation Approach 

The aspects of occam discussed i:: the previous section resl.";ct its use as an abstract progr=i~g llmguage 

and Hill [HIL88] proposes an alternative approach which completely separates the source code from the 

hardware considerations. His implementation eliminates the placed P(Jf" construct and introduces an aJIocation 

scheme whereby the target transputer network and the aJIocation scheme are supplied by the user after 

successful compilation. IdeaJIy, the aJIocation should be automatic, i.e. produced by the system, and it is to this 

end that the research described in this paper, is directed. 

5 
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The language hnplementation of the proposed amended occam, including the characteristics discussed below 

of message packets, the matcher protoco~ the network map and the allocator, were hnplemented by Hill 

[HIl.88] and formed the ground work on which this thesis has been based. The remainder of this chapter 

summarizes those aspects of Hill's work upon which the rest of this thesis is built. 

5.1. Communication 

The ability to provide global communication is essential if the programmer is to be abstracted from hardware 

considerations and yet be given the ability to execute the program making efficient use of available hardware 

[Hilll8]. This is necessary so as not to restrict the set of possible allocations of a program, thereby possibly 

excluding the most efficient allocation. 

Provision is made for a virtual link between every pair of transputers in the network. Those pairs which are not 

directly connected by a physical link, communicate via other transputers which pass on the message. Any 

number of occam channels must be able to be mapped to a virtual link. In order to facilitate this, all messages 

are sent in the form of packets. The structure of a message packet is shown in Figure 2. Of interest is the 

message packet routing information. On receiving a message packet, the processor examines the first number 

of the packet. A zero indicates that the message is destined for that processor. If the first number of the 

message packet is non-zero, it indicates the port through which the rest of the message must be forwarded. 

... n words ... 

tail message 
contents 

n chan 

message channel 
length number 

0 

2 
Figure 2 - Message Packet 

4 3 

routing 
Information 

3 

head 

Channel to virtual link mappings may change dynamically through the course of the execution of the program. 

To overcome this, a third-party channel supervisor, known as the matcher, has the function of monitoring the 

status of the channel and coordinating synchronization. A separate matcher exists for each instance of a 

channel and may exist on a processor which does not execute either the sender or the receiver process. The 

matcher resides on the processor which houses the process that spawned the two communicating daughter 

processes. 

2. Reprintedfrom [HIL88J. 
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receiver 

reQ,J8SI 

to 
receive 

matcher 

message 
sender 

3 
Figure 3 - Protocol using matcher 

By allowing co=unication between any two transputers in the network, the potential co=unication overhead 

in forwarding messages increases exponentially for each transputer that is added to the network. It is therefore 

essential that the allocation algorithm used should attempt to minimize this overhead and the allocation should 

reflect a clustering of processes which co=unicate with each other. 

5.2. The Network Map 

The Network Map provides the mapping of virtual links to physical links and allows for a co=unication layer 

to be implemented on each transputer so as to abstract the logical connections between processes from the 

physical connections between transputers. Figure 4 shows an example of such a description for a sequence of 

three processors. 

2 
1 1 :3 1 

i 
:; {tilere are 3 processors in tile network} 

o {processor 1 to processor 1 link} 

3 0 {processor 1 to processor 2 link } 

330 {processor 1 to processor 3 link} 

10 {processor 2 to processor 1 link} 

o {processor 2 to processor 2 link} 

3 0 {processor 2 to processor 3 link } 

11 0 {processor 3 to processor 1 link } 

10 {processor 3 to processor 2 link } 

o {processor 3 to processor 3 link} 

2 
2 :3 1 
i 

3 
Figure 4 - an example of a network map 

3. Reprinted from [HIL88]. 

2 
3 :3 
i 

7 



Towards an Alternative Process Allocation Approach 

The Network Map interface of the existing system requires further research and development to make it more 

user-friendly, or in fact, to make it an automatic function performed by the system. This area of expansion does 

not fall within the scope of this project. 

5.3. The Allocator 

A piece of software, known as the allocator (refer to Figure 7), makes use of the description of the target 

transputer network in order to map daughter processes to transputers. 

3 {there are 3 processes to be allocated} 

1 {process 1 is allocated to processor I} 

2 {process 2 is allocated to processor 2} 

3 {process 3 is allocated to processor 3} 

4 
Figure 5· a simple allocation scheme for three processes 

The system proposed by Hill facilitates automatic configuration by omitting process allocation details from the 

source code, and transferring this responsibility to the implementation. It is proposed that every daughter 

process can be given the potential to execute on any transputer in the target network as constrained by the 

allocation algorithm employed. This is illustrated by the example program in Figure 6, amended from [HIL881, 

where the blocked code may execute on any transputer, which is not necessarily the transputer executing the 

code contained in the outer block. The purpose of this example is to illustrate the problem of globally declared 

variables when attempting to distribute processes. 

VAR x,Y,z. 
SEQ 

x : - 4 
PAR 

VAR a. 
SEQ 

a : - 1 
IF 

SEQ 

x ~ 4 
PAR 

SEQ 

SEQ 

TRUE 
SEQ 

a orocess which alters a 

a process which alters x 

a process which alters x 

a process which ~Akes use of y and? 

Figure 6 • The Proposed Partitioning 

4. Reprinted from [HIL88}. 
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A schematic representation of the proposed system is given in Figure 7. 

OOl'lCurr..,t 
laurel f--;lI 
cod. 

comPlJ,r 

I lloealion 
.-----i 11'101e.llo t. 

IOlCl.r/conllgurtr dllUltlu tt Cl 
wltl'l autom.tlo f--~ I X.Cutltll. 

proa ... Iliooltion proe ... " 

Figure 7 - the abstracted occam system. 

In Hill's implementation the allocation of processes is not automatic; it is provided by the user at compile time. 

It has been the aim of this research work to replace this with automatic process placement. 

6. The Theory of Process Allocation 

The assignment of processes to processors affects system response time, throughput and reliability. The goal 

in process placement is to balance the processing load among the processors such that either the total system 

time is minimized, or processor loads are balanced. 

Factors which have to be taken into consideration when deciding upon a particular allocation scheme are: 

1. the number of processes to be allocated versus the number of processors available in the network, 

2. t!:.e ww~uting power of each processo:, 

3. the workload created by each process, and 

4. the inter-dependency between processes, e.g. a high level of communication between two processes 

warrants that they be placed on the same processor. If communicating processes are placed on different 

processors, then the sending processor needs to spend time formatting messages and initialising addresses, 

while the receiving processor spends time on extracting the message contents and notifying the destination 

process. 

A program is partitioned into functional modules, some of which are assigned to particular processors, the 

remainder of which are permitted to ' float" from processor to processor during program execution. Some 

modules have a fixed assignment because these modules depend on facilities within their assigned processor. 

The facilities might be a high-speed arithmetic capability, access to a particular database, the need for a large 

high-speed memory, access to a specific peripheral device, the use of a fast floating-point unit, or the need for 

any other facility that might be associated with some processor and not with every processor. 

9 



The Theory of Process Allocation 

Some processors have unique capabilities in the network, although all are functionally similar in most 

applications. When a process is submitted to a network, it may have to be assigned to a certain fixed processor 

in order to take advantage of its unique capabilities. For this reason, some developers of allocation algorithms 

classify processes that need to be allocated into the following three categories [EFE82]: 

- processes that can only be assigned to particular processors, 

- processes that can only be assigned to a limited set of processors, and 

- processes that can be assigned to any processor in the network. 

Processes are allocated among distributed processors to achieve the following goals [AR081]: 

. to allow the spec'Jication of a large number of constraints, 

- to balance the utilization of individual processors in the distributed computing system, 

~ to mjnimize inter.processor communication costs, 

- to take into account a system of various processors having differing capabilities, memory sizes and 

co=unication links, and 

. the algorithm must be efficient in that it must exhibit a great improvement on the manual allocation 

scheme and, more importantly, the efficiency must be such that timing constraints are met, as failure to do 

so in a real-time application, results in incorrect program execution. Because most of the information 

used by the algorithm is an estimation regarding the run-time behaviour, it is doubtful whether satisfying 

such timing constraints can be guaranteed. 

In order for the process placement model to satisfy these goals, the following two supporting functions should 

be present: 

1. The process preprocessor analyses the application processes to acquire relevant information such as coupling 

factors among processes and process attribute sizes. The coupling factor is an initial estimate of the number of 

data units transferred from one process to another. The process attributes are the inherent characteristics of 

processes, e.g. the number of executable statements and the maximum allowable execution time. 

2. The network preprocessor examines the distributed network and provides information on the network 
5 

architecture, e.g. inter-processor distance and processor (hardware) constraints. 

The extraction of the information needed by the above preprocessors is a non-trivial exercise. As a result, 

human intervention is needed to input some of the data which is not easily accessible. Consequently, the 

NETWORK MAP, described in Section 5, entirely replaces the network preprocessor. 

5. The Helios Operating System includes what is known as a 'wonn' which circulates through a network of 

processors, gathering infonnation as it goes along [GAR87J. 

10 



The Theory of Process Allocation 

Allocation can be performed either statically or dynamically (LIU73]. 

allocation 

dynamic static 

~ 
programmer system 

In dynamic allocation, the allocation occurs at run-time with the advantage of better processor utilization since 

the allocation is in response to the run-time state of the processors [HlL88]. The disadvantage is the 

processing time used each time an allocation decision is made, as well as the resulting scheduling required to 

implement the altered allocation, i.e. allocation costs are paid each time the program is executed. Gajski 

[GAJ8S] surveys various implementations of centra1ized and decentra1ized dynamic allocation algorithms. 

Static allocation involves mapping processes to processors before the execution of the program (Hll.88]. The 

placed par construct in occam enables the programmer to perform the allocation. Alternatively, Bishop et 01 

[BIS87b] and Mellor et 01 [MEL86] suggest ways of performing the mapping automatically within the system, 

before execution. The advantage of the static allocation approach is that allocation costs are ouly paid once for 

each allocation made. The disadvantage is that to obtain an improved allocation of processes, it is necessary to 

predict, at compile time, the run-time behaviour of the application program. This requires the use of 

specialised software for which algorithms exist for only a limited group of co=on problems, e.g. sorting. 

Because of this, less efficient allocations might be adopted. 

One of the major problems preventing widespread use of distributed systems is the difficulty in verifying the 

effectiveness of allocations resulting from an allocation model. Due to the lack of real-life data, most research 

results are limited to theoretical and mathematical models, and their merits are difficult to compare [MAP82]. 

The static allocation option has been adopted for the research described below since it is more suited to 

transputer networks; dynamic allocation requires global co=unication which is expensive in a transputer 

network. Three approaches to the allocation model have been identified; they are integer programming, graph 

theoretica1, and heuristic methods. 

6.1. The Use of Statistics in Static Process Allocation 

A disadvantage of static allocation is that it is difficult to predict, at compile time, how often a channel will be 

used or how much processor time a process will require. This information is obviously important to any 

allocation algorithm since the algorithm must minimize co=unication overheads while maintaining an even 

load balance among the transputers. Therefore, provision is made for recording run-time statistics of processor 

and channel usage by each daughter process. The allocation is then viewed as an iterative process, with the 

program being configured, executed, reconfigured and re-executed until the user is satisfied with the allocation. 

The idea of using run-time statistics in order to aid the allocation process has been used by [FIS86], [MEL86], 

[LAM84] and [RAT87]. 
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The Use of Statistics in Static Process Allocation 

The cost of running a process on each processor must be known in order to compute an improved placement, 

and it is certainly infeasible to ship a process to every other processor in the system for a time trial to determine 

its relative running time. Stone [ST077] suggests that a reasonable approximation is to assume that the running 

time of a process on processor P is a fixed constant times the running time of that process on processor P , 
1 2 

where the constant is determined in advance as a measure of the relative power of the processors without 

taking into consideration the precise nature of the program to be executed. Under these assumptions, only 

data about inter-process communication need be gathered. 

The success of the use of statistics in determining efficient process allocations is highlighted by some of the 

performance graphs given in the respective sections discussing each allocation algorithm implemented. These 

graphs show a sharp drop in program execution time between the initial allocation, and those after some 

statistics have been gathered It is interesting to note that an improvement can be seen on the graph after very 

few runs, and subsequent runs do not improve the allocation significantly. It should also be noted that although 

the initial allocation is the worst case allocation for many classes of application programs, there is a possibility 

that, if the grain of parallelism is small, it may be the best. 

Test runs performed during the implementation of a static allocation approach show that the gathering of 

statistics does increase the overall execution time of a particular application program by about 10%. The 

statistics gathered included the recording of the number of pcode steps executed by each process, the execution 

time of each process (using the real-time hardware clock), and the proportion of execution time spent by each 

process on communication. Factors such as the amount of time a process was suspended due to 

communication or timeslicing were also considered. The expanded version of the system, developed as part of 

this project, gave the user the choice of suppressing the gathering of statistics. 

The run-time behaviour of a program usually depends on the input data it is given [HII..88]. This means that 

statistics gathered from the repeated execution of the same program may differ acccrding to the input data 

useu [or each run. Hill [HII..88] suggests tbat it might be ·possible to apply cumnlative statistics, averaged over a 

wide range of input data sets, to a class of programs and in this way "fine-tune" a configuration for improved 

execution of a particular application program. 

The choice of exactly what run-time statistics should be calculated is dependent on the requirements of the 

allocation algorithm in use. The following sections address some of the properties of statistical gathering and 

static process allocation algorithms are discussed. 

6.2. The Cost Function 

There are two major costs that must be considered in an assignment of processes. In order to reduce the cost 

of inter-processor communication, the program modules in a working set should be co-resident in a single 

processor during execution of that working set. To reduce the computational cost of a program, program 

modules should be assigned to processors on which they run fastest. The two kinds of assignments can be 
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The Cost Function 

incompatible. The problem is to frnd an assignment of program modules to processors that minimizes the 

collective costs due to inter-processor communication and computation_ 

The usual method of measuring CPU (Central Processing Unit) power is in terms of throughput, usually mips. 

When measuring the processing power of a multiprocessor, a ratio is more accurate. That is, a system with n 

processors yields x times the throughput of a system with m processors. There are two methods for measuring 

throughput: system throughput and CPU throughput capacity [CHU87d]. The system throughput ratio of a 

system a to system b is defmed as 

throughput. 
throughputb 

X / To 
X/Tb 
n 
T. 

where, 

X 
T. 

total work 

elapsed time of system a . 

When only CPU power is being compared, the system throughput is not an accurate measure. This is because, 

as the computational power increases, the non-CPU related components of the workload, e.g. I/O, occupy a 

larger fraction of the total elapsed time. CPU throughput capacity is the maximum service rate that the CPU 

exhibits during a measured run of the amount of work done per unit of CPU time. 

Chu, et aI [CHU80] suggest a method of estimating inter-process communication. Processes and inter-process 

communication are represented by a flow graph, an example of which is given in Figure 8, and a set of 

equations are solved which estimate the inter-process communication using branching probabilities and loop 

frequencie.. Inter-proce" communication is clusified into three categories of 1) sbared or intermediate data 

transfer, e.g., the transfer of information between processes that are not coresident, 2) distributed database 

management, and 3) system control, e.g., process scheduling and synchronization. 

F:"Jre 3 '5 a control ane! data [!,,"" ;>;raph 0f .he partitioning of a program Luto its constituent processes. The 

rectangular blocks are processes, and the directed arcs represent precedence relationships between connected 

processes. The arcs between processes imply data transfer from one process to another. Communication 

between process 2 and process 8 (in the diagram) is an example of type 2 communication where there is no 

physical link between the two communicating processes. 

dl!1 

I",,, t.,. 

~
'.'" 

~N , 

Figure 8 - a control flow graph 
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The Cost Function 

Three basic types of control flow are identified: sequential, conditional branching (exclusive OR), and parallel 

(AND) branching. In the following equations it must be assumed that the probability of each arc (in the graph) 

being chosen is known, as well as the average number of times each loop is executed. 

the number of times the arc i-j is traversed, and 
the number of times a module M; is executed 

then the inter-process communication can be calculated according to 
the following formula: 

{ 

v;i x N°'i ... for type-l communication 
v;; = v;; X Nm, ... for type-2 communication 

o ... otherwise, 

where, 

= the volume of the communication each time the arc i-j is traversed, and 
the volume of communication which occurs between processes which are not t, e.g. 

coresident, e.g. the arc i-j joining process 2 and process 8 . The rules for ~tail in 

determining N°'i are listed in detail in [CHU80) . The values of v;; and v:~ of the 
are said to be identical and equal to the intersection of the output from 

process Mi and the input to process M;, respectively. 

Inier·process communication is also involved when a process residing on one processor needs to access a rue 

on another processor. In this instance, 

Vi; = L fikdok; 

where lik - an estimate of the frequency with which the kth I/O statement in process 

Mi accesses file j, and 
di .; - the volume of communication invoked by executing the kth I/O statement 

in process Mi . 
ct-.; et u1 [CHU87b] introduce a model that estimates process respolliie time, a fa(:tor which i:; identified as 

being important in the process placement problem. These types of estimations are very important in the 

implementation of heuristic process allocation algorithms, as will be seen in Chapters 9 and 11. Chu uses 

queueing networks as a means for modeling distributed processing systems in an attempt to estimate all 

constituent costs. 

The cost function used for the research ,s an m'm matrix, where m is the number of processes to be allocated. 

For each possible combination of process communication, two costs are assigned: 

COST 1 = cost if two communicating processes i and j, are placed on the same processor, 

COST 2 = cost if two communicating processes i and j, are placed on different processors. 

The matrix is initialised to all zeroes and those processes which never communicate, remain with a cost of zero. 

The costs which are entered into the matrix, are obtained from results of run-time statistics. The ftrst run is 
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The Cost Function 

regarded as the initial allocation which is an intelligent guess by the user, with all processes being allocated to 

the same processor, if memory constraints allow. Thereafter the cost values in the cost matrix are updated after 

each run so that they always represent the cost of the current allocation selected. This process is repeated 

while the allocation, generated by the allocation a1gorithm,continues to improve. 

Our research has suggested that the cost function consists of varying measurements depending on the type of 

program being distributee!, i.e. if, in a particular program, the level of communication is high over a number of 

dLfferent channels, then the main emphasis should be placed on the number of data units transferred over each 

channel, while if the opposite is true, i.e. a small amount of communication over ouly a few channels, then the 

total process execution time is a good enough measure. Although the current implementation does not require 

this classification, it was seen as a possible extension and would involve the user classifying his particular 

application program according to the nature of the inter-process communication, i.e. the granularity of the 

application must be identified. Granularity refers to the amount of time being spent on communicating versus 

computing in a parallel program [OBE88]. In a course grained application, the parallel processing system 

consists of large independent chunks with little time - of the order of hundreds of communications per second 

between processors - spent on communicating between the individual processors. In a fine-grained application, 

more time (millions of communications per second) is spent on communicating and synchronizing between the 

processors. 

Communication is thus regarded as the most important cost because it is the most expensive. This is due not 

only to the fact that the network buses are potential control and traffic bottlenecks, but also that they may be 

the least reliable part of the system. 

Because, as discussed in Section 5.1. above, the matcher process need not be on the same processor as either of 

the two communicating processes, the cost of two processes communicating may not be as expected. As a 

result, it is preferable that the possible positions of the matcher process be taken into consideration when 

developing me cost function. 

Other factors which may be included in the cost function are: 

- the proportion of total run-time that a processor is idle. 

-load balancing i.e. when one computer sits idle while another is overworked [AND88]. 

- the proportion of execution time that is spent on communication. 

- the number of times a process is given a chance to run but is busy waiting to communicate. 

Objective functions other thaa total running time caa be ~nsidere<i There are maay suitable ~st functions 

one may wish to use. For example, instead of absolute time, one may choose to minimize financial costs. For 

!hi< objective function, the inter-process communication CDsts are measured in costs incurred per 

communication, and the running time costs of each process are measured in cost for computation time on each · 

processor, taking into account the relative processor speeds and the relative costs per computation on each 

processor. Many other useful objective functions can be met by choosing the cost function appropriately. 
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The Integer Programming Method 

7. The Integer Programming Method 

6 
The integer programming method is based on an implicit enumeration algorithm . A set of decision variables is 

defined and the problem is formulated as an objective function of these variables to be minimized (or 

maximized), and a set of constraints to be observed for the generated values of these decision variables 

[ELD80]. Constraints may be easily incorporated into the allocation model, but the algorithm is limited by the 

amount of time and memory needed to obtain an improved solution. The model minimizes total processing 

cost subject to such resource limitation constraints as memory capacity and real-time requirements [MAP82] 

[CHEBO] . 

7. L Implementation 

The design of the mathematical model for the process placement involves three major steps: 

1. the formulation of a cost function to measure inter-processor communication (!PC) cost and processing cost, 

2. the formulation of a set of constraints, and 

3. the derivation of an iterative algorithm to obtain a minimum total cost solution. 

7.1.1. Objective Function 

The cost function is formulated as the sum of the IPC cost and the processing cost. IPC cost is a function of 

both process coupling factors and inter-processor distances. If processes i and j are assigned to processors k 

and I, respectively, q = (c • d ). Coupling factor C is the number of data transferred from process i to 
ik ji k1 ij units 

process j. Inter-processor dlstance d is certain distance-related communication costs associated with one unit 
kI 

of data transferred from processor k to processor I. The inter-processor cost is (C • d ). Processing cost q 

represents the cost to execute process i on processor k. 
ij kI ~ 

7.1.2. Constraints 

Several constraints are incorporated in the allocation model to achieve the load balance and meet the 

application requirements. They include bounded attributes, process preference, process exclusivity and 

process redundancy. Bounded attributes are the set of constraints associated with the application processes 

and given network topology. For example, the memory attribute is represented by 

M <=S 
i k 

where M is the amount of memory required by process i, and S represents the memory capacity at processor 
i k 

k. This attribute states that the amount of memory required for all processes assigned to a processor must not 

exceed the processor memory capacity. 

6. Enumeration techniques examine all feasible alternatives. 
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The Integer Programming Method 

The process pre[erenC8 matril: indicates that certain processes can only be executed by the specified processor. 

It is represented by an m On matrix P, where P = 0 implies that process i cannot be assigned to processor k; 

and P ~ 1, otherwise. 
ik 

ik 

The process exclusive matrix defInes mutually exclusive processes. It is represented by an mOm matrix E, where 

E = 1 implies that processes i and j cannot be assigned to the same processor; otherwise, E = o. 
ij ij 

Process redundancy may be provided for system reliability. This permits multiple copies of a process. For 

example, if process i has a redundancy of three, new processes i + 1 and i + 2 are added to the original set of 

processes. 

7.1.3. Algorithm 

The algorithm is derived from a distributed enumeration technique, the branch and bound (BB) method. This 

method consists of a set of rules which constitute a depth-first search. The rules are used to select and expand 

the next node, to eliminate a node, i.e. to prune the tree, and to terminate the algorithm. (The algorithm is 

terminated when all possible paths have been investigated or the limit for the number of iterations has been 

reached. This limit exists to enable trading a much improved solution for a fast algorithmic result.) To employ 

the BB technique, the placement problem is represented by a search tree. The placement decision represents a 

branching at the node corresponding to the given process. 

Consider the problem of allocating m processes among n processors. Starting with process 1, each process is 

allocated to one of the n processors subject to the constraints imposed on the relations on processes and 

processors. (The number of tree levels m corresponds to m processes.) A feasible sequence of successive 

. branches is called a path. A path from the root node to the last node represents to a complete allocation; 

otherwise, it is a partial ~l"'cation. The cost of a path is computed according to the cost function. An example 

of a three-level search tree with three processors is shown in Figure 9. 

p2 

Figure 9 - a search tree 

17 



The Integer Programming Method 

Using a BB method to find a solution in the search tree is known to be an NP-complete problem [KAS84]. 

However, imposing a large number of constraints on the BB technique greatly reduces the feasible solution 

space. This technique is best suited to a loosley-coupled distributed system whose !PC cost is high. The model 

is able to accommodate a large number of constraints and thus a good load balance can be achieved by the 

suitable setting-of input parameters such as the preference matrix and exclusive matrix. The allocation model 

was designed to be a general purpose model. When a specific requirement exists in the application, the inputs 

to the model must be tailored. To identify all application requirements is thus an integral part of the successful 

use of such a model. 

7.2. Run-Time Performance 

7 
The branch and bound method , generates, for a given distributed system configuration and set of constraints, a 

solution for medium-sized problems satisfying all application requirements. The model generates a very 

effective allocation although the execution speed of the algorithm is such that it is not viable for real-time 

systems. This is clearly shown in Figure lOa and b where the algorithm was required to allocate a varying 

number of processes over a 2 and 5 processor system, respectively. As the number of processes is increased, 

the performance in execution speed becomes incrementally worse. 

T,,'~m.~(~ •• =.~.l~ __________________________ --, 
:soar 
260 

200 

150 - -

100 ... .. . 

50 - .. --.- .. ----------.--.--- -------

oL----~~~~~~~----~~--~ 

o • m ~ ~ ~ 

Number of processes 

(a) the result of distributing a suite of test programs with varying no. of processes on a 2-processor network 

T~I~m.~(~ •• =.=.I~ __________________________ _, 
3000r 

• 
2.00~---------------------------------

2000~-----------------------------------1 

,.oo~--------------------------------~----l 

1000 r------------------------------------

000
0 
L ______ --"-"_·_-'--__ -'--__ -'--_--' 
, ... 
o 5 10 15 20 

Number of processes 

(b) the result of distributing a suite oHest programs with varying no. of processes on a 5-processor network 

Figure 10 - the run-time performance of tbe Integer Programming algorithm 

7. This Integer Programming method was written in Turbo Pascal (Ver. 5.0) and implemented on an IBM 

compatible A T, running at 8MHz. 
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Figure 11 • the average improvement in execution speed of a suite of test programs after repeated use of the 

Integer Programming algorithm 

8 
Figure 11 shows the average improvement in execution speed of a suite of distributed test programs where the 

process allocations were varied It is important to note that only a few iterations of the placement algorithm 

are necessary before a marked improvement in the execution speed of the test program is reached_ The test 

programs were contrived to be relatively busy by forcing processes to repeatedly perform expensive 

mathematical operations and inter-process communication. 

8. The Graph Theoretical Approach 

The graph theoretical approach represents the processes to be allocated as a set of nodes in a graph_ The 

inter-process communication (!PC) cost is represented by the weight of a non-directed arc connecting the two 

nodes. An inter-process cost of zero means no communication takes place between the two processes and 

therefore they are not connected in the graph_ An IPC cost of infinity means these two nodes must be assigned 

to the same processor. The arc weights then represent the cost of communication between a pair of modules 

not co-resident on a processor. Any pair of co-resident modules is assumed to have zero IPC cost. The 
9 

a1g:orithm minimizes the total IPC cost and total processing cost by performing a max-flow/min-cut algorithm 

[T AN81] on the graph. 

8.1. Implementation 

The process placement strategy in this model is to minimize total cost, deflned as the sum of processing cost 

and IPC cost. 

8. All the test programs written to compare the effectiveness of the three process placement algorithms implemented 

for this projec~ were wricten in an amended version of occam as designed by [HIL88]. 

9. A max-flow/min-cut theorem states tha~ in any network, the value of any maximal flow is equal to the capacity of 

any minimal cut_ 
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Processing cost is given by the Q matrix 

Q = {q }, i=l, ... m, k=l, ... n 
ik 

where q represents the processing cost for process M on processor P . We assume this cost is available. It is 
ik i k 

a measure of the processing requirements of the process. A value of infinity q = &, implies that process M 
ik i 

cannot be executed on processor P . 
k 

Let c = IPC between processes M and M. The total cost for processing a given process can then be 
ii i 

expressed as a function of the allocation, X. 

where, 

Q,k X ile 

L Ci;XiJ,Xj'l 

processing cost for each process on its assigned processor, and 
IPC cost between non-critical processes 

Each possible placement corresponds to a cutset of a graph, such that if the cutset partitions a node into the 

subset containing the node representing processor 1, then the corresponding process is assigned to processor l. 

The optimum placement corresponds to a minimum weight cutset. The minimum cost allocation is obtained 

by performing a min-cut algorithm on the graph. 

A maximum flow algorithm is used to fmd a minimum cost assignment. 

To illustrate, consider the example from Stone [ST077] shown in Figure 12. The process consists of 6 modules, 

A,B,C,D,E,F. The graph is constructed with nodes for each of the processes, and IPC costs on the arcs joining 

the nodes. In order to represent processing costs, two additional nodes are added to represent the two 

available processors, p1 and p2. These two nodes are regarded as the source and sink nodes, respectively, in 

the resulting graph. The cost of rarming each process on processor p1 is denoted on the arc joining that process 

node to node p2. If we perform a min-cut algorithm all the graph we obtain the cut shown by the heavy dark 

line. This provides the minimum cost allocation of the given processes between two processors. 

Figure 12 - an example graph 
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The maximal flow problem may be solved using linear programming techniques, but if the graph consists of too 

many nodes, then a labeling method, devised by Ford and Fulkerson [C00741 [BEC641, is adopted. A brief 

outline of this algorithm is given below. 

The maximal flow algorithm may be organized into a simple N°N matrix, where N is the number of nodes in the 

resulting graph. The elements of the matrix are initialised to the values of all the arcs in the graph. Three extra 

columns are needed in the matrix. The first, labelled alpha, records the excess capacity (the amount of 

communication recorded on each arc). d • the second, labelled beta. records the identity of 
source node,current node 

the source node, and the third, labelled step, records the current stage at which the labeling process is at. 

Let (i j) = the arc connecting node i to node j, and 

d = excess capacity on arc (i j). 
ij 

Beginning in row 1 (the source). find all columns with d > O. For each such column, alpha = d and beta. = 
1. As long as the Nth row (sink) has not been labelled, ~epeat the following. Begin at the fJst ro~ of the sel of 

rows just labelled. Find all columns with d > 0, for which row j has not been labelled. Row j is then labelled 

with alpha = min( d , alpha), and beta = it 
j ij i j 

If the entire matrix has been scanned and the sink has been labelled then it means that the maximal flow can 

still be increased further. To do this the entire matrix must be updated and the labeling procedure repeated. 

A simple example has been selected to demonstrate this procedure, although the run·time performance of the 

algorithm is measured using more complex systems. The example consists of three processes which need to be 

allocated to two available processors. The costs of each process executing on each of the processors is known 

and is given below. The inter-process co=unication costs are filled in on the resulting graph which is shown 

in Figure 13. The costs of execution are as follows: 

Process A 

Proces·s B 

Process C 

Processor 51 

10 

1 

10 

Processor 52 

1 

1 

10 

1 

1 

Figure 13 • graphical representation of communication and execution costs 
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10 
Figure 14 • the stages in tbe labeling procedure for tbe grapb in Figure 13 

To update tbe matrix, 

if beta = r 
N 

tben row N was reacbed from row r . 

For example, in the labeled matrix from Figure 14a, 

., 
d1 ,. - 1; aZ,5 -

- 10 -1 

- 9 

Furtber, if beta = s 
r 

d~ ,2 - dS,2 + 1; 
- 0+1 
- 1 

then row r was reacbed from row s 
, 

d" , 
d" 

d~,2 

Tbis updating procedure is repeated until beta = O. 
x 

- d!,2 - 1 ; d; ,! - dz,! + 1 
- 1- 1 - 0+1 
- 0 - 1 

If the stage is reacbed wbere no more rows can be labelled and the sink bas not been labeled, then tbe maximal 

flow bas been reacbed. The maximal flow is calculated as the SUI!! of ail elements in the ",atrb: ;" colu!Il1l 1 or 

10. The stages depicted here are identical to those calculated and output by the implemented algorithm during the 

course of its attempt to arrive at a solution, 
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row N. Once again, referring to the example above, in the last matrix, Figure 14<1, the sum of the elements in 

the last row or first column is 3. 

10 

)----.:.1 ::;.0_..., S 2 

Figure 15 - a complete graph 

The actual placement of processes is obtained by noting in the flnal table those rows which are labelled and 

those that are not. Those rows that are labelled represent processes that must be assigned to the one 

processor, and those rows that are unlabeled represent processes that must be assigned to the other processor. 

This rule only applies to a two processor system. 

8.2. Extension of the Algorithm to more than Two Processors 

The labeling algorithm may be generalised to deal with an n-processor system by extending the network flow 

approach. We begin with the extension to a 3-processor system. 

Firstly, the notion of a cut set must be extended. Stone and Bokhari [ST077] deflne a tricutset in a graph with 

three source/sink nodes as a subset of IlTCS whose removal pwtitions the graph into three distinct subgraphs, such 

that each source/sink node lies in a distinct subgraph. A trieutset for the network of Figure 16 appears in Figure 

17. 

1 

10 

Figure 16 - Inter-process and process-processor connections 
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Figure 17 - a tricutset representing a process placement with a three processor network 

The major difference in the n-processor system is the calculation of the cost that results from a process running 

on a particular processor. Suppose that process D runs in time T on processor p. i = 1.2.3. Then the edge 
i i 

from node D to node S carries the weight (T + T - T )/2, and likewise the edges to nodes S and S carry 
1 231 . 23 

the weights (T + T - T )12. and (T + T - T )12. respectively. This idea generalizes naturally to n-
1 3 2 1 2· 3 

processors. The running time of D on P contributes to the weight of the branches from D to every node S • i 
2 i 

= 1.2 ..... n. Its contribution to the branch to S is -(n-2)T /(n-1). Its contribution to the branch to S. i< > 1. is 
1 1 i 

T /(n-1). In this way we still obtain the desired property that the weight of a cutset is equal to the cost of the 
1 

corresponding module placement. 

The basic idea behind the algorithm for finding the minimum tricutset in a three-processor graph. is to run a 

network flow algorithm. in our case the Ford and Fulkerson labeling algorithm, between nodes S and S , then 
1 2 

between S and S and finally between S and S . The three subgraphs resulting from the graph in Figure 16, 
1 3 2 3 

are given below in Figures 18a.b and c. 

(a) 

Figure 18 - subgraphs for n > 2 processor system 
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Figun: 18 - continued 

The extension of this method to an arbitrary number of processors requires an n-dimensional min-cut algorithm 

which quickly becomes computationally intractable. This limits the usefulness of the method in many 

applications. However, an algorithm to deal with four or more processors in the system has been proposed for 

cases where the pattern of inter-process communication costs can be constrained to a tree. This algorithm is 

discussed in Section 11.3. 

Nonetheless, some problems with the n-processor placement do remain unsolved. Among these are the fact 

that a node might not be associated with the same processor in a minimum n-processor cutset as it is in a two

processor cutset. 

8.3. Run-Time Performance 

The same suite of test programs as were used to test the Integer Programming approach, exhibiting the same 

characteristics, were used to test the efficiency of the Graph Theoretic approach. 

Tim. (ue.) 
1<0r-~~~----------------------------. 

120 f------··-------------------....... ·--- f 
1001----·-- - ------------------ 1 
80f-------- --------------···-----J 
80 f----------------------A"- - -----j 
<of------ -20f----- --------··~---------------

o~~~-~·--·~~·------~------~----~ 
o 20 4$0 60 80 100 

Number of processes 

(a) the n:sult or distributing a suite of test programs with varying no. of processes on a 2-processor network 
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(b) the result of distributing a suite ottest programs with varying no. of processes on a 5-processor network 

Figure 19 • the run-time performance of the Graph Theoretic algorithm 

As Figures 19a and b exhibit, this approach finds the minimum cutset very efficiently for almost all graphs. 
11 . 

There are some graphs, however, for which the algorithm fails to find a good solution. A problem arises 

when a network of more than two processors is used. The algorithm becomes rather labourious and time 

consuming, and if the network is not homogeneous, then the execution time of each allocated process must be 

obtained. These times are usually estimated, and this explains the increase in execution time of the program 

before an improvement in the allocation is achieved. An example of this pattern is shown in the graph of Figure 

2Ob. 

Difficulty in incorporating various constraints prohibits the generalization of this model. Consequently, there is 

no mechanism for load balancing or for including limited resources such as memory size or processing time. 

This often results in suboptimal allocations being generated. These short-comings suggest that the graph 

theoretic approach is not the best solution to the process placement problem. Figure 20a is an example of 

where a suboptimal allocation, which is the same as the initial allocation, was generated. The program 

exhibited a coarse granularity. 

<rpr~o.~r.~m~E=~=C~UI='.=n=T='m~.~(.~.~~) __________________ -, 

$,0 f------------.i---------------•• --------j 

sr-------------------------------~ 
2.01----------------------------------j 

2~------------------------------~ 
1.0 ------------------------------

1---- - - -· 

0,01----··-·-------'--------·-----------

oL-----~----~----~------~----~ 
o 0,' 1 '" 

Run Number 
2 

(a) the result of distributing a suite or coarse-grained programs over a homogeneous processor network 

11. The Graph Theoretic approach was written in Turbo Pascal (Ver. 5.0) and implemented on an IBM compatible 

A T, running at SMHz. 
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(b) the result of distributing a suite of finely-grained programs over a non-homogeneous processor network 

Figure 20 - the average improvement in execution speed oC a suite of test programs after repeated use of tbe 

Graph Theoretic algorithm 

9. The Heuristic Method 

The basic idea of heuristic methods is to find an allocation that will balance (PC costs and load balancing by 

including a measure of association among interacting processes. This technique requires much less 

computation time than integer programming methods. As a result, it can solve time-critical cases and also 

larger dimensional problems [CHU80] [GYL76]. 

The formulation of a performance measure based on the total amount of interaction among computational 

processes requires the definition of a quantitative measure of such interactions. To construct a performance 

measure, we proceed as follows. 

Sj 

ti 

Cii 

assignment variable 
1 if the jth process is assigned to the rth processor; 0 otherwise 

- number of processors in the system 
= 

-
-
= 
-

total number of processors under consideration 
memory size of the rth processor 
T x ar 

length of a time-slice allocated to the rth processor 
amount of memory storage required by the jth process 
amount of processor time required by the jth process 
measure of the amount of inter-process communication between ith and jth 
processes 

= message time 
- number of messages exchanged 
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Np N" j 

Q L L L CijXi,Xj, 
i=1 r=l i=l 

= total amount of bus traffic eliminated (or intra-processor communication generated) 

by making processes share the same processors 

Optimal Workload Partitioning Problem: 

Maximize Q subject to the following constraints: 
Np 

LSjXj, ~ M, for r = 1, ... ,NE (processor memory constraint) 
Np 

L tjXj, < T, for r = 1, ... , N E (processor time constraint) 

- 0 or 1 

Cluster analysis is an example of a heuristic method whereby the workload partitioning is seen as essentially a 

classification problem in which the objects to be classified are the processes that inter-commun.icate. The aim 

is to group these objects into clusters such that the level of communication among clusters is minimized. 

To allow for the use of the cluster analysis technique, the model of the optUnization problem is expanded to 

include the measure of association among interacting processes. Selection of a proper measure, and of suitable 

measurement variables, is important. 

9.1. Implementation 

In a heuristic approach to process placement, some simplifying assumptions about processes are made. Given 

a set of processes, and the cost of data transfers among them, (subject to constraints such as limited processor 

memory size and real-time considerations) heuristic models form process clusters with a minimum of intcr

cluster communications. 

9.1.1. Approach 1 

A simple classification algorithm is presented by Gylys et aI [G YL76] that searches for pairs of modules such 

that when these modules are assigned to the same processor, the greatest inter-processor communication cost 

is eliminated. This "fusion' process continues until all possible pairs are fused. 

The algorithm assumes that the number of processors is known, and the objective is to form module clusters 

with a minimum of inter-cluster commun.ication. When each of these clusters is assigned to a processor, inter

processor communication is minUnized. To form such clusters, a module pair with the maximum inter-process 

co=unication cost is found, and is then checked to see whether or not a single processor can handle it. If the 

constraints are satisfied, the pair is fused into a single process, otherwise !he pair with the next highest ;"ter

process commun.ication cost becomes a candidate cluster. The process ends when all possible pairs are fused. 
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The algorithm is tabulated below: 

1. Set N = N . 
E P 

Assign one process per processor. 

Mark every pair of processors as being eligible for "fusion" into a single processor. 

Construct a list of all eligible pairs. 

2. Find an eligible pair of processors whose 'fusion' into a single processor would eliminate the greatest amount 

of bus traffic. 

3. Can the combined load already assigned to the candidate pair of eligible processors be handled by a single 

processor? If 'Yes' go to 4; else go to 5. 

4. Fuse the processors of the selected pair into a single processor and combine their workloads. Go to 2. 

5. Eliminate the pair. 

6. AIe there any eligible pairs left? If Yes then go to 2; else stop. 

An important limitation of this algorithm is that there is no mechanism to guarantee that the number of clusters 

found will not be more than the number of available processors. If this is the case, then the excess clusters must 

be divided among the available processors. 

9.1.2. Approach 2 

This approach is also suggested by Gylys et al [GYL76]. The algorithm defines a distance function between 

processes. If process M communicates with process M, then the two processes exhibit a degree of similarity 
k 1 

which may be measured by the volume of data v that is transferred between them. 
kI 

12 
In the algorithm, 'initial centroids' are first assigned to each candidate cluster. The distance from each 

process to the centroid of each cluster is calculated. A search is then made for any pair, consisting of a process 

arid-" clusler centroid, with the smallest distance between them. Assigning the process within the chosen pair 

to the cluster from the chosen pair will make for the greatest reduction in the total inter-process 

communication cost. When a pair is selected it is checked to see whether it satisfies the constraints. If so, the 

placement is made. Otherwise, the pair with the next smallest distance becomes a candidate. Whenever an 

placement is made the cluster centroid is adjusted. It is possible for a process, which has already been 

assigned to a cluster, to be reassigned once the centroids have been adjusted. The process continues until no 

process clusters change, or until the number of iterations exceeds a preset limit. 

U.A centroid is a mean value - in this case a mean value of communication volume. 
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A method is given below of how a space of quantitatively measurable associations can be defmed for interacting 

processes. 

where, 

[NM ] - total number of distinct message types used for inter-process communicat ion, 
and 

[Np ] - number of processes in the model. 

where, 

mil: - riM. if the ith process produces (consumes) the kth message 
= 0 otherwise 

riMl: - measure of the contribution of the kth message to bus loading per time-slice 
due to process i 

M. - measure of the message length 
ri production/ consumption rate of the kth message by the ith process. 

Intuitively, the distance function d measures the degree of similarity (or intensity of interaction) between two 

processes. The more similar two processes are, the smaller the value of d. 

A non-hierarchical clustering method was selected, which is based on MacQueen's k-means algorithm [TRY70J 

[EVE74] [V AN77] (DUR74] [AND73]. 

The clustering algorithm used consists of the following steps: 

1. assign an icitial centroid for each candidate cluster, ie. processor, 

2. for each process to be assigned, compute the distance from it to the centroid of each cluster, 

3. assign the process to the nearest cluster and subsequently adjust the centroid, and 

4. repeat steps 2 and 3 until no processes remain to be allocated. 

A disadvantage of this approach as well as of Approach 1, is that the search is carried out for a long time 

before an eligible parr of processes andlor cluster is found. The length of the search is a result of the need to 

fmd the parr with maximum communication cost or minimum distance. To do this requires an examination of 

the communication costs between every process parr. Also, the real-time constraint does not consider the 

queueing delays or precedence relationships, factors which have a great influence on the process placement 

problem a~ dis~ussed in Chapter 11 below. 
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9.1.3. Approach 3 

Efe [EFE82] suggests yet another algorithm which he feels eliminates the shortcomings of the abovementioned 

approaches. 

First, a process clustering algorithm obtains the minimum inter-processor communication cost without 

constraint considerations. The result of this algorithm may also satisfy the load-balancing constraint. If not, the 

overloaded and underloaded processors are identified. Some processes are then shifted from overloaded to 

underloaded processors by a process reassignment algorithm. If too many processes are shifted by this 

algorithm, resulting in an overloading of a previously underloaded processor, the algorithm will repeat until the 

solution arrives at a balanced load distribution. 

The process clustering algorithm involves a search for a process pair having the greatest volume of data transfer 

between them. When a process pair satisfying the above requirement is founel, it is fused into a single process. 

This procedure continues until a fusion is made and until the number of processes is reduced to a value which 

is less than or equal to the number of available processors. 

It is suggested that to aid the process reassignment algorithm, a graph be developed of the processes of a given 

application program, how they inter-communicate, and how they have been clustered as a result of the process 

clustering algorithm. (The graph is similar to those developed in the graph theoretic approach discussed 

above.) The algorithm proceeds with the identification of all overloaded and underloaded processors 

[W AH84]. From the graph, all processes which are assigned to processors that have acceptable loads are 

deleted. If the load on a processor is too great, then the processes assigned to it are retained. If the load on a 

processor is too small then the processes assigned to it are grouped into a single process. 

These two algorithms then form the backbone of the overall algorithm. The process placement scheme is 

wvided into two paases: 

Phase 1. 

1. For I : = 2 to n, where n = no. of processors, 

a) form I process clusters, 

b) assign these clusters to separate processors so that load balancing is maximized. 

2. Select an assignment made in 1b) above which maximizes load balancing among those 

assignments made. 

3. If this assignment satisfies the load-balancing constraint, then stop, otherwise go to step 4. 

Phase 2. 

4. Identify the overloaded and underloaded processors. 

5. Use the process reassignment algorithm to assign some processes from overloaded processors to 

underloaded processors. Then go to step 3. 
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9.2. Run-Time Performance 

The performance of the Heuristic method was measured using a set of test programs similar to those used in 

the previous two process placement algorithms. 

13 
The algorithm that was implemented, for which run·time results appear in Figure 21, makes use of certain 

characteristics of the process clustering algorithms described in Approaches 1 and 3. Processes are clustered 

according to their distance values which depend mainly on the volume of communication of each process. 
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Figure 21 - tbe run-time performance of the Heuristic algorithm measured by distributing a suite of test 

programs with varying number of processes on a 2·processor network 

The algorithm is given no constraint on the number of processors which must be used in a particular allocation, 

besides the maximum number of processors available in the whole network. The algorithm suggests an optimal 

number of processors needed to support the process placement decided upon by the algorithm. 

Although there are few constraints to be considered by the algorithm in arriving at an allocation, its execution 

time is slower than expected, although very much improved from the Integer Programming method. 

The heuristic method provides relatively fast and effective allocations for a suboptimal solution. The suboptimal 

solution is due to the limited amount of constraints which may be included in this implementation of the 

algorithm. The literature suggests that the problem does not hold for all implementations of such heuristic 

algorithms [EFE82] [CHU87c]. 

13. The Heuristic method was written in Turbo Pascal (VeT. 5.0) and implemented on an IBM compatible AT, 

running at BMHz. 

32 



The Heuristic Method 

As can be seen in Figure 22 a good allocation may be reached for simple distributed systems, in this case a 3 

process, 2 processor system. 

~l~~~-----.--~ 
:~~~r--------------------I 

o O~ U 2 2~ 9 U 
Run Number 

FIgure 22 . the average Improvement In execution speed of a suite of test programs after repeated use of the 

Heuristic algorithm 
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10. Comparisons of Allocation Techniques 

Three static process placement algorithms, each with their varying characteristics, have been implemented and 

tested. Turbo Pascal (Ver. 5.0), running on an IBM compatible, 8 MHz AT, was used as the implementation 

language. 

10.1. The Comparison of Static Allocation Methods 

The integer programming method, although extremely slow, allows for the easy inclusion and extension of a 

comprehensive set of constraints necessary for a successful allocation algorithm, e.g. limited processor memory 

and process preference relationships. As can be seen from Figure 24, the best allocation for a particular class 

of program and input data, is reached in the least number of runs using this technique. The main disadvantage 

of this implicit partial enumeration method is its level of complexity with respect to time, as the number of 

processors in the network, and the number of processes to be allocated, increases. 

The algorithm for the graph theoretic method is certainly the fastest, and makes efficient use of processing 

facilities, although a few more iterations of the algorithm are often needed before a good allocation is reached. 

Factors such as load balancing are impossible to include in the implementation of the algorithm - this accounts 

for the impressive execution speeds. It would seem that the disadvantage of this method arises when the 

network on which processes must be allocated, is not homogeneous. In this case, all the processes must be 

given a chance to run on each processor to gather its execution time statistics before a solution is reached - this 

obviously becomes too time consuming as the number of processors is increased. Stone [ST077] suggests a 

means of estimating the execution time of a process on all processors. This is discussed in Section 7 of this 

report and may be seen as a possible means of overcoming this problem. Once these statistics have been 

gathered, a much improved allocation is immediately obtained. If the network is homogeneous, then the cost of 

execution of each process on each processor will be the same, and allocation will be entirely dependent on 

c')mmunica!ion characteristics of th~ processes. (If proc",ces being allocated execute homof;eneous c:)de, U!e:! 

the hardware \software links of occam2 permit arbitrary process placement with no effect on execution speed. 

However, the moment the code becomes non-homogeneous, then it is important where a process is placed and 

with what other processes it communicates.) 

Non-hierarchical cluster analysis techniques produce good although suboptimal workload partitions for cases 

where only a few constraints affect the allocation. The results obtained for the heuristic method are better than 

those obtained for the integer programming method, but are disappointing when compared to results obtained 

by other researchers in the field [EFE82] [GYL76j. 
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Figure 23 • comparison of execution speeds of each process placement algorithm 

Figure 23 shows the marked difference in execution speed of the three process allocation techniques when 

applied to a suite of test programs with a varying niunber of processes. Figure 24 highlights the difference in 

the maximum improvement in execution speed reached by two different suites of test programs which have 

been repeatedly executed, each time adopting a process placement scheme as suggested by the chosen 

allocation algorithms. The results shown in Figure 24a were obtained from distributing a suite of test programs, 

exhibiting a coarse granularity, over a homogeneous network of processors. 

Execution TIme C .. ca) 

1 2 0 

No. of runs to produce the allocation 

(a) a comparison of the results obtained from distributing a suite of coarse-grained test programs on a 

homogeneous network of processors 
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, 2 S 

No. of runs to produce the allocation 

(b) a comparison of the results obtained from distributing a suite of fme-grained test programs on a non

homogeneous network of processors 

Figure 24 - a comparison of the effectiveness of the three process placement algorithms 

Here, the integer programming method was able to generate an improved process allocation after about three 

iterations of the algorithm, while the graph theoretic approach generated a suboptimal solution almost 
• 

immediately. A suboptimal solution was in fact the same as the initial allocation, where all processes are 

allocated to the same processor. The heuristic algorithm generated a good allocation immediately, although this 

was not the case with many of the more complex programs and data sets. Figure 24b gives results of a more 

complex distributed system. A suite of test programs, exhibiting a fine grain of parallelism, Was distributed over 

a non-homogeneous network of processors. In this instance, the graph theoretic approach has the problem of 

having to estimate the running time of each process, of which there were 12, on each of 4 processors. This 

accounts for the sudden increase in execution time of the second run of the distributed application program 

before a solution is reached. 

It is important to note that the cost of communication on the target system (see Section 5.l.), is high. 

Therefore, the test programs, written in an amended version of occam [HIL88], were contrived to be relatively 

busy causing the test results to be slightly artifIcial. 

A trade-off exists between the amount of statistics that must be gathered to enable the algorithm to generate an 

allocation of processes, and the amount of time taken to gather and process these statistics. Each of the 

process allocation algorithms discussed uses statistics to a varying degree, and this is evident in the time taken 

by the respective algorithms. The type of statistics gathered is directly related to the format of the cost function 

used by the algorithms, and this is another area in which the algorithms differ. 

The statistics gathered by the integer programming algorithm include the execution time of each process and 

the volume of data, measured in units transferred and time taken for each communication. This information, 
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together with factors such as process preferences, and the memory available on each processor, forms the 

constraints by which the branches of the search tree are developed and pruned. All the information to be 

gathered and processed contributes to the excessive execution time of this algorithm. 

The graph theoretic algorithm does not allow many constraints to be placed on the formulation of a process 

allocation and as mentioned already, this accounts for the improved execution speed of this algorithm. This 

does not imply that the algorithm does not generate feasible process allocations, because the statistics gathered 

on the communication characteristics of the processes are included in the algorithm, and it has alrcady Decn 

concluded that communication is one of the most important factors when deciding upon a particular allocation 

of processes. A consequence is that the allocations suggested by the algorithm are not always the most 

efficient, and sometimes several iterations of the algorithm are needed before a good allocation is generated. 

The heuristic algorithm that has been implemented falls into very much the same category as that of the graph 

method and the particular approach adopted exhibited similar characteristics. However, heuristic algorithms 

do exist [EFE82] [CHU87c] that out-perform all other algorithms that have been researched and discussed. 

Parallelization of the algorithms which have been studied is a possible means of improving their run-time 

performance [CHA88] [QUI8?], but this area is beyond the scope of this report. Articles by [ELD80], [LAK84] 
2 

and [SHI81] suggest feasible methods for parallelizing these algorithms with complexities of the order O(n log 

n) and n(n·1 + 210g n), in some cases, reducing execution time by a factor of O(n). 
2 

It has been said that fast approximate methods are often indistinguishable from fancy exact 'optimal' methods, 

especially if the network being used only consists of a few processors and processes, which is the case in the 

model used for the testing of the algorithms. Furthermore, parallelization and good allocation does not 

necessarily lead to a marked increase in efficiency. 

w-nenever an optimal workload partitioning is absoiutely required and when the hardware resource constraints 

are tight, combining two of the methods, i.e. starting the solution process by means of clustering and then 

continuing it with the implicit partial .enumeration method, may constitute a reasonable approach. 

10.2. Additional Observations 

By varying the number of processors in the network, used for the testing of the process placement algorithms, 

between 2 and 5, it was noticed that the processing power of the network did not increase proportionally as the 

number of processors increased (see Figure 25). T".is fact has been identifiec and Ciscussed by va."b!lS 

researchers in the field of parallel processing [CHU87a] [EFE82] [STE88] [SAN86] and verified by this 

research. 
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Figure 25 - non-linear speedup in execution as the number of processors Is increased 

Chu et al [CHU87a) regard program partitioning and process allocation as two major steps in the design of 

distributed data processing systems, and state that if these two steps are not done properly, an increase in the 

number of processors in a system may actually result in a decrease in total tbrougbput. 

The reasons for the less than linear performance improvement include contention for resources such as 

memory and their associated buses, and inter-processor communication. This is the so-called von Neumann 

bottleneck [STE88). 

The Elxsi 6400 [SAN86) is a message-based macbine that achieves linear performance improvement as CPU's 

are added. This is mainly attributable to the increased efficiency of the operating system kernel as the 

configuration gets bigger, and is also due to the existence of a cache on each processor to aid the message 

based communication. 

It is also interesting to note how great an effect the power of the processor chip has on the execution speed of a 

distributed application program. For example, a program consisting of tbree processes, distributed over a non

homogeneous network of tbree processors, consisting of an IBM AT, XT, and PC shows a marked difference in 

execution speed depending on where the processes are allocated (according to a good allocation). This 

b.!g!ilights t~: f~ct that the p<ocessing pewer of the processor> available in the ::>e!Work be:.cg used, is a:J. 

important component of any allocation algorithm. 

In the test program run on the non-homogeneous, 3 processor system, two of the tbree processes had a higb 

volume of inter-process communication, while the third concentrated on matrix multiplication. However, 

because of the difference in processing power available in the network, the best solution generated by all tbree 

algorithms implemented was to place the three processes ento the AT for executio::>, although it might have 

been expected that the two communicating processes would be placed on one processor, and the third on 

another processor. A bar graph of the difference in execution speed of the 3-process program on each of the 

AT, XT and PC is given in Figure 26. This introduces an interesting fact that parallel speedup is not necessarily 

a measure of increased performance - it migbt be the result of differing processor architectures. 
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11. Related Topics 
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Figure 26 - comparison of processing power 

As research into the area of process placement continues, so more factors are being discovered which play an 

important role in the selection of the most efficient process allocation. Some of these factors are discussed 

below, although their associated implementation has not formed part of this thesis. 

11.1. Process Allocation and Precedence Relations 

14 
Precedence relationships among processes play an important role in process response time , and thus 

allocation algorithms that take precedence relationships into consideration when deciding upon a particular 

allocatioo., geo.erate better process placements than those algorithms that do not. Also, the program-size ratio 

between two consecutive processes has an effect on whether the two processes should be coresident. 

The objective functions and costs considered so far by the algorithms already discussed, are acceptable for non

real-time applications, but for real-time sysiems, response time is the mosi important performance measure 

[CHU87bj [CHU87dj. Mio.imizing inter-process communication alone, may not produce a good placement. 

The processor load consists of loads due to process execution and inter-process communication. Therefore, 

both execution time and inter-process communication play important roles in process placement and influence 

response time. 

It is proposed to use the workload of the bottleneck processor as the objective function for process placement, 

i.e. the placement is required that yields the minimum bottleneck among all possible placements. 

Chu et aI have conducted several experiments to study the effect of precedence relationships on process 

allocation. The results of these e.xperiments were subsequently used in the development of a process allocation 

14. The reasons for this are explained and supported by examples in Chu et 01 [CHU87b J. 
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algorithm. Two principles were also deduced from these experiments. The first states that assigning two 

consecutive processes to the same processor yields good response times if the execution time of the second 

process is much larger than that of the first process. Conversely, the second principle states that if the second 

process is much smaller than the first one, separating the two consecutive processes and assigning them to two 

different processors, yields a better response time. 

A heuristic algorithm is developed that considers precedence relationships, inter-process communication and 

process e"ecution times to search for the minimum bottleneck placement. The precedence relationship among 

processes specifies the execution sequence of processes. 

The algorithm consists of two phases, similar to those suggested in Approach 3 (Section 9.1.3.) above, except 

that precedence relationships are also taken into consideration when deciding upon the clustering of the 

processes. 

The effect of precedence relationships on response time may be in conflict with rhe effect of inter-process 

communication. Therefore, the allocation algorithm jointly considers the effects of both. 

Experiments have proved that the allocations produced by this technique are as good, and in some cases better, 

than those allocations generated by an exhaustive search. 

11.2. Process Placement and Process Replication 

A new algorithm has been developed, by Chu et aI [CHU87c], to iteratively search for process placements and 

replications that reduce process response time. The algorithm takes the standard costs of communication and 

execution time into consideration, but in addition, process precedence relationships introduced in the previous 

section also play an important role in the allocation process. An important factor which is also introduced, is 

that of mjnjmizing thread response time requirements (a thread is a sequence of processes). 

A further shortcoming of previous approaches to the placement problem is that multiple invocations of a 

process are not taken into consideration by the placement algorithm. As a result, the queueing delay from 

multiple invocations, which is a significant portion of response time, is ignored. A means of approaching this 

problem is to selectively replicate processes on processors according to loading constraints. Each invocation 

for a replicated process is then routed to an appropriate processor. A special algorithm is required to perform 

routing and may include some form of 'round-robining'. 

The process placement proposed considers repeated invocations, queueing effects, process precedence 

relationships and process replications. The replicated process placement problem minimizes program 

response time by: 

1. determining the optimal number of copies of each process, and 

2. allocating these process copies to processors such that system performance objectives are satisfied. 
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The usual factors of the number of processes versus the number of processors io the system, are parameters to 

the placement algorithm, but network delays, process iovocation rates, and the control-flow graph of the 

application program are also considered. 

Common methods of tackling such an optimization problem, some of which have been discussed io detail io 

previous sections, are approximation algorithms, probabilistic algorithms, branch and bound and local search 

techniques. Due to the complexity of the proposed algorithm, a search is made for local solutions and the fioal 

solution is selected from this set of local optimums. 

The algorithm consists of three major components. Each is briefly outlioed below, and the reader is referred to 

Chu et aI [CHU87c] for further implementation details. 

Step 1. 

Relocate processes from the longest wait processor to the shortest wait processor. By usiog processor 

utilization ioforrnation and process waitinglqueueiog time, processors may be identified which have the 

longest and shortest process waiting times. 

Step 2. 

Replicate further processes on the shortest waiting processor. This attempts to balance the processiog 

workload by replicating certaio processes on the shortest waiting processor. 

Step 3. 

Delete processes from the longest waiting processor. This is done to reduce ioter-processor 

communication and to further balance the workload. 

Thus process replications may improve system load balanciog, response time and system reliability and 

availability. In most cases the algorithm generates very efficient solutions. A factor which has made the 

implementation of the above two techniques of process placement out of bounds for this research, is that the 

CO!:lputz.tien eme iovol'led is that of a few minutes on tl:::: \' AX. 111780. Due te tl::e !ad: of equip",~"t, re:;earch 

of this kiod was not feasible. 

11.3. The Dynamic Placement Problem 

Static placement iovolves the placement of a process to a particular processor where it is assumed to remaio 

illltil execution is completed. In this sit-Jation, the costs of a particular allocation are merely the net execution 

and communication costs for the duration of the program. 

It makes sense to change placements dynamically to take advantage of local behaviour of programs and the 

relatively iofrequent changes io program locality [HOR88] [REE84] [SMI88]. To solve the dynamic placement 

problem, we essentially have to solve a maximum flow problem as the workiog set of a program changes. In 

dynamic placement, the cost of reassignment cannot be ignored. 
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Stone and Bokhari [ST077] base the development of a mathematical model for dynamic placement on the 

concept of the phase of a modular program. They define the phase as a contiguous period of time during 

which only one process executes. Each phase is associated with the following information: 

1. Which process executes during the phase, 

2. Run costs of this process for either of the two processors (in a 2 processor system), 

3. Cost of residence of the remaining processes on each of the two processors, 

4. Inter-process communication costs between executing the currently executing process and all other 

processes assigned to different processors, and 

5. Relocation cost for each process - the cost of relocating each process from one processor to the other, if 

relocation were to be carried out at the end of the current phase. 

Figure 27 - the result of dynamic placement of a group of processes 

Figure 27 shows how the information may be represented by a graph. The number of nodes in the graph equals 

the number of processes multiplied by the number of phases. The nodes are arranged in a grid with the vertical 

columns of nodes representing the processes, and the horizontal rows representing the phases. The horizontal 

edges represent communication costs and the vertical edges represent relocation costs. Two nodes are added, 

marked P and P which represent the two processors. Edges representing the run costs are drawn from P 
1 2 1 

and P to each of the nodes representing executing processes. Edges representing residence costs are drawn 
2 

from P and P to the remaining (non-executing) nodes. 
1 2 

As in static placement using graph theory, the minimum weight cut gives the optimal dynamic placement. The 

graph theory algorithm is similar to that described for static placement. Details may be found in [ST077]. 

The dynamic problem is no harder that the static one as far as the calculations of maximum flow are concerned, 

but the difficulty lies in detecting a change in the working set of a program. Since a control program must 

intervene to perform inter-process transfers across processor boundaries, it should monitor such transfers, and 

use changes in the rate and nature of such transfers as a signal that the working set has changed. 

The dynamic placement problem is very closely related to that of dynamic load balancing. Most research on 

this area involves a certain amount of queueing theory, and Chow and Kobler [CH079) discuss a job routing 

strategy which is designed to reduce the average turnaround time of the processes by balancing the total load 
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among the processors. An arriving job is routed by a job dispatcher to one of m parallel processors. The next 

processor is chosen to minimize or maximize the expected value of a performance related criterion function, 

which is proportional to the processing power of the processor. 

Each processor is modeled as a queue/server model. Processor i is assumed to be characterized completely by 

its mean service rate u. Jobs enter the system at mean rate A. The minimum response time policy routes an 
i 

arriving job to the system that offers the least expected turnaround time. The minimum system time policy is 

motivated by two goals, to find an optimal routing strategy and to model parallel processing. The minimum 

response time and minimum system time policies are functions of the system queue lengths and processor 

service rate only. The job dispatcher may also have information available on the job arrival rate. The state of 

the system is a snapshot of the workload distribution among the system components. Figure 28 graphically 
th 

depicts this situation where n is the number of jobs in the i queue. 
i 

.-
Figure 28 - a queueing model or processes and processors 

The literature suggests that two-processor systems have been developed in which program processes may float 

from processor to processor at load time or during the execution of the program. The ability to reassign 

program processes to different processors in a distributed system is essential to make the best use of system 

resources as programs change from one computation phase to another, or as system load changes [ST077]. 

The migration of processes is not necessarily practical in a hard real-time system, because the migration is so 

time consuming. The solution is to duplicate processes, so that the same process code occurs on each 

processor. State variables, related to each process, are constantly updated and passed among the processors, 

so that a processor can decide whether it is more suited to be executing a particular process. 

12. Related Research 

Although some of the test results given here may make the algorithms appear impractical, the algorithms are all 

being used in varying implementations by researchers and scientists. The idea behind the integer programming 

method has been used by Chu et al [CHU87b] to obtain effective placements within a Defense system known as 

The Distributed Processing Architecture Design System. Here an exhaustive search of all leaves within the search 

tree is executed to obtain a minimum-bottleneck placement. 

A combined network has been implemented at the IBM Watson Research Center, USA [PAR88]. A combined 

network is one which makes use of both shared and message passing communication protocols. The method of 
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process placement is that of self-scheduling at run-time, where each process that needs to execute decides on 

which processor from those available which satisfy the necessary memory and co=unication requirements, it 

wishes to execute. 

The CONVEX system developed at the Convex Computer Corporation, USA, uses dynamic process placement 

[PAR88]. Instead of processes being allocated to processors, the processors are self-allocating, i.e. each 

process looks through a ready queue of processes to see if there is work to be done. Each processor selects a 

process from those processes that need to run, according to its own capabilities. 

The RMIT/CSIRO Parallel Systems Architecture project is a joint collaboration project between the Royal 

Melbourne Institute of Technology and the Co=onwealth Scientific Industrial Research Organization 

[ABR88]. The purpose of the project is to investigate parallel algorithms, methodologies, languages and 

architectures. The system used is an MIMD one, but with a dataflow implementation as opposed to message 

passing or shared memory. The allocation problem here is how to distribute the data-flow graph over the 

available processing elements. It has been realised that to be able to maximize the available parallelism in the 

system, the information needed must be obtained while the graph is being executed. This is a complex task and 

consequently, the RMIT machine allocates nodes using a uniform random distribution algorithm. This 

allocation is said to produce 80% optimal (sic) allocations. Further, to allow code blocks to be executed 

repeatedly in parallel, a hashing algorithm has been developed which hashes a particular value each time a 

code block is invoked, in order to determine on which machine the code must run. 

13. Conclusion 

Three methods of static allocation of processes to processors within the abstracted version of occam have been 

suggested. These are integer progranuning, graph theoretic and heuristic methods. The suite of test programs 

which were used to compare the allocation methods were contrived to exhibit a reasonably coarse grain of 

parallelism, oIDee this was the class of program for which the target network wa;; known to be a reasonable 

support environment. In spite of the contrived nature of the test programs, the application of the same set of 

tests to each of the allocation methods enabled a reasonable comparative study of the methods to be m~de. 

The results of experiments performed confirm that optimization techuiques of mathematical progranuning are 

too slow to be practically used in workload partitioning problems. Obtaining strictly optimal solutions is 

essentially an academic issue, fer the optimization model itself is only a crude approximation of the real-world. 

The reduction in execution time of the graph theoretic algorithm is very impressive. However, the problem of 

n-processor systems soon becomes computationally too complex. This, together with the fact that it is difficult 

to include all the necessary constraints for process allocation into the algorithm, make it not viable for real-time 

systems. It would seem that, although the heuristic approach yields unsatisfactory results in the test runs carried 

out, investigations into this method show that there is scope to extend and improve it, and it is felt that with 

further research, a solution to the problem of process placement may well be found in this area. 
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Conclusion 

Static allocation may result in too much idle processor time because a processor is booked by a particular 

process and no other process can use that processor until that process has finished executing on it. Further, 

more information which could be used by the allocation algorithm, e.g. processing power of available 

processors, e.g. ATfPC, should be placed in the NETWORK MAP. 

Static allocation cannot stand alone as the solution to the problem of the allocation of processes to processors. 

The generation of statistical information is required to render the allocation useful for real-time applications, 

but this is not ideal as the gathering of statistics extends the execution time of the distributed application 

program, even though only by 10%. Inter-process communication has the greatest influence on the allocation 

of processes. 

It must be noted that to distribute processes automatically, the implementation language, in this case occam, 

has restrictions imposed upon it: no global variable declarations may be shared and no processes may be 

created dynamically. For this reason standard occam is amended, although this is not a healthy approach to 

developing the tools needed for distributed processing. It would be better if languages were designed with the 

initial purpose of serving distributed programming. If not, then at least established languages such as Modula-

2, should be extended, as it is only in these languages that real-time systems have been developed which can be 

used for more effective research. More importantly, workload partitioning should form an integral step of a 

computerized system design process, the main reason being that workload partitioning itself is an iterative 

process which heavily depends on model data, and which continues throughout the system development cycle. 

The goal of automatic allocation is an ideal one and still requires a great deal of research, yet it must be 

persued if concurrent software is to be truly portable. True portability implies that the user has the ability to 

retarget the software via an entirely mechanical process. The user should not be concerned with the structure 

of the hardware, nor need to make any direct or indirect changes to the source code. This issue will become 

more pertinent as more concurrent programming languages are developed and simulated transputer networks 

::r~ repla~d by actl:al traasputer topologies. 

Of the three static process allocation techniques implemented and tested, the heuristic approach holds the 

most potential for further research in the field of process placement in distributed systems. This is due to the 

algorithm's promising performance in execution time, as opposed to the very poor execution speed of the 

integer programming method, and the constraint limitations of the graph theoretic approach. Faster and more 

reliable techciques still remain te be established. 
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