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ABSTRACT 

ABSTRACT 

Gold, amongst other group 11 metals, was almost certainly one of the first three metals 

known to man. In addition to the economic importance of the metal, gold has a wide 

variety of applications in the medical, electrocatalytical and micro-electronics fields. 

However, the determination of gold ions in solution, with accuracy, precision, sensitivity 

and selectivity is still an interesting and much debated topic in analytical chemistry. 

A system whereby gold ions have been successfully detected employing an electrochemical 

technique, known as stripping voltammetry, has been developed. The electrochemical 

method was chosen over other available techniques for the sensitivity, particularly at low 

concentrations, and selectivity properties; notably in the presence of other metal ions. 

Under acidic conditions, the electrochemical technique was applied and the presence of 

gold(III), at a concentration of 2.53 x 10-5 mol dm-3 in a mine waste water sample, was 

detected. 

Biomass, in particular yeast and algal types, have been successfully employed in extracting 

low concentrations of gold ions from industrial effluents. The manipulation of the biological 

facility for mineral interaction, biohydrometallurgy, may yield numerous potential new 

technologies. South Africa in particular would benefit from this area of research, since the 

country is a major ore and metal refining country and if the output and the efficiency of the 

mines could be improved, even by a small percentage, the financial rewards would be vast. 

In this study, the application of adsorptive cathodic stripping voltammetry (AdCSV) of 

gold(III) in the presence of various Saccharomyces cerevisiae cell wall components, was 

investigated to determine which, if any, were involved specifically in the chemical binding of 

the gold ions. The chitin and mannan extracts showed the most promise with detection 

limits of 1.10 x 10-6 mol dm-3 and 9 x 10-9 mol dm-3
, respectively; employing the AdCSV 

technique. A modification of the stripping voltammetry technique, Osteryoung square wave 
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ABSTRACT 

stripping voltammetry (OSWSV), provided the lowest detection limit, for gold(IIl) in the 

presence of mannan, of 1.70 x 10-11 mol dm-3
; utilising a modified carbon paste electrode. 

The detection of gold(III) has been shown to be dependent on the type of electrode 

employed, the electrolyte solution and the presence of interfering agents. The effect of 

copper(II) and silver(I) on the detection of the gold(III) in solution was investigated; whilst 

the silver(I) has shown no detrimental effects on gold (III) detection systems, copper(II) has 

indicated the possibility of forming an inter-metallic compound with the gold(III). 

However, mannan has shown to selectively and preferentially bind the gold(III) in the 

presence of a ten-fold excess of copper(II). 

Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, as well as computer 

modelling techniques were employed to further investIgate the mannan-gold(III) interaction 

and proposed complex formed. The NMR, IR and computer modelling data are in 

agreement with the electrochemical data on proposing a mannan-gold(III) complex. The 

co-ordination site was established to be in the vicinity of the H-I and H-2 protons and the 

gold(III) adopts a square-planar geometry upon co-ordination. 

The benefits of the research are useful from a biological perspective (i. e. as more is known 

about the binding sites, microbiologists/biochemists may work on the optimisation of 

parameters for these sites or work could be furthered into the enhanced expression of the 

sites) and an industrial one. In addition to the' two major benefits, an improved 

understanding of gold and its chemistry would be achieved, which is advantageous for other 

fields of research as well. 

iv 



TABLE OF CONTENTS: 

CONTENTS: 

Title page 

Acknowledgements 

Abstract 

Table of contents 

List of abbreviations 

List of figures 

Chapter 1: General Introduction 

1.1: Metals as pollutants to a valuable resource: water 

1.2: Bioremediation of metal-laden effluents 

1.2.1: A general overview 
1.2.2: Structure of Saccharomyces cerevisiae: a possible biosobent 

1.3 : The electrochemical perspective of metal interactions 

PAGE: 

ii 

iii 

v 

viii 

ix 

1 

1 

3 

3 
5 

10 

1.3.1: The theory of electroanalysis 10 

1.4: 

1.5: 

1.3 .2: An overview of gold and associated redox potentials 13 
1.3.3: The advantages of electrochemistry as a detection tool for gold ions 16 
1.3.4: Problems associated with the electrochemical detection of gold 18 
1.3.5: Electrochemical stripping techniques applied 21 
1.3.6: The modification of electrodes 28 

Computer modelling, Nuclear magnetic resonance and infrared 
spectroscopy as techniques for studying metal-biomass interactions 

1.4.1: Computer modelling 
1.4.2: Nuclear magnetic resonance spectroscopy 
1. 4.3: Infrared spectroscopy 

Overall research aims 

v 

30 

30 
31 
34 

35 



Chapter 2: Experimental methods 

2. 1 : Reagents 

2.2: Apparatus employed 

2.3: Experimental procedure 

2.3.1: Anodic stripping voltammetric determination of gold(III) 
2.3.2: The adsorptive cathodic stripping voltammetry studies 
2.33: Infrared spectrophotometry 
2.3.4: Nuclear magnetic resonance spectometry 
2.3.5: Computer modelling 

Chapter 3: Electrochemical analysis of gold(III) 

3. I : Anodic stripping voltammetry determination of gold(III) 

3.2: Application of anodic stripping voltammetry to a mining sample 

3.2.1: Determination of interfering ions present in the sample 
3.2.2: Electrochemical investigation of a gold-bearing mine sample 

Chapter 4: The interaction of gold(III) with the yeast cell wall 
extracts 

4.1: Interaction of gold(III) with mannan 

4.1.1: Glassy carbon electrode studies 
4.1.2: Platinum electrode studies 

4.2: Interferences of copper(II) and silver(I) on the gold-mannan 
complex formation 

4.3 Yeast cell wall modified carbon paste electrodes 

4.3. 1: The mannan modified carbon paste electrode 
4.3.2: The chitin and glucan modified carbon paste electrodes 

vi 

37 

37 

38 

40 

41 
42 
45 
46 
47 

48 

48 

51 

51 
53 

55 

55 

55 
66 

69 

73 

73 
78 



Chapter 5: Additional analysis techniques for investigating 
gold - biomass interactions: 81 

5.1: The nuclear magnetic resonance (NMR) experiments 81 

5.2: The infrared spectroscopy study 87 

5.3: Computer modelling and energy minimisation techniques 90 

Chapter 6: The Conclusion 94 

References 96 

vii 



AdCSV 

ASV 

COSY 

CPE 

DPV 

FTIR 

GeE 

HOD 

ICP-MS 

IR 

OSWSV 

MCPE 

NMR 

RDP 

SEM 

List of Abbreviations 

Adsorptive Cathodic Stripping Voltammetry 

Anodic Stripping Voltammetry 

IH_IH homonuclear shift correlated spectroscopy 

Carbon Paste Electrode 

Differential Pulse Voltammetry 

Fourier Transformed Infrared 

Glassy Carbon Electrode 

Hydrogen Oxygen Deuterium 

Inductively Coupled Plasma- Mass Spectroscopy 

Infrared spectroscopy 

Osteryoung Square Wave Stripping Voltammetry 

Modified Carbon Paste Electrode 

Nuclear Magnetic Resonance spectroscopy 

Reconstruction and Development Program 

Scanning Electron Microscope . 

viii 



List of Figures Page: 

Figure 1. 1: The scanning electron micrograph of Saccharomyces cerevisiae cells. 6 

Figure 1.2 : The structure of mannan, chitin, chitosan and glucan polysaccharides. 7 

Figure 1.3: A simplified Pourbiax diagram for gold. 15 

Figure 1.4 : An illustration of the anodic stripping voltammetry technique. 22 

Figure 1.5: The adsorptive cathodic stripping voltammetry process 24 

Figure 1.6 : Excitation signal for square wave voltammetry. 27 

Figure 2.1: An illustration of the electrochemical cell utilising the three-electrode 
scheme. 38 

Figure 3.1' The anodic stripping voltammetry determination of gold(III) 50 

Figure 3.2 : The ASV reduction peaks observed in the mine water sample 52 

Figure 3.3: Anodic stripping voltammetry determination of gold(III) in a 

Figure 4.1: 

Figure 4.2: 

Figure 4.3: 

Figure 4.4: 

Figure 4.5: 

Figure 4.6: 

Figure 4.7: 

Figure 4.8: 

Figure 4.9: 

preconcentrated mine water sample, in the absence of mercury ions. 53 

The adsorptive cathodic stripping voltammograms obtained for gold (III) at a 
concentration in the absence ( a), presence (b) and of yeast and of yeast 
mann an alone (c) 57 

The dependence of the AdCSV peak currents on the deposition time for 
gold(III) in the presence of mann an. 59 

The dependence of the AdCSV peak currents on the deposition potential for 
gold(III) in the presence of mannan. 60 

The influence of the yeast mannan concentration on the AdCSV peak 61 

The variation of the concentration of gold (III) with the adsorptive cathodic 
stripping currents in the presence of mannan. 62 

The AdCSV peak for the reduction of gold(III) in the absence of mannan and 
mercury IOns. 64 

Variance of AdCSV currents with increasing gold(III) ion concentration. 65 

The scanning electron micrograph of the GCE surface in the presence of 
gold(IIl) 66 

The AdCSV on a platinum electrode in the (a) absence and (b) presence of 
mannan for gold(III) detection. 67 

IX 



Figure 4.10: The AdCSV ofgold(III) and copper(II) in the presence (a) and absence 
(b) of mannan 70 

Figure 4.11: Concentration versus stripping current obtained for gold(III) in the absence 
(a) and presence (b) of mann an (0.30 ~g rl) at a constant copper(lI) 
concentrations. 72 

Figure 4.12: The gold(III) (1.30 x 10-8 mol dm-3
) reduction peak observed in the absence 

and presence of mann an in the carbon paste electrode. 74 

Figure 4.13: The optimum percentage biomass (w.w) per total weight, required for a 
modified carbon paste electrode (MCPE). 76 

Figure 4. 14: The Osteryoung square wave potential scan adsorptive cathodic stripping 
voltammogram ofgold(III) (1.67 x 1O-!1 ~ol dm-3

) on a mannan MCPE. 78 

Figure 4.15: The gold(III) reduction on a chitin modified carbon paste electrode. 79 

Figure 5.1: The COSY spectrum obtained for the mannan extract at 30°C. 82 

Figure 52: The IDlH NMR spectrum obtained for mannan (lmg mr!) under non-
acidified conditions at a temperature of 30°C. 83 

Figure 5 3' The IDIH NMR spectrum obtained for mannan (lmg mrl) under acidified 
conditions at a temperature of30 dc. 84 

Figure 5,4 : The 1 OlH NMR spectrum obtained for mannan (lmg mr!) under acidified 
conditions in the presence of 1 00 ~l of gold (III). 85 

Figure 5.5: The infrared KEr disc spectrum obtained for the mannan extract. 88 

Figure 5.6 : The infrared spectrum obtained for the gold(III)-mannan complex. 89 

Figure 5.7 : The Newton-Raphson energy minimised structure for a section of the 
mannan biological macromolecule. 91 

Figure 5.8(a) : The space-filling model of the proposed gold(III)-mannan complex, 
indicating the favoured square-planar geometry adopted by the gold. 93 

Figure 5.8(b) : The stick model illustrating a section of the proposed gold(III)-mannan 
oo~~. ~ 

x 



CHAPTER ONE INTRODUCTION 

INTRODUCTION 

1.1 Metals as pollutants to a valuable resource: water 

Water is the most important, although often underrated, natural resource on earth. Water 

supply is related to the basic quality of human life and the aim of the Reconstruction and 

Development Program (RD.P) in South Africa is to supply every person in this country 

with 25 I of potable water (water fit for human consumption) per day within a radius of 

200 m of their residence. [1] 

The availability and quality of water are of paramount importance for socio-economic 

growth and development in South Africa. [2] At present, less than 10 % of the total water 

available to the South African population is used in industrial processes, whereas in the 

more developed countries industry presently accounts for more than 40 % of the water 

usage. Industrial development will result in increased demands on this valuable resource, a 

possible decline of water quality may occur and more stringent pollution control regulations 

will be enforced. [3] 

South Africa experiences inter-annual variability with drought and wet years occurring 

regularly and beyond the year 2020 the predicted demand for potable water will exceed the 

available supplies. [2] With such a high demand being placed on limited quantities of water, 

preventing or at least limiting its tainting by pollutants is essential. 

One of the most commonly encountered group of water pollutants are metals. Metal 

contamination of the lowest strata of the food chain will have cumulative effects 

throughout, an example of this fact is the 1950' s Minimata tragedy in Japan. [4, 5] The term 

'metals' is generally used to describe the highly toxic transition metals such as cadmium, 

lead and mercury, those toxic at high concentrations such as copper and cobalt, the precious 

metals including silver and gold and the radionuclides. [6 - 8] 
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CHAPTER ONE INTRODUCTION 

Sources of metal pollution include the nuclear power industry, defence and fuel 

reprocessing operations, surface finishing and electroplating processes, mining operations, 

smelting processes and the textile industries. [9] 

The mining industry, however, remains the single most important industry in South Africa. 

Despite the fact that mining activities constitute a minor usage of the national water supplies 

(less than 3 % ; the gold mining industry consumes a slightly higher percentage of 

freshwater, but recycles over 80 % back into the operation), the industry is a significant 

contributor to water pollution and hence will play an important role in the overall scheme of 

water availability and quality[lO] 

The proposed maximum limit of gold permitted in drinking water is 5 J..lg r1
, which is much 

lower than for lead (100 J..lg rl); a toxic heavy metal. [11] Toxicity is not the only 

disadvantage to the discharging of metals into the environment. Another salient point is 

that metals are expensive to locate, mine and refine. The slow natural formation of metal 

deposition results in metals being considered as a non-renewable resource and should thus 

be managed with care. [12] 

Research into the possibility of metal reclamation from discharged waste or minimising 

losses during metal processing presents the opportunity to produce cheaper final products, 

with a higher profit margin. For South Mrica in particular, the above area of research is 

one of singular importance, since this country is a major metal ore mining and refining 

nation, and the country contains a substantial percentage of the world's known valuable 

metal resources. [13] 

South Africa is one of the few countries in the world facing such an immediate water 

shortage and a dependence on a non-renewable resource (metals). Conservation effective 

measures against pollution and research into the recycling of the resources have been 

identified as the areas of importance by the relevant authorities for preservation. [14] 

2 



CHAPTER ONE INTRODUCTION 

1.2 Bioremediation of metal-laden effluents: 

1.2.1 A general overview: 

Bioremediation refers to a biotechnological process whereby metal ions are removed from 

waste waters. [15] The link between metal ions and micro-organisms is not a new one. 

Microbial fossils have been associated with high metal concentrations in various geological 

formations. Micro-organisms have long since been known to play important roles in the 

solubilisation and laying down of minerals in the natural environment. The strata of gold in 

the South African Vaal Reef, for example, may be the ,result of a prehistoric deposit of gold 

ions chelated to biological material in the sedimentary level of an ancient river bed. [16. 17] 

Moreover, during the last 200 years following the start of the industrial era, the 

redistribution of many metals has occurred forcing elevated levels into the environment of 

the microbes and other living organisms. In order to survive, the organisms have had to 

adapt to their environment necessitating higher metal tolerances and metal resistance levels 

for survival. The many varied reports of certain plant species, filamentous fungi, yeast, 

algae and bacteria all possessing metal remediation properties are thus not unexpected. lIS] 

Most biological matter may be viewed as potential metal biosorbents; that is possessing the 

ability to bind and concentrate various metals allowing for the eventual recovery of these 

metals and their re-incorporation into industrial processes. The term "biosorption" is now 

frequently used to encompass uptake by biomass via an energy-independent, physico­

chemical based interaction between metal ions and the surface of the species. [19] 

Bioremediation is a growmg field as effluent and water treatment become ever more 

important to industry. Interest in the utilisation of microbes in bioremediation has been 

stimulated by the fact that micro-organisms are ,found in almost every imaginable 

environment and are estimated to have their total cell biomass, on earth, of twenty-five 
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CHAPTER ONE INTRODUCTION 

times the total mass of animal life. Micro-organisms also offer a range of advantages 

including a wide range of biochemical activity, rapid growth rate and relatively simple 

experimental requirements in comparison to higher order life forms such as plants. [20) 

The recovery of metals from solution would be beneficial since the metal recovered may be 

subsequently desorbed from the biomass and recovered for re-use. The release of 

potentially toxic metals into the environment would also be restricted. Conventional 

existing metal removal technologies include metal ion exchange, evaporative recovery, 

electrochemical treatment and chemical reduction procedures. Bioremediation offers an 

alternative to these procedures. 

The ability to recycle the biomass and the use of waste biomass from industry as 

biosorbents, would increase the economic competitiveness of the bioremediation 

technology. Any disadvantages experienced by bioremediation methods, compared with 

existing technologies, could be compensated for by the high metal binding capacity and 

selectivity of the micro-organism for certain metals. Waste yeast biomass, for example, 

represents a good source of biosorbent; because it is cheap, easily recovered at the end of 

fermentation and is produced in large quantities.[21) 

The method of biomass metal recovery is organism and species dependent. However, the 

metal uptake procedures occur via several known pathways, such as: (1) biosorption of the 

metal ion onto microbial cell surface, (2) intracellular uptake of metals, or (3) their 

precipitation through compound formation with microbially-produced ligands. The latter 

two processes have found some use in the water purification and mining fields, but suffer 

from the disadvantage that living organisms are required for these processes. [221 

The utilisation of surface-bound recovery processes, however, has a number of advantages 

over the latter two methods. The surface-bound process functions equally well, or even 

more effectively with a suspension of dead cells, which can suffer de-naturation of the cell 
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CHAPTER ONE INTRODUCTION 

wall and allow free access to cell wall binding sites; additionally nutrient material costs 

required by viable cells would be averted. [23] 

Until recently, activated carbon has been employed in the adsorption and recovery of gold 

from aqueous solutions (the carbon-in-pulp process). However, the manufacture and 

regeneration of this material provided several constraints and represent a major portion of 

the operating costs of a conventional sorption process. The use of biosorbents from natural 

sources, which may possess a superior sequestering power compared to commercially used 

ion exchange resins or activated carbon, would represent a substantially cheaper alternative 

recovery process and would enhance the effectiveness and feasibility of metal recovery 

method. [24] 

1.2.2 Structure of Saccharomyces cerevisiae: a possible biosorbent 

Yeast microbes are the most important and extensively used micro-organisms in industry 

today. Various strains of yeast have found applications in the brewing, baking, animal feed, 

food supplement and distilled beverage industries to name a few.[25] The most commonly 

encountered strain is S. cerevisiae. Although essentially a brewing yeast, the use of 

S. cerevisiae in the bioremediation of metal contaminated waters has gained considerable 

interest oflate[21] 

S. cerevisiae has been linked to the bioremediation of several heavy metals, including 

cobalt(II), copper(II) and cadmium(II), as well as the removal of precious metals, such as 

silver, from various waste water sources. The scanning electron micrograph in Figure 1.1 

shows the S. cerevisiae cell morphology. 
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CHAPTER ONE INTRODUCTION 

Figure 1.1: Scanning electron micrograph of Saccharomyces cerevisiae cells. 

Fungal metal uptake is essentially a biphasic process consisting of metabolism-independent 

and metabolism-dependent steps. The initial biosorption step is rapid, typically only a few 

minutes in duration and is independent of temperature, metabolic energy, the presence of a 

metabolisable energy source and metabolic inhibitors. The initial binding phase has been 

attributed to microbial cell wall interactions, although in some cases extra cellular polymers 

may be responsible. 

Biosorption is exclusively responsible for metal accumulation by non-viable biomass owing 

to the absence of metabolic activity necessary for intracellular metal accumulation. Metal to 

biomass ratios below 100 nmol gO! have indicated that metal accumulation then depends 

almost entirely on the biosorption of the metal ions to the cell wall The ranging affinities of 
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CHAPTER ONE INTRODUCTION 

microbial cell walls for specific metal ions may be attributed to differences in cell wall 

composition and chemistry.[26] 

The wall fraction of the yeast cell, S. cerevisiae, has a layered structure and is 70 + 
10 nm thick. The bilayered structure consists mainly of intermeshed polysaccharide 

microfibrils, separated into an inner amorphous net of'microfibrils and an interwoven fibillar 

outer layer. Mannan constitutes 31 %, glucan 28.8 % and chitin and chitosan are each 

responsible for 1 % of the total dry mass of the cell. [13, 27] The structure of mannan is 

illustrated in Figure 1.2(a). 

MAIN CHAIN LINK 

s: yCH}---2 -:H ;t:r---o 
o OH 

~---o 

Figure 1.2(a): The structure of mannan; as. cerevisiae cell wall polysaccharide. 

In yeast, the mannan is found as a covalently linked protein-polysaccharide complex of 25 

to 500 kDa, of which the protein usually only contributes 5 to 10 %. Mannan is a polymer 

of mannose monomers forming a main chain linked via a(1,6) bonds and side chains with 
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a(I,2) and a(I,3) bonded mannose residues, which branch from the main chain via a(l,2) 

links. The outer mannan-protein layer of the yeast cell has been shown to be more 

important than the inner glucan-chitin layer in the binding of certain metal cations. [27,28] 

Chitin is a polymer of the N-acetylglucosamine residues linked via f3(l,4) glycosidic links 

and associated with a protein component too. The chitin is found as microfibrils in the inner 

layer of the cell wall in the glucan matrix. Chitosan is the deacetylated version of chitin and 

is located naturally in most fungal cells. [271 The structure of the chitin, and chitosan 

polymers are illustrated in Figures 1.2(b). 

MAIN CHAIN LINK 
P 1,4 

,)-----0 

R 

o 
/I R 

CHITIN: R = NHCCH3 

R CHITOSAN: R= NHz 

Figure 1.2(b): The central motif of chitin and chitosan. 

The dissociation of the amine in solution provides heavy metal co-ordination sites via the 

lone pair of electrons, for the chitin extract, as seen in Equation (1.1 )[13] 

R-N+:H + H20 B R-N: + H30+ .............. Equation (1.1) 
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Glucan, a polymer of P(l,3) linked glucose with P(l,6) branches, is primarily located on the 

cell membrane side of the cell wall. The glucan polysaccharide has not been considered 

previously as a primary candidate for heavy metal binding. However, as a result of the high 

percentage of glucan present in the yeast cell wall, an indirect binding metal cation binding 

system is proposed. [18.27,28] The structure of the glucan polysaccharide is depicted in 

Figure 1.2 (c). 

CH2 0H 

r---O 

SIDE CHAIN LINK 

~ 

CH2 0H 

OH 

OH 

Figure 1.2(c): The structure of the glucan polysaccharide of S. cerevisiae. 

In addition to the polysaccharide components, proteins and lipids occur within the wall. A 

small percentage of the cell wall may be comprised of inorganic ions such as calcium and 

magnesium. The isolated components of the cell wall have been shown to accumulate 

greater quantities of various cations than the intact cell wall, whilst the adsorptive capacity 

of the yeast cell wall for heavy metals is not determined by the protein component alone. 

However, the structural organisation of the entire protein carbohydrate-complex and the 

degree of dissociation of the negatively charged functional groups has increased their 
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accessibility to metal-binding. [26) The metals concerned in these studies have chiefly been in 

the toxic heavy metal group. Trials on precious metals, such as silver, have recently been 

investigated, but to date the binding capacities of the various components, to the gold ions, 

have not been examined. [21,26,27) 

1.3 The electrochemical perspective of metal interactions: 

To date, electrochemical methods continue to be of importance in the environmental water 

analysis processes, particularly in the trace metal detection fields. (29) 

1.3.1 The theory of electroanalysis: 

Electroanalytical techniques are concerned with the interplay between electricity and 

chemistry, namely the measurements of electrical quantities, such as current, potential, and 

charge and their relationship to chemical parameters. In contrast to many chemical 

measurements, which involve homogenous bulk solutions, electrochemical processes take 

place at the electrode-solution interface. The two main types of electroanalytical 

measurements are potentiometric and potentiostatic. Potentiometry is a static (zero 

current) technique in which information about the sample composition is obtained from 

measurement of the potential established across a membrane. 

Potentiostatic (controlled potential) techniques are based on dynamic situations (no zero 

current). Here the electrode potential is used to drive an electron-transfer reaction and the 

resultant current is measured. Any chemical species that is said to be electroactive, i.e. that 

can undergo oxidation or reduction, can be measured by potentiostatic techniques. Both 

types of electro analytical techniques require at least two electrodes (conductors) and a 

contacting sample ( electrolyte) solution, which constitute the electrochemical cell. The 

electrode surface thus acts as a junction between an ionic and an electronic conductor. [30J 
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CHAPTER ONE INTRODUCTION 

One of the two electrodes will respond to the target analyte( s) and is thus termed the 

indicator (or working electrode). A suitable working electrode should provide high signal­

to-noise characteristics, as well as a reproducible response. The second electrode, termed 

the reference electrode, is of constant potential (that is, independent of the properties of the 

solution) to which other potentials of the system may be referred to in terms of a potential 

difference, with respect to the chosen reference potentiaL A suitable reference electrode is 

required to have a potential that is stable with time and temperature changes, and which is 

not altered by small perturbations to the system (i.e. by the passage ofa small current).!3l] 

The requirements imposed on the working electrode are as follows: electrochemical 

inertness over a broad potential interval; high hydrogen and oxygen evolution over-voltage; 

low residual current (absence of pores and pronounced roughness of the surface); low 

ohmic resistance; and the possibility of a sufficiently simple surface regeneration. All these 

factors should provide high accuracy, sensitivity and reproducibility of the results and low 

detection limits. Unfortunately there are no electrodes that satisfY all the requirements 

needed. The chosen working electrode should, however, strive to fulfil the majority of 

these requirements under the specified experimental conditions. [32] 

Despite the adequacy of the two electrode system, a three electrode approach is preferred 

since a major portion of the cell resistance is compensated for by the presence of an 

auxilIary electrode and a series of operational amplifiers and current loops. The auxilIary 

electrode is the current-carrying electrode and is placed in solution to complete the current 

path. Current flow has now been removed from the reference electrode, which has been 

placed closer to the working electrode, causing a potential drop to be minimised and hence 

decrease the cell resistance. [30, 3l, 33] 

Since potentiostatic techniques were employed in this study a closer look at the theory of 

this group of techniques is required. The objective of controlled-potential electro analytical 

experiments is to obtain a current response which is related to the concentration of the 
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target analyte. This objective is accomplished by monitoring the transfer of electron(s) 

during the redox process of the analyte: 

o + ne- <---> R ........... Equation (1.2) 

where 0 and R are the oxidised and reduced forms, respectively, of the redox couple. The 

above reaction will occur in a potential region that makes the electron transfer 

thermodynamically or kinetically favourable. For systems controlled by the laws of 

thermodynamics, the potential of the electrode can be used to establish the concentration of 

the electro active species at the surface [Co(O,t) and CR(O,t)] according to the Nernst 

Equation: 

E = EO + 2.303 RT log Co{QJ} .......... Equation (1.3) 

n F CR(O,t) 

where EO is the standard potential for the redox reaction. The R term is the universal gas 

constant (8.314JK-1mor1
), T the temperature in Kelvin, n the number of electrons 

transferred in the reaction and F is the Faraday constant (96 487 coulombs per mole of 

electrons). The resulting current-potential plot, known as the voltammogram, is a display of 

current signal (vertical axis) vs. the applied potential (horizontal axis). The exact shape and 

magnitude of the response are governed by the process involved in the electrode reaction. 

The total current is a summation of the faradaic currents for the sample and blank solutions, 

as well as the non-faradaic charging background current. The pathway of the electrode 

reaction can be quite complicated and takes place in a sequence that involves several steps. 

Simple reactions involve only mass transport of the electroactive species to the electrode 

surface, the electron transfer across the interface and the transport of the product back to 

the bulk solution. More complex reactions include additional chemical and surface 

processes which precede or follow the actual electron transfer. The net rate of the reaction, 
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and hence the measured current, may be limited either by mass transport of the reactant or 

by the rate of electron transfer. The more sluggish process will be the rate-determining 

step. A given reaction may be controlled by mass transport or electron transfer, which is 

usually determined by the type of compound being studied and by the various experimental 

conditions applied (chosen electrode material, operating potential, mode of transport, time­

scale etc.). 

Mass transport occurs via three different modes: (1) Diffusion - the spontaneous movement 

under the influence of concentration gradient, i. e. from regions of high concentrations to 

regions of lower concentrations of the sample, aimed at minimising concentration 

differences. (2) Convection- transport to the electrode by a gross physical movement; such 

fluid flow occurs by stirring or flowing the solution and by rotating or vibrating the 

electrode (i.e. forced convection) or because of density gradients (i.e. natural convection). 

(3) Migration- movement of charged particles along an electric field (i.e. the charge is 

carried through the solution by ions according to their transference number). [30,31,33.34] 

1.3.2 An overview of gold and associated redox potentials: 

Gold is perhaps the most beautiful of the chemical elements and has been known, used and 

treasured by man since the earliest times. Despite the economic and monetary importance 

of the metal, gold has found a wide variety of other uses in the medical, electroanalytical 

and micro-electronic fields. The determination of gold ions, in solution, with accuracy, 

precision, sensitivity and selectivity remains a topic of interest in analytical chemistry today 

still. [35, 36] 

The element gold, has an atomic number of 79 and is found in group 11 of the Periodic 

Table; along with platinum and silver. Naturally occurring as a single, stable isotope of 

atomic mass equal to 196.967 g mor I
, gold has an electronic configuration of [Xe] 4f 14 

5d 10 6s I. Common oxidation states include 0, 1, 3 and the less common oxidation states of 
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2 and 5 have been documented for complexes containing only one gold atom. However, 

many complexes with gold-gold bonds, in which it is difficult to assign formal oxidation 

states to the gold atom, have also been noted. [37,38] 

The gold metal is the most noble of metals which can react with various oxidising agents at 

ambient temperatures, provided a good ligand is present to lower the redox potential below 

that of water. Attack by most acids, under ordinary conditions, does not occur for the gold 

metal and it is also stable in basic media. However, gold does dissolve in 3: 1 hydrochloric­

nitric acid (aqua regia) to form HAuCl4 and in alkaline cyanide solutions in the presence of 

air or hydrogen to form [AuCNL these reactions are important to the extraction and 

refining of the metal. 

Redox potentials, in the absence of co-ordinating ligands, are useful for understanding the 

nobility of gold; thus for gold to react it must be oxidised e.g. Au ---7 Au + + e-. The 

tendency for this reaction to take place is given by the Nernst equation (see Equation (1.3)), 

where EO is the standard electrode potential, estimated to be + 1.70 V, versus the normal 

hydrogen reference electrode, for gold at 25°C, and the equation is reduced to: 

E 1. 70 + 0.059 IOglO [Au +] ..•••••••• Equation (1.4) 

Similar expressions may be derived for alternative oxidation processes: 

where E - 1.50 + 0.020 IOglO [Au3+] ..•.•• Equation (1.5) 

where E 1.46 - 0.059.pH Equation (1.6) 
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where E 2.63 - O.059.pH ......... Equation (1.7) 

The above reaction systems can be expressed graphically in the Pourbiax diagram, in which 

the equilibrium potential of each couple is plotted against the pH for a particular 

concentration; as illustrated in Figure 1.3. 
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Figure 1.3 A simplified Pourbiax diagram for gold. 

(Adapted from: 'The chemistry of gold', by R. J. Puddephatt.(381) 

A simplified Pourbiax diagram for gold (concentration of the order of 10-4 mol dm-3
), as 

shown in Figure 1.3, indicates the conditions under which particular species are expected to 

be formed. The dotted lines (1) and (2) represent the stability limits for water. 

The oxidised forms of gold only exist at potentials greater than for line (1). Under these 

conditions, water will be oxidised to oxygen and the various oxidised gold species will be 

reduced to gold metal. In the absence of co-ordinating ligands, gold cannot be oxidised by 

15 



CHAPTER ONE INTRODUCTION 

dissolving oxygen in the presence of either strong acids or alkalis. Gold is thus, truly the 

noblest of the metallic elements. [38] 

1.3.3 The advantages of electrochemistry as a detection tool for gold ions: 

Gold is one of the first three metals known to man, however the quantitative and qualitative 

determination of gold ions with accuracy, sensitivity and selectivity remains an ongoing 

topic of interest. [35,36] The method chosen to determine the gold depends on the state of the 

sample to be analysed, the expected gold content and the interfering impurity levels. Many 

of the available methods require the conversion of the gold sample to a soluble form such as 

[AuCI4]". Gravimetric and titrimetric assays provide useful bulk assay methods in 

determining the presence of gold ions, such as from the ore sample. 

Spectrophotometric methods have a lower detection limit and may even be useful in trace 

element analysis. However, to avoid interferences by other metal species, the technique 

requires the extraction of the gold ions into an organic solvent, or in other methods various 

reagents, such as Rhodanine, need to be added to the sample to form coloured complexes, 

which can then be viewed in the visible spectrum. Another disadvantage of the 

spectrophotometric method, is that the oxidation state of the gold ion is not distinguishable 

from this method. [37 - 39] 

Emmission spectrography, atomic absorption and neutron activation instrumental 

techniques are all particularly useful for the determination of trace quantities of gold. The 

trace level detection limits, however, require the use of these techniques in conjunction with 

solvent extraction methods. Emission spectrography can detect small quantities of gold in a 

metal sample in the range ofO.S-20ppm, as well as the purity level of the gold in the sample. 
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Atomic absorption techniques have a detection limit in the region of 10-8 mol dm-3 
In 

solution and tend to obviate extensive sample preparation. Disadvantages of the atomic 

absorption technique include the susceptibility of this technique to the presence of other 

interfering ions, the sensitivity to pH and rigid experimental parameters (which may be 

overcome with the use of the solvent extraction technique) and the inability to determine the 

oxidation state of the gold ion in solution. 

Neutron activation has been hailed as one of the most sensitive techniques for gold analysis 

with accurate determination levels of 1 ppb. The sensitivity arises from the high-neutron 

capture cross sections of the only natural isotope, 197 Au. The disadvantage of this technique 

includes the sample preparation and the result of ~ and y emmisions. The neutron activation 

technique is thus, not suited for studying the interaction of metal ions and biological 

substrates. [37,38,40] 

Inductively Coupled Plasma-Mass Spectrom~try (ICP':MS) offers another alternative to the 

determination of gold ions in solution. The technique has been used in a wide variety of 

applications, including biological fields and is useful in the speciation detection of the gold 

samples. The ICP-MS technique is a combinatorial technique and thus, posses enhanced 

sensitivity, accuracy and selectivity in comparison to any of the single techniques mentioned 

above. 

However, the compromise for the advantages of the ICP-MS technique is in the form of the 

sharp increased cost and the lack of portability of the equipment. Detection limits tend to 

vary depending on the sample and the context (typically around 10-9 mol dm-3
), however, a 

limitation of the ICP-MS technique is that the sample must contain less than 0.2 % total 

dissolved solids, since the nebulizer becomes blocked easily. Dilution of the sample may 

overcome this problem, but a loss in sensitivity is then experienced. [41,42] 
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Electrochemistry on the other hand, a single technique, offers the advantages of high 

sensitivity, selectivity toward electro active species, portable and fairly low cost 

instrumentation, speciation capability, rapid multi-component determinations without 

requiring metal enrichment techniques and a wide range of electrodes that allow assays of 

unusual environments.[30, 43] Extremely low (nanomolar) detection limits can be achieved 

with very small (5 - 20 rnI) sample volumes, thus allowing the determination of analyte 

amounts of 10-13 
- 10-15 mol dm-3 on a routine basis (depending on the type and context of 

the analyte). 

Electrochemical metal ion speciation is unique for that ion and its oxidation number, since 

there is only one assigned redox peak potential for a redox couple. The simultaneous 

detection of other metal ions in solution is possible, provided the metal ions do not posses 

overlapping peak potentials. Electrochemistry depends on the electrolytic deposition step 

for the preconcentration of trace components and thus has the advantage of minimising the 

risk of contamination, since little or no reagent has been added. A further advantage of this 

technique is the flexibility of combinations with other detection techniques, such as the 

chromatographic or optical procedures, resulting in even further enhanced 

sensitivities. [30,31,33,34,37] 

1.3.4 Problems associated with the electrochemical detection of gold: 

A major problem in the electrochemical stripping analysis for gold(III), and other oxidation 

states of the gold ions in solution, is to find a suitable electrode onto which elemental gold 

can be deposited for subsequent stripping. The deposition of elemental gold onto the 

carbon or platinum electrode is hampen~d by the slow nucleation process. [44] The nucleation 

and growth process, during the metal deposition, has been shown to be pH, complexing 

agent and potential dependent. 
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The temperature and nature of the substrate are also important factors and changes in either 

provoke modification of the type of nucleation obtained. For example, at temperatures 

below 50°C there is a progressive nucleation and growth process observed, however, 

above this temperature, crystal growth occurs without new nucleation formation and is 

indicative of instantaneous nucleation processes. [45] 

Attempts have been made to deposit gold (from a standard gold solution in which the 

concentration and oxidation state of tht: metal ion was known) directly onto a platinum or 

glassy carbon electrode, using pulsed potential electrolysis. The precision obtained was 

satisfactory, as would be expected from a relatively pure substance, but the accuracies were 

poor. The reason for this, as seen with the silver ions, may be attributed to the slow initial 

nucleation process on the working electrode surface. In order to obtain reproducible 

deposition results for gold(III), a concentration exceeding 200 J..lg r1 of gold ions in solution 

should be maintained. [44] 

Another problem associated with the electrochemical determination of gold ions, is the 

natural presence of interfering cations such as copper(II), silver(I), mercury(I) and iron(III) 

in the gold sample. The interfering cations, as well as some interfering anions, may be 

present in the sample solution and will compete for electrode surface space during the 

preconcentration step and/or complex with the gold ions in solution. Solvent extraction 

chemistry has largely solved the problem of interfering ions. However, the solution is both 

costly and time consuming to industry, not to mention the complications that arise in the 

analysis of complex samples such as mining effluents, making this a rather unattractive 

option. [45,46] 

Apart from the chemical problems associated with the nature of gold atoms, practical 

experimental problems occur as well. The choice of the electrode will affect the detection 

limits of gold ions in solution. Common electrode choice includes the carbon fibre, 

platinum, gold, glassy carbon, carbon paste and modified carbon paste electrodes. 
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The unmodified electrodes are plagued by the nucleation problem, whilst modified 

electrodes are not easily regenerated and are often time consuming with the preparation 

time before numerous experiments can be run one after each other. Carbon paste electrodes 

tend to lack sensitivity and selectivity, however, the modified electrodes usually make up for 

this deficit, but at the cost of effective regeneration of a clean electrode surface and hence 

reliability of the peak obtained. [44 -46] 

Noble metal electrodes are inclined to be lacking in reproducibility of the stripping peaks, 

both quantitatively and qualitatively. The oxide film formation, in oxidising and non­

complexing media, (as in the case of gold) has been the reason attributed to the 

irreproducibility of the stripping peaks.[47] An example of this is the polycrystalline gold 

disc electrode in aqueous acidic media, which undergoes oxidation at its surface to AU203 in 

the presence of water and sulphuric acid. [48] The platinum noble metal electrode is more 

likely to fall prey to the chloride film formation at its surface in the presence of hydrochloric 

acid. 

In constant current stripping analysis experiments for gold(III) ions on carbon fibre and 

platinum electrodes, both carbon and platinum electrodes have been shown to work equally 

well in the determination studies. However, the carbon fibre is preferred of the two 

electrodes studied; since the platinum electrode has the ability of forming inter-metallic 

compounds at its surface (e.g. antimony) and the hydrogen over-potential is also higher on 

the platinum electrode[45, 46] 

Consequently in addition to the usual parameter choices in electrochemical experiments, 

(electrode choice, stirring rate, deposition times and selected potentials etc.) one has to take 

into account the effect of the gold nucleation problem and the problems of the other metal 

ions associated with the gold. The stripping solution ( or electrolyte) present, the chosen 

electrochemical detection technique and the presence or absence of co-deposition ions will 

all effect the determination of gold(III) ions. 
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1.3.5 Electrochemical stripping techniques a.pplied: 

The quantitation of trace and ultratrace components in complex samples of environmental, 

clinical or industrial origin represent an important task of modern analytical chemistry. In 

the analysis of such dilute samples, the employment of some type of preconcentration step, 

prior to actual quantitation, is required. The main objective of the preconcentration step is 

enrichment of the sample, however, the step may also serve to isolate the analyte from a 

complex matrix and hence result in improved selectivity and stability. 

Electrolytic deposition represents an efficient method for the enrichment and isolation of 

trace components. Stripping analysis is the best-known analytical technique that 

incorporates an electrolytic preconcentration step. The technique couples the advantages of 

extremely low detection limits (~1O- 1O 
- 1O-11 mol dm-3

), multi-element and speciation 

capabilities, suitability for on-line and in situ measurements and a low cost factor. [30,311 

Anodic Stripping (Linear sweep) Voltammetry (ASV): 

Anodic stripping voltammetry characteristically involves the reduction of a metal ion to the 

metal form which is then dissolved in a small volume of mercury (characteristically a thin 

mercury film or a hanging mercury drop) to form a metal-mercury amalgam. The formation 

of a metal-mercury amalgam signifies the end of the preconcentration (or accumulation) 

step. The preconcentration of the metal is accomplished by cathodic deposition at a 

controlled potential and time. The deposition potential is at least 0.3 - 0.5 V more negative 

than EO for the least easily reduced metal ion to be determined. 

The stripping step follows the preconcentration step. The positive-going potential scan 

results in the oxidation of the metal in the amalgam and the stripping of the amalgamated 

metal out of the electrode, in an order that is a function of the standard potential of that 

metal. The stripping step may be carri{~d out in a linear fashion, referred to as linear sweep 
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stripping voltammetry, or in a more sensitive mode known as a pulsed, or a potential-time 

wave form, technique.(491 The diagrammatic representation of the linear sweep potential 

scan anodic stripping voltammetry process is illustrated in Figure 1.4. 

The Accumulation Step 

The Stripping Step 

TIME 

Figure 1.4: An illustration of the Anodic Stripping Voltammetry technique. 

(Adapted from: 'Analytical Electrochemistry' by J.Wang.(301) 

Mercury is not considered to be a suitable electrode material for the determination of gold 

ions by anodic stripping voltammetry, as mercury has an oxidation potential considerably 

less positive than that of gold and a tendency to dissolve in the gold substrate.(31) The gold 

accumulated at the electrode will always oxidise at more positive potentials than mercury, 

irrespective of the complexing agents present in the stripping solution. A suitable organic 

solvent, in which gold is oxidised cathodic to mercury, has not been found as yet. 1441 
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However, attempts made to deposit gold directly onto platinum and carbon type electrodes 

are often hampered in the preconcentration step as a result of the slow nucleation process 

occurring at the electrode surface. A compromise on the conventional ASV technique has 

been developed by Huiliang et al .. [44] Pulsed potential electrolysis was applied and the 

technique required the co-deposition uf mercury and gold onto the working electrode, 

followed by the intermittent re-oxidising of the mercury, permitting the gold to be 

unoxidised and attached to the electrode surface. [44] 

In the pulsed potential experiments, conducted by Huiliang et aI., two peaks were observed 

in the final stripping run. [44] The two peaks were clearly separated and the peak due to 

gold(III) could easily be determined with greater reliability than that observed with the 

unmodified carbon or platinum type ekctrodes. [44, 50] 'Gold, to date, has not been routinely 

determined by anodic stripping voltammetry; particularly in the commercial laboratories 

since the omission of mercury from ASV for gold detection has resulted in unsuitable 

precision and detection limitsY 1
] 

However, with the success of the mercury and gold co-deposition experiments by Huiliang 

et al. [44], conventional linear sweep potential scan ASV (i.e. utilising mercury) was 

attempted in this study for the detection of a known concentration of gold(III). The study is 

aimed at applying the refined ASV technique to a mine sample for the benefit of the South 

Mrican mining industry. 

Adsorptive Cathodic Stripping Voltammetry (AdCSV): 

Adsorptive stripping analysis greatly enhances the scope of stripping measurements toward 

numerous trace elements. The stratl~gy is relatively new and involves the formation, 

adsorptive accumulation and reduction of a surface active complex of the metal. A 

negative-going potential scan or a constant cathodic current can be employed for measuring 

the adsorbed complex. 
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Reduction of the metal species in the adsorbed complex is most common, however, the 

possibility of reduction of the ligand may also be exploited. [30] Redox speciation may also 

be obtained from the adsorptive stripping voltammetry experiments, since any oxidation 

state can be accumulated unlike the metallic state in the case of anodic stripping 

voltammetry.[49] The adsorptive cathodic stripping voltammetry process is illustrated in 

Figure 1.5 and the stripping step is depicted in the square wave potential scan format. 
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Figure 1.5: The accumulation and stripping steps in the adsorptive cathodic stripping 

measurements of a metal ion(Wn) in the presence of a ligand (L). 

(From: 'Analytical Electrochemistry', by 1. Wang. [30]) 

The selectivity of the chemical step (complex formation) can be used to increase the overall 

selectivity of the analysis. A ligand capable of binding only a few metals should make 

possible the formulation of a highly selective scheme, whilst controlled adsorptive 

accumulation at stationery electrodes permits substantial enhancements of the electrode 

surface concentration of the complex. 
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Apart from extending the scope of stripping voltammetry, the metal complex adsorption 

approach offers alternative, and often improved, schemes for measuring 'difficult' metals. 

The term "difficult' metals refers to the group of metals that have extreme redox potentials, 

may form inter-metallic compounds or that suffer from poor selectivity. [31, 52] 

A need to develop ligands that may increase the sensitivity and selectivity of metal ion 

determination has been expressed. [52] Ligands such as catechol and oxine have been 

documented for the detection of a ,vide range of metal ions including copper, Iron, 

molybdenum, uranium and tin. [30, 52] A substituted form of resorcinol, 4-(2-Pyridylazo) 

resorcinol, was employed in the successful spectrophotometric determination of 

gold(III). [53] 

However, to date, there have been no adsorptive cathodic stripping studies completed on 

any of the yeast cell wall extracts as possible ligands for gold(III) determination. Linear 

sweep- and the square wave- potential scan adsorptive cathodic stripping voltammetry were 

utilised in this work, to investigate the relationship between mannan (a polysaccharide yeast 

extract) and gold(III) in the bioremedia.tion studies completed. The aim of this work is to 

better understand the gold ion uptake by the yeast S. cerevisiae. 

Square Wave Stripping Voltammetry: 

Square wave voltammetry was invented in 1952 by Barker, but little use was made of this 

technique at the time owing to difficulties with the controlling electronics. Advances in 

instrumentation has allowed this technique to become an important tool in analysis.[31] 

Square wave voltammetry is defined as a large-amplitude differential technique in which a 

wave form composed of a symmetrical square wave, superimposed on a base staircase 

potential, is applied to the electrode. [30, 54] 
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A variety of square wave forms exist and this has lead to a fair amount of confusion, since 

the wave forms employed have simply been described as square waves. There are in fact 

three main types of square wave formats namely: Barker, Kalousek and Osteryoung 

employed in square wave voItammetry. 

The Barker format is the simplest to visualise since the wave form is a direct analog to the 

sinusoidal ac voltammetry form. The format employs a symmetric square wave of 

frequency 'f and amplitude 'dE' riding on either a ramp or slow staircase wave form. 

Barker square wave methods are characteristically employed in conjunction with mercury 

drop electrodes and multiple cycles of this type of square wave is applied to each drop of 

mercury. 

The Kalousek method is characteristically employed in square wave polarography and is 

termed the Kalousek Type III. Kalousek formats employ a lower frequency method which 

measures the current only on the reverse half wave cycle of the square wave. Extreme 

sensitivity to the electrochemical reversibility of the couple and the chemical stability of the 

product of the forward step are known characteristics of the Kalousek Type III form. [55) 

The most common form of square wave today was first proposed by Ramaley and Krause, 

however, this form is most closely associated with the Osteryoungs as a result of their many 

publications in this field. [56, 57) The Osteryoung wave form, as it is now termed, differs from 

the other two formats in that the base potential (potential of the staircase) increases by 'dE' 

for each full cycle of the square wave whose half height is 'Esw' and whose period is '1'. 

The Osteryoung wave format may be applied to stationery, as well as drop electrodes. [58) 

The general response obtained from square wave formats is the difference between the 

current sampled at the end of the forward pulse and the current sampled at the end of the 

reverse pulse within a given wave form cycle. The diagrammatic representation of the 

square wave voltammetry technique is illustrated in Figure 1.6. 
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Figure 1.6: Excitation signal for square wave potential scan voltammetry. 

(Adapted from: 'Analytical Electrochemistry', by 1. Wang. [301) 

Advantages of the square wave technique include enhanced sensitivity over linear sweep 

potential scan forms, greater speed in analysis and reduced problems with the blocking of 

the electrode surface compared to the differential pulsed techniquesyl1 Barker and 

Osteryoung square wave potential scan stripping voltammetry was applied to the 

determination of the gold-mannan complex, in an effort to enhance the detection limit of 

gold ions in solution. 
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1.3.6 The modification of electrodes: 

At a modified electrode, the electrode surface has been deliberately altered by adsorption, 

physical coverage or by the bonding of specific species to the surface. [31] Chemically 

modified electrodes comprise a relatively modern approach to electrodes systems, which 

have found numerous uses in a wide spectrum of basic electrochemical investigations and in 

the design of electrochemical devices for chemical sensing. The key to electrode 

modification is to build in chemical sensitivity and selectivity into the electrode function. 

The detection of the analyte of interest, will be selective by the modified electrode and aim 

for the exclusion of other unnecessary constituents and reactions. [30,31, 59] 

Electrodes which have an electro active mediator attached or incorporated into them are 

termed chemically modified electrodes. Modified electrodes often give rise to currents that 

are higher than in the absence of a modifier and in. certain instances the modifier, in a 

supporting electrolyte alone, displays voltammetric characteristics of the immobilised 

species. Several methods exist for the preparation of a chemically modified electrode; these 

include the drop-dry method, electrochemical deposition and the manufacture of carbon 

paste and modified carbon paste electrodes. [59,60] 

The Carbon Paste and Modified Carbon Paste Electrodes: 

The carbon paste electrode (CPE) was invented to be used in positive potential ranges 

where mercury electrodes are not applicable, as wtdl as to act as a renewable carbon 

electrode surface. Carbon paste electrodes tend to demonstrate lower background currents 

compared to solid graphite or noble metal electrodes. [61, 62] Typically detection limits for 

carbon paste type electrodes range in the order of 1.00 x 10-9 mol dm-3
. However, a 

disadvantage of carbon paste electrodes is the reproducibility factor compared to mercury 

electrodes or sensors made of compact materials (noble metals or glassy carbon), but the 

reproducibility is quoted to be better than other types of solid carbon electrodes. [31,63] 
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Carbon paste consists of a mixture of carbon/graphite powder with a liquid binder and is 

prepared by mixing the two components together. The usual particle size of graphite 

materials ranges between 5 and 20 11m; larger particles produce a more rough texture and 

unfavourable mechanical and electrochemical properties. The required properties of the 

particulate component of the paste are uniform particle size distribution, high chemical 

purity and low adsorption capability for oxygen and electro active impurities. The binder or 

pasting liquid should be electro inactive: and chemically inert, immiscible with the analyte 

solution, minimally volatile and free of electro active impurities. (63) 

Unmodified carbon paste electrodes are frequently employed in routine electroanalytical 

chemistry, mainly for stripping analysis after deposition of analytes as metals, (e.g. gold or 

silver) or as insoluble oxides (e.g. manganese or lead). However, on the addition of a 

modifier to the paste electrode improved detection limits, along with enhanced selectivity of 

the interested species, have been observed. In most instances, due to the simplicity of the 

procedure, the modifier is added directly to the paste material. (63) 

Modified carbon paste electrodes (MCPE's) have found use in a variety of applications. 

Wang et al. were the first to utilise biomass modified electrodes for the accumulation of 

analytes in 1988. [63, 64] The algal biomass extracts were employed for the preconcentration 

of gold and copper ions from solution. [22,63 - 65] In this study cathodic stripping voltammetry 

and MCPE's were combined with the aim of exploring the metal-ligand interactions of 

gold(III) and yeast cell wall extracts. 
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1.4 Computer Modelling, Nuc~lear Magnetic Resonance and Infrared 

Spectroscopy as techniques for studying metal-biomass interactions: 

1.4.1 Computer Modelling: 

Advances in computing, in particular the ready availability of high-resolution graphics, have 

greatly increased the interest in computer-based molecular modelling. Molecular modelling 

is now widely used as an aid in the interpretation of experimental results and in the design of 

new materials including the study of the interaction of metal ions with biological substrates. 

The fundamental assumption underlying the molecular mechanics method, is that the 

positions of the atoms of a molecule, ion, solvate or crystal lattice are determined by forces 

between pairs of atoms, (bonds, van der Waals interactions, hydrogen bonding and 

electrostatic interactions) and between groups of three ( valence angles) and groups of four 

(torsional angles, planes) atoms. [66) 

Two types of information are obtained from any molecular mechanics experiment: the 

minimum value of the strain energy and the structure associated with that minimum. 

However, the modelling of large biomollecules, and their interactions with metals, is fraught 

with difficulties. The major problem arises from the flexibility of the molecules, resulting in 

a manifold of adopted conformational geometries. 

However, despite the difficulties with biological models, when no unequivocal 

determination of a structure is available by experimental methods, then structure prediction 

may be the only means of obtaining a three-dimensional model of the molecule. In metal­

macromolecule adducts this is often the case and structures obtained by molecular 

modelling can be a genuine aid in the visualisation of these interactions. [66) 

Full scale molecular modelling of the mannan (yeast cell wall extract) was not attempted in 

this study (and no form of visual modelling of yeast extracts have been completed to date). 
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However, the study aims at a graphical representation of the molecule with a minimised 

energy configuration. A visual picture of the energy minimised gold-mannan complex and 

the type of gold co-ordination to the mannan was obtained. The study will thus contain the 

first known visualisation of a gold-yeast interaction. 

1.4.2 Nuclear Magnetic Resonance Spectroscopy: 

Nuclear magnetic resonance (NMR) spectroscopy over the past few decades has become a 

very powerful tool for the organic chemist and additionally revolutionised the study of 

natural products. The careful choice: of one- and two- dimensional experiments has 

efficiently elucidated the structure of se:veral complex biological molecules. However, the 

technique is only applicable to those nuc:1ei which possess a spin quantum number, I, greater 

than zero. The most important of such nuclei are the IH and Be nuclei, although, 31p and 

14N have become increasingly important as more biological-type experiments are being 

performed. [67,68] 

The basis of the NMR experiment is to subject the nuclei to radiation, which will result in a 

transition from the lower energy state to a higher leveL The precise difference in energy 

levels between the two spin orientations is dependent on the particular location of the atom 

of the molecule, since each nucleus is subject to the differing effects of the magnetic fields 

of neighbouring nuclei. Only nuclei which are in exactly the same magnetic environment 

will have exactly the same energy dim~rence between spin orientations, when placed in a 

magnetic field. In NMR spectroscopy these differences in energy are detected and provide 

information on the variety of locations of the nuclei in the molecule. [67] 

By convention, frequency, and therefore magnetic field strength, increase from left to right 

in the NMR spectrum. Tracing the spectrum from left to right is referred to as moving 

upfield, whilst moving from right to left is a downfield shift. Upfield absorptions are said to 

be more shielded and the downfield absorptions are the result of deshielding. The position 
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of an absorption peak in the NMR spectlUm may be r€?presented either on a frequency scale 

(Hz), or on the scale of magnetic field (tesla) and by convention the frequency scale is used. 

However, in order to make direct and rapid comparisons between spectra recorded on 

instlUments operating at different frequencies, the positions of absorptions are normally 

quoted on the cr scale, which is independent of the instlUment operating frequency. The cr 

value is obtained by dividing the position in Hz by the instlUment frequency (in MHz) and is 

expressed in parts per million (ppm). [68] 

The study of molecular structure, conformational changes, interactions of biological 

molecules with various substrates and certain types of Jcinetic investigations, are the primary 

uses of NMR in the biological field. The studies are carried out in solution and at present 

there appears to be an upper molecular mass limitation of 20 000 Daltons in the study of 

biological macromolecules. The major reason for the limitation is the large number of 

protons in similar structural environments, resulting in numerous absorption peaks in a 

similar region. [69] 

NMR spectroscopy is a non-destructive technique and structural determinations may be 

carried out on less than 1 mg of sample. Developments in the field of NMR spectroscopy 

over the last two decades have completely alter~d the approach towards structural 

elucidation, in particular of the complex polysaccharides. The applications of this technique 

are numerous and advantageous, especially when studying interactions of polysaccharides 

and metals. 

The basic configuration of the sugar residue may be determined from the characteristic 

proton coupling pattern displayed by the molecule. The coupling constant is customarily 

large (5 - 8 Hz) when the protons are transdiaxial and small (1 - 3.5 Hz) when the protons 

are gauche. Values for the first four vicinal coupling constants (H-l to H-4) are sufficient 

to establish the basic configuration of the sugar. 
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The one-dimensional (ID) experiment involves the excitation of a single type of nucleus, IH 

and BC being the most common. A typical 1 D IH NMR spectrum of a microbial 

polysaccharide for example is fairly complex, due to the degree of overlap of signals arising 

from ring protons. However, despite the complexity of the IH NMR spectrum, a great deal 

of preliminary information may still be obtained. 

Characteristically the spectrum of a rr:~crobial polysaccharide may be divided into three 

broad regions, viz. the anomeric region (8 4.5 - 5.5), the ring proton region (83.2 - 4.5) and 

methyl group region (8 1.2 - 2.3).[67, 70] The anomeric protons of the constituent 

monosaccharides are significantly deshielded; due to their proximity to the ring oxygen and 

consequently resonate downfield from the rest of the protons in the compound. The 

anomeric region yields information concerning the size of the repeating unit, the possible 

identity of the constituent monosaccharides and their anomeric configurations. The area 

underneath each anomeric signal is proportional to 'the number of protons represented, 

revealing the size of the repeating unit. 

Two-dimensional (2D) experiments are more efficient for the simultaneous determination of 

a large number of spin correlations. All 2D experiments involve the use of a multiple pulse 

sequence containing a variable delay t, between pulses in which free induction decays S(t2) 

are measured for an evenly spaced series of values of lIto build up a matrix of data S( I 1. (2 ). 

The most commonly used 2D experiment is IH_IH homonuclear shift correlated 

spectroscopy (COSY), which is frequently used for polysaccharide determination. 

In the COSY experiment the basic pulse sequence involves the application of a 90° pulse to 

the sample, followed by a delay period (11), during which the spin system evolves as it 

would in a normal free induction decay. A second 90° pulse, the mixing pulse, interrupts 

the evolution, followed by a second time period t2 , which allows the evolution of the spin 

system resulting in a detected and recorded free induction decay signal. 
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Double Fourier transformation results in two ID spectra, which can be plotted at right 

angles to each other resulting in a COSY contour plot. The diagonal of this plot represents 

the 1 D spectrum. [68, 69] 

The aim of the NMR experiments in this: study is to obtain a defined structure of the mannan 

extract and to substantiate any electrochemical data obtained for the gold-mannan 

interactions. 

1.4.3 Infrared spectroscopy: 

Infrared (IR) spectroscopy can be described as the use of instrumentation in measuring a 

physical property of matter, and the relating of the data to chemical composition. The 

instruments used are called infrared spectrophotometers, and the physical property 

measured is the ability of matter to absorb, transmit, or reflect infrared radiation. 

Infrared spectroscopy is a non-destructive type of analysis (the sample can normally be 

recovered for other use), and is useful £()r microsamples. f71 ] The region of infrared spectrum 

which is of greatest importance to the organic chemist is that which lies between 4000 and 

660 cm- I
. Metal samples may be studied in the lower region of the spectrum. Absorption 

bands in the spectrum result from energy changes arising as a consequence of molecular 

vibrations of the bond stretching and bending (deformation) type. The positions of atoms 

in the molecule may be viewed as the mean equilibrium positions of atoms in molecules, 

whilst the bonds between atoms are analogous of springs, subject to stretching and bending. 

Hydrogen or carbon bonded to oxygen or nitrogen, for example, give rise to strong infrared 

absorption patterns because of the polarity of these particular bonds. In contrast, no 

absorption results from stretching vibrations in a homonuclear double or triple bond which 

is symmetrically substituted; such vibrations are termed infrared inactive. The recognition 

of such bonds is possible by an examination of the Raman spectra of these molecules. [681 
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Adjustments of the spectrometer to obtain optimum peak efficiency, has allowed for the 

studying and characterisation of the chemical components of many micro-organisms. 

Spectra of extracted polysaccharides have even helped in the differentiation of species types 

and sub-types of a particular micro-organism. The infrared spectra of many sugar 

complexes have been recorded both in the solid and aqueous states. The addition of metals 

to the sugar system characteristically results in the lack of the bands in the expected sugar 

region, due to the co-ordination of the polysaccharide to the metal. [70, 72J Infrared 

spectroscopy is thus a useful technique to further investigate metal-biomass interactions, as 

aimed at by this study. 

1.5 Overall Research Aims: 

The aim of the present research project is three-fold. (i) The design of a system whereby 

gold ions may be detected; utilising an electrochemical technique known as stripping 

voltammetry on an unmodified glassy carbon electrode. (ii) The application of the designed 

system to a mining effluent for the detection of gold ion presence. (iii) Finally, to obtain a 

better understanding of the chemical interactions between biological matter (biomass) and 

the gold ions. Adsorptive cathodic stripping voltammetry on glassy carbon and modified 

carbon paste electrodes is proposed for the metal-ligand studies. NMR, IR and computer 

modelling techniques will be utilised to substantiate the data obtained from the 

electrochemical experiments. 

Gold has been chosen as the primary metal of interest, since South Africa is a major metal 

ore mining and refining country and one of the chief metals mined is gold. The 

determination of gold ions with accuracy, sensitivity and selectivity remains an ongoing 

topic of interest. The successfully designed electro analytical system, for the determination 

of gold ions in solution, would aim to determine the analyte with reasonable accuracy and 

precision levels (± 5 % deviation); sufficient sensitivity levels and preferential selectivity for 

the ions of interest, so as to apply the system to an industrial application. 

35 



CHAPTER ONE INTRODUCTION 

The metal-biomass interaction aspect revolves around the determination of the specific 

components and the chemical functional groups of the cell wall matrix responsible for the 

metal binding. S. cerevisiae has the capacity to accumulate metals and since this yeast is 

economically viable for bioremediation applications, the cell wall components of this species 

were chosen for investigation. 

The study further aims at investigating the effects of'copper and silver ions on the metal­

biomass interactions, since S. cerevisiae has been shown to bind these ions in significant 

quantities. Silver and copper ions are also commonly detected with the gold ore sample and 

the presence of the silver(I) and coppE:r(II) may be detrimental for the binding of the gold­

biomass complex. 

The benefits of these findings would be useful both from a biological perspective, as well as 

for industry. Once, more is known about the particular binding sites on a micro-organism, 

microbiologistslbiochemists have an outline to work towards in terms of the optimisation of 

these sites for precious metal recovery. Information on the behaviour of gold ions in 

solution with biomass will be achieved., which may have implications in other gold research 

fields. 
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EXPERIMENTAL METHODS 

2.1 Reagents: 

Gold(III) (in the form of tetrachloroauric(ill) acid) was purchased from Sigma-Aldrich. 

The mineral acids utilised included nitric acid from Merck, hydrochloric acid from BDH 

Suppl. Ltd. and perchloric acid was obtained from Associated Chemical Enterprises. The 

mercury(II) was obtained from Merck iin the form of mercury(II) nitrate. 

The mine effluent was a by-product of the Deelskraal number 7 mine, which is part of the 

group of mines owned by the Goldfields Mining Company. The 'effluent' is sourced from 

the mine service water, which refers to water that has been used for the crushing process of 

the ore and recycled several times, after which the water undergoes a reclamation process 

and is then run off the plant as effluent. 

Silver(I), in the form of silver nitrate and utilised in the metal ion interference studies, was 

obtained from Holpro, whilst the copper(II) (copper nitrate) was from the Saarchem (Pty) 

Ltd Company. In the production of carbon paste electrodes, the mineral oil was obtained 

from N. T. Laboratories and the graphite powder was a product of the Saarchem (Pty) Ltd 

Company. The commercially obtainable cell wall extracts of S. cerevisiae (i.e. mannan, 

glucan, chitin and chitosan) were purchased from Sigma Aldrich. 

The deuterated solvent for the NMR experiments was D20, purchased from Merck 

Chemical Company. In solution IR studies, triply distilled deionised water was used as the 

solvent. Solid-state IR experiments made use of analytical grade potassium bromide from 

the Saarchem (Pty) Ltd Company. NMR and IR techniques both made use of nitric acid 

(Merck) to acidifY the solutions. 
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2.2 Apparatus employed: 

Electrochemical data was obtained on a Bioanalytical System BAS-IOO BIW workstation, 

connected to a C-2 voltammetry cell stand A borosilicate glass vial, (capable of holding 15 

- 20 ml of liquid) with fitting top, was utilised as the sample container. 

The three electrode system was employed in all electrochemical experiments; as illustrated 

in Figure 2.1. The silver/silver chloride (Kel = 3 mol dm-3
) served as the reference 

electrode, whilst platinum wire was chosen as the auxiliary electrode. Glassy carbon, 

platinum, carbon paste and modified carbon paste electrodes were all employed as working 

electrodes depending on the particular experiment 
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Figure 2.1: An illustration of the electrochemical cell utilising the three-electrode 

scheme. 
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The glassy carbon and platinum electrodes, commercially obtained from Bioanalytical 

Systems, were of 3.00 mm and 1. 60 mm respectively in diameter. Borosilicate glass tubes 

(due to the relatively low metal-cation-binding property of this glass type), with an internal 

diameter of 1.10 mm, were cut to appropriate lengths to be used for the manufacture of the 

carbon paste electrodes. 

A Mettler Toledo MP2201225 digital pH meter was employed for all pH investigations. 

The instrument was calibrated using a pH 7.00 and pH 4.00 buffer respectively. The 

temperature control function was set at the current room temperature, measured with a 

thermometer, at the time of the experiment. 

A Jeol JSM 840 scanning electron microscope was employed for the scanning electron 

micrographs obtained, whilst the NlvlR experiments were recorded at 400 MHz on the 

Bruker AMX pulse Fourier transfomled spectrometer. Samples were prepared using 

deuterated solvents and 5 mm tubes throughout. Unless otherwise stated, the probe 

temperature for all NMR experiments was 30°C ± 1 0c. 

Infrared spectroscopy experiments employed the Perkin Elmer Spectrum 180 IR 

spectrophotometer for the studies of certain samples made up in KBr discs, using the 

pressed disc technique. The Fourier transformed infrared (FTIR) apparatus, used for the 

solution-phase and KBr disc experiments, was a computerised Perkin Elmer Spectrum 2000 

IR spectrophotometer. The fully assembled, sealed IR cell, with a calcium fluoride window, 

was chosen for the solution phase experiments. The sealed IR cell has a fixed path length, 

which uses an amalgamated lead spacer to form a permanent leak proof seal. 

The computer modelling technique was employed to obtain a visual picture of the 

complexes. MSI Cerius2 version 3.5 software, was run on a silicon graphics computer for 

all the modelling experiments. The registered Hyperchem® software package provided the 

vehicle for further viewing of the molecule in either a space-filling- or stick model form. 
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2.3 Experimental procedure: 

Clean glassware is essential for the analytical analysis techniques. In all experiments 

performed, the glassware had been washed in detergent and rinsed several times before 

being soaked in nitric acid for at least 24 hours; followed by further washing in distilled 

deionised water. Reagents employed were all either of analytical grade (AnalaR) or reagent 

grade and were utilised without further purification. 

Triply distilled deionised water was used for all experimental processes and diluted solutions 

were prepared daily from the stock solution. The gold(lII) stock solution, of concentration 

1.00 x 10-3 mol dm-3
, was prepared in an acid mixture of 1 : 1 ratio ofRCI and RN03 (both 

0.10 mol dm-3
). The diluted gold(III) solutions were prepared by adding the appropriate 

volume of gold(III) from the stock solution (1.00 x 10-3 mol dm-3
) to a volumetric flask and 

filling the flask to the mark with nitric acid (0.10 mol dm-3
). The copper(II) and silver(l) 

solutions were prepared with RN03 (0.10 mol dm-3
), whilst the mercury(II) 

(1.50 x 10-3 mol dm-3
) and mannan (1 mg m1- l

) stoc~ solutions were prepared from triply 

distilled deionised water. 

A minimum purge time of 5 minutes, with nitrogen gas and simultaneous solution stirring, 

was employed for the electrochemical experiments. The reason for purging the solution is 

to minimise any oxygen effects that may occur; particularly at very positive potentials which 

are often observed for gold ion det{~rmination. The potentials quoted are cited with 

reference to the Ag/ AgCl reference electrode for all data accumulated. 

Prior to each run, the glassy carbon electrode was. dipped in dilute nitric acid and the 

electrode surface was then cleaned by polishing with alumina on a Buehler felt pad, 

followed by rinsing in triply distilled deionised water and finally being rinsed in the chosen 

electrolyte of the experiment. The platinum electrode underwent similar treatment. 

However, soaking in a hydrogen peroxide solution, before polishing, for 10 minutes was 
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also employed in the regeneration of the electrode surface; particularly in cases where the 

reproducibility of the stripping peak was problematic. 

2.3.1 Anodic stripping voltammE~tric determination of gold(III): 

Anodic stripping voltammetry (ASV) experiments were performed on the gold samples with 

a glassy carbon electrode chosen as the working electrode for the experiments., The 

presence of excess mercury ions (concentration ranging between 1.50 x 10-4 to 9.00 X 

10-4 mol dm-3
) was ensured by adding between 2.5 ml and 9 ml of a mercury(II) nitrate 

stock solution (1.50 x 10-3 mol dm-3
) to the sample vial. The gold(III) concentration ranged 

from 6.67 x 10-7 to 4.00 X 10-6 mol dm-3
, by the dilution of 1 to 6 ml of gold(III) stock 

solution (1.00 x 10-5 mol dm-3
) with nitric acid (0.10 mol dm-3

) to a 15 ml total volume. 

The deposition potential of 0.10 V was employed for 100 seconds for the anodic stripping 

voltammetric determination of gold(III). The stir-rate for the magnetic stirrer bar was set at 

3000 rev min-Ion the BAS-100 BIW workstation. The potential was scanned from 0.10 V 

to 1.50 V in a positive-going scan and at a scan rate of 100 m V S-I. 

The anodic stripping voltammetry technique, on an glassy carbon electrode (GeE) and in 

the presence of mercury(II), was applied to the determination of metal ions other than gold, 

present in the mine water sample. The deposition potential of -1.00 V for 300 seconds was 

applied in the accumulation step of the ASV experiment, whilst a scan rate of 100 m V S-I 

was employed in the stripping step. A 5 ml volume of mine water sample was added to 

2 ml of mercury ions (1.50 x 10-3 mol dm-3
) and 8 ml of nitric acid (0.10 mol dm-3

), to 

obtain a total volume of 15 ml. The prepared mine water sample was stripped in the 

negative potential window from -1. 00 V to 0.00 V. Stock solutions of cadmium(II) and 

lead(II) were prepared, containing mercury nitrate, in order to spike the mine water sample, 

to verifY the presence of these ions in the sample. 
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Gold ions present in the mine sample were concentrated by boiling the sample, on a low 

heat, to dryness. The remaining solid material was then redissolved in an acid mix similar to 

aqua regia; except that 3 part HN03 vs. 1 part Hel was preferred. The standard addition 

technique was employed in investigating the concentration of the gold ions present in the 

mine water sample. The constant volume, 2 mI, of tFeated mine water sample was spiked 

with increasing volumes of gold(III) stock solution (1.00 x 10-3 mol dm-3
) from 0.25 to 6 

mI, whilst nitric acid (0.10 mol dm-3
) wa.s utilised for a constant total volume of 15 ml. 

The anodic stripping voltammetry for the standard addition trials on the mine water sample, 

in the absence of added mercury ions (since the mercury ions complicated the investigation), 

required a deposition potential of -0.35 V for a period of30 seconds (stir-rate set at 

3000 rev min-I). The scan rate was set at 100 mV S-1 and the voltammograms were scanned 

to a final potential of 1.50 V. 

2.3.2 The adsorptive cathodic stripping voltammetry studies: 

The experimental procedure, for the adsorptive cathodic stripping voltammetric 

investigation of the mann an-gold interaction, required a deposition potential of 1.05 V for 

250 seconds (stir-rate set at 3000 rev min-I) on a glassy carbon electrode. The sample was 

stripped to a final potential of 0.00 V at a scan rate of 350 mV S-I. A constant 

concentration of 0.30 !J,g rl mannan extract was maintained within the electrochemical cell 

during the AdCSV trials; testing the suitability of mann an as a ligand for gold(III) detection. 

The gold(III) concentration was varied to the detection limit of 6.20 x 10-8 mol dm-3
; 

utilising the linear sweep potential scan AdCSV in the presence of the mannan and absence 

of added mercury ions. 

The AdCSV technique was then attempted on a glassy carbon electrode, in the absence the 

biological ligand, so as to ascertain the effectiveness of the mannan as a ligand for gold(III) 

detection. The parameters were set at a deposition potential, deposition time and final 
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potential of 1.05 V, 250 seconds (stir-rate set at 3000 rev min-I) and -0.40 V respectively. 

The scan rate at which the stripping step was carried out was 350 mV S-I. The initial 

experiments employed a gold (III) conc.~ntration ranging between 6.70 x 10-5 and 3.30 x 

10-4 mol dm-3
; whilst later experiments, under the same conditions, were of the 

concentration order ranging from 7.00 x 10-7 to 3.00 X 10-4 mol dm-3
. The gold(III) 

concentration was obtained by adding between 8 III and 3.5 mI volumes of gold(III) stock 

solution (1.00 x 10-3 mol dm-3
) to an appropriate volume of nitric acid (0.10 mol dm-3

), to 

achieve a total volume of 12 mI. 

The platinum electrode was compared with the glassy carbon electrode, in the linear sweep 

potential scan AdCSV trials using mannan as the chosen ligand, for possible improved 

gold(III) detection properties. The platinum electrode was chosen despite the problem of 

peak reproducibility in gold(III) detection associated with this electrode (as mentioned in 

the introduction, section 1.3.4); since utilising the AdCSV technique may not present the 

problems associated with ASV and this electrode. Trials were completed in the absence of 

mercury(II). The deposition potential, deposition time and final potential of 1.05 V, 

250 seconds and -0.40 V respectively, were appliec;l to the platinum electrode system; 

containing a fixed concentration of mannan (0.3 Ilg rl). A scan rate of 350 mV S-1 was 

employed for this experimental procedure. The gold concentration, within the 

electrochemical cell, was varied in the range of 10-8 to 10-7 mol dm-3 by diluting appropriate 

volumes of gold solution (1.00 x 10-6 mol dm-3
) with nitirc acid (0.10 mol dm-3

) to obtain a 

total volume of 15 mI. 

Experimental procedures were carried out to investigate the possible interference effects of 

silver(I) and copper(II) on the detection of gold(III); utilising the linear sweep potential 

scan adsorptive cathodic stripping voltammetry techQique in the presence of the mannan 

ligand. The glassy carbon electrode was chosen as the working electrode, since noble metal 

electrodes (such as platinum) experience problems in peak reproducibility; as already 

mentioned in the introduction. [47,48] 
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The copper(II) and silver(I) were in a ten-fold excess compared to the gold(III) 

concentration for these experiments. A 1 ml volume of gold(III) (1.00 x 10-3 mol dm-3
) was 

added to a 2 ml volume of silver(I) or copper(II) (1. 00 X 10-3 mol dm -3) and 12 ml of nitric 

acid (0.10 mol dm-3
) to give a total volume of 15 ml. The mannan concentration was kept 

constant at 0.24 ~g rl. The parameters for the silver and copper interference studies were 

set at a deposition potential of 1.05 V fbr 200 seconds and potential range of 1.05 V to 

-0.60 V was scanned at a rate of300 mV S-l. 

Adsorptive cathodic stripping voltammetry experiments could not be carried out on any of 

the other yeast cell wall samples, since the extracts w~re not water soluble. The remaining 

extracts (glucan, chitin and chitosan) were examined using the modified carbon paste 

electrode (MCPE) system. The behaviour of the mann an extract was also observed in the 

MCPE trials. 

Trials utilising modified carbon paste electrodes, as the working electrodes, for the 

investigation of gold(III) were attempted with all the polys~ccharide yeast cell wall extracts. 

The carbon paste electrode (CPE) was employed as the unmodified electrode for the 

gold(III) detection experiments. The modified carbon paste electrodes were prepared by 

mixing finely ground, carbon powder and dry biomas~ extract, followed by the addition of 

mineral oil to form a paste; which is then packed solidly into the glass tube. A polished 

copper wire was inserted into the mixture as a conductance point for each electrode 

prepared. The optimum ratio of the MCPE was found to contain 20 % biomass per weight, 

which is in agreement with the literature sourced. [64, 65] The carbon paste electrode was 

constructed in the same manner as the MCPE's ; except that the dry biomass extract was 

omitted. 

The MCPE and CPE gold(III) detection systems were subjected to deposition potentials of 

1.05 V for all the extracts. The deposition time and fi,nal potential of the experiments were 

set at 250 seconds (stir-rate of3000 rev min-I) and -0.40 V respectively. A scan rate of 
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350 mV S-l was employed during the stripping process. The gold(III) concentration was 

varied within the 10-9 mol dm-3 range., Before each experiment was run, the electrodes 

required the removal of a small amount of paste, for the regeneration of the electrode 

surface. 

A pH profile study was carried out on the mannan extract MCPE over a range of 0 - 11 pH 

units. The pH was adjusted using NaOH (0.50 mol dm-3
) (Saarchem Pty Ltd) standardised 

solution and nitric acid (0.10 mol dm-3
). For the pH study, a constant 100 III volume of 

gold(III) (1.00 x 10-3 mol dm-3
) was diluted to a total volume of 10 m1 with the appropriate 

volumes ofNaOH and HN03. 

Osteryoung and Barker square wave potential scan AdCSV were applied to the mannan 

MCPE experiments in an effort to lower the detection limit obtained by the linear sweep 

potential scan AdCSV. The square wave-forms had a step potential of 4 mY, a wave 

amplitude of 25 m V and a wave frequency of IS Hz. The Barker square wave potential 

scan AdCSV had the deposition potential set at 1.05 V for 100 seconds and a final stripping 

potential of 0.00 V. The Osteryoung square wave potential scan AdCSV required the 

deposition potential set at 1.05 V for 250 seconds and a final stripping potential of 0.00 V. 

The gold(Ill) concentration was varied from 1.67 x 10-11 to 7.00 X 10-8 mol dm-3 by adding 

the appropriate volumes of gold(III) from the diluted stock solutions (1.00 x 10-8 and 

1.00 x 10-6 mol dm-3 respectively). Nitric acid (0.10 mol dm-3
) was used to adjust the 

volumes of gold(III) added to a total volume of 16 ml. 

2.3.3 Infrared Spectrophotometry: 

In solid infrared analysis, the pressed disc technique was applied. Pure, dry potassium 

bromide (KBr) was intimately ground with a known weight of sample, using an agate 

mortar and pestle. The mixture was then added to a manually-operated press system for the 

preparation of a KBr disc. 
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The possibility of impurities in the KBr was eliminated with the use of a blank disc system. 

Care should, however, be taken to ensure both discs prepared are of equal thickness, 

otherwise inverse peaks may occur if thc~ potassium bromide is damp or impure and this will 

be particularly noticeable if the reference disc is thicker than the sample disc. [68) Dry, 

analytical grade KBr is crucial to the IR experiment The dried potassium bromide was 

prepared by placing the KBr in a shallow dish in an oven, at 120°C, for at least 24 hours. 

After sufficient drying time had passed, the KBr was stored in an oven at a temperature of 

~ 100°C. 

Providing care has been taken in disc preparation, the final product should be slightly 

opaque, due to the presence of the sample (the blank disc should be transparent). Should 

the disc show a number of white spots, these would be a result of the mixture being 

unevenly ground. If the disc shows a tendency to flake, then excessive grinding of the 

powder is indicated. A disc changing to a cloudy colouring is indicative of water uptake by 

the disc and should be avoided. [68,71) 

The fully sealed IR cell, with calcium fluoride winoow, was chosen to investigate the 

solution phase gold-mannan interactions. A concentration exceeding 1 mg ml-1 of mannan 

was added to 1 ml of gold(ill) stock solution (1.00 x 10-3 mol dm-3 in a 1 : 1 ratio ofRCI 

and HN03) and thoroughly mixed. A suitable aliquot ofliquid was then transferred into the 

fully sealed IR cell; such that no air bubbles could be detected between the calcium fluoride 

window plates. 

2.3.4 Nuclear magnetic resonance spectometry: 

Proton NMR sample preparation may often require a 'D20 wash technique; particularly for 

complex polysaccharide molecules. The technique requires the dissolving of the sample in 

deuterated solvent followed by freeze-drying. [67) The procedure was repeated at least three 
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times to ensure that the water peak in the spectrum had been minimised and that complete 

exchange of the hydroxyl protons had occurred, in an effort to simplify the spectrum. The 

behaviour of the biological ligand under extreme acidic conditions was observed by the 

addition of 1 a ~l of concentrated nitric acid to the NMR sample tube and allowing the 

sample to equilibrate, before running the;:: spectrum. Deuterated nitric acid was not used, as 

the effects of the acid on the sample was to be noted. The lowest concentration required to 

obtain a suitable proton NMR and COSY spectrum was 1 mg mI-! mannan in D20 solvent. 

The NMR spectrum of a yeast or bacterial polysaccharide is complex as a result of signal 

overlapping, arising from the ring protons, and the presence of a water derived HOD 

(Hydrogen, Oxygen, Deuterium) signal, which may overlap other signals in the spectrum. 

However, the position of the HOD signal is temperature dependent and it is often possible 

to place the signal in a region of the spectrum where no other peaks occur, by altering the 

temperature of the probe. [70] The optimum temperature setting (30 °C) allowed for the 

observation of any peaks that may have fallen underneath the HOD signal. 

NMR studies were employed to observe the proposed binding of the gold(III) to the 

biological extract. The set of experiments adhered to the same conditions as those applied 

to the biological sample. A 100 ~l injection of gold solution (l.00 x 10-3 mol dm-3
) was 

added to the acidified biological extraet in the NMR tube and allowed to equilibrate, at 

room temperature for 5 minutes, before an experimental run was attempted. 

2.3.5 Computer modelling: 

A Newton-Raphson energy minimisation of the mannan structure was performed in order to 

obtain an optimised structure of the conformer. Once the energy minimisation was 

complete, the metal, in the form of gold(III) chloride, was added to the system. The 

stoichiometry was assumed to be in a 1 : 1 ratio for simplicity and only a section of the 

polysaccharide-metal complex was modelled, as a representative of the whole molecule. 
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ELECTROCHEMICAL ANALYSIS OF GOLD(III): 

Several methods are available for the determination of gold ions in low concentrations in 

various sample types. However, despite the wide variety of techniques available and the 

various modifications made to them, each of these techniques still lack at least one of the 

four (accuracy, precision, sensitivity and selectivity) requirements to complete the 

successful detection of gold ions as previously discussed in the introduction. 

3.1. Anodic stripping voltammetry determination of gold(III): 

Gold(III) may be easily reduced electrochemically, yet the determination of gold, requiring 

the deposition of gold onto a carbon or platinum electrode, is hampered by a slow 

nucleation process; as mentioned earlier in the introduction. The result of the slow 

nucleation process is poor accuracy levels in the quantification of gold because of different 

parts of the deposition time being consumed by the nucleation step.[50] 

Anodic stripping voltammetry for the routine determination of gold ions in solution has 

been discouraged. The technique suffers from laborious preparation and conditioning of the 

electrodes, lengthy plating times, awkward sample-stripping solution changing procedures 

and the unsuitability of commonly us/;:d mercury electrodes (as a result of the mercury 

oxidation potential being considerable less positive than that of gold). However, some of 

these criticisms have often been levelled at the anodic stripping voltammetry technique in 

general. [51,73] 

Complexing agents added to the striping solution, in an attempt to overcome the problems 

associated with the use of the mercury electrodes and to lower the highly positive redox 

potentials observed in gold analysis, achieved little success. Activation of the electrode 

improved the slow nucleation problem; however, the activation led to an increase in the 

blank value and thus, a deterioration in the detection limit. [44, 50] 
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Huiliang et al.. proposed a co-deposition method of gold, on a glassy carbon electrode, with 

copper(II) and mercury(II) ions in solution, if not already present in the sample, followed by 

pulsed stripping in the presence of a stripping solution. [44] The result was an accurate, 

reasonably sensitive method, with a detection limit of 3 J..lg ri. However, the procedure 

required long deposition times, in excess of 900 seconds, and complications may arise if this 

method is applied to a more complex sample, such as a mining effluent. 

Anodic stripping voltammetry trials for the detection of gold(III), employing the glassy 

carbon electrode with a known concentration of gold(III) in solution, were attempted in this 

work. However, the stripping peak position, area and width all varied considerably using 

this method. The co-deposition/amalgam formation of gold ions in the presence of 

mercury(II) was then explored. A deposition potential of 0.10 V was chosen to avoid the 

mercury film formation on the electrode surface. The conventional linear stripping 

technique was employed in place of pulsed methods and a separate stripping solution 

proposed by Huiliang et al. .[441 

The presence of mercury(II) enhanced the sensitivity, accuracy and reliability compared 

with the glassy carbon electrode in the absence of mercury(II). The glassy carbon electrode 

experiments (without mercury ions) resulted in broad peaks, with a large degree of 

unreliability in peak size and position. The experiment was carried out in a variety of 

electrolyte solutions induding nitric, hydrochloric and'perchloric acids (all 0.10 mol dm-3
) . 

The acids were used to make up the sample of gold stock solution to the required volume. 

Combinations of acids were also attempted, such as the 50 / 50 mix of 0.10 mol dm-3 nitric 

and hydrochloric acids and the 50 / 50 mix of 0.10 mol dm-3 nitric and perchloric acids. In 

the presence of acid mixtures as proposed electrolytes, the peak attributed to the gold(III) 

presence began to disappear with time. 
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Upon closer investigation of the individual acids utilised, perchloric acid gave the highest 

peak currents. However, after two consecutive runs on the sample, the observed peak 

currents decreased considerably in intensity and shifted in position. Hydrochloric acid 

resulted in current peaks with uncertain positions and unreliable current intensities. 

Literature suggests the reason for this is the important role the chloride ions play in the 

stabilisation of gold(IIIII) interactions and the formation of gold chloride intermediates, 

which would hamper the detection of gold(III) in solution. The choice of electrolyte is 

crucial to the success of the experiment. [38, 74] Nitric acid was found to b~'the most suitable 

electrolyte for gold(III) apalysis. Figure 3.1 illustrates the increase in the peak current 

observed as the concentration of gold(III) (in nitric acid) is increased. 
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Figure 3.1: The anodic stripping voltammetry determination of gold(llI) in the 

presence of mercury ions (1.50 x 10-3 mol dm-3
). Deposition potential = 0.10 V 

Deposition time = 100 seconds Scan rate = 100 mV sol. 
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The gold(III) concentration of each current peak was 6.70 x 10-7 mol dm-3
, 1.30 x 

10-6 mol dm-3
, 2.00 x 10-6 mol dm-3

, 2.70 x 10-6 mol dm-3
, 3.30 x 10-6 mol dm-3 and 4.00 x 

10-6 mol dm-3
, respectively (in increasing order). The anodic stripping peak increased with 

the increase of gold(III) ion concentration, in the nitric acid and mercury containing sample 

solution. An acceptable deviation ofless than 5 %, for the current peak, was achieved. 

A slight shift in peak position was observed for the two peaks of lowest gold(III) 

concentration (1.02 V) compared with the remaining peaks observed at 1.00 V. The 

reduction of gold(Ill) chloride has been observed in the region of 1.00 V versus the 

saturated calomel electrode. [75] The slight shift in peak position of 0.02 V may be attributed 

to gold nucleation effects on the glassy carbon electrode (see section 1.3.4) and to the 

differences in gold(III) concentration; the effects of which are explained by the Nernst 

equation (see Equation (1.3) in the introduction). 

3.2 Application of anodic stripping voltammetry to a mining sample: 

3.2.1 Determination of interfering ions pres~nt in the sample: 

The major advantage of electrochemistry, as a detection tool in trace metal analysis, is the 

ability ofthe system to simultaneously detect the presence of more than one metal ion yo, 31] 

The ASV technique was applied to the Deelskraal mine water sample for the detection of 

any metal ions present in solution. In the negative potential window, two stripping current 

peaks were observed, for the mine water sample, at -0.41 V and -0.61 V (see Figure 3.2(a)) 

The mine water sample was then spiked with lead(II) and cadmium(II) and the magnitude of 

the current peaks increased upon increasing the co~centration of the respective ions; as 

illustrated in Figure 3.2(b) The current peaks observed at -0.41 V and -0.61 V were thus 

attributed to lead(U) and cadmium(U) respectively, present in the mine water sample. 
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A 'blank' solution sample (i.e. in the absence of the mine water sample) was run in order to 

minimise the effect of any common ions present in water; that may also be present in the 

mine water sample. 
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Figure 3.2 The ASV current peaks observed in the mine water sample (a) and on 

addition of lead(ll) and cadmium(ll) to the sample (b) Deposition potential = -1.00 V 

Scan rate = 100 mV S·I Deposition time = 300 s 

The concentrations of the cadmium and lead ions present (I5 Ilg rl and 76 Ilg r l 

respectively), were found to be within the acceptable limits for drinking water in South 

Mrica, which has a maximum limit of 20 Ilg rl for cadmium and 100 Ilg rl for leadylJ 

Atomic absorption spectrometry, performed independently of this study, completed on the 

Deelskraal mine sample proposed the presence of gold ions only, however, the oxidation 

state of the gold could not be verified utilising this method. 
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3.2.2 Electrochemical investigation of gold i~ the mine sample: 

Electrochemical detection of metal ion speciation is unique for that ion and its oxidation 

number, since there is only one assigned redox peak potential for a redox couple. 

Experimental parameters may be optimised so as to avoid the interference of other metal 

ions present in the solution yo, 31, 491 The initial deposition potential was set at -0.35 V, to 

avoid the effects of the cadmium and lead ions now known to be present in the mine water 

sample. The standard addition technique was attempted on the Deelskraal sample by 

keeping the amount of unknown sample (2 ml in a 15 ml total volume sample) constant in 

solution and gradually increasing the gold(III) ion concentrations from 1.67 x 10-5 mol dm-3, 

to 3.10 X 10-4 mol dm-3 to 3.70 x 10-4 mol dm-3 and 4.30 x 10-4 mol dm-3
; seen in Figure 3.3. 
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Figure 3.3: Anodic stripping voltammetry determination of gold(III) in a pre-

concentrated mine water sample, in the absence of mercury ions. 

Scan rate = 100 mV S·l Deposition potential = -0.35 V 
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An increase in the gold(III) concentration would result in an increase in the reduction peak, 

if the reduction was in fact due to the reduction of gold(III) to gold(O). The glassy carbon 

electrode was chosen as the working electrode and mercury ions were omitted; since 

mercury was found not to be suitable for gold ion detection in a complex sample. In an 

attempt to concentrate the gold(III) ions present in solution, the sample was evaporated to 

dryness and then the residue was redissolved in a form of "reversed aqua regia"; where a 

1 : 3 ratio ofHCI to HN03 was preferred. 

The stripping peak responsible for the transition of gold(III) to gold(O) was observed at 

0.93 V in the mine water sample. The observed peaks for the reduction of gold(III) to 

gold(O) has been cited in this region; the reduction of AuCI4-, for example, occurs at a 

potential of 1.00 V vs. the Ag / AgCl reference electr~de in acidic media. [38, 75] The slightly 

lower potential observed for the mining sample compared with the literature value, may be 

the result of different conditions that prevailed. 

The gold ions present in the mining sample were discovered to be in the gold(III) oxidation 

state and the concentration of the ions present was calculated, using established methods, to 

be in the order of 2.53 x 1O-5mol dm-3
. However, the possibility exists that the gold present 

in the sample was actually in the gold(O) state and that addition of the aqua regia acid form 

forced the dissolution of the metal into the ion form; characteristically the gold(III) 

oxidation state. The assumption is based on the fact that in the industrial crushing process 

water is used, no other chemical is added until later, and it is unlikely that metallic gold from 

the ore will naturally go into solution in the water. Fine sand-like grains were also observed 

in the mining sample, which appeared to contain elemental gold. 

The application of anodic stripping voltammetry has proven successful, under the defined 

experimental parameters, in the determination of gold ions in a mine water sample. Lower 

detection limits for gold in more complex matrices, such as the presence of gold drugs in 

biological tissue, may now be attempted utilising the ASV application. 
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THE INTERACTION OF GOLD(III) WITH THE YEAST 

CELL WALL EXTRACTS: * 

4.1 Interaction of gold(III) with mannan: 

4.1.1 Glassy carbon electrode studies: 

Adsorptive cathodic stripping voltammetry in the presence of mannan: 

The recovery of gold from dilute aqueous solutions by biomass has been investigated as an 

alternative to the carbon-in-pulp technology, currently used in the gold industry. Most 

types of biomass bind gold to some extent when exposed to a solution containing either 

gold(I) (usually as [AuCN)2T) or gold(III) (in the form of AuCI4} However, the binding of 

the metal ion to the biomass does not follow a set pattern and the uptake of the gold ions is 

dependent on the micro-organism, species and experimental conditions. [76] 

Mannan, a chief constituent of the yeast cell wall, is water soluble and readily dissolves in 

the triply distilled deionised water and is ideally suitable for the electrochemical detection of 

a possible mannan-gold complex. Differential pulse voltammetry (DPV) has been widely 

used for the determination of metal ions in solution, however, attempts to perform stripping 

studies with pulsed potential scans have, in some cases, resulted in signals that were more 

complex than those observed for the linear sweep potential scan techniques. [77] 

The development of adsorptive stripping voltammetry (AdSV) has, on the other hand, 

allowed for the determination of many trace metals; including those that could not be 

determined by conventional anodic stripping voltammetry (ASV). Apart from extending the 

• This work has been accepted for publication imd is not further referenced in this chapter. Lack B., 
Duncan J. and Nyokong T., Adsorptive cathodic stripping voltammetric determination of gold(III) in the 
presence of yeast mannan, accepted October 1998, Anal. Chim. Acta, in press. 
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scope of ASV, AdSV offers improved schemes f()r determination of metals, which suffer 

from difficulties such as extreme redox potentials or poor selectivity. [52.78] 

Trials were completed utilising the adsorptive cathodic stripping voltammetry (AdCSV) 

method, with mannan as the chosen ligand, in the absence of mercury(n) ions. The 

successful fruition of the AdCSV technique relies on the formation of a metal-ligand 

complex, which will undergo controlled interfacial accumulation of the complex onto the 

electrode during the deposition step. 

Ligands suitable for AdCSV must thus be selective for the metal of interest and the complex 

formed must be able to adsorb to the electrode surface. The extent of complex adsorption 

has been related to the solubility of the complex; strong adsorption being observed for 

complexes that exhibit low solubilities.[52] Figure 4.1 shows the AdCSV of gold(nI) 

(1.00 xlO-4 mol dm-3
) in the absence (Figure 4.1(a)) and the presence (Figure 4. 1 (b)) of 

yeast mannan (0.30 f..lg rl). 

Addition of mannan resulted in the enhancement of the stripping peak of gold(nI), 

indicative of the in situ formation of the gold-mannan complex; as seen in Figure 4.l. The 

voltammetric response of the surface confined species is directly related to their surface 

concentration and at low adsorbate concentrations, 'the surface concentration is directly 

proportional to the concentration in the bulk solution. [79] 

Figure 4.1(a) shows that two reduction peaks were observed for gold(nI), in the absence of 

mannan, under the experimental conditions chosen. The second peak was observed around 

-0.09V and was considerably smaller in magnitude, compared with the first peak at 0.29 V. 

Two reduction peaks for the reduction of gold(ill) on carbon electrodes have been 

reported. [80] A two step reduction of gold(nI), via gold(I), is proposed under the 

experimental conditions; leading to the two reduction peaks observed in Figure 4.1(a). 

Gold(III) is readily reduced to gold(I) at pH values greater than 2 pH units. [45] 
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The adsorptive cathodic stripping voltammetry of gold(I), presumed to be formed when the 

pH of gold(III) solutions was adjusted to values greater than 2 pH units, gave a reduction 

peak at -0.02 V; a potential close to that associatt:d with the proposed reduction of gold(I) 

in Figure 4.1(a). 
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Figure 4.1 The adsorptive cathodic stripping voItammograms obtained for gold(ID) at 

a concentration of 1.00 xlO-4mol dm-30n a GeE in the absence (a) and presence (b) of 

0.30 ~g r10fyeast mannan. The scan rate = 100 mV S-l. 

The peak height for the second reduction at -0.09 V, ;Figure 4.1(a), is smaller than that for 

the first reduction; implying that a fewer number of electrons are involved in the former. 

The more positive peak at 0.29 V is suggested to be the result of the gold(III) reduction, 

whilst the peak at -0.09 V is assigned to the gold(I) reduction. In the presence of mannan 

the voltammetric peak observed at 0.29 V shifted to 0.33 V. The magnitude of the shift in 

the metal reduction peak, on addition of the ligand,. is indicative of the stability of the metal-

ligand complex. A positive shift of 0.04 V, for the gold(III) reduction peak on the addition 
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of mann an, shows that the resulting mannan-gold complex is more readily reduced than the 

gold(III). However, a shift of 0.04 V is comparatively small for complex formation 

reactions, which suggests that the gold-mannan complex is not very stable. 

The peak observed near -0.09 V, which is associated with the gold(I) reduction was also 

enhanced on addition of mannan to the gold (III) solution. In the presence of mannan, the 

gold (I) reduction peak shifted to a more negative potential, -0.15 V, showing that the 

resulting complex is less readily reduced than the gold(I) species. The measure of the 

potential shift for the second peak is -0 06 V, which is· slightly larger than the shift observed 

for the first peak associated with the formation of a gold(III)-mannan complex. The larger 

shift value offers the possibility that the gold(I)-mannan complex is slightly more stable than 

the gold(III)-mannan complex. The adsorptive cathodic stripping voltammogram of yeast 

mannan alone, in the absence of gold(III), was observed at -0.55 V (Figure 4.I(c)). 
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Figure 4.1(c): The AdCSV of 0.11 Jlg rl in the absence of gold(Ill). 

Scan rate = 100 mV S-l Deposition potential = 1.05 V 
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In the presence of mannan, the voltammetric peak observed for gold(III) at 0.29 V shifted 

to 0.33 V; see Figure 4.1(a) and (b). The stripping current peak for the proposed metal-

ligand complex reduction, is close to the observed peak for the metal reduction alone; 

hence, the reduction of the complex may be attributed to reduction occurring at the metal 

site. 

Various parameters were studied in an attempt to optimise the conditions for the detection 

of the gold-mannan complexes formed. The different parameters studied include those 

affecting the formation of the metal-ligand complex, its adsorption onto the electrode and 

the parameters responsible for the stripping of the complex from the electrode surface. 

Figure 4.2 illustrates the variation of the AdCSV currents for the peak, assigned to the 

reduction of gold(III) in the presence of mannan, as. a function of the time used for the 

deposition (accumulation) of the gold(III)-mannan complex onto the electrode surface. 
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Figure 4.2: The dependence of the AdCSV peak currents on the deposition time for 

gold(ID) at a concentration of 1.00 x 1O-4mol dm-3 in the presence of 0.30 ~g rl 

mannan. Scan rate = 100 mV S-1 Deposition potential = 1.05 V vs. the Ag/AgCl 

59 



CHAPTER FOUR RESULTS AND DISCUSSION 

In Figure 4.2, a rapid increase in the cathodic stripping current with deposition time was 

observed. The dependence of the peak current on the deposition time is limited by the 

saturation of the electrode surface in an adsorptive process; resulting in a peak of the 

currents for the plot of the deposition time versus current. The maximum current value 

occurred at a deposition time of 40 seconds and hence this time was used for all AdCSV 

studies. 

The potential required for the deposition of the gold(lII)-mannan complex onto the 

electrode, the deposition or accumulation potential, varied with the adsorptive cathodic 

stripping voltammetry currents, as shown in Figure 4.3. The optimum deposition potential 

of 1.05 V was employed throughout further AdCSV studies. 
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Figure 4.3: The dependence of the AdCSV peak currents on the deposition potential 

for gold(ID) (1.00 x 10-4 mol dm-3
) in the presence of 0.30 Jlg rl of mannan. 

Scan rate = 100 mV S·I Deposition time = 250 seconds 
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The AdCSV currents increased with an increase in the concentration at low mannan 

concentration levels; as seen in Figure 4.4. At high mannan concentrations the current 

response decreased as the concentration of the mannan increased. The observation implies 

that the activity of the electrode surface decreases at high concentrations of the ligand. The 

reason for the decrease in electrode activity may be the result of full coverage of the 

electrode surface and/or the possibility of the ligand occupying free sites on the electrode 

and competing with the metal-mannan complex for electrode space. 
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Figure 4.4: The influence of the yeast mannan concentration on the AdCSV peak 

currents for 1.00 x 10-4 mol dm-J gold(ID). Scan rate == 100 mV S-l 

A linear variation of the AdCSV peak currents, of the peak assigned to the gold(III)-

mann an complex with changes in the gold(III) concentration, was obtained under optimal 

experimental conditions and is illustrated in Figure 4.5. The mann an concentration was kept 
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constant at 0.30 /lg rl. The range applied for the gold(III) concentration variation was from 

7.00 x 10-7 to 3.00 X 10-4 mol dm-3
. 

A regression equation of y = 1.7x + 5.6 (y = peak height and x = concentration) and a 

correlation coefficient of 0.995 were obtained for the linear plot in Figure 4.5. The relative 

standard deviation, obtained under optimal experimental conditions for the gold(IlI) 

detection (1.00 x 10-4 mol dm-3
), was 3 %. The detection limit for the determination of 

gold(lII) under the assigned experimental conditions was found to be 9.00 x 10-9 mol dm -3. 
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Figure 4.5: The variation of the concentration of gold(ID) with the adsorptive 

cathodic stripping currents in the presence of 0.30 /lg rl yeast mannan. 

Scan rate = 100 mV S-1 Deposition potential = 1.05 V Deposition time = 40 s 
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The proposed mechanism for the AdCSV of the gold(III) mannan interaction is as follows: 

Au3+ + Man ~ [AuMan] (in solution; prior to accumulation potential applied) 

[AuMan] ~ [AuMan] ads (adsorption onto eh~ctrode during applied potential 

[AuMan] ads + 3e- ~ Auo (stripping step) 

Adsorptive cathodic stripping voltammetry of gold(Ill) in the absence of mannan: 

The reduction of gold(III), however, on unmodified carbon electrodes characteristically 

exhibited a single reduction peak associated with the three-electron reduction of gold(III) to 

gold(O) [46] However, there have been reports of two reduction peaks being observed on 

glassy carbon electrodes in particular, as mentioned earlier in section 4.1.1. [80] The peak has 

been shown to be highly dependent on the nature of the electrode, the electrolyte and 

experimental parameters chosen and the presence of any complexing ions. [44, 46, 51,63,77,80,81] 

A 'blank' sample (i.e. gold(III) in the absence of the mannan ligand), primarily to ascertain 

the suitability of mannan as a ligand for gold(III) detection, was run for each of the gold(III) 

concentrations used in the AdCSV experiments in the presence of mannan. 

In the absence of mann an and mercury ions and with a gold(III) concentration of l.00 x 

10-4 mol dm-3
, as seen in Figure 4. 1 (a), two stripping peaks were observed at 0.29 V and 

-0.09 V. The first peak height is larger than the second and is considered to be the result of 

the gold(III) to gold(O) reduction. The AdCSV peaks observed for gold(III) solutions are 

proposed to be the result of gold(III)-chloride complex present. 

Concentrations of gold(III) lower than 1.00 x 10-5 mol dm-3 resulted in a single current peak 

at 0.38 V being observed for the AdCSV of gold(III) in the absence of mannan; Figure 4.6. 

The concentration of the gold(III) observed in Figure 4.6, is l.30 x 10-7 mol dm-3 The 

absence of the second peak, assigned to the gold(I) reduction complex intermediate, is 

thought to be concentration related; since even in the presence of mannan at the same 
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gold(III) concentration, the second peak was also notably absent. The peak assigned to the 

gold(III) to gold(O) reduction could be observed at concentrations in the order of 9.40 x 

10-
8 

mol dm-
3

; thus the potential at which the gold(lII) is observed, is also concentration 

dependent. 
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Figure 4.6: The AdCSV peak for the reduction of gold(III) (1.30 x 10-7 mol dm-J
) in 

the absence of mannan and mercury ions. Scan rate = 350 m V S-1 

A linear variation of the assigned gold(III) reduction peak current with concentration, 

ranging from betwe_en 6.00 x 10-7 to 1.40 X 10-6 mol dm-3
, is illustrated in Figure 4.7 and a 

regression value of 0.989 was calculated from the data. 
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Figure 4.7: Variance of AdCSV currents with increasing gold(ill) concentration. 

Deposition potential = 1.05 V Scan rate = 350 m V S-l 

Scanning electron microscopy of the AdCSV gold-mann an complex: 

Scanning electron mIcroscopy represents another widely used technique available for 

obtaining ex-situ information on the surrace morphology, and in certain cases the chemical 

composition, of a sample. The scanning electron microscopy process utilises the secondary 

electrons emitted for detection purposes as the electron beam is scanned across the sample 

surface[31] The scanning electron micrograph (SEM) was employed to verify the 

electrochemical data on the proposed gold(III)-mannan complex formation. 

Figure 4.8, the scanmng electron micrograph, illustrates the gold(III)-mannan complex 

observed on a glassy carbon electrode surrace, as a result of the adsorptive cathodic mode 

of stripping voltammetry. The 'fern-shaped', crystalline substance is the biological extract 
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mannan; whilst the small, ball-like structures are the result of the metal present. A metal­

ligand interaction occurs at the sites on the SEM where both the metal and mannan are 

visibly attached to each other. The SEM were obtained, after the optimised experimental 

conditions had been established, at a magnification of x 5000. 

Figure 4.8: The scanning electron micrograph (x 5000) of the GeE electrode surface 

in the presence of gold(rn) (1.00 x 10-5 mol dm-3) and mannan (0.30 Ilg r1). 

4.1.2 Platinum electrode studies: 

The use of a platinum electrode has been proposed for the investigation of gold(II1) in 

solution. 144
.

77
] In this study, AdCSV, in the presence of mannan, was attempted with the 

platinum electrode as the working electrode of choice. Noble metal electrodes have, 

however, been shown to lack reproducibility; both quantitatively and qualitatively. The lack 
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of reproducibility of the current peaks has been attributed to oxide film formation on the 

electrode surface in oxidising and non-complexing media. The platinum metal electrode in 

particular, will be more likely to fall prey to chloride film formation, at the electrode 

surface, in the presence of any hydrochloric acid. [47] 

Figure 4.9 illustrates the AdCSV gold(III) reduction peak in the absence (a) and presence 

(b) of mannan. The addition of mann an resulted in the enhancement of the goJd(III) 

stripping peak and a shift in the reduction peak position from 0.31 V to 0.37 V; indicative 

of the in situ formation of a gold-mannan complex. 
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Figure 4.9: The AdCSV on a platinum electrode in the (a) absence and (b) presence of 

mannan for gold(lll) (1.30 x 10-7 mol dm-3
) detection. Deposition potential = 1.05 V 

Deposition time = 250 seconds Scan rate = 350 mV S-l 
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A negative shift of 0.06 V for the gold(III) reduction peak on the addition of mannan, 

shows the resulting gold-mannan complex is less easily reduced than the gold(III) alone. 

The shift of 0.06 V is relatively small, indicating that the complex formed between gold(ID) 

and mannan is not very stable. The platinum working electrode did not exhibit a second 

current peak, assumed to be the result of a gold(I) intermediate complex, as was the case 

for the glassy carbon electrode. 

The advantages of the platinum electrode over the glassy carbon electrode included a lower 

background current and the peak obtained for the gold(III) reduction could be obtained at 

considerably shorter deposition times on a smaller diameter electrode surface. Bond et al. 

have recently (1997) compared the reduction of gold(III) on various working electrodes and 

the platinum electrode was found to be the optimum electrode. [77] 

The platinum electrode thus, appears an ideal electrode for the detection of gold(III) in 

solution, however, an experimentally observed major drawback of the electrode prevents 

the furthered use of this electrode. The disadvantage is in the form of peak reliability and 

the problems associated with electrode cleaning. Gold(III) appears to interact strongly with 

the platinum electrode surface, particularly in the absence of mannan, and with further 

experimental runs, the peak currents were not reproducible. 

Several mechanical and electrochemical cleaning methods were attempted to improve the 

reproducibility of the peak, including soaking the platinum electrode in concentrated 

hydrogen peroxide followed by electrochemical cleaning and furthered polishing on a 

Buehler felt pad; however, only slight improvements were noted. The interference of 

platinum ions on the determination of gold(III) in solution has been observed. [50) Similar 

interactions may be taking place at the electrode surface, under the harsh acidic conditions 

of the experiment. However, since the gold (III) stock solution (1.00 x 10-3 mol dm-3
) 

contained a 50 : 50 mixture of hydrochloric and nitric acid, the chloride film formation was 

the probable cause of the deviations observed in the gold(III) analysis. 
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4.2 Interferences of copper(II) and silver(I) on the gold-mannan complex 

formation: 

Interferences for the adsorptive cathodic stripping. voltammetric determination of the 

gold(III) may be due to peak overlap or to the formation of inter-metallic compounds. In 

the presence of complexing ligands, such as mannan, interferences may be the result of 

competition of the metal ions for the ligand binding sites provided. Many metal ions have 

only a slight effect on the anodic stripping voltammetry determination of gold(III); even 

when present in a large excess (120-fold) with respect to goldJs1
] 

However, silver is known to interfere significantly with gold determination; a ten-fold 

excess of silver(I) can seriously obscure the stripping voitammogram of gold. Copper 

displays a stripping peak several hundred millivolts. more cathodic than the gold peak; 

however, gold and copper are known to form inter-metallic compounds.r44
) Studies have 

shown that the yeast biomass from S. cerevisiae preferentially accumulates copper ions over 

cadmium and cobalt ions.[S2] 

Copper uptake capacities range from 0.05 to 0.184 mmol g.l dry weight, whilst values of 

0.034 to 0.193 mmol silver g.l dry weight biomass have been reported for the yeast, 

S. cerevisiae.[83) The gold(III)-mannan complex formation may be affected by the presence 

of these interfering ions and studies were carried out to ascertain the effects. Figure 4.10 

shows the AdCSV of gold(III) (6.00 x 10.5 mol dm·3) and copper (II) (1.20 x 10.4 mol dm·3) 

in the ab sence (Figure 4 .1O( a» and presence (Figure 4. 1 O(b » of mannan (0.24 I-lg r 1). 

The gold(III)-mannan complex AdCSV peak was observed at 0.33 V when only gold(IlI) 

and mannan were present in solution; as seen in Figure 4.1(b). The addition of copper(lI) 

to gold(III) and mannan, seen in Figure 4.IO(b), did not change the peak position 

significantly compared with the observed peak in Figure 4 .1 (b) However, a large increase 

in the background current of the adsorptive cathodic stripping voltammograms in the 
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presence of copper(II) was noted, hence the peak associated with gold(I) was not observed 

in Figure 4.10. 
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Figure 4.10: The AdCSV of gold(ill) (6.00 x 10-smol dm-3
) and copper(ll) 

(1.20 x 10-
4 

mol dm-3
) in the absence (a) and presence (b) of 0.24 J.lg r1ofmannan. 

Scan rate = 100 mV S·l Deposition potential = 1.05 V 

The presence of copper(II) did, however, result in the formation of a new peak at -0.36 V; 

as illustrated in Figure 4.10(b). A weak reduction peak was observed for copper(II) alone 

in the presence of mann an near -0.27 V. The adsorptive cathodic stripping voltammogram 

of a solution containing gold(III) and copper(II), in the absence of mannan, is shown in 

Figure 4.10(a). The reduction peak at -0.36 V becomes sharper and more enhanced in the 

presence of gold(III) and the currents for the peak increase with an increase in the 

concentration of gold ions. 
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The addition of mannan, Figure 4. 1 O(b), resulted in a larger enhancement in the observed 

peak associated with the reduction of the gold(II-D complex than for the copper(II) 

complex, showing that the gold(III)-mannan complex formation is preferred over the 

copper(II)-mannan complex; even when the copper(II) is in a ten-fold excess to the 

gold(III) in solution. 

The addition of increasing concentrations of copper(II) to the system, resulted in the peak at 

-0.36 V increasing very insignificantly in comparison to the amount of copper(II) added. In 

fact, addition of large concentrations of copper(II) ( > 10"3 mol dm"3) resulted only in the 

broadening of the peak and not in an increase in current. The observation that the 

copper(II)-mannan complex, with a reduction poten~ial at -0.36 V, was sensitive to the 

addition of gold(III), suggests the formation of inter-metallic compounds. The inter­

metallic compound is thought to involve copper and gold ions and this compound is likely 

to have complexed with the mannan. 

In the presence of both gold(III) and copper(II), the shift of 0.04 V in the potential of the 

peak associated with the reduction of gold(III), was smaller than the shift of -0.06 V 

observed for the reduction of copper(II) on addition of mannan. The observation of 

relevant peak shift suggests that the copper(II) may form a slightly more stable complex 

with mann an than the gold(III). 

In spite of the proposed suggestion that copper(II) may form a slightly more stable complex 

with mannan than the gold(III), [84] the binding potential for gold(III) has been observed to 

be favoured over copper(II); when the copper(II) is in a ten-fold excess of the gold(III). 

Chemical modification of the S. cerevisiae cell wall has indicated the three chief functional 

groups involved in binding copper(II): namely the carboxyl, amino and hydroxyl groupS.[84] 

However, the hydroxyl functional groups of S. cerevisiae have demonstrated a low binding 

affinity for copper(II) and since the majority of the binding sites on mannan contain 

hydroxyl functional groups, copper(II) would not be favoured. [84] 
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Figure 4.11 illustrates the behaviour of the stripping currents towards the gold(III) 

concentration for the reduction of the gold(lII), with a constant ten-fold excess of 

copper(II), in the presence and absence of mannan. 
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Figure 4.11: Concentration versus stripping current obtained for gold(III) in the 

absence (a) and presence (b) of mann an (0.30 Jlg rl) at a constant copper(TI) level of 

1.25 x 10-4 mol dm-3
• Scan rate = 100 mV S-l Deposition potential = 1.05 V 

A linear variance of stripping current vs. concentration was observed for the concentrations 

ranging from 1.50 x 10-5 mol dm-3 to 9.38 x 10-5 mol dm-3 of gold(III). Higher gold(III) 

concentrations (~l 0-4 mol dm-3
) emphasised the preference of mann an for gold(III) over 

copper(II). However, lower concentrations of gold(III) were affected by the formation of 

the inter-metallic gold(III)-copper(II) complex, hampering the detection of gold(III), in the 

presence of mannan, by lowering the number of gold(III) available for detection. The slow 

nucleation problem of gold ions on the glassy carbon electrode ( referred to in section 1.3.4) 
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may also contribute to the variation of the gold reduction peak observed at lower gold(III) 

concentrations. 

In the study performed on the AdCSV of gold(III) in the presence of silver(I) no significant 

changes in the adsorptive cathodic stripping voltarnrnetry peak of the gold(ill)-mannan 

complex were observed for silver(I) concentrations ranging from 1.00 x 10-4 to 1.00 X 

10-3 mol dm-3
. No new peaks, which could be associated with the formation of a silver(I)­

mannan complex, were observed; suggesting that silver(I) does not compete with gold(III) 

for the co-ordination of mannan under the present experimental conditions. However, the 

pyrolytic graphite and the glassy carbon electrodes have been shown to be unsuitable in the 

detection of small amounts of silver(I) in solution and carbon paste electrodes have been 

prescribed. [85] 

Silver biosorption is strongly influenced by the pH of the solution, since silver is regarded as 

a 'soft' metal and the binding of such metals is predominantly a covalent mechanism 

involving hydrogen ion displacement. At a pH of 2.3, 'the silver(I) uptake had decreased by 

74 % compared with the uptake capacity at pH 6.5.[21] The pH of the experimental 

solution, for gold(III)-mannan complex formation, was in the pH range of 0 - 2 pH units, 

which may account for the lack of a silver(I)-mannan complex forming. 

4.3 Yeast cell wall modified carbon paste electrodes: 

4.3.1 The mannan modified carbon paste electrode: 

Mannan, was investigated for its binding properties, 'with respect to gold(III), utilising a 

mannan modified carbon paste electrode method. Mannan, as a suitable modifYing agent, is 

required to lower the detection limit and/or increase the selectivity towards the metal ion of 

interest. The adsorptive cathodic linear sweep potential scan voltammetry technique, in the 
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presence of a nitric acid (0.10 mol dm-3
) media, was employed on the mannan modified 

carbon paste electrode for gold(III) detection. 

A single cathodic stripping peak, in the absence of a mannan, was obtained at 0.30 V for 

gold(III) (1.30 x 10-
8 

mol dm-3
) employing the unmodified carbon paste electrode. The 

addition of the mannan to the carbon paste electrode increased the observed stripping 

current 100-fold and the peak associated with gold(III) reduction, shifted to 0.22 V. 

The comparison between the gold(III) reduction peaks, in the absence and presence of 

mannan, is illustrated in Figure 4 .12 (a) and (b) respectively. In the presence of mannan, a 

detection limit of 9.00 x 1O-9moi dm-3 was obtained. Mannan, thus meets the requirements 

of a suitable ligand, admixed into a carbon paste electrode, for gold(III) detection The 

standard deviation of the stripping peak currents was observed to be less than 3 %. 
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Figure 4.12(a): The gold(ID) (1.30 x 10-8 mol dm-3
) reduction peak observed in the 

absence of mann an in the carbon paste electrode. Scan rate = 350 m V S-I 
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Figure 4.12(b): The gold(ill) (1.30 x 10-8 mol dm-3
) reduction peak observed in the 

presence of mannan in the carbon paste electrode. Scan rate = 350 m V S·I 

The potential shift observed for the gold(III) reduction peak, in the presence and absence of 

mannan within the carbon paste electrode, is 0.08 V. The magnitude of the peak current 

shift obtained on the paste electrodes is larger than the shift obtained on the glassy carbon 

electrode for the AdCSV experiments in sections 4.1 and 4.2. The increased magnitude of 

the peak shift, associated with the gold(III) reduction, may be the result of the mannan 

being immobilised within the electrode. Studies have shown that the polyacrylamide 

immobilisation of S. cerevisiae allowed for the complete removal of certain metal ions such 

as copper(II), cobalt(II) and cadmium(II) from synthetic metal solutions[86] 

The optimum experimental conditions, attained in the AdCSV on a glassy carbon electrode, 

served as optimum conditions for the AdCSV modified carbon paste experiments. 

However, the scan rate and the deposition (accumulation) time were increased from 100 to 

350 mV S-I and from 40 seconds to 250 seconds respectively, since the concentration range 

75 



CHAPTER FOUR RESULTS AND DISCUSSION 

of the gold(III) was lowered to the order of 10-9 mol dm-3
. An added consideration in the 

preparation of the mannan MCPE, is the ratio of biomass/graphite/mineral oil. Figure 4.13 

illustrates the optimum composition ratio of a mannan MCPE. 
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Figure 4.13: The optimum percentage biomass (w.w) per total weight, required for a 

modified carbon paste electrode (MCPE). Scan rate = 350 m V S-I 

The optimum composition ratio was found to contain a 20 % W.w of biomass per total 

composition weight. The 50 % biomass w. w per total weight electrode composition, did 

not render a stripping peak for the sample; since there was insufficient graphite 

powder/mineral oil (responsible for the conductivity of the electrode) present in the ratio 
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The pH profile of the MCPE experiments is of interest; since the pH levels not only dictate 

the metal binding possibilities, but also give clues as to how the metal may bind to the 

biomass. The pH of the sample, used for the AdCSV of gold(III) on a mannan MCPE, was 

measured to be 0.7 pH units. At pH 1.0, a peak associated with the reduction of gold(III) 

was observed, but there were no visible peaks in this region around pH 2.0 and upwards. 

However, a small peak was noted several millivolts towards the negative region, but this 

peak faded rapidly as the pH levels increased. 

The results, for the mannan pH profile, indicate that a highly acidic medium is necessary for 

the study of gold(III). Gold ion detection studies, via algal modified carbon paste 

electrodes, have observed a decrease in the gold(Ill) stripping peak upon increasing the pH 

between 2.00 and 5.00 pH units and no current responses are obtained at higher pH 

levels. [64] 

Figure 4.14 illustrates the Osteryoung square wave adsorptive cathodic stripping 

voltammogram of gold(Ill) in the presence of mannan. Variations of the potential scan 

stripping technique, namely the Osteryoung and Barker square wave potential scan stripping 

forms, were applied to the MCPE experiments in an effort to lower the detection limits. 

The Barker square wave format resulted in a more c6mplex voltammogram, however, the 

Osteryoung method enhanced the detection limit, for the reduction of gold(III) to gold(O) in 

the presence of 0.3 f..lg rl mannan, to a favourable 1.70 x 10-11 mol dm-3
. 
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Figure 4.14: The Osteryoung square wave potential scan adsorptive cathodic 

stripping voltammogram of gold(ill) (1.67 x 10.11 mol dm03
) on a mann an modified 

carbon paste electrode. Scan rate = 350 mV sol Deposition potential = 1.05 V 

4.3.2 The chitin and glucan modified carbon paste electrodes: 
, 

Chitin is a polymer of N-acetylglucosamine residues linked via glycosidic links, whilst 

glucan is a f3(1,3) linked glucose polymer, with branched side chains at f3(1,6) positions as 

mentioned in the introduction section and seen in Figure 1.2(b).I13J A small, broad peak, 

sensitive to changes in the gold ion concentration, was observed at 0.15 V for the chitin 

MPCE, and is illustrated in Figure 4.15. 
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Figure 4.15: The gold(ID) reduction on a chitin modified carbon paste electrode. 

Scan rate = 350 mV S-l Deposition potential = 1.05 V 

The optimum experimental conditions, for the mannan MCP~, were applied to both the 

glucan and chitin extracts. A detection limit, for gold(lII) reduction, of 1.10 x 1O-6mol dm-3 

was obtained for the chitin extract. 

The glucan modified carbon paste electrode did not exhibit any peaks within the scanned 

potential window. Hydrogen ion release, a proposed pre-requisite for the binding of metal 

ions to hydroxyl containing complexes, will be affected under the acidic conditions 

specified. The glucan extract, with hydroxyl functional groups as possible binding sites, may 

thus be sensitive to the harsh acidic conditions. Metal-ligand interaction studies have also 

shown the dependency of the metal-ligand bond formation on the three-dimensional spacial 

arrangement of the ligands, which may be affected by changes in the environmental 

79 



CHAPTER FOUR RESULTS AND DISCUSSION 

conditions. [84] Chitosan, the remaining cell wall polysaccharide, could not be ground finely 

enough for the production of a MCPE, with the available grinding apparatus. 
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ADDITIONAL ANAL YSIS TECHNIQUES FOR 

INVESTIGATING GOLD - BIOMASS INTERACTIONS: 

5.1 The nuclear magnetic resonance (NMR) experiments: 

The study of molecular structure, conformational' changes, interaction of biological 

molecules with various substrates and certain types of kinetic investigations are the main 

uses of NMR in the biological field. [67] Polysaccharides which are composed of regular 

repeating units, such as most bacterial and yeast polysaccharides, lend themselves readily to 

NMR spectroscopy. A spectrum of such a compound is essentially that of a single 

repeating unit, regardless of the degree of polymerisation of the compound. However, 

increasing the molecular mass will result in line broadening, due to an increase in the 

viscosity of the polysaccharide sample. [69] 

A typical one dimensional (ID) IH NMR spectrum o'f a micro-organism polysaccharide is 

fairly complex, due to the degree of overlap of the signals arising from the ring protons. 

The remaining region of the spectrum of a polysaccharide, which lacks methyl groups, is 

referred to as the anomeric region. Should a metal-ligand complex form between the 

polysaccharide and the metal, the signals relating to the hydrogen atoms near the 

complexation site will shift; usually downfield. This enables the site of complex formation 

to be pinpointed. In this study the greatest shift was observed in the anomeric signals, 

implying complexation near carbons 1 and 2 of the individual sugar units. 

All NMR data collected was obtained at an experimentally optimised temperature of 

30 DC, which allowed for the detection of any possible sample absorption peaks that may 

have occurred under the HOD (Hydrogen Oxygen Deuterium) peak at other operating 

temperatures. The initial NMR experiments were carried out on the yeast mannan extract in 

99.99 % D20 in an attempt to ascertain its structure; since to date, the NMR elucidation of 
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the mannan complex had not been performed. The assignment of the chemical shift values 

was carried out using the COSY spectrum; see Figure 5.1. 
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Figure 5.1: The COSY spectrum obtained for the mannan extract at 30°C. 

The mam aIm of the NMR study is to verifY the proposed metal - biomass complex 

formation, observed in the adsorbed cathodic stripping voltammetry experiments, and to 

obtain information concerning the binding positions on the polysaccharide. The adsorbed 
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cathodic stripping voltammetry experiments were all performed under harsh acidic 

conditions and hence the affects of acidifying the sample solution were significant. No 

major changes were observed on the addition of acid to the mannan sample, in the absence 

of gold ions; as can be seen by comparing Figures 5.2 and 5.3. 
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Figure 5.2: The ID IH NMR spectrum obtained for mannan (1 mg mrl) under non-

acidified conditions at a temperature of 30°C. 

The chemical shift values and coupling constants provide information concernmg the 

anomeric configuration and permit the identification of the basic configuration of the 
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monosaccharide. NMR experiments on residues containing the manna configuration have 

been attempted and the configuration has been noted to be problematic for structure 

elucidation experiments. 

The problem occurs as a result of the signal for the anomeric proton resonating close to 

5.00 ppm and the coupling constants for the a- and ~-linked sugars being small. However, 

in such cases the configuration may be assigned from the JC_1•H_1 values or the Nuclear 

Overhauser Enhancement data. [69] 
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Figure 5.3: The ID IH NMR spectrum obtained for mannan (1 mg mrl) under 

acidified conditions at a temperature of 30°C. 
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Figure 5.4 depicts the lD iH NMR spectrum obtained for mannan in the presence of 

1 00 ~l of gold(lII) and under nitric acid acidified conditions. The optimum NMR 

experimental parameters, obtained with the mannan investigation (Figures 5.2 and 5.3), 

were maintained for the gold-mannan complex formation NMR studies. 
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Figure 5.4: The ID in NMR spectrum obtained for mannan (1 mg mrl) under 

acidified conditions in the presence of 100 ~I of gold(ill) (10-3 mol dm-3
) at 30°C. 

The NMR data obtained in the absence (Figure 5.2) and presence of gold(Ul) (Figure 5.4) 

has been summarised in Table 5.1 and 5.2 respectively. The polysaccharide monomer units 

were randomly assigned labels from (A) to (E) in order of their decreasing chemical shift 

values. In the cases where no values have been entered in Table 5.1, the chemical shift 

value could not be assigned to that monomers specific proton as a result of chemical shift 

values overlapping. 
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Table 5.1: Summary of the NMR data in the absence of gold(Ill): 

Mannan in Monomer Monomer Monomer Monomer Monomer 

absence of unit (A) unit (B) unit (C) unit (D) unit (E) 

gold(DI) (ppm) (ppm) (ppm) (ppm) (ppm) 

B-1 5.275 5.127 5.097 5.072 5.036 

B-2 4.205 4.108 4.007 - 4.058 

B-3 3.891 3.864 - - -

Table 5.2: Summary of the NMR data in the presence of gold(lll): 

Mannan in Monomer Monomer Monomer Monomer Monomer 

presence of unit (A) unit (B) unit (C) unit (D) unit (E) 

gold(1H) (ppm) iJ!pm) (ppm) (ppm) (ppm) 

B-1 5.389 5.241 5.210 5.186 5.151 

B-2 4.314 4.217 4.119 - 4.170 

B-3 3.976 3.958 - - -

The comparison between Tables 5.1 and 5.2 indicate a strong downfield shift in the various 

chemical shift values observed. In particular the absorption peaks belonging to H-1 and H-

2 protons showed the greatest changes; this implies that the H-1 (A 0.11 ppm) and H-2 ( A 

0.10 ppm) protons may be involved in the gold(III)-mannan complex formation. Chemical 

shift differences of 0.1 ppm and greater were observed for these protons. The downfield 

shift is indicative of de shielding of the protons involved. 
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Chemical shift differences in the order of 0.1 ppm are suggestive of co-ordination of the 

complex by the co-ordination agent. [68] A further indication of a possible metal-ligand 

complex formation occurring, is the enhancement of the spectrum resolution on addition of 

the metal ions and this is illustrated when comparing Figure 5.3 in the absence of gold(III) 

with Figure 5.4 in the presence of gold(III). 

5.2 The infrared spectroscopy study: 

The stretch vibrations of the oxygen-hydrogen and the carbon-oxygen bonds are responsible 

for the characteristic absorptions in the polysaccharide infrared spectroscopy experiments. 

The strong absorption peaks in the region of 3335 cm- I are due to of the hydroxyl groups 

present in the sugar and alcohol molecules. The carbon-oxygen stretch appears between 

1250 and 1000 cm- I
; depending on the degree of substitution of the carbon atom. The 

polysaccharide spectra characteristically exhibit broad bands in comparison to the spectra 

observed for the simple alcohol molecules. The polysaccharide spectra do not display the 

aldehyde carbonyl absorption peaks, due to their cyclic hemiacetal structure. [87] 

Figure 5.5 illustrates the infrared spectrum of mannan obtained from a KBf disc. The 

spectrum was run from 4000 cm- I to 1000 cm- I
. A large, broad, unresolved peak 

corresponding to the hydroxyl absorption was observed in the 3200 to 3600 cm- I range. At 

approximately 3000 cm- I a sharp, clearly defined peak is noted. Peaks corresponding to the 

carbon-hydrogen stretchings are observed around 1600 and 1400 cm- I
. The large 

absorption peaks observed in the 1000 cm- I are the result of the carbon-oxygen vibrations. 
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Figure 5.5: The infrared KBr disc spectrum obtained ror the mann an extract. 

The effect of the addition of gold(III) to a mannan sample on the IR spectra is observed in 

Figure 5.6. The mannan extract and the proposed gold(III)-mannan complex are highly 

water soluble, hence the sample from the NMR study, in D20 and under acidic conditions, 

was evaporated on a high vacuum rotary evapourator to a solid product. The presence of 

DzO affects the spectrum slightly; peaks observed between 2000 and 2400 cm- I are the 

result of DzO present. However, the region of interest, ~ 3000 to 3600 cm- l
, on addition of 

gold(III) to the mannan, still exhibited changes associated with the possible co-ordination at 

the hydroxyl sites. 
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The spectrum obtained in the presence of metal ions was more highly resolved, especially in 

the 3000 cm-1 region. Four major absorption peaks were observed in this region, with the 

latter two peaks having been shifted from the expected hydroxyl regIOn. The third 

absorption peak is indicative of co-ordination at the hydroxyl site. 
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Figure 5.6: The infrared spectrum obtained for the gold(ill)-mannan complex. 
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5.3 Computer modelling and energy minimisation techniques: 

The computer modelling technique employed high quality computer graphics as an aid in 

visualising the molecules, molecular processes and intermolecular interactions. A common 

use of the molecular visualisation technique is the interaction of metals with 

macromolecules. 

The metal-macromolecule interactions are inevitably complex and molecular modelling and 

visualisation can be of enormous assistance in understanding the nature of the interactions 

and the factors that mediate them. However, as a result of the complexity of the metal­

macromolecule system, the model generated is but one of the possible representations of the 

interaction and the model corresponds to one of the many possible energy minima on a 

complex potential energy surface. [661 

The Newton-Raphson energy minimisation technique was employed for all the models 

generated. The technique converges very efficiently for molecules close to the optimum 

structure as a result of the potential energy surfaces being close to the harmonic near the 

energy Illimmum. 

Figure 5.7 is a graphic representation of a section (for simplification purposes of the graphic 

model, about five repeating mannose units including a side chain section were represented 

as the molecule), of the minimised mannan extract. On addition of gold(III) to the system 

(Figure 5.8(a) and (b)), changes in the position of the biological molecules were observed 

and a square-planar geometry was found to exist. The experimentally found geometry is in 

agreement with the trend observed for gold(III) according to the literature. [38] 
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Figure 5.7 The Newton-Raphson energy minimised structure for a section of the 

mann an biological macromolecule. 
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Figure S.8(a): The space-filling model of the proposed gold(Ill)-mannan complex, 

indicating the favoured square-planar geometry adopted by the gold. 
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Figure 5.8(b): The stick model illustrating a section of the proposed 

gold(III)-mannan complex. 
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THE CONCLUSION: 

The electrochemical stripping voltammetry has proven its usefulness in the determination of 

gold ions in solution. The optimum parameters for the detection of gold(Ill) varies largely 

with the type of electrochemical method employed, the choice of working electrode surface, 

the electrolyte and the presence of any interfering ions in solution. 

The presence of mercury(II) may serve as a co-depositing material or for amalgamation 

formation, which will be stripped off before any gold peaks are observed, and thus over­

come the poor nucleation problem; as observed in the successful anodic stripping 

voltammetry gold(llI) detection experiments. However, in the conventional anodic 

stripping voltammetry experiments, employing the use of a mercury film, fails for the 

detection of gold ions, since the oxidation potential of mercury is considerably less positive 

than that of gold. 

The mercury co-deposition and/or film formation method is not suitable for the detection of 

gold ions in a complex matrix; such as the mine effluent sample. Gold(Ill) detection 

requires the use of harsh acidic conditions and a type af aqua regia was utilised successfully 

in the application of the stripping voltammetry technique to the mine water sample. 

In this research the mannan extract has proven to be the probable cell wall extract 

responsible for the bioremediation of gold(ID) from solution. However, the metal-ligand 

complex formation has been shown to be dependent on the three-dimensional structure of 

the ligand and hence the entire structure of the cell wall, including the remaining cell wall 

extracts and the proteins associated with them, should be taken into account in the metal 

binding process. 

The S. cerevisiae mannan extract has demonstrated an affinity for both gold(ID) and 

copper(II); as seen in the linear sweep potential scan adsorptive cathodic stripping 
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voltammetry experiments. The copper(II) may compete with gold(III) for the co-ordination 

sites on mannan; resulting in significant interferences for the accumulation of gold by yeast 

mannan extract. However, the mannan extract was found to be more sensitive to gold(ill) 

than to copper(II) and the detection limit (9 x 10-9 mol dm-3
) for the gold (III) reduction 

compares favourably with the literature. 

Despite the fact that high sensitivity levels are an important requirement from an analytical 

view point, the sensitivity levels must be accompanied by high selectivity levels for an 

optimum detection limit to be achieved. The observation that silver(I) does not compete 

with gold(III) for mannan co-ordination sites, under the chosen experimental conditions, is 

significant; since silver(I) is known to cause serious interferences for the determination of 

gold(III) in solution. 

The NMR, IR and computer modelling data collaborate with the electrochemical 

experiments and the NMR data was useful in suggesting the binding position on the mannan 

extract for the gold(III). The gold ion has been shown to adopt the conventional square­

planar geometry when bound to the mannan, via the H-I and H-2 proton sites. 

The development of ligands that are specific for gold ions is important in the analysis and 

recovery of gold. The study of the gold detection and the interaction of the gold ions with 

the S. cerevisiae cell wall extracts, represents a significant step towards better 

understanding the nature of gold chemistry, the electrochemistry of the metal and the 

accumulation of gold via biosorption. 
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