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ABSTRACT 

 

With the anticipated effects of climate change due to global warming, there is concern over 

how animals, especially ectotherms, will respond to or tolerate extreme and fluctuating 

environmental temperature stress. Littorinid snails are intertidal ectotherms that live high on 

the shore where they experience both extreme and variable conditions of temperature and 

desiccation stress, and are believed to live close to their tolerance limits. This study 

investigated the thermal biology of littorinid snails of the genera Afrolittorina, 

Echinolittorina and Littoraria from temperate, subtropical and tropical regions in South 

Africa and Brunei Darussalam using thermal tolerance, heart function, and proteome 

approaches. The effects of conditions, such as rate of change in temperature, acclimation, 

heat shock, season and starvation were also tested. In addition, the evolutionary relationships 

and genetic diversity between and within the South African Afrolittorina spp. were 

investigated using mitochondrial and nuclear markers. 

 

Genetic results confirmed that these are two distinct species, with the brown to black A. 

knysnaensis predominant in the cool-temperate region of South Africa and the pale blue-grey 

A. africana in the subtropical region. There was low genetic variation and differentiation 

within each species, suggesting high gene flow among populations as a result of the effects of 

ocean currents on the dispersal of their planktotrophic larvae.  

 

Tests using exposure to high temperatures revealed differences in the thermal tolerances, 

heart performance and protein profiles of species from different latitudes, regions and zones 

on the shore. Thermal tolerance conformed to expectations, with clear, statistically significant 

trends from high tolerance in subtropical species to lower tolerance in temperate species. 

However, for Afrolittorina spp., there were no significant differences in the thermal 

tolerances of conspecifics from different regions, though there was a significant difference in 

thermal tolerance between juveniles and adults. Overall, adults of all species showed higher 

thermal tolerances than juveniles. Although lethal temperatures for these species were higher 

in summer than winter, laboratory acclimation had no effect on heat coma temperatures.  
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All species showed some regulation of heart rate, with a degree of independence of heart rate 

from temperature across mid-range temperatures. The tropical species showed quick 

induction and good regulation of heart rate followed by the subtropical and temperate species, 

which displayed mixed responses including regulation, partial regulation and lack of 

regulation. Overall, tropical Echinolittorina spp. showed good regulation, while the 

subtropical E. natalensis and Littoraria glabrata exhibited a mixture of partial regulation and 

regulation. The subtropical/temperate Afrolittorina spp. showed high individual variability, 

some animals exhibiting regulation, while others did not. These effects seem to be largely 

phylogenetically determined as there were no differences in the heart rate responses of 

Afrolittorina spp. from different regions.  

The temperatures at which heart rate became independent of temperature (thermoneutral 

zone) were within the range experienced under natural conditions. In addition, there were 

differences in Arrhenius breakpoint and endpoint temperatures, showing a trend from higher 

in tropical animals to lower for temperate animals.  

Conditions such as acclimation, heat shock and starvation had little or no effect on heart 

performance. However, a slow increase in temperature induced good regulation of heart rate 

with noticeable shifts of breakpoints and endpoints for Afrolittorina spp.  

 

Lastly, there were differences in the proteome responses between and within Afrolittorina 

spp. as a function of species, size and treatment. Although both large and small A. 

knysnaensis had a greater number of protein spots in their proteome than A. africana (though 

the difference was not significant), the later showed significantly higher differential 

expression of certain proteins following heat stress. In addition, juveniles of both species 

displayed greater numbers of protein spots in their proteome than adults.  

 

The results indicate a difference in the physiological and biochemical responses (i.e. 

adaptations) of these snails to temperature, and this seems to relate to differences in 

biogeography, phylogeny, species identity and ecology. The ability to regulate heart rate is 

phylogenetically determined, while thresholds and lethal limits correspond to biogeography 

and species ecology. The proteome seems to correspond to species ecology. The results also 

indicate that these littorinids can tolerate high temperature stress and in this respect they are 
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well suited to life in the intertidal zones or habitats where temperature and other stresses or 

conditions are extreme and can change abruptly. However, the limited ability of these snails 

to acclimate to different temperatures suggests that they are already living close to their 

tolerance limits with small safety margins or narrow thermal windows and so may be 

vulnerable to small rises in substratum temperature and/or solar radiation.  
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CHAPTER 1: General Introduction 

 

1.1. Organisation  

 

The thesis is divided into six chapters. Chapter One forms a general introduction, and focuses 

on the study genera and species. Brief descriptions of study areas and conditions are provided 

here. Chapter Two investigates the phylogenetic relationships of the two closely related 

Afrolittorina spp., A. africana and A. knysnaensis, and the genetic diversity within these 

species. Chapter Three investigates the heat tolerance of littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from temperate and subtropical regions. Chapter 

Four investigates and compares the temperature related heart function of aestivating littorinid 

snails of the genera Afrolittorina, Echinolittorina and Littoraria from temperate, subtropical 

and tropical regions. Chapter Five examines the total protein (proteome) response to heat 

stress of Afrolittorina spp. from a warm temperate region. Chapter Six concludes the thesis 

with a general discussion and synthesis.  

 

1.2. Temperature and climate change 

 

1.2.1. Environmental temperature and its effects 

 

Temperature is one of the most important environmental factors (e.g. desiccation) that affects 

the physiology and behaviour, and consequently the distribution and abundance of organisms, 

including intertidal ectotherms (see Huey and Stevenson, 1979; Huey and Kingsolver, 1989; 

Huey, 1991; Somero, 1995; 2002; 2005; 2010; Segnini de Bravo et al., 1998; Chan et al., 

2006; etc). The effects of temperature on ectotherms have been shown to occur at all levels of 

organisation from the population to the cellular level (see Sommer et al., 1997; Hickey and 

Singer, 2004; Allan et al., 2006; Kassahn et al., 2009; Rais et al., 2010). Consequently, 

temperature affects all aspects of ectotherm biology, from ability to feed and reproduce to the 
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structural and functional integrity of the biochemical machinery (see Bhaud et al., 1995; 

Burnaford, 2004; Pörtner et al., 2006; Silvestre et al., 2012). This is because temperature 

affects biological and physiological processes such as metabolism, growth and reproduction 

(see Pincebourde et al., 2008; Broitman et al., 2009; Harley et al., 2009; Iftikar et al., 2010; 

Tepler et al., 2011), which in turn affect performance and fitness.  

 

Environmental temperature affects performance and fitness through its effect on body 

temperature (see Cornelius, 1972; Huey and Kingsolver, 1989, 1993; Angilletta Jr. et al., 

2002; Feder and Walser, 2005; Martin and Huey, 2008; etc). Essentially, this is because 

physiological and biochemical performance increases with body temperature until it declines 

above optimum or near lethal temperatures (see Huey and Berrigan, 2001; Peck et al., 2007; 

Pincebourde et al., 2008; Pörtner, 2010; Tattersall et al., 2012). Temperature determines 

physiological processes by limiting reaction (biochemical) rates, which are temperature 

dependent (see Menge and Sutherland, 1987; Sinclair et al., 2006; Kordas et al., 2011; 

Wernberg et al., 2011; etc). Since biochemical and physiological processes affect survival, 

growth and reproduction; environmental temperature determines when and where animals, 

particularly ectotherms, can survive and thrive (see Menge and Sutherland, 1987; Tomanek 

and Helmuth, 2002; Helmuth et al., 2002; 2010a, b; 2011; Madeira et al., 2012b; etc).  

 

As a result, variation in temperature explains much of the spatial and temporal variability in 

the distributions and abundances of species around the world (see Charles et al., 1992; 

Warwick and Turk, 2002; Harley and Lopez, 2003; Pincebourde et al., 2008; Lima et al., 

2011; etc). Environmental temperatures are especially important for intertidal animals such as 

littorinid snails that live under extremely harsh conditions, where they experience both 

extreme and variable conditions, often living closer to their tolerance limits than species that 

are confined to purely marine or purely terrestrial environments. In addition, intertidal 

animals often respond rapidly to environmental changes, and so have been used to study the 

impact of climate (environmental) change on animals.  

 

Intertidal environments are strongly affected by both atmospheric and oceanic changes, with 

conditions changing between marine during high tide and terrestrial during low tides, so that 
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animals face both extreme temperatures and abrupt changes in temperature and desiccation 

amongst other abiotic stresses that occur during the tidal cycle (see Reese, 1969; Vermeij, 

1972; Harley, 2003; Harley and Helmuth, 2003; Jost and Helmuth, 2007; Gracey et al., 2008; 

etc). Although they have evolved from marine ancestors, intertidal animals must regularly 

contend with terrestrial conditions during low tide (see Hofmann and Somero, 1995; Stillman 

and Somero, 1996; Tomanek and Helmuth, 2002; Lima et al., 2007; Caddy-Retalic et al., 

2011). In addition, the timing and duration of exposure at low tide is likely to have a critical 

effect on temperature and desiccation extremes at a particular site (see Barnes et al., 1963; 

Shick et al., 1988; Martin, 1995; Helmuth et al., 2002; 2011; Mislan et al., 2009; etc). 

 

Intertidal environments are often characterized by high variability of physical factors such as 

temperature, desiccation, salinity, oxygen, solar radiation, wind and wave action amongst 

others (see Barnes et al., 1963; Vernberg, 1969; McMahon and Wilson, 1981; Shumway, 

1983; Martin, 1995; Denny and Wethey, 2001; Tepler et al., 2011; etc). There are also 

regular cycles of tides, seasonal patterns of heat and cold, environmental changes due to 

storms, and extreme weather conditions such as heavy rains (see Vernberg, 1969; Underwood 

and McFadyen, 1983; Mouritsen and Poulin, 2002; Morritt et al., 2007; Wethey et al., 2011). 

Particularly critical are short-term (i.e. tidal or daily) and long-term (i.e. seasonal) changes in 

temperature (see Vernberg, 1969; Spaargaren and Achituv, 1977; Clarke and Crame, 1992; 

Hofmann and Somero, 1995; Stillman and Tagmount, 2009; Rais et al., 2010). For example, 

temperature in the intertidal may change between 10-20°C within minutes or hours as the tide 

fluctuates (see Todd and Dehnel, 1960; Burggren and McMahon, 1981; Wilbur and Hilbish, 

1989; Muñoz et al., 2005; Finke et al., 2009). In addition, there are also stresses caused by 

interactions, including predation and competition, with other animals (see Wethey, 1983; 

1984; 2002; Hall et al., 1992; Chapman, 2000; Harley and Lopez, 2003; Rochette et al., 

2003) which can be modified by physical factors (see Vermeij, 1972; Menge and Olson, 

1990; Dahlhoff et al., 2001; Yamane and Gilman, 2009; Kordas et al., 2011; etc).  

 

Fluctuations and extremes of temperature are critical to intertidal ectotherms whose body 

temperatures are in equilibrium with those of the environment (see Sommer et al., 1997; 

Boutilier, 2001; Mora and Ospina, 2001; Mislan et al., 2009; Helmuth et al., 2010a; 2011). 

This is particularly problematic during low tides on hot summer days when air temperatures 
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can reach as high as 50-55°C in the tropics (Lewis, 1963; Garrity, 1984; Williams and 

Morritt, 1995; Marshall and McQuaid, 2010; Cartwright and Williams, 2012) and 33-45°C in 

subtropical and temperate regions (pers. obs.; Morley et al., 2009); but see Whiteley et al. 

(1997) for temperatures as high as 50°C in the temperate regions. In addition, microhabitats 

within a shore may differ in thermal stress over small scales (see Helmuth, 1998; 1999; 

Sinclair et al., 2006; Mislan et al., 2009; Judge et al., 2011). As a result, the body 

temperatures of intertidal animals such as littorinid snails can be 10-20°C above that of sea 

surface temperature during low tide periods on hot summer days (see Garrity, 1984; Tomanek 

and Somero, 1999; Dahlhoff et al., 2001; Rais et al., 2010; Caddy-Retalic et al., 2011). For 

example, Judge et al. (2011) found the body temperature of the supralittoral snail Cenchritis 

muricatus exhibited daily fluctuations of more than 20°C and regularly exceeded 46°C.  

 

Also important is the fact that body temperatures of animals or individuals from different 

regions, shore levels, microhabitats, etc. vary during the tidal cycle (see Helmuth, 1998; 

2002; Helmuth et al., 2002; 2006a, b; Gilman et al., 2006; Broitman et al., 2009; Szathmary 

et al., 2009; Chapperon and Seuront, 2011a, b; etc). For example, Dahlhoff et al. (2001) 

found that the body temperature (which mirrored that of air) of the whelk Nucella ostrina 

from a Strawberry Hill population in Oregon was higher than for a Boiler Bay population, 

kilometres away. In addition, individuals from wave-protected shores had higher body 

temperatures than those from wave-exposed shores. Fitzhenry et al. (2004) found higher body 

temperatures for mussels of Mytilus californianus from wave-protected shore than for wave-

exposed shore, which they interpreted as a result of the cooling effect of wave splash on wave 

exposed shore.  

On the other hand, Helmuth and Hofmann (2001) found that individuals of M. californianus 

on horizontal, upward-facing substrata experienced temperatures 10°C higher than those on 

vertical, north-facing slopes located a few centimetres away. Seabra et al. (2011) found that 

sun-exposed robolimpets of the genus Patella routinely reached higher temperatures than 

their counterparts attached to north-facing shaded surfaces during low tide. In addition, the 

differences between sunny and shaded robolimpets were consistently larger than the 

variability associated with season and shore level. Sokolova et al. (2000c) found the body 

temperature of Littorina saxatilis individuals from mid and low shores differed by 10°C 

during low tide.  
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In addition, animals living in close proximity may experience and/or display different body 

temperatures due to differences in body size and morphology as well as behaviour (see 

Helmuth, 1998; 2002; Fitzhenry et al., 2004; Jost and Helmuth, 2007; Denny et al., 2011; 

etc). In summary, during aerial exposure, body temperature of intertidal animals is driven by 

multiple, interacting climatic factors such as substratum and air temperature, wind speed, 

cloud cover, solar radiation, relative humidity as well as physical factors such as substratum 

slope, orientation, type, colour and size, and is further affected by organism size, shape, mass 

and colour as well as behaviour (see Vermeij, 1971; Etter, 1988; Helmuth, 1998; Pincebourde 

et al., 2008; Finke et al., 2009; Gedan et al., 2011; Miller and Denny, 2011; etc). 

 

1.2.2. Climate change and its effects 

 

With the anticipated effects of climate change due to global warming (whether caused by 

natural variability or anthropogenically induced), there is concern over how ectotherms that 

have limited independence from environmental temperatures will respond to or tolerate 

extreme and fluctuating environmental conditions (see Sommer et al., 1997; Fitzhenry et al., 

2004; Harley et al., 2005; Parmesan, 2007; Helmuth et al., 2010a, b; 2011; etc). This is 

because climate and weather (which are frequently modified by multiple nonclimatic factors 

such as tidal cycle) directly control the distribution and other aspects of species, populations, 

community and ecosystems (see Wethey, 2002; Leemans and Eickhout, 2004; Poulin and 

Mouritsen, 2006; Jentsch et al., 2007; Terblanche  et al., 2007; Mislan et al., 2009).  

 

Although climate change is an old phenomenon (see Clarke and Crame, 1992; Crowley and 

Kim, 1999; Crowley, 2000; Shindell et al., 2001; Brierley and Kingsford, 2009), human 

activities such as burning of fossil fuels as well as urbanisation and land use activities such as 

deforestation and desertification are causing a rise in atmospheric greenhouse gases (e.g. 

carbon dioxide, methane, nitrous oxide, ozone, chlorofluorocarbons, etc) resulting in global 

climate change, often called “global warming” (see Partridge, 1993; Vitousek, 1994; Feely et 

al., 2001; Thuiller, 2007; Tambrian, 2012). The build-up of concentrations of greenhouse 

gases in the atmosphere (which leads to the „Enhanced Greenhouse Effect‟) affects the heat- 

or energy-exchange balance between the Earth‟s systems (continents, oceans, atmosphere, 
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cryosphere and space), thereby inducing global warming (see Trenberth and Solomon, 1994; 

Cox et al., 2000; Karl and Trenberth, 2003; Miller, 2006). In addition, some of the excess 

greenhouse gases (e.g. CO2) are absorbed by the oceans, with the result of decrease in ocean 

pH, also known as “ocean acidification” (see Billings et al., 1982; Feely et al., 2004; 2009; 

Barnett et al., 2005; Caldeira and Wickett, 2005; Doney et al., 2009; etc).  

 

The mean global air temperature has increased by 0.2 to 1.0°C over the last one hundred 

years and is expected to increase by 1.5 to 7.0°C in the next fifty to one hundred years (see 

Levitus et al., 2000; 2001; McCarty, 2001; Angilletta Jr., 2009; Caddy-Retalic et al., 2011). 

On the other hand, the mean global sea surface temperature (SST) has also increased by 

0.57°C (Hulme and Jenkins, 1998; Levitus et al., 2000; 2001; 2005; Brierley and Kingsford, 

2009; Caddy-Retalic et al., 2011) and will continue to increase by between 1.4 and 3.9°C. 

The magnitude of global warming is predicted to vary among regions as a result of 

differences in ocean circulation patterns and other processes which contribute to regional and 

temporal changes in climate (see Partridge, 1993; Leemans and Eickhout, 2004; Barnett et 

al., 2005; Jentsch et al., 2007; Heller and Zavaleta, 2009; Xie et al., 2010). Most temperate 

regions and higher latitudes are expected to experience a greater magnitude of warming than 

the tropics and lower latitudes (see Oviatt, 2004; Williams et al., 2008; Helmuth et al., 2010a; 

Kordas et al., 2011; Wernberg et al., 2011). However, regions nearer to the equator and the 

poles experience enhanced and/or faster warming compared to those in the subtropics and 

temperate regions (Liu et al., 2005; Xie et al., 2010; Nguyen et al., 2011). In addition, aquatic 

systems such as coastal waters, estuaries and internal seas are areas that are expected to 

experience the strongest impacts of global warming (see Thompson et al., 2002; Lozano et 

al., 2004; Thuiller, 2007; Provan and Maggs, 2012).  

 

These temperature increases will be paralleled by a rise in the frequency and magnitude of 

thermal fluctuations and extreme (hot and cold) events (Sommer et al., 1997; Stenseth et al., 

2002; Lima et al., 2006; Tebaldi et al., 2006; Lannig et al., 2010; Wethey et al., 2011; etc), 

more frequent and/or intense storms and coastal upwellings (Bakun, 1990; Lozano et al., 

2004; Harley et al., 2006; McGregor et al., 2007), changes in precipitation patterns (Karl and 

Trenberth, 2003; Poulin and Mouritsen, 2006; Thuiller, 2007), changes in ocean circulation 

patterns and/or the distribution of  water masses (Trenberth et al., 1994; Rahmstorf, 2002; 
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Macdonald et al., 2005; Böning et al., 2008), change in ocean water oxygen and salinity 

levels (Macdonald et al., 2005; Harley et al., 2006; Piñeiro et al., 2010), sea level rise and 

coastal flooding (Karl and Trenberth, 2003; Riegl, 2003; Omann et al., 2009), ultraviolet 

(UV) or solar radiation rise (Lean et al., 1995; Coelho et al., 2000; Richier et al., 2008), shifts 

in climate zones (Thompson et al., 2002; Brierley and Kingsford, 2009; Omann et al., 2009) 

and ocean acidification.  

 

The frequency and intensity of extreme events will have greater impacts, and so may be more 

threatening than the rise in mean temperatures (see Clarke, 1993a; Bijlsma and Loeschcke, 

2005; Williams et al., 2008; Stillman and Tagmount, 2009; Morley et al., 2009; Lagos et al., 

2011). This is because unusually high temperatures occurring during the daytime in summer 

months are/or have been associated with mass mortalities in marine animals and plants (see 

Tsuchiya, 1983; Williams and Morritt, 1995; Helmuth, 2002; Riegl, 2003; Chan et al., 2006; 

Harley, 2008; Bergmann et al., 2010; etc). Therefore, animals must not only adapt to 

changing mean temperature ranges, but also to extreme events as well as other factors or 

conditions, and their interactions (see Stenseth et al., 2002; Jentsch et al., 2007; Menge et al., 

2008; Mislan et al., 2009; Wethey et al., 2011).  

 

Increasing temperatures and extreme events will have different (positive and negative) 

effects, altering species distributions, abundances and community composition, and this may 

be especially problematic for intertidal organisms as they live in harsh, fluctuating 

environments, and temperature gradients generally correlate with species distributions and 

abundances (Charles et al., 1992; Warwick and Turk, 2002; Brierley and Kingsford, 2009; 

Miller and Denney, 2011; Nguyen et al., 2011). There are already signs of the effects of 

climate change on polar, temperate and tropical species with shifts (contraction or expansion) 

of distribution ranges as well as local extinctions (Barry et al., 1992; Southward et al., 1995; 

McCarty, 2001; Hawkins et al., 2003; Parmesan and Yohe, 2003; Perry et al., 2005; Lima et 

al., 2006; 2007; Menge et al., 2008; Heller and Zavaleta, 2009; Hoegh-Guldberg and Bruno, 

2010; etc). Densities of ectotherm populations are predicted to decrease exponentially with 

increasing body temperature due to thermal constraints (see Hall et al., 1992; Sebens, 2002; 

Pardo and Johnson, 2005; Chan et al., 2006; Muñoz et al., 2008; Helmuth et al., 2010a). In 

addition, species invasions are expected to increase (Stachowicz et al., 2002; Thompson et 
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al., 2002; Occhipinti-Ambrogi, 2007; Thuiller, 2007; Sorte et al., 2010), and this will further 

threaten global biodiversity (see Bax et al., 2003; Occhipinti-Ambrogi and Savini, 2003; 

Molnar et al., 2008; Cheung et al., 2009; Teske et al., 2011b).  

 

Increased temperatures will also have impacts on processes such as growth, reproduction and 

metabolism as well as species interactions and dispersal, which are strongly influenced by 

environmental temperature (see Bertness et al., 1999; Thomas et al., 2000; Stenseth et al., 

2002; Brooker et al., 2007; Piñeiro et al., 2010; etc). Thus, the nature of physiological 

responses or adaptations to environmental temperatures will determine the biological fitness 

of individuals in a population, and in turn define its distribution (see Tomanek and Helmuth, 

2002; Leemans and Eickhout, 2004; Helmuth et al., 2010a; 2011; Kordas et al., 2011; 

Wernberg et al., 2011).  

 

Changes in air and sea surface temperatures as well as other climate change related scenarios, 

also called “secondary factors”, and their effects on animals have been experienced and 

predicted for southern Africa including South Africa (see Shannon et al., 1992; 1998; 

Lutjeharms and Ruijter, 1994; Scott et al., 1995; Hulme et al., 2001; Roy et al., 2001; Reason 

et al., 2006; Shillington et al., 2006; Crawford et al., 2008; Rouault et al., 2009; etc). 

However, it must be noted that the effect of increasing temperatures or climate change on 

species range shifts and/or biodiversity will also depend on the impacts of biotic interactions 

(e.g. competition), dispersal and the rate of climate change as well as their interactions (see 

Warwick and Turk, 2002; Pearson and Dawson, 2003; Brooker et al., 2007; Menge et al., 

2008; Pincebourde et al., 2008; 2012; Wernberg et al., 2011, etc).  

 

1.3. Study Animals  

 

This study explicitly investigates and compares the thermal biology as well as the genetics of 

temperate, subtropical and tropical littorinid snails of the genera Afrolittorina, Echinolittorina 

and Littoraria in order to understand how littorinids and other ectotherms will respond to 

global warming and climate change related scenarios.  
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1.3.1. Introduction to the Littorinidae family 

 

Littorinids are marine gastropod snails (Phylum: Mollusca, Class: Gastropoda, Subclass: 

Prosobranchia, Order: Neotaenioglossa, Infraorder: Discopoda, Family: Littorinidae) (see 

Reid, 1989; 1996b; 2002; Bieler, 1992; Winnepenninckx et al., 1998a, b; Colgan et al., 2000; 

2007; Backeljau et al., 2001). Together with limpets (Family: Patellidae, Siphonariidae, 

Acmaeidae, etc) and slugs (Family: Opisthobranchia), littorinids (Family: Littorinidae) are 

the most abundant group of molluscs (constituting 80% all together), followed by bivalves 

which constitute 15%, while the other five classes constitute only 5% all together (see Bieler, 

1992; Winnepenninckx et al., 1998b; Colgan et al., 2000; 2007).  

 

The family Littorinidae (Anon., 1834) consists of approximately 200 living species that are 

commonly found on the mangrove and rocky shores of polar, temperate and tropical regions 

where they occupy the littoral (shallow and high intertidal) zones (see Reid, 1989; 1990; 

1996a, b; 2002; McQuaid, 1996a, b; Libertini et al., 2004; Reid and Williams, 2004; 

Sanpanich et al., 2004; etc). Consequently, littorinids are important grazers on the littoral 

zones feeding on a wide range of food (e.g. diatoms, bacteria, fungi, algae, lichens, etc), and 

as such important in structuring the littoral ecosystems (Norton et al., 1990; Williams, 1990; 

1994; McQuaid, 1996a, b; Christensen, 1998; Saier, 2000; Kaehler and Froneman, 2002; etc).  

 

Members of the family Littorinidae sometimes also called Littorinacae fall into three 

subfamilies namely: the Laevilitorininae, Lacuninae and Littorininae (Reid, 1986; 1989; 

1996; 2002; McQuaid, 1996a; Reid and Williams, 2004; Reid et al., 2012). The first two 

subfamilies are found in temperate and polar regions where they occupy the low eulittoral 

zone and continental shelf, while members of the subfamily Littorininae are found in the high 

eulittoral zone and the eulittoral fringe in tropical, subtropical and temperate regions (see 

Reid, 1989; 1996a, b; 2002; 2007; McQuaid, 1996a; Williams et al. 2003; Reid and 

Williams, 2004; Williams and Reid, 2004; Reid et al., 2010; 2012). Snails of the family 

Littorinidae are also referred to as “periwinkles” or “winkles”; and the latter is more specific 

to the snails in the subfamily Littorininae (Reid, 1989; 1996a, b; 2002; Reid et al., 2012).  
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The subfamily Littorininae has approximately 152 species in several genera, viz. Littorina, 

Littoraria, Austrolittorina, Afrolittorina, Nodilittorina, Echnolittorina, Tectarius, 

Mainwaringia, etc. (see below; Reid, 1990; 1996a, b; 2002; Reid and Geller, 1997). Only five 

genera, viz. Littorina, Littoraria, Afrolittorina, Nodilittorina and Echnolittorina, inhabit the 

coastline of southern Africa (McQuaid and Scherman, 1988; McQuaid, 1992; Sinclair et al., 

2004; d‟Errico et al., 2008). The genus Afrolittorina includes four species (see Williams et al. 

2003; Reid and Williams, 2004; Reid et al., 2012); while the genera Echinolittorina and 

Littoraria comprise approximately 50 and 39 species respectively (see Reid, 1986; 1989; 

2007; Reid and Mark, 1999; Inness-Campbell et al., 2003; Williams and Reid, 2004; Torres 

et al., 2008; Reid et al., 2010), though not all occur in southern Africa.  

 

1.3.2. Study species 

 

Six littorinid species (see Fig. 1.1) of the genera Afrolittorina, Echinolittorina and Littoraria 

were used, namely: A. knysnaensis (Philippi, 1847), A. africana (Philippi, 1847), E. 

natalensis (Krauss in Philippi, 1847), E. malaccana (Philippi, 1847), E. vidua (Philippi, 

1847), and L. glabrata (Philippi, 1847). These species show different distribution ranges and 

display clear patterns of vertical zonation as well as microhabitat use and aestivation (a 

mechanism which extends the time an animal can survive on stored energy) periods, which 

was expected to determine their adaptations or acclimation to different thermal regimes.  

 

A. africana is found in the Southwest Indian Ocean (SIO) from near Cape Town to Natal in 

South Africa, southern Mozambique and southeastern Madagascar, whereas A. knysnaensis 

occurs from Walvis Bay in Namibia to the vicinity of Durban in South Africa (Hartnoll, 

1976; Reid, 1996; Reid and Williams, 2004; d‟Errico et al., 2008). L. glabrata occurs in the 

subtropics and tropics of the Indo West Pacific (IWP) including the eastern coasts of South 

Africa (Torres et al., 2008; Reid et al., 2010); while E. natalensis is found in the SIO from 

the eastern coast of South Africa to Kenya, Madagascar and the Seychelles (Hartnoll, 1976; 

Williams and Reid, 2004; Reid, 2007).  
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E. malaccana occurs in the IWP including India, mainland coasts of Southeast Asia, Southern 

China, Taiwan, Philippines, Borneo and Sulawesi; while E. vidua has a wide distribution in 

the Central IWP, including Pakistan, India, Southeast Asia, Indonesia, tropical Australia, 

New Guinea and southern Japan (Williams and Reid, 2004; Reid, 2007).  

 

In addition, these species display clear patterns of vertical zonation which were expected to 

determine their exposure and aestivation periods. E. malaccana inhabits the eulittoral fringe 

to the upper eulittoral zone (Williams and Reid, 2004; Reid, 2007), where it can aestivate for 

more than 60 days (see Marshall and McQuaid, 2010); this is also true for E. vidua, which 

extends from the lowermost eulittoral fringe into the upper eulittoral zone (Williams and 

Reid, 2004; Reid, 2007). E. natalensis is abundant in the eulittoral fringe and extends to the 

eulittoral zone (Williams and Reid, 2004; Reid, 2007), whereas L. glabrata inhabits the 

uppermost eulittoral fringe to the eulittoral zone (pers. obs.; Silva et al., 2013). However, 

while all these species tend to live very high on shore (littoral fringe to upper eulittoral zone), 

they can show differences in microhabitat use (pers. obs.). All species can be found on open 

rock or in more shaded spots including crevices, pits etc., but this is especially true for L. 

glabrata, which prefers shaded and humid microhabitats (pers. obs.).  

 

The two Afrolittorina species dominate the upper shore, ranging from the upper-mid 

eulittoral zone to the lower eulittoral fringe and show broad overlap where both species co-

occur, except on the southeast coast of South Africa where A. africana has a higher vertical 

limit (McQuaid and Scherman, 1988; McQuaid, 1992; Reid and Williams, 2004; d‟Errico et 

al., 2008). Both species occur on exposed rock, but frequently group together in clusters 

during low tide and are often found at very high densities around the margins of shallow and 

temporary pools (pers. obs.). Although there is no information on the aestivation periods of 

the South African species, they can be expected to aestivate for 14 days or more during neap 

tides (see McQuaid and Scherman, 1988; Sinclair et al., 2004). 
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Figure 1.1. Study species. (A) Afrolittorina africana, (B) A. knysnaensis, (C) Littoraria 

glabrata, (D) Echinolittorina natalensis, (E) E. vidua (picture downloaded from the web: 

www.roboastra.com/brunsmoll1/brpr213.html) and (F) E. malaccana (picture courtesy of 

Gray Williams and David Marshall).  
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1.4. Description of study Areas  

 

This study explicitly compares the thermal biology of temperate, subtropical and tropical 

species as well as the genetics of subtropical and temperate species (see above); and the study 

areas chosen are found in Brunei Darussalam and South Africa (see Fig. 1.2).  

 

 

Figure 1.2. Map showing study areas. Red block and circle indicates South Africa and Brunei 

Darussalam respectively. Picture downloaded from the web: www.mapofworld.com. 
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1.4.1. Brunei Darussalam  

 

One of the study areas is found in Brunei, Negara Brunei Darussalam, which is located 

between 4°N and 5.8°N and 114.6°E and 115.4°E on the north coast of the island of Borneo 

in Southeast Asia (see Fig. 1.2). Brunei Darussalam occupies a northern portion of the island 

of Borneo, with Malaysia and Indonesia on the southern parts of the island (see Curiale et al., 

2000; Hiscott, 2001; Malik, 2011). As a result of its position, Brunei has a consistently warm-

humid tropical climate (see Malik and Abdullah, 1996; Hiscott, 2001; Malik, 2011); and is 

influenced by two seasons, the northeast and southwest monsoon. The northeast monsoon 

(winter) is characterised by stronger and relatively constant dry winds, while the southwest 

monsoon (summer) is rain bearing (see Malik and Abdullah, 1996; Morton and Blackmore, 

2001; Malik, 2011). Air temperatures are lowest during the winter (average maximum of 29-

30°C), and are highest in the transition period before the onset of summer (average maximum 

of 33-35°C) (see Malik et al., 2011; Malik, 2011).  

 

The Brunei coastline is linear with very few bays; and it stretches for about 161 km from 

Muara (5.8°N; 115.4°E) near Brunei Bay on the north to the vicinity of Kuala Belait (4N°; 

114.6°E) on the south (see Fig. 1.3). It is dominated by a high profile sandy beach aligned in 

a southwest direction, and a complex estuarine, mangrove and mudflat zone within Brunei 

Bay in the northeast (see Marshall et al., 2010; Malik, 2011). Most of the rocky shore habitats 

of the coastline comprise artificial seawalls with few patches of natural rocky shores. In 

addition, the whole coastline is dominated by the South China Sea, which is the largest semi 

(marginal) closed sea in the western tropical Pacific Ocean, the circulation of which is driven 

by monsoonal winds resulting in variation (seasonal) in surface currents and SST (see Shaw 

and Chao, 1994; Wu et al., 1998; Kuo et al., 2000; Wang et al., 2006; 2008).  

 

The surface (warm) currents move to the southwest (i.e. cyclonic) in winter and the northeast 

(i.e. anticyclonic) in summer with stable eddies (see Shaw and Chao, 1994; Hu et al., 2000; 

Liu et al., 2001; Morton and Blackmore, 2001; Shi et al., 2002). Sea surface temperatures in 

the South China Sea vary with relative lows (approximately 18-29°C) in March and 

December and highs (approximately 27-37°C) in June and September (see Chou, 1994; Chu 
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et al., 1997a, b; 1998a,b; Qu, 2001; Wang et al., 2008). The tides are generally less than 2 m 

except for about 2.3 m (reaching a maximum of 2.7m in Brunei Bay) in spring tides, with 

wider ranges occurring during storms (see Hiscott, 2001). In addition, wave heights can reach 

as high as 3 m during the northeast monsoon (see Chou, 1994; Hiscott, 2001). 

 

 

Figure 1.3. Map showing the Brunei coastline with study area, Jerudong, indicated by red dot. 

Picture downloaded from the web: wwww.mapofworld.com. 

 

1.4.2. South Africa 

 

The other study areas were found in the Republic of South Africa, which is located between 

26.5°S and 28.4°S and 33.5°E and 16.3°W on the southern portion of Africa (see Fig. 1.2). 

South Africa (SA) is divided into four regions, namely; the east, south, southwest and west, 
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each of which experience different conditions, especially weather and climate as well as 

rainfall (see below). The west coast has a hyper-arid tropical climate with winter rainfall; the 

southwest has a Mediterranean climate with winter rainfall; the south coast has a warm 

climate and experiences varying rainfall regimes with some areas experiencing year round 

rainfall while the east coast has a moist warm-tropical climate characterised by summer 

rainfall (see Lutjeharms and Ruijter, 1994; 1996; Cowling et al., 1999; Cooper, 2001; Reason 

et al., 2002; Peter et al., 2003; Calf and Underhill, 2005). Air temperatures are diurnally and 

seasonally variable reaching 30-35°C in summer and falling to 3°C in the subtropical and to 

0°C along the west and south coast during winter (see Kruger and Shongwe, 2004 and 

reference herein; Sinclair et al., 2004).  

 

The South African coastline stretches for approximately 3000 km from Kosi Bay (26°54'S; 

33°48'E) near the Moçambique border on the east coast to Alexander Bay (28°38'S; 16°27'W) 

at the Namibian border on the west coast (see Fig. 1.4). The coastline is almost linear with 

very few significant bays or inlets, and is dominated by long stretches of sandy beaches and 

sand dunes (constitute 1700 km) with some patches of rocky shores (constitute 1300 km) (see 

Marshall and McQuaid, 1993b; Ramsay, 1996; Hutchings et al., 2002; Ramsay and Cooper, 

2002; Peter et al., 2003). In addition, the SA coastline is divided into three primary 

biogeographic provinces or regions: the cool temperate, warm temperate and subtropical 

regions (see Fig. 1.4; Emanuel et al., 1992; Pether, 1994; Bustamante and Branch, 1996; 

Turpie et al., 2000; Maree et al., 2000; Harrison, 2002; 2004; etc). Each of these 

biogeographic provinces is characterised by its own unique environmental and oceanographic 

conditions as well as the topographic features (see below). Of more interest is the difference 

in environmental and oceanographic conditions (which also show variability) between and 

within the regions.  

 

South Africa‟s marine environment is unique in that it is surrounded by three major oceans, 

the cool South Atlantic Ocean to the west, the very cold Southern Ocean to the south and the 

warm Indian Ocean to the east (see Fig. 1.5; Pether, 1994; Bustamante et al., 1995; 

Lutjeharms et al., 2001; Lucas and Griffiths, 2012). As a consequence, SA‟s marine 

environment is influenced by two current systems; the strong and intense southwards fast (~2 

ms-1) flowing warm (23-26°C) Agulhas current on the east and south coasts and the upwelled 
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northwards slow (0.25-0.50 ms-1) flowing cold (~ 10°C) Benguela current on the west coast 

(see Fig. 1.5), which show variability (Darbyshire, 1963; 1964; Hutson, 1980; Lutjeharms 

and de Ruijter, 1996; Hutchings et al., 2002; Bryden et al., 2005; etc). 

 

 

Figure 1.4. Map showing the South African coastline and zoo- or biogeographic provinces 

indicated by different colours. Picture courtesy of Christopher D McQuaid. 

 

The Agulhas current carries warm waters from the tropics, resulting in SST of 20 to 22°C in 

winter and 22 to 27°C in summer in the subtropics (see Isaac, 1937; Darbyshire, 1964; 

Hutson, 1980; Harris and Cyrus, 1996; Harrison, 2004). On the south coast (the warm 

temperate region) where the Agulhas current diverges away from the coastline, SST ranges 

from 15 to 20°C in winter and 15 to 22°C in summer (see Isaac, 1937; McQuaid and Branch, 

1984; Flores et al., 1999; Demarcq et al., 2003; Laudien et al., 2003; Harrison, 2004). On the 

other hand, the Benguela current brings cold waters from the Atlantic/Southern Oceans, 

resulting in SST of 10 to 15°C in winter and 10 to 19°C in summer in the cool temperate 
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region (see Isaac, 1937; Darbyshire, 1963; Roy et al., 2001; Laudien et al., 2003; Harrison, 

2004). There are counter-currents, also called “occasional currents” which flow close inshore 

in the opposite direction to the main currents (see Isaac, 1937; Bustamante and Branch, 1996; 

Weeks et al., 1998; Thibault-Botha et al,. 2004; Luschi et al., 2006), which together with 

coastal upwellings result in variability in currents flow patterns and SST (see Pether, 1994; 

Lutjeharms et al., 2000; 2001). 

 

 

Figure 1.5. Satellite image of the South African coastline, sea surface temperature, two 

currents, Agulhas and Benguela currents and oceans around the South African coastline. 

Picture courtesy of Christopher D McQuaid. 

 

In addition, SST and salinity (also oxygen and nutrients) show differences between and 

within regions, with a slight and/or irregular decrease from east to west along the coastline 

(see Isaac, 1937; Darbyshire, 1963; 1964; Hutson, 1980; Shannon et al., 1990; Harrison, 

2004; Roberts, 2005). More important is the marked daily and seasonal variation in SST, with 
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greater variability in summer than winter (see Beckley, 1983; Shannon et al., 1988; Cohen et 

al., 1992; Schumann et al., 1995; Harrison and Whitfield, 2006; Reason et al., 2006). Tidal 

range is relatively small and varies little around the coast, with most areas experiencing a 

neap tidal range between 0.56 to 0.80 m (average 1 m) and a spring tidal range of 1.59 to 2.5 

m (average 1.4 m) (see Cooper, 2001; Calf and Underhill, 2005; Ramsay and Cooper, 2002; 

Laudien et al., 2003). In addition, extreme wave heights (as high as 3.5-5.5 m) occur during 

unusual events such as strong stormy weather (see Cooper, 2001; Ramsay and Cooper, 2002; 

Calf and Underhill, 2005).  

 

1.5. Background to the study 

 

On rocky shores, there is a general perception that species‟ upper limits are set by abiotic 

factors and their lower limits by biotic interactions (see Wethey, 1984; Britton, 1992; 

Yamada and Boulding, 1996; Duncan et al., 1998; Harley and Helmuth, 2003; Judge et al., 

2009; Miller et al., 2009; etc). The study species live on the upper shore (i.e. eulittoral fringes 

and zones), often where there are no other animals. Therefore, interspecific competition (e.g. 

for food and/or space) is unlikely to be important while there is little evidence of high levels 

of predation (see McQuaid, 1981a, b; 1985; 1992; Mak and Williams, 1999; Lee et al., 2009). 

But intraspecific competition might determine the distribution of these species (see McQuaid, 

1981b; Mak and Williams, 1999; Lee and Kim, 2009; Lee et al., 2009; Stafford et al., 2012). 

Physiological (e.g. temperature and desiccation) stress however, is likely to be important in 

setting the distribution of these species on the shore (see McQuaid and Scherman, 1988; 

McQuaid, 1992; Sinclair et al., 2004; Lee and Kim, 2009; Marshall et al., 2010; 2011; etc). 

Of course, studies in the intertidal tend to emphasize a major role of physiological 

adaptations to temperature and desiccation stress (McMahon, 1990; Sokolova and Pörtner, 

2001b; Horowitz, 2001; 2002; Tomanek and Helmuth, 2002; Miller and Denny, 2011).  

 

 

To date, few studies have investigated how heat affects the physiology of South African 

littorinid snails (see Marshall unpub. data; McQuaid and Scherman, 1988; McQuaid, 1992). 

The present study investigates how heat stress affects the physiology of South African 
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littorinids, with the aim of drawing conclusions about the effects of temperature on other 

littorinids and other ectotherms. This study further investigates whether the two Afrolittorina 

spp. are distinct species as suggested by previous studies. Thus, the phylogeography of 

Afrolittorina spp. was determined. Measurement of phylogeography throughout the South 

Africa coastline would provide insight to the possible role of bioregions in phylogeography 

of other marine invertebrates, assuming that the phylogeography of Afrolittorina spp. will be 

similar to that of invertebrates with planktonic larvae.  

 

 

1.6. Thesis overview 

 

The main focus of this thesis was to investigate the phylogeography and thermal biology of 

the two closely related littorinid snails of the genus Afrolittorina, A. africana and A. 

knysnaensis, from subtropical and temperate regions of South Africa. However, littorinid 

snails of the genera Echinolittorina and Littoraria from subtropical (South Africa) and 

tropical (Brunei Darussalam) regions were included for other reasons. E. natalensis and L. 

glabrata were included because they occur together with A. africana in the subtropical region 

where they occupy higher levels on the shore (see Hartnoll, 1976; McQuaid, 1992; Sinclair et 

al., 2004; Sink et al., 2005; d‟Errico et al., 2008). The tropical species E. malaccana and E. 

vidua were included because they are in the same genus as the subtropical E. natalensis (see 

Williams and Reid, 2004; Reid, 2007; Reid et al., 2012) offering the opportunity to compare 

the heat stress response of temperate Afrolittorina spp. to that of other littorinid snails from 

the same or different regions and shore heights. 

 

 It is assumed that there would be differences in temperature responses between species and 

sizes as different species and sizes are found at different latitudes, regions, shore levels and 

microhabitats. Thus, one might predict that Afrolittorina spp. would show similar responses 

to temperature that are different from those of subtropical and tropical species. 
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1.6.1. Aims and Objectives 

 

The objectives of this study were as follows: First, to investigate the phylogenetic 

relationships between A. africana and A. knysnaensis and the diversity within members of 

these species using DNA sequence data. These data also tested if there is a genetic basis for 

the range of colour morphs found within the distributional ranges of the two species. Second, 

to investigate the tolerance of high temperatures of snails in the genera Afrolittorina, 

Echinolittorina and Littoraria from the temperate and subtropical regions of South Africa 

using heat coma (temperature at which cessation of activity occurs) and lethal limits 

(temperature at which 50% mortality of the population occurs). Third, to investigate the 

temperature-heart rate relationship of the two co-existing Afrolittorina spp., comparing this to 

that of the subtropical E. natalensis and L. glabrata, and the tropical E. malaccana and E. 

vidua. Fourth, a proteomic approach was used to analyse the protein profiles of Afrolittorina 

spp. from the warm temperate region of South Africa in order to compare their whole protein 

responses to temperature stress.  
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CHAPTER 2: Phylogeography of the two closely related Afrolittorina 

species, Afrolittorina africana and A. knysnaensis, from South Africa 

 

2.1. Introduction 

 

The term “phylogeography” was introduced by Avise et al. (1987) to explain the striking 

phylogenetic patterns observed after analysis of mitochondrial DNA (mtDNA), usually below 

“species” level. Thus, molecular analysis of mtDNA from coastal marine taxa had revealed 

intraspecific genealogies that were geographically coincident with each other and with 

biogeographic patterns (Avise et al., 1987; Avise, 1992, 1998; Hewitt, 2004). These 

commonalities suggested that intraspecific mtDNA phylogenies or phylogenetic groupings 

were shaped by common biogeographic barriers to gene flow associated with physical and 

biological factors, and possibly other factors (Avise, 1992, 1998; 2004; Burton, 1998).  

 

Although mtDNA led the way into phylogeography and is the most commonly used marker 

in phylogeographic studies, nuclear DNA markers such as microsatellites and other markers 

are also used (see below; Féral, 2002; Hewitt, 2004; Panova et al., 2008; Pleines et al., 2009). 

The properties of mtDNA, including its non-recombining characteristics, maternal 

inheritance, reduced effective population size and rapid rate of evolution, make it one of the 

best makers to study phylogenetic relationships (Avise et al., 1987; Moritz et al., 1987; 

Hwang and Kim, 1999; Galtier et al., 2009, etc). However, a combination of mitochondrial 

and nuclear sequence data is emerging as an optional strategy for phylogeographic analysis, 

as the two genomes have the potential to validate historical inferences (see Bowen and Grant, 

1997; Bermingham and Moritz, 1998; Hare, 2001; Williams et al., 2002; Kuo and Avise, 

2005; Rubinoff and Holland, 2005; Beheregaray, 2008; Teske et al., 2009).  

 

The field of phylogeography is concerned with the principles and/or processes that govern the 

geographical patterns of genetic or evolutionary lineages within and among closely related 

species or taxa (Avise et al., 1987; Avise, 1992; 1998; 2004; Beheregaray, 2008; Teske et al., 
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2009; 2011; Hickerson et al., 2010; etc). Thus, phylogeography deals with the spatial 

distribution of genetic lineages (i.e. genealogies), and processes that have shaped such 

genealogies or partitions. The spatial distribution of genetic lineages is under the control of 

historical (e.g. vicariance and dispersal) and contemporary (e.g. variation in climate and 

hydrological conditions) processes (Bernardi et al., 2003; Templeton, 2003; Rocha et al., 

2007; Arbogast and Kenagy, 2008; Waters, 2008a, b; Pleines et al., 2009; etc). In summary, 

phylogeography can be regarded as a subdiscipline of biogeography that applies phylogenetic 

techniques to achieve a comprehensive understanding of how physical and biological factors 

have shaped the distribution of genetic lineages.  

 

In addition, the field of phylogeography provides a powerful tool for identifying cryptic 

species and/or hybridizations that are difficult or sometimes impossible to distinguish or 

identify morphologically (Templeton, 2003; Beheregaray and Caccone, 2007; Teske and 

Beheregaray, 2009; Teske et al., 2009; 2011c; Azuma et al., 2011). Phylogeography is also 

useful in management or conservation studies since it can be used to estimate population 

connectivity as well as levels and patterns of genetic diversity between and within 

populations (Féral, 2002; Hellberg et al., 2002; Palumbi, 2003; 2004; Rocha et al., 2007; von 

der Heyden, 2008; 2009; Ni et al., 2012; Provan and Maggs, 2012). Thus, the results of 

phylogeographic studies can be applied not only to answer questions of evolutionary 

significance, but can also have management and conservation applications.  

 

Dispersal and vicariance are the two historical processes that are invoked to account for the 

origins of spatially disjunct genetic lineages (see Reid, 1990; Bowen and Grant, 1997; 

Bernardi et al., 2003; Waters and Roy, 2004a; Bilodeau et al., 2005; Waters, 2008a, b). 

Under a dispersal scenario, lineages come to occupy their present ranges through active or 

passive dispersal from one or more ancestral centres of origins (see Nelson, 1974; McDowall, 

1978). On the other hand, under vicariance scenarios, lineages become separated when more 

or less continuous ranges of ancestral forms are split apart by natural events such as plate 

tectonics or the formation of land bridges (see Nelson, 1974; Rosen, 1978). However, 

dispersal is regarded as a central process affecting the distribution of genetic lineages or 

species (see Pole, 1994; Bernardi et al., 2003; Waters and Roy, 2004a; Waters, 2008a; Teske 

et al., 2009).  
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Recently, studies show that contemporary processes such as variation in oceanographic (e.g. 

currents and upwellings) and environmental (e.g. temperature and salinity gradients) 

conditions as well as topographical features (e.g. bays and habitats) can also account for the 

origins of spatially disjunct genetic lineages (Banks et al., 2007; Rocha et al., 2007; Waters, 

2008b; Pelc et al., 2009; Teske et al., 2009; 2010; 2011a; Zardi et al., 2007; 2011; Dong et 

al., 2012). This shows that contemporary processes should be considered in the maintenance 

of genetic structure (i.e. diversity), perhaps more than historical processes from which 

diversity originated (Teske et al., 2011a). This means that the effects of historical and 

contemporary factors acting on or interacting with an organism‟s life history (see below), 

determine the phylogeographic patterns seen in marine organisms. Phylogeographic patterns 

in marine organisms can also result from anthropogenic activities, for example human-

mediated translocation of fouling organisms (Waters and Roy, 2004a; Cunningham, 2008; 

Zhan et al., 2009; Panova et al., 2011; Teske et al., 2011a; Ni et al., 2012).  

 

Several studies have investigated the phylogeographic patterns and/or genetic structure (i.e. 

variation) of marine animals, including coastal and estuarine invertebrates and fishes (see 

below). Generally, species with planktonic larvae are thought to show little or no evidence of 

genetic structure along their distribution ranges, while those with non-planktonic larva or 

direct developers show high genetic structure (Johannesson, 1988; Palumbi, 1994; 2003; 

Chambers et al., 1996; 1998; Bohonak, 1999; Dawson, 2001; Bernardi et al., 2003; Bowen et 

al., 2006; Rocha et al., 2007; Bell, 2008; Pelc et al., 2009; etc). This shows that the presence 

or absence of genetic variation is due to differences in dispersal potential of that particular 

species. Thus, the magnitude of genetic structure appears partially related to the life history 

(type and duration of larval development) pattern and dispersal capability of a particular 

species (Johannesson, 1988; Avise, 1992, Kyle and Boulding, 2000; Bowen et al., 2006; 

Rocha et al., 2007; Teske et al., 2007b; 2011a). As a result, the duration of the larval 

(pelagic) stage is often regarded as an indication of dispersal potential and related to 

population or genetic structure. 

 

However, there is growing evidence that species with planktonic larva can show as much 

genetic structure as direct developers. This suggests that dispersal potential on its own does 

not determine genetic variation within marine species, and other factors also play a role. For 
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example, local oceanographic processes, active behaviour of larvae and spawning events that 

coincide with certain tides and current regimes are among the biological and physical factors 

that may influence larval dispersal and thus genetic structure (Johannesson, 1988; Palumbi, 

2003; Waters and Roy, 2004b; Rivadeneira and Fernández, 2005; Rocha et al., 2007; Zardi et 

al., 2007b, e; Sherman et al., 2008; Ayre et al., 2009; Zhan et al., 2009; Cheang et al., 2012; 

Díaz- Ferguson et al., 2012; von der Heyden et al., 2013). For example, larval retention and 

self-recruitment may be higher than previously expected in marine animals with planktonic 

larva (Johannesson, 1988; Palumbi, 2003; Bowen et al., 2006; Andrade and Solferini, 2007; 

Small and Wares, 2010; Teske et al., 2007b; 2008; 2012).  

 

For those species which show genetic structure, phylogeographic breaks often coincide with 

known biogeographic boundaries or limits, but this is not the case for all marine species 

studied to date since other species shows patterns which do not conform to known 

biogeographic barriers or bioregions (Burton, 1998; Irwin, 2002; Kou and Avise 2004; 

Bilodeau et al., 2005; York et al., 2008; Pelc et al., 2009). Studies on littorinids from 

different regions have also found phylogeographic structures and/or breaks that coincide with 

known or unknown boundaries (Knight and Ward, 1991; Gosling et al., 1998; Wilson and 

Gosling, 1998; Andrade et al., 2003; Reid et al., 2006; Andrade and Solferini, 2007; Waters 

et al., 2005; 2006; Van den Broeck et al. 2008; Lee and Boulding, 2007; 2009; Doellman et 

al., 2011; Panova et al., 2011; Díaz- Ferguson et al., 2012; etc). 

 

The most recent phylogeographic studies along the South African coastline support this 

phenomenon. It is well known that there is genetic variation in marine species, including 

invertebrates, that seems to be influenced by life history (i.e. mode of dispersal) and the effect 

of oceanographic (e.g. currents and coastal upwelling) and environmental (e.g. temperature 

and salinity) conditions as well as topographical features (e.g. sand dunes and beaches). Thus, 

together with topographic features, environmental and oceanographic conditions have been 

found to have an influence on the genetic structure of various taxa found within the South 

African coastline (Teske et al., 2006; 2007a, b; c; e; 2008; 2009; 2010; 2011a, c; Zardi et al., 

2007; 2011; Nicastro et al., 2008; von der Heyden, 2007; 2008; 2009; 2010; etc). As such, 

the South African coastline offers an interesting area to study evolutionary relationships 

between and within closely related species.  
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In addition, most of such studies have shown that phylogeographic breaks (including limits) 

within and among taxa often coincide with known biogeographic boundaries (Ridgway et al., 

1998; Evans et al., 2004; Teske et al., 2006; 2007a, b, e; 2008; 2009; Zardi et al., 2007), 

although there are some exceptions (Tolley et al., 2005; Matthee et al., 2007; Teske et al., 

2007b; 2011a; Neethling et al., 2008; Mmonwa, 2009; 2013 unpub. data). This shows that the 

prevailing biogeographic boundaries do not affect the phylogeography of all marine 

invertebrates in a similar way (Teske et al., 2011a, b). For example, the deflection (which 

also show seasonal variability) of the Agulhas current as it approaches the Agulhas Bank 

creates a semi or incomplete permeable barrier (by deflecting the dispersing larvae offshore) 

to gene flow of some animals but not others (Teske et al., 2006; 2008; Zardi et al., 2007; 

Mmonwa, 2009 unpub. data). Biogeographic boundaries also act to maintain genetic breaks 

evoked by ancient climate changes (Pelc et al., 2009; Teske et al., 2011a). Thus, species 

which are found in more than one region show, or are expected to show, phylogeographic 

breaks (including limits) that coincide with known biogeographic boundaries.  

 

Afrolittorina africana and A. knysnaensis are two closely related southern African species 

belonging to the new genus Afrolittorina within the family Littorinidae (Williams et al., 

2003; Reid and Williams, 2004; Reid et al., 2012). They are the most widespread, 

conspicuous and abundant littorinids on rocky shores along the southern African coast (see 

McQuaid, 1992). In South Africa, the pale blue-grey Afrolittorina africana is abundant in 

Kwazulu-Natal, in the eastern part of the country, while the brown to black A. knysnaensis 

ranges from Namibia to southern Kwazulu-Natal (Hughes, 1979; Grant and Lang, 1991; Reid 

and Williams, 2004; d‟Errico et al., 2008). Thus, A. africana is predominant in the 

subtropical east coast region, while A. knysnaensis is abundant in the cool temperate west 

coast region.  

 

These species, as well as individuals that are morphological intermediates (in colour pattern) 

occur together in the warm temperate south coast region (Hughes, 1979; McQuaid and 

Scherman, 1988; Reid and Williams, 2004; Sinclair et al., 2004) where they even occupy the 

same microhabitats from the upper-mid eulittoral zone to the lower eulittoral fringe (pers. 

obs.; McQuaid, 1992; d‟Errico et al., 2008). Although these species occur along the South 

Africa coastline, differences in colour pattern have been previously observed, and this has led 
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Hughes (1979) to suggest that they form a single species which differs in its morphological 

appearance along its distribution range. For example, certain specimens of A. africana had 

dark brown dashes or streaks (form Natal region) and pale brown flecks or spots (from 

Transkei region) superimposed on the typical pale blue-grey or bluish-white background (see 

Hughes, 1979; Reid and Williams, 2004). On the other hand, for A. knysnaensis, a specimen 

from Lüideritz had cream dashes, with the predominance of individuals throughout its range 

bearing pale blue upper margins to the whorls on a uniform dark brown to black background 

(see Hughes, 1979; Reid and Williams, 2004).   

 

Of particular importance is the reproduction and development of these two species, which are 

expected to determine their geographic distribution and/or phylogeography. Both these 

species are predicted to have pelagic spawning and planktotrophic development based on: 1) 

the dimension of protoconch and large capsule gland of both species (see Reid, 1989; Reid 

and Williams, 2004), 2) the small (87 µm) egg size of A. knysnaensis (McQuaid, 1981) and 

3) low genetic variation on a geographical scale in A. knysnaensis (Grant and Lang, 1991). In 

addition, these species seem to breed throughout the year with continuous recruitment 

followed by settlement of juveniles high on the shore (McQuaid, 1981). However, 

recruitment is erratic or inconsistent and depends on the currents.  

 

This means that like most littorinid snails in the subfamily Littorininae (Reid, 1990; Kyle and 

Boulding, 2000; Kim et al., 2003; Williams et al., 2003; Reid et al., 2006; 2012; Lee and 

Boulding, 2007; 2009), these species are pelagic spawners with planktotrophic veliger larvae 

which could disperse widely with the help of ocean currents, resulting in high gene flow and 

preventing genetic discontinuity. Thus, one would expect little, if any, genetic variation 

among populations of Afrolittorina spp. provided that external forces act in the same way 

across their distribution ranges. In fact, several studies have shown that marine invertebrates 

with highly dispersive stages unexpectedly displayed high genetic variation which was linked 

to abiotic factors such as ancient oceanography and habitat availability (Teske et al., 2006, 

2007b; 2011a; Zardi et al., 2007; Mmonwa, 2009 unpub. data). But, using life history of the 

organism to predict its genetic structure can be problematic, especially in a dynamic marine 

realm like the southern African coastline. This means that when conditions vary across the 

area in question, genetic variation may evolve as suggested, especially if adaptation occurs 
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(Gooch and Schopf, 1972; Nevo, 1978; Eanes, 1987; Fevolden and Garner, 1987; 

Johannesson and Tatarenkov, 1997; Laudien et al., 2003; Pigliucci et al., 2006).  

 

Although the taxonomic status (i.e. phylogeny) of the two southern African Afrolittorina spp. 

is known (see Reid, 1989; 2002; Williams et al., 2003; Reid and Williams, 2004), the 

phylogenetic (evolutionary) relationships and diversity between and within these species have 

not been investigated. Thus, there is no regional study that has looked at the evolutionary 

relationships and diversity of the Afrolittorina spp., and other littorinids found along the 

southern African coastline, including South Africa. The only local study was by Grant and 

Lang (1991) who found low genetic (allozyme) variation in A. knysnaensis on a geographical 

scale. Therefore, the present study is the first regional study to investigate the phylogenetic 

relationships and diversity of A. africana and A. knysnaensis from South Africa.  

 

This study uses the mitochondrial cytochrome oxidase subunit I (COI) and nuclear ribosomal 

28S rRNA markers to clarify the evolutionary relationships and genetic diversity between and 

within Afrolittorina spp. The phylogeny built on the basis of the DNA sequence data will 

provide information on whether each species is a distinct genetic entity as suggested by 

Williams et al. (2003). The data gathered here will also help to explain the phylogeographic 

patterns of distribution and diversity within and among members of A. africana and A. 

knysnaensis along the South Africa coastline. It is assumed that the phylogeography of 

Afrolittorina spp. will be similar to that of invertebrates with planktonic larvae. Furthermore, 

the data also tested if there was a genetic basis for the range of colour morphs found within 

the distributional ranges of these two species.  
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2.2. Materials and methods 

 

2.2.1. Study species 

 

Two closely related Afrolittorina spp., namely: A. knysnaensis (Philippi, 1847) and A. 

africana (Philippi, 1847) were used. See Chapter 1 for information on species distribution 

ranges and patterns of vertical zonation as well as microhabitat use and aestivation behaviour 

 

2.2.2. Specimen collection and identification  

 

Specimens belonging to A. africana and A. knysnaensis as well as morphological 

intermediates (in colour pattern; see above) were collected from 46 localities across species 

distribution ranges along the southern Africa coasts (see Table 2.1 and Fig. 2.1) from Ponta 

do Ouro (26°50'S; 32°53'E) in Moçambique in the east coast to Port Nolloth (29°15'S; 

16°52'E), on the South African west coast.  

 

During collection, specimens were sorted into species („white‟ for A. africana and „brown‟ to 

„black‟ for A. knysnaensis) or intermediates (all other varieties of colours) based on the 

colour of the shell. Specimens were collected in 70% or absolute (100%) ethanol as the 

fixative, except for samples which were collected and brought to the laboratory in the 

aestivation state and later kept in the fixative. Shells of individual snails were gently cracked-

open to ensure rapid penetration of the fixative into the tissues. The fixative in all containers 

was changed after 10-14 days of collection or earlier if necessary, and for long term storage 

samples were stored in absolute ethanol.  
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Figure 2.1. Map showing sampling sites (see Table 2.1 for the list of sites) of Afrolittorina 

species along the South African coastline. Different colours (red = subtropical, yellow = 

warm temperate, and green = cool temperate) indicate sampling sites in different 

biogeographic regions.  
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Table 2.1. Mitochondrial (mtCOI) and ribosomal (28S rRNA) sequences for A. africana and A. knysnaensis from three biogeographic regions 

and sampling sites within the regions. Empty cells are sites were species and/or sequences were not sampled or obtained.  

 

Region 

 

Site (Abbreviation) 

Number of samples per marker and species 

 

mtCOI 28S rRNA 

A. africana A. knysnaensis A. africana A. knysnaensis 

Subtropical 1. Ponta do Ouro (PDO)  11    

2. Mission Rocks (MR) 8  6  

3. Lona Rocks (LR) 10  -  

4. Zinkwazi (ZK) 10  5  

5. Sheffield (BS) 20 2 15  

6. Ballito (BA/BT) 5  4  

7. Mhlanga (ML) 13  6  

8. Park Rynie (PR) 4 3 10  

9. Shelly Beach (SH) 7    

10. Ramsgate (RG) 6 11 5 6 

11. Port Edward (PE) 15 3 9 2 

12. Port St. Johns (PJ) 5 9 6 6 

13. Hluleka (PE) 3 1 2 1 

14. Dwesa (DS) 11 5 8  
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15. Shixini (SX) 5 2   

Warm temperate 16. Haga-Haga (HH) 11 12 8 12 

17. Gonubei (GO/GU) 5 8 4 2 

18. Hamburg (HU/HM) 6 8 2  

19. Fish river (FR) 7 4 9  

20. Port Alfred (PA) 9 10 10 4 

21. Bushmans river (BR/BU)  7 9 3 5 

22. Cannon Rocks (CRB) 5 6 5 4 

23. Cape Recife (CR) 10 14 6 9 

24. St. Francis Bay (FB) 1    

25. Jeffrey‟s Bay(JB) 3 10 1 3 

26. Tsitsikamma (TT) - 5  2 

27. Plettenberg Bay (PL) 3 5  4 

28. Sedgefield (SE) 5 4 5 1 

29. Wilderness (WN) 4 11  2 

30. Harold‟s Bay (HB)  4  4 

31. Still Bay (SB) 1 8 6 5 

Cool temperate 32. Cape Agulhas (CA)  8 4  

33. Franskraal (FR)  9  1 

34. Pringles Bay (PB)  5   

35. Rooi Els (RE)  8  2 
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36. Muizenberg (MU/MZ)  3   

37. Camps Bay (CB)  4   

38. Bloubergstrand (BL)  3   

39. Melkbosstrand (ML)  5  5 

40. Yzerfontein (YZ)  3  2 

41. Paternoster (PN)  9  5 

42. Lamberts Bay (LB)  8  5 

43. Strandfonteinpunt (SF)  12  2 

44. Groensreviersmond (GR)  8  6 

45. Hondeklipbaai (HN)  4   

46. Port Nolloth (POB)  10  5 
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2.2.3. DNA extraction, amplification and sequencing 

 

The procedure for DNA extraction, amplification (polymerase chain reaction; PCR) and 

sequencing followed that of Williams et al. (2003) with minor modifications (see below).  

 

2.2.3.1. DNA extraction  

 

Total genomic DNA was extracted from the whole specimens using CTAB buffer and chloro-

phenol extraction method described by Doyle and Doyle (1987) with minor modifications. In 

brief, individual snails were taken from the fixative, gently cracked-open to remove whole 

tissues, and rinsed in double distilled water (ddH2O) to remove excess ethanol and shells. 

Tissues were blot-dried on paper towel, placed in Eppendorf tubes containing 1mL of CTAB 

(consisting of 0.1M Tris-HCl pH 8.0, 1.4M NaCl, 0.002M EDTA, 2% CTAB, and 1% PVP) 

extraction buffer pre-heated at 60°C, ground with a plastic pestle, and later incubated 

overnight at 52°C with 20µl of Proteinase K.  

 

The mixture (extraction buffer and tissues) were further ground using a plastic pestle and 

mortar, with 1 drop of 0.2% 2-mercaptoethanol added just before use. Thereafter, about 

500µl of chloroform: isoamyl alcohol (CIA; 24: 1; v/v) was added, vortexed or shaken 

vigorously to mix, centrifuged for 1.5 minutes at 14400 g, after which an aliquot of 600µl of 

the top (aqueous) layer was pipetted into a new, clearly labelled Eppendorf tube. Then, 400µl 

of ice cold isopropanol was added, the Eppendorf tube was gently rotated to mix, and left to 

stand in the freezer for about 10 minutes. The contents were centrifuged for 10 minutes at 

9200 g, and the supernatant decanted, leaving the pellet of precipitated DNA. The pellets 

were washed with 750µl of 70% ethanol, air-dried in a fume hood, and finally the pellet (i.e. 

DNA) was resuspended in 50-300µl ddH2O. The extracts were screened for the presence of 

DNA with a GelVue UV Transilluminator GVM20 on 1.5% agarose gel using Ethidium 

Bromide and SYBR® Green I as an indicator where necessary. 
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2.2.3.2. DNA amplification (PCR) and purification 

 

Portions of mtDNA (mtCOI) and nuclear (28S rRNA) genes were amplified in 50µl reaction 

containing 5-10µl of DNA template, 0.1µM of primers (forward and reverse; see Table 2.2), 

200µM of deoxyribonucleotide triphosphates (dNTPs), 5µl of 25 mM Magnesium chloride 

(MgCl2), 5µl of 10x Buffer solution (NH4), 24-29µl of ddH2O, and 0.1µl of enzyme 

(BIOTAQ® or Go AmpliTaq DNA polymerase), with 0.8µg of bovine serum albumin (BSA) 

added and overlayed with mineral oil where necessary. The PCR amplifications were 

conducted on a ThermoHybaid Sprint Temperature Cycling System, PC – 960G Gradient 

Thermo Cycler or AB Applied Biosystems 2720 Thermo Cycler. PCR reactions were 

performed as follows: an initial denaturation for 3 min at 95 °C, followed by 35 cycles of 45s 

at 94 °C, 30s at a gene-specific annealing temperature (48-50 °C for mtCOI, and 50-52°C for 

28S rRNA), 2-3 minutes at 72 °C, with a final extension of 10 min at 72 °C at the end of PCR 

run.  

 

The final PCR products were visualised on agarose gel (see above), and successful PCR 

products were then purified using commercially purchased cleanup kits (Qiagen© 

QIAquickTM or Promega PCR PrepsTM) according to the manufactures‟ instructions.  

 

Since the primers for mtCOI and 28S rRNA used by Williams et al. (2003) were not 

successful in amplifying most of the samples, specific internal primers (see Table 2.2) were 

designed from a few aligned sequences initially obtained (this study and GenBank; Williams 

et al., 2003) using the primer designer software CLM Main Workbench 6.7 (CLC Bio). In 

addition, the crustacean primer (Decap CO1- R; see Table 2.2) was also useful in amplifying 

some of the samples (from the northern part of east coasts or subtropical region) which did 

not amplify with either universal or internal primers. The details of all primers used are 

presented in Table 2.2. 
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Table 2.2. Table showing the details of primers [forward (F) and reverse (R)] used to amplify and sequence mtCOI and 28S rRNA gene 

fragments. 

 
Marker 
 

 
Primer 
 

 
Primer Sequence  
 

 
Source/Author 
 

mtCOI HCO 2198 (R) TAA ACT TCA GGG TGA CCA AAA AAT CA Folmer et al., 1994 

LCO 1490 (F) GTT CAA CAA ATC ATA AAG ATA TTG G Folmer et al., 1994 

Decap CO1- R AAT TAA AAT RTA WAC TTC TTG Teske et al., 2006 

Afrolittorina black F TGG AAC CTT ATA TAT TTT ATT CGG This study 

Afrolittorina white F TGG AAC TTT ATA TAT TTT ATT TGG This study 

28S rRNA LSU5F TAG GTC GAC CCG CTG AAY TTA AGC A Littlewood et al., 2000 

LSU1600 R AGC GCC ATC CAT TTT CAG G Williams et al., 2003 

Afrolitt internal 1F AAC AGT TGA ACC CGC C This study 

Afrolitt internal 1R GCC TCT ATT CAT TCG CTT TAC C This study 
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2.2.3.3. Sequencing 

 

The clean, concentrated products were sequenced in 20µl reaction in either the forward or the 

reverse direction using 0.5µl of the same primers as used for PCR (see Table 2.2), 2µl of 

sequence mix, 4µl of 5x sequencing (Applied Biosystems Big Dye Terminator ver.3.1) 

buffer, 2-5µl of DNA and 12.5-8.5µl of ddH2O. The sequencing reactions were conducted on 

a ThermoHybaid Sprint Temperature Cycling System. Sequencing reaction was performed as 

follows: 5 min at 96 °C, followed by 25 cycles for 15s at 96 °C, 10s at 45°C, and 4 min at 60 

°C. The resulting sequence reaction products were precipitated with 50µl of 100% ethanol 

plus 2µl of 3M Sodium acetate acid (CH3COONa) and 2µl of 125mM EDTA, cleaned with 

150µl of 70% ethanol, and later sequenced in both forward and reverse direction.  

 

Electropherograms (i.e. trace files) were obtained using automated DNA Sequencer (ABI 

Prism 310; Applied Biosystematics) at Rhodes University‟s Sequencing Unit. See Appendix 

2.1 for few representative sequences. Complete and all data sets can be provided on request.  

 

2.2.4. Sequence editing and alignment 

 

The forward and reverse sequences were assembled, checked and edited using SequencherTM 

version 4.1 (Gene Codes Corporation), and aligned using McClade version 4.06 (Maddison 

and Maddison, 2000), with reference to GenBank sequences (Williams et al., 2003). 

Afrolittorina praetermissa and A. acutispira, which belong to the same genus as the study 

species were used as outgroups, and their sequences (mtCOI and nuclear 28S rRNA) were 

extracted from the GenBank database (Williams et al., 2003).  

 

The alignments were edited and formatted into different files for different phylogenetic 

analyses using DAMBE version 5.3.8 (Xia and Xie, 2001).  
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2.2.5. Phylogenetic and phylogeographic analyses 

 

Data or nucleotide sequences were then used to construct phylogenetic trees using Maximum-

Likelihood (ML) and Maximum-Parsimony (MP) analyses. At this time, only unique 

sequences were used for phylogenetic analyses. Data sets were analysed independently as 

well as in combination in the case of samples with sequences from both markers. For the 

combined data set, ML analysis was conducted in a partitioned fashion, with parameters for 

each gene (mtCOI and 28S rRNA) optimized independently.  

Maximum parsimony (MP) analyses were conducted using PAUP* version 4.0b10 

(Swofford, 2002). The characters were equally-weighted. The Heuristic search and tree 

bisection reconnection (TBR) plus branch-swapping option were selected as the criteria to 

reconstruct phylogenetic tree. The node support was assessed using bootstrap values which 

were determined using non-parametric bootstrapping with 1000 pseudo-replicates 

(Felsenstein, 1981). The Maximum likelihood (ML) phylogenetic reconstruction was 

conducted using RAxML HPC version 7.2.6 (Stamatakis, 2006). Gaps were treated as 

missing data and uncertainties as polymorphic characters. The program utilises the GTR + I + 

G substitution model and 1000 bootstrap replicates were run to generate likelihood support 

values for the branch nodes. The ML trees were all rooted using Afrolittorina acutispira 

which is the member of the same genus as South African species (Williams et al., 2003).  

 

2.2.6. Genetic diversity analysis 

 

Genetic heterogeneity was calculated using the software package DnaSP version 5.00.07 

(Librado and Rozas, 2009). A partial fragment of the mtDNA COI was used to compare the 

levels of genetic heterogeneity within Afrolittorina spp., and for each species, the input data 

set comprised 1-25 samples from different populations (see Table 2.1). The levels of genetic 

heterogeneity were estimated for the following standard molecular indices (Nei, 1987): 

number of samples (n), number of haplotypes (k), average nucleotide difference (II), 

polymorphic sites (S), haplotype diversity (Hd) and nucleotide diversity (π). Neutrality tests 

were calculated using Fu and Li‟s D (Fu and Li, 1993) statistics.  
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2.3. Results 

 

2.3.1. Sequence characteristics 

 

The details of both the mtCOI and the 28S rRNA data sets used to reconstruct phylogenetic 

trees are presented in the table below (Table 2.3). 

 

Table 2.3. Tables showing the details of mtCOI and 28S rRNA data sets used to reconstruct 

phylogenetic trees. 

Data set Ingroup taxa Final alignment length 

in base pairs (bp) 

Number of variable 

characters 

mtCOI 

 

65 615 56 

28S rRNA 

 

62 745 6 

 

 

2.3.1. Phylogenetic and phylogeography of Afrolittorina species 

 

There were differences in the phylogenetic trees recovered by the two markers; the mtCOI 

data set produced clearer, well-resolved (shown by strong nodal support) trees than 28S 

rRNA data set (see Fig. 2.2-2.5). However, this was not significant since 28S rRNA data set 

had only 6 variable characters compared to mtCOI which had 56 variable characters (see 

Table 2.3).  

The ML and MP trees reconstructed using the mtCOI data set recovered two major clades 

which conformed to A. africana and A. knysnaensis (see Fig. 2.2 and 2.4), both with a strong 

node support of 100%. On the other hand, the ML and MP phylogenetic reconstruction of 
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28S rRNA data set revealed different phylogenetic tress (see Fig. 2.3 and 2.5). Except for a 

few samples, the MP tree recovered two major clades (with 90 and 96% node support each) 

that conformed to A. africana and A. knysnaensis (see Fig. 2.3), while the ML tree did not 

produce such clear clades as shown by weak node support (see Fig. 2.5).  

 

Apart from two A. africana outliers that clustered within the A. knysnaensis clade (see Fig. 

2.6), the ML tree reconstructed using the combined data sets also recovered two major clades 

which conformed to A. africana and A. knysnaensis (see Fig. 2.6), both with strong support of 

100%. 

 

2.3.3. Genetic diversity of Afrolittorina species 

 

The results of the genetic diversity indices and neutrality test are presented in the Table 2.4. 

There was a difference in the genetic diversity indices between the two species, with A. 

africana showing significantly higher values than A. knysnaensis (see Table 2.4). In addition, 

both species showed low haplotype and nucleotide diversity (see Table 2.4).  

 

For A. africana, 221 individuals from 29 sites revealed a total 31 haplotypes. The dominant 

haplotype (H1 with 154 individuals) was found at almost all sites, followed by H10 with 14 

individuals, H9 with 7 individuals sampled at several sites, site-restricted H24 and H1 with 3 

individuals, H5, H11 and H17 two of which are site-restricted, and the remaining site-

restricted 23 haplotypes had one individual each.  

 

Likewise for A. knysnaensis, 254 individuals from 37 sites revealed a total 22 haplotypes. 

The dominant haplotype (H1 with 228 individuals) occurred in almost all sites, followed by 

H15 with 3 individuals, H3 (site-restricted), H5 and H9 which each had 2 individuals, and the 

remaining site-restricted 17 had one individual each. The Fu and Li‟s neutrality test revealed 

unexpected significant variation (p < 0.002) amongst haplotypes of both species (see Table 

2.4).  
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Figure 2.2. Maximum parsimony (MP) tree based on 615 base pairs of 39 and 24 unique [see 

Appendix 2.2 for list of samples with plus (+) sign] mtCOI sequences including reference 

sequences of A. africana and A. knysnaensis plus outgroups, A. praetermissa and A. 

acutispira. Solid lines indicate grouping according to species (blue for A. africana and black 

for A. knysnaensis); dotted lines and squares indicate outliers. The values at the branch nodes 

indicate the maximum parsimony support base on 1000 replicates.  
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Figure 2.3. Maximum parsimony (MP) tree based on 745 base pairs of 34 and 24 unique [see 

Appendix 2.2 for list of samples with plus (+) sign] 28S rRNA sequences including reference 

sequences of A. africana and A. knysnaensis plus outgroups, A. praetermissa and A. 

acutispira. Solid lines indicate grouping according to species (blue for A. africana and black 

for A. knysnaensis); dotted lines and squares indicate outliers. The values at the branch nodes 

indicate the parsimony likelihood support base on 1000 replicates.  
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Figure 2.4. Maximum likelihood (ML) tree based on 615 base pairs of 39 and 24 unique (see 

Fig. 2.2) mtCOI sequences including reference sequences of A. africana and A. knysnaensis 

as well as A. praetermissa plus A. acutispira as an outgroup. Solid lines indicate grouping 

according to species (blue for A. africana and black for A. knysnaensis); dotted squares 

indicate outliers. The values at the branch nodes indicate the maximum likelihood support 

base on 1000 replicates.  
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Figure 2.5. Maximum likelihood (ML) tree based on 745 base pairs of 34 and 24 unique (see 

Fig. 2.3) 28S rRNA sequences including reference sequences of A. africana and A. 

knysnaensis as well as A. praetermissa plus A. acutispira as an outgroup. Dotted lines 

indicate grouping according to species (blue for A. africana and black for A. knysnaensis). 

The values at the branch nodes indicate the maximum likelihood support base on 1000 

replicates.  



45 
 

 

Figure 2.6. Maximum likelihood (ML) tree based on 1360 base pairs of 366 combined mtCOI 

and 2S rRNA sequences including reference sequences of A. africana and A. knysnaensis as 

well as A. praetermissa plus A. acutispira as an outgroup. Solid lines indicate grouping 

according to species (blue for A. africana and black for A. knysnaensis); dotted line and 

square indicate outliers. The values at the branch nodes indicate the maximum likelihood 

support base on 1000 replicates. 
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Table 2.4. Table showing the results of the genetic diversity indices and neutrality tests for both species. Number of samples (n), number of 

haplotypes (k), average differences (II), Polymorphic sites (S), haplotypes diversity (Hd), nucleotide diversity (π) Fu and Li‟s D statistics. * and 

** indicate significant (p < 0.002 and 0.05) differences.  

Species Region n k 

 

II S Hd π Fu and Li’s D 

A. africana All 221 31 0.589 29 0.463 0.00096 -6.28583** 

 Subtropical 133 22 0.572 21 0.443 0.00094 -5.30171** 

 Warm 77 12 0.651 12 0.502 0.00106 -2.69725* 

         

A. knysnaensis All 254 22 0.236 21 0.194 0.00039 -6.18791** 

 Warm 159 18 0.289 19 0.225 0.00048 -6.58457** 

 Cool 89 7 0.157 6 0.152 0.00026 -3.57932** 
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2.4. Discussion and conclusions 

 

Even though the phylogeny of the two southern African Afrolittorina spp. is known (Hughes, 

1979; Reid, 1989; 2002; Williams et al., 2003; Reid and Williams, 2004; Reid et al., 2012), it 

is not clear if the two species are distinct species or subspecies. Thus, there is controversy on 

the classification system of the family Littorinidae, and the two Afrolittorina spp. are among 

those affected. Previous classifications have grouped them within the genera Littorina (see 

Hughes, 1979 and references herein) and Nodilittorina (Reid, 1989; 2002), respectively. But 

the most recent classification has described them under the new genus Afrolittorina (Williams 

et al., 2003; Reid et al., 2012).  

 

Both morphological characteristics and molecular techniques have been used to shed light on 

their classification, but this has resulted in further confusion. Hughes (1979) suggested that 

the two Afrolittorina spp. are a single species which differs in its morphological appearance, 

and represents a cline which shows a gradual change in colour pattern along its distribution 

range. This was based on the lack of differences in morphology (shell shape and size) and 

habitat (occurs in the eulittoral zones and fringe), range of colour morphs and latitudinal 

distributions (overlaps in the warm temperate region and southern part of subtropical region). 

In contrast, Rosewater (1970), Reid (1989; 2002), Williams et al. (2003) and Reid et al. 

(2010) suggested that the same two species are distinct species based on morphological and 

DNA sequence data, respectively.  

 

The results of this study confirmed that these are two distinct species, with the brown to black 

A. knysnaensis predominant in the cool-temperate region and the pale blue-grey A. africana 

in the subtropical region. This is largely consistent with the current taxonomy (Williams et 

al., 2003; Reid and Williams, 2004; Reid et al., 2012). Thus, both data sets support previous 

suggestions that the two southern African Afrolittorina spp. are genetically distinct species, 

eliminating the subspecies dilemma and the possibility of a single species cline as suggested 

by Hughes (1979). Although the mitochondrial (mtCOI) sequence data showed strong 

support (complemented by the combined sequence data) for the distinction of the two species, 
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the nuclear (28S rRNA) data showed weak support which might be the result of difficulties of 

working with this marker. Nevertheless, the results support a strong argument for a close 

phylogenetic relationship between these two distinct Afrolittorina species. 

 

The results also show no evidence of a genetic basis for the range of colour morphs found 

within the two species distribution ranges, suggesting no past or ongoing hybridization 

between natural populations of Afrolittorina spp. Instead, colour morphs from the east and 

southeast coasts were A. africana while those from the west and southwest coasts were A. 

knysnaensis. Thus, specimens with unusual or intermediate colouration were not hybrids, but 

rather phenotypic variants of either species. This suggests that either environmental 

conditions (e.g. temperature gradients or substratum colour) might be responsible for the 

range of colour morphs. In fact, in the lab colour morphs from the east coast changed to 

„white‟ (i.e. A. africana) after long storage with the fixative. Future studies should focus on 

the cause of the variation of colours in Afrolittorina spp., which could represent either genetic 

polymorphism or phenotypic plasticity. Transformation experiments of marked juveniles 

could verify the hypothesis of environmental conditions as a cause of phenotypic plasticity.   

 

It is known that phenotypes of gastropods, including littorinids, can become genetically 

adapted or plastically changed in response to environmental factors (see Fevolden and 

Garner, 1987; Johannesson et al., 1993; De Wolf et al., 1997; Trussell and Etter, 2001; 

Johannesson, 2003; Rolán-Alvarez, 2007; Teske et al., 2007c, d; Azuma et al., 2011; etc). 

This means that phenotypes can be determined solely by the genotype of a species or by the 

interaction between genes and the environments (see Pigliucci, 1996; Soares et al., 1998; 

1999 and references herein). Pigliucci et al. (2006) suggested that individual genotypes can 

produce different phenotypes (i.e. morphs) each fitted for different environmental condition 

when exposed to different environmental conditions. This allows species or populations to 

live in different habitats (e.g. biogeographic regions) (see Laudien et al., 2003). Several field 

and laboratory studies on littorinids reported morphological (e.g. shell colour, size and shape) 

clines in animals of the same species from different habitats, thus environmental gradients 

(see Rolán-Alvarez et al., 1997; Johnson and Black, 1999; Sokolova and Berger, 2000; 

Wilding et al., 2001; Kurihara et al., 2006; Quesada et al., 2007; Cuña et al., 2011; Silva et 

al., 2013). Phifer-Rixey et al. (2008) documented replicated clines in shell colour morph 
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frequencies in the flat periwinkle Littorina saxatilis over thermal gradients at two spatial 

scales, which had effects on shell temperature.  

 

Although this study shows no evidence of hybridization between the two species, 

hybridization hypotheses might be plausible based on existing knowledge. A. africana and A. 

knysnaensis co-exist along the warm temperate region where they even occupy the same 

microhabitats without any physical or ecological barriers separating the two species (pers. 

obs.; McQuaid and Scherman, 1988; McQuaid, 1992; d‟Errico et al., 2008). Studies on 

littorinids and other marine animals provide evidence of interspecific hybridization and/or 

introgression, especially when closely related (sister) species or ecotypes co-exist or live in 

sympatry (see below; Brown, 1995; Rawson et al., 2003; Nydam and Harrison, 2011; Zardi et 

al., 2011). Both field and laboratory studies on littorinid snails, especially on species or 

ecotypes of the genus Littorina have shown hybridization and/or introgression (De Wolf et 

al., 1998; Erlandsson et al., 1999; Wilding et al., 2001; Rolán-Alvarez, 2007). Mikhailova et 

al. (2009) found evidence of possible hybridization between natural populations of the sibling 

species Littorina saxatilis and L. arcana living in sympatry. This is supported by the 

laboratory results of Warwick et al. (1990) where females of L. arcana hybridized (even 

though the frequency of viable offspring was lower than either of the parental crosses) with 

males of L. saxatilis.  

Sharing of mtDNA COI haplotypes between co-exiting species has also been suggested to be 

a consequence of either persistent hybridization or episodes of hybridization, or incomplete 

lineage sorting of ancestral polymorphs (Small and Gosling, 2000; Wilding et al., 2000a; 

2001; Azuma et al., 2011; Díaz- Ferguson et al., 2012). For example, the lack of 

mitochondrial divergence between Littorina fabalis and L. obtusata led Kemppainen et al. 

(2009) to suggest that there might be some degree of incomplete lineage sorting or 

introgressive hybridization between these species.  

 

Other studies have shown no evidence of hybridization and/or introgression, and explain this 

as the results of prezygotic (e.g. mate choice and gamete incompatibility) or postzygotic (e.g. 

unfit hybrids) reproductive barriers to gene flow (Saur, 1990; Johannesson et al., 1995; 

Erlandsson et al., 1999; Johannesson, 2003; Rawson et al., 2003; Rolán-Alvarez, 2007; 



50 
 

Slaughter et al., 2008; Addison and Pogson, 2009). For example, Johnson (1999) suggested 

that size assortative mating observed between individuals of Littorina neglecta and its 

congener L. saxatilis may have acted as a prezygotic barrier to reproduction between these 

species. Field and laboratory studies on ecotypes (H and M) of Littorina saxatilis have shown 

that morphs from different shores and microhabitats mate assortatively, but produce unfit 

hybrids (Hull et al., 1996; Erlandsson and Rolán-Alvarez, 1998; Hull, 1998; Pickles and 

Grahame, 1999; Rolán-Alvarez et al., 1999; Quesada et al., 2007). In fact, where 

hybridization occurs and hybrids are produced, they occur in low frequencies leading to the 

suggestion that there is no hybridization.  

 

If true, the explanation for the lack of hybridization (i.e. hybrids) in Afrolittorina spp. could 

be due to differences in reproductive systems (e.g. penis structure; Reid, 1989; Reid and 

Williams, 2004), behavioural barriers (e.g. mate choice; not yet investigated) or that they can 

hybridize but produce unfit offspring. In addition, the divergence time (about 10-47 Ma; see 

Williams et al., 2003) as suggested (see Kemppainen et al., 2009) might also explain the lack 

of hybridization or introgression between these two species; but see Nydam and Harrison 

(2011). Further investigations using different markers (e.g. microsatellites) as well as field 

and laboratory studies could help to clarify if there is interspecific hybridization or speciation 

in Afrolittorina spp. Microsatellites have been instrumental in identifying hybrids or the 

possibility of interspecific hybridization in littorinids and other marine animals (Wilding et 

al., 2002; Panova et al., 2006; Kemppainen et al., 2009), and can be useful in this regard. 

 

Although most studies on the phylogeography of South African marine invertebrates and 

fishes have shown that phylogeographic breaks within and among taxa often coincide with 

known biogeographic boundaries, there are some deviations (Teske et al., 2006; 2007a, b, c; 

2008; 2009; 2011a; von der Heyden, 2007; 2008; 2009; 2011; 2013; Mmonwa, 2009; 2013 

unpub. data; etc). This shows that the prevailing biogeographic boundaries do not affect the 

phylogeography of different marine animals in the same fashion. In addition, given the 

species requirements for hard substrate (i.e. rocky shores), long stretches of sandy beaches 

and sand dunes (which can create unsuitable habitats for study species) found along their 

distribution ranges might promote population structure as in other animals (Teske et al. 2006; 

2008; Zardi et al., 2007; Mmonwa, 2009 unpub. data).  
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The results of this study show that there are no phylogeographic breaks or genetic structuring 

in the study species in contrast to other invertebrates which show phylogeographic patterns 

and/or breaks that coincide with recognised biogeographic boundaries or limits (see above). 

The data revealed complete genetic homogeneity across the species distribution ranges, 

suggesting high levels of gene flow as a result of the effect of prevailing currents on larval 

dispersal. Thus, the accepted southern African biogeographic boundaries seem to have no 

impact on the phylogeography of the two littorinid snails examined; in contrast to what has 

been found in other coastal invertebrates. In fact, biogeographic boundaries may have strong 

or weak effects on the phylogeographic patterns of different species, and this can also depend 

on the species‟ mode of dispersal (see Teske et al. 2006; 2011a). Afrolittorina spp. are 

believed to have planktonic larval stages (see below), and as such are expected to show no 

phylogeographic patterns as seen in this study.  

 

To my knowledge, this is one of few findings (Grant et al., 1992; Soares et al., 1999; Tolley 

et al., 2005; Gopal et al., 2006; Neethling et al., 2008; Bester-van der Merwe et al., 2011) 

where little or a complete lack of structure or break has been shown. Oosthuizen et al. (2004) 

found a single haplotype in the octopus, Octopus vulgaris populations from the east and west 

coast of South Africa. Ridgway et al. (1999) found genetic homogeneity in the bearded 

limpet Patella barbara along the west and east coasts of South Africa. Grant and da Silva-

Tatley (1997) found a remarkable genetic similarity in populations of the sandy beach whelk 

Bullia digitalis over 2400 km of the coastline. Generally, these studies show that planktonic 

eggs and larvae are important in maintaining such genetic homogeneity. Similar results, thus 

lack of structure and/or breaks have been reported in other littorinids (see Reid et al., 2006). 

Kim et al. (2003) found lack of genetic structure among populations of the widely distributed 

littorinid, Littorina brevicula around Korean waters. Silva et al. (2013) found low genetic 

differentiation in two littorinids, the rocky shore Littoraria glabrata and the mangrove L. 

scabra, along the East African coast.  

 

In addition, these species showed low genetic variation within their distribution ranges as 

shown by the occurrence of the dominate haplotype and less private haplotypes, suggesting 

high larval gene flow in these species. Thus, the current study found low levels of haplotype 

and nucleotide diversity in both species, even though the neutrality test revealed significant 
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difference between haplotypes found within species distribution ranges. The 

subtropical/temperate A. africana was characterised by higher level of haplotype and 

nucleotide diversity compared to its temperate congener A. knysnaensis, and this might reflect 

differences in their ecology rather than their life history since they are predicted to have 

similar larval development (see below). Thus, the explanation for higher genetic diversity in 

A. africana as compared to A. knysnaensis may indicate that genetic heterogeneity as an 

adaptive strategy to heat stress as suggested in other studies (Noy et al., 1987; Ward, 1990; 

Hawkins, 1995; Schmidt et al., 2007). This means that the higher heat tolerance (see Chapter 

3-5) in A. africana has elicited higher genetic diversity to increase its fitness in heterogeneous 

conditions in the subtropics.  

 

The study species are believed to be pelagic spawners with planktotrophic larvae which can 

disperse long distances with the help of currents, inhibiting genetic structuring. Although the 

duration of the planktonic larvae stage of these species is not known, it is believed that they 

have long phases of planktonic development which result in high gene flow, thus less genetic 

variation across their distribution range. In addition, both species are thought to breed 

throughout the year, and this can help to prevent the effect of seasonal variation in currents 

on larval dispersal. A previous study by Grant and Lang (1991) also found low genetic 

(allozyme) variation on a geographical scale in the population genetics of A. knysnaensis. 

However, there are no other studies which have investigated the phylogeographic patterns of 

littorinids from South Africa.  

The low genetic variation found in this study supports the idea that the mode of development 

in the study species is planktonic. Grant and Lang (1991) suggested that the mode of 

development in A. knysnaensis is planktonic after finding low allozyme variation on a 

geographical scale. The findings of McQuaid (1981) on the eggs (about 87 µm) size of A. 

knysnaensis further supported the idea of planktonic development in this species. The 

dimensions of the protoconch and the large capsule gland of the two species (see Reid, 1989; 

Reid and Williams, 2004) again suggest that they have planktonic development.  

 

There is still a need to investigate the phylogeography and population genetics of 

Afrolittorina spp., and other littorinids found along the South African coastline. Both nuclear 
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and mitochondrial „neutral‟ or unlinked markers such as microsatellites, introns, internal 

transcribed spacers, etc. can be useful in this regard. Thus, to have an accurate picture of 

phylogeography and population structure within a group, both nuclear and mitochondrial 

„neutral‟ markers are needed. These markers, especially microsatellites, have been widely 

used in phylogeographic and population genetic studies of invertebrates, including littorinids 

(Wilding et al., 2000b; Sokolova et al., 2001; 2003; 2004; Simpson et al., 2005; Teske and 

Beheregaray, 2009; Zhan et al., 2009; Zulliger et al., 2009; etc). However, microsatellites 

have limitations such as the time and effort required for the isolation and characterization, the 

failure of cross-species amplification, which depends on the phylogenetic distance between 

source and target species, and the fact that as yet, they are scarce and incomplete, and for 

many taxa totally absent (see Winnepenninckx and Backeljau, 1998; Sokolova et al., 2001; 

2004; Panova et al., 2008). Therefore, most researchers working at phylogeographic and/or 

population genetic levels have exclusively used and/or are still using mitochondrial DNA 

sequences (see Wilding et al., 2000b; Teske and Beheregaray, 2009; Panova et al., 2011; 

Teske et al., 2011a, b, c) as in the case in this study.  

 

In summary, the results show that there are two distinct species, with a brown to black A. 

knysnaensis predominant in the cool-temperate region and a pale blue-grey A. africana in the 

subtropical region. These results support the previous morphological and recent molecular 

distinction of the two species (Reid, 1989, 2002; Williams et al., 2003; Reid and Williams, 

2004; Reid et al., 2012). The data also show no evidence of a genetic basis behind the colour 

morphs as the intermediate morphs clearly grouped as one species or the other. This suggests 

the absence of either past or ongoing interspecific gene flow (hybridization) and/or speciation 

in these species. Thus, it is probable that there are reproductive barriers preventing the gene 

pools of the two species amalgamating or mixing. Therefore, it is possible that the cause of 

different colour morphs within each species is the result of the conditions (i.e. phenotypic 

plasticity) in their microhabitats. Furthermore, there was low genetic variation within each 

species, suggesting that there is high gene flow among populations; supporting the suggestion 

of planktonic development in these species. This is in agreement with previous 

phylogeographic studies of South African marine taxa, where species with planktonic larva 

showed low genetic variation compared to those with non-planktonic larva. Thus, high 

dispersal of planktonic larvae coupled with the effects of dispersal by currents results in low 

genetic diversity as there is high gene flow among populations.  
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CHAPTER 3. Thermal tolerance of littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from temperate and subtropical 

regions of South Africa 

 

3.1. Introduction 

 

The effects of temperature and desiccation on the behaviour, survival and physiological 

performance of animals, and the subsequent influence of physiological tolerances or 

adaptations to temperature and desiccation on the distribution and abundance of animals have 

been extensively studied (see Evans, 1948; Vernberg, 1959; McMahon, 1990; Bertness et al., 

1999; Menge et al., 2007; Sokolova et al., 2012). This is because temperature and/or 

desiccation are among the most important environmental factors that affect the distribution 

and abundance of marine, estuarine and open sea animals, particularly ectotherms (see Huey 

and Stevenson, 1979; McQuaid and Branch, 1984; Segnini de Bravo et al., 1998; Muñoz et 

al., 2005; Chan et al., 2006; Iacarella and Helmuth, 2012).  

 

Environmental temperature affects an animal‟s performance (including activity) and fitness 

(including survival) through its effect on body temperature (see Cornelius, 1972; Huey and 

Kingsolver, 1989, 1993; Angilletta Jr. et al., 2002; Martin and Huey, 2008; Pincebourde et 

al., 2008). This is because physiological performance increases with temperature until 

declining above optimum or near lethal temperatures (see Clarke, 1993a; Huey and Berrigan, 

2001; Peck et al., 2007; Ivanina et al., 2009; Tattersall et al., 2012). On the other hand, 

desiccation too affects the behaviour (i.e. activity) and physiology of animals (see Stillman 

and Somero, 1996; Lang et al., 1998; Bates and Hicks, 2005) through its effects on body 

water and gaseous exchange (see Sandison, 1967; Shick et al., 1988; McMahon, 1990; 

Stenseng et al., 2005; Gardeström et al., 2007). Thus, temperature and desiccation are critical 

structuring forces for animal populations, especially intertidal ones.  
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Various field and laboratory studies show that the distribution and abundance (vertically or 

horizontally) of intertidal animals are influenced by a wide variety of physical (abiotic) and 

biological (biotic) factors. These include abiotic factors such as temperature, salinity and 

wave action, which can be modified by complex topography (see Connell, 1961; Wallace, 

1972a; Wolcott, 1973; McMahon and Britton, 1991; Chapman and Underwood, 1994; 1996; 

Kaehler and Williams, 1996; 1997; Boulding and Harper, 1998; etc) and biotic factors such 

as competition, predation and food availability (see Connell, 1961; 1972; Menge, 1976; 

Underwood and McFadyen, 1983; Little and Williams, 1989; Jones et al., 1994; Duncan and 

Szelistowski, 1998; Chapman, 2000; Rochette and Dill, 2000; Burnaford, 2004; etc). These 

abiotic and biotic factors, either alone or in synergy, determine the distribution and 

abundance of animals in the intertidal (see Etter, 1988; Bustamante and Branch, 1996; 

Bustamante et al., 1997; Soto and Bozinovic, 1998; Dahlhoff et al., 2002).  

However, abiotic factors have a greater effect on the distribution of high shore organisms 

than biotic interactions. Therefore, it is generally accepted that abiotic factors set species‟ 

upper limits while biotic factors set the lower limits (see Wethey, 1984; Britton, 1992; 

Yamada and Boulding, 1996; Harley and Helmuth, 2003; Miller et al., 2009; Perez et al., 

2009; Lima et al., 2011). Because of the profound effects of environmental conditions, 

physiological adaptations (e.g. thermal tolerance, metabolic adjustments, heat shock protein 

production, etc) are critical in setting the distribution patterns and limits of intertidal 

organisms (see Stillman and Somero, 1996; 2000; Tomanek and Somero, 2000; Somero, 

2002; 2005; 2010; Tomanek, 2002; 2008; 2010; Madeira et al., 2012b, c; etc).  

 

Temperature and desiccation are the two main factors that affect distribution and abundance 

of littorinids and other intertidal gastropods (see below). This is because many littorinids live 

highest on the shore where they experience long period of exposure, and thus temperature 

and desiccation stress during low tides. In fact, some are supralittoral and can be exposed to 

aerial conditions for weeks or months (see Jones and Boulding, 1999; Backeljau et al., 2001; 

Muñoz et al., 2008; Lee and Boulding, 2010; Marshall and McQuaid, 2010; Judge et al., 

2011). In addition, the degree and duration of environmental stresses increase from low to 

high shore levels (see Suryanarayanan and Nair, 1979; McMahon and Wilson, 1981; 

McMahon, 1990; Menge et al., 2007; Muñoz et al., 2008). At high shore levels, aerial 
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conditions may not only become more extreme but are also characterized by high temporal 

instability.  

 

As a result of their regular exposure to temperature and desiccation stress, littorinids and 

other intertidal animals have developed various survival strategies. When heat and 

desiccation stress increase, mobile animals actively choose suitable microhabitats and escape 

from unfavourable conditions (see McMahon, 1990; Britton and Morton, 2003; Harley et al., 

2009; Chapperon and Seuront, 2011a, b; Judge et al., 2009; 2011). Shelled gastropods can 

withdraw into the shell and isolate themselves inside by tight closure of the shell aperture 

with their operculum (see Reese, 1969; Garrity, 1984; McMahon, 1990; Jones and Boulding, 

1999; Iacarella and Helmuth, 2011). These behavioural responses are also evident in other 

intertidal molluscs and crustaceans (see Barnes et al., 1963; Garrity, 1984; McMahon, 1990; 

Williams and Morritt, 1995) and limit exposure of the animal to adverse environmental 

conditions. In the case of snails, withdrawal into the shell can be used to minimise physical 

contact with the substratum, thus reducing heat uptake.  

Other behavioural thermoregulation mechanisms include evaporative and convective cooling 

(see Lewis, 1963; Britton and Morton, 2003; Marshall and Chua, 2012), formation of 

aggregations (see Reese, 1969; Feare, 1971; Soto and Bozinovic, 1998; Stafford et al., 2007; 

2008; but see Stafford and Davies, 2004; Chapperon and Seuront, 2012), use of sheltered 

microhabitats such as crevices, cracks and biogenics (see Atkinson and Newbury, 1984; 

Britton, 1995; Stafford and Davies, 2004; Judge et al., 2009; Cartwright and Williams, 2012), 

orientation of the shell to avoid direct exposure to sunlight (see McMahon, 1990; 2001b; 

Marshall and Chua, 2012; Marshall and Ng, 2013), removing the foot from the substratum 

and attachment of the shell by a mucus thread to reduce contact with the substratum (see 

McMahon, 1990; Emson et al., 2002), and restricting activity to periods of reduced stress 

(Lang et al., 1998; Emson et al., 2002; Bates and Hicks, 2005; Cartwright and Williams, 

2012), amongst others.  

 

When conditions become too harsh, some animals, including some littorinids, can enter a 

dormant state (i.e. aestivation) (see McMahon, 1990; Emson et al., 2002; Judge et al., 2011) 

during which they depress their metabolic rate and enter a new hypometabolic state, which 
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extends the time an animal can survive on stored energy supplies (see Sokolova and Pörtner, 

2001b; Pörtner, 2002b; Storey, 2002; Anestis et al., 2007; Sokolova et al., 2012). Other 

animals, such as bivalves, switch to anaerobic metabolism, which although highly inefficient 

and costly, allows the animal to close off (e.g. through valve closure) from the external 

environment to avoid deleterious conditions (Widdows et al., 1979; Storey and Storey, 1990; 

Anestis et al., 2007; Nicastro et al., 2010). Because heat stress is often linked to desiccation 

(see Ottaway, 1973; McMahon, 1990; Bustamante et al., 1997), metabolic adjustments can 

include water conservation abilities and desiccation tolerance (see McMahon, 1988a; Britton, 

1992; 1993; Sokolova and Pörtner, 2001b; Ji et al., 2008). Other physiological adaptations 

include thermal regulation, tolerance and acclimation (see McMahon, 1990; Clarke, 1993a; 

Horowitz, 2001; 2002; Camacho et al., 2006), metabolic and heart rate adjustments (see 

McMahon, 1990; Horowitz, 2001; 2002; Sokolova and Pörtner, 2001b; Nguyen et al., 2011).  

 

Some species induce a so-called heat shock response, which gives rise to a strong and 

transient induction of genes responsible for the production of heat shock proteins and 

increases thermal tolerance (Feder and Hofmann, 1999; Pörtner, 2002b; Tomanek, 2002; 

Tomanek and Sanford, 2003; Finke et al., 2009). Other cellular level responses are increased 

heat stability of key metabolic enzymes (Hull et al., 1999; Stillman and Somero, 2001; 

Somero, 2004), modification of enzymes (Somero, 1978; 1995; 2004; Schmidt et al., 2007; 

Dong and Somero, 2009) as well as enzyme-substrate and enzyme-modulator interactions 

(Somero and Hochachka, 1968; Somero, 1969; Newell et al., 1980), higher mitochondrial 

density and capacity (see Sommer et al., 1997; Guderley and St-Pierre, 2002; Pörtner, 2002b; 

Fangue et al., 2009), and structural or membrane stability (see Somero, 2004; Rais et al., 

2010), a balanced suppression of energy demand and supply pathways (see Storey, 2002; 

Sokolova et al., 2012) and a decline in protein synthesis (Guppy and Withers, 1999; Somero, 

2002; Sokolova et al., 2012). There are also morphological adaptations such as shell size, 

shape, colour, presence of opercula and sculpturing and/or ornamentation (see Britton, 1995; 

Lang et al., 1998; Sokolova and Berger, 2000; Bates and Hicks, 2005; Harley et al., 2009).  

 

Thus, classically, two main strategies are used to survive heat and desiccation stress: 

behavioural and physiological, and during rapid increases in heat stress, animals may use 

behavioural, physiological or both types of adaptation. The importance of a behavioural 
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adaptation to thermal stress is that it can allow regulation of body temperatures as animals 

approach their physiological limits (see Huey and Kingsolver, 1989; Eshky and Ba-Akdhah, 

1992; Soto and Bozinovic, 1998; Angilletta Jr. et al., 2002; Miller and Denny, 2011; 

Cartwright and Williams, 2012). In fact, thermoregulatory behaviour is a homeostatic 

mechanism which tends to maintain internal temperatures favourable for physiological 

processes (see Díaz et al., 2002). Above the thermal limits for physiological associated 

locomotory behaviour and feeding, animals rely on physiological adaptations to tolerate or 

resist heat stress (see McMahon, 1990; Sokolova and Pörtner, 2001b; Horowitz, 2001; 2002; 

Miller and Denny, 2011). Physiological mitigation of heat stress is critical for most intertidal 

ectotherms since they are sessile or have low mobility (see McMahon, 1988a, b; 1990; Halpin 

et al. 2004; Zardi et al., 2011; Marshall and Chua, 2012).  

 

Thermal tolerance is among the most critical of physiological mechanisms and many studies 

have examined temperature tolerances or the effect of temperature on lethal limits of 

intertidal organisms, including littorinids as a way of understanding how animals tolerate 

their environment (see below). This is especially important given the current scenarios of 

future climate change (see Pörtner, 2002a, b; Helmuth et al., 2010; Somero, 2010; Madeira et 

al., 2012a, b). Thermal tolerance of intertidal organisms is commonly assessed from two 

attributes (traits); 1) heat coma temperature (HCT), at which neuromuscular coordination is 

lost but animals recover when temperature is lowered, and 2) median lethal temperature 

(LT50) following exposure to temperatures from which animals cannot recover (see below; 

McMahon, 1990; Clarke et al., 2002a, b, c; Díaz et al., 2002). Studies on thermal tolerance 

have established that it can differ for animals from different regions or latitudes, taxa, shore 

levels, habitats, etc. In general, tropical species show higher tolerances than their counterparts 

from subtropical and temperate regions, respectively. For example, within the genus 

Echinolittorina, thermal tolerances are high for tropical species followed by subtropical and 

temperate species or conspecifics (see Table 3.1). This is true for other snails/gastropods (see 

Table 3.1; Ansell and McLachlan, 1980; Backeljau et al., 2001; Sorte and Hofmann, 2005; 

Kuo and Sanford, 2009), bivalves (Compton et al., 2007; Morley et al. 2009; Zardi et al., 

2011), echinoderms (Byrne et al., 2010), tunicates/bryozoans (Sorte et al., 2011), and 

crustaceans (Vernberg, 1959; Stillman and Somero, 1999; Stillman and Tagmount, 2009; 

Kelley et al., 2011) as well as intertidal fish (Fangue et al., 2006; Madeira et al., 2012a).  
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Table 3.1. Heat coma (HCT) and lethal (LT50) temperatures of some littorinid snails of the family Littorinidae from tropical, subtropical and 

temperate regions.  

Taxon Distribution Tolerance 
temperatures (°C) 

Reference 

Genus Species Bioregion Vertical HCT LT50  
Echinolittorina E. malaccana Tropical Eulittoral fringe 46.8 59.0 Cleland and McMahon, 1986  

- 50.04 Lee and Lim, 2009 
   - 56.5 Marshall et al., 2011 
E. vidua Tropical Eulittoral to lower eulittoral 

fringe 
44.5 56.5 Cleland and McMahon, 1986  

- 48.1 Lee and Lim, 2009 
   - 54.7 Marshall et al., 2011 
E. peruviana Tropical/Temperate Eulittoral zones and  fringe 37 - Muñoz et al. 2005 
E. natalensis Subtropical Eulittoral fringe 37.2  56.4  This study 

Nodilittorina N. leucosticta Tropical Eulittoral fringe - 60.0 Suryanarayanan and Nair, 1979 
N. pyramidalis Tropical Littoral fringe 48.5 56.5 Stirling, 1982 

Littoral fringe 46.5 - Cleland and McMahon, 1986 
Eulittoral fringe 46.3 - McMahon, 2001b 

N. millegrana Tropical Littoral fringe 46.0 56.5 Stirling, 1982 
  N. exigua Tropical Littoral fringe 44.8 - Cleland and McMahon, 1986 

Eulittoral fringe 44.8 - McMahon, 2001b 
N. natalensis Tropical Littoral Fringe 46.0 53.5 Stirling, 1982 
N. unifasciata 
 

Tropical Eulittoral zones 41.3 - McMahon, 1990 
Eulittoral fringe 41.1 - McMahon, 2001b 

Littorina   L. undulata Tropical  Eulittoral zone - 55.0 Suryanarayanan and Nair, 1979 
  L. krausii Tropical Littoral fringe 45.0 53.0 Stirling, 1982 
 L. saxatilis Tropical/Temperate Littoral fringe 37 45 Evans, 1948 

32 40 Sandison, 1967 
Eulittoral fringe 38.2 - McMahon, 2001b 

35.0  Davenport and Davenport, 2005 
L. saxatilis “H” Tropical/Temperate Eulittoral fringe 31.52 41.3 Clarke et al., 2000b 

31.63/31.96 - Backeljau et al., 2001 
L. saxatilis “M” Tropical/Temperate Eulittoral fringe 31.72 43.8 Clarke et al., 2000b 

33.00/31.97 - Backeljau et al., 2001 
L. saxatilis “B” Tropical/Temperate Eulittoral zone 30.76 - Clarke et al., 2000b 
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L. arcana 
 

Tropical/Temperate 
 

Eulittoral fringe 
 

33.13/32.70 - Backeljau et al., 2001 
31.71 41.5 Clarke et al., 2000b 

L. compressa Tropical/Temperate Eulittoral fringe 34.16 - Backeljau et al., 2001 
L. littorea Tropical/Temperate Eulittoral 39 46 Evans, 1948 

Eulittoral zone 31 40 Sandison, 1967 
Eulittoral zone - 40-41 Fraenkel, 1960 
Eulittoral zone 30.16 43.8 Clarke et al., 2000b 
 33.43/31.48 - Backeljau et al., 2001 
Eulittoral 32.0 - McMahon, 2001b 
Eulittoral zone 35.3 - Davenport and Davenport, 2005 

L. fabalis Tropical/Temperate Eulittoral 30.60 - Clarke et al., 2000b 
Eulittoral zone 29.9 - Davenport and Davenport, 2005 

L. obtusata Tropical/Temperate Eulittoral zone 30.66 40.2 Clarke et al., 2000b 
 35.93/32.06 - Backeljau et al., 2001 
Mid Eulittoral zone 29.6 - Davenport and Davenport, 2005 
Lower eulittoral 28.3 - McMahon, 2001b 

L. brevicula Tropical Eulittoral zone 39.9 - Cleland and McMahon, 1986 
Eulittoral fringe 40.1 - McMahon, 2001b 

L. neglecta Tropical/Temperate Eulittoral zone 30.63 - Clarke et al., 2000b 
L. littoralis Tropical/Temperate Eulittoral zone 36 44.3 Evans, 1948 

30 40 Sandison, 1967 
L. neritoides Tropical/Temperate Eulittoral zone 38 46.3 Evans, 1948 

35 42 Sandison, 1967 
Littoraria L. glabrata Tropical/Subtropical Eulittoral fringe 37.4  53.8  This study 

Littoraria  spp. Tropical/Subtropical Eulittoral fringe - 47.5 Lee and Lim, 2009 
43.9 - McMahon, 2001b 

Afrolittorina A. africana Subtropical Eulittoral zone 35.3  51.4  This study 
Warm-temperate Eulittoral fringe 34.6  51.1  This study 

A. knysnaensis Warm-temperate Eulittoral fringe 32.8  50.1  This study 
Cool-temperate Eulittoral fringe 33.1  50.0  This study 
Cool-temperate Eulittoral fringe - 48.6 See Evans, 1948 

“H”, “M” and “B” represent high-shore, mid-shore and barnacle-dwelling ecotypes of L. saxatilis. HCT = heat coma temperature; LT50 = lethal 
temperature. 
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Likewise, eulittoral fringe species show higher tolerances than eulittoral zone and subtidal 

species, respectively (see Table 3.1; Cuculescu et al., 1998; Stillman and Somero, 1999; 

2000; Backeljau et al., 2001; Sorte and Hofmann, 2005; Miller et al., 2009; Nguyen et al., 

2011; Madeira et al., 2012a). In addition, the differences in thermal tolerance between low 

and high intertidal species are greatest for temperate species (Stillman and Somero, 1996; 

1999; Stillman, 2002; Compton et al., 2007). Members of the family Littorinidae show 

particularly high tolerances (Table 3.1; McMahon, 1990; 2001a; Nguyen et al., 2011). Thus, 

there are species-specific ranges of tolerance (Díaz et al., 2002), with tropical and high shore 

species consistently demonstrating higher tolerances than temperate and low shore species 

(McMahon, 1990; Britton, 1992; Stillman and Somero, 1996; 1999; Davenport and 

Davenport, 2005; Nguyen et al., 2011). But the specific temperatures that are tolerated differ 

depending upon whether a species is studied in summer or winter, or acclimated in the 

laboratory. Differences in thermal tolerances can also be explained by differences in the 

conditions animals experience in their microhabitats (see Stillman and Somero, 1996; Nakano 

and Iwama, 2002; Stillman, 2002; Morley et al., 2009; Sorte et al., 2011; Madeira et al., 

2012b; Vinagre et al., 2012). For example, Sanders et al. (1991) found that the limpet 

Collisella scabra which inhabits the exposed high intertidal zone had a greater tolerance to 

acute heat shock than C. pelta which lives in the more protected upper midtidal region.  

 

Differences in thermal tolerances can relate not only to extrinsic and intrinsic factors, but also 

to combinations of, or interactions between these factors. This is because multiple factors, 

rather than single factors (e.g. temperature) are encountered in the natural environment (see 

Backeljau et al., 2001; Roelofs et al., 2008; Nicastro et al., 2010; Zippay and Helmuth, 

2012). For example, salinity, oxygen, carbon dioxide (CO2) and chemicals as well as activity, 

size, sex, nutrition and health can significantly influence an animal‟s response to temperature. 

Salinity can have different effects on thermal tolerance of animals when in combination with 

temperature (see Hicks, 1973; McMahon and Russell-Hunter, 1981; Li and Brawley, 2004; 

Re et al., 2005; 2006). For example, Todd and Dehnel (1960) found that salinity had a 

marked effect on the temperature tolerance of two grapsid crabs, Hemograpsus nudus and H. 

oregonensis. Dehnel (1960) found that animals of the above species when acclimated at a 

combination of high temperature and salinity showed higher tolerance than those acclimated 

to both low temperature and salinity. Sherman and Eichrodt (1982) found that a combination 

of low salinity and temperature was most stressful and resulted in higher mortality than other 
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combinations. Thus, tolerance of high temperatures was best under high temperature and high 

salinity (see Nagabhushanam and Sarojini, 1969).  

 

As for salinity, oxygen levels affect thermal tolerance. In the whelk Nucella lapillus, thermal 

tolerance increased under hyperoxic conditions and decreased under hypoxic conditions; 

while in Littorina littorea oxygen levels did not affect thermal tolerance (Davenport and 

Davenport, 2007). Several studies on invertebrates and fishes have shown that oxygen 

concentration influences temperature tolerance via oxygen limitation (Frederich and Pörtner, 

2000; Mark et al., 2002; Peck, 2002; Pörtner et al., 2004a; Lannig et al., 2004; Jansen et al., 

2009; etc). This is also true for high temperature-induced systemic hypoxia (Pörtner et al. 

2000; Pörtner, 2001; 2002a, b; 2012; Peck et al., 2002; Anestis et al., 2008; Kassahn et al., 

2009). Carbon dioxide levels as well as ocean acidification also influence temperature 

tolerance via oxygen limitation (Pörtner, 2008; 2012; Walther et al., 2009; Lannig et al., 

2008; 2010; Christensen et al., 2011). For example, Metzger et al. (2007) found a 5°C 

decrease in the upper thermal limits of aerobic scope of the edible crab Cancer pagurus 

exposed to elevated CO2.  

 

The effects of size are contradictory, with some studies suggesting that an animal‟s size 

affects thermal tolerance, while others did not (see Todd and Dehnel, 1960; Jensen and 

Armstrong, 1991; Backeljau et al., 2001; Ospína and Mora, 2004; Peck et al., 2009b; Nguyen 

et al., 2011; Madeira et al., 2012b). Smaller animals seem more tolerant in some species, 

while adults are more tolerant in others. Clarke et al. (2000a, b) found that larger individuals 

of Littorina littorea showed heat coma at significantly lower temperatures than juveniles, 

while Hicks and McMahon (2002b) found that smaller individuals of the invasive mussel 

Perna perna were less temperature tolerant than larger individuals. Lee and Boulding (2010) 

found that body size did not significantly affect thermal tolerance in the intertidal snail, 

Littorina keenae.  

 

High aerobic scope (i.e. activity) results in a greater physiological capacity to cope with 

elevated temperature, leading to higher tolerance limits (see Pörtner et al., 2000; Pörtner, 

2001; 2002a, b; 2010; Peck et al., 2009b; Storch et al., 2009; Nguyen et al., 2011). 
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Nutritional status (e.g. starvation) can also have effects on an animals‟ ability to cope with 

heat stress (see Dahlhoff, 2004; McCue, 2010; Terblanche et al., 2011; Zardi et al., 2011; 

Fitzgerald-Dehoog et al., 2012) and thus tolerance limits. Infection (which also depend on the 

type and intensity) by macroparasites such as trematodes is known to lead to reduced 

resistance to extreme (high and low) temperatures (see Berger and Kharazova, 1997; Curtis, 

2002; Granovitch et al., 2000; Meißner and Schaarschmidt, 2000; Bates et al., 2011). For 

example, infected individuals of the snail Biomphalaria glabrata had lower thermal tolerance 

than uninfected individuals under the same temperature treatments (Lee and Cheng, 1971). 

Chemicals or pollutants combined with high temperature result in a reduction of thermal 

tolerance (see Lannig et al., 2006; Sokolova and Lannig, 2008). 

 

The effect of acclimation or previous thermal history (see Nagabhushanam and Sarojini, 

1969; Vernberg, 1969; Cuculescu et al., 1998; Zakhartsev et al., 2003; Dong et al., 2008a; 

Middlebrook et al., 2008; Sunday et al., 2012) and season (see Todd and Dehnel, 1960; 

Newell et al., 1971; Backeljau et al., 2001; Hopkin et al., 2006; Stillman and Tagmount, 

2009; Sunday et al., 2012) as well as parental thermal history (see Stillman and Somero, 

2000; Li and Brawley, 2004; Byrne et al., 2010; Zerebecki and Sorte, 2011) can also 

contribute to differences in thermal tolerances. Clarke et al. (2000a, b) found both 

acclimation (at elevated temperatures) and previous thermal history influenced heat coma 

temperatures in Littorina littorea. A brief or prior heat shock (sudden exposure) to moderate 

temperature can induce increased thermal tolerance also called „induced tolerance‟ during 

subsequent thermal stress (see Parsell et al., 1993; Stillman and Somero, 1999; Hopkin et al., 

2006; Li et al., 2007; Dong and Dong, 2008), and this is linked to the up-regulation of heat 

shock proteins and/or stability of proteins or enzymes (see Feder and Hofmann, 1999; Pörtner 

and Knust, 2007; Ulrich and Marsh, 2009; etc). However, sudden exposure to elevated 

temperatures can also cause mortality.  

 

Differences in experimental methods (design and protocols) can also explain some of the 

differences observed. For example, Clarke et al. (2000b) and Lee and Lim (2009) determined 

the lethal thermal limits of Littorina spp., Littoraria spp. and Echinolittorina spp. in water, 

while most studies were done on dry (i.e. aestivating) animals. Thus, as a result of differences 

in thermal conductivities between media (see Madeira et al., 2012a), body temperature can 
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respond much quicker to temperature changes in water than in air leading to differences in 

tolerances. However, Sandison (1967) found that the heat coma and lethal temperatures of 

intertidal gastropod snails were higher in air than water. Jones et al. (2009) found a difference 

of 0.7°C in June and 4.8°C in November in the thermal limits of Mytilus edulis in water and 

air, respectively.  

 

Most studies have tested the effects of prolonged exposure to temperature lasting for hours or 

days (see Evans, 1948; Newell et al., 1971; Pörtner and Helmuth, 2007; Miller et al., 2009; 

Dilly et al., 2012), without taking into account the possible effects of short-term exposure to 

sudden heat stress, which can be particularly frequent in the intertidal environment. The latter 

is probably more useful when making comparisons with field conditions (see Joyner-Matos et 

al., 2009; Terblanche et al., 2011). For example, Echinolittorina malaccana and E. vidua had 

lethal temperatures of 50.04 and 48.10°C respectively when exposed for 1 hour at particular 

temperatures (Lee and Lim, 2009). In contrast, Marshall and McQuaid (2010) found lethal 

temperatures of 59.0 and 56.5°C for the same species when exposed for 5 minutes at 

particular temperatures.  

 

Most studies have determined temperature tolerance limits using static (constant) methods, 

while others have used dynamic (ramping) methods, resulting in different results (see below). 

In addition, the rates at which temperature is increased (i.e. rate of heating) have different 

effects on thermal tolerance of animals from different environments (see Evans, 1948; Ospina 

and Mora, 2004; Mora and Maya, 2006; Angilletta Jr., 2009; Nguyen et al., 2011; Richard et 

al., 2012). Although some results are contradictory, slow rates generally result in lower 

tolerance limits than fast rates (Reese, 1969; Segnini De Bravo et al., 1998; Chown et al., 

2009; Peck et al., 2009b; Nguyen et al., 2011). However, slower rates can also provide 

sufficient time for hardening, a form of phenotypic plasticity that protects cells from 

subsequent exposure (see references in Terblanche et al., 2007) resulting in higher tolerance 

limits. In addition, stresses due to starvation and/or desiccation can arise during ramping (see 

Terblanche et al., 2007; 2011), and this can affect animals‟ ability to handle heat stress.  
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Differences in metrics (e.g. sublethal versus lethal) used to measure tolerances can also result 

in different results (see McMahon, 1990; Clarke et al., 2000a, b, c; Terblanche et al., 2007; 

Sunday et al., 2012). Repeated or multiple exposure to heat stress or events is known to result 

in a decrease in thermal tolerance in other studies (see Jones et al., 2009, Clarke et al., 

2000a), though other studies show the opposite (see Buckley et al., 2001; Middlebrook et al., 

2008). In a study on heat coma in Littorina littorea, Clarke et al. (2000a) found that the 

temperature when heat coma sets in decreased significantly with repeated daily but not 

weekly exposure. In addition, the effect of start temperature which can differ by investigators 

when species or populations from different thermal environments are examined is poorly 

understood (see Terblanche et al., 2007). Thus, the wide variety of methods and protocols 

used might have contributed to the differences reported in various studies.  

 

Overall, differences in the tolerances of littorinid snails and other intertidal ectotherms seem 

to relate to differences in their biogeography, ecology, and phylogeny. McMahon (1990) 

suggests that tropical littorinids fill a completely new niche in the eulittoral fringe and that 

this requires a completely different physiology to other littorinids. He further suggests that 

eulittoral fringe rocky shore species have different adaptive physiological attributes that 

allow them to cope with temperature stress. For example, most exhibit foot withdrawal to 

prevent heat conduction from the substratum, aestivation in air, high thermal tolerances and 

can use mucus to cement a small area of the lip of the shell to the substratum to minimize 

heat uptake and increase their capacity for heat dissipation. All of these attributes distinguish 

them from eulittoral species which might benefit from behavioural mechanisms such as 

evaporative cooling and formation of aggregations to regulate body temperature. Thus, 

eulittoral fringe species are better able to regulate heat uptake and cope with heat and 

desiccation stress than their eulittoral and low shore counterparts. 

 

Littorinids are characteristic of high shore levels worldwide (see Reid, 1989; 1996a, b; 2002; 

Chapman and Underwood, 1994; McQuaid, 1996a, b; Lee and Boulding, 2010; etc) and are 

extremely tolerant of temperature and desiccation (see McMahon, 1990; 2001b; Backeljau et 

al., 2001; Emson et al., 2002; Marshall and McQuaid, 2010; etc). Tolerance of marine 

intertidal animals to temperature and desiccation correlates to their position in the intertidal 
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zone and their geographical distribution. Thus, the ability of littorinids to cope with and 

survive high temperatures and desiccation is related to their distribution patterns.  

 

Although much is known about thermal and desiccation tolerance of littorinids, very little is 

known about the thermal and desiccation tolerance of South African littorinids from 

temperate and subtropical regions. A previous study by McQuaid and Scherman (1988) found 

a 1°C difference in lethal thermal limits (LT50) between the two Afrolittorina spp. collected in 

the warm temperate bioregion, with higher tolerance in A. africana than A. knysnaensis. To 

my knowledge, no studies have looked at the temperature (i.e. heat) and desiccation tolerance 

of the subtropical E. natalensis and L. glabrata.  

 

Therefore, the study aims to compare thermal tolerance of Afrolittorina spp. particularly 

where their distribution overlaps in the warm temperate region of South Africa and they can 

co-exist on the same shores. In addition, the tolerance of these Afrolittorina spp. was 

compared to that of the subtropical E. natalensis and L. glabrata. Heat coma and lethal 

temperatures were assessed using approaches followed by McMahon (1990) and Clarke et al. 

(2002a, b, c) with minor modifications, and it was hypothesised that the tolerance of 

Afrolittorina spp. from warm temperate regions will be similar, but different from that of E. 

natalensis and L. glabrata from the subtropical region. Furthermore, A. africana can be found 

in the subtropical region of the country and it was hypothesised that the tolerance of 

individuals from the subtropical region would differ from that of individuals from the warm 

temperate region; likewise for A. knysnaensis from the warm and cool temperate regions.  
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3.2. Materials and methods 

 

3.2.1. Study species 

 

Four littorinid snails of the genera Afrolittorina, Echinolittorina and Littoraria were used, 

namely: A. knysnaensis, A. africana, E. natalensis and L. glabrata. See Chapter 1 for species 

distribution ranges and patterns of vertical zonation as well as microhabitat use and 

aestivation behaviour. 

 

3.2.2. Collection and transportation  

 

Specimens of A. africana, A. knysnaensis, E. natalensis and L. glabrata were collected from 

natural rocks at different sites (see Fig. 3.1; Table 3.2) along the South Africa‟ coast between 

late 2009 and early 2011 during winter and summer months in order to investigate the effect 

of season on thermal tolerance. The selected sampling sites ranged from Ballito in the 

subtropical region to Strandfonteinpunt in the cool temperate region of South Africa (see Fig. 

3.1). Individuals of each species were collected from the upper levels occupied (i.e. eulittoral 

fringe and eulittoral zone) depending on the site and level/s occupied by each species. Large 

and small individuals of each species that were feeding or had fed within 12 hours (assumed 

to have fed since they were collected while wet immediately after or during high tides) were 

returned to the laboratory in plastic bags placed inside an insulated cool box. 

 

3.2.3. Handling and treatment conditions 

 

On arrival at the laboratory, specimens were washed in seawater, allowed to emerge from 

their shells and to reattach to 2 L lidded plastic containers in seawater before being exposed 

to air at room temperature (18-22ºC), when they exhibited behavioural emergence. Thus, 

specimens were allowed to rehydrate for at least 3 hours for same day use or overnight if 
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used later, after which active individuals were selected for experimental treatments. 

Selected animals were blotted dry with paper towel and dried using a fan at room 

temperature. Specimens were kept on dry paper towel at room temperature (18-22ºC) 

immediately before use. 

 

 

Figure 3.1. Map of South Africa showing sampling sites (see Table 3.2) for littorinid snails of 

the genera Afrolittorina, Echinolittorina and Littoraria used for thermal tolerance 

experiments.  

South Africa 

I. Ballito 
2. Umhlanga 
3. Port Edward 
4. Port St. Johns 
5. Fish river 
6. Riet river 
7. Port Alfred 
8. Kenton-on-Sea 
9. Bushman river 
10. Mossel Bay 
11. Cape Agulhas 
12. Muizenberg 
13. Camps Bay 
14. Paternoster 
15. Strandfonteinpunt 

11 
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Table 3.2. Sampling sites for littorinid snails of the genera Afrolittorina, Echinolittorina and 

Littoraria from South Africa used for thermal tolerance experiments. 

 

Bioregion 

 

Site (abbreviation) 

 

Species sampled 

Experiment 

Heat 

coma 

Lethal 

limits 

Subtropical 1. Ballito (BA) A. knysnaensis; A. africana; 

E. natalensis; L. glabrata 

Yes Yes 

2. Umhlanga (ML) A. knysnaensis; A. africana; 

E. natalensis; L. glabrata 

Yes Yes 

3. Port Edward (PE) A. knysnaensis; A. africana; 

E. natalensis; L. glabrata 

Yes Yes 

4. Port St. Johns (PJ) A. knysnaensis; A. africana; 

E. natalensis; L. glabrata 

Yes Yes 

Warm 

temperate 

5. Fish river (FR) A. knysnaensis; A. africana Yes Yes 

6. Riet river (RR) A. knysnaensis; A. africana Yes Yes 

7. Port Alfred (PA) A. knysnaensis; A. africana Yes No 

8. Kenton-on-Sea (KOS) A. knysnaensis; A. africana Yes No 

9. Bushman river (BU) A. knysnaensis; A. africana Yes Yes 

10. Mossel Bay (MBB) A. knysnaensis; A. africana Yes Yes 

Cool temperate 11. Cape Agulhas (CA) A. knysnaensis Yes Yes 

12. Muizenberg (MU) A. knysnaensis Yes No 

13. Camps Bay (CB) A. knysnaensis Yes Yes 

14. Paternoster (PN) A. knysnaensis Yes Yes 

15. Strandfonteinpunt (SF) A. knysnaensis No Yes 
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To investigate the effect of acclimation on heat coma temperatures, specimens were 

acclimated at each of four different temperatures (20, 25, 30 and 35°C) for 14 days without 

feeding. In brief, 10 small and 10 large aestivating snails were placed in 20 ml dry plastic 

containers, and the containers holding the snails were then floated in a temperature-controlled 

digital waterbath (Labcon, SA) set at the appropriate acclimation temperature using 

Polystyrene holders. To maintain a uniform distribution of heat, a separate heating head 

(mgw Lauda, Germany) fitted with a stirrer was used for circulation of water in the 

waterbath. Water temperature and air temperature inside the containers were monitored using 

a Fluke 54II Thermometer (Fluke Corporation, USA) fitted with a T-type thermocouple 

(Fluke Corporation and Cromega) and/or a thermometer. 

 

3.2.4. Determination of heat coma temperatures  

 

Mean heat coma temperatures (HCT) were determined using a slightly modified version of 

the protocol used by McMahon (1990) and Clarke et al. (2002a, b, c) amongst others. The 

heat coma temperature in littorinid snails and other gastropods is defined as the temperature 

at which normal nervous function is lost, and is manifested by a cessation of activity such 

as locomotion, a ventral medial curling of the lateral edges of the foot and an inability to 

remain attached to the substratum (see Sandison, 1967; McMahon, 1990; Clarke et al., 

2002a, b, c; Lee and Boulding, 2010; etc). Thus, heat coma is a „non-lethal‟ condition 

characterised by loss of nervous integration.  

 

In this study, I measured heat coma temperatures by recording the temperature at which 

snails (1) were no longer able to locomote and tentacle movement ceased, and (2) showed 

ventral curling of the foot, being unable to remain attached to the sides of the test tube or 

cotton plugs. This combination of criteria was used because individual snails displayed 

different behavioural responses during heat exposure. For example, some individuals 

remained motionless after attaching to the test tubes. This could occur even before they 

were transferred to the waterbath as well as during or after equilibration. In addition, some 

individuals never fell off as they were securely attached by a transparent mucus thread or 

film after withdrawing the foot into their shells. This is the same behavioural mechanism 
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used to escape unfavourable and stressful environmental conditions or to minimize contact 

with the substratum in the field (see Reese, 1969; McMahon, 1990; Emson et al., 2002; 

Miller, 2008).  

 

For each trial, 10 large and 10 small individuals of each species were placed in 50 ml test 

tubes containing 45 ml of seawater and allowed to attach to the test tube walls and actively 

locomote or crawl. For Afrolittorina spp. and E. natalensis, large was >9mm, for L. 

glabrata they were >15mm; while for all species small was < 5mm. For adults of L. 

glabrata which were larger, 10 individuals were placed in 80 ml test tubes filled with 75 ml 

seawater and allowed to attach. Individuals that did not attach during this time were 

discarded. Porous cotton plugs where pushed down the openings of the test tube to block 

the water surface. This kept the snails immersed and prevented them from escaping during 

heating.  

 

At the start of an experiment, test tubes containing snails were placed on a wooden test-tube 

rack which was then placed in a temperature-controlled digital waterbath set to 20ºC, and 

animals were allowed to equilibrate for 20-30 minutes. Four to eight test tubes were placed 

into the experimental waterbath so that all tested snails could be simultaneously watched 

during the course of the experiment. A separate heating head fitted with a stirrer was used 

to maintain uniform distribution of heat through regular circulation of water. Temperature 

in the water bath and inside a test vial were monitored using a Fluke 54II Thermometer 

fitted with a T-type thermocouple and/or a thermometer inserted into a separate empty test 

tube. 

 

Waterbaths were adjusted manually to raise the water temperature by 1°C every 5 minutes, 

and test tube temperatures were monitored as described. This rate of increase in temperature 

has been found to make the lag between test tube water and snail tissue temperatures 

negligible (see Broekhuysen, 1940 in Lee and Boulding, 2010). The number of individuals 

entering heat coma was recorded after every 1C increase in temperature. For each heat coma 

determination, observations started at 20°C, the equilibration temperature, and continued 

until every individual snail showed one of the criteria used for the diagnosis of heat coma.  
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Once all animals had entered heat coma or temperature had reached 45°C, test tubes were 

taken out of the waterbath and allowed to cool for at least five minutes at room temperature 

(19-22°C). The snails were gently placed into labelled Petri dishes with about 10 ml of 

seawater to allow recovery at ambient temperatures. This allowed determination of whether 

the snails recovered from heat coma and became active again. After 15 or 30 minutes, snails 

were inspected for survival and those with their foot extended and attached to the substratum, 

or those which responded to poking with blunt forceps were scored as alive. As expected, no 

snails had died from heat stress. 

 

3.2.5. Lethal thermal limit (LT50) determination 

 

Acute upper lethal thermal limits were determined as lethal temperatures (LT50; 

temperature at which 50% mortality of population occurs) using slightly modified protocols 

from McMahon (1990) and Clarke et al. (2002b). In this study, I measured lethal 

temperatures by recording the temperature at which snails were unable to (1) to attach to 

the Petri dishes and (2) respond to poking with blunt forceps after 12-24 h recovery 

following high temperature exposure.  

 

Subsamples of 10 aestivating snails of each species (large or small as defined above) were 

placed in 20 ml plastic vials on a polystyrene holder. At the start of an experiment, the 

polystyrene holder, together with lidded vials containing snails, was placed in a digital 

waterbath set to 20ºC to equilibrate for 20-30 minutes. Circulation of water and monitoring 

of temperature were done as described above.  

 

The waterbath was switched manually to raise the water temperature, initially at 5C 

increments over 10 minute intervals to reach 40 or 45C, after which temperature was 

increased at the rate of 1C every 10 minutes. At 1C intervals, starting at 45 or 50°C, three 

randomly selected vials were removed from the waterbath. The vials were allowed to cool for 

5 minutes to ambient laboratory temperature (18-22°C), and then the snails were gently 
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placed into 8 cm lidded Petri dishes with about 10 ml of seawater to allow recovery. This 

allowed determination of whether the snails recovered from heat stress and became active 

again or were dead. After 12 or 24 hours, animals were inspected and those with their foot 

extended and attached to the substratum, or those which responded to poking with a blunt 

forceps were scored as alive, the remainder were assumed to be dead.  

 

3.2.6. Data and statistical analysis 

 

The data are presented as means ± SD, and figures were drawn using Excel. Statistical 

analyses were performed using Statistica 10 (Statsoft). General Linear Models Factorial 

ANOVA (Statistica 10, Statsoft) was used to determine differences using heat coma 

temperature and lethal temperature as dependent variables and species, size, season and 

treatment as fixed independent variables. Significance differences between and within a 

species, size, season or treatment were determined using different ANOVAs (two or three 

way-ANOVA), and significant results were explored using Tukey tests. 
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3.3. Results 

 

When comparing the two metrics used to determine thermal tolerances, it was found that heat 

coma temperatures were always about 15-20°C lower than lethal temperatures (see Table 

3.3). This was expected as heat coma temperatures represent temperatures that induce 

changes in the snails‟ behavioural responses (i.e. withdrawal into the shell and attachment of 

the shell to the substratum with mucus films), whereas lethal temperatures represent 

temperatures at which death sets in. Both methods showed similar trends with higher 

tolerances in species collected from the subtropics to lower tolerances in those from 

temperate shores (see Fig. 3.2 and 3.3).  

 

3.3.1. Heat coma (HCT) temperatures and lethal thermal limits (LT50) 

 

There was a difference in the two criteria (1) cessation of activity and (2) ventral curling of 

foot, hanging or falling used to score heat coma temperatures. Animals stopped activity 

(crawling and moving tentacles) about 3-5°C before ventral curling of the foot, hanging or 

falling. However, both criteria showed similar trends (see Fig. 3.2A) and thus complement 

each other. The first criterion was difficult to apply when dealing with animals that tended to 

aggregate and/or remain inactive after attaching to the test tube walls. This was observed 

when adults of Afrolittorina spp., and sometimes those of E. natalensis formed aggregations 

and did not locomote until ventral curling of the foot manifested. Since all the criteria yielded 

similar trends, interpretation of the results is presented as mean heat coma temperatures based 

on the second set of criteria, ventral curling of the foot, hanging or falling.  

 

Likewise, when comparing the two methods (attachment and poking) used to score lethal 

thermal limits, it was clear that the attachment method always showed lower values than the 

poking method, indicating that the ability to remain attached was lost before the ability to 

respond to tactile stimulation. Despite a few exceptions, the two methods yielded similar 

trends (see Fig. 3.3A) and thus complemented each other. In addition, most studies have used 

the poking method, and to allow comparison of my data with those from other studies, the 
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results are presented as mean lethal temperatures based on the poking method. However, the 

poking method will be unreliable when interpreting animal responses to heat stress in nature. 

For example, most animals in this study showed weak responses (very slow retraction of the 

foot or operculum) after poking, and in most cases if not all, the same animals did not recover 

(e.g. attach and crawl) after hours or even days at room temperature. Thus, if the weak 

response is manifested in nature, animals will stand a very high chance of being swept away 

by waves during high tides and be effectively ecologically dead if not physiologically dead. 

 

3.3.1.1. Are there phylogenetic differences in HCT and LT50 of the studied species? 

 

Two-way ANOVA showed clear differences in the heat coma and lethal temperatures of the 

four species investigated (see Fig. 3.2B and 3.3B). In addition, there was no significant 

interaction between the two factors (i.e. species and size) for either heat coma or lethal 

temperatures. For heat coma, the two exclusively subtropical Echinolittorina and Littoraria 

species did not differ significantly, but had significantly (F3.55 = 50.24; p < 0.001) higher heat 

coma temperatures than the subtropical/temperate Afrolittorina spp. (see Fig. 3.2B). L. 

glabrata showed the highest heat coma temperatures followed by E. natalensis > A. africana 

> A. knysnaensis (Tukey test, see Table 3.3). Unexpectedly, juveniles (small) of all species 

showed significantly (F1.55 = 51.41; p < 0.001) higher heat coma temperatures than adults 

(large) (see Fig. 3.2B and Table 3.3).  

 

As for heat coma, the two exclusively subtropical Echinolittorina and Littoraria species 

showed significantly (F3.64 = 104.56; p < 0.001) higher lethal limits than the 

subtropical/temperate Afrolittorina spp. (see Fig. 3.3B). E. natalensis showed the highest 

lethal temperatures followed by L. glabrata > A. africana > A. knysnaensis, (Tukey test, see 

Table 3.3). Except for L. glabrata where adults and juveniles showed similar lethal 

temperatures, adults of other species showed significantly (F1.64 = 4.15; p < 0.001) higher 

lethal temperatures than conspecific juveniles (see Fig. 3.3B and Table 3.3).  
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Figure 3.2. Mean heat coma temperatures of E. natalensis, L. glabrata, A. africana and A. 

knysnaensis from South Africa. (A) results using two different criteria, (1) cessation of 

activity and (2) ventral curling of foot, hanging or falling used to score heat coma 

temperatures; (B) enlarged data from criterion (2). Histograms are means + SD of different 

measurements. Different letters and asterisks (*) indicate significant differences between and 

within species respectively as determined using two-way ANOVA (p < 0.05). 

 



77 
 

  

Figure 3.3. Mean lethal temperatures of E. natalensis, L. glabrata, A. africana and A. 

knysnaensis from South Africa. (A) results using two different methods, (1) attachment and 

(2) poking used to score lethal thermal limits; (B) enlarged data from method (2). Histograms 

are mean + SD of different measurements. Different letters and asterisks (*) indicate 

significant differences between and within species respectively as determined using two-way 

ANOVA (p < 0.05); NS = non-significant.  

 



78 
 

Table 3.3. Mean heat coma (HCT) and lethal (LT50) temperatures of littorinid snails of the 

genera Afrolittorina, Echinolittorina and Littoraria from South Africa.  Values are means + 

SD; Large and Small are defined in main text. 

 

Taxa 

Temperatures (°C) 

Heat coma (HCT) Lethal (LT50) 

 Large Small Large Small 

E. natalensis 35.9±3.3 38.2±3.3 56.8±1.5 56.0±1.6 

L. glabrata 36.6±3.1 38.3±3.4 53.8±1.3 53.8±1.3 

A. africana 33.5±4.0 35.7±3.7 51.5±0.7 50.9±0.7 

A. knysnaensis 31.2±3.5 34.2±3.3 50.5±1.1 49.6±1.0 

 

 

3.3.1.2. Do species from the same region show the same HCT and LT50? 

 

Two-way ANOVA showed differences in heat coma and lethal temperatures among species 

within the subtropics and the warm temperate region (see Fig. 3.4 and 3.5). In the subtropics, 

the eulittoral fringe to eulittoral zone E. natalensis and L. glabrata showed significantly (F2.22 

= 9.90; p < 0.001) higher heat coma temperatures than the eulittoral to low shore A. africana 

(Tukey test, see Fig 3.4A). Unexpectedly, L. glabrata adults showed non-significantly higher 

heat coma temperatures than adult E. natalensis (Tukey test, see Fig. 3.4A and Table 3.4).  

 

In addition, there was a significant (F1.22 = 19.18; p < 0.001) difference between adults and 

juveniles of all species (see Fig. 3.4A). In the warm temperate region, there was a significant 

interaction (F1.25 = 6.40; p < 0.05) between species and size on heat coma temperatures of 

Afrolittorina spp. Juveniles showed significantly (F1.25 = 34.11; p < 0.001) higher tolerances 

than adults for both species (see Fig. 3.4B); but the effect was stronger for A. knysnaensis. 

For both size classes, A. africana showed significantly (F1.25 = 52.10; p < 0.001) higher heat 

coma temperatures than A. knysnaensis (see Fig. 3.4; Table 3.4).  
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Table 3.4. Mean heat coma temperatures (+ SD) of large and small littorinid snails of the 

genera Afrolittorina, Echinolittorina and Littoraria from different regions of South Africa. 

Large and Small are defined in main text. 

 

Taxa 

Heat coma temperatures (°C) 

 

Subtropical Warm temperate Cool temperate 

Large Small Large Small Large Small 

E. natalensis 35.9±3.3 38.2±3.3     

L. glabrata 36.6±3.1 38.3±3.4     

A. africana 32.8±3.4 35.8±2.8 33.9±2.9 35.5±1.9   

A. knysnaensis   31.2±2.9 34.3±2.4 31.1±3.4 34.9±2.5 

 

 

As for heat coma, in the subtropics, the eulittoral fringe to upper eulittoral E. natalensis 

showed significantly (F2, 24 = 41.23; p < 0.001) higher lethal temperatures than the eulittoral 

fringe L. glabrata and the eulittoral A. africana (Tukey test, see Fig 3.5A; Table 3.5). With 

the exception of L. glabrata, for which adults and juveniles showed very similar lethal 

temperatures, adults showed higher lethal temperatures than juveniles (Tukey test, see Table 

3.6), though the effect was not significant (see Fig. 3.5A).  

 

On the other hand, in the warm temperate region for both sizes, A. africana showed 

significantly (F1.20 = 9.10; p < 0.01) higher lethal thermal limits than A. knysnaensis (Tukey 

test, see Fig. 3.5B). In addition, adults of both species showed significantly (F1.20 = 9.10; p < 

0.01) higher lethal temperatures than juveniles (Tukey test, see Fig. 3.5).  
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Figure 3.4. Mean heat coma temperatures of (A) E. natalensis, L. glabrata and A. africana 

from subtropical and (B) A. africana and A. knysnaensis from warm temperate regions. 

Histograms are mean + SD of different measurements. Different letters and asterisks (*) 

represent significant differences between and within species respectively as determined using 

two-way ANOVA (p < 0.05).  

 



81 
 

  

Figure 3.5. Mean (+SD) lethal temperatures (LT50) of (A) E. natalensis, L. glabrata and A. 

africana from subtropical and (B) A. africana and A. knysnaensis from warm temperate 

regions. Histograms are mean + SD of different measurements. Different letters and asterisks 

(*) represent significance differences between and within species respectively as determined 

using two-way ANOVA (p < 0.05); NS = non-significant.  

 



82 
 

Table 3.5. Mean lethal temperatures (+ SD) of large and small littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from different regions of South Africa. Large 

and Small are defined in main text. 

 

Taxa 

Lethal temperatures (°C) 

 

Subtropical Warm temperate Cool temperate 

Large Small Large Small Large Small 
E. natalensis 56.8±1.5 56.0±1.6     

L. glabrata 53.8±1.3 53.8±1.3     

A. africana 51.6±0.6 51.2±0.8 51.5±0.8 50.7±0.5   

A. knysnaensis   50.7±1.0 49.3±1.0 50.2±1.1 49.7±1.1 

 

 

3.3.1.3. Is HCT and LT50 affected by region? 

 

Comparing the heat coma and lethal temperatures of A. africana from subtropical and warm 

temperate regions and of A. knysnaensis from cool and warm temperate regions revealed that 

there were differences in thermal tolerances of conspecifics from different regions, but these 

differences were not significant (see Fig. 3.6 and 3.7; Table 3.4 and 3.5). In A. africana, 

adults from the warm temperate region showed unexpectedly, but not significantly (F1.19 = 

3.53; p > 0.05), higher heat coma temperatures than those from the subtropics and vice versa 

for juveniles (see Fig. 3.6A and Table 3.4).  

 

On the other hand, juveniles of A. knysnaensis from the cool temperate region showed 

unexpectedly, but not significantly (F1.16 = 0.37; p > 0.05), higher heat coma temperatures 

than their warm temperate counterparts, while there was very little difference in heat coma 

temperatures for adults from the two regions (see Fig. 3.6B and Table 3.4). Within regions, 

however, heat coma temperatures were significantly (F1.19 & 1.64 = 18.56 and 40.66 for A. 

africana and A. knysnaensis, respectively; p < 0.001 in both cases) lower for adults than for 

conspecific juveniles (see Fig. 3.6). 
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Figure 3.6. Mean heat coma temperatures of (A) A. africana from subtropical and warm 

temperate and (B) A. knysnaensis from warm and cool temperate regions. Histograms are 

mean ± SD of different measurements. Asterisks (*) indicate significance differences 

between sizes within regions as determined using two-way ANOVA (p < 0.05).  
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Figure 3.7. Mean lethal temperatures of (A) A. africana from subtropical and warm temperate 

and (B) A. knysnaensis from warm and cool temperate regions. Histograms are mean ± SD of 

different measurements. Asterisks (*) indicate significance differences between sizes within 

regions as determined using one-way ANOVA (p < 0.05). 
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For lethal temperatures, A. africana from the subtropics showed higher lethal temperatures 

than those from the warm temperate region as expected; though the difference was 

marginally non-significant (F1.18 = 1.11; p = 0.05; see Fig. 3.7A and Table 3.5). On the other 

hand, juveniles of A. knysnaensis from the cool temperate region showed unexpectedly higher 

lethal temperatures than their warm temperate counterparts, while adults showed the expected 

reverse pattern (see Table 3.5). Nevertheless, these differences were not significant (F1.26 = 

0.02; p > 0.05; see Fig. 3.7B and Table 3.5). Within regions, adults of all species showed 

significantly (F1.18 & 1.26 = 4.23 and 5.53 for A. africana and A. knysnaensis, respectively; p < 

0.05 in both cases) higher lethal temperatures than juveniles (see Fig. 3.7).  

 

3.3.1.4. Does acclimation (laboratory) and acclimatization (season) affect HCT and LT50? 

 

For all species, laboratory acclimation at different temperatures for 14 days had little effect 

on heat coma temperatures (see Fig 3.8.1-2; Table 3.6). In addition, there was no trend in heat 

coma temperatures for animals acclimated at different temperatures (see Fig 3.8.1-2). 

Although not of direct relevance to this question, statistical analyses showed significant 

difference between species, sizes and treatments (see Table 3.8) with freshly collected 

animals showing significantly (mostly lower) different heat coma temperatures than 

laboratory acclimated animals (see Fig 3.8.1-2). 

 

Although lethal temperatures were higher for summer compared to winter (see Fig. 3.9 and 

Table 3.7), the effect of seasonal acclimatization was not significant (F1.56 = 3.15; p > 0.05; 

see Fig. 3.9). As expected, there was a significant (F3.56 = 94.24; p < 0.001) difference 

between species with higher tolerances in E. natalensis followed by L. glabrata > A. africana 

> A. knysnaensis, regardless of season (see Fig. 3.9). In addition, adults of all species showed 

non-significantly (F1.56 = 3.37; p > 0.05) higher lethal temperatures than juveniles, regardless 

of season (see Fig. 3.9; Table 3.8).  
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Figure 3.8.1. Mean heat coma temperatures of field fresh and laboratory acclimated (A) E. 

natalensis and (B) L. glabrata. Histograms are mean + SD of different measurements. 

Different letters represent significance differences between treatments as determined using 

one-way ANOVA (p < 0.05). 
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Figure 3.8.2. Mean heat coma temperatures of field fresh and laboratory acclimated (A) A. 

africana and (B) A. knysnaensis. Histograms are mean + SD of different measurements. 

Different letters represent significance differences between treatments as determined using 

one-way ANOVA (p < 0.05). 
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Table 3.6. Mean heat coma temperatures (+ SD) of field fresh and laboratory acclimated large and small littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from South Africa. Large and Small sizes are defined in the text. 

Taxa Acclimation temperatures (°C) 

 

 FF 20 25 30 35 

 Large Small Large Small Large Small Large Small Large Small 

           

E. natalensis 35.0±00 38.0±0.0 35.8±2.6 37.2±3.1 36.5±3.5 38.3±0.7 37.0±1.4 38.5±1.0 38.6±2.3 41.6±1.1 

L. glabrata 38.0±0.0 36.0±0.0 36.1±3.3 37.1±3.1 39.0±1.4 40.5±0.7 39.8±1.0 41.5±1.7 36.4±3.1 40.3±2.4 

A. africana 33.7±4.7 35.2±2.4 33.1±3.9 35.0±3.3 32.0±4.0 35.7±3.1 34.8±2.1 38.2±1.3   

A. knysnaensis 31.1±3.1 34.8±2.2 31.3±2.8 34.4±2.0 29.5±1.7 33.5±3.7 31.8±3.3 34.5±2.0   
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Table 3.7. Mean (+ SD) lethal temperatures of seasonally acclimatized large and small 

littorinid snails of the genera Afrolittorina, Echinolittorina and Littoraria from South Africa.  

 

Taxa 

Season 

Summer Winter 

Large Small Large Small 

E. natalensis 57.0±2.0 56.0±2.0 56.5±0.5 56.0±1.0 

L. glabrata 54.3±1.5 54.0±1.7 53.0±0.0 53.5±0.5 

A. africana 51.8±0.4 51.2±0.4 51.2±0.8 50.6±0.7 

A. knysnaensis 50.6±1.0 49.7±1.1 50.3±1.0 49.4±1.1 

 

  

Figure 3.9. Mean lethal temperatures of summer and winter field acclimatized E. natalensis, 

L. glabrata, A. africana and A. knysnaensis. Histograms are mean ± SD of different 

measurements. Different letters represent significance differences between species as 

determined using three-way ANOVA (p < 0.05); NS = non-significant. 
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Table 3.8. Three way-ANOVA results on the effect of laboratory acclimation (HCT) and seasonal acclimatization (LT50) of Afrolittorina spp. 

Echinolittorina natalensis and Littoraria glabrata from SA. 

Variables HCT 
 

LT50 

 Degree of 
freedom 

Mean 
Square 

F- ratios P values Degree of 
freedom 

Mean 
Square 

F- ratios P values 

Species 3 237.6 28.75 0.000000 3 114.3 94.2 0.000000 
Size 1 135.4 16.39 0.000065 1 4.1 3.4 0.071888 
Treatment 3 53.3 6.45 0.000297 1 3.8 3.2 0.081156 
Interactions:         
Species*Size 3 8.2 0.99 0.398857 3 0.6 0.5 0.712718 
Species*Treatment or 
Season 

9 14.2 1.71 0.084691 3 0.3 0.2 0.876228 

Size* Treatment or 
Season 

3 3.4 0.14 0.0937961 1 0.4 0.3 0.560699 

Species*Size*Treatment 
or Season 

9 16.3 0.22 0.0991754 3 0.1 0.1 0.952703 

Bold letters and Italics indicates significant (p < 0.05) effects; * represent where interaction was done. 
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3.4. Discussion and conclusions 

 

Temperature (habitat or environmental) is one of the most important environmental factors 

that affect the distribution and abundance of animals, particularly ectotherms (see Dahlhoff 

and Somero, 1993a; Tomanek and Helmuth, 2002; O'Connor et al., 2007; Helmuth et al., 

2010; Hofmann and Todgham, 2010; etc). This is because ectotherm body temperatures and 

performance are strongly under the influence of environmental temperature (see Sagarin et 

al., 1999; Angilletta Jr. et al., 2002; Helmuth et al., 2005; 2006a, b; Pörtner and Knust, 2007; 

Pincebourde et al., 2008). The influence of temperature change on an animal‟s performance 

is of particular relevance to intertidal animals, especially those from the temperate regions 

where there are strong seasonal variations in temperature (see Stillman, 2003; Lesser and 

Kruse, 2004; Bijlsma and Loeschcke, 2005; Jones et al., 2009; Peck et al., 2009a, b; Lannig 

et al., 2010). In addition, the magnitude of global warming is predicted to be much greater in 

temperate regions and higher latitudes (see Oviatt, 2004; Jentsch et al., 2007; Helmuth et al., 

2010; Caddy-Retalic et al., 2011; Wernberg et al., 2011). This may be especially problematic 

for intertidal organisms such as littorinids as they live in environments that are already harsh 

and fluctuating.  

 

As a result, there are calls to understand and predict how species will respond to climate 

change (Pörtner et al., 2004b; Helmuth et al., 2002; 2006b; 2010; Fitzhenry et al., 2004; 

Harley et al., 2005; Parmesan, 2007; Lannig et al., 2010). Climate change related heat events 

are expected to pose additional thermal problems particularly for organisms in ecosystems 

(e.g. intertidal) already subjected to local warming (see Cuculescu et al., 1998; Tebaldi et al., 

2006; Mislan et al., 2009; Stillman and Tagmount, 2009; Lagos et al., 2011; Madeira et al., 

2012b, c). Thus, with the anticipated effects of climate change where the mean air and sea 

surface temperatures as well as solar radiation have risen and are predicted to rise in the 

coming years, there is concern over how animals, especially intertidal ectotherms, will 

respond to or tolerate extreme and fluctuating environmental temperature stress.  
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Many littorinids live at the highest levels (i.e. fringes) of the intertidal zone and have to cope 

with periodic events of extreme heat and cold as well as desiccation during low tides. 

Littorinid snails have certain abilities that allow them to survive harsh conditions in the 

littoral zones (see McMahon, 1990; Marshall and Chua, 2012). These include adaptation 

mechanisms such as high thermal tolerance (i.e. resistance adaptation; see Vernberg, 1969), 

metabolic adjustments, and enhanced production of heat shock proteins (see Suryanarayanan 

and Nair, 1979; Sokolova and Pörtner, 2001b; Emson et al., 2002; Marshall et al., 2011). As 

for other ectotherms (see Somero, 2002; 2010), studies on thermal tolerances of littorinids 

show that tolerances differ for animals from different regions, shore levels, microhabitats, 

and species. Although there is no study which has compared intra- and interspecific 

tolerances of tropical, subtropical and temperate littorinids species, Table 3.1 shows 

tolerances decrease from tropical to subtropical and temperate regions. In addition, most of 

these studies have shown geographical or population differences in tolerances.  

 

For example, Lee and Boulding (2010) found evidence of latitudinal difference in heat coma 

temperatures of intertidal snails, Littorina keenae from different regions; though the 

difference was weak. Clarke et al. (2000c) found that populations of L. obtusata from South 

Wales showed higher heat coma temperatures than those from south-west Ireland and the east 

coast of Scotland. Sokolova et al. (2000c) found a higher tolerance for White Sea populations 

of L. saxatilis than those from the North Sea, and this is not surprising as the White Sea is 

much colder than the North Sea. Sandison (1967) found the heat coma and lethal 

temperatures to be higher for populations of gastropods including littorinids of the genus 

Littorina from Cardigan Bay than those from Port Seton; however the results for the Cardigan 

Bay populations come from a different study.  

 

Likewise, eulittoral fringe species show higher tolerances than eulittoral zone and low shore 

species. In a study of Littorina species from different regions, Clarke et al. (2000a, b, c) 

found that eulittoral fringe species show higher tolerances than eulittoral species. This is true 

for species of the genera Echinolittorina, Nodilittorina and Littoraria (see Table 3.1). These 

differences can be explained as adaptations to the different microhabitat conditions and 

acclimation to different thermal regimes. In addition, the variability in tolerance values 

reported for each species in the literature appears to be due to the effect of season, 
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acclimation and/or thermal history as well as the methods followed in different studies (see 

below). 

 

The four species of littorinid snails studied here have distinct geographical and vertical 

distribution patterns that are hypothesized to reflect differences in their tolerances to 

temperature, assuming that temperature is the main factor in determining their distribution 

patterns. Their thermal tolerance as estimated by heat coma and lethal temperatures was as 

expected, with significantly higher tolerances in the two exclusively subtropical species than 

subtropical/temperate species. These differences can be explained as adaptations to the 

different conditions the animals experience in their habitats, though it is only possible to 

separate this from the effects of species identity by comparing conspecifics from different 

regions (see below).  

 

In the subtropics, E. natalensis and L. glabrata occupy the eulittoral fringes where they are 

subjected to higher levels of heat stress than Afrolittorina spp. which are dominant in 

eulittoral zones of subtropical/temperate regions. Thus, the differences in geographic and 

vertical distribution and the conditions experienced can explain the differences in thermal 

tolerances found in these species. Although Afrolittorina spp. also occur in the eulittoral 

fringes, the fact that they are of temperate origins (cool environments) (see Hartnoll, 1976; 

Reid, 1989; 1996; Williams et al., 2003; Reid and Williams 2004) suggests a phylogenetic 

influence resulting in them being less tolerant to heat stress than the subtropical species, 

which are of tropical origins (see Hartnoll, 1976; Reid, 1989; 1996; 2007; Inness-Campbell et 

al., 2003; Torres et al., 2008; Williams and Reid, 2004; Reid et al., 2010). This is also 

supported by the fact that A. africana is restricted (presumably by heat stress) to lower levels 

on the shore in the subtropics where it also adopts different habitat use, preferring shallow 

pools and their edges. 

 

It is well known that whole organism thermal tolerance limits closely reflect differences in 

habitat temperature that result from different latitudinal and vertical distribution patterns (see 

Stillman and Somero, 1996; Cuculescu et al., 1998; Clarke et al., 2000c; Tomanek and 

Somero, 2000; Backeljau et al., 2001; Tomanek and Helmuth, 2002; Tepler et al., 2011). On 
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comparing thermal tolerances of bivalves from different regions, Compton et al. (2007) found 

that species from tropical Roebuck Bay, Australia had higher lethal temperatures than those 

from the temperate Wadden Sea, Netherlands. Stillman and Somero (1999, 2000) found the 

upper thermal tolerances of porcelain crabs of the genus Petrolisthes correlate with species‟ 

maximum habitat temperatures. This was also true for dogwhelks of the genus Nucella (Sorte 

and Hofmann, 2005). In the tropics, Stirling, (1982) found a difference in the upper tolerance 

of prosobranchs gastropods from Hong Kong (22°N) and Tanzania (7°N), that was explained 

by greater seasonal fluctuations and/or differences in geomorphology and microclimate in 

Hong Kong. In tropical intertidal zones, animals are subjected to periods of emersion of 

several hours in which intense solar radiation may raise surface temperatures as high as 45 to 

50°C (Garrity, 1984; Williams and Morritt, 1995; Marshall et al., 2010; Cartwright and 

Williams, 2012). Although the subtropics might not experience conditions as extreme as in 

the tropics, one could expect the subtropical species to show higher tolerances than temperate 

species, as was seen in this study.  

 

Differences between species were also seen within regions. In the subtropics, the eulittoral 

fringe to upper eulittoral E. natalensis and L. glabrata showed higher thermal tolerance than 

the eulittoral A. africana. It is well known that gastropods including littorinid snails that 

occupy different positions on the shore are subjected to varying degrees of thermal stress 

brought upon by contrasting effects of solar radiation and tidal inundation (see Sandison, 

1967; Suryanarayanan and Nair, 1979; McMahon, 1990; Gracey et al., 2008; Mislan et al., 

2009). The species inhabiting the eulittoral fringes can be exposed to dry air and intense solar 

radiation for periods of hours to days or even months (see McMahon, 1990; Emson et al., 

2002; Marshall et al., 2010; 2011; Marshall and Chua, 2012). E. natalensis (second highest) 

and L. glabrata (highest) live higher on the shore and experience greater heat stress during 

low tides than A. africana which not only occurs lower on the shore, but exploits more benign 

habitats than in temperate regions. Although in the subtropical region L. glabrata lives higher 

on the shore than the other two species, like A. africana, it relies on benign habitats. This 

contrasts with E. natalensis which also lives on the high shore, but lives in the open on 

unshaded dry rocks, so that habitat use by these two eulittoral species is different. 
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Within the warm temperate region, the two Afrolittorina spp. showed different thermal 

tolerances, with A. africana showing higher tolerances than A. knysnaensis. This again 

reflects their geographical distributions; A. africana extends just into the subtropical parts of 

the coast, while A. knysnaensis is found in the cool and warm temperate regions (see 

McQuaid and Scherman, 1988; McQuaid, 1992; Sinclair et al., 2004; d‟Errico et al., 2008). 

The two overlap extensively in the warm temperate region where they even co-exist and use 

the same microhabitats (see McQuaid, 1992; d‟Errico et al., 2008). Thus, the slight (1-2°C) 

difference in tolerance was expected. Previous studies by McQuaid and Scherman (1988) 

also found a small (1°C) difference between these two species.  

 

Situations where species overlap in distribution and show different tolerances can be 

explained by different microhabitat use (see Vernberg and Vernberg, 1970; Stirling, 1982; 

Garrity, 1984; Stillman and Somero, 1996), but in this case shell colour may also be 

important (see below; Phifer-Rixey et al., 2008; Miller and Denny, 2011). The brown-black 

shell of A. knysnaensis is expected to absorb more radiation and heat up to a greater degree 

than the light-coloured A. africana (see McQuaid and Scherman, 1988; McQuaid, 1992; 

1996a), resulting in the former experiencing higher temperatures in the field. Markel (1971) 

found the dark-coloured Littorina aspera absorbed more solar radiation and had a higher 

lethal temperature than the light-coloured L. modesta. On studying the effect of carapace 

colour on heat tolerance in the fiddler crab Uca pugilator, Wilkens and Fingerman (1965) 

found that dark individuals had higher heat tolerances than pale ones. Even though black or 

dark bodies are known to absorb a larger fraction of solar radiation, the heat gained remains 

near the surfaces and is easily removed by either re-radiation, convection or air cooling (see 

Lewis, 1963; Helmuth, 2002; Britton and Morton, 2003; Phifer-Rixey et al., 2008; Marshall 

and Chua, 2012). This might have been the case in A. knysnaensis since the body temperature 

of both species did not differ despite their colour differences (unpub. data).  

 

There was also a difference between the two eulittoral fringe species, with higher limits for E. 

natalensis than L. glabrata. This was expected since L. glabrata prefers shaded and more 

humid microhabitats such as crevices and pits which offer protection from direct sunlight. 

Microhabitats such as pits and crevices can decrease heat stress levels and reduce rates of 

evaporation (see Garrity, 1984; Britton, 1995; Stafford and Davies, 2004). As for other 
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littorinids such as Cenchritis (Tectarius) muricatus (see Emson et al., 2002), L. glabrata is 

also found on tufts of grass and other vegetation (pers. obs.) which would avoid the high 

temperatures of rock surfaces. E. natalensis however is mostly found on dry rock surfaces 

where it is subjected not only to intense solar radiation from direct sunlight, but also to heat 

conducted from the substratum. Thus, differences in microhabitat conditions correlate with 

the discrepancies in heat tolerance between these eulittoral fringe species.  

 

Apart from microhabitat effects, deviations in tolerances of particular species from the 

general relationship with distribution on the shore can be related to differences in shell colour 

and morphology, and reported thermoregulatory capacities (see Stirling, 1982; Marshall and 

Chua, 2012). For example, E. natalensis, like many Echinolittorina spp., has a highly 

sculptured shell which is regarded as an adaptation to reduce radiant heat uptake (see 

McQuaid, 1992; Marshall and Chua, 2012), whereas L. glabrata has a very thin, smooth shell 

which can expose internal tissues to intense solar radiation. In addition, E. natalensis can also 

benefit from convective cooling as reported in other Echinolittorina and littorinid species (see 

Marshall and Chua, 2012). No previous data on heat coma and lethal temperatures are 

available for these two species for comparison with my findings. 

 

Since species identity and regions are largely confounded, I could only compare populations 

of Afrolittorina spp., each of which occurs in two regions. In the case of A. africana, I 

predicted that populations from the subtropics would show higher tolerances than warm 

temperate populations and for A. knysnaensis that cool temperate populations would show 

lower tolerances than warm temperate populations. Thus, since there is latitudinal difference 

between sampling sites, it is possible that acclimation to temperature as has been reported in 

other studies (see Sandison, 1967; Stirling, 1982; Lee and Boulding, 2010; Sorte et al., 2011; 

Zardi et al., 2011), may account for tolerance differences between regions. In fact, there were 

no major effects of region on heat tolerances for either species of Afrolittorina, and this may 

reflect the fact that these species are exposed to terrestrial conditions for most of the time, 

while the regions are identified mainly on the basis of sea surface temperature (SST) (see 

Maree et al., 2000; Harrison, 2002; 2004; Sinclair et al., 2004).  
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Along the southern African coast, day time air temperatures, which frequently exceed 35°C, 

and substratum temperatures, often in excess of 45°C for fully heated rocks, rise well above 

SST, which varies between 20 and 27°C on the subtropical east coast, 15 and 22°C in warm 

temperate south coast, and from 10 to 19°C on the cool temperate west coast (see Darbyshire, 

1966; Roy et al., 2001; Sinclair et al., 2004; Harrison and Whitfield, 2006). This means that 

animals are exposed to two forms of heating, either directly by solar radiation or indirectly by 

conductive transfer from the substrata to which they are attached (see Wethey, 2002; Britton 

and Morton, 2003; Broitman et al., 2009; Marshall et al., 2010; Chapperon and Seuront, 

2011a, b). Animals‟ body temperatures (up to approximately 43°C) were always higher than 

the surrounding air but slightly lower than that of the rocks (unpub. data).  

 

The lack of an effect of region on the tolerances of A. africana is reflected in its within-shore 

distribution. This species occurs at the very top of the eulittoral fringe in the warm temperate 

region, but in the subtropical region it is found only lower on the shore; this may also be true 

for A. knysnaensis. The sampling sites for both species in each region were only a few (2-3) 

degrees apart, and as such one would not expect differences between populations as seen in 

this study. An alternative explanation for the lack of regional difference in Afrolittorina spp. 

may be the lack of genetic diversity (variation) among populations (see Chapter 2; Grant and 

Lang, 1991) as in other studies. After finding weak evidence of latitudinal difference in heat 

coma temperatures of L. keenae snails from different regions, Lee and Boulding (2010) 

suggested it as a result of high gene flow between populations. Kuo and Sanford (2009) 

found evidence of the presence of thermally tolerant genotypes in different parts of an 

intertidal snail‟s range. Future studies are needed to investigate the effect of region on 

thermal tolerance of the study species, especially those which are found in more than one 

region and/or populations separated by several (5 and above) degrees of latitude. In addition, 

there are possibilities that members of the study species might be more stressed at their range 

edges and/or hotspot areas as in other animals or species (see Sorte and Hofmann, 2004; 

Osovitz and Hofmann, 2007; Roelofs et al., 2008; Barshis et al., 2010; Somero; 2010; 

Wernberg et al., 2011), resulting in tolerance differences.  

 

Other studies have found differences in thermal tolerances between populations from 

different bioregions or populations (see Vernberg and Vernberg, 1970; Stillman and Somero, 
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1999; Sorte and Hofmann, 2005; Fangue et al., 2006; Sunday et al., 2012). For example, 

Clarke et al. (2000c) found a difference in heat coma temperatures of Littorina obtusata from 

different bioregions, with populations from South Wales showing higher tolerances than 

those from south-west Ireland and east coast of Scotland. Similarly, populations of Littorina 

spp. from South Wales had higher heat coma temperatures than those from Northeast 

England (Backeljau et al., 2001). In L. littorea, populations from Ireland had significantly 

higher lethal tolerance than those from Scotland; while for the whelk Nucella lapillus, lethal 

tolerance was higher for Scottish than Irish populations (Davenport and Davenport, 2005). 

Sokolova et al. (2000c) also found a difference in temperature tolerance of the gastropod L. 

saxatilis, with higher tolerances for White Sea than North Sea populations. Sandison (1967) 

found that populations of gastropods including Littorina spp. from Cardigan Bay had higher 

tolerances than those from Port Seton; however, results were not from same study.  

 

Similar effects have been found for other marine animals such as gastropods molluscs, 

echinoderms, crustaceans and fishes (see below). For example, Sorte et al. (2011) found that 

populations of the subtidal epibenthic species from the east coast of the United Sates which 

experience higher habitat temperatures had higher thermal tolerances than those on the west 

coast which experience lower temperatures. They also showed (after repeated exposure) that 

thermal tolerance varied between western and eastern Atlantic populations. Zippay and 

Hofmann (2010) found that veligers of Nucella ostrina from northern latitudes in Washington 

State had lower lethal temperatures than those from central sites in California. Kuo and 

Sanford (2009) on the other hand found that newly laboratory hatched N. canaliculata from 

central California had lower lethal temperatures than those from Oregon. The authors 

suspected that the difference was due to differences in period of exposure; some northern 

sites experience longer exposure to stressful midday low tides than southern sites due to 

variation among regions in the timing of low tides (see Helmuth et al., 2002; 2006a).  

 

Timing of low tide exposure is only one of many environmental factors that contribute to 

variation in thermal stress among sites and regions. Persistent regional differences in tidal 

regimes, climate, and other environmental factors (e.g. air temperature, solar radiation, etc) 

may act as selecting forces that influence the physiology of intertidal species with broad 
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latitudinal ranges (see Helmuth et al., 2006a; Kuo and Sanford, 2009). As the whole coast of 

South Africa experiences regular semi-diurnal tides, tidal effects will not be relevant here. 

  

Large differences in thermal tolerances have been reported in other littorinids and intertidal 

gastropods; and in most cases the differences were related to the conditions animals 

experience in their regions, shore levels and microhabitats. It is well known that warm water 

species from the tropics have higher tolerances than cool water species from temperate 

regions (see Table 3.1; Suryanarayanan and Nair, 1979; McMahon, 1990). The thermal 

tolerances of species in this study are above those reported for Littorina spp. from temperate 

regions (Clarke et al., 2000a, b, c; but see Backeljau et al., 2001) and low compared to those 

of tropical species (Suryanarayanan and Nair, 1979; Lee and Lim, 2009; Marshall and 

McQuaid, 2010; Marshall et al., 2011). The tropical E. vidua and E. malaccana had heat 

coma temperatures of 44.5 and 46.8°C (Cleland and McMahon, 1986), and lethal thermal 

limits of 56.5 and 59°C respectively (see Marshall and McQuaid, 2010; Marshall et al., 

2011). In Littorina species from subtropical and temperate regions, heat coma temperatures 

were around 30-32°C (Clarke et al., 2000a, b, c; Sokolova and Pörtner, 2003) while their 

lethal thermal limits were 40-43°C (Clarke et al., 2000a, b, c). Muñoz et al. (2005) found a 

heat coma temperature of 37°C in E. peruviana in the temperate region which marks its 

southern distribution limit.  

 

Likewise, species that live highest in the intertidal (i.e. eulittoral fringes) show higher 

tolerances than their low shore and subtidal counterparts (see below). Although Clarke et al. 

(2000b) found heat coma temperatures for their study Littorina species to be similar, lethal 

limits were lowest for L. obtusata, the species that is found lower on the shore. Markel (1971) 

found that the high shore L. aspera, which experiences higher tissue temperatures in the field, 

had higher lethal limits than sympatric L. modesta, found on the lower shore to subtidal. In 

the tropics, Stirling (1982) found a difference in thermal tolerances between species, with 

higher tolerance for eulittoral fringe species than eulittoral zone and subtidal species. Also in 

the tropics, Suryanarayanan and Nair (1979) found a higher tolerance for the high shore 

Nodilittorina leucosticta than the low shore Littorina undulata.  
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Such differences in tolerances between zones have also been found in other animals. Studies 

on sympatric crabs have found higher tolerances for high shore species than their lower shore 

and subtidal counterparts (Cuculescu et al., 1998; Stillman and Somero, 1999; Stillman, 

2002). In Jensen and Armstrong (1991), the lower eulittoral to subtidal Petrolisthes 

eriomerus showed higher sensitivity to thermal stress than the mid to high intertidal P. 

cinctipes. Moreover, there was a size difference with smaller animals showing a greater 

resistance of emersion at 25°C than larger ones. In Lagos et al. (2011), P. laevigatus which 

inhabits the upper intertidal had greater tolerance to high temperatures when exposed to air 

than the lower intertidal to subtidal P. violaceus.  

 

Although there are many papers dealing with temperature tolerances in intertidal animals (see 

above), differences in experimental methods and protocols as well as criteria for determining 

limits or lethality make comparisons among studies difficult. For example, some studies 

investigated thermal tolerance using chronic methods where temperature was raised at a slow 

rate (i.e. 1°C in hours or a day); while other studies have used acute methods where 

temperature was raised at a faster rate (i.e. 1°C in 5 minutes) as in the current study. In 

Fraenkel (1960) for instance, individuals of Littorina littorea were exposed for 1 hour at a 

particular temperature to determine their lethal temperature. On studying the effect of the rate 

of temperature increase on the heat tolerance of blenny fish Acantemblemaria hancocki, 

Mora and Maya (2006) found that slow rates resulted in higher tolerances than rapid rates. 

This is because with slow increase in temperature, animals have enough time to acclimate to 

new temperature and increase their thermal tolerances. However, the opposite effect can also 

be observed (see Angilletta Jr., 2009; Nguyen et al., 2011). Hicks and McMahon (2002b) 

found that the lethal thermal limits of the brown mussel Perna perna were about 30°C when 

temperature was increased by 1°C in a day and 45°C when temperature was increased by 1°C 

in a minute.  

 

It may have been more appropriate to measure heat coma temperatures for the studied species 

in air rather than in water as for lethal temperatures, because these snails are unlikely to be 

immersed in nature even during high tides with the exception of those found submerged in 

pools (pers. obs.). However, measurement of heat coma temperatures have been done in 

water in most studies (see Fraenkel, 1968; McMahon, 1990, 2001b; Clarke et al., 2000a, b). 
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There is also evidence which suggests that heat coma temperature in water is positively 

correlated with that in air for littorinid gastropods (see Sandison, 1967). Therefore, I also 

measured heat coma temperatures in water so that my data could be directly compared to 

those of previous studies. It would have been good to test tolerances, both heat coma and 

lethal temperatures, of my species in both media (water and air). In addition, the criteria used 

to judge heat coma and lethal temperatures can make comparisons of data impossible (see 

Fraenkel, 1960; Stirling, 1982). For example, as seen here, studies that use lack of activity to 

judge heat coma will give different results from those using closure of the operculum as a 

criterion.  

 

Differences between class sizes, with small individuals (expected to be juveniles) showing 

higher heat coma temperatures but lower lethal temperatures than large individuals (expected 

to be adults) was expected, and can be explained by their positions on the shore. Juveniles of 

Afrolittorina spp. are found lower on the shore where they are frequently wetted by incoming 

tides while adults occupy higher levels and are only wetted by waves‟ splashes during high 

tides (pers. obs.; but see below). Coupled with regular wetting by tides, juveniles can run 

risks of exposure to high temperature to increase feeding time. The higher heat coma in 

juveniles in this study might be explained by high activity (i.e. slightly different behaviour to 

adults) and the benefits of evaporative cooling lower on the shore.  

 

On the other hand, the higher lethal limits of adults were also expected since they are found at 

the highest levels on the shore where they are exposed to intense solar radiation for longer 

than juveniles. Although based on individuals from a single site (St. Abss), larger individuals 

of Littorina littorea showed significantly lower heat coma temperatures than juveniles 

(Clarke et al., 2000a, b). Stirling (1982) suggested that low shore species (animals) may have 

low lethal temperatures relative to heat coma temperatures since they are unlikely to 

experience extreme temperatures, while for high shore species high lethal temperature will be 

more important than high heat coma temperatures.  

 

In contrast, Sandison (1967) suggested heat coma to be the most important factor affecting 

the zonation of littorinids and this appears to be true here, when I compare the tolerance and 
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distributions of juveniles and adults of Afrolittorina spp. However, juveniles are not always 

found lower on the shore (see Vermeij, 1972; Boulding and Van Alstyne, 1993; Saier, 2000; 

Emson et al., 2002). For example, juveniles of A. knysnaensis have been described as 

generally occurring higher on the shore than adults (McQuaid, 1981a, b; d‟Errico et al., 

2008), though this was in the cool temperate region where heat stress may be less critical. See 

Vermeij (1972) for size gradients in A. africana and other littorinids and molluscs. In 

summary, my results suggest that the basis for resisting heat stress may differ between large 

and small individuals. Such size-specific differences may account for different distribution 

patterns on the shore with larger individuals found higher on the shore while smaller ones are 

restricted to the lower levels. Indeed when we look at my results, larger specimens of all 

species showed higher lethal temperatures than smaller animals.  

 

The two subtropical species ranked differently for heat coma and lethal temperatures. For 

both size classes, L. glabrata showed higher heat coma temperatures than E. natalensis, but 

the reverse was true for lethal temperatures. Again, this may be linked to their preferences for 

different microhabitats, L. glabrata preferring shaded and humid environments and E. 

natalensis dry rock surfaces. L. glabrata might also benefit from its behaviour, observed in 

both laboratory and field, of crawling and escaping to avoid heat stress. A delay in 

succumbing to heat coma may allow them to seek protected microhabitats. This means that if 

heat coma temperature was the main factor controlling vertical zonation, L. glabrata would 

be expected to occupy a higher level than E. natalensis; visa versa for lethal temperature.  

 

Situations where heat coma temperature is hypothesised to be the main factor controlling 

vertical zonation have been found in littorinids (see Sandison, 1967), but in this study lethal 

temperatures seems to be important. In fact the vertical distributions of L. glabrata and E. 

natalensis widely overlap in the eulittoral fringes; but the zones of maximum abundance of 

these species are well separated. L. glabrata is more abundant in the uppermost eulittoral 

fringe and E. natalensis is found in abundance in the middle eulittoral fringe (pers. obs.). 

However, it must be noted that other factors (e.g. predation) may be responsible for L. 

glabrata occurring further up the shore than E. natalensis.  
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Effects of acclimation and acclimatization on thermal tolerances. 

 

The phenomenon of temperature acclimation (physiological adaptation or capacity 

adaptation; Vernberg, 1969), leading to shifts in tolerance limits is more common in animals 

that experience fluctuations in conditions such as temperature and humidity (e.g. temperate 

species) than those that experience relatively constant conditions (e.g. tropical species) (see 

Segal, 1961; Huey and Bennett, 1990; Somero, 2002; Stillman, 2003; Jones et al., 2009; 

Pörtner, 2010; Sunday et al., 2012). The lack of an acclimation response by tropical or polar 

organisms presumably relates to the absence of any significant seasonal temperature variation 

in these regions (see Vernberg, 1969; Bijlsma and Loeschcke, 2005; Clarke and Gaston, 

2006; Peck et al., 2009a, b; Chapperon and Seuront, 2011a, b; Nguyen et al., 2011). In 

addition, tropical and polar species often live close to their upper thermal limits, and as such 

have narrower thermal windows than temperate species (see Stillman and Somero, 1996; 

1999; Compton et al., 2007; Chapperon and Seuront, 2011a, b; Christensen et al., 2011; 

Nguyen et al., 2011). Because of the high temperatures routinely experienced, tropical 

species have thermal tolerance limits that are as high as could be reached through acclimation 

so that no further acclimation is possible.  

 

This is true for intertidal species, especially eulittoral fringe ones, which experience high 

fluctuations and extremes of temperature than low intertidal species (Cuculescu et al., 1998; 

Stillman and Somero, 2000; Stillman, 2002; 2003; Somero, 2002; 2005; Compton et al., 

2007; Nguyen et al., 2011). These explanations may well apply to some molluscs such as 

gastropods and bivalves that only experience slight seasonal fluctuations in temperature (see 

Vernberg and Vernberg, 1969; Tomanek, 2008; Somero, 2010), such as those on the eastern 

seaboard of South Africa. Sea surface temperatures vary between 20 and 27°C on the 

subtropical east coast, and from 10 to 19°C on the cool temperate west coast (see above). Air 

temperatures are diurnally and seasonally variable reaching 30-35°C in summer and falling to 

3°C in the subtropical and to 0°C along the west and south coast during winter (see Kruger 

and Shongwe, 2004; Sinclair et al., 2004). 
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Studies on acclimation show conflicting outcomes, some suggesting that acclimation occurs, 

while others suggest little or no acclimation in thermal tolerances. Many studies have found 

that littorinids and other marine invertebrates from different phyla have limited capacity or 

are unable to acclimate their thermal tolerances (see Hamby, 1975; Huey and Bennett, 1990; 

Stillman and Somero, 1999; Stillman, 2002; 2003). In the brown mussel Perna perna, 

acclimation was not pronounced, suggesting limited capacity for temperature acclimation 

(Hicks and McMahon, 2002b). In contrast, other studies have shown that acclimation can 

lead to higher thermal tolerances, with noticeable shifts in lethal temperature limits (see 

Segal, 1961; Backeljau et al., 2001; Díaz et al., 2002; Somero, 2002; Li and Brawley, 2004; 

Kelley et al., 2011). Clarke et al. (2000a) found significantly higher heat coma temperatures 

(overall shifts of 3 and 5.8°C) in individuals of Littorina littorea acclimated at higher 

temperatures (16 and 20°C respectively) than those acclimated at 12°C. Hamby (1975) also 

found a significant shift in heat coma in individuals of the common Atlantic littorinid, L. 

littorea. In L. littorea and Monodonta lineata, lethal temperatures were profoundly influenced 

by thermal acclimation (Newell et al., 1971).  

 

Sorte et al. (2011) suggested that the four populations of the intertidal Littorina spp. can 

acclimate as shown by the absence of geographical differences in temperature tolerance. 

Braby and Somero (2006) found an increase in high critical temperatures of mussels, Mytilus 

spp., acclimated at 14 and 21°C, respectively. Cuculescu et al. (1998) found significantly 

higher heat coma temperatures in crabs, Carcinus maenas and Cancer pagurus, acclimated at 

22°C than those acclimated at 8°C, with greater acclimation ability in C. pagurus than 

Carcinus maenas. In addition, for both species, winter caught animals showed significantly 

lower tolerances than summer and autumn caught animals, indicating the influence of season. 

Except for laboratory acclimation of critical thermal maxima which increased with 

acclimation temperature, Fangue and Bennett (2003) found that March acclimatized animals 

had critical maxima of 37.3°C as compared to 41.8°C for July acclimatized animals. In 

general, thermal tolerances are higher in summer and lower in winter (see Vernberg and 

Vernberg, 1970) 

 

In this study, animals acclimated at different temperatures (20, 25, 30 and 35°C, respectively) 

showed no change in heat coma temperatures. This was irrespective of the effect of season on 
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lethal temperatures with summer acclimatized animals showing higher tolerances than winter 

acclimatized animals. Although not significant, variation in lethal temperatures (differences 

of 1-3°C) with respect to season may reflect some level of acclimation. It must be noted that 

seasonal acclimatization in this study may be due to acclimatization to other factors (e.g. 

salinity and food availability) in the field that can affect responses to heat stress (see 

Nagabhushanam and Sarojini, 1969; Fitt et al., 2001); but which were not simulated in the 

laboratory. Although a seasonal effect on heat coma was not investigated in this study, it is 

possible that more profound seasonal changes can occur in heat coma than in the lethal 

temperature. In Littorina littorea, heat coma was more subject to change by acclimation than 

lethal temperature as shown by a shift of heat coma temperature by about 8.5°C while lethal 

temperature shifted by only about 1-2°C (see Stirling, 1982). The effects of acclimation are 

seen in seasonality of temperature tolerance in Littorina spp. as season can have an effect on 

heat coma temperatures, which can vary seasonally (Clarke et al., 2000b; Backeljau et al., 

2001). Cuculescu et al. (1998) found an effect of season on heat coma temperatures of the 

crabs Carcinus maenas and Cancer pagurus, with significantly lower tolerances in winter-

caught animals than summer- and autumn-caught animals. This was also true for marine 

crustaceans where heat coma temperatures were higher in summer-acclimatized animals than 

winter-acclimatized ones (Hopkin et al., 2006).  

 

The lack of heat coma acclimation in this study was unexpected and raises questions as to 

what causes an inability to acclimate. One possibility is that the acclimation period (14 days) 

used in this study was too short (see Backeljau et al., 2001), but in many studies acclimation 

for as little as 14 days was found to be sufficient to lead to proper acclimation (see Todd and 

Dehnel, 1960; Clarke et al., 2000a). For example, Hamby (1975) found that 14 days was 

enough to induce acclimation on Littorina littorea, resulting in a shift in heat coma 

temperatures; while further acclimation for 50-54 days had no effect. Alternatively, since the 

study littorinids are generally found very high on the shores, it might be that these animals 

were already acclimatized to high temperatures. This is supported by the results of Sorte et al. 

(2011) where populations of L. saxatilis did not acclimate after three weeks (21 days).  

 

In addition, high shore intertidal species are assumed to be already living close to their 

thermal limits, and may have more limited capacities to increase their thermal tolerance limits 
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than subtidal species (see above). For instance, Stillman and Somero (1999) found that of the 

three temperate porcelain crabs, Petrolisthes spp. studied, the intertidal species was not able 

to adjust its lethal limits to the same extent as the subtidal species. This can be explained by 

differences in media due to the position on the intertidal zone. For example, thermal limits of 

Mytilus edulis in air were the same in June and November; but in water there was acclimation 

to a slightly higher value (29.8°C) in June than November (25.7°C; Jones et al., 2009).  

 

The thermal history of an organism is known to influence thermal acclimation (see Cuculescu 

et al., 1998). Clarke et al. (2000a, b) found no effect of acclimation period on heat coma of 

animals acclimated at 12°C, and suggested that the specimens might have already been field 

acclimatized. However, the authors did not investigate the effect of period at other 

temperatures (16 and 20°C) which would have implied the importance of acclimation time. 

Other causes of lack of acclimation in this study could be the cost of acclimation and 

maintenance of high lethal limits (see Somero, 2002; Clarke, 2003; Stillman, 2002; Sokolova 

et al., 2012). As other investigators (see Hawkins et al., 1987; Hofmann and Somero, 1995; 

Tomanek, 2008; 2010) have emphasized that acclimation comes at a cost because the 

synthesis of heat shock proteins (which are involved in thermal acclimation and tolerance; 

Cuculescu et al., 1998; Dong et al., 2008a; Gracey et al., 2008; Sørensen, 2010) requires 

more energy (see Stillman, 2002; Whiteley and Faulkner, 2005; Sokolova and Lannig, 2008; 

Tomanek, 2008; 2010; Fitzgerald-Dehoog et al. 2012).  

 

The ability to acclimate to temperature change is an important adaptation, because it signifies 

that some animals can alter their thermal tolerances during a time of rising temperature in the 

summer months and during global warming (see Newell et al., 1971; Kingsolver and Huey, 

1998; Tomanek, 2008; Byrne et al., 2010; Pörtner, 2002b; 2010). Thus, acclimation is an 

important criterion in defining an animal‟s ability to survive environmental change, via the 

buffering of temperature effects. This is because acclimation is a critical short-term response 

to rapid and severe environmental changes which are expected in the near future (see 

Sokolova and Pörtner, 2003; Helmuth et al., 2005; Brown and Cossins, 2011; Martin et al., 

2011) since it allows organisms to shift their thermal optimum (see Horowitz, 2001; Kassahn 

et al., 2009; Silvestre et al., 2012).  
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After comparing thermal acclimation capacities of differently distributed species of porcelain 

crabs of the genus Petrolisthes, Stillman and Somero (1999) and Stillman (2002, 2003) 

concluded that species with poor abilities to acclimate to temperature change (lower latitudes 

and high tidal zone species) are likely to be the most vulnerable to future warming scenarios 

(see Somero, 2005; 2010; Tomanek, 2010; Christensen et al., 2011). This can be true for my 

study species since they live high in the intertidal zone. This suggests that the two eulittoral 

fringe as well as the eulittoral zone species are likely to show changes in distribution pattern 

(vertical and geographical) with a small increase in temperature in coming years as predicted. 

This is supported by restriction of A. africana (also A. knysnaensis) to lower levels on shore 

in subtropics (pers. obs.). 

 

In summary, the results of this study show that there are differences in thermal tolerance of 

the studied species and the differences seem to reflect differences in biogeography, ecology 

and phylogeny. The two subtropical species, which occupy the eulittoral fringe, showed 

higher tolerances than the two subtropical/temperate species which are found in the eulittoral 

zones. This agrees with the hypothesis that temperature tolerances in marine animals show a 

decrease from tropics to polar regions in both eulittoral fringe and lower shore species. It has 

also been established that there is little or no such difference as we move from 0 to 30 

degrees latitude (tropics to subtropics), with the difference being more obvious from 30 to 60 

degrees of latitudes (temperate and polar) (see McMahon, 2001b). By demonstrating the 

existence of fixed physiological differences between species from different geographic 

regions, this study provides evidence that environmental (temperature) adaptation at the 

organism level is important for the maintenance of dissimilar biogeographies.  

 

The results also indicate that littorinids can tolerate high temperature stress, and are therefore 

well suited to life in the intertidal zones where temperature and other stresses are extreme and 

can change abruptly. Thus, it can be concluded that, in the short term, littorinids are tolerant 

of the high temperatures than they are likely to experience on the shore, and that they can also 

survive temporary exposure to supernormal temperatures. An understanding of animals‟ 

temperature tolerances or thermal limits, and the plasticity or flexibility of those limits 

enables us to make some inferences about what will happen to their distributions and 

abundances during climate change. Although my results suggest that littorinids have high 
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tolerances to temperature, it is clear that these animals are already living close to their 

thermal limits as shown by their limited capacity to adjust those tolerances, and the fact that 

distribution within-shores alters with region. As such, these animals may be vulnerable to 

small change in environmental temperatures. Thus, in the event of global warming, the 

distribution of littorinids and other intertidal ectotherms may be more affected than those of 

subtidal ones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

CHAPTER 4: Temperature-heart function relation of aestivating littorinid 

snails of the genera Afrolittorina, Echinolittorina and Littoraria from 

temperate, subtropical and tropical regions 

 

4.1. Introduction 

 

Various laboratory and field studies have examined responses of physiological processes 

such as heart rate (the focus of this chapter) and oxygen consumption to abiotic factors such 

as temperature, oxygen, salinity, light; carbon dioxide, pollutants and chemicals as well as 

biotic factors such as sex, size, weight, food availability, nutritional status and activity (see 

below; Table 4.1; Brown, 1979; Höjesjö et al., 1999; Isla and Perissinotto, 2004; Langenbuch 

and Pörtner; 2004; Kemp et al., 2009; Marsden et al., 2011; etc), amongst others. It is clear 

from these studies that physiological processes are influenced by a wide variety of extrinsic 

and intrinsic factors (Newell, 1973; Laird and Haefner Jr., 1976; Aagaard, 1996; McMahon, 

1999; Crear and Forteath, 2000; Nicholson, 2002). This is true for heart rate and oxygen 

consumption which are linked to abiotic factors including temperature, oxygen levels, 

salinity, chemicals, and many more (see Table 4.1; below). For marine species particularly 

intertidal ectotherms, temperature, oxygen levels and salinity are the three main factors that 

affect metabolic rates (see Table 4.1; above; Newell, 1973; DeFur and Mangum, 1976).  

 

Although the effects of changes in the above three variables on the metabolic rates of marine 

animals have received much attention and are well documented (see Table 4.1), no general 

consensus on response has emerged as marine animals show diverse metabolic responses(see 

below; Table 4.1). Some studies suggest regulation of metabolic rate in response to changes 

in these factors, while others indicate partial independence and still others direct dependence 

(see below). This shows that animals‟ metabolic rates are complex and vary throughout the 

biosphere as a result of the diversity of physiology and energy demands of animals as well as 

geometric and environmental constraints or resource limitations (Newell, 1973; Shirley et al., 

1978; Branch et al., 1988; Speakman et al., 2004; Glazier, 2005; Seibel and Drazen, 2007; 

Killen et al., 2010; Burton et al., 2011). 
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Table 4.1. Three main factors that have effects on oxygen consumption and heart rate of different marine animals. 

Taxa Reference Factors  Taxa Reference Factors 
Temperature  Oxygen Salinity Temperature  Oxygen Salinity 

Invertebrates Newell, 1969 Mixed   Crustaceans  McMahon, 2001a  Mixed  
 Newell and Pye, 1973 Mixed    Whiteley et al., 2001 Dependent   
 DeFur and Mangum, 1979 Mixed Mixed Mixed Crabs Vernberg, 1959 Mixed   
 Herreid II, 1980  Mixed   Vernberg and Vernberg, 1966; 

1969 
Mixed   

 Ferraris et al., 1994 Mixed  Mixed  Teal and Carey, 1967  Mixed  
 Salvato et al., 2001 Mixed Mixed Mixed  Newell et al., 1972 Mixed   
Molluscs Bayne, 1971a, b  Mixed   Wallace, 1972 Dependent   

      Sastry and McCarthy, 1973 Mixed   
Littorinids Sandison, 1967 Dependent    Breteler, 1975 Dependent   

 Newell and Pye, 1970a, b, 1971 Mixed    Hill and Koopowitz, 1975  Mixed  
 Pye and Newell, 1973 Independent    Laird and Haefner Jr., 1976 Mixed  Little 
 McMahon and Russell-Hunter, 

1978 
 Mixed   Spaargaren, 1977  Mixed  

 Shirley et al., 1978 Mixed    Spaargaren and Achituv, 1977 Dependent   
 Moore and Sander, 1984 Dependent  Dependent  Findley et al., 1978   Mixed 
 Innes and Houlihan, 1985 Dependent    Stickle and Sabourin, 1979   Mixed 
 McMahon et al., 1995 Mixed    Dye and van der Veen, 1980 Mixed  Mixed 
 Sokolova and Pörtner, 2001, 

2003 
Mixed    Burggren and McMahon, 1981 Dependent   

 Marshall and McQuaid, 2010 Independent    Laughlin and Neff, 1979; 1980; 
1981 

Mixed  Mixed 

 Marshall et al., 2010 Independent     Moreira et al., 1981 Mixed   
 Melatunan et al., 2011 Dependent    Hawkins et al., 1982 Independent   
 Marsden et al., 2012  Mixed   Mickel and Childress, 1982 Dependent Mixed  
 Stenseng et al., 2005a, b Dependent    Du Preez, 1983 Dependent   

Whelks Dye and McGwynne, 1980 Mixed    Shumway, 1983   Dependent 
 Brown and Meredith, 1981   Dependent  Wernick and Penteado, 1983  Mixed  
 Stickle and Bayne, 1982 Mixed  Mixed  Gutermuth and Armstrong, 

1989 
Dependent   

 Brown and Da Silva, 1979, 
1984 

Mixed    Emmerson, 1990 Dependent   

 Wynberg and Brown, 1986  Mixed   Sébert et al., 1995 Dependent   
Limpets Pickens, 1965 Dependent    De Wachter and McMahon, 

1996 
Dependent   

 Bannister, 1974 Dependent    Stillman and Somero, 1996 Mixed   
 McMahon and Russell-Hunter, 

1978 
 Mixed   Brown and Terwilliger, 1999 Dependent  Independent 

 Houlihan, 1979 Independent    De Pirro et al., 1999 Dependent   
 McMahon and Russell-Hunter, 

1981 
Mixed Mixed   Crear and Forteath, 2000 Dependent Independent  
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 Shumway, 1981  Independent Independent  Frederich and Pörtner, 2000 Dependent   
 Shumway and Marsden, 1982 Dependent Independent Dependent  Robertson et al., 2001a, b; 2002 Dependent   
 Dye, 1987 Dependent    Camus et al., 2004 Dependent   
 Branch et al., 1988 Dependent    Storch et al., 2009 Dependent   
 Marshall and McQuaid, 1991; 

1992 
Dependent Mixed   Walther et al., 2009 Dependent   

 Marshall and McQuaid, 1993a; 
1994 

Mixed Dependent Dependent   Iftikar et al., 2010 Dependent   

 De Pirro et al., 1999a, 2001 Mixed  Independent  Lardies et al., 2011 Dependent   
 Chelazzi et al., 1999, 2001 Mixed  Mixed Amphipods Bulnheim, 1979 Mixed Mixed  
 Santini et al., 1999; 2000 Dependent    Marsden, 1984 Mixed   
 Morritt et al., 2007   Dependent  Van Senus, 1985 Dependent   
 Dong and Williams, 2011 Dependent    Spicer and Taylor, 1987 Dependent   
      Tedengren et al., 1988   Dependent 

Bivalves Bayne, 1973a  Independent   Einarson, 1993 Mixed   
 Lowe, 1974 Dependent    Rastrick and Whiteley, 2011 Mixed   
 Stickle and Sabourin, 1979   Dependent Isopods Bally, 1983; 1987 Mixed   
 McMahon and Wilson, 1981 Independent Mixed   Vetter et al., 1999  Mixed  
 Jansen et al., 2007 Dependent    Salomon and Buchholz, 2000 Dependent   
Mussels Pickens, 1965 Dependent    Whiteley and Faulkner, 2005 Dependent   

 Moon and Pritchard, 1970  Mixed  Copepods Vernberg and Moreira, 1974 Mixed   
 Trueman and Lowe, 1971 Dependent  Dependent  Gyllenberg and Lundqvist, 1979 Mixed  Mixed 
 Coleman, 1973 Independent    Teare and Price, 1979 Dependent   
 Widdows, 1973 Dependent    Gee, 1985 Mixed   
 Bayne et al., 1976 Independent   Mysids Simmons and Knight, 1975 Dependent  Dependent 
 de Vooys, 1976 Dependent    Marshall et al., 2003 Dependent  Independent 
 Famme, 1980  Mixed  Octopods Seibel and Childress, 2000  Mixed  
 Wilbur and Hilbish, 1989 Dependent   Shrimps Anderson, 1978 Independent   
 Dahlhoff et al., 1991 Mixed    Emmerson, 1985 Dependent   
 Marshall and McQuaid, 1993a, 

b 
 Dependent Mixed   Tande, 1988 Mixed   

 Rao and Khan, 2000 Dependent    Villarreal and Rivera, 1993 Mixed  Mixed 
 Hicks and McMahon, 2002 Mixed Regulate   Villarreal et al., 1994 Mixed  Dependent 
 Nicholson, 2002 Dependent Decreases Little  Agard, 1999 Dependent  Dependent 
 Bakhmet et al., 2005a, b   Dependent  Rosas et al., 1999  Mixed Mixed 
 Braby and Somero, 2006 Dependent  Dependent  Isla and Perissinotto, 2004 Dependent  None 

Clams Anderson, 1978 Mixed    Tian et al., 2004 Mixed   
 Williams, 1984 Dependent  Mixed  Allan et al., 2006 Dependent  Dependent 
 Eshky and Ba-Akdhah, 1992 Independent   Prawns Nelson et al., 1977 Mixed  Mixed 
 Tang et al., 2005 Mixed  Mixed  Morris and Taylor, 1984 Independent   

Oysters Findley et al., 1978   Mixed Lobsters Crear and Forteath, 2000 Dependent Mixed  
 Shumway and Koehn, 1982 Dependent  Dependent  Thomas et al., 2000 Dependent   
 Haure et al., 1998 Dependent    Tully et al., 2000 Dependent   
 Cherkasov et al., 2006 Dependent   Ascidians Jiang et al., 2008 Dependent  Dependent 
 Lannig et al., 2006; 2008; 2010 Dependent   Brittle star Christensen et al., 2011 Dependent   

Anthozoa Griffiths, 1977 Dependent   Anemones Griffiths, 1977 Mixed   
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 Navarro et al., 1981, 1987 Mixed    Ortega et al., 1984 Mixed   
Sea urchin Brockington and Clarke, 2001 Dependent    Seibel and Drazen, 2011 Independent   

 Siikavuopio et al., 2008 Dependent        
Cockle Newell and Bayne, 1980 Mixed        

Scallops Pilditch and Grant, 1999 Dependent        
Trochids Houlihan and Innes, 1982 Dependent        
Abalones Dahlhoff and Somero, 1993 Dependent         

          
Fishes Du Preez et al., 1986 Independent        

 Berschick et al., 1987 Dependent Mixed       
 Johnston et al., 1991 Dependent        
 Weinstein and Somero, 1998 Dependent        
 Claireaux and Lagardére, 1999 Mixed Independent Dependent      
 Clarke and Johnston, 1999  Mixed        
 Mallekh and Lagardére, 2002 Dependent Mixed       
 Meloni et al., 2002   Mixed      
 Mark et al., 2002 Dependent        
 Zakhartsev et al., 2003 Dependent        
 Clark et al., 2008 Dependent        
 Steinhausen et al., 2008 Dependent        
 Pirozzi and Booth, 2009 Dependent        
 Vinagre et al., 2012 Dependent        

Eels Sébert et al., 1995 Dependent        
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These differences in response can be due to interactions with other environmental or 

biological factors. For example, carbon dioxide or ocean acidification, pollutants, size and 

activity are also known to influence the response of metabolic rates to changes in 

temperature, oxygen levels and salinity (Newell, 1973; Shumway and Marsden, 1982; 

Ferraris et al., 1994; Camus et al., 2004; Sokolova and Lannig, 2008; Killen et al., 2010; 

Christensen et al., 2011). This means that the level of response to one factor can be modified 

in a positive or negative way by other changes occurring simultaneously (Laird and Haefner 

Jr., 1976; Bulnheim, 1979; Moore and Sander, 1984; Claireaux and Lagardére, 1999; 

Sokolova et al., 2012). Differences in experimental design and protocols can also explain 

some of the differences observed (Findley et al., 1978; McMahon, 1990; 2001b; Sokolova 

and Pörtner, 2003; Bakhmet and Khalaman, 2006). For example, most studies have tested the 

effects of prolonged exposure to abiotic factors lasting for hours or days, without taking into 

account the possible effects of short-term exposure to sudden stress, which can be particularly 

frequent in the intertidal environment (Newell and Bayne, 1973; Dye and McGwynne, 1980; 

Haure et al., 1998; Anestis et al., 2008).  

 

Differences can also arise as a result of adaptation to conditions in the various habitats that 

marine animals exploit. For example, intertidal species that are frequently exposed to harsh 

and fluctuating conditions regulate better than their subtidal and open ocean counterparts 

(Moon and Pritchard, 1970; De Pirro et al., 1999a; Sokolova and Pörtner, 2001b; 2003; 

Altieri, 2006). In addition, phylogenetic and ecological differences, physiological state and 

developmental stage can all affect the response of metabolic rate to abiotic stressors (Sastry 

and McCarthy, 1973; Vernberg and Moreira, 1974; Moreira et al., 1981; Aagaard, 1996; 

Brown and Terwilliger, 1999; Glazier, 2005; Seibel and Drazen, 2007). Although no study 

has looked at the effect of phylogeny or taxon on metabolic rates, phylogenetic differences in 

responses are evident (see Table 4.1; Clarke and Johnston, 1999; Glazier, 2005). Littorinids 

that inhabit the highest levels on intertidal shores seem to regulate metabolic rates better than 

bivalves and crustaceans which inhabit the mid and low shores.  

 

Marine animals show a wide range of morphological, behavioural, physiological and 

biochemical mechanisms to survive changes in the above factors. Although rarely discussed, 

the usual first response is a drastic reduction in activity (see Herreid II, 1980; Little, 1981; 



114 
 

Shumway et al., 1983) followed by inactivity (see Garrity, 1984; Kronberg, 1990; McMahon, 

1990; Lee and Williams, 2002; Williams et al., 2005). Once inactive, animals can enter 

dormancy (in this case we are concerned with aestivation) which is accompanied by 

metabolic rate depression (down regulation of cellular metabolism) and/or a switch to 

anaerobic metabolism (which is highly inefficient and accelerates the consumption of energy 

stores) to supplement the decline in energy production from aerobic metabolism (see Storey 

and Storey, 1990; 2004; 2007; Storey, 1998; Guderley and St-Pierre, 2002; Pörtner, 2010; 

Williams et al., 2011). By suppressing metabolic rate to low levels, animals can enter a 

hypometabolic state that allows them to endure long-term exposure to stressful environmental 

conditions while saving energy. This is because most of the energy consuming processes, 

such as protein synthesis, are down-regulated (see Boutilier, 2001; Storey and Storey, 2004; 

2007; Sokolova et al., 2012). Reducing metabolic rates also reduces the need for exposure of 

gas surfaces (e.g. mantle cavity wall) of high shore gastropods to the external atmosphere 

minimizing water loss (see McMahon, 1988b; Sokolova and Pörtner, 2001b). On the other 

hand, switching to anaerobic metabolism allows animals to close off (e.g. valve closure in 

mytilids) from the external environment in order to avoid deleterious conditions (see 

McMahon, 1988b; Anestis et al., 2007). 

 

Marine invertebrates show the most diverse metabolic responses to changes in salinity, and 

this depends on the direction of change. For example, metabolic rate can increase or decrease 

(dependent) as salinity changes, but overall, they tend to decrease as salinity deviates from 

normal levels (see Table 4.1). In some species, however, metabolic rates remain constant 

(independent) as salinity changes while others show both (mixed) responses (see Table 4.1). 

The differences in responses to salinity change are related to many extrinsic and intrinsic 

factors and conditions, as well as the combinations and/or interactions between these factors. 

For example, temperature (Simmons and Knight, 1975; Gyllenberg and Lundqvist, 1979; 

Sherman and Eichrodt, 1982; Stickle and Bayne, 1982; Williams, 1984), oxygen tension 

(Shumway, 1981; Taylor, 1981; Salvato et al., 2001) and pollutants (Laughlin Jr. and Neff, 

1979; 1980; 1981; Tedengren et al., 1988) can significantly influence an animal‟s metabolic 

response to salinity change. Nelson et al. (1977) found a more pronounced depression of 

oxygen consumption with increasing salinity at higher temperatures than at low temperatures 

in the juvenile prawn Macrobrachium rosenbergii.  
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In general, high temperatures increase the dependence of metabolic rates on salinity, while 

low temperatures reduce it (see Shumway and Koehn, 1982; Moore and Sander, 1984; Brown 

and Terwilliger, 1999; Williams et al., 2011). In addition, the critical points (salinity at which 

metabolic depression was lost) were different, showing a decrease with increasing 

temperature. Animals that live in environments where they experience frequent fluctuations 

in salinity levels (e.g. estuarine and tide pools living species) are able to regulate better than 

those that experience constant salinity levels such as subtidal and open ocean species (De 

Pirro et al., 1999a; Sokolova and Berger, 2000; Sokolova et al., 2012). Different metabolic 

responses may also be caused by the different experimental design adopted including the 

level of salinity tested and duration of exposure to salinity stress (see Findley et al., 1978; 

Villarreal and Rivera, 1993; Bakhmet and Khalaman, 2006).  

 

As a result of exposure to fluctuations in salinity, marine animals, including intertidal 

invertebrates, have developed mechanisms to survive changes in salinity. At the behavioural 

level, snails withdraw into the shell and close the aperture with the operculum to isolate 

themselves from the surrounding environment (Todd, 1961; Little, 1981; Taylor and 

Andrews, 1988). This type of behavioural isolation response is evident in other intertidal 

molluscs including bivalves which close their valves and limpets, which clamp down on 

rocks in order to limit exposure to adverse environmental conditions (Bayne, 1973a; Marshall 

and McQuaid, 1993a; Cheung and Lam, 1995; Yaroslavtseva et al., 2000). Mobile animals 

actively seek favourable environments or escape from unfavourable salinity conditions; this 

is particularly true for many motile estuarine species (Hendrix Jr. et al., 1981; Berger and 

Kharazova, 1997; Dowd et al., 2010b).  

 

Molluscs are well known to maintain hyperosmotic haemolyph or blood and decrease 

membrane permeability under hypoosmotic conditions (see Little, 1981; Moran and Pierce, 

1984; Ferraris et al., 1994). Animals in estuaries and intertidal zones survive fluctuations in 

salinity through changes in permeability, liberation of osmotic effectors to haemolyph, active 

ion uptake, breakdown of cellular proteins and excretion of excess amino acids (Spaargaren, 

1974; 1975; Findley et al., 1978; Rosas et al., 1999; Dowd et al., 2010b; Sokolova et al., 

2012). Cellular mechanisms of adaptation such as reversible changes of protein and RNA 

synthesis, alteration of the pattern of multiple molecular forms of enzymes, regulation of 
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ionic or osmotic content and cell volume, production of heat shock proteins (Moran and 

Pierce, 1984; Ferraris et al., 1994; Ji et al., 2008) are also used to tolerate and survive salinity 

changes. One of the most important and widely exhibited responses is the ability of animals 

to depress metabolic rates when exposed to changing salinity levels (Marshall and McQuaid, 

1993a; Sokolova et al., 2000a, b; Morritt et al., 2007; Williams et al., 2011). 

 

Despite some deviations, animal metabolic rates generally decrease as oxygen levels decrease 

(see Table 4.1). Thus, at low oxygen levels a typical response is bradycardia. In other species, 

metabolic rates are independent of change in oxygen levels down to critical levels below 

which they become dependent, while others show both responses (see Table 4.1). As with 

salinity, metabolic responses to decreased oxygen can be modified by other biotic and abiotic 

factors. For example, variation in temperature (Taylor, 1981; Hawkins et al., 1982; Berschick 

et al., 1987; Vetter et al., 1999), salinity (Bayne, 1973; Shumway, 1981; Ferraris et al., 1994; 

Rosas et al., 1999; Salvato et al., 2001), size (Marsden et al., 2012) and activity (Brown, 

1979) are known to affect oxygen uptake rate. For the mussel Perna perna, the ability to 

regulate oxygen consumption under hypoxia increased from poor regulation at 10°C to good 

regulation at 30°C (Hicks and McMahon, 2002a). Shumway and Koehn (1982) found that 

low salinity alone and/or in combination with high temperatures had the most adverse effect 

on oxygen consumption by the American oyster Crassostrea virginica during declining 

oxygen tension. Animals that live high in the intertidal (i.e. littoral zone and fringe species) 

are often able to respire in air and hence show different metabolic rate responses from 

subtidal species (Helm and Trueman, 1967; Widdows et al., 1979; Houlihan and Innes, 1982; 

Deaton, 1991; Marshall and McQuaid, 1993b; Vetter et al., 1999; Altieri, 2006).  

 

To survive during periods of low oxygen availability, marine animals have developed a wide 

range of mechanisms (see below). Intertidal gastropod snails have a highly vascularized 

mantle cavity that functions as a diffusion lung when filled with air (Gutierrez, 1988; 

McMahon and Russell-Hunter, 1978). Mussels have the ability to trap water in the mantle 

cavity which can serve as a store of oxygen for respiration during anoxic conditions (Moon 

and Pritchard, 1970). Some bivalves periodically gape the shell valves to promote aerial gas 

exchange (Moon and Pritchard, 1970; Bayne, 1973a; Nicastro et al., 2010). Hermit crabs 

retreat into the shell and isolate themselves from the surrounding environment (Reese, 1969; 
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Wernick and Penteado, 1983). Some fish and other animals emerge to the surface and begin 

aerial respiration (emergence response) to enhance oxygenation of the gills (Herreid II, 1980; 

Hill et al., 1991; Martin, 1995; Halpin and Martin, 1999; Richards, 2011).  

Most marine animals are extremely efficient at extracting oxygen from water by slowing or 

increasing the ventilatory stream (Saint-Paul, 1984; deFur, 1988; Hourdez and Lallier, 2007), 

altering heart rate, cardiac stroke volume and cardiac output (Bayne, 1971a; McMahon, 

1988a; Airriess and McMahon, 1994; Hourdez and Lallier, 2007), and having a relatively 

large gill surface area and high circulation rate (McMahon, 2001a; Mandic et al., 2009). 

Other animals have respiratory proteins (i.e. hemocyanin, hemoglobin, hemerythrin, etc) with 

a particularly high affinity for oxygen (Herreid II, 1980; Saint-Paul, 1984; deFur, 1988; 

McMahon, 1988a; Wells, 1999; Richards, 2011).  

 

Marine animals are also able to suppress their metabolic rate and/or switch to anaerobic 

metabolism (see above) in order to save energy and supplement the decline in energy 

production from aerobic metabolism (McMahon, 1988a, b; Stickle et al., 1989; Marshall and 

McQuaid, 1991; Childress and Seibel, 1998; Larade and Storey, 2007; Mandic et al., 2009). 

Other adaptations include suppression of ATP-demand and ATP-supply pathways (Oeschger 

and Storey, 1993; Hochachka et al., 1996; Hochachka and Lutz, 2001; Boutilier, 2001; 

Sokolova et al., 2012), a global decline in protein biosynthesis (Hochachka et al., 1996; 

Storey and Storey, 2004), a generalized decrease in membrane permeability (Hochachka et 

al., 1996), and regulation of key enzymes (Oeschger and Storey, 1993).  

 

Although, oxygen level and salinity profoundly affect metabolic rates, temperature is the 

abiotic factor that exerts the greatest influence on heart rate and oxygen consumption, and 

considerable work has focused on this factor (see Table 4.1). deFur and Mangum (1979) 

suggested that the effect of temperature on heart rate is at least the same as and often greater 

than the effect of temperature on oxygen consumption. On the other hand, Spaargaren (1977) 

found the effect of temperature on oxygen consumption to be stronger than that on heart rate. 

Among ectotherms, particularly marine species, there is no general consensus on how an 

ectothermic animal‟s metabolic rate responds to temperature. Some authors suggest partial or 

total temperature-dependence, while others suggests temperature-independence of metabolic 
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rates. The dispute occurs across a wide range of ectothermic animals, including marine 

molluscs such as littorinids and species from other phyla (see Table 4.1).  

 

Heart rate and oxygen consumption generally increase as temperature increases until a 

threshold is reached, after which they decrease (see Table 4.1). This is in agreement with the 

metabolic theory of ecology; thus the “Universal Temperature Dependence (UTD) of 

metabolism” (Clarke, 2004; 2006; Clarke and Fraser, 2004, 2009). This is because reaction 

rates are temperature dependent increasing with increasing temperature until declining above 

optimum or near lethal temperatures (Clarke, 1993b; Gillooly et al., 2001, 2002, 2006; 

Brown et al., 2004; Clarke and Fraser, 2004, 2009; O'Connor et al., 2007). Other species, 

however, are able to regulate metabolic rates as temperature increases (see Table 4.1), and 

this can occur across temperature ranges experienced in the field (Vernberg and Vernberg, 

1966; 1969; Newell and Pye, 1970a, b; Branch et al., 1988; Cheung and Lam, 1995; Clarke, 

2004; etc).  

 

Some animals show mixed or both responses with a narrow zone of temperature 

independence bounded by zones of dependence on either side (see Table 4.1). For example, 

the metabolic rate of Littorina saxatilis is temperature-dependent at low and mid ambient 

temperature ranges, but becomes partially independent above normal ambient temperatures 

(see Sokolova and Pörtner, 2003). This is also true for the tropical eulittoral fringe E. 

malaccana (Marshall et al., 2010; 2011), the clam Meretrix meretrix (Tang et al., 2005), the 

intertidal bivalve Cerastoderma edule (McMahon and Wilson, 1981), the adult females of the 

copepod Calanus glacialis (Tande, 1988), the temperate intertidal isopod Ligia oceanica 

(Whiteley and Faulkner, 2005), the amphipods of the genus Gammarus (Bulnheim, 1979), the 

juveniles of the shrimp Fenneropenaeus chinensis (Tian et al., 2004), the adult females of the 

crab Emerita brasiliensis (Moreira et al., 1981), and the sea bass Dicentrarchus labrax 

(Claireaux and Lagardére, 1999), etc.  

 

Mixed responses suggest that animals are able to regulate metabolic rates, especially within 

the temperature ranges experienced in the field or when temperatures approach lethal limits. 

It is claimed that temperature independence at relatively high temperatures is adaptive 
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because it enables animals to thermoregulate while maintaining metabolic homeostasis (see 

Vernberg and Vernberg, 1966; Bulnheim, 1979; Hawkins, 1995; Tian et al., 2004). The 

maintenance of metabolic homeostasis is an important adaptation to littoral existence during 

exposure to air because there is little time to feed and food is scarce (de Zwaan and Wijsman, 

1976; Hawkins et al., 1982; Spicer and Taylor, 1987; Branch et al., 1988; Tully et al., 2000; 

etc). Thus, metabolic homeostasis is the predominant adaptive strategy of metabolic 

responses that allows an organism to survive environmental stress or disturbances (see 

Somero, 2004; Sokolova and Lannig, 2008; Lannig et al., 2010; Sokolova et al., 2012). 

 

And as for both salinity and oxygen concentration, differences in metabolic responses to 

temperature can be related to many extrinsic and intrinsic factors and conditions, as well as 

the combinations and/or interactions between these factors (see below). For example, salinity, 

oxygen tension, carbon dioxide, and pollutants can significantly influence an animal‟s 

metabolic response to temperature (see below); however, this is not true to for all animals or 

species (see Nelson et al., 1977; Brown and Terwilliger, 1999; Allan et al., 2006; Williams et 

al., 2011). Differences can also arise as a result of adaptation to conditions in the different 

habitats that animals exploit. For example, animals that experience frequent fluctuations and 

extremes of temperatures (e.g. eulittoral zones species) regulate better than those that 

experience constant and moderate temperatures (see Vernberg, 1969; Spaargaren and 

Achituv, 1977; McMahon and Wilson, 1981; Hawkins et al., 1982; Marsden, 1987; Dahlhoff 

et al., 1991; Somero, 2002; Isla and Perissinotto, 2004).  

This is supported by studies which have shown that metabolic rates differ when measured in 

different respiratory medium (air or water) as a result of animals‟ adaptation to different 

habitats, thus conditions (McMahon and Russell-Hunter, 1981; Navarro et al., 1987; De Pirro 

et al., 1999b; Santini et al., 2000). The findings (increase and decrease as temperature 

increases) of field and laboratory measurements on heart rate of the tropical limpet Cellana 

grata led Chelazzi et al. (1999) to suggest that limpets (may be true for other animals) in 

some habitats may be able to regulate their metabolic rate when resting on hot substrates.  

 

Marine animals have developed a wide range of mechanisms to survive heat stress. 

Depending on the level of stress, adaptations can be behavioural, physiological, biochemical 
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and/or a combination (see McMahon, 1990; Sinclair et al., 2004; Wang et al., 2007a; Miller 

and Denny, 2011; Sokolova et al., 2012). Below physiological limits, behavioural 

mechanisms such as choice of suitable microhabitats by mobile animals (Bally, 1983; 

Gutierrez, 1988; McMahon, 1990), and withdrawal into the shell by snails and other shelled 

gastropods (see Garrity, 1984; McMahon, 1990; Williams and Morritt, 1995) are used to limit 

exposure of the animal to adverse environment conditions. When heat stress increases, some 

animals, including some littorinids, use physiological mechanisms such as metabolic 

adjustments (see Shirley et al., 1978; McMahon, 1988a, b; 1990; Sokolova and Pörtner, 

2001a, b), thermal regulation, tolerance and acclimation (see Huey and Bennett, 1990; 

McMahon, 1990; Horowitz, 2001; 2002), etc. Some animals synthesize heat shock proteins 

which are involved in thermal acclimation and tolerance (see Feder and Hofmann, 1999; 

Tomanek, 2002; Anestis et al., 2010; Marshall et al., 2011). Other cellular or biochemical 

mechanisms such as down-regulation of protein synthesis, changes in protein (enzyme) 

structure, and increased enzyme stability and activity (see Somero, 1978; 1995; 2004; 

Dahlhoff and Somero, 1993a; Schmidt et al., 2007; Dong and Somero, 2009; Tattersall et al., 

2012) are also important to survive heat stress.  

 

This chapter will investigate if temperate littorinids employ metabolic adjustment 

(regulation), which is a survival mechanism used by tropical littorinids against thermal stress 

(see Marshall and McQuaid, 2010; Marshall et al., 2010; 2011). This will help us to 

understand if metabolic regulation is a physiological response aimed at preserving energy and 

surviving environmental challenges during emersion in the littoral zone as seen in other 

tropical species.  

 

Within the littorinid snails, there seem to be fundamental differences among genera and 

species in the relationship between temperature and both oxygen consumption and heart rate. 

There is a clear difference in metabolism between tropical and subtropical or temperate 

species, and likewise for eulittoral fringe and eulittoral species. Tropical species show good 

regulation of oxygen consumption and heart rate, rendering them independent of temperature 

across a range of temperatures (Marshall and McQuaid, 2010; Marshall et al., 2010; 2011). In 

contrast, temperate species show mixed responses (strong regulation, partial regulation and 

non-regulation) of oxygen consumption and heart rate (Sokolova and Pörtner, 2003). At the 
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same time, eulittoral fringe species show better regulation of metabolic rates than lower shore 

species (Marshal et al., 2010). These differences seem to relate to differences in 

biogeography, ecology, and phylogeny. The tropical littorinids fill a completely new niche in 

the eulittoral fringe and have different adaptive physiological attributes that allow them to 

cope with temperature stress better than eulittoral species (see McMahon, 1990). Thus, 

eulittoral fringe rocky species are better able to regulate heat uptake and cope with heat stress 

than their eulittoral and low shore counterparts and this is complemented by different 

metabolic responses (see above).  

 

In comparing different studies, some of these trends may be obscured or unclear as a result of 

differences in the methods followed. For example, McMahon (1990) and others measured 

oxygen consumption and heart rate at discrete intervals of 5ºC, and this may have led to false 

conclusions concerning the effect of temperature on metabolism. Recently, Marshall and 

McQuaid (2010) and Marshall et al. (2010) measured oxygen consumption and heart rate 

continuously and this allowed the identification of distinct breakpoints in metabolism when 

temperature is continuously raised, that were not clear in other studies. They found clear 

indications of a thermally independent (thermoneutral) zone of metabolism, which was 

followed by a sharp increase (towards the species‟ upper limits temperature) and a decline 

(towards the critical maximum temperature) in heart rate and oxygen consumption. This 

indicates that these species can regulate their metabolism over a wide range of temperatures, 

before starting to increase their metabolism. Metabolic responses to temperature rise can 

depend on the rate of increase. For example, the time course of heat exposure was much 

faster in the study of Marshall et al. (2010) than in some previous investigations, but was 

chosen to mimic naturally encountered conditions. The rapid increase in temperature may 

have contributed to mixed responses observed in other species, especially for species that are 

not normally exposed to rapid and fluctuations temperatures.  

 

The use of invasive techniques such drilling of the shell or surgical procedures in other 

studies (Bayne, 1973a; Butler et al., 2004; Braby and Somero, 2006) may influence the 

findings by inducing additional stress. The development of non-invasive techniques such as 

the use of infrared sensors glued to the shell of animal (Depledge and Depledge, 1990, 

Aagaard et al., 1991; McMahon, 1999; Chelazzi et al., 1999; 2001) has allowed the 
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investigation of animal responses to heat stress with minimal treatment-induced stress. In 

some studies, animals were not allowed enough time to acclimate after handling or treatment 

(McMahon, 1999) and so may have shown different performance such as extremely high 

metabolic levels at the outset due to stress. Animals thus may have responded mainly to 

experimental stress, rather than heat stress. More recent experiments using non-invasive 

methods and more favourable experimental conditions indicate that a majority of animals are 

good regulators, often able to regulate metabolic rates at high temperatures (Sokolova and 

Pörtner, 2003; Marshall and McQuaid, 2010; Marshall et al., 2010; 2011).  

 

Together with a significant correlation between heart rate and metabolic rates in studied 

species (Marshall and McQuaid, 1992b; Santini et al., 1999; 2000; Butler et al., 2002; 2004), 

the development of non-invasive techniques has made heart rate monitoring more popular in 

ecophysiological studies of marine invertebrates such as molluscs, and crustaceans as well as 

fishes (Depledge and Depledge, 1990, Aagaard et al., 1991; Briggs and Post, 1997; Calosi et 

al., 2003). The method involves the use of distant monitoring of cardiac muscle volume 

(plethysmogram) based on the infrared illumination of the heart region and recording 

reflected light using a computerised system (Depledge and Depledge, 1990; Calosi et al., 

2003). In the current study, this approach was used to investigate the metabolic response of 

littorinid snails of the genera Afrolittorina, Echinolittorina and Littoraria to heat stress. Since 

the heart is the first organ to fail as temperature rises (see Somero, 2002; Pörtner and Knust, 

2007; Iftikar et al., 2010), the heart rate method offers an additional and/or alternative 

approach to oxygen consumption for measuring metabolic rates or activity. 

 

Several other factors may alter the response to temperature so that under certain conditions a 

regulating animal may respond with non-regulation or vice versa. Apart from environmental 

factors such as oxygen level (Shumway and Marsden, 1982; Berschick et al., 1987), salinity 

(Laird and Haefner Jr., 1976; Gyllenberg and Lundqvist, 1979; Williams et al., 2011), 

chemicals (Camus et al., 2004; Lannig et al., 2006; 2008), carbon dioxide (Langenbuch and 

Pörtner, 2002; Christensen et al., 2011), etc. These include size or age (Newell et al., 1972; 

Dahlhoff et al., 2002), sex (Vernberg and Moreira, 1974; Crear and Forteath, 2000) as well as 

the animals‟ health (Anderson, 1975a, b; Thompson, 1983; Curtis, 2002), feeding or 

nutritional status (Newell and Bayne, 1973; Branch et al., 1988; Shumway et al., 1993; 
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Robertson et al., 2002), developmental stage (de Vooys, 1976; Spaargaren and Achituv, 

1977; Hatcher et al., 1997), and level of activity (Wallace, 1972b; Newell and Bayne, 1973; 

Steinhausen et al., 2008), etc.  

Marsden et al. (1973) found the metabolism of small shore crab Carcinus maenas less 

temperature dependent than that of large crabs, suggesting temperature independence in the 

former. Nutritional status is known to influence not only the level of metabolism, but 

temperature relationships of metabolism in littorinids and other marine animals (see Lewis, 

1971; Bayne et al., 1976). Animals infected or attacked by macroparasites such as trematodes 

are known to be less resistant to high temperature, as well as anoxia (Berger and Kharazova, 

1997; Granovitch et al., 2000; Huxham et al., 2001; Bates et al., 2011). Acclimation or 

previous thermal history (Vernberg, 1969; Newell and Pye, 1970b; McMahon et al., 1995) as 

well as season (Newell and Pye, 1970a; Simmons and Knight, 1975; Jansen et al., 2007) have 

effects on animals‟ metabolic responses (De Pirro et al., 1999b). Thus, multiple endogenous 

and extrinsic factors can influence the type of temperature metabolic rate responses observed, 

and of course these factors can interact (see Newell, 1973; Newell and Roy, 1973; Hawkins, 

1995; Aagaard, 1996; McMahon, 1999). 

 

Other studies have explicitly overlooked patterns of regulation or non-regulation because 

they were interested in metabolic rate differences linked to medium (i.e. water versus air; 

McMahon and Russell-Hunter, 1977; Houlihan, 1979; Dye, 1987; Marshall and McQuaid, 

1992a; Halpin and Martin, 1999), season (i.e. summer versus winter; Newell and Pye, 1970a, 

b; Shirley et al., 1978; Marshall and McQuaid, 1994), activity (Newell et al., 1979; Brown, 

1979), biogeographic region (i.e. tropics versus temperate; Vernberg, 1959; 1969; Pickens, 

1965; Innes and Houlihan, 1981; 1985; Lardies et al., 2011), shore level (i.e. eulittoral fringe 

versus low shore; Burggren and McMahon, 1981; Brown and Da Silva, 1984; Bally, 1987), 

habitat (i.e. coastal versus estuarine; Vinagre et al., 2012) or origin (i.e. invasive versus 

native species; Iftikar et al., 2010). Examination of the original data in such studies indicates 

that in some cases there was an overlooked and unreported degree of temperature 

independence in certain species, supporting the idea of regulation in wide range of animals. 

For example, looking at the results of Isla and Perissinotto (2004), it is clear that both sexes 

of the estuarine copepod Pseudodiaptomus hessei partially regulated their basal metabolic 

rates. 
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Missing from our understanding of metabolic responses to temperature are the patterns of 

metabolic physiology of warm temperate and subtropical species as most of studies have 

been done on tropical and cold temperate species (McMahon, 1990; Sokolova and Pörtner, 

2001b, 2003; Marshal and McQuaid, 2010; Marshall et al., 2010; 2011). This chapter aims to 

address the metabolic physiology of Afrolittorina spp. that have distributions that overlap in 

the warm temperate region of South Africa. The objectives of this study were to compare the 

heart rate-temperature relationships of two co-existing southern African species of the genus 

Afrolittorina: A. africana and A. knysnaensis. In addition, the responses of these Afrolittorina 

species were compared to those of subtropical and tropical species of Echinolittorina (E. 

natalensis, E. malaccana and E. vidua) and Littoraria glabrata. This allowed me to 

investigate the effects of phylogeography, species identity and biogeographic distribution on 

heart rate responses to heat stress.  

 

An approach followed by Marshall et al. (2010) was used, and the objectives included 

determining whether metabolic independence of temperature differed among regions and how 

the response of individuals found in warm temperate regions compared to that found in other 

tropical and cool temperate regions. It was hypothesized that the heart performance of 

conspecific individuals of Afrolittorina from different biogeographic regions would be 

similar, but different from that of Echinolittorina and Littoraria species from subtropical and 

tropical zones. The results of this study will help to shed light whether the ability to regulate 

metabolism under conditions of changing temperature is fixed phylogenetically or is an 

adaptive response differing among individuals from different biogeographic regions.  It will 

also shed light on how these species (and other ectotherms) will respond to climate change 

(especially temperature change) under a scenario of global warming.  

 

 

 

 

 

 



125 
 

4.2. Materials and Methods 

 

4.2.1. Study species 

 

Six littorinid species of the genera Afrolittorina, Echinolittorina and Littoraria were used, 

namely: A. knysnaensis, A. africana, E. natalensis, E. malaccana, E. vidua, and L. glabrata. 

See Chapter 1 for species distribution ranges and patterns of vertical zonation as well as 

microhabitat use and aestivation behaviour.  

 

4.2.2. Collection and transportation  

 

Specimens of A. africana, A. knysnaensis, E. natalensis and L. glabrata were collected from 

natural rocks at different sites (see Fig. 4.1 and Table 4.2) along the South Africa coast from 

September 2010 to March 2011. While E. malaccana and E. vidua, were collected from an 

artificial seawall at Jerudong, Brunei Darussalam (4°32'N; 114°43'E) in November 2009. 

Individuals of each species were collected from the highest shore levels at which the species 

occurred; thus, the eulittoral fringe and upper eulittoral which ranges between 2 m Chart 

Datum to around 5 m above the mean high water level (2.5 m CD), depending on locality. 

Similar sized individuals that were feeding or had fed within 12 hours (assumed to have fed 

since they were collected immediately after or during high tides) were returned to the 

laboratory in labelled plastic bags placed inside an insulated cool box. 

 

4.2.3. Handling and treatment conditions 

 

On arrival at the laboratory, specimens were washed in seawater, allowed to emerge from 

their shells and to reattach to 8 cm lidded plastic Petri dishes or 2 L plastic containers 

before being exposed to air, when they exhibited behavioural emergence. Active animals 

were blotted dry with paper towel and dried using a fan at room temperature to induce 



126 
 

aestivation before use or treatment. Specimens were kept on dry paper towel at room 

temperature (18-22ºC) before immediate use, or kept in a fan blown incubator (Memmert 

UFE 500, Schwabach, Germany) set at 30ºC until later use, within 3 hours. These 

specimens were also used to investigate the effects of acclimation on heart performance.  

 

 

Figure 4.1. Map of South Africa showing sampling sites (see Table 4.2) for littorinid snails of 

the genera Afrolittorina, Echinolittorina and Littoraria used for heart function experiments. 
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Table 4.2. Sampling sites for littorinid snails of the genera Afrolittorina, Echinolittorina and 

Littoraria from South Africa used for heart function experiments.  

Bioregion Site (Abbreviation) 

 

Species samples 

Subtropical 1. Ballito (BA) A. africana; E. natalensis; L. glabrata 

2. Umhlanga (ML) A. africana; E. natalensis; L. glabrata 

3. Port Edward (PE) A. knysnaensis; A. africana; E. natalensis; 

L. glabrata 

4. Port St. Johns (PJ) A. knysnaensis; A. africana; E. natalensis; 

L. glabrata 

5. East London (EL) A. knysnaensis; A. africana; E. natalensis; 

L. glabrata 

Warm temperate 6. Hamburg (HU) A. knysnaensis; A. africana 

7. Fish river (FR) A. knysnaensis; A. africana 

8. Riet river (RR) A. knysnaensis; A. africana 

9. Port Alfred (PA) A. knysnaensis; A. africana 

10. Kenton-on-Sea (KOS) A. knysnaensis; A. africana 

11. Bushmans river (BU) A. knysnaensis; A. africana 

12. Port Elizabeth (NN) A. knysnaensis; A. africana 

13. Mossel Bay (MBB) A. knysnaensis; A. africana 

Cool temperate 14. Cape Agulhas (CA) A. knysnaensis 

15. Buffalos Bay (BB) A. knysnaensis 

16. Muizenberg (MU) A. knysnaensis 

17. Camps Bay (CB) A. knysnaensis 

 

In an attempt to investigate the effect of starvation on heart performance, specimens were left 

(emersed) on dry paper towel at room temperature (18-22ºC) for 14 days or more without 

feeding. For heat shock experiments, 10 aestivating individuals of each species were placed 

in a 20 ml dry container that was immersed in a Grant programmable water bath (GP 200, 

Grant, Germany) set to 20ºC. Temperature was increased in 5C increments over 10 minute 

intervals to reach 45C and left for 1 hour. Temperature inside the container was monitored 

using T-type thermocouples (Cromega and ADInstruments, Australia).  After 1 hour at 45C, 

the container was removed from the water bath and allowed to cool for 2 hours prior to 

running the experiments.  
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An attempt was also made to investigate the effect of repeated exposure on heart performance 

using Afrolittorina species. A similar procedure as for the heat shock experiments (see above) 

was used, except that temperature was raised at 0.25°C min-1 between 20 and 45ºC after 20-

30 min at 20ºC. Once at 45ºC, animals were taken out of the water bath and left in air at room 

temperature (approx. 20ºC) to recover before treatment. For the experimental treatment, 

animals where either left with sensors attached at (1) room temperature or (2) 30°C for 1-3 

days (no feeding), or (3) “feeding” for 1-3 days at room temperature (no sensors attached)  

before final exposure. 

 

4.2.4. Heart rate measurements 

 

Heart rate measurements were based on aestivated snails held and treated in different ways 

(see above); and each replicate comprised a pair of two snails. Occasionally, behavioural 

emergence or aestivation were quickly induced prior to measurements. Heart rate was 

measured in dry air by wrapping animals in dry paper towel, and enclosing them in dry 

plastic bags to avoid wetting by water in the waterbath. At the start of an experiment, plastic 

bags containing snails were placed in a Grant programmable water bath (GP 200, Grant, 

Germany) set to 20ºC.  

 

Heart performance was recorded using non-invasive plethysmography (see Depledge and 

Anderson, 1990). Optoelectronic (infrared) reflective-sensors (Vishay Semiconductors, V69 

CNY70 732/735, Germany) were adhered to the shells of isolated snails near the mantle 

cavity with Blue-Tac or Prestick (Bostick Ltd, United Kingdom). Signals from the sensors 

were amplified and filtered with a custom-built preamplifier, and then digitally-

logged/recorded with a computerised recording system (PowerLab/4SP and 4/30, Chart 

version 5 and 7, ADInstruments, Australia). Sampling rate was set at 40 Hz and the amplitude 

varied between 40 and 1000 mV. An additional smoothed trace (Triangular-Bartlett 

smoothing) was derived on a separate channel, and this was used in further analyses.  
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Except for few cases when Afrolittorina spp. were exposed to a slower rate of 0.5°C min-1, 

experimental temperature was raised at 0.25°C min-1 between 20 and 55ºC, after 20-30 min at 

20ºC by the GP 200 programmable water bath. Temperature was monitored and recorded 

every 1 min using the same PowerLab recording system and a thermocouple pod (T-type pod, 

ADInstruments, Australia) fitted with a fine K-type thermocouple (Cromega and 

ADInstruments, Australia), and a Fluke 54II Thermometer (Fluke Corporation, USA) fitted 

with a T-type thermocouple (Fluke Corporation and Cromega) inserted into the plastic bags 

with the animals. Heart rate, in beats per minutes (bpm), was logged every 1 minute for snails 

under constant heating (0.25 or 0.50°C min-1) between 20 and 55°C, after an initial 20-30 min 

at 20°C. Temperatures used in experiments were within the broad range of actual body 

temperatures measured in field (unpub. data). Once an animals‟ heart had failed, it was taken 

out of the water bath and left in air at room temperature to assess recovery (for repeated 

exposure experiments only) of cardiac function. Recovery and mortality rates were 

determined 12-24 hours after exposure. At the end of each run, snail shell length in 

millimeters (mm) was determined using Vernier Callipers to the nearest of 0.02 mm. 

 

4.2.5. Data analysis 

 

Sample sizes for the various experiments and treatments are presented in Table 4.3. Heart 

rates (bpm) were plotted against temperature using Sigma Plot version 10.0 (SPSS Inc.). The 

temperature ranges used for determining the first breakpoint (the temperatures at which 

thermoneutrality was lost) were 30 to 38°C and 38 to 46°C, and the second breakpoint 

(temperatures at which heart rate show a sharp decrease; Arrhenius Breakpoint) were 40 to 

48°C for Afrolittorina species and 46 to 57°C for Echinolittorina and Littoraria. Temperature 

ranges used to determine breakpoints were based on the results of preliminary analyses where 

breakpoints were found to lie within these ranges. Pairwise linear regression with breakpoints 

(Statistica 10, Statsoft) was used to determine the breakpoints using recorded heart beat 

(independent variable) and temperature (dependent variable), endpoints were determined 

manually from edited heart rate data, and figures were drawn using Sigma Plot version 10.0. 
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Table 4.3. Proportions of regulating and non-regulating littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from tropical, subtropical and temperate regions 

of Brunei Darussalam and South Africa. 

 
Taxa 

 
Bioregion 

Experiment 
or  

Treatment 

Proportion in number and percentage 

(%) 

Regulating Non-regulating 
 

Total 

A. knysnaensis All Normal 142 (67.9) 67 (32.1) 209 

Cool temperate Normal 42 (76.4) 13 (23.6) 55 

Warm temperate Normal 100 (64.9) 54 (35.1) 154 

All Starved 6 (75.0) 2 (25.0) 8 

All Shocked 6 (50.0) 6 (50.0) 12 

Warm Chronic  15 (83.3) 3 (17.7) 18 

All 20°C acclimated 10 (52.6) 9 (47.4) 19 

All 30°C acclimated 11 (55.0) 9 (45.0) 20 

A. africana All Normal 88 (53.0) 78 (47.0) 166 

Subtropical Normal 18 (50.0) 18 (50.0) 36 

Warm Normal 70 (53.8) 60 (46.2) 130 

All Starved 2 (18.2) 9 (81.8) 11 

All Shocked 5 (41.6) 7 (58.4) 12 

Warm Chronic  7 (63.6) 4 (46.4) 11 

All 20°C acclimated 9 (47.4) 10 (52.6) 19 

All 30°C acclimated 11 (55.0) 9 (45.0) 20 

L. glabrata Subtropical Normal 10 (62.5) 6 (37.5) 16 

Subtropical Starved 4 (66.7) 2 (33.3) 6 

Subtropical 20°C acclimated 6 (75.0) 2 (25.0) 8 

Subtropical 30°C acclimated 7 (70.0) 3 (30.0) 10 

E. natalensis Subtropical Normal 33 (73.3) 12 (26.7) 45 

Subtropical Starved 5 (62.5) 3 (37.5) 8 

Subtropical Shocked 1 (100) - 1 

Subtropical 20°C acclimated 9 (56.3) 7 (43.7) 16 

Subtropical 30°C acclimated 10 (66.7) 5 (33.3) 15 

E. vidua Tropical Normal 18 (90.0) 2 (10.0) 20 

E. malaccana Tropical Normal 19 (95.0) 1 (5.0) 20 
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4.3. Results 

 

4.3.1. Effect of region, phylogeny and ecology on heart performance 

 

Results of different experiments show that region, phylogeny and ecology all affect heart 

performance of the species investigated (see below). 

 

4.3.1.1. Are there regional or phylogenetic differences in stress response patterns? 

 

There were patterns of both thermal independence from temperature and dependence of heart 

rate on temperature in the species investigated. The tropical Echinolittorina species showed 

thermal independence while the subtropical and temperate Echinolittorina, Littoraria and 

Afrolittorina species showed both thermal dependence and independence of heart rate on 

temperature (Fig. 4.2). Overall, the subtropical Echinolittorina and Littoraria species tended 

to show thermal independence overall, but there were exceptions. The Afrolittorina spp. 

showed high individual variability, some individuals exhibiting thermal independence, while 

others did not.  

 

The point at which the heart rate became independent of temperature was higher for tropical 

and subtropical (approximately for 21-23°C) than for the temperate (approximately 14ºC) 

species. There was also a difference in the proportions of individuals that showed thermal 

independence and dependence in the studied species (see Fig. 4.3 and Table 4.3). For thermal 

independence, the trend was for higher values (approximately 90-95%) for tropical species, 

followed by the subtropical (approximately 62-73%) and temperate (approximately 53-67%) 

species, respectively. On the other hand, for thermal dependence, the trend was reversed: 

temperate species (approximately 33-47%), followed by subtropical (approximately 27-37%) 

and tropical (approximately 5-10%) species, respectively.  
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Figure 4.2. Heart patterns of regulating (A) and non-regulating (B) E. malaccana (red), E. 

vidua (green), E. natalensis (blue), L. glabrata (pink), A. africana (cyan) and A. knysnaensis 

(black). Traces are means of the best five selected individuals‟ traces.  
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Figure 4.3. Proportions in percentage (%) of regulating and non-regulating members of E. 

malaccana, E. vidua, E. natalensis, L. glabrata, A. africana and A. knysnaensis from tropical, 

subtropical and temperate regions of Brunei Darussalam and South Africa. 

 

Heart rate varied during constant increase in temperature and showed distinct breakpoints and 

endpoints. The first breakpoint, the Thermoneutral Breakpoint Temperature (TBP) at which 

heart function became independent of temperature change occurred at 43 and 41ºC and the 

second, the Arrhenius Breakpoint Temperature (ABT), the temperatures at which heart rate 

showed a sharp decrease occurred at 54 and 50ºC (see Table 4.4) for tropical E. malaccana 

and E. vidua respectively; while the subtropical E. natalensis and L. glabrata both had TBPs 

at 41ºC and ABTs at 49ºC. The two Afrolittorina species had similar TBPs and ABTs at 34ºC 

and 44ºC (see Table 4.4). The Endpoint Temperature (EPT), the temperature at which heart 

function ceased, occurred at 59.6, 57.0, 57.0, 53, 51 and 49°C for E. malaccana, E. vidua, E. 

natalensis, L. glabrata, A. africana and A. knysnaensis, respectively, showing a clear ranking 

of tropical > subtropical > temperate species.  
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Table 4.4. Breakpoints and Endpoints temperatures of littorinid snails of the genera 

Afrolittorina, Echinolittorina and Littoraria from tropical, subtropical and temperate regions 

of Brunei Darussalam and South Africa. 

Species Region Treatment Response Break and Endpoints 

    TBTs ABTs EPTs 

A. knysnaensis All Not treated Regulating 34.10 44.10 47.99 

All Not treated Non-Regulating - 44.10 49.20 

Cool temperate Not treated Regulating 34.10 43.11 47.32 

Cool temperate Not treated Non-Regulating - 44.14 47.70 

Warm temperate Not treated Regulating 34.10 43.11 48.00 

Warm temperate Not treated Non-Regulating - 44.14 49.2 

All Starved Regulating 33.99 44.05 49.01 

All Starved Non-Regulating - 44.05 49.71 

All Shocked Regulating 34.5 44.5 49.87 

All Shocked Non-Regulating - 44.5 48.84 

Warm temperate Chronic  Regulating 38.5 45.5 50.50 

Warm temperate Chronic  Non-Regulating - 45.5 50.90 

A. africana All Not treated Regulating 34.10 44.10 50.56 

All Not treated Non-Regulating - 44.10 50.80 

Subtropical Not treated Regulating 34.10 44.05 50.52 

Subtropical Not treated Non-Regulating - 44.05 50.80 

Warm temperate Not treated Regulating 34.10 44.05 50.57 

Warm temperate Not treated Non-Regulating - 44.05 50.80 

All Starved Regulating 33.99 44.05 50.75 

All Starved Non-Regulating - 44.05 50.51 

All Shocked Regulating 34.5 44.5 51.80 

All Shocked Non-Regulating - 44.5 50.04 

Warm temperate Chronic Regulating 38.5 45.5 51.30 

Warm temperate Chronic  Non-Regulating - 45.5 50.50 

L. glabrata Subtropical Not treated Regulating 41.05 49.06 52.9 

Subtropical Not treated Non-Regulating - 49.06 52.9 

Subtropical Starved Regulating 41.98 49.06 52.70 

Subtropical Starved Non-Regulating - 49.06 52.60 

E. natalensis Subtropical Not treated Regulating 41.05 48.5 52.9 

Subtropical Not treated Non-Regulating - 49.14 54.60 

Subtropical Starved Regulating 41.98 49.11 56.5 

Subtropical Starved Non-Regulating - 49.11 52.9 

Subtropical Shocked Regulating 42.6 49.11 54.5 

E. vidua Tropical Not treated Regulating 41.00 50.6 57.00 

E. malaccana Tropical Not treated Regulating 43.02 54.10 59.6 

TBTs = Thermoneutral Breakpoint Temperatures; ABTs = Arrhenius Breakpoint 

Temperatures; EPTs = Endpoint Temperatures. 
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The heart beat (expressed as beats per minutes; bpm), measured within each species‟ thermal 

limits, showed a trend of higher values of maximum heart rate at the ABT (mean of 

approximately 170 bpm) for tropical species, followed by the subtropical (mean of 

approximately 160 bpm) and temperate (mean of approximately 110 bpm) species, 

respectively (Fig. 4.2).  

 

4.3.1.2. Do species from same region show the same response patterns? 

 

There were differences between species within all three regions. In the tropics, the eulittoral 

fringe E. malaccana showed stronger regulation (i.e. this was based on the slope of heart rate 

over the thermoneutral zone; weak regulators had a slope that was more different from zero) 

of heart rate than the upper eulittoral zone to lower eulittoral fringe E. vidua. The 

temperatures at which the heart rate was independent of temperature were also higher 

(approximately 23°C) for E. malaccana than for E. vidua (approximately 21°C) and E. 

malaccana had higher breakpoints and endpoints (see Fig 4.4A). In the subtropics, the 

eulittoral fringe to eulittoral zone E. natalensis and L. glabrata showed better regulation of 

heart than the eulittoral to A. africana, which showed mixed responses. The temperatures at 

which the heart rate was independent of temperature were higher (approximately 21°C) for E. 

natalensis and L. glabrata than for A. africana (approximately 14°C). Although E. natalensis 

and L. glabrata had the same TBTs, E. natalensis had higher EPTs than L. glabrata while A. 

africana showed lower TBTs and EPTs (Fig 4.4B).  

 

In all these comparisons there is a confounding of species identity with height on shore. In 

contrast, members of the two Afrolittorina species from the warm temperate region co-exist 

at similar heights on the shore and in similar habitats. The two species showed similar 

response patterns, including similar thermoneutral zones (starting at approximately 14°C) and 

breakpoints, except for the EPTs which were marginally higher in A. africana than A. 

knysnaensis (Fig. 4.4C).  
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Figure 4.4. Heart patterns of regulating and non-regulating (A) tropical E. malaccana (red) 

and E. vidua (green), (B) subtropical E. natalensis (blue), L. glabrata (pink) and A. africana 

(cyan) and (C) warm temperate A. africana (cyan) and A. knysnaensis (black) species. Traces 

are means of best the five selected individuals‟ traces.  
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4.3.1.3. Do species from the same genus show the same response patterns? 

 

When comparing species of the same genera, it was clear that the tropical Echinolittorina 

species showed better regulation of heart rate than the subtropical E. natalensis, which 

showed both non-regulation and regulation depending on the individual. E. malaccana had 

higher TBTs, ABTs and EPTs than E. vidua and E. natalensis, which had similar TBTs, but 

different ABTs and EPTs to one another (see Fig. 4.5A). On the other hand, Afrolittorina 

species showed the same responses, i.e. the same heart patterns, TBTs and ABTs, except for 

EPTs, which were higher for A. africana than for A. knysnaensis (Fig. 4.5B).  

  

Figure 4.5. Heart patterns of regulating and non-regulating (A) Echinolittorina species; E. 

malaccana (red), E. vidua (green) and E. natalensis (blue) and (B) Afrolittorina species; A. 

africana (cyan) and A. knysnaensis (black). Traces are means of the best five selected 

individuals‟ traces.  
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4.3.1.4. Do species show the same responses in different regions? 

 

Comparing the heart rates of A. africana from subtropical and warm temperate regions and of 

A. knysnaensis from cool and warm temperate regions revealed that there were no major 

differences in the response of conspecifics from different regions (Fig. 4.6). However, non-

regulating A. knysnaensis from the warm temperate region showed slightly higher EPTs than 

the cool temperate populations. In addition, individuals of A. knysnaensis from the cool 

temperate region were more likely to show regulation than those from the warm temperate 

region (see Table 4.3). This was unexpected. 

  

Figure 4.6. Heart patterns of regulating and non-regulating (A) A. africana from subtropical 

(solid lines) and warm temperate (dashed lines) regions and (B) A. knysnaensis from warm 

temperate (dashed lines) and cool temperate (solid lines) regions. Traces are means of the 

best five selected individuals‟ traces.  
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4.3.1.5. Does the same individual show the same responses over repeated exposures?  

 

With a few exceptions, most animals showed the same heart patterns when repeatedly 

exposed to heat stress, irrespective of pre-exposure treatment (Fig. 4.7.1 and 4.7.2). This 

suggests that patterns of heart rate response are characteristic of individuals, rather than being 

caused by the conditions to which that individual is subjected. 

  

Figure 4.7.1. Heart patterns of animals of A. africana (right panel) and A. knysnaensis (left 

panel) (A, B) left on sensors; (C, D) allowed to “feed” for one day; and (E, F) allowed to 

“feed” for two days at room temperature (approximately 20°C) before final exposure. Each 

trace is from one individual of each species. 
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Figure 4.7.2. Heart patterns of animals of A. africana (right panel) and A. knysnaensis (left 

panel) (A, B) left on sensors at 30°C for 3 days; (D, E) left on sensors at room temperature 

for 2 days; and (C, F) allowed to “feed” for 3 days at room temperature (approximately 

20°C). Each trace is from one individual of each species. 

 

4.3.2. Effect of conditions on heart performance, particularly critical and threshold 

temperatures (breakpoints and endpoints). 

 

Various experiments on Afrolittorina spp., L. glabrata and E. natalensis were used to 

investigate the effects of both environmental conditions and physiological state on heart 

performance. The data will also help in understanding the cause of high individual variability 

by eliminating various confounding factors.  
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4.3.2.1. Fast (Acute) versus slow (chronic) increase in temperature 

 

When comparing methods of exposure, it was clear that a slow increase in temperature 

(chronic exposure rate) induced stronger thermal independence than a rapid increase in 

temperature (acute exposure rate) (Fig. 4.8). In addition, the chronic-exposed individuals 

regulated across a range of approximately 18°C, compared to approximately 14°C for acute-

exposed individuals (Fig. 4.8). There were also noticeable shifts in breakpoints; the TBPs 

shifted by approximately 4.5°C from 34.0 to 38.5°C, and the ABTs by 1.3°C from 44.5 to 

46.0°C in both Afrolittorina spp. (see Table 4.4). But the EPTs were the same for acute- and 

chronic-exposed (see Table 4.4).  

  

Figure 4.8. Heart patterns of regulating and non-regulating A. africana (cyan) and A. 

knysnaensis (black) after (A) fast and (B) slow exposure rate. Traces are means of the best 

five selected individuals‟ traces.  
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4.3.2.2. Acclimation temperature  

 

The temperatures at which animals were acclimated for 7-14 days or longer had no effect on 

heart rate patterns; thus animals acclimated at 20°C showed the same responses (thermal 

dependence or independence, similar breakpoints and endpoints) to those acclimated at 30°C 

(see Fig 4.9 and Table 4.4).  

  

Figure 4.9. Heart patterns of (A) regulating and (B) non-regulating laboratory acclimated 

individuals of E. natalensis (blue), L. glabrata (pink), A. africana (cyan) and A. knysnaensis 

(black). Traces are means of the best five selected individuals‟ traces. Animals were 

acclimated at room (approximately 20 °C; dotted lines) and 30 °C (solid lines) for at least 14 

days before use.  
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4.3.2.3. Heat shock  

 

Exposure to abrupt heat stress (heat shock) had no effect on heart patterns; thus animals 

exposed to heat shock showed the same responses (thermal dependence or independence, 

similar breakpoints and endpoints) as non-shocked conspecifics (see Fig 4.10 and Table 4.4). 

The sole exception was that the ABT for E. natalensis increased by 1°C when it was heat 

shocked, but this was recorded for a single individual.  

  

Figure 4.10. Heart patterns of (A) regulating and (B) non-regulating heat shocked A. africana 

(cyan), A. knysnaensis (black), and E. natalensis (blue). Traces are means of the best five 

selected individuals‟ traces, except for E. natalensis where one individual was used.  
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4.3.2.4. Starvation 

 

Starvation for 14 days or more had no effect on heart rate patterns, breakpoint and endpoint 

temperatures when compared to non-starved animals (see Fig 4.11 and Table 4.4), indicating 

that the ability to regulate was not under the influence of nutritional status.  

  

Figure 4.11. Heart patterns of (A) regulating and (B) non-regulating starved A. africana 

(cyan), A. knysnaensis (black), E. natalensis (blue) and L. glabrata (pink). Traces are means 

of the best five selected individuals‟ traces.  
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4.4. Discussion and conclusions 

 

Environmental temperature change that might be of ecological significance influences the 

metabolic rates of intertidal animals, including littorinid snails (see Table 4.1). The influence 

of temperature on metabolic rates is of particular relevance to the animals in intertidal zones, 

especially those from temperate regions where there is strong seasonal variation in 

temperatures compared to the tropics and polar regions (see Clarke, 1993a; Brockington and 

Clarke, 2001; Stillman, 2003; Clarke and Gaston, 2006; Lannig et al., 2010; Pörtner, 2010). 

In addition, temperate regions are expected to experience a much greater magnitude of global 

warming than other regions (see Lozano et al., 2004; Caddy-Retalic et al., 2011; Christensen 

et al., 2011).  

Thus, in the light of rapid global warming where the mean air and sea surface temperatures as 

well as solar radiation have risen and are predicted to rise in the coming years, the question 

arises as to how intertidal animals will deal with temperature change in their habitats. This 

may be especially problematic for intertidal organisms such as littorinids as they live in harsh 

and fluctuating environments (see McMahon, 1990; 2001b; Emson et al., 2002; Muñoz et al., 

2008; Judge et al., 2011). Increased temperatures will have impacts on physiological 

processes such as metabolism, particularly for ectotherms as their performance is strongly 

under the influence of environmental temperature (see Hawkins, 1995; Sagarin et al., 1999; 

McCarty, 2001; Pörtner and Knust, 2007; Helmuth et al., 2010).  

 

Littorinid snails are ectothermic but, as for other marine species, there is no general 

consensus on how littorinid metabolic rates respond to temperature. Some studies suggest 

partial or total temperature dependence, while others suggest temperature-independence of 

metabolic rates. Marshall et al. (2010; 2011) studied the metabolic rates of the tropical 

eulittoral fringe E. malaccana and concluded that it regulates both heart rate and oxygen 

consumption across a range of temperatures. On the other hand, Sokolova and Pörtner (2003) 

showed that even populations of Littorina saxatilis from sub-Arctic White Sea shows some 

degree of metabolic regulation (although they did not make anything of it) while those from 

the cold temperate North Sea did not. Both regulation and non-regulation of metabolic rate 

have been shown in other littorinid snails and intertidal animals (see Table 4.1).  
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Preliminary results for heart rates of E. malaccana and E. vidua from Brunei Darussalam 

showed thermal independence from 20°C up to the thermoneutral breakpoint (41 or 43°C, 

respectively). In contrast, Afrolittorina spp. showed mixed responses, which included thermal 

dependence, partial-independence and independence. It seems that the capacity to depress 

metabolism and save energy through metabolic depression and thermal independence is 

fundamental to the physiology of many littorinid species, and is presumably linked to the 

energetic capacity to withstand long periods of emersion and inactivity. Not only is the 

capacity for depression of metabolism important in this respect, so too is the capacity to 

maintain depressed metabolic rates across a range of temperatures, the thermoneutral zone. 

Marshall et al. (2011) have highlighted the ecological and evolutionary significances of the 

thermoneutral zone to Echinolittorina; and this may apply to other littorinids and ectotherms.  

 

Although Afrolittorina spp. showed mixed responses, there was some consistency in the 

limits of thermoneutrality and other threshold temperatures, as for tropical species. Tropical 

E. malaccana and E. vidua showed higher limits and threshold temperatures than the 

temperate Afrolittorina spp. However, there is no work to show how the limits and threshold 

temperatures generally vary among littorinids species or other marine ectotherms. The 

Arrhenius Breakpoint temperature has been shown to vary among porcelain crabs of the 

genus Petroliathes (Stillman and Somero, 1996; 1999) and among closely-related snails of 

the genus Tegula (Stenseng, 2005; Stenseng et al, 2005); the differences between species 

coinciding with the different thermal regimes under which they live. Such comparisons of 

closely related species (in my case Afrolittorina or Echinolittorina spp.) from different 

environments or temperature regimes separates differences in environmental adaptations 

from differences in phylogenetic history because more closely related species tend to have 

more similar ecologies than do more distantly related species.  

 

The littorinid snails studied here have distinct geographical and vertical distribution patterns 

that were hypothesized to be reflected in differences in metabolic response to heat stress. 

Although genus and biogeography are to some extent confounded in the case of Afrolittorina 

and Echinolittorina, as expected, the six studied species demonstrated different types of 

response to heat stress, suggesting differences in heart performance in species from different 

regions. The tropical species showed good regulation of heart rate while the subtropical and 
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temperate species showed mixed responses characterized by high individual variability. 

Interesting was the difference in times taken to induce good regulation and complete 

regulation.  

 

The tropical species took minutes to a few hours to induce good regulation with complete 

regulation within 3 days of acclimation at 30°C, while the subtropical and temperate species 

took days to induce good regulation, some failing to show complete regulation even after 

days of acclimation at 30°C. In addition, the heart rates of the six species examined showed 

distinct limits and threshold temperatures, with a trend of thresholds and limits decreasing in 

the order of tropics to the subtropics to temperate regions. Thus, my heart rate data show 

fundamentally different metabolic strategies for temperate species compared to subtropical 

and tropical species, and this is due to differences in physiological adaptation to high 

temperatures exposure. However, A. africana is an exception, explained by its restriction to 

lower levels on the shore in the subtropics (pers. obs.).  

 

Similar patterns of regulation and non-regulation or mixed responses, and shifts in limits and 

thresholds temperatures due to adaptations occur in other members of the family Littorinidae 

and other marine animals (see below). Few studies have looked at the metabolic rates of 

conspecific animals from different regions or latitudes (Vernberg, 1959; 1969; Pickens, 1965; 

Vernberg and Moreira, 1974; Pulgar et al., 2006; 2007; Rastrick and Whiteley, 2011). In 

most cases they explicitly overlooked patterns of regulation/non-regulation because they were 

interested in: 1) the metabolic differences (i.e. magnitude) between regions (e.g. tropics 

versus temperate; Vernberg, 1959; 1969; Innes and Houlihan, 1985; Johnston et al., 1991; 

Whiteley et al., 1997; Braby and Somero, 2006) or 2) the difference in threshold (e.g. ABTs) 

and limit (e.g. EPTs) temperatures (Dahlhoff et al., 1991; Dahlhoff and Somero, 1993b; 

Weinstein and Somero, 1998; Stillman, 2004).  

 

The main findings are that animals from cold environments (e.g. temperate and low shore 

species) show higher metabolic rates, and lower thresholds and limits than those from warm 

environments (e.g. tropical and high shore species) when measured at the same temperatures 

(Vernberg, 1959; 1969; Pickens, 1965; Vernberg and Vernberg, 1966; Anderson, 1978; 
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Emmerson, 1990; Calosi et al., 2007; Whiteley et al., 2011). For example, Pulgar et al. 

(2006) found that juveniles of the fish Girella laevifrons from the southern populations 

showed higher oxygen consumption than those from northern populations. Hilbish et al. 

(1994) found a slightly higher metabolic rate for the warm water mussel Mytilus 

galloprovincialis than for the cold water M. edulis. Stenseng (2005) and Stenseng et al. 

(2005) found that the high intertidal species Tegula funebralis showed higher threshold 

(ABT) and limit (EPT) temperatures than the low to mid intertidal congeners, T. brunnea and 

T. montereyi.  

 

Sokolova and Pörtner (2003) compared Littorina saxatilis from different regions and found 

the ability to regulate differed. Where other comparisons were made, the results were 

confounded by species identity since species are rarely found in more than one region. A 

shortcoming of most physiological studies has been the lack of a broad comparative analysis 

of a large number of species that, while phylogenetically closely related, are adapted to a 

broad range of temperatures (see Sokolova and Pörtner, 2001a; Whiteley et al., 2011). Most 

studies have been done on animals from different shore levels or habitats (e.g. eulittoral 

fringes versus low shores; Hawkins et al., 1978; Stillman and Somero, 1996; Somero, 2002; 

Dong and Williams, 2011), or focused on a single species from one region (Newell and Pye, 

1971a, b; Marshall and McQuaid, 2010; Marshall et al., 2010; 2011). Where regulation 

occurs, animals tend to regulate over the temperature ranges experienced in their habitats, 

with a trend of low for polar to high for tropical species (see Vernberg and Vernberg, 1966; 

1969; McMahon and Russell-Hunter, 1977; McMahon, 1990; Eshky and Ba-Akdhah, 1992; 

Jansen et al., 2007). However, confounding species identity with geography or region makes 

comparison between different studies difficult or impossible.  

 

The differences in temperature responses might be related to the effect of many factors and 

conditions (see below). For example, Sokolova and Pörtner (2003) found that populations of 

L. saxatilis from sub-Arctic White Sea that experience larger fluctuations in conditions 

regulated their oxygen consumption, but the cold temperature North Sea populations that 

experience lesser fluctuation conditions did not. In Zakhartsev et al. (2003), the common 

eelpout Zoarces viviparus from Baltic Sea and North Sea populations partially regulated 

oxygen consumption, while those from Norwegian Sea populations did not. Different 
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developmental stages of crab species and other crustaceans showed different temperature 

metabolic rate responses, which is explained by differences in the habitats exploited by 

different stages (see Sastry and McCarthy, 1973; Moreira et al., 1981; Gutermuth and 

Armstrong, 1989; Agard, 1999; Brown and Terwilliger, 1999). Bulnheim (1979) found 

differences in the metabolic rate responses in the amphipods of the genus Gammarus from 

different habitats.  

 

In addition, most studies have investigated the effects of a single environmental factor (e.g. 

temperature; see Sokolova and Pörtner, 2003; Stenseng et al., 2005; Marshall et al., 2010; 

2011), overlooking the effects of multiple factors which might be of importance in nature 

(see Newell, 1973; Marsden, 1984; Hawkins, 1995; Tully et al., 2000; Chelazzi et al., 2001; 

Melatunan et al., 2011). Cheung and Lam (1995) found that salinity, either alone or in 

combination with temperature, affects temperature metabolic responses. Brown and 

Terwilliger (1999) found that oxygen uptake by the megalopa of the crab Cancer magister 

increased at 20°C under low compared to normal salinities, while salinity levels had no effect 

on oxygen uptake of other developmental stages at either 10 or 20°C. This was also true for 

the American oyster Crassostrea virginica, where low salinity increased the effect of 

temperature on oxygen consumption (Shumway and Koehn, 1982).  

On the other hand, Nelson et al. (1977) found that the temperature metabolic response of 

juveniles of the prawn M. rosenbergii was unaffected by salinity. Although most studies of 

the effects of CO2 or hypercapnia on temperature metabolic responses show different results, 

there is a general trend of reducing of limits and thresholds (see Walther et al., 2009; Lannig 

et al., 2010; Christensen et al., 2011). This is also true for the effects of pollutants or 

chemicals (see Rao and Khan, 2000; Cherkasov et al., 2006; Sokolova and Lannig, 2008). 

For example, Lannig et al. (2008) found that the standard metabolic rate and heart rate of 

cadmium-exposed eastern oysters, Crassostrea virginica, was strongly temperature 

dependent as compared to the control group during acute warming from 20 to 28°C.  

 

Differences in methods and treatments used are also problematic in comparing studies. For 

example, Marshall et al. (2010 and 2011) raised temperature continuously from 20 to 60°C 

(the approach taken here), while in other studies it was raised in increments of 5°C every 5 or 
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10 minutes (see Bulnheim, 1979; McMahon, 1990; Sokolova and Pörtner, 2003; Tian et al., 

2004). In addition, some of the studies used the Q10 (the factor by which a physiological 

process changes with a 10°C rise in temperature) value method, which results in further 

confusion (see Vernberg and Vernberg, 1966; McMahon and Russell-Hunter, 1977; Innes 

and Houlihan, 1985; Eshky and Ba-Akdhah, 1992; Clarke and Johnston, 1999; Iftikar et al., 

2010). Newell and Pye (1971a) found that the active metabolism (measured as oxygen 

consumption) of the winkle Littorina littorea was temperature dependent, while the standard 

metabolism was independent of temperature (see below). In a different study however, this 

same species showed temperature independence of active metabolism (see Newell, 1969; 

Newell and Pye, 1970a, b). Other explanations for differences in responses might relate to the 

effect of previous thermal history (acclimation or acclimatization), experimental conditions, 

and nutritional status as well as the animal‟s health, developmental stage and physiological 

condition (see below). 

 

Differences between species were also seen within regions. In the tropics, the eulittoral fringe 

E. malaccana showed stronger regulation with a wider thermoneutral zone and higher 

thresholds and limits than E. vidua, which occurs rather lower on the shore. The time course 

for induction of regulation and complete regulation was faster in E. malaccana than E. vidua, 

and this can also be related to their position on the shore. Animals that occupy the higher 

shore show more rapid compensation of metabolic rates than those found at lower levels (see 

Burggren and McMahon, 1981), and this was true for the induction of regulation in the above 

species. This is also supported by the results of studies on lethal temperature limits of the two 

species which found higher tolerances limits for E. malaccana than for E. vidua (see Cleland 

and McMahon, 1986; Mak, 1996; Lee and Lim, 2009; Marshall et al., 2011). In addition to 

their differences in position on the shore, the two species also show different preferences for 

humidity. For example, although both species are found on open rock surfaces, E. vidua 

seems to prefer humid surfaces, making it less exposed to heat stress.  

 

Likewise among the subtropical species, E. natalensis and Littoraria glabrata extend higher 

on the shore and show better regulation of heart rate than A. africana. The ability of E. 

natalensis and L. glabrata to show better regulation suggests that the two species are of 

tropical origin (see Reid, 1989; 1996; 2007; Inness-Campbell et al., 2003; Williams and Reid, 
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2004, Torres et al., 2008; Reid et al., 2010; 2012), and thus adapted to higher temperatures. 

E. natalensis induced regulation faster than L. glabrata and A. africana, and this might be 

explained by their ability to use different microhabitats. For instance, L. glabrata prefers 

shaded and humid environments whereas E. natalensis can live on open rock as well as in 

cervices (pers. obs.). Thus, L. glabrata minimizes the effects of extreme temperature 

variation during daylight emersion by remaining in cooler, more thermally stable 

microhabitats under exposed rock surfaces and crevices.  

On the other hand A. africana is frequently found around the margins of shallow and 

temporary pools in the subtropics (pers. obs.) which might be cooler and more stable. The 

difference in responses was also noticed in the limits and threshold temperatures which were 

higher for the two eulittoral species than for A. africana. Although the two eulittoral species 

had the same thresholds, E. natalensis, which occurs in more exposed habitats, had higher 

lethal limits than L. glabrata, which prefers shaded and humid microhabitats.  

 

In the warm temperate region, the two Afrolittorina spp. showed similar responses 

characterized by high individual variability. Both species took days to induce good regulation 

and not all individuals regulated after acclimation at 30°C. Similarity in response patterns is 

expected since the two species co-exist in the warm temperate region where they occupy the 

same levels and microhabitats on the shore (pers. obs.). Although Afrolittorina spp. showed 

similar thresholds, lethal limits were 2°C higher in A. africana, and this correlates with their 

geographical distributions (see below). McQuaid and Scherman (1988) and my results on 

thermal tolerance (see Chapter 3) found a difference of 1-2°C in lethal (LT50) limits between 

the two species, with higher tolerance in A. africana.  

 

Unexpected was the higher number of individuals of A. knysnaensis than of A. africana that 

showed regulation. Although the sample sizes were rather different between A. africana and 

A. knysnaensis, the number for A. africana was still reasonable (ca. 100), lending confidence 

in this unexpected result. Colour differences might have contributed to the high proportion of 

regulating specimens of A. knysnaensis. In the field, the dark-coloured A. knysnaensis is 

expected to absorb more solar radiation and heat up to a greater degree than the light-

coloured A. africana (see Marshall and Scherman; 1988; McQuaid, 1992; 1996a), resulting in 
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different metabolic responses. Thus, A. knysnaensis is expected to show better response than 

the blue-grey A. africana.  

 

It must be noted that eventhough black bodies are known to absorb larger fraction of solar 

radiation (see Wilkens and Fingerman, 1965; Markel, 1971; Phifer-Rixey et al., 2008; Miller 

and Denny, 2011), it remains near the surface and is easily removed by either re-radiation or 

convection or air cooling (see Britton and Morton, 2003; Miller and Denny, 2011; Marshall 

and Chua, 2012). This might have been the case in A. knysnaensis since the body temperature 

of both species did not differ irrespective of colour differences (unpub. data). An alternative 

explanation might be that the results for A. knysnaensis include specimens from cool 

temperate region which experience more widely fluctuating conditions. Thus, intense 

upwelling resulting in rapid and marked fluctuations in water temperatures in the cool 

temperate region might have resulted in regulation in a high proportion of individuals from 

that region.  

 

The problem of course is to separate the confounded effects of species identity and the 

biogeographic regions where the species occur. As expected, the two tropical Echinolittorina 

spp. showed better regulation than the subtropical E. natalensis, which showed mixed 

patterns. E. malaccana had higher limits and threshold temperatures than E. vidua and E. 

natalensis which had similar thermoneutral and Arrhenius Breakpoint limits, but different 

lethal limits. Most papers show little difference in thermal tolerances of species found 

between 0 and 30 degrees latitudes (see McMahon, 1990), with the latitudinal effect being 

more significant between 30 degrees and higher latitudes. So, one might not expect a major 

difference in thresholds and/or lethal limits between tropical and subtropical species and this 

was generally the case in this study.  

 

E. vidua and E. natalensis showed the same thermoneutral and Arrhenius Breakpoint limits 

(the genus Echinolittorina is of tropical origin; Williams and Reid, 2004; Reid, 2007; Reid et 

al., 2012), though lethal limits were higher for the tropical E. vidua than subtropical E. 

natalensis. The difference in lethal limits (EPTs) was expected given the geographical 

distributions of the two species, and the fact that the eulittoral zone and fringe are extended 
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upwards in tropical shores compared to subtropical shores (see Hartnoll, 1976). Afrolittorina 

spp. showed the same pattern; heart patterns, thermoneutral zones and breakpoints were 

similar, but lethal limits were 2°C higher for A. africana than for A. knysnaensis from the 

same region. As for E. vidua and E. natalensis, the difference in lethal limits (supported by 

differences in LT50; see Chapter 3), was expected given the geographical distribution of these 

species (McQuaid and Scherman, 1988; McQuaid, 1992; Reid and Williams, 2004; d‟Errico 

et al., 2008; Reid et al., 2012). 

 

Although species identity and regions are usually confounded, I could compare populations 

of Afrolittorina spp., each of which occurs in two regions. In case of A. africana, I predicted 

that populations from the subtropics would show better regulation than warm temperate 

populations, and for A. knysnaensis that cool temperate populations would show less 

regulation than warm temperate populations. In fact, there were no major effects of region on 

patterns of heart rate response for either species, and this may reflect the fact that these 

species are exposed to terrestrial conditions for most of time, while the regions are identified 

mainly on the basis of sea surface temperatures (SST) (see Maree et al., 2000; Harrison, 

2002; 2004; Sinclair et al., 2004).  

 

Along the southern African coast, air and substratum temperatures can rise well above the 

SST, and rock temperature is often much higher than that of the surrounding air (pers. obs.). 

Therefore organisms such as littorinid snails that live highest on the shore experience most 

stressful temperatures as a result of long periods of exposure as compared to subtidal species. 

In addition, it is possible that conditions (i.e. temperature) experienced during emersion are 

less dissimilar than expected among regions. If conditions were different as expected based 

on SST (decrease gradually from subtropics towards warm and cool temperate regions; see 

Isaac, 1937; Maree et al., 2000; Harrison, 2004; Sinclair et al., 2004; Harrison and Whitfield, 

2006), one would have expected a difference in responses of animals from different regions 

and populations as found by Sokolova and Pörtner (2003).  

 

Situations where there were no geographical or latitudinal changes in metabolic rates over 

thermal gradients have been found in other intertidal ectotherms (see Monaco et al., 2010; 
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Rastrick and Whiteley, 2011). However, other studies have found differences or adaptive 

changes in metabolic rates of geographically separated populations (see Vernberg, 1969; 

Vernberg and Vernberg, 1966; Vernberg and Moreira, 1974; Jansen et al., 2007; Rastrick and 

Whiteley, 2011; Whiteley et al., 2011) as was expected in this study. The absence of regional 

difference in Afrolittorina spp. may also be explained by the lack of genetic diversity among 

populations (see Chapter 2; Grant and Lang, 1991), suggesting that the ability to regulate is 

also genetically controlled.  

 

Equally unexpected was the high proportion of individuals of cool temperate A. knysnaensis 

showing regulating compared to warm temperate populations. This was not observed for A. 

africana populations from different regions. The unexpected result for A. knysnaensis may be 

explained by the fact that studies were done in spring and summer for the warm populations 

as compared to only summer for the cool populations. Individuals from the cool region might 

have been collected after exposure to hot events or already acclimatized to hot summer days. 

On the other hand, data for warm temperate individuals might have been confounded by the 

mixture of spring and summer acclimated individuals. This is also supported by the fact that 

such differences were not found in A. africana where one would expect the subtropical 

population to regulate more than the warm temperate population.  

 

Although the sample sizes were rather different between A. knysnaensis in cool and warm 

temperate regions, the number for cool temperate was still reasonable (ca. 100), lending 

confidence in this unexpected result. However, it cannot be ignored that the high proportion 

of regulation by the cool temperate population might be related to the conditions in that 

region. For example, conditions in the cool region might be highly fluctuating as a result of 

upwelling than for warm region. Although not discussed in Sokolova and Pörtner (2003), 

their data for populations of Littorina saxatilis from the White Sea would have shown a 

higher proportion of regulation than the North Sea population. The differences in 

performance between North and White Sea populations of Littorina saxatilis also occur for 

enzymes involved in metabolic process (Sokolova and Pörtner, 2001a). Of the five enzyme 

studied, there was a constitutive difference in the activity of three enzymes between snails 

from North Sea and White Sea populations of Littorina saxatilis and its congener L. obtusata. 

Panova and Johannesson (2004) also found differences in the activity of aspartate 
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aminotransferase between upper and lower shore populations of Littorina saxatilis from 

Sweden.  

 

In conclusion, the results show clearly that the six studied species have the ability to regulate 

metabolic rates, with a gradient in this ability declining from the tropical species to the 

subtropical and then to the temperate species. The ability of these species to regulate is 

related to their highest position on the shore where they experience extremes and rapidly 

fluctuating conditions. It is well known that animals that live high on rocky shores show 

stronger metabolic adjustment to changes in temperature than those from the low shore (see 

Spaargaren and Achituv, 1977; Bulnheim, 1979; Burggren and McMahon, 1981; Wilbur and 

Hilbish, 1989; Marshall and McQuaid, 1991; Somero, 2002).  

 

During low tides the studied species experience long periods of exposure high on the shore, 

where there is little food, limited time when feeding is possible (see Branch et al., 1988 

Norton et al., 1990; Marshall and McQuaid, 1991; Bates and Hicks, 2005; Menge et al., 

2007) and both heat and desiccation stresses are high (see Barnes et al., 1963; Shick et al., 

1988; McMahon, 1990; Muñoz et al., 2008). These stresses are more pronounced in the 

tropics than the subtropics and temperate regions (see Hartnoll, 1976; Garrity, 1984; Little, 

1989; Lesser and Kruse, 2004). Thus, high temperature and low food and/or feeding 

opportunities work together to reduce metabolic rates for animals on exposed shores.  

 

Although all species regulated their heart rate in response to heat stress, there was a 

difference in responses between tropical, subtropical and temperate species. The tropical 

species experience the most energetically constrained conditions and showed good and quick 

regulation of heart rate. In contrast, the temperate and subtropical species, that are subjected 

to slightly less severe conditions showed mixed responses and high individual variability, and 

slow regulation of heart rate (see below). Thus, while extremes of temperatures are expected 

to occur in the microhabitats of South African species, local climate conditions, timing of low 

tides, and the position of the species in the intertidal make them unlikely to experience the 

same conditions as tropical species. For example, South African species, especially 

Afrolittorina spp., might benefit from wave splashes which tend to keep temperatures low 
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even at high shore levels; thus providing some protection during midday exposure and 

allowing animals to maximize feeding time (i.e. energy assimilation). On the other hand, the 

tropical species, particularly E. malaccana, spend most of their time on exposed rock surfaces 

and so have limited feeding opportunities.  

 

Apart from differences in temperature regime, there are also differences in emersion periods 

between regions, as a result of different tidal regimes with longer exposure periods in the 

tropics (dominated by platform-like rocky shores) than subtropical and temperate (dominated 

by narrow rocky shores) regions (see Hartnoll, 1976; Aagaard, 1996; Pulgar et al., 2006; 

Finke et al., 2007). This is supported by differences in aestivation periods between 

subtropical/temperate (approximately 14 days; see McQuaid and Scherman, 1988; McQuaid, 

1992; Sinclair et al., 2004) and tropical (approximately 60 days; see Marshall and McQuaid, 

2010) species. In addition, Finke et al. (2007) found the South African coast to experience the 

lowest exposure times at all tidal levels.  

 

Due to longer exposure periods, tropical intertidal zones are subjected to intense solar 

radiation which may raise surface temperatures as high as 50°C during summer hot days 

(Lewis, 1963; Williams and Morritt, 1995; Chan et al., 2006; Marshall and McQuaid, 2010), 

while temperatures might rarely exceed 45°C in the subtropics and temperate regions (pers. 

obs.; Morley et al., 2009; Zardi et al., 2011; but see Whiteley et al., 1997). In addition, there 

are tidal, diurnal and seasonal variations in temperatures that differ depending on 

geographical location (see Aagaard, 1996; Finke et al., 2007). Some regions experience 

moderate to constant temperature changes while others experience more pronounced changes. 

For example, most tropical regions are known to be characterized by moderate to constant 

conditions while most of temperate regions are dominated by fluctuating conditions (see 

Huey and Bennett, 1990; Sommer et al., 1997; Tomanek and Somero, 1999; Sokolova and 

Pörtner, 2003; Christensen et al., 2011).  

 

Rapid changes in and extremes of temperature make specific demands on an animal, such as 

high energy costs to support or maintain metabolic rates and/or the synthesis of heat shock 

proteins for deference or repair (Burggren and McMahon, 1981; Branch et al., 1988; Parsons, 
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1990; Somero, 2002; Lannig et al., 2010; Marshall et al., 2011; Miller and Denny, 2011). 

Thus, the costs of living are higher for animals living in the tropics than for those living in 

subtropical, temperate and polar regions (see Somero, 2002; 2010; Whiteley et al., 2011). 

This means that subtropical and temperate species have less need to conserve energy 

(resulting in mixed responses and high individual variability) than tropical species which 

strongly regulate or depress metabolic rates to save energy (see Newell, 1973; Clarke, 1993a, 

Pörtner et al., 2005; Dong et al., 2011; Whiteley et al., 2011). Thus, metabolic regulation acts 

as a time-limited adaptation strategy to survive unfavourable conditions such as extremes of 

temperatures and low feeding opportunities.  

 

On the other hand, the differences in thresholds and limits observed in this study can be 

viewed as physiological adaptations of the studied species to their environments, or as the 

physiological mechanisms (e.g. acclimation) that allow them to occupy those environments. 

For example, all three Echinolittorina species as well as L. glabrata occupy the eulittoral 

fringes in the tropics and subtropics, and show high thresholds and limits. In contrast, 

Afrolittorina spp. are dominant in the eulittoral zones in the subtropics/temperate, though 

they can be found in the eulittoral fringe, and show lower thresholds and limits. Thus, 

although the eulittoral zone is frequently exposed to air for several hours, exposure times of 

more than one day occur occasionally, while in the eulittoral fringe, aerial exposure of more 

than one week is common (see Kronberg, 1990), explaining the differences in thresholds and 

limits found in this study.  

 

Interestingly the tropical E. vidua and the two subtropical species E. natalensis and L. 

glabrata, showed similar thermoneutral breakpoints, suggesting that the latter two may be of 

tropical origins. Indeed, the genera Echinolittorina and Littoraria are mainly tropical with 

few representatives occurring in the subtropics and temperate (see Reid, 1989; 1996, 2007; 

Inness-Campbell et al., 2003; Williams and Reid, 2004; Torres et al., 2008; Reid et al., 2010; 

2012). The thresholds determine the thermal limit to energy conservation (TBTs) and the 

temperature above which time dependent mortality sets in (ABTs), for aestivating animals. 

For example, South African Echinolittorina and Afrolittorina spp. probably do not experience 

the same energetic constraints as the tropical Echinolittorina spp. and showed lower 
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breakpoints. On the other hand, the lethal limits (EPTs), which showed high intraspecific 

variability, represent temperatures at which mortality or death occurs.  

 

High individual variability and mixed responses in temperate and subtropical species 

 

The main finding and maybe the most unexpected was the high individual variability in 

Afrolittorina spp., and the mixed responses in subtropical E. natalensis and L. glabrata. This 

was also noticed in tropical species where some individuals showed partial regulation a few 

hours after collection (see Marshall et al., 2011; pers. obs.). Collecting animals from nature 

without disturbing their natural physiological state is very difficult, especially when 

collecting specimens from multiple sites at different times. In addition, individuals or 

populations living in close proximity may experience different environmental conditions 

(Helmuth, 1998; Sinclair et al., 2006; Denny et al., 2011), which can lead to different 

responses and hence high individual variability (Dahlhoff et al., 2002). Another challenge is 

that natural systems, including the intertidal, are themselves characterized by variability 

(Hofmann and Somero, 1995; Tian et al., 2004; Helmuth et al., 2005; Tomanek, 2010; 

Pincebourde et al., 2012), making the resultant data often complex and difficult to interpret 

(Sørensen, 2010). Therefore, care must be taken when investigating or comparing 

performance of animals from different locations and shore levels.  

 

Efforts were made to reduce the effect of inequalities (i.e. acclimation history, nutritional 

state, size and level on the shore) by comparing individuals of a standard size from similar 

habitats and levels, collected in the same season, and acclimated under the same conditions. 

In addition, experiments such as repeated exposure of the same individuals, a slow increase in 

temperature, heat shock and starvation were conducted to eliminate as many confounding 

factors as possible (see below). Large numbers of specimens were used for each species per 

experiment or treatment (see Table 4.4) in order to compensate for individual variability. As 

such, high individual variability (as observed on thermal tolerance and proteomics results) 

found in this study was a true response which might be explained by the effect of other 

factors or conditions which need to be investigated (see below).  
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High individual variability in Afrolittorina spp. and other South African species could relate 

to the need to generate energy in some individuals (especially those that have just fed) but not 

others (those that have had limited time to feed or have not fed at all). For example, snails 

that have just fed generally did not show the same degree of thermal independence of heart 

function and metabolism as those that had been quiescent either in the field or the laboratory 

for a few days before experimentation (pers. obs.). This individual variability was also 

noticed in data for freshly collected Echinolittorina snails from Brunei, but after three days of 

acclimation at 30°C the patterns became clear (especially in E. vidua). Marshall et al. (2011) 

also found that some individuals of E. malaccana showed less thermal independence than 

others, suggesting individual variability in this species as well. Therefore, it would be best to 

measure metabolic rates in starved individuals rather than prescribe a fixed level of food 

intake which could be functionally different for different individuals (Agard, 1999; 

Speakman et al., 2004).  

 

The obligatory increase in metabolic rates, also called the „Specific Dynamic Action‟ (SDA), 

that occurs after feeding represents the energy used for ingestion, digestion, absorption and 

assimilation of a meal and the increased synthesis of proteins and lipids associated with 

growth (see Vahl, 1984; Peak and Veal, 2001; Mallekh and Lagardére, 2002; Pulgar et al., 

2006; Jansen et al., 2007; Pirozzi and Booth, 2009). This has been reported in marine animals 

including littorinids. For example, Shumway et al. (1993) found an increase in oxygen 

consumption of starved marine periwinkles, Littorina littorea and L. obtusata, after being fed 

on algal food. This is also true for other marine animals such as molluscs (see Lilly, 1979; 

Peck, 1996; Clarke and Prothero-Thomas, 1997; Peak and Veal, 2001), crustaceans (see 

Carefoot, 1990; Houlihan et al., 1990; Chu et al., 1994; Crear and Forteath, 2000; Robertson 

et al., 2001a, b; 2002; Whiteley et al., 2001; Kemp et al., 2009) and fishes (Du Preez et al., 

1986; Chakraborty et al., 1992; Ross et al., 1992). In addition, individual differences in body 

composition could potentially result in variation in metabolic rates and thus high individual 

variability among similarly sized individuals (see Regnault, 1981; Carefoot, 1990; 

Chakraborty et al., 1992; Ross et al., 1992; Speakman et al., 2004). 

 

Littorinids are often attacked by macroparasites, especially trematodes (Berger and 

Kharazova, 1997; Williams and Brailsford, 1998; Granovitch et al., 2000; Arakelova et al., 
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2004), and one possibility not explored here is that parasitism may affect the physiological 

response to temperature stress. In fact, many studies fail to mention if test animals were 

healthy or infested due to the general belief that larval trematodes do little if any harm to the 

host as well as notorious ignorance of diseases and parasite problems (see Lauckner, 1987). 

Studies have shown greater variability in temperature metabolic rates of infected animals, 

with infected individuals increasing or depressing their rates (see Lee and Cheng, 1971; 

Anderson, 1975a, b; Lauckner, 1987; Meißner and Schaarschmidt, 2000; Shinagawa et al., 

2001). This is because the resulting metabolic stress (costs in terms of energy) of combined 

infection and temperature stresses can be tremendous, leading to temperature dependence. 

However, in other species infections lead to depressed or low metabolic rates (see Thompson, 

1983; Huxham et al., 2001) as a strategy to save energy. Anderson (1975b) found that 

infested shrimps of Palaemonetes pugio showed lower oxygen consumption (with the effect 

being more pronounced in the smallest hosts) than the non-infested shrimps of equal size. In 

addition, the degree of metabolic temperature independence was not significantly altered as a 

result of infestation.  

 

Metabolic rate can show changes during development, including embryonic development 

(see Sastry and McCarthy, 1973; Vernberg and Moreira, 1974; Gutermuth and Armstrong, 

1989; Hatcher et al., 1997; Brown and Terwilliger, 1999; Glazier, 2005), and this can lead to 

different responses and high individual variability, especially when size is used to estimate 

the age of an animal. For example, small animals were assumed to be juveniles and were 

expected to show higher metabolic rates and greater temperature dependence to reflect their 

greater metabolism, since they need more energy for growth as compared to adults (see 

Shumway et al., 1993; Chelazzi et al., 1999; Dahlhoff et al., 2001; O'Connor et al., 2007; 

Pörtner and Knust, 2007). In the case of Afrolittorina spp. different sizes were also expected 

to show different response patterns, with small animals showing some degree of regulation 

than adults as they tend to occupy different heights on the shore (McQuaid, 1981a, b; 

McQuaid, 1992). Therefore, it would be important to investigate the effect of size and 

zonation as well as ontogenetic stage on the metabolic rates of Afrolittorina spp. and other 

littorinids. In addition, reproduction in females may influence individual differences in 

thermal sensitivity of metabolism as there may be a need for continual energy supply (leading 

to an obligatory increase in metabolic rates) to facilitate egg development (Baeza and 

Fernández, 2002). Future work should probably account for the effect of sex and/or 
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reproductive stage as well as ontogenetic stages on metabolic rates as reported in other 

studies (see Anderson, 1975b; Dawirs, 1983; Quetin and Ross, 1989; Chu et al., 1994; Marsh 

et al., 1999; Baeza and Fernández, 2002; Cook, 2004), something not investigated in this 

study.  

 

When the physiological limits or thresholds have been passed, some animals are known to 

synthesize heat shock proteins as a defense mechanism (Feder and Hofmann, 1999; Whiteley 

and Faulkner, 2005; Pörtner and Knust, 2007; Sørensen, 2010) and this can lead to increases 

in metabolism as more energy is needed for protein biosynthesis (see Anderson, 1975a; 

Hawkins and Bayne, 1991; Hawkins, 1995; Sokolova and Lannig, 2008; Marshall et al., 

2011). Few studies have, however, investigated the relationship between metabolic rates and 

rates of protein (Hsps) synthesis (see Whiteley et al., 1997; 2001; Dahlhoff, 2004; Dong et 

al., 2011). Houlihan et al. (1990) found protein synthesis to account for 20-37% of total 

oxygen consumption of the shore crab Carcinus maenas. Whiteley et al. (1997) suspected 

that protein turnover was the factor that might have amplified metabolic response upon 

transfer of specimens of the mussel Mytilus edulis from 10 to 20°C (see Hawkins et al., 1987; 

Hawkins, 1995). An increase in temperature from 20 to 55°C in this study triggered an 

increase of heart rate of certain individuals as compared to others, probably in response to an 

increase in metabolic demand to meet the high energy requirements of protein synthesis. 

Thus, one possible explanation for the high individual variability in Afrolittorina spp., E. 

natalensis and L. glabrata may lie in individual differences in energy requirements for 

protein biosynthesis.  

 

Increase in metabolic rates can result from differences in behavioural ecology (e.g. activity) 

or physiological responses to elevated temperatures (see Newell, 1973; Santini et al., 1999; 

Salomon and Buchholz, 2000; Crear and Forteath, 2000; Dong et al., 2006; O'Connor et al., 

2007; Gracey et al., 2008). Because present day temperatures (air) on the South Africa 

coastline rarely rise above 45°C (pers. obs.), there is no apparent thermal related impact of 

temperature on littorinid populations. Therefore, an increase in heart rates of Afrolittorina 

spp. and other subtropical species between 20 and 50°C indicates that aerobic metabolism is 

in the range corresponding to that expected and is not temperature limited. Although the 

adaptive significance of temperature dependent metabolism is not clear, it can be suggested 
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that Afrolittorina spp. and other temperate species that are not often exposed to very hot 

conditions must expend more energy to maintain basal metabolism while not feeding. It can 

also be suggested that high individual variability of Afrolittorina spp. might indicate a high 

degree of adaptability as they exploit different levels of the shore from the eulittoral zone to 

eulittoral fringes and microhabitats (pers. obs.).  

 

Effects of conditions on heart performance, including breakpoints and endpoints 

temperatures 

 

Slow increase in temperature  

 

Little or no work has compared the effects of different methods of increasing temperate on 

metabolic responses (see Hawkins, 1995). However, it can be speculated that a slower rate of 

increase in temperature can lead to better regulation of metabolic rates since animals have 

time to adjust, and indeed that is what the results showed. This is supported by studies on 

thermal tolerance that show that a slow increase in temperature results in higher tolerances 

and shifts in thresholds and limits compared to a fast increase (see Ospina and Mora, 2004; 

Mora and Maya; 2006; Angilletta Jr., 2009). Thus, a slow increase in temperature had a 

significant impact on heart performance of both Afrolittorina spp. with the heart independent 

of temperature across a range of approximately 18°C compared to 14°C of fast increase. In 

addition, there was a noticeable shift in limits and thresholds; TBPs shifted by approximately 

4.5°C and the ABTs by 1.3°C in both species. Nevertheless, there was as much individual 

variability with slow as with fast temperature rises, suggesting that temperature is not the 

only factor that determines regulation, but that other factors such as food availability might 

be involved (see below).  

 

The marked ability to regulate and shifts in breakpoints after a slow increase in temperature 

raises questions about the field conditions experienced by South African species as it implies 

that they may not be well adapted to cope with rapid temperature rises though measurements 

of body temperature in the field (unpub. data) showed that these do rise rapidly, especially 
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between morning and afternoon. Body temperatures then remain roughly constant during the 

afternoon but decrease rapidly with submersion or as the sun drops. Extreme temperature 

regimes lasting for hours (1-6 hrs) are highly characteristic of the intertidal zone (see 

Burggren and McMahon, 1981) as a result of long exposure periods. So the ability to show 

good regulation, and shifts in limits and thresholds with a slower rate of increase in 

temperature indicates that this species can tolerate high temperatures during the long hot 

summer afternoons.  

 

Acclimation or acclimatization  

 

Temperature acclimation leading to some degree of temperature independence as well as 

shifts in limits and thresholds among ectotherms is more common in animals (including 

marine animals) that experience fluctuations in conditions than those that experience 

moderate to constant conditions (see Segal, 1961; Bulnheim, 1979; Bennett, 1990; Dahlhoff 

and Somero, 1993b; Somero, 2004; Clarke and Gaston, 2006). The lack of an acclimation 

response by tropical or polar organisms presumably relates to the absence of any significant 

seasonal temperature variation in these regions (see Vernberg and Vernberg, 1966; 1969; 

Brockington and Clarke, 2001; Pörtner, 2001; Peck et al., 2009a, b; Nguyen et al., 2011).  

 

This explanation may well apply to some molluscs such as gastropods and bivalves, 

particularly those inhabiting intertidal zones that only experience slight or moderate seasonal 

fluctuations in temperature (see Vernberg and Vernberg, 1969; Somero, 2010; Tomanek, 

2008; Christensen et al., 2011). Littorinids and other high intertidal ectotherms have limited 

or no ability to acclimate metabolic rates as a result of their position on the shore. Thus, by 

living highest (i.e. eulittoral fringes) on the shore, these animals live close to their upper 

thermal limits, and have narrower thermal windows for further acclimation (see Stillman and 

Somero, 1999; Stillman, 2003; 2004; Somero, 2005; 2010).  

 

Studies on acclimation show conflicting outcomes, some suggesting that acclimation occurs, 

while others suggest no acclimation in metabolic rates (see below), and this is further 
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complicated by the methods or approaches used (see Vernberg and Moreira, 1974; Laughlin 

and Neff, 1980; Emmerson, 1985; Van Senus, 1985; 1990; Tian et al., 2004). In general, 

animals from cool environments (e.g. temperate and subtidal species) show acclimation, 

while those from warm environments (e.g. tropical and high intertidal species) do not (see 

Anderson, 1978; McMahon and Wilson, 1981; De Pirro et al., 1999b; Stillman, 2002; 2003; 

Sinclair et al., 2006). However, most of the studies were interested in the differences in 

magnitude and/or breakpoints (see Vernberg, 1969; de Vooys, 1976; Van Senus, 1985; 

Navarro et al., 1987; Stillman, 2004; Whiteley and Faulkner, 2005), but not whether there is 

regulation or not. Examples of non-acclimation among littorinids (Innes and Houlihan, 1985; 

McMahon et al., 1995) and other marine invertebrates from different phyla are known 

(Pickens, 1965; Cheung and Lam, 1995; Pilditch and Grant, 1999; Whiteley and Faulkner, 

2005). For example, McMahon et al. (1995) found that acclimation of the intertidal snails of 

the genus Littorina, L. saxatilis and L. obtusata, at 4 or 21°C did not affect metabolic rates. 

Hicks and McMahon (2002a) found that acclimation of the brown mussel Perna perna from 

the subtropics at 15, 20 and 25°C did not affect regulation of oxygen consumption.  

 

In contrast, other studies have shown that acclimation can lead to good regulation of 

metabolic rates with noticeable shifts in limits and threshold temperatures (see Segal, 1956; 

1961; Widdows, 1973; Markel, 1974; Ortega et al., 1984; Gee, 1985; Einarson, 1993; etc). In 

addition to partial regulation of standard oxygen consumption, Newell and Pye (1970a, b) 

found that Littorina littorea and the mussel Mytilus edulis showed shifts in limits and 

thresholds with acclimation temperature and season. In addition, the ABTs changed from 6-

10°C for Littorina littorea acclimated at 5°C to as high as 30-35°C in animals acclimated at 

25°C (Newell and Pye, 1970b). Pye and Newell (1973) found that season and thermal 

acclimation led to temperature independence of the standard oxygen consumption of 

quiescent intact and cell-free homogenates isolated from mitochondria of L. littorea. 

Although not interested in regulation, Stenseng et al. (2005) found a shift of ABT and Flat-

line Temperatures (FLT) of snails of the genus Tegula acclimated to 14°C and 22°C, with the 

largest changes in the low-intertidal to subtidal species, T. brunnea and T. montereyi. In 

addition, the mid- to low-intertidal T. funebralis showed the smallest change in ABT, 

suggesting limited ability to acclimate in this species.  
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McMahon and Russell-Hunter (1981) found that specimens of the salt-marsh snail Melampus 

bidentitas acclimated at 20°C regulated oxygen consumption as compared to those 

acclimated at 10°C, which did not. Zakhartsev et al. (2003) found that individuals of the 

common eelpout Zoarces viviparus from Baltic Sea showed a change from non-regulation at 

3°C to partial regulation at 12°C. On the other hand, Fangue et al. (2009) found that, in 

addition to the ability to regulate metabolic rate, fishes acclimated at different temperatures 

(when acclimated at 15, 20 and 25°C) showed a noticeable 5°C shift in thermoneutral 

breakpoints. Most of these studies have shown that limits and thresholds increase with 

increasing acclimation temperatures, and this differs for species from different temperature 

regimes. Thus, acclimation leads to widening of the thermoneutral zone (which is important 

to save energy) and shifts in limits and thresholds in other species (see Horowitz, 2001).  

 

In this study, animals acclimated at 30°C were expected to show good regulation and higher 

limits and threshold temperatures compared to those acclimated at 20°C. However, the results 

showed no difference between the two groups; thus, no sign of acclimation. The lack of 

acclimation in South African littorinids was unexpected and raises questions as to what 

causes such inability to acclimate. One possibility is that the acclimation period (7-14 days) 

used in this study was too short to induce acclimation though in other studies, 14 days of 

acclimation was sufficient (see Newell and Bayne, 1980; Hawkins et al., 1987; McMahon 

and Russell-Hunter, 1981). Shumway and Koehn (1982) found that the oxygen consumption 

of the American oyster Crassostrea virginica did not acclimate after 3 weeks. This shows 

that time to acclimation, which can vary from species to species, is an important factor (see 

Anderson, 1978). For example, Bulnheim (1979) found that Gammarus locusta required 

longer periods to acclimate as compared to other Gammarus species which required shorter 

periods to acclimate.  

 

In addition, the acclimation method (constant temperatures) used in this study might have 

been inappropriate to induce acclimation in the study species which experience fluctuating 

conditions higher on the shore (see above). In fact, studies have shown that animals 

acclimated to fluctuating temperatures (typical of conditions normally encountered in nature) 

depress metabolic rates at certain temperate ranges compared to those acclimated at constant 

temperatures (see Tian et al., 2004 and references herein). Alternatively, since the study was 
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done during spring and summer, it might be that animals were already acclimatized to high 

temperatures as temperature acclimation may not occur during summer (see Pickens, 1965; 

Griffith, 1977).  

 

Although not investigated in this study, seasonal acclimatization is expected to result in 

reduced temperature dependence or lead to temperature independence of metabolic rates as 

seen in littorinids and other intertidal animals (see Newell, 1973; Newell and Roy, 1973; 

Shirley et al., 1978; McMahon et al., 1995). It must be noted however that seasonal 

acclimatization might be due to acclimation to other factors (e.g. food availability) in the field 

that can affect responses to temperature (see Griffiths, 1977; Navarro et al., 1987; Marsden, 

1984; Navarro and Torrijos, 1994; Hummel et al., 2000; Tully et al., 2000; Walther et al., 

2009). For example, Brockington and Clarke (2001) claimed that 80-85% of the increase in 

summer metabolism of the sea urchin Sterechinus neumayeri was caused by physiological 

activities associated with feeding, growth and spawning, while temperature increase caused 

only 15-20% of the increase.  

 

Other possibilities include the fact that the eastern seaboard of South Africa is semi-tropical 

and has reasonably constant or reduced fluctuations in conditions (see Kibirige et al., 2002; 

Isla and Perissinotto, 2004; Marshall et al., 2003), perhaps making it similar to the tropics 

where species are known to have limited capacities to acclimate to temperature. Second, 

although the acclimation temperatures used, 20 and 30°C, are regularly experienced in the 

field, they may have been too high to allow acclimation as these  Afrolittorina spp. show high 

(50-80%) mortality in less than five days when acclimated at 35 and 40°C, respectively 

(unpub. data). An alternative explanation for the lack of acclimation in this study may be the 

cost which comes with acclimation. As other investigators have emphasized (see Hawkins et 

al., 1987; Hofmann and Somero, 1995; Jansen et al., 2007; Tomanek, 2008; 2010), that 

acclimation comes at a cost because heat shock protein synthesis requires more energy (see 

Stillman, 2002; Whiteley and Faulkner, 2005; Sørensen, 2010; Fitzgerald-Dehoog et al., 

2012). For example, stress proteins can represent up to 7% of total protein pool with 

increasing turnover during stressful conditions (see Kültz, 2003; Sokolova and Lannig, 2008; 

Sokolova et al., 2012).  
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As for thermal tolerance (see Stillman and Somero, 1999; Stillman, 2002; 2003; Tomanek 

and Helmuth, 2000), the inability to acclimate metabolic rates including limits and thresholds 

could mean that these species and other littorinids are likely to be the most vulnerable to 

rising temperature in hot summer months and during global warming (see Stillman, 2004; 

Tomanek, 2010; Somero, 2010). Therefore, there is a need to investigate the effect of 

acclimation or season on metabolic rates of South African species and other littorinids. This 

is further supported by the results with slower rates of increase in temperature, when animals 

showed better regulation of heart rates as well as shift in limits and thresholds. 

 

Heat shock  

 

No studies have looked at the effect of heat shock or sudden exposure on the heart 

performance of littorinids or other intertidal animals. A brief exposure to sublethal 

temperature is known to increase thermal tolerance on second or subsequent exposure (see 

Stillman and Somero, 1999; Hopkin et al., 2006; Madeira et al., 2012b, c), and this can be 

true for metabolic responses. This study showed that heat shock (thermal history) had little or 

no effect on the heart performance of Afrolittorina spp. and E. natalensis. This is further 

supported by the results of repeated exposures of individuals of Afrolittorina spp. which 

showed the same heart patterns irrespective of previous heat stress encounter or thermal 

history.  

 

The only exception was the thermoneutral breakpoint for E. natalensis, which increased by 

1°C, but these data came from a single individual. The findings for E. natalensis relative to 

those for E. malaccana indicated that the later species displayed a noticeable shift in its 

thermoneutral breakpoint after heat shock (Marshall unpub. data) suggesting that it is a 

tropical species physiologically adapted to high temperatures. Marshall et al. (2011) showed 

that the tropical E. malaccana produces heat shock proteins (i.e. hsps70) once temperatures 

pass their thermoneutral limit. Proteins, particularly heat shock proteins are known to be 

involved in thermal acclimation and thermal tolerances of animals (see Buchner, 1996; Krebs 

and Bettencourt, 1999; Somero, 2004; Pörtner and Knust, 2007; Dong and Williams, 2011; 

etc) and thus shifts in limits and threshold temperatures (see Hopkin et al., 2006).  
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Lack of effects of heat shock in this study might be explained by the cost associated with 

protein (heat shock) synthesis (see Feder, 1999; Feder and Hofmann, 1999; Tomanek, 2010). 

Thus, animals which rarely experience stressful conditions, like South African species, do not 

need to spend energy on heat shock protein production. The results of this study show that 

thermal history has no effect on heart performance of littorinids, but this requires further 

investigation using various protocols, including repeated exposure. For example, repeated 

exposure has been shown to have an effect (a decrease in the daily mean oxygen 

consumption) on metabolic rate of individuals of the juvenile Chinese shrimp 

Fenneropenaeus chinensis acclimated under diel temperature fluctuation (Tian et al., 2004). 

Therefore, future studies to investigate the effect of heat shock and/or repeated exposure (i.e. 

thermal history) on metabolic performance would be valuable, especially with the possibility 

of unpredicted heat events resulting from climate change.  

 

Effect of starvation or nutritional status 

 

The effect of starvation or nutritional status on metabolic rates has also received little 

attention. Indeed many authors fail to mention when the animals studied were last fed, if at 

all, prior to the experimentation. This is surprising since the availability of food and 

nutritional status are amongst the most important factors influencing the metabolism of 

animals (Wallace, 1973; Branch et al., 1988; Tully et al., 2000; Hatcher et al., 1997; 

Brockington and Clarke, 2001; Dahlhoff et al., 2002; Isla and Perissinotto, 2004; Pörtner and 

Knust, 2007; etc). This is important for animals that live in areas such as the eulittoral fringe, 

particularly in summer, where food availability is low and time for feeding is limited (Newell 

and Roy, 1973; Branch et al., 1988; Little, 1989; Norton et al., 1990; Bates and Hicks, 2005). 

It is well known that there are differences in metabolic rates between starved and non-starved 

animals, with higher rates for fed than starved animals (Wallace, 1973; Aldrich, 1975; Hiller-

Adams and Childress, 1983a; Hawkins, 1995).  

 

Where the effect of starvation has been investigated, most authors were interested in the 

differences (i.e. magnitude) between fed and starved animals, and not whether this affected 

metabolic regulation (Vernberg, 1959; Wallace, 1973; Hiller-Adams and Childress, 1983a, 
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b). In most animals, metabolic rate generally declines following starvation (Pickens, 1965; 

Bayne et al., 1976; Du Preez, 1983; Höjesjö et al., 1999; Santini et al., 2002; Tian et al., 

2010) as the result of reduction in SDA and gradual exhaustion of metabolic reserves (see 

Bayne, 1973b; Kristensen, 1989; Chakraborty et al., 1992; Percy, 1993). For example, Ansell 

(1973) and Marsden et al. (1973) found a progressive decrease in daily oxygen consumption 

in the starved crabs Cancer pogurus and C. maenas, respectively. It is interesting that both 

fed and starved animals regulated oxygen consumption in the resting state (Ansell, 1973), 

showing that the ability to regulate was not under the influence of nutritional status. Newell 

and Bayne (1973) found that crabs of the genus Carcinus starved for 3 weeks not only 

showed a decline in oxygen consumption, but temperature independence of oxygen 

consumption, with the effect being more pronounced in small crabs than large ones.  

 

These studies show that starvation not only affects the magnitude of metabolism of animals, 

but also its relationship with temperature. Low metabolic expenditure or costs as a result of 

reduced or depressed metabolic rates is one of the mechanisms employed by animals to 

survive periods of starvation or poor feeding conditions and during rapid temperature change 

and extremes (see Newell and Bayne, 1973; Parsons, 1990; Peck, 1996; Höjesjö et al., 1999; 

Harper and Peck, 2003; Tian et al., 2010). However, some species show an increase in 

metabolic rates (Marsden et al., 1973; Carefoot et al., 1993; Brockington and Clarke, 2001); 

while others do not show a change of their metabolic rates following starvation (Roberts, 

1957; Aldrich, 1975; Carefoot et al., 1993; Percy, 1993). For example, Pickens (1965) found 

that the metabolic rates of mussels did not change during the first week and remained 

constant for two weeks of starvation, after which they declined, possibly as a result of 

starvation. 

 

In this study, there was no difference in heart rate between animals that were „starved‟ and 

„non-starved‟, showing that nutritional status had little or no influence on the metabolic rate 

response to temperature. This was supported by the results of repeated exposure of the same 

individuals, where there was no difference or change in heart rate of animals fed and those 

which were not fed after the first exposure. This requires further investigation as one 

individual of Afrolittorina africana changed from non-regulation to partial regulation after 

repeated exposure without food (see A in Fig. 4.7.1). However, it is possible that the period 
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(14 – 30 days) used in this study was not long enough to induce starvation. Littorinids are 

known to aestivate for long periods (i.e. at least 14 days for temperate and subtropical species 

and 60 days for tropical species) when they depress metabolic rates to save energy 

(McMahon, 1990; Sokolova and Pörtner, 2001b; Judge et al., 2011; Marshall et al., 2010; 

2011). Our species might have benefitted from metabolic depression during aestivation.  

 

Studies on animals from other phyla have found that a week to two weeks (14 days) period 

does not induce starvation (see Pickens, 1965; Nicholson, 2002). In other studies however, a 

period of at least one to two weeks has been found to induce starvation as shown by reduction 

or decrease metabolic rates of studied species (see Wallace, 1973; Newell and Bayne, 1973; 

Regnault, 1981; Kristensen, 1989; Tian et al., 2010). This shows that time to starvation 

differs for different animals or species, and can also depend on season (i.e. food availability) 

plus reproductive, developmental or physiological state (see Bayne, 1973b; Hiller-Adams and 

Childress, 1983a, b; Branch et al., 1988; Norton et al., 1990; Bates and Hicks, 2005). 

 

The lack of difference in heart rate of „starved‟ and „non-starved‟ animals in this study was 

irrespective of acclimation temperature. In other studies (Marsden et al., 1973; Wallace, 

1973; Pilditch and Grant, 1999) however, high temperatures have been linked to the 

accelerated decline in metabolic rate of starved animals, probably as a result of high 

metabolic costs at high temperatures. For example, Marsden et al. (1973) claimed that the 

effect which occurred after two weeks at 15°C may occur earlier at higher acclimation 

temperatures. But Siikavuopio et al. (2008) reported a negligible (as indicated by similar Q10 

values between fed and starved animals) effect of temperature on oxygen consumption of the 

green urchin Strongylocentrotus droebachiensis. If my results about the lack of reduction in 

metabolic rate during starvation are correct, this suggests that these species are capable of 

enduring prolonged aerial exposure partially because they can save energy through metabolic 

depression during aestivation. Thus, in view of their ability to withstand a long period of 

starvation (i.e. 14-30 days) as seen in this study, it would be interesting to know if the studied 

species and other littorinids starve for such periods in nature. 
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In summary, the heart rate data indicate that these littorinid snails show intra- and 

interspecific differences in their physiological responses to temperature, and these seem to 

relate to differences in biogeography, species ecology and phylogeny. The ability to 

regulate is phylogenetically determined with little adaptation, while thresholds and lethal 

limits correspond to biogeography and species ecology. Phylogenetic differences do not lie 

in whether or not a species shows regulation, but in how quickly it can induce a depressed, 

thermally independent metabolic state. The speed of this response appears to be linked to 

the need to conserve energy. It is presumed that in snail species that feed regularly, even if 

rarely, like the studied South African species, there is less need for rapid induction of 

metabolic depression, compared to snails that feed unpredictably like supra-littoral tropical 

species such as E. malaccana.  

 

The present study revealed that both the stresses found and mechanisms utilized in 

physiological adaptation to high temperature exposure by subtropical and temperate 

littorinids are more or less similar to those utilized by the littorinids from the tropics. The 

data also indicate that these littorinids can regulate their metabolism within the sub-lethal 

temperature range experienced under natural conditions and in this respect they are well 

suited to life in habitats where there are fluctuations in temperature and other environmental 

conditions. Therefore, like high thermal and desiccation tolerances, metabolic depression 

and/or regulation as temperature increases is a physiological adaptation of marine animals 

for life high in the intertidal zone.  
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CHAPTER 5: Proteomics of co-existing Afrolittorina species from the 

warm temperate region of South Africa 

 

5.1. Introduction 

 

It is well established that environmental temperatures (changes and extremes) affect the 

physiology as well as the distribution and abundance of marine animals, especially intertidal 

ectotherms (see Somero, 1995; 2002; 2005; 2010; Hofmann, 1999; 2005; Hofmann et al., 

2002; Tomanek, 2002; 2008; 2010a, b; 2011; etc). This is because the body temperature of 

ectotherms is largely under the control of environmental temperature (see Tomanek and 

Somero, 1999; Dahlhoff et al., 2001; Helmuth et al., 2002; Broitman et al., 2009). In turn the 

physiological and biochemical processes of animals are under the control of body 

temperature (see Huey and Bennett, 1990; Huey and Berrigan, 2001; Peck et al., 2007; 

Ivanina et al., 2009). As such, the distribution and abundance of marine intertidal ectotherms 

is under the influence of environmental temperature as manifested in body temperatures (see 

Huey and Stevenson, 1979; Bertness et al., 1999; Muñoz et al., 2005; Menge et al., 2007). 

 

In intertidal habitats, marine ectotherms face very extreme temperatures and abrupt changes 

in temperature and desiccation that occur during the tidal cycle (see Hofmann, 1999; 

Helmuth, 1998; 2000; Helmuth et al., 2002; 2006a, b; Somero, 2002; 2010; Stillman, 2002). 

This is because intertidal habitats are affected by both atmospheric and oceanic changes. 

Thus, intertidal animals live in rapidly fluctuating environments on a daily basis. Day time air 

temperatures can reach as high as 50-55°C in the tropics (see Lewis, 1963; Garrity, 1984; 

Marshall and McQuaid, 2010; Cartwright and Williams, 2012) and 30-45°C in the subtropics 

and temperate regions (pers. obs.; Morley et al., 2009). On rocky intertidal shores, substratum 

temperatures can increase from that of sea water temperature, e.g. 10°C, to over 40°C on 

temperate shores (see Dahlhoff et al., 2001; Harley and Helmuth 2003) and exceed 50°C on 

tropical shores (see Williams and Morritt, 1995; Marshall and McQuaid, 2010; Judge et al., 

2011; Cartwright and Williams, 2012) in a matter of hours during a single low tide.  
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Consequently, animals on rocky intertidal shores can experience changes of up to 20°C and 

above in body temperature during summer midday low tides (see Hofmann and Somero, 

1995; 1996; Tomanek and Somero, 1999; Fitzhenry et al., 2004; Judge et al., 2011). This 

means that rocky intertidal animals may experience body temperatures that exceed that of the 

surrounding air and sea water temperature, and regularly approach the animals‟ thermal limits 

(see Helmuth, 1998; 1999; Helmuth and Hofmann, 2001; Tomanek and Sanford, 2003; 

Helmuth et al., 2009; Miller and Denny, 2011). This can be true for animals such as littorinid 

snails that live in the intertidal since they are more likely to experience prolonged thermal 

and desiccation stress than lower intertidal and subtidal animals (see McMahon, 1990; 

Hofmann and Somero, 1995; Hofmann, 1999; Halpin et al., 2002). At higher intertidal 

heights, the intensity of thermal and desiccation stress is in part a function of the change in 

temperature intensity multiplied by the duration of exposure (see McMahon, 1990; Jones and 

Boulding, 1999; Muñoz et al., 2008; Lee and Boulding, 2010).  

 

As a result, intertidal animals have developed strategies to cope with and survive stressful 

conditions. Many physiological (e.g. increased thermal tolerance and metabolic adjustments), 

behavioural (e.g. active microhabitat selection and body orientation) and morphological (e.g. 

shell shape and colour) adaptations are used (see Huey and Bennett, 1990; Huey and 

Berrigan, 2001; Hickey and Singer, 2004; Wang et al., 2007a; Gracey et al., 2008; Harley et 

al., 2009; Evans and Somero, 2010). At the cellular level, in order to increase tolerance of 

heat stress, animals use adaptive mechanisms such as enhanced production of heat shock 

proteins (Feder and Hofmann, 1999; Tomanek, 2002; Tomanek and Sanford, 2003; Finke et 

al., 2009; Sørensen, 2010), increased heat stability of key metabolic enzymes (Jaenicke, 

1991; Somero, 1995; 2004; Stillman and Somero, 2001; Zippay et al., 2004) and 

modification of enzymes (Somero, 1978; 1995; 2004; Schmidt et al., 2007; Dong and 

Somero, 2009), amongst others.  

 

When environmental temperatures start to approach an animal‟s thermal limits or are 

intolerable, denaturation of proteins (enzymes) takes place (see Somero, 1995; Hofmann and 

Somero, 1996; Tomanek, 2002; Sørensen et al., 2003; González-Riopedre et al., 2007). This 

results in an increase in thermally damaged proteins, sometimes called “conjugated ubiquitin” 

(see Hofmann and Somero, 1995; Buckley et al., 2001; Buckley and Hofmann, 2002; 
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Somero, 2002), and in turn disruption of the protein pool and protein homeostasis. Following 

thermal perturbations, an animal‟s survival depends on its capacity to effectively maintain or 

restore the integrity of protein (cellular) homeostasis or homeodynamics (see Chapple et al., 

1997; Kültz, 2003; Sørensen et al., 2003; Botton et al., 2006; Sørensen, 2010). This is 

achieved by employing cellular defence mechanisms such as synthesis of stress proteins, 

including molecular chaperons, antioxidases, proteases and DNA repair systems (see Feder, 

1999; Feder and Hofmann, 1999; Pörtner, 2002b; Tomanek, 2002; Kültz, 2003; Sørensen, 

2010; etc).  

 

Although various techniques including Western blot, SD-PAGE and antibody detection 

methods have been and are useful to detect and quantify proteins (i.e. stress protein response) 

in animals, they have a limitation in that they target a certain group of proteins, the heat 

shock proteins (Hsps). Recently, techniques such as proteomics (study of the whole protein 

profile of a cell or animal) have been developed to analyze large numbers of proteins 

simultaneously to discern subtle changes in protein expression (see below). This will increase 

our understanding of the role of Hsps as molecular chaperons and other proteins in stress 

response. In addition, studying the proteome of organisms can help to identify the more 

universal adaptations underlying protein (enzymes) stability at high temperature and other 

stresses (see Hickey and Singer, 2004; Somero, 2004; Ulrich and Marsh, 2008; Dilly et al., 

2012).  

 

Thus, by establishing the proteome for animals exposed to various stressors, proteomics can 

potentially be used to study the response of animals at the molecular (protein) level (see 

Kültz et al., 2007; Nesatyy and Suter, 2007; Serafini et al., 2011; Dowd, 2012; etc) and to 

complement Hsps methods which are already widely used (see Kültz and Somero, 1996; 

Williams, 1999; Aebersold and Mann, 2003; Storey, 2006; Jonsson et al., 2006; McLean et 

al., 2007; Jurgen et al., 2011; etc). In this respect, proteomics enables the testing of 

hypotheses surrounding the molecular or biochemical basis (adaptation or acclimation) for 

stress responses in animals. 
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In addition, proteomics provides a link between physiology, ecology and genetics (see 

Williams, 1999; Zivy and Vienne, 2000; Naaby-Hansen et al., 2001; Jackson et al., 2002; 

Volckaert et al., 2008; etc). This is because unlike genomics (genome) and transcriptomics 

(transcriptome), which provide information about a cell‟s genetics and potential regulatory 

mechanisms, proteomics (proteome) provide relevant information about an animals‟ 

biological or physiological state (see Görg et al., 2004; Nunn and Timperman, 2007; Wang et 

al., 2007a; Martyniuk and Denslow, 2010; Chapman et al., 2011; etc). Thus, proteomics is a 

mutually complementary technique to genomics or transcriptomics (see Piñeiro et al., 2001; 

Storey, 2006; Rees et al., 2010; Lockwood and Somero, 2011; Diz et al., 2012a; etc), and as 

such has increasingly been used to study and understand biological systems and their 

dynamics under different conditions (see below). In addition, the proteome (i.e. proteins) is 

closer to the organisms‟ phenotype, the direct target of natural selection, and as such more 

useful in inferring the molecular basis of an adaptive process or evolution (see Feder and 

Walser, 2005; Piñeiro et al., 2010; Silvestre et al., 2012; Tomanek, 2010; 2012b). 

 

Proteomics (qualitative or quantitative) is defined as the study of proteins expressed by a 

genome, tissue or cell (see Beranova-Giorgianni, 2003; Feder and Walser, 2005; Nunn and 

Timperman, 2007; Karr, 2008; Dow, 2012). Thus, the goal of proteomics is to study the 

whole protein profile (i.e. the proteome), including quantification, identification, possible 

modifications and tissue localizations of a cell, tissue or whole organism at a particular time 

under different conditions (see below; Fiévet et al., 2004; Karp and Lilley, 2007; Rees et al., 

2010; Wright et al., 2012). This is because the analysis of an animal‟s proteome allows the 

detection of subtle changes in the levels of individual proteins in response to stimuli or 

conditions (see Monteoliva and Albar, 2004; Nesatyy and Suter, 2007; Sheehan and 

McDonagh, 2008; Enyu and Shu-Chien, 2011).  

 

Although proteomics is a new and young approach, it is still based on a relatively old 

technique of protein separation, the two-dimensional gel electrophoresis (2-DE) developed by 

O‟Farrell and Klose in 1975 (see Zivy and Vienne, 2000; Monteoliva and Albar, 2004; Kim 

et al., 2008; Rabilloud et al., 2010; Rodrigues et al., 2012) first described by Kenrick and 

Margolis in 1970 (see Wang et al., 2007a). Two-dimensional gel electrophoresis is a very 

powerful and sensitive technique designed to separate complex protein mixtures (see 
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Witzmann and Li, 2002; Görg et al., 2004; López, 2007b; Rabilloud et al., 2010; Zhou et al., 

2012). However, other techniques (e.g. liquid chromatographic) are also used for separation 

of proteins (see Williams, 1999; Aebersold and Mann, 2003; Monteoliva and Albar, 2004; 

Storey, 2006; Kültz et al., 2007; Forné et al., 2010; Wright et al., 2012).  

 

The separation of proteins using 2-DE technique involves a combination of isoelectric 

focusing (IEF) where proteins are first separated based on their charge and sodium dodecyl 

sulphate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) where proteins are finally 

separated on the basis of their molecular weight or size (see Witzmann and Li, 2002; 

Marengo et al., 2005; Wang et al., 2007a; Rabilloud et al., 2010; Wright et al., 2012; etc). 

Together with mass spectrometry (MS; used for the identification of proteins), two-

dimensional gel electrophoresis (2-DE; used for separation of proteins) is the most widely 

used tool in proteomic studies (see below; Shevchenko et al., 1996; Beranova-Giorgianni, 

2003; Wittmann-Liebold et al., 2006; Rabilloud et al., 2010; etc). This is because mass 

spectrometry allows the identification of known and unknown proteins in the proteome 

without prior knowledge of the protein structures (see Shevchenko et al., 1996; Aebersold 

and Mann, 2003; Nunn and Timperman, 2007; Piñeiro et al., 2010; Abbaraju et al., 2012).  

 

The proteomic (2-DE based and others) approach is applied in numerous fields, including 

many areas of marine animals‟ biology, physiology, ecology, taxonomy, toxicology and 

health (see Monteoliva and Albar, 2004; Biron et al., 2006; López, 2007a; De Souza et al., 

2009; Forné et al., 2010; Thiyagarajan, 2010; Martyniuk et al., 2011; Rodrigues et al., 2012; 

etc), amongst others. This is because proteomics provide relevant information about 

biological events such as developmental stage, disease or physiological state as well as 

responses to environmental and other conditions (see below).  

For example, Cordeiro et al. (2012) used 2-DE proteomics to characterize and identify 

potential molecular makers (i.e. proteins) of physiological response to stress (handling) in 

captivity in the Senegalese sole Solea senegalensis. Alves et al. (2010) also used 2-DE 

proteomics to identify possible metabolic molecular indicators of chronic stress (repeated 

handling and crowding) in the gilthead seabream Sparus aurata. Dowd et al. (2008) used 2-

DE proteomics to investigate the effect of nutritional status (natural feeding) on protein 
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expression in the dogfish shark Squalus acanthias; and Enyu and Shu-Chien (2011) used 2-

DE proteomics to show that starvation-related changes in protein expression led to a 

reduction in glycolysis and an increase in gluconeogenesis (which returned to normal after 

feeding was resumed) in the female zebrafish Danio rerio. In addition, the expression of 

proteins related to fatty acid and amino acid metabolism suggested the utilization of these 

reserves as an energy source during starvation.  

 

In taxonomy or genetics, proteomics have been used to investigate species identity, 

phylogenetic relationships, population genetics and the genetic variability of marine animals 

(see Piñeiro et al. 2001; López and Alvarez, 2003; Chen et al., 2004; Blank et al., 2005; 

2012; Martinez et al., 2007; Kim et al., 2008; Diz et al., 2009; etc). For example, Backeljau 

et al. (2001) used proteomics to investigate the relationships between Littorina saxatilis, L. 

arcana and L. compressa from the same and different regions. López et al. (2002b) used 

proteomics to characterize species-specific peptides (which showed minor differences) to 

identify the three European marine mussel species, Mytilus edulis, M. galloprovincialis and 

M. trossulus. Mosquera et al. (2003) also used proteomics to investigate genetic 

polymorphism in polypeptides from the foot samples of individuals of the mussel M. 

galloprovincialis. López et al. (2005) found differences in protein spots (6 out of 18 protein 

spots which were exclusive to M. galloprovincialis) between the gels of bivalve larvae from 

the same region.  

 

In disease or health studies, proteomics have been used to analyse the protein profiles of 

marine invertebrates and fishes in response to or to test for host immunity against infection 

(see Chongsatja et al., 2007; Bourchookarn et al., 2008; Zhang et al., 2010a; Chen et al., 

2011; Dheilly et al., 2011; Huan et al. 2011; Peng, 2012; etc). For example, Cao et al. (2009) 

used 2-DE based proteomics to analyse the proteins (the number of which substantially 

decreased) in the haemolyph of the susceptible oyster Ostrea edulis and the resistant species 

Crassostrea gigas infected with the protozoan Bonamia ostreae. Similarly, Simonian et al. 

(2009) used 2-DE approach to identify markers (proteins) of QX disease resistance in the 

Sydney rock oyster Saccostrea glomerata. Wang et al. (2007b) also used 2-DE to analyse 

protein expression profiles (75% of which showed marked change) from stomach samples of 

the shrimp Litopenaeus (Penaeus) vannamei infected with white spot syndrome virus.  
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Proteomics have also been applied to investigate changes in proteome during larval 

development, attachment and metamorphosis in marine animals such as barnacles (see 

Thiyagarajan and Qian, 2008; Thiyagarajan et al., 2009; Zhang et al., 2010b), bryozoans 

(Thiyagarajan et al., 2009), polychaetes (Mok et al., 2009), ascidians (Nomura et al., 2009), 

fishes (Tay et al., 2006), and corals (deBoer et al., 2007). These studies show that different 

developmental stages have distinct proteomes, with differential expression of several proteins 

(most of which were associated with stress, protein degradation, energy metabolism, cell 

division and juvenile hormone binding) by different stages as well as before and after 

metamorphosis. For example, Chandramouli et al. (2011) found that proteins related to cell 

migration, cell division, energy storage and oxidative stress were abundant in competent 

larvae of the polychaete Capitella sp. I, while proteins involved in oxidative metabolism and 

transport regulation were abundant in the juveniles. Wong et al. (2010) found that the 

mitochondrial processing peptidase beta subunit and severin were abundant in the larval 

stage, but down regulated during metamorphosis in the marine bryozoan Bugula neritina. 

Sveinsdóttir et al. (2008) found that although the pattern of abundant proteins was largely 

conserved in two age groups of the Atlantic cod Cadus morhua; type II keratins were 

dominant in 6 day old larvae while the type I keratins were dominant in the 24 day old larvae.  

 

Of interest is that proteomics not only identify relationships and differences among 

populations and species, but they also help to explain the relationships from biochemical, 

physiological and ecological points of view (see López et al., 2001; 2002; López, 2005, 

2007a, b; Blank et al., 2005; 2012). This is because differences in protein expression patterns 

among species or populations are due to adaptation (i.e. acclimation), thus the conditions 

animals experience in their respective environments or habitats (see below). For example, 

Martínez-Fernández et al. (2008; 2010b) found a difference of about 7-16% in the protein 

profiles of two ecotypes of the marine snail Littorina saxatilis as a result of adaptations to 

different habitats. The smooth and unbanded (SU) ecotype which lives in wave-exposed 

(mussel belt) habitat showed regulation of proteins associated with energy metabolism 

(fructose-bisphosphate aldolase and arginine kinase), while the ridged and banded (RB) 

ecotype which lives at higher levels (barnacle belt) did not.  

In addition, Diz et al. (2012b) found that the proteomes of these two ecotypes show 

ontogenetic differentiation. Differentiation was higher for the RB ecotype than for the SU 
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ecotype, although the level of protein expression differences was nearly constant from the 

late embryonic stage to adulthood in both ecotypes. López et al. (2002a) found significant 

differences in protein spots (15 were higher in Mytilus edulis, and 22 were higher in M. 

galloprovincialis) between the two mussels found in different geographical habitats. Diz and 

Skibinski (2007) found significant differences in protein expression between and within 

species of M. edulis, M. galloprovincialis and intermediate phenotypes in the mussel hybrid 

zone, suggesting adaptation to different habitats. In addition to Hsp70, which was more 

highly expressed in intertidal than in cultured mussels, López et al. (2001) found a higher 

number of protein spots in cultured compared to intertidal individuals of M. galloprovincialis, 

suggesting responses to different ecological conditions.  

 

More importantly, the field of proteomics, specifically 2-DE MS based proteomics, has been 

increasingly applied to study proteome responses in model (organisms with genome sequence 

data) and non-model (organisms without genome sequence data) animals including marine 

species subject to various environmental stresses (see below). This is important given the 

anticipated effects of climate change when temperature (changes and extremes) and other 

environmental factors (e.g. pollutants) as well as ocean acidification will threaten marine 

biodiversity (see Warwick and Turk, 2002; Tomanek, 2008; 2010; 2011; 2012a, b; Helmuth 

et al., 2010; Piñeiro et al., 2010; etc).  

For example, proteomics have been used to screen or analyse changes in protein expression 

profiles of various marine animals exposed to pollutants or chemicals (see Apraiz et al., 

2006; Letendre et al., 2011; Ralston-Hooper et al., 2011; Sanchez et al. 2011; Martyniuk and 

Denslow, 2010; 2012; Campos et al., 2012; 2013; etc). Jonsson et al. (2006) found that 

exposure to diallylphthalate and crude oil affected several microsomal proteins in individuals 

of the blue mussel Mytilus edulis. Leung et al. (2011) found that a total of 15 protein spots 

were differentially expressed in the hepatopancreas and adductor muscles of the green-lipped 

mussel Perna viridis exposed to cadmium and hydrogen peroxide. Rodríguez-Ortega et al. 

(2003) found that 1-2% of the visible proteome of the clam Chamaelea gallina was affected 

by exposure to four pollutants. Amaral et al. (2012) found that approximately 5% of the 

proteome was differentially expressed between individuals of the oyster Saccostrea 

glomerata from acidified and reference sites, with five protein spots being more abundant and 

one less abundant at the acidified site. Wang et al. (2010) found that the protein profiles from 
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the brains of the zebrafish Danio rerio were remarkably altered by exposure to chronic 

microcystin-LR.  

 

Using a proteomic approach to study the response of barnacle crypid larvae to ocean 

acidification, Wong et al. (2011) found that there was differential expression of proteins 

which were associated with molecular chaperones, respiration and energy metabolism. This 

suggests a potential strategy that the barnacle larvae could employ to tolerate ocean 

acidification stress. Tomanek et al. (2011) found that 12% of proteins (including cytoskeleton 

and oxidative stress proteins) were differentially expressed in the mantle tissues of the eastern 

oyster Crassostrea virginica exposed to hypercapnia. On the other hand, Dineshram et al. 

(2012) found a marked reduction of protein expression (loss of 18% of expressed proteins in 

control) in the larvae of the pacific oyster Crassostrea gigas after exposure to ocean 

acidification. Laura et al. (2011) found that a number of proteins (which were sometimes 

switched on in the selectively bred lines, but not in the wild lines) were differentially 

expressed in wild and selectively bred larvae of the Sydney oyster Saccostrea glomerata 

exposed to elevated carbon dioxide. Martin et al. (2011) found that the larval stages of the sea 

urchin Paracentrotus lividus showed up-regulation of candidate genes involved in 

development and biomineralization to simulated ocean acidification.  

 

As for other environmental factors (e.g. pollutants and ocean acidification), studies using 

proteomics have shown that marine animals show changes in protein expression profiles 

following exposure to acute or chronic temperature (heat or cold) (see below). For example, 

Tomanek and Zuzow (2010) found changes in the expression patterns of several proteins (e.g. 

molecular chaperones, cytoskeletons, etc) in two congener mussels, Mytilus trossulus and M. 

galloprovincialis, exposed to acute and chronic heat stress. The cold adapted M. trossulus 

showed more pronounced expression patterns (clearer at the highest temperature) than the 

warm adapted M. galloprovincialis as reflected in thermal tolerances. On the other hand, 

Fields et al. (2012a) also found upregulation of proteins associated with energy metabolism, 

oxidative stress, chaperoning and cytoskeleton in the same two congeners after acclimation 

for 4 weeks at cold (7°C) and warm (13 and 19°C) temperatures. Ibarz et al. (2010) found 

that a total of 57 proteins significantly changed (many being down-regulated) in the gilthead 

seabream Sparus aurata exposed to cold (8°C) following acclimation to warm (22°C) 
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temperatures. Similar changes in protein expression profiles in response to exposure to 

temperature (acute or chronic) have been found in other gastropods (see Tomanek; 2005; 

Joyner-Matos et al., 2009; Fields et al., 2012b), crustaceans (see Wang et al., 2007a; Serafini 

et al., 2011; Dilly et al., 2012), and fishes (see Kültz and Somero, 1996; McLean et al., 2007; 

Silvestre et al., 2012).  

 

This is also true for other environmental factors such as salinity (Shepard et al., 2000; Lee et 

al., 2006; Cheng et al., 2009; Tomanek et al., 2012), oxygen (Oehlers et al., 2007; Jiang et 

al., 2009; Dowd et al., 2010b; Mary et al., 2010), and ultraviolet radiation (Adams et al., 

2012; Zubrzycki et al., 2012). For example, Campanale et al. (2011) found that exposure to 

ultraviolet radiation (UV) resulted in 14% change in proteins of the embryos of the purple sea 

urchin Strongylocentrotus purpuratus. Chen et al. (2013) found a 9.4% change in proteins 

(including metabolic enzymes, cytoskeleton and oxygen-binding proteins) in the skeletal 

muscle of the zebrafish Danio rerio exposed to low oxygen. On the other hand, Bosworth et 

al. (2005) found that hypoxia did not affect the general pattern of protein expression in the 

skeletal muscle of the above fish species, but affected the amounts of six low abundance 

proteins.  

Dowd et al. (2010a) found changes in proteins associated with amino acid and inositol 

metabolism, energy metabolism, protein degradation and cytoskeleton in the gills and rectal 

gland of the leopard shark Triakis semifasciata exposed to low salinity. Chen et al. (2009) 

found differential expression of proteins involved in energy metabolism, biosynthesis, DNA 

methylation and cell differentiation, etc. in the trunk kidney of the juvenile ayu Plecoglossus 

altivelis exposed to brackish water. Ky et al. (2007) found that 362 protein spots were 

differentially expressed in the gills and intestines of the European sea bass Dicentrarchus 

labrax reared in seawater compared to those from freshwater, with five cytoskeleton and one 

aromatase cytochrome P450 being over expressed in gills of animals exposed to seawater. 

 

In addition, changes in protein expression profiles to one factor can also be influenced by 

combination and/or interaction with other factors (see below). This is because multiple 

factors, rather than single factors (e.g. temperature) are encountered in the natural 

environment (see Backeljau et al., 2001; Roelofs et al., 2008; Joyner-Matos et al., 2009; 
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Nicastro et al., 2010; Chapman et al., 2011). For example, Gardeström et al. (2007) showed 

that increased oxygen availability affected the protein profiles of the dogwhelks Nucella 

lapillus when exposed to increased water temperature alone by increasing the similarity 

between heat shocked and control animals. Pineda et al. (2012) found an increase in hsp70 

gene expression in the ascidian Styela plicata exposed to periodic high temperatures coupled 

with low salinities.  

Shepard et al. (2000) reported specific induction and repression of several protein spots in the 

mussel Mytilus edulis exposed to Aroclor 1248, copper and lowered salinity. Kimmel and 

Bradley (2001) found that temperature-salinity combinations and their extremes resulted in 

increased differential expression of proteins in the calanoid copepod Eurytemora affinis. 

Kültz and Somero (1996) found that the gill epithelial cells of the fish Gillichthys mirabilis 

showed upregulation of certain proteins after exposure to both temperature [low (10°C) and 

high (20°C)] and salinity (diluted seawater). Silvestre et al. (2010) found that Hsp90, creatine 

kinase and other proteins or enzymes of green and white sturgeon Acipenser medirostris 

larvae were affected by temperature-selenium combinations, in addition to either factor.  

 

In addition, reactive oxygen species (ROS) and/or oxidative stress which are generated 

during exposure to a variety of insults or stressors (e.g. change in environmental conditions) 

have effects (as a co-stressor) on animal proteome responses to environmental factors (see 

McDonagh and Sheehan, 2006; 2007; Sheehan and McDonagh, 2008; Kassahn et al., 2009; 

Tomanek, 2011; 2012a; Ibarz et al., 2012; Tomanek et al., 2011; etc). 

 

In summary, marine animals including intertidal ectotherms show different and/or diverse 

(species and/or tissue-specific) proteome responses in terms of expression and quantity, as a 

result of adaptation to particular conditions, and the biological functions of different tissues 

(see above; De Souza et al., 2009; Piñeiro et al., 2010; Abbaraju et al., 2012). Of more 

interest is that organisms, including marine ectotherms, show changes (up- and down-

regulation) in protein expression in response to exposure or adaptation to various 

environmental conditions or factors. Thus, proteins can either be made in large or small 

quantities in response to a stimulus, suggesting a potential molecular strategy that animals 

employ to tolerate environmental stress. The exclusive identification of cytoskeleton, 
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chaperones, antioxidant, energy production and stress proteins under various conditions or 

treatments could reflect their relative abundance or their role as major targets of 

environmental stress or conditions (see above; Rodríguez-Ortega et al., 2003; Kültz et al., 

2007; Petrak et al., 2008; Wang et al., 2009; Campos et al., 2013).  

 

Most proteome based studies on marine animals responding to environmental stressors have 

focused on environmental pollutants and/or ocean acidification, while few have looked at 

environmental temperatures (see above). Therefore, there is a need to understand the protein 

response of marine animals, especially intertidal ectotherms such as littorinids, to 

environmental temperature changes and extremes. This is more important now with the 

anticipated effects of climate change where the mean global temperatures (including extreme 

events) have risen and are predicted to continue to rise in the coming years (see above).  

 

 

Using a proteomic approach, I measured proteins which are expressed by the two co-existing 

Afrolittorina spp. This experiment was intended to find out if there were differences in the 

total protein profile between (i.e. species) and within (i.e. sizes) of Afrolittorina spp. under 

non-stressed and heat stressed conditions. To accomplish my objectives, non-stressed or heat 

stressed large and small individuals of Afrolittorina spp. were analyzed by 2-DE and their 

protein profiles compared. This will shed light on how the two species deal with heat stress in 

their microhabitats (i.e. eulittoral fringe), and their likely molecular responses to climate 

change. Together with other physiological and molecular techniques, proteomics will help to 

resolve whether the two southern African Afrolittorina spp. respond in different ways to heat 

stress. 

 

 

 

 

 

 

 

 



184 
 

5.2. Materials and methods 

 

5.2.1. Study species 

 

Two Afrolittorina spp., namely: A. knysnaensis and A. africana were used. See Chapter 1 for 

species distribution ranges and patterns of vertical zonation as well as microhabitat use and 

aestivation behaviour.  

 

5.2.2. Collection and transportation  

 

Specimens of A. africana and A. knysnaensis were collected from the eulittoral zone at Fish 

River mouth (4°32'N; 114°43'E) on the south coast of South Africa in June 2009. About 50-

100 each of large and small individuals of each species that were feeding or had fed within 12 

hours (see Chapter 3) were returned to the laboratory in plastic bags placed inside an 

insulated cool box, treated (see below) and later taken (in an aestivation state) to Hong Kong 

for proteomic determinations (see below). For transportation to the Swire Institute of Marine 

Science (SWIMS) at Hong Kong University, Hong Kong, aestivating animals were wrapped 

in dry paper towels and kept in cabin luggage.  

 

5.2.3. Handling and treatment conditions 

 

On arrival at the laboratory (Rhodes University or SWIMS), specimens were washed in 

seawater, allowed to emerge from their shells and to reattach to 2L lidded plastic containers 

before being exposed to air, when they exhibited behavioural emergence. Active animals 

were blotted dry with paper towel and dried using a fan at room temperature (approximately 

20ºC). Specimens were kept on dry paper towel at room temperature (18-20ºC) overnight or 

for up to five days to induce aestivation.  
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At the beginning, 15 x 5 small and 5 x 5 large individual snails of each species were taken out 

(controls or non-stressed), washed in double-distilled water (ddH2O), the shell was crushed to 

remove the soft tissues, which were immediately frozen at -80°C until further use. For heat 

treatments, 15 x 5 small and 5 x 5 large aestivating individual snails (see above) of each 

species were placed in 20 ml dry lidded vials that were then placed in an oven set to 20ºC. 

Oven temperature was increased in 5C increments over 10 minute intervals to reach 45C, 

and left for 1 hour at this temperature. Temperature inside the vial was monitored using T-

type thermocouples (Cromega and ADInstruments, Australia). After 1 hour at 45C, the vials 

were removed from the oven and allowed to cool for 2 hours at room temperature (20C) 

prior to processing (see below).  

 

5.2.4. Two-dimensional (2-DE) gel electrophoresis 

 

Two-dimension gel preparation and the subsequent separation were performed according to 

the optimized larval proteomic protocol of Thiyagarajan and Qian (2008) with minor 

modification.  

 

5.2.4.1. Sample preparation 

 

For each treatment, 15 small and 5 large individual snails of each species were washed in 

ddH2O and blotted dry with a paper towel. The shells were then crushed with a small hammer 

on a dry paper towel to remove the soft tissues. The digestive gland was removed using 

forceps and fine scissors and discarded. The remaining tissues were rinsed in Milli-Q water to 

remove excess digestive contents, salts and shell fragments before freezing at -80°C for 

further use. 

 

Thawed soft tissues were washed with Milli-Q water,  blotted dry with a paper towel and then 

lysed in a 2-DE buffer consisting of 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM 

dithiothreitol (DTT), and 2% Bio-Lyte 3/10 ampholyte. The contents were then solubilised 
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with a sonicator (Branson Sonifier, 150) on ice to prevent protein denaturation. The 

homogenates were centrifuged for 20 minutes at 16 000 g and the supernatants were collected 

into a new labelled Eppendorf tube and immediately quantified or stored at -80°C until use. 

The soluble protein concentration was quantified with the 2-D quant kit (GE Healthcare Life 

Sciences, Uppsala, Sweden) according to the manufacturer‟s instructions, and immediately 

used for 2-DE separation or stored at -80°C until use. 

 

5.2.4.2. Separations 

 

In order to run the first-dimension separation (Isoelectrofocusing, IEF), 500 µg of protein 

was dissolved in rehydration buffer consisting of 7 M urea, 2 M thiourea, 2% CHAPS, 40 

mM DTT, 0.2% Bio-Lyte, 3/10 ampholyte and 1% Bromophenol blue. Sample buffer (200 

µl containing 500 µg proteins) was applied to 11 cm ReadyStrip IPG strips (Bio-Rad), pH 

3-10 (linear), overnight for active rehydration at 50 volts (V) and then subjected to IEF 

using a Protean IEF Cell (Bio-Rad). Focussing conditions were as follows: 250 V for 20 

min, followed by a linear gradient from 250 V to 8000 V over 2.5 hours, and at 8000 V for 

a total of 60000 V h. The maximum current did not exceed 50 µA per gel. After IEF, the 

IPG strips were equilibrated for 20 minutes in equilibration buffer 1 (6 M urea, 2% SDS, 

0.05 M Tris-HCL (pH 8.8), 50% glycerol, and 2% w/v 1,4-DTT) followed by another 20 

min in buffer 2 (identical to buffer 1, but containing 2.5% iodoacetamide instead of DTT).  

 

For second-dimension separation (2-DE gel electrophoresis), the equilibrated IPG strips were 

inserted on top of the prepared SDS-polyacrylamide gels (18 cm x 18 cm) and sealed with 

0.5% w/v agarose. The running buffer was standard Laemmli buffer for SDS-PAGE 

(modified using 0.2% w/v SDS). The gels were run at room temperature (20°C) at 200 V 

until the bromophenol blue (marker) front reached the bottom of the gel. After 

electrophoresis, 2-DE gels were fixed overnight in 50% methanol and 10% acetic acid to 

remove SDS. The gels were washed 3 times for 30 minutes with Milli-Q water, and then 

stained with Coomassie Brilliant Blue G-250 (CBB G-250) for 24 hrs in closed glass 

containers placed on a shaker. The gels were washed 3 times for 15 minutes each with Milli-
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Q water, and then destained with 1% acetic acid and again washed 3 times with Milli-Q water 

before image acquisition (see below). 

 

5.2.4.3. Image and statistical analysis 

 

The gels were scanned at an optical resolution of 400 dpi using the GS-800 densitometer 

(Bio-Rad, Hercules, CA, USA), and analysed using the PDQuest software (ver. 8.0; Bio-

Rad), which models protein spots mathematically as a three-dimensional Gaussian 

distribution and determines the maximum absorption after correction of the raw image and 

background subtraction. Since 5 gels for each treatment, size and species were of different 

quality (not shown), 3 high quality gels were chosen for further analysis. Automatic spot 

detection in each gel was verified by visual inspection in order to ensure spots were all 

properly detected. Spot intensities were normalized using total density values, and then spot 

analysis was performed using both qualitative and quantitative modes. Spots that displayed 

significant statistical differences (p < 0.05; student‟s t-test on PDQuest software) and with 2-

fold or greater change in mean volume with respect to the control were considered 

differentially (up or down regulated) expressed at the total protein level. The spot analysis in 

this study assumed normal distribution of spot volumes in replicate gels within each group 

(non-stressed or stressed treatments).  

 

A dendrogram was constructed using square Euclidian distances (using group average, 

Resemblance: S17 Bray Curtis similarity on PDQuest software) summed over spots and 

Ward‟s method for all protein spots in 24 samples to estimate similarities in the global 

expression pattern between the control and the heat treatment gels. 
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5.3. Results 

 

5.3.1. Two-dimensional gel images of Afrolittorina species 

 

Two-dimensional gel images of both size classes of Afrolittorina spp. showed that species, 

size and treatment all had effects on the protein profiles, thus the proteome of the species 

investigated (see Fig. 5.1.1-4). Hence, there were differences in the proteomes between and 

within Afrolittorina spp. as a function of species, size and treatment (see below). In addition, 

there was differential (up and down regulation; indicated by arrows and circles) expression of 

certain protein spots in non-stressed and heat stressed 2-DE gels in both size classes of 

Afrolittorina spp. (see Fig. 5.1.1-4). 

 

 

Figure 5.1.1. Representative two-dimensional gel images of (A) non-stressed and (B) heat 

stressed small individuals of A. africana. Arrows and circles indicate protein spots that were 

differentially expressed between control and treatment groups; dotted circles indicate spots 

tentatively identified as „Hsps‟ on the basis of Mr (70 kDA) and pI (pH = 5).  
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Figure 5.1.2. Representative two-dimensional gel images of (A) non-stressed and (B) heat 

stressed large individuals of A. africana. Arrows and circles indicate protein spots that were 

differentially expressed between control and treatment groups; dotted circles indicate spots 

tentatively identified as „Hsps‟ on the basis of Mr (70 kDA) and pI (pH = 5).  

 

 

Figure 5.1.3. Representative two-dimensional gel images of (A) non-stressed and (B) heat 

stressed small individuals of A. knysnaensis. Arrows and circles indicate protein spots that 

were differentially expressed between control and treatment groups; dotted circles indicate 

spots tentatively identified as „Hsps‟ on the basis of Mr (70 kDA) and pI (pH = 5).  
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Figure 5.1.4. Representative two-dimensional gel images of (A) non-stressed and (B) heat 

stressed large individuals of A. knysnaensis. Arrows and circles indicate protein spots that 

were differentially expressed between control and treatment groups; dotted circles indicate 

spots tentatively identified as „Hsps‟ on the basis of Mr (70 kDA) and pI (pH = 5).  

 

5.3.2. Protein representation in Afrolittorina spp. 

 

Apart from four non-stressed outliers (two small A. africana and one large and one small A. 

knysnaensis; see Fig. 5.2), samples fell into two clear distinct groups (see Fig. 5.2). Each 

group comprised a single species (A. africana or A. knysnaensis) with the two size classes 

largely intermingled, especially in the case of A. knysnaensis (see Fig. 5.2A). The single 

exception was one A. knysnaensis (circled in red) individual that was grouped with A. 

africana (see Fig. 5.2). Thus, except for a few samples, there was some grouping according to 

size and treatment for A. africana, while there was no such grouping for A. knysnaensis with 

samples largely interspersed. Furthermore, there was a reasonable degree of inter-individual 

variation for both species, with grouping occurring around the 50-60% level of similarity (see 

Fig. 5.2A); also supported by the MDS plot results (see Fig. 5.2B). 
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Figure 5.2. A Dendrogram (A) and Non-metric MDS plot (B) showing similarities in the 

global expression pattern of protein spot volume data of 24 samples. Solid lines indicate 

grouping according to species (blue for A. africana and black for A. knysnaensis), treatment 

or size; blue and red dotted lines and circles indicate where there is no such grouping and/or 

outliers. 
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Three-way ANOVA of gel data revealed that the only significant effect was species, with no 

effect of treatment or size, and no significant interactions (see Table 5.1). Thus, there were 

clear differences in numbers of protein spots between the two Afrolittorina spp., with A. 

knysnaensis showing more protein spots than A. africana irrespective of size or treatment (see 

Table 5.2 and Fig. 5.3). Although the difference was non-significant, small individuals of 

both groups generally showed higher numbers of spots than large individuals (see Table 5.2 

and Fig. 5.3), though non-stressed large individuals of A. knysnaensis showed the highest 

values of all (see Table 5.2 and Fig. 5.3). Except for large individuals of A. knysnaensis, for 

which the non-stressed group showed more protein spots than the stressed group, large and 

small individuals of stressed groups showed higher spot numbers than non-stressed groups 

(see Table 5.2 and Fig. 5.3); though the difference was not significant (see Fig. 5.3). 

However, numbers of differentially expressed proteins were higher for A. africana than for A. 

knysnaensis (see Table 5.3 and Fig. 5.4), and this was irrespective of size or treatment.  

 

Table 5.1. Three way-ANOVA results of protein spots for non-stressed and stressed 

Afrolittorina spp. from warm temperate region of South Africa. 

Variables Degree of 
Freedom 

Mean 

Square 

F- ratios P values 

Species 1 158113 11.6217 0.003591 

Size 1 8894 0.6537 0.430654 

Treatment 1 20184 1.4836 0.240874 

Interactions     

          Species*Size 1 25091 1.8442 0.193300 

          Species*Treatment 1 7704 0.5663 0.462671 

          Size*Treatment 1 2091 0.1537 0.700226 

          

Species*Size*Treatment 

1 5104 0.3752 0.548808 

Bold and Italics numbers indicates significant difference.* = interaction/s 
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Table 5.2. Mean (+ SD) number of protein spots for littorinid snails of the genus Afrolittorina 

from the warm temperate region of South Africa. 

 A. africana A. knysnaensis 

Treatment Large Small Large Small 

Non-stressed 315.00±75.55 428.66±163.47 607.00±125.37 533.00±153.86  

Stressed 419.33±12.66 512.00±100.58 581.33±125.37 603.00±78.619 

N = 3 for each group 

 

 

  

Figure 5.3. Mean number of protein spots for non-stressed and stressed Afrolittorina species. 

Histograms are means plus SD of three replicate gels. Letters indicate homogenous groups as 

determined using 3-way ANOVA.  
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In A. africana, stressed individuals showed higher protein spot numbers than non-stressed 

individuals (see Table 5.2 and Fig. 5.3); the differences in mean values being 104 and 84 for 

large and small individuals, respectively. In addition, small individuals of both groups 

showed higher numbers of protein spots than large individuals (see Table 5.2). There was 

slight difference in differential expressed proteins between large and small individuals (see 

Table 5.3 and Fig. 5.4).  

 

On the other hand, for A. knysnaensis, unexpectedly non-stressed large individuals had higher 

numbers of protein spots (approximately 26) than stressed individuals; while for small 

individuals the results was as expected, with more protein spots (approximately 70) in 

stressed than non-stressed individuals (see Table 5.2). Once again in the non-stressed group, 

large individuals showed higher protein spot numbers than small individuals; while for the 

stressed group, small individuals showed more protein spots than large individuals (see Table 

5.2 and Fig. 5.3). As for A. africana, there was a clear difference in differential expressed 

proteins between large and small individuals (see Table 5.3 and Fig. 5.4).  

 

 

Table 5.3. Number of differentially (up and down regulated) expressed proteins between non-

stressed and stressed Afrolittorina spp. from the warm temperate region of South Africa. 

 A. africana A. knysnaensis 

Analysis Large Small Large Small 

Stati 31 31 20 12 

Quali 10 14 9 0 

Stati = mean differential expressed protein spots according to Students‟ t-test (p < 0.05); 

Quali = differentially expressed protein spots according to 2 fold or more change only (does 

not account for replicate variability) 
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Figure 5.4. Number of differentially (up and down regulated) expressed proteins between 

non-stressed and stressed Afrolittorina species. Histograms are means of differential 

expressed proteins. Stati = mean differential expressed protein spots according to Students‟ t-

test; Quali = differentially expressed protein spots according to 2 fold or more change only 

(does not account for replicate variability). Letters indicate significant differences between 

species, based on the statistics data (Students‟ t-test, p < 0.05).  
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5.4. Discussion and conclusion 

 

Environmental temperatures (i.e. changes and extremes) are known to have effects on the 

physiology and distribution of intertidal animals including littorinid snails (see below). This 

is because animals‟ physiological processes are influenced by body temperature which is in 

turn under the control of environmental (i.e. habitat) temperature (see Tomanek and Somero, 

1999; Dahlhoff et al., 2001; 2002; Helmuth et al., 2002; 2010; Pörtner, 2010; Tomanek, 

2008; 2010; Somero, 2010; etc). In addition, temperature can penetrate physical barriers and 

damage the structure of virtually all macromolecules including proteins (see Place and 

Hofmann, 2001; Hickey and Singer, 2004; Serafini et al., 2011; Fields et al., 2012a), 

resulting in cell or whole organism malfunction and/or death. Thus, in addition to its effects 

on the rate of physiological or biochemical processes, temperature also affects the structure of 

macromolecules, and in turn plays an important role in limiting the distribution (geographical 

and vertical) patterns of animals, especially marine intertidal ectotherms.  

 

The effect of temperature on physiology (including protein homeostasis) is important for 

intertidal animals, particularly littorinids since they live in harsh and fluctuating 

environments (see McMahon, 1990; 2001b; Jones and Boulding, 1999; Emson et al., 2002; 

Muñoz et al., 2005; 2008; Judge et al., 2011). In addition, intertidal animals are amongst 

those expected to experience the strongest impacts of global warming (see Tebaldi et al., 

2006; Thuiller, 2007; Tomanek, 2008; Stillman and Tagmount, 2009; Provan and Maggs, 

2012). Thus, in the light of rapid global warming, the question arises as to how intertidal 

animals that are already living close to their physiological limits will respond to or deal with 

temperature changes and extremes in their habitats. Shifts in distribution ranges, and possible 

extinction are common symptoms of climate change in intertidal ectotherms (see Backeljau et 

al., 2001; Warwick and Turk, 2002; Kassahn et al., 2007; Tomanek, 2008; 2012b; Piñeiro et 

al., 2010; Nguyen et al., 2011). Thus, some species will show a contraction or expansion in 

distribution (geographic and within shores) ranges, while others will disappear (go extinct) in 

response to global warming (see above).  
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Therefore, knowledge of protein expression patterns or cellular (molecular) stress response is 

necessary to understand the direct link between climate change and an animal‟s physiological 

response (see Kültz, 2003; Somero, 2002; 2010; Tomanek, 2008; 2010; 2012a, b; Piñeiro et 

al., 2010; Tepler et al., 2011; etc). Although, it is critical to understand how organisms will 

respond to environmental change and fluctuations due to global warming, differential 

expression of proteins (proteome plasticity), especially in littorinids in response to 

temperature change has not yet been explored (see below). This is despite the fact that 

littorinids and other intertidal ectotherms respond to elevated temperatures (changes or 

extremes) by launching a heat shock (Hsps) response (see Feder and Hofmann, 1999; Lee and 

Boulding, 2010; Tomanek, 2008; 2010; Judge et al., 2011; Marshall et al., 2011, etc).  

 

Recently, two-dimensional electrophoresis (2-DE) based proteomics has emerged as a highly 

useful tool to study global protein expression patterns following heat and other stress in a 

variety of animals. This is because 2-DE based proteomics can display differentially 

expressed proteins between a treatment and a control group or under specific conditions (see 

above). In addition, the proteome is increasingly being studied to identify key molecules 

involved in normal physiological pathways (see Kimmel and Bradley, 2001; Gardeström et 

al., 2007; Teranishi and Stillman, 2007; Sørensen, 2010; Tomanek and Zuzow, 2010). A 

similar approach was used in this study to understand the impact of heat stress on global 

protein expression pattern in littorinids of the genus Afrolittorina from a temperate region. 

 

The two Afrolittorina spp. studied here have distinct geographical distribution patterns that 

can be hypothesized to reflect differences in their proteome and molecular responses to 

thermal stress. As expected, their proteomes differed, with significantly higher numbers of 

protein spots in both size classes of A. knysnaensis than A. africana. This reflects their 

geographical distributions; A. africana extends just into the subtropical parts of the coast, 

while A. knysnaensis is found in the cool temperate region (see McQuaid and Scherman, 

1988; Grant and Lang, 1991; McQuaid, 1992; d‟Errico et al., 2008). Thus, the differences in 

geography and the conditions experienced can explain the differences in proteomes found in 

these species. Although Afrolittorina spp. are of temperate origins (see Hartnoll, 1976; Reid, 

1989; 2002; Williams et al., 2003; Reid and Williams, 2004), the occurrence of A. africana in 
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the subtropical region suggests that it is more tolerant of heat stress than A. knysnaensis, 

which is predominantly found in the cool temperate region.  

 

However, it must be noted that A. africana is restricted to lower levels on the shore in the 

subtropics where it also adopts different habitat use, preferring shallow pools and their edges, 

suggesting that conditions in this biogeographic region are stressful for it. Therefore, it would 

be important to investigate the effect of geographical distribution (regions) in the proteomes 

of these two species since they are found in more than one region, and so adapted to different 

conditions. Thus, studying the proteome differences between and within species will help 

explain the proteome differences found in this study. This is supported by studies on ecotypes 

of the snail Littorina saxatilis (Martínez-Fernández et al., 2008; 2010a; Diz et al., 2012b), 

mussels of the genus Mytilus (Lopez et al., 2001; 2002a; Diz and Skibinski, 2007; Tomanek 

and Zuzow, 2010) and teleost fishes of the genus Fundulus (Rees et al., 2010), which showed 

that species adapted to different habitats (i.e. conditions) have different proteomes. See also 

below.  

 

The two species overlap extensively in the warm temperate region where they co-exist and 

use the same microhabitats (see McQuaid and Scherman, 1988, McQuaid, 1992; d‟Errico et 

al., 2008). Thus, one could expect a slight or no difference in the proteomes of the two 

species in the warm temperate region. Results of thermal tolerance (see Chapter 3; McQuaid 

and Scherman, 1988; Marshall unpub. data) and heart function measurements (see Chapter 4) 

indicate a small (1-2°C) difference in heat tolerance and endpoint temperatures (EPTs) 

between these two species in the warm temperate and other regions. Therefore, the greater 

number of protein spots in the proteomes of in A. knysnaensis might be explained by its lower 

resistance to heat stress than A. africana as shown by results for thermal tolerance and heart 

function.  

 

Situations where species overlap in distribution and show different responses can be 

explained by different microhabitat use (however, no study has investigated the microhabitat 

use by these two Afrolittorina spp.), but in this case shell colour may also be important as is 

the case in other animals (see Wilkens and Fingerman, 1965; Markel, 1971; Phifer-Rixey et 
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al., 2008; Miller and Denny, 2011). The brown-black A. knysnaensis is expected to absorb 

more radiation and heat up to a greater degree than the light-coloured A. africana (see 

McQuaid and Scherman, 1988; McQuaid, 1992; 1996a). Even though black or dark bodies 

are known to absorb a larger fraction of solar radiation, the heat gained remains near the 

surface and is easily removed by either re-radiation, convection or air cooling (see Britton 

and Morton, 2003; Phifer-Rixey et al., 2008). This might also apply to A. knysnaensis since 

the body temperatures of the two species did not differ despite their colour differences 

(unpub. data). In addition, one cannot expect differences in heat loads (stress) between the 

two species due to colour differences since waterbaths were used as the heat source in this 

study. 

 

Few studies have looked at protein (proteome) changes or expression patterns between 

closely related species (congeners) which co-exist and prefer the same microhabitats so that 

they experience similar environmental conditions (see below). For example, Serafini et al. 

(2011) found differences in the proteome of sea squirts of the genus Ciona collected from the 

same level (subtidal) when exposed to acute heat stress, with C. intenstinalis showing higher 

levels of constitutive molecular chaperones than its congener C. savignyi. Silvestre et al. 

(2010) found differences in the proteome between the green (34 of 551 detected protein spots 

showed variation in abundance) and white (9 of 580 detected protein spots showed variation 

in abundance) larvae of the sturgeon Acipenser medirostris reared under the same conditions 

and exposed to the same heat stress. In Dilly et al. (2012), animals of the hydrothermal vent 

polychaete genus Paralvinella showed differences in protein expression patterns, with the 

extremely thermotolerant species P. sulfincola showing upregulation of glutathione and Hsps 

and downregulation of nicotinamide adenine dinucleotide (NADH) and succinate 

dehydrogenase, while the cold-adapted congener P. palmiformis showed an increase in Hsps 

only.  

 

Most studies on congeners were done on animals from or adapted to different habitats 

(geographical or vertical), which therefore experience different conditions, or focused on a 

single species (see below). In general, animals from warm environments (e.g. tropical and 

intertidal species) show different proteomes compared to those from cold environments (e.g. 

temperate and subtidal species). Thus, animals from cold environments show greater changes 
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in protein expressions profiles than those from warm environments when exposed to the same 

temperatures (see below; Dilly et al., 2012; Serafini et al., 2010). For example, Fields et al. 

(2012b) found that protein expression patterns varied among specimens of Geukensia 

demissa from different locations, with 31 out of 448 proteins changing in abundance in the 

northernmost (Maine) group compared to 5-11 proteins in the four southern groups. Sanders 

et al. (1991) showed that the high intertidal zone limpet Collisella scabra showed higher 

levels of Hsp70 and lower molecular weight Hsps than the congeneric species C. pelta, which 

lives lower on the shore in the upper midtidal. Tomanek and Zuzow (2010) found species-

specific changes (which were more pronounced in the cold adapted Mytilus trossulus than in 

the warm adapted M. galloprovincialis) in protein expression patterns (e.g. proteins involved 

in molecular chaperoning, protein degradation, cytoskeleton, energy metabolism, life span, 

etc.) of two species exposed to acute heat stress. Tomanek (2005) found a decrease in the 

synthesis of most highly expressed Hsps in the heat-sensitive, low- to subtidal snails Tegula 

brunnea and T. montereyi compared to the heat-tolerant mid- to low-intertidal congener T. 

funebralis.  

 

This was also supported by results for Hsps, with animals from hot environments expressing 

more Hsps than those from cold environments (see Roberts et al., 1997; Carpenter and 

Hofmann, 2000; Fangue et al., 2006; Madeira et al., 2012c; etc). Thus, congeners or species 

from different habitats show different protein expression or cellular responses to heat stress. 

Also see results of genomics and/or transcriptomics studies (see Kassahn et al., 2007; 

Teranishi and Stillman, 2007; Richier et al., 2008; Buckley and Somero, 2009; Stillman and 

Tagmount, 2009; Lockwood et al., 2010; Place et al., 2012; Schoville et al., 2012; etc). 

 

With the exception of non-stressed large individuals of A. knysnaensis, small individuals had 

a greater number of proteins spots in their proteome than did large individuals. This was 

expected, and is explained by their position on the shore as seen for thermal tolerance (see 

Chapter 3). Small individuals (assumed to be juveniles) of Afrolittorina spp. are found lower 

on the shore where they are frequently wetted by incoming tides while large individuals 

(assumed to be adults) occupy higher shore levels and are only wetted by wave splash during 

high tides. Thus, the greater number of protein spots in the proteome of juveniles/small 

individuals in this study might be explained by the synthesis of inducible Hsps. On the other 



201 
 

hand, adults, which are found at the highest levels on the shore might benefit from 

constitutive Hsps with no need to synthesise new Hsps during heating. This predicts 

differences between size classes in protein expression in response to heat stress, which was 

the case in this study. Small animals showed a greater difference between control and 

treatment individuals than large animals (see Table 3.2 and Fig. 5.3).  

 

However, juveniles are not always found lower on the shore, nor are adults always higher 

(see Vermeij, 1972; Boulding and Van Alstyne, 1993; Saier, 2000; Emson et al., 2002). For 

example, juveniles of A. knysnaensis have been described as generally occurring higher on 

the shore than adults (McQuaid, 1981a, b; d‟Errico et al., 2008), though this was in the cool 

temperate region where heat stress may be less critical and was assumed to relate to wave 

action. Since it was not investigated if small individuals are sexually mature or not, my 

results need to be treated with caution. If adults are indeed found higher on the shore than 

juveniles, the results suggest that the basis for resisting heat stress may differ between large 

and small individuals. Such size-specific differences may thus either account for or reflect 

different distribution patterns on the shore.  

 

Alternatively, the perception or experience of heat stress may differ with size. For example, 

one size class (adults in this case) may experience stress and respond, while the other 

(juveniles) does not experience the stress and so does not show a proteomic response. Since 

no study has looked at the effect of size, it will be premature at this stage to make conclusions 

about size-specific differences in proteome response to heat stress. However, it must be noted 

that animals show changes in proteome during development or ontogeny (see above; 

Sveinsdóttir et al., 2008; Diz et al., 2012b). Thus, an animal‟s proteome may change as early 

as the first stage of development with continued change through acclimatization of the adult 

and adaptation of the following generations (see Tomanek, 2010; 2012a). 

 

The greater number of protein spots in the proteome of non-stressed large individuals of A. 

knysnaensis (true results) than for both classes and groups was unexpected, and warrants 

further investigation. This might be explained by the fact that high intertidal animals such as 

littorinids (in this case large individuals) show or maintain high constitutive Hsps (see 
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Sanders et al., 1991; Robert et al., 1997; Nakano and Iwama, 2002; Sorte and Hofmann, 

2005; Berger and Emlet, 2007; etc) and this can be true for other proteins. Though 

energetically expensive, expression of constitutive Hsps (also expressed during normal 

conditions) may protect existing protein pools during periods of acute and chronic stress, and 

thus reduce the subsequent higher costs of de novo protein synthesis (see Somero, 2002; 

Halpin et al. 2004; Podrabsky and Somero, 2007; Dong et al., 2008a; Sørensen, 2010). 

Therefore, adults of A. knysnaensis might employ a strategy of maintaining a greater number 

of constitutive Hsps and other stress proteins than juveniles and both sizes of A. africana.  

 

It appeared that the protein expression pattern was affected by heat stress (see Fig. 5.1.1-4 

and 5.4). Thus, subsequent statistical analysis revealed dramatic heat stress-dependent 

changes in several protein spots, the magnitude of which was greater in both classes of A. 

africana than for A. knysnaensis. Unfortunately, none of these differentially expressed 

proteins were excised from the gels and identified. Among these differentially expressed 

proteins, some were downregulated and others were upregulated (see Fig. 5.1.1-4). The 

downregulated and upregulated heat responsive proteins can be treated as part of protein 

expression signatures (PES), and could help us to understand the molecular or cellular 

responses to heat stress in these species and other littorinids or ectotherms.  

 

Intertidal ectotherms are subjected to thermal and desiccation stress, and at temperatures near 

the upper limit of thermotolerance, stress proteins, in particular Hsps, are the major proteins 

synthesised. Thus, during heat stress, Hsps (mostly inducible) are rapidly synthesised and are 

responsible for the protection of protein homeostasis (see Feder and Hofmann, 1999; 

Sørensen et al., 2003; Tomanek, 2002; 2008; 2010; Sørensen, 2010; Zerebecki and Sorte,  

2011). This is because heat shock proteins are molecular chaperons that prevent aggregation 

of heat-damaged proteins and facilitate their renaturation or removal following a heat shock 

(see Feder, 1999; Feder and Hofmann, 1999; Sørensen et al., 2003; Sørensen, 2010). Heat 

shock proteins are also involved in thermal tolerance and acclimation (see Buchner, 1996; 

Krebs and Bettencourt, 1999; González-Riopedre et al., 2007; Dong and Dong, 2008) 

through stabilization, protection and repair of macromolecular structure and function (see 

Place and Hofmann, 2001; Pörtner, 2002b; Kültz, 2003; Meistertzheim et al., 2007; 

Podrabsky and Somero, 2007), and as such need to be upregulated during exposure to 
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sublethal temperatures. In that case, one would expect Afrolittorina species to upregulate 

Hsps and other stress proteins following acclimation as seen in other studies (see Kültz and 

Somero, 1996; Tomanek; 2005; McLean et al., 2007; Ibarz et al., 2010; Tomanek and 

Zuzow, 2010; Fields et al., 2012a). Therefore, it would be important to investigate the effect 

of acclimation, especially season, on the proteome and/or heat shock response of Afrolittorina 

spp. and other littorinids. This will help explain why littorinids in this study showed little 

and/or failed to acclimate both thermal tolerances and metabolic rates (see Chapter 3 and 4).  

 

Studies using proteomics have also shown that various marine animals including intertidal 

ectotherms upregulate Hsps (e.g. Hsp70 or 90) in response to heat stress (see below). For 

example, Sanders et al. (1991) found that the intertidal limpets Collisella scabra and C. pelta 

showed upregulation of Hsp70 and lower molecular weight Hsps in response to heat (acute or 

chronic) stress. In Tomanek and Zuzow (2010), the cold tolerant Mytilus trossulus 

upregulated three Hsp70 isoforms at 32°C, while the warm adapted M. galloprovincialis did 

not. In addition, M. trossulus showed increasing levels of several Hsp70 and small Hsps 

isoforms at lower temperatures than M. galloprovincialis. This is also supported by results on 

genomics or transcriptomics (see Lund et al., 2002; Buckley et al., 2004; 2006; Buckley and 

Somero, 2009; Stillman and Tagmount, 2009; Truebano et al., 2010; Lockwood et al., 2012; 

etc) studies. For example, Clarke et al. (2008) found that the bivalve Laternula elliptica and 

the gastropod Nucella concinna significantly upregulated the Hsp70 gene in response to 

increased temperatures. Logan and Somero (2011) also found that the eurythermal fish 

Gillichthys mirabilis acclimated at different temperatures upregulated the Hsp70 gene in 

response to acute heat stress.  

 

Although proteins (e.g. Hsps) were only tentatively identified in this study by looking at the 

molecular weight of the spots (70 kDA) and their isoelectric point (pH of 5) see Fig. 5.1.1-4, 

spots provisionally identified as Hsps and other stress related proteins were significantly 

upregulated in response to heat stress. Such upregulation is likely to offer protection to heat 

exposed animals, although intertidal animals generally have high levels of constitutive Hsps, 

and so do not need to synthesize new Hsps (see above). Thus, littorinids could benefit from 

constitutive Hsps as a long-term response to heat stress. Only future investigations can 

confirm the nature of this hypothetical correlation between high production of Hsps or stress 
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proteins and tolerance or response to heat stress. This could be done by investigation of the 

heat shock response using the widely used Hsps (e.g. Hsp70/90) methods (see above).  

 

Along with these heat stress related proteins, expression of other proteins such as chaperones, 

metabolic and cytoskeleton proteins might also change substantially in response to heat 

stress, as is the case in other studies (see below; Gardeström et al., 2007; Tomanek, 2010; 

Tomanek and Zuzow, 2010). Serafini et al. (2010) found changes in a number of protein 

functional groups, with cytoskeleton proteins showing higher levels of expression in Ciona 

intenstinalis than C. savignyi after exposure to heat stress. Fields et al. (2012b) found that 

warm and cold acclimation caused changes in cytoskeleton, energy metabolism, oxidative 

stress, and chaperone proteins in the mussels Mytilus trossulus and M. galloprovincialis. In 

addition, cold-adapted M. trossulus showed increased abundances of chaperone proteins at 

19°C, while warm-adapted M. galloprovincialis did not. Silvestre et al. (2010) found that the 

proteins involved in protein folding and degradation, energy supply and structural proteins 

showed increased abundance in the larval stages of the sturgeon Acipenser medirostris, while 

those involved in the synthesis of proteins other than Hsps showed a decrease in abundance. 

Overall, my results suggest that both stress and other proteins (e.g. metabolism and 

cytoskeleton related proteins) are strongly induced by heat stress. 

 

On the other hand, proteins that are not involved in maintenance or protection of animals 

from heat are likely to be suppressed under heat stress. In fact, severe heat shock involves a 

variety of other effects including suppression of protein synthesis other than Hsps production 

(see Roelofs et al., 2008; Tomanek, 2012a, b). This is because production of such proteins 

can be energetically expensive (see Somero, 2002; Clarke, 2003; Stillman, 2002; Sokolova et 

al., 2012; Fitzgerald-Dehoog et al. 2012) so that animals need to suppress or cease their 

synthesis to save energy. Unsurprisingly, certain protein spots were down regulated or 

completely disappeared after heat exposure (see B in comparison with A in Fig. 5.1.1-4). 

Such down regulation may be associated with metabolic depression in response to heat stress.  

 

There are many strategies that marine organisms employ to tolerate heat stress, and one of 

these involves metabolic depression. For instance, littorinids tend to depress their metabolic 
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rates and energy metabolism in response to heat stress (see Chapter 4; Sokolova and Pörtner, 

2001b; 2003; Marshall and McQuaid, 2010; Marshall et al, 2010; 2011). In other marine 

species, genes or proteins involved in metabolic, energy production, cell growth and 

proliferation, protein biosynthesis and cell cycle arrest or apoptosis pathways were down 

regulated in response to heat stress (Buckley et al., 2006; Gracey et al., 2008; Boutet et al., 

2009; Tomanek and Zuzow, 2010; Dilly et al., 2012; Fields et al., 2012a; Silvestre et al., 

2012; etc). Therefore, one would expect the down regulation of a large number of proteins in 

response to heat stress in order to conserve energy as one of several compensatory responses. 

My results provide preliminary evidence to support this hypothesis.  

 

In summary, there were differences in global proteins between and within species, with A. 

knysnaensis showing higher protein expression than A. africana of both size classes. This 

suggests differences (distinct) in molecular strategies, and thus the cost of living, used by the 

two species to survive heat stress in the littoral zone. I predict that A. knysnaensis might 

employ a strategy of maintaining higher constitutive Hsps and other stress related proteins, 

while A. africana synthesize or induce more Hsps when exposed to heat stress. Of interest 

was the differential expression of certain proteins (the magnitude of which was greater in 

both sizes of A. africana though the proteins were not identified), after exposure to heat 

stress. Importantly, expression of other proteins appears to be suppressed; however, further in 

vitro tests should be performed to confirm this finding. Nevertheless, demonstrated 

differential expression patterns of proteins appear to be a part of biochemical compensatory 

mechanisms (a short-term adaptive response) in littorinids to heat stress. Thus, to cope with 

heat stress, intertidal animals could adjust the expression patterns of proteins as a short-term 

adaptation (i.e. acclimation). This is a common strategy adopted by organisms to tolerate 

abiotic stressors, known as a “plastic proteome response” (see López et al. 2001; McLean et 

al., 2007; Silvestre et al., 2012; Tomanek, 2012a, b).  

 

In addition, the differentially expressed proteins might allow these species and other 

littorinids or intertidal ectotherms to survive environmental (temperature) change during 

climate change. However, for firm conclusions and to test this hypothesis, future studies 

should identify and confirm the functional role of heat stress responsive proteins (e.g. Hsps 

and other stress proteins or enzymes) in stress tolerance. Rapid advances in proteomic studies 
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in non-model marine organisms have just begun to uncover the proteins that are plastic and 

are responsible for stress tolerance. Thus, the application of proteome maps generated using 

conventional 2-DE technique and recent advances in mass spectrometry for protein 

identification will provide insights into the effects of environmental temperature change on 

animals at molecular levels. This will be complimented by developments and advances in 

sequencing animals‟ genomes (see Galindo et al., 2010; Canbäck et al., 2012). This study 

therefore underlines the importance of proteomics as a tool in environmental change. In fact 

the concept has already been employed in a number of studies in marine gastropods such as 

snails and bivalves (see Gardeström et al., 2007; Joyner-Matos et al., 2009; Tomanek and 

Zuzow, 2010; Fields et al., 2012a, b; etc), crustaceans (Kimmel and Bradley, 2001; Wang et 

al., 2007a; Serafini et al., 2011; Dilly et al., 2012; etc), fishes (Kültz and Somero, 1996; 

McLean et al., 2007; Ibarz et al., 2010; Silvestre et al., 2012; etc).  
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CHAPTER 6: Synthesis 

 

Temperature is the main driving force behind many ecological processes, and many studies 

have established the effects of temperature (changes and extremes) on the distribution and 

abundance as well as the phenology and physiology of animals, including marine ectotherms 

(Miller, 2006; Calosi et al., 2008; Harley et al., 2009; Somero, 2010; 2011; 2012; Walther, 

2010; Chapperon and Seuront, 2012; etc). This is particularly important given the problem of 

“global warming” with climate change related rises in temperature (air and sea surface) and 

extreme heat events already threatening biodiversity (Fields et al., 1993; Clark et al., 2000; 

Thuiller, 2007; Omann et al., 2009) and this has been linked to the contraction or expansion 

of distribution ranges and local extinctions (Barry et al., 1992; Backeljau et al., 2001; 

Walther et al., 2002; Clark, 2006; Sorte et al., 2010; etc).  

 

As such, there is a need to understand the physiological and behavioural responses (i.e. 

adaptations) of animals to perturbations in environmental temperature, as well as the 

biochemical mechanisms that allow these responses. Thus, it is important to understand the 

mechanisms that determine an organism‟s thermal niche, especially in the case of ectotherms 

whose body temperature (and thus performance) is determined by that of the environment 

(Helmuth et al., 2002; 2006a, b; 2010; Sørensen and Loeschcke, 2007; Pincebourde et al., 

2008; Lima et al., 2011; etc). This is particularly true for littorinids as they live in harsh and 

fluctuating environments (i.e. the extreme interface between land and sea), often living close 

to their physiological limits, and temperature gradients generally correlate with species 

distributions and abundances (McMahon, 1990; 2001b; Jones and Boulding, 1999; Emson et 

al., 2002; Muñoz et al., 2005; 2008; Judge et al., 2009; 2011; etc).  

 

Temperature pervasive effects on physiological and biochemical systems are reflected in the 

suite of temperature adaptive differences observed among species and/or populations from 

different thermal niches, such as species with different distributions along the subtidal to 

intertidal or tropical to polar gradients (McMahon, 1990; 2001b; Stillman and Somero, 1996; 

1999; Sokolova and Pörtner, 2001b; 2003; Somero, 2002; 2010; Helmuth et al., 2002; etc). 
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Whole organism thermal tolerance, metabolic rates and protein synthesis are amongst the 

physiological and biochemical traits that exhibit adaptive variation related to distributions; 

and some, but not all, of these thermally sensitive traits show acclimation (adjustment), which 

leads to adaptive shifts in thermal optima and limits or thresholds (Markel, 1974; Fields et al., 

1993; Stenseng et al., 2005; Calosi et al., 2008; Feidantsis et al., 2009; Tomanek, 2008; etc).  

 

This study used different approaches to investigate physiological and biochemical responses 

to heat stress in littorinid snails from different latitudes, regions and shore levels. An 

understanding of animals‟ temperature tolerances, and the plasticity or flexibility of those 

tolerances enables us to make inferences about what will happen to their distributions and 

abundances during climate change. In addition, the genetic diversity of Afrolittorina spp. was 

also investigated as it is accepted that marine animals and plants with low genetic diversity 

will be more threatened by the effects of global warming than those with high genetic 

diversity (Fields et al., 1993; Visser, 2008; Hoffman and Willi, 2008; Brierley and Kingsford, 

2009; Provan and Maggs, 2012). Thus, genetic (high) diversity might buffer the effects of 

global warming by providing resilience (Ehlers et al., 2008; Bergmann et al., 2010; Barshis et 

al., 2010), but this needs to be proven or investigated. If fact, fitness in heterogeneous and/or 

uncertain environments is positively correlated with higher heterozygosity, thus genetic 

diversity (Nevo, 1978; Noy et al., 1987; Hawkins, 1995; Laudien et al., 2003; Schmidt et al., 

2007). Thus, species with adequate genetic diversity or variation to generate phenotypes 

(Pigliucci et al., 2006) with different tolerances and optima, may be „winners‟ during global 

warming (Somero, 2010). 

 

The results indicate differences in the physiological and biochemical responses of the study 

species to heat stress that seem to relate to differences in biogeography, phylogeny and 

species ecology. Thus, thermal tolerance, heart function and proteomics data indicate that 

there are inter- and intraspecific differences in the responses to heat stress of littorinid snails 

as a result of temperature adaptive differences amongst species and/or populations from 

different habitats. The tropical and subtropical species, which occupy the eulittoral fringe, 

showed higher tolerances (thresholds and limits) than the subtropical/temperate species which 

are found in the eulittoral zones. This was supported by heart performance, with tropical 

species showing good metabolic regulation followed by the subtropical and temperate 
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species, respectively. This agrees with the hypothesis that temperature tolerances in marine 

animals show a decrease from the tropics to polar regions in both eulittoral fringe and lower 

shore species (McMahon, 1990; 2001b; Calosi et al., 2008; Somero, 2010; Sorte et al., 2011; 

Sunday et al., 2012).  

 

However, there were few or no differences in the thresholds and limits or the heart 

performance of Afrolittorina spp. from different regions. On the other hand, the proteome 

results for these Afrolittorina spp. showed differences in global proteins between and within 

species, with both size classes of A. knysnaensis showing higher protein expression than 

those for A. africana. However, differential expression of certain proteins after exposure to 

heat stress was greater in both size classes of A. africana than in A. knysnaensis. This 

suggests differences in molecular strategies, and thus the cost of living, used by these two 

species to survive heat stress in the littoral zone. The two congeners seem therefore to utilise 

different approaches for resisting heat stress. A. knysnaensis, with a distributional range into 

generally cooler conditions seems to employ a strategy of maintaining higher constitutive 

Hsps and other stress related proteins, while A. africana, which extends into warmer 

conditions, synthesizes or induces more Hsps when exposed to heat stress. This reflects the 

fact that the temperate/subtropical species is better equipped to cope with high temperatures 

than the temperate species.  

 

I have shown that diversity in the metabolic rates, thresholds and/or limits as well as 

proteomes in this study is related to evolutionary adaptive responses to probable maximal 

habitat temperatures. Thus, latitudinal and vertical temperature adaptations lead to shifts in 

limit and threshold temperatures. Differences or shifts in limits and thresholds have been 

found to reflect evolutionary adaptations in other animals, including littorinids (Dahlhoff et 

al., 1991; Stillman and Somero, 1996; 1999; Stenseng et al.; 2005; Braby and Somero, 

2006). The same is true for protein profiles or proteomes (López et al., 2002a; Diz and 

Skibinski, 2007; Martínez-Fernández et al., 2008; 2010b; Diz et al., 2012b). The threshold 

and limit temperatures of the study species were several degrees above current maximum 

air temperatures, and well above predicted climatically derived estimates of global 

warming. This suggests that the study species live far from their upper thermal tolerance 

limits and that the current global warming trend is still unlikely to be dangerous to them.  
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Predictions of climate change are traditionally derived from modelled changes in air and 

sea surface temperatures which in the case of high shore littorinids and other ectotherms 

may be misleading as much of their heat can be derived from either contact with the 

substratum or from solar radiation (Britton and Morton, 2003; Broitman et al., 2009; Miller 

and Denny, 2011; Zippy and Helmuth, 2012). Thus, air and sea surface temperatures are 

largely irrelevant to high shore animals‟ body temperature in the field, but higher solar or 

UV radiation and substratum temperatures are important (Wethey, 2002; Clark, 2006; 

Gilman et al., 2006; Helmuth et al., 2006a, b; 2011; Chapperon and Seuront, 2011a, b). 

 

By demonstrating the existence of fixed physiological and biochemical differences between 

species from different geographic regions, this study provides evidence that environmental 

temperature adaptation at the organismal, physiological and molecular levels is important for 

the maintenance of dissimilar biogeographies, and likewise for distribution among shore 

levels. The results also confirm that littorinids can tolerate high temperature stress, and are 

therefore well suited to life in the intertidal zones where temperature and other stresses are 

extreme and can change abruptly. In the short term, littorinids are tolerant of the high 

temperatures that they are likely to experience on the shore, and can also survive temporary 

exposure to supernormal temperatures. In fact, littorinids can regulate their metabolism 

within the sub-lethal temperature range experienced under natural conditions (this study; 

Sokolova and Pörtner, 2003; Marshall and McQuaid, 2010; Marshall et al., 2010; 2011) and 

can adjust the expression of proteins (e.g. Hsps) as part of a biochemical response to heat 

stress (this study; Lee and Boulding, 2010; Judge et al., 2011; Marshall et al., 2011).  

 

The present study reveals that both the stresses found and mechanisms or strategies utilized 

in physiological and biochemical adaptations to high temperature exposure by subtropical 

and temperate littorinids are similar to those utilized by the littorinids from the tropics. 

Therefore, high thermal tolerance, metabolic depression and/or regulation as well as the 

induction of heat shock proteins as temperature increases are physiological and biochemical 

adaptations of this group of marine animals for life high in the intertidal zone, allowing 

them to live higher than almost all other marine organisms.  
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Although my results suggest that littorinids have high tolerances to temperature, it is clear 

that these animals are already living close to their thermal limits as shown by their limited 

capacity to adjust those tolerances, and the fact that distribution within-shore alters with 

region. Thus, in the event of global warming and climate change related rise in solar radiation 

hence substratum temperature, the distribution of littorinids and other intertidal ectotherms 

may be more affected than those of subtidal ones. Recent studies suggest that some intertidal 

animals may have very low plasticity in their ability to acclimate to higher temperatures 

(Stillman and Somero, 1999; Tomanek and Helmuth, 2000; Stillman, 2002; 2003; 2004; 

Somero, 2005; 2009; 2010; 2011). Because littorinid snails regularly experience high 

temperatures for extended periods, they may be unable to further adjust their physiological 

and biochemical response as seen in this study, and as such may be more affected by global 

warming. However, littorinids and other intertidal ectotherms might benefit from behavioural 

and morphological adjustments (see below).  

 

If the upper shore limit of the study species is a consequence of increased aerial body 

temperature, then we should observe downwards shifts in their upper limits of zonation when 

or where aerial temperatures increase, while in terms of geographical distribution, we should 

expect poleward shifts. In fact, the zonation patterns of marine animals are primarily 

influenced by environmental gradients and it has been suggested that the upper vertical limits 

of intertidal organisms are inversely correlated with temperature (McMahon, 1990; Charles et 

al., 1992; Warwick and Turk, 2002; Harley and Helmuth, 2003; Miller and Denny, 2011). A. 

africana is already restricted to the low shore in the subtropics, where it even prefers 

temporary and shallow pools (pers. obs.). In the tropics, E. vidua is mostly found in the 

lowermost eulittoral fringe, and together with E. malaccana, which inhabits the eulittoral 

fringes, these species migrate to lower levels (e.g. eulittoral zones) during hot summer 

months where they even prefer biogenic habitats and form aggregations during low tide (GA 

Williams and DJ Marshall pers. comm.; Williams et al., 2011; Cartwright and Williams, 

2012; Stafford et al., 2012). However, no study has investigated the vertical distribution and 

abundance as well as behavioural responses of Afrolittorina spp., E. natalensis and L. 

glabrata or other littorinids found in South Africa. 

 



212 
 

Increased temperatures could not only reduce the vertical distribution of Afrolittorina spp., 

but could also reduce their eastern and western biogeographic limits. In addition, these 

species showed low genetic diversity within and among populations, suggesting their 

vulnerability to the effects of rising temperatures as suggested (see above). On the other hand, 

the southern limits of Littoraria glabrata (with low genetic diversity; Silva et al., 2013) and 

Echinolittorina natalensis might extend polewards to the warm temperate region. At the 

moment, E. natalensis and L. glabrata are found as far south as the vicinity of East London in 

the warm temperate region. Likewise, Echinolittorina malaccana and E. vidua and other 

tropical littorinids might extend further into the subtropics.  

 

There are already indications that climate change will favour the poleward spread of species 

characteristic of warmer temperature regimes (Schiel et al., 2004; Lima et al., 2007; Sorte et 

al., 2010; Xavier et al., 2010), but such generalization should be made with caution since 

animals respond differently (Helmuth et al., 2002; Rivadeneira and Fernández, 2005; 

Poloczanska et al., 2008; Provan and Maggs, 2012). Thus, animals or populations may 

respond differently (with „winners‟ and „losers‟; see Somero, 2010; Lucas and Griffiths, 

2012) to climate change owing to additional local environmental effects, interspecific 

ecological interactions and dispersal capacity (Fields et al., 1993; Genner et al., 2003; 

Angilletta Jr. et al., 2006; Byrne et al., 2010; Kordas et al., 2011), amongst others.  

 

For example, upwelling (which might intensify in the future) and/or near-shore cold waters in 

the south coast of South Africa (Bakun, 1990; Clark et al., 2000; Riegl, 2003; Harrison and 

Whitfield, 2006; Lucas and Griffiths, 2012) might limit E. natalensis and L. glabrata from 

extending further into the warm temperate region. In addition, it is likely that populations or 

species that are already well established in other regions, but near their tolerance limits, will 

be as negatively affected by increasing temperatures and related environmental changes as 

local ones (see Branch 1984 in Clark, 2006; Lima et al., 2007; Lucas and Griffiths, 2012). In 

fact, animals or species are assumed to be more stressed and/or have decreased performance 

at the edges of their distribution ranges (see Somero and Hofmann, 2004; Osovitz and 

Hofmann, 2007; Roelofs et al., 2008; Wernberg et al., 2011; Zippay and Helmuth, 2012) and 

they are more vulnerable to the effects of climate change. In addition, these animals are 
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critically important in determining species‟ responses to climate change (see Hampe and 

Petit, 2005; Ehlers et al., 2008; Provan and Maggs, 2012).  

 

Fossil evidence and distributional surveys show that biogeographic range shifts are associated 

with climate change in marine environments as in terrestrial environments (Clarke et al., 

1992; Sagarin et al., 1999; Schiel et al., 2004; Mieszkowska et al., 2006; Sunday et al., 2012; 

etc). There have been dramatic changes in the distribution of South African commercially 

fished stocks such as pilchards, anchovy and sardines which have shifted from the west coast 

to the south coast, while tropical and subtropical fishes are moving southwards (Clark et al., 

2000; Clark, 2006; Lucas and Griffiths, 2012). Similar changes have been noted in other 

animals such as mussels, crabs, rock lobsters, seals, seabirds and various zooplankton species 

as well as plants such as kelps, algae, seaweeds, etc. (Shannon et al., 1988; Clark et al., 2000; 

Clark, 2006; Crawford et al., 2008; Lucas and Griffiths, 2012). Thus, South Africa‟s marine 

organisms have been/are moving as climate change warms the Agulhas current in the east 

coast, and cools the southern Benguela upwelling system on the west coast and the near-shore 

south coast marine environment (Clark et al., 2000; Lucas and Griffiths, 2012). 

 

In addition, changes in temperature can alter species‟ co-existence equilibria and modify 

species distributions as a result of changes in the outcomes of their interactions (Southward et 

al., 1995, Schneider and Helmuth, 2007; Doney et al., 2012; Zippay and Helmuth, 2012). A. 

africana and A. knysnaensis co-exist in the warm temperate region, where they even occupy 

the same microhabitats (pers. obs.; McQuaid, 1992; d‟Errico et al., 2008). Therefore, under 

global warming, there might be changes in their co-existence equilibria and distributions, 

with the possibility of A. knysnaensis being restricted to lower (cooler) shore levels than A. 

africana which might remain in the upper (hot) levels. A. knysnaensis is already restricted to 

low shores towards its eastern biogeographic limits (East London to the vicinity of Durban), 

while A. africana occupies higher levels in the same shores (pers. obs.; McQuaid and 

Scherman, 1988; McQuaid, 1992; d‟Errico et al., 2008). Thus, differences in thermal 

physiology between these two species suggest that A. africana may have competitive 

advantages over the less heat tolerant A. knysnaensis during global warming. This might be 

true for E. natalensis and L. glabrata as well as other littorinids that co-exist in the 
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subtropics. In fact, warm-adapted genotypes (i.e. animals) happen to outperform cold-adapted 

genotypes (see Asbury and Angilletta Jr., 2010; Angilletta Jr. et al., 2010). 

 

The outcomes of this study yielded novel insights which could advance our knowledge of the 

responses of littorinids and other ectotherms to predicted environmental temperatures, 

changes and extremes. The findings underline the importance of integrating information from 

different levels and disciplines in order to understand the responses of animals to climate 

change (Clarke and Crame, 1992; Guderley and St-Pierre, 2002; Pörtner et al., 2006; Moore 

et al., 2007; Chapman et al., 2011; etc). Integration of multidisciplinary and integrative 

approaches will provide considerable potential advances in the understanding of animals‟ 

responses to climate change (Osovitz and Hofmann, 2007; Sørensen and Loeschcke, 2007; 

Somero, 2010; 2011; 2012; Walther, 2010). For example, studies are focusing on behavioural 

and morphological responses as thermoregulatory mechanisms additional to physiological 

and biochemical mechanisms that animals might use to survive and/or buffer the effect of 

rising temperatures (Kearney et al., 2009; Chapperon and Seuront, 2011a, b; Miller and 

Denney, 2011; Tuomainen and Candolin, 2011; Zippay and Helmuth, 2012).  

 

This is also true for biotic interactions which might modulate species‟ responses to climate 

change (Pearson and Dawson, 2003; Moore et al., 2007; Hawkins et al., 2008; Poloczanska et 

al., 2008; Chapperon and Seuront, 2011a, b) and/or influence the net benefits of behavioural 

and physiological responses (Angilletta Jr. et al., 2006; Helmuth et al., 2006b). Of most 

importance is the study of thermal ecology of intertidal animals (Helmuth et al., 2002; 2006a, 

b; 2010a, b; 2011; Gilman et al., 2006; Wethey and Woodin, 2008; Finke et al., 2009; Lima 

et al., 2011; etc), as this might help us to understand and predict the responses of animals to 

rising temperatures. In addition, studies are also looking at the responses of early life stages 

(e.g. eggs and larvae) to climate change as these are considered to be more vulnerable to 

environmental changes (Coelho et al., 2000; Przeslawski et al., 2005; 2008; Byrne et al., 

2009; 2010; Parker et al., 2009; Walther et al., 2010), while most existing studies have been 

done on late (adult) stages. Particularly important will be the need to investigate the effects of 

multiple interacting factors that occur in nature (Harley et al., 2006; Pörtner, 2008; Häder et 

al., 2007; Somero; 2011; Zippay and Helmuth, 2012).  
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Appendices 

 

Appendix 2.1. Representatives of mitochondrial (mtCOI) and ribosomal (28S rRNA) nucleotides sequences for A. africana and A. knysnaensis.  

 

2.1.1. mtCO1 sequences 

>A.africana  615  bases 

CATGTGATCTGGACTTGTAGGGACTGCCCTAAGTCTTCTTATTCGAGCCGAGTTAGGTCAACCCGGCGCTTTGCTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTCATAATTTTTTTCCTGGTTATACCTATGATAATTGGTGGATTTGGGAATTGACTTGTGCCTTTAATACTAGGAGCTCCTGATATAGCATTTCCTCGTTTAAATAATATA

AGTTTTTGGCTCCTTCCTCCCGCTTTACTTCTCCTGCTGTCTTCAGCAGCCGTTGAAAGAGGTGTTGGGACAGGATGAACTGTATACCCTCCGCTAGCAGGTAATTTAGCTCACGC

TGGAGGATCCGTAGATCTGGCAATTTTTTCTCTTCATTTAGCAGGAGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACAACCATTATCAATATACGTTGACGAGGAATACAGT

TTGAACGCTTACCTCTTTTTGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTCTTATCTCTTCCTGTATTGGCTGGGGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGATCCAGCTGGTGGTGGTGATCC 

>DS_18  615  bases 

CATGTGATCTGGACTTGTAGGGACTGCCCTAAGTCTTCTTATTCGAGCCGAGTTAGGTCAACCCGGCGCTTTGCTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTCATAATTTTTTTCCTGGTTATACCTATGATAATTGGTGGATTTGGGAATTGACTTGTGCCTTTAATACTAGGAGCTCCTGATATAGCATTTCCTCGTTTAAATAATATA

AGTTTTTGGCTCCTTCCTCCCGCTTTACTTCTCCTGCTGTCTTCAGCAGCCGTTGAAAGAGGTGTTGGGACAGGATGAACTGTATACCCTCCGCTAGCAGGTAATTTAGCTCACGC

TGGAGGATCCGTAGATCTGGCAATTTTTTCTCTTCATTTAGCAGGAGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACAACCATTATCAATATACGTTGACGAGGAATACAGT

TTGAACGCTTACCTCTTTTTGTTTGATCAGTAAAAATTACAGCTATTCTTCTTCTCTTATCTCTTCCTGTATTGGCTGGGGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGATCCAGCTGGTGGTGGTGATCC 

>HH_14  615  bases 

CATGTGATCTGGACTTGTAGGGACTGCCCTAAGTCTTCTTATTCGAGCCGAGTTAGGTCAACCCGGCGCTTTGCTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTCATAATTTTTTTCCTGGTTATACCTATGATAATTGGTGGATTTGGGAATTGACTTGTGCCTTTAATACTAGGAGCTCCTGATATAGCATTTCCTCGTTTAAATAATATA

AGTTTTTGGCTCCTTCCTCCCGCTTTGCTTCTCTTGCTGTCTTCAGCAGCCGTTGAAAGAGGTGTTGGAACAGGATGAACTGTATACCCTCCGCTAGCAGGTAATTTAGCTCACGC

TGGAGGATCCGTAGATCTGGCAATTTTTTCTCTTCATTTAGCAGGAGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACAACCATTATCAATATACGTTGACGAGGAATACAGT

TTGAACGCTTACCTCTTTTTGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTCTTATCTCTTCCTGTATTGGCTGGGGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGATCCAGCTGGTGGTGGTGATCC 

>BR_13  615  bases 

CATGTGATCTGGACTTGTAGGGACTGCCCTAAGTCTTCTTATTCGAGCCGAGTTAGGTCAACCCGGCGCTTTGCTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTCATAATTTTTTTCCTGGTTATACCTATGATAATTGGTGGATTTGGGAATTGACTTGTGCCTTTAATACTAGGAGCTCCTGATATAGCATTTCCTCGTTTAAATAATATA

AGTTTTTGGCTCCTTCCTCCCGCTTTACTTCTCCTGCTGTCTTCAGCAGCCGTTGAAAGAGGTGTTGGGACAGGATGAACTGTATACCCTCCGCTAGCAGGTAATTTAGCTCACGC

TGGRGGATCCGTAGATCTGGCAATTTTTTCTCTTCATTTAGCAGGAGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACAACCATTATCAATATACGTTGACGAGGAATACAGT
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TTGAACGCTTACCTCTTTTTGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTCTTATCTCTTCCTGTATTGGCTGGGGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGATCCAGCTGGTGGTGGTGATCC 

>WN_21  615  bases 

CATGTGATCTGGACTTGTAGGGACTGCCCTAAGTCTTCTTATTCGAGCCGAGTTAGGTCAACCCGGCGCTTTGCTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTCATAATTTTTTTCCTGGTTATACCTATGATAATTGGTGGATTTGGGAATTGACTTGTGCCTTTAATACTAGGAGCTCCTGATATAGCATTTCCTCGTTTAAATAATATA

AGTTTTTGGCTCCTTCCTCCCGCTTTACTTCTCCTGCTGTCTTCAGCAGCTGTTGAAAGAGGTGTTGGGACAGGATGAACTGTATACCCTCCGCTAGCAGGTAATTTAGCTCACGC

TGGAGGATCCGTAGATCTGGCAATTTTTTCTCTTCATTTAGCAGGAGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACAACCATTATCAATATACGTTGACGAGGAATACAGT

TTGAACGCTTACCTCTTTTTGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTCTTATCTCTTCCTGTATTGGCTGGGGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGATCCAGCTGGTGGTGGTGATCC 

>A.knysnaensis  615  bases 

CATGTGATCTGGACTTGTGGGTACTGCCCTAAGCCTTCTTATTCGAGCTGAGCTAGGCCAACCAGGCGCTTTACTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTTATAATTTTTTTTCTAGTTATACCTATAATAATTGGTGGATTTGGAAATTGACTTGTACCTTTAATATTAGGGGCCCCTGATATGGCATTCCCTCGTTTAAATAATATA

AGTTTTTGACTCCTCCCTCCCGCTCTGCTTCTTTTATTATCTTCAGCTGCCGTTGAAAGTGGTGTTGGAACAGGATGAACTGTATATCCTCCATTGTCAGGTAATTTAGCCCACGC

TGGCGGATCAGTAGATTTAGCAATTTTTTCTCTTCACTTAGCAGGTGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACGACTATTATTAATATACGTTGACGAGGAATACAAT

TTGAACGTTTACCCCTTTTCGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTTCTATCTCTTCCTGTACTAGCTGGAGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGACCCAGCTGGTGGTGGTGATCC 

>PA_4  615  bases 

CATGTGATCTGGACTTGTGGGTACTGCCCTAAGCCTTCTTATTCGAGCTGAGCTAGGCCAACCAGGCGCTTTACTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTTATAATTTTTTTTCTAGTTATACCTATAATAATTGGTGGATTTGGAAATTGACTTGTACCTTTAATATTAGGGGCCCCTGATATGGCATTCCCTCGTTTAAATAATATA

AGTTTTTGACTCCTCCCTCCCGCTCTGCTTCTTTTATTATCTTCAGCTGCCGTTGAAAGTGGTGTTGGAACAGGATGAACTGTATATCCTCCATTGTCAGGTAATTTAGCCCACGC

TGGCGGATCAGTAGATTTAGCAATTTTTTCTCTTCACTTAGCAGGTGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACGACTATTATTAATATACGTTGACGAGGAATACAAT

TTGAACGTTTACCCCTTTTCGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTTCTATCTCTTCCTGTACTAGCTGGAGCTATTACCATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGACCCAGCTGGTGGTGGTGATCC 

>MZ_07  615  bases 

CATGTGATCTGGACTTGTGGGTACTGCCCTAAGCCTTCTTATTCGAGCTGAGCTAGGCCAACCAGGCGCTTTACTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTTATAATTTTTTTTCTAGTTATACCTATAATAATTGGTGGATTTGGAAATTGACTTGTACCTTTAATATTAGGGGCCCCTGATATGGCATTCCCTCGTTTAAATAATATA

AGTTTTTGACTCCTCCCTCCCGCTCTGCTTCTTTTGTTATCTTCAGCTGCCGTTGAAAGTGGTGTTGGAACAGGATGAACTGTATATCCTCCATTGTCAGGTAATTTAGCCCACGC

TGGCGGATCAGTAGATTTAGCAATTTTTTCTCTTCACTTAGCAGGTGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACGACTATTATTAATATACGTTGACGAGGAATACAAT

TTGAACGTTTACCCCTTTTCGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTTCTATCTCTTCCTGTACTAGCTGGAGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGACCCAGCTGGTGGTGGTGATCC 

>GR_2  615  bases 

CATGTGATCTGGACTTGTGGGTACTGCCCTAAGCCTTCTTATTCGAGCTGAGCTAGGCCAACCAGGCGCTTTACTGGGAGACGATCAATTATATAATGTAATTGTAACAGCTCATG

CTTTTGTTATAATTTTTTTTCTAGTTATACCTATAATAATTGGTGGATTTGGAAATTGACTTGTACCTTTAATATTAGGGGCCCCTGATATAGCATTCCCTCGTTTAAATAATATA

AGTTTTTGACTCCTCCCTCCCGCTCTGCTTCTTTTATTATCTTCAGCTGCCGTTGAAAGTGGTGTTGGAACAGGATGAACTGTATATCCTCCATTGTCAGGTAATTTAGCCCACGC

TGGCGGATCAGTAGATTTAGCAATTTTTTCTCTTCACTTAGCAGGTGTTTCTTCTATTTTAGGAGCTGTAAACTTTATTACGACTATTATTAATATACGTTGACGAGGAATACAAT

TTGAACGTTTACCCCTTTTCGTTTGATCAGTAAAAATTACAGCTATTCTTCTCCTTCTATCTCTTCCTGTACTAGCTGGAGCTATTACTATATTACTTACAGATCGAAATTTTAAT

ACTGCCTTTTTTGACCCAGCTGGTGGTGGTGATCC 
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2.1.2. 28S rRNA Sequences 
>A._africana  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGYGYTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGTGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTTCGACTGGTAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

A------------------------C---------C---------------

ACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAAGAGCGTGCACGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGG

TCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGAACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>BS_1  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGCGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGTGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTTCGACTGGTAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGGGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAGGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>BT_10  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGCGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGTGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTTCGACTGGTAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGGGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAAGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>CRB_7  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGTGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGTGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTTCGACTGGTAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGGGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAAGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>A._knysnaensis  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGYGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGCGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTACGACTGGCAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCAAGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAGGAGCGTGCACGTTGGGACCCGAAAG
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ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>BR_1  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGCGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGCGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTACGACTGGCAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGAGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAGGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>BR_4  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGYGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGCGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTACGACTGGCAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGAGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAGGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>BR_05  745  bases 

TAAACGGGTGGATCCGCAAAGTCGGCCCGCGGAATTCAGCTCGGATGGCAGGCGCGGGTGCTGGGCAAGGGATCTGAACGGACCCTCCCGGTGCTCGACGTCGGTCGGCCGTGTGC

ACTTTCCGCGGGCAGAGCGCCACGACCGGTTCTCGGGCGGTCAGAAGGCGGCGAGGAAGGTAGGTGGGCGCTTCGGCGCTCACTGTTATAGCCTCGCCTGTCCCGATCCGCCTGGG

GACCGAGGAGCCGCCGTGGGTGTAGGCCGCCTCGCTCTCCCGAGAGGTACGACTGGCAGAGACTGGGCAACCGTGTCTGCCGACCGCTTCTTTGGATGGATGGGGTGGGCCCGCTC

ACACAGGGTCAGTGGCGAATCGGTCGGCCCTCCACCCGACCCGTCTTGAAACACGGACCAAGGAGTCTAACATGCGCGCGAGTCGTTGGGTAGTACGAAACCCGAAGGCGAAGTGA

AAGCGAGGGCCGTCTCTGACGTGCTCAGGTGGGATCCGAGCTGGGCGCACCACCGGCCCGTCTCGTCCGCGTTGTCGGTGAGGCGGAGCAGGAGCGTGCACGTTGGGACCCGAAAG

ATGGTGAACTATGCCTGAGTAGGACGAAGCCAGAGGAAACTCTGGTGGAGGTCCGCAGCGATTCTGACGTGCAAATCGATCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGA

ACCATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGCA 

>MB_03  745  bases 
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Appendix 2.2. List of mitochondrial (mtCOI) and ribosomal (28S rRNA) sequences (excluding singlets; see Figure 2.2-2.3) of A. africana and 

A. knysnaensis.  

mtCOI  28S rRNA  

A.knysnaensis_BA_1_BA_4_BL_10_BL_8_BR_03_BR_05_BR_101_BR_2_BR_3_BR_4_BR_6_CA_01_CA_01
1_CA_012_CA_02_CA_1_CA_2_CA_8_CA_9_CB_04_CB_05_CB_10_CB_6_CR_010_CR_03_CR_05_CR_08_
CR_09_CR_1_CR_101_CR_104_CR_3_CR_4_CR_41_CR_51_CR_6_CRB_1_CRB_2_CRB_3_CRB_4_CRB_5_
CRB_7_DS_1_DS_10_DS_2_DS_4_FH_04_FH_7_FH_8_FHB_1_FR_07_FR_09_FR_10_FR_12_FR_2_FR_6_F
R_7_FR_8_FR_9_GO_10_GO_101_GO_106_GO_2_GO_3_GO_4_GO_6_GO1_GR_1_GR_10_GR_101_GR_10
6_GR_6_GR_7_GR_8_HB_2_HB_6_HH_1_HH_103_HH_1031_HH_114_HH_2_HH_3_HH_4_HH_5_HH_6_H
H_7_HH_8_HH_9_HM_2_HM_3_HM_4_HM_5_HM_6_HM_7_HM_8_HM_9_HN_1_HN_4_HN_7_HNB_1_JB
_1_JB_10_JB_103_JB_109_JB_110_JB_2_JB_3_JB_4_LB_02_LB_03_LB_04_LB_05_LB_1_LB_2_LB_6_LB_8
_MB_2_MB_5_MB_7_MB_8_MB_9_MZ_2_MZ_8_PA_2_PA_5_PA_6_PA_7_PA_8_PA_9_PB_3_PB_5_PB_6_
PB_7_PB_9_PE_1_PE_4_PE_5_PJ_1_PJ_10_PJ_3_PJ_4_PJ_5_PJ_6_PJ_7_PL_10_PL_2_PL_6_PL_7_PL_9_PN
_01_PN_02_PN_03_PN_07_PN_08_PN_09_PN_4_PN_6_PNB_1_POB_02_POB_03_POB_06_POB_1_POB_2_
POB_3_POB_4_PR_1_PR_2_PR_4_RE_1_RE_2_RE_3_RE_4_RE_5_RE_6_RE_7_RE_8_RG_1_RG_10_RG_2_
RG_3_RG_5_RG_6_RG_7_RG_8_RG_9_SB_1_SB_12_SB_14_SB_15_SB_2_SB_5_SB_7_SE_02_SE_2_SE_9_
SF_01_SF_02_SF_03_SF_04_SF_05_SF_06_SF_3_SF_7_SF_8_SF_B1_SX_1_TT_07_TT_10_TT_201_TT_6_W
N_1_WN_10_WN_11_WN_14_WN_15_WN_2_WN_5_WN_6_WN_7_WNB_1_WNB_2_YZ_11_YZ_4_YZ_5 

BR_1_BR_3_CA_012_CR_104_CR_5_CR_8_CRB_4_CRB_5_GR_1_G
R_101_GR_2_GR_6_GR_7_HH_103_HH_5_HH_6_HK_6_JB_1_LB_0
2_LB_2_PA_4_PA_5_PA_8_PE_1_PJ_3_PJ_5_PJ_8_PN_09_PN_3_PN
_9_POB_3_POB_4_RE_6_RG_10_RG_6_RG_7_RG_8_SB_1_SB_6_S
BB_1_SBB_3_SF_4 

 

A.africana_BA_10_BA_7_BR_017_BR_12_BR_14_BR_15_BR_7_BS_1_BS_10_BS_102_BS_103_BS_104_BS
_105_BS_106_BS_108_BS_3_BS_6_BT_10_BT_4_BT_5_BT_8_CR_111_CR_112_CR_113_CR_115_CR_12_C
R_13_CR_14_CR_141_CR_15_CRB_10_CRB_6_CRB_8_DS_011_DS_012_DS_12_DS_13_DS_14_DS_15_DS_
17_FH_014_FH_015_FH_14_FH_15_GO_11_GO_15_HH_10_HH_11_HH_111_HH_13_HH_132_HH_15_HH_2
13_HK_12_HM_012_HM_11_HM_12_HM_13_HM_15_JB_13_LR_02_LR_1_LR_10_LR_2_LR_3_LR_4_LR_9
_ML_01_ML_03_ML_04_ML_06_ML_1_ML_10_ML_2_ML_3_ML_4_ML_5_ML_6_MLW_1_MR_005_MR_0
1_MR_02_MR_03_MR_05_MR_3_MRW_1_MRW_2_PA_11_PA_12_PA_13_PA_14_PA_15_PA_16_PA_17_P
A_18_PAW_1_PD0_11_PDO_01_PDO_1_PDO_12_PDO_3_PDO_4_PDO_5_PDO_6_PDO_8_PDO_9_PDOW_
1_PE_10_PE_11_PE_12_PE_13_PE_14_PE_15_PE_16_PE_19_PE_20_PE_3_PE_7_PJ_113_PL_11_PL_14_PR_
14_PR_6_PRW_1_RG_13_RG_16_RG_17_SE_013_SE_12_SE_13_SE_14_SFB_11_SH_1_SH_11_SH_3_SH_4_
SX_11_SX_12_SX_14_WN_24_ZK_003_ZK_02_ZK_03_ZK_04_ZK_1_ZK_2 

BR_05_BR_101_CR_1_CR_14_CR_4_CR_6_CR_7_CRB_1_GO_4_HB
_1_HB_2_HB_5_HH_10_HH_2_HH_4_HH_8_HH_9_JB_2_LB_6_MB
_2_PA_7_PE_5_PJ_1_PJ_7_PL_6_SE_2_SF_9_YZ_9 

 

CR_11_FH_18_HH_313_HK_15_LR_5_LR_6_ML_05_PE_17_PE_18_PJ_115_PJ_215_SB_17_SEW_1_SX_13 

 

BS_101_BS_104_BS_105_BS_108_CR_115_CR_141_GO_12_GO_13_
JB_10_ML_8_MR_5_PA_11_PA_13_PA_17_PA_19_PJ_215_PR_03_S
E_09_SE_9_ZK_2_ZK_5 

DS_18_FH_13_FH_16_GO_12_HH_12_PL_15_SX_15  BT_10_DS_012_DS_12_DS_15_DS_18_FH_13_FH_15_HK_12_ML_1
0_ML_9_PA_20_PE_8_RG_18_SB_11_SB_15_WN_21_ZK_1 
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PA_4_PJ_9_POB_04  CRB_7_HH_12_HH_15_HM_15_ML_3_MR_3_PA_16_PA_18_PE_10
_PE_16_PE_18_PE_20_PJ_111_PJ_115_PJ_13_PJ_214_ZK_4 

BR_13_BR_211  BS_1_CRB_6_CRB_8_CRB_9_DS_16_FH_18_ML_7_MR_1_PA_12_P
A_15_PN_7_PR_4_SB_17_SB_18_SB_3_WN_23 

BR_1_BR_8   BR_4_HB_3_HH_1_HH_114_HH_3_JB_3_PJ_6_PL_7_PL_8_POB_1_
POB_5_PR_9_YZ_4 

BS_109_BS_110 BR_12_BS_102_BS_110_CR_13_GO_14_MR_4_MR_6_PE_3_PE_7_P
R_5 

GO_13_GO_14  BT_4_CRB_10_HH_13_MR_2_PE_13_PR_011_PR_14_PR_6_RG_15 

GR_2_POB_07 BA_2_BR_15_BS_1081_HH_132_HH_213_HK_15_RG_12 

PJ_214_RG_15 BS_103_BS_4_HH_111_HM_012_MB_1_PA_14_ZK_6 

MZ_07_SE_15 BA_6_FH_014_FH_015 

WN_21_WN_22 BR_211_BS_109_FH_16 

ZK_001_ZK_01 DS_013_DS_14_PR_06 

 BS_107_BT_7_SE_013 

 CR_12_CR_15 

 CR_3_RG_2 

 CRB_3_RG_9 

 MB_03_SB_2 

 BS_10_SEW_1 

 

 

 


